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1. Introduction 

Due to an increased competition environment in logistics and transportation industry, 

companies are forced to create an effective way of distribution of the goods to the customers. 

Besides the pursuing of high profits by lowering the costs, they must consistently improve the 

quality of services in order to retain and enlarge their customer base so that they would be 

able to maintain their position in the business. As the enhancement of customer service is 

usually connected to a cost increase, the companies are facing the challenge of fulfilment of 

two conflicting objectives.  

Considering the high importance of an effective distribution planning, the Vehicle Routing 

Problem (VRP) belongs to the most studied problems of operations research and is gaining 

attraction of many authors of research papers. A VRP deals with an optimization of the routes 

of a vehicle fleet that should deliver the demands to a given set of customers. Besides the 

optimization of objective function, the VRP must take into consideration several constraints - 

the capacity of the vehicles cannot be exceeded, each customer must be visited exactly once 

and each vehicle can make only one tour, whereby it starts and ends its route in a depot. The 

classical goal of VRP is to deliver all the demands at lowest possible cost. 

By adding an equity criteria to the model of VRP, the company can achieve higher quality of 

services, whether by treating the employees with fairness or by acceleration of delivery 

process. There are several different motivation for using an equity criteria in the literature. 

Lee and Ueng (1999) aimed at the improvement of working conditions of the employees. 

They claimed that the success of a company is dependent on its key resource, the employees, 

therefore a company must treat its employees fairly. Otherwise, the unsatisfying working 

conditions can cause a low quality of service. This could be avoided by adding a workload 

balancing factor into the distribution model. Since the better balanced workloads between 

employees deliver usually higher cost, it is dependent on a decision maker, to what extent he 

considers the equity conditions of its employees as important. By adding an equity criteria to 

the distribution model can be achieved not only the employee satisfaction, but it has also an 

impact on the level of profits. In the competitive environment, the fast delivery to the 

customers can influence the amount of sales. If a company delivers the goods or services later 

than its competitor, it will lose the sale and its profits decrease. Therefore it is necessary to 

balance the workload of each vehicle to ensure that each customer will be served in the fastest 

possible time (Norouzi et al., 2012). The time of delivery is also important in the business 
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environments where a delivery of goods or services is required to be promptly due to their 

nature, such as delivery of news papers or sensitive goods. The consideration of equity criteria 

is of high importance and should be considered alongside the financial goals (Tsourous et al., 

2006). 

The researchers who deal with the distribution of public services usually use the equity 

criteria for improving the resource utilization. For instance, the aim of the school bus routing 

is to avoid the overcrowding and underutilization. This can be achieved by adding a balancing 

criteria into the distribution model (Bowerman et al., 1995, Lee and Moore, 1977). 

The VRP model introduced in this work considers in addition to the minimization of the total 

cost for customer delivery also the equity criteria for the employees. The equity consideration 

that is examined in this work concerns the fairness between the employees that can be 

achieved by better balanced workload. By reaching the high level of employee satisfaction, 

the company manages to decrease its costs due to lower fluctuation that is often connected to 

inadequate working conditions. 

The aim of this work is to deliver a satisfactory trade off between economic efficiency and 

equitable workload allocation. For this purpose we have introduced four bi-objective models 

for VRP with workload balancing in order to explore several alternatives for defining the 

workload balance, and investigate the effect of various equity metrics and functions on the 

resulting VRP solutions.  
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2. Literature Survey 

Most papers about the VRP focus on minimizing the transportation time or the length of the 

tours in order to increase the cost efficiency, since the organizations aim to maximize their 

profits. The effort of minimizing the workload between the vehicles is often connected to the 

increase in cost due to longer transportation time and increased length of the tours, therefore 

the consideration of the employees welfare is usually not attractive for the corporations. In 

spite of this, there are papers that focus on decreasing the workload imbalance between the 

vehicles and thus bring fairness in the assignments of employees.  

The workload can be measured in various ways, for instance as the time required for customer 

delivery, the tour length, number of visited customers or the customers' demand. Similarly, 

there are many equity functions that can be used for achieving the workload balance 

improvement. The balancing objective can be presented in a single-objective model, where 

the optimization of workload balance can be defined as primary objective (PO) or expressed 

as a constraint in the model, or in bi-objective models, where the reduction of workload 

imbalance is pursued in addition to cost optimization. In bi-objective models a balancing 

objective can be modelled as a weighted sum function or is included in a multi-objective 

model. 

 

Table 1: Overview of publications dealing with balanced VRPs 

We have considered the papers that balanced the workload of the vehicles and used the 

customers' demand or number of stops as a measure for the workload. Table 1 categorizes the 

Min Max Range Other Demand Stops Other MO WS CN PO

Theory-oriented

Baños et al. (2013) x x x x

Bektaş (2012) x x x

Benjamin and Abdul-Rahman (2016) x x x x

Gouveia et al. (2013) x x x

Dharmapriya et al. (2010) x x x

Gulczynski et al. (2011) x x x

Chen and Chen (2008) x x x

Kara and Bektaş (2005) x x x

Mourgaya and Vanderbeck (2007) x x x

Norouzi et al. (2012) x x x

Ribeiro and Lourenço (2001) x x x

Tsouros et al. (2006) x x x

Application-oriented

Apte and Mason (2006) x x x x

Bowerman et al. (1995) x x x

Groër et al. (2009) x x x x

Kritikos and Ioannou (2010) x x x

Lin and Kwok (2006) x x x

Liu et al. (2006) x x x

Mendoza et al. (2009) x x x

Publication
Equity Function Equity Metric Optimization Model
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publications of VRP according to the equity functions, equity metrics and optimization 

models. The papers are divided into two groups, theory and application-oriented. 

Theory-oriented publications 

Dharmapriya et al. (2010) introduced a bi-objective model for a distribution problem, where 

two objectives, minimizing the transportation cost and maintaining the load balance among 

vehicles, were combined into a weighted sum objective function. In his study, the split 

delivery was allowed, whereby one customer could be served by more vehicles. Chen and 

Chen (2008) balanced in their paper the workload that was measured by customers' demand 

and was modelled in a single-objective model as a constraint. They tried to avoid the 

workload imbalance by assigning the load to each vehicle in the way that the load was kept at 

an average level. 

Kara and Bektaş (2005) presented a model for Minimum Load Constrained VRP, where the 

balance of loads between the drivers was obtained by bounding the minimum starting or 

returning load of the vehicles. Lower and upper bounds were used in the paper of Gouveia et 

al. (2013), where for each vehicle was defined a minimum and maximum number of 

customers that can be served on each route. Similar approach was used in the paper of Bektaş 

(2012), where besides the minimization of total cost, the workload in terms of number of 

visited customers was bounded by a predetermined interval in order to provide balance 

between the drivers. 

Besides the minimization of total distance, Baños et al. (2013) aimed in their work at 

minimizing the imbalance of workloads, defined by two measures, the travelled distance of 

used vehicles and the delivered goods by the vehicles. Both workload measures were 

balanced by minimizing the difference between maximum and minimum workload. 

The paper of Gulczynski et al. (2011) involved two variants of VRP, where an existing 

solution was being improved by reassigning the customers to new patterns in the first one and 

considering the equity criteria by penalizing the imbalance in the second one. The workload 

of the vehicles was defined as the number of customers served by each vehicle that is 

according to the authors the main determinant of workload in practical routing problems. 

In the paper of Mourgaya and Vanderbeck (2007) balancing the customers' demand between 

the vehicles is expressed as a constraint that limits a workload assigned to the vehicles. 

Norouzi et al. (2012) presented an open vehicle routing problem, where the competition was 
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considered. The goal of this paper was to maximize the sales by the earliest possible arrival to 

customers and simultaneously increase the load balance by minimizing the difference between 

the expected load and the average of the expected load allocated to the vehicles. 

Benjamin and Abdul-Rahman (2016) analysed the drivers' workload in a Waste Collection 

VRP, whereby they compared the results of two different analyses - first one balanced the 

workload in terms of the number of served customers by each vehicle, and the second one 

measured the workload by total distance travelled. 

Ribeiro and Lourenço (2001) took into consideration the human resource management 

objective that aimed at balancing the working levels. In order to reach higher customer service 

level, the standard deviation of the workload of each vehicle was minimized. Tsouros et al. 

(2006) presented in their paper a multi-objective optimization with two objectives - 

minimizing the maximum deviation between the maximum and the minimum travel times and 

minimizing the maximum deviation between the maximum and the minimum loading volume 

of the vehicles. 

Application-oriented publications 

Bowerman et al. (1995) developed a model for school bus routing problem in Ontario, 

Canada. He considered three criteria for evaluating the level of public services. Accept 

efficiency and effectiveness, the public transport should consider an equity criteria that is 

presented in this paper with the fairness in service distribution for each student. This was 

achieved by balancing the number of transported students, and the distance travelled by 

drivers.  

A real-world data set of a utility company Routesmart Technologies, Inc. was used in the 

paper of Groër et al. (2009). The aim was to minimize the route cost of the employees that 

deliver the bills to the customers, and simultaneously maintain the balance between them. In 

addition, the researchers had to consider the varying customer base and usage of the meters. 

