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Abstract

In this paper we consider a generalized inertial version of the Kras-
nosel’skĭı-Mann iteration for solving fixed-point problems. First we
introduce the classic Krasnosel’skĭı-Mann iteration and go over some
results out of fixed-point theory and monotone operator theory. We
then show a proof of weak convergence and present a special case of
the proposed general KM-iteration, which delivers an inertial forward-
backward algorithm with variable stepsize. Lastly we provide an ap-
plication for solving image deblurring problems.
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1 Introduction/Motivation

First of all, for the rest of this paper let H be a real Hilbert space with
corresponding scalar product 〈·, ·〉 and norm ‖ · ‖ =

√
〈·, ·〉. Furthermore,

let ⇀, → denote weak, respectively strong convergence.

The classical Krasnosel’skĭı-Mann iteration is defined as

(∀n ∈ N) xn+1 := (1− λn)xn + λnTxn (1)

where λn ∈ [0, 1] are the relaxation factor, T : D → D is a self-mapping
with D being a closed and convex nonempty subset of H and x0 ∈ D.
The Krasnosel’skĭı-Mann iteration is a well known method in fixed-point
theory, in particular for the approximation of fixed-points of nonexpansive
operators. Under which conditions does it converge? It is known (see [1,
Theorem 5.14]) that (1) converges weakly to a fixed-point of T , i.e

xn ⇀ x ∈ Fix(T ) := {x ∈ D : Tx = x}

if the relaxation factors (λn)n∈N fulfill the following condition∑
n∈N

λn(1− λn) = +∞,

and if T is a nonexpansive operator. An operator T : D → H is called
nonexpansive if

∀x, y ∈ D : ‖Tx− Ty‖2 ≤ ‖x− y‖2.

Furthermore, T is called firmly nonexpansive if

∀x, y ∈ D : ‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖(x− y)− (Tx− Ty)‖2.

Every firmly nonexpansive opertator is obviously nonexpansive. For firmly
nonexpansive T we even know (see [1, Corollary 5.16]) that (1) converges
weakly to a fixed-point of T if the relaxation factors (λn)n∈N fulfill the
following condition∑

n∈N
λn(2− λn) = +∞, where λn ∈ (0, 2) for all n ≥ 0.

Notice that in this case in particular, we can set λn = 1 for all n ∈ N,
obtaining an iteration without relaxation factors, i.e. the Picard-iteration

(∀n ∈ N) xn+1 := Txn,

which converges weakly to a fixed-point of the firmly nonexpansive operator
T . This is not necessarily true for just nonexpansive T .
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An extension of the classical Krasnosel’skĭı-Mann iteration (1) is an inertial
version of the Krasnosel’skĭı-Mann iteration, which can provide an acceler-
ation or a speed up of the classic iteration. For given elements x0, x1 of the
affine set D the inertial Krasnosel’skĭı-Mann iteration looks as follows:

(∀n ∈ N)

⌊
wn := xn + αn(xn − xn−1),

xn+1 := (1− λn)wn + λnTwn,
(2)

where αn ∈ [0, 1] are the so called damping terms, and λn ∈ [0, 1] are
again the relaxation factors. Here we can see that the next iterate xn+1

is dependent on the two previous iterates xn and xn−1. More precisely,
we use (1) on a affine combination of xn and xn−1. It is shown in [3,
Theorem 5] that the iterates xn in (2) are weakly converging to a fixed-
point of a nonexpansive operator T under the assumption that there exist
0 ≤ αn ≤ α < 1 and δ, σ, λ > 0 such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤

δ − α(α(1 + α) + αδ + σ)

δ(1 + α(1 + α) + αδ + σ)
, ∀n ≥ 1,

where the sequence (αn)n∈N is nondecreasing with α1 := 0. Furthermore, in
[3] they showed that ∑

n∈N
‖xn+1 − xn‖2 < +∞

which implies that xn+1 − xn → 0 as n→ +∞.
Our main focus in this paper will be on a more general Krasnosel’skĭı-

Mann iteration. In this setting we have a sequence of nonexpansive operators
(Tn)n∈N with Tn : D → D for all n ∈ N whereas D is a nonempty subset of
H. For x0, x1 ∈ D the general Krasnosel’skĭı-Mann iteration is defined as
follows

(∀n ∈ N)

⌊
wn := xn + αn(xn − xn−1),

xn+1 := (1− λn)wn + λnTnwn,
(3)

where αn, λn ∈ [0, 1] are damping terms, resp. the relaxation factors as
mentioned before. In this setting we also assume that D is weak sequentially
closed and affine, otherwise wn, xn+1 and every weak sequential cluster
point of (xn)n∈N do not necessarily have to be in D again. Furthermore,
in the previous iterative methods we had a constant operator T where the
associated solution set was Fix(T ). In this case though, since (Tn)n∈N is
not necessarily constant we will show that (xn)n∈N converges weakly to an
element of the set S :=

⋂
n≥0

Fix (Tn), assuming it is not empty. But under

which conditions does (3) converge? What kind of restrictions do we have
to set on relaxation factors (λn)n∈N, the damping terms (αn)n∈N and the
operators (Tn)n∈N ? We will answer these questions in Section 3, but first
it is necessary to recall some preliminary results in Section 2.
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2 Preliminaries

We will now list a few necessary lemmata and results for the proofs later on.
The first one is a well known norm-identity, one could say it is a generalized
form of the parallelogram law (set α = 1

2 in the following lemma).

Lemma 1. Let H be a real Hilbert space. For every x, y ∈ H and α ∈ R it
holds

‖αx+ (1− α)y‖2 + α(1− α) ‖x− y‖2 = α ‖x‖2 + (1− α) ‖y‖2 .

