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Abstract

In this thesis we discuss the representation of large high dimensional image databases with mod-
ern scatterplot-based visualization techniques. We investigate scatterplot scalability both in
terms of what is feasible (performance scalability) and what is reasonable (information scalabil-
ity). We create two interactive scatterplot-based visualizations for large-scale image datasets, the
Global View and the Interactive Cell Plot. The Global View is a desktop application for visual-
izing peta-scale simulations using in-situ generated image databases, developed in collaboration
with the Los Alamos National Laboratory. Global View reads image databases in the Cinema
database format. The loaded images are visualized by applying scripted visual mappings using
our novel visual mapping scripting language. Using Global View, we compare different visual
mappings for the MPAS Ocean dataset and conclude that the different mappings represent a
trade-off between an intuitive viewing experience and showing multiple images simultaneously.
Once a visual mapping is defined, the image database can be explored by traversing a three
dimensional virtual environment of images. Our texture streaming algorithm dynamically loads
and unloads images while the image database is explored, by monitoring the amount of allocated
video memory. The Interactive Cell Plot is a JavaScript library for rendering large scatterplots
with WebGL, developed in collaboration with the Allen Institute for Cell Science. Our efficient
rendering technique enables us to render one million two dimensional data points at 60 frames
per second and five million points at 25 frames per second. We evaluate visualization parameters
of the Interactive Cell Plot and five different thumbnail placement strategies in a qualitative
user study. Our novel algorithms for boundary- and density-based labeling minimize occlusions
of data points while also minimizing the distance between label and site. We introduce den-
sity maps as an intermediate data structure for fast clustering, labeling, characteristic point
detection and sample generation. By estimating density map generation runtime, our algorithm
allows the user to directly control the performance-accuracy-trade-off of the density map creation
algorithm.
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Zusammenfassung

In dieser Arbeit befassen wir uns mit der Darstellung von großen hochdimensionalen Bilddaten-
banken mit modernen Streudiagramm-basierten Visualisierungstechniken. Wir erforschen die
Skalierbarkeit von Streudiagrammen sowohl in Bezug auf Machbarkeit (Performance-Skalierbar-
keit), als auch in Bezug auf Sinnhaftigkeit (Informationsskalierbarkeit). Wir erstellen zwei in-
teraktive Streudiagramm-basierte Visualisierungen für große Bilddatensätze, der Global View
und der Interactive Cell Plot. Global View ist eine Desktopanwendung zur Visualisierung von
Petascale-Simulationen durch in-situ generierte Bilddatenbanken, die in Zusammenarbeit mit
dem Los Alamos National Laboratory entwickelt wurde. Global View liest Bilddatenbanken im
Cinema Datenformat ein. Die geladenen Bilder werden durch geskriptete visuelle Zuordnungen,
von unserer neuartigen Skriptsprache für visuelle Zuordnungen, visualisiert. Wir vergleichen
verschiedene visuelle Zuordnungen für den MPAS-Ocean-Datensatz mittels Global View und
schließen daraus, dass die verschiedenen visuellen Zuordnungen einen Kompromiss zwischen in-
tuitiver Darstellung und der gleichzeitigen Darstellung mehrerer Bilder darstellen. Sobald eine
visuelle Zuordnung definiert ist, kann die Bilddatenbank durch die Durchquerung einer drei-
dimensionalen virtuellen Umgebung von Bildern erforscht werden. Unser Texture-Streaming-
Algorithmus lädt und entlädt Bilder dynamisch, während die Bilddatenbank erforscht wird, in-
dem die zugewiesene Menge an Grafikspeicher überwacht wird. Der Interactive Cell Plot ist
eine JavaScript-Bibliothek zum Rendern großer Streudiagramme mittels WebGL, die in Zusam-
menarbeit mit dem Allen Institute for Cell Science entwickelt wurde. Unsere effiziente Ren-
deringtechnik ermglicht es uns, eine Million zweidimensionale Datenpunkte mit 60 Bildern pro
Sekunde und fünf Millionen Punkte mit 25 Bildern pro Sekunde zu rendern. Wir evaluieren Vi-
sualisierungsparameter des Interactive Cell Plot und fünf verschiedene Plazierungsstrategien für
Vorschaubilder in einer qualitativen Anwenderstudie. Unsere neuartigen Algorithmen für rand-
und dichtebasierte Beschriftung minimieren sowohl Überlappungen von Datenpunkten, als auch
die Distanz zwischen Beschriftung und Referenz. Wir stellen Dichtekarten als Zwischenstruk-
tur für schnelles Clustering und schnelle Beschriftung, Stichprobengenerierung und Erkennung
Charakteristischer Datenpunkte vor. Durch die Laufzeitschätzung der Dichtekartengenerierung
gibt unser Algorithmus dem Benutzer direkte Kontrolle über den Kompromiss zwischen Laufzeit
und Genauigkeit der Dichtekartenerstellung.

iv





Contents

1 Motivation 1
1.1 Use case 1: Visualizing peta-scale simulations using in-situ generated image databases 1
1.2 Use case 2: Browsing cells using a high dimensional scatterplot of cell properties 2
1.3 Implemented applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Related work 5
2.1 Visual mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Density maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Application 1: Global View 7
3.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 MPAS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 3D Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.4 Texture streaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.5 User reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Application 2: Interactive Cell Plot 10
4.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Cell dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Fast point rendering in WebGL . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5 Visual mapping 14
5.1 Identity mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Cartesian mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.3 Spherical mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Observer mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5 Plot mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.6 Slider mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 Density maps 20
6.1 Density map generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Estimating density map generation runtime . . . . . . . . . . . . . . . . . . . . . 23
6.3 Density map based clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Labeling 27
7.1 Thumbnail selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.2 Thumbnail placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
7.3 Adjacent placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
7.4 Density placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
7.5 Boundary placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
7.6 Numbered Boundary placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
7.7 External placement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

8 Evaluation 33
8.1 Cell dataset scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
8.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
8.3 User Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

vi



9 Conclusion 41
9.1 Global View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.2 Interactive Cell Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
9.3 Visual mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.4 Density maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
9.5 Labeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendices 46

A Visual Mapping Scripting Language 46

vii



1 Motivation

A scatterplot visualizes tabular data with points in two-dimensional space. Each row of the table
describes a single data record. Each column represents a dimension of the dataset. If the order
of data records matters, then the row index represents another dimension. Datasets with more
than two dimensions have to be projected to two-dimensional space.

Among all the forms of statistical graphics, the humble scatterplot may be considered the most
versatile, polymorphic, and generally useful invention in the entire history of statistical graphics
[19]. Since the scatterplot was first introduced by J. F. W. Herschel in 1833 [19], the type and
amount of data scientists are visualizing has changed drastically. In this thesis we collaborate
with the Los Alamos National Laboratory (LANL) and the Allen Institute for Cell Science (AICS)
to visualize modern large-scale datasets using scatterplot-based software.

1.1 Use case 1: Visualizing peta-scale simulations using in-situ gener-
ated image databases

As scientific simulations have increased in complexity and accuracy, computing power and capac-
ity has grown to peta-scale. The data generated by massive scientific simulations have reached
the scale of petabytes and are still increasing in size. Generated data is becoming too large
to analyze with conventional methods because of storage and execution time constraints. The
cost of transferring data will likely be high, when the amount of data reaches petascale. Ana-
lyzing petascale-level simulation output is achieved by writing a subset of data onto disk and
analyzing the data offline. A dedicated visualization machine runs a limited number of simula-
tion time-steps out of thousands of steps generated by the simulation. In this process most of
the computing time is spent on I/O operations since data has to be transferred to a powerful
visualization machine almost similar to a supercomputer that does the calculations of the simu-
lation. Options are either to look at an even smaller subset of data, which defeats the purpose
of performing the original high-resolution simulation enabled by petascale computing, or not
to move the raw data itself. The scientific community is reluctant to use supercomputer time
for generating visualizations and coupling the simulation code with visualization. There can be
conflicts in code optimization for parallel simulation code and visualization, resulting in costly
and error prone replication of data and inter-processor communication. Even if the same domain
decomposition could be used, duplicating data at partition boundaries might result in memory
overhead. Visualization computation has to be designed to take a fraction of the overall simula-
tion time. Appropriate color and opacity transfer functions have to be derived from the domain
using an adaptive method without constantly acquiring global information. Co-processing is
desirable for large scale data visualization since relevant data and geometry of the simulation are
too expensive to be collected with a post processing step.

Better results can be expected with real time data communication for in-situ processing. Such
simulation time in-situ visualization applications can perform rendering on smaller chunks of
data with less transfer cost early in the visualization pipeline. The in-situ approach allows data
sharing, so both the simulation and visualization calculations can run on the same supercomputer.
Using the in-situ pipeline, visualization results are generated in the form of large image databases
while the simulation is running, enabling scientists to analyze the simulation at runtime.

Early examples of in-situ generated image databases exhaust the scalability of existing image
viewers and introduce new challenges to the visualization community. Domain scientists require
better tools for efficiently and intuitively analyzing large high-dimensional image datasets.
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A Cinema database is a set of precomputed data artifacts (i.e. images) that can be queried and
interactively viewed [1]. Cinema consists of a set of specifications, exporters and viewers for image
databases. ParaView recently added support for automatically generating in-situ databases in
Cinema format.