Similar problem was introduced by Lin and Kwok (2006) who created a model for a 

telecommunication service company in Honk Kong, which prints and delivers the bills to its 

customers. The authors were looking for an optimal trade-off between the minimization of 

total cost, load imbalance and working time imbalance. The balancing criteria were optimized 

by minimizing the difference between the maximum and minimum workload.  
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Apte and Mason (2006) studied delivery operations of San Francisco Public Library in order 

to make recommendations for improvement of an existing delivery system. Besides the cost 

optimality of delivery, they aimed at the balanced utilization of truck capacities and balanced 

routes in terms of visited branches by each vehicle. They claimed that by implementation of 

the balancing factor into the delivery system, the library will be able to increase the delivery 

capacity due to better resource utilization. 

Kritikos and Ioannou (2010) addressed their paper to the problem of a delivery company in 

Athens that supplies a large number of supermarkets with their goods. The objective function 

of their model minimized the route and vehicle cost, as well as the deviation of the loads from 

the median vehicle load. Their solution method suggests promising results, as the load 

allocation among all vehicles delivered 23% improvement of the deviation from the median 

vehicle load. 

Mendoza et al. (2009) delivered a decision support system for a water and sewer company in 

Bogotá, Colombia. Their objectives included optimization of total distance, as well as the 

workload balance and resource utilization. The balance was measured by the number of 

auditors visits to customer sites in order to verify if the work was performed properly. 

Liu et al. (2006) expressed the equity criteria in their model as a constraint. In their model 

they used a third party logistics in Taiwan as a data set. They used two balancing criteria, in 

terms of workload and in terms of delivery time, whereby they determined a tolerance gap 

between the desired maximum and minimum workload among the drivers. 

The aim of this thesis is to extend the research of the multi-objective VRP that considers the 

workload balancing as a second objective. We present the workload in models with two 

different equity metrics - the number of served customers and the customers' demand. For 

each equity metric were used two equity functions, Min Max and Range. 

This thesis is structured as follows: 

Chapter 3 presents the mathematical model formulation for each model version. Chapter 4 

describes the solution methods that were used to solve the proposed models. Chapter 5 is 

divided into five parts that analyse the results of our computations. In the first part are 

explored the variances in the number of Pareto-optimal solutions found with different model 

versions, the second part examines if there is some connection between the number of 

vehicles used in the models and the number of Pareto-optimal solutions found. The third part 
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explores the development of cost that is caused by the reduction of workload imbalance 

between the drivers. Some inconsistencies in the workload allocation that were observed in 

some scenarios are analysed in the fourth part and the last section of the analysis is dedicated 

to the examination of the amount of identical solutions that were found with different model 

versions. Conclusions are made in Chapter 6. 
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3. Modelling the Balanced VRP 

The following integer programming formulation was created by modifying the formulation 

proposed by Baldacci et al. (2007) and Yaman (2006). 

Let G = (V,A) be a directed graph with a node set V = {0,...,n}, where the Node 0 represents 

the depot and the remaining node set V´= V \{0} represents the n customers. Every customer i 

  V´ has a demand of    that should be delivered by a vehicle fleet that is composed of K 

vehicles, each of them having a capacity Q. The distance between two nodes i   V and j   V \ 

{i} is defined with the cost    . 

We have defined two decision variables in our model. The    
  

is a binary variable that defines, 

if a vehicle k serves a node j right after node i. If    
  

is 1, the vehicle k travels directly from 

customer i to customer j, 0 otherwise. The flow variable     specifies the quantity of goods 

that a vehicle k carries after leaving customer i.  

We define with      and      the maximal and minimal workloads among all vehicles. 

The multi-objective optimization model seeks to satisfy two objectives - the minimization of 

cost and minimization of the workload imbalance. For the achievement of the second 

objective, we will examine two different equity functions that should minimize the imbalance: 

 Min Max: minimizing the workload of the vehicle with the highest workload 

   = min (    ) 

 Range: minimizing the difference between the vehicles with the highest and the lowest 

workload 

    = min (     -     ) 
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The following mathematical formulation is valid for both equity functions and equity metrics: 

min         
 

              (1) 

s.t. 

            (2a) 

      -            (2b) 

     
 

       = 1 ∀ j   V´   (3) 

    
 

         
 

    = 0 ∀ k   K , ∀ p   V´  (4) 

    
 

   ´  = 1 ∀ k   K  (5) 

            
 

       ∀ k   K (6) 

                   
 )  ∀ i, j   V´, ∀ k   K (7) 

          ∀ i   V, ∀ k   K   (8) 

     
 

   ´           ∀ k   K   (9a) 

     
 

   ´             ∀ k   K   (9b) 

           
 

   ´           ∀ k   K   (10a) 

           
 

   ´              ∀ k   K   (10b) 

       (11) 

   
    {0,1} (12) 

The objective function (1) minimizes the cost for the whole customer delivery. The ε-

constraints are defined by (2a) and (2b). Dependent on the type of equity function, we use in 

our model either the constraint (2a) for minimizing the maximum workload or the constraint 

(2b) for minimizing the difference between the maximum and minimum workload. The ε-

constraints are further defined by constraints (9a) and (9b) that determine an upper limit for 

the maximum workload, for models with metric Customers and Demand respectively, and by 

constraints (10a) and (10b) that determine the bound for difference between the minimum and 

maximum workload. Because of constraint (3) every customer has to be served exactly once 

and constraint (4) ensures that if a vehicle visits a customer on its route, it must also depart 

from it. This constraint guarantees that each vehicle returns after all customers' visits back to 
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the depot. With constraint (5) is guaranteed that each vehicle takes exactly 1 tour. The 

constraint (6) sums up the total demand of all customers that are included in the route of 

vehicle k. The constraint (7) computes the remaining demand that a vehicle must still deliver 

after it visited the customer j. In this way, if the customer j is served right after the customer i 

the remaining demand of vehicle k that already served the customer j must be lower than or 

equal to the remaining demand that it has after serving the customer i plus the demand of 

customer j. The constraint (8) is a capacity restriction constraint that ensures that the total 

demand that a vehicle should deliver on its route must be lower or equal to its capacity. 
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4. Solution Method 

In the presented work we have implemented the ε-constraint method for producing the Pareto-

optimal solutions in a bi-objective optimization problem. 

In general, a bi-objective optimization problem can be defined as: 

minimize  {      ,     )} 

subject to  x   S 

where S is a set of feasible solutions. Since the bi-objective problems involve two objectives 

that usually stay is conflict, in general no solution can optimize both objectives 

simultaneously. The outcome of a bi-objective optimization is the set of Pareto-optimal 

solutions. The definition of Pareto-optimality is as follows: 

A solution, x*   X, is Pareto optimal if there does not exist another solution, x   X, such that 

  (x)     (x*) for all objective functions i, with at least one strict inequality. 

In the set of all Pareto-optimal solutions that is commonly referred to as the Pareto frontier, 

there exists no solution that dominates the other, because any improvement in one objective 

results in the worsening of the other one. 

Two traditional methods for solving bi-objective optimization problems are the weighted-sum 

method and ε-constraint method. 

In the weighted-sum method, all objectives are combined into a single function in which each 

objective is multiplied by a weight   . The weights are assigned to the objective functions 

according to their relative importance for a decision maker. The weighted-sum model can be 

defined as follows: 

optimize       
 
   (x) ∀ i    ,..., k 

subject to  x   S, 

where      0 and    
 
    = 1. 

In the ε -constraint method, introduced in Haimes et al. (1971), one objective function is being 

optimized, whereas all the other objective functions are defined as a constraints by 

determining an upper bound to each objective function: 
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optimize    (x) 

subject to     (x)      ∀ j    ,..., k, j    

 x   S, 

where i   {1,...,k} and    is an upper bound for the k objectives. 

In the weighted-sum method the determining of the weights is of high importance, as it has 

great influence on the obtained results. The allocation of weights to the objective functions 

represents a difficult decision for a decision maker, since he has to exactly define on which 

objective function he should put more emphasis. This becomes even more problematic when 

the units of measure of different objectives are not comparable, such as time, weight, 

currency, etc. Another disadvantage of the weighted-sum method is that this method cannot 

produce unsupported efficient solutions, which limits the number of found solutions only to 

the supported ones, and can therefore eliminate the possibility of discovery of an optimal 

solution. An example of unsupported efficient solution is depicted in Figure 1. The solutions 

in red circles are located within the convex hull of the Pareto-optimal solutions, and therefore 

no convex combination of weights can identify these solutions as the optimal ones. 

 

Figure 1: Example of solutions not identifiable with the weighted-sum method 

On the other hand, in the ε-constraint method it is only necessary to determine an upper bound 

to each objective function that is modelled as a constraint, which represents an advantage of ε-

constraint method over the weighted-sum. Furthermore, the ε-constraint method is able to find 

also the unsupported efficient solutions (Mavrotas, 2009). In this work, we have defined the 

upper bound as a maximum value for a workload and then iteratively decreased the upper 

bound en down to its minimum. 
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During the analysis of the computational results, we have also observed the lexicographic 

optimality of our solutions. The lexicographic optimization is a sequential approach that 

optimizes objectives according to their importance. For the purposes of this work, we have 

used the lexicographic method by interpretation of the workload of the vehicles. The vehicles 

were set in lexicographic order according to the level of their workload and subsequently we 

have identified, if the solutions that were better balanced delivered lexicographically better 

workload allocation for each vehicle.  
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5. Analysis 

The described VRP was computed in Mosel language by Fico Xpress Optimization Suite. For 

the calculations we have used the benchmark instance CMT5 that consists of 199 customers 

with different node coordination and demands. From this instance we have used first three 

groups of 16 customers and generated three different customer sets, A, B and C, these are 

depicted in Figure 2. Each set consists of one depot and 16 customers that should be served 

and have various locations and demands. In the model versions we have used various number 

of vehicles used for customer delivery, from 2 to 5. 

