
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

Developing Methods for Population Modelling and Disag-
gregating Census Data – A Comparison between Day and

Night Population

verfasst von / submitted by

Rudolf Churanek, BSc

Master of Science (MSc)
angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Wien, 2017 / Vienna, 2017

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 856

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Cartography and Geographic Information
Science

Supervisor: Ass.-Prof. Mag. Dr. Andreas Riedl

iii

Abstract
With the increase of urbanization world wide it becomes more important for urban planners and disaster
managers to have data on the small-scale distribution of population at hand. This data is usually not readily
available but can be extracted by using different datasets and methods. Especially the calculation of the day-
time population is complex since it requires many different auxiliary data in order to model the distribution
of every population group during the day whereas the calculation of the nighttime population is compara-
tively simple as most of the inhabitants are expected at home.
This thesis will examine methods and datasets which are available for the modelling of the day (and night)
time population and disaggregating census data, how accurate their results are and how the accuracy can
be improved. In order to do this a small-scale population estimation on the level of individual buildings for
Vienna (2013) was done considering daytime and nighttime population, including different age groups and
evaluating different methods and data. Furthermore, the results are compared to the daytime population
grid 2013 of Statistik Austria.

Mit zunehmender Urbanisierung weltweit wird es für Raumplaner und Disaster-Manager immer wichtiger,
Informationen über die kleinräumige Bevölkerungsverteilung zu haben. Diese Daten sind allerdings meist
nicht in der benötigten Genauigkeit verfügbar, können aber Abgeleitet werden unter Zuhilfenahme verschie-
dener Datensätze und Methoden. Vor allem die Berechnung der Tagesbevölkerung erweist sich als kom-
plex, da verschiedene Hilfsdaten benötigt werden, um die Verteilung der Bevölkerungsgruppen tagsüber
möglichst genau zu Modellieren. Im Gegensatz dazu ist die Nachtbevölkerung einfach zu berechnen, da die
meisten Einwohner nachts in den Wohngebäuden vermutet werden.
Die vorliegende Masterarbeit untersucht Methoden und Datensätze, welche für die Bevölkerungsmodel-
lierung (Tages- und Nachtbevölkerung) und Disaggregation von Zensusdaten eingesetzt werden können,
diskutiert die Genauigkeit der Berechnung und gibt Empfehlungen zur Verbesserung der Ergebnisse. Hierzu
wurde die kleinräumige Tages- und Nachtbevölkerung von Wien (2013) auf Gebäude-Level berechnet und
verschiedene Methoden und Datensätze evaluiert. Schließlich wurden die Ergebnisse verglichen mit dem
Tagesbevölkerungs-Raster 2013 der Statistik Austria.

v

Acknowledgement
The author would like to thank especially Dr. Klaus Steinnocher from the AIT Austrian Institute of Technol-
ogy for his professional support throughout the modelling process and the writing of this thesis as well as
DI Mario Köstl, also from the AIT, for providing some of the datasets and discussing them. Also, gratitute is
owed to Dr. Gustav Lebhart from the Landesstatistik Wien for the supply of the population data of Vienna in
5 year age groups. Finally, the author wants to thank his supervisor Prof. Andreas Riedl from the University
of Vienna and Aļbina Jančuka, MSc. for reviewing the thesis.

vii

Table of Contents

Abstract ..iii

Acknowledgement ... v

Introduction ... 1

1 State of the Art ... 3

2 Data ... 7

2.1 Data on Land Use ... 8

2.2 Data on Buildings - The Digital Building Model ...10

2.3 Geospatial Data ..15

2.4 Socioeconomic Data ..19

3 Method ..29

3.1 Modelling Daytime Population ..30

3.2 Implementation ..36

4 Results ...43

4.1 Comparing Daytime and Nighttime Population ...43

4.2 Comparison with Model 02 ..52

4.3 Comparison with Model 03 ..57

4.4 Comparison with Model 04 ..60

4.5 Comparison with Model 05 ..64

5 Comparison with Reference Data ...67

Conclusions ..77

Literature ..80

Internet ...81

Table of Figures ..82

Table of Tables ..83

Appendix ..86

Introduction
The world´s population is becoming increasingly urban with more than half (54%) living in urban areas in
2014. Projections show that this proportion is likely to increase to 66% by 2050. Mega-cities with more than
10 million people are increasing in number and smaller cities are growing rapidly. (cf. UNITED NATIONS
2014) Thus it is becoming more important for many applications like urban planning, vulnerability assess-
ment and risk management to have data at hand about the distribution of population in urban areas in high
resolution and up to date. Yet this data is in general, if available, either outdated, generalized or subject to
privacy. (cf. TAUBENBÖCK 2010: 143) However, the data´s level of detail is not sufficient for urban and envi-
ronmental planning, flood control and natural disasters like earthquakes where authorities and aid agencies
need to know exactly how many people are affected. This number also depends on the time of day or night
the disaster has happened.

The solution to the problem is to estimate the small-scale distribution of population using methods of spa-
tial modelling often involving remote sensing and GIS. This can be done by disaggregating population data
from administrative units such as districts to raster cells or, even more accurate, individual buildings. In or-
der to do so, there are several methods available. Basically, what is needed are data on buildings or built-up
densities and census data. The analyst can choose between various input data, depending on availability, the
method which is used and the scale of the study. This input data can be remote sensing data such as high
resolution satellite imagery (e.g. IKONOS) and data from ALS (airborne laser scanning) which can be used to
derive land use classes or create a 3D-city model which will be later used to identify individual buildings (cf.
TAUBENBÖCK 2010: 67, 68). Alternatively, data on land use / land cover can be directly implemented using
e.g. Urban Atlas (cf. FREIRE 2015: 3-5) or CORINE Land Cover data. (cf. STEINNOCHER 2014: 911)

The result of the disaggregation can be seen as the night population due to the fact that the population is
expected to be at home during the night. However, during the day the population distribution will be very
different as people are at work, school or are commuting resulting in a significant variation in exposure re-
garding natural hazards compared to the nighttime population. (cf. FREIRE 2015: 1) Therefore, population
distribution is not only contingent upon time (work-day/weekend, time of year, time of day) but also upon
age – school children are expected to be at school, the working population is distributed among the working
places and the elderly are located in nursery homes. Thus, additional data such as company data or data on
commuting is needed to sufficiently project the day time population. Since this data is not always available,
modelling the daytime population is more complex. (cf. STEINNOCHER 2014: 912, 913)

According to the described predicament the research question of this thesis is: “Which methods and data
are available for modelling the day (and night) time population and disaggregating census data, how accu-
rate are their results and how can the accuracy be improved?” In order to show this a small-scale population
estimation on the level of individual buildings for Vienna (2013) was done considering daytime and night-
time population and including different age groups and evaluating different methods and data. Further-
more, the results are compared to the daytime population grid 2013 of Statistik Austria.

The following chapters give an overview of existing papers concerning population modelling (1), the da-
tasets needed in population modelling (2), the used method in this thesis and its implementation (3), the
results (4) and the comparison with reference data (5).

1 State of the Art 1
There are already numerous studies about population modelling using different methods and datasets. Be-
sides statistical data about population (e.g. census, balance of commuters) these datasets also include infor-
mation on land use, building density and building height. Such information is mostly derived from remote
sensing imagery and is in part freely available in the European Union. Examples are CORINE Landcover,
Urban Atlas, the Imperviousness Layer of Copernicus Land Cover Services or in case of Vienna the Land Use
Vienna Layer (“Realnutzungskartierung”). Apart from remote sensing data, auxiliary data like address points
and socioeconomic data can also be used for the modelling.
An approach from Aubrecht et al. (2009) describes an object-oriented analysis of different remote sensing
data for the modelling of land cover and urban structures, whereas the latter is generalized in a semi-auto-
matic process, delivering the information on individual buildings (use, footprint, height) which are needed in
the analysis. Afterwards the population is disaggregated to the buildings weighted by their volume.
Similarly, Taubenböck et al. (2010) uses for identifying individual buildings an automated, transferable and
object-oriented approach which consists of the two modules segmentation and classification. Object-ori-
ented means that instead of observing the individual pixels and their spectral properties, clusters of neigh-
bouring pixels (= segments) are being observed. The segmentation is a hierarchical method which generates
an overriding spatial unit of apartment blocks which are often delimited by streets and are constituted of
similar building structures. The result is a building mask which allows to easily distinguish between urban
and non-urban structures. With the help of the digital surface model the height and subsequently the vol-
ume of the buildings can be derived. (cf. Taubenböck 2010: 68-69) When this information is available, the
population can be disaggregated to the individual buildings. Hereby, the population, e.g. by district (= source
zone) is distributed among the buildings (= target zone). This can be done by areal weighting where each
source zone contributes to the target zone (e.g. area or volume of the building) a portion of its data propor-
tional to the percentage of its area that the target zone occupies, (cf. Mennis 2006: 180) assuming that the
population a) is distributed evenly inside the districts, b) is living in residential buildings and c) the number
of residents per building is dependent on the size of the housing space. (cf. TAUBENBÖCK 2010: 145, 146)
Another approach was chosen by Steinnocher et al. (2011) who disaggregated the population on the Eu-
ropean level based on building density. The population numbers were available on NUTS 3 units which are
small regions for specific diagnoses (the NUTS classification (Nomenclature of territorial units for statistics)
is a hierarchical system for dividing up the economic territory of the EU). The building density on the other
hand was derived from the Copernicus Imperviousness Layer which captures the spatial distribution of artifi-
cially sealed areas, including the level of sealing of the soil per area unit. (cf. Copernicus n.d.) This was done
by masking out all sealed surfaces which did not include residential buildings such as streets or industrial
buildings. The identification of these areas was done with the help of CORINE Landcover data. Target area
of the disaggregation were 500 m raster cells. The relationship between the population density and housing
density can be described as