Proof. For all x, y ∈ H and α ∈ R we have

‖αx+ (1− α)y‖2 + α(1− α) ‖x− y‖2

= α2 ‖x‖2 + 2α(1− α)〈x, y〉+ (1− α)2 ‖y‖2

+ α(1− α)(‖x‖2 − 2〈x, y〉+ ‖y‖2)
= (α2 + α(1− α)) ‖x‖2 + ((1− α)2 + α(1− α)) ‖y‖2

= α ‖x‖2 + (1− α) ‖y‖2 .

The next Lemma is a famous result from Opial (see [8]), which we need
for a proof of weak convergence later on.

Lemma 2. (Opial, 1967) Let C be a nonempty subtset of H and (xn)n∈N
be a sequence in H such that the following two conditions hold:

i) for every x ∈ C, limn→∞ ‖xn − x‖ exits;

ii) every weak sequential cluster point of (xn)n∈N is in C.

Then (xn)n∈N converges weakly to a point in C.

Proof. First we show that (xn)n∈N has at most one weak sequential cluster
point. Let x, x′ ∈ C (by ii)) be two weak sequential cluster points of the
sequence (xn)n∈N with xnk ⇀ x ∈ C and xmk ⇀ x′ ∈ C as k → +∞ and
define l(y) := limn→∞ ‖xn − y‖ for y ∈ C. Then it holds for all k ∈ N:

2〈xnk , x− x
′〉 =

∥∥xnk − x′∥∥2 − ‖xnk − x‖2 − ∥∥x′∥∥2 − ‖x‖2
→ 2〈x, x− x′〉 = l(x′)− l(x)−

∥∥x′∥∥2 − ‖x‖2
as k → +∞ and

2〈xmk , x− x
′〉 =

∥∥xmk − x′∥∥2 − ‖xmk − x‖2 − ∥∥x′∥∥2 − ‖x‖2
→ 2〈x′, x− x′〉 = l(x′)− l(x)−

∥∥x′∥∥2 − ‖x‖2 ,
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as k → +∞, hence

2
∥∥x− x′∥∥2 = 2〈x, x− x′〉 − 2〈x′, x− x′〉 = 0,

and therefore x = x′. Furthermore, due to i) the sequence (xn)n∈N is
bounded. Since (xn)n∈N is bounded and has at most one weak sequen-
tial cluster point, it follows that xn ⇀ x ∈ H as n → +∞. Using ii) again
we get that (xn)n∈N converges weakly to a point in C, which finishes the
proof.

The next lemma is a technical result which is also crucial for the proof
later on.

Lemma 3. Let (ϕn)n∈N, (δn)n∈N and (αn)n∈N be sequences in [0,+∞) such
that ϕn+1 ≤ ϕn + αn(ϕn − ϕn−1) + δn for all n ≥ 1,

∑
n∈N δn < +∞ and

there exists a real number α with 0 ≤ αn ≤ α < 1 for all n ∈ N. Then the
following hold:

i)
∑

n≥1[ϕn − ϕn−1]+ < +∞, where [t]+ = max{t, 0};

ii) there exists ϕ∗ ∈ [0,+∞) such that limn→+∞ ϕn = ϕ∗.

Proof. Set un := ϕn − ϕn−1. It follows that

[un+1]+ ≤ αn[un]+ + δn ≤ α[un]+ + δn,

and by induction we get

[un+1]+ ≤ αn[u1]+ +
n−1∑
j=0

αjδn−j .

Since α ∈ [0, 1) and the fact that
∑

n∈N δn < +∞ we obtain

∑
n≥0

[un+1]+ ≤
1

1− α

[u1]+ +
∑
n≥1

δn

 < +∞,

which proves i). Furthermore, wn := ϕn−
∑n

j=1[uj ]+ is bounded from below
and

wn+1 := ϕn+1 − [un+1]+ −
n∑
j=1

[uj ]+ ≤ ϕn+1 − ϕn+1 + ϕn −
n∑
j=1

[uj ]+ = wn,

i.e. (wn)n∈N is nonincreasing and bounded from below, thus (wn)n∈N is
convergent and so is (ϕn)n∈N which finishes the proof.

The next lemma is a useful consequence of nonexpansive operators.
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Lemma 4. (Demi-closedness principle) Let D ⊆ H be non-empty and
weak sequentially closed, T : D → H nonexpansive and (xn)n∈N ⊆ D,
x, u ∈ H. It holds that

xn ⇀ x and xn − Txn → u as n→ +∞⇒ x− Tx = u.

In particular, if we set u = 0 we get

xn ⇀ x and xn − Txn → 0 as n→ +∞⇒ x = Tx

⇔ x ∈ Fix(T ).

Proof. Let (xn)n∈N ⊆ D with xn ⇀ x and xn − Txn → u as n → +∞.
Since D is weak sequentially closed, x ∈ D and Tx is therefore well defined.
Moreover, from the nonexpansiveness of T it follows for all n ∈ N that

‖x− Tx− u‖2 = ‖xn − Tx− u‖2 − ‖xn − x‖2 − 2〈xn − x, x− Tx− u〉
= ‖xn − Txn − u‖2 + 2〈xn − Txn − u, Txn − Tx〉

+ ‖Txn − Tx‖2 − ‖xn − x‖2 − 2〈xn − x, x− Tx− u〉
≤ ‖xn − Txn − u‖2 + 2〈xn − Txn − u, Txn − Tx〉
− 2〈xn − x, x− Tx− u〉
≤ ‖xn − Txn − u‖2 + 2‖xn − Txn − u‖‖xn − x‖
− 2〈xn − x, x− Tx− u〉.

Taking the limit as n→ +∞ in the last inequality and using the fact that the
sequence (‖xn−x‖)n∈N is bounded (by the uniform boundedness principle),
we obtain x− Tx = u.