 

Figure 2: The three customer sets A, B and C 

For analysis purposes, we have created four different models that used different equity 

metrics and functions: 

 model with equity metric Customers and equity function Min Max, 

 model with equity metric Customers and equity function Range, 

 model with equity metric Demand and equity function Min Max, 

 model with equity metric Demand and equity function Range. 

Equity function Min Max is defined by the vehicle that out of all used vehicles in the fleet 

delivered the highest workload, whereas the equity function Range is computed as the 

difference between the vehicle with maximum and the vehicle with minimum workload. In 

the equity metric Customers the workload for each vehicle is determined by the number of 

customers that a vehicle serves in its route, and the workload in equity metric Demand is 

defined as a sum of demands that a vehicle delivers to all customers that are allocated to it.  

Although we used in our computations only 3 different sets of customers, the instance set was 

considerably higher due to variations in the number of used vehicles and equity metrics and 

functions. Each instance was considered with 4 different fleet sizes, yielding 12 instances that 
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we solved with each of the 4 models. This yielded a total of 48 Pareto fronts and 251 unique 

solutions. These are depicted in the Table 19, in chapter 5.5.  

For purposes of the analysis we have considered always the combined results from all three 

customers sets to deliver plausible statements about the results. 

In this chapter we are going to explore the differences between the models that use different 

equity metrics and equity functions.  

We are going to analyse 

 the variances in the number of found solutions when using different model versions, 

 the connection between the number of vehicles used in the models and Pareto-optimal 

solutions found, 

 the development of cost that is connected to the imbalance reduction, 

 the consistency between balance and lexicographical improvement, and 

 to what extent were identified identical solutions by different model versions, in order 

to determine which model identifies the highest number of unique solutions. 

5.1. Number of Pareto-optimal Solutions 

Observing the number of Pareto-optimal solutions when using different functions 

 minimizing the maximum workload (Min Max) 

 minimizing the difference between the maximum and minimum workload (Range) 

and using different metrics 

 number of customers (Customers) 

 demand of the customers (Demand) 

we have identified some differences. 

5.1.1. Variances Between Different Equity Functions 

Figure 3 shows us the total number of solutions found with different types of equity functions 

divided according to the number of the vehicles used for customer delivery. Except the 

models, where are only 2 vehicles in the fleet, the function Range identifies more solutions 

than Min Max, since in the function that balances the difference between maximum and 

minimum workload there are more possible combinations of splitting the workload between 

the vehicles. Due to limited possibility of allocation of the customers to the vehicles by the 
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models that use only 2 vehicles for customer delivery, the functions Min Max and Range 

identify the same number of solutions. The connection between the number of the vehicles 

and the number of solutions will be discussed in the next chapter. 

 

Figure 3: Number of Pareto-optimal solutions using different equity functions 

In the models that use more than 2 vehicles for customer delivery, we can find the variance 

between the number of Pareto-optimal solutions found with different functions, which is 

caused by the different calculation of the Min Max and Range: 

The Min Max value is defined by the vehicle that out of all used vehicles in the fleet serves 

the highest number of the customers. The optimization of Min Max lies in reduction of the 

maximum allowed number of served customers by each vehicle. On the other hand, the Range 

value is calculated as the difference in workload between the vehicle with maximum and the 

vehicle with minimum number of served customers. Since Range value is optimized by 

reduction of the difference between the most and the least loaded vehicle, the optimization 

can be achieved by either decreasing maximum or increasing the minimum number of served 

customers, or both. Therefore, it is possible that in some situations the Range function 

identifies several Pareto-optimal solutions, where the maximum number of served customers 

is not changed. 

For illustration, we observe the results of an instance that uses the Customers metric and 

where 5 vehicles are used to deliver the goods to 16 customers. These are depicted in Table 2. 
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Since each vehicle must serve at least one customer, it is not possible to allocate the 

customers between the vehicles and simultaneously decrease the maximum number of served 

customers under 4. Thus, with the Min Max function there are only 4 Pareto-optimal solutions 

found. On the other hand, with the Range function, there are two other solutions found when 

the maximum number of served customers is equal to 4, because the difference in workloads 

between the vehicles is reduced by increasing the minimum workload. 

 

Table 2: Pareto-optimal solutions of customer set B using 5 vehicles and the Customers metric 

In order to support the statement that function Range identifies more solutions than Min Max, 

we analyse also the models where the metric Demand is used. As it is shown in Table 3 that 

presents the solutions of a different instance using Demand metric, with the Range function 

there were found more solutions than with the Min Max. Similar as in the previous example, 

there are more possible combinations for allocating the customers when we use Range 

function.  

 

Table 3: Pareto-optimal solutions of customer set C using 5 vehicles and the Demand metric 

Min Max Range W1 W2 W3 W4 W5

1 335,285 7 6 7 6 1 1 1

2 343,724 6 5 6 6 2 1 1

3 358,813 5 4 5 5 4 1 1

4 373,357 4 3 4 4 4 3 1

5 380,076 2 4 4 4 2 2

6 391,981 1 4 3 3 3 3

Equity Function
CostSolNr

Allocation of Customers

Min Max Range W1 W2 W3 W4 W5

1 284,599 129 112 129 86 44 27 17

2 286,305 113 86 113 86 44 33 27

3 290,209 96 69 96 86 50 44 27

4 295,708 86 59 86 80 66 44 27

5 298,311 53 86 71 67 46 33

6 302,215 40 86 71 50 50 46

7 303,993 80 80 71 66 65 21

8 306,488 71 38 71 67 67 65 33

9 310,392 21 71 67 65 50 50

10 322,752 67 67 67 65 60 44

11 331,605 17 71 65 57 56 54

12 342,203 66 66 66 66 61 44

13 344,817 10 66 64 60 57 56

14 344,88 65 9 65 65 60 57 56

15 352,535 7 65 61 60 59 58

16 363,521 64 64 64 60 58 57

17 376,294 63 4 63 61 60 60 59

18 384,038 61 1 61 61 61 60 60

Allocation of Customers
CostSolNr

Equity Function
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5.1.2. Variances Between Different Equity Metrics 

In comparison to the variances between different functions, the variances in the number of 

Pareto-optimal solutions found when we compare the results according the metrics used in the 

models are significantly higher. The total number of solutions divided according the different 

metrics are depicted in the Figure 4. 

 

Figure 4: Total number of Pareto-optimal solutions using different metrics 

The models that minimize or balance the number of customers identify less solutions 

independently from the number of vehicles than those that minimize or balance the 

transported demands between the vehicles. The reason for this tendency can be explained by 

different definition of workload depending on which metric do we use. While the models with 

the Customers metric allocate 16 customers to 2 - 5 vehicles, the models with the Demand 

metric split the whole demand of the customers, in average 315 units, between the vehicles. 

Therefore the models with the Demand metric allow more possible combinations of splitting 

the workload between the vehicles, and identify more solutions than the models that use the 

Customers metric.  

For illustration, we compare the results of 4 different models that use function: 

 Min Max and Customers metric, 

 Min Max and Demand metric, 

 Range and Customers metric, 

 Range and Demand metric, 
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for an instance in which 4 vehicles are used to serve the customers.  

These solutions are depicted in the Table 4. As we can see, it applies for both equity functions 

that there are three times as many Pareto-optimal solutions found with the Demand metric. 

The models where the maximum transported demand is minimized or balanced allow more 

Pareto-optimal solutions considering the wider scope between the maximum and minimum 

transported demand that still deliver feasible solutions for the problem. Since the Demand 

metric identifies more solutions than metric Customers, in most cases the solutions that are 

found by metric Customers are found also by metric Demand. However, a statement that the 

solutions of metric Customers are only a subset of the Demand solutions is not correct - a 

counter-example is solution number 6 in Table 5 that was identified only by metric 

Customers. The analysis of equality of the solutions generated by different functions and 

metrics will be delivered in section 5.5.  

 

Table 4: Variances in the number of found solutions between the same functions and different metrics 

  

Customers Demand Customers Demand

1 258,903 7 146 1 258,903 6 119

2 263,085 6 129 2 263,085 5 112

3 264,791 113 3 264,791 80

4 268,695 5 96 4 268,695 3 46

5 274,194 86 5 274,194 2 20

6 285,919 4 6 285,919 0

9 292,898 84 7 287,508 19

11 304,684 83 8 290,473 17

13 311,517 82 10 293,392 15

14 322,141 79 12 305,294 13

16 323,837 77 13 311,517 11

18 381,98 76 14 322,141 9

15 323,071 8

16 323,837 3

17 346,041 2

18 381,98 1

Equity function Min Max Equity function Range

SolNr Cost
Metric

SolNr Cost
Metric
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5.2. Connection Between Number of Vehicles and Number of Solutions 

In this chapter we are going to explore, if there is a connection between the number of 

vehicles used to serve the customers and the number of solutions found with respective 

models.  

In general it should apply, the more vehicles are used, the more solutions are found, since 

with more vehicles the models are able to find more possible values for Min Max and Range. 

Due to the requirement that each vehicle must serve at least one customer, this increasing 

tendency stops in one point and the number of possibilities starts to decrease. 