(1.1)

with Pdens being the population density, Hdens the housing density and k being a factor representing the
relationship between population and housing density. The total population of the region is calculated with
the formula

(1.2)

4 1 State of the Art

where Ai is the area of the housing density i. The underlying assumptions for the approach are a) the pop-
ulation density is proportional to housing density, b) no population resides outside housing areas and c)
dependency between population and housing density is constant within a region. (cf. Steinnocher 2011: 3-4)
Martin et al. (2014) suggests a spatio-temporal population modelling where the population is calculated on
four different times over a typical work day. Target area of the disaggregation are 200m raster cells. The pop-
ulation is grouped into three categories: residential population, non-residential population and commuters.
These groups can be further divided into subgroups depending on age and economic activity whereas the
subgroups are over time in constant movement between the three main groups and different areas. The
temporal modelling is based on time profiles which exist for different areas (e.g. schools) and represent the
activity pattern of the population. They can be replaced anytime in order to simulate different seasons or
special occasions such as holidays.
Another method for dynamic population modelling comes from Deville et al. (2014) who use mobile phone
data to calculate population densities. Benefits of this approach are the possibility to provide short-term
population estimations in case of a disaster and it makes population calculations in poorer countries easier
where in many cases exact census data do not exist. Also, mobile phones are common world wide and pop-
ulations can be calculated over country borders. The anonymised data is provided by mobile phone com-
panies and capture the positions of the involved cell towers as well as time and date per customer and call.
From the references it can be seen that different types of information can be used in order to model the
population for a complex system like a city. Table 1.1 gives an overview of such datasets and how they can
be grouped. Basically, it can be distinguished between spatial data and socioeconomic data. The former in-
cludes data which is mostly acquired through remote sensing like data on buildings/built-up structures (e.g.
satellite imagery, ALS) and data on land use/land cover (e.g. CORINE Land Cover, Urban Atlas) whereas the
latter originates from statistical sources like census or space-related databases and refer to individual actors
like persons or companies. (cf. Aubrecht et al. 2009: 15)

Data on buildings/built-up structures
Very high resolution satellite images
Airborne laser scanning
Data on land use/land cover

CORINE Land Cover
Urban Atlas
Imperviousness layer
Generalized zoning data
Geospatial data
Building address data
Location of hospitals, schools, etc.
Administrative data (e.g. districts, registration districts)
Socioeconomic data
Census data (population numbers, e.g 5 year age groups)
data on total employees / unemployed (e.g. from census)

commuter numbers

company data (register of companies)

student numbers

patient numbers

data on retirement homes

Table 1.1: Overview of data used in population modelling.

spatial data

3D-city m
odel

socioeconom
ic data

2 Data 2
This chapter describes the input datasets of the analysis which uses a data driven method for calculating the
daytime population meaning that the modelling is compelled by data, rather than by intuition. Therefore,
the method relies heavily on the availability and accuracy of the input data. In order to receive results with
the best possible accuracy, many different datasets and auxiliary data are needed. Table 2.1 lists the datasets
which were chosen as input data for the analysis along with their source, year and type.

Dataset Source Year Type

Data on land use

Land Use Vienna (Realnutzungslayer) City of Vienna (OGD) 2012 polygon-shp

Data on buildings

Digital Building Model (Digitales Baukörpermodell)
City of Vienna (OGD)/

AIT
2015 polygon-shp

Geospatial data

Building address data BEV/AIT 2015 point-shp

Location of hospitals City of Vienna (OGD) 2017 point-shp

Location of schools City of Vienna (OGD) 2017 point-shp

Location of universities City of Vienna (OGD) 2017 point-shp

Location of adult education centres City of Vienna (OGD) 2017 point-shp

Location of kindergartens City of Vienna (OGD) 2017 point-shp

Location of retirement homes City of Vienna (OGD) 2017 point-shp

Public transportation network City of Vienna (OGD) 2014 line-shp

Districts & Registration Districts of Vienna City of Vienna (OGD) 2014 polygon-shp

Socioeconomic data

Population of Vienna per registration district in 5 year age
groups

Vienna population
register

2013 table

Balance of commuters Statistik Austria 2012 table

Employees per hospital (from register of companies) Bisnode Austria/AIT 2015 table

Employees per university & adult education centre (from reg-
ister of companies)

Bisnode Austria/AIT 2015 table

Register of companies (number of employees) Bisnode Austria/AIT 2015 table

Employees of Wiener Linien Wiener Linien 2013 single value

Total number of employees per district Statistik Austria 2013 table

Total number of unemployed Job Centre Vienna 2013 single value

Students per school type Statistik Austria 2012/13 table

Students per university Statistik Austria 2013/14 table

Retirees in retirement homes (derived from percentage of
people in need of care per age group and the amount of
them which are in retirement homes)

Federal Statistical
Office (Germany)

2013 table

Number of patients (derived from number of beds per hospi-
tal and average occupancy rate) Ministry of Health 2013 table

Table 2.1: Use case Vienna: input datasets.

8 2 Data

2.1 Data on Land Use 2.1

The dataset on land use of Vienna in 2012 is based on aerial images which are available since 1981 and shows
the effective land use of the city region at the date of the photo flight. Responsible for the assessment is the
magistrate division MA 18 (urban development and planning) of the city of Vienna. The dataset is provided
by the government on its web portal data.gv.at under creative commons licensing. The generalized data
with a scale of 1:10.000 to 1:150.000 is based on aerial photo interpretation of the magistrate division MA
41 (city mapping) using ancillary data. Quality assessment is conducted by divisions of MA 21 (district plan-
ning and land use) and MA 18 with a continuation cycle of about two years depending on the availability of
new ortho-photographs. The focus of the dataset lies in the land use rather than land cover. The latter (like
grassland, buildings) always needs context in order to make assumptions of the land use (like park, sports

Figure 2.1: Land Use Vienna 2012. Source: MA 18 (OGD), 2012. Own illustration. Coordinate System: ETRS 1989 LAEA

2.1 Data on Land Use 9

facilities, single-family housing area). This context is obvious for some classes from the areal image like sin-
gle-family housing areas while others such as commercial or mixed use areas require ancillary data like data
on building heights, small area population and employment statistics in order to identify them. (cf. City of
Vienna n.d. a) There is a total of 32 land use categories in level 3, eleven categories in level 2 and three in
level 3 (building land, pasture land and transport). Figure 2.1 shows the land use of Vienna for 2012 adopting
these categories while Table 2.2 shows the total area each category consumes and its share compared to the
total area of the city. It can be seen that both natural and residential areas each make up 25% of Vienna´s
surface followed by agriculture with 14%. The share of public space and transportation surfaces combined
is also 14%, commercial and industrial areas amount to 6%. This equals the share of recreation and leisure
facilities which mainly consist of parks and sports facilities. Regions of agriculture are dominant especially in
the northern (Kahlenberg) and eastern (Marchfeld) parts of the city as well as in the south whereas natural
environments are prevalent in the east (Lobau) and west (Lainzer Tierpark, Wiener Wald) but can also be
found in the north (Hermannskogel, Kahlenberg, Leopoldsberg) and near the city centre (Prater). Districts
with the highest share of agricultural surfaces compared to their total area are districts 10 (29%), 22 (27%)
and 21 (26%). Parks are spread over the whole city with the biggest ones being rather near its edges (e.g.
Vienna Central Cemetery, Schlosspark Schönbrunn, Wienerberg). Industrial areas can be found mainly in the
south (especially in the 23rd district but also in the 3rd and 11th district) and the northeast (21st and 22nd
district). Finally, a small industrial area is located in the west (Auhof). Mixed use commercial areas are often
located at shopping streets. Especially Vienna´s 1st district has a high share of commercial areas (15%) out
of the total area (compared to 22% residential areas), also partly due to the high density of shopping streets
(e.g. Kärntner Straße, Graben, Rotenturmstraße, Kohlmarkt). Outside of the 1st district commercial areas
can be found at shopping streets such as Mariahilfer Straße and Meidlinger Hauptstraße but also at Kaiser-
mühlen (Uno City) or Siemensstraße with many R&D-facilities.