The previous result is called the ”Demi-closedness principle” since it
guarantees that the graph of Id−T is demi-closed; in other words it suffices
to have weak convergence (xn ⇀ x as n→ +∞) in the domain of Id−T , and
strong convergence ((Id− T )xn → u as n→ +∞) in the range of (Id− T )
to get (Id − T )x = u. Note that it is sufficient to assume that D is closed
and convex in Lemma 4, since for every convex set M ⊆ H it holds (see [1,
Theorem 3.32])

M closed⇔M weak sequentially closed.

Now let A : H⇒ H be a set-valued operator. The graph of A is defined by
Gr(A) := {(x, u) ∈ H × H : u ∈ Ax}. Similarly, we can define the inverse
of A, i.e. A−1 : H ⇒ H by the equivalence: (x, u) ∈ Gr(A) if and only if
(u, x) ∈ Gr(A−1). Furthermore, let Zer(A) := {x ∈ H : 0 ∈ Ax} = A−1(0)
denote the set of zeros of A and Ran(A) :=

⋃
x∈H Ax its range.
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Definition 5. A set-valued operator A : H⇒ H is called monotone, if

∀(x, u), (y, v) ∈ Gr(A) : 〈x− y, u− v〉 ≥ 0.

Furthermore, it is called maximally monotone if there is no monotone oper-
ator B : H⇒ H such that the graph of B properly contains the graph of A
on H ×H. In other words, an operator A is maximally monotone if for all
(x, u) ∈ H ×H it holds that

(x, u) ∈ Gr(A)⇔ ∀(y, v) ∈ Gr(A) : 〈x− y, u− v〉 ≥ 0.

A popular example for maximally monotone operators is the convex
subdifferential

∂f(x) := {ξ ∈ H : f(y)− f(x) ≥ 〈y − x, ξ〉 for all y ∈ H}

of a proper, convex and lower semi-continuous function f , i.e. if f is an
element of the space

Γ(H) := {f : H → R : f is proper, convex and lsc}

where R := R ∪ {−∞,+∞} denotes the extended real line. Another useful
property of the convex subdifferential is the following

0 ∈ ∂f(x) if and only if x ∈ argmin f. (4)

The next lemma is a asymptotic result about the set of zeros of the sum of
two maximally monotone operators, which we again need for a proof later
on (see [1, Corollary 25.5 for m=2]).

Lemma 6. Let A,B : H ⇒ H be maximally monotone operators and the
sequences (xn, un)n∈N ∈ Gr(A), (yn, vn)n∈N ∈ Gr(B) such that

xn ⇀ x, yn ⇀ y, un ⇀ u, vn ⇀ v, un + vn → 0 and xn − yn → 0

as n→ +∞. Then x = y ∈ Zer(A+B), (x, u) ∈ Gr(A) and (y, v) ∈ Gr(B).

The resolvent of A is defined by

JA = (Id +A)−1, JA : Dom(JA) ⇒ H

where Id : H → H is the identity operator. The following lemma is a useful
characterization of the resolvent operator of A.

Lemma 7. Let A : H⇒ H, x, p ∈ H and γ > 0. It holds:

p ∈ JγAx⇔ (p, γ−1(x− p)) ∈ Gr(A).
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Proof. For every x ∈ H and γ > 0 we have

p ∈ JγAx = (I + γA)−1x⇔ x ∈ (I + γA)p⇔ 1

γ
(x− p) ∈ Ap

⇔ (p, γ−1(x− p)) ∈ Gr(A).

With this lemma one can easily see that the fixed-point set of JA coin-
cides with the set of zeroes of A, i.e.

Fix(JA) = Zer(A). (5)

The next theorem (see [7]) is an important equivalence for maximally mono-
tone operators , it also implies that JA has full domain if and only if A is
maximally monotone.

Theorem 8. (Minty, 1962) An operator A : H⇒ H is maximally mono-
tone if and only if

Ran(Id+ γA) = H for some γ > 0.

From this theorem and Lemma 7 we can deduce that JγA is single valued
when A is a maximal monotone operator and γ > 0, since for an arbitrary
x ∈ H we get JγAx 6= ∅ (by Theorem 8) and for y1, y2 ∈ JγAx with y1 6= y2
we know that Ay1 = x− y1 and Ay2 = x− y2 by Lemma 7. Thus we obtain

‖y1 − y2‖2 = 〈y1 − y2, y1 − y2〉 = 〈(y1 − x) + (x− y2), y1 − y2〉
= γ〈Ay2 −Ay1, y1 − y2〉 ≤ 0

hence y1 = y2, and therefore JγA is single valued. Now that we know that
JγA is single valued for maximally monotone A, we can further show that
JγA is firmly nonexpansive for maximally monotone A and γ > 0.

Corollary 9. Let A : H ⇒ H be maximally monotone and γ > 0. Then
JγA is firmly nonexpansive.

Proof. Let x, y ∈ H and γ > 0. From the argumentation above we know
that JγA is single valued, i.e. there exist x′, y′ ∈ H such that x′ = JγAx and
y′ = JγAy. Furthermore, it holds that

‖JγAx− JγAy‖2 =
∥∥x′ − y′∥∥2

≤
∥∥x′ − y′∥∥2 + γ〈x′ − y′, Ax′ −Ay′〉

=
∥∥x′ − y′ + γ(Ax′ −Ay′)

∥∥2 − ∥∥γ(Ax′ −Ay′)
∥∥2

= ‖x− y‖2 − ‖(Id−JγA)x− (Id−JγA)y‖2

where the last equality follows from the fact that x = (Id +γA)x′ and y =
(Id +γA)y′.
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Definition 10. An operator B : H → H is called β-cocoercive for β > 0 if
for all x, y ∈ H it holds

β ‖Bx−By‖2 ≤ 〈Bx−By, x− y〉.