Traditionally, large high dimensional datasets are visualized by showing only a small subsets
of the data. Some of the most successful image viewers, such as the Cinema viewer reference
implementation [1], Windows Photo Viewer or Apple Preview, show only one image at a time and
let the user browse through the data space by selecting another image from the closest images
in each dimension. This approach is called local view, because the user never sees more than the
local neighborhood of the currently viewed image. It is the preferred approach for fine grained
exploration, like when a photographer compares multiple photos of the same subject to find the
best quality picture.

Using the local view approach to gain an overview of the full dataset can be very time consuming.
A global view approach shows either the full dataset or a large subset, by choosing a high
dimensional visual mapping (see below for a description of visual mappings) that preserves
many dimensions of the dataset and by displaying many data points at a time. The global view
is the preferred approach for overview tasks, like when a photographer compares a collection
of photos for a photo album to make sure the color scheme is uniform throughout the album.
The minimalistic design of a scatterplot allows it to display much larger datsets than other
visualizations. Therefore, it is the ideal basis for the global view.

1.2 Use case 2: Browsing cells using a high dimensional scatterplot of
cell properties

The initial project on cell organization by the Allen Institute for Cell Science reveals the enormous
variance in the organization of the cells, raising questions about the nature of this variance and
its biological origin (cell cycle, differentiation, etc.) and function [32]. They define a common
coordinate framework, enabling statistical analyses appropriate for these relatively large datasets.
Allen Cell’s online portal provides an unprecedented view into the organizational diversity of
human stem cells by combining large-scale 3D imaging data, predictive models, observations of
cells, detailed methods, and cell lines available for use in labs around the world[32].

The 3D images produced by Allen Cell’s imaging pipeline are dense with information, including
the positions of the DNA (DNA dye), the cell membrane (membrane dye) and the tagged protein
associated with the different cellular organelles. An interactive plotting tool is provided on the
Allen Cell web page to analyze trends by exploring cell feature data.

The interactive plotting tool [18] is a key component in the stem cell analysis pipeline. It visu-
alizes a dataset that is periodically expanded as more stem cells are being analyzed. Rendering
large datasets, like the cell dataset (see section 4.2) in a browser at interactive frame rates is
challenging. None of the existing web charting libraries are optimized for efficient rendering of
such large datasets.

We ensure the scalability of the interactive plotting tool by implementing a rendering pipeline
that optimizes point rendering efficiency in section 4.3. We prove the scalability of our imple-
mentation by generating and rendering a dataset, 100 times larger than the current cell dataset
in section 8.1. We benchmark data throughput by rendering up to 10 million points in section
8.2. We collaborate with the software engineering team of AICS on design of a new user interface
for the interactive plotting tool. In section 8.3 we optimize interface parameters for the best user
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experience as part of a qualitative user study. In the second part of our user study we answer
the question of how to best present thumbnails of rendered cell images, without occluding cell
feature data in the plot. We cover theory and strategies for thumbnail selection and placement
in section 7. Some of the presented algorithms, such as density-based thumbnail placement, de-
pend on precomputed point density. In section 6 we introduce density maps as an intermediate
data structure for clustering, label placement, computing characteristic points and sampling the
kernel density of a dataset.

1.3 Implemented applications

For this thesis we created two interactive scatterplot-based visualizations:

1. GlobalView (GV) is a desktop application, designed to visualize large image collections by
drawing data points as images in a 3D environment.

2. The Interactive Cell Plot (ICP) is a browser application, designed to visualize large scat-
terplots annotated with image thumbnails.

GV is optimized to fully utilize modern graphic acceleration and display its output on a large
screen. In contrast, browser applications have to be designed in an agnostic way [25] that allows
viewing in low resolution, low bandwidth and low performance environments. To achieve the
best possible browser performance, ICP renders data records as points and tags some of the
records with a thumbnail of the cell image.

Differences between the two visualizations are summarized in table 1.

Global View Interactive Cell Plot
Domain 3D 2D
Scalability focus Number and size of images Number of points

(hundreds of GBs of images) (millions of points)
Image visualization Images as data points Points labeled with thumbnails
Visual mapping Scripted Direct mapping
Environment Desktop (multi-platform) Browser
Programming Language C# (Mono) JavaScript
Graphics Framework OpenGL WebGL
Research areas I) Visual mapping I) Density maps

II) Labeling

Table 1: Differences between the two scatterplot viewers

The main contributions of this thesis are the exploration and formal definition of visual mappings
(section 5 and appendix A), the analysis of different thumbnail placement strategies (section 7.2)
and the computation and usage of density maps (sections 6, 7.4, 6.3 and 8.1).

Our density map based outlier detection algorithm shows clear advantages over previous density
based anomaly detection methods like DBSCAN and LOF. Most importantly, it is faster on large
datasets, because the time to compute a density map depends only linearly on the size of the
dataset. Once a density map is computed, the time complexity of the clustering algorithm only
depends on the size of the density map. The generated density map can also be used for other
analytical tasks, including visualization and statistical testing [20]. Finally, density map based
outlier detection has more easily tunable parameters than DBSCAN or LOF (see last paragraph
of section 6.1).
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We create two image viewers. The desktop viewer, GlobalView, is a cross platform image viewer
that can visualize Cinema image databases of any size. The web viewer, Interactive Cell Plot, is
a scatterplot library for JavaScript that outperforms commercial charting libraries in rendering
performance for very large datasets. Both tools are available on GitHub. GlobalView is released
under the name ”global view” [27] and the Interactive Cell Plot is released under the name
”GlobalView.js” [28].
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2 Related work

2.1 Visual mapping

A scatterplot displays the relationship of two quantitative variables by transforming the corre-
sponding dataset dimensions onto x-axis and y-axis of the plot. Chi classifies this transformation
in his taxonomy of visualization techniques as visual mapping [11]. A visual mapping is an ab-
stract transform operator that takes information in a visualizable format and presents a graphical
view. In the realm of multidimensional scatterplots Chi defines the visual mapping operation
as choosing a variable-to-axes mapping. We expand this definition by formulating the visual
mapping that maps an n-dimensional datset into a two-dimensional scatterplot as the non-linear
transformation matrix V ∈ Rnx2. The two spatial dimensions of a scatterplot are called layout
dimensions [6]. Besides the layout dimensions, other visual features of the scatterplot can be
used to encode additional dimensions. Visual features [6] are also known as marks [31], graphical
attributes [3] or graphical properties [16]. We summarize some of them in table 2).

It is worth noting that not all visual features are equally suitable for visualizing quantities.
Cleveland and McGill have identified 10 elementary perceptual tasks to extract quantitative
information from graphs and ranked them by accuracy of extraction, ordered from most to least
accurate [13].

1. Position along a common scale (e.g. along an axis)

2. position along nonaligned scales

3. Length, direction or angle

4. Area

5. Volume or curvature

6. Shading or color separation

Quantities are encoded inside visual features in the form of one or more perceptual tasks. An
exception are interactive or time-varying features, since Cleveland and McGill’s taxonomy only
describes static graphs.

Visual feature Description
Layout Mapping values to data point locations
Color Coloring points by encoding values with a colormap
Opacity Drawing points with a high value more opaque
Size Drawing points with a high value larger
Meta-visualization Drawing points as small charts

(e.g. pie charts or bar charts)
Visibility Hiding all but one part of a data series

(e.g. animating or interactively hiding groups of points)
Motion Highlighting or grouping points by briefly animating

their locations [3]

Table 2: Visual features of a scatterplot

Images are themselves visualizations of the displayed content. By drawing images as points of
a scatterplot, the Global View (GV) qualifies as a meta-visualization in the systematization of
Bertini et al. [6]. This effect becomes apparent when a user zooms into an image.
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Combs and Bederson describe an image browser as an application that allows users to select one
or more images from multiple images by supporting both viewing of multiple images at a time
and inspection of full resolution versions of individual images [14]. They developed the Zoomable
Image Browser (ZIB). ZIB offers a unique advantage over many browsing systems in that the
user has control of the trade-off between the number of images displayed and the resolution of
those images. We have implemented this focus-and-context technique into GV. By zooming in,
the visualization transitions seamlessly from a global overview to a local comparison view, and
finally to a single image view. Combs and Bederson compare ZIB to three more image viewers in
a comprehensive user study. The browser that performs almost as well as ZIB is the classic 2D
grid viewer of ThumbsPlus [15]. The other two browsers are Simple LandScape, a 3D browser
that allows users to fly through a forest of images and PhotoGoRound, a rotatable 3D viewer
that uses a ”lazy Susan” metaphor. Both 3D browsers, as well as GV, show images as billboards.
They always face the viewer, independent of viewing angle. Every viewer in Comb and Bederson’s
user study can be implemented using GV with corresponding visual mappings.

2.2 Density maps

Density based clustering and outlier detection methods like DBSCAN [17] and LOF [8] are
computed based on the probability density function (PDF) of the sample points. They sample
the PDF at each data point by measuring distances to neighboring points.