Land Use Area
[km²]

Area
[%]

Natural Environment 104.77 25.25
Residential 104.01 25.07
Agriculture 59.10 14.25
Public Space 44.82 10.80
Recreation and Leisure Facilities 25.02 6.03
Water Bodies 19.13 4.61
Industry 15.24 3.67
Transportation 14.54 3.50
Commercial 9.71 2.34
Social Infrastructure 9.43 2.27
Technical Infrastructure/Construction Site 9.11 2.20
Total 414.87 100

Residential areas are constituted of buildings whose primary use is housing but they can also include shops
and businesses. For this reason some shopping streets like Währinger Straße can´t be identified as such in
fig. 2.1 because the primarily use of its buildings is residential. The biggest percentage of the residential
areas in a district compared to its total area can be found in district 8 with 61% followed by districts 7 and 5
with 57% and 56%. The lowest proportion on the other hand can be found in district 2 with 14%. Buildings

Source: MA 18 (OGD), 2012.Table 2.2: Total area per land use class.

2.1 Data on Land Use 2.1

The dataset on land use of Vienna in 2012 is based on aerial images which are available since 1981 and shows
the effective land use of the city region at the date of the photo flight. Responsible for the assessment is the
magistrate division MA 18 (urban development and planning) of the city of Vienna. The dataset is provided
by the government on its web portal data.gv.at under creative commons licensing. The generalized data
with a scale of 1:10.000 to 1:150.000 is based on aerial photo interpretation of the magistrate division MA
41 (city mapping) using ancillary data. Quality assessment is conducted by divisions of MA 21 (district plan-
ning and land use) and MA 18 with a continuation cycle of about two years depending on the availability of
new ortho-photographs. The focus of the dataset lies in the land use rather than land cover. The latter (like
grassland, buildings) always needs context in order to make assumptions of the land use (like park, sports

Figure 2.1: Land Use Vienna 2012. Source: MA 18 (OGD), 2012. Own illustration. Coordinate System: ETRS 1989 LAEA

10 2 Data

whose use is “Social infrastructure” can include, among others, hospitals, universities, schools, churches
and theatres. The class “transportation“ mainly consists of stations and rail tracks with the largest being the
central marshalling yard of Vienna (36 ha), the central workshop of Wiener Linien (29 ha) and the freight
railway station Nordwestbahnhof (24 ha). More diverse is the class “Technical Infrastructure/Construction
Site“, ranging from landfill and disposal sites (with the biggest having an area of 59 ha) over Vienna´s main
sewage treatment facility (32 ha) to facilities of the Austrian military and building sites. The main water bod-
ies in Vienna are the Danube river which divides the city, the Old Danube which is separated from the river
and the Danube canal which branches from the main river and runs near the city centre.

2.2 Data on Buildings - The Digital Building Model 2.2

The digital building model depicts all buildings of Vienna as prisms (also called building structures). The
original dataset contains about 200.000 buildings and more than 650.000 building structures since one
building can be comprised of several structures (see Figure 2.2, left). However, for the population modelling
it is necessary to have a more simplified model where every building consists of only one structure in order
to allocate people specifically to one building using a weighting factor (in this case the volume of the build-
ing). The problem of the detailed dataset lies in the fact that every prism of a building has its origin at the
ground (digital terrain model) so the sum of the volumes of each prism is higher than the actual volume of

Left: Original dataset (2D&3D), Right: Generalized dataset (2D&3D)
which was used for the analysis. Source: MA 41, 2015. Own illustration. Coordinate System: ETRS 1989 LAEA
Figure 2.2: Digital Building Model - a comparison.

2.2 Data on Buildings - The Digital Building Model 11

the building. Therefore, the dataset which was used in the analysis had to be generalized (see Figure 2.2,
right) so that there is only one prism per building. This generalized dataset was provided by the AIT Austrian
Institute of Technology and was also linked with the land use data from chapter 2.1. The original dataset can
be found on data.gv.at under creative commons licensing. Responsible for the assessment is the magistrate
division MA 41 (city mapping). It is updated continuously. (cf. City of Vienna n.d. b)

Generation of the original dataset
For every building there exists height information which is extracted through aerial photo evaluation meas-
uring each prism. For superstructures and big passages additional height data is gathered through terrestrial
data capturing. The accuracy of the measurements is +/- 25 centimetres. For the generation of the dataset
the buildings are separated in individual parts according to their height structure. As mentioned before
each of the building parts is represented through a prism (building structure) which is placed on the digital
terrain model. The layout for each building space comes from the area-multi-purpose map (Flächen-Mehr-
zweckkarte) which is a digital city map of Vienna containing small-scale land use information about the
whole city. (cf. City of Vienna n.d. b, c)

A description of the generalized dataset
The generalized dataset consists of 247,560 prisms, each representing one building. Figure 2.3 and Figure
2.5 show the use class of every structure of the digital building model for the whole city and also a more
detailed extract from the centre. Because of its history, like most of Middle European cities, Vienna is struc-
tured radial-concentric with geographic features having influenced the development of the city. For exam-
ple, today´s Danube canal was a branch of the Danube which was flowing directly along the city centre in
the Middle Ages. Moreover, streams of the Vienna Woods which were flowing into the Danube shaped axes
along which streets and further settlements developed. (cf. MA18 2005: 41) As mentioned in chapter 2.1 the
high density of buildings with the class “Commercial“ in the 1st district can also be seen in the digital build-
ing model. Figure 2.4 shows that out of the 247,560 buildings there are 214,270 whose main use is residen-
tial which is 87% of all buildings. 26% (56,033) of that amount consist of very small buildings with an area of
up to 30m² and a height of up to 5m. Then, far behind come the use classes “Commercial“ (9,021 buildings,
4%) and “Industry“ (5,569 buildings, 2%). Buildings without a use class (No data) are those that are located
(with most of their surface) outside of the city boundary and therefore outside of the Land Use 2012 layer
from where those classes are derived. This is a characteristic of the dataset which does not interfere with
the analysis in a serious way since it affects only 44 buildings (0.02%). The same goes for buildings with the
use class “Water Bodies“. They are located closely to real water bodies and are mistakenly classified as such
by the Land Use 2012 dataset. When looking at the mean volume per building of each use class (see Table
2.3) it can be seen that buildings with the class “Social Infrastructure“ have by average the biggest volume
followed by the class “Industry“ with the largest buildings by volume being the General Hospital of Vienna
(AKH Wien, main building - social infrastructure), the Vienna University of Economics and Business (WU
Wien main building until 2013, incl. bio centre of University of Vienna - social infrastructure) and the Opel
Wien GmbH (industry).

12 2 Data

Figure 2.3: Digital Building Model of Vienna - Land use. The depicted water bodies are from the dataset Land Use Vi-
enna 2012. Source: MA 41, 2015; water bodies: MA 18 (OGD), 2012. Own illustration. Coordinate System: ETRS 1989
LAEA. Legend see Figure 2.5.

Figure 2.4: Count of buildings per use class. Source: MA 41, 2015. Own illustration.

2.2 Data on Buildings - The Digital Building Model 13

Figure 2.3: Digital Building Model of Vienna - Land use. The depicted water bodies are from the dataset Land Use Vi-
enna 2012. Source: MA 41, 2015; water bodies: MA 18 (OGD), 2012. Own illustration. Coordinate System: ETRS 1989
LAEA. Legend see Figure 2.5.

Figure 2.4: Count of buildings per use class. Source: MA 41, 2015. Own illustration.

Figure 2.5: Digital Building Model of Vienna (detailed) - Land use. The depicted water bodies are from the dataset
Land Use Vienna 2012. Source: MA 41, 2015; ortho photo: MA 41, 2016; water bodies: MA 18 (OGD), 2012. Own illus-
tration. Coordinate System: ETRS 1989 LAEA.

14 2 Data

Residential buildings which are the most frequent have only an average volume of 1,933 m³ per building.
Finally, Figure 2.6 shows the percentage of the area covered by buildings per district compared to the total
area of each district. According to the data the most dense districts are district 7 (Neubau) and 8 (Josefstadt)
with 53% resp. 50% of its area covered by buildings whereas the least dense districts are district 13 (Hietz-
ing, 6%), 22 (Donaustadt, 7%) and 14 (Penzing, 9%).

Use of Buildings Volume / Building
[m³] Count

Social Infrastructure 12,052 3,811
Industry 9,273 5,569
Technical Infrastructure/Construction Site 6,955 1,661
Commercial 6,828 9,021
Transportation 6,001 2,656
Residential 1,933 214,270
Recreation and Leisure Facilities 968 3,463
Agriculture 589 3,539
No data 577 44
Transportation 446 951
Natural Environment 270 2,443
Water Bodies 156 132
Total 46,049 247,560

Table 2.3: Average volume per building. Source: MA 41, 2015.