5.2.1. Metric Customers 

In the Figure 5 we can see the number of possible Pareto-optimal solutions for the models 

with Customers metric that use from 1 to 16 vehicles to serve 16 customers.  

 

Figure 5: Number of possible Pareto-optimal solutions for models with Customers metric 

We obtain the number of possible Min Max values by counting all possibilities between the 

maximum and minimum value that a Min Max can take. If we use only one vehicle, there is 
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vehicles, the number of possible Min Max values rises to 8 - the highest possible Min Max is 
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Max values, since the maximum possible value for Min Max is 14 and minimum is 6. The 

models with 4 vehicles are able to find 10 possible values for Min Max. This tendency starts 

to decrease by the models that use 5 vehicles. The number of possible Min Max value is 9, as 

the maximum load is 12 (each one of the remaining 4 vehicles serves 1 customer) and the 

minimum 4 (each one of the remaining 4 vehicles serves 3 customers). 

Similar as by models with function Min Max, the models that use 1 and 16 vehicles are able 

to find only one Range value. By the models that use 2 vehicles for customer delivery, the 

functions Min Max and Range find due to limited possibility of allocation of the customers to 

the vehicles the same number of possible values.  

Apart from these exceptions, it applies that when balancing customers, the number of possible 

Range values is equal to the total number of the customers minus the number of used vehicles. 

This number defines the maximum value that a Range can take. The minimum value (the 

lowest difference between the maximum and minimum workload) in every model that uses 

Range function is either 1 or 0, dependently on the number of the vehicles. If the total number 

of customers is divisible by the number of used vehicles, the minimum Range is 0 and it is not 

possible to find Range of 1. If the number of customers is not divisible by the number of used 

vehicles, the minimum Range is 1 and it is not possible to allocate the customers in the way 

that the Range would be 0. Therefore the number of possible Range values is determined by 

the maximum value that a Range can take. 

For illustration we use the models with 3 and 4 vehicles. The maximum value for Range by 

the model with 3 vehicles is 13, as the worst balanced allocation is equal to 14-1-1. The best 

balanced allocation is 6-5-5 that delivers Range of 1, and it is not possible to find also a 

solution where the Range is 0. Therefore the number of possible Range values by the models 

that use 3 vehicles for customer delivery is 13. By the model with 4 vehicles is the maximum 

Range value 12, as the worst balanced allocation is 13-1-1-1. The best balanced allocation is 

4-4-4-4, where Range is 0, and it is not possible to find a solution where Range is 1. The 

number of possible Range values by the models with 4 vehicles is equal to the maximum 

value that a Range can take, thus it is equal to 12. 

The Figure 6 depicts the total number of solutions found in all customer sets with the 

functions Min Max and Range that use the Customers metric divided according the number of 
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used vehicles. As we can see, up to vehicle 4, there is a positive correlation between the 

number of used vehicles and number of found solutions. The number of found solutions 

decreases when we use 5 vehicles for customer delivery.  

 

Figure 6: Connection between the number of solutions and number of vehicles by the models with Customers metric 

In the Figure 7 we can see the number of solutions found by function Min Max, calculated as 

an average of all three instances, and the number of all possible values for the Min Max. Since 

not every Min Max value is also Pareto-optimal, the number of solutions found with Min Max 

function is lower than the number of all possible Min Max values. On the other hand, we can 

see that the number of found solutions increases and decreases according to the number of 

possible values. 

 

Figure 7: Equity function Min Max and the number of found solutions, number of possible values and their 

connection to the number of used vehicles 
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are able to find the highest number of Range values, but the highest number of solutions 

found with Range function identifies the model that uses 4 vehicles for customer delivery. In 

spite of the amount of possible values, there were found more Pareto-optimal solutions by 

models with 4 vehicles than with 3. 

 

Figure 8: Equity function Range and the number of found solutions, number of possible values and their connection 

to the number of used vehicles 

5.2.2. Metric Demand 

The Figure 9 depicts the total number of solutions found in all customer sets with the 

functions Min Max and Range that use the Demand metric divided according the number of 

used vehicles. Similar as by the metric Customers, up to vehicle 4, there is a positive 

correlation between the number of used vehicles and number of found solutions. The number 

of found solutions decreases when we use 5 vehicles for customer delivery. 

 

Figure 9: Connection between the number of solutions and number of vehicles by the models with metric Demand 
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As it was identified in the beginning of this chapter, the increasing tendency of found 

solutions starts to decrease in one point due to the requirement that each vehicle must serve at 

least one customer. Although the metric Demand identified significantly higher number of 

solutions than the metric Customers, there were found similar tendencies between the both 

metrics, when we observe the connection between the number of used vehicles and solutions 

found. By both metrics the number of found solutions starts to decrease when the number of 

used vehicles exceeds the number 4.  
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5.3. Cost of Equity 

In this chapter we are going to analyse the correlation between the cost and the workload 

balance of the vehicles. It applies to all models that with more balanced workload the cost for 

the solutions increases, and that different functions, Min Max and Range, deliver similar 

trends in correlation between the cost and the balance of the vehicles. The goal is to find the 

solutions, where the high increase in workload balance is accompanied by low cost increase, 

relative to the cost-optimal solution. 

The relative cost increase / imbalance reduction of each solution is calculated as its 

percentage increase in comparison to the cost optimum: 

Relative percentage cost increase of solution n:  
                

       
 100 

Relative percentage imbalance reduction of solution n:  
                      

          
 100 

In general it applies that the higher number of vehicles is used, the higher costs are incurred. 

For illustration we observe the tours of the vehicles of the same instance when 2 and 5 

vehicles are used for customer delivery. These are depicted in Figure 10. The cost-optimal 

solution found with model that uses 2 vehicles causes the cost of 199,765 units, whereby each 

vehicle makes one tour - one vehicle serves only customer number 6 that lies nearest to the 

depot, and the second vehicle serves all other customers. The cost optimal solution of the 

model with 5 vehicles causes 24% higher expense for delivery to the customers. When we use 

more vehicles for customer delivery, each vehicle is allocated to fewer customers and every 

vehicle must start in and return back to depot, which causes an extra cost for transport. 

 

Figure 10: Solution number 1 for model with 2 vehicles (left), with 5 vehicles (right), customer set A 
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Furthermore, we are going to analyse, if there are variances between the cost development 

and imbalance reduction, when using different metrics. 

5.3.1. Metric Customers 

As we can see in the Figure 11 that depicts the percentage increase of cost and percentage 

reduction of imbalance of the best balanced solutions relative to the cost-optimum by the 

models that use Customers metric and 2 - 5 vehicles, calculated as an average of all three 

customer sets, the higher number of vehicles we use, the higher costs are generated by the 

models. Observing the solutions of the models that use different equity functions, it applies to 

all models independently of the number of the vehicles that in the best balanced solutions, the 

Range function generates higher imbalance reduction than the function Min Max. The 

percentage imbalance reduction of function Range is defined by the divisibility of the number 

of customers by the number of vehicles. If the number of customers is divisible by number of 

used vehicles, an identical allocation of customers to each vehicle is allowed, and therefore 

the Range is equal to zero, and the percentage imbalance reduction of the best balanced 

solution in comparison to the cost-optimum is 100%. Due to a different calculation of Min 

Max that is defined by the workload of the vehicle with the highest workload, this function 

can never be reduced to zero, therefore the percentage imbalance reduction of Min Max 

cannot achieve 100%. On the other hand, both functions are able to find the same balance 

optimum, hence the comparison of direct percentages would deliver misleading results. Due 

to these considerations, we use for imbalance reduction the values normalized between 0 and 

1. 

 

Figure 11: Percentage increase in cost and reduction of imbalance, Customers metric 
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In the Figure 12 we can see an example of the development of tours, when two objectives, the 

minimization of cost and imbalance, are being optimized. There are depicted all solutions of 

an instance that uses 2 vehicles for customer delivery. Comparing the first and the last 

solution, we can observe, how the balancing factor influences the allocation of customers to 

the vehicles. The numbers in the graphics represent the number of customers served by 

specific vehicles. 

 

Figure 12: Development of tours of customer set A that uses 2 vehicles 
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Although the solutions found with both functions are identical in this example, in terms of 

equity objectives, the different calculations of Min Max and Range cause different percentage 

imbalance reductions. We therefore normalize the balance objectives to the range [0,1] in 

order to make imbalance reductions between different objectives comparable. 

Furthermore, we are going to observe separately the specific trade-offs that were generated by 

models that use different customer sets, and different number of vehicles that serve the 

customers. As the models that use 2 vehicles deliver identical solutions for functions Min 

Max and Range, the analysis of variances between different functions would not be possible, 

and therefore we exclude these from the analysis. 

Table 5 shows the results of the models of an instance that use the Customers metric and 3 

vehicles to customer delivery, and the correlation between the workload imbalance reduction 

and the increase of cost.  