Clustering by fast search and find of density peaks (CFSFDP) computes local density around
every point and searches for high density points to detect cluster centers [33]. Mehmood et
al. extend CFSFDP by computing a kernel density estimate (KDE) via the heat distribution
method (CFSFDP-HD) [30]. The KDE is a non-parametric way to estimate the probability
density function. CFSFDP-HD samples the PDF by computing the KDE with a Gaussian
kernel from neighbors closer than a maximum point distance called bandwidth. Gan and Bailis
implement fast KDE based clustering, by only focusing on the density threshold that separates
clusters and pruning branches of the computation that go beyond the threshold [20].

Density based clustering methods differ from our approach in that they sample the PDF at the
locations of each data point. A density map consists of regular sampled densities throughout the
spatial domain.

2.3 Labeling

The problem of superimposing annotations over static content while minimizing occlusions is
known in literature as label placement. Label placement is an important research area according
to the ACM Computational Geometry Impact Task Force report [10]. In our case we want to
annotate points selected during the thumbnail selection step. We will refer to these points as
sites. Each thumbnail (i.e label) is connected to exactly one site using either a straight line,
called a leader, or by annotating both thumbnail and site with identical numbers.

Boundary label placement was introduced by Bekos et al [5]. According to their classification
of boundary placement strategies, our boundary thumbnail placement strategy classifies as four-
sided (i.e. labeling each side of the Axis Aligned Bounding Box (AABB) of the plot) type-s (i.e.
leaders are straight lines) one-to-one (i.e. each site is connected to exactly one label) boundary
placement. They describe a problem where n uniform labels are evenly distributed along the
AABB, which reduces label placement to the task of assigning sites to labels such that no two
leaders intersect and solve it in O(n log n) time. We introduce a different algorithm in section
7.5 that optimizes label positions that are sparsely distributed along the AABB.
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3 Application 1: Global View

The first scatterplot we implement is the Global View (GV). Figure 1 shows the interface of GV.
The upper part shows the loaded images. Images have a fixed size and they always face the user.
Placement of images is controlled by applying visual mappings that map dataset dimensions to
image coordinates. Visual mappings are scripted through an integrated terminal at the bottom
of the interface.

Figure 1: The GlobalView image viewer.

3.1 Requirements

We design GlobalView to fulfill the following requirements

• Cinema format
GV is designed as a successor to the Cinema viewer [1], an image viewer for large image
databases that uses the local view approach. GV supports Cinema image databases in
Astaire or Chaplin (former Bacall) format. The full Cinema image database specifica-
tions are at the Cinema homepage [1]. One implication of this database format is that
datasets are assumed to contain images for all combinations of input parameters. For ex-
ample, if a database in Astaire format uses the input parameters x = {true, false} and
y = {1, 2, ..., 10}, then it must contain all images (x, y) = {(true, 1), (false, 1), (true, 2),
(false, 2), (true, 3), ..., (false, 10)}.
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• Performance scalability
GV is used to visualize the output of large scale scientific simulations. The generated high
dimensional image databases contain hundreds of high resolution images with a total size
above 100GB (see 3.2). Section 3.4 describes our novel texture streaming pipeline that
supports image databases that are too large to fit into main memory.

• Information scalability
We use GV to explore how many images of the visualized high dimensional datasets can be
simultaneously presented to the user. Therefore, we use a form of scatterplot that displays
individual images as data points.

• Flexibility of visual mappings
The information scalability requirement necessitates a thorough exploration of different
visual mappings. We describe different visual mappings in section 5. GV uses an integrated
terminal to script visual mappings using a visual mapping scripting language that we
describe in appendix A.

• Platform independence
GV is a desktop application written in Mono, a cross-platform implementation of Microsoft
C#, using OpenGL for rendering. The integrated terminal uses the Fast Colored TextBox
library by Pavel Torgashov [35]. GV has been tested on Ubuntu, Mac OS, Windows 7 and
Windows 10.

3.2 MPAS dataset

As a working example of GV we use the MPAS dataset. The MPAS dataset is a Cinema [1]
database of in-situ generated images from the Okubo-Weiss simulation [38]. The simulation
was run using the Model for Prediction Across Scales (MPAS), a climate modeling framework
that is developed by the Los Alamos National Laboratory (LANL) in cooperation with the Na-
tional Center for Atmospheric Research (NCAR). The database was created using the ParaView
Catalyst pipeline [2].

3.3 3D Interaction

Munzner describes, that even though we are living in a three dimensional reality, most of our
cognitive reasoning happens in a two dimensional domain [31]. As a result, 2D visualizations are
more accurate and easier to comprehend. We choose a three dimensional domain for GV, because
the extra dimension gives us more flexibility for designing visual mappings of high dimensional
datasets. It also allows a possible future adaption of GV for virtual reality environments.

Image locations in GV are controlled mainly by defining a visual mapping through our scripting
interface (see section 5). Once images are placed in 3D space, they can be explored by moving the
camera with keyboard and mouse. Whenever visual mappings are modified, images are animated
towards their updated positions to avoid sudden changes in the layout of the visualization.
According to the principle of congruence [36], such sudden changes are disruptive, since they
prevent users from tracking changes over time [16].

Interaction is essential to exploratory visual analysis [21], [31]. Therefore we allow the user to
highlight, move or remove images from the coordinates defined by the visual mapping.
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3.4 Texture streaming

Modern image datasets are growing in size faster than commodity hardware. We have im-
plemented a novel texture streaming algorithm that optimizes viewing experience on hard-
ware with a memory hierarchy that satisfies permanent storage size ≥ main memory size ≥
video memory size. The only input to this algorithm is a single scalar priority value per image.
The priority value indicates the level of importance of the image to the user. We use the number
of visible pixels of an image as heuristic for image priority. An image that is completely occluded
or out of sight has a priority of zero, while a visible image has a priority proportional to the
number of visible pixels. When an image is drawn on screen, we count the number of pixels using
OpenGL atomic counters.

3.4.1 Texture streaming implementation

On a background thread, texture streaming periodically queries the highest priority image that
hasn’t been loaded yet. It stores a full resolution version of the image in main memory and a
scaled down version in video memory. The amount of scaling depends on the visible size of the
image on screen. When the visible size of a loaded image changes by more than a factor of two,
the image in video memory is recomputed from the full-size image in main memory. For example,
this could happen due to the user zooming in or out. As soon as available memory is exhausted,
we free memory by unloading low priority images. In OpenGL it is not possible to query the
amount of available video memory. Therefore, we define a constant memory limit. By changing
this limit the user has control over the memory imapct of GV on the host system.

To implement flicker-free animations, consecutive frames have to be prefetched before they are
displayed. We implement prefetching by computing a future priority estimate, based on the
expected visibility of a consecutive frame. This is done by sampling the time-dependent visual
mapping with a future time value (e.g. 500 milliseconds ahead). Instead of drawing images at
that future time, we only estimate which of the images will be visible to compute the future
priority estimate. The future priority estimate is added to the current priority estimate, so that
images receive a high priority before they become visible.

3.5 User reception

The applicability of GV is limited by the assumption of the Astaire and Chaplin specifications of
Cinema that the database contains images for every combination of input parameters. However,
most datasets, e.g. figure 3, contain unevenly distributed images. In order to load datasets like
figure 3, we implemented a way to load non-Cinema conforming datasets. This format restriction
was removed with the Dietrich specification of Cinema, following feedback we provided after
implementing GV.

We successfully used GV to study different kinds of visual mappings and evaluate scalability in
terms of rendering large amounts of images to screen. However, the scripting language interface
and 3D camera control make GV difficult to operate. We decided to design a second scatterplot
based visualization tool, with a strong focus on usability. This tool, named the Interactive Cell
Plot (ICP), is described in the next chapter. Requirements of ICP are based on our observations
from GV.
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4 Application 2: Interactive Cell Plot

The second scatterplot-based visualization we implement is the Interactive Cell Plot (ICP). ICP
is designed to replace the current Interactive Plotting application on the website of the Allen
Institute for Cell Science [18]. ICP is designed to be less flexible, but easier to use than GV. It
has a traditional two dimensional interface and supports only visual mappings of single input
dimensions to each of x-, y- and color axes.

ICP is a library for efficiently rendering scatterplots of large datasets on a web page. For the
purpose of development, we implement a sandbox interface with ICP on the left and a list of
basic controls on the right, shown in figure 2. The top group of controls are used to select
a dataset and assign dataset dimensions to x-, y-, and color axes. Underneath are controls
for altering visualization parameters. The third group controls density-, cluster- and histogram
visualizations. The fourth group consists of only one button that starts the benchmark of section
8.2. The last group contains controls for thumbnail selection and placement, see section 7.

We evaluate which of the controls to expose in the final interface on the cell science web page
[18] in a user study 8.3.

Figure 2: The Interactive Cell Plot sandbox interface.
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4.1 Requirements
Based on what we observed from GV, we design ICP to fulfill the following requirements

• Deployment as a web application
ICP is designed as a successor to the current Interactive Plotting web application [18],
a scatterplot based tool for interactively exploring the cell dataset. The cell dataset is
described in section 4.2.

• Annotation of images with thumbnails
Using GV, users can immediately study all 6077 images of the cell dataset (see figure 3),
but the small size of the cell images requires constant interaction (panning and zooming)
to study cell image details while avoiding the loss of context. This interaction paradigm is
called pan&zoom [4]. ICP replaces the pan&zoom paradigm with focus+context interac-
tion, by superimposing larger thumbnails (focus) over a point-based scatterplot (context).

Another reason for choosing thumbnails over images as points is the performance impact.
When the cell dataset is loaded into GV (see figure 3), it takes about four seconds to
asynchronously load all images from an SSD drive. The frame rate for rendering all images
at once is only 4 frames per second. Because ICP is a web application, we expect frame
rates to be even lower and we expect a significantly higher loading time to retrieve the
6077 images over a network connection. By rendering data points as points, not images,
we achieve much better performance (see section 8.2).

• Performance scalability
To achieve the highest possible performance, we implement ICP with WebGL. In section
4.3 we discuss techniques to optimize point rendering in a web application. In section 8.1
we show that the cell dataset can still be interactively explored with ICP after its size has
been extended to 100 times the current number of cells.

4.2 Cell dataset

As a working example of ICP we use the cell dataset. The cell dataset of the Allen Institute
for Cell Science [32] contains cell images and features from the Wild Type C (WTC) human
induced pluripotent stem cell (hiPSC) line, produced by Bruce Conklin [29]. For this paper we
are working with version 1.5 of the dataset, which consists of 6077 individual cells. Each cell has
6 properties, a cell class and a rendered cell image.
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Figure 3: The cell dataset, rendered with GV.

4.3 Fast point rendering in WebGL

WebGL is an OpenGL wrapper for JavaScript. OpenGL only uses the graphics accelerator
efficiently when communication with the graphics driver is low. This applies even more to
WebGL applications, because browser executed JavaScript code is slower than natively executed
C++ code.

When a dataset is loaded, we store the full dataset in graphics memory as one continuous buffer.
Later calls to WebGL only change how data is rendered, they never change the data itself.

In the following sections we describe vertex and fragment shaders for fast point rendering in
WebGL. We benchmark the presented code with up to 10 million points in section 8.2.

4.3.1 Vertex shader

Every time the user changes the view, we compile a vertex shader (see listing 2) that defines the
transformation from the static data table in memory to the requested output on screen. The
three dimensional point location pos is computed in line 6. The first two components of pos
are x and y position of the point in normalized device coordinates. The vertex position is set
to these coordinates in line 8. The third component of pos is the color dimension in the range
0 ≤ posz ≤ 1. It is used as an index into a colormap in line 7. We use a two dimensional texture
for the colormap, because WebGL doesn’t support one dimensional textures. The variable color
is used in the fragment shader.

Blocks {b} and {c} of listing 2 define visual mappings in the form of linear combinations of
attributes. When the user switches to a different visual mapping, the new visual mapping code is
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inserted into block {b} and the old visual mapping code is inserted into block {c}. The transition
between old and new mappings is animated by controlling vectors scales and aniScales.

Dataset dimensions used by blocks {b} and {c} are defined as attributes in block {a}. Because
WebGL supports only a limited number of attribute vectors and the maximum vector size is 4,
we group attributes in lists of length ≤ 4. For example, if code blocks {b} and {c} require six
different dataset dimensions, the attribute code inserted into block {a} is the following:

1 a t t r i b u t e vec4 a t t r i b u t e S e t 1 ;
2 a t t r i b u t e vec2 a t t r i b u t e S e t 2 ;

Listing 1: Code block for defining six unique attributes.

The assignment of dataset dimensions to attributes is done in JavaScript using the WebGL
function gl.vertexAttribPointer(...). View zooming and panning is also done in JavaScript,
by controlling the vectors offsets, scales and aniScales.

1 uniform vec3 o f f s e t s , s c a l e s , a n i S c a l e s ;
2 uniform sampler2D colormap ;
3 vary ing vec4 c o l o r ;
4 {a}
5 vec3 main ( ) {
6 vec3 pos = o f f s e t s + vec3 ({b}) ∗ s c a l e s + vec3 ({ c }) ∗ a n i S c a l e s ;
7 c o l o r = texture2D ( colormap , vec2 ( pos . z , 0 . 5 ) ) ;
8 g l P o s i t i o n = vec4 ( pos . xy , 0 . 0 , 1 . 0 ) ;
9 }

Listing 2: GLSL vertex shader code for rendering data points. Attribute definition code
{a} and visual mapping code for the static plot {b} and the animated transition {c} are
dynamically generated.

4.3.2 Fragment shader

In the fragment shader (listing 3) we define a point shape as a function of p ∈ R2 and apply
the point color defined in the vertex shader. Line 6 of listing 3 converts point coordinates from
texture space 0 ≤ p1, p2 ≤ 1 to the range −1 ≤ p1, p2 ≤ 1, because it is easier to formulate
symetrical point shapes in this space. Most figures in this thesis use the circular point shape.
The circular point shape is defined as 1− |p|0.25 pointSize

. The factor 0.25 controls the sharpness
of the point’s outline.

1 vary ing vec4 c o l o r ;
2 f l o a t pointShape ( in vec2 p) {
3 return {d } ;
4 }
5 void main ( ) {
6 c o l o r . a = pointShape ( g l PointCoord ∗ 2 .0 − 1 . 0 ) ;
7 c o l o r . a = clamp ( c o l o r . a , 0 . 0 , 1 . 0 ) ;
8 g l FragCo lor = c o l o r ;
9 }

Listing 3: GLSL fragment shader code for rendering data points. Point shape code {d} is a
user defined function of p.
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5 Visual mapping

When an image database is loaded into GV, the visual mapping is an identity matrix. All
images reside at the coordinate system origin. To map dataset dimensions to spatial dimensions,
a corresponding transformation has to be applied to the visual mapping matrix. Most high-
dimensional visualization tools use either a hard-coded visual mapping or let the user choose
which dimension to map onto each of the available visual features. Hard-coded visual mappings
allow full control over the visual mapping at compile-time. GV gives the user full control over
the visual mapping at runtime, by supporting the composition of transformations from within
the application.

An ideal interface for composing visual mappings would be an intuitive touch- or drag-and-
drop interface. Creating such an interface capable of composing a plethora of different visual
mappings would require vast effort. For the sake of studying on-the-fly compositions of visual
mappings we prefer the flexibility of a textual interface over the ease of use of a touch- or
drag-and-drop interface. Programing visual mappings through a textual interface requires an
appropriate notation. Algebraic notations are commonly used to formalize visual mappings (e.g.
Ziemkiewicz and Kosara’s mathematical formalization of visual mappings[39] or Kindlmann and
Scheidegger’s algebraic process for visualization design [26]), but to the best of our knowledge,
we are the first to formally define a programmable notation of visual mappings. We propose
a simple scripting language, similar to SQL, to formulate visual mapping transformations (see
appendix A).

The MPAS dataset is a visualization of simulated currents in the earth’s oceans. It contains
views of the earth from a constant distance in regular intervals along latitude and longitude. In
the following we investigate different visual mappings to present the MPAS dataset.

5.1 Identity mapping

When we load the dataset into GV, the visual mapping is initialized as an identity matrix. All
images reside at the coordinate system origin. The identity mapping is shown in figure 4.

Figure 4: The MPAS dataset with an identity mapping.
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5.2 Cartesian mapping

One way of aligning the spacial dimensions of the dataset is to assign latitude and longitude
dimensions to x and y axes of the scatterplot. The Cartesian mapping is shown in figure 5. This
mapping uses almost the entire available screen area to display all spacial views in identical size.
However, the mapping of latitude and longitude to horizontal and vertical axes is unintuitive for
most users, which makes this mapping hard to interpret. Below we investigate more intuitive
visual mappings for latitude and longitude.

In GV we produce this mapping by issuing the command STAR all BY $theta, $phi. This
applies a Cartesian mapping (i.e. ”star” mapping) to all images by dataset dimensions longitude
(i.e. camera angle ”theta”) and latitude (i.e. camera angle ”phi”). See appendix A for details
of our visual mapping scripting language.

Figure 5: The MPAS dataset with a Cartesian mapping.

When the ”star” mapping is applied to more than three dimensions, the high dimensional space
is projected down to three dimensions using a star coordinate system [34]. Figure 6 shows the
projection of a six dimensional dataset into three dimensional space. Visualizing higher dimen-
sional data using star coordinates should be avoided because the resulting plots quickly become
unreadable. The star mapping of a six dimensional dataset in figure 6 is an example of a visual
mapping that exceeds the capabilities of scatterplots in terms of information scalability.
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Figure 6: Projection of a six dimensional dataset into three dimensional space using a star
mapping.

5.3 Spherical mapping

A more intuitive mapping is the spherical mapping. Here images are drawn at spherical coor-
dinates according to their geographical parameters at a constant distance from the origin. The
spherical mapping is shown in figure 7. The intuition behind this mapping is that every image
is drawn at the point from which the view has been rendered in the simulation. The user is able
to see both the current view and neighbor views. Browsing through views is done by rotating
the view around the sphere of images using the mouse.

In GV we produce this mapping by issuing the command THETAPHI all BY $theta * pi /

180, $phi * pi / 180, 4. This applies a spherical coordinates mapping (i.e. ”theta-phi”
mapping) to all images by dataset dimensions longitude (i.e. camera angle ”theta”) and latitude
(i.e. camera angle ”phi”), converted to radians. The radius coordinate is set to 4 units. One unit
corresponds to the size of an image. See appendix A for details of our visual mapping scripting
language.
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Figure 7: The MPAS dataset with a spherical mapping.

Another dimension (e.g. time) can be visualized by mapping this dimension to the x axis,
to produce one sphere of images per time step. Figure 8 shows two time steps, visualized by
combining the spherical mapping of spatial coordinates with a Cartesian mapping of the time
dimension. In GV we produce this mapping by issuing the commands THETAPHI all BY $theta

* pi / 180, $phi * pi / 180, 4 and X all BY #time * 10

Figure 8: Two time steps rendered by combining spherical and Cartesian mapping.
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5.4 Observer mapping

The most intuitive mapping for geographical coordinates is the observer mapping. Here we only
show one view at a time. The displayed view is the view whose geographical coordinates most
closely resemble the current virtual angle withing GV. The observer mapping is shown in figure
9. An obvious drawback from this mapping over previous mappings is that only one view is
displayed at a time. This makes direct comparison between adjacent views more difficult.

Viewing a simulation with a very high spatial resolution using the observer mapping results
in a viewing experience indistinguishable from observing a three dimensional object. However,
storing many spatial views of the same object is infeasible, because of redundancy between
adjacent views.

In GV we produce this mapping by issuing the command LOOK all BY $theta * pi / 180,

$phi * pi / 180. This applies an observer mapping (i.e. ”look” mapping) to all images by
dataset dimensions longitude (i.e. camera angle ”theta”) and latitude (i.e. camera angle ”phi”),
converted to radians. See appendix A for details of our visual mapping scripting language.

Figure 9: The MPAS dataset with an observer mapping.

5.5 Plot mapping

GV is based on a three dimensional scatterplot. We can map the two dimensional geographical
coordinates of the MPAS dataset to two axes and use the third axis to visualize a third dataset
dimension. This axis should be assigned to a sparse dimension to avoid cluttering the view. In
figure 10 we use a Cartesian mapping of latitude and longitude to x and z axes and project the
average salinity level over the visible pixels in each view to the y axis. Average salinity is a
sparse dimension, because it consists of only one value per view.

The difference between a plot mapping and a three dimensional Cartesian mapping is that image
locations are aided with purple lines in the plot mapping. The purple lines are important to aid
cognitive perception of image locations in the three dimensional plot. They allow the user to
perform spatial queries by evaluating lengths of lines, which is an elementary perceptual task for
extracting information in the taxonomy of Cleveland and McGill [13].
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In GV we produce this mapping by issuing the command PLOT all BY $theta, $phi, 5 *

$avgSalinity. This applies a plot mapping to all images by dataset dimensions longitude (i.e.
camera angle ”theta”), latitude (i.e. camera angle ”phi”) and the value of average salinity times
five units. One unit corresponds to the size of an image. See appendix A for details of our visual
mapping scripting language.

Figure 10: The MPAS dataset with a plot mapping.

5.6 Slider mapping

The slider mapping is an interactive mapping. It hides all but one image in a given dimension.
In figure 11 we apply the slider mapping to the latitude coordinate of the plot mapping created
in section 5.5. This results in a visualization of only one slice of the dataset. The slice is selected
interactively through a slider control at the bottom of the screen.

Figure 11: The MPAS dataset with a slider mapping.
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6 Density maps

The point distribution of all points in a D-dimensional scatterplot can be expressed as a D-
dimensional probability density function (PDF). To construct a PDF with a Gaussian kernel we
have to make an assumption about the variance of the data. If the variance is assumed to be
zero, then the PDF is one at every point’s location and zero everywhere else. If the variance is
assumed to be infinite, then the PDF is a constant.

For most datasets the exact (analytic) form of the PDF is unknown. A nonparametric way to
estimate the PDF of a random variable is known as the kernel density estimate (KDE). We
define the density map as a discretized KDE. Density maps with different variances are shown in
figure 12. A density map with zero variance is equal to the histogram of the dataset (see figure
12a).

(a) (b)

(c) (d)

Figure 12: Density maps on a two-dimensional dataset. The density maps are of size 8 by 8,
with a variance of 0 (a), 8/

√
200 (b), 8/

√
100 (c) and 8/

√
20 (d).
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Density maps are used to analyze the dataset. For example, points lying within low point density
can be considered outliers and density peaks can be considered cluster centers [33].

By using density maps to analyze a dataset, the runtime of the analysis is decoupled from the
size of the dataset. It only depends on the size of the density map. We refer to the density map
size as s. ICP uses two-dimensional density maps of size s ∗ s = 1024 ∗ 1024 pixel.

Optimized versions of DBSCAN and LOF compute a distance matrix to allow distance queries
between any two points to be performed in constant time through a table lookup. The distance
matrix of a dataset with n points is a symmetric n by n matrix. Like the distance matrix, the
density map is an intermediate data structure, used to speed up operations like clustering and
outlier detection. However, for large datasets the density map is typically much smaller than
n by n. For example, the cell dataset is of size n = 6077 and in our performance benchmark
(section 8.2) we evaluate datasets up to n = 107. All density maps computed for this thesis are
of size s ≤ 1024.
Density maps differ from distance matrices in the following ways:

• The density map is discretized, while distances in the distance matrix are exact. This has
the disadvantage of classifying points closer than 1

s collectively, but it enables direct control
over the performance/accuracy trade-off (see section 6.2).

• The density map is a projection of the dataset’s PDF into 2-dimensional space. In theory a
D-dimensional density map of size sD could be computed, but the memory and performance
advantages of an sD sized density map over an n2 sized distance matrix is diminished for
D > 2. Instead we approach higher-dimensional computations by creating two-dimensional
density maps between any two dimensions of the dataset. In other words, we are creating a
density map for every unique two-dimensional scatterplot of the D-dimensional scatterplot
matrix of the dataset. We then sample density within D-dimensional space by summing
up samples of all two-dimensional density maps. This approach works well for tasks such
as thumbnail placement (section 7.4), because the computed thumbnails are only viewed
in any of the two-dimensional subspaces of the dataset. Because a scatterplot matrix is
symmetric, we only create density matrices for the lower triangular scatterplot matrix,
excluding the diagonal. The total memory size required by such a D-dimensional density

map is s2D∗(D−1)
2 .

• The distance matrix preserves information about individual neighbors. This allows neigh-
borhood queries to group neighborhoods into clusters or correlate a point’s outlyingness
with the average outlyingness in its neighborhood [8].

• The density map stores densities at any point, not just at the locations of data points.
This information is utilized for placing labels (section 7.2) and generating samples (section
8.2). One could create a sparse density map with only point densities, should this extra
information not be required.

6.1 Density map generation

To compute density, we need to define a measure of closeness between data points. Statistically,
proximity is modeled with a Gaussian function G(r). Subjective measures like ”near” or ”far”
are quantified using the variance of the Gaussian. To model density, we use an unnormalized
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Gaussian function (see equation 1).

G(r) = e
−
r2

2σ2 (1)

The formal definition of a density map D is seen in equation 2. The density at location x within
the density map is the linear combination of the measured proximities of each point pk to x. To
naively compute the density at pixel x takes n operations. The runtime for naively computing
a density map of s by s pixels is O(ns2).

D(x) =

n∑
k=1

G(‖pk − x‖) (2)

We can compute the density map faster, by first computing a histogram of points H(q) (see
equation 3) and using the histogram to compute the density map (see equation 4). Computing
a histogram takes O(n), resulting in a total runtime of O(n+ s4).

H(q) =

n∑
k=1

{
1, if pk = q

0, otherwise
(3)

D(x) =

s∑
i=1

s∑
j=1

H(q =

[
i
j

]
) ∗G(‖q − x‖) (4)

Both equation 2 and equation 4 have similar runtimes when computing a density map of size
s = 1000 from a dataset of n = 1, 000, 000 points (∼ 1012 operations), but the inner sum of
equation 4 can be skipped where H(q) = 0. That means O(n+ s4) is a worst case that applies
for plots where each bin of the histogram contains points. In practice, such plots make little sense.
We handle cases that would result in extreme runtimes by first estimating expected runtime and
scaling down s if necessary (see section 6.2).

Another runtime optimization is implemented by restricting the sums of equation 4. The Gaus-
sian function is an infinite function, but it’s numerically bound to magnitudes above a certain
threshold t. We can limit the range of q to only compute H(q) ∗G(|q − x|) ≥ t. Based on the
unnormalized Gaussian function G in equation 1, the range of q that results in magnitudes ≥ t
is a circular area around q with radius rmax according to equation 6).

H(q) ∗G(‖q − x‖) ≥ t where ‖q − x‖ ≤ rmax (5)

rmax =

√
−2σ2 log

t

H(q)
(6)

Parameters for the density map computation are density map size s, variance σ2 and threshold
t. t is a constant based on floating point precision, s controls the performance/accuracy trade-off
and σ2 defines a scale for proximity.
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Figure 13: Density map based label placement on the cell dataset from the Allen Institute for
Cell Science [32]. High densities are colormapped with a dark blue color.

6.2 Estimating density map generation runtime

Computing a density map of size s by s pixels takes O(n+s4) operations (see section 6.1). Since
the runtime optimizations we introduced in section 6.1 depend on the distribution of data points,
a fixed s results in vastly different runtimes for different datasets. A user is usually interested
in the most accurate solution that can be computed in reasonable time, e.g. one second. To
achieve this goal, we estimate an expected runtime in O(s2) time and reduce s if the expected
runtime is too high, before computing the density map. The total runtime for computing a
density map that can be computed in under one second is O(n) (histogram generation) + O(s2)
(runtime estimation) + O(s4) (density map computation) = O(n+ s2 + s4). The total runtime
for computing a density map that can only be computed in under one second if the density map
size is reduced to ŝ = s

2 is O(n) (histogram generation) + O(s2) (runtime estimation, returning
> 1sec) + O(ŝ2) (runtime estimation, returning ≤ 1sec) + O(ŝ4) (density map computation) =
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O(n+ s2 + ŝ2 + ŝ4).

In the following we will refer to the runtime estimation as estimation phase and to the density
map computation as computation phase. In the estimation phase we iterate over all non-empty
histogram bins and compute rmax (see equation 6). The number of computation phase iterations
is estimated as the sum of all circular areas around non-empty histogram bins q with radius rmax.
To compute a runtime estimate from the estimated number of iterations of the computation
phase, we are measuring the runtime of the estimation phase.

Figure 14 shows runtimes and numbers of computation phase iterations measured on 15 different
datasets with density map sizes between 256 by 256 and 1024 by 1024 pixels. Each of the 1900
gray points represents a randomly sized density map computed from a random dataset. Since the
sampled runtimes have high variance, the graph shows 1900 averaged samples (purple points).

Each purple point shows the average of 100∗10242
s2 individual samples. We scale the number of

individual samples by 1
s2 to make sure smaller density maps are measured over the same duration

as larger density maps. This way we measure all density maps with the same precision. The
y-axis shows the fraction of estimation phase and computation phase runtimes. We observe that
estimation is between 40 and 150 times faster than computation and that there is an exponential
relationship between the number of estimated computation phase iterations and the measured
runtime fraction. We have fitted a logarithmic regression curve (shown in blue) using nonlinear
optimization. The regression curve is a heuristic for estimating runtimes of any density map
computation in O(s2) time. Since the heuristic is based on relative time measurements, it is
independent of processor speed.
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Figure 14: Measured runtime estimations for computing density maps of random size for random
datasets: The x-axis shows the estimated number of computation phase iterations required to
compute the density map. The y-axis shows the fraction of density map computation runtime over

runtime estimation runtime. Each purple sample is an average of 100∗10242
s2 individual samples.

The blue line shows a logarithmic regression curve.
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The algorithm above estimates runtimes for density maps that fully include all circular regions
around non-empty histogram bins. Such density maps can be larger than s by s. We also
implement a version of the density map generation algorithm, that computes only a density
map the size of the bounding box around all points (s by s). For estimating the runtime of
density maps, limited to size s by s, we need to extend the estimation phase to handle cropped
circular areas (see figure 15). The computation of cropped circles changes the runtime of the
estimation phase, which in turn results in different runtime fractions. Therefore, we use a different
logarithmic regression curve to estimate cropped density maps.

rmax 

p0 

p1 

p2 

cropped circle 

full density map 

cropped density map 

Figure 15: A depiction of the circular areas around points p0, p1 and p2, that are iterated during
the computation phase. When the full density map (outer rectangle) is computed, the areas
around each point are full circles. When a cropped density map (inner rectangle) is computed,
some circular areas are cropped.

6.3 Density map based clustering

Thresholded kernel density classification (tKDC) [20] classifies regions of higher density than a
threshold t. Disjoint regions of higher density than t represent different clusters. Points that lie
in regions of lower density than t are considered noise.

We implement tKDC using a flood fill method on the density map. In a first pass we find
continuous regions of densities above t along the scanline through the density map. A second
pass concatenates adjacent regions into clusters. Figure 16 shows the results of our method on
the spiral dataset by Chang and Yeung [9]. Three detected clusters are shown in cyan, magenta
and yellow. White regions have densities below t.

Our implementation of tKDC shows that density maps can be used to successfully cluster
datasets. We will reserve more sophisticated implementations, like an adaption of CFSFDP
for density maps, for future work.
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Figure 16: Density map based clustering on the spiral dataset by Chang and Yeung [9].
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7 Labeling

7.1 Thumbnail selection

Rendering points instead of images saves a lot of screen real estate, but image information
is crucial and needs to be exposed to the user in some way. Thumbnails are low resolution
representations of individual images that are rendered either close to the plot or directly within.
In this section we elaborate how to choose points to be tagged with thumbnails. The placement
of these thumbnails will be covered in the next section.

How many thumbnails to expose is a subjective, data dependent problem. We will cover the
selection of a reasonable number of thumbnails in our user study (section 8.3.

In a typical graph, a point is of particular importance if its location deviates from the majority
of points. Such points are known as outliers. On the other hand, centers of high density regions
are also considered important. The points closest to local maxima in the PDF are known as
cluster centers. Both types of points characterize the dataset, making them ideal candidates to
be annotated with thumbnails.

We detect such characteristic points by sorting all data points by their point density and selecting
from the highest and lowest density points, depending on the requested outlier to inlier ratio. To
get samples from different areas of the plot, we enforce a minimum Euclidean distance between
samples. We set the minimum distance to 20% of the view diagonal and rerun the algorithm
with half the minimum distance until the requested number of points can be extracted. After
computing point density, each iteration computes in linear time.

Dense regions show visible patterns of selected samples with identical distance (see red points
inside the high density region of figure 13), because our algorithm only probes for a constant
minimum distance. These artifacts could be removed either by adding noise to the minimum
distance or by using Monte Carlo sampling.

7.2 Thumbnail placement

A thumbnail should be placed near to its site without occluding important parts of the plot.
Some users prefer keeping thumbnails very close to sites, while others prefer the advantage
of unoccluded plots. We compare five different thumbnail placement strategies, in order of
increasing thumbnail to site distance.

1. Adjacent placement places thumbnails directly at the site without regarding occlusions of
other data points.

2. Density placement places thumbnails in regions of low point density within the plot, while
also minimizing thumbnail to point distance.

3. Boundary placement arranges thumbnails along the rectangular border of the plot, while
also minimizing thumbnail to point distance.

4. Numbered boundary placement uses the same placement strategy as boundary placement,
but uses numbers instead of leader lines to connect thumbnails.

5. External placement shows thumbnails in a list outside the plot. Thumbnails are associated
using numbering.

In the following we elaborate placement strategies in detail.
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7.3 Adjacent placement

Placing static thumbnails directly at the site results in significant occlusions of data points (see
figure 17). However, for a dynamic preview, showing thumbnails directly at the data point the
mouse is hovering over is certainly the most intuitive solution. This is an established metaphor
for showing textual hints in desktop applications in the form of tool tips.

Figure 17: Adjacent placement
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7.4 Density placement

The problem of finding locations within the plot that occlude as little as possible data points can
be formulated as an optimization problem. The optimal location of a thumbnail is a location
within low point density that is close to the site. We combine point density and site proximity at
a point x into a cost function C(x) according to equation 7. We scale densities to the same range
as x to avoid bias. Scaled densities are denoted as D̂. The range of D̂ is zero to density map size
(0...s). The factor 10 in equation 7 controls the trade-off between density and site proximity.
Alternatively the trade-off can be controlled by changing the variance of the density map.

C(x) = 10 ∗ D̂(x) + |r − x|2 (7)

We use an exhaustive search to find a location x that yields minimum cost C(x) by simply
checking every pixel of the density map. The runtime of exhaustive search is O(s2). There are
faster ways of finding a location of low cost, e.g. using a descent method [12], but we decided
the exhaustive search is fast enough for reasonable numbers of thumbnails on a density map of
size s = 1024.

To avoid overlapping thumbnails, we keep a boolean stencil of same size as the density map
and restrict the search to unmasked regions of the stencil. After placing a thumbnail, we mask
the region covered by that thumbnail in the stencil. An alternative approach would be to store
thumbnail regions in a data structure optimized for fast spacial query.

After every thumbnail is placed, we check every pair of thumbnails for intersections between
their leader lines. If an intersection is found, we swap the thumbnails.

Figure 18: Density placement
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7.5 Boundary placement

Boundary placement keeps thumbnails within the plot without occluding data points. Distribut-
ing labels evenly along the Axis Aligned Bounding Box (AABB) of a plot has been implemented
by Bekos et al. [5]. We implement boundary placement that allows thumbnails to lie anywhere
on the AABB.

First, we project sites to the AABB using a parallel projection along the second Principal Com-
ponent (PC) vector of the site distribution. The first PC points towards the largest variance of
the distribution. To spread out thumbnails over a wide area we project them along a direction
orthogonal to the largest variance. This direction by definition is the second PC of the distribu-
tion. The projection of the site along the second PC intersects twice with the AABB, once before
and once after the site. We place each thumbnail at the closest of the two intersections.

After the projection we move thumbnails along the AABB to eliminate overlaps using the ReAr-
range algorithm by Garderen et al. [37]. In a final pass we resolve intersections between leader
lines by swapping thumbnails whose lines intersect. This pass is the same as the one we use for
density placement.

Figure 19: Boundary placement
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7.6 Numbered Boundary placement

To avoid the additional clutter of long leader lines in boundary placement, thumbnails can be
numbered instead. Cognitively, linking thumbnails via their numbers is harder than via leader
lines. To aid this process, we highlight the corresponding number label whenever a user hovers
over a thumbnail with the mouse cursor.

Figure 20: Boundary placement with labels
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7.7 External placement

The problem of occluding important parts of the plot is avoided by placing thumbnails outside
the plot. Externally placed thumbnails can have arbitrary size. The biggest drawback of external
placement is that thumbnails cannot be linked with leader lines, instead external placement relies
on numbering thumbnails. Cognitively, linking thumbnails via their numbers is even harder for
external placement then for numbered boundary placement, because thumbnails aren’t ordered
along their sites.

Figure 21: External placement
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8 Evaluation

8.1 Cell dataset scalability

One key requirement of ICP is to ensure that the cell dataset can still be rendered after many more
cells have been added in the future. To test performance scalability with an increasing cell dataset
size, we created artificial datasets of larger sizes, but with identical point distribution.

We created those artificial datsets by adding identically distributed points to the cell dataset using
the density map. The density map approximates the probability distribution of the dataset. By
rejection sampling the density map, we can draw points from this distribution. The variance of
the density map controls the deviation of generated points from original data points.

On our desktop machine 1 we achieved interactive frame rates for an artificial dataset with 100
times the size of the original cell dataset (see figure 22b). Our performance evaluation (section
8.2) confirms this result.

(a) (b)

Figure 22: The cell dataset with (a) the original 6077 data points and (b) 607700 data points
sampled from the density map of the original dataset.

1CPU: Intel 3.40GHz Core i7-2600K, GPU: AMD Radeon RX 480, operating system: Ubuntu 17.04, browser:
Firefox 55.0.1
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8.2 Performance

The plot below shows frame rates for drawing between 1000 and 10 million two-dimensional
points. Each sample in the plot represents average frame rate over a ten second interval with
a constant number of points. The backbuffer size is 1024 by 1024 pixels. Thumbnails are
disabled.
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Figure 23: frame rates when running ICP in a canvas of size 1024 by 1024 pixels on a desktop
machine (CPU: Intel 3.40GHz Core i7-2600K, GPU: AMD Radeon RX 480, operating system:
Ubuntu 17.04, browser: Firefox 55.0.1) and on a cell phone (phone: HTC Desire 626s, browser:
Chrome 59.0.3071).

We only evaluated cell phone performance up to one million points due to limitations in avail-
able video memory. Figure 23 shows that frame rates of small datasets are bound by an upper
limit of about 120fps on desktop and about 50fps on mobile. This may seem unusual to people
familiar with OpenGL benchmarks. These upper limits are regulated by the browser. Unlike
OpenGL-based desktop applications, web applications don’t have direct control over the refresh
rate. Instead, a web application requests a new frame after the current frame is finished. It is
then up to the browser to decide when to start the next frame. We believe that the spikes of the
desktop benchmark are also caused by inconsistent browser scheduling.
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We can summarize the following conclusions (omitting the spikes):

• Maximum number of points at 60fps on a desktop machine: 1 million

• Maximum number of points at 25fps on a desktop machine: 5 million

• Maximum number of points at 25fps on a cell phone: 74000

• Maximum number of points at 20fps on a desktop machine: 7.5 million

• Maximum number of points at 20fps on a cell phone: 103000

8.2.1 Comparison with other charting libraries

Most currently available charting libraries are optimized to render very large datasets. Plotly
provides a benchmark of load times online [24]. They report a load time of 27 seconds for loading a
scatterplot with 300,000 points using Chrome and more than 30 seconds using Firefox or Internet
Explorer. When we tried to load the same dataset on our desktop machine, Chrome crashed and
Firefox took several minutes to load. After the dataset was loaded, we tried to interact with the
plot. Plotly achieved less than one frame per 10 seconds. ICP loads a dataset with 1 million
points in under a second and renders the loaded plot at 60 frames per second.

In July 2015 Highcharts posted about a newly released boost.js module that allows them to
create a chart with one million scatter points in less than 200 milliseconds. They write that 200
milliseconds is the time the chart takes to initialize, and after that the points are rendered in
asynchronous chunks for about two seconds [22]. The total load time of about two seconds is
longer than our initial load time. Highcharts did not post any statistics about interactivity of
their one million point plot.

8.3 User Study

We conducted a qualitative user study to evaluate the layout and different thumbnail placement
strategies of ICP. The main goal of this user study are the following:

1. To find the best visualization parameters, such as color scheme, point size and whether to
show point density.

2. To find the best thumbnail placement strategy.

3. To find good initial values for the number and distribution of thumbnails.

4. To evaluate which controls used in the user study could become part of the user interface
in the cell viewer web page.

For the first two goals, we let each subject design a view style and a thumbnail placement strategy.
For the third goal, we let subjects try out different numbers of thumbnails and different inlier-
to-outlier ratios using slider controls. For the fourth goal, we ask subjects about the usefulness
of individual controls.

8.3.1 Subjects

6 subjects took part in our user study. They all had prior experience with scatterplots. Five
subjects use scatterplots often, one subject uses them occasionally (see figure 25. 3 subjects
primarily use scatterplots for presentation, 2 subjects use them primarily for exploration and
one subject uses scatterplots for both presentation and exploration equally. All but one subject
had previously worked with the dataset of the user study.

35



We performed six user studies using video conferences within two weeks. Each user study took
45 minutes. During half of the sessions we were talking to the subject alone. During the other
sessions there was one other person listening. We asked subjects to verbally express the thinking
process behind their decisions. A summary of what we learned from their verbal responses is
shown in section 8.3.3.

8.3.2 Setup

The first part of our user study focused on visualization parameters. We did not expose any
thumbnails until part 2. After asking our subjects about prior experience with scatterplots and
the cell dataset, we gave each subject the opportunity to get familiar with the cell dataset by
letting them browse through the dimensions of the dataset. For the remainder of the study we
fix the dimensions to Nuclear Volume on the x-axis, Nuclear Surface Area on the y-axis and
Tagged Protein on the color-dimension.

Then we let each subject pick one of four predefined view styles (see figure 24). We purposely
implemented only minor differences between the predefined styles to motivate our subjects to
pay attention to details. Style 1 has circular points on a white background. Style two differs
from style 1 by having Gaussian points instead of circles. Style 3 differs from style 2 by having a
dark background. Style 4 has small circular points and a grayscale visualization of point density
in the background. The point density was computed using a density map.

After a subject picked a predefined view style, we let them improve the view style by exposing
the following controls:

• Color schema (white or dark background)

• Point color (discreet colormap, continuous colormap, black, white or blue)

• Point shape (circle, Gaussian, cross or diamond)

• Point size (between 1 and 100 pixel)

• Point opacity (invisible to fully opaque in steps of 10%)

• Density visualization (on or off)

The second part of the user study focused on thumbnails. We first allowed our subjects to get
familiar with some of the images in the cell dataset, by showing the cell image whenever a subject
hovers over a data point with the mouse cursor.

Then we let each subject pick one of five predefined thumbnail placement strategies. The list of
strategies is shown in chapter 7.2.

After a subject picked a predefined thumbnail placement strategy, we let them choose the number
and distribution of thumbnails using sliders. The number of thumbnails could be chosen between
2 and 50, with a default of 20. The distribution could be chosen in form of an outlier to inlier
ratio between 100% outliers and 100% inliers with a default of 50%/50%.

If a subject selected either density placement or boundary placement, we allowed them to op-
tionally fine-tune thumbnail locations by moving them with the mouse.

We finished the user study by discussing overall user experience.
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(a) (b)

(c) (d)

Figure 24: 4 different view styles presented to the subjects. a) Style 1 has circular points on a
white background. b) Style 2 has Gaussian points. c) Style 3 has Gaussian points on a dark
background. d) Style 4 has small circular points, with a grayscale density map in the background.
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8.3.3 Results

Figure 25: User study questionnaire results.

We summarize the scatterplot visualization parameters based on the choices that the subjects
made when we asked them to tune parameters for the best user experience. Half of the subjects
selected a point size of 7 pixels. The other choices were 5, 6 and 17. Three subjects chose
a point opacity of 70%. Two subjects chose 50% and one subject chose fully opaque points.
Four out of six subjects chose to color points with a discrete colormap. The other two subjects
selected a continuous colormap. The majority of subjects chose not to show a grayscale density
visualization behind the data points. All but one subject preferred the higher contrast of the
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color scheme with a dark background. We conclude that the ideal visualization of this dataset
should show circular points with a diameter of 7 pixels and an opacity of 70%, drawn using a
discrete colormap on a dark background with no density visualization (see figure 26).

Half of the subjects picked density placement as the best thumbnail placement strategy. The
other half picked boundary placement. Therefore, we deem both strategies equally suitable (see
figure 26).

The preferred choice of outlier ratio for automatic thumbnail selection varied between subjects
from 50% to 100% outliers. Even though two subjects chose 100% outliers, we decided to pick the
average choice (75% outliers, see figure 26a) as best choice, because we believe many users would
consider a selection that completely disregards clusters unsatisfactory. The average number
of displayed thumbnails between all subjects is 21.67. We round this number to 20 for figure
26.

Following user suggestions, we reduced the contrast of thumbnail leader lines for boundary place-
ment. These lines are now gray, instead of white (see 26b).

All subjects state that they expect a good visualization tool be customizable in as many as
possible aspects, while providing good initial values derived from the dataset. For example, all
subjects like having the software pick thumbnails automatically based on a given number and
distribution of thumbnails, but half of them commented that they want to have the option to
add or remove individual thumbnails by hand. One subject suggested an interactive approach,
where only three thumbnails are exposed in the beginning and users could add more thumbnails
as they explore the plotted data in more detail.

According to the subjects, most controls, like point shape and size, should only be exposed in a
separate menu. However, controls for density visualization and number of thumbnails should be
exposed in the main interface. Some subjects did not understand what the thumbnail distribution
slider is used for until they started adjusting it. We got the suggestion by one subject to expose
it only as a set of options, not as a slider. Examples of such options are ”Random thumbnails”
and ”More thumbnails for outliers”.
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(a)

(b)

Figure 26: Two visualizations derived from the combined choices of all subjects.
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9 Conclusion

We have developed two scatterplot based image database viewers that emphasize the potential
of this venerable visualization tool for modern image database visualizations.

9.1 Global View

GV enables the user to interactively define custom visual mappings using our proposed visual
mapping scripting language. Once a suitable visual mapping for a particular data domain has
been found, GV can be used as a framework to quickly design an image viewer for this type of
datasets.

The texture streaming algorithm monitors allocated video memory and dynamically allocates and
deallocates memory in an unsupervised fashion. Our algorithm has great potential as a backend
resource manager for image viewers. Even though we run texture streaming on a background
thread, large datasets can still cause significant drops in the frame rate. These latencies are
caused by texture load operations, where image data is transfered from main memory to video
memory. We block the render thread during load operations, because OpenGL does not support
concurrent access to the graphics accelerator. The recently introduced Vulkan API is the first
cross platform graphics API that supports multithreading. We see the transition from OpenGL
to Vulkan as important future work to remove the implications of load operations on the render
thread.

GVs focus on performance scalability could allow this visualization to be displayed on a high
resolution video wall. This would allow groups of scientists to study and present entire image
databases without requiring any interaction. The concept of using large viewing environments to
present both global and local information simultaneously is known as hybrid-image visualization
[23]. A hybrid-image visualization represents viewing distance dependent overview+detail views
in a single image. Isenberg et al. provide perceptual background for using hybrid-images to
visualize data in [23].

9.2 Interactive Cell Plot

ICP is a very fast WebGL based scatterplot library. It enables scientists to present large high-
dimensional datasets on their web page without compromising user experience.

WebGL is an underrepresented technology for browser-space plotting libraries. The performance
evaluation of ICP opens the door for browser based visualization by showing how many points
can be rendered in a browser window with current technology. We expect these numbers to
increase as WebGL 2.0 gets implemented into more browsers, because we faced limitations that
would allow more efficient code with WebGL 2.0.

The most significant limitation we faced was the missing support for geometry shaders in WebGL.
While quadratic shapes can be drawn as points, drawing shapes with an aspect ratio other than
1 : 1 requires the use of additional geometry. To draw such shapes as data points without a
geometry shader one has two options. The first option is to render more vertices and transform
the extra vertices into the point shapes using the vertex shader. This is not feasible for ICP,
because the rendered data tables are too large to keep multiple copies in memory. The second
options is to use the ’instancing’ extension. With this extension we can construct a point shape
and use instancing to replicate that shape at every data location. This technique, however,
doesn’t support the use of an index buffer to define what instances should be skipped. We
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implemented this scenario by rendering continuous arrays of data points with one non-indexed
draw call each. In the worst case scenario, a user would choose to render only every second data
point. ICP would then have to issue n

2 draw calls of a single data point each. At the time of this
writing 31% of browsers support WebGL 2.0 [7].

9.3 Visual mapping

Using GV we have identified three different visual mappings to visualize the spatial views of
the MPAS dataset. We have outlined advantages and disadvantages of the different mappings.
A mapping should be chosen by trading of the number of viewed images with the viewing
experience. The Cartesian mapping shows all spacial views at once, but it is the most unintuitive
to interpret. The spherical mapping shows a local neighborhood of images in a more intuitive
way. The observer mapping is the most intuitive, but it only shows one image at a time.

9.4 Density maps

Density maps compute important statistics for large datasets. Our algorithm for estimating
density map generation runtime gives the user full control over the performance-accuracy-trade-
off. We have shown that density maps can be used to compute clusters and ideal locations for
thumbnails, as well as generate new points from the dataset’s distribution.

We believe density maps have the potential of becoming an important tool for future devel-
opments in the area of automated visualization design. Their potential will improve as more
density-based algorithms are adapted to use density maps.

9.5 Labeling

All subjects of our user study like the number-of-thumbnails and inlier-to-outlier-ratio controls
as a semi-automatic way to select characteristic points for labeling. Both boundary placement
and density placement provide significantly less data occlusion than adjacent placement, which
is currently used for the interactive plotting tool [18].

Our density-based thumbnail placement algorithm only considers one thumbnail at a time. Re-
sults can be further improved by optimizing all thumbnail locations at once. The O(s2) runtime
of the implemented exhaustive search can be improved by implementing one of the optimization
methods presented by Christensen, Marks and Shieber [12].
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Appendices

A Visual Mapping Scripting Language

A scripting language for visual mappings has to be simple, extensible and easily readable by hu-
mans. These requirements align with the principles of SQL. The structured query language (SQL)
is a domain specific language for querying and modifying relational databases. SQL is easily un-
derstandable by non-experts. For example the SQL statement SELECT name FROM customers

queries a list of names from the ”customers” data table. Similarly, we design our scripting
language to support easily comprehensible commands like SELECT WHERE $salinity > 0.5 to
select all images whose ’salinity’ parameter is greater than 50% or Y selected BY 1 to move
selected images up by one unit.

The basic syntax of our scripting language is: COMMAND ::= STATEMENT SCOPE [CLAUSE] In the
following we will elaborate the individual parts of this language.

STATEMENT ::= CONTROL_STATEMENT | VISUAL_MAPPING_STATEMENT | SHORTCUT_STATEMENT
STATEMENT refers to the operation to perform. We define three kinds of statements. Visual
mapping statements apply transformations to the visual mapping of the images provided by
SCOPE. Control statements do not modify image locations. Shortcut statements are shorter
forms of other statements.
Example: SELECT -- Select all images

Statement Description / Example
SELECT Select images
FOCUS Move camera to fit images
HIDE Hide images
SHOW Unhide images
CLEAR Remove all visual mappings from images
COUNT Return number of images
FORM Define new image group

FORM diagonal WHERE $theta == $phi

Table 3: Control statements

SCOPE ::= [GROUP | (’where’ WHERE_CONDITION)]
SCOPE refers to a group of images. Predefined groups are ’all’, ’none’, ’visible’ and ’selection’ (or
alternatively ’selected’). The default group is ’all’. New groups can be defined using the FORM

statement. Instead of a group, the keyword ’where’ can be used, to select all images that satisfy
the condition ’WHERE_CONDITION’.
Example: SELECT none --Deselect all images

WHERE_CONDITION ::= C#_EXPR
WHERE_CONDITION refers to a boolean expression in C#. Numeric parameters of an image are
referenced with the ’$’ prefix, string parameters are referenced with the ’@’ prefix and indices
into sorted parameters are referenced with the ’#’ prefix.
Example: SELECT where #flux <= 10 -- Select top 10 images of lowest flux
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Statement Description / Example
X Transform images in x-direction (Cartesian coordinates)

X all BY 10

Y Transform images in y-direction (Cartesian coordinates)
Y selected BY $intensity

Z Transform images in z-direction (Cartesian coordinates)
Z WHERE $intensity > 100 BY 1

THETA Transform images in θ-direction (polar coordinates)
PHI Transform images in φ-direction (polar coordinates)
R Transform images in r-direction (polar coordinates)
STAR Transform images in star coordinates
LOOK Show only the image whose parameters most closely matches the view angle
SKIP Show only images that evaluate to true

SKIP all BY #t != (int)(time * 10) % 4 -- Animate ’t’

Table 4: Visual mapping statements

Statement Description
SPREAD Transform images using parameter indices as star coordinates
RSPREAD Disperse images randomly in x- and y-directions
RSPREAD3D Disperse images randomly in x-, y- and z-directions
ANIMATE Animate the given parameter by BY with 10 frames per second

Table 5: Shortcut mapping statements

CLAUSE ::= ’by’ BY_EXPRESSION

BY_EXPRESSION ::= C#_EXPR (’,’ C#_EXPR)*
CLAUSE defines arguments for the statement. It consists of the ’by’ keyword and a comma-
delimited list of arguments. Control statements do not have a clause.
Example: STAR all BY #x, #y -- Align images in 2D Cartesian grid
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