Figure 2.6: Percent of Building area compared to the Total Area per District. Source: MA 41, 2015. Own illustration.

2.3 Geospatial Data 15

2.3 Geospatial Data 2.3

The geospatial datasets depict the location of facilities which are relevant to the analysis as well as the
administrative boundaries. The facilities are mainly represented through point-shapefiles and include kin-
dergartens, schools, universities, adult education centres, retirement homes, hospitals and building address
points as well as the public transportation network which is represented through line-shapefiles. All data
is provided by the government on its web portal data.gv.at under creative commons licensing. Figure 2.7
shows all datasets except address points and the transportation network.

Source: kindergarten: MA 11
(OGD), 2017; school: MA 56 (OGD), 2017; retirement home: Fonds Soziales Wien (OGD), 2017; university: Universities
of Vienna (OGD), 2017; adult education centre: MA 13 (OGD), 2017; hospital: KAV (OGD), 2017; land use: MA 18 (OGD),
2012. Own illustration. Coordinate System: ETRS 1989 LAEA.

Figure 2.7: Geospatial datasets (excluding address points and public transportation).

16 2 Data

Point-Shapefiles - Location of Facilities
The point-shapefiles with the information of the loca-
tion of certain types of facilities play an important role
in the population modelling since they are the places
where certain age groups of people reside during the
day. Each point lies within a building structure of the
digital building model and its information can be as-
signed to the building with the spatial join tool. Usually
one point represents e.g. one school or kindergarten.
Universities differ from this pattern because one point
represents one institute of a university. It includes also
the type of university so for example all students of a
university can be distributed to its institutes weighted
by their volume. The university types were summarized
as following: University of Vienna, Technical University
of Vienna, Vienna University of Economics and Business, Medical University of Vienna and Other University.
The available dataset with the hospitals however is suboptimal since every point represents one hospital
but does not account for its buildings with the problem being that most hospitals are comprised of several
structures. This can be seen in Figure 2.8 which shows the General Hospital of Vienna and its surrounding
buildings as well as the location of its designated point from the point-shapefile (being the top left point; the
bottom point in the middle belongs to another hospital which consists of only one building). From looking
at the figure it should be clear that it is impossible to select all the buildings of a hospital automatically by
using the point-shapefile for the reason that sometimes hospitals can be in close proximity to one another as
well as other buildings with the use “Social Infrastructure“. Because of this the hospital buildings had to be
selected before the analysis manually using the point-shapefile as reference and the name of their hospital
resp. a distinct hospital ID had been assigned to them.
Another noteworthy editing had been done with the point-shapefile containing schools which were summa-
rized into four types: compulsory school, grammar school, trade school and other upper secondary school
so that the students can be distributed according to the socioeconomic dataset “Students per school type“
(see page 25).

When looking at the count of each facility type it shows that the most frequent are kindergartens with an
average of 79.3 per district followed by schools (27.4 per distr.) and university-institutes (7 per distr.). The
least frequent are hospitals with 1.5 per district (see Table 2.4). Most university-institutes can be found in
districts 1 (Innere Stadt, 28), 9 (Alsergrund, 27) and 4 (Wieden, 25) which are comparatively small and near
the centre of Vienna. Together they house 49% of all institutes.

Count Average per District
Kindergarten 1,825 79.3
School 629 27.4
University (Institutes) 162 7.0
Retirement Home 138 6.0
Adult Education Centre 46 2.0
Hospital 34 1.5

Figure 2.8: Example: Point-shapefile (hospitals) & the
digital building model. Scale: 1:10,000

Table 2.4: Count of Facilities. Source: City of Vienna, 2017.

2.3 Geospatial Data 17

Building Address Points
The building address points are a auxiliary dataset and
are provided by the Federal Office for Metrology and
Surveying (Bundesamt für Eich- und Vermessungswesen)
in the form of a csv-table with the source being the Aus-
trian Address Register; reporting date: 15.07.2015. Like
the digital building model a new dataset was derived
from the original data and provided for the analysis by
the Austrian Institute of Technology. This dataset (the
point-shapefile) was generated from the coordinates
of the original csv-table and the addresses were sum-
marized in one column containing the postcode, street
name and street number (e.g. 1100 Alaudagasse 40). In
this form the addresses can be distinctively identified
and joined with the register of companies to get the number of employees. Through the position of the
address points that number can then be assigned to the buildings.
The address point shapefile consists of 265,111 address points (compared to 247,560 buildings from the

generalized digital building model) with an average
of 11,527 points per district. Nonetheless, there are
only 140,368 distinct addresses with some being rep-
resented up to 745 times which means there can exist
up to 745 points for one address. The most abundant
ones are located usually in single-family house areas
as shown in Figure 2.10. This is the most extreme ex-
ample where the two green points represent in total
745 individual points with the same address which
are stacked up one another. This mainly concerns
buildings with the use “Residential“ but also some
buildings with the use “Commercial“ or “Industry“
which contain several points with the same address

as well as points with different addresses. The latter occurs mostly in corner houses which can be seen in
Figure 2.9. This was handled by dissolving the points with the same address before joining the data from the
company register and afterwards using the join operation “join one to many“ of the spatial join tool. Anoth-
er feature of the dataset is the fact that some points are located outside of the buildings in various distances
which can also be seen in Figure 2.9. In this case if an address from the company register matches such an
address point the data will not be included in the model. In total there are 60,861 (25%) points which lie out-
side of buildings meaning that only 186,699 points are potentially joined with the company register. From
this quantity there exist 1,263 matches with the company register and lastly 1,153 matches with the digital
building model, distributing a total of 114,795 employees. The biggest problem with the dataset however, is
the circumstance that there are some points which share the same address but lie in different buildings. This
concerns a total of 13,334 points which are sharing 5,676 different addresses. Instead of checking manually
which address point lies in the correct building the approach was to delete the matching addresses from the
company register in order to avoid distributing employees of one company repeatedly to different buildings
where they are not belonging to. Since this affected only 49 (1.4%) of originally 3,417 entries the loss of data
is acceptable.

Figure 2.9: Building Address Points. Scale: 1:5,000

Scale: 1:5,000Figure 2.10: Building Address Points.

18 2 Data

Public Transportation Network

The public transportation network of Vienna is also provided by the city of Vienna with the responsible en-
tity being the Wiener Linien GmbH & Co KG. The dataset is constituted of 1,306 km of public transportation
lines which are divided into different types (see Figure 2.11). It was used in the calculation of the daytime
population to distribute the employees of the Wiener Linien (which are approx. 4,289 during the day consid-
ering shift work) to their “work place“ which is basically all over Vienna. This was done by calculating a buffer
of 2.5m around the lines and then erasing all parts of the buffer which lie outside of Vienna due to the fact
that 20 km of the lines lie outside of the city boundaries.

Figure 2.11: Public Transportation Network of Vienna. Source: network: Wiener Linien (OGD), 2014; land use: MA 18
(OGD), 2012. Own illustration. Coordinate System: ETRS 1989 LAEA.

2.4 Socioeconomic Data 19

Districts and Registration Districts of Vienna

The polygon-shapefile of the districts and registration districts of Vienna from 2014 builds the basis of the
population modelling since it provides the spatial units which are used to select the buildings to which the
population is distributed. Whether the districts, registration districts or the whole of Vienna are used de-
pends on the age group which is distributed. The dataset contains 250 registration districts which have a
distinctive ID like 9230115 where the 9 stands for Vienna, 23 for the district and 0115 for the registration
district. Through this ID it was possible to derive the 23 districts. The source of the dataset is the magistrate
division MA 21 (district planning and land use) while it is provided by the city of Vienna under creative com-
mons licensing.

2.4 Socioeconomic Data 2.4
The Socioeconomic datasets are a diverse group of auxiliary data which are used to improve the results of
the population modelling. They include, among others, residential population numbers, commuting, em-

Figure 2.12: Districts and Registration Districts of Vienna. Source: MA 21, 2014. Own illustration. Coordi-
nate System: ETRS 1989 LAEA.

Public Transportation Network

The public transportation network of Vienna is also provided by the city of Vienna with the responsible en-
tity being the Wiener Linien GmbH & Co KG. The dataset is constituted of 1,306 km of public transportation
lines which are divided into different types (see Figure 2.11). It was used in the calculation of the daytime
population to distribute the employees of the Wiener Linien (which are approx. 4,289 during the day consid-
ering shift work) to their “work place“ which is basically all over Vienna. This was done by calculating a buffer
of 2.5m around the lines and then erasing all parts of the buffer which lie outside of Vienna due to the fact
that 20 km of the lines lie outside of the city boundaries.

Figure 2.11: Public Transportation Network of Vienna. Source: network: Wiener Linien (OGD), 2014; land use: MA 18
(OGD), 2012. Own illustration. Coordinate System: ETRS 1989 LAEA.

20 2 Data

ployment and students. In contrast to the previously described datasets the socioeconomic ones are mainly
tables and two single values with the exception being the data on districts and registration districts of Vien-
na which are a polygon-shapefile.