 

Table 5: Connection between the cost increase and imbalance reduction, customer set A, 3 vehicles 

According to the Table 5 it is visible that the trade-off between the first and the second 

solution delivers an attractive trade-off for both functions. The cost increase of 2,5% reduces 

the imbalance in function Min Max by 38%, and in function Range by 25%. In the Figure 13 

we can see the paths of the vehicles in the solutions 1 and 2. In the solution 1, the vehicle 1 

supplies 14 customers and vehicle 2 and 3 only 1 customer. In the solution 2, the vehicle 

number 2 takes over 3 customers from vehicle 1, what causes only small increase in cost, but 

high reduction of workload imbalance between the drivers. 
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Figure 13: Paths of the vehicles in solution 1 (left) and solution 2 (right), customer set A 

The remaining trade-offs of function Min Max do not deliver a significant imbalance 

reduction. On the other hand, the solution number 7 delivers another interesting trade-off for 

function Range. The cost increases by less than 0,5% in comparison to the solution number 6, 

and the imbalance reduces by another 25%. Both solutions are depicted in Figure 14. 

 

Figure 14: Paths of the vehicles in solution 6 (left) and solution 7 (right), customer set A 

The Table 6 presents the solutions of an instance where the trade-offs between cost increase 

and imbalance reductions are even more significant. The solution number 4 delivers a cost 

increase of 3,6% relative to the cost-optimum and the imbalance reductions of 75% and 50% 

for functions Min Max and Range.  
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Table 6: Connection between the cost increase and imbalance reduction, customer set B, 3 vehicles 

The paths of the vehicles of front B are depicted in the Figure 15. The vehicle number 2 took 

over 6 customers from the vehicle number 1, which considerably reduces the imbalance and 

since the customers' location is easily accessible for the vehicle number 2, the cost increase is 

insignificant. 

 

Figure 15: Paths of the vehicles in solution 1 (left) and solution 4 (right), customer set B 

The solutions of another instance are depicted in the Table 7. The solution number 2 is very 

close to being an ideal solution, as the high reduction of imbalance, 83% in the function Min 

Max and 80% in the function Range, is connected to less than 0,05% increase in cost. This 

example demonstrates that in some cases the apparently conflicting objective functions 

(minimization of cost and minimization of imbalance) does not completely stay in conflict.  
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Table 7: Connection between the cost increase and imbalance reduction, customer set C, 3 vehicles 

The paths of the solutions 1 and 2 are depicted in the Figure 16. As we can see, the vehicle 

number 3 gives over 1 customer to vehicle number 2 and took over 5 customers from the 

vehicle number 1, which causes a high reduction of imbalance but only slight increase of total 

distance driven by the vehicles. 

 

Figure 16: Paths of the vehicles in solution 1 (left) and solution 2 (right), customer set C 

Similar as by the models with 3 vehicles, the models with four vehicles in the fleet identify 

attractive trade-offs that are close to the cost-optimum. The Table 8 indicates that the trade-off 

between the solution 1 and 2 is the most beneficial for a decision maker. This trade-off is 

connected to the cost increase of 2%, but delivers imbalance reduction in functions Min Max 

and Range by 44% and 58% respectively. 
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Table 8: Connection between the cost increase and imbalance reduction, customer set B, 4 vehicles 

5.3.2. Metric Demand 

The Figure 17 depicts the percentage increase of cost and percentage reduction of imbalance 

of the best balanced solutions relative to the cost-optimum by the models that use Demand 

metric and 2 - 5 vehicles, calculated as an average of all three customer sets. Similar as by the 

Customers metric, the more vehicles are used in the model, the higher the corresponding 

costs, but the relative cost increase by the best balanced solutions is significantly higher than 

it was by the models that use the metric Customers. The percentage imbalance reduction of 

function Range reaches almost 100% independently of the number of vehicles, and is higher 

than the imbalance reduction of function Min Max. In order to deliver comparable results, we 

use for imbalance reduction the values normalized between 0 and 1. 

 

Figure 17: Percentage increase in cost and reduction of imbalance, Demand metric 
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In the Figure 18 we can observe all solutions of an instance that uses 2 vehicles for customer 

delivery, and the transformation of the tours of the two vehicles. The numbers in the graphics 

represent the demand transported by specific vehicles to the customers. 

 

Figure 18: Development of tours of customer set B that uses 2 vehicles 

The first two trade-offs deliver only slight reduction of imbalance, since the workloads of the 

vehicles are not significantly changed. The workloads of the vehicles are essentially changed 

in third trade-off where the level of imbalance reduction exceeds the increase in cost. Similar 

as the first two trade-offs, the last one delivers insignificant change in the tours of the 

vehicles. 
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Observing the models that use the Demand metric, the trade-offs between cost and imbalance 

are less attractive than in the models with the Customers metric, since the cost increase of the 

best balanced solution is significantly higher. On the other hand, we can find some similarities 

between different metrics. As an example we provide the solutions of an instance using 3 

vehicles. These are depicted in the Table 9. 

 

Table 9: Connection between the cost increase and imbalance reduction, customer set A, 3 vehicles 

The cost increase of the best balanced solution in comparison to the cost-optimum is 27% by 

the function Min Max and 38% by the function Range. In comparison to the metric 

Customers, where the same customer set caused the cost increase by best balanced solutions 

of 16% and 18% for these functions, the balancing here is two times more expensive. The best 

trade-off was delivered by the solution number 3. Although the metrics use different 

definition of workload, this solution is identical to the solution number 2 by the metric 

Customers that also delivered the most attractive trade-off between the two objective 

functions. In this example it is visible that the metric Demand delivered lower imbalance 

reduction than the metric Customers. While the same cost increase of 2,5% causes by metric 

Demand an imbalance reduction in function Min Max by 27% and in Range by 18%, by 

metric Customers it is 38% and 25%. 

In the Figure 19 we can see the change of the paths and of the workloads between the 

solutions 1 and 3. The numbers in the graphics represent the demand delivered by each 
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vehicle. The cost increase in this trade-off is insignificant, whereby there is identified a high 

reduction in workload imbalance between the vehicles. 

 

Figure 19: Paths of the vehicles in solution 1 (left) and solution 3 (right), customer set A 

In the last trade-offs of the metric Demand it is not worthwhile to balance the workload, as the 

reduction of imbalance is insignificant and it is exceeded by the cost increase. In the Figure 20 

are depicted the solutions number 23 and 24 that are identical for both functions. As we can 

see, a very slight imbalance reduction causes a cost increase from 261,019 to 270,838 units. 

 

Figure 20: Paths of the vehicles in solution 23 (left) and solution 24 (right), customer set A 

 

In the Table 10 we can see the development of cost increase and imbalance reduction in the 

models of an instance when we used 4 vehicles to serve the customers. Until solution number 

5 it is worthwhile to balance the workload, as the cost increase relative to the cost-optimal 

solution of only 6% is connected to the balance improvement of 86% by function Min Max 

and 84% by function Range. In comparison to this solution, the best balanced solution 

delivers an additional imbalance reduction of 14% by function Min Max and 16% by function 

Range, whereby the cost increases by 42%. 
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Table 10: Connection between the cost increase and imbalance reduction, customer set C, 4 vehicles 

The comparison of the paths of solutions 1, 5 and 17 is depicted in Figure 21.  

 

Figure 21: Paths of the vehicles in solution 1 (left), solution 5 (middle) and 17 (right), customer set C 

Similar tendency is seen by the model of another instance that uses 5 vehicles for customer 

delivery. The solutions are presented in Table 11. Until solution number 4 that is identical for 

both functions, the trade-off between cost increase and imbalance reduction is attractive for a 

decision maker, as the cost increase of 4% allows significant reduction of imbalance by 

functions Min Max and Range, 63% and 48% respectively. Every further trade-off causes an 

average cost increase of 4% by function Min Max and 3% by function Range, and only 5% 

imbalance reduction in average by both functions. 
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Table 11: Connection between the cost increase and imbalance reduction, customer set C, 5 vehicles 

In this section we have discovered that in every front we were able to find a solution, where a 

small cost increase was connected with high imbalance reduction. Usually, the most attractive 

trade-offs were found between the initial solutions, close to the cost-optimum, as there was 

still wide scope of possibilities how to allocate the customers to the vehicles. In practice it 

could signify that the objectives are not strongly conflicting. This statement is also validated 

by the fact that the solutions that were close to the balance optimum tended to deliver 

insignificant imbalance reduction that was connected to the high cost increase. 
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5.4. Consistency with Lexicographic Preferences 

Since the models that minimize the imbalance consider only the most loaded vehicle (models 

with function Min Max) or the most and the least loaded vehicle (models with function 

Range), the workload of the vehicles that are in between is not examined by these models. 

From this reason we are going to analyse the lexicographic optimality of our solutions in 

order to identify if the solutions that were better balanced delivered also lexicographically 

better workload allocation for each vehicle. 

5.4.1. Metric Customers 

The Table 12 represents the solutions of an instance that uses 5 vehicles for customer 

delivery. As we can see, the solutions 5 and 6 found only with function Range are better 

balanced and are also lexicographically better than the solution 4 that was found with both 

functions, since the workload of vehicle 4 is better in solution 5 than in solution 4. The 

solution 6 is the lexicographic optimum, as well as the best balanced optimum, because it is 

not possible to improve the workloads of the vehicles or find fairer allocation of customers for 

this instance without excluding one customer from the delivery. 

 

Table 12: Pareto-optimal solutions of customer set B using 5 vehicles and the Customers metric 

For the instances considered in our study, all best balanced solutions that were computed 

using function Range and metric Customers, represent also the lexicographic optimum. If we 

use instances where the number of customers is divisible by the number of vehicles, the best 

balanced solution delivers the same customers allocation for each vehicle, thus Range is 0. In 

the instances where the number of customers is not divisible by the number of vehicles, the 

difference between the minimum and maximum workload between the vehicles is 1, and 

cannot be improved. In both cases, such allocations represent the lexicographic optima. 

Min Max Range W1 W2 W3 W4 W5

1 335,285 7 6 7 6 1 1 1

2 343,724 6 5 6 6 2 1 1

3 358,813 5 4 5 5 4 1 1

4 373,357 4 3 4 4 4 3 1

5 380,076 2 4 4 4 2 2

6 391,981 1 4 3 3 3 3

SolNr Cost
Equity Metric Allocation of Customers
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5.4.2. Metric Demand 

The Table 13 represents the solutions of an instance that uses the metric Demand and 5 

vehicles for customer delivery. Here we can see the instances where Range function identifies 

more solutions without decreasing the maximum workload. The solution number 4 found with 

function Min Max is lexicographically worse than solutions 5 and 6, but causes lower cost, 

therefore it was identified as Pareto-optimal solution found with Min Max if the maximum 

demand is equal to 86. The solutions 5 and 6, found only with Range function, are 

lexicographically better than solution number 4, as the workload of vehicle with the second 

highest workload decreases from 80 to 71. If we also observe the workload of the vehicle 

number 3, the solution number 6 is lexicographically better than the solution number 5, 

because the workload decreases by 17. On the other hand the solution 6 causes higher cost 

than the solution 5. 

Similar tendency is seen in the solutions 8, 9 and 11. If we observe the maximum workload, 

the solutions 8, 9 and 11 deliver the same maximum workload, but for the function Min Max, 

only solution 8 is Pareto-optimal due to cost increase by solutions 9 and 11. From the Range 

perspective, all solutions are Pareto-optimal, as the difference between the maximum and 

minimum workload decreases while the cost increases, but the solution 9 is lexicographically 

better than solution 8, because the workload of the vehicle 3 is improved, and the solution 

number 11 is lexicographically better than the solution 9, as the workload of vehicle 2 is 

lower than it is by the solution 9. 

 

Table 13: Solutions of function Range with the same maximum workload, customer set C 

Min Max Range W1 W2 W3 W4 W5

4 295,708 86 59 86 80 66 44 27

5 298,311 53 86 71 67 46 33

6 302,215 40 86 71 50 50 46

8 306,488 71 38 71 67 67 65 33

9 310,392 21 71 67 65 50 50

11 331,605 17 71 65 57 56 54

14 344,88 65 9 65 65 60 57 56

15 352,535 7 65 61 60 59 58

SolNr Cost
Equity Function Allocation of Customers
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As a result from these instances we can deduce following observations. 

From a theoretical point of view,  

 the Min Max function identifies always only one solution for a maximum workload 

that is Pareto-optimal, since the Min Max function only considers the maximum 

workload and not the workloads of other vehicles, and 

 the Range function can identify more solutions with the same maximum workload, 

since the decrease of the difference between the maximum and minimum workload 

can be achieved by increasing the minimum workload. 

From an empirical point of view, we observe that 

 the Range solutions with the same maximum workload are lexicografically better than 

the Min Max solutions, but are usually connected to higher cost, and 

 it applies to Range solutions that have the same maximum workload that the one that 

is better balanced is usually also lexicografically better. 

If we observe all computational results, the last assumptions do not apply for every instance. 

We have identified several cases, where the solutions with better balanced workload delivered 

lexicographically worse allocation of the workload. For example we observe the Table 14, 

where the solution number 13 is lexicographically worse than 12, although it is better 

balanced. 

 

Table 14: Solutions of function Range with workload inconsistency, customer set A 

In the previous section we have assumed that a lexicographically better solution can be 

achieved with an increase of cost, and therefore it can be identified as Pareto-optimal solution 

- with making one preference criterion better, at least one preference criterion must get worse. 

But during the calculations we have found also solutions that are connected to higher cost and 

are lexicographically worse, but still represent a Pareto-efficient solution, what is not 

consistent with our previous observations and typical expectations with respect to equity. 

Min Max Range W1 W2 W3 W4 W5

12 289,226 98 79 98 94 93 30 19

13 295,344 75 101 99 71 37 26

SolNr Cost
Equity Function Allocation of Customers
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Since the models that use function Min Max consider only the most loaded vehicle, whose 

load is in every other solution lower than in the previous one, it is not possible to find a 

Pareto-optimal solution that is lexicographically worse and causes higher cost. The models 

that use the function Range consider the difference between the most and the least loaded 

vehicle, but do not restrict the lower or upper bound of the best and the worst workload, 

therefore it is not guaranteed that a better balanced solution is also lexicographically better. 

An example is depicted in Table 15, where the solution number 10 delivers better balance 

than the solution number 9, but since the workload of the vehicle 1 is higher, it is 

lexicographically worse.  

 

Table 15: Solutions of function Range with workload inconsistency, customer set C 

In the next section we are going to analyse the solutions that are inconsistent with our 

expectations of Pareto-optimality according to the metric that we use in the models. As the 

lexicographical consistency is guaranteed by the models that optimize the function Min Max, 

the further analysis is based on detection, to what extent the solutions of Range function are 

consistent with lexicographic preferences. 

5.4.3. Inconsistencies in Metric Demand 

Out of all solutions found with metric Demand 18% cause higher cost and are 

lexicographically worse than other Range solutions for the same instance. The Figure 22 

depicts the percentages of these solutions on the total sum of solutions found with metric 

Demand divided according to the number of used vehicles. 

Min Max Range W1 W2 W3

9 239,071 161 142 161 154 19

10 244,405 137 200 71 63

SolNr Cost
Equity Function Allocation of Customers



42 
 

 

Figure 22: Percentage share of lexicographically worse solutions divided according to the number of used vehicles 

In the models that use only 2 vehicles, there was not found a solution of Range that would be 

lexicographically worse than Min Max, because all solutions found with Range are identical 

to the solutions of Min Max, and therefore the solutions of Range are lexicographically 

consistent with those of Min Max. The share on the lexicographically worse solutions rises 

with the increase of vehicle fleet. With 3 and 4 vehicles there were found 17% 

lexicographically worse solutions, and the highest share on lexicographically worse solutions 

identified the models with 5 vehicles, 25%. 

For illustration we observe the solutions of an instance that uses 3 vehicles for customer 

delivery. These are depicted in Table 16.  

 

Table 16: Solutions of function Range with workload inconsistency, customer set A 

The solutions number 10, 11 and 12 cause higher cost and are lexicographically worse than 

the solution number 9, as the workload of vehicle 1 is higher in these solutions. From this 

reason we would assume that these solutions are worse balanced than the solution number 9, 

and therefore they would not represent Pareto-efficient solutions. Despite this fact, these 

solutions are Pareto-efficient from the Range perspective, because the difference between the 

maximum and minimum workload is decreased.  
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Min Max Range W1 W2 W3

9 239,071 161 142 161 154 19

10 244,405 137 200 71 63

11 244,428 125 170 119 45

12 245,331 103 170 97 64

SolNr Cost
Equity Function Allocation of Customers
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Even more inconsistencies we can find in models that use 4 vehicles to serve the customers. 

The Table 17 depicts three sets of solutions, where the worse maximum workload is also 

connected to higher cost. If we observe the solutions 7 and 8, the solution 7 causes lower cost 

and the same workload of vehicle 1 than the solution 8. But since the workload of vehicle 2 is 

increased by solution 8, this solution is lexicographically worse. The same applies for solution 

9, although here is the worse balance evident by the workload of the first vehicle. Despite the 

primary appearance that the solutions 8 and 9 are less fair for the worse workloads, the 

difference between the maximum and minimum workload is decreased, and therefore these 

solutions represent Pareto-optimal solutions for the equity function Range. 

 

Table 17: Solutions of function Range with workload inconsistency, customer set B 

5.4.4. Inconsistencies in Metric Customers 

Observing the workload inconsistency in the Customers metric, out of all Range solutions 

there was found only one that is lexicographically worse than the previous Min Max solution, 

and is also connected to higher cost. This is depicted in the Table 18, where we can see that 

even though the difference between the minimum and maximum workload decreases, the 

workload of the vehicle 1 is increased. 

 

Table 18: Workload inconsistency by Customers metric 

Min Max Range W1 W2 W3 W4

7 326,372 113 93 113 91 85 20

8 331,095 91 113 104 70 22

9 332,29 79 117 113 38 41

11 337,411 107 107 97 85 20

12 341,604 72 113 85 70 41

13 343,928 71 113 104 50 42

14 344,418 102 102 98 89 20

15 345,309 69 107 97 67 38

16 346,142 50 113 70 63 63

SolNr Cost
Equity Function Allocation of Customers

Min Max Range W1 W2 W3

6 234,295 8 7 8 7 1

7 244,405 6 9 4 3

SolNr Cost
Equity Function Allocation of Customers
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Similar as by the analysis of the variances in the number of found solutions between different 

metrics in the chapter 5.1., it applies also by the analysis of the consistency with lexicographic 

preferences that the models with the Customers metric allow less possible combinations of 

splitting the workload between the vehicles, and therefore identify less solutions that are 

lexicographically worse and have higher cost than the models that use the metric Demand. 
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5.5. Agreement Between Different Models 

In this chapter we are going to analyse the overlaps in the solutions of the models that use 

 different functions and the same metric 

 the same function and different metrics. 

The percentage overlap is calculated as a share of identical solutions found with models that 

use different functions/metrics in the total number of unique solutions found with these 

functions/metrics, per instance. 

In the computations we used 2 different equity functions (Min Max and Range) and 2 

different equity metrics (Customers and Demand). All solutions are depicted in the Table 19, 

where the "x" indicates that the solution was found with respective model. 

 

  

a b c

costs Min Max Range Min Max Range costs Min Max Range Min Max Range costs Min Max Range Min Max Range

199,765 x x x x 269,115 x x x x 215,767 x x x x

208,303 x x 277,01 x x x x 222,191 x x x x

209,898 x x x x 277,554 x x x x 222,581 x x x x

213,808 x x x x 279,624 x x x x 226,655 x x

214,783 x x x x 283,331 x x x x 241,722 x x

224,77 x x 242,076 x x

225,428 x x x x 264,612 x x

228,608 x x x x

231,548 x x x x

236,645 x x

238,448 x x

241,932 x x

212,645 x x x x 286,326 x x x x 237,281 x x x x

215,487 x x 294,224 x x x x 237,389 x x x x

217,945 x x x x 294,765 x x x x 246,806 x x x x

226,483 x 296,672 x x x x 247,887 x x

228,078 x x 302,398 x x 251,084 x

228,59 x x x 304,567 x x 253,497 x

231,355 x x x x 304,733 x 257,304 x x

234,295 x x x x 305,111 x x x x 267,614 x x

239,071 x x 308,818 x x x x 279,469 x

244,405 x x 309,161 x 283,773 x x

244,428 x 312,868 x x 319,919 x x

245,331 x x x 313,45 x x

245,701 x 323,907 x x

247,609 x x x x 326,765 x

250,039 x 332,816 x x

251,073 x 335,884 x x

253,478 x x 368,059 x x

256,072 x x

257,668 x x

258,741 x x

261,019 x x

270,838 x x

292,882 x
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Table 19: Overlap in solutions using different models 

a b c

costs Min Max Range Min Max Range costs Min Max Range Min Max Range costs Min Max Range Min Max Range

229,617 x x x x 307,728 x x x x 258,903 x x x x

230,825 x x x x 313,883 x x x x 263,085 x x x x

233,667 x x 318,074 x x x x 264,791 x x

234,917 x x x x 320,799 x 268,695 x x x x

243,455 x 321,781 x 274,194 x x x

244,235 x x x x 322,322 x x x x 285,919 x x

246,327 x x 326,372 x x 287,508 x

247,175 x x x x 330,22 x 290,473 x

248,327 x x 331,095 x 292,898 x

249,673 x x 332,29 x 293,392 x

251,267 x x 334,27 x 304,684 x

251,951 x x 337,411 x x 305,294 x

257,82 x x 341,604 x 311,517 x x

259,805 x 343,928 x 322,141 x x

260,094 x 344,418 x 323,071 x

261,4 x 345,309 x x 323,837 x x

261,774 x 346,142 x 346,041 x

263,083 x x x x 346,479 x 381,98 x x

265,361 x x 347,862 x x

271,504 x x 352,643 x

274,466 x 354,778 x

276,744 x x 355,275 x x

278,376 x 359,853 x x x x

280,654 x 366,607 x x

281,214 x 370,318 x x

282,464 x 373,311 x x

285,07 x 376,598 x x

286,556 x x x 387,509 x

289,032 x 410,598 x

293,789 x x 416,25 x x

302,038 x x 433,785 x

319,869 x x

331,515 x x

247,797 x x x x 335,285 x x x x 284,599 x x x x

258,777 x x 341,011 x x 286,305 x x

259,207 x x x x 343,724 x x 290,209 x x x x

261,207 x x x x 344,599 x x 295,708 x x

263,803 x x 352,497 x 298,311 x

264,147 x x 355,638 x x 302,215 x x

266,081 x x 358,813 x x x x 303,993 x x

272,974 x x 360,185 x 306,488 x x

274,654 x x 363,006 x 307,911 x

277,066 x x 364,373 x 310,392 x

277,213 x x 364,715 x x 321,631 x

279,491 x x 365,073 x x 322,752 x

285,556 x x 369,761 x 331,605 x

286,806 x 370,636 x 342,203 x

289,226 x x 373,357 x x 344,817 x

290,662 x x 373,468 x 344,88 x x

295,344 x 376,598 x 352,535 x

297,029 x 378,486 x 363,521 x

297,895 x x 380,076 x 376,294 x x

300,609 x 381,136 x 384,038 x x

300,795 x x 383,363 x

304,941 x 384,477 x

306,104 x 390,812 x

306,525 x 391,981 x

308,028 x 393,95 x

310,522 x 394,525 x x

312,174 x 403,156 x

312,523 x 408,986 x

313,758 x 415,551 x x

314,928 x 424,322 x x

315,92 x 454,999 x

317,654 x 486,004 x x

318,325 x

320,198 x

323,971 x

327,074 x

327,296 x x

329,701 x x

340,833 x x

357,7 x x

363,99 x x

413,471 x x
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By the analysis of overlaps we do not include the first cost-optimal solutions that were found 

with every model type. These solutions are found by all models that optimize the cost, 

therefore we exclude these from the analysis. 

5.5.1. Comparing the Same Metrics and Different Functions 

In order to analyse the overlaps between different functions within the same metrics, we 

examined the number of solutions that were found 

 only with the function Min Max 

 only with the function Range 

 with both functions, 

and their percentage share in the total number of found solutions over all instances. 

The outcome is presented in the Table 20. The percentage overlap within a respective metric 

is calculated as a percentage of the number of solutions that were found with both functions in 

the total sum of all found solutions. The overlap between the functions in Customers metric 

reaches 69% and in Demand metric 55%. The solutions that were found only with function 

Min Max represents 4% of all solutions found in the Customers metric and 13% in the metric 

Demand. The share of solutions identified only by function Range is higher - these represent 

26% of all solutions found in the Customers metric and 32% in the metric Demand. 

 

Table 20: Number of solutions and their percentage share in all solutions found with different functions 

For better illustration we vizualize the data from Table 20 in the Figure 23. This depicts the 

number of solutions found with models that use the metric Customers and Demand. The 

solutions are divided in three different groups of solutions that were found only with function 

Min Max, only with function Range, and with both functions. 

Metric

Function Min Max Range Both Sum Min Max Range Both Sum

# of solutions 3 19 50 72 28 70 121 219

% share 4% 26% 69% 13% 32% 55%

DemandCustomers
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Figure 23: Agreement between different equity functions in absolute terms 

It applies for both metrics that the number of solutions found only with the function Min Max 

is lower than the number of solutions found only with the function Range and that there are 

more solutions common to both functions than solutions unique to either function. 

In order to compare different metrics, we observe the Figure 24 that presents the data of 

Figure 23 in percentage terms. As we can see, the Customers metric delivers higher 

percentage overlap between different functions than the metric Demand. This is caused by the 

fact that the models that use the metric Customers have less room for variety in solutions, as it 

was detected in the chapter 5.1. Therefore, the solutions found with function Range and Min 

Max using this metric tend to deliver the same results. 

 

Figure 24: Agreement between different equity functions in percentage terms 
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In order to analyse the connection between the degree of percentage overlap between different 

equity functions and the number of vehicles used in the models, we present the Figure 25.  

 

Figure 25: Overlaps of different functions according to the number of vehicles 

As it was identified in the chapter 5.1, the models that use only 2 vehicles to serve the 

customers identify the same number of identical solutions. This applies for both metrics due 

to limited possibility of allocation of the customers to the vehicles. Therefore, the percentage 

overlap between both functions is 100%, when we use only 2 vehicles for customer delivery. 

The proportion of the solutions that were found only with Range function, only with Min Max 

and with both, is similar by both metrics. It applies for both metrics that the percentage of 

identical solutions that were found with different function represent the highest share, and that 

the lowest percentage of solutions that were found only with one of the functions identified 

Min Max. 

5.5.2. Comparing the Same Functions and Different Metrics 

Comparable to the diversity in overlaps between different functions, there are also different 

overlaps in the solutions within the same equity function. In this section we are going to 

analyse, to what extent we can find identical solutions within function Range and Min Max 

when different metrics were applied.  

Similar as in the previous section, we examined the number of solutions that were found 

 only with the metric Customers 

 only with the metric Demand 
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 with both metrics, 

and their percentage share in the total number of found solutions. 

The outcome is presented in the Table 21. The percentage share of the number of solutions 

that were found with both metrics in the total sum of all found solutions represents the 

percentage overlap within a respective function. As we can see, the degree of overlaps is 

significantly lower than it was by the comparison of different functions and same metrics. The 

overlap between the metrics in function Min Max reaches 25% and in function Range 23%. 

The solutions that were found only with Customers metric represents 7% of all solutions 

found with the function Min Max and 9% with Range. The highest share of found solutions in 

both functions identifies the metric Demand, 67%. 

 

Table 21: Number of solutions and their percentage share in all solutions found with different metrics 

The Figure 26 indicates that the comparison of the models using the same function and 

different metrics delivers significantly different results than the comparison of the different 

functions and the same metric. While in the previous section the number of identical solutions 

found by both functions exceeded the number of solutions found separately, the number of 

identical solutions found by different metrics is significantly lower. It applies for both 

functions that the number of solutions found only with the metric Demand represents the 

majority of all identified solutions. Due to high number of solutions that were found only with 

the metric Demand, the percentage overlap between the same functions and different metrics 

is lower. 

Function

Metric Customers Demand Both Sum Customers Demand Both Sum

# of solutions 12 108 41 161 20 142 49 211

% share 7% 67% 25% 9% 67% 23%

Min Max Range
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Figure 26: Agreement between different equity metrics in absolute terms 

In the chapter 5.1. was identified that a comparison of the results according the metrics we use 

in the models delivers higher variances between the number of Pareto-optimal solutions due 

to different definition of workload. As the metric Demand allows significantly more possible 

combinations of splitting the workload between the vehicles, the differences in the number of 

found solutions between the metrics are higher and therefore the percentage overlap between 

the metrics is reduced. 

In order to compare different equity functions, we observe the Figure 27 that presents the data 

of Figure 26 in percentage terms. The percentage share of the solutions that were found with 

Demand metric in the total sum of solutions is exactly the same by both functions. The 

percentage share of the solutions that were found only with one of the metrics in the total sum 

of solutions is almost identical in both functions. The difference is only 2%. 

 

Figure 27: Agreement between different equity metrics in percentage terms 
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Furthermore, we are going to analyse the connection between the degree of percentage 

overlap between different equity metrics and the number of vehicles used in the models. The 

Figure 28 indicates some differences to the comparison of different metrics. The models that 

use 2 vehicles in the fleet do not find the same number of solutions, but still represent the 

highest percentage share of solutions that were found with both metrics. Both functions 

deliver almost identical results - the more vehicles we use the more solutions is found only 

with one of the metric, which causes a lower percentage overlap between the functions. Since 

the metric Demand identified more solutions than the Customers metric, the percentage share 

of the solutions that were found with Demand metric are significantly higher in both 

functions, independently of the number of vehicles. 

 

Figure 28: Overlaps of different metrics according to the number of vehicles 

Overall, the highest number of identical solutions were found when we compared the 

solutions of models that use different functions and the same metric. This can be explained by 

lower difference between the total number of solutions found within a respective metrics. 

Since the models with the metric Demand identified more than 3 times more solutions than 

the models with metric Customers, the percentage of overlaps is lower when we compare the 

models using different metrics.  
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6. Conclusions 

This work revisited the Vehicle Routing Problem (VRP) with workload balancing, whereby 

different model variants were presented. The computational experiments revealed several 

differences dependent on what type of model was used.  

In the first part of our analysis we have discovered that there are variances in the number of 

Pareto-optimal solutions found by the models that use different equity functions, as well as by 

the models that use different equity metrics. The second part studied the connection between 

the number of vehicles and the number of solutions found with different model types. The 

correlation between the two conflicting objectives, cost incurred and the workload imbalance 

of the vehicles, was examined in the third part. In the fourth part we studied the exceptional 

cases, where better balanced solutions of Range function caused higher cost and were also 

lexicographically worse than other solutions for the same instance. In the last chapter we have 

observed the number of identical solutions that were found with different model versions.  

The aim of this work was to explore various alternatives for a bi-objective model for VRP 

with workload balancing. Based on this analysis, we can formulate several managerial 

implications for decision making: 

 Number of unique solutions found: Models that used function Range (metric Demand) 

identified higher number of unique solutions than the function Min Max (metric 

Customers), therefore the function Range (metric Demand) is able to find more 

heterogenous solutions and therefore allows wider selection of trade-offs for a 

decision maker. 

 Fleet size: We found that increasing the number of vehicles increases the number of 

alternative solutions to some extent, but can also reduce it if too many vehicles are 

available. This shows the relationship between fleet size decisions and potential for 

workload balancing. 

 Cost of equity: The best balanced solutions of models with equity metric Customers 

caused lower cost increase relative to the cost-optimum than the models with equity 

metric Demand, but generally the trade-offs between the cost increase and reduction of 

workload imbalance were favourable for both metrics. It is possible to reduce 

imbalance at relatively low extra cost.  

 Equity preferences: The models with equity function Range provide more 

heterogeneous solution sets, but we discovered that some better balanced solutions in 
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terms of Range can be worse balanced in terms of Min Max. Not all Range solutions 

were consistent with lexicographic preferences, which may be counter-intuitive to 

some decision makers. 

 Impact of workload model: We analysed the degree of overlap between different 

models. The highest overlaps were found when comparing the same equity metrics 

and different equity functions. This suggests that the definition of workload, for 

example number of customers or total demand, has a bigger impact on the types of 

solutions found than the choice of equity function, for example Min Max and Range. 
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Abstract 

Employee satisfaction is a relevant issue for most public and private companies, since their 

success is dependent on their employees. A very common reason for employee dissatisfaction 

is the unfair distribution of workload. Since a more balanced allocation of workload to the 

employees can cause extra operational costs for a company, an attractive trade-off between 

higher cost and lower workload imbalance is of interest. This is particularly the case in areas 

such as logistics, where typical optimization and planning methods focus solely on cost 

minimization. 

Using the classical vehicle routing problem (VRP) as a starting point, we consider in addition 

to the minimization of the total operational cost also various equity criteria for the workload 

distribution. We define different workload measures and different equity functions, and 

analyse how these balance objectives affect the resulting trade-offs between minimization of 

cost and of workload imbalance. 

Our analysis reveals that the choice of the workload measure has a significant impact on the 

resulting VRP solutions. When workload is quantified as the demand served per vehicle, a 

wider range of compromise solutions is available than when balancing only the number of 

customers per vehicle, independent of the chosen equity function. However, delivery plans 

with optimally balanced demands lead to higher costs relative to the cost minimum than plans 

with optimally balanced customer numbers. However, regardless of the measure it is possible 

to find compromise solutions with low additional cost and high workload balance – the 

objectives of cost minimization and workload balance are thus not strongly conflicting. With 

regard to the chosen balance function, we find that minimizing the range leads to a wider 

selection of compromise solutions than minimizing the maximal workload, independent of the 

chosen workload resource. However, workload allocations which improve the range are not 

always consistent with typical lexicographic minimization, which may appear counter-

intuitive to some decision-makers. Finally, we compare all possible compromise solutions 

found with our alternative models. We observe that a given workload measure often leads to 

identical delivery plans regardless of the chosen equity function. Therefore the definition of 

workload has a stronger effect on the available compromise solutions than the choice of the 

balance function. 
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Kurzfassung 

Mitarbeiterzufriedenheit ist ein relevanter Faktor für die meisten öffentlichen und privaten 

Unternehmen, da ihr Erfolg von den Arbeitnehmern abhängig ist. Ein häufiger Grund für die 

Unzufriedenheit von Arbeitnehmern ist eine ungerechte Verteilung von Arbeitslast. Da eine 

gleichmäßigere Aufteilung der Aufgaben zusätzliche Kosten für den Arbeitgeber verursachen 

kann, muss ein attraktiver Kompromiss zwischen Kostenerhöhung und Arbeitslastverteilung 

gefunden werden. Dies ist insbesondere der Fall in Feldern wie die Logistik, wo typische 

Optimierungs- und Planungsmethoden nur auf Kostenminimierung ausgelegt sind. 

Mit dem klassischen Vehicle Routing Problem (VRP) berücksichtigen wir in dieser Arbeit 

neben der Kostenminimierung für die Lieferung auch verschiedene Balancekriterien für die 

Arbeitslastverteilung. Wir definieren unterschiedliche Maße für die Arbeitslast und 

unterschiedliche Balancefunktionen, und untersuchen wie die Balanceziele die resultierenden 

Kompromisse zwischen Kostenminimierung und Arbeitsverteilung beeinflussen. 

Unsere Analyse zeigt, dass die Wahl des Balancekriteriums einen wesentlichen Einfluss auf 

die resultierenden VRP Lösungen hat. Wenn die Arbeitslast mit den Liefermengen 

quantifiziert wird, ergibt sich dadurch unabhängig von der Balancefunktion eine breitere 

Auswahl an Kompromisslösungen als wenn die Kundenanzahl als Arbeitsmaß angenommen 

wird. Die Lieferpläne mit optimal verteilten Liefermengen verursachen aber höhere Kosten 

relativ zum Kostenminimum als die Pläne mit gleichverteilter Anzahl der Kunden. Dennoch 

gibt es mit beiden Arbeitsmaßen Lösungen mit nur geringer Kostensteigerung und 

gleichzeitig sehr ausgewogener Arbeitslastverteilung – es gibt also keinen großen Zielkonflikt 

zwischen Kostenminimierung und der gleichmäßigen Verteilung der Arbeitslast. Hinsichtlich 

der Balancefunktionen, finden wir dass die Minimierung der Spannweite, unabhängig vom 

gewählten Arbeitsmaß, eine größere Anzahl an Lieferplänen identifiziert als die Minimierung 

der maximalen Arbeitslast. Dies erlaubt eine breitere Auswahl an Kompromisslösungen. Mit 

der Minimierung der Spannweite stimmen allerdings nicht alle Arbeitslastverteilungen mit 

typischen lexikographischen Präferenzen überein, was für manche Entscheidungsträger 

eventuell kontra-intuitiv erscheinen könnte. Nach einem Vergleich aller möglichen 

Kompromisslösungen dieser Modelle beobachten wir letztlich, dass derselbe Arbeitsmaß oft 

zu identischen Plänen unabhängig von der gewählten Balancefunktion führt. Die Definition 

der Arbeitslast hat also einen stärkeren Einfluss auf die gefundenen Kompromisslösungen als 

die Wahl der Balancefunktion. 