Note that B being β-cocoercive is equivalent to B being 1
β -Lipschitz con-

tinuous. Moreover, every cocoercive operator is in particular maximally
monotone, as we will see in the next lemma.

Lemma 11. If B : H → H is β-cocoercive for β > 0, then B is maximally
monotone.

Proof. The monotonicity of B follows immediately from the cocoercivity of
B. Let (x, u) ∈ H ×H. It remains to show that

∀y ∈ H : 〈x− y, u−By〉 ≥ 0⇒ (x, u) ∈ Gr(B).

Set yα := x+ α(u−Bx) for α ≥ 0. We obtain for all α ≥ 0

−α〈u−Bx, u−Byα〉 = 〈x− yα, u−Byα〉 ≥ 0

⇒ 〈u−Bx, u−Byα〉 ≤ 0 , for all α ≥ 0,

and since B and the scalar product are continuous, it follows ‖u−Bx‖2 ≤ 0,
i.e. u = Bx and (x, u) ∈ Gr(B) which finishes the proof.

We will now introduce the well known forward-backward algorithm (see
[1, Theorem 25.8]) which is a special case of the classic Krasnosel’skĭı-Mann
iteration (1).

Theorem 12. (Forward-Backward algorithm) Let A : H⇒ H be max-
imally monotone, let B : H → H be β-cocoercive with β > 0, let γ ∈ (0, 2β),
and set δ := min {1, βγ } + 1

2 . Furthermore, let (λn)n∈N be a sequence in
[0, δ] such that

∑
n∈N λn(δ − λn) = +∞ and let x0 ∈ H. Suppose that

Zer(A+B) 6= ∅ and set

(∀n ∈ N)

⌊
yn := xn − γBxn,
xn+1 := (1− λn)wn + λnJγAyn,

Then (xn)n∈N converges weakly to a point in Zer(A+B).

If we set T := JγA(Id−γB), λ′n := λn
δ and show that T is also nonex-

pansive then the proof follows from the classic KM iteration in (1). We will
just show the nonexpansivness of T := JγA(Id−γB) under the assumptions
given in Theorem 12.

Lemma 13. Let A : H ⇒ H be maximally monotone, let B : H → H
be β-cocoercive with β > 0 and γ ∈ (0, 2β). Then T := JγA(Id−γB) is
nonexpansive.
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Proof. Let x, y ∈ H. From the nonexpansivness of JγA and the β-cocoerciveness
of B it follows

‖Tnx− Tny‖2 = ‖JγA(Id− γB)x− JγA(Id− γB)y‖2

≤ ‖(Id−γB)x− (Id−γB)y‖2

= ‖x− y‖2 − 2〈x− y, γ(Bx−By)〉+ γ2 ‖Bx−By‖2

≤ ‖x− y‖2 − 2〈x− y, γ(Bx−By)〉+ γ2
1

β
〈x− y,Bx−By〉

= ‖x− y‖2 − γ (2− γ

β
)︸ ︷︷ ︸

≥0

〈x− y,Bx−By〉︸ ︷︷ ︸
≥0

≤ ‖x− y‖2

which finishes the proof.

How can we use these ideas to find, for example, a minimizer of a proper,
convex, lower semi-continuous f? In other words how should we choose A,B
in Theorem 12 to solve

argmin
x∈H

f(x), for f ∈ Γ(H).

This is where the proximal operator comes in handy. For functions f ∈ Γ(H)
we can define the proximal operator Proxf : H → H of f by

Proxf (y) := argmin
x∈H

f(x) +
1

2
‖x− y‖22.

Proxf is well defined for f ∈ Γ(H) considering J∂f is single valued and it
holds that Proxf = J∂f since

p = J∂f (y)⇔ y − p ∈ ∂f(p)⇔ 0 ∈ ∂f(p) + {p− y}

⇔ p = argmin
x∈H

f(x) +
1

2
‖x− y‖22 = Proxf (y).

Furthermore, from (4) and (5) we obtain

Fix(Proxf ) = Fix(J∂f ) = Zer(∂f) = argmin(f).

So if we have a function f ∈ Γ(H) with argmin(f) 6= ∅, then finding a
minimizer of f is equivalent to finding a fixed-point of Proxf which is again
equivalent to finding a zero of ∂f . Furthermore, it holds that

Fix(JγnA(Id− γnB)) = Zer(γn(A+B)) = Zer(A+B),

i.e. if we substitute A in Theorem 12 with ∂f and B with ∇g, then we
obtain the following algorithm (see [1, Theorem 27.9]).
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Theorem 14. (Proximal-Gradient algorithm) Let f ∈ Γ(H), let g :
H → R be convex and differentiable with a 1

β -Lipschitz continuous gradient

for some β > 0, let γ ∈ (0, 2β), and set δ := min {1, βγ } + 1
2 . Furthermore,

let (λn)n∈N be a sequence in [0, δ] such that
∑

n∈N λn(δ− λn) = +∞ and let
x0 ∈ H. Suppose that argmin(f + g) 6= ∅ and set

(∀n ∈ N)

⌊
yn := xn − γ∇xn,
xn+1 := (1− λn)xn + λn Proxγf yn,

Then (xn)n∈N converges weakly to a point in argmin(f + g).

In the next section we prove the weak convergence of the general Kras-
nosel’skĭı-Mann iteration (3), and we derive the algorithms from above as a
special case of it.

3 General Krasnosel’skĭı-Mann iteration

In the classical Krasnosel’skĭı-Mann iteration

xn+1 = (1− λn)xn + λnTxn

one used the demi-closedness principle (Lemma 4) for a nonexpansive oper-
ator T to prove the weak convergence of the sequence (xn)n∈N to an element
x ∈ Fix(T ). In the more general setting

wn := xn + αn(xn − xn−1),
xn+1 := (1− λn)wn + λnTnwn,

we need a similar statement for the sequence (Tn)n∈N where Tn : D → H.
To be more precise, in the rest of this section we assume that (Tn)n∈N fulfills
the following ”demi-closedness-type” condition:

For any subsequence (Tnk)k∈N of (Tn)n∈N, for (xnk)k∈N ⊆ D,x ∈ H

(xnk) ⇀ x and xnk − Tnkxnk → 0⇒ x ∈
⋂
n≥0

Fix (Tn). (6)

We know that for the particular case where Tn = T for all n ∈ N and T
nonexpansive the above condition is fulfilled (if D is also weak sequentially
closed), thanks to the demi-closedness principle. Unfortunately, in general
it does not suffice that every operator Tn is nonexpansive, i.e. condition
(6) is in general not fulfilled for nonexpansive operators (Tn)n∈N (take, e.g.
Tn := (1 − 1/n) Id). That is a reason why we have to assume that a given
sequence of operators (Tn)n∈N has to satisfy (6).
The next theorem is the main result of this paper. It is heavily based on
the work of [3] and [6].
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Theorem 15. Let D be a nonempty weak-sequentially closed affine subset
of H and Tn : D → D be a sequence of nonexpansive operators such that⋂
n≥0

Fix (Tn) 6= ∅. We consider the following iterative scheme:

(∀n ∈ N)

⌊
wn := xn + αn(xn − xn−1),
xn+1 := (1− λn)wn + λnTnwn,

where x0, x1 are arbitrarily chosen in D, (αn)n≥1 is nondecreasing with α1 =
0 and 0 ≤ αn ≤ α < 1 for every n ≥ 1 and λ, σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤

δ − α(α(1 + α) + αδ + σ)

δ(1 + α(1 + α) + αδ + σ)
∀n ≥ 1.

Then the following statements are true:

i)
∑

n∈N ‖xn+1 − xn‖2 < +∞;

ii) if furthermore condition (6) holds, then (xn)n∈N converges weakly to a
point in

⋂
n≥0

Fix (Tn).

Proof. Let us start with the remark that, due to the choice of δ, λn ∈ (0, 1)
for every n ≥ 1. Furthermore, we would like to notice that, since D is affine,
the iterative scheme provides a well-defined sequence in D.
i) Let us fix an element y ∈

⋂
n≥0

Fix (Tn) and n ≥ 1. It follows from Lemma 1

and the nonexpansiveness of Tn that

‖xn+1 − y‖2 = (1− λn) ‖wn − y‖2 + λn ‖Tnwn − Tny‖2 − λn(1− λn) ‖Tnwn − wn‖2

≤ ‖wn − y‖2 − λn(1− λn) ‖Tnwn − wn‖2 (7)

Applying Lemma 1 again, we have

‖wn − y‖2 = ‖(1 + αn)(xn − y)− αn(xn−1 − y)‖2

= (1 + αn) ‖xn − y‖2 − αn ‖xn−1 − y‖2 + αn(1 + αn) ‖xn − xn−1‖2
(8)

hence from (7) we obtain

‖xn+1 − y‖2 − (1 + αn) ‖xn − y‖2 + αn ‖xn−1 − y‖2

≤ −λn(1− λn) ‖Tnwn − wn‖2 + αn(1 + αn) ‖xn − xn−1‖2 . (9)

12



Furthermore, we have

‖Tnwn − wn‖2 =

∥∥∥∥ 1

λn
(xn+1 − xn) +

αn
λn

(xn−1 − xn)

∥∥∥∥2
=

1

λ2n
‖xn+1 − xn‖2 +

α2
n

λ2n
‖xn − xn−1‖2 + 2

αn
λ2n
〈xn+1 − xn, xn−1 − xn〉

≥ 1

λ2n
‖xn+1 − xn‖2 +

α2
n

λ2n
‖xn − xn−1‖2

+
αn
λ2n

(−ρn ‖xn+1 − xn‖2 −
1

ρn
‖xn − xn−1‖2) (10)

where we denote ρn := 1
αn+δλn

.
We derive from (9) and (10) the inequality

‖xn+1 − y‖2 − (1 + αn) ‖xn − y‖2 + αn ‖xn−1 − y‖2

≤ (1− λn)(αnρn − 1)

λn
‖xn+1 − xn‖2 + γn ‖xn − xn−1‖2 , (11)

where

γn := αn(1 + αn) + αn(1− λn)
1− ρnαn
ρnλn

≥ 0, (12)

since ρnαn < 1 and λn ∈ (0, 1).
Again, taking into account the choice of ρn we have

δ =
1− ρnαn
ρnλn

and from (12), it follows

γn = αn(1 + αn) + αn(1− λn)δ ≤ α(1 + α) + αδ ∀n ≥ 1. (13)

We define the sequences ϕn := ‖xn − y‖2 for all n ∈ N and µn := ϕn −
αnϕn−1 + γn ‖xn − xn−1‖2 for all n ≥ 1. Using the monotonicity of (αn)n≥1
and the fact that ϕn ≥ 0 for all n ∈ N, we get

µn+1−µn ≤ ϕn+1−(1+αn)ϕn+αnϕn−1+γn+1 ‖xn+1 − xn‖2−γn ‖xn − xn−1‖2 .

Employing (11), we have

µn+1 − µn ≤
(

(1− λn)(αnρn − 1)

λn
+ γn+1

)
‖xn+1 − xn‖2 ∀n ≥ 1. (14)

We claim that

(1− λn)(αnρn − 1)

λn
+ γn+1 ≤ −σ ∀n ≥ 1. (15)
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Let be n ≥ 1. Indeed, by the choice of ρn, we get

(1− λn)(αnρn − 1)

λn
+ γn+1 ≤ −σ

⇔ λn(γn+1 + σ) + (αnρn − 1)(1− λn) ≤ 0

⇔ λn(γn+1 + σ)− δλn(1− λn)

αn + δλn
≤ 0

⇔ (αn + δλn)(γn+1 + σ) + δλn ≤ δ.

By using (13), we have

(αn + δλn)(γn+1 + σ) + δλn ≤ (α+ δλn)(α(1 + α) + αδ + σ) + δλn ≤ δ

where the last inequality follows by using the upper bound for (λn)n≥1.
Hence the claim in (15) is true. We obtain from (14) and (15) that

µn+1 − µn ≤ −σ ‖xn+1 − xn‖2 ∀n ≥ 1. (16)

The sequence (µn)n≥1 is nonincreasing and the bound for (αn)n≥1 delivers

−αϕn−1 ≤ ϕn − αϕn−1 ≤ µn ≤ µ1 ∀n ≥ 1. (17)

We obtain

ϕn ≤ αnϕ0 + µ1

n−1∑
k=0

αk ≤ αnϕ0 +
µ1

1− α
∀n ≥ 1

where we notice that µ1 = ϕ1 ≥ 0 (due to the relation α1 = 0). Combining
(16) and (17), we get for all n ≥ 1

σ
n∑
k=1

‖xk+1 − xk‖2 ≤ µ1 − µn+1 ≤ µ1 + αϕn ≤ αn+1ϕ0 +
µ1

1− α

which proves i).
ii) We prove this statement by using the result of Opial in Lemma 2. We have
proven that for an arbitrary y ∈

⋂
n≥0

Fix (Tn) inequality (11) is true. On the

one hand, by part i), (13) and Lemma 3 we derive that limn→+∞ ‖xn − y‖
exists (we also take into consideration that in (11) αnρn < 1 for all n ≥ 1).
On the other hand, let x be a weak sequential cluster point of (xn)n∈N, that
is, the latter has a subsequence (xnk)k∈N fulfilling xnk ⇀ x as k → +∞.
By part i), the definition of wn and the upper bound for (αn)n≥1, we get
wnk ⇀ x as k → +∞. Furthermore, we have

‖Tnwn − wn‖ =
1

λn
‖xn+1 − wn‖ ≤

1

λ
‖xn+1 − wn‖

≤ 1

λ
(‖xn+1 − xn‖+ α ‖xn − xn−1‖)

14



thus by i), we obtain that Tnkwnk − wnk → 0 as k → +∞. Applying now
(6) for the sequence (wnk)k∈N, we conclude that x ∈

⋂
n≥0

Fix (Tn). Since the

two assumptions of Lemma 2 (Opial) are verified, it follows that (xn)n∈N
converges weakly to a point in

⋂
n≥0

Fix (Tn).

Remark 16. We can simplify the constraints for λn in Theorem 15 if σ
tends towards to 0. By assuming that σ is very small, i.e. close to zero, we
get the following approximation

δ − α(α(1 + α) + αδ)

δ(1 + α(1 + α) + αδ)
≈ δ − α(α(1 + α) + αδ + σ)

δ(1 + α(1 + α) + αδ + σ)
.

Now we will maximize the upper bound for λn in Theorem 15 for a given α,
in other words we define

λ∞(α) := max
δ> α2

1−α

δ − α(α(1 + α) + αδ)

δ(1 + α(1 + α) + αδ)

and by solving this constrained optimization problem for δ we obtain

λ∞(α) =
δ∗ − α(α(1 + α) + αδ∗)

δ∗(1 + α(1 + α) + αδ∗)
for δ∗ =

α2 +
√
α4 + 1−α

1+α(α3 + α2 + α)

1− α
.

One can see that there is a trade-off between choosing α and choosing λ∞,
more precisely, the bigger the value of α is, the smaller the value of λ∞ has
to be and vice versa (see Figure 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

α

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

λ
∞

Figure 1: All the positive points below the graph of λ∞ are feasible values
for λn and αn.
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This more general setting allows us to make inertial methods with vari-
able stepsize. For example, if we set Tn := JγnA(Id − γnB) and we could
show that this particular sequence (Tn)n∈N fulfills condition (6) and that Tn
is nonexpansive for all n ∈ N, we would then obtain an inertial forward-
backward algorithm with variable stepsize. We already know that Tn is
nonexpansive for all n ∈ N due to Lemma 13. Moreover, it is in fact true
that this particular sequence (Tn)n∈N fulfills condition (6), as we will see in
the next corollary.

Corollary 17. Let A : H⇒ H be a maximally monotone operator, B : H →
H be β-cocoercive continuous and infn∈N γn > 0. Suppose that Zer(A+B) 6=
∅ and set Tn := JγnA(Id− γnB). Then (Tn)n∈N fulfills condition (6).

Proof. First of, from Lemma 7 it follows immediately that

Fix(JγnA(Id− γnB)) = Zer(γn(A+B)) = Zer(A+B),

hence
⋂
n≥0

Fix (Tn) = Zer(A+B).

Now, let xnk ⇀ x and xnk − Tnkxnk → 0. We will use Lemma 6 to show
that x ∈ Zer(A+ B). Define yk := Tnkxnk for all k. It holds xnk − yk → 0,
therefore we get that yk ⇀ x. Since

xnk − yk ∈ (Id+ γnkA)yk + γnkBxnk − yk = γnk(Ayk +Bxnk),

it follows that

∀k ∈ N ∃ (xnk , uk) ∈ Gr(B), (yk, vk) ∈ Gr(A)) : γnk(vk+uk) = xnk−yk → 0,

thus we obtain (vk+uk)→ 0 as k → +∞ because infn∈N γn > 0. Now we will
show that there exist convergent subsequences of (uk)k∈N, (vk)k∈N, allowing
us to use Lemma 6 in order to finish the proof. Since B is β-cocoercive we
know that B is in particular maximally monotone (see Lemma 11) and we
get

‖Bxnk‖ ≤ β
−1‖xnk‖+ ‖B0‖.

Furthermore, from the weak convergence of (xnk)k∈N together with the
uniform boundedness principle we know that (xnk)k∈N is bounded, hence
(Bxnk)k∈N is also bounded. Consequently, there exists a convergent sub-
sequence of (Bxnk)k∈N, i.e. Bxnkl = ukl ⇀ u as l → +∞, and since
(vk + uk)→ 0 as k → +∞ it follows that vkl ⇀ −u as l→ +∞ .
Finally, we can use Lemma 6 for the sequences (xnkl )l∈N, (ykl)l∈N, (ukl)l∈N
and (vkl)l∈N which gives us x = y ∈ Zer(A+B).

We are now able to formulate an inertial forward-backward algorithm
with variable stepsize.
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Theorem 18. (Inertial Forward-Backward algorithm with variable
stepsize) Let f ∈ Γ(H), g : H → R be convex with a 1

β -Lipschitz continuous
gradient. Furthermore, let supn∈N γn ≤ 2β, infn∈N γn > 0 and assume that
argmin(f + g) 6= ∅. We consider the following iteration scheme:

(∀n ∈ N)

 wn := xn + αn(xn − xn−1),
yn := wn − γn∇g(wn)
xn+1 := (1− λn)wn + λn Proxγnf yn,

where x0, x1 are arbitrarily chosen in H, (αn)n≥1 is nondecreasing with α1 =
0 and 0 ≤ αn ≤ α < 1 for every n ≥ 1 and λ, σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤

δ − α(α(1 + α) + αδ + σ)

δ(1 + α(1 + α) + αδ + σ)
∀n ≥ 1.

Then (xn)n∈N converges weakly to a point in argmin(f + g).

Proof. Set A = ∂f,B = ∇g and define Tn := JγnA(Id − γnB) : H → H,
for all n ∈ N. We will show that (Tn)n∈N fulfills condition (6) and that Tn
is nonexpansive so we can use Theorem 15 which finishes the proof. From
Lemma 13 we already know that Tn is nonexpansive. It remains to show
that (Tn)n∈N fulfills condition (6). Since f ∈ Γ(H) we know that ∂f is
maximally monotone and ∇g is β-cocoercive seeing that it is 1

β -Lipschitz
continuous. Furthermore, it holds that⋂

n∈N
Fix(JγnA(Id− γnB)) = Zer(A+B) = argmin(f + g),

hence by applying Corollary 17 it follows that (Tn)n∈N fulfills condition
(6).

The next remark shows that we can reduce Theorem 18 to a similar, yet
weaker statement compared to Theorem 12.

Remark 19. If we set Tn := Jγ∂f (Id − ∇g) with f ∈ Γ(H), g : H → R
convex with a 1

β -Lipschitz continuous gradient, supn∈N γn ≤ 2β, α = 0
and assuming argmin(f + g) 6= ∅ then we get the same implications as in
Theorem 12 except with the stronger assumption on the relaxation factors
λn, since infn∈N λn > 0 and supn∈N γn ≤ 1 implies

∑
n∈N λn(δ − λn) = +∞.

By setting B = 0 in Corollary 17 we immediately get the following
analogous Corollary and Theorem.

Corollary 20. Let A : H ⇒ H be a maximally monotone operator and
infn∈N γn > 0. Suppose that Zer(A) 6= ∅ and set Tn := JγnA : H → H. Then
Tn fulfills condition (6).
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The last corollary allows us to formulate an inertial Proximal-Point
method. Note that in contrary to the classic Forward-Backward algorithm in
Theorem 12, the Proximal-Point method (see [1, Theorem 23.41]) is already
defined by a variable stepsize.

Theorem 21. (Proximal-Point method) Let A : H ⇒ H be maximally
monotone such that Zer(A) 6= ∅, let (γn)n∈N be a sequence in (0,+∞) such
that

∑
n∈N γ

2
n = +∞, and let x0 ∈ H. Set

(∀n ∈ N) xn+1 = JγnAxn.

Then (xn)n∈N converges weakly to a point in ZerA.

By setting A := ∂f in Corollary 20 one can obtain the next algorithm,
with a more relaxed condition on the stepsizes γn (see [1, Theorem 27.1]).

Theorem 22. (Proximal-Point algorithm) Let f ∈ Γ(H) be such that
argmin(f) 6= ∅, let (γn)n∈N be a sequence in (0,+∞) such that

∑
n∈N γn =

+∞, and let x0 ∈ H. Set

(∀n ∈ N) xn+1 = Proxγnf xn.

Then (xn)n∈N converges weakly to a point in argmin(f).

As mentioned before, we will now formulate an inertial proximal-point
algorithm.

Theorem 23. (Inertial Proximal-Point algorithm) Let f ∈ Γ(H),
infn∈N γn > 0 and assume that argmin(f) 6= ∅. Furthermore we define
the following iteration:

(∀n ∈ N)

⌊
wn := xn + αn(xn − xn−1),
xn+1 := (1− λn)wn + λn Proxγnf wn,

where x0, x1 are arbitrarily chosen in H, (αn)n≥1 is nondecreasing with α1 =
0 and 0 ≤ αn ≤ α < 1 for every n ≥ 1 and λ, σ, δ > 0 are such that

δ >
α2(1 + α) + ασ

1− α2
and 0 < λ ≤ λn ≤

δ − α(α(1 + α) + αδ + σ)

δ(1 + α(1 + α) + αδ + σ)
∀n ≥ 1.

Then (xn)n∈N converges weakly to a point in argmin(f).

Proof. Use Theorem 18 with g = 0.

Similarly to Remark 19, the next remark shows that we can reduce The-
orem 23 to a similar, yet weaker statement compared to Theorem 21.

Remark 24. If we set Tn := Jγn∂f with f ∈ Γ(H), infn∈N γn > 0,α = 0 and
assuming argmin(f) 6= ∅ then we get the same statement as in Theorem 22
except with the stronger assumption on the stepsizes γn, since

inf
n∈N

γn > 0⇒
∑
n∈N

γn = +∞.
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4 Applications

In the following we will use the inertial forward-backward algorithm with
variable stepsize (Theorem 18) to solve a deblurring problem of the following
kind. We are given an observed noisy grayscale image B ∈ [0, 1]256×256 with

B = G ∗X + η,

where ∗ denotes the convolution between matrices with respect to Neumann
(mirror) boundary conditions, G is a Gauss filter of size 9×9 with standard
deviation 4, X ∈ [0, 1]256×256 is the original grayscale image and η is zero-
mean white Gaussian noise with standard deviation 10−3. The original
image X and the observed noisy image B can be seen in Figure 2.

Figure 2: Original image (left) and the observed noisy image.

We will solve the following optimization problem:

argmin
x∈R2562

1

2
‖RWx− b‖22 + β‖x‖1 (18)

where b = vec(B) ∈ [0, 1]256
2

is the vectorization of B (formed by stacking
the columns of B into a single column vector b), β > 0 is a regularization
parameter, R is a matrix representing the blur operator and W is a matrix
representing the inverse of a three stage Haar wavelet transform. To be more
precise, one can write (w.r.t Neumann boundary conditions)

G ∗X = MXM

as a product of matrices, with M being a sum of a Hankel and Toeplitz
matrix (for further detail see [5]). Furthermore, it holds that

vec(MXM) = (MT ⊗M) vec(X) =: R vec(X)
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where ⊗ denotes the Kronecker product, defined by

U ⊗ V =

u11V . . . u1nV
...

. . .
...

um1V . . . umnV

 ∈ Rms×nt

for matrices U ∈ Rm×n, V ∈ Rs×t. Similarly, we can derive the inverse Haar
wavelet transform operator W . In our case, R,W ∈ R2562×2562 are fortu-
nately sparse matrices, thus making the computational effort to compute
RWx not too big. It is common to use the l1-regularization in (18), since
we are minimizing over the wavelet domain and most images have a sparse
wavelet representation in the wavelet domain.

Now we apply the forward-backward algorithm for g(x) := 1
2 ‖RWx− b‖22

and f(x) := β‖x‖1 with β ∈ {1e-2, 1e-3, 1e-4, 1e-5} consecutively (see Fig-
ure 3). The gradient of g is ∇g(x) = W TRTRWx−W TRT b and Lipschitz
continuous with Lipschitz constant 1. The proximal operator of f is the
shrinkage thresholding operator, i.e.

Proxβγn‖·‖1(x) =


x− βγn for x ≥ βγn,
0 for − βγn ≤ x ≤ βγn,
x+ βγn for x ≤ −βγn.

Furthermore, let Fn denote the objective function value of the n-th iteration.
We can see in Figure 3. that the lower the value of β is, the better the image
quality is. Moreover, we can see in Figure 4 that we get a better convergence
rate if we choose bigger values for the damping terms αn. In this example,
the algorithm will converge very slowly after 50 iterations, which can be
seen in Figure 5. [2]
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(a) F100 = 42.81, β = 1e-2 (b) F200 = 42.8, β = 1e-2

(c) F100 = 4.8, β = 1e-3 (d) F200 = 4.7, β = 1e-3

(e) F100 = 0.62, β = 1e-4 (f) F200 = 0.58, β = 1e-4

(g) F100 = 0.15, β = 1e-5 (h) F200 = 0.1085, β = 1e-5

Figure 3: Objective function values after the 100-th and 200-th iteration for
β ∈ {1e-2, 1e-3, 1e-4, 1e-5} and for the parameters λn = 0.92 and αn = 0.05,
γn = 2.
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Figure 4: From bottom to top: We do a semilogy plot of the objective
function values Fn up to 200 iterations for the parameters γn = 2 and
(αn = 0.05, λn = 0.92), (αn = 0.2, λn = 0.64), (αn = 0.3, λn = 0.46), (αn =
0.4, λn = 0.31), (αn = 0.5, λn = 0.2), (αn = 0.6, λn = 0.1) respectively.
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Figure 5: From left to right: The observed blurred noisy image B, the
solution after 50 iterations, the original image X and the values of the
objective function Fn − F10000 from the iterations 1 to 200. Here we used
the same parameters as in Figure 3 (h).
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5 Appendix

The following is a summary of this paper written in german.

Zusammenfassung

In dieser Arbeit betrachten wir eine verallgemeinerte Version von dem Kras-
nosel’skĭı-Mann Algorithmus, der bekannt für das Lösen von Fixpunkt Prob-
lemen ist. Als erstes stellen wir den klassischen Krasnosel’skĭı-Mann Algo-
rithmus vor und führen ein paar notwendige Resultate aus der Fixpunkt -
und Operator Theorie vor. Des Weiteren beweisen wir die schwache Kon-
vergenz und betrachten einen Spezialfall vom verallgemeinerten KM Algo-
rithmus, der insbesondere ein inertialer Forward-Backward Algorithmus mit
variabler Schrittweite ist. Schlussendlich zeigen wir eine Anwendung zum
lösen von ”image deblurring” Problemen.
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