Population per Registration District
The data on the population per registration district in 5 year age groups with the reporting date being the
1.1.2013 on the other hand comes from the Vienna population register and is provided by the magistrate
division MA 23 (economics, work and statistics). Normally, this dataset is subject to a charge but it was kindly
allocated by Mag. Dr. Gustav Lebhart from the MA 23 for this thesis in the form of a csv-table. During the
data preparation for the analysis the data was correlated to the districts and registration districts shapefile
via the registration district ID. Afterwards, the population from the registration districts could be distributed
among the buildings of the digital building model. However, this is only half true as only the age groups 0-4
and 65+ were distributed from the registration districts whereas the population numbers of the other age
groups were taken from the other auxiliary data described later in this chapter. Table 2.5 shows the area, the
summarized population of Vienna over all age groups and the number of registration districts per district.

District Area [km²] Population 2013 Number of Registration
Districts

1., Innere Stadt 3.01 16,779 7
2., Leopoldstadt 19.27 98,207 10
3., Landstraße 7.45 87,131 11
4., Wieden 1.80 31,744 4
5., Margareten 2.03 53,937 4
6., Mariahilf 1.48 30,336 3
7., Neubau 1.61 31,040 5
8., Josefstadt 1.08 24,469 3
9., Alsergrund 2.99 40,956 6
10., Favoriten 31.80 182,119 23
11., Simmering 23.21 92,858 13
12., Meidling 8.16 90,420 11
13., Hietzing 37.69 51,253 11
14., Penzing 33.82 86,817 12
15., Rudolfsheim-Fünfhaus 3.86 74,936 7
16., Ottakring 8.65 98,677 10
17., Hernals 11.33 54,296 6
18., Währing 6.30 49,218 5
19., Döbling 24.90 70,267 10
20., Brigittenau 5.67 85,099 8
21., Floridsdorf 44.51 146,889 30
22., Donaustadt 102.24 165,808 32
23., Liesing 32.02 95,632 19
Total 414.88 1,758,888 250

Source: Vienna population register, reporting date 1.1.2013, Calculation:
MA 23.
Table 2.5: Population of Vienna in 2013.

2.4 Socioeconomic Data 21

Balance of Commuters 2012

Figure 2.13: Balance of Commuters 2012. Source: Statistik Austria; reporting date: 31.10.2012; territory in-
formation: 2014; created on 6.11.2014. Own illustration. Coordinate System: ETRS 1989 LAEA.

22 2 Data

In order to calculate the daytime population of Vienna correctly it is necessary to know the total number of
people who stay in Vienna during the day. This number is constituted of the residents of Vienna (1,758,888)
from the data on the population per registration district in 5 year age groups plus the balance of commuters
(207,662) which amounts to 1,966,550. The source of the original dataset from the year 2012 is Statistik
Austria. It includes the inbound commuters from both other districts and outside of Vienna and the out-
bound commuters to both other districts and outside of Vienna per district for employees and students.
From these numbers the balance of commuters could be calculated by subtracting the outbound commut-
ers from the inbound commuters per district. However, the only relevant number from this dataset is the
balance of commuters over all districts (207,662) which was used to get the total daytime population of
Vienna. Since the datasets on employees and students do not include every person (e.g. not all unemployed
persons might be registered as unemployed) it was necessary to calculate and distribute the rest of the pop-
ulation after all other distributions were done. Figure 2.13 and Table 2.6 give an overview on the balance of
commuters of Vienna in the year 2012. The data has been linked to the registration district shapefile.

District Balance of Commuters
Employees

Balance of Commuters
Students

Balance of Commuters
Total

1., Innere Stadt 103,556 38,726 142,282
2., Leopoldstadt 17,362 -3,068 14,294
3., Landstraße 55,511 3,688 59,199
4., Wieden 13,450 11,134 24,584
5., Margareten -4,884 -1,385 -6,269
6., Mariahilf 13,386 -211 13,175
7., Neubau 15,749 593 16,342
8., Josefstadt 4,565 579 5,144
9., Alsergrund 34,243 8,387 42,630
10., Favoriten -11,145 -2,640 -13,785
11., Simmering -5,634 -4,153 -9,787
12., Meidling -3,214 -3,653 -6,867
13., Hietzing 4,897 222 5,119
14., Penzing -10,005 -3,076 -13,081
15., Rudolfsheim-Fünfhaus -3,033 -1,118 -4,151
16., Ottakring -13,871 -4,428 -18,299
17., Hernals -9,628 -1,790 -11,418
18., Währing -6,789 5,017 -1,772
19., Döbling 1,934 -213 1,721
20., Brigittenau -7,379 -1,871 -9,250
21., Floridsdorf -10,949 -1,014 -11,963
22., Donaustadt -17,200 -4,999 -22,199
23., Liesing 12,928 -915 12,013
Total 173,850 33,812 207,662

(= inbound commuters - outbound commuters) Source: Statistik Austria; re-
porting date: 31.10.2012; territory information: 2014; created on 6.11.2014.
Table 2.6: Balance of Commuters 2012.

2.4 Socioeconomic Data 23

Employees per Hospital 2015
The numbers of employees per hospital come from the Bisnode Austria register of companies which was
provided by the Austrian Institute of Technology for this analysis. Table 2.7 which had also been used as
input for the modelling was created by selecting all hospitals from the register. From 34 hospitals in Vienna
the register contains only 17 with a total of 25,230 employees. Because of the shift operation in hospitals
only 50% of the employees were distributed among the clinics while the other 50% were distributed among
the residential buildings.

Hospital ID Name Employees
Hospital 1 Allgemeines Krankenhaus der Stadt Wien - Universitätskliniken 9,321
Hospital 13 Krankenhaus Hietzing mit neurologischem Zentrum Rosenhügel 3,351
Hospital 33 Wilhelminenspital der Stadt Wien 3,000
Hospital 25 Sozialmedizinisches Zentrum Ost 2,856
Hospital 5 Hanusch Krankenhaus der Wiener Gebietskrankenkasse 1,299
Hospital 10 Krankenhaus der Barmherzigen Brüder Wien 801
Hospital 12 Krankenhaus Göttlicher Heiland GmbH 579
Hospital 17 Orthopädisches Spital Speising GmbH 558
Hospital 31 Unfallkrankenhaus Meidling 501
Hospital 3 Evangelisches Krankenhaus Wien gemeinnützige Betriebsgesellschaft m.b.H. 474
Hospital 28 St. Anna Kinderspital GmbH 438
Hospital 30 Unfallkrankenhaus Wien Lorenz Böhler 432
Hospital 11 Krankenhaus der Barmherzigen Schwestern Wien Betriebsgesellschaft m.b.H. 414
Hospital 29 St. Josef Krankenhaus GmbH 381
Hospital 8 Herz Jesu Krankenhaus GmbH 321
Hospital 32 Wiener Privatklinik Betriebs-GmbH & Co KG 261
Hospital 14 Krankenhaus St. Elisabeth GmbH 243
Total 25,230

Employees per University & Adult Education Centre 2015
Like the previous dataset the numbers of employees per university and adult education centre were taken
from the register of companies. Table 2.8 shows that the biggest employers among the universities which
are listed in the register are the University of Vienna, the Medical University and the Technical University of
Vienna (the register of companies does not include all universities).

Name Type Employees
Universitaet Wien University 6,492
Medizinische Universitaet Wien University 5,343
Technische Universitaet Wien University 4,515
Universitaet fuer angewandte Kunst University 1,571
Wirtschaftsuniversitaet Wien University 1,187
Veterinaermedizinische Universitaet Wien University 1,086
Universitaet fuer Musik und darstellende Kunst Wien University 800
Die Wiener Volkshochschulen GmbH VHS 671
Total 21,665

Source: Bisnode Austria/AIT, 2015.Table 2.7: Employees per Hospital 2015.

Source: Bisnode Austria/AIT, 2015.Table 2.8: Employees per University & Adult Education Centre 2015.

24 2 Data

Register of Companies 2015
The source of the register of companies is the Bisnode Austria Holding GmbH. The dataset had been acquired
by the Austrian Institute of Technology which provided an already edited set for the analysis. This set con-
tained 3,560 company entries with 1,187,570 employees which is more than the total amount of employees
of Vienna in 2013 which is 955,839. The problem with the data is that especially large and/or international
corporations with the corporate headquarters in Vienna list all of their domestic and/or international em-
ployees in their headquarters with some of the most extreme examples being the Raiffeisen-Landesbank-
en-Holding GmbH (60,356 empl.), the UniCredit Bank Austria AG (55,443 empl.) and the Österreichische
Bundesbahnen-Holding Aktiengesellschaft (41,543 empl.). This was solved by eliminating all companies with
more than 1,000 employees with some exceptions like Siemens Aktiengesellschaft Österreich (1,817 empl.)
leaving 3,368 companies with 328,790 employees. Of course this solution is not perfect as the elimination
will not cover all companies with incorrect employment data for the given address while it will exclude some
companies with correct employment data but the approach is sufficiently accurate for the modelling since
most of the entries (2,846 or 85%) are constituted of small companies with 150 employees or less.

Employees Wiener Linien 2013
In 2013 the Wiener Linien GmbH & Co KG (public transportation) had 8.577 employees (cf. Wiener Linien
2013: 4). Nevertheless, the share of the employees which work directly in the public transport vehicles is
unknown.

Total Number of Employees per District 2013 & Total Number of Unemployed 2013

Similar to the dataset on the balance of commuters the total number of employees per district is needed
because the employment data of the other datasets (employees per hospital, university, adult education
centre, register of companies and employees of Wiener Linien) does not include the whole working pop-
ulation of Vienna. For that reason, after all employees of the other datasets were distributed their sum
was calculated per district and subtracted from the total number of employees per district. The difference
could then be distributed per district among all buildings with the use “Industry“ and “Commercial“ as
well as the hospitals with no employees based on the percentage of their weighting factor (e.g. volume)

District Total Number of
Employees District Total Number of

Employees
1., Innere Stadt 110,104 13., Hietzing 25,791
2., Leopoldstadt 69,739 14., Penzing 28,651
3., Landstraße 95,793 15., Rudolfsheim-Fünfhaus 28,808
4., Wieden 28,237 16., Ottakring 29,492
5., Margareten 19,656 17., Hernals 14,323
6., Mariahilf 28,451 18., Währing 14,407
7., Neubau 35,183 19., Döbling 30,341
8., Josefstadt 16,096 20., Brigittenau 28,389
9., Alsergrund 50,457 21., Floridsdorf 53,911
10., Favoriten 63,907 22., Donaustadt 59,616
11., Simmering 34,667 23., Liesing 54,065
12., Meidling 35,755
Total 955,839

Table 2.9: Total number of Employees per District 2013. Source: Statistik Austria, 2013.

2.4 Socioeconomic Data 25

compared to the total weighting factor of all selected buildings in that district. When looking at Table 2.9
it shows that the first district has the most employees followed by the third district. Now, in regard to their
area they are not the largest districts but compared to the land use/ building use (see Figure 2.1, Figure 2.3
& Figure 2.5) it can be seen that they have a high share of buildings with the use “Commercial“ or “Industry“
which is 33% in the first district (no “Industry“) and 30% in the third district (percentage based on building
area). The district with the lowest number of employees is the 17th district (14,323 empl.). Here it shows
that the share of buildings with the use “Commercial“ or “Industry“ is only 5% with 48% of the land use
(from the land use 2012 dataset, Figure 2.1) being natural environment.
The total number of unemployed in Vienna in 2013 was 120,815 with the source being the Job Centre Vien-
na; the calculation was done by the magistrate division MA 23 (economics, work and statistics). The value
was used to distribute the unemployed among the residential buildings.

Students per School Type 2012/13
The dataset on the students per school type comes from the education statistics of the Austrian Federal
Ministry of Education 2012/13 and is provided by Statistik Austria. The original data contained 8 different
school types which were summarized into 4 types for the analysis (see Figure 2.14). The data shows that
most of Vienna’s pupils in 2012/13 went to compulsory school while the least amount went to trade school.
The sum of all pupils is 225,645.

Students per University 2013/14
This dataset contains 4 types of universities – colleges, teacher training colleges, public universities and
private universities with the student numbers from the academic year 2013/14. It also includes the student
numbers of Vienna´s biggest universities (University of Vienna, Technical University of Vienna and Vienna
University of Economics and Business). In preparation for the modelling these numbers were summarized
into 5 classes, introducing an additional class for the Medical University of Vienna (see Figure 2.15). The
source of the dataset which is from the year 2013/14 is Statistik Austria while the student number of the
Medical University of Vienna comes from its annual report 2015. (cf. Medizinische Universität Wien 2015:
77)

Source: Statistik Austria – education statistics, Austrian Federal Minis-

try of Education, 2012/13.

Figure 2.14: Students per School Type 2012/13.

26 2 Data

Retirees in retirement homes 2013

Age
Group Population Share of Elderly Depen-

dents

Share of Elderly De-
pendents in Retirement

Homes

Retirees in Retirement
Homes

65-69 88,699 0.030 0.291 774
70-74 86,114 0.050 0.291 1,253
75-79 42,520 0.098 0.291 1,213
80-84 38,111 0.210 0.291 2,329
85-89 27,990 0.382 0.291 3,111
90+ 13,881 0.644 0.291 2,601
Total 297,315 11,282

The number of retirees in retirement homes for 6 different age groups was calculated by multiplying the
population of the particular age group with the share of elderly dependents of that age group and the share
of elderly dependents in retirement homes (since most of them are nursed at home). Origin of the data on
the share of elderly dependents is the Federal Statistical Office of Germany (Statistisches Bundesamt) with
the values referring to Germany. The same data was not available for Austria so the German values were
used as input for the analysis. Since the two countries are similar in many ways the results should be suf-
ficient. The similarity can be seen by comparing the share of elderly dependents who are nursed at home
where the value for Germany is 70.9% (cf. Statistisches Bundesamt 2013: 9) and the value for Upper Aus-
tria, which is available, is 70%. (cf. Amt der Oö. Landesregierung 2014: 5) From this number the share of
elderly dependents in retirement homes was calculated as 0.291. The values for the modelling were directly
calculated in the python script. While the retirees in retirement homes were distributed to the retirement
homes over all Vienna the remainder of the retirees were distributed to the residential buildings per regis-
tration district.

Figure 2.15: Students per University 2013/14. Source: Statistik Austria, 2013/14.

Table 2.10: Retirees in Retirement Homes 2013. Source: Federal Statistical Office (Germany).

2.4 Socioeconomic Data 27

Number of patients

Name Number of Beds Average Occupan-
cy Rate

Number of
Patients

AKH 1,824 0.85 1,550
Krankenhaus Hietzing 1,005 0.85 854
Wilhelminenspital 988 0.85 840
SMZ Baumgartner Hoehe 952 0.85 809
SMZ Ost Donauspital 946 0.85 804
Krankenanstalt Rudolfstiftung 707 0.85 601
SMZ Sued Kaiser Franz Josef Spital 668 0.85 568
Hanusch Krankenhaus 411 0.85 349
Krankenhaus der Barmherzigen Brueder 395 0.85 336
Krankenhaus Goettlicher Heiland 284 0.85 241
Orthopaedisches Spital Speising 252 0.85 214
Evangelisches Krankenhaus Wien 232 0.85 197
Krankenhaus der Barmherzigen Schwestern 210 0.85 179
SMZ Floridsdorf 166 0.85 141
Hartmannspital 161 0.85 137
Privatklinik Doebling 160 0.85 136
Herz Jesu Krankenhaus 155 0.85 132
Rudolfinerhaus Privatklinik 155 0.85 132
St Josef Krankenhaus 155 0.85 132
Neurologisches Rehabilitationszentrum Rosenhuegel 147 0.85 125
Wiener Privatklinik 145 0.85 123
Unfallkrankenhaus Meidling 142 0.85 121
Sanatorium Liebhartstal 137 0.85 116
Krankenhaus St Elisabeth 129 0.85 110
Unfallkrankenhaus Lorenz Boehler 128 0.85 109
St Anna Kinderspital 119 0.85 101
Heeresspital Wien 113 0.85 96
Goldenes Kreuz Privatklinik 102 0.85 87
Sanatorium Hera 100 0.85 85
Confraternitaet Privatklinik Josefstadt 96 0.85 82
Orthopaedisches Krankenhaus Gersthof 92 0.85 78
SMZ Sophienspital 89 0.85 76
Rehabilitationszentrum Meidling 52 0.85 44
Total 11,417 0.85 9,704

Unfortunately, there exist no patient numbers of the hospitals of Vienna but similar to the previous de-
scribed dataset the values could be estimated by multiplying the number of beds per hospital with the
average occupancy rate. The former is provided by the City of Vienna with the source being the Ministry of
Health while the latter was taken from the Regionaler Strukturplan Gesundheit (RSG) Wien 2009 (regional
structure plan) which is also provided by the City of Vienna. Outpatients were not considered.

Table 2.11: Number of Patients per Hospital 2013. Source: Ministry of Health, 2013.

3 Method 3
The proposed method of this thesis is based on areal weighting as introduced in chapter 1. It is assumed
that the population a) is distributed evenly inside the districts, b) is living in residential buildings and c) the
number of residents per building is dependent on the size of the housing space. On the basis of these as-
sumptions the distribution of the population can be done according to the formula

(3.1)

with Ph being the population per house, Hsh the living space per house, Hst the total living space per admin-
istrative unit (e.g. district) and Pt the total population per administrative unit. The living space per house is
defined as the mathematical product of the building footprint Ah and its height hh (alternatively its number
of floors) minus the vacancy V, if known.

(3.2)

Finally, the total living space per administrative unit is the sum of the living space of all buildings:

(3.3)

Figure 3.1 visualizes the concept of the modelling approach where the population of a source zone (e.g.
district, registration district or the whole of Vienna) is disaggregated to the target zone (e.g. buildings in
that district) weighted by their area (or volume) so that larger buildings will get a bigger proportion of the
population. Afterwards, the population of the buildings is aggregated to the 100x100m grid where each cell
gets a share of the population of its intersecting buildings depending on how much of the building footprint
lies within the cell.

Figure 3.1: Principle of Population Disaggregation and Aggregation. The population e.g. of a registration district (left)
is distributed to the buildings that lie in that district based on a weighting factor (middle) and is then aggregated to a
100x100m raster (right). Source: own illustration.

30 3 Method

In total 5 models were developed for this thesis numbered from 01 to 05.
• Model 01 delivers presumably the most accurate results because it utilizes all available datasets and

distributes the population to the buildings weighted by their volume.
• The second model also utilizes all datasets but distributes the population weighted only by the area of

the building footprints. This is done to see how the distributed population changes when no height data
of the buildings is available.

• The third model excludes the register of companies and uses the volume as weighting factor while the
• fourth model does not use auxiliary data at all (except the balance of commuters so that the total dis-

tributed population is for all models the same) and distributes the population per registration district to
the digital building model weighted by volume.

• Finally, the fifth model does not utilize auxiliary data as well but distributes the population to the sur-
faces of the Land Use 2012 layer, weighted by area. After the disaggregation is done, the population is
then aggregated to a raster with 100x100m (=1 hectare), making it easier to compare the results. Also,
the results can be compared to Statistik Austria, which disaggregated the daytime population of Vienna
2013 on raster level.

3.1 Modelling Daytime Population 3.1
In this section model 01 will be described in more detail and the principle of the modelling will be shown in
Figure 3.2 - Figure 3.11. On the left side of the figures the source and type of the population numbers can
be seen (which is either from the shapefile of the registration districts or from a table). Furthermore, it is
explained if the values exist per spatial unit (registration district, school type etc.) or are a single value (e.g.
total number of unemployed). If the source of population is a sum sign it means that the value(s) is/are an
output of the previous calculations of the script. The sum sign (without text underneath), to which the first
arrow is leading means that the value(s) from the input dataset is/are taken directly for the distribution.
If there is a text underneath then the population from the source was manipulated and the population
mentioned in the text is distributed. How the manipulation was done can be seen by the dataset/sum sign
which is located over the first sum sign (e.g. the already distributed employees are subtracted from the total
working population in order to distribute the remaining working population). Next, an arrow will lead to the
distribution. This can be a single arrow or two branching ones with a percentage meaning that the respec-
tive share of the population will be distributed to its target. Now comes the symbol for the distribution of
the population which can be for the whole of Vienna, per district, per registration district or to the public
transportation buffer. If there are yellow dots inside the symbol then the information on the target comes
from the geospatial data (point-shapefiles, e.g. address points), otherwise it comes from the digital building
model. There are also three special cases (hospital, university & register of companies) where the symbol for
the distribution (whole of Vienna) is accompanied by a building and a text below (e.g. “per hospital”). This
means that the employees or patients are distributed to the buildings per hospital (which mostly have more
than one building) over the whole of Vienna (since the hospitals are located all over the city). The same is
valid for the universities. In the third case the employees of a company are distributed to the respective
building. Finally, an arrow is leading to the target which are always buildings except for the public transpor-
tation buffer. The numbers next to it represent the age group of the population which was distributed. When
population is allocated to buildings then it is always weighted by a factor (volume or area depending on the
model) except for the working population of the register of companies which is directly transferred to the
respective building where the join address matches. Another exception is when the patients are subtracted
from the distributed population where the size of the subtrahend is weighted by the population number of

3.1 Modelling Daytime Population 31

the building. The order of the figures is based on the age group of the distributed population, not on the
order of the script.

Distribution of Infants
The infant population (age 0-4) comes from the polygon-shapefile with the registration districts and is dis-
tributed in equal parts to the kindergartens (including daycare centres) and residential buildings (see Figure
3.2). This is because the population includes very young children who are with their parents and not in
daycare centres and since it is not known where they are during the day they are allocated to the residen-
tial buildings. There are no data available on the percentage of young children in daycare centres so it was
estimated for the model to be 50%. The distribution to the kindergartens is done per district because it is
assumed that the children will go to a facility which is not too far away but at the same time not necessarily
in the same registration district. On the other hand the infants who are allocated to the residential buildings
are distributed per registration district because the source of the population has the same resolution and
there are no commuter numbers involved since infants do not commute (the commuter numbers only cover
the student and working population).

Distribution of Pupils
Pupils are distributed per school type covering all of the school buildings in Vienna because there are no
student numbers per school type and district (see Figure 3.3). The pupils of the trade school (Berufsschule)
are a special case because they spend most of their time, namely 80% working and only 20% in school, ac-
cording to WKO 2006:6 so they are distributed to the respective building type accordingly. The population
from the data source has no age group assigned to it but since the pupils age group of each school type is
known the distributed population of the particular school type gets that age group. However, this is more
important for labelling purposes and does not influence the calculations in the script.

Figure 3.2: Distribution of Infants. Source: own illustration.

32 3 Method

Distribution of Employees (Hospitals, Wiener Linien & Companies)
The employees of the hospitals are like the university students distributed to the hospital buildings per
hospital (see Figure 3.6 and Figure 3.7). Because of the shift operation in hospitals 50% of the population is
distributed to residential buildings (because the location of the employees in their free time is not known).
Furthermore, 50% of the employees of Wiener Linien GmbH & Co KG are distributed to the transportation
network buffer (without weighting) while the other 50% are also distributed to the residential buildings also
because of the shift work. Meanwhile, the employees from the register of companies are allocated to the
respective building where the addresses of the two datasets match. The address data of the buildings comes
from a spatial join with the address point-shapefile. Theoretically, the population is distributed to the build-
ings with the use class “Industry“ and “Commercial“ but this is not always true for the reason that residential
buildings can also house businesses. Moreover, address points can also lie within buildings of any other use
class such as “Social Infrastructure” or “Transportation“.

Figure 3.5: Distribution of Employees per University/vhs. Source: own illustration.

Figure 3.6: Distribution of Employees - Hospitals & Wiener Linien. Source: own illustration.

Distribution of Students and Employees (per University, Adult Education Centre)
Figure 3.4 and Figure 3.5 show the distribution of the students per university and employees per university
and adult education centre. The student population per university is split similar to the infants so that 50%
of the students are distributed among the residential buildings over Vienna and 50% are distributed per
university over Vienna. Per university means that the students are distributed to the faculties of each univer-
sity. There is no data available on the percentage of time a student in Austria spends at university so it was
estimated to be 50% since the data also covers advanced students. Similar to the students the employees
per university were also distributed per university. However, the population comes from the register of com-
panies where the employment data is in contrast to the student data not available for all universities. In the
same dataset (employees per university) are also the employees of the adult education centres. However,
not per centre but for all centres meaning that the population is distributed to all facilities over Vienna.

Figure 3.3: Distribution of Pupils. Source: own illustration.

Figure 3.4: Distribution of Students per University. Source: own illustration.

3.1 Modelling Daytime Population 33

Distribution of Employees (Hospitals, Wiener Linien & Companies)
The employees of the hospitals are like the university students distributed to the hospital buildings per
hospital (see Figure 3.6 and Figure 3.7). Because of the shift operation in hospitals 50% of the population is
distributed to residential buildings (because the location of the employees in their free time is not known).
Furthermore, 50% of the employees of Wiener Linien GmbH & Co KG are distributed to the transportation
network buffer (without weighting) while the other 50% are also distributed to the residential buildings also
because of the shift work. Meanwhile, the employees from the register of companies are allocated to the
respective building where the addresses of the two datasets match. The address data of the buildings comes
from a spatial join with the address point-shapefile. Theoretically, the population is distributed to the build-
ings with the use class “Industry“ and “Commercial“ but this is not always true for the reason that residential
buildings can also house businesses. Moreover, address points can also lie within buildings of any other use
class such as “Social Infrastructure” or “Transportation“.

Figure 3.5: Distribution of Employees per University/vhs. Source: own illustration.

Figure 3.6: Distribution of Employees - Hospitals & Wiener Linien. Source: own illustration.

Distribution of Students and Employees (per University, Adult Education Centre)
Figure 3.4 and Figure 3.5 show the distribution of the students per university and employees per university
and adult education centre. The student population per university is split similar to the infants so that 50%
of the students are distributed among the residential buildings over Vienna and 50% are distributed per
university over Vienna. Per university means that the students are distributed to the faculties of each univer-
sity. There is no data available on the percentage of time a student in Austria spends at university so it was
estimated to be 50% since the data also covers advanced students. Similar to the students the employees
per university were also distributed per university. However, the population comes from the register of com-
panies where the employment data is in contrast to the student data not available for all universities. In the
same dataset (employees per university) are also the employees of the adult education centres. However,
not per centre but for all centres meaning that the population is distributed to all facilities over Vienna.

Figure 3.3: Distribution of Pupils. Source: own illustration.

Figure 3.4: Distribution of Students per University. Source: own illustration.

34 3 Method

Distribution of Remaining Employees and Unemployed
Since not all employees have been distributed yet the remaining working population is calculated by sub-
tracting the already distributed employees from the total employees per district (see Figure 3.8). The dif-
ference is then distributed to the buildings with the use “Industry”, “Commercial” or “Hospital” if the re-
spective building does not have employees already allocated to it. The unemployed are distributed to the
residential buildings over Vienna.

Distribution of Retirees
For the distribution of the retirees the population is split into elderly dependents who are nursed in re-
tirement homes/care homes and persons who are not in need of care and include strictly speaking also
the dependents who are nursed at home (see Figure 3.9). The distribution is then done accordingly to the
retirement homes for all of Vienna (since the elderly dependents can theoretically live in any retirement
home in Vienna) and to the residential buildings per registration district (as the source of the population has
the same resolution). The splitting is based on the values for the share of elderly dependents and the share
of elderly dependents in retirement homes which exist for six different age groups within the retirees (see
Table 2.10 on page 26).

Source: own illustration.Figure 3.7: Distribution of Employees - Register of Companies.

Figure 3.8: Distribution of Remaining Employees and Unemployed. Source: own illustration.

3.1 Modelling Daytime Population 35

Distribution of Remaining Population
As with the employees not the whole daytime population of Vienna is distributed by using the datasets of
Figure 3.2 - Figure 3.9 because they do not include every person (e.g. not all unemployed might be reported
as unemployed). For that reason the total daytime population is calculated by adding up the total population
by registration district and the total balance of commuters and subtracting that value from the already dis-
tributed population. This leads to the remaining population which is distributed to the residential buildings
for the whole of Vienna (see Figure 3.10).

Distribution of Patients and Subtraction from Buildings
Another consideration in the model concerns the patients (see Figure 3.11) who are distributed per hos-
pital over the whole city. The number of patients each hospital gets is derived from the number of beds
multiplied by the average occupancy rate. However, this population is basically constituted of the other
population groups who have been distributed so far thus making it necessary to subtract the patients from
those groups. As mentioned before the size of the subtrahend is weighted by the population of the respec-
tive building meaning that buildings with a large population count loose more persons than buildings with

Figure 3.9: Distribution of Retirees. Source: own illustration.

Figure 3.10: Distribution of Remaining Population.Source: own illustration.

Distribution of Remaining Employees and Unemployed
Since not all employees have been distributed yet the remaining working population is calculated by sub-
tracting the already distributed employees from the total employees per district (see Figure 3.8). The dif-
ference is then distributed to the buildings with the use “Industry”, “Commercial” or “Hospital” if the re-
spective building does not have employees already allocated to it. The unemployed are distributed to the
residential buildings over Vienna.

Distribution of Retirees
For the distribution of the retirees the population is split into elderly dependents who are nursed in re-
tirement homes/care homes and persons who are not in need of care and include strictly speaking also
the dependents who are nursed at home (see Figure 3.9). The distribution is then done accordingly to the
retirement homes for all of Vienna (since the elderly dependents can theoretically live in any retirement
home in Vienna) and to the residential buildings per registration district (as the source of the population has
the same resolution). The splitting is based on the values for the share of elderly dependents and the share
of elderly dependents in retirement homes which exist for six different age groups within the retirees (see
Table 2.10 on page 26).

Source: own illustration.Figure 3.7: Distribution of Employees - Register of Companies.

Figure 3.8: Distribution of Remaining Employees and Unemployed. Source: own illustration.

36 3 Method

a small count as those buildings have a potentially higher amount of sick people. Also, buildings with no
population assigned to it will not get negative values.

Nighttime Population
The nighttime population of Vienna for the year 2013 was also calculated but since this thesis focuses on the
daytime population the description will be short. Calculating the nighttime population is much more simple
than the daytime population because most of the residents are at home during the night. Also, commuter
numbers are not accounted for. So basically, the whole population from the registration districts shapefile
can be distributed to the residential buildings per registration district weighted by their volume. Exceptions
are the employees of the hospitals who work during the night and the residents of retirement homes. Those
two groups are of course distributed to the respective facility first. Then the remaining population can be al-
located by distributing the population per age group as well as the retirees who are not in retirement homes
to the residential buildings per registration district. Before that the employees of the hospitals who belong
to the age group 15-64 are subtracted from the same age group of the population per registration district
weighted by the population number of that registration district compared to the total population of Vienna.
This means that registration districts with more inhabitants have potentially more hospital employees who
are working and therefore a larger amount of population is subtracted from those districts. This approach
is necessary because the residence of the employees is not known. The nighttime population has also been
aggregated to the 100x100m grid.

3.2 Implementation 3.2
Calculating the daytime population of a city like Vienna using 23 different input datasets is a complex task
which involves various steps and data manipulation. In order to do this efficiently a Python script using the
ArcPy site package of the mapping and spatial analytics software ArcGIS was written. ArcPy can be used for
geographic data analysis, data conversion, data management and map automation with Python, a gener-
al-purpose programming language. (cf. Esri n.d.) The script can be found in full length in the appendix and
shows in detail how the daytime population was modelled.

Figure 3.11: Distribution of Patients and Subtraction from Buildings.Source: own illustration.

3.2 Implementation 37

What follows is an overview of the five models as well as the structure of the script with a short description
of its most important calculations (order according to the code lines). The script is divided into three parts:
in the first part the model is selected and the variables are defined, in the second part models 04 or 05 are
calculated and in the third part models 01, 02 or 03 are calculated. Table 3.1 on page 40 shows which
input datasets were used for each model.

model 01 - utilize all available data, weighting by building volume
model 02 - utilize all available data, weighting by building footprint
model 03 - utilize all available data except register of companies, weighting by building volume
model 04 - do not use auxiliary data (except balance of commuters), weighting by building volume
model 05 - do not use auxiliary data (except balance of commuters), distribute to Land Use 2012 layer,
 weighting by area

ZBEZ...registration district univ...university bkm...digital building model
BEZ.....district vhs....adult education centre

PART A - define variables
 - set model number
 - define workspace
 - define weighting factor
 - define output names
 - define input datasets (soft-coded)
 - define input field names of datasets

As mentioned before in the first part the model number is selected because the script calculates only one
model at a time. The weighting factor is already defined depending on the entered model number. Also
important in this part is the definition of the output names, input datasets and the input field names. The
values of the input datasets (e.g. number of students) are soft-coded, meaning they are obtained from an
external source (in this case database tables) and are not coded in the source code.

PART B - model 04, 05
 - dissolve ZBEZ to get aggregated population per BEZ
 - add balance of commuters to population per BEZ
 - distribute age0_4 to residential buildings/areas per ZBEZ (because there are no data on kindergartens and

they are often located in residential buildings)
 - distribute age5_9 to bkm/realnut (social infrastr.) per BEZ
 - distribute age10_64 to bkm/realnut (commercial, industry, social infrastructure) per BEZ
 - distribute age65_plus to bkm/realnut (residential) per ZBEZ
 - aggregate population to raster

If the model number is set to 04 or 05, the code in part B will be executed and the respective model is cal-
culated (meaning that the whole part is inside an if-statement). This part comes before part C because its
length is shorter (due to the fact that models 04 and 05 do not use auxiliary data and are therefore much

a small count as those buildings have a potentially higher amount of sick people. Also, buildings with no
population assigned to it will not get negative values.

Nighttime Population
The nighttime population of Vienna for the year 2013 was also calculated but since this thesis focuses on the
daytime population the description will be short. Calculating the nighttime population is much more simple
than the daytime population because most of the residents are at home during the night. Also, commuter
numbers are not accounted for. So basically, the whole population from the registration districts shapefile
can be distributed to the residential buildings per registration district weighted by their volume. Exceptions
are the employees of the hospitals who work during the night and the residents of retirement homes. Those
two groups are of course distributed to the respective facility first. Then the remaining population can be al-
located by distributing the population per age group as well as the retirees who are not in retirement homes
to the residential buildings per registration district. Before that the employees of the hospitals who belong
to the age group 15-64 are subtracted from the same age group of the population per registration district
weighted by the population number of that registration district compared to the total population of Vienna.
This means that registration districts with more inhabitants have potentially more hospital employees who
are working and therefore a larger amount of population is subtracted from those districts. This approach
is necessary because the residence of the employees is not known. The nighttime population has also been
aggregated to the 100x100m grid.

3.2 Implementation 3.2
Calculating the daytime population of a city like Vienna using 23 different input datasets is a complex task
which involves various steