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Vorwort

Die vorliegende Arbeit setzt sich aus drei Teilen zusammen. Der erste Teil deckt die Grundlagen

zum elektronischen Vielteilchenproblem in der Physik der kondensierten Materie ab und stellt

den theoretischen Hintergrund der GW Methode vor. Nach einer Einführung zur Dichtefunk-

tionaltheorie (DFT) werden später Methoden welche über konventionelle DFT hinausgehen,

wie DFT+U und Hybridfunktionale vorgestellt. Dabei werden auch die jeweiligen Grenzen der

Anwendbarkeit dieser Methoden diskutiert. Anschließend wird ein Überblick über die GW Ap-

proximation gegeben, beginnend mit dem Bandlückenproblem und experimenteller Photoemis-

sionsspektroskopie. Die Herleitung der GW Approximation aus der Vielkörper-Störungstheorie

wird danach ausführlich behandelt. Insbesondere werden die Ein-Teilchen-Green’s-Funktionen,

die Dyson-Gleichung und die Hedin-Gleichungen eingeführt. Zuletzt wird die praktische Um-

setzung der GW Approximation besprochen, einschließlich der konventionellen GW Implemen-

tierungen sowie der Space-Time-Methode. Hierbei werden auch die Nachteile der bestehenden

GW Implementierungen aufgezeigt, wodurch die Notwendigkeit für einen niedrig skalierenden

GW Algorithmus deutlich wird. Aus dieser Überlegung stammt die Motivation zu dieser Ar-

beit. Abschließend kann gesagt werden, dass dieser Teil eine solide Grundlage bildet und eine

konsequente Terminologie für den zweiten Teil der Arbeit einführt.

Der zweite Teil präsentiert unsere kürzlich entwickelte Low-Scaling-GW Methode, die im

”Vienna ab-initio Simulation Package” (VASP), einem weit verbreiteten Programm zur Berech-

nung der elektronischen Struktur, implementiert wurde. Diese neue Methode ermöglicht schnelle

Quasiteilchenberechnungen mit einer Skalierung, die sich in der Systemgröße kubisch verhält

und linear in der Anzahl der k-Punkte, die verwendet werden um die Brillouin-Zone zu sampeln.

Dadurch werden sowohl die Nachteile der konventionellen GW Implementierungen, welche in

der Regel auf kleine Systeme beschränkt sind, als auch jene der speicherintensiven Space-Time-

Methode überwunden. Es wird ausführlich erläutert, wie eine so günstige Skalierung erreicht

werden kann. Danach wird der Erfolg der Methode bei der Berechnung von Quasiteilchen-

Energien und Spektralfunktionen typischer Isolatoren, Halbleiter und Metalle diskutiert. Die

Ergebnisse werden mit konventionellen GW Berechnungen verglichen und es zeigt sich eine

sehr hohe Übereinstimmung. Darüber hinaus wurde die neue Methode auch erfolgreich zur Bes-

timmung der Ionisierungspotentiale und der Elektronenaffinitäten von hundert Closed-Shell-

Molekülen angewandt. Die Ergebnisse werden mit experimentellen Daten sowie Ergebnissen
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aus anderen elektronischen Strukturpaketen verglichen. Insgesamt wurde eine gute Übereinstimmung

erzielt. Um diese Übereinstimmung zu erreichen, korrigieren wir die Fehler für endliche Ba-

sissätze sowie Fehler, die durch periodisch wiederholte Bilder entstehen. Für die etwas größeren

Abweichungen der Elektronenaffinitäten werden mögliche Erklärungen diskutiert. Wegen der

geringen Skalierung unserer neuen Methode glauben wir, dass sie ein großes Anwendungspoten-

zial besitzt, insbesondere für große Einheitszellen. Dies wird im Bereich der Materialmodel-

lierung dazu beitragen, Methoden welche über DFT hinaus gehen zu etablieren.

Die vorgestellte Low-Scaling-GW stellt zwar einen großen Fortschritt gegenüber älterer GW

Methoden dar, jedoch wird in der aktuellen Implementierung die Spin-Orbit-Kopplung (SOC)

nicht berücksichtigt, während dies bei der herkömmlichen GW Implementierung in VASP möglich

ist. In diesem Abschnitt werden daher einige Änderungen an der herkömmlichen Implemen-

tierung der GW besprochen, welche es erlauben mäßig große Systeme zu behandeln, bei denen

SOC nicht vernachlässigt werden darf. Dies wird durch optimierte imaginäre Zeit/Frequenz

Gitter sowie äußerst effiziente diskrete Fourier-Transformationen erreicht, beides Hauptmerk-

male der neuen Low-Scaling-GW Methode. Die modifizierte GW Methode wurde für ZnO und

CdTe getestet und es zeigt sich eine ausgezeichnete Übereinstimmung mit der herkömmlichen,

unmodifizierten GW Implementierung.

Darüber hinaus wird eine teilweise selbst-konsistente Low-Scaling-GW0r Methode vorgestellt

und vorläufige Testergebnisse für Si werden präsentiert. Die Auswirkungen der Selbstkonsis-

tenz werden in Bezug auf Teilchenzahlerhaltung und Bandlücken diskutiert. Abschließend wird

noch eine praktikable Möglichkeit zur Kombination unserer Low-Scaling-GW Methode mit der

Dynamical-Mean-Field-Theorie (DMFT), d.h. GW+DMFT, vorgestellt. Besonders hervorge-

hoben und ausführlich besprochen wird die frequenzabhängige, partiell abgeschirmte Wechsel-

wirkung U(iω), welche mittels der Constrained-Random-Phase-Approximation (cRPA) berech-

net wird sowie das Double-Counting, das bei GW+DMFT auftritt. Vorläufige Ergebnisse von

GW+DMFT für SrVO3 werden präsentiert. Am Ende der Arbeit befindet sich eine Conclusio

in welcher die Ergebnisse und Schlussfolgerungen zusammengefasst werden und ein Ausblick

über die weitere Entwicklung skizziert ist.

Es sei noch angemerkt, dass einige Gleichungen und Herleitungen separat in den Anhängen

platziert wurden. Obwohl viele dieser Gleichungen zum besseren Verständnis des Haupttextes

beitragen, wurde zum Zwecke der besseren Lesbarkeit und Übersicht diese Aufteilung gewählt.

Der interessierte Leser wird daher in den Anhängen nützliche und ausführliche Details finden.
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Preface

The thesis is divided into three main parts. The first part covers basic textbook and literature

knowledge about the electronic structure problem in condensed matter physics. It introduces

the theoretical background of the GW method. Starting from density functional theory (DFT),

methods beyond DFT, such as DFT+U and hybrid functionals are then introduced, followed by

a discussion of their limitations. Afterwards, an overview of the GW approximation is given,

setting out from the band gap problem and experimental photoemission spectroscopy. Then, the

GW approximation is established starting from many-body perturbation theory. In particular,

the one-particle Green’s functions, Dyson equation, and Hedin’s equations are introduced. At

the end, practical implementations of the GW approximation including the conventional GW

implementations and the space-time method are discussed. Also, the drawbacks of existing GW

implementations are raised, highlighting the need for a low-scaling GW scheme. This provides

the motivation for the thesis. The first part lays a solid foundation and builds a consistent

terminology for the second part of the thesis.

The second part presents our recently developed low-scaling GW method, which is im-

plemented in the widely used electronic structure code Vienna ab-initio simulation package

(VASP). This new implementation allows for fast quasiparticle calculations with a scaling that

is cubic in the system size and linear in the number of k-points used to sample the Brillouin

zone. This overcomes the shortcomings of conventional GW implementations that are usually

restricted to small systems. It also addresses some of the drawbacks of the first implementations

of the space-time method such as the large memory requirements. An exhaustive explanation

regarding how such low scaling can be achieved is given. Then, the success of this method in

predicting the quasiparticle energies and spectral functions of typical insulators, semiconductors

and metals is discussed. The results are compared to conventional GW calculations, showing

very good agreement. In addition, the new method is also successfully applied to predict the

ionization potentials and electron affinities of 100 closed shell molecules. The results are com-

pared with the ones from experiments and other electronic structure packages. Overall, good

agreement is obtained. In order to achieve this agreement, we correct for finite basis set errors

as well as errors introduced by periodically repeated images. For the slightly larger deviations

on the electron affinities, tentative explanations are given. Due to the low scaling of our new

method, we believe that this method has great potential for applications, in particular for large
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unit cells. This will greatly help to establish methods beyond DFT in the realm of materials

modeling.

However, the spin-orbit coupling (SOC) has not yet been implemented in our low-scaling GW

method, which is instead covered by the conventional GW implementation in the VASP code.

Hence, some modifications are made to the conventional GW implementation. This makes

possible the applications of the conventional GW method to moderately large systems where

SOC is non-negligible. This is achieved by employing the optimized imaginary time/frequency

grids and efficient discrete Fourier transformations which are the key features used in the low-

scaling GW method. Tests of this modified GW implementation on ZnO and CdTe are shown

and very good agreement is found compared to the conventional original GW implementation.

Moreover, partially self-consistent low-scaling GW0r is formulated and preliminary test re-

sults on Si are shown. The effects of self-consistency are discussed in terms of particle num-

ber conservation and the band gap. Finally, a feasible combination of our low-scaling GW

method with dynamical mean field theory (DMFT), i.e., GW+DMFT, is given. Particular em-

phasis is devoted to the frequency-dependent partially screened interaction U(iω) calculated

from the constrained random phase approximation (cRPA) and the double counting that occurs

in GW+DMFT. Preliminary results of GW+DMFT calculations on SrVO3 are given. At the

end, the conclusions of the thesis are drawn.

It should be stressed that, in order to keep the thesis more readable, some equations and their

derivations used in the main text of the thesis are placed in the appendices. There the readers

can find useful additional details.
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1. Density functional theory

Density functional theory (DFT) is one of the most successful quantum mechanical approaches

to condensed matter of physics. Nowadays, it is routinely applied for calculating the electronic

structure, the total energy, forces of solids, and so on. In this section, a detailed overview

of DFT is given. First, we start from the total Hamiltonian of the many-atom system and

the Born-Oppenheimer approximation. Then, the Hartree and Hartree-Fock approximation are

introduced. After that, the DFT based on the Hohenberg-Kohn theorem is built and thereby

the Kohn-Sham equation is given. We close this section by the introduction of some practical

exchange-correlation functionals.

1.1. The many-body Schrödinger equation and the

Born-Oppenheimer approximation

In quantum mechanics, particles’ behaviors are described by an equation of states, where a

wave function is used to characterize the probability of finding particles in a certain quantum

mechanic state. For a stationary system, this quantum mechanic equation is given by the time-

independent Schrödinger equation [1, 2]

HtotΦ = EtotΦ, (1)

where Etot and Φ are the energy eigenvalues and many-body wave functions of the Hamiltonian

Htot of the system, respectively. Most physical properties can be associated with energies or

differences between energies. The Hamilton operator of a non-relativistic system of N nuclei

with coordinates Rα and charges Zα, and Ne electrons with coordinates ri reads

Htot = Te + Vee(r) + TN + VNN(R) + VeN(r,R). (2)

Here, Te and TN are kinetic energy operators of electrons and nuclei, respectively. Vee, VNN

and VeN are the Coulomb interactions between electrons and electrons, nuclei and nuclei, and

13



electrons and nuclei. The explicit expressions of them are given by

Te =

Ne∑
i

−
1
2
∇2

i (3)

Vee(r) =
1
2

Ne∑
i

Ne∑
j,i

1
|ri − r j|

(4)

TN =

N∑
α

−
1
2
∇2
α (5)

VNN(R) =
1
2

N∑
α

N∑
β,α

ZαZβ
|Rα − Rβ|

(6)

VeN(r,R) =

Ne∑
i

( N∑
α

−Zα
|ri − Rα|

)
︸            ︷︷            ︸

Vext(ri)

. (7)

Here, Z represents the proton number of a nucleus and Vext(ri) is the external potential caused

by the nuclei, which would be used hereafter. Note that throughout the thesis Hartree atomic

units are employed unless otherwise explicitly stated.

With Eq. (2), the Schrödinger equation Eq. (1) becomes

{Te + Vee(r) + TN + VNN(R) + VeN(r,R)}Φ(x,R) = EΦ(x,R), (8)

where x = [(r1, σ1), . . . , (rNe , σNe)] combines all translational and spin degrees of freedom of

all the electrons and R = (R1, . . . ,RN) signifies the nuclear coordinates.

Considering that the nuclear mass exceeds the electron mass by more than three orders of

magnitude [3] and thus the time scales also differ, the wave function Φ(x,R) can be separated

into an electronic part Ψ(x,R) and a nuclear wave function Π(R). The nuclear wave function

is much more localized since ∇αΠ(R) � ∇αΨ(x,R), which allows to separate the Schrödinger

equation into two parts:

{Te + Vee(r) + VeN(r,R)}Ψ(x,R) = E0(R)Ψ(x,R) (9)

{TN + VNN(R) + E0(R)}Π(R) = EtotΠ(R). (10)

Note that the nuclear positions R enter the electronic equation (9) only as parameters and it

is possible to use the Born-Oppenheimer approximation, which states that on the timescale

of the nuclear motion, the electronic system is always in the instantaneous ground state; the

electrons follow the ions adiabatically. Therefore, in the Born-Oppenheimer approximation,
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the electronic part and nuclear part can be treated separately. For the electronic part, Eq. (9) can

be solved with fixed positions of nuclei. After the ground state energy of the electron system

E0(R) has been obtained, the nuclear part Eq. (10) reduces to the Newtons equations of motion

if the quantum effects on the motion of the nuclei are neglected. This leads to the so-called

ab initio molecular dynamics, where the forces that act on the nuclei are calculated from the

electronic ground state. Ions are moved according to those forces and for every new ionic

configuration, the electronic ground state is re-calculated. In this thesis, however, we restrict

ourselves to the electronic part only.

1.2. The Schrödinger equation of electrons

As discussed above, in the Born-Oppenheimer approximation, the electronic Hamiltonian can

be solved with fixed positions of nuclei. The Schrödinger equation of electrons then becomes

{Te + Vee(r) + VeN(r,R)}Ψ(r) = EΨ(r), (11)

where E and Ψ(r) are the eigenvalue and eigenfunctions of system of many electrons. Note

that without loss of generality, we have suppressed the spin degree of freedom for the sake of

brevity. The Hamilton operator H = Te + Vee(r) + VeN(r,R) of the Schrödinger equation of

many electrons is linear and Hermitian, and hence the eigenfunctions form an orthogonal set

satisfying [2] ∫
dr1 · · · drNe Ψ∗k(r1, . . . , rNe)Ψl(r1, . . . , rNe) = 〈Ψk|Ψl〉 = δkl. (12)

By means of an orthogonal basis set, the expectation value of the Hamilton operator H can be

expressed by [2]

E = 〈H 〉 =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉

. (13)

Supposing that the wave function Ψ is normalized, the general energy functional of the many

electron system is given by [2]

E[Ψ] = 〈Ψ|H|Ψ〉. (14)

The ground state of the system is thus obtained by minimizing the energy functional with respect

to Ψ [2]

E0 = E[Ψ0] = Min{E[Ψ]} with respect to Ψ. (15)

All eigenstates can be calculated by finding the solutions of the variational principle δE[Ψ] = 0.
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1.3. Hartree approximation

In the Hartree approximation, the wave function of many electrons Ψ(r1, . . . , rNe) is approxi-

mated by the multiplication of independent one-electron orbitals

Ψ(r1, r2, . . . , rNe) = ψ1(r1)ψ2(r2) . . . ψNe(rNe), (16)

where ψ1(r1) is the one-electron orbital of the electron at the position of r1, and orthogonality

of the one-electron orbitals
∫

drψ∗i (r)ψ j(r) = δi j is implicitly assumed. The energy functional

E[Ψ] = 〈Ψ|H|Ψ〉 in the Hartree approximation can thus be obtained by

E[Ψ] =
∑

i

∫
driψ

∗
i (ri)[−

1
2
∇2

i + Vext(ri)]ψi(ri) +
1
2

Ne∑
i

Ne∑
j,i

∫
dridr j|ψi(ri)|2

1
|ri − r j|

|ψ j(r j)|2.

(17)

Ground state are obtained by minimizing the E[Ψ] with respect to Ψ under the constraint of∫
dri|ψi(ri)|2 = 1, yielding

δ

E[Ψ] −
∑

i

εi(
∫

dri|ψi(ri)|2 − 1)

 = 0, (18)

where δE[Ψ] is the variation of functional E[Ψ] and εi is just a Lagrange multiplier. Finally, we

obtain the following equation

[−
1
2
∇2

i + Vext(ri) +
1
2

Ne∑
j,i

∫
dr j

1
|ri − r j|

|ψ j(r j)|2]ψi(ri) = εiψi(ri). (19)

With Eq. (19), the total energy in the Hartree approximation is given by

EH =
∑

i

εi −
1
2

Ne∑
i

Ne∑
j,i

∫
dridr j|ψi(ri)|2

1
|ri − r j|

|ψ j(r j)|2, (20)

where the second term is included to avoid double counting.

Defining a charge density operator

ρ̂(r) =

Ne∑
i

δ(r − ri), (21)

the density is then obtained by

n(r) =〈Ψ(r1, r2, . . . , rNe)|ρ̂(r)|Ψ(r1, r2, . . . rNe)〉

=

occ∑
i

|ψi(r)|2.
(22)
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With the density, the Hartree potential is defined by

VH(r) =

∫
dr′

1
|r − r′|

n(r′). (23)

By defining an effective mean-field potential Veff(r) = Vext(r) + VH(r), Eq. (19) reduces to

[−
1
2
∇2

i + Veff(r)]ψi(r) = εiψi(r). (24)

From Eq. (24) one can deduce that the interactions felt by one electron from all other electrons

is described by a mean-field Hartree potential VH(r), which is further absorbed in an effective

potential Veff(r). This equation should be solved self-consistently because Veff(r) depends on

the charge density n(r), which further depends on the one-electron orbital ψi(r). It should be

noted that the Hartree approximation considers the electron-electron mean-field electrostatic

interactions only, whereas the exchange and correlation effects are completely neglected.

1.4. Hartree-Fock approximation

Because electrons are fermions, Pauli’s exclusion principle [3] and the antisymmetry of the

many-body wave function, when two electrons exchange, should be satisfied. However, this is

not true in the Hartree approximation. To overcome the drawbacks of the Hartree approxima-

tion, Slater-determinant [2,4] is better suited to describe the wave function of the many-electron

system. This is the so-called Hartree-Fock (HF) approximation. The Slater-determinant is con-

structed by a sum of products of one-electron orbitals ψi(ri)

ΨHF =
1
√

Ne!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ψ1(r1) ψ2(r1) · · · ψNe(r1)

ψ1(r2) ψ2(r2) · · · ψNe(r2)
...

...
. . .

...

ψ1(rNe) ψ2(rNe) · · · ψNe(rNe).

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(25)

The prefactor 1
√

Ne!
normalizes the many-electron wave function. It is trivial to show that the

following two equations hold in the HF approximation

ΨHF(r1, . . . , ri, . . . , r j, . . . , rNe) = −ΨHF(r1, . . . , r j, . . . , ri, . . . , rNe) (26)

ΨHF(r1, . . . , ri, . . . , r j, . . . , rNe) = 0, if ri = r j. (27)

This indicates that the Slater-determinant as a wave function of the many-electron system auto-

matically satisfies the antisymmetry and Pauli’s exclusion principle.
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After the Slater-determinant is inserted in Eq. (14), the total energy of the many-electron

system in the HF approximation is given by [2]

EHF[ψ] = 〈ΨHF|H |ΨHF〉 =

Ne∑
i=1

Hi +
1
2

Ne∑
i=1

Ne∑
j=1

(Ji j − Ki j), (28)

where

Hi =

∫
drψ∗i (r)

[
−

1
2
∇2

i + Vext(r)
]
ψi(r) (29)

Ji j =

∫
dr dr′ ψ∗i (r)ψi(r)

1
|r − r′|

ψ∗j(r
′)ψ j(r′) (30)

Ki j =

∫
dr dr′ ψ∗i (r)ψ j(r)

1
|r − r′|

ψ∗j(r
′)ψi(r′). (31)

It should be noted that Hi are one-electron integrals, whereas the Coulomb integrals Ji j and

exchange integrals Ki j are two-electron integrals. Also, one should note that constraint of i , j

in the summation of the second term in Eq. (28) is eliminated, because i = j contribution is

cancelled by (Ji j − Ki j).

The minimization of Eq. (28) under the constraints of
∫
ψi(r)ψ j(r)dr = δi j gives rise to a set

of one-electron HF differential equations [2, 3]

F̂ψi(r) =

Ne∑
j=1

εHF
i j ψ j(r), (32)

where the Fock operator F̂ is given by

F̂ = −
1
2
∇2 + Vext(r) + ĵ − k̂, (33)

and the Coulomb operator ĵ and the exchange operator k̂ are defined by [2]

[ ĵ f ](r) =

Ne∑
i=1

∫
dr′ ψ∗i (r′)ψi(r′)

1
|r − r′|

f (r)

[k̂ f ](r) =

Ne∑
i=1

∫
dr′ ψ∗i (r′) f (r′)

1
|r − r′|

ψi(r).

(34)

It can be seen that the operator ĵ is local, whereas the operator k̂ is nonlocal, because its action

on a particular coordinate r depends also on the integration over all other coordinates r′.

Since there exist many possible solutions of the HF equations, it is always possible to find a

unitary transformation matrix U that diagonalizes the HF matrix εHF
mn such that∑

mn

[U]†imε
HF
mn Un j = ε′i δi j (35)
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and

ψ′i(r) =
∑

j

U jiψ j(r) (36)

hold [5, 6]. This leads to the canonical HF equations [5, 6]

F̂ψ′i(r) = ε′iψ
′
i(r). (37)

Similar to the Hartree equation, this equation should be solved self-consistently as well because

the Fock operator is dependent of one-electron orbital ψ′i(r). Finally, the total energy of the

many-electron system in the HF approximation can be calculated by [2]

EHF =

Ne∑
i

ε′i −
1
2

Ne∑
i=1

Ne∑
j=1

(Ji j − Ki j), (38)

where the Coulomb integrals Ji j and exchange integrals Ki j are calculated by using canonical

HF orbitals ψ′i(r). Although the HF approximation explicitly treats the exchange effects by an-

tisymmetric wave functions and also is self-interaction free due to the cancellation in K and J,

the method does not incorporate electron-electron correlations between electrons with opposite

spins. In other words, the HF ansatz is too restrictive, since general many-electron wave func-

tions Ψ(r1, . . . , rn) cannot be represented by a single Slater determinant only. Instead, it should

be more accurately described by adding the double, triple, · · · , excited Slater determinants [5].

That is exactly what the configuration interaction (CI) [7] method does. The difference between

the exact total energy Etot of the many electron system and the HF energy EHF is defined as the

correlation energy [2, 5]

Ec = Etot − EHF. (39)

1.5. Overview of DFT

1.5.1. Hohenberg-Kohn theorem

The Hartree-Fock approximation has already given some indications as to how to obtain the

total energy from first-principles calculations. However, it only accounts for the exact exchange

interactions between two electrons of same spins, whereas the correlation interactions of oppo-

site spins are completely neglected. Therefore, the Hartree-Fock approximation yields too large

band gaps for insulators, underestimates binding energies (by 50-70%) and predicts metals to

be unstable (to name a few).
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A satisfactory ab initio method is based on DFT, which owes to the fundamental theorems

formulated by Hohenberg and Kohn in 1964 on the inhomogeneous electron gas [8]. They

showed that for an interacting electron gas in an external potential Vext(r), there exists an uni-

versal energy functional of the density F[n(r)] which yields the correct ground state energy E0

by minimizing the total energy EHK[n(r)] with respect to the charge density n(r) [8]

EHK[n(r)] =〈Ψ|Te|Ψ〉 + 〈Ψ|Vee|Ψ〉 + 〈Ψ|Vext|Ψ〉

= T [n(r)] + Eee[n(r)]︸                  ︷︷                  ︸
F[n(r)]

+

∫
dr Vext(r)n(r).

(40)

and they proved that [8]

1. F[n(r)] is a unique functional of the density n(r), i.e., for an Ne electron system, there do

not exist two ground state wave functions Ψ1 , Ψ2 resulting in the same density n(r).

2. EHK[n(r)] ≥ EGS[n0(r)]

The energy functional EHK[n(r)] obeys a variational principle and always results in ener-

gies larger or equal to the ground state energy EGS[n0(r)].

3. EHK[n0(r)] = EGS[n0(r)]

The energy functional EHK[n(r)] reaches the ground state energy at the ground state den-

sity n0(r).

It should be noted that in DFT the electron density n(r) is introduced as a natural variable,

since it determines the number of electrons Ne =
∫

dr n(r) and thus the external potential Vext(r),

which in turn determines all electronic properties of the system. Since F[n(r)] describes all in-

teractions beyond the external electron-nuclei electrostatic interaction, the functional should

account for the kinetic energy of the electrons as well as all the electron-electron interactions

including the electron-electron electrostatic interactions, exchange and correlation effects. Min-

imization of the energy functional EHK[n(r)] gives rise to the exact ground state density n0(r).

However, the exact functional F[n(r)] is unknown and approximations are required [2].

1.5.2. Kohn-Sham DFT

In 1965, Kohn and Sham proposed an approximation for the functional F[n(r)], which assumes

that there exists an auxiliary non-interacting system that has exactly the same charge density as
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the interacting system [9]. The many-electron wave function of the auxiliary non-interacting

system can thus be described by the Hartree wave function

Ψ(r1, r2, . . . , rNe) = ψ1(r1)ψ2(r2) . . . ψNe(rNe). (41)

The density of the auxiliary non-interacting system is given by

n(r) =

occ∑
i

|ψi(r)|2, (42)

which is also the density of the real interacting system. F[n] is defined as [9]

F[n] = T0[n] + EH[n] + Exc[n], (43)

where T0[n] is the kinetic energy of the auxiliary non-interacting system, which is straightfor-

wardly obtained by

T0[n(r)] =

occ∑
i

〈ψi| −
1
2
∇2

i |ψi〉. (44)

EH[n] is the electron-electron electrostatic interaction energy, i.e., Hartree energy, which is

given by

EH[n(r)] =
1
2

∫
drdr′

n(r)n(r′)
|r − r′|

. (45)

Exc[n] is the exchange correlation functional of the interacting system, which accounts for all the

effects beyond the non-interacting ansatz. That is, it includes all energy contributions beyond

the kinetic energy of free electrons and electrostatic Coulomb repulsions

Exc[n] = T [n] − T0[n] + Eee[n] − VH[n]. (46)

Using these definitions for the functional F[n] and the density n(r), the so-called KS equations

are obtained by applying the variational principle to the KS energy functional [9](
−

1
2
∇2 + Veff(r)

)
ψn(r) = εn ψn(r)

Veff(r) = Vext(r) + VH(r) + Vxc(r).

(47)

Here, the energy values εn are called KS eigenvalues. The effective potential is the sum of the

external potential Vext, the Hartree potential VH and the so-called exchange-correlation potential

defined by

Vxc(r) =
δExc[n]
δn(r)

. (48)
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Since Veff(r) depends on the density n(r), which depends futher on ψn(r) by definition, one

has to solve this set of equations self-consistently, provided that Exc is known. The iterative

solution is shown in Fig. 1. First, the initial guess for the electron density is constructed from

overlapping atomic densities. Then, the effective potential Veff(r) = Vext(r)+VH[n(r)]+Vxc[n(r)]

and hereby the KS Hamiltonian HKS = −1
2∇

2 + Veff(r) are constructed. Third, the eigenvalue

problem is solved by diagonalizing the matrix HKS in terms of the chosen basis sets such as

plane waves. This results in a new set of KS orbitals from which one can construct a new

density and thus a new Hamiltonian. These steps are repeated until the density is converged.

Once the converged ground state density n0(r) is found, one could calculate the total energy, its

first derivative with respect to nuclei coordinates (forces), band structure, density of states, and

so on. The KS total energy can then be rewritten as [9]

EKS =
∑

n

εn − EH[n(r)] + Exc[n(r)] −
∫

Vxc(r)n(r)dr. (49)

Although KS-DFT has already witnessed its success in solid states of physics and chem-

istry, such as the good agreement of KS-DFT band structure with experimental photoemission

spectroscopies, the KS-DFT eigenvalues do not have any physical interpretation except for the

maximum occupied KS orbital energy, which corresponds to the negative ionization poten-

tial (IP) [10–12] for insulators and the negative work function for metals. This is because the

KS-DFT eigenvalue is just a Lagrange multiplier as a result of the variation principle. There-

fore, KS-DFT fails to predicted excited state properties [13]. For example, KS-DFT with the

local density approximation (LDA) [9] or generalized gradient approximation (GGA) always

yields underestimated band gaps for semiconductors and insulators [14]. This is due to the

so-called “self-interaction error” inherent within the LDA or GGA energy functionals, which

lack a derivative discontinuity with respect to a change of the number of electrons. To solve the

band gap problem, approximations beyond DFT should be made. The GW approximation has

been proved to be the best choice so far to predict quasiparticle (QP) energies. We will discuss

this point in more details in the Section (5). On the other hand, due to the “self-interaction

error”, local (LDA) and semilocal (GGA) functionals will prefer to spread out charge over the

fragments instead of localizing charge at one of the fragments, since fractional occupancies

are incorrectly preferred over integer occupancies [15]. Therefore, DFT also fails to describe

strongly correlated systems, where the electrons are localized.
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Figure 1: A flow chart of the iteration scheme in solving the KS equation. First, the initial guess

for the electron density is constructed from overlapping atomic densities. Then, the

effective potential Veff(r) = Vext(r) + VH[n(r)] + Vxc[n(r)] and hereby the KS Hamilto-

nian HKS = −1
2∇

2 +Veff(r) are constructed. Third, the eigenvalue problem is solved by

diagonalizing the matrix HKS in terms of the chosen basis sets such as plane waves.

This results in a new set of KS orbitals from which one can construct a new density

and thus a new Hamiltonian. These steps are repeated until the density is converged.

Once the converged ground state density n0(r) is found, one could calculate the total

energy, its first derivative with respect to nuclei coordinates (forces), band structure,

density of states, and so on.
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1.5.3. The exchange correlation functionals: LDA and GGA

As mentioned above, in KS-DFT, the system of Ne interacting electrons is mapped to an auxil-

iary system of Ne non-interacting electrons with exactly the same density as the original system.

The KS-DFT many-electron wave function is replaced by the Hartree many-electron wave func-

tion, which does not meet the antisymmetry of fermions. The kinetic energy is given in terms

of the non-interacting auxiliary system. All the effects beyond the electrostatic interactions and

the kinetic energy difference between real and auxiliary systems are all accounted for by an

exchange and correlation energy functional Exc[n(r)]. KS-DFT is thus an exact theory provided

that the exchange-correlation energy functional Exc[n(r)] is exact and known.

Unfortunately, the exact form of the exchange correlation functional is unknown and approx-

imations are required. Kohn and Sham [9] derived the exchange correlation energy functional

of the homogenous electron gas. It is proved that this functional works very well even for the

real systems, assuming the local density n(r) to be locally approximately uniform. This is the

so-called local density approximation (LDA) [9]

ELDA
xc [n] =

∫
dr εHEG

xc
[
n(r)

]
n(r). (50)

The exchange correlation energy density functional εHEG
xc is derived from a homogenous elec-

tron gas with a density equal to the local density n(r). Normally, εHEG
xc

[
n(r)

]
is separated into

exchange and correlation parts [2, 6]

εHEG
xc

[
n(r)

]
= εHEG

x
[
n(r)

]
+ εHEG

c
[
n(r)

]
, (51)

where εHEG
x is given by the Dirac exchange energy functional [16]

εHEG
x

[
n(r)

]
= −

3
4

(
3
π

)
1
3
(
n(r)

) 1
3
, (52)

and εHEG
c is given by an analytic fit to quantum Monte Carlo simulations [17–19].

It is observed that the LDA works well for systems with nearly homogeneous local den-

sities. However, it fails for systems with inhomogeneous local densities, for instance, de-

fects, interfaces, and surfaces. Thus, more accurate approximations are required. To this end,

Perdew et.al [20] proposed the generalized gradient approximation (GGA). As its name implies,
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the resulting functional depends not only on the electronic density but also its local gradient [20]

EPBE
xc [n] = EPBE

x [n] + EPBE
c [n] (53)

EPBE
x [n] =

∫
dr εHEG

x
[
n(r)

]
Fx

[
n(r),∇n(r)

]
n(r) (54)

EPBE
c [n] =

∫
dr

(
εHEG

c
[
n(r)

]
+ H

[
n(r),∇n(r)

])
n(r). (55)

For the definition of the gradient contributions of the enhancement factor Fx and the factor H,

we refer the readers to Refs. [20–22]

It should be noted that there are several flavors of the GGA functionals in literatures, among

which two functionals are widely used. The first one is the so-called PBE functional [20], and

the second one is called PBEsol functional [22], which is optimized for solids and surfaces.

Although both are optimized for different conditions, they are based on the formulas in Eq. (54)

and Eq. (55) and differ only in few parameters.

25



2. DFT in practice

2.1. Bloch theorem and plane wave expansion

In solid state systems, the systems of interest normally show a certain translational symmetry in

the space. Thus, periodic boundary conditions (PBC) [23–25] can be used, allowing to greatly

simplify the calculations of real system. Under PBC, the system is represented by a unit cell,

that is periodically repeated in space and spanned by the cell vectors a1, a2, and a3 [26]. Any

lattice point R can then be constructed by

R = n1a1 + n2a2 + n3a3, (56)

using the three integer coefficients n1, n2, and n3. Associated with the Bravais lattice, there is a

reciprocal lattice

G = m1b1 + m2b2 + m3b3, (57)

where any reciprocal lattice vector G is given by the superposition of the reciprocal basis vectors

b1, b2, and b3. Here, m1, m2, and m3 are again integer numbers. The reciprocal basis vectors are

calculated from its real space counterparts

b1 = 2π
Ω

(a2 × a3) (58)

b2 = 2π
Ω

(a3 × a1) (59)

b3 = 2π
Ω

(a1 × a2), (60)

where Ω = a1(a2 × a3) is the volume of unit cell in the real space. Real and reciprocal basis

vectors satisfy bi · a j = 2πδi j.

The Schrödinger equation of a single electron under PBC is given by [26](
−

1
2
∇2 + V(r)

)
ψ(r) = Eψ(r), (61)

where V(r) is a periodic potential V(r + R) = V(r). For this periodic potential, the Bloch

theorem states that all eigenstates ψ(r) of the one-electron Hamiltonian can be expressed as a

product of a plane wave phase factor eikr and a periodic function un,k(r) that has exactly the

same periodicity as the Bravais lattice [26]

ψn,k(r) = eikrun,k(r) (62)

un,k(r + R) = un,k(r). (63)
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Here, the quantum numbers n and k denote the band index and Bloch wave vector in the recip-

rocal space, respectively.

It is known that any periodic function can be expanded into a plane wave basis set [24]

un,k(r) =
∑

G

Cn,k,G eiGr. (64)

Hence, it follows that the one-electron wave function can be expanded by

ψn,k(r) =
∑

G

Cn,k,G ei(k+G)r. (65)

In practice, however, the plane waves have been truncated within a cut off |Gmax|, which corre-

sponds to the energy cut off Ecut = |k + Gmax|
2/2. Furthermore, the Bloch wave vectors k can be

restricted to the Brillouin zone (BZ), which is the first Wigner Seitz cell in the reciprocal space.

This is because all other Bloch states k can be calculated by a Bloch state of the BZ kBZ and an

additional reciprocal lattice vector G [26]

k = kBZ + G. (66)

This implies that the Bloch states (eigenvalues and eigenfunctions) are periodic in the reciprocal

space [26]. To further reduce the computational effort, symmetry is used. That is, only k points

within the irreducible wedge of the BZ (IBZ) are considered with weights ωk. In this case, the

summation over k points for a periodic function F(k) in the whole BZ reduces to

1
ΩBZ

∫
BZ

dkF(k) =
Ω

(2π)3

∫
BZ

dkF(k) =

BZ∑
k

F(k) =

IBZ∑
k

ωkF(k), (67)

where k point grids and the weights ωk are usually generated by the Monkhorst and Pack

scheme [27]. ΩBZ is the volume of the BZ and Ω is the volume of the real-space unit cell.

The band structure of solids is given by εn(k), which is a function of k vector for a specific

band n. The density of states (DOS) for each band n is given by integrating over the IBZ [26]

Dn(ε) =
Ω

(2π)3

∫
BZ

dkδ
(
ε − εn(k)

)
=

IBZ∑
k

ωkδ
(
ε − εn(k)

)
. (68)

Thus, the total DOS, including the contributions of all bands, is obtained by D(ε) =
∑

n Dn(ε).

2.2. The frozen core approximation and PS potential

As discussed in Section (2.1), to make possible the first-principles calculations of real systems,

PBC has been employed. In addition, we have expanded the Bloch wave function with the
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Figure 2: A schematic illustration of the pseudo potential inside and outside the core region

of an atom at position Rα. The black and red lines represent the exact and pseudo

potential (wave function), respectively. This figure is adapted from the thesis of Leif

E. H. [28].

plane wave basis set that is truncated within a energy cut off Ecut [25] for practical calculations.

Despite of these simplifications , it is still computationally demanding for a many-body system

including core and valence electrons. Therefore, further approximations are needed.

One widely used approximation to reduce the number of electrons is the so-called frozen core

approximation. The idea of this approximation is to freeze the core electrons within the inner

shells. This approximation is justified because the core electrons almost do not contribute to

the bonding. Instead, only the outmost valence electrons participate in the bonding. With the

frozen core approximation, we can restricted ourselves to the calculations of wave functions of

the valence electrons only.

Even though the number of electrons has been significantly reduced by the frozen core ap-

proximation, calculations of the wave functions are still demanding because of the strong os-

cillations of the wave functions around the core region due to the constraint of orthogonality

between valence and core electron wave functions. As a consequence, a large basis set of plane

waves is required to accurately describe the wave functions of the valence electrons in the core

region, which definitely increases the computational cost.

In order to overcome this problem, pseudo (PS) potentials come into play. As shown in

Fig. 2, the PS potential Ṽ , which is much smother, substitutes the exact potential V within the
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core region. The core region is defined by a sphere around the atomic position Rα with a cut off

radius rc. The PS potential is constructed such that the PS wave functions φ̃ are nodeless within

the core region and reproduce the scattering properties of the exact wave functions φ [25].

Moreover, the PS potential and the PS wave functions coincide with their exact counterparts

outside the core region and at the boundary r = rc, the PS wave functions are equal to the exact

wave functions up to their second radial derivatives. Since the PS wave functions are much

smoother than their exact wave functions, usage of PS potential can thus reduce the number of

plane-wave basis sets significantly.

2.3. The PAW method

PS potential methods have been used extensively from roughly 1980 on [29]. The biggest

merit of these methods is their formal simplicity, but unfortunately this simplicity has a price:

first-row elements, transition metals, and rare-earth elements are computationally demanding

to treat with standard norm-conserving PS potentials [30]. To solve this problem, ultrasoft PS

potentials (US-PP) have been introduced by Vanderbilt [31]. Blöchl [32] further developed the

US-PP concept by combining ideas from PS potential and linearized augmented-plane-wave

(LAPW) method in a conceptually elegant framework, called the projector augmented-wave

method (PAW). Afterwards, Kresse [30] established the relationship between US-PP and PAW

methods: the only difference between Vanderbilt’s US-PP and Blöchl’s PAW approaches lies in

the one-center terms.

Actually, the PAW method is a full potential method in the sense that it restores the correct

features of the exact AE wave function. This is achieved by adding correction terms within the

core regions of the atoms. Specifically, on the plane-wave grid, the Hamiltonian is represented

in a PS-potential-like manner, but pseudo wave functions are not correctly normalized [33]. In

order to correct for this error, local compensation charges are added around each atom such

that the final charge density distribution has exactly the same multipoles and moments as the

exact all-electron (AE) charge density. The electrostatic potential determined from this charge

distribution is basically exact in the interstitial region, but the kinetic energy and the potentials

are not accurately represented inside the PAW spheres [33]. To make up for the error, the

PS wave functions and AE wave functions are reconstructed inside the PAW spheres, and the

corresponding one-center energy terms are subtracted and added from the energy [33]. The
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Figure 3: An illustration of additive augmentation in the PAW method. (a) Pseudized quan-

tities are defined on a regular plane wave grid in the entire space. (b) Pseudo wave

functions are reconstructed inside spheres and the corresponding one-center terms are

subtracted. (c) The all-electron wave functions are reconstructed and the correspond-

ing one-center energies are added. This figure is adapted from Ref. [33].

general idea of PAW method is schematically shown in Fig. 3.

Within the framework of the PAW method, the all-electron orbital ψnk is represented by the

corresponding pseudo orbital ψ̃nk via the linear transformation [30]

|ψnk〉 = |ψ̃nk〉 +
∑
µ

(
|φµ〉 − |φ̃µ〉

)
〈p̃µ|ψ̃nk〉, (69)

where φµ and φ̃µ are all-electron and pseudo partial waves, respectively. p̃µ are the projectors,

which are dual to the φ̃µ (〈p̃i|φ̃ j〉 = δi, j) within the argumentation sphere. The index µ =

(Rµ, nµ, lµ,mµ) is an abbreviation for the atomic site Rµ, the energy quantum number nµ and

angular momentum numbers (lµ,mµ) characterizing the solution of the Schrödinger equation

for a reference atom.

The pseudo orbital ψ̃nk can be expressed in terms of a plane wave expansion, while the radial

wave functions are calculated by solving the radial Schrödinger equation of a single atom for

each atom type within the core regions and stored on a radial grid [25, 30, 32]. Note that the

correction of the PS wave functions only applies within the core regions of the atoms Ωr, since

the PS wave functions coincide with the AE wave functions outside of the core region.

With Eq. (69), the transformation operator that restores the AE wave function is given by [32]

T̂ = 1̂ +
∑
µ

(
|φµ〉 − |φ̃µ〉

)
〈p̃µ|. (70)

It allows to calculate expectation values of quasi-local operator A. By quasi-local operator we
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mean that 〈r|A|r′〉 = 0 holds if r , r′. Specifically,

〈A〉 =
∑
nk

fnk〈ψnk|A|ψnk〉

=
∑
nk

fnk〈ψ̃nk|A|ψ̃nk〉︸                ︷︷                ︸
Ã

+
∑
µ,ν

ρµν〈φµ|A|φν〉︸              ︷︷              ︸
A1

−
∑
µ,ν

ρµν〈φ̃µ|A|φ̃ν〉︸              ︷︷              ︸
Ã1

, (71)

where the Hermitian one-center density matrix ρµν is defined as

ρµν =
∑
nk

fnk〈ψ̃nk|p̃µ〉〈p̃ν|ψ̃nk〉, (72)

with fnk being the occupancy for the states ψnk. The term Ã arises from the contribution of PS

wave functions. A1 and Ã1 are the contributions from AE and PS one centered partial waves,

respectively. The essential point that makes the PAW method so efficient is that the terms with

the PS wave functions ψ̃nk(r) and the PS (AE) partial wave functions φ̃µ (φµ) are set apart so

that mixed terms that involve |ψ̃nk〉 and |φ̃µ〉 (|φµ〉) are vanishing in calculating the expectation

value of quasi-local operator.
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3. DFT+U method

3.1. Introduction to DFT+U method

In DFT all the effects beyond the electrostatic interactions have been described by an approxi-

mate exchange and correlation functional such as LDA and GGA. However, these approximate

functionals do not exactly account for the exchange and correlation effects, leading to an incom-

plete cancellation of the electronic self-interaction contained in the density-density Coulomb

integrals. Therefore, LDA or GGA tend to over-delocalize valence electrons and over-stabilize

metallic ground states. In addition, exchange and correlation effects included in DFT are static

and mean-field-like, and orbitals are not treated individually. Thus, for systems containing a

partially filled d or f shell one obtains a partially-filled band with a metallic-type electronic

structure. All these errors lead to DFT’s dramatic failures in predicting the insulating character

of the so-called Mott insulator, where the insulating character of the ground state arises from

the strong Coulomb repulsions between electrons that prevail over the kinetic energy, forcing

the electrons to localize on atomic-like orbitals [34]. For example, late transition metal oxides,

which are insulators, are inaccurately predicted to be metals by the LDA due to the lack of

exchange.

To rationalize the physics of correlated materials, the most simplest model is the Hubbard

model [35]. In its simplest form, the one-band Hubbard Hamiltonian is given by

H = t
∑
〈i, j〉,σ

(c†i,σc j,σ + h.c.) + U
∑

i

ni,↑n j,↓, (73)

where 〈i, j〉 represents nearest-neighbor atomic sites. c†i,σ and ci,σ are, respectively, the creation

and annihilation operator for electrons of spin σ on atomic site i. ni,σ = c†i,σci,σ is the number

operator.

Apparently, the Hubbard model includes two terms. The first term describes the electron

hoping from one atomic site to its neighbors with a hoping amplitude t that is proportional to

the bandwidth of the valence bands. The second term, however, accounts for the electronic

Coulomb interactions of the opposite spins on the same atomic site. In normal materials, the

hopping term dominates (t � U), leading to an itinerant band picture, which could be described

well by DFT. In contrast, in the correlated materials the second term prevails so that electrons

cannot hop easily because a sufficient energy is required to overcome the large Coulomb re-

pulsion from other electrons on neighbor sites. In other words, the large Coulomb repulsion
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makes the electrons more localized, resulting in an insulating behavior. In the large U limit, the

Hubbard model gives an atomic-picture-like solution.

Motivated by the Hubbard model, DFT+U method was proposed [36–39]. For a good review

of the DFT+U method, we refer to Ref. [40]. Also, we refer the interested readers to the chapter

4 of the book [41], where one can find helpful discussions about the DFT+U method. As its

name implies, DFT+U is a method that adds the orbital-dependent Coulomb U and exchange

interactions J onto some localized states of the system, which are absent in DFT, so that the

delocalized states, which are itinerant, are treated by DFT only, whereas the localized states are

dealt with DFT+U. Due to the introduction of the on-site Coulomb U and exchange J correc-

tions on some localized states, the DFT+U method gives a qualitative improvement compared

to DFT, not only for excited-state properties such as energy gaps but also for ground-state prop-

erties such as magnetic moments and interatomic exchange parameters [40]. Also, the DFT+U

method gives a correct orbital polarization and a corresponding Jahn-Teller distortion as well

as polaron formation [40]. In addition, the incorporation of U and J does not significantly in-

crease the computational effort compared to DFT, so that the DFT+U method become a popular

method to study the Mott insulators such as transition metal and rare-earth metal oxides, long-

ranged ordered magnetism and polaron physics [40]. In the following, a general introduction of

the DFT+U method is given.

3.2. Formulations of the DFT+U method

The general idea of the DFT+U method is to add the orbital-dependent Coulomb and exchanges

corrections onto the DFT, hence within the DFT+U framework the total energy of a system can

be expressed as [41]

EDFT+U[ρ(r)] = EDFT [ρ(r)] + EHub[nIσ
mm′] − Edc[nIσ], (74)

where EHub is a term that contains electron-electron interactions as modeled in the Hubbard

Hamiltonian. It is a function of electron occupation numbers nIσ
mm′ . Edc[nIσ] is the so-called the

double counting term. Because in EDFT [ρ(r)] partial exchange-correlations have already been

taken into account, the interactions contained in DFT should be eliminated from the additive

Hubbard-like correction term EHub[nIσ
mm′] to avoid double counting. The occupation numbers

nIσ
mm′ is usually defined as projections of occupied Kohn-Sham orbitals (ψσnk) onto the states of a
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localized basis set (φI
m):

nIσ
mm′ =

∑
nk

f σnk〈φ
I
m|ψ

σ
nk〉〈ψ

σ
nk|φ

I
m′〉, (75)

where f σnk is the Fermi-Dirac occupations of the KS states with n and k being the band and k

point indexes, respectively. Index m labels the localized states of the same atomic site I. It

should be noted that the choice of the localized basis set is not unique. They can be chosen

from either atomic orbitals or maximally localized Wannier functions [42, 43]. Compared to

the Hubbard model in Eq. (73), it can be clearly seen that the DFT+U method corresponds to

substituting the number operators appearing in Eq. (73) with their (mean-field) average on the

occupied manifolds of the system.

Although the general energy functional of the DFT+U method has been given, there are many

flavors and implementations regarding the form of the Hubbard-like energy functional and the

double counting term. Anisimov et al. [37–39] first proposed an energy functional that uses the

on-site Coulomb interaction U

EDFT+U[ρ(r)] = EDFT [ρ(r)] +
∑

I

U I

2

∑
m,σ,m′,σ′

nIσ
m nIσ′

m′︸                       ︷︷                       ︸
EHub[nIσ

mm′ ]

−
∑

I

U I

2
nI(nI − 1)︸               ︷︷               ︸

Edc[nIσ]

,
(76)

where nIσ
m are the diagonal elements of occupation number matrix, i.e., nIσ

m = nIσ
mm and nI =∑

m,σ nIσ
m . With this in hands, Eq. (76) can be simplified to

EDFT+U[ρ(r)] = EDFT [ρ(r)] +
∑

I

U I

2

∑
m,σ

nIσ
mm −

∑
m,σ

nIσ
mmnIσ

mm

 . (77)

Taking the variational derivative of the DFT+U energy functional EDFT+U[ρ(r)] with respect to

〈φI
m|, one obtains

VDFT+U |ψ
σ
nk〉 = VDFT |ψ

σ
nk〉 +

∑
I,m

U I

(
1
2
− nIσ

m

)
|φI

m〉〈φ
I
m|ψ

σ
nk〉. (78)

As evident from Eq. (78), the Hubbard-like potential [second term in Eq. (78)] is repulsive

for less than half-filled orbitals (nIσ
m < 1/2), whereas it is attractive for more than half-filled

orbitals (nIσ
m > 1/2). This means that the DFT+U method favors the localization of electrons,

i.e., nIσ
m → 1 or nIσ

m → 0. For an occupied band, the energy is increased by U I/2, while for an

unoccupied band the energy is decreased by U I/2. Therefore, an energy gap appears with the

size of approximately U I , consistent with the picture of the Hubbard model.

Although the DFT+U formulation presented in Eq. (78) captures the main essence of the

DFT+U method, it is not invariant under rotation of the atomic orbital basis set used to define
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the occupation of d states nI
mσ, which produces an undesirable dependence of the results on the

specific choice of the localized basis set [41]. To solve these problems, A. Liechtenstein and

coworkers [44] introduced a basis set independent formulation of DFT+U [41].

EDFT+U[ρ(r)] = EDFT [ρ(r)] +
1
2

∑
m1m2m3m4,σ,I

{
Vm1m3m2m4n

Iσ
m1m2

nI−σ
m3m4

+ (Vm1m3m2m4 − Vm1m3m4m2)n
Iσ
m1m2

nIσ
m3m4

}
+

∑
I

{
U I

2
nI(nI − 1) −

JI

2
[nI,↑(nI,↑ − 1) + nI,↓(nI,↓ − 1)]

}
.

(79)

Here, the four-index super matrix Vm1m3m2m4 represents the bare (unscreened) electron-electron

interaction, which is defined by [41]

Vm1m3m2m4 = 〈m1m3|
1

|r − r′|
|m2m4〉δσ1,σ2δσ3,σ4 , (80)

with |m〉 being the spherical harmonics. Vm1m3m2m4 can be further expressed by Slater inte-

grals [41]

Vm1m3m2m4 =
∑

k

ak(m1,m2,m3,m4)Fk, (81)

where 0 ≤ k ≤ 2l (l is the angular moment of the localized manifold; −l ≤ m ≤ l) and factors ak

can be obtained as products of Clebsch-Gordan coefficients [41]

ak(m1,m2,m3,m4) =
4π

2k + 1

k∑
q=−k

〈lm1|Ykq|lm2〉〈lm3|Y∗kq|lm4〉. (82)

For p electrons, only F0 and F2 are non-vanishing. For d electrons, apart from F0 and F2, F4 is

required, too. For f electrons, F0,F2, F4 and F6 are all required [41]. However, in practice these

integrals are often treated as parameters, i.e., adjusted to reach agreement with experiments in

terms of equilibrium volume, magnetic moment, or band gap. They are normally specified in

terms of an effective on-site Coulomb and exchange parameters, U and J. Taking d electrons

for instance

U =
1

(2l + 1)2

∑
m1.m2

Vm1m2m1m2 = F0 (83)

J =
1

2l(2l + 1)

∑
m1.m2,m1

Vm1m2m2m1 =
F2 + F4

14
, (84)

assuming F4/F2 has the same value as in an isolated atom (this value is 0.625 in VASP). Usually,

U and J are extracted from constrained-LDA [45] or the constrained random phase approxima-

tion (cRPA) [46, 47].
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However, in most cases, a much simpler expression of the Hubbard correction (EHub), intro-

duced by Dudarev et al. [48], is actually used and implemented

EDFT+U[ρ(r)] =EDFT [ρ(r)] + EHub[nIσ
mm′] − Edc[nIσ]

=EDFT [ρ(r)] +
∑

I

U I − JI

2

(nI)2 −
∑
σ

Tr[(nIσ)2]

 −∑
I

U I − JI

2
nI(nI − 1)

=EDFT [ρ(r)] +
∑
I,σ

U I − JI

2
Tr[nIσ(1 − nIσ)].

(85)

Here, Tr represents the trace of the matrix. It was claimed [48] that Eq. (85) bridges the

orbital-dependent formulation by Anisimov et al. [38] [Eq. (76)] with the rotationally invariant

functional proposed by Liechtenstein et al. [Eq. (79)], retaining the simplicity of the former and

the covariant character of the latter. It should be noted that in Dudarev’s approach the parameters

U and J do not enter separately, only the difference (U − J) is meaningful. The matrix of the

one-electron potential is given by the derivative of Eq. (85) with respect to occupation number

matrix nIσ
i j

[VDFT+U]Iσ
ji =

δEDFT+U

δnIσ
i j

=
δEDFT

δnIσ
i j

+ (U I − JI)(
1
2
δ ji − nIσ

ji ). (86)

3.3. Double counting

It should be noted that in the above formulations of the DFT+U total energy functional, the

so-called “fully localized limit” (FLL) [40] double counting was employed. In this limit, Bloch

states are assumed to be localized atomic states. Since DFT (LDA or GGA) treats the Hartree

term exact for filled shells, there should be no corrections to the energy. Therefore, FLL uses the

form of EHub for filled shells and also shells with other fillings as the double counting correction.

The main effect of FLL is to decrease the energy of states that are more than half-filled, but

increase the energy of states that are less than half-filled, yielding the energy difference of

Ueff = U − J between occupied and unoccupied states. However, FLL will do nothing for

the cases without spin symmetry breaking or orbital polarization. In addition, FLL has no

correction to the total energy for completely closed/empty shells, but changes their density of

states. For instance, even fully closed or empty states experience a shift, which is, however,

purely a double counting artifact.

Another most often used double counting form is “around mean field” (AMF) [37], which

assumes that DFT obtains a mean field solution of the Hubbard term EHub. Therefore, AMF uses
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the form of EHub with the average filling nIσ = 1
2l+1

∑
m nIσ

m as the double counting correction.

The resulting DFT+U potential is given as:

VDFT+U |ψ
σ
nk〉 = VDFT |ψ

σ
nk〉 +

∑
I,m

U I
(
nIσ − nIσ

m

)
|φI

m〉〈φ
I
m|ψ

σ
nk〉. (87)

In contrast to the DFT+U potential with the FLL double counting correction in Eq. (78),

Eq. (87) uses the average filling nIσ instead of half filling 1
2 . The resulting effect of AMF is

to push down the energy of states that are more than filled on average nIσ, but push up the

energy of states that are less than filled on average nIσ. Thus, the “reference point” for energy

shift in AMF is the average orbital occupation instead of half filling 1
2 in FLL. Compared with

FLL, the effect of such shifts is usually smaller since the “reference point” is the average filling.

Since the form of the exchange-correlation functional in DFT is unknown, which kind of double

counting correction is more correct and should be used in realistic calculations is not known a

priori. One should carefully double-check the results, whether the double counting corrections

are important.

3.4. Some remarks on the DFT+U method

Due to the on-site U correction to the localized states on which the electrons are localized,

electrons with opposite spins would prefer to occupy different sites. In terms of the one-band

Hubbard model, the lower and upper Hubbard bands form due to the introduction of U. The

Mott gap formed between the lower and upper Hubbard bands increases as the U increases.

Therefore, the DFT+U method can give a very good description of Mott physics. The electrons

with U corrections are localized so that ordered magnetic states and polarons can be described

as well. In addition, DFT+U is as fast as DFT, which promotes its great applications in large

systems such as ab initio studies of surfaces and defects in transition metal oxides.

Although the DFT+U method describes well the Mott insulating states in the limit of strong

localization and band gaps with a reasonable U parameter, it works well only if the states above

and below the Fermi energy are all localized d or f states. However, often the valence bands

are made up by O-2p states and then the DFT+U method fails. In addition, it is a intrinsically

static and mean-field-like method, so that it cannot capture multideterminantal features such

as the transfer of the spectral weights and correlated metals. Thus, for systems with partially

filled 3d shells which are inherent metals, for instance, transition metals, the DFT+U method
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often produces nonphysical results since it splits the partially filled bands. Even though the U

and J parameters could in principle be calculated by the constrained-LDA or cRPA, in practice,

they are often adjusted to reach agreement with experiment in terms of equilibrium volume,

magnetic moment, or band gap. Moreover, the existing implementations employ effective in-

teraction parameters that correspond to atomically averaged quantities and are not individual

orbital dependent. Furthermore, due to the lack of a precise diagrammatic representation of

the DFT total energy, the so-called double counting term occurring in the DFT+U functional is

not uniquely defined. For instance, using the FLL double counting would induce an unphysical

shift for empty states even in 4d0 or 5 f 0 transition metal oxides. Despite the above-mentioned

disadvantages of the DFT+U method, it is still widely used because of its efficiency, and it is

often used to compare to other more expensive and accurate methods, such as hybrid functionals

and dynamical mean field theory.
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Figure 4: The total energy with respect to the number of electrons for the LDA, HF, and HSE

for a Si4H4 cluster. The dotted straight lines denote the ideal exact solutions. This

figure is adapted from Ref [15].

4. Hybrid functional approach

4.1. Introduction to hybrid functional approach

It has been shown [10, 49] from ensemble arguments that the total energy should be linear

between integer numbers of electrons. Unfortunately, all the usual approximations fail for this

property. Hartree-Fock calculation yields a concave behavior lying above the ideal straight line,

whereas LDA underestimates the discontinuities at integer numbers, yielding a convex behavior

below the ideal straight line, as shown in Fig. 4. This results in the localization error of HF and

delocalization error of LDA or GGA. LDA or GGA lower the energy in spreading electrons out

so that a fractional number of electrons is preferred. Instead, HF find it energetically favorable to

localize electrons so that they integrate to an integer [50,51]. The localization error of HF stems

from the fact that the HF approximation completely neglects the correlations of the electrons,

thus overestimating the band gap. Due to the delocalization error of LDA or GGA, the electron

density artificially spreads out because delocalization reduces the spurious self-repulsion of

electrons. This gives rise to an inaccurate estimation of the ionization energy and the electron

affinity, resulting in an underestimation of band gaps, see Fig. 5 for comparison between HF and

DFT in the band gap predictions. Since the HF approximation overestimates the band gap, while

KS-DFT underestimates it, it would be expected that the combination of two methods might

improve the band gap. Indeed, inclusion of partial exact exchange not only yields better band
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Figure 5: HF and DFT band gaps compared to the experimental values (red line). This figure

is adapted from chapter 15 of Ref. [56].

Figure 6: Comparison between computed (PBE, PBE0 and HSE) and experimental band gaps.

This figure is taken from Ref. [57].

gaps (see Fig. 6), but also improves the description of the lattice constants, cohesive energies and

electronic structures [52, 53]. In the following, a general introduction to the hybrid functionals

approach will be given. For a more detailed discussion on hybrid functional approach, we

refer to the reviews by Benjamin et al. [54] and Franchini [55] and chapter 15 of the book by

Franchini [56].
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4.2. Formulations of hybrid functional approach

In order to combine HF and DFT, starting from the adiabatic connection formula, Becke [58]

first proposed a half-half hybrid functional

EHybrid
XC =

1
2

EHF
X +

1
2

EDFT
XC . (88)

Afterwards, he introduced a practical parametric hybrid functional termed as B3LYP [59, 60],

which includes exact exchange and LDA- and GGA-corrected exchange and correlation and

becomes very popular in the quantum chemistry. The B3LYP incorporates only 20% of the

exact HF exchange and has the form

EB3LYP
XC = ELDA

XC + α1(EHF
X − ELDA

X ) + α2(EGGA
X − ELDA

X ) + α3(EGGA
C − ELDA

C ), (89)

where the three mixing parameters α1 = 0.20, α2 = 0.72, and α3 = 0.71 are determined by fit-

ting experimental atomization energies, electron and proton affinities, and ionization potentials

of the molecules in Poples G1 data set [59, 60]. Although the B3LYP has been successfully

used for atomic and molecular calculations, its applications to periodic systems is not that sat-

isfactory. For instance, for the free-electron gas the B3LYP functional does not reproduce the

correct exchange-correlation energy [56].

For solid-state applications, a more appropriate hybrid functional is PBE0, which was pro-

posed by Perdew, Burke, and Ernzerhof [61]

EPBE0
xc = αEHF

x + (1 − α)EDFT
x + EDFT

c , (90)

where the parameter α = 1/4 was suggested, which yields the best atomization energies of

typical molecules [61]. PBE0 reproduces the homogeneous electron gas limit and significantly

outperforms B3LYP in solids, in particular in systems with itinerant characters such as metals

and small-gap semiconductors [62].

However, calculating the long-range (LR) exchange interactions in PBE0 can be computa-

tionally very demanding, and particularly difficult for metals where a dense k point sampling

is required, resulting in very slow convergence [62, 63]. To address this issue, Heyd, Scuseria,

and Ernzerhof [64] suggested a hybrid functional where the exchange interaction is split into a

short-range (SR) and LR part

1
|r − r′|

=
erfc(µ|r − r′|)
|r − r′|︸           ︷︷           ︸

SR

+
erf(µ|r − r′|)
|r − r′|︸         ︷︷         ︸

LR

, (91)
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where µ defines the characteristic length of the SR exchange interaction [65–67]. Now only

the SR exchange part is evaluated by mixing the HF and PBE exchange energies EHF,SR
x and

EPBE,SR
x , whereas the correlation energy and the LR exchange part are calculated using the PBE

functionals EPBE
c and EPBE,LR

x

EHSE
xc = αEHF,SR

x (µ) + (1 − α)EPBE,SR
x (µ) + EPBE

c + EPBE,LR
x (µ). (92)

From Eq. (92) it can be seen that the HSE functional can be tuned by controlling two parameters:

the proportion of the exact exchange α and the boundary between the SR and LR interaction

region µ. For α = 1/4 and µ → ∞, the HSE functional reduces to PBE, and for α = 1/4 and

µ = 0, the HSE functional is equivalent to the PBE0 functional. To achieve a good compromise

between computational effort and accuracy, α = 1/4 and µ = 0.2 Å−1 were suggested [63, 64].

Due to the split of the exchange interaction, HSE is much faster to compute compared to PBE0

without loss of accuracy.

4.3. Some remarks on HSE

Since the exact exchange energy shows a negative curvature with respect to the number of

electrons, which could partially cancel the positive curvature appearing in LDA or GGA and

thus reduce the self-interaction error, HSE has been successfully and intensively applied to

many kinds of systems in terms of crystal structure, cohesive energy and bulk moduli [63],

electronic structures [55, 68], and phone spectra [69]. Nevertheless, HSE is not entirely self-

interaction-free, see Fig. 4. In addition, it is still limited to small systems due to its relatively

heavy computational cost, which scales quadratically with the number of k points. Furthermore,

there are two empirical adjustable parameters (the proportion of the exact exchange α, and the

boundary between the SR and LR interaction regime µ) that could be tuned, and hence it is

not ab initio, despite the fact that the commonly used α=1/4 and µ = 0.2 yield satisfactory

results for many systems. However, these two parameters are in principle system dependent.

Since HSE in some sense is related to the GW approximation, it was suggested that the optimal

parameter α is approximately equal to the inverse of infinite dielectric constant, i.e., α ≈ 1/ε∞

[56]. Still, ε∞ has to be calculated before the HSE calculations. In the next section, the GW

approximation will be introduced.
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5. GW approximation

5.1. Band gap problem

The infamous band gap problem typically arises from the derivative discontinuity of the exact

exchange correlation functional, which occurs when the number of electrons is increased from

Ne − ε to Ne + ε [11]

C = lim
ε→0+

δExc[n]
δn(r)

∣∣∣∣∣∣
Ne+ε

− lim
ε→0+

δExc[n]
δn(r)

∣∣∣∣∣∣
Ne−ε

. (93)

Thus, the band gap should be calculated by means of

Eg = εCBM(Ne) − εVBM(Ne) + C, (94)

where CBM and VBM indicate the conduction band minimum and valence band maximum,

respectively. However, existing approximate functionals such as LDA or GGA lack any such

derivative discontinuity and thus fail to describe the electron addition and removal process. They

also do not allow to determine C, leading to an underestimation of the band gaps compared

to the exact ones [13]. On the other hand, the band gap refers to excited states, but DFT is

just a ground state theory and there is no formal justification to interpret DFT eigenvalues as

quasiparticle (QP) energies. Actually, the DFT eigenvalues are just Lagrange multipliers in

obtaining the KS equation by the variational principle.

The DFT+U method is, however, designed for systems with localized states split by the

Coulomb repulsion, forming the upper and lower Hubbard bands. Though in some cases, U is

adjusted to match the experimental gap, it is still limited to a one-electron single-determinant

picture and cannot be expected to correct for inherent shortcomings of LDA or GGA, i.e., the

lack of a derivative discontinuity in the exchange correlation functional. In addition, applica-

tions to transition metals would lead to unreasonable results. Due to the introduction of the exact

exchange, the HSE approach in general improves the agreement with experiments not only in

ground state properties (lattice constants and cohesive energies), but also in excited state prop-

erties such as band gaps and photoemission spectra. However, it is not ab initio because there

are two empirical parameters that can be tuned to yield good agreement with experiments. Fur-

thermore, it is still a single-determinant (mean-field) method, that by construction lacks any

fluctuations.

The GW approximation to the exchange correlation is derived systematically from many-

body perturbation theory. The form of the self-energy in the GW approximation is similar as
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in the HF approximation but the Coulomb interaction is dynamically screened, remedying the

most serious deficiency of the HF approximation. The GW approximation of Hedin [70, 71]

has been widely and successfully applied to the calculations of QP energies for many kind of

systems (for reviews see Refs. [13, 72, 73]), because it provides a good approximation for the

electron’s self-energy by including many-body effects in the electron-electron interaction. This

is achieved by screening the bare exchange interaction with the inverse frequency-dependent

dielectric function. The self-energy in the GW approximation is therefore non-local and energy

dependent. It is found that the QP band structures obtained from the GW approximation agree

well with the spectra measured from direct photoemission (PES) and inverse photoemission

(IPES). In the following, starting from the introduction of photoemission spectroscopy, I will

introduce the one particle Green’s function, Dyson equation and Hedin equations, and then

give an exhaustive formulation of the GW approximation followed by an overview of existing

practical implementations.

5.2. Photoemission spectroscopy and quasiparticle

Fig. 7 shows the process of direct photoemission (PES) and inverse photoemission (IPES) spec-

troscopy. In PES, an incident beam of photons with an energy of hν hits the surface of the

material and kicks electrons out from occupied bands to the vacuum level with remaining ki-

netic energy Ekin, i.e., PES is a ’photon-in-electron-out’ process. By measuring the kinetic

energy Ekin of emitted electrons and using the energy conservation, one can obtain the energy

levels for the occupied band

Eocc
n = Ekin − hν. (95)

In the process of IPES, a beam of electrons with a kinetic energy Ekin hits the material and the

impinging electrons relax into unoccupied states by emitting photons with energy hν, i.e., IPES

is a ’electron-in-photon-out’ process. Again, by measuring the energy of emitted photons hν

and using the energy conservation, one can obtain the energy levels for the unoccupied band

Eunocc
n = Ekin − hν. (96)

In theory, the measured PES and IPES spectra can be explained by the total density of states

D(ω), which can be calculated by integrating the spectral function Ank(ω)

D(ω) =
∑

n

Ω

(2π)3

∫
BZ

dkAnk(ω). (97)
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Figure 7: Schematic representation of direct photoemission (PES) and inverse photoemission

(IPES) spectroscopy. IE and EA represent the ionization energy and electron affinity,

respectively. HOMO and LUMO denote quasiparticle energies of the highest occu-

pied orbital and lowest unoccupied orbital, respectively. Evac is the vacuum level, EF

the Fermi energy and φ the work function of the material. Blue and red colors repre-

sent the occupied and unoccupied states, which can be measured by PES and IPES,

respectively. This picture is adapted from Ref. [74].

For the non-interacting case, such as DFT, the spectral function is just a delta function and thus

D(ω) reduces to

D(ω) =
∑

n

Ω

(2π)3

∫
BZ

dkδ
(
ε − εnk

)
, (98)

where εnk are the DFT eigenvalues. However, for the interacting case, as an electron propagates,
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Figure 8: (a) Schematic representation of the spectral function Ank(ω) for a non-interacting and

interacting many-body system. The QP energy is Ẽnk = Enk + iΓnk with Enk and Γnk

being the position and width of the QP peak, respectively. Znk is the renormalization

factor (spectral weight), which can be related to the norm of the QP peak (shaded

area) and is a measure of the degree of correlation. Ainco
nk (ω) is the incoherent part of

the spectral function. Due to the existence of the incoherent part in the interacting

system, Znk is thus always less than unity. For the non-interacting system, however,

Znk is always unity. µ is the chemical potential. Schematic view of k-resolved spec-

tral functions measured by angle-resolved photoemission spectroscopies (ARPES) for

(b) normal (nearly non-interacting or weakly interacting) and (c) interacting (corre-

lated electron) materials. Here, only one band is shown. This figure is adapted from

Refs. [13] and [56].

the other electrons surrounding it would try to be far away due to the electron-electron Coulomb

repulsions, leaving a positively charged polarization cloud (holes) around the electron. This

electron and nearby holes form a quasiparticle which interacts weakly with other quasiparticles

via a screened rather than bare Coulomb interaction. In contrast to the non-interacting bare

particle, the quasiparticle has a finite lifetime. The energy difference between the quasiparticle

and bare particle is described by the self-energy. According to the Fermi-liquid theory, the

spectral function follows a Lorentzian energy distribution [13]

Ank(ω) =
Znk

π

Γnk

(ω − Enk)2 + Γ2
nk

+ Ainco
nk (ω), (99)

where Enk and Γnk are the position and width of the QP peak, respectively. In other words, the

pole of the self-energy is Ẽnk = Enk + iΓnk. The lifetime of the quasiparticle is given by 1/Γnk.

Thus, the smaller Γnk is, the longer the quasiparticle lives and the sharper the corresponding QP
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peak in spectral function Ank(ω). Znk is the renormalization factor, which can be related to the

norm of the corresponding QP peak and is a measure of the degree of correlation. Ainco
nk (ω) is

the incoherent part of the spectral function. It should be noted that spectral function is positive

definite and normalized to unity. Due to the existence of the incoherent part in the interacting

system, Znk is thus always less than unity. For a deeper understanding of the physical meaning

of the spectral function, see Fig. 8(a). Actually, the k-resolved spectral function Ank(ω) can

be measured by angle-resolved photoemission spectroscopy (ARPES), see Fig. 8(b) and (c) for

the k-resolved spectral function of weakly and strongly interacting systems, respectively. For

weakly interacting systems, the spectral function for each angular momentum k and band looks

a bit like broadened a delta function, which clearly can be described by a single-particle theory,

such as DFT, whereas for strongly interacting systems, such as correlated materials, apart from

the sharp QP peak, the spectral function also shows some Hubbard-like band feature due to

the electron-electron interactions and incoherent feature caused for instance by interacting with

plasmons. For a better description of interacting systems, more accurate theories beyond single-

particle theory, such as the GW approximation and dynamical mean field theory, are required.

5.3. One particle Green’s function

5.3.1. Definition of the one particle Green’s function

In order to describe the photoelectron spectra measured in PES and IPES experiments, a quan-

tity that describes the propagation of a hole or an added electron is needed. A suitable quantity

is the one-particle Green’s function, which describes how one extra electron/hole propagates

through the system. In an N-electron system at ground state ψ0, the one particle time-ordered

Green’s function G is defined as [72, 75, 76]

G(r, t, r′, t′) = − i〈ψ0|T ψ̂(r, t)ψ̂†(r′, t′) |ψ0〉

= − i Θ(t − t′) 〈ψ0| ψ̂(r, t)ψ̂†(r′, t′) |ψ0〉

+ i Θ(t′ − t) 〈ψ0| ψ̂
†(r′, t′)ψ̂(r, t) |ψ0〉.

(100)

Here, T is the time-ordering operator, which has the effect of ordering the operator in such a way

that the largest time is always on the left. The creation field operator ψ̂†(r, t) = eiHtψ̂†(r)e−iHt

and the destruction field operator ψ̂(r, t) = eiHtψ̂(r)e−iHt are defined in the Heisenberg picture.

Thus, for t′ < t, G(r, t, r′, t′) is the probability amplitude of creating an electron at (r′, t′) and
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finding it later at (r, t), whereas for t < t′, it describes the probability amplitude of creating a

hole at (r, t) and finding it later at (r′, t′). From the one-particle Green’s function, it is possible

to calculate [72, 76]:

1. The expectation value of any single-particle operator in the ground state.

In the second-quantization framework, a single-particle operator Â can be expressed as

Â =

∫
drdr′dtdt′δ(t′ − t)ψ̂†(r, t)J(r, t, r′, t′)ψ̂(r′, t′), (101)

where J(r, t, r′, t′) is the amplitude of operator Â. The ground-state expectation value is then

given by

Ā = 〈ψN
0 |Â|ψ

N
0 〉 =

∫
drdr′dtdt′δ(t′ − t)J(r, t, r′, t′)〈ψN

0 |ψ̂
†(r, t)ψ̂(r′, t′)|ψN

0 〉

= −

∫
drdr′dtdt′δ(t′ − t+)J(r, t, r′, t′)〈ψN

0 |Tψ̂(r′, t′)ψ̂†(r, t)|ψN
0 〉,

(102)

where t+ = t + η with η being a positive infinitesimal, which is introduced because of the time-

ordering operator T. |ψN
0 〉 is the ground state of N electrons. Inserting Eq. (100) into Eq. (102),

one obtains

Ā = 〈ψN
0 |Â|ψ

N
0 〉 = −i

∫
drdr′dtdt′δ(t′ − t+)J(r, t, r′, t′)G(r′, t′, r, t). (103)

Now it is clear from Eq. (103) that the ground-state expectation value of any single-particle

operator can be calculated by the one-particle Green’s function. Take the density operator

γ̂ =

∫
drdr′dtdt′δ(t′ − t)ψ̂†(r, t)δ(r′ − r)ψ̂(r′, t′) (104)

for instance, the total density reads

ρ = − i
∫

drdr′dtdt′δ(t′ − t+)δ(r′ − r)G(r′, t′, r, t)

= − i
∫

drdtG(r, t+, r, t).
(105)

2. The ground state energy.

Galitskii-Migdal formula [77] states that the ground-state energy is a function of the one-particle

Greens function only

Etot
0 = −

i
2

∑
σ,σ′

δσ,σ′

∫
dr lim

r′→r
lim
t′→t+

(
i
∂

∂t
+ h0(r)

)
G(r, t, r′, t′), (106)

where σ represents the spin and h0(r) = −∇2/2 + Vext(r) is the non-interacting one-particle

Hamiltonian.
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3. The single-particle excitation spectrum.

From the one-particle Green’s function, it is also possible to calculate the single-particle ex-

citation spectrum, i.e., QP band structure, by solving the QP equation, that we are going to

introduce below.

It should be noted that here we just give the definition of the zero temperature time-ordering

equilibrium Greens functions. It is also possible to define advanced and retarded Green’s func-

tions. For a finite temperature case, imaginary time Green’s function (or Matsubara frequency

Green’s function) should be employed. For the definition of the finite temperature Green’s

functions, we refer the interested readers to the book written by Richard D. Mattuck [78]. In

addition, we want to stress that despite its powerfulness of one-particle Green’s function in

explaining the photoemission spectroscopy, which itself is the one-particle (electron or hole)

prorogation process, it cannot be used for explaining the absorption spectra, since one-particle

Green’s function is only a one-particle theory and hence does not describe the electron-hole

interactions that need a two-particle description. To describe the propagation of electron and

hole at the same time, two-particle Green’s functions and solving the Bethe-Salpeter equation

(BSE) are required [73].

5.3.2. Spectral representation of the Green’s function

Using the fact that

ψ̂†(r, t) = eiHtψ̂†(r)e−iHt (107)

ψ̂(r, t) = eiHtψ̂(r)e−iHt. (108)

and

H|ψN±1
n 〉 = EN±1

n |ψN±1
n 〉 (109)

H|ψN
0 〉 = EN

0 |ψ
N
0 〉, (110)

we obtain

〈ψN
0 |ψ̂(r, t)|ψN±1

n 〉 = 〈ψN
0 |ψ̂(r)|ψN±1

n 〉 ei(EN
0 −EN±1

n )t. (111)
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Inserting a complete set of N ± 1 particle eigenstates
∑

n |ψ
N±1
n 〉〈ψN±1

n | into the one-particle

Green’s function Eq. (100), we obtain the spectral representation of the Green’s function [79]

G(r, r′, t, t′) = −iΘ(t − t′)
∑

n

〈ψN
0 | ψ̂(r)|ψN+1

n 〉〈ψN+1
n |ψ̂†(r′) |ψN

0 〉e
−i(EN+1

n −EN
0 )(t−t′)

+iΘ(t′ − t)
∑

n

〈ψN
0 | ψ̂

†(r′)|ψN−1
n 〉〈ψN−1

n |ψ̂(r) |ψN
0 〉e

−i(EN
0 −EN−1

n )(t′−t).
(112)

Since the Green’s function depends only on the time difference τ = t − t′, we can Fourier

transform G(r, r′, τ) to the frequency domain

G(r, r′, ω) =
∑

n

〈ψN
0 | ψ̂(r)|ψN+1

n 〉〈ψN+1
n |ψ̂†(r′) |ψN

0 〉

ω − (EN+1
n − EN

0 ) + iη

+
∑

n

〈ψN
0 | ψ̂

†(r′)|ψN−1
n 〉〈ψN−1

n |ψ̂(r) |ψN
0 〉

ω − (EN−1
n − EN

0 ) − iη
.

(113)

Here, η is a positive infinitesimal number derived from a contour integration [79]. In the com-

plex plane, it shifts the occupied states a little bit over the real axis and the unoccupied states a

little bit under the real axis, see Fig. 9. In deriving Eq. (113), we have used the identity [79]∫ +∞

−∞

dτ eiωτe−iεnτΘ(±τ) = ±
i

ω − εn ± iη
. (114)

Let us consider the energy terms appearing at the denominators. They can be rewritten as

EN+1
n − EN

0 = (EN+1
n − EN+1

0 )︸           ︷︷           ︸
εN+1

n

+ (EN+1
0 − EN

0 )︸         ︷︷         ︸
µN+1

(115)

EN
0 − EN−1

n = (EN
0 − EN−1

0 )︸         ︷︷         ︸
µN

− (EN−1
n − EN−1

0 )︸           ︷︷           ︸
εN−1

n

. (116)

Here, the chemical potential µN+1 represents the minimum energy needed to add one electron

to a system of N electrons, which is the electron affinity (EA), whereas the chemical potential

µN represents the minimum energy needed to remove one electron (add a hole) to a system of

N electrons, which is the ionization energy (IE). It can be shown that IE ≤ EA. If we define

Eg = EA − IE, (117)

we obtain that Eg is always positive definite. In a solid, we define the chemical potential µ such

that

IE ≤ µ ≤ EA (118)
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Figure 9: The poles of one-particle Green’s function. This picture is adapted from Ref. [80].

holds. In the thermodynamic limit (N, Ω→ ∞, with Ω/N=constant), we can distinguish metal-

lic and insulating systems:

metallic systems IE ' µ ' EA, Eg = 0 (119)

insulating systems IE < µ < EA, Eg > 0 (120)

Now, we may define the excitation energies of the system

εn =

 EN+1
n − EN

0 for εn > µ

EN
0 − EN−1

n for εn ≤ µ
, (121)

and Lehman amplitudes

φn(r) =

 〈ψ
N
0 | ψ̂(r)|ψN+1

n 〉 εn > µ

〈ψN−1
n |ψ̂(r) |ψN

0 〉 εn ≤ µ
, (122)

With these, we finally obtain the Lehman representation of the one-particle Green’s function

G(r, r′, ω) =
∑

n

φn(r)φ∗n(r′)

ω − εn + iηsgn(εn − µ)
. (123)

It can be seen from Eq. (123) that the poles of the Green’s function are the exact excitation

energies of the N ± 1 electrons, see Fig. 9.

The one-particle Green’s function can also be cast into the so-called spectral representation

G(r, r′, ω) =

∫ µ

−∞

dω′
A(r, r′, ω′)
ω − ω′ − iη

+

∫ ∞

µ

dω′
A(r, r′, ω′)
ω − ω′ + iη

, (124)

where

A(r, r′, ω) =
∑

n

φn(r)φ∗n(r′)δ(ω − εn) (125)
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is the spectral function of the system. By applying the identity [79]

1
ω ± iη

= P
1
ω
∓ iπδ(ω) (126)

to Eq. (123), we obtain the relationship between the spectral function and the Green’s function

A(r, r′, ω) = −
1
π

Im G(r, r′, ω) sgn(ω − µ). (127)

As discussed before, the spectral function is of significant importance, since it can be directly

compared to the spectra measured by photoemission spectroscopy. It should be mentioned that

the spectral function satisfy the so-called “sum rule”∫ +∞

−∞

dωA(r, r′, ω) = δ(r − r′), (128)

because of∫ +∞

−∞

dωA(r, r′, ω) =

∫ +∞

−∞

dω
∑

n

φn(r)φ∗n(r′)δ(ω − εn)

=
∑

n

φn(r)φ∗n(r′)

=
∑

n

〈ψN
0 | ψ̂(r)|ψN+1

n 〉〈ψN+1
n | ψ̂†(r′)|ψN

0 〉 +
∑

n

〈ψN
0 | ψ̂

†(r′)|ψN−1
n 〉〈ψN−1

n | ψ̂(r)|ψN
0 〉

=〈ψN
0 |[ψ̂(r), ψ̂†(r′)]+|ψ

N
0 〉

=δ(r − r′).

(129)

In deriving Eq. (129), we have used the definitions of Lehman amplitudes in Eq. (122), the

completeness of sets {|ψN+1
n 〉} and {|ψN−1

n 〉}, and anticommutation rule of field operators. Second,

if we integrate the spectral function A(r, r′, ω) with respect to ω up to Fermi level µ, one obtains

the density matrix

ρ(r, r′) =

∫ µ

−∞

A(r, r′, ω) = 〈ψN
0 |ψ̂

†(r′)ψ̂(r)|ψN
0 〉. (130)

For the non-interacting cases, the Lehman amplitudes are replaced by the one-particle wave-

functions ψn and excitation energies are replaced by one-particle eigenvalues εn satisfying

H0ψn = εnψn. (131)

The non-interacting Green’s function is then given by

G0(r, r′, ω) =

occ∑
n

ψn(r)ψ∗n(r′)

ω − εn − iη
+

unocc∑
n

ψn(r)ψ∗n(r′)

ω − εn + iη
, (132)
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where εn is measured with respect to the chemical potential µ. It should be noted that which kind

of system is assumed as the non-interacting system depends on the problem under consideration.

Most often the KS system is taken as the non-interacting reference.

5.4. Dyson equation and quasiparticle equation

For an interacting system, the one particle Green’s function can be expressed in terms of so-

called QP orbitals ψn and QP energies En, if the QP orbitals are complete [13]

G(r, r′, ω) =
∑

n

ψn(r)ψ∗n(r′)
ω − En

. (133)

In contrast to a non-interacting system, the QP energies of an interacting system are complex

with real and imaginary parts that give the positions and widths of the QP peaks, respectively

[see Fig. 7(a)]. The imaginary parts of the QP energies are further inverse proportional to

the lifetime of the quasiparticles. For the non-interacting case, the spectral function is a delta

function with an infinitesimal small width of QP peak and thus infinite lifetime. The time-

dependent interacting Green’s function G is given by the so-called Dyson equation [13]

G(r, r′, ω) = G0(r, r′, ω) +

∫
dr1 dr2 G0(r, r1, ω)Σ(r1, r2, ω)G(r2, r′, ω), (134)

where Σ is the irreducible self-energy, which defines the general differences between interacting

and non-interacting systems. The self-energy comes from the interpretation that the bare particle

interacts with the many-body system, creating the cloud, and the cloud in turn reacts back on the

particle, disturbing its motion. Hence, the particle is, in a sense, interacting with itself via the

many-body system and changing its own energy [78]. Diagrammatically, the Dyson equation

reads

= +
Σ

. (135)

Here, we used double particle lines in Eq. (135) to indicate interacting Green’s functions G. If

Ĥ0 = −1
2∇

2(r) + Vext(r) is assumed as the the non-interacting Hamiltonian, then the irreducible

self-energy Σ reads [70]

Σ = + + + + · · ·
. (136)
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However, if the Hartree Hamiltonian Ĥ0 = −1
2∇

2(r) + Vext(r) + VH(r) is assumed as the the

non-interacting Hamiltonian, the irreducible self-energy become

Σxc = + + + · · ·
. (137)

Here, Σxc is the non-local part of the self-energy. Similarly, if the Hartree-Fock Hamiltonian

Ĥ0 = −1
2∇

2(r) + Vext(r) + VH(r) + Vx(r) is assumed as the the non-interacting Hamiltonian, then

the irreducible self-energy become

Σc = + + · · ·
. (138)

Furthermore, if the DFT Hamiltonian Ĥ0 = −1
2∇

2(r) + Vext(r) + VH(r) + Vxc(r) is assumed as the

the non-interacting Hamiltonian, the irreducible self-energy Σ becomes

Σ = Σxc − Vxc. (139)

Plugging the spectral representations of the Green’s function Eq. (133) into the Dyson equa-

tion, the QP equation is obtained [13]

[
−

1
2
∇2(r) + Vext(r) + VH(r)

]
ψn(r) +

∫
dr′ Σxc(r, r′, En)ψn(r′) = Enψn(r). (140)

The QP equation looks similar to the KS equation in Eq. (47). However, the exchange and

correlation effects are now included through the self energy Σxc instead of Vxc. It turns out

that the quasiparticle orbitals ψn(r) and energies En can be obtained solving the QP equation

[70, 81, 82]. Since the self-energy is non-local, non-Hermitian and frequency-dependent, direct

solution of the QP equation without any further approximations is not possible. One of the

good approximations is the GW approximation, where the electron-electron interactions are

described by the screened Coulomb interaction W instead of the bare Coulomb interaction. It

turns out that the GW approximation not only gives a better description of band gaps, but also

describes the electronic structure of many weakly correlated materials reasonably well. In the

following, I will first show the Hedin’s equations and then the GW approximation followed by

its practical implementations.
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5.5. Hedin equations

In principle, the exact self-energy can be obtained from a closed set the so-called Hedin equa-

tions [70]:

G(1, 2) = G0(1, 2) +

∫
d3d4G0(1, 3)Σxc(3, 4)G(4, 2) (141)

Σxc(1, 2) = i
∫

d1′d2′ G(1′, 2)W(2′, 2+)Γ(2′, 2′; 1, 1′) (142)

W(1, 2) = v(1, 2) +

∫
d1′d2′ v(1, 1′)χ(1′, 2′)W(2′, 2) (143)

χ(1, 2) = −i
∫

d1′d2′ Γ(1, 1; 1′, 2′)G(2, 1′)G(2′, 2) (144)

Γ(1, 2; 3, 4) = Γ0(1, 2; 3, 4) +

∫
d(1′) · · · d(6′)Γ0(1, 2; 3′, 4′)I(3′, 4′; 5′, 6′) (145)

× G(1′, 5′)G(6′, 2′)Γ(1′, 2′; 3, 4)

I(1, 2; 3, 4) =
δΣxc(1, 2)
δG(4, 3)

, Γ0(1, 2; 3, 4) = δ(1, 3)δ(2, 4). (146)

Here, Σxc is the non-local part of the irreducible self-energy, G (G0) the interacting (non-

interacting) Green’s function, W the screened Coulomb interaction, χ the irreducible polar-

izability, v bare Coulomb interaction, Γ the vertex correction, and I the scattering amplitude.

Note that in deriving Eqs. (141-146) the following notations

1 = (r1, t1), 2 = (r2, t2) (147)

δ(1, 2) = δ(r1, r2)δ(t1, t2) (148)

v(1, 2) = v(r1, r2)δ(t1, t2), v(r1, r2) =
1

|r1 − r2|
(149)∫

d1 =

∫
dr1

∫ +∞

−∞

dt1 (150)

1+ = (r1, t1 + η), η = 0+ (151)

are used. The corresponding Feynman diagrams read:

= +
Σxc (152)

Σxc =
(153)

= + (154)

χ =
(155)

= + I
(156)
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Figure 10: (a) Schematic representation of the iterative determination of the self-energy Σ using

Hedin’s equations Eqs. (141-146). (b) Schematic representation of the iterative

determination of the self-energy Σ in the GW approximation. See the main text for

the details. This figure is adapted from from Ref. [13].

Γ(1, 2; 3, 4) =
2

1

4

3

(157)

Γ(1, 1; 3, 4) = Γ(1; 3, 4) =
1

4

3

. (158)

Here, double straight lines represent the interacting Green’s function, while double wiggly lines

denote the dressed (screened) Coulomb interaction. Although the compact structure of the

Hedin’s equations is appealing, a full solution remains a formidable challenge, since they are

coupled to each other. Fig. 10(a) shows the Hedin’s algorithm to solve the set of equations

for Γ, χ, W, Σ and G self-consistently. Specifically, starting from the non-interacting Green’s

function G0 (GHartree), the vertex correction Γ is calculated by Eqs. (145-146). Afterwards, the

polarizability χ is calculated by Eq. (144). Screened Coulomb interaction W is then calculated

by Eq. (143). After W is obtained, self-energy Σ is calculated by Eq. (142). With this self-

energy, the interacting Green’s function G is obtained by solving the Dyson equation Eq. (141).

This procedure is repeated until the self-consistence is achieved.

5.6. GW approximation

Although in theory the exact self-energy can be obtained from a closed set of Hedin equations

as introduced above, the calculations are extremely prohibitive without further approximations.
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The GW approximation, which neglects vertex corrections in the irreducible self-energy and po-

larizability, provides a good approximation for the self-energy by including many-body effects

in the electron-electron interaction. It can be regarded as a generalization of the Hartrre-Fock

approximation. Apart from Hartrre and Fock terms, the GW approximation also accounts for

the correlated self-energy, which is frequency dependent. Without the vertex corrections, the

Dyson-equation shown in Eq. (134) and Hedin equations shown in Eqs. (141-146) reduce to

G(r, r′, t) = G0(r, r′, t) +

∫
dr1 dr2 G0(r, r1, t)ΣGW(r1, r2, t)G(r2, r′, t) (159)

χGW(r, r′, t) = −iG(r, r′, t)G(r′, r,−t) (160)

W(r, r′, t) = v(r, r′) +

∫
dr1 dr2 v(r, r1)χGW(r1, r2, t)W(r2, r′, t) (161)

ΣGW(r, r′, t) = iG(r, r′, t)W(r, r′, t). (162)

Here, v(r, r′) = 1/|r − r′| is the bare Coulomb interaction kernel. The corresponding Feynman

diagrams read

= +
ΣGW

(163)

χ =
(164)

= + (165)

ΣGW =
. (166)

Fig. 10(b) shows the schematic representation of the iterative determination of the self-

energy Σ in the GW approximation. Similar to Hedin’s algorithm, in order to achieve the self-

consistency, the following procedure should be performed. Starting from the non-interacting

Green’s function G0 (GHartree), one then calculates the polarizability χ by Eq. (160). Screened

Coulomb interaction W is calculated by Eq. (161). After W is obtained, self-energy Σ is cal-

culated by Eq. (162). With this self-energy, the interacting Green’s function G is obtained by

solving the Dyson equation Eq. (159). This procedure is repeated until the self-consistence is

achieved.

5.7. GW implementation in practice

Although the QP energies can be in principle elegantly calculated by a self-consistent solution of

Eqs. (159-162), in practice, none of the publicly available computer codes allow for such a fully

self-consistent solution for technical reasons: since the one-particle Green’s function G(r, r′, t−
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t′) depends on the time difference t−t′, the accurate discretization in time is challenging [15]. In

fact, all the available GW implementations restrict the Green’s function to an “non-interacting”

form

G(r′, r, ω) =
∑

n

ψn(r′)ψ∗n(r)

ω − εQP
n + iηsign(εQP

n − µ)
, (167)

where εQP
n are the QP energies, η is a positive infinitesimal and µ is the Fermi energy. However,

ψn(r) are the normalized eigenfunctions of some Hermitian one-particle Hamiltonian (usually

DFT Kohn-Sham Hamiltonian). It is clear from Eq. (167) that the QP energies can be easily

identified as poles of the Green’s function, so that the band gap is simply given as the energy

difference between the energy of the lowest unoccupied and highest occupied quasiparticle [15].

This is a good approximation only if the DFT Kohn-Sham orbitals are close to the exact QP

orbitals. This is so for most cases [83].

If the DFT Kohn-Sham Hamiltonian is taken as the one-particle Hamiltonian in Eq. (167)

and we assume that the DFT Kohn-Sham orbitals are close to the exact QP orbitals, we will

obtain an another simple approximate QP equation

εQP
n = Re

[
〈ψn|T + Vext + VH + Σxc(εQP

n )|ψn〉
]
, (168)

where Σxc is the non-local part of GW self-energy. Eq. (168) is derived by comparing the

interacting Green’s function in Eq. (167) with the non-interacting Green’s function

G0(r′, r, ω) =
∑

n

ψn(r′)ψ∗n(r)
ω − εDFT

n + iηsign(εDFT
n − µ)

, (169)

and using the Dyson equation

G−1 = G−1
0 − (Σxc − Vxc), (170)

where Vxc is the DFT exchange-correlation energy functional. It should be mentioned that in

deriving Eq. (168) it is implicitly assumed that the GW self-energy in the KS basis is diagonally

dominant, which is found to be true for most cases [83].

Since the self-energy Σxc is energy dependent, Eq. (168) needs to be solved iteratively for

εQP. One possible solution is to calculate the roots of this non-linear equation by, for instance,

the Newton root-finding algorithm. This works for most cases, except for the cases where many

poles exist around the predicted QP energies. This might not occur for solids, but it might

happen for molecules, for instance, the closed shell molecules BN, O3, BeO, MgO and CuCN,
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as reported in Ref. [84]. Given the observation that the QP energies are often not so far away

from the DFT eigenvalues, the GW self-energy at the QP energies can be calculated to first

order, by linearizing the self-energy around the DFT single particle eigenvalues εDFT
n

Σn(εQP
n ) = Σn(εDFT

n ) +
∂Σn(ω)

∂ω

∣∣∣∣∣∣∣∣∣
ω=εDFT

n

(εQP
n − ε

DFT
n ). (171)

Here, Σn(ω) = 〈ψn|Σxc(ω)|ψn〉. Inserting Eq. (171) into Eq. (168), we obtain the linearized QP

energies

εQP
n = εDFT

n + ZnRe[〈ψn|T + Vext + VH |ψn〉 + Σn(εDFT
n ) − εDFT

n ], (172)

where Zn is the renormalization factor and related to the derivative of the self-energy at εDFT
n

Zn =

1 − ∂Re[Σn(ω)]

∂ω

∣∣∣∣∣∣∣∣∣
ω=εDFT

n


−1

. (173)

The correlation factor Zn can be related to the norm of the corresponding QP peak and is a mea-

sure of the degree of correlation. Typically, Zn is between 0.7-0.9, corresponding to a low to very

low degree of correlation. It should be noted that apart from the neglect of vertex corrections,

the GW approximation also neglects all but the first irreducible polarizability term describing

the direct creation of a noninteracting (independent) electron-hole pair from the ground state.

That means the independent-particle polarizability is used in almost all the existing practical

implementations.

If one just does one-single shot iteration but does not update the Green’s functions again in

Fig. 10(b), one obtained the so-called G0W0 approximation. That is, one starts from the Kohn-

Sham one-electron energies and orbitals to construct the non-interacting Green’s functions G0,

then uses G0 to calculate the independent particle polarizability χ0 and furthermore the screened

Colombo interaction W0, afterwards, calculates the self-energy Σ = −G0W0 and finally obtains

the QP energies by Eq. (172). It turns out that G0W0 obviously improves the band gaps towards

the experimental values compared with the LDA or GGA [85, 86].

Even though G0W0 to some extent improves the band gaps of typical insulators and semi-

conductors, it underestimates the band gaps even for (weakly correlated) semiconductors. It

fails even qualitatively in transition-metal and rare-earth-metal compounds such as CoO and

ErAs [87]. This is because G0W0 depends strongly on the initial starting point and also implic-

itly assumes that the initial Kohn-Sham orbtials are close to the exact QP orbitals. Obviously,
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Figure 11: (a) Band gaps predicted by PBE, G0W0 and GW0 (b) Band gaps predicted by LDA,

HSE and G0W0@HSE. (c) Band gaps predicted by DFT, scGW without and with

electron-hole vertex corrections. This figure is adapted from Refs. [86, 88, 89].

this is not always satisfied. One of the possible ways to improve the band gaps further is

GW0 [86], where the screened Coulomb interaction W is fixed at the DFT level, but the Green’s

function G is updated only in the one-electron energies. Indeed, with the update of the one-

electron energies in GW0, the predicted band gaps are much more closer to the experimental

values than G0W0, as shown in Fig. 11(a). Another alternative method is G0W0@HSE [88],

where the G0W0 is done on top of the HSE one-electron energies and orbitals instead of LDA or

GGA. It can be seen from Fig. 11(b) that G0W0@HSE almost yields the same band gaps as GW0.

Which kind of methods one should choose, however, is not well understood or investigated. It

seems to depend largely on personal prejudice.

It should be mentioned that analogous to G0W0, GW0 is also starting point dependent, and

of course G0W0@HSE depends on the HSE one-electron energies and orbitals and there is no

guarantee that HSE orbitals are closer to the exact QP orbitals than PBE orbitals. To overcome

the issue of the starting point dependence, one would expect that some self-consistency (not

only update one-electron energies, but also one-electron orbitals) might help. However, full

self-consistent GW (scGW) without inclusion of vertex corrections may lead to some problems.

For instance, scGW always overestimates the band gaps [89], as shown in Fig. 11(c). The

valence bandwidth of the homogeneous electron gas predicted by scGW is 15% wider than the

noninteracting case, whereas the G0W0 width is 15% narrower, in agreement with experiment

for Na [90]. In addition, scGW overestimates the valence bandwidth of Si and Ge, though the

band gaps are reasonably described [91]. If one takes into account the vertex corrections in
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scGW, for instance, the electron-hole interactions in the pair-bubble irreducible polarizability

Feynman diagram (vertex corrections in polarizability and thus in W), the overestimated band

gaps are reduced and in better agreement with experimental values, see Fig. 11(c). Also, the

importance of vertex corrections in the self-energy Σ has been highlighted for predicting the

ionization potentials and d-electron binding energies of solids [92], with typical corrections for

the d bands of 0.7 eV. However, the inclusion of vertex corrections becomes so expensive that

GW0 and G0W0@HSE are instead often used.

Instead of inclusion of vertex corrections in scGW, quasiparticle self-consistent GW (QPGW)

tries to determine the optimum effective static exchange-correlation potential Vxc based on a

self-consistent perturbation theory so that the time evolution determined by H0 = T + Vext +

VH + Vxc is as close as possible to that determined by H(ω) = T + Vext + VH + Σxc(ω) within the

RPA [85]. One possible approximation for Vxc is [85]

Vxc =
1
2

∑
i, j

|ψi〉
{
Re[Σxc(εi)]i j + Re[Σxc(ε j)]i j

}
〈ψ j|. (174)

With Vxc in Eq. (174), the self-consistency is closed. Specifically, starting from DFT calcu-

lations with a Hamiltonian H0 = T + Vext + VH + Vxc, in QPGW the full self-energy matrix is

calculated and “quasiparticelized” Σi j(ω), which couples one-electron states i and j, is evaluated

at the one-electron energies εi and ε j, and then the average value is taken. This leads to a new

static but non-local potential Vxc by means of Eq. (174). The new Vxc is then used to calculate a

new Σi j(ω), and the process is iterated until the convergence of Vxc is achieved. QPGW theory

is an elegant way to find the optimum noninteracting Hamiltonian H0 for GW calculations. It

removes the starting point dependence. It turns out that QPGW gives a better description in

most respects. It not only describes very well the band gaps, but also yields a better bandwidth

of Na, in good agreement with experiments [85].

For the existing GW implementations, there are two main schemes. One works in the re-

ciprocal space and real frequency [33, 93–95], the other instead works in the real space and

imaginary time [96–98]. The former is from now on called conventional GW and the latter is

termed “space-time” method. In the following, the two schemes will be briefly introduced.

5.7.1. Conventional GW implementations

For the conventional GW implementations, calculations of the independent-particle polariz-

ability is done in the reciprocal space and real frequency by using the Adler and Wiser for-
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mula [99, 100]

χ0
q(G,G′, ω) =

1
Ω

all∑
n,n′,k

2wk( fn′k−q − fnk)
〈ψn′k−q|e−i(q+G)r|ψnk〉 〈ψnk|ei(q+G′)r′ |ψn′k−q〉

ω − (εnk − εn′k−q) + iη sgn(εnk − εn′k−q)
, (175)

where Ω is the volume of the system, wk is the weight of the considered k point, and fnk is the

one electron occupancies of the states (n,k). Again, η is a positive infinitesimal. The factor of

2 is due to the spin-degenerate systems considered here. It should be noted that in Eq. (175)

band index n and n′ run over all the bands considered due to the introduction of ( fn′k−q − fnk).

One can see that this step is computationally rather demanding, since the calculation involves

a summation over all pairs of occupied and unoccupied states at each frequency, with a rank-

one update of the microscopic response function for each pair, which leads to an unfavorable

scaling that is quadratic in the number of k points used to sample the Brillouin zone (kq ≈ k2),

quartic in the number of plane waves (GG′nn′ ≈ G4) and linear to the number of frequencies.

Therefore, the conventional GW calculations are usually restricted to small systems and few k

points.

To optimize the computational procedure one can instead first calculate the spectral represen-

tation of the polarizability [33, 101]

χS
q (G,G′, ω′) =

1
Ω

all∑
n,n′,k

2wk sgn(ω′)δ(ω′ + εnk − εn′k−q)( fnk − fn′k−q) (176)

×〈ψn′k−q|e−i(q+G)r|ψnk〉 〈ψnk|ei(q+G′)r′ |ψn′k−q〉, (177)

and then the polarizability can be calculated as

χ0
q(G,G′, ω) =

∫ +∞

0
dω′χS

q (G,G′, ω′)
{

1
ω − ω′ − iη

−
1

ω + ω′ + iη

}
. (178)

By using Eq. (176), for a given frequency ω′ only states that satisfy ω′ + εnk − εn′k−q = 0 will be

included into the summation, greatly enhancing the efficiency.

After χ0
q(G,G′, ω) is known, the full screened Coulomb interaction Wq(G,G′, iω) is evaluated

by multiplying the bare Coulomb kernel with the inverse dielectric matrix

Wq(G,G′, ω) = vq(G,G′)ε−1
k (G,G′, ω), (179)

where the symmetric bare Coulomb kernel vq(G,G′) is given by

vq(G,G′) =
4πe2

|q + G||q + G′|
. (180)
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The symmetric dielectric matrix is calculated within the RPA as

εq(G,G′, ω) = δG,G′ − vq(G,G′)χ0
q(G,G′, ω). (181)

To make the integral over the imaginary frequency well-defined, the correlated screened

Coulomb interaction is defined

W̃q(G,G′, ω) = Wq(G,G′, ω) − vq(G,G′). (182)

With W̃q(G,G′, ω), the diagonal matrix elements of the correlated self-energy is then calculated

by [33]

Σ̃(ω)nk,nk =
1
Ω

∑
q

∑
G,G′

all∑
n′

i
2π

∫ +∞

−∞

dω′W̃q(G,G′, ω′)
〈ψn′k−q|e−i(q+G)r|ψnk〉〈ψnk|ei(q+G′)r′ |ψn′k−q〉

ω + ω′ − εn′k−q + iη sgn(εn′k−q − µ)

=
1
Ω

∑
q

∑
G,G′

all∑
n′

i
2π

∫ +∞

0
dω′W̃q(G,G′, ω′)〈ψn′k−q|e−i(q+G)r|ψnk〉〈ψnk|ei(q+G′)r′ |ψn′k−q〉

×

{
1

ω + ω′ − εn′k−q + iη sgn(εn′k−q − µ)
+

1
ω − ω′ − εn′k−q + iη sgn(εn′k−q − µ)

}
(183)

In order to obtain the final self-energy, the exact Fock exchange term must be added back

Σ(ω)nk,nk = Σ̃(ω)nk,nk + 〈ψnk|Gvx|ψnk〉. (184)

For more implementation details about 〈ψnk|Gvx|ψnk〉, see Ref. [52]. For the core-valence

exchange-correlation interaction, the Hartree-Fock approximation is used. This is found to be

more reliable than LDA since the GW self-energy approaches the bare Fock exchange operator

in the short wavelength limit [33].

It should be noted that the evaluation of the self-energy by Eq. (184) is rather time consum-

ing, at least two times more expensive than the evaluation of the polarizability. There are two

methods that are used in the VASP implementation [33].

(1) If the full frequency-dependent self-energy is required, the following method is employed.

The first step is to calculate the screened two electron integrals for each pair (nk, n′k − q) [33]

W̃nk,n′k−q(ω) =
1
Ω

∑
G,G′

W̃q(G,G′, ω)〈ψn′k−q|e−i(q+G)r|ψnk〉〈ψnk|ei(q+G′)r′ |ψn′k−q〉. (185)
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In the second step, a Hilbert transform of W̃nk,n′k−q(ω) is performed to obtain Σ̃nk,n′k−q(ω) [33]

Σ̃nk,n′k−q(ω) =
i

2π

∫ +∞

0
dω′W̃nk,n′k−q(ω′)

×

{
1

ω + ω′ − εn′k−q + iη sgn(εn′k−q − µ)
+

1
ω − ω′ − εn′k−q + iη sgn(εn′k−q − µ)

}
.

(186)

Finally, the full frequency-dependent diagonal elements of the self-energy are obtained by [33]

Σ̃nk,nk(ω) =
∑

q

∑
n′

Σ̃nk,n′k−q(ω). (187)

(2) If only QP energies are required, one does not need to calculate the full frequency-

dependent screened two electron integrals and self-energy. Instead, only the screened two

electron integrals at those two frequencies, say, ω̄i and ω̄i+1, which are closest to |εnk − εn′k−q|,

satisfying ω̄i < |εnk − εn′k−q| < ω̄i+1, are required. Specifically, first, two auxiliary quantities are

calculated [33]

C+
q (G,G′, ω̄) =

i
2π

∫ ∞

0
dω′Wq(G,G′, ω′)

{
1

ω̄ + ω′ + iη
+

1
ω̄ − ω′ + iη

}
(188)

C−q (G,G′, ω̄) =
i

2π

∫ ∞

0
dω′Wq(G,G′, ω′)

{
1

ω̄ + ω′ − iη
+

1
ω̄ − ω′ − iη

}
, (189)

which are evaluated only for positive and negative complex shift, respectively, with ω̄ lying on

the same frequency grid as other quantities such as the polarizability.

Second, the screened two-electron integrals are calculated as [33]

S +
nk,n′k−q(ω̄) =

1
Ω

∑
G,G′

C+
q (G,G′, ω̄)〈ψn′k−q|e−i(q+G)r|ψnk〉〈ψnk|ei(q+G′)r′ |ψn′k−q〉 (190)

S −nk,n′k−q(ω̄) =
1
Ω

∑
G,G′

C−q (G,G′, ω̄)〈ψn′k−q|e−i(q+G)r|ψnk〉〈ψnk|ei(q+G′)r′ |ψn′k−q〉. (191)

Finally, the self-energy at εnk can be calculated as a sum of these screened two-electron

integrals [33]

Σ̃nk,nk(εnk) =
∑

n′

∑
q

sgn(εnk − εn′k−q)S sgn(εn′k−q−µ) sgn(εnk−εn′k−q)
nk,n′k−q (εnk − εn′k−q). (192)

It should be noted that the screened two electron integrals are originally calculated at a dis-

crete set of frequencies ω̄i, the values of S + or S − at the points ∆nn′ = εnk − εn′k−q need to be

obtained by a linear interpolation from those two frequency points of the grid which are closest
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to the energy ∆nn′ [33]

S +
nk,n′k−q(|∆nn′ |) =θ(|∆nn′ | − ω̄i)θ(ω̄i+1 − |∆nn′ |)

×

(
ω̄i+1 − |∆nn′ |

ω̄i+1 − ω̄i
S +

nk,n′k−q(ω̄i) +
|∆nn′ | − ω̄i

ω̄i+1 − ω̄i
S +

nk,n′k−q(ω̄i+1)
) (193)

S −nk,n′k−q(|∆nn′ |) =θ(|∆nn′ | − ω̄i)θ(ω̄i+1 − |∆nn′ |)

×

(
ω̄i+1 − |∆nn′ |

ω̄i+1 − ω̄i
S −nk,n′k−q(ω̄i) +

|∆nn′ | − ω̄i

ω̄i+1 − ω̄i
S −nk,n′k−q(ω̄i+1)

)
.

(194)

For a negative ∆nn′ , the following simple transformations are used [33]

S +
nk,n′k−q(−|∆nn′ |) = −S −nk,n′k−q(|∆nn′ |) (195)

S −nk,n′k−q(−|∆nn′ |) = −S +
nk,n′k−q(|∆nn′ |). (196)

Similarly, one could easily calculate the self-energy at εnk − δ and εnk + δ with small postive

δ, say 0.1 eV, from

S +
nk,n′k−q(|∆nn′ | + δ) = S +

nk,n′k−q(|∆nn′ |) + δ
dS +

nk,n′k−q(ω)

dω

∣∣∣∣∣∣
ω=|∆nn′ |

(197)

S −nk,n′k−q(|∆nn′ | + δ) = S +
nk,n′k−q(|∆nn′ |) + δ

dS −nk,n′k−q(ω)

dω

∣∣∣∣∣∣
ω=|∆nn′ |

. (198)

After Σnk,nk(εnk−δ), Σnk,nk(εnk) and Σnk,nk(εnk+δ) are obtained,
∂Σnk,nk(ω)

∂ω

∣∣∣∣∣∣∣∣∣
ω=εnk

can be trivially

calculated by the finite difference method. Finally, the QP energy εQP
nk is evaluated by Eq. (172).

One could see that to obtain the QP energy εQP
nk , the screened two electron integrals S ±nk,n′k−q(ω̄)

are required to be calculated at two frequencies ω̄i and ω̄i+1 only, which are closest to |εnk−εn′k−q|

satisfying ω̄i < |εnk− εn′k−q| < ω̄i+1. Therefore, this method is independent of the frequency grid

and significantly improves the efficiencies in the evaluation of QP energies. However, one

should note that this method cannot be used to obtain the full frequency-dependent self-energy.

5.7.2. Space-time method

As discussed above, the direct evaluation of the polarizability in reciprocal space and real fre-

quency results in an unfavorable scaling, that is quartic in the system size and quadratic in the

number of k points used to sample the Brillouin zone (BZ). Even though the spectral repre-

sentation of the polarizability greatly enhances the efficiency, one still needs to take care of
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the integration along the real frequency axis. To achieve a reasonably converged polarizability,

many real frequency grid points (∼50 or more) are required, increasing the computational cost

and memory storage. However, the polarizability is simply multiplicative, when evaluated in

the real space and imaginary time domain [96, 102]

χ(r, r′, iτ) = G(r, r′, iτ)G∗(r, r′,−iτ). (199)

Also, the calculation of the self-energy becomes much simpler, when evaluated in real space

and imaginary time [96]:

Σ(r, r′, iτ) = −G(r, r′, iτ)W(r, r′, iτ). (200)

By doing so, one actually avoids the expensive convolution of the Green’s function and screened

Coulomb interaction in the reciprocal space and real frequency domain, as used in the conven-

tional GW implementations. Instead, only a few imaginary time points are required in the

space-time method, due to the smooth behavior of the Green’s functions and screened Coulomb

interaction along the imaginary axis.

However, in the original implementation of the space-time method by Godby et al. [96, 102]

the Green’s functions, screened Coulomb interaction and self-energy are built and stored di-

rectly using the real space grid points, which are in the order of ten thousands, definitely in-

creasing the memory requirement. In addition, it is implemented within the pseudo-potential

framework and thus not full-potential. Another drawback of the space-time method is that to ob-

tain the experimental observables of interest, such as QP energies and spectral functions, which

are obviously measured all along the real frequency axis, analytic continuation from the imag-

inary axis to the real axis should be performed. In the work of Godby et al. [96], a multipole

expansion was used by taking into account the pole structure of the self-energy

Σ(iω) = a0 +

n∑
k=1

ak

iω − zk
, (201)

where a0, ak and zk are complex numbers, and n is the number of poles. However, it turns

out that the multipole expansion method is rather unstable when the number of poles exceeds

three. The fitted parameters are rather sensitive to the initial starting parameters. We have

put a separate discussion on the analytic continuation in Appendix (C). Another thing is that

if the GW method is implemented in the Matsubara-time domain [97, 98], many Matsubara
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frequencies are required. For instance, for T= 300 K around 3078 Matsubara frequencies are

needed within 0 and 500 eV. This definitely increases the memory storage.

In order to overcome the disadvantages of the conventional GW implementation and space-

time method, we will present a promising low-scaling GW implementation in Section (6). It

allows for fast quasiparticle calculations with a scaling that is cubic in the system size and

linear in the number of k points used to sample the Brillouin zone. This makes possible the GW

calculations on large systems.
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Part II.

Methodological Developments
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6. Low scaling GW method: implementation

As already mentioned in Section (5.7), conventional GW calculations are usually restricted to

small systems and few k points, while the space-time method demands considerable storage

for the Green’s function and self-energy due to the huge number of real-space grid points and

fairly dense imaginary time/frequency grids. To circumvent the large storage requirement of the

space-time method, a promising scheme has been recently proposed by Kaltak et al. [103,104].

It allows to calculate the random phase approximation (RPA) correlation energy with a cubic

scaling in the system size and a linear scaling in the number of k points used to sample the BZ.

As in Rojas et al.’s work [96], this is achieved by calculating the polarizability in real space

and imaginary time via contraction over the Green’s functions of occupied and unoccupied

states. The transformation of the polarizability from the imaginary time to the frequency domain

is performed by an efficient discrete Fourier transformation with only a few nonuniform grid

points [103]. Spatial fast Fourier transformations (FFT) within a supercell are utilized to go

from real space to reciprocal space and vice versa [104].

In this section, we extend Kaltak’s scheme [103, 104] to QP calculations in the GW approxi-

mation, in which the screened Coulomb interaction W is calculated within the RPA and the self-

energy is efficiently evaluated via contraction over the Green’s function and W in real space and

imaginary time. Similar spatial FFT as discussed in Ref. [104] are employed, whenever trans-

formations between the real and reciprocal space are required. To transform the self-energy

from the imaginary time to the frequency domain, nonuniform cosine and sine transformations

are used for the even and odd part of the self-energy, respectively. For the sake of brevity, here,

we focus only on the formulations for the low-scaling single-shot GW implementation within

the framework of the PAW, where the one electron energies and wave functions required in G

and W are fixed at the DFT level. To avoid confusion with the conventional G0W0, we denote

our low-scaling single-shot GW as G0W0r. Its applications on extended systems and molecules

will be shown in Sections (7.1) and (7.2), respectively. The self-consistent low-scaling GW will

be discussed in Section (9). Given that DMFT is usually formulated on the imaginary frequency

axis as well [105,106], our method provides a natural interface for the combination of GW with

DMFT, which will be discussed in Section (10).

This section was published in Ref. [107].
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Figure 12: Schematic work flow for the low-scaling GW QP calculations showing the necessary

steps [(1)−(12)] to obtain the QP energies from the Green’s function G via the po-

larizability χ, screened Coulomb interaction W, and self-energy Σ. FFT denote fast

Fourier transformations between real and reciprocal space. CT and ST are nonuni-

form cosine and sine transformations between imaginary time and frequency.

6.1. Computational Scheme of low scaling GW method

Figure 12 shows our scheme for the low-scaling GW QP calculations. The polarizability

χ(r,R′, iτ) is calculated via the contraction (GG) of the occupied and unoccupied Green’s func-

tions within the PAW framework [104]. The contraction is performed in real space and the nec-

essary quantities are obtained by fast Fourier transformations (FFT) within a supercell [104].

Subsequently, the screened interaction Wk(g, g′, iω) is obtained within the RPA. To transform

the polarizability χ and screened Coulomb interaction W from imaginary time to frequency

domain and vice versa, efficient nonuniform cosine transformations (CT) [103] are used. The

self-energy Σ(r,R′, iτ) is calculated by contracting the Green’s function and W within the GW

approximation. The matrix elements of the self-energy in the orbital basis are evaluated within

the PAW. To transform the self-energy from the imaginary time to the frequency domain, CT

and sine transformations (ST), respectively, are used for the even and odd part of the self-energy.

The self-energy along the real frequency axis is obtained by an analytic continuation (AC). Fi-

nally, the QP energies EQP
nk within single-shot G0W0r are calculated by linearizing the diagonal

elements of the self-energy around the DFT one-electron eigenvalues εnk. The subsequent sub-
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sections describe these steps in detail.

6.2. Description of notations and definitions

In this part, we will give the description of the notations used throughout the thesis, the defini-

tion of the Green’s functions, as well as the spatial and temporal Fourier transformations.

6.2.1. Definitions of Green’s functions

We have defined two types of Green’s functions: occupied and unoccupied Green’s functions,

which are evaluated for the negative and positive time, respectively.

G(r, r′, iτ) =
occ∑

i
ψi(r)ψ∗i (r′)e−εiτ (τ < 0), (202)

G(r, r′, iτ) = −
unocc∑

a
ψa(r)ψ∗a(r′)e−εaτ (τ > 0). (203)

Here the indices i and a label occupied and unoccupied orbitals, respectively. ψi(r) (ψa(r)) is the

one-electron orbital with the energy of εi (εa) and the Fermi energy is set to zero. This implies

that all occupied (unoccupied) one-electron energies εi (εa) are negative (positive), yielding

exponentially decaying Green’s functions G and G. With the definitions in Eqs. (202–203), the

single particle Green’s function can be expressed as

G(r, r′, iτ) = Θ(τ)G(r, r′, iτ) + Θ(−τ)G(r, r′, iτ), (204)

where Θ is the Heaviside step function.

6.2.2. Nonuniform imaginary time and frequency grids

The imaginary time {iτ j}
N
j=1 and frequency {iωk}

N
k=1 grids used in the present work have been

determined by minimizing the discretization error of the direct Møller-Plesset energy in the

imaginary time and frequency domain, respectively [103]

η̂(~σ,~τ, x) =
1

x
−

N∑
j=1

σ je−2x|τ j |, (205)

η(~θ, ~ω, x) =
1

x
−

1

2π

N∑
k=1

θk

 2x

x2 + ω2
k


2

, (206)
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for all transition energies x ∈ [εmin, εmax] with εmin = min{εa− εi} and εmax = max{εa− εi}. {σ j}
N
j=1

and {θk}
N
k=1 are the corresponding weights. For more detailed information concerning how such

optimized imaginary time/frequency grids are obtained, please refer to Appendix (B.1). It has

been found that the two grids are dual to each other. That is, given {iτ j}
N
j=1, the discretization

error function is minimal at the grid points {iωk}
N
k=1, and vice versa [103]. It has also been

observed that the RPA correlation energy can be evaluated accurately with a modest number

of grid points [103]. For instance, to achieve µeV accuracy per atom, 16 time and frequency

points are usually sufficient [103]. In the present work, we also found that with 20 grid points,

we could obtain converged QP energies with 0.01 eV accuracy for all the materials considered.

With a few imaginary grid points, the memory requirements are obviously much reduced.

6.2.3. Nonuniform cosine and sine transformations

To go from the imaginary time to imaginary frequency, and vice versa, nonuniform discrete co-

sine and sine transformations have been exploited for the even and odd functions, respectively.

Specifically, for an even function F with respect to imaginary time/frequency, such as the po-

larizability χ and screened Coulomb interaction W, the forward Fourier transformation is given

by

F(iω) = 2
∫ ∞

0
dτ cos(ωτ)F(iτ). (207)

We approximate it by a discrete CT

F(iωk) =

N∑
j=1

γk j cos(ωkτ j)F(iτ j). (208)

Here the imaginary time {iτ j}
N
j=1 and frequency {iωk}

N
k=1 grids are precalculated. The coefficients

γk j are determined in analogy to the imaginary time and frequency grids by minimizing the error

function [103]

ηc(x,γ) =
2x

x2 + ω2
k︸           ︷︷           ︸

2
∫ ∞

0 dτ cos(ωkτ)e−xτ

−

N∑
j=1

γk j cos(ωkτ j)e−xτ j , (209)

for all transition energies x ∈ [εmin, εmax] and each known frequency point ωk separately.

Analogously, the inverse CT is given by [103]

F(iτ j) =

N∑
k=1

ξ jk cos(τ jωk)F(iωk), (210)
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where the coefficients ξ jk are determined by minimizing the error function [103]

η̂c(x, ξ) = e−x|τ j |︸            ︷︷            ︸
2
∫ ∞

0
dω
2π cos(τ jω) 2x

x2+ω2

−

N∑
k=1

ξ jk cos(τ jωk)
2x

x2 + ω2
k

. (211)

It can be proved that the matrix ξ cos (τω) is the inverse of the matrix γ cos (ωτ) in Eq. (208).

In contrast, for an odd function F with respect to imaginary time/frequency, the forward

Fourier transformation is described by

F(iω) = 2i
∫ ∞

0
dτ sin(ωτ)F(iτ), (212)

which is approximated by a discrete ST

F(iωk) = i
N∑

j=1

λk jsin(ωkτ j)F(iτ j). (213)

Again, {iτ j}
N
j=1 and {iωk}

N
k=1 are precalculated and chosen to be identical to the cosine grid.

However, the coefficients λk j are determined by minimizing the error function

ηs(x, λ) =
2ωk

x2 + ω2
k︸           ︷︷           ︸

2
∫ ∞

0 dτ sin(ωkτ)e−xτ

−

N∑
j=1

λk jsin(ωkτ j)e−xτ j . (214)

To this end, similar strategies as discussed in Ref. [103] are used. The inverse ST is then

obtained by

F(iτ j) = −i
N∑

k=1

ζ jksin(τ jωk)F(iωk), (215)

where the matrix ζ sin (τω) is the inverse of the matrix λ sin (ωτ) in Eq. (213). It should

be noted that the matrices γ, ξ, λ, and ζ are all precalculated and stored after the imaginary

time {iτ j}
N
j=1 and frequency {iωk}

N
k=1 grids are determined. For more derivation details on the

nonuniform cosine and sine transformations, we refer the readers to Appendix (B.2).

6.2.4. Spatial fast Fourier transformation

To transform the Green’s functions from reciprocal to real space, we employ fast discrete

Fourier transformation within a supercell [104]. Considering the symmetry of the Green’s func-

tions, only the irreducible stripe G(r,R′) needs to be calculated in two steps [104]:

G(r,G′) =
∑

g∈L∗c
ei(k+g)rGk(g, g′), (216)

G(r,R′) =
∑

G′∈L∗s
G(r,G′)e−iG′R′ . (217)
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Here, position vector r is restricted to the unit cell (C), whereas R extends over the entire

supercell (S ). g and G, respectively, represent the lattice vector of the reciprocal cell (L∗c)

and reciprocal supercell (L∗s). Furthermore, k is a k point used to sample the Brillouin zone

(BZ) and G′ = k + g′. The time complexity of the spatial FFT is of the order: ln(N2
b Nk)N2

b Nk

with Nb and Nk being the total number of considered basis vectors g and k points in the BZ,

respectively [104].

Similarly, the inverse spatial FFT is given by [104]

G(r,G′) =
∑

R′∈S
G(r,R′)eiG′R′ , (218)

Gk(g, g′) =
∑
r∈C

e−i(k+g)rG(r,G′), (219)

which has the same time complexity as the spatial FFT.

Considering that the polarizability χ has the same spatial symmetry as the Green’s functions,

the above mentioned spatial and inverse spatial FFT applies to the polarizability χ as well.

6.3. Calculation of the polarizability χ(r,R′, iτ) within the PAW

In this section, we discuss the steps (1–2) in Fig. 12 and derive a suitable expression for the

polarizability in real space χ(r,R′, iτ) within the framework of the PAW method.

It is known that the evaluation of the polarizability in reciprocal space and real frequency

results in an unfavorable scaling. However, the polarizability is simply multiplicative, when

evaluated in the real space and imaginary time domain [96, 102]

χ(r,R′, iτ) = G(r,R′, iτ)G∗(r,R′,−iτ). (220)

For simplicity, we restrict our considerations to positive imaginary times τ > 0 in the following,

since the expressions for τ < 0 are obtained by exchanging G ↔ G.

Inserting expression (204) for the Green’s function into (220) and using the explicit repre-

sentations in Eqs. (202–203) yields for τ > 0,

χ(r,R′, iτ) = −

unocc∑
a

ψa(r)ψ∗a(R′)e−εaτ
occ∑

i

ψi(R′)ψ∗i (r)eεiτ. (221)

However, within the PAW method [30, 32], this expression is more involved, because the

all-electron orbitals ψnk are related to the corresponding pseudo orbitals ψ̃nk by a linear trans-

formation

|ψnk〉 = |ψ̃nk〉 +
∑
µ

(
|φµ〉 − |φ̃µ〉

)
〈p̃µ|ψ̃nk〉. (222)
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The pseudo orbitals ψ̃nk are the variational quantity of the PAW method and are expanded in

plane waves, whereas φµ and φ̃µ are all-electron and pseudo partial waves, respectively and

p̃µ are projectors, which are dual to the φ̃µ within the augmentation sphere. The index µ =

(Rµ, nµ, lµ,mµ) is an abbreviation for the atomic site Rµ and the energy quantum number nµ and

angular momentum numbers (lµ,mµ) that characterize the solution of the Schrödinger equation

for a reference atom.

Inserting Eq. (222) into Eq. (221) yields four terms for τ > 0,

χ(1)(r,R′, iτ) = −

unocc∑
a

ψ̃a(r)ψ̃∗a(R′)e−εaτ
occ∑

i

ψ̃i(R′)ψ̃∗i (r)eεiτ, (223)

χ(2)(r,R′, iτ) = −
∑
µν

Qµν(r)
unocc∑

a

〈p̃ν|ψ̃a〉ψ̃
∗
a(R′)e−εaτ

×

occ∑
i

ψ̃i(R′)〈ψ̃i|p̃µ〉eεiτ,

(224)

χ(3)(r,R′, iτ) = −
∑
αβ

Qαβ(R′)
unocc∑

a

ψ̃a(r)〈ψ̃a| p̃α〉e−εaτ

×

occ∑
i

〈p̃β|ψ̃i〉ψ̃
∗
i (r)eεiτ,

(225)

χ(4)(r,R′, iτ) = −
∑
µναβ

Qµν(r)Qαβ(R′)
unocc∑

a

〈p̃ν|ψ̃a〉〈ψ̃a| p̃α〉e−εaτ

×

occ∑
i

〈 p̃β|ψ̃i〉〈ψ̃i|p̃µ〉eεiτ,

(226)

where the auxiliary function Qαβ(r) is defined as

Qαβ(r) = φ∗α(r)φβ(r) − φ̃∗α(r)φ̃β(r), (227)

and describes the difference between the charge density of all-electron and pseudo partial waves.

In practice, one needs further approximations for Qαβ(r), since normally this function is oscilla-

tory within the augmentation sphere. In the present implementation, the function is expanded in

an orthogonal set of functions, and the rapid spatial oscillations are neglected beyond a certain

plane-wave energy cutoff [30].
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According to the definitions of the Green’s functions in Eqs. (202–203) and four expressions

in Eqs. (223–226), we define here four auxiliary functions for unoccupied Green’s functions:

G
(1)

(r,R′, iτ) = −

unocc∑
a

ψ̃a(r)ψ̃∗a(R′)e−εaτ, (228)

G
(2)

(ν,R′, iτ) = −

unocc∑
a

〈p̃ν|ψ̃a〉ψ̃
∗
a(R′)e−εaτ, (229)

G
(3)

(r, α, iτ) = −

unocc∑
a

ψ̃a(r)〈ψ̃a| p̃α〉e−εaτ, (230)

G
(4)

(ν, α, iτ) = −

unocc∑
a

〈p̃ν|ψ̃a〉〈ψ̃a|p̃α〉e−εaτ, (231)

and four auxiliary functions for occupied Green’s functions:

G∗(1)(r,R′,−iτ) =

occ∑
i

ψ̃i(R′)ψ̃∗i (r)eεiτ, (232)

G∗(2)(µ,R′,−iτ) =

occ∑
i

ψ̃i(R′)〈ψ̃i|p̃µ〉eεiτ, (233)

G∗(3)(r, β,−iτ) =

occ∑
i

〈p̃β|ψ̃i〉ψ̃
∗
i (r)eεiτ, (234)

G∗(4)(µ, β,−iτ) =

occ∑
i

〈p̃β|ψ̃i〉〈ψ̃i| p̃µ〉eεiτ. (235)

It is easy to prove that

G(2)(ν,R′, iτ) =
∑
r∈C

〈 p̃ν|r〉G(1)(r,R′, iτ), (236)

G(3)(r, α, iτ) =
∑
R′∈S

G(1)(r,R′, iτ)〈R′| p̃α〉, (237)

G(4)(ν, α, iτ) =
∑
r∈C

∑
R′∈S

〈p̃ν|r〉G(1)(r,R′, iτ)〈R′|p̃α〉, (238)

holds for both auxiliary unoccupied and occupied Green’s functions.

With the definitions in Eqs. (228–235), we obtain the central expression for the polarizability

χ(r,R′, iτ) at τ > 0 within the PAW framework as follows:

χ(r,R′, iτ) =G
(1)

(r,R′, iτ)G∗(1)(r,R′,−iτ)

+
∑
µν

Qµν(r)G
(2)

(ν,R′, iτ)G∗(2)(µ,R′,−iτ)

+
∑
αβ

Qαβ(R′)G
(3)

(r, α, iτ)G∗(3)(r, β,−iτ)

+
∑
µναβ

Qµν(r)Qαβ(R′)G
(4)

(ν, α, iτ)G∗(4)(µ, β,−iτ).

(239)
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Here, the atomic positions Rµ, Rν are restricted to the unit cell C, whilst Rα, Rβ take values

within the supercell S . Note that the polarizability for τ < 0 is recovered from Eq. (239) by

exchanging G ↔ G.

In practice, we do not store the auxiliary Green’s functions in Eqs. (228–230) and (232–

234) directly using the real-space grids, since this would demand considerable storage due to

the large number of real-space grid points. Instead, we evaluate them in the reciprocal space

using a plane wave representation first, and successively Fourier transform the functions to real

space whenever required. Since the number of plane-wave coefficients is at least twice but

often up to sixteen times smaller than the number of real-space grid points, the storage demand

is dramatically reduced. Fourier transforming Eqs. (228–230) to the reciprocal space yields

another three auxiliary unoccupied Green’s functions:

G
(1)
k (g,G′, iτ) = −

unocc∑
a

〈g|ψ̃a〉〈ψ̃a|G′〉e−εaτ, (240)

G
(2)
k (ν,G′, iτ) = −

unocc∑
a

〈p̃ν|ψ̃a〉〈ψ̃a|G′〉e−εaτ, (241)

G
(3)
k (g, α, iτ) = −

unocc∑
a

〈g|ψ̃a〉〈ψ̃a| p̃α〉e−εaτ. (242)

Analogously, Fourier transforming Eqs. (232–234) to the reciprocal space yields another three

auxiliary occupied Green’s functions [108]:

G∗(1)
k (g,G′,−iτ) =

occ∑
i

〈G′|ψ̃i〉〈ψ̃i|g〉eεiτ, (243)

G∗(2)
k (µ,G′,−iτ) =

occ∑
i

〈G′|ψ̃i〉〈ψ̃i| p̃µ〉eεiτ, (244)

G∗(3)
k (g, β,−iτ) =

occ∑
i

〈p̃β|ψ̃i〉〈ψ̃i|g〉eεiτ, (245)

where the notation

〈g|ψ̃〉 =
∑
r∈C

e−i(k+g)rψ̃(r), (246)

〈ψ̃|G′〉 =
∑
R′∈S

ψ̃∗(R′)eiG′R′ , (247)

is used. The computational complexity for evaluating both G( j) and G
( j)

is of the order: NNkN3
b

showing a roughly cubic scaling in the system size (≈ Nb) and linear scaling in the number of k

points Nk and imaginary grid points N.
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We point out that the widely used conventional GW implementation [33], where the po-

larizability is directly evaluated in the reciprocal space and real frequency domain, shows an

unfavorable scaling that is quartic in the system size and quadratic in the number of k points.

This scaling is acceptable or even beneficial for small systems, but prohibitive as the system

size becomes larger. In contrast, in our new GW implementation, the computational cost in cal-

culating the polarizability reduces to a scaling that is nearly cubic in the system size and linear

in the number of k points. This definitely increases the efficiency of GW calculations for large

systems. This is also true for the original space-time implementation of Godby et al. [96, 102],

but we emphasize that our implementation has the following advantages: (i) The Green’s func-

tions are stored in a plane wave representation at a few optimized imaginary time/frequency

grid points, which dramatically reduces the memory requirement. (ii) It is implemented within

the PAW method. (iii) Discrete CT and ST transformations and spatial FFT are used and the

implementation is highly parallelized. (iv) Although similar strategies were used in Ref. [102],

an auxiliary supercell Green’s function was defined without the Bloch phase factors eik(r−r′).

The present method is applicable to all electron Hamiltonians, whereas the augmentation terms

cannot be straightforwardly implemented following Ref. [102].

6.4. Calculation of the correlated screened Coulomb interaction

W̃(r,R′, iω)

Now we describe the evaluation of the dynamical correlated screened Coulomb interaction

W̃(r,R′, iω), which corresponds to the steps (3–7) in Fig. 12.

Once the polarizability χ(r,R′, iτ) has been calculated, one has to Fourier transform it to the

reciprocal space and imaginary frequency domain where the screened Coulomb interaction is

much more comfortable to be calculated. The calculation of W̃(r,R′, iω) involves five steps:

(i) χk(g, g′, iτ) is determined by an inverse spatial FFT of χ(r,R′, iτ) in two steps:

χ(r,G′, iτ) =
∑

R′∈S
χ(r,R′, iτ)eiG′R′ , (248)

χk(g, g′, iτ) =
∑
r∈C

e−i(k+g)rχ(r,G′, iτ). (249)

Actually, in our implementation the polarizability χ(r,R′, iτ) is never stored. Instead, once

χ(r,R′, iτ) is known for a specific r and all R′, Eq. (248) is used to Fourier transform the

second index to the reciprocal space where the reciprocal wave vectors are restricted to a cutoff
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sphere, and χ(r,G′, iτ) is then stored. The second FFT in Eq. (249) cannot be performed until

χ(r,G′, iτ) for all r has been calculated.

(ii) χk(g, g′, iω) is computed by a CT of χk(g, g′, iτ),

χk(g, g′, iωk) =

N∑
j=1

γk j cos(ωkτ j)χk(g, g′, iτ j). (250)

(iii) The full screened Coulomb interaction Wk(g, g′, iω) is evaluated by multiplying the bare

Coulomb kernel with the inverse dielectric matrix,

Wk(g, g′, iω) = vk(g, g′)ε−1
k (g, g′, iω), (251)

where the symmetric bare Coulomb kernel vk(g, g′) is

vk(g, g′) =
4πe2

|k + g||k + g′|
. (252)

The symmetric dielectric matrix is calculated within the RPA as

εk(g, g′, iω) = δg,g′ − vk(g, g′)χk(g, g′, iω). (253)

Note that matrix multiplication and inversion are implicitly used in Eq. (251) and Eq. (253).

To make the integral over the imaginary frequency well-defined, we further define the corre-

lated screened Coulomb interaction

W̃k(g, g′, iω) = Wk(g, g′, iω) − vk(g, g′). (254)

(iv) W̃k(g, g′, iτ) is determined by an inverse CT of W̃k(g, g′, iω),

W̃k(g, g′, iτ j) =

N∑
k=1

ξ jk cos(τ jωk)W̃k(g, g′, iωk). (255)

(iv) Finally, W̃(r,R′, iτ) is calculated by a spatial FFT in two steps:

W̃(r,G′, iτ) =
∑

g∈L∗c
ei(k+g)rW̃k(g, g′, iτ), (256)

W̃(r,R′, iτ) =
∑

G′∈L∗s
W̃(r,G′, iτ)e−iG′R′ . (257)

6.5. Calculation of the self-energy

In this section, we give a detailed description how the matrix elements of the self-energy in the

orbital basis along the imaginary frequency axis are evaluated. This corresponds to the steps

(8–10) in Fig. 12.
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6.5.1. Evaluation of the self-energy Σ(r,R′, iτ) within the GWA

Within the GW approximation, the self-energy in the reciprocal space and real frequency do-

main is evaluated by a convolution of the Green’s function and screened Coulomb interaction

and is used in the conventional GW implementation [33]. However, to obtain converged self-

energies, a reasonable number of the real frequency points (∼50 or more) is required to evaluate

the convolution integral, thus increasing the computational cost. In contrast, when the self-

energy is evaluated in real space and time, it is simply multiplicative [96] [see Appendix (A.4)

for discussions on the convolution theorem],

Σ(r,R′, iτ) = −G(r,R′, iτ)W(r,R′, iτ). (258)

In addition, only a few imaginary time points are required due to the smooth behavior of the

Green’s functions and screened Coulomb interaction along the imaginary axis.

6.5.2. Evaluation of Σ̃
(k)
nn (iτ) within the PAW

In the following, we evaluate the matrix elements of the self-energy in the orbital basis within

the PAW framework. We focus only on the frequency/time-dependent correlation contribution

−〈ψnk|GW̃ |ψnk〉, since the bare exchange part −〈ψnk|Gvx|ψnk〉 within the PAW has already been

discussed elsewhere [52]. Furthermore, we define “occupied” Σ̃ and “unoccupied” Σ̃ corre-

lated self-energies, i.e., the self-energies evaluated at negative and positive time, respectively,

analogous to the Green’s functions.

Here we concentrate on the occupied self-energy Σ̃ only. The evaluation of the matrix ele-

ments of the unoccupied self-energy Σ̃ is done by replacing G with G. Within the PAW, the

diagonal matrix elements of the occupied self-energy (τ < 0) can be calculated as

Σ̃
(k)
nn (iτ) = 〈ψnk|Σ̃(iτ)|ψnk〉 = −〈ψnk|G(iτ)W̃(iτ)|ψnk〉

= −
∑
r∈C

∑
R′∈S

〈ψ̃nk|

|r〉〈r| + ∑
µν

Qµν(r)| p̃µ〉〈p̃ν|

G(iτ)

× W̃(iτ)

|R′〉〈R′| + ∑
αβ

Qαβ(R′)|p̃α〉〈p̃β|

 |ψ̃nk〉.

(259)

Here |r〉〈r|+
∑
µν Qµν(r)| p̃µ〉〈p̃ν| is the density operator within the PAW at the position r [30,32].

The one-center term
∑
µν Qµν(r)| p̃µ〉〈p̃ν| arises from the additive augmentation of the PAW.
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The calculation is performed in two steps, starting with the contraction Σ̃ = −GW̃ in real

space and imaginary time. In analogy to the four auxiliary components of the Green’s function,

we obtain four quantities that store the self-energy,

Σ̃
(1)(r,R′, iτ) = −G(1)(r,R′, iτ)W̃(r,R′, iτ), (260)

Σ̃
(2)(µ,R′, iτ) = −

∑
ν

D(2)(µν,R′, iτ)G(2)(ν,R′, iτ), (261)

Σ̃
(3)(r, β, iτ) = −

∑
α

G(3)(r, α, iτ)D(3)(r, αβ, iτ), (262)

Σ̃
(4)(µ, β, iτ) = −

∑
να

G(4)(ν, α, iτ)D(4)(µν, αβ, iτ), (263)

where the auxiliary quantities D(2), D(3) and D(4) are defined as

D(2)(µν,R′, iτ) =
∑
r∈C

Qµν(r)W̃(r,R′, iτ), (264)

D(3)(r, αβ, iτ) =
∑
R′∈S

W̃(r,R′, iτ)Qαβ(R′), (265)

D(4)(µν, αβ, iτ) =
∑
r∈C

∑
R′∈S

Qµν(r)W̃(r,R′, iτ)Qαβ(R′). (266)

Again, the Green’s functions and the screened interaction are stored in reciprocal space and

Fourier transformed to the real space on the fly, whenever they are required. In the second step,

the matrix elements of the self-energy are then obtained as

Σ̃
(k)
nn (iτ) =

∑
r∈C

∑
R′∈S

ψ̃∗nk(r)Σ̃(1)(r,R′, iτ)ψ̃nk(R′)

+
∑
µ

∑
R′∈S

〈ψ̃nk| p̃µ〉Σ̃
(2)(µ,R′, iτ)ψ̃nk(R′)

+
∑
r∈C

∑
β

ψ̃∗nk(r)Σ̃(3)(r, β, iτ)〈p̃β|ψ̃nk〉

+
∑
µ

∑
β

〈ψ̃nk|p̃µ〉Σ̃
(4)(µ, β, iτ)〈p̃β|ψ̃nk〉.

(267)

For more derivation details on how the self-energy is derived within the PAW method, we refer

the readers to Appendix (E). To reduce the memory requirements, the self-energy is also stored
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in the reciprocal space,

Σ̃
(k)
nn (iτ) =

∑
g∈L∗c

∑
G′∈L∗s

〈ψ̃nk|g〉Σ̃
(1)(g,G′, iτ)〈G′|ψ̃nk〉

+
∑
µ

∑
G′∈L∗s

〈ψ̃nk| p̃µ〉Σ̃
(2)(µ,G′, iτ)〈G′|ψ̃nk〉

+
∑
g∈L∗c

∑
β

〈ψ̃nk|g〉Σ̃
(3)(g, β, iτ)〈 p̃β|ψ̃nk〉

+
∑
µ

∑
β

〈ψ̃nk| p̃µ〉Σ̃
(4)(µ, β, iτ)〈p̃β|ψ̃nk〉.

(268)

Here, Σ̃
(1)(g,G′, iτ), Σ̃

(2)(µ,G′, iτ) and Σ̃
(3)(g, β, iτ) are the Fourier transformation of Σ̃

(1)(r,R′, iτ),

Σ̃
(2)(µ,R′, iτ) and Σ̃

(3)(r, β, iτ), respectively.

One point that should be mentioned here is that in the present implementation, the core-

valence exchange-correlation interaction is treated in the same way as in the conventional GW

implementation, that is, the Hartree-Fock approximation is used. This is found to be more

reliable than LDA since the GW self-energy approaches the bare Fock exchange operator in the

short wavelength limit [33].

6.5.3. Evaluation of Σ̃
(k)
nn (iω) by CT+ST

After the matrix elements of the self-energy along the imaginary time have been obtained,

one needs to Fourier transform them to the imaginary frequency domain to calculate the QP

energies. However, the self-energy (like the Green’s function) is neither an even nor an odd

function in imaginary time/frequency. Hence, we split the Green’s functions into even and odd

parts,

G(iτ) =
1

2
[G(iτ) + G(−iτ)] +

1

2
[G(iτ) −G(−iτ)] . (269)

Then, the self-energy along the imaginary frequency is given by the temporal Fourier trans-

formation

Σ̃(iω) = −

∞∫
−∞

dτG(iτ)W̃(iτ)eiωτ

=2

∞∫
0

dτΣ̃c(iτ) cos(ωτ) + 2i

∞∫
0

dτΣ̃s(iτ) sin(ωτ),

(270)
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where the cosine Σ̃c and sine Σ̃s part read

Σ̃c(iτ) = −
1

2

[
G(iτ) + G(−iτ)

]
W̃(iτ), (271)

Σ̃s(iτ) = −
1

2

[
G(iτ) −G(−iτ)

]
W̃(iτ). (272)

Therefore, the corresponding diagonal matrix elements are given by

Σ̃c(k)
nn (iτ) =

1

2

[
Σ̃

(k)

nn (iτ) + Σ̃
(k)
nn (−iτ)

]
, (273)

Σ̃s(k)
nn (iτ) =

1

2

[
Σ̃

(k)

nn (iτ) − Σ̃
(k)
nn (−iτ)

]
. (274)

Finally, the diagonal matrix elements of the correlated self-energy along the imaginary fre-

quency axis are evaluated as

Σ̃(k)
nn (iω) = Σ̃c(k)

nn (iω) + Σ̃s(k)
nn (iω), (275)

where Σ̃
c(k)
nn (iω) and Σ̃

s(k)
nn (iω), respectively, are determined by discrete CT and ST:

Σ̃c(k)
nn (iωk) =

N∑
j=1
γk jcos(ωkτ j)Σ̃

c(k)
nn (iτ j), (276)

Σ̃s(k)
nn (iωk) = i

N∑
j=1
λk jsin(ωkτ j)Σ̃

s(k)
nn (iτ j). (277)

6.6. Calculation of QP energies and spectral functions

In this section, we describe the calculation of QP energies and spectral functions, which corre-

sponds to the last two steps in Fig. 12.

6.6.1. Analytic continuation

In our present implementation, the self-energy and Green’s function are calculated in the imagi-

nary frequency domain. However, the experimental observables of interest, such as QP energies

and spectral functions, are obviously measured all along the real frequency axis. This implies

that an analytic continuation from the imaginary to the real frequency domain has to be per-

formed. Given that our self-energy is exact in the sense that there are no stochastic noises

(unlike the Green’s functions G(iτ) obtained from quantum Monte-Carlo (QMC) simulations),

here we utilize the N-point Padé approximant and combine the Thiele’s reciprocal difference
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method [109] and least-squares method [110]. For more details regarding the analytic continu-

ation, please refer to Appendix (C).

6.6.2. Evaluation of EQP
nk and Ank(ω)

After the diagonal elements of the self-energy along the real frequency axis Σ
(k)
nn (ω) including

contributions from the core-valence exchange-correlation, bare exchange and dynamical inter-

actions (hereafter we denote it as Σnk(ω)) have been obtained by the analytic continuation, the

QP energies are evaluated as in conventional GW implementations, as shown in Eqs. (171-173)

(we rewrite them here for readers’ convenience).

EQP
nk = εnk + ZnkRe[〈ψnk|T + Vext + VH |ψnk〉 + Σnk(εnk) − εnk], (278)

where

Znk =

1 − ∂Re[Σnk(ω)]

∂ω

∣∣∣∣∣∣∣∣∣
ω=εnk


−1

. (279)

In principle, one could calculate the QP energies by searching the root of equation EQP
nk =

Re[〈ψnk|T + Vext + VH |ψnk〉 + Σnk(EQP
nk )] numerically. For solids, this does not make a sizeable

difference in the QP energies compared to the linearization. In the present work we therefore

only show the calculated QP energies from the linearized version to compare with the conven-

tional implementation where the linearization was used as well.

The spectral functions are calculated as the imaginary part of the interacting Green’s function,

which is calculated from the Dyson-equation [111]

Ank(ω) =
1

π
|Im[Gnk(ω)]|

=
1

π
·

|Im[∆Σnk(ω)]|

(ω − εnk − Re[∆Σnk(ω)])2 + Im[∆Σnk(ω)]2 ,

(280)

where ∆Σnk(ω) = 〈ψnk|T̂ + V̂n−e + V̂H |ψnk〉 + Σnk(ω) − εnk.

6.7. Implementation details of low scaling GW method

Here, we will show how the self-energy are actually calculated within VASP. As already dis-

cussed, to reduce the memory storage, the quantities such as Green’s functions G, screened

interaction W and self-energy Σ are all stored in reciprocal space. However, it requires spatial
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fast Fourier transformations (FFT) whenever the real space contractions are needed. Three kinds

of arrays are required: A(G,G′, iτ), A(G, α′, iτ), and A(α, α′, iτ). A(G,G′, iτ) is used to store

quantities such as G(1)(G,G′, iτ) and G(1)(r, r′, iτ). A(G, α′, iτ) is used to store quantities such

as G(3)(G, α′, iτ) and G(3)(r, α′, iτ). Since G(2)(α,G′, iτ) [G(2)(α, r′, iτ)] is a complex conjugation

of G(3)(G, α′, iτ) [G(3)(r, α′, iτ)], A(G, α′, iτ) is used to store G(2)(α,G′, iτ) and G(2)(α, r′, iτ) as

well. Finally, A(α, α′, iτ) is used to store quantities like G(4)(α, α′, iτ). It should be noted that

the self-energy is stored in a similar way as Green’s functions, the data are distributed, and the

code is highly parallelized in terms of time/frequency. For the sake of brevity, in the following

we will omit the time index.

The arrays are distributed on different nodes over the second index, which allows to perform

FFT over the first index on a single core and perform multiplications over contiguous parts of

memory. However, the data need to be transposed during the calculation.

(1) We start by calculating Σ̃(1)(G,G′). G(1)(G,G′) and W̃(G,G′) are first partially Fourier

transformed to G(1)(r,G′) and W̃(r,G′) along the first index. Then, the arrays are transposed

to G(1)(G′, r) and W̃(G′, r). Third, they are needed to be Fourier transformed to G(1)(r′, r) and

W̃(r′, r), such that the self-energy

Σ̃(1)(r′, r) = −G(1)(r′, r)W̃(r′, r) (281)

is calculated on the fly and immediately Fourier transformed to Σ̃(1)(G′, r) along the first in-

dex and then transposed to Σ̃(1)(r,G′), which is stored. Σ̃(1)(G,G′) cannot be performed until

Σ̃(1)(r,G′) for all r has been calculated.

(2) Next, we will show how Σ̃(2)(β,G′) is calculated. W̃(r,G′) obtained already in the first

step is used to calculate

D(αβ,G′) =
∑

r

W̃(r,G′)Qαβ(r). (282)

D(αβ,G′) and G(2)(α,G′) are then transposed to D(G′, αβ) and G(2)(G′, α). Afterwards, the

arrays are Fourier transformed to D(r′, αβ) and G(2)(r′, α) along the first index on a single core.

Then,

Σ̃(2)(r′, β) = −
∑
α

D(r′, αβ)G(2)(r′, α) (283)

is calculated and stored. Σ̃(2)(G′, β) cannot be performed until Σ̃(2)(r′, β) for all r′ has been

calculated. Finally, Σ̃(2)(β,G′) is obtained by transposing Σ̃(2)(G′, β).
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(3) The third component of the self-energy Σ̃(3)(G, β′) can be calculated in a similar way as

Σ̃(2)(β,G′). Specifically, G(3)(G, α′) is first partially Fourier transformed to G(3)(r, α′). Then,

D(r, α′β′) calculated already in the second step and G(3)(r, α′) are transposed to D(α′β′, r) and

G(3)(α′, r). The self-energy Σ̃(3)(β′, r) is calculated by

Σ̃(3)(β′, r) = −
∑
α′

D(α′β′, r)G(3)(α′, r). (284)

Afterwards, Σ̃(3)(β′, r) is transposed to Σ̃(3)(r, β′). Σ̃(3)(G, β′) cannot be performed until Σ̃(3)(r, β′)

for all r has been calculated.

(4) The calculation of the last component of the self-energy Σ̃(4)(β, β′) is straightforward.

D(r, α′β′) obtained in the second step is used to calculate D(αβ, α′β′) by

D(αβ, α′β′) =
∑

r

Qαβ(r)D(r, α′β′). (285)

Finally, Σ̃(4)(β, β′) is obtained by

Σ̃(4)(β, β′) =
∑
α

∑
α′

D(αβ, α′β′)G(4)(α, α′). (286)

After all four components of the self-energy are obtained in reciprocal space, the matrix

elements of the self-energy in the orbital basis can be finally calculated by Eq. (268).
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7. Low scaling GW method: applications

7.1. Applications for extended systems

In this section, we apply our new implementation to predict the QP energies and spectral func-

tions for typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and LiF),

and metals (Cu and SrVO3), and compare our results with the conventional GW implementa-

tion. It is found that the QP energies and spectral functions predicted by G0W0r are in good

agreement with G0W0 but with a reduced scaling in the system size and number of k points,

highlighting the power of the present method. This section was published in Ref. [107].

7.1.1. Technical details

Our low-scaling GW scheme has been implemented in the Vienna Ab initio Simulation Package

(VASP) [112, 113]. For all the calculations presented here, the ultrasoft (US) PAW potentials

with an appendix ( GW) released with VASP.5.2 were used unless otherwise explicitly specified.

These potentials are constructed by using additional projectors above the vacuum level and thus

describe well the high-energy scattering properties of the atoms. The plane-wave cutoff for the

orbitals was chosen to be the maximum of all elements in the considered material. The energy

cutoff for the response function was chosen to be half of the plane-wave cutoff. To sample the

Brillouin zone, 8×8×8 k-point grids centered at the Γ point were used except for Cu where the

grids were increased to 10×10×10. For the tested materials, the experimental lattice constants

at low temperature (if available, otherwise at room temperature) were used. The total number

of bands was chosen to be 480, which is sufficient to obtain the converged QP energies for most

of the materials considered, except for GaAs and ZnO where the convergence is very slow. It

was suggested that thousands of orbitals are required for accurate predictions for ZnO [114],

but this finite-basis-set correction is beyond the scope of this work. In fact, for the present setup

the errors in some QP energies are large, with errors of, e.g., 0.5 eV for ZnO. For more accurate

results we refer to the previous publication by some of the present authors [115].

Clearly, the purpose of the present section is not to basis set converge the calculations (this

is of course possible with the present implementation, as it was possible in the standard frame-

work). Instead, we restrict ourselves to validating the low-scaling GW implementation by com-

paring the results with the already widely used conventional GW implementation. Hence, same
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Table 1: Positions of conduction band (CB) minimum at Γ (Γc) and X (Xc), valence band (VB)

maximum at X (Xv) with respect to the VB maximum at Γ, as well as the band gap.

Spin-orbit coupling (SOC) and finite basis-set corrections are not included. The crystal

structures, lattice constants, and experimental band gaps are identical to Ref. [86] and

references therein.

Γc Xc Xv band gap Crystal Lattice

G0W0r G0W0 G0W0r G0W0 G0W0r G0W0 G0W0r G0W0 Expt. structure constant (Å)

Si 3.22 3.23 1.24 1.25 -2.89 -2.89 1.15 1.16 1.17 diamond 5.430

GaAs 1.33 1.34 1.86 1.88 -2.79 -2.77 1.33 1.34 1.52 zincblende 5.648

SiC 7.40 7.41 2.30 2.31 -3.36 -3.35 2.30 2.31 2.40 zincblende 4.350

ZnO 2.10 2.06 6.73 6.66 -2.31 -2.28 2.10 2.06 3.44 zincblende 4.580

C 7.39 7.39 6.07 6.08 -6.66 -6.66 5.49 5.50 5.48 diamond 3.567

BN 11.14 11.14 6.16 6.17 -5.28 -5.27 6.16 6.17 6.1-6.4 zincblende 3.615

MgO 7.27 7.27 11.47 11.48 -1.55 -1.54 7.27 7.27 7.83 rocksalt 4.213

LiF 13.68 13.68 20.20 20.20 -1.21 -1.19 13.68 13.68 14.20 rocksalt 4.010

setups (crystal structure, potential, k points and so on) were used for both G0W0r and G0W0

calculations. In addition, finite basis-set corrections for QP energies discussed in Ref. [115] are

not taken into account for neither G0W0r nor G0W0 calculations.

The actual GW calculations involve three steps: (i) A self-consistent KS-DFT calculation

was performed using the Perdew-Burke-Ernzerhof (PBE) functional [21]. (ii) The one-electron

wave functions and eigenenergies of all unoccupied (virtual) orbitals spanned by the plane wave

basis set were evaluated by an exact diagonalization of the previously determined self-consistent

KS Hamiltonian. (iii) The GW calculations were carried out. For all the materials considered,

the number of imaginary time/frequency points in G0W0r calculations was set to 20, whereas

the number of real frequency points was chosen to be 200 for G0W0 calculations. Increasing the

number of grid points further changes the QP energies by less than 0.01 eV.

7.1.2. Results for semiconductors and insulators

Table 1 shows the QP energies and band gaps for the tested semiconductors and insulators pre-

dicted by G0W0r and G0W0. First, we emphasize that our G0W0@PBE results are consistent

with previous calculations [86]. As expected, the band gaps calculated by G0W0@PBE are
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Figure 13: (color online) The real part of the diagonal elements of the self-energy Re[Σnk(w)]

[(a) and (d)], and the spectral functions Ank(w) of the Green’s functions at the Γ

point [(b) and (e)], as well as the QP shift versus the DFT eigenvalues [(c) and (f)]

for Si (first row) and ZnO (second row). The solid lines and dotted (broken) lines

in [(a), (d), (b) and (e)], respectively, specify the results from G0W0r and G0W0.

Note that the sign of the spectral functions for the unoccupied states in (b) and (e)

is intentionally reversed for clarity. The inset in (d) shows the zoom-in plot for the

local satellites.

slightly underestimated compared to the experimental values. Improvements further towards

experimental gaps have been achieved either by GW0@PBE (iterating the one-electron ener-

gies only in G) [86], or by G0W0@HSE (using the hybrid functionals as a starting point) [88].

The best agreement with experimental values thus far has been achieved by GWTC-TC (self-

consistent GW with the vertex correction only in W) [89]. We note again that finite basis-set

corrections [115] have not been used here, which would increase the gap for ZnO by 0.3-0.4

eV, for instance. Second, one can see that the agreement between the results from G0W0r and

G0W0 is remarkably good, validating our low-scaling GW implementation. Specifically, for the

sp semiconductors and insulators (Si, SiC, C, BN, MgO and LiF), the difference in QP energies

and band gaps between G0W0r and G0W0 is not larger than 0.02 eV. This is even true for GaAs

with localized d-orbitals. Except for ZnO the G0W0r seems to have the tendency to yield a

slightly smaller downwards shift (below 0.02 eV) for valence and conduction bands compared
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to G0W0. However, for ZnO the difference of the calculated gaps between G0W0r and G0W0

is larger (0.04 eV) since the self-energy exhibits many poles from d-p excitations at energies

around −40 eV [see Fig. 13(e) below].

To further assess our low-scaling GW implementation, we plot the diagonal elements of the

self-energies and spectral functions at the Γ point for some chosen bands around the Fermi

level, as well as the QP shift versus the DFT eigenvalues for Si and ZnO in Fig. 13. The

results obtained from the conventional G0W0 are also presented for comparison. Overall, the

agreement between the results from G0W0r and G0W0 is very good, in particular for the region

close to the Fermi level. Specifically, for Si, the self-energies and spectral functions (including

the spectral background and contributions from plasmons) calculated by G0W0r agree nicely

with the ones from G0W0 [see Fig. 13(a) and 13(b)]. This is achieved by employing Thiele’s

reciprocal difference method. Solving for the Padé coefficients directly, however, yields less

satisfactory results (not shown here). For ZnO, the agreement in the self-energies and spectral

functions is still good. Even the small satellites in bands Γv
15 and Γc

1 are reproduced [see the

inset in Fig. 13(d)]. However, satellites far from the Fermi level have been smoothed by the

analytic continuation.

In contrast, there exist larger deviations in the region far away from the Fermi level. As shown

in Fig. 13(c) and 13(f), the difference in the QP shift between G0W0r and G0W0 increases as

the binding energies increase above 4 eV. The reason can be easily understood. Considering

band Γ1 of Si for instance, the QP peak is not sharp. Instead, it is broadened with a width of

around 5 eV, as shown in Fig. 13(b). Therefore, it is difficult to obtain the exact position of

the quasiparticle. This is true for both G0W0r and G0W0. In addition, the QP peaks measured

from the angle-resolved photoelectron spectroscopy (ARPES) would be as broad as in the GW

approximation so that the errors are in fact negligible compared to the width of the peak.

7.1.3. Results for metals

Now we turn to the QP calculations for metals where some extra considerations are required.

For metallic systems there exists a non-vanishing probability that an electron is excited within

one and the same band. These transitions are called intraband transitions and lead to the so

called Drude term for the long-wavelength limit (q → 0). Following similar strategies as in

Refs. [116, 117] we derived the head of the intraband dielectric function in the imaginary fre-
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Figure 14: (color online) Band structures [(a) and (d)], spectral functions Ank(w) of the Green’s

functions at the Γ point [(b) and (e)], and QP shift versus the DFT eigenvalues [(c)

and (f)] for Cu (first row) and SrVO3 (second row). Note that in (a) and (d) the red

broken lines specify the Wannier interpolated band structure from G0W0. PBE and

GW Fermi energies are aligned at zero.

quency domain,

εintra
αβ (iω) =

ω̄2
αβ

ω2 . (287)

Here the tensor ω̄αβ is the plasma frequency and its square is defined as,

ω̄2
αβ = −

4πe2

ΩC

∑
nk

2
∂ f (εnk)

∂εnk

eα · ∂εnk

∂k


eβ · ∂εnk

∂k

 , (288)

where the factor of 2 is due to the spin-degenerate systems considered here, ΩC is the volume

of the unit cell and eα is the unit vector along the cartesian coordinate α. It should be noted

that the intraband transitions are only non-vanishing for the head of the dielectric functions. For

the wings and body they are both zero. For the explicit derivation of the head of intra-band

dielectric functions, please refer to Appendix (D).

As a test, we calculated the QP energies for the metals Cu and SrVO3 and compare the

results with the ones from the conventional G0W0 in Fig. 14(a) and 14(d). To guide the eye, the
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Figure 15: (color online) (a) Momentum resolved spectral function in the G0W0 approxima-

tion (color/gray) and DFT (black line). (b) Comparison of the DFT and local

G0W0 spectral function A(ω). The results are obtained from our low-scaling G0W0r

implementation.

PBE band structures and interpolated G0W0 QP band structures obtained with the wannier90

code [42,43] are also displayed. One can see that good agreement between G0W0r and G0W0 is

achieved for both Cu and SrVO3, indicating that our low-scaling GW implementation is robust

and applies to metals as well. However, if we take a closer look at the spectral functions,

as shown in Fig. 14(b) and 14(e), we observed that although the main QP peaks are well

reproduced, the plasma and some satellites are again smoothed by the analytic continuation.

Fig. 14(c) and 14(f) further show the QP shift versus DFT eigenvalues for Cu and SrVO3,

respectively. For the noble metal Cu, in the energy region of the plot, overall, the QP shift

difference between G0W0r and G0W0 is not exceeding 0.1 eV. Analogous behavior as for Si is

observed for Cu. The further one moves away from the Fermi level, the larger is the QP shift

difference. This is due to the large broadening of the QP peak for the corresponding bands.

This is also true for the metal SrVO3. The negative slope of the QP shift between −1.5 and 1.5

eV implies a shrinking of the t2g bands as compared to the DFT results, which was observed in

other GW studies as well [111,118]. In the region far away from the Fermi level QP differences

are visible, but the maximum difference is smaller than 0.2 eV.

Figure 15(a) shows the momentum resolved spectral function from single-shot G0W0r. Com-

pared to DFT, the t2g bandwidth is reduced by 20 % in G0W0r. In the G0W0 approxima-

tion, spectral weight is transferred to satellites. This is much more clearly seen in the local,
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Table 2: QP energies (eV) of Cu predicted by G0W0r and G0W0 using the norm-conserving

(NC) GW PAW potential (Cu sv GW nc). Basis-set corrected G0W0 QP energies are

also given for comparison. The labeling of the high-symmetry points are shown in

Fig. 14(a). The results are compared to the pseudopotential plane wave (PPW) values

obtained by Marini et al. [122] and the full potential linear muffin-tin orbital (LMTO)

calculations by Zhukov et al. [123]. Experimental data are taken from Ref. [124].

PBE G0W0r G0W0 corrected G0W0 PPW [122] LMTO [123] Expt. [124]

Positions of d

bands

Γ12 −2.05 −1.92 −1.92 −2.11 −2.81 −2.36 −2.78

X5 −1.33 −1.22 −1.23 −1.45 −2.04 −1.63 −2.01

L3 −1.47 −1.36 −1.37 −1.58 −2.24 −1.78 −2.25

Widths of d

bands

Γ12 − Γ25′ 0.84 0.70 0.72 0.69 0.60 0.81 0.81

X5 − X3 2.97 2.61 2.68 2.60 2.49 2.92 2.79

X5 − X1 3.44 3.05 3.18 3.10 2.90 3.37 3.17

L3 − L3 1.44 1.30 1.31 1.26 1.26 1.43 1.37

L3 − L1 3.51 3.16 3.26 3.16 2.83 3.42 2.91

Positions of

s/p bands

Γ1 −9.29 −9.14 −9.20 −9.18 −9.24 −9.35 −8.60

L2′ −0.92 −1.00 −0.98 −1.02 −0.57 −0.92 −0.85

L gap Lc
1 − L2′ 4.80 5.09 5.08 4.98 4.76 4.78 4.95

momentum-integrated, spectral function as shown in Fig 15(b). The plasmon satellite of the t2g

quasi-particle band at ∼3 eV arising from the t2g contribution to the fully screened interaction

at the plasmon frequency [119, 120] is well reproduced. Further, a plasmon peak deriving from

transitions outside the t2g subspace is seen at ∼15 eV [47, 119]. We note, however, that in our

calculations repeated plasmon peaks at higher frequencies are absent. This is a well known

issue of the G0W0 approximation [121].

In Table 2 we show in detail the QP energies of Cu predicted by G0W0r and G0W0 and com-

pare our results with other theoretical calculations and experiment. The most significant error in

the PBE one-electron energies is the wrong description of the absolute positions and the band-

width of the d bands. For instance, the highest d band at X5 is located at −1.33 eV in PBE, 0.68

eV above the experimental value of −2.01 eV [124]. The bandwidth of the d bands is widened

compared to the experiment (see X5 − X1). Unfortunately though, our G0W0 does not improve

the results significantly. It shrinks the bandwidth of the d bands towards the experimental val-

ues, but predicts worse positions for the d bands than PBE. However, as already mentioned basis
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set errors might be substantial for the 480 bands employed in the present case. To improve the

results, finite basis-set corrections were used as discussed in Ref. [115]. Indeed, with these

corrections the absolute positions of the d bands are lowered by about 0.2 eV. Agreement with

the full potential LMTO method [123] is then reasonable. However, our QP d-band energies are

still way above those of Marini et al. [122]. We are pretty confident that the good agreement of

these calculations with experiment is largely fortuitous: the applied pseudopotentials somehow

canceled the errors introduced by the G0W0 approximation. Compared to the LMTO data, we

note that all our QP energies are shifted upwards by 0.2 eV (except for L2′). Of course, our

QP energies are reported with respect to the G0W0 Fermi energy, whereas, Ref. [123] does not

mention how and whether the Fermi energy was determined at the G0W0 level. Using the DFT

Fermi energy would improve agreement with Ref. [123]. For the widths of the d bands the

present results are in very good agreement with experiment, though, slightly improving upon

the LMTO data, which were generally above the experimental data.

We feel that the residual errors compared to experiment are to be expected and arise from (i)

the neglect of self-consistency (the DFT d orbitals of Cu are most likely too strongly hybridized

with the sp states), and (ii) spurious self-interactions in the GW approximation. The latter error

can be only eliminated via the inclusion of vertex corrections in the self-energy. Indeed, the

importance of vertex corrections has been highlighted for predicting the ionization potentials

and d-electron binding energies of solids [92], with typical corrections for the d bands of 0.7 eV.

7.1.4. Time complexity for large systems

In order to investigate the scaling with respect to the system size in our new implementation,

we performed G0W0r calculations on different bulk Si diamond supercells with 16, 24, 36,

and 54 atoms using the Γ point only. For comparison, similar calculations have been done

for the conventional G0W0 code. Our G0W0r implementation displays clearly a better than

cubic scaling in the system size, as shown in Table 3. The reason for this good scaling is

that the contraction steps such as GG and GW scale only quadratically in system size, and for

the number of atoms considered here, construction of the Green’s function and manipulations

of the self-energy matrix, which scale profoundly cubically, are not yet dominating the total

compute time. Furthermore, it needs to be mentioned that the G0W0r compute time includes

the calculation of the full non-diagonal self-energy at all frequency points (including all off-
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Table 3: Timings in minutes for G0W0r and G0W0 calculations for different bulk Si diamond

supercells. The calculations were done for 64 QP energies using the Γ point only and

using the real valued Γ only VASP version.

Atoms Cores Time Time×cores/atoms3 × 103

G0W0 G0W0r G0W0 G0W0r

16 16 9.18 2.50 35.86 9.78

24 20 18.94 4.14 27.40 5.99

36 48 41.68 5.65 42.88 5.82

54 64 104.53 12.07 42.49 4.91

diagonal elements), whereas the G0W0 code calculates only few diagonal elements of the self-

energy for the occupied and some unoccupied states. Despite this the G0W0r code substantially

outperforms the older G0W0 code. Concerning scaling, the old G0W0 code shows a slightly less

beneficial scaling, nevertheless it is also closer to cubic than quartic in system size. This relates

to the fact that the quartic part (construction of polarizability and self-energy in orbital basis) is

done using high efficiency BLAS level 3 calls, and hence this part becomes only dominant for

very large systems, typically beyond 100 atoms.

To test the scaling with respect to the number of k points, we performed calculations on a bulk

Si diamond supercell with 16 atoms using 64 cores. We note that the new code does not yet

perform optimally if the number of cores exceeds the number of atoms. This and the need to use

a complex code version explain why the timings for a single k point in Fig. 16 are hardly better

than for 16 cores shown in Table 3. As shown in Fig. 16, the computational demand increases

almost perfectly linear in the number of k points for G0W0r. The slight deviation for the 4×4×4

case arises from the need to pick a less efficient parallelization strategy for this k-point set to

be able to perform the calculation using the memory available on 64 cores. In contrast, G0W0

shows a roughly quadratic scaling in the number of k points. The bad scaling of the old code is,

however, somewhat masked by its efficient handling of symmetry. The old implementation uses

small point group operations compatible with the considered momentum transfer q, whereas the

new code uses yet no symmetry when contracting GG or GW. Concomitantly, if symmetry is

switched off, the new code becomes only slower by a factor 2 for the 3×3×3 k points, whereas

the time for the old code increases to 162 minutes (off the scale, see the blue and pink broken
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Figure 16: (color online) Computational time for G0W0r and G0W0 calculations with symmetry

switched on or off on a bulk Si diamond supercell with 16 atoms as a function of the

number of k points (in the full Brillouin zone). Note that the computational time of

G0W0 for the 3 × 3 × 3 case without symmetry is about 162 minutes, which is not

shown in the figure. The calculations are done for 64 QP energies using 64 cores.

lines in Fig. 16). Therefore, one would expect that the G0W0r code outperforms the old G0W0

code, in particular, if large low-symmetry unit cells are used and/or if many k points are used. It

is however also clear that the old code can be competitive or superior for small high-symmetry

unit cells, even if many k points are used to sample the Brillouin zone. For instance, for a cubic

diamond unit cell or for fcc Cu, the old code is usually much faster than the new GW code.

7.2. Applications for 100 closed shell molecules

In a recent work, van Setten and coworkers have presented a carefully converged G0W0 study

of 100 closed shell molecules [84]. For two different codes they found excellent agreement

to within few 10 meV if identical Gaussian basis sets were used. We inspect the same set

of molecules using the projector augmented wave method and the Vienna ab initio simulation

package (VASP). For the ionization potential, the basis set extrapolated plane wave results agree

very well with the Gaussian basis sets, often reaching better than 50 meV agreement. In order

to achieve this agreement, we correct for finite basis set errors as well as errors introduced by
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periodically repeated images. For positive electron affinities differences between Gaussian basis

sets and VASP are slightly larger. We attribute this to larger basis set extrapolation errors for

the Gaussian basis sets. For quasi particle (QP) resonances above the vacuum level, differences

between VASP and Gaussian basis sets are, however, found to be substantial. This is tenta-

tively explained by insufficient basis set convergence of the Gaussian type orbital calculations

as exemplified for selected test cases.

This section was published in Ref. [125].

7.2.1. Introduction

The GW approximation suggested by Lars Hedin [70] has a long history in solid state physics.

First practical applications were already published in the 1980s by Hanke and coworkers soon

followed by the often quoted study of Hybertsen and Louie [83,126–128]. For solids, it is gener-

ally found that even the simplest approximation G0W0 yields reasonably accurate quasiparticle

(QP) energies and band gaps in good agreement with experiment [85, 86, 88]. The results often

improve if the Green’s function is iterated to self-consistency, either updating the QP-energies

only or even the one-electron orbitals [85, 86, 129–135]. Applications of the GW approxima-

tion to molecules, however, have been comparatively rare, since codes based on local orbitals,

which are by construction particularly well suited to treat molecules, did not incorporate the

GW approximation until recently. This has changed, with many local basis set codes, such as

FHI-aims, MOLGW, Turbomole, and CP2K now supporting GW calculations [136–142]. Also,

efficient plane wave codes using a Sternheimer approach, such as ABINIT and West [143,144],

are becoming available. As for solids, carefully converged QP calculations are, however, still

comparatively scarce [115].

To fill this gap, Bruneval recently performed systematic studies for about 30 molecules [145].

van Setten and coworkers went one step further and evaluated basis set extrapolated GW QP

energies for 100 closed shell molecules using several codes [84]. They found that the GW QP

energies of the highest occupied orbital (HOMO) and lowest unoccupied orbital (LUMO) of

two local basis set codes, FHI-aims and Turbomole, virtually agree, if identical basis sets are

used. In many respects this is not astonishing, since two codes ought to yield the same results,

if the computational parameters are identical. The two codes are, however, technically quite

different. For instance, they introduce auxiliary basis sets to avoid storing the two-electron
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four orbital integrals. Furthermore, FHI-aims uses a numerical representation of the Gaussians

and calculates the self-energy along the imaginary axis (Wick rotation) requiring an analytic

continuation to the real axis. All these factors can introduce small uncertainties. Clearly, the

study impressively demonstrates that all these intricacies are well under control, and technically

well converged results can be obtained using both codes.

The paper by van Setten et al. [84] also reports results using the GW Berkeley plane wave

code [146]. Although agreement of that code with experiment is very good if the plasmon-pole

model is used, comparison of the fully frequency dependent G0W0 HOMO and LUMO with

Gaussian basis set results is less satisfactory. For the considered molecules, the mean absolute

difference between Gaussian type orbitals (GTO) and plane waves (PWs) is about 200 meV for

the HOMO. We note on passing that the agreement between GTO and other plane wave studies

is seemingly superior [143, 144], although, this could be related to the fact that these studies

only considered a subset of the GW100 set. The disagreement between the Berkeley GW PW

code and GTO codes is certainly slightly disconcerting, since it puts decades of studies using

PW based GW calculations into question. Remarkably, on the level of DFT, the reported one-

electron energies of the HOMO agree to within few 10 meV. So how can one understand the

much larger discrepancies for GW QP energies?

A partial answer is given by the observation that QP energies converge very slowly with re-

spect to the basis set size, as well established for Gaussian type orbitals [84, 140, 145]. van

Setten et al. obtained basis set converged QP energies by extrapolating against the basis set size

or against 1/C3
n, where Cn is the basis set cardinal number [84]. Extrapolation was based on

def2-SVP, def2-TZVP and def2-QZVP, but even though def2-QZVP constitutes a fairly com-

plete set, the extrapolated values can differ by more than 300 meV from the values at the largest

considered basis set. Astonishingly, the reported PW results were not extrapolated to the ba-

sis set limit, although a recent work of Klimes et al. shows that the GW QP energies con-

verge like one over the number of plane waves [115] and this behaviour is also confirmed by

purely analytical arguments [147]. Early evidence of this slow convergence using PWs exist

aplenty [114, 148, 149]. In view of this slow convergence, a brute force approach to predict QP

energies seems elusive considering that most codes scale cubically with respect to the number

of basis functions. The present work tries to rectify this issue by reporting QP energies using

the plane wave code VASP, carefully correcting for basis set incompleteness errors, as detailed

in Section 7.2.2
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Another point that we briefly mention in the present work is that the calculation of the poles

of the G0W0 Green’s function can be unphysical, if the initial Green’s function yields too small

excitation energies. In this case, first linearizing the G0W0 self-energy and then determining

the poles of the Green’s function yields more robust QP energies. We, finally, finish with

discussions and our conclusions.

7.2.2. Technical details

As in the GW100 paper of van Setten et al. [84], we use the PBE functional for the DFT starting

point. However, all calculations include scalar relativistic effects, in contrast to the calculations

of van Setten et al. that are based on non-relativistic potentials. The potentials used in the

present work are the GW potentials distributed with the latest release of VASP (vasp.5.4), and

we followed the recommendations in the VASP manual on which version to use. Generally this

means that lower lying semi-core states were not correlated in the calculations, except for the

alkali and alkali-earth metals, as well as Ti and Ga. For He, we found issues with the originally

distributed potential. The He GW potential failed to converge in DFT calculations when the plane

wave cutoff was increased, because a ghost state was introduced as the basis set size increased.

The potential was slightly modified to remove this problem and will be distributed with the next

release. Furthermore, for boron to fluorine the potentials B GW new, ..., F GW new were used

(also already distributed with vasp.5.4). These potentials include d partial waves, whereas the

standard GW potentials choose the d potential as local potential.

The potentials used in this work are not the most accurate GW potentials yet available for

VASP. Specifically, we have recently shown that norm-conserving (NC) GW potentials are nec-

essary to predict very accurate QP energies for 3d, 4d and 5d elements [115] with the NC

potentials generally increasing the QP binding energies. In our experience, such highly accu-

rate potentials are, however, not required in the present case for the following reasons. For s and

p elements the standard potentials conserve the norm very well to within about 70 %, often even

90 %. Furthermore, errors introduced by violating the norm-conservation can only occur at very

high scattering energies, since the standard GW-PAW potentials predict the scattering properties

correctly up to about 400 eV. Beyond that energy, the PAW projectors become incomplete. For

the elements considered here, we expect that the combination of these two effects means that the

results for the HOMO and LUMO will be accurate even though we do not use NC potentials.
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The only exceptions are copper, neon, fluorine, oxygen and possibly nitrogen. These elements

possess strongly localized 3d and 2p orbitals. We will return to this point later.

In the calculations presented here we calculate the Green’s function, the screened interaction

W as well as the self-energy in imaginary time and frequency. This has several advantages

compared to the full real frequency implementation also available in VASP. The fully frequency

dependent version along the real axis requires at least 100, but for molecules with their sharp

resonances often even several hundred frequency points to converge. Since the boxes considered

in this work are quite large, we also need several thousands of plane waves to describe the

frequency dependent screened interaction and Green’s function accurately. This becomes very

quickly prohibitive. In the imaginary frequency, on the other hand, only relatively few frequency

points are required. In the calculations presented here, 16 frequency points and the time and

frequency grids discussed by Kaltak et al. are used [103, 104]. These 16 points were found to

be sufficient to converge the QP energies of the HOMO and LUMO to about 10 meV [107]. The

downside of working in the imaginary frequency domain is that the results along the imaginary

frequency axis need to be continued to the real axis. This was done using a (16 point) Padé fit

following Thiele’s reciprocal difference method based on continued fractions [109]. We note

that the reported FHI-aims results in Ref. 84 were— with few problematic exceptions —also

obtained using 16 parameter Padé fits. These exceptions are BN, O3, BeO, MgO and CuCN

where many more points were required. For the other molecules, the 16 parameter Padé fits

yielded excellent agreement with Turbomole, which calculates the exact GW self-energy along

the real axis. Details of our implementation are reported elsewhere [107].

The other crucial issues are basis set extrapolation and convergence with respect to the box

size. To obtain basis set converged results, we used a relatively small box, but one that still

faithfully reproduces the character of the HOMO and LUMO. For this box, we performed cal-

culations for the default cutoff as specified by the VASP potentials, and calculations for three

additional plane wave cutoffs, with the largest calculation corresponding to twice the number

of plane waves used in the default setup. These four data points are fitted assuming that the QP

energies as a function of the number of plane waves Npw converge like

EQP(Npw) = EQP(∞) +
C

Npw
, (289)

where Npw is the number of plane waves in the basis set [115, 150–152]. A four point fit and

a two point fit with the largest and smallest PW basis set yielded a maximum difference of
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10 meV in the QP energies. To illustrate that the basis set dependence is indeed following

a 1/Npw behavior to great accuracy, we will show data for selected molecules in Sec. 7.2.4.

The only subtlety impeding an accurate and automatic extrapolation is the use of the Padé fit.

The slope of the self-energy can vary somewhat between different calculations causing some

variations in the predicted QP energies. Extrapolation from these “noisy” data is difficult and

error prone. To circumvent this issue, we perform the extrapolation for the self-energy evaluated

at the DFT one-electron energies, specifically on ∆E = Re
[
〈φ|T + VH + Σ(εDFT)|φ〉

]
− εDFT

instead of ∆E = EQP − εDFT, and scale the correction by the Z-factor at the smallest, i.e. default,

PW cutoff. In this way, we neglect variations of the Z-factor between different basis sets, but

these variations are small and dominated by noise.

A few final comments are in place here. In the calculations presented herein, we calculate all

orbitals spanned by the PW basis set. This implies that the number of orbitals also increases as

the number of plane waves increases. Second, the kinetic energy cutoff for the response function

(ENCUTGW in VASP) is set to 2/3 of the cutoff used for the plane wave basis of the orbitals (ENCUT

in VASP). Whenever the PW cutoff for the orbitals is increased, the PW cutoff for the basis set

of the response function is increased accordingly. This means that a single parameter, the PW

cutoff for the orbitals (ENCUT), entirely controls the accuracy of the calculations (at least with

respect to the basis sets). Since all the intermediate control parameters are set automatically by

VASP, and since the QP energy corrections converge like one over the number of plane waves

and orbitals [115], extrapolation to the infinite basis set limit is straightforward and robust.

Let us now comment on the second point, convergence with respect to the cell size. In plane

wave codes, it is common practice to truncate the Coulomb kernel at a certain distance rc, say

half the box size, so that the periodically repeated orbitals can not screen the central atom. The

downside of this approach is that it modifies the Coulomb kernel to become [153]

Vg =
4πe2

|g|2
(1 − cos(|g|rc)), (290)

where g is a plane wave vector. Obviously, this modifies the Coulomb kernel at large reciprocal

lattice vectors g. In test calculations we found that this spoils the previously mentioned basis

set extrapolation (289): as one increases the plane wave cutoff, one moves through maxima and

minima of the truncated Coulomb kernel, causing superimposed oscillations in the QP energies.

Basis set extrapolation becomes then uncontrolled. To deal with the repeated images, we instead

resort to the standard trick used in periodic codes: k · p perturbation theory [154]. We calculate
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the first order change of the orbitals with respect to k [116], and accordingly the head and wings

of the polarizability and a correction to the g → 0 component of the self-energy. This term

corrects the leading monopole-monopole interaction between repeated images, but leaves the

monopole-dipole and dipole-dipole interactions uncorrected. These two terms fall off like 1/V

and 1/V2, where V is the cell size volume [155]. To deal with this, we perform four calculations

at different volumes, with the box size progressively increased by 1 Å and fit the data to

a0 + a1/V + a2/V2. (291)

For most molecules the corrections are small and only of the order of 10-20 meV, whereas for

the alkali dimers and some polar molecules the corrections can be as large as 100-200 meV.

In these cases the correction is very well described by the theoretical equation. We hope to

find a better solution in future work, for instance, an explicit subtraction of monopole and

dipole interactions between periodic images. In terms of compute time, however, the additional

calculations for smaller boxes only require a modest amount of time: since the total compute

time scales quadratic to cubic with respect to the number of plane waves, the calculations scale

also quadratic to cubic in the volume. Typically we need 12 Å large boxes to obtain results

converged to 20 meV with respect to the box size. The additional smaller volumes used for the

extrapolation require only half of the compute time of the largest final box.

The final QP energies reported in the next section were obtained by calculating the PBE one-

electron HOMO and LUMO for a 25 Å box at an energy cutoff that is 30 % increased compared

to the VASP default values. The vacuum level, evaluated as the Hartree plus ionic potential, was

evaluated at the position furthest from the center of the molecule and subtracted from the PBE

one-electron energies. We checked that the DFT one-electron energies are converged to a few

meV with this setup. To the DFT one-electron energies, the shift of the QP energies EQP − εDFT

for the largest considered box, box size corrections, and basis set corrections as described above

are added. It goes without saying that this procedure is rather involved and since errors are

expected to accumulate, we estimate that the present predictions are only accurate to about

±50 meV, where convergence with cell size is the main source of errors and difficult to estimate

precisely.

To give a feeling for the required compute time and computational effort, we need to stress

that our plane wave code is mainly designed for solids. Nevertheless, a calculation for C6H6 in

a 10 Å box at the default cutoff takes about 4 hours on a single node with 16 Xeon v2 cores.
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The compute time stays roughly constant if the box size is increased by 1 Å and the number of

cores is simultaneously doubled. Furthermore, the compute time is mostly independent of the

number of atoms in the box, but increases cubically with the box size as the total number of

plane waves increases linearly with the box size.

7.2.3. HOMO for GW100

Let us first note on the agreement at the level of DFT (not shown). In general, our values agree

exceedingly well with the PBE values reported in the supplementary material of Ref. 84. In

most cases, our PBE HOMO is located between the basis set extrapolated values and the values

obtained with the best basis sets used in the GTO calculations (def2-QZVP). On average, our

PW HOMOs agree better with the non basis set extrapolated values with a mean deviation (MD)

of 7 meV and a mean absolute deviation (MAD) of 19 meV. Compared to the GTO basis set

extrapolated values, the MD and MAD are -25 meV and 30 meV (in both cases, CH2CHBr was

excluded, see below).

van Setten et al. [84] extrapolated the DFT eigenvalues using a cubic polynomial in the in-

verse of the cardinal number of the basis set (C−3
n ); we believe that this is not appropriate and

will overestimate the basis set corrections. It is commonly agreed that DFT calculations con-

verge exponentially with the cardinal number, whereas any correlated wave function calculation

converges with the inverse of the basis set size (corresponding roughly to C−3
n ) [84, 115, 145].

This is a result of Kato’s cusp condition [231] causing a kink in the many-body wave function

as two coordinates approach each other. We have shown that this problem carries over to GW

calculations [115]. As a one-electron theory, density functional theory does not suffer from

this slow convergence. We hence believe that van Setten overestimated the basis set correc-

tions for DFT. This is supported by the observation that our PBE results tend to be closer to the

non-extrapolated Gaussian results at the level of def2-QZVP.

We now turn to the QP energies predicted at the level of G0W0 shown in Table 4. The

agreement between the VASP PW and the GTO results is generally very good. We note that

the G0W0 approximation used here is identical to the one applied by van Setten et al. [84].

Specifically, van Setten determined the nodes of Eq. (168), and we do exactly the same in

the present work. Linearization of the QP equation (171) yields generally somewhat larger

QP energies and often improves agreement with experiment slightly (column lin-G0W0). This
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Table 4: Ionization potential (IP, negative of HOMO QP energies) for 100 molecules using

G0W0 and linearized lin-G0W0 method. For comparison the basis set extrapolated val-

ues [84] and the experimental IPs are given (vertical IPs are in italics). If basis set

extrapolated values are not specified in Ref. [84], the AIMS-P16 values are shown in

the column GTO (marked by ∗). Last column shows the differences between GTO and

PW results. The ∗ indicates differences to non basis set extrapolated values.

G0W0 G0W0 lin-G0W0 EXP ∆

GTO [84] PW PW PW-GTO

1 He 23.49(0.03) 23.38 23.62 24.59 [156] -0.11

2 Ne 20.33(0.01) 20.17 20.36 21.56 [156] -0.16

3 Ar 15.28(0.03) 15.32 15.42 15.76 [157] 0.04

4 Kr 13.89(0.16) 13.93 14.03 14.00 [158] 0.04

5 Xe 12.02∗ 12.14 12.22 12.13 [159] 0.12∗

6 H2 15.85(0.09) 15.85 16.06 15.43 [160] 0.00

7 Li2 5.05(0.02) 5.09 5.32 4.73 [161] 0.04

8 Na2 4.88(0.03) 4.93 5.06 4.89 [162] 0.05

9 Na4 4.14(0.03) 4.17 4.23 4.27 [163] 0.03

10 Na6 4.34(0.06) 4.34 4.40 4.12 [163] 0.00

11 K2 4.08(0.04) 4.12 4.24 4.06 [162] 0.04

12 Rb2 3.79∗ 4.02 4.14 3.90 [162] 0.23∗

13 N2 15.05(0.04) 14.93 15.06 15.58 [164] -0.12

14 P2 10.38(0.04) 10.35 10.40 10.62 [165] -0.03

15 As2 9.67(0.10) 9.59 9.62 10.0 [166] -0.08

16 F2 15.10(0.04) 14.93 15.08 15.70 [167] -0.17

17 Cl2 11.31(0.05) 11.32 11.40 11.49 [168] 0.01

18 Br2 10.56(0.18) 10.57 10.65 10.51 [168] 0.01

19 I2 9.23∗ 9.52 9.59 9.36 [169] 0.29∗

20 CH4 14.00(0.06) 14.02 14.14 13.6 [170] 0.02

21 C2H6 12.46(0.06) 12.50 12.58 11.99 [169] 0.04

22 C3H8 11.89(0.06) 11.90 11.98 11.51 [169] 0.01

23 C4H10 11.59(0.05) 11.61 11.69 11.09 [169] 0.02

24 C2H4 10.40(0.03) 10.42 10.50 10.68 [170] 0.02

25 C2H2 11.09(0.01) 11.07 11.24 11.49 [170] -0.02

26 C4 10.91(0.03) 10.89 10.97 12.54 [171] -0.02

27 C3H6 10.65(0.04) 10.72 10.78 10.54 [172] 0.07

28 C6H6 9.10(0.01) 9.11 9.16 9.23 [173] 0.01
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(continued)

G0W0 G0W0 lin-G0W0 EXP ∆

GTO PW PW PW-GTO

29 C8H8 8.18(0.02) 8.19 8.24 8.43 [174] 0.01

30 C5H6 8.45(0.02) 8.47 8.51 8.53 [175] 0.02

31 CH2CHF 10.32(0.02) 10.28 10.36 10.63 [176] -0.04

32 CH2CHCl 9.89(0.02) 9.92 10.00 10.20 [177] 0.03

33 CH2CHBr 9.14(0.01) 9.75 9.83 9.90 [177] 0.61

34 CH2CHI 9.01∗ 9.27 9.36 9.35 [178] 0.26∗

35 CF4 15.60(0.06) 15.41 15.53 16.20 [179] -0.19

36 CCl4 11.21(0.06) 11.20 11.31 11.69 [169] -0.01

37 CBr4 10.22(0.16) 10.25 10.38 10.54 [180] 0.03

38 CI4 8.71∗ 9.11 9.23 9.10 [181] 0.40∗

39 SiH4 12.40(0.06) 12.40 12.53 12.3 [182] 0.00

40 GeH4 12.11(0.04) 12.13 12.24 11.34 [183] 0.02

41 H6Si2 10.41(0.06) 10.44 10.52 10.53 [184] 0.03

42 H12Si5 9.05(0.05) 9.13 9.19 9.36 [184] 0.08

43 LiH 6.58(0.04) 6.46 7.20 7.90 [185] -0.12

44 KH 4.99(0.01) 4.97 5.37 8.00 [186] -0.02

45 BH3 12.96(0.06) 12.95 13.09 12.03 [187] -0.01

46 B2H6 11.93(0.06) 11.94 12.04 11.90 [188] 0.01

47 NH3 10.39(0.05) 10.32 10.44 10.82 [189] -0.07

48 HN3 10.55(0.02) 10.50 10.56 10.72 [190] -0.05

49 PH3 10.35(0.05) 10.35 10.45 10.59 [191] 0.00

50 AsH3 10.21(0.02) 10.26 10.36 10.58 [192] 0.05

51 H2S 10.13(0.04) 10.11 10.30 10.50 [193] -0.02

52 HF 15.37(0.01) 15.37 15.38 16.12 [194] 0.00

53 HCl 12.36(0.01) 12.45 12.51 12.79 [195] 0.09

54 LiF 10.27(0.03) 10.07 10.45 11.30 [196] -0.20

55 MgF2 12.50(0.06) 12.41 12.77 13.30 [197] -0.09

56 TiF4 14.07(0.05) 14.01 14.22 15.30 [198] -0.06

57 AlF3 14.48(0.06) 14.33 14.53 15.45 [199] -0.15

58 BF 10.73(0.05) 10.46 10.67 11.00 [200] -0.27

59 SF4 12.38(0.07) 12.20 12.29 11.69 [201] -0.18

60 KBr 7.57(0.13) 7.80 8.04 8.82 [202] 0.23

61 GaCl 9.74(0.07) 9.89 9.99 10.07 [203] 0.15

62 NaCl 8.43(0.14) 8.47 8.76 9.80 [202] 0.04

63 MgCl2 11.20(0.07) 11.19 11.41 11.80 [204] -0.01

64 AlI3 9.30∗ 9.58 9.69 9.66 [205] 0.28∗
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(continued)

G0W0 G0W0 lin-G0W0 EXP ∆

GTO PW PW PW-GTO

65 BN 11.15(0.03) - 10.61 11.50 -

66 HCN 13.32(0.01) 13.29 13.43 13.61 [206] -0.03

67 PN 11.29(0.04) 11.24 11.41 11.88 [207] -0.05

68 N2H4 9.37(0.04) 9.33 9.45 8.98 [208] -0.04

69 H2CO 10.46(0.02) 10.42 10.57 10.88 [209] -0.04

70 CH3OH 10.67(0.05) 10.61 10.72 10.96 [210] -0.06

71 CH3CH2OH 10.27(0.05) 10.21 10.33 10.64 [211] -0.06

72 CH3CHO 9.66(0.03) 9.63 9.80 10.24 [212] -0.03

73 CH3CH2OCH2CH3 9.42(0.05) 9.43 9.52 9.61 [211] 0.01

74 HCOOH 10.87(0.01) 10.81 10.98 11.50 [213] -0.06

75 H2O2 11.10(0.01) 10.96 11.12 11.70 [214] -0.14

76 H2O 12.05(0.03) 11.84 12.05 12.62 [169] -0.21

77 CO2 13.46(0.06) 13.36 13.44 13.77 [215] -0.10

78 CS2 9.95(0.05) 9.96 10.01 10.09 [216] 0.01

79 CSO 11.11(0.05) 11.06 11.13 11.19 [217] -0.05

80 COSe 10.43(0.09) 10.42 10.50 10.37 [218] -0.01

81 CO 13.71(0.04) 13.62 13.76 14.01 [217] -0.09

82 O3 11.49(0.03) - 12.07 12.73 [219] -

83 SO2 12.06(0.06) 11.91 12.04 12.50 [169] -0.15

84 BeO 8.60(0.01) - 9.50 10.10 [220] -

85 MgO 6.75(0.03) - 7.10 8.76 [221] -

86 C6H5CH3 8.73(0.02) 8.75 8.79 8.82 [173] 0.02

87 C8H10 8.66(0.02) 8.69 8.73 8.77 [173] 0.03

88 C6F6 9.74(0.07) 9.63 9.69 10.20 [179] -0.11

89 C6H5OH 8.51(0.01) 8.38 8.43 8.75 [222] -0.13

90 C6H5NH2 7.78(0.01) 7.78 7.84 8.05 [223] 0.00

91 C5H5N 9.17(0.01) 9.16 9.31 9.66 [224] -0.01

92 Guanine 7.87(0.01) 7.85 7.90 8.24 [225] -0.02

93 Adenine 8.16(0.01) 8.12 8.18 8.48 [226] -0.04

94 Cytosine 8.44(0.01) 8.40 8.50 8.94 [225] -0.04

95 Thymine 8.87(0.01) 8.83 8.89 9.20 [227] -0.04

96 Uracil 9.38(0.01) 9.36 9.55 9.68 [228] -0.02

97 NH2CONH2 9.46(0.02) 9.35 9.59 9.80 [193] -0.11

98 Ag2 7.08∗ 7.83 7.95 7.66 [229] 0.75∗

99 Cu2 7.78(0.06) 7.19 7.40 7.46 [230] -0.59

100 CuCN 9.56(0.04) - 9.99 - -
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Table 5: IP (negative HOMO G0W0 QP energies) and G0W0 LUMO for selected molecules.

The GTO values have been calculated using frozen core potentials, scalar relativistic

corrections, and are extrapolated to the infinite basis set limit.

IP IP LUMO LUMO

GTO PW GTO PW

5 Xe 12.22 12.14 -0.07 0.28

12 Rb2 4.07 4.02 -0.85 -0.74

19 I2 9.48 9.52 -2.28 -2.21

34 CH2CHI 9.13 9.27 0.56 0.37

38 CI4 8.97 9.11 -2.47 -2.42

64 AlI3 9.50 9.58 -1.18 -1.02

98 Ag2 7.96 7.83 -1.40 -1.35

trend has also been observed in a recent benchmark for an unrelated set of molecules [232]. In

agreement with van Setten [84], we have found poles in the self-energy close to the predicted

QP energies for BN, O3, BeO, MgO and CuCN. Since analytic continuation has difficulties to

resolve the precise pole structure of the Green’s function, we only report the values obtained

from the linearized self-energy.

Our discussion starts with the molecules that show large discrepancies between VASP and

GTO’s. A large out-liner is seemingly CH2CHBr. However, for this molecule, as well as

C6H5OH, we found large forces in the preparatory PBE calculations. Double checking the

original literature [233] suggests that the GW100 paper used incorrect geometries. Since the

ultimate purpose is certainly to compare with experiment, we decided to update the geometries

to the correct literature values.

Among the remaining molecules, errors are large for compounds containing iodine, rubidium,

and silver with a maximum deviation of 400 meV for CI4 and Rb2, and 750 meV for Ag2.

However, in Ref. 84 no basis set extrapolation was performed for these molecules. From CCl4

to CBr4, the basis set corrections increase from 300 meV to 350 meV, suggesting a basis set

error of 400 meV for CI4 using GTOs. Similarly, for Rb2 the GTO results were not basis set

corrected, and estimating the basis set error from Na2 and K2 again suggests that the VASP

results are accurate. For Ag2, the difference between VASP and GTO seem on first sight to be
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Table 6: IP (negative HOMO G0W0 QP energies) for selected molecules calculated for a 9 Å

box for the standard GW potentials and normconserving GW potentials. Results differ

from the previous table, since calculations in Table 4 have been performed for larger

boxes and include a correction for the box size error. The column ∆ reports the differ-

ence between the standard PAW and NC PAW potential.

GW PAW NC GW PAW ∆

13 N2 14.98 15.02 -0.04

16 F2 14.97 15.13 -0.15

35 CF4 15.42 15.58 -0.16

52 HF 15.39 15.32 0.06

58 BF 10.42 10.46 -0.04

59 SF4 12.19 12.26 -0.07

76 H2O 11.86 11.94 -0.09

99 Cu2 7.03 7.53 -0.50

too large to be ascribed to basis set errors alone. To resolve the issue, one of us (MvS) repeated

the Xe, Rb2, I2, CH2CHI, CI4, AlI3, and Ag2 calculations using scalar relativistic corrections

and frozen core SVP, TZVP and QZVP basis sets. This yielded basis set extrapolated values

summarized in Table 5 certainly now in good to very good agreement with the VASP values, as

also evidenced in Fig. 17.

For the remaining molecules, the mean absolute deviation between the two codes and thus

two completely different basis sets is only 60 meV, if we also exclude Cu2. For Cu2, the fluorine

containing compounds, H2O, as well as Ne the ionization potentials (IPs) are smaller in VASP,

which we will now show to be related to slight deficiencies in the PAW potentials. Copper,

neon, and fluorine and, to a lesser extent, oxygen are particularly difficult to describe using a

plane wave based approach, since the 3d and 2p electrons are strongly localized. To cope with

this, the Cu, F and Ne potentials are already the three smallest core and hardest potentials used

in the present work. But still, the partial waves do not conserve the norm exactly, which results

in errors, if an electron is scattered into a plane wave with very high kinetic energy [115].

To determine this error, we performed calculations with norm-conserving (or almost norm-

conserving) GW potentials for the molecules Cu2, N2, F2, CF4, HF, BF, SF4 and H2O reported
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Figure 17: (color online) IP differences between PW and GTO results (VASP−FHI-aims in red

color), between GTO and experimental results (FHI-aims−Expt. in green color), and

between PW and experimental results (VASP−Expt. in purple color) as a function

of molecular indices. Note that all the data are taken from the Table 4 except for

those molecules shown in Table 5, for which the IPs are updated with new calculated

values. In addition, corrections due to the inaccuracies of GW PAW potentials for

some molecules shown in Table 6 are included. For BN, O3, MgO, BeO and CuCN,

where the roots of QP equations are difficult to obtain, they are not shown in the plot.

Furthermore, after we informed van Setten that crystal structures of CH2CHBr and

C6H5OH were wrong in the GW100 paper [84], he redid these two calculations with

correct structures, so that in this plot we have used the corrected IPs of CH2CHBr

and C6H5OH provided by van Setten. Now for the molecules considered in the plot,

excellent agreement between PW and GTO results is achieved. Lines are shown for

guiding the eyes.

in Tab. 6 using the potentials Cu sv GW nc, N h GW,...,F h GW. Except for HF, the QP energies

are clearly shifted towards higher binding energies in these calculations, and the discrepancies

to the GTO calculations are reduced to an acceptable level of 100 meV. We also note that the

PAW error increases from nitrogen, over oxygen to fluorine. HF and BF are exceptions, since
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the HOMOs possess predominantly hydrogen and boron character and, therefore, do not depend

strongly on the F potential (we note that the HF results were already accurate using the standard

potentials). Finally, the standard carbon and boron potentials used here are already almost norm

conserving, and hence negligible changes are found for carbon based compounds with harder

potentials (not shown).

The final case worthwhile mentioning is KBr. Here the GW100 paper [84] reports relatively

large extrapolation errors of 130 meV, indicating that in this case the GTO based extrapolation

might be inaccurate.

For the remaining systems, we find the agreement to be excellent (see Fig. 17). Specifically,

for all considered organic molecules the absolute differences are typically below 50 meV, with

very few out-liners. This clearly demonstrates that plane wave codes can be competitive in

terms of precision with GTOs. Certainly the agreement between GTOs and PWs is better than

originally reported in the GW100 paper, a point discussed in more detail in the next section.

7.2.4. Basis set convergence and comparison to other PW calculations

In Fig. 18, we show the convergence of the HOMO with respect to the plane wave cutoff for

the orbitals. This cutoff also determines the total number of orbitals as well as the cutoff for the

response function. The number of plane waves and total orbitals is proportional to one over the

cutoff to the power of 3/2. It is clearly visible that the curves follow almost exactly a straight

line. In few cases, out-liners are visible. For instance for H2O, we have included results for two

box sizes 8 and 9 Å. The 9 Å box results have a slight jump, which is not present for the 8 Å

box. However, this out-liner is small (about 10 meV), and changes extrapolated results only

by less than 10 meV. Usually the out-liners could be dealt with by just changing the box size

slightly. We believe that they are related to ”shell”-effects, i.e. a sudden increase in the number

of plane waves when the cutoff is changed through certain values. Furthermore, the analytic

continuation is not always entirely well behaved and can cause changes of the order of 20 meV.

Overall, the plot demonstrates that extrapolation with respect to the energy-cutoff is very well

under control and can be done with great accuracy.

As noted before, the differences between the GTO and the Berkeley GW calculations reported

in Ref. 84 are more sizable. If we exclude the difficult multipole cases, BN, O3, MgO and BeO,

the mean absolute deviation between Berkeley GW and basis set extrapolated GTOs was 0.2 eV
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Figure 18: (color online) Convergence of QP HOMO with respect to the employed cutoff for

various materials. For N2, CF4 and H2O, results are shown for two potentials, the

standard GW potentials, as well as NC potentials. The slopes are steeper for the NC

potentials, which is particularly obvious for CF4. For H2O results for two box sizes

(8 and 9 Å) are shown (see text).

in Ref. 84, whereas it is reduced to 0.05 eV for VASP PAW potentials (for the same subset). We

speculate that this is mostly related to neglecting basis set extrapolation errors or— less likely

—to an inaccurate treatment of the core-valence interaction. Typically our basis set corrections

are of the order of 300-400 meV at the default cutoff and therefore very sizable. Even doubling

the number of basis functions and therefore increasing the compute time by a factor of about 8

(cubic scaling), reduces the error only by a factor 2, to about 150-200 meV. Hence, calculations

without basis set corrections are hardly affordable or practicable, and it is certainly advisable to

perform an extrapolation whenever possible.

For the core-valence interaction, we emphasize that VASP always evaluates the interaction

at the level of Hartree-Fock if correlated calculations are performed. More precisely, VASP

calculates the PBE core orbitals on the fly and then recalculates the action of the PBE core states

on the valence states using the Hartree-Fock approximation. Not doing so can have a sizable
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effect on the QP energies for heavier atoms [33]. We are not aware of other pseudopotential

codes following a similar route. This might be responsible for a small part of the errors in the

reported Berkeley GW calculations of Ref. 84, if heavier atoms are involved.

Calculations for another fairly large set of molecules have been reported by Govoni and Galli

using the West code [144]. 29 molecules are identical to the GW100 set considered here. The

mean absolute difference between the basis set extrapolated GTO results and the VASP results

for this subset is 60 meV, whereas the difference between the West results and the basis set

extrapolated GTO results is about twice as large 120 meV (mean absolute difference between

VASP and West is 90 meV). In many cases, the West IPs are too small indicating again basis

set incompleteness errors. Anyhow, the West results are closer to the basis set converged values

than the GW Berkeley results.

7.2.5. Comparison to experiment

When comparing the present results against the experimental ionisation energies, a mean ab-

solute error of 0.5 eV is observed. This large discrepancy is not unexpected given that in this

computational approach self-consistency, vertex corrections and finite temperature effects are

omitted. However we can comment on the biggest outliers in the set. A first example is C4:

it is well known that the smaller C2 molecule is particularly challenging to describe, owing to

strong electron correlation [234]. For the larger cluster we expect similar effects, hence the

inclusion of the vertex should improve the agreement with the experiment. We have a similar

expectation for the case of F2. Our conjecture is substantiated by previous electron propagator

calculations [235], where the poles of the Green’s function in the Lehmann representation were

located to give the IP, and where a comparable mismatch to experiment was ascribed to the

poor description of dynamic correlation. For AlF3, LiF and KH we have to bear in mind that

the experimental value for a vertical transition was not available, therefore geometry relaxations

may explain the mismatch. This is only partially true for KH, where the inclusion of adiabatic

effects in the perturbative calculations still leaves a sizable disagreement (∼2 eV) [236]; in this

case it is not completely unreasonable to call for a further assessment of the experimental value.
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7.2.6. Linearized QP-HOMO for GW100

We now turn to results obtained by first linearizing the self-energy and then determining the

QP energy from this linearized equation. This procedure is in our experience more ”robust”

and better behaved than seeking the poles in the non-linearized equation. The main issue of the

latter approach is that, in the G0W0 approximation, the first pole in the self-energy is approxi-

mately located at the energy of the DFT HOMO minus the first excitation energy in the DFT

(LUMO−HOMO):

εHOMO − (εLUMO − εHOMO).

This is a simple Auger like excitation, where the hole has sufficient energy, i.e. is sufficiently

below the HOMO to be able to excite an electron-hole pair. As discussed by van Setten, such

poles lead to multiple solutions for the QP energy [84] and make the determination of the QP

energies difficult for molecules with small excitation energies. These poles are, however, an

artifact of the G0W0 approximation. If the GW procedure were done self-consistently, the first

pole in the self-energy would move to approximately

EQP
HOMO − (EQP

LUMO − EQP
HOMO).

In other words, at the valence band edge (HOMO) and conduction band edge (LUMO) the

self-energy never possesses poles. However, in a single shot procedure and when starting from

much too small band gaps, the quasiparticle energy EQP might move into regions where the self-

energy evaluated from DFT orbitals has a pole. Linearization at the DFT eigenenergies resolves

this issue, as the G0W0 self-energy has no poles in the direct vicinity of the DFT HOMO. The

problem is also less severe, if the calculations are done selfconsistently or when starting from a

prescription that yields larger HOMO-LUMO Kohn-Sham gaps, as shown in a recent evaluation

of the difference between the quasi-particle orbital energies and their linearized counterparts by

Govoni et al. [144]. Therein it is shown that, for a wide range of molecules, this difference is

substantially more pronounced for GW calculations on a PBE reference state than if a hybrid

functional with non-local exchange is used.

In summary, we feel that for code benchmarking as well as for a comparison with experiment

determining the poles of the linearized equation is preferable, at least, if a PBE reference state

is employed. However, it also needs to be emphasized that for comparison with the already

published GW100 data, it is of paramount importance to exactly follow the procedures laid out

in the the initial GW100 paper.
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7.2.7. LUMO for GW100

The calculated LUMOs are shown in Table 7. A few important comments are in place here.

First, the table reports the QP energy of the lowest unoccupied orbital in the preceeding DFT

calculations to maintain compatibility with the previous publication. In some cases (Xe, H2O,

CH2CHCl, CH3CHO, and HCOOH) PW calculations predict at the DFT level a very weakly

bound LUMO+1 state (just below the vacuum level) whose G0W0 QP energy is below the QP

state corresponding to the DFT LUMO level. These energy levels are not shown in Tab. 7.

If we consider the G0W0 values corresponding to the DFT LUMOs, the agreement between

the GW100 reference GTO data and plane waves is reasonable, although not quite as good as for

the HOMO. Specifically troublesome is the observation that the GTO calculations sometimes

predict too positive LUMOs. Admittedly, box size convergence can be troublesome for QP

energies above the vacuum level, and we therefore only show few selected positive LUMOs—

those where we are confident that convergence to 50 meV was attained for the cell sizes con-

sidered in our calculations. All positive (unbound) G0W0 LUMOs are marked by a superscript

” + ” sign in the last column. The differences are particularly striking for Ne, Xe, H2, H2O and

CH4 reaching 11 eV for Ne.

To investigate this issue, we compared the DFT-LUMOs of the PW and GTO calculations

(the latter are available upon request to MvS), and found that the deviations between PWs and

GTOs are much larger than for the DFT HOMOs on average, and especially large for some of

the problematic cases, e.g. Ne, Xe, H2, or H2O which are the largest outliners in the subsequent

QP calculations. Specifically, for Ne and H2 the PW DFT calculations predict very shallow

bound LUMOs, a few 10 meV below the vacuum level. These can not be reproduced with any

of the available GTO basis sets.

For the other cases with larger discrepencies, we now show that the GTO basis sets are

often not sufficiently flexible to describe unoccupied orbitals. This is supported by several

observations. (i) Basis set corrections using GTOs are much larger for the LUMO than for

the HOMO, as for instance exemplified for As2, F2 or Cl2. To make this very clear, we have

included in Table 7 both, the basis set extrapolated values (with estimated error bars), as well as

the values at the largest considered GTO basis set. (ii) Non basis set extrapolated GTO values

deviate markedly from PW results. As before, these are marked by a star superscript in the

last column. GTO basis set extrapolated values are tabulated in Tab. 5 and clearly improve the
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Table 7: LUMO QP energies for selected molecules using G0W0 and the linearized lin-G0W0.

For comparison, the non basis set extrapolated values (AIMS-P16), the basis set extrap-

olated values [84], and the negative of the experimental electron affinities are shown

(vertical attachment energies are in italics). Differences between PW and GTO are

shown in last column. The + indicates energies above the vacuum level, and ∗ indicates

differences to non basis set extrapolated values.

G0W0 G0W0 G0W0 lin-G0W0 EXP ∆

AIMS-P16 GTO-EXTRA PW PW PW-GTO

2 Ne 11.64 - 0.40 0.40 - -11.24+

5 Xe 4.28 - 0.70 0.70 - -3.58+

6 H2 3.50 3.30(0.52) 0.07 0.07 - -3.23+

7 Li2 -0.63 -0.75(0.04) -0.61 -0.54 - 0.14

8 Na2 -0.55 -0.66(0.70) -0.60 -0.56 -0.54 0.06

9 Na4 -1.01 -1.15(0.90) -1.07 -1.03 -0.91 [237] 0.08

10 Na6 -0.97 -1.13(0.10) -1.07 -1.03 - 0.06

11 K2 -0.65 -0.75(0.05) -0.74 -0.70 -0.50 0.01

12 Rb2 -0.62 - -0.74 -0.70 -0.50 [237] -0.12∗

14 P2 -0.72 -1.08(0.08) -0.99 -0.97 -0.68 [238] 0.09

15 As2 -0.85 -1.52(0.35) -1.07 -1.06 -0.74 [239] 0.45

16 F2 -0.70 -1.23(0.14) -0.96 -0.84 -1.24 [240] 0.27

17 Cl2 -0.89 -1.40(0.12) -1.25 -1.22 -1.02 [240] 0.15

18 Br2 -1.40 -1.96(0.29) -1.99 -1.97 -1.60 [240] -0.03

19 I2 -1.68 - -2.21 -2.20 -1.70 [240] -0.53∗

20 CH4 2.45 2.03(0.35) 0.63 0.63 - -1.40+

26 C4 -2.94 -3.15(0.06) -3.09 -3.08 -3.88 [241] 0.06

29 C8H8 0.06 -0.12(0.02) -0.05 -0.02 -0.57 [242] 0.07

32 CH2CHCl 1.42 1.17(0.03) 1.19 1.25 - 0.02+

36 CCl4 -0.01 -0.54(0.13) -0.32 -0.28 - 0.22

37 CBr4 -1.08 -1.56(0.29) -1.47 -1.44 - 0.09

38 CI4 -2.14 - -2.42 -2.40 - -0.28∗

42 H12Si5 0.16 0.00(0.07) 0.03 0.05 - 0.03

43 LiH -0.07 -0.16(0.09) -0.07 -0.04 -0.34 [243] 0.09

44 KH -0.18 -0.32(0.01) -0.25 -0.22 - 0.07

45 BH3 0.12 0.03(0.05) 0.03 0.08 -0.04 [244] 0.00
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(continued)

G0W0 G0W0 G0W0 lin-G0W0 EXP ∆

AIMS-P16 GTO-EXTRA PW PW PW-GTO

54 LiF 0.09 -0.01(0.01) 0.17 0.17 - 0.18

55 MgF2 -0.14 -0.31(0.06) -0.29 -0.28 - 0.02

56 TiF4 -0.60 -1.06(0.13) -0.79 -0.66 -2.50 [245] 0.27

57 AlF3 0.16 -0.23(0.10) 0.08 0.09 - 0.31

59 SF4 0.38 -0.10(0.13) 0.07 0.12 -1.50 [246] 0.17

60 KBr -0.31 -0.42(0.06) -0.32 -0.31 -0.64 [247] 0.10

61 GaCl -0.02 -0.39(0.15) -0.19 -0.15 - 0.20

62 NaCl -0.39 -0.42(0.01) -0.46 -0.43 -0.73 [247] -0.04

63 MgCl2 -0.43 -0.68(0.08) -0.61 -0.59 - 0.07

64 AlI3 -0.80 - -1.02 -0.99 - -0.22∗

72 CH3CHO 1.05 0.83(0.05) 0.87 0.87 - 0.04+

74 HCOOH 1.91 1.59(0.00) 1.64 1.72 - 0.05+

76 H2O 2.37 2.01(0.16) 1.04 1.04 - -0.97+

78 CS2 -0.20 -0.55(0.09) -0.42 -0.40 -0.55 [248] 0.13

82 O3 -2.30 -2.69(0.11) -2.50 -2.52 -2.10 [249] 0.19

83 SO2 -1.00 -1.49(0.12) -1.25 -1.19 -1.11 [250] 0.24

84 BeO -2.56 -2.72(0.04) -2.73 -2.37 - -0.01

85 MgO -1.89 -2.13(0.09) -2.05 -2.12 - 0.08

88 C6F6 0.66 0.36(0.08) 0.24 0.27 -0.70 [251] -0.12+

94 Cytosine 0.26 0.01(0.01) 0.12 0.15 -0.23 [252] 0.11

95 Thymine 0.06 -0.18(0.01) -0.06 -0.04 0.29 [253] 0.12

96 Uracil 0.01 -0.25(0.01) -0.11 -0.09 0.22 [253] 0.14

98 Ag2 -1.05 - -1.35 -1.31 -1.10 [254] -0.30∗

99 Cu2 -0.92 -1.23(0.08) -1.24 -1.21 -0.84 [255] -0.01

100 CuCN -1.65 -1.85(0.05) -1.91 -1.81 -1.47 [256] -0.06

agreement with the PW results. For Xe, where the discrepancy was previously 3.6 eV, the error

is reduced to about 0.3 eV. Furthermore, we recalculated the QP energies of H2O and CH4 using

Dunning correlation consistent basis sets and found basis set extrapolated G0W0 QP energies

of 1.00 eV and 0.89 eV, now in excellent and reasonable agreement with the PW results. All

in all, we therefore conclude that the Gaussian basis set results for unoccupied states need to

be considered with some caution, and Dunning correlation consistent basis sets are seemingly

better suited to predict accurate values.
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If we restrict the comparison between PWs and GTOs to states below the vacuum level, we

find the agreement to be generally, as for the HOMO, rather satisfactory. Differences are about

a factor two larger than for the HUMO, but considering the previous discussion on the possible

issues with the Gaussian basis sets for unoccupied orbitals, this is certainly not astonishing.

Finally, concerning the agreement with the experiment, we find a similar absolute deviation

as for the first ionization energies (compare with Tab. 4). To make the comparison between

the LUMO energies and the experiment more immediate, the second last column reports the

negative of the experimental electron affinities, which is overall in quite satisfactory agreement

with experiment.

7.2.8. Discussions and Conclusions

The main purpose of the present work is a careful comparison of GW QP energies obtained

using Gaussian type orbitals and plane waves. One important motivation was that the values re-

ported for the Berkeley GW code were typically 200 meV smaller than the basis set extrapolated

GTO results. However, the Gaussian basis set extrapolation also often increased the predicted

QP energies by some 100 meV. Since basis set extrapolation using GTOs is not necessarily ac-

curate, and since the Berkeley GW calculations are often closer to the uncorrected values than

the basis set extrapolated values, we felt that it is important to bring in a third independent set

of calculations, hopefully confirming one or the other of the previous values.

The main outcome of our work is that our VASP predicted HOMOs are in excellent agreement

with the basis set extrapolated GTO results. We believe this establishes beyond doubt that the

values reported in Ref. 84 are very reliable and can be used as a rigorous benchmark for

future implementations. In the few cases (iodine compounds, Br2 and Ag2), where the GTO

calculations were not extrapolated to the basis set limit, we find— not unexpectedly —that the

non basis set extrapolated GTO values underestimate the IP by about 300-400 meV. The present

work also reports basis set extrapolated GTO values for these molecules finding good agreement

with VASP PW results.

Although the mean absolute deviation between our PAW PW results and the GTO results is

only 60 meV, we found larger discrepancies for molecules containing copper, fluorine and nitro-

gen. We traced these differences back to the use of non-normconserving PAW potentials: using

normconserving PAW potentials the agreement between PW calculations and GTOs improves
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further.

For the LUMO, results are slightly less satisfactory. Agreement between GTOs and PWs is

good for QP energies below the vacuum level, although even for those there are more out-liners

and the average deviation is larger. For instance, differences are sizable for some seemingly

simple dimers. We attribute this to very large basis set corrections for GTOs for some molecules

(e.g. 700 meV for As2).

If the predicted QP LUMOs are above the vacuum level, the differences between the PW and

GTO results can be very large and can reach 11 eV (Ne). Our explanation for this behavior

is that the GTO basis sets employed in Ref. 84 are not always sufficiently flexible to model

unoccupied states. This is particularly true for atoms and small dimers, where the LUMO has

a character that is very different from a linear combination of atomic like orbitals. In most

cases, these basis set issues lead to small but noticeable errors on the level of DFT, but they

are dramatically amplified at the level of G0W0. For Xe, H2O and CH4, GTO calculations

with improved basis sets have been reported finding very good to good agreement with the PW

results.

If we disregard the slightly disconcerting propagation of errors in going from DFT to G0W0

for LUMOs, we are satisfied by the agreement between plane waves and Gaussian type orbitals.

As already stated, for the HOMO the mean absolute deviation is only 60 meV, which is excel-

lent if one considers that the computational details are so different. Furthermore, our results

have been obtained using the GW PAW potentials distributed with vasp.5.4, so that similar cal-

culations e.g. for molecules adsorbed on surfaces can be readily performed using the projector

augmented wave method.
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8. G0W0(iω): GW in imaginary frequency

Considering the advantages of the low-scaling scheme discussed in Sections (6) and (7), one

would wonder if it is possible to extend this scheme to the conventional GW implementation.

Such extension will be rather promising for the following two reasons: (i) Due to the reduced

imaginary time/frequency points as will be used in the modified version (hereafter we denote

it as G0W0(iω)), the computational effort and memory requirement would be significantly re-

duced. This allows us to perform GW calculations on moderately large systems and thus over-

comes the drawback of the conventional GW implementation, which is currently restricted to

small systems. (ii) Since the spin-orbit coupling (SOC) has not yet been implemented in the

low-scaling GW implementation, the modified version might be a good method applicable for

systems where SOC is nonnegligible.

Therefore, in this section, we will show how this extension could be achieved and how it per-

forms. We will first give detailed practical formulations and then show our test results on ZnO

and CdTe. For ZnO, comparisons with conventional G0W0 and low-scaling G0W0r are given.

For CdTe, we include SOC and comparison is only done between G0W0(iω) and conventional

G0W0. It turns out that the agreement with conventional G0W0 or low-scaling G0W0r is pretty

good, highlighting the potential of the modified G0W0(iω) method.

8.1. Computational scheme of G0W0(iω)

Actually, there are three possible alternatives to perform the computations in imaginary fre-

quency. However, the three methods bear a resemblance in the first step. That is, the evaluation

of the screened two electron integrals for each pair (nk, n′k − q) is always done along the imag-

inary frequency axis using the optimized frequency grids {iωk}
N
k=1 (for more information on the

optimized grids, please refer to Appendix (B) and Ref. [103]):

Wnk,n′k−q(iω) =
1
Ω

∑
G,G′

Wq(G,G′, iω)〈ψn′k−q|e−i(q+G)r|ψnk〉〈ψnk|ei(q+G′)r′ |ψn′k−q〉. (292)

This is the fundamental distinction with the conventional GW implementation, where the screened

two electron integrals are calculated along the real frequency axis [see Eq. (185)]. In the fol-

lowing, we will show the three possible schemes one by one all starting from Wnk,n′k−q(iω).
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8.1.1. Direct method

Direct calculation of the self-energy Σnk,n′k−q(iω) in imaginary frequency from Wnk,n′k−q(iω)

using the optimized frequencies {iωk}
N
k=1 is not doable, since only few optimized frequencies

are used in evaluating the integral. Since screened two electron integrals are rather smooth

along the imaginary frequency axis, one could perform a Padé interpolation of Wnk,n′k−q(iω)

from the few optimized frequencies {iωk}
N
k=1 to a denser imaginary frequency grid {iω′}. This

step is relatively cheap.

To obtain Σnk,n′k−q(iω) at the optimized frequencies {iωk}
N
k=1, a Hilbert transformation of

Wnk,n′k−q(iω′) is then performed

Σnk,n′k−q(iω) =
i

2π

∫ +∞

−∞

d(iω′)
Wnk,n′k−q(iω′)

iω + iω′ − εn′k−q

=
i

2π

∫ +∞

0
dω′Wnk,n′k−q(iω′)

{
1

ω + ω′ + iεn′k−q
+

1
ω − ω′ + iεn′k−q

}
.

(293)

In deriving Eq. (293) we have used the fact that Wnk,n′k−q(iω′) is an even function with respect

to iω′.

Then, the matrix elements of the self-energy Σnk,nk(iω) are calculated by summation over q

and n′

Σnk,nk(iω) =
∑

q

∑
n′

Σnk,n′k−q(iω). (294)

When Σnk,nk(iω) is known, we perform an analytic continuation of Σnk,nk(iω) to the real fre-

quency grids by Thiele’s reciprocal difference approach or least-squares method, as discussed

in Appendix (C).

It should be noted that if one wants to obtain the QP energies only but not the spectral func-

tions, the analytic continuation can be done only for three frequency points: εnk − δ, εnk and

εnk + δ with εnk being the DFT one-electron energies and δ a positive small energy, say 0.1 eV.

Finally, the QP energy εQP
nk is evaluated by Eq. (172). Although this scheme works equally

well with conventional G0W0 (not shown), the efficiency is still not much improved. The com-

putationally most demanding step lies in the evaluation of the integral in Eq. (293) at dense

grids.
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8.1.2. Spectral method

Another alternative is to use the spectral representations of the self-energy and the relationship

between the screened two electron integrals and the self-energy

Im[Σnk,n′k−q(E)] =



−Im[Wnk,n′k−q(εn′k−q − E)θ(εn′k−q − E)θ(µ − εn′k−q)]

if E < εn′k−q < µ, εn′k−q ∈ occ

+Im[Wnk,n′k−q(E − εn′k−q)θ(E − εn′k−q)θ(εn′k−q − µ)]

if E > εn′k−q > µ, εn′k−q ∈ unocc

(295)

which is derived in Appendix (F). Here, µ is the Fermi energy and θ is the Heaviside step

function.

Specifically, after the screened two electron integrals Wnk,n′k−q(iω) have been calculated by

Eq. (292), we perform the analytic continuation of Wnk,n′k−q(iω) to a dense real frequency grid,

yielding Wnk,n′k−q(ω′). Afterwards, the self-energy along the real frequency axis Σnk,n′k−q(ω) is

calculated by the spectral transformation

Σnk,n′k−q(ω) = −
1
π

∫ +∞

0
dω′ Im[Wnk,n′k−q(ω′)]

{
θ(µ − εn′k−q)

ω + ω′ − εn′k−q − iη
+

θ(εn′k−q − µ]
ω − ω′ − εn′k−q + iη

}
.

(296)

Here, the relationship in Eq. (295) was used. Finally, the matrix elements of the self-energy

Σnk,nk(ω) are calculated by summation over q and n′

Σnk,nk(ω) =
∑

q

∑
n′

Σnk,n′k−q(ω). (297)

Again, if one wants to obtain the QP energies only but not the spectral functions, the evalua-

tion of Σnk,n′k−q(ω) can be performed only for three frequency points: εnk− δ, εnk and εnk + δ and

the QP energy εQP
nk is evaluated by Eq. (172). This scheme also works equally well with con-

ventional G0W0 (not shown), but performing the integral in Eq. (296) at denser real frequency

grid points is as expensive as the first scheme.

8.1.3. Using discrete Fourier transformations

As mentioned before, the first step is always the same: calculation of the screened two elec-

tron integrals Wnk,n′k−q(iω) at the optimized frequencies {iωk}
N
k=1. Then, we Fourier transform
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Wnk,n′k−q(iω) to the imaginary time domain by an inverse cosine transformation

Wnk,n′k−q(iτ j) =

N∑
k=1

ξ jk cos(τ jωk)Wnk,n′k−q(iωk), (298)

where {iτ j}
N
j=1 are optimized imaginary time grids and ξ jk are the transformation matrix [see Eq.

(210) and Appendix (B)], which are both precalculated and stored.

After Wnk,n′k−q(iτ) is known, the occupied (unoccupied) self-energy Σ (Σ) are calculated in

the imaginary time domain

Σnk,n′k−q(−iτ) = −Gnk,n′k−q(−iτ)Wnk,n′k−q(iτ) (299)

Σnk,n′k−q(iτ) = −Gnk,n′k−q(iτ)Wnk,n′k−q(iτ), (300)

where the occupied and unoccupied Green’s functions, respectively, are given by

Gnk,n′k−q(iτ) = e−(εn′k−q−µ)τ (εn′k−q ∈ occ, τ < 0) (301)

Gnk,n′k−q(iτ) = −e−(εn′k−q−µ)τ (εn′k−q ∈ unocc, τ > 0). (302)

Here, µ is the Fermi energy.

Afterwards, we Fourier transform the self-energy back to the imaginary frequency domain

by cosine and sine transformations

Σnk,n′k−q(iωk) =

N∑
j=1

γk jcos(ωkτ j)
[Σnk,n′k−q(iτ) + Σnk,n′k−q(−iτ)]

2

+i
N∑

j=1

λk jsin(ωkτ j)
[Σnk,n′k−q(iτ) − Σnk,n′k−q(−iτ)]

2
.

(303)

After Σnk,n′k−q(iω) has been obtained, we follow a similar procedure as in the first scheme:

the matrix elements of the self-energy Σnk,nk(iω) are first calculated by summation over q and

n′ by Eq. (294), and then the analytic continuation of Σnk,nk(iω) to the real frequency grids is

performed. As soon as the self-energy along the real frequency axis Σnk,nk(ω) has been obtained,

the QP energy εQP
nk is evaluated by Eq. (172).

It turns out that this scheme performs very well, with rather high efficiencies. This is achieved

by employing the efficient discrete Fourier transformations, so that the computationally expen-

sive evaluation of the integral at denser grids is avoided. Therefore, we finally adopt this scheme

and in the following we will show how well this scheme performs by comparing to low-scaling

G0W0r implementation and conventional G0W0 implementation.
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Table 8: Calculated QP shifts for the valence band maximum (VBM) (first upper panel) and

conduction band minimum (CBM) (middle panel) of ZnO with zinc-blend structure

as a function of the number of bands using different implementations. G0W0 denotes

the conventional implementation, while G0W0(iω) indicates G0W0 operating in imag-

inary frequency with optimized imaginary grids. G0W0r represents the low-scaling

implementation. Also, the basis-set-corrected values and band gap are given. For both

G0W0(iω) and G0W0r, 16 imaginary frequency grid points are used, while for G0W0

120 real frequencies are used. The predicted PBE band gap is about 0.68 eV. Note that

SOC is not included.

1000/bands G0W0 G0W0(iω) G0W0r

VBM

0.807 -1.27 -1.27 -1.26

0.581 -1.34 -1.33 -1.32

0.403 -1.39 -1.38 -1.37

corrected -1.51 -1.48 -1.48

CBM

0.807 -0.06 -0.06 -0.06

0.581 -0.08 -0.07 -0.07

0.403 -0.10 -0.08 -0.07

corrected -0.12 -0.09 -0.09

band gap 2.37 2.38 2.38

8.2. Applications of G0W0(iω)

Table 8 shows the calculated QP shifts and band gap of ZnO from G0W0(iω). For comparison,

the results obtained from G0W0 and G0W0r with almost similar setups except for the frequency

grids are also given. For this compound with localize d orbitals, it was suggested that thousands

of orbitals are required for accurate QP energies predictions for ZnO [114]. Therefore, we cor-

rect for finite basis set errors following the procedure discussed in Ref. [115]. Specifically, the

plane-wave cutoff Epw
cut was chosen to be the maximum of all elements in the considered ma-

terial. To determine basis-set converged GW values, the plane-wave cutoff was systematically

increased by a factor of 1.25 and 1.587, corresponding to an increase of the number of plane

waves by a factor 1.4 and 2, respectively. The plane-wave cutoff for the response function was
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Table 9: Calculated QP shifts for the valence band maximum (VBM) (first upper panel) and

conduction band minimum (CBM) (middle panel) of CdTe with zinc-blend structure

(lattice constant 6.481 Å [257]) as a function of the number of bands using different

implementations with or without SOC. Also, the basis-set-corrected values and band

gap are given. The notations and technical setups used here are the same as in Table 8.

Note that for the cases with SOC, more bands are employed. The predicted PBE band

gap without (with) SOC is about 0.544 (0.268) eV.

without SOC with SOC

1000/bands G0W0 G0W0(iω) G0W0r 1000/bands G0W0 G0W0(iω)

VBM

1.667 -0.543 -0.553 -0.547 0.807 -0.533 -0.534

1.136 -0.557 -0.565 -0.561 0.568 -0.541 -0.543

0.781 -0.576 -0.586 -0.580 0.391 -0.563 -0.564

corrected -0.603 -0.610 -0.605 corrected -0.587 -0.588

CBM

1.667 0.181 0.210 0.214 0.807 0.162 0.186

1.136 0.183 0.203 0.208 0.568 0.165 0.182

0.781 0.152 0.186 0.191 0.391 0.134 0.164

corrected 0.136 0.169 0.174 corrected 0.116 0.147

band gap 1.374 1.410 1.411 1.011 1.043

always chosen to be 2/3Epw
cut, such that it increases simultaneously as Epw

cut increases. The results

were then extrapolated to the infinite-basis-set limit, assuming that the QP energies converge

like (Epw
cut)

3/2 = 1/Npw [115]. Since the convergence behavior of the QP energies with respect to

the basis-set size depends weakly on the k-point set used [115], to reduce the overall computa-

tional cost, we used 4×4×4 k-points to obtain a basis-set size correction as the difference of the

basis-set converged values and data obtained with a smaller basis-set size. We then added this

correction to the results calculated with a smaller basis-set size using 8×8×8 k-points by [115]

E∞(8 × 8 × 8) = Ered(8 × 8 × 8) + [E∞(4 × 4 × 4) − Ered(4 × 4 × 4)]. (304)

Here, E∞ is the QP energy extrapolated to the infinite basis set, and Ered is the QP energy

calculated with a reduced basis set (in this case we have used 560 bands). It can be seen from

Table 8 that excellent agreement is achieved for each case with different number of bands among
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the three implementations, validating the implementation of G0W0(iω) in imaginary frequency.

Compared with the PBE one-electron energies, the VBM and the CBM shift down by 1.48 eV

and 0.09 eV, respectively. The basis-set-corrected band gap for ZnO is estimated to be 2.38 eV,

which is 0.26 eV larger than non-corrected value predicted by M. Shishkin and G. Kresse [86]

on the same single-shot G0W0 level.

Following the same procedures as discussed for ZnO, we have done similar calculations

on CdTe, where the SOC is non-negligible due to the heavy atomic mass. Since the SOC is

not implemented yet in the low-scaling G0W0r implementation, here, we show the comparison

between G0W0(iω) and G0W0 only, as shown in Table 9. In contrast to ZnO, the basis-set cor-

rections for CdTe are much smaller. Again, the agreement among the three implementations is

very good not only for the cases without SOC, but also for the cases with SOC. The deviation

between G0W0(iω) and G0W0 is about 0.036 eV, which is still acceptable within the GW ap-

proximation (<0.05 eV). As expected, inclusion of SOC reduces the band gap by 0.367 eV, in

good agreement with the estimation obtained from Ref. [92].

To summarize, we have successfully extended the imaginary frequency scheme in G0W0r to

the conventional G0W0 implementation and applied it to the semiconductors ZnO with localized

d orbitals and CdTe where SOC is important. It turns out that this modified version G0W0(iω)

works pretty well for both cases with and without SOC. Of course, G0W0(iω) also has the

potential for applications to moderately large systems with SOC. However, since there are not

data available for direct comparison (G0W0 is restricted to small systems, while G0W0r does not

support SOC yet), we have not performed such test calculations.
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9. Partially self-consistent GW: GW0r

Up to now, we have only discussed the single-shot G0W0, but not touched any self-consistency

on neither G nor W. However, the single-shot G0W0 violates the conservation laws such as

particle number conservation, since the GW approximation is only conserving when the Dyson

equation for the Green’s function is solved fully self-consistently. Another unsatisfactory aspect

of non-self-consistent schemes, such as G0W0, is that the values of the observables depend on

the starting point (PBE or HSE) and the way they are calculated [258]. Therefore, it is essen-

tial to take into account the self-consistency. Although different self-consistencies have been

implemented, for instance, eVGW0 [iterating the eigenvalues (QP energies) only in G] [86],

QPGW (quasiparticle self-consistent GW) [85], eVGWTC-TC (quasiparticle self-consistent GW

with vertex corrections only in W) [89], eVGWΓ (quasiparticle self-consistent GW with ver-

tex corrections in self-energy) [92], and full self-consistent GW (scGW) [90, 130, 135], there

are few self-consistent GW implementations available for solids. Therefore, in this section, we

will concentrate on how the self-consistency could be achieved using our low-scaling G0W0

implementation by determining the full interacting Green’s functions G from the Dyson equa-

tion shown in Eq. (134). It should be noted that here we consider iterating G only, while W is

still fixed on the level of DFT, since full self-consistent GW (scGW) without inclusion of ver-

tex corrections leads to some problems such as overestimation of band gaps and band width as

discussed in Section (5.7). Since the term of GW0 has been used in literatures, where only eigen-

values (QP energies) are updated, to avoid any confusion we denote our partially self-consistent

GW as GW0r. It has been shown that GW0r conserves the particle number, which has been

tested on the electron gas [259]. In addition, since GW0r avoids the self-consistent calculation

of the screened interaction W, the computational cost is considerably reduced compared to the

scGW. However, it should also be noted that for time-dependent and inhomogeneous systems

W0 is not invariant under spatial and time translations and thus GW0r will not be momentum or

energy conserving [258].

9.1. Computational scheme of GW0r

Figure 19 shows the computational scheme for the low-scaling self-consistent GW0r implemen-

tation. For the sake of brevity, in the following we suppress the spin index and k-point index.

126



RPA

W

GG CT

CT
W

CT+ST

GW

Σmn

(k)

G

R R

R

Σ R

Σmn

(k)

FFT

FFT

FFT W

KS/natural
orbitals basis

Σ ij

(k)

HF orbital
basis

G ij

(k)

PW
basis

Ε κi

QP  linearization

         at ε   iκ

AC Σ ij

(k)

inverse
CT+ST

Dyson
equation

Γ ij

Gmn

(k)

G ij

(k)

natural
orbitals
basis

Figure 19: Schematic work flow for the low-scaling self-consistent GW0r implementation show-

ing the necessary steps to iterate the Green’s function G and obtain the QP energies.

The notations used here are the same as in Fig. 12. Note that screened interaction

W is not updated and fixed on the DFT level (black arrows) and only G is updated

(shown in blue arrows). To avoid confusion, indices (m, n) are always used to rep-

resent the KS orbital basis in the first iteration and the natural orbitals basis beyond

the first iteration, whereas indices (i, j) are always used to denote HF orbitals basis,

unless otherwise explicitly stated. Γ is the density matrix, see the main text.

We start with the full G0W0r action matrix in the KS orbital basis

Hmn(iω) = HHF
mn + Σ̃mn(iω), (305)

where HHF
mn is the Hartree-Fock Hamiltonian matrix, which are frequency-independent and

Σ̃mn(iω) is the correlated GW self-energy. Then, we transform Hmn(iω) from the KS orbital
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basis to the HF orbital basis, because it is more convenient to apply the Dyson-equation [Eq.

(134)] in the HF orbital basis. To this aim, we first diagonalize the HF Hamiltonian matrix∑
mn

[U]†imHHF
mn Un j = εHF

i δi j. (306)

Here, U is a unitary transformation matrix and εHF
i are the HF eigenvalues. Obviously, HF

Hamiltonian matrix is diagonal in its own basis. Then, we rotate the correlated self-energy

from the KS orbital basis to the HF orbital basis using

Σ̃i j(iω) =
∑
mn

[U]†imΣ̃mn(iω)Un j. (307)

In addition, the KS orbitals are rotated to HF orbitals as well by means of

|ψHF
jk 〉 =

∑
m

Um j|ψ
KS
mk〉. (308)

It should be noted that in order to avoid any confusion, indices (m, n) are always used to rep-

resent the KS orbital basis in the first iteration and the natural orbital basis beyond the first

iteration, whereas indices (i, j) are always used to denote HF orbital basis, unless otherwise

explicitly stated. After the GW Hamiltonian in the HF orbital basis has been obtained, the QP

energies can be calculated in a similar way as we have used in the G0W0r implementation, where

the KS orbital basis are used instead.

The interacting Green’s functions G(iω) can be calculated in the HF orbital basis by solving

the Dyson-equation [Eq. (134)]

[G−1(iω)]i j = iωδi j − (HHF
i j + Σ̃i j(iω) − µδi j), (309)

where µ is the Fermi energy. The density matrix is then calculated by

Γi j = Gi j(iτ = 0−) =
1

2π

∫ +∞

−∞

dωGi j(iω). (310)

However, this integral involving G(iω) diverges and cannot be evaluate with the chosen opti-

mized frequency grids. To address this issue, the interacting Green’s function G(iω) is split into

two parts:

Gi j(iω) = GHF
i j (iω) + Gc

i j(iω). (311)

Here, GHF(iω) is the non-interacting HF Green’s function

[GHF]−1
i j = iωδi j − (HHF

i j − µδi j), (312)
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which is known to be diagonal in its own basis

[GHF]−1
i j = [iω − (εHF

i − µ)]δi j. (313)

The correlated part of the Green’s function Gc(iω) can thus be expressed as

Gc
i j(iω) = Gi j(iω) −GHF

i j (iω), (314)

which decays like 1/ω2 and can be accurately dealt with using the implemented numerical

frequency grids and quadrature rules. Due to the split of the interacting Green’s function in Eq.

(311), the density matrix thus includes two contributions:

Γi j = ΓHF
i j + Γc

i j, (315)

where the calculation of the HF density matrix ΓHF is straightforward

ΓHF
i j = Θ(µ − εHF

i )δi j. (316)

Here, Θ is the Heaviside step function. The correlated contribution Γc can be calculated using

the quadrature rules

Γc
i j =

1
2π

∫ +∞

−∞

dωGc
i j(iω) =

1
2π

∫ +∞

0
dω

{
Gc

i j(iω) + Gc
i j(−iω)

}
=

1
π

∫ +∞

0
dωRe[Gc

i j(iω)] =
1

2π

N∑
k

γkRe[Gc
i j(iωk)].

(317)

where {iωk}
N
k=1 are optimized imaginary frequency grids and {γk}

N
k=1 are the corresponding weights

[see Appendix (B.1)]. In deriving Eq. (317), Gc(−iω) = [Gc(iω)]∗ has been used.

After the total density matrix Γ has been obtained, the particle number is then calculated by

Nparticle = Tr[Γ]. (318)

It should be noted that the trace involves the summation over a band index n, a spin index and

a k-point index, though we drop the spin index and k-point index at the beginning. The particle

number will be an indicator how well the particle number is converged and conserved after a

few iterations. In addition, we diagonalize the density matrix Γ such that∑
i j

[B]†miΓi jB jn = fmδmn, (319)

where f are one-electron occupancies and B is a unitary transformation matrix that will be used

to transform the HF orbital basis to the natural orbital basis.
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To close the self-consistency loop shown in Fig. 19, a Fourier transformation (FT) of G from

the imaginary frequency domain to the imaginary time domain is needed. Again, direct FT of

the interacting Green’s function G is ill-defined. Therefore, we follow a similar strategy as used

in addressing the problem of the density matrix. The interacting Green’s function in imagi-

nary time G(iτ) involves two parts: the HF contribution GHF(iτ) and the correlated contribution

Gc(iτ). In addition, analogous to the definitions in Eqs. (202) and (203), for each Green’s

function, here we also define occupied (G) and unoccupied (G) Green’s functions, which are

evaluated for negative and positive imaginary time, respectively.

G(iτ) = GHF(iτ) + Gc(iτ) (τ < 0), (320)

G(iτ) = G
HF

(iτ) + G
c
(iτ) (τ > 0). (321)

The evaluation of GHF(iτ) is straightforward, since it is diagonal

GHF
i j (iτ) = δi je−(εHF

i −µ)τ (i ∈ occ, τ < 0), (322)

G
HF
ab (iτ) = −δabe−(εHF

a −µ)τ (a ∈ unocc, τ > 0). (323)

The correlated contribution Gc(iτ) can be efficiently calculated by an inverse discrete cosine and

sine transformations, as shown in Appendix (B.2)

Gi j(iτ) =

N∑
n=1

ξmn cos(τmωn)
[Gi j(iωn) + G∗i j(iωn)]

2

+i
N∑

n=1

ζmnsin(τmωn)
[Gi j(iωn) −G∗i j(iωn)]

2
, (τ < 0)

(324)

Gi j(iτ) =

N∑
n=1

ξmn cos(τmωn)
[Gi j(iωn) + G∗i j(iωn)]

2

−i
N∑

n=1

ζmnsin(τmωn)
[Gi j(iωn) −G∗i j(iωn)]

2
, (τ > 0)

(325)

where G∗ means the complex conjugation of G.

After the matrixes Gi j(iτ) and Gi j(iτ) in the HF orbital basis have been obtained, they are then

rotated to the natural orbitals with the unitary matrix B obtained in Eq. (319).

Gmn(iτ) =
∑

i j

[B]†miGi j(iτ)B jn, (326)

Gmn(iτ) =
∑

i j

[B]†miGi j(iτ)B jn. (327)
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Moreover, the orbitals are rotated into the natural orbitals as well

|ψNA
mk 〉 =

∑
j

B jm|ψ
HF
jk 〉, (328)

since it is more convenient to evaluate the Hartree-Fock contribution in the next step in the

natural orbital basis. Afterwards, Gmn(iτ) and Gmn(iτ) are transformed from the natural orbital

basis to the plane wave (PW) basis by means of

G
(1)
k (g,G′, iτ) =

∑
m

∑
n

〈g|ψ̃NA
mk 〉Gmn(iτ)〈ψ̃NA

nk |G
′〉 (329)

G
(2)
k (ν,G′, iτ) =

∑
m

∑
n

〈p̃ν|ψ̃NA
mk 〉Gmn(iτ)〈ψ̃NA

nk |G
′〉 (330)

G
(3)
k (g, α′, iτ) =

∑
m

∑
n

〈g|ψ̃NA
mk 〉Gmn(iτ)〈ψ̃NA

nk | p̃
′
α〉 (331)

G
(4)
k (ν, α′, iτ) =

∑
m

∑
n

〈p̃ν|ψ̃NA
mk 〉Gmn(iτ)〈ψ̃NA

nk | p̃
′
α〉, (τ > 0) (332)

and

G(1)
k (g,G′, iτ) =

∑
m

∑
n

〈g|ψ̃NA
mk 〉Gmn(iτ)〈ψ̃NA

nk |G
′〉 (333)

G(2)
k (ν,G′, iτ) =

∑
m

∑
n

〈p̃ν|ψ̃NA
mk 〉Gmn(iτ)〈ψ̃NA

nk |G
′〉 (334)

G(3)
k (g, α′, iτ) =

∑
m

∑
n

〈g|ψ̃NA
mk 〉Gmn(iτ)〈ψ̃NA

nk |p̃
′
α〉 (335)

G(4)
k (ν, α′, iτ) =

∑
m

∑
n

〈p̃ν|ψ̃NA
mk 〉Gmn(iτ)〈ψ̃NA

nk |p̃
′
α〉, (τ < 0). (336)

They will be used in the second iteration to calculate χ = GG. Note that here |ψ̃NA
nk 〉 are pseudo

natural orbitals in the PAW method. With Eqs. (329)–(336), the self-consistency loop (shown

in blue arrows) in Fig. 19 has been closed. It should be noted that in the second iteration and

beyond, the GW Hamiltonian in Eq. (305) is always first evaluated in the natural orbital basis

and then transformed to the HF orbital basis, where the analytic continuation and linearization

around DFT eigenvalues are performed to obtain the QP energies (see Fig. 19). In the next

section, we will show results of the self-consistent GW0r implementation and test how well it

works.

9.2. Test of GW0r on Si

We apply the partially self-consistent GW0r method on the test material Si, for which a large

amount of theoretical data from different flavors of the GW approximation and also experi-

mental values are available. The obtained results are shown in Table 10. One can see that upon
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Table 10: QP shifts (eV), corresponding renormalization factor Z, and band gap for selected

bands at Γ and K points, as well as the particle number Nparticle of Si predicted by

GW0r as a function of self-consistent iterations. Note that 8 × 8 × 8 k points are used

to sample the BZ and SOC is not included.

number of Γ25′ Γ15 K2 K3 band gap Nparticle

iteration QP Z QP Z QP Z QP Z

1 -0.460 0.759 0.186 0.755 -0.489 0.733 0.114 0.776 1.093 8.00874318

2 -0.502 0.804 0.635 0.800 -0.696 0.789 0.459 0.812 1.480 7.99174461

3 -0.486 0.801 0.699 0.804 -0.667 0.787 0.514 0.814 1.519 7.99871247

4 -0.492 0.801 0.712 0.804 -0.668 0.786 0.524 0.815 1.535 7.99981693

5 -0.495 0.801 0.715 0.804 -0.669 0.786 0.525 0.815 1.539 7.99999937

6 -0.496 0.801 0.715 0.804 -0.670 0.786 0.526 0.815 1.541 8.00000255
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Figure 20: (a) band gap and (b) particle number as a function of iterations in GW0r.

iterating of G the valence bands (see Γ25′ and K2) shift down, whereas the conduction bands shift

up (see Γ15 and K3), increasing the band gap. The convergence is achieved at the fifth iteration,

as also evidenced by the band gap and particle number as a function of iterations in Fig. 20.

The converged particle number is 8, confirming that the GW0r method is a particle-conserving

approximation.

In Table 11, we compile and compare the theoretical band gaps with the experimental value.

As expected, PBE underestimates the band gap, while both single-shot G0W0r and one-electron

energies updated GW0 improve the band gap towards the experimental value. In contrast, par-

tially self-consistent GW0r gives rise to a much larger band gap of 1.54 eV. This is not unex-
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Table 11: Band gap (eV) predicted by PBE and GW on different levels. The experimental value

is also given for comparison. See the main text for the notations.

PBE G0W0r@PBE eVGW0@PBE GW0r scGW eVGWTC-TC eVGWΓ QPGW Exp.

[86] [260] [89] [92] [89] [261]

0.52 1.15 1.20 1.54 1.91 1.24 1.37 1.41 1.17

pected because the vertex corrections are not included. This is also true but even worse for the

full self-consistent scGW [260](see Table 11). Indeed, the inclusion of vertex corrections either

on W only GWTC-TC [89] or on the self-energy GWΓ [92] remedies the problems in GW0r and

scGW. QPGW yields a slightly smaller band gap of 1.41 eV [89] compared to GW0r, but still

overestimates the band gap with respect to the experimental value. More tests of GW0r on other

materials are in progress.
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10. Merging GW with DMFT

The interplay between localized electrons in open d- or f -shells and itinerant band states in

strongly-correlated materials gives rise to rich physics, such as metal-to-insulator transition,

high temperature superconductivity and spintronics. Thus, the first-principles description of

strongly-correlated materials is currently one of the greatest challenges in condensed matter

physics. One of the most successful approaches in this field is the dynamical mean field theory

(DMFT) combined with density functional theory (DFT) in the local density approximation

(LDA), i.e., LDA+DMFT [105,106], which treats local correlations in a small subset of orbitals

exactly, while the reminder of the problem is treated using a static mean field manner.

For truly parameter-free ab initio calculations, however, two severe shortcomings persist: (i)

a static Hubbard-like interaction U is used and usually considered to be an adjustable param-

eter in LDA+DMFT. Furthermore, the dynamical screening effects are often ignored. (ii) the

so-called double counting problem, e.g., it is difficult to determine the electronic correlations

already accounted for on the LDA level. In addition, the non-local effects are only partially

considered in the exchange-correlation functional in the LDA, which results in an underesti-

mation of the band gap for a variety of semiconductors and insulators. To overcome those

drawbacks of LDA+DMFT, Biermann et. al. suggested to replace the LDA with the GW ap-

proximation [262]. Since the GW approximation takes into account the many-body effects in

the electron-electron interaction by screening the bare exchange interaction with the inverse

dynamical dielectric function, the inclusion of non-local GW self-energy results in a better

description of the band gap compared to experiments than typical density functionals. More-

over, the GW self-energy is diagrammatically formulated in the same many-body framework as

DMFT. Hence, the GW approximation not only enables an elegant combination with DMFT,

i.e., GW+DMFT [263], but also overcomes the fundamental double counting problems oc-

curring in LDA+DMFT. For GW+DMFT, one actually knows which Feynman diagrams (local

ones) are counted twice [264], and hence one can trivially remove those diagrams. Furthermore,

the dynamical partially screened Coulomb interaction can be calculated by the constrained ran-

dom phase approximation (cRPA) in a similar framework as GW [264]. Therefore, merging

GW with DMFT could make possible the predictions of strongly-correlated materials entirely

ab initio.

In this section, we will first start by a layout of a feasible scheme to accomplish the combi-
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nation of GW with DMFT. Then, we will put particular emphasis on how dynamical partially

screened interactions are calculated within the cRPA based on the low-scaling scheme that is

used in the G0W0r implementation. Finally, we will deal with the double counting problem.

Note that this GW+DMFT work is still ongoing and for the DMFT part, we are collaborating

with Karsten Held’s group at the Technical University of Vienna.

10.1. Computational scheme of GW+DMFT

The essence of a self-consistent GW+DMFT algorithm is to calculate the fermionic and bosonic

propagators G and W self-consistently. Specifically, it can be formulated as follows [265–267]:

(i) Calculate the lattice fermionic and bosonic propagators GGW and WGW in the GW approx-

imation

[GGW]−1 = [G0]−1 − ΣGW (337)

[WGW]−1 = [V]−1 − χGW (338)

using ΣGW = −G0W0 and χGW = G0G0 in the first iteration, where G0 and W0 are the

Hartree non-interacting Green’s function calculated from KS orbitals and the screened

interaction, respectively.

(ii) Calculate the non-interacting impurity fermionic and bosonic propagators G and U by

undressing respective local contributions of the self-energies ΣGW
loc and χGW

loc

[G]−1 = [GGW]−1 + ΣGW
loc (339)

[U]−1 = [WGW]−1 + χGW
loc . (340)

(iii) Compute the interacting impurity propagators Gimp and χimp with the extended DMFT

(eDMFT) action [268]

S eff[c∗, c] = −

∫ β

0
dτ

∫ β

0
dτ′

∑
i j

c∗i (τ)G−1
i j (τ − τ′)c j(τ′)

+
1
2

∫ β

0
dτ

∫ β

0
dτ′

∑
i jkl

c∗i (τ)c j(τ)U i j
kl(τ − τ

′)c∗k(τ′)cl(τ′),
(341)

where c∗ and c are Grassmann variables and β = 1
kBT with kB and T being the Boltzmann

constant and temperature, respectively.
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(iv) Compute the fermionic and bosonic impurity self-energies

Σimp = [G]−1 − [Gimp]−1 (342)

χimp = [U]−1 − [W imp]−1. (343)

(v) Calculate the GW+DMFT self-energies

ΣGW+DMFT = ΣGW − ΣGW
loc + Σimp (344)

χGW+DMFT = χGW − χGW
loc + χimp. (345)

(vi) The calculation stops when the convergence

|ΣGW+DMFT − ΣGW | < eps (346)

|χGW+DMFT − χGW | < eps (347)

is achieved. Here, eps is the derived computational precision. Otherwise, one should go

back to step (i), solve Eqs. (337) and (338) with new updated self-energies in Eqs. (344)

and (345), and repeat steps (i)–(v) until self-consistency in step (vi) is fulfilled.

Although the above GW+eDMFT algorithm is elegant, it is technically challenging and only

applies to a single-band Hubbard model [265,266]. Furthermore, the challenges originate from

the difficulties to take into account a frequency-dependent U(iω) in an impurity solver. It is

also hampered by the challenges of solving the bosonic self-consistency loop for multiorbital

systems. Very recently, L. Boehnke and co-anthers [120] seem to overcome those challenges

and apply their implementation to the realistic material SrVO3. However, self-consistent deter-

mination of bosonic propagators and self-energies are rather expensive. Thus far, we restrict

ourselves to the single-shot GW+DMFT only, but using the frequency-dependent U(iω) and

double counting entirely from ab initio calculations.

Figure 21 shows our illustrative scheme of the single-shot GW+DMFT. The GW self-energy

ΣGW(k, iω) are taken from our low-scaling G0W0r calculations. The dynamical partially screened

interaction U(iω) are calculated by the cRPA, as will be discussed in Section (10.2). The lattice

interacting Green’s function is obtained by

GGW(k, iω) =
[
iω − (T + Vext + VH + ΣGW(k, iω) − µ)

]−1
, (348)
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Figure 21: Schematic illustration on the scheme of the single-shot GW+DMFT. The left panel

shows how to calculate the lattice self-energy ΣGW(k, iω) within the GW approxi-

mation and dynamical partially screened interaction U IJ
KL(iω) by cRPA. ΣGW(k, iω)

is then used to construct the lattice interacting Green’s function GGW(k, iω) by

the Dyson equation, which is further used to calculate the local lattice interact-

ing Green’s function GGW(iω). The obtained U IJ
KL(iω) and impurity non-interacting

(bath) Green’s function [G]−1 constructed by taking account of the GW self-energy,

DMFT self-energy ΣDMFT, and double counting ΣDC are then taken as inputs for the

Anderson impurity problem, which is solved by continuous-time quantum Monte

Carlo (CT-QMC). After self-consistency is achieved within the DMFT loop, the

converged new impurity interacting Green’s function G(iτ) is obtained. By an ana-

lytic continuation of G(iτ) to the real frequency axis, the integrated spectral function

A(ω) and momentum-resolved spectral function A(k, ω) are finally calculated. See

the main text for more information.
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where µ is the Fermi energy. Then, the local lattice interacting Green’s function is calculated in

the Wannier basis

GGW
mn (iω) =

1
Nk

∑
k

∑
ij

[U(k)]†miG
GW
ij (k, iω)[U(k)]jn, (349)

where [U(k)] are transformation matrices from the Bloch space to the Wannier space obtained

from the wannier90 code [42, 43]. The impurity non-interacting (bath) Green’s function are

constructed by taking into account the GW self-energy, DMFT self-energy ΣDMFT, and double

counting correction ΣDC

[G]−1(iω) = [GGW]−1(iω) + ΣDMFT(iω) − ΣDC(iω). (350)

Calculation of the double counting correction ΣDC will be discussed in Section (10.3). With

[G]−1(iω) and U(iω) in hands, the impurity problem is solved by the continuous-time quan-

tum Monte Carlo (CT-QMC) [269]. After convergence is achieved within the DMFT loop, the

converged new impurity interacting Green’s function G(iτ) is obtained. In order to obtain the

integrated spectral function A(ω) = −1
π

Im[G(ω)] along the real frequency axis, a maximum en-

tropy method (MEM) as shown in Appendix (C.1) is used to perform the analytic continuation

to the real axis. To calculate the momentum-resolved spectral function A(k, ω) from the inte-

grated spectral function A(ω) obtained from MEM, three steps are involved [270]: (i) First, the

real part of the local interacting Green’s function G(ω) is calculated by the Kramers-Kronig

relation

Re[G(ω)] =

∫ ∞

−∞

A(ω′)
ω − ω′ + iη

dω′, (351)

where η is a positive infinitesimal. (ii) Then, the complex local self-energy Σ(ω) is fitted such

that it reproduces the local Green’s function

G(ω) =
∑

k

[ω − (T + Vext + VH + Σ(ω) − µ)]−1. (352)

(iii) Finally, A(k, ω) is obtained by

A(k, ω) = −
1
π

Im
{
[ω − (T + Vext + VH + Σ(ω) − µ)]−1

}
. (353)

One point that should be mentioned here is that the GW self-energy obtained from our low-

scaling G0W0r implementations are evaluated at a discrete optimized imaginary frequency grid,

whereas DMFT works on the Matsubara frequencies. Fortunately, the GW self-energy is so
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Figure 22: Calculated imaginary and real parts of the GW Hamiltonian 〈m|T + Vext + VH +

Σ(k, iω)|m〉 of SrVO3 in the t2g Wannier basis (blue circles) along with the Padé fit

(red solid lines) as a function of imaginary frequencies at Γ [(a) and (b)] and X [(c)

and (d)] points. Here, only elements corresponding to dxy orbital are shown. 20

optimized imaginary frequency grid points and 8 × 8 × 8 k points are used in the

calculations. The data for frequencies beyond 400 eV are truncated and not shown

in the plot.

smooth along the imaginary frequency axis that it is possible to do the Padé interpolation from

the discrete optimized frequency grid to the Matsubara frequencies. As an example, in Fig. 22

we show the GW Hamiltonian of SrVO3 in the t2g Wannier basis as a function of imaginary

frequencies together with the Padé fit. Apparently, the fitting is perfect, which makes it possible

to pass down the GW self-energy to the DMFT.

Another technical issue to merge GW with DMFT is that a very denser k points grid such

as 20 × 20 × 20 points are required to obtain spectral functions with a good quality in DMFT,

whereas such dense k-point grids are not doable in the GW calculations. To address this issue,

a Wannier interpolation [43] is performed. Taking the GW action matrix for instance, the GW
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action matrix is first transformed to the Wannier basis

H̄mn(k, iω) =
∑

ij

[U(k)]†miHij(k, iω)[U(k)]jn. (354)

Next, we Fourier transform Hmn(k, iω) into a set of Nk Bravais lattice vectors R within a Wigner-

Seitz supercell centered around R = 0

H̄mn(R, iω) =
1

Nk

∑
k

e−ikRH̄mn(k, iω). (355)

Finally, we Fourier transform back to an arbitrary k′ point

H̄mn(k′, iω) =
∑

R

eik′RH̄mn(R, iω). (356)

10.2. Dynamical partially screened interaction U(iω) by cRPA

In this section, we will first formulate how to calculate the dynamical partially screened interac-

tion U(iω) by cRPA based on our low-scaling GW scheme, and then show how it works on the

prototypical material SrVO3. To distinguish with the conventional cRPA implementation, which

directly works on the real frequency axis, we denote our present implementation as cRPAr.

10.2.1. Formulations of U(iω)

We start by the total polarizability in the real space and imaginary time domain, which has been

derived in Appendix (G).

χ(r,R′, iτ) = −

BZ∑
k,q

unocc∑
a

ψak+q(r)ψ∗ak+q(R′)e−εak+qτ
occ∑

i

ψik(R′)ψ∗ik(r)eεikτ, (357)

where ψnk(r) is a Bloch state. Similarly, the correlated polarizability is expressed by

χc(r,R′, iτ) = −

BZ∑
k,q

unocc∑
a∈C

ψ̄ak+q(r)ψ̄∗ak+q(R′)e−εak+qτ
occ∑
i∈C

ψ̄ik(R′)ψ̄∗ik(r)eεikτ, (358)

where ψ̄nk(r) is the correlated Bloch state, which is restricted within the correlated subspace

C and defined by Eq. (607). For the sake of brevity, from now on we suppress the indices of

the Bloch wave vector. Using the definitions of occupied and unoccupied Green’s functions in

Eqs. (202) and (203), the total polarizability in Eq. (357) can be simply expressed as

χ(r,R′, iτ) = G(r,R′, iτ)G∗(r,R′,−iτ). (359)
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If we define correlated occupied and unoccupied Green’s functions

Gc(r,R′, iτ) =
occ∑
i∈C
ψ̄i(r)ψ̄∗i (R′)e−εiτ (τ < 0), (360)

Gc(r,R′, iτ) = −
unocc∑
a∈C

ψ̄a(r)ψ̄∗a(R′)e−εaτ (τ > 0), (361)

the correlated polarizability in Eq. (358) can be simplified as well

χc(r,R′, iτ) = Gc(r,R′, iτ)Gc∗(r,R′,−iτ). (362)

Within the PAW framework, the total polarizability χ(r,R′, iτ) has been derived and given by

Eq. (239). Similarly, the correlated polarizability χc(r,R′, iτ) can be calculated as

χc(r,R′, iτ) =Gc(1)
(r,R′, iτ)Gc∗(1)(r,R′,−iτ)

+
∑
µν

Qµν(r)Gc(2)
(ν,R′, iτ)Gc∗(2)(µ,R′,−iτ)

+
∑
αβ

Qαβ(R′)Gc(3)
(r, α, iτ)Gc∗(3)(r, β,−iτ)

+
∑
µναβ

Qµν(r)Qαβ(R′)Gc(4)
(ν, α, iτ)Gc∗(4)(µ, β,−iτ).

(363)

Here, the auxiliary correlated unoccupied and occupied Green’s functions are defined analo-

gously to Eqs. (228–235), but keeping the summation restricted within the correlated space,

i.e., a ∈ C and i ∈ C, and using the counterparts of one-electron correlated Bloch state within

the PAW method.

After the total χ(r,R′, iτ) and correlated χc(r,R′, iτ) polarizabilities have been obtained in

the real space and imaginary time domain, they are immediately Fourier transformed to the

reciprocal space and imaginary frequency domain χq(g, g′, iω) and χc
q(g, g′, iω) by Eqs. (248)–

(250). The polarizability excluding the screening channels within the correlated space C is

simply calculated as

χr
q(g, g′, iω) = χq(g, g′, iω) − χc

q(g, g′, iω). (364)

The partially screened Coulomb interaction kernelU is then calculated by the RPA

Uq(g, g′, iω) = vq(g, g′)[δg,g′ − vq(g, g′)χr
q(g, g′, iω)]−1, (365)

where the bare Coulomb interaction is given by vq(g, g′) = 4πe2

|q+g||q+g′ | . Note that matrix multipli-

cation and inversion are implicitly used in Eq. (365). Finally, the on-site dynamical partially
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screened Coulomb interaction in terms of Wannier functions is obtained by

U IJ
KL(iω) =〈IL|U(r, r′, iω)|JK〉

=

∫
dr

∫
dr′w∗IR(r)w∗LR(r′)U(r, r′, iω)wJR(r)wKR(r′)

=
1

NqNk

∑
q,k

∑
gg′
Uq(g, g′, iω)〈ΨIk|e−i(q+g)r|ΨJk+q〉〈ΨKk+q|ei(q+g′)r′ |ΨLk〉,

(366)

where the mixed state |Ψαk〉 is defined as

|ΨIk〉 =
∑

n

U(k)
nI |ψnk〉, (367)

with U being a transformation matrix from the Bloch space to the Wannier space. Note that in

deriving Eq. (366), we have used

1. Wannier function centered at the site of R is given by

|wIR〉 =
1

Nk

∑
nk

e−ikRU (k)
nI |ψnk〉

=
1

Nk

∑
k

e−ikR|ΨIk〉.

(368)

2. Spatial Fourier transformation is given by

U(r, r′, iω) =
1

Nq

∑
q

∑
gg′

e+i(q+g)rUq(g, g′, iω)e−i(q+g′)r′ . (369)

3. Translation-invariant symmetry.

The so-called Hubbard-Kanamori parameters (the intra-orbital U, inter-orbital U′, and Hund’s

coupling J) are finally calculated by

U(iω) =
1
N

N∑
α

Uαα
αα(iω) (370)

U′(iω) =
1

N(N − 1)

N∑
α

N∑
β,α

Uαα
ββ (iω) (371)

J(iω) =
1

N(N − 1)

N∑
α

N∑
β,α

Uαβ
αβ(iω). (372)
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Figure 23: On-site dynamical partially screened (a) intra-orbital interactions U(iω), (b) inter-

orbital U′(iω), and (c) Hund’s coupling J(iω) of SrVO3 using V-t2g-like maximally

localized Wannier functions as local orbitals as a function of the imaginary frequency

(shown in blue circle). The corresponding bare (unscreened) counterparts are also

shown in black dashed lines. The red solid lines are obtained from a Padé fit. 20

optimized imaginary frequency grid points and 8 × 8 × 8 k points are used in the

calculations. The data for frequencies beyond 400 eV are truncated and not shown

in the plot. It should ne noted that U, U′, and J are all real-valued quantities along

the imaginary frequency axis.

10.2.2. Application on SrVO3

Figure 23 shows our calculated on-site dynamical partially screened intra-orbital interactions

U(iω), inter-orbital U′(iω), and Hund’s coupling J(iω) of SrVO3 using V-t2g-like maximally

localized Wannier functions as local basis sets. First of all, we want to point out that U, U′,

and J are all real-valued quantities along the imaginary frequency axis, because the polariz-

ability in the reciprocal space and imaginary time domain is real-valued [see Eq. (611)] and

the maximally localized Wannier functions can be chosen to be real-valued as well [42, 43].

Second, it is found that U, U′ and J are rather smooth with respect to the imaginary frequency,

so that it is possible to expand them from our optimized frequencies to Matsubara frequencies

by the Padé interpolations (see the red solid lines in Fig. 23). This makes it possible to transfer

them to a dynamical impurity solver, which has been recently implemented in the w2dynamics

code by the group of Karsten Held at the Technical University of Vienna. Third, at the static

limit (ω = 0), U, U′, and J are, respectively, calculated to be 3.38, 2.42, and 0.44 eV, agreeing
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Figure 24: Real (Re) and imaginary (Im) parts of on-site dynamical partially screened intra-

orbital interactions U(ω) of SrVO3 using V-t2g-like maximally localized Wannier

functions as local orbitals as a function of the real frequency. The results from two

different implementations are shown. cRPA represents the conventional cRPA im-

plementation, which directly works on the real frequency axis, whereas cRPAr de-

notes our present implementation, which works instead on the optimized imaginary

frequency grid points. Note that the Padé fit is used to analytically continue U(iω)

obtained from cRPAr to the real frequency axis.

perfectly with the ones (3.38, 2.42 and 0.44 eV) directly obtained from the conventional imple-

mentation working on the real frequency axis. Moreover, they are in nice agreement with the

published values [47, 271]. At the high-frequency limit (ω → ∞), it is expected that U, U′,

and J would approach their unscreened (bare) counterparts (16.29, 15.07, and 0.55 eV), since

the electron density cannot follow such fast external perturbations, and the polarizability would

be vanishing at the high-frequency limit. Indeed, this is observed in our calculations (see the

asymptotic behaviors of U, U′, and J compared to the black dashed lines in Fig. 23).

In order to further validate our implementation, we analytically continue the intra-orbital in-

teraction U(iω) from the imaginary frequency axis to the real frequency axis. For comparison,

we also calculate U(ω) directly from the conventional cRPA implementation. The calculated

results are shown in Fig. 24. First, we want to mention that the calculated frequency-dependent

U(ω) from the conventional implementation is in very good agreement with the work of F.
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Aryasetiawa et. al. [47]. In the energy region 12–15 eV, the imaginary part of U is dominated

by a single plasmon excitation induced mainly by free-electron-like O-2p states [47]. Second,

it can be seen that, overall, good agreement is achieved between the conventional and present

implementations, in particular in the low-frequency region. However, the strong plasmon exci-

tation observed in the conventional implementation is smeared out by the analytic continuation

in cRPAr. Finally, we would like to emphasize that considering that the dynamical impurity

solver of DMFT is implemented on the imaginary Matsubara frequencies, our cRPAr thus pro-

vides an natural way to calculate the required imaginary-frequency-dependent U(iω), U′(iω),

and J(iω) quantities, This is in contrast to the conventional implementation, where Hilbert trans-

formations have to be performed to obtain those quantities along the imaginary frequency axis.

Hence, we believe that our cRPAr implementation facilitates the merging of GW with DMFT..

It should be noted that apart from SrVO3, we have also tested our cRPAr implementation on

different kinds of systems such as SrTiO3 and La2CuO4 with different models [t2g/t2g, d/d, and

d/dp models (the notations here are taken from Ref. [271]) ]. It is found that our cRPAr imple-

mentation works pretty well for all the cases and the calculated results are in good agreement

with the ones obtained from the conventional cRPA calculations (not shown).

10.3. Doubling counting in GW+DMFT

After the issue of U(iω) has been discussed, we are faced with the remaining challenge of the

double counting (DC) correction. Since GW is formulated in the same many-body framework as

DMFT, the DC correction for merging GW with DMFT is thus quite well-defined. Specifically,

DMFT is a purely local theory and precisely includes all the local diagrams. In this sense, one

should subtract all the local diagrams in the GW, i.e., the local Hartree and local GW diagrams,

to avoid double counting [272, 273]. In the following, it will be shown that how one can deal

with the DC correction and test how well it works in practice on a Be molecule and SrVO3. For

the sake of simplicity, so far the formulations of DC correction on the level of G0W0r+DMFT

only are shown.

10.3.1. Formulations of the DC correction

Actually, the DC correction can be formulated in a similar way as is used in the low-scaling

G0W0r implementation in Section (6). The main difference is that the DC correction here is
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Figure 25: Feynman diagram representation of (a) the local independent-particle polarizability

χloc, (b) the DC correction ΣDC in GW+DMFT, which includes the local Hartree and

local GW diagrams, and (c) the local screened interaction W̃ loc, which is calculated

by the RPA with χloc and local partially screened interaction U loc(iω) calculated from

the cRPA.

evaluated in the local orbital basis. To derive the DC correction , four steps are involved.

(1) The first step is to define and calculate the local Green’s functions in the local orbital basis.

Here, we employ the Wannier functions as the local orbitals. Analogous to the definitions of

Green’s functions in Eqs. (202) and (203), occupied and unoccupied local Green’s functions

are defined in the Wannier basis as

Gloc
mn(−iτ) =

1
Nk

∑
k

∑
ij

[U(k)]†miGij(k,−iτ)[U(k)]jn, (373)
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G
loc
mn(iτ) =

1
Nk

∑
k

∑
ij

[U(k)]†miGij(k, iτ)[U(k)]jn, (374)

which are defined in the negative and positive imaginary time, respectively. Here, Nk is the

number of k points. Again, [U(k)] are transformation matrices from the Bloch function basis to

the Wannier basis obtained from the wannier90 code [42, 43]. The occupied and unoccupied

Green’s functions in the Bloch space are given by

Gij(k,−iτ) = 〈ψik|G(−iτ)|ψjk〉 = δi,je−|(εik−µ)τ|, i ∈ occ (375)

Gab(k, iτ) = −〈ψak|G(iτ)|ψbk〉 = −δa,be−|(εak−µ)τ|, a ∈ unocc. (376)

Here, µ is the Fermi energy and |ψik〉 and |ψak〉 denote the occupied and unoccupied Bloch

functions, respectively.

(2) Next, the local polarizability χloc is calculated via contraction over occupied and unoccu-

pied local Green’s functions in imaginary time, as shown in Fig. 25.

[χloc]mn
pq (iτ) =〈wmwq|2Gloc(−iτ)G

loc
(iτ)|wnwp〉

=2Gloc
mp(−iτ)G

loc
qn (iτ).

(377)

Here, |wn〉 represents the Wannier function Note that a factor of “2” is due to the existence of

fermionic loop in the pair-bubble diagram of the polarizability and applies for spin-degenerate

system. Furthermore, a polarizability is treated as a four-index quantity here, instead of us-

ing a real-space representation. Then, a cosine transformation is used to transform the local

polarizability from the imaginary time to the frequency domain

[χloc]mn
pq (iωk) =

N∑
j=1

γk j cos(ωkτ j)[χloc]mn
pq (iτ j), (378)

where γk j cos(ωkτ j) matrix is precalculated [see Appendix (B.2)].

(3) Third, the local screened Coulomb interaction W loc is calculated by the RPA (see Fig. 25)

[W loc]ij
kl(iω) =[U loc]ij

kl(iω) +
∑
mn

∑
pq

[U loc]ij
mn(iω)[χloc]mn

pq (iω)[W loc]pq
kl (iω)

=
∑
pq

1 −∑
mn

[U loc]ij
mn(iω)[χloc]mn

pq (iω)

−1

[U loc]pq
kl (iω).

(379)

Here, [U loc](iω) is the local partially screened Coulomb interaction, which is calculated by the

cRPA [see Section (10.2)]. After [W loc](iω) has obtained, we need to Fourier transform it to the

imaginary time so that the local self-energy can be conveniently calculated. However, a direct
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FT of [W loc](iω) is diverging. Thus, before the FT we split W loc into correlated part W̃ loc and

bare part V [corresponding to W loc(ω→ ∞)],

[W loc]ij
kl(iω) = [W̃ loc]ij

kl(iω) + V ij
kl. (380)

The correlated part W̃ loc(iτ) in imaginary time can be calculated by an inverse cosine transfor-

mation

[W̃ loc]ij
kl(iτn) =

N∑
m=1

ξnm cos(τnωm)[W̃ loc]ij
kl(iωm). (381)

Again, ξnm cos(τnωm) matrix is precalculated [see Appendix (B.2)].

(4) Finally, the DC correction ΣDC including the local Hartree, local Fock and local correlated

GW self-energies (see Fig. 25) are calculated as

ΣDC
ij (iω) = Σloc,Hartree

ij + Σloc,Fock
ij + Σ̃loc,GW

ij (iω), (382)

where the local Hartree part is obtained by

Σloc,Hartree
ij =2

∑
k,l

Gloc
kl (−iτ)

∣∣∣
τ=0+ [U loc(iω = 0)]ij

kl. (383)

Note that the“-1” sign in the local Hartree self-energy is absorbed by the fact that there is a

fermionic loop in the local Hartree diagram, which also introduces a factor of “2”. “0+” means

a positive infinitesimal.

The local Fock part can be calculated by

Σloc,Fock
ij = −

∑
k,l

Gloc
lk (−iτ)

∣∣∣
τ=0+ Vkj

li . (384)

The frequency-dependent local correlated GW self-energy is determined by

Σ̃loc,GW
ij (iωm) =

N∑
n=1

γmncos(ωmτn)
Σ̃

loc,GW

ij (iτn) + Σ̃
loc,GW
ij (−iτn)

2

+i
N∑

n=1

λmnsin(ωmτn)
Σ̃

loc,GW

ij (iτn) − Σ̃
loc,GW
ij (−iτn)

2
,

(385)

where γmncos(ωmτn) and λmnsin(ωmτn) are cosine and sine transformation matrices [see Ap-

pendix (B.2)] and the auxiliary occupied and unoccupied local correlated GW self-energies are,

respectively, given by

Σ̃
loc,GW
ij (−iτ) = −

∑
k,l

Gloc
lk (−iτ)[W̃ loc]kj

li (iτ), (386)

and

Σ̃
loc,GW

ij (iτ) = −
∑
k,l

G
loc
lk (iτ)[W̃ loc]kj

li (iτ). (387)
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10.3.2. Tests on Be molecule

Since the above formulations of the DC correction follow quite closely the low-scaling G0W0r

implementation, one would expect that in principle the two implementations should yield ex-

actly the same self-energy if and only if the following four criteria are simultaneously satisfied:

1. Both implementations should work in the same basis.

2. The local partially screened Coulomb interaction [U loc](iω) in Eq. (379) are replaced by

the bare Coulomb interaction V .

3. The Bloch space has the same dimension as the Wannier space and the transformation

matrix [U(k)] is unitary.

4. Only one k point is used to sample the Brillouin zone (BZ).

The first two criteria can be straightforwardly achieved. However, searching for a system that

meets the last two criteria might not be trivial. Motivated by this idea, we select a Be molecule

as our test material, because: (i) the Be atom has a simple 2s2 p0 electron configuration with only

one s-like state fully occupied, whereas the other three p-like states are empty. It can be simply

and accurately described by the sppp model in the Wannier space, so that 4 Bloch states are

mapped to 1 s-like Wannier function and 3 p-like Wannier functions. Hence, the transformation

matrix [U(k)] is unitary and criterion 3 is satisfied. (ii) To perform realistic calculations of a

molecule, a reasonably large box is required to avoid virtual interactions induced by periodically

repeated images. Usually, only one Γ point is sufficient to sample the BZ, and thus the last

criterion is satisfied on the Be molecule as well . Therefore, the Be molecule is indeed a good

test material for validating our DC correction formulations and implementation.

Technically, a supercell with the box size of 8×7.2×8.8 Å is used to model the Be atom. For

the test purpose, only 8 imaginary time/frequency grid points are used. 4 Bloch states are used

and mapped onto 1 s-like and 3 p-like Wannier functions, which are treated as the correlated

target orbitals. Therefore, the local U loc calculated by the cRPA routine are exactly equal to

the bare Coulomb interaction V , and thus the criterion 2 is automatically satisfied. Recall that

in the cRPA, the correlated polarizability χc of the target space is subtracted from the total

polarizability χ; hence if the target space is equivalent to the full space, χr = χ − χc is zero and

U loc = V . To validate our DC routine, we have performed G0W0r calculations with the same
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Figure 26: Comparison of the (a) first and (b) second diagonal elements of the correlated self-

energy Σ̃loc,GW in the Wannier basis for the Be molecule calculated from the double

counting (DC) routine and the G0W0r implementation. Re and Im represent the real

and imaginary part, respectively. The dashed lines are obtained from Padé fit.

setups that are used in the DC calculations and then transformed the G0W0r Hamiltonian to the

Wannier basis using exactly the same unitary matrix. It should be noted that the corrections

for screened Coulomb interaction W in the long-wavelength limit (wave vector q → 0) was

not included in the G0W0r calculations, which makes it possible to directly compare the results

from the DC routine and G0W0r.

In Fig. 26, we compare the correlated GW self-energies in the Wannier basis obtained from

the DC routine and G0W0r. Obviously, excellent agreement is achieved between the two inde-

pendent calculations. This is also true as the box size or the number of imaginary time/frequency

grid points increase (not shown). For the Fock part, we also obtain exactly the same matrix el-

ements in the Wannier basis

Σloc,Fock =



−9.708 0.000 0.000 0.000

0.000 −1.725 0.000 0.000

0.000 0.000 −1.732 0.000

0.000 0.000 0.000 −1.748


,

because open boundary conditions are used in the calculation of the exchange energy within

G0W0r [52]. This is also the way we treat the Fock part in the DC routine. The exchange energy

of the Be molecule is -9.708 eV, which is equal to Σloc,Hartree
11 since in the sppp model only the s
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Figure 27: Hartree energies (blue circles) calculated from the Hartree-Fock calculations as a

function of the inverse of the supercell size. The extrapolation to an infinite box size

(pink dashed line) and Σloc,Hartree
11 (green dashed line) are shown for comparison.

state is occupied and the one-electron energy of the s state yields the exchange energy.

However, direct comparison of the Hartree part is not straightforward, since instead of open

boundary conditions, periodic boundary conditions are used in G0W0r code to determine the

Hartree energy [52]. To obtain the converged Hartree energy, one should converge it with

respect to the box size, as shown in Fig. 27. As expected, the convergence is slow and Hartree

energy alone converges like (box size)−1. The converged Hartree energy is about 19.232 eV. For

the Hartree part in the DC routine, the resulting matrix elements in the Wannier basis are

Σloc,Hartree =



19.416 0.000 0.000 0.000

0.000 17.830 0.000 0.000

0.000 0.000 18.105 0.000

0.000 0.000 0.000 18.476


.

One would see that the Hartree energy is 19.416 eV, which is exactly twice the exchange energy.

In addition, it is also consistent with the converged Hartree energy from G0W0r (see Fig. 27).

It should be emphasized that such good agreement between the results (correlated self-energy,

Fock, and Hartree energy) obtained from the DC routine and G0W0r is also found in the sp3

model, where 4 Bloch states are mapped to 4 sp3 hybrid Wannier functions, indicating that our

DC formulations and implementations are robust and valid. With this, in the following I will
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are used in the calculations. The data for frequencies beyond 400 eV are truncated
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apply this method to calculate the DC correction for SrVO3.

10.3.3. Double counting corrections of SrVO3

Here, we show the matrix elements of the local Hartree, local Fock and local correlated GW self-

energy of SrVO3 in the V-t2g-like maximally localized Wannier basis in the order of dxy, dxz and

dyz. The imaginary-frequency-dependent partially screened Coulomb interaction [U loc]IJ
KL(iω)

are taken from cRPA calculations in Section (10.2).

The calculated matrix elements of the local Hartree are

Σloc,Hartree =


2.442 0.000 0.000

0.000 2.442 0.000

0.000 0.000 2.442

 .
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Figure 29: Local Matsubara self energies (T = 300K) for the t2g orbitals of SrVO3 using (i)

DFT+DMFT with static U = U(ω = 0), (ii) DFT+DMFT with the dynamical in-

teraction U(iω) from cRPA, and (iii) GW+DMFT. Data obtained using the new GW

implementation of VASP in combination with w2dynamics.

The matrix elements of the local Fock are

Σloc,Fock =


−2.581 0.000 0.000

0.000 −2.581 0.000

0.000 0.000 −2.581

 .
For the local correlated self-energy of SrVO3, the off-diagonal elements are quite minute and

thus negligible. In addition, three t2g-like Wannier functions are degenerate in the energy, i.e.,

Σloc,GW
11 = Σloc,GW

22 = Σloc,GW
33 at each frequency, and hence we show the plot for Σloc,GW

11 (iω) only

in Fig. 28.

10.4. Preliminary results of GW+DMFT on SrVO3

In Fig. 29 we compare Matsubara self energies for the t2g orbitals of SrVO3 obtained with our

new implementation that combines the VASP GW code [107] with the w2dynamics DMFT

code [274, 275]. We employ the same approximations (1)-(3) as in Ref. [119]. (1) Omit-

ting global self-consistency, i.e., performing only one-shot G0W0 calculations starting with

G = GDFT . (2) Fixing the double-counting polarization χGW
loc to the dynamical cRPA result

and approximating χimp ≈ χGW
loc (see Eq. (345)). (3) Approximating the double-counting self
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energy by the local projection of the GW self energy: ΣGW
loc (iω) ≈

∑
k ΣGW(k, iω). 1. However,

instead of the approximative Bose-factor Ansatz [276], we use a numerical exact continuous-

time quantum Monte Carlo algorithm [277], as implemented in w2dynamics by D. Springer.

Our reference is a standard DFT+DMFT calculation that uses a static Hubbard U(ω = 0)

and Hund’s J(ω = 0) as provided by the cRPA. From the low-energy slope of ImΣ(iωn) we

extract a quasi-particle weight Z = 0.6. Turning on the retardation in the interaction, i.e. solv-

ing DFT+DMFT with dynamical U(iω) adds band-renormalizations of plasmonic origin; Z

decreases to 0.5. Also, since the dynamical interaction recovers at high frequencies the un-

screened Coulomb interaction, ReU(iω → ∞) ≈ 16eV, also the self energy Σ lives on a much

larger energy scale [276] than in the standard static DFT+DMFT case. Adding the non-local

GW self energy decreases effective masses, i.e. the ratio of U over bandwidth diminishes and so

does the strength of correlations: In our GW+DMFT the local quasi-particle weight is Z = 0.7,

in qualitative agreement with previous results from Ref. [118]. It should be noted that these are

just our preliminary results and the merger of GW and DMFT is still developing.

1Note that inclusion of the double-counting correction shown in Section (10.3.3) is still ongoing and thus here

we do not use it
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11. Conclusions

To summarize, we have presented a promising low-scaling GW implementation within the

framework of the full potential projector-augmented wave methodology. It allows for quasi-

particle calculations with a scaling that is cubic in the system size and linear in the number of

k points used to sample the Brillouin zone. This is achieved by calculating the polarizability

and self-energy in real space and imaginary time. The transformation from the imaginary time

to the frequency domain is done by an efficient discrete Fourier transformation with only a few

nonuniform grid points. Fast Fourier transformations are used to go from real space to recip-

rocal space and vice versa. The analytic continuation from the imaginary to the real frequency

axis is performed by exploiting Thiele’s reciprocal difference scheme and least-squares method.

Finally, the method is applied successfully to predict the quasiparticle energies and spectral

functions of typical semiconductors (Si, GaAs, SiC, and ZnO), insulators (C, BN, MgO, and

LiF), and metals (Cu and SrVO3). The results are compared with conventional GW calcula-

tions. It is found that the QP energies and spectral functions predicted by G0W0r are in good

agreement with G0W0 but with a reduced scaling in the system size and number of k points,

highlighting the strength of the present method. We believe that this method has great potential

for applications, in particular for large unit cells.

We also apply this low-scaling G0W0r method to predict the ionization potentials and electron

affinities of 100 closed shell molecules. For the ionization potential, the basis set extrapolated

plane wave results agree very well with the Gaussian basis sets [84], often reaching better than

50 meV agreement. In order to achieve this agreement, we correct for finite basis set errors as

well as errors introduced by periodically repeated images. For positive electron affinities differ-

ences between Gaussian basis sets and VASP are slightly larger. We attribute this to larger basis

set extrapolation errors for the Gaussian basis sets. For quasi particle (QP) resonances above

the vacuum level, differences between VASP and Gaussian basis sets are, however, found to be

substantial. This is tentatively explained by insufficient basis set convergence of the Gaussian

type orbital calculations as exemplified for selected test cases.

Moreover, we have coded and tested the self-consistent GW0r method, where the screened

Coulomb interaction W is fixed at the DFT level, while the interacting Green’s function G are

updated by solving the Dyson-equation with the updated self-energy. First results on the test

material Si have been shown. It is found that after 5 iterations self-consistency in GW0r is
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achieved, for example, the number of electrons is converged. It is also found that the band gap

predicted by GW0r method increases significantly compared to the single-shot G0W0r method.

Furthermore, we have extended the imaginary frequency scheme to the conventional GW im-

plementation. Specifically, instead of evaluation of the two electron integral along the real fre-

quency axis, we calculate it along the imaginary axis using the optimized imaginary time/frequency

grids. We make full use of efficient discrete temporal Fourier transformations to obtain the self-

energy along the imaginary frequency axis. Then, Thiele’s reciprocal difference or least-squares

methods are exploited to analytically continuing the self-energy to the real frequency axis. This

method was successfully applied to typical semiconductors ZnO and CdTe. For CdTe, spin-orbit

coupling was considered. It was found that the imaginary frequency version works equally well

as the conventional G0W0 and low-scaling G0W0r implementations, with a modest computa-

tional effort and memory requirements that are between G0W0 and G0W0r. Since the spin-orbit

coupling has not yet been implemented in the low-scaling G0W0r implementation and the con-

ventional G0W0 implementation is often restricted to small systems, the imaginary frequency

version might be a compromise for the moderately large systems where spin-orbit coupling is

non-negligible.

Finally, we have formulated and discussed a feasible scheme to merge GW with DMFT. First,

our low-scaling GW self-energies are obtained in the imaginary frequency domain, which will

facilitate an elegant combination of GW with DMFT and thus enhance the predictive abilities of

GW+DMFT for large correlated systems. Second, the on-site imaginary-frequency-dependent

partially screened intra-orbital interactions U(iω), inter-orbital interactions U′(iω) and Hund’s

coupling J(iω), which are required in the dynamical impurity solver of DMFT, can be calculated

by the cRPA in the same framework as the GW approximation. Exhaustive derivations are given

and tests have been done on SrVO3 and other systems. The calculated results (U, U′ and J) are

in good agreement with the ones obtained from the conventional cRPA calculations. Finally,

the so-called double counting in GW+DMFT has been formulated and successfully tested for

the molecule Be and SrVO3. The preliminary GW+DMFT results on SrVO3 show the local

quasi-particle weight of Z = 0.7, in qualitative agreement with published results. The merger

of GW and DMFT is still under development by collaborating with Karsten Held’s group at the

Technical University of Vienna.
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Part III.

Appendix

Appendix A Fourier transformations

In this appendix, Fourier transformations and some useful equations used in the main text of the

thesis will be shown.

A.1 Continuous functions in a finite system

Considering a rectangular box in 3-dimension with side lengths Lx, Ly, Lz, any well-behaved

function f (r) fulfilling the periodic boundary conditions

f (r + Lxex) = f (r + Lyey) = f (r + Lzez) = f (r), (388)

can be expressed as a Fourier series

f (r) =
1
Ω

∑
k

F(k)eikr, (389)

where k is a wave vector in the reciprocal space of the system with a volume Ω = LxLyLz

k = nx
2π
Lx

ex + ny
2π
Ly

ey + nz
2π
Lz

ey, {nx, ny, nz} ∈ integer. (390)

Then, the Fourier coefficients F(k) can be calculated by

F(k) =

∫
Ω

dr f (r)e−ikr. (391)

Useful formulas that are often used for simplifying equations are

1
Ω

∑
k

e±ikr = δ(r), (392)∫
Ω

dre±ikr = Ωδ(k). (393)
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A.2 Continuous functions in an infinite system

If the volume considered approaches infinity, the k vectors become quasi-continuous variables,

and thus the k-sum is converted into an integral

f (r) =

∫
dk

(2π)3 F(k)eikr, (394)

F(k) =

∫
dr f (r)e−ikr. (395)

Here and in the following, we used notation
∫

dk =
∫

dkxdkydkz and
∫

dr =
∫

drxdrydrz.

Useful formulas that are often used for simplifying equations are∫
dk

(2π)3 (. . .) =
1
Ω

∑
k

(. . .), (396)∫
dke±ikr = (2π)3δ(r), (397)∫

Ω

dre±ikr = Ωδ(k). (398)

A.3 Time and frequency Fourier transformations

Analogous to the spatial Fourier transformations, the temporal Fourier transformations can be

given by

f (τ) =

∫ +∞

−∞

dω
2π

F(ω)e−iωτ, (399)

F(ω) =

∫ +∞

−∞

dτ f (τ)eiωτ. (400)

Comparing Eq. (399) and Eq. (394), one obtains that τ plays the role of r, while ω plays the

role of k but with an opposite sign.

Again, useful formulas that are often used for simplifying equations are∫ +∞

−∞

dω
2π

e−iωτ = δ(τ), (401)∫ +∞

−∞

dτeiωτ = 2πδ(ω). (402)

For the Fourier transforms of operator ∇r, ∇2, ∇×, and ∂τ, one can use the following substi-
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tution rule:

∇r ←→ ik, (403)

∇2
r ←→ −k2, (404)

∇× ←→ ik×, (405)

∂τ ←→ −iω. (406)

As an example,

∇r f (r) = ∇r
1
Ω

∑
k

F(k)eikr =
1
Ω

∑
k

F(k)∇reikr =
1
Ω

∑
k

ikF(k)eikr (407)

A.4 The convolution theorem

The convolution theorem states that the convolution h of two functions u and f can be expressed

as a simple product using their corresponding Fourier spectra H, U, and F.

h(τ) =

∫
dτ′ u(τ − τ′) f (τ′), (408)

H(ω) = U(ω)F(ω), (409)

or the other way around

H(ω) =

∫
dω′U(ω − ω′)F(ω′), (410)

h(τ) = u(τ) f (τ). (411)

This can be extended to the case of multiple convolutions

h(τ) =

∫
dτ′

∫
dτ′′u1(τ − τ′)u2(τ′ − τ′′) f (τ′′) (412)

H(ω) = U1(ω)U2(ω)H(ω) (413)

As an example, here we show the proof for Eq. (413) from Eq. (412) using the definitions of

temporal Fourier transformations:∫
dω′

2π
e−iω′τH(ω′)

=

∫
dτ′

∫
dτ′′

(∫
dω′

2π
e−iω′(τ−τ′)U1(ω′)

) (∫
dω′′

2π
e−iω′′(τ′−τ′′)U2(ω′′)

) (∫
dω′′′

2π
e−iω′′′τ′′F(ω′′′)

)
=

∫
dω′

2π
dω′′

2π
dω′′′

2π
e−iω′τU1(ω′)U2(ω′′)F(ω′′′)

(∫
dτ′eiτ′(ω′−ω′′)

)
︸                 ︷︷                 ︸

2πδ(ω′−ω′′)

(∫
dτ′′eiτ′′(ω′′−ω′′′)

)
︸                   ︷︷                   ︸

2πδ(ω′′−ω′′′)

=

∫
dω′

2π
e−iω′τU1(ω′)U2(ω′)F(ω′).

(414)
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Clearly, Eq. (413) is justified. This rule can be proved similarly for higher order convolutions.

A.5 Continuous functions in translation invariant systems

For a translation invariant system, any function f (r, r′) depends only on the difference between

the coordinates r − r′

f (r, r′) = f (r′ − r). (415)

The consequences in reciprocal space from this constraint are

f (r, r′) =
1

Ω2

∑
k,k′

F(k,k′)eikreik′r′

=
1

Ω2

∑
k,k′

F(k,k′)eik(r−r′)ei(k+k′)r′

=
1
Ω

∑
k

F̃(k)eik(r−r′) = f (r′ − r).

(416)

Using Eq. (392) , one obtains k + k′ ≡ 0 and F(k,k′) = F̃(k)δ(k + k′). Thus, we obtains the

Fourier transformations of translation invariant systems

f (r′ − r) =
1
Ω

∑
k

F̃(k)eik(r−r′) (417)

F̃(k) =

∫
d(r − r′) f (r′ − r)e−ik(r−r′). (418)

As an example, we show below the Fourier transformation of the Coulomb kernel v(r, r′) =

1
|r−r′ | . Replacing r − r′ ⇒ r yields v(r) = 1

|r| . The Fourier transformation can be performed by

using spherical coordinates

V(k) =

∫
dre−ikrv(r) (419)

=

∫ ∞

0
dr r2

∫ 2π

0
dϕ

∫ π

0
dθ sin(θ)e−i k r cos(θ)v(r) (420)

= 2π
∫ ∞

0
dr r2v(r)

∫ π

0
dθ sin(θ)e−i k r cos(θ). (421)

(422)

Using the variable transformation u = cos(θ) and du = − sin(θ)dθ, we can write

V(k) = 2π
∫ ∞

0
dr r2v(r)

∫ −1

1
(−1) du e−i k r u (423)

= 2π
∫ ∞

0
dr r2v(r)

2 sin(kr)
kr

. (424)
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Choosing the specific identity v(r) = 1/|r| = limη→0 e−ηr/r, we finally obtain the Fourier trans-

formed Coulomb kernel

V(k) =
4π
k

lim
η→0

∫ ∞

0
dr e−ηr sin(kr) (425)

=
4π
k

lim
η→0

Im
∫ ∞

0
dr eikr−ηr (426)

= lim
η→0

4π
k2 + η2 =

4π
k2 . (427)

A.6 One-index periodic functions in a crystal

Considering a periodic crystal (supercell) defined by Nk times of unit cells, the volume of the

crystal is given by Ω = NkΩ0 with Ω0 = a1 · (a2 × a3) being the volume of the unit cell, which

is defined by three basis vectors a1, a2 and a3. If a continuous function f (r) which fulfils the

periodic boundary conditions and is periodic in the lattice

f (r + R) = f (r), (428)

where R is a real-space lattice vector

R = n1a1 + n2a2 + n3a3, {n1, n2, n3} ∈ integer, (429)

its Fourier transformation can be expressed as

f (r) =
1

Ω0

∑
G

F(G)eiGr. (430)

It should be noted that here, G is a reciprocal superlattice vector and the volume of the unit

cell Ω0 is used, in contrast to Eq. (389). In obtaining Eq. (430), we have used the following

relationships ∑
R

e±i(k−k′)R = Nkδk,k′ , (431)∑
k∈BZ

e±ik(R−R′) = NkδR,R′ . (432)

Decomposing G into

G = q + g, (433)

with q being a k-point restricted within the Brillouin zone (BZ) of the unit cell and g a reciprocal

lattice vector of the unit cell, Eq. (430) becomes

f (r) =
1

Ω0

BZ∑
q

∑
g

F(q + g)ei(q+g)r. (434)
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The inverse of Fourier transformation is then given by

F(q + g) =

∫
Ω0

dr f (r)e−i(q+g)r. (435)

With Eqs. (425) and (434), one obtains the Coulomb kernel 1
|r−r′ | in Fourier space

1
|r − r′|

=
1

Ω0

BZ∑
q

∑
g

4π
|q + g|2

ei(q+g)(r−r′). (436)

A.7 Two-index periodic functions of a crystal

For a periodic two-index function f (r, r′) of a crystal, such as the Green’s function and response

function, it is periodic in space

f (r, r′) = f (r + R, r′ + R), (437)

where R is a real-space lattice vector. From the constraint in Eq. (437), one obtains

f (r, r′) =
1

Ω0

BZ∑
q,q′

∑
g,g′

ei(q+g)rF(q + g,q′ + g′)e−i(q′+g′)r′

=
1

Ω0

BZ∑
q,q′

∑
g,g′

ei(q+g)(r+R)F(q + g,q′ + g′)e−i(q′+g′)(r′+R) = f (r + R, r′ + R).

(438)

Here, q and q′ are the k-points restricted within the BZ of the unit cell and g and g′ are the

lattice vectors of the reciprocal unit cell. Ω0 is the volume of the unit cell. From Eq. (438) one

obtains
BZ∑
q,q′

(ei(q−q′)R − 1)
∑
g,g′

ei(q+g)rF(q + g,q′ + g′)e−i(q′+g′)r′ = 0. (439)

In deriving Eq. (439), eigR ≡ 1 has been used. Since Eq. (439) holds for any R, one obains

ei(q−q′)R ≡ 1. (440)

This indicates that the difference between q and q′ has to be a reciprocal lattice vector. As q

and q′ are restricted to BZ, q − q′ ≡ 0 holds. Finally, one obtains the Fourier transformation of

the two-index periodic function f (r, r′)

f (r, r′) =
1

Ω0

BZ∑
q

∑
g,g′

ei(q+g)rFq(g, g′)e−i(q+g′)r′ . (441)

Here, Fq(g, g′) ≡ F(q + g,q + g′) is assumed. The inverse of the Fourier transformation is then

given by

Fq(g, g′) =
1

Ω0

∫
Ω0

dr
∫

Ω0

dr′e−i(q+g)r f (r, r′)ei(q+g′)r′ . (442)
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Appendix B Non-uniform grids and temporal discrete

Fourier transformations

In this appendix, it will be exhaustively shown how the non-uniform imaginary time/frequency

grids and temporal discrete Fourier transformations are derived following the work of Kaltak

et al. [103], where the interested readers could find the original derivation. It is noted that this

representation corrects for some inconsistencies in the original publication.

B.1 Non-uniform imaginary time/frequency grids

We start by the RPA correlation energy [278, 279]

ERPA
c =

1
4π

∫ ∞

−∞

dωTr[ln(1 − χ(iω)V) + χ(iω)V], (443)

where χ(iω) is the independent-particle polarizability along the imaginary frequency axis and

V is the bare Coulomb potential. For the seek of brevity, we drop the trace symbol in the

following.

Doing a series expansion for the correlation energy in Eq. (443) by using the series expansion

of ln(1 − x) = −
∑∞

i=1
xn

n yields

Ec = E(2)
c + E(3)

c + · · · (444)

where E(n)
c are the direct Møller-Plesset (MP) correlation energies for order n

E(n)
c = −

1
4π

1
n

∫ ∞

−∞

dω{χ(iω)V}n, n ≥ 2. (445)

The lowest order contribution n = 2 is the direct MP2 correlation energy, which reads

E(2)
c = −

1
8π

∫ ∞

−∞

dω{χ(iω)V}2. (446)

Fourier transforming of χ(iω) to the imaginary time domain, we obtain the corresponding imag-

inary time representation of E(2)
c

E(2)
c = −

1
8π

∫ ∞

−∞

dω[
∫ ∞

−∞

dτχ̂(iτ)eiωτV
∫ ∞

−∞

dτ′χ̂(iτ′)eiωτ′V]

= −
1

8π

∫ ∞

−∞

dτ
∫ ∞

−∞

dτ′
∫ ∞

−∞

dωeiω(τ+τ′)︸            ︷︷            ︸
2πδ(τ+τ′)

χ̂(iτ)Vχ̂(iτ′)V

= −
1
4

∫ ∞

−∞

dτ{χ̂(iτ)V}2.

(447)
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In deriving Eq. (447), Eq. (401) and the fact that χ is an even function with respect to imaginary

time/frequency have been used.

Due to the even symmetry of χ, the Fourier transformation becomes a cosine transformation

χ(iω) = =

∫ ∞

−∞

dτχ̂(iτ) cos(τω) = 2
∫ ∞

0
dτχ̂(iτ) cos(τω), (448)

χ̂(iτ) = =
1

2π

∫ ∞

−∞

dωχ(iω) cos(τω) =
1
π

∫ ∞

0
dωχ(iω) cos(τω). (449)

The independent-particle polarizability reads [73, 86]

χ(iω) =
∑
µ

χµφ(ω, xµ), (450)

χ̂(iτ) =
∑
µ

χµφ̂(τ, xµ), (451)

where the auxiliary functions

φ(ω, x) =
2x

x2 + ω2 , (452)

φ̂(τ, x) =e−x|τ|, (453)

are introduced, which describe the frequency and time dependence, respectively. To keep con-

sistency, here, we have adopted the same notations as in Ref. [103].

• µ stands for the compound index (i, a), where i goes over occupied and a over unoccupied

states and
∑
µ

(· · · ) =
occ∑

i

unocc∑
a

(· · · ).

• xµ = εa−εi > 0 is the transition energy between unoccupied a and occupied states i, which

meets εmin ≤ xµ ≤ εmax with εmin being the band gap and εmax the maximally considered

transition energy.

• χµ = −〈ψi|e−i(k+g)r|ψa〉〈ψa|ei(k+g′)r′ |ψi〉 stands for a matrix with the dimension given by the

number of reciprocal lattice vectors, satisfying |g|2~/(2m) ≤ ENCUTGW with ENCUTGW

being the energy cutoff for the basis.

Inserting either Eq. (451) into Eq. (447), or Eq. (450) into Eq. (446), the resulting integrals

can be carried out analytically, giving rise to an exact expression for the direct MP2 energy

E(2)
c = −

1
2

∑
µµ′

χµVχµ′V
1

xµ + xµ′
. (454)

164



One can avoid the computationally expensive summation over pairs (µ, µ′) in Eq. (454) by

evaluating the integrals in Eqs. (446) and (447) numerically using an appropriate quadrature

E(2)
c ≈ −

1
8π

N∑
k=1

γk{χ(iωk)V}2, (455)

E(2)
c ≈ −

1
4

N∑
i=1

σi{χ̂(iτi)V}2. (456)

To keep the necessary quadrature points N as small as possible, one needs to minimize the

discretization error between the exact and approximate direct MP2 energy. To this end, we

subtract Eq. (454) from Eq. (455) and substitute χ(iω) by Eq. (450) obtaining

1
2

∑
µµ′

χµVχµ′V
{

1
xµ + xµ′

−
1

4π

N∑
k=1

γkφ(ωk, xµ)φ(ωk, xµ′)

 . (457)

Clearly, we have obtained an error function to be minimized in order to determine the optimal

quadrature ({ωk}
N
k=1, {γk}

N
k=1) for the frequency domain

H(~γ, ~ω, x, x′) =
1

x + x′
−

1
4π

N∑
k=1

γkφ(ωk, x)φ(ωk, x′), (458)

with (x, x′) ∈ [εmin, εmax] × [εmin, εmax].

Analogously, subtracting Eq. (454) from Eq. (456), one obtains the error function to be min-

imized to obtain the optimal quadrature ({τi}
N
i=1, {σi}

N
i=1) for the time domain

Ĥ(~σ,~τ, x + x′) =
1

x + x′
−

1
2

N∑
i=1

σi φ̂(τi, x)φ̂(τi, x′)︸            ︷︷            ︸
e−(x+x′)τi

. (459)

One can see that in Eq. (459) the error function depends on x + x′ only and is essentially one-

dimensional. However, the error function in the frequency domain shown in Eq. (458) depends

on two linearly independent variables x and x′. Fortunately, the largest errors of H are on the

diagonal x = x′ [103]. Therefore, it is a good approximation to consider the one-dimensional

problems with the following error functions:

η(~γ, ~ω, x) =
1
x
−

1
2π

N∑
k=1

γkφ
2(ωk, x) =

1
x
−

1
2π

N∑
k=1

γk

(
2x

x2 + ω2
k

)2

(460)

η̂(~σ,~τ, x) =
1
x
−

N∑
i=1

σiφ̂
2(τi, x) =

1
x
−

N∑
i=1

σie−2xτi . (461)

By minimizing the error functions η(~γ, ~ω, x) and η̂(~σ,~τ, x) with respect to either ‖ · ‖2 or ‖ · ‖∞

norm, one obtains the least square or Minimax solutions of the quadratures for the frequency
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and time domain. Actually, it should be noted that VASP first evaluates the numerically more

convenient non-scaled optimal quadratures ({ωk}
N
k=1, {γk}

N
k=1) and ({τi}

N
i=1, {σi}

N
i=1) for x ∈ I =

[1,R] with R = εmax/εmin. Scaled optimal quadratures ({ω′k}
N
k=1, {γ

′
k}

N
k=1) and ({τ′i}

N
i=1, {σ

′
i}

N
i=1) for

x ∈ [εmin, εmax] are then obtained straightforwardly by

γ′k = γkεmin, ω′k = ωkεmin (462)

σ′i = σi/εmin, τ′i = τi/εmin. (463)

Since the MP2 energy E(2)
c is dominant in the RPA correlation energy ERPA

c , that is |E(n)
c | < |E

(2)
c |

for n > 2, the above resulting quadratures ({ω′k}
N
1 , {γ

′
k}

N
1 ) and ({τ′i}

N
1 , {σ

′
i}

N
1 ) obtained from the

second order diagram should be applicable for any other higher order diagrams. It has also

been found that the two grids are dual to each other. That is, given {iτ j}
N
j=1, the discretization

error function is minimal at the grid points {iωk}
N
k=1, and vice versa [103].

B.2 Temporal discrete Fourier transformations

For an even function F with respect to imaginary time/frequency, such as the polarizability χ,

the forward Fourier transformation is given by

F(iω) = 2
∫ ∞

0
dτ cos(ωτ)F(iτ). (464)

A natural question is whether one can obtain a discrete transformation matrix γki from the

imaginary time to the frequency or the other way around if the optimized quadrature points

({ωk}
N
k=1, {γk}

N
k=1) and ({τi}

N
i=1, {σi}

N
i=1) are known and fixed, such that

F(iωk) −
N∑

i=1

γki cos(ωkτi)F(iτi)

is minimized with respect to either ‖ · ‖2 or ‖ · ‖∞ norm. The answer is yes. This can be done

analogous to Appendix (B.1). The coefficients γki can be determined by minimizing the error

function between the exact and approximate polarizability

Ωc(γ, ωk, x) = χ(iωk)Exact − χ(iωk)Approx.

=
∑
µ

χµφ(ωk, xµ) −
N∑

i=1

γki cos(ωkτi)
∑
µ

χµφ̂(τi, xµ)

=
∑
µ

χµ[
2xµ

x2
µ + ω2

k

−

N∑
i=1

γki cos(ωkτi)e−xµτi].

(465)
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Finally, we end up with the following error function at each frequency point ωk for a specific

energy difference x ∈ [εmin, εmax]:

ηc(γ, ωk, x) =
2x

x2 + ω2
k

−

N∑
i=1

γki cos(ωkτi)e−xτi . (466)

Here, the imaginary time {iτi}
N
i=1 and frequency {iωk}

N
k=1 grids are precalculated. Specifically,

for one frequency point ωk, one obtains a vector {γki}, ∀i = 1, · · · ,N. Repeating this for all

frequency points ωk,∀k = 1, · · · ,N, then one obtains the transformation matrix [γki], ∀i, k =

1, · · · ,N. It should be noted that here the error function ηc(γ, ωk, x), actually, is the quadrature

error of integral of 2
∫ ∞

0
dτ cos(ωkτ)e−xτ

ηc(γ, ωk, x) = 2
∫ ∞

0
dτ cos(ωkτ)e−xτ︸                      ︷︷                      ︸

2x
x2+ω2

k

−

N∑
i=1

γki cos(ωkτi)e−xτi

(467)

for the chosen frequency ωk.

Similarly, the transformation matrix from the imaginary frequency to time domain can be

determined by minimizing the error function

ηc(ξ, τi, x) =φ̂(τi, x) −
N∑

k=1

ξik cos(τiωk)φ̂(ωk, x)

=e−x|τ|i −

N∑
k=1

ξik cos(τiωk)
2x

x2 + ω2
k

.

(468)

Again, the imaginary time {iτi}
N
i=1 and frequency {iωk}

N
k=1 grids are precalculated. For one

frequency point τi, one obtains a vector {ξik}, ∀k = 1, · · · ,N. Repeating this for all fre-

quency points τi,∀i = 1, · · · ,N, then one obtains the transformation matrix [ξik], ∀k, i =

1, · · · ,N. Note that here the error function ηc(ξ, τi, x), actually, is the quadrature error of in-

tegral 2
∫ ∞

0
dω
2π cos(τiω) 2x

x2+ω2

ηc(ξ, τi, x) = 2
∫ ∞

0

dω
2π

cos(τiω)
2x

x2 + ω2︸                             ︷︷                             ︸
e−x|τ|i

−

N∑
k=1

ξik cos(τiωk)
2x

x2 + ω2
k

(469)

In contrast, for an odd function F with respect to imaginary time/frequency, the forward

Fourier transformation is described by

F(iω) = 2i
∫ ∞

0
dτ sin(ωτ)F(iτ), (470)
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which is approximated by a discrete sine transformation (ST)

F(iωk) = i
N∑

j=1

λk jsin(ωkτ j)F(iτ j). (471)

Again, {iτ j}
N
j=1 and {iωk}

N
k=1 are precalculated and chosen to be identical to the cosine grid.

However, the coefficients λk j are determined by minimizing the error function

ηs(λ, ωk, x) =
2ωk

x2 + ω2
k︸           ︷︷           ︸

2
∫ ∞

0 dτ sin(ωkτ)e−xτ

−

N∑
j=1

λk jsin(ωkτ j)e−xτ j . (472)

The inverse ST is then obtained by

F(iτ j) = −i
N∑

k=1

ζ jksin(τ jωk)F(iωk), (473)

where the matrix ζ sin (τω) is the inverse of the matrix λ sin (ωτ) in Eq. (471).
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Appendix C Analytic continuation

The generalized mathematical problem of an analytic continuation can be stated as follows: find

an analytic function f (z) in the upper complex plane that coincides with calculated values on a

discrete set of points

f (z j) = f j, j = 1, 2....N (474)

where (z j, f j ) are the known point-value pairs of the function. To this end, there are several

methods available, for example, the maximum entropy method (MEM) [280], statistical sam-

pling method (SSM) [281], and Padé approximate method (PAM) [109]. In the following, we

will recapitulate MEM and PAM methods, but put particular focus on the latter. We refer the

readers to those original papers or book for more details.

C.1 Maximum entropy method

MEM is widely used for determining the spectral function A(ω) given the Green function data

sets G(iτ) obtained from a quantum Monte-Carlo (QMC) calculation. The starting point is the

Fourier transform of the spectral representation of the finite-temperature Green’s function

G(iτ) =

∫ +∞

−∞

dω
eτ(µ−ω)

1 + eβ(µ−ω) A(ω). (475)

Here, β = 1
kBT with T being the temperature. From Eq. (475) one can see that the analytical

continuation is an ill-conditioned problem: the kernel of Eq. (475) is very small for large fre-

quencies |ω| so that large changes in A(ω) have only a small impact on G(iτ). This indicates

that there might be several possible A(ω) giving similar solutions for G(iτ). Which one is the

most accurate one becomes an elusive issue. To address this problem, M. Jarrella and J.E. Gu-

bernatisb [280] proposed the maximum entropy method that is based on the Bayesian theorem.

The essence of the MEM is that the most likely spectral function A(ω) is the one that maximizes

a posteriori probability [280]

P(A|G) = P(G|A)P(A)/P(G), (476)

where P(G) is a constant for a given Green function, and the conditional probability P(G|A) and

a priori probability P(A), respectively, can be obtained by [280]

P(G|A) = e−
χ2
2 (477)

P(A) ∼ eαS , (478)
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where χ2 is the quadratic difference between given G(iτ) and that obtained from A(ω) by Eq.

(475), α is a constant that should be chosen very carefully (see Ref. [280]) and S is the entropy,

which is calculated by [280]

S =

∫ +ω0/2

−ω0/2
dωA(ω)ln[A(ω)ω0]. (479)

Generally speaking, the MEM is a good method in particular for the cases where the data sets

have large noise, e.g., the data obtained from quantum Monte-Carlo (QMC), for which MEM

provides an efficient way to make the statistical errors as small as possible. In addition, it can

provide reliable features at small frequencies, such as the height and width of the central peak,

and the overall weight and position of the Hubbard bands. However, it has disadvantages in

the sense that it requires a reasonable default model. Besides, because of the statistical errors

in the QMC calculations and because Eq. (475) is ill-conditioned for large |ω|, MEM thus

cannot resolve fine details at large frequencies. Statistical sampling method (SSM) improves

the analytic continuation in the sense that it does not require a default model and can resolve

the structure on a very small energy scale [281]. However, both MEM and SSM can not predict

accurate poles of the function to be fitted. In our low-scaling GW method, the self-energy is

exact without any noise and we are mainly concerned with the calculation of the quasiparticle

energies. Therefore, MEM and SSM are not desirable methods for our case. Instead, the Padé

approximate method tends to represent well the position and weight of low-energy features in

the spectral functions, which are exactly what we desire. In the following we will focus on the

Padé approximate method.

C.2 Padé approximate method

A Padé approximant can be expressed as a [k/r] rational polynomial [282]:

f (z) =

∑k+1
i=1 pizi−1∑r

i=1 qizi−1 + zr , (480)

where pi and qi are the unknown complex coefficients to be determined given the known data

sets (z j, f j ). Since the correlated self-energy Σc(iω) has asymptotes A/iω, it is suitably fitted

using a [(r − 1)/r] Padé approximant [282]

f (z) =

∑r
i=1 pizi−1∑r

i=1 qizi−1 + zr =
p1 + p2z + ...... + przr−1

q1 + q2z + ...... + qrzr−1 + zr . (481)

To solve this Padé fitting, there are three methods that are commonly used: Mutipole expansion

(ME), least-squares (LS) method and Thiele’s reciprocal difference (TRD) method.
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C.2.1 Multipole expansion method

Multipole expansion method is first explored by Godby et al. [96,102] in analytically continuing

the self-energy to the real frequency axis by taking into account the pole structure of the self-

energy

Σ(iω) = a0 +

n∑
k=1

ak

iω − zk
, (482)

where a0, ak and zk are complex numbers. n is the number of poles. This is easily implemented

by calling the Levenberg-Marquardt routine [283]. In the following, we will give more details

as to how ME is implemented.

In our case, instead of fitting the self-energy Σ directly, we apply the model to the Green’s

function G since it has a more favorable structure than the self-energy. G is calculated from the

self-energy by the Dyson equation

G(iω) =
1

iω + EF − Σ(iω)
. (483)

In order to avoid dealing with complex numbers, a block vector ~y is created that contains both

the real and imaginary parts of G(iω)

~y = [(Re[G(iω j)], j = 0, ...N − 1), (Im[G(iω j)], j = 0, ...N − 1)]. (484)

To avoid branch cuts, only positive frequency points are used. To use the Levenberg-Marquardt

routine, the function and its derivative at each frequency point should be provided. To this aim,

we introduce

ak = bk + ick (485)

zk = xk + iyk. (486)

Then, the real and imaginary parts of Green’s functions read

Re[G(iω)] = b0 +

n∑
k=1

ck(ω − yk) − bkxk

x2
k + (ω − yk)2

(487)

Im[G(iω)] = c0 +

n∑
k=1

−bk(ω − yk) − ckyk

x2
k + (ω − yk)2

. (488)

The derivatives with respect to the parameters are given by

∂Re[G(iω)]
∂b0

= 1 (489)
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∂Re[G(iω)]
∂c0

= 0 (490)

∂Re[G(iω)]
∂bk

=
−xk

x2
k + (ω − yk)2

(491)

∂Re[G(iω)]
∂ck

=
ω − yk

x2
k + (ω − yk)2

(492)

∂Re[G(iω)]
∂xk

=
−bk(x2

k + (ω − yk)2) − (ck(ω − yk) − bkxk)2xk

(x2
k + (ω − yk)2)2

(493)

∂Re[G(iω)]
∂yk

=
−ck(x2

k + (ω − yk)2) + (ck(ω − yk) − bkxk)2(ω − yk)

(x2
k + (ω − yk)2)2

(494)

∂Im[G(iω)]
∂b0

= 0 (495)

∂Im[G(iω)]
∂c0

= 1 (496)

∂Im[G(iω)]
∂bk

=
−(ω − yk)

x2
k + (ω − yk)2

(497)

∂Im[G(iω)]
∂ck

=
−xk

x2
k + (ω − yk)2

(498)

∂Im[G(iω)]
∂xk

=
−ck(x2

k + (ω − yk)2) + (bk(ω − yk) + ckxk)2xk

(x2
k + (ω − yk)2)2

(499)

∂Im[G(iω)]
∂yk

=
bk(x2

k + (ω − yk)2) − (bk(ω − yk) − ckxk)2(ω − yk)

(x2
k + (ω − yk)2)2

. (500)

Once the parameters have been obtained, one can perform the analytic continuation to the real

frequency axis by

G(ω) = a0 +

n∑
k=1

ak

ω − EF − zk
. (501)

However, it turns out that it is rather unstable when the number of poles exceeds three. The

fitted parameters are too sensitive to the initial parameters. The 2-pole model is always robust,

but it results in a poor fit. This also holds for the 3-pole model, though it is physically sound.

The 4-pole model yields the best fit, but it is rather unstable, even though we started from the

parameters of the 2-pole or 3-pole models. The models beyond 4 poles are generally unstable.
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C.2.2 Least-squares (LS) method

Inserting Eq. (474) into Eq. (481) for each known points (z j, f j ) and defining a vector of un-

knowns [110, 282]

x = [p1, p2, ..., pr, q1, q2, ..., qr]T, (502)

one could easily obtain the following linear system of equations [110, 282]

Ax=b, (503)

where the matrix A and right-hand-side vector b, respectively, are expressed as [110, 282]

A =



1 z1 z2
1 ... zr−1

1 − f1 − f1z1 ... − f1zr−1
1

1 z2 z2
2 ... zr−1

2 − f2 − f2z2 ... − f2zr−1
2

1 z3 z2
3 ... zr−1

3 − f3 − f3z3 ... − f3zr−1
3

... ... ... ... ... ... ... ... ...

... ... ... ... ... ... ... ... ...

1 zM z2
M ... zr−1

M − fM − fMzM ... − fMzr−1
M


(504)

b = [ f1zr
1, f2zr

2, ...., fMzr
M]T. (505)

It is found that the precision of input points plays an important role in how good the Padé

fit is. In addition, as the number of frequencies N increases to a large number, the condition

number of the matrix A, however, rapidly increases, which makes the LS ill-defined. For our

low-scaling GW implementation, the GW self-energies can be obtained with a high precision

and the optimized grids used yield linear equations that are remarkably linearly independent.

From our tests, it is, however, found that the LS method works almost equally well with the

Thiele’s reciprocal difference method, as will be introduced below, except for few cases. In

order to improve the condition number of the matrix A, one possible solution is to use bound

Lagrange polynomials instead of the rational polynomials.
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C.2.3 Thiele’s reciprocal difference (TRD) method

In the TRD method, the Padé approximate PN(z) is expressed by a continued fraction expan-

sion [109]

PN(z) =
a1

1+

a2(z − z1)

1+
...

aN(z − zN−1)

1 + (z − zN)gN+1(z)
(506)

=
a1

1 +
a2(z − z1)

1 +
a3(z − z2)

1 +
...

1 +
aN(z − zN−1)

1 + (z − zN)gN+1(z)

, (507)

where the complex coefficients an are given by the following recursion relations:

an = gn(zn), g1(zn) = fn, n = 1, ...,N (508)

gn(z) =
gn−1(zn−1) − gn−1(z)

(z − zn−1)gn−1(z)
. (509)

It is straightforward to prove from the above recursion relations that [109]

PN(z j) = f j, j = 1, ...,N (510)

holds for the known point-value pairs {zi, f j}
N
j=1 of the function f (z) (the diagonal elements of

the self-energy in the G0W0r case).

This method is very simple and not difficult to implement and it has been successfully applied

to the analytic continuation of dynamic response functions [284]. It is also found that the TRD

method is rather efficient and robust except for few cases where there are poles close to the

DFT eigenvalues. In general, the TRD and LS methods work equally well for most cases. In

our practical implementation, however, we combine the TRD and LS methods and choose a

more reasonable value from one of them.
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Appendix D Derivation of the head of intra-band

dielectric functions

We start from the independent polarizability in the reciprocal space and imaginary frequency

domain, which has been derived in Appendix (G)

χG,G′(q, iω) = −
1

Ω0

BZ∑
k

occ∑
i

unocc∑
a

2(εak+q − εik)
(εak+q − εik)2 + ω2 〈φik|e−i(q+G)r|φak+q〉〈φak+q|ei(q+G′)r′ |φik〉

= −
1

Ω0

BZ∑
k

occ∑
i

unocc∑
a

2(εak+q − εik)
(εak+q − εik)2 + ω2 〈uik|e−iGr|uak+q〉〈uak+q|eiG′r′ |uik〉,

(511)

where εik is the eigenvalue of state (i,k) and uik(r) is the cell periodic part of a one-electron

orbital φik(r). Ω0 is the volume of the unit cell. The intra-band polarizability (i = a = n ∈ p. f .,

where p. f . indicates the partially filled bands) can be calculated as

χintra
G,G′(q, iω) = −

1
Ω0

BZ∑
k

p. f .∑
n

2(εnk+q − εnk)
(εnk+q − εnk)2 + ω2 〈unk|e−iGr|unk+q〉〈unk+q|eiG′r′ |unk〉. (512)

The intra-band dielectric function can then be calculated by

εintra
G,G′(q, iω) = −

4πe2

|q + G||q + G′|
χintra

G,G′(q, iω)

=
4πe2

|q + G||q + G′|
1

Ω0

∑
k

p. f .∑
n

2(εnk+q − εnk)
(εnk+q − εnk)2 + ω2

× 〈unk+q|eiGr|unk〉〈unk|e−iG′r′ |unk+q〉.

(513)

In the long-wave (q → 0) limit, the head (G = G′ = 0) of the intra-band dielectric function

diverges because it is divided by (|q|2 → 0). Thus, special considerations should be taken. Now

we explicitly write down the head of the intra-band dielectric function

εintra
0,0 (q→ 0, iω) = lim

q→0

1
Ω0

4πe2

|q|2
BZ∑
k

p. f .∑
n

2(εnk+q − εnk)
(εnk+q − εnk)2 + ω2 |〈unk+q | unk〉|

2. (514)

By Taylor expansion of unk+q around q→ 0, we obtain

〈unk+q | unk〉 =〈unk | unk〉 + q〈5kunk | unk〉 + O(q2)

≈1 + O(q2).
(515)

In deriving Eq. (515), we have used the fact that 〈unk|unk〉 = 1 and 5kunk is nearly orthogonal

to unk so that the second term q〈5kunk | unk〉 is negligible. By Taylor expansion of transition
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energy εnk+q − εnk around q→ 0, we obtain

εnk+q − εnk =q 5k εnk +
1
2

q2 52
k εnk + O(q3)

=
1
2

q2 52
k εnk + O(q3).

(516)

In deriving Eq. (516), we have used the fact that q 5k εnk is an odd function in k and thus its

summation over k is vanishing. Considering εnk+q − εnk � ω, we obtain

2(εnk+q − εnk)
(εnk+q − εnk)2 + ω2 =

2(εnk+q − εnk)
ω2

1
1 + ( εnk+q−εnk

ω
)2

=
2(εnk+q − εnk)

ω2

{
1 − (

εnk+q − εnk

ω
)2 + O[(

εnk+q − εnk

ω
)4]

}
=

q2 52
k εnk

ω2 + O(q6)

(517)

Inserting Eq. (517) and Eq. (515) into Eq. (514), we finally obtain

εintra
0,0 (q→ 0, iω) =

1
ω2

4πe2

Ω0

BZ∑
k

p. f .∑
n

52
kεnk. (518)

Using the squared plasma frequency

ω2
plasma =

4πe2

Ω0

BZ∑
k

p. f .∑
n

52
kεnk, (519)

we obtain a simple expression for the head of intra-band dielectric function

εintra
0,0 (q→ 0, iω) =

ω2
plasma

ω2 . (520)

It should be noted that for the wings (G = 0 or G′ = 0) and body (G , 0 and G′ , 0)

of the intra-band dielectric function, it can be proved that they are both zero [wings=O(q),

body=O(q2)].
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Appendix E Derivation of the self-energy within PAW

In this appendix, I will show in more details how the self-energy is derived within the framework

of the PAW. To this end, there are two alternatives: one starts with the direct Møller-Plesset

(MP2) energy using the relationship between MP2 energy and self-energy, and the other is

directly obtained from the definitions of the Green’s functions and self-energy.

E.1 Indirect motivation from the direct MP2 energy

To derive the one-electron self-energy in second order

Σ(r,R′, iτ) = −G(r,R′, iτ)W(r,R′, iτ) (521)

within the PAW, it is advantageous to start from the equation for the Laplace transformed direct

MP2 energy (LT-dMP2)

EMP2 = −2Tr
[
G(R′, r, iτ)G(r,R′,−iτ)W(r,R′, iτ)

]
. (522)

Here, G(r,R′,−iτ) and G(r,R′, iτ) are the Green’s functions for occupied and unoccupied

states, respectively. W(r,R′, iτ) is the screened Coulomb interaction in second order W = VχV

with V and χ = GG being the bare Coulomb interaction and independent-particle polarizability,

respectively. With the definition of the self-energy in Eq. (521), Eq. (522) can be rewritten as

EMP2 = 2Tr
[
G(R′, r, iτ)Σ(r,R′,−iτ)

]
, (523)

where Σ(r,R′,−iτ) is the self-energy for the occupied states. In the following, we just show the

derivation for the occupied self-energy Σ(r,R′,−iτ) only, while the derivation for the unoccu-

pied self-energy Σ(r,R′, iτ) is similar and straightforward.

We are now going to rewrite the formula for LT-dMP2 using the representations of the Green’s

functions within the PAW method. This will help us to distil the structure required to represent

the self-energy within the PAW method. We first concentrate on the object inside of the trace in

Eq. (522), i.e., on

G(R′, r, iτ)G(r,R′,−iτ)W(r,R′, iτ). (524)

Using the definitions for the unoccupied Green’s functions in Eqs. (228–231) and the occu-
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pied Green’s functions in Eqs. (232–235) the object inside of the trace operator then reads

G(R′, r, iτ)G(r,R′,−iτ)W(r,R′, iτ)

= G
(1)

(R′, r, iτ)G(1)(r,R′,−iτ)W(r,R′, iτ)

+
∑
µν

G
(2)

(R′, µ, iτ)G(2)(ν,R′,−iτ)Qµν(r)W(r,R′, iτ),

+
∑
αβ

G
(3)

(β, r, iτ)G(3)(r, α,−iτ)W(r,R′, iτ)Qαβ(R′),

+
∑
µναβ

G
(4)

(β, µ, iτ)G(4)(ν, α,−iτ)Qµν(r)W(r,R′, iτ)Qαβ(R′).

(525)

With this, the direct MP2 energy can be expressed by

1
2

EMP2 = −
∑
r∈C

∑
R′∈S

G
(1)

(R′, r, iτ)G(1)(r,R′,−iτ)W(r,R′, iτ)

−
∑
r∈C

∑
R′∈S

∑
µν

G
(2)

(R′, µ, iτ)G(2)(ν,R′,−iτ)Qµν(r)W(r,R′, iτ),

−
∑
r∈C

∑
R′∈S

∑
αβ

G
(3)

(β, r, iτ)G(3)(r, α,−iτ)W(r,R′, iτ)Qαβ(R′),

−
∑
r∈C

∑
R′∈S

∑
µναβ

G
(4)

(β, µ, iτ)G(4)(ν, α,−iτ)Qµν(r)W(r,R′, iτ)Qαβ(R′).

(526)

We now define quantities D(2), D(3) and D(4)

D(2)(µν,R′, iτ) =
∑
r∈C

Qµν(r)W(r,R′, iτ), (527)

D(3)(r, αβ, iτ) =
∑
R′∈S

W(r,R′, iτ)Qαβ(R′), (528)

D(4)(µν, αβ, iτ) =
∑
r∈C

∑
R′∈S

Qµν(r)W(r,R′, iτ)Qαβ(R′). (529)

Then Eq. (526) reduces to

1
2

EMP2 = −
∑
r∈C

∑
R′∈S

G
(1)

(R′, r, iτ)G(1)(r,R′,−iτ)W(r,R′, iτ)

−
∑
R′∈S

∑
µν

G
(2)

(R′, µ, iτ)G(2)(ν,R′,−iτ)D(2)(µν,R′, iτ),

−
∑
r∈C

∑
αβ

G
(3)

(β, r, iτ)G(3)(r, α,−iτ)D(3)(r, αβ, iτ),

−
∑
µναβ

G
(4)

(β, µ, iτ)G(4)(ν, α,−iτ)D(4)(µν, αβ, iτ).

(530)

By comparing Eq. (530) with Eq. (523), we finally obtain a useful definition of the self-energy
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within the PAW scheme

Σ(1)(r,R′,−iτ) = −G(1)(r,R′,−iτ)W(r,R′, iτ), (531)

Σ(2)(µ,R′,−iτ) = −
∑
ν

G(2)(ν,R′,−iτ)D(2)(µν,R′, iτ), (532)

Σ(3)(r, β,−iτ) = −
∑
α

G(3)(r, α,−iτ)D(3)(r, αβ, iτ), (533)

Σ(4)(µ, β,−iτ) = −
∑
να

G(4)(ν, α,−iτ)D(4)(µν, αβ, iτ). (534)

The derivation of the unoccupied self-energy Σ is simply done by replacing G with G

Σ
(1)

(r,R′, iτ) = −G
(1)

(r,R′, iτ)W(r,R′, iτ), (535)

Σ
(2)

(µ,R′, iτ) = −
∑
ν

G
(2)

(ν,R′, iτ)D(2)(µν,R′, iτ), (536)

Σ
(3)

(r, β, iτ) = −
∑
α

G
(3)

(r, α, iτ)D(3)(r, αβ, iτ), (537)

Σ
(4)

(µ, β, iτ) = −
∑
να

G
(4)

(ν, α, iτ)D(4)(µν, αβ, iτ). (538)

In the second step, the matrix elements of the self-energy in the orbital basis are then obtained

by

Σ(k)
nn (−iτ) =

∑
r∈C

∑
R′∈S

ψ̃∗nk(r)Σ(1)(r,R′,−iτ)ψ̃nk(R′)

+
∑
µ

∑
R′∈S

〈ψ̃nk| p̃µ〉Σ(2)(µ,R′,−iτ)ψ̃nk(R′)

+
∑
r∈C

∑
β

ψ̃∗nk(r)Σ(3)(r, β,−iτ)〈p̃β|ψ̃nk〉

+
∑
µ

∑
β

〈ψ̃nk|p̃µ〉Σ(4)(µ, β,−iτ)〈p̃β|ψ̃nk〉.

(539)

Σ
(k)
nn (iτ) =

∑
r∈C

∑
R′∈S

ψ̃∗nk(r)Σ
(1)

(r,R′, iτ)ψ̃nk(R′)

+
∑
µ

∑
R′∈S

〈ψ̃nk| p̃µ〉Σ
(2)

(µ,R′, iτ)ψ̃nk(R′)

+
∑
r∈C

∑
β

ψ̃∗nk(r)Σ
(3)

(r, β, iτ)〈p̃β|ψ̃nk〉

+
∑
µ

∑
β

〈ψ̃nk|p̃µ〉Σ
(4)

(µ, β, iτ)〈p̃β|ψ̃nk〉.

(540)

It should be mentioned that although the above derivation has been done on the second-order

self-energy only, it is applicable to other higher orders as well. This gives rise to a general for-

179



mulation of the correlated self-energy as long as the second-order screened Coulomb interaction

is replaced by the correlated screened Coulomb interaction VχV + VχVχV + ....

E.2 Direct derivation from the definitions

In contrast to the above Section (E.1), here we show the derivation of the matrix elements of

the self-energy within the PAW method directly from the definitions of the Green’s functions

and self-energy. Now we concentrate on the unoccupied self-energy only, while the occupied

self-energy are obtained by replacing G with G.

Σ
k
nm(iτ) = 〈ψnk|Σ̂(iτ)|ψmk〉 = −〈ψnk|Ĝ(iτ)Ŵ(iτ)|ψmk〉

= 〈ψnk|

unocc∑
a

|ψa〉〈ψa|e−iεaτŴ(iτ)|ψmk〉

=

unocc∑
a

∑
r∈C

∑
R′∈S

〈ψnk|r〉〈r|
{
|ψa〉〈ψa|e−iεaτŴ(iτ)

}
|R′〉〈R′|ψmk〉

=

unocc∑
a

∑
r∈C

∑
R′∈S

e−iεaτW(r,R′, iτ)〈ψnk|r〉〈r|ψa〉〈ψa|R′〉〈R′|ψmk〉.

(541)

Note that in deriving Eq. (541) the completeness relationships∑
r∈C

|r〉〈r| = 1̂ (542)∑
R′∈S

|R′〉〈R′| = 1̂, (543)

and the “space-time” representation of the self-energy

〈r|Σ̂(iτ)〉|R′〉 = −〈r|Ĝ(iτ)Ŵ(iτ)〉|R′〉 = −〈r|Ĝ(iτ)|R′〉〈r|Ŵ(iτ)|R′〉 (544)

have been used. Also, we have used a composite index a = (n′,k) with n′ ∈ unocc for brevity.

According to the PAW method [Eq. (222)], we obtain

〈ψnk|r〉〈r|ψa〉 = 〈ψ̃nk|r〉〈r|ψ̃a〉 +
∑
µν

〈ψ̃nk| p̃µ〉〈p̃ν|ψ̃a〉
{
〈φµ|r〉〈r|φν〉 − 〈φ̃µ|r〉〈r|φ̃ν〉

}
= 〈ψ̃nk|r〉〈r|ψ̃a〉 +

∑
µν

〈ψ̃nk| p̃µ〉〈p̃ν|ψ̃a〉Qµν(r),
(545)
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and

〈ψa|R′〉〈R′|ψmk〉 = 〈ψ̃a|R′〉〈R′|ψ̃mk〉 +
∑
αβ

〈ψ̃a|p̃α〉〈p̃β|ψ̃mk〉
{
〈φα|R′〉〈R′|φβ〉 − 〈φ̃α|R′〉〈R′|φ̃β〉

}
= 〈ψ̃a|R′〉〈R′|ψ̃mk〉 +

∑
αβ

〈ψ̃a|p̃α〉〈p̃β|ψ̃mk〉Qαβ(R′).

(546)

To summarize, there are four terms in the self-energy:

Σ
k
nm(iτ) = Σ

k(1)
nm (iτ) + Σ

k(2)
nm (iτ) + Σ

k(3)
nm (iτ) + Σ

k(4)
nm (iτ), (547)

where each term is given by

Σ
k(1)
nm (iτ) =

unocc∑
a

∑
r∈C

∑
R′∈S

e−iεaτW(r,R′, iτ)〈ψ̃nk|r〉〈r|ψ̃a〉〈ψ̃a|R′〉〈R′|ψ̃mk〉

=
∑
r∈C

∑
R′∈S

ψ̃∗nk(r)

unocc∑
a

ψ̃a(r)ψ̃∗i (R′)e−iεaτ

 W(r,R′, iτ)ψ̃mk(R′)

=
∑
r∈C

∑
R′∈S

ψ̃∗nk(r)G
(1)

(r,R′, iτ)W(r,R′, iτ)ψ̃mk(R′)

=
∑
r∈C

∑
R′∈S

ψ̃∗nk(r)Σ
(1)

(r,R′, iτ)ψ̃nk(R′),

(548)

Σ
k(2)
nm (iτ) =

unocc∑
a

∑
r∈C

∑
R′∈S

e−iεaτW(r,R′, iτ)〈ψ̃a|R′〉〈R′|ψ̃mk〉
∑
µν

〈ψ̃nk| p̃µ〉〈p̃ν|ψ̃a〉Qµν(r)

=
∑
r∈C

∑
R′∈S

∑
µν

〈ψ̃nk| p̃µ〉

unocc∑
a

〈p̃ν|ψ̃a〉ψ̃
∗
i (R′)e−iεaτ

 Qµν(r)W(r,R′, iτ)ψ̃mk(R′)

=
∑
r∈C

∑
R′∈S

∑
µν

〈ψ̃nk| p̃µ〉G
(2)

(ν,R′, iτ)Qµν(r)W(r,R′, iτ)ψ̃mk(R′)

=
∑
µ

∑
R′∈S

〈ψ̃nk| p̃µ〉Σ
(2)

(µ,R′, iτ)ψ̃nk(R′),

(549)

Σ
k(3)
nm (iτ) =

unocc∑
a

∑
r∈C

∑
R′∈S

e−iεaτW(r,R′, iτ)〈ψ̃nk|r〉〈r|ψ̃a〉
∑
αβ

〈ψ̃a|p̃α〉〈p̃β|ψ̃mk〉Qαβ(R′)

=
∑
r∈C

∑
R′∈S

∑
αβ

ψ̃∗nk(r)

unocc∑
a

ψ̃a(r)〈ψ̃a| p̃α〉e−iεaτ

 W(r,R′, iτ)Qαβ(R′)〈 p̃β|ψ̃mk〉

=
∑
r∈C

∑
R′∈S

∑
αβ

ψ̃∗nk(r)G
(3)

(r, α, iτ)W(r,R′, iτ)Qαβ(R′)〈 p̃β|ψ̃mk〉

=
∑
r∈C

∑
β

ψ̃∗nk(r)Σ
(3)

(r, β, iτ)〈p̃β|ψ̃nk〉,

(550)
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Σ
k(4)
nm (iτ) =

unocc∑
a

∑
r∈C

∑
R′∈S

e−iεaτW(r,R′, iτ)
∑
µν

〈ψ̃nk|p̃µ〉〈p̃ν|ψ̃a〉Qµν(r)
∑
αβ

〈ψ̃a|p̃α〉〈p̃β|ψ̃mk〉Qαβ(R′)

=
∑
r∈C

∑
R′∈S

∑
µναβ

〈ψ̃nk|p̃µ〉

unocc∑
a

〈 p̃ν|ψ̃a〉〈ψ̃a| p̃α〉e−iεaτ

 Qµν(r)W(r,R′, iτ)Qαβ(R′)〈p̃β|ψ̃mk〉

=
∑
r∈C

∑
R′∈S

∑
µναβ

〈ψ̃nk|p̃µ〉G
(4)

(ν, α, iτ)Qµν(r)W(r,R′, iτ)Qαβ(R′)〈 p̃β|ψ̃mk〉

=
∑
µ

∑
β

〈ψ̃nk|p̃µ〉Σ
(4)

(µ, β, iτ)〈 p̃β|ψ̃nk〉.

(551)

Note that in deriving Eqs. (548–551), the definitions in Eqs. (527–529) and Eqs. (531–534)

have been used. By comparing Eq. (540), one can see that we have obtained exactly the same

expression of the matrix elements of self-energy in the orbital basis. Again, the occupied self-

energy can be obtained by replacing G with G.
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Appendix F Relationship between Σnk,n′k−q(ω) and

Wnk,n′k−q(ω)

Proof:

Im[Σnk,n′k−q(E)] =



−Im[Wnk,n′k−q(εn′k−q − E)θ(εn′k−q − E)θ(µ − εn′k−q)]

if E < εn′k−q < µ, εn′k−q ∈ occ

+Im[Wnk,n′k−q(E − εn′k−q)θ(E − εn′k−q)θ(εn′k−q − µ)]

if E > εn′k−q > µ, εn′k−q ∈ unocc

(552)

We start from the definition of the self-energy for each pair (nk, n′k − q)

Σnk,n′k−q(E) =
i

2π

∫ +∞

−∞

dωGnk,n′k−q(E + ω)Wnk,n′k−q(ω)

=
i

2π

∫ +∞

−∞

dω
{∫ µ

−∞

dω1
Ank,n′k−q(ω1)

E + ω − ω1 − iδ
+

∫ +∞

µ

dω1
Ank,n′k−q(ω1)

E + ω − ω1 + iδ

}
×

{∫ 0

−∞

dω2
Dnk,n′k−q(ω2)
ω − ω2 − iη

+

∫ +∞

0
dω2

Dnk,n′k−q(ω2)
ω − ω2 − iη

}
.

(553)

Here, δ and η are both positive infinitesimal. Note that in deriving Eq. (553) we have used

spectral representation of the Green’s function

Gnk,n′k−q(ω) =

∫ µ

−∞

dω′
Ank,n′k−q(ω′)
ω − ω′ − iδ

+

∫ +∞

µ

dω′
Ank,n′k−q(ω′)
ω − ω′ + iδ

, (554)

and spectral representation of screened coulomb interaction

Wnk,n′k−q(ω) =

∫ 0

−∞

dω′
Dnk,n′k−q(ω′)
ω − ω′ − iδ

+

∫ +∞

0
dω′

Dnk,n′k−q(ω′)
ω − ω′ + iδ

, (555)

where Ank,n′k−q(ω) is the spectral function of Green’s function, which is proportional to the

imaginary part of Gnk,n′k−q(ω)

Ank,n′k−q(ω) = −
1
π

Im[Gnk,n′k−q(ω)] sgn(ω − µ). (556)

Here, Dnk,n′k−q(ω) is the spectral function of screened coulomb interaction, which is propor-

tional to the imaginary part of Wnk,n′k−q(ω)

Dnk,n′k−q(ω) = −
1
π

Im[Wnk,n′k−q(ω)] sgn(ω). (557)

183



Note that Dnk,n′k−q(−ω) = −Dnk,n′k−q(ω), i.e., Dnk,n′k−q(ω) is an odd function with respect to ω.

With this, the following equation holds

Wnk,n′k−q(ω) =

∫ +∞

0
dω′Dnk,n′k−q(ω′)

{
1

ω − ω′ + iδ
+

−1
ω + ω′ − iδ

}
. (558)

Therefore, Eq. (553) reduces to

Σnk,n′k−q(E) =
i

2π

∫ +∞

−∞

dω
{∫ µ

−∞

dω1
Ank,n′k−q(ω1)

E + ω − ω1 − iδ
+

∫ +∞

µ

dω1
Ank,n′k−q(ω1)

E + ω − ω1 + iδ

}
×

{∫ +∞

0
dω2Dnk,n′k−q(ω2)[

1
ω − ω2 + iη

+
−1

ω + ω2 − iη
]
}
. (559)

Performing the contour integration in the ω-plane yields

Σnk,n′k−q(E) =

∫ µ

−∞

dω1

∫ +∞

0
dω2

Ank,n′k−q(ω1)Dnk,n′k−q(ω2)
E + ω2 − ω1 − iδ

+

∫ +∞

µ

dω1

∫ +∞

0
dω2

Ank,n′k−q(ω1)Dnk,n′k−q(ω2)
E − ω2 − ω1 + iδ

.

(560)

Now we employ the spectral representation of self-energy Σnk,n′k−q(ω)

Σnk,n′k−q(ω) =

∫ µ

−∞

dω′
Γnk,n′k−q(ω′)
ω − ω′ − iδ

+

∫ +∞

µ

dω′
Γnk,n′k−q(ω′)
ω − ω′ + iδ

, (561)

where Γnk,n′k−q(ω) is the spectral function of self-energy, which is proportional to the imaginary

part of Σnk,n′k−q(ω)

Γnk,n′k−q(ω) = −
1
π

Im[Σnk,n′k−q(ω)] sgn(ω − µ). (562)

Using the following well-known theorem from complex function theory

Im[
1

x ± iδ
] = ∓πδ(x), (563)

we obtain from Eq. (560)

Γnk,n′k−q(E) = − sgn(E − µ)
∫ µ

−∞

dω1

∫ +∞

0
dω2Ank,n′k−q(ω1)Dnk,n′k−q(ω2)δ(E + ω2 − ω1)

+ sgn(E − µ)
∫ +∞

µ

dω1

∫ +∞

0
dω2Ank,n′k−q(ω1)Dnk,n′k−q(ω2)δ(E − ω2 − ω1)

ω1=E+ω2<µ
===========
ω1=E−ω2>µ

− sgn(E − µ)
∫ +∞

0
dω2Ank,n′k−q(E + ω2)Dnk,n′k−q(ω2)θ(µ − E − ω2)

+ sgn(E − µ)
∫ +∞

0
dω2Ank,n′k−q(E − ω2)Dnk,n′k−q(ω2)θ(E − ω2 − µ).

(564)
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For non-interacting case, the spectral function of Green’s function reduces to δ function

Ank,n′k−q(ω) = δ(ω − εn′k−q). (565)

Inserting Eq. (565) into Eq. (564) finally yields

Γnk,n′k−q(E) = − sgn(E − µ)
∫ +∞

0
dω2δ(E + ω2 − εn′k−q)Dnk,n′k−q(ω2)θ(µ − E − ω2)

+ sgn(E − µ)
∫ +∞

0
dω2δ(E − ω2 − εn′k−q)Dnk,n′k−q(ω2)θ(E − ω2 − µ)

ω2=εn′k−q−E>0
=============
ω2=E−εn′k−q>0

− sgn(E − µ)Dnk,n′k−q(εn′k−q − E)θ(εn′k−q − E)θ(µ − εn′k−q)

+ sgn(E − µ)Dnk,n′k−q(E − εn′k−q)θ(E − εn′k−q)θ(εn′k−q − µ)

= + Dnk,n′k−q(εn′k−q − E)θ(εn′k−q − E)θ(µ − εn′k−q)

+ Dnk,n′k−q(E − εn′k−q)θ(E − εn′k−q)θ(εn′k−q − µ).

(566)

Combining Eqs. (557) and (562) with Eq. (566), we finally obtain

Im[Σnk,n′k−q(E)] sgn(E − µ) =Im[Wnk,n′k−q(εn′k−q − E)]θ(εn′k−q − E)θ(µ − εn′k−q)

+Im[Wnk,n′k−q(E − εn′k−q)]θ(E − εn′k−q)θ(εn′k−q − µ), (567)

i.e., Eq. (552) is justified.

185



Appendix G Derivation of the correlated polarizability χc

from formula of Kubo and Nakano

In this appendix, I will show a more exhaustive derivation for the correlated polarizability χc

from the Kubo and Nakano formula following the Merzuk Kaltak’s derivation. For the original

derivation, please refer to his PhD thesis [267].

According to the Kubo and Nakano, the correlated polarizability χc can be expressed as the

density-density fluctuation response in the correlated subspace [285]

χc(r, r′, iτ) = −〈Ψ0|T̂
[
δn̂c(r, iτ)δn̂c(r′)

]
|Ψ0〉, (568)

where |Ψ0〉 denotes the non-interacting ground state of a M-particle system, n̂c(r) represents

the correlated particle number operator accounting for states in the correlated subspace C of

interest located at r, and n̂r represents the remaining states, satisfying n̂(r) = n̂c(r) + n̂r(r). T̂ is

the time-ordering operator. The density fluctuation operator δn̂c(r, iτ) is given by

δn̂c(r, iτ) = n̂c(r, iτ) − 〈Ψ0|n̂c(r, iτ)|Ψ0〉. (569)

Inserting a complete eigenset of the non-interacting many-body system

∞∑
s=0

|Ψs〉〈Ψs| = 1 (570)

into the Kubo-Nakano formula in Eq. (568), one obtains

χc(r, r′, iτ) = −

∞∑
s=1

Θ(τ)e(E0−Es)τ〈Ψ0|n̂c(r)|Ψs〉〈Ψs|n̂c(r′)|Ψ0〉

−

∞∑
s=1

Θ(−τ)e(Es−E0)τ〈Ψ0|n̂c(r′)|Ψs〉〈Ψs|n̂c(r)|Ψ0〉.

(571)

Here, we have used the interaction picture relation n̂c(r, iτ) = eH0τn̂c(r)e−H0τ where H0 is the

Hamiltonian a system of M non-interacting electrons

Ĥ0 =

M∑
l=1

ĥl, (572)

with hl being the one-electron Hamiltonian of a free electron at position rl, and the fact that

|Ψs〉 is an eigenvector of the Hamiltonian H0, with corresponding eigenenergy Es. The s = 0

term is dropped due to the second term of right-hand side of Eq. (569). Θ is the Heaviside step

function.
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Next, we calculate the expectation value

〈Ψ0|n̂c(r)|Ψs〉. (573)

We start by the definition of the many-body basis set. Adopting the Einstein convention, the

corresponding complete eigenset of H0 is given by the set of all Slater-determinants Ψs

Ψs(x1, · · · , xM) =
[
ε(s)

]n̄1,··· ,n̄M φn̄1(r1) · · · φn̄M (rM) (574)

with corresponding eigenenergies

Es =
∑
n̄∈Is

εn̄. (575)

Here, φn̄(r) and εn̄ are the one-electron eigenfunction and eigenenergy of the one-electron

Hamiltonian hl, respectively. Thus, each determinant Ψs contains a specific set of occupied and

unoccupied states indicated by the index set Is and the Levi-Civita tensor is defined as [286]

[
ε(s)

]n̄1,··· ,n̄M =
1
√

M!

∣∣∣∣∣∣∣∣∣∣∣∣∣
δ1n̄1 . . . δ1n̄M

...
. . .

...

δMn̄1 . . . δMn̄M

∣∣∣∣∣∣∣∣∣∣∣∣∣
, n̄1, · · · , n̄M ∈ Is. (576)

Because the relation of Bloch states and Wannier functions

|φn̄〉 = |φnk〉 =
∑
αRα

eikRαT †(k)
αn |wαRα

〉

=
∑
ᾱ

T ∗n̄ᾱ|wᾱ〉.

(577)

Here and in the following we use super indices ᾱi = (αi,Rαi) for Wannier states, n̄i = (ni,ki)

for Bloch states and the shorthand T †ᾱin̄i
= T ∗n̄iᾱi

= eiki·Rαi T ∗(ki)
niαi indicates the transformation

matrix from the Wannier basis to Bloch basis. A transformation to the Wannier basis is easily

performed by a replacement of ε→ τ , where the weighted Levi-Civita tensor τ(s) is defined by

[
τ(s)

]ᾱ1,··· ,ᾱM =
[
ε(s)

]n̄1,··· ,n̄M T †ᾱ1n̄1
· · · T †ᾱM n̄M

=
[
ε(s)

]n̄1,··· ,n̄M T ∗n̄1ᾱ1
· · · T ∗n̄M ᾱM

(578)

The Fock space of the M particle Hamiltonian (572) is spanned by single, double and higher

excited Slater determinants Ψs. For instance, singly excited states are obtained by replacing one

occupied state φi in the ground state Ψ0 with an unoccupied state φa and defining the index set

Is appropriately.
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Next, we focus on the quantization of the Schrödinger field ψ̂(r). Here, the concept of a field

operator ψ̂(r), which acts on the Fock space, is very convenient, since it allows us to express the

possibility of creation and annihilation of electrons intrinsically in its notation. For instance,

the action of the field operator ψ̂(r) onto an arbitrary M particle state Ψs can be written as [287]

〈r2, r3, · · · , rM |ψ̂(r)ΨM
s 〉 =

√
M

∫
dr1δ(r − r1) × Ψs(r1, · · · , rM)

=
√

MΨs(r, r2, · · · , rM),
(579)

giving an (M − 1) particle state
[
ψ̂(r)Ψs

]
with a missing electron at r. The action of ψ̂†(r) is

obtained by complex conjugation of Eq. (579). The product of the latter with ψ̂(r) gives the

well-known density operator n̂(r)

n̂(r) = ψ̂†(r)ψ̂(r) (580)

counting the number of electrons at position r. Bloch and Wannier representations of the field

operators are given by

ψ̂(r) =
∑̄
n
φn̄(r)ân̄ (581)

ψ̂(r) =
∑̄
α

wᾱ(r)ĉᾱ (582)

with the corresponding inverses

ân̄ =
∫

drφ∗n̄(r)ψ̂(r) (583)

ĉᾱ =
∫

drw∗ᾱ(r)ψ̂(r). (584)

Inserting of Eqs. (581) and (582) into Eq. (580) yields the particle operator n̂ in the Bloch and

Wannier representation

n̂(r) =
∑

n̄1n̄2

φ∗n̄1
(r)φn̄2(r)a†n̄1

an̄2 (585)

n̂(r) =
∑̄
αβ̄

w∗ᾱ(r)wβ̄(r)c†ᾱcβ̄. (586)

Restricting the sums in Eqs. (582) and (586) to correlated states only, i.e., the subspace C, we

obtain the correlated field operator

ψ̂c(r) =
∑
ᾱ∈C

wᾱ(r)ĉᾱ, (587)

and the corresponding correlated density operator

n̂c(r) = ψ̂†c(r)ψ̂c(r) =
∑
ᾱβ̄∈C

w∗ᾱ(r)wβ̄(r)c†ᾱcβ̄

=
∑
ᾱβ̄∈C

w∗ᾱ(r)wβ̄(r)
∫

dr1wᾱ(r1)ψ̂†(r1)
∫

dr2w∗
β̄
(r2)ψ̂(r2).

(588)
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Expectation values of the correlated density operator n̂c can thus be evaluated by inserting

Eq. (588) into Eq. (573)

〈Ψ0|n̂c(r)|Ψs〉 =
∑
ᾱβ̄∈C

w∗ᾱ(r)wβ̄(r)
∫

dr1dr2wᾱ(r1)w∗
β̄
(r2)〈Ψ0|ψ̂

†(r1)ψ̂(r2)|Ψs〉. (589)

Now we focus on the evaluation of the expectation value on the right-hand side of this expres-

sion. For a Slater determinant |Ψs〉 the action of the field operator ψ̂(r2) onto the M electron

state Ψs(r′1, · · · , r
′
M) is given by Eq. (579). Together with the adjoint relation, one obtains

〈Ψ0|ψ̂
†(r1)ψ̂(r2)|Ψs〉

=M
∫

dr′2 · · · dr′MΨ∗0(r1, r′2, · · · , r
′
M)Ψs(r2, r′2, · · · , r

′
M)

=M
∫

dr′2 · · · dr′M
[
τ∗(0)

]ᾱ1ᾱ2···ᾱM
w∗ᾱ1

(r1)w∗ᾱ2
(r2) · · ·w∗ᾱM

(rM)
[
τ(s)

]β̄1ᾱ2···ᾱM wβ̄1(r2)wᾱ2(r2) · · ·wᾱM (rM)

=Mw∗ᾱ1
(r1)wβ̄1(r2)

[
τ∗(0)

]ᾱ1ᾱ2···ᾱM [
τ(s)

]β̄1ᾱ2···ᾱM

∫
dr′2 · · · dr′Mw∗ᾱ2

(r2)wᾱ2(r2) · · ·w∗ᾱM
(rM) · · ·wᾱM (rM)

=Mw∗ᾱ1
(r1)wβ̄1(r2)

[
τ∗(0)

]ᾱ1ᾱ2···ᾱM [
τ(s)

]β̄1ᾱ2···ᾱM .

(590)

The contraction of the τ tensors in the last line can be evaluated using the identity [288][
ε∗(0)

]n̄1n̄2···n̄M [
ε(s)

] j̄1n̄2···n̄M =
(M − 1)!

M!
δn̄1 ī(s)δ j̄1ā(s). (591)

Therefore, one could obtain[
τ∗(0)

]ᾱ1ᾱ2···ᾱM [
τ(s)

]β̄1ᾱ2···ᾱM =
[
ε∗(0)

]n̄1n̄2···n̄M
Tn̄1ᾱ1 · · · Tn̄M ᾱM ×

[
ε(s)

] j̄1n̄′2···n̄
′
M T ∗j̄1β̄1

· · · T ∗n̄′M β̄M

=
[
ε∗(0)

]n̄1n̄2···n̄M [
ε(s)

] j̄1n̄′2···n̄
′
M × Tn̄1ᾱ1 · · · Tn̄M ᾱM × T ∗j̄1β̄1

· · · T ∗n̄′M β̄M

=
(M − 1)!

M!
δn̄1 ī(s)δ j̄1ā(s) × Tn̄1ᾱ1 · · · Tn̄M ᾱM × T ∗j̄1β̄1

· · · T ∗n̄′M β̄M

=
(M − 1)!

M!
T ī(s)ᾱ1T

∗

ā(s)β̄1
.

(592)

Here, ī(s) is the occupied state (contained in I0) and is replaced by the unoccupied state ā(s) in

the index set Is. This implies that only singly excited Slater determinants Ψs contribute and the

matrix elements in Eq.(590) read

〈Ψ0|n̂c(r)|Ψs〉 =
∑
ᾱβ̄∈C

T ī(s)ᾱT ∗ā(s)β̄w
∗
ᾱ(r)wβ̄(r). (593)

After inserting Eq. (593) into Eq. (571) and then Fourier transformation to frequency domain

using the fact ∫ +∞

−∞

Θ(τ)e(E0−Es)τeiωτdτ =
−1

iω + E0 − Es∫ +∞

−∞

Θ(−τ)e(Es−E0)τeiωτdτ =
1

iω + Es − E0
,

(594)
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one obtains

χc(r, r′, iω) =

∞∑
s=1

∑
ᾱβ̄γ̄δ̄∈C

Ξ
(s)
ᾱβ̄γ̄δ̄

(iω)w∗ᾱ(r)wβ̄(r)w∗γ̄(r
′)wδ̄(r′), (595)

with the four-point polarizability tensor [289]

Ξ
(s)
ᾱβ̄γ̄δ̄

(iω) =
T ī(s)ᾱT ∗ā(s)β̄Tā(s)γ̄T ∗ī(s)δ̄

iω + E0 − Es
−

Tā(s)ᾱT ∗ī(s)β̄T ī(s)γ̄T ∗ā(s)δ̄

iω + Es − E0
. (596)

The sum over singly excited Slater determinants
∑∞

s=1 can be rewritten into a double Bloch sum∑
n̄n̄′ fn̄(1 − fn̄′) using the one-electron occupancies fn̄, fn̄′ and the replacements

E0 − Es → εn̄ − εn̄′ , ī→ n̄, ā→ n̄′. (597)

Exchanging n̄↔ n̄′ in the second term of Eq. (596), one obtains the Wannier representation for

the correlated independent-particle polarizability

χc(r, r′, iω) =

all∑
n̄n̄′

∑
ᾱβ̄γ̄δ̄∈C

fn̄(1 − fn̄′) − fn̄′(1 − fn̄)
iω + εn̄ − εn̄′

× Tn̄ᾱT ∗n̄′β̄Tn̄′γ̄T ∗n̄δ̄w
∗
ᾱ(r)wβ̄(r)w∗γ̄(r

′)wδ̄(r′),

=

all∑
n̄n̄′

∑
ᾱβ̄γ̄δ̄∈C

fn̄ − fn̄′

iω + εn̄ − εn̄′
× Tn̄ᾱT ∗n̄′β̄Tn̄′γ̄T ∗n̄δ̄w

∗
ᾱ(r)wβ̄(r)w∗γ̄(r

′)wδ̄(r′).

(598)

Now we Fourier transform Eq. (598) to reciprocal space using the definition in Eq. (442)

χc
GG′(q, iω) =

1
Ω0

∫
Ω0

dr
∫

Ω0

dr′e−i(q+G)rχc(r, r′, iω)ei(q+G′)r′ , (599)

where Ω0 is the volume of the unit cell. Decomposing the Wannier functions into Bloch func-

tions via

|wᾱ〉 = |wαRα
〉 =

1
Nk

∑
nk

e−ikRαT (k)
nα |φnk〉, (600)

where Nk is the number of k-points within the BZ, and using the following notations

ᾱ = (α,Rα),
∑̄
α

=
∑
α,Rα

, n̄ = (n,k),
∑̄
n

=
∑
nk
, (601)

Tn̄ᾱ = e−ikRαT (k)
nα . (602)

Finally, one obtains

χc
GG′(q, iω) =

1
Ω0

all∑
n̄n̄′

1
N4

k

∑
n̄1n̄2n̄3n̄4

∑
αβγδ∈C

fn̄ − fn̄′

iω + εn̄ − εn̄′

×〈φn̄1 |e
−i(q+G)r|φn̄2〉〈φn̄3 |e

i(q+G′)r′ |φn̄4〉

×T (k)
nα T ∗(k1)

n1α
T (k2)

n2β
T ∗(k

′)
n′β T (k′)

n′γ T ∗(k3)
n3γ

T (k4)
n4δ

T ∗(k)
nδ

×
∑
Rα

eiRα(k1−k)
∑
Rβ

e−iRβ(k2−k′)
∑
Rγ

eiRγ(k3−k′)
∑
Rδ

e−iRδ(k4−k).

(603)
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The sum over lattice vectors R can be carried out using the identity∑
Rβ

e−iRβ(k2−k′) = Nkδk2,k′+G, (604)

and because the periodicity condition, T (k′+G)
n2β

= T (k′)
n2β

holds and the Bloch functions obey

|φnk+G〉 = |φnk〉 [290], so that we obtain

1
Nk

∑
n̄2

[
∑
β∈C

T (k2)
n2β

T ∗(k
′)

n′β ]|φn̄2〉
∑
Rβ

e−iRβ(k2−k′)

=
1

Nk

∑
n2k2

[
∑
β∈C

T (k2)
n2β

T ∗(k
′)

n′β ]|φn2k2〉Nkδk2,k′+G

=
∑

n2

[
∑
β∈C

T (k′+G)
n2β

T ∗(k
′)

n′β ]|φn2k′+G〉

=
∑

n2

[
∑
β∈C

T (k′)
n2β

T ∗(k
′)

n′β ]|φn2k′〉.

(605)

Now we define a correlated projector

P(k′)
n2n′ =

∑
β∈C

T (k′)
n2β

T ∗(k
′)

n′β , (606)

and a correlated Bloch state

|φ̄n̄′〉 = |φ̄n′k′〉 =
∑

n2

P(k′)
n2n′ |φn2k′〉. (607)

Finally, Eq. (603) can be rewritten into

χc
GG′(q, iω) =

1
Ω0

all∑
n̄n̄′

fn̄ − fn̄′

iω + εn̄ − εn̄′
〈φ̄n̄|e−i(q+G)r|φ̄n̄′〉Ω0〈φ̄n̄′ |ei(q+G′)r′ |φ̄n̄〉Ω0 . (608)

Note that the matrix elements on the right-hand side of Eq. (608) are invariant under the trans-

formations

r→ r + R and r′ → r′ − R.

For r→ r + R, one obtains

〈φ̄nk(r + R)|e−i(q+G)(r+R)|φ̄nk′(r + R)〉

=

∫
drφ̄∗nk(r + R)e−i(q+G)(r+R)φ̄nk′(r + R)

=

∫
drφ̄∗nk(r)e−ikRe−i(q+G)re−iqRφ̄nk′(r)eik′R

=

∫
drφ̄∗nk(r)e−i(q+G)rφ̄nk′(r)eiR(−k−q+k′)

≡〈φ̄nk(r)|e−i(q+G)r|φ̄nk′(r)〉

(609)
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The above derivation has used the Bloch theorem and the fact that e±iGR ≡ 1, yielding eiR(−k−q+k′) ≡

1, i.e, k′ = k + q. Similarly, k′ = k + q holds for r→ r − R as well. We finally end up with

χc
GG′(q, iω) =

1
Ω0

BZ∑
k

all∑
n,n′

fnk − fn′k+q

iω + εnk − εn′k+q
〈φ̄nk|e−i(q+G)r|φ̄n′k+q〉Ω0〈φ̄n′k+q|ei(q+G′)r′ |φ̄nk〉Ω0

= −
1

Ω0

BZ∑
k

occ∑
i

unocc∑
a

2(εak+q − εik)
(εak+q − εik)2 + ω2 〈φ̄ik|e−i(q+G)r|φ̄ak+q〉Ω0〈φ̄ak+q|ei(q+G′)r′ |φ̄ik〉Ω0 ,

(610)

where |φ̄ik〉 is defined in Eq. (607). Note that in deriving Eq. (610) the term including
all∑

n,n′

iω( fnk− fn′k+q)
(εn′k+q−εnk)2+ω2 (· · ·) is vanishing because iω( fnk− fn′k+q)

(εn′k+q−εnk)2+ω2 is an odd tensor with respect to n and n′.

Taking a closer look at Eq. (610), one would obtain that the correlated independent-particle

polarizability χc has exactly the same expression as the independent-particle polarizability χ as

long as |φ̄ik〉 is replaced by |φik〉

χGG′(q, iω) = −
1

Ω0

BZ∑
k

occ∑
i

unocc∑
a

2(εak+q − εik)
(εak+q − εik)2 + ω2 〈φik|e−i(q+G)r|φak+q〉Ω0〈φak+q|ei(q+G′)r′ |φik〉Ω0 .

(611)

Fourier transformation of Eq. (611) to imaginary time yields

χGG′(q, iτ) = −
1

Ω0

BZ∑
k

occ∑
i

unocc∑
a

e−(εak+q−εik)τ〈φik|e−i(q+G)r|φak+q〉Ω0〈φak+q|ei(q+G′)r′ |φik〉Ω0 . (612)

Fourier transformation of Eq. (612) further to the real space yields a simple expression for the

polarizability

χ(r, r′, iτ) = −

BZ∑
k,q

occ∑
i

unocc∑
a

e−(εak+q−εik)τφ∗ik(r)φak+q(r)φ∗ak+q(r′)φik(r′)

= −

BZ∑
k,q

unocc∑
a

φak+q(r)φ∗ak+q(r′)e−εak+qτ
occ∑

i

φik(r′)φ∗ik(r)eεikτ,

(613)

which is consistent with the space-time method [96, 102].
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[103] M. Kaltak, J. Klimeš, and G. Kresse. Low scaling

algorithms for the random phase approximation:

Imaginary time and laplace transformations. J.

Chem. Theory Comput., 10:2498, 2014.
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Academic Press, New York, 1975.
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Atom Clusters IV. Photoionization thresholds

and multiphoton ionization spectra of alkali-

metal molecules. Helv. Chim. Acta, 61(1):453–

487, 1978.

[164] T Trickl, E F Cromwell, Y T Lee, and A H Kung.

State-selective ionization of nitrogen in the X

2Σ+gv+=0 and v+=1 states by twocolor (1+ 1)

photon excitation near threshold. J. Chem. Phys.,

91(10), 1989.

[165] Denis K Bulgin, John M Dyke, and Alan Mor-

ris. HeI photoelectron spectrum of the P2(X 1 Σ

+ g ) molecule. J. Chem. Soc. Faraday Trans. 2,

72:2225, 1976.

[166] K H Lau, R D Brittain, and D L Hildenbrand.

Vaporization of arsenic trisulfide and the disso-

ciation energy of arsenic monosulfide. J. Phys.

Chem., 86(22):4429–4432, 1982.

[167] H Van Lonkhuyzen and C A De Lange. High-

resolution UV photoelectron spectroscopy of di-

atomic halogens. Chem. Phys., 89(2):313–322,

1984.

[168] John M Dyke, G D Josland, J G Snijders,

and P M Boerrigter. Ionization energies of

the diatomic halogens and interhalogens studied

with relativistic hartree-fock-slater calculations.

Chem. Phys., 91(3):419–424, 1984.

[169] K. Kimura, S. Katsumata, Y. Achiba, T. Ya-

mazaki, and S. Iwata. Ionization energies, Ab ini-

tio assignments, and valence electronic structure

for 200 molecules. In Handb. HeI Photoelectron

Spectra Fundam. Org. Compd. Japan Scientific

Soc. Press, Tokyo, 1981.

[170] Gerhard Bieri and Leif Åsbrink. 30.4-

nm He(II) photoelectron spectra of organic

molecules. J. Electron Spectros. Relat. Phenom-

ena, 20(1):149–167, 1980.

[171] Ragulan Ramanathan, Jeffrey A Zimmerman,

and John R Eyler. Ionization potentials of small

carbon clusters. J. Chem. Phys., 98(10):7838,

1993.

[172] V.V. Plemenkov, Y.Y. Villem, N.V. Villem,

I.G. Bolesov, L.S. Surmina, N.I. Yakushkina,

and A.A. Formanovskii. Photoelectron spectra

of polyalkylcyclopropenes and polyalkylcyclo-

propanes. Zh. Obs. Khim., 51:2076, 1981.

[173] J O Howell, J M Goncalves, C Amatore, L Klas-

inc, R M Wightman, and J K Kochi. Elec-

tron transfer from aromatic hydrocarbons and

their .pi.-complexes with metals. Comparison

of the standard oxidation potentials and verti-

cal ionization potentials. J. Am. Chem. Soc.,

106(14):3968–3976, 1984.

[174] Emil W Fu and Robert C Dunbar. Photodissoci-

ation spectroscopy and structural rearrangements

in ions of cyclooctatetraene, styrene, and related

202



molecules. J. Am. Chem. Soc., 100(8):2283–

2288, 1978.

[175] V.D. Kiselev, A.G. Sakhabutdinov, I.M.

Shakirov, V.V. Zverev, and A.I. Konovalov.

Bis reactants in Diels-Alder reactions. VII.

Preparation and properties of polyadducts of

reactions of bis(polymethylcyclopentadienes)

and bis(maleimides). Zh. Org. Khim., 28:2244,

1992.

[176] Gerhard Bieri, Wolfgang von Niessen, Leif

Åsbrink, and Agneta Svensson. The He(II)

photoelectron spectra of the fluorosubstituted

ethylenes and their analysis by the Green’s func-

tion method. Chem. Phys., 60(1):61–79, 1981.

[177] R Cambi, G Ciullo, A Sgamellotti, F Tarantelli,

R Fantoni, A Giardini-guidoni, I E McCarthy,

and V di Martino. An (e, 2e) spectroscopic in-

vistigation and a green’s function study of the

ionization of chloro- and bromo-ethylene. Chem.

Phys. Lett., 101(4–5):477–484, 1983.

[178] K Wittel, H Bock, and R Manne. Photoelec-

tron spectra of iodo ethylenes. Tetrahedron,

30(5):651–658, 1974.

[179] Gerhard Bieri, Leif Åsbrink, and Wolfgang Von

Niessen. 30.4-nm He(II) Photoelectron spectra of

organic molecules: Part IV. Fluoro-compounds

(C, H, F). J. Electron Spectros. Relat. Phenom-

ena, 23(2):281–322, 1981.

[180] R N Dixon, J N Murrell, and B Narayan. The

photoelectron spectra of the halomethanes. Mol.

Phys., 20(4):611–623, 1971.

[181] G Jonkers, C.A.de Lange, and J G Snijders. Ef-

fects of relativity in the He(I) Photoelecron Spec-

trum of CI4. Chem. Phys., 69(1):109–114, 1982.

[182] R Roberge, C Sandorfy, J I Matthews, and O P

Strausz. The far ultraviolet and HeI photo-

electron spectra of alkyl and fluorine substituted

silane derivatives. J. Chem. Phys., 69(11):5105,

1978.

[183] A W Potts and W C Price. The Photoelectron

Spectra of Methane, Silane, Germane and Stan-

nane. Proc. R. Soc. London A Math. Phys. Eng.

Sci., 326(1565):165–179, 1972.

[184] H Bock, W Ensslin, F Feher, and R Freund. Pho-

toelectron spectra and molecular properties. LI.

Ionization potentials of silanes SinH2n+2. J. Am.

Chem. Soc., 98(3):668–674, 1976.

[185] NIST Chemistry WebBook, 2015.

[186] M Farber, R D Srivastava, and James W Moyer.

Mass-spectrometric determination of the ther-

modynamics of potassium hydroxide and minor

potassiumcontaining species required in magne-

tohydrodynamic power systems. J. Chem. Ther-

modyn., 14(12):1103–1113, 1982.

[187] B. Ruscic, C A Mayhew, and J Berkowitz. Pho-

toionization studies of (BH3)n (n=1,2). J. Chem.

Phys., 88(9):5580, 1988.

[188] Leif Åsbrink, Agneta Svensson, Wolfgang von

Niessen, and Gerhard Bieri. 30.4-nm He(II) pho-

toelectron spectra of organic molecules: Part V.

Hetero-compounds containing first-row elements

(C, H, B, N, O, F). J. Electron Spectros. Relat.

Phenomena, 24(2):293–314, 1981.

[189] H Baumgaertel, H W Jochims, E Ruehl, H Bock,

R Dammel, J Minkwitz, and R Nass. Photo-

electron spectra and molecular properties. 112.

Photoelectron and photoionization mass spectra

of the fluoroamines NH3-nFn. Inorg. Chem.,

28(5):943–949, 1989.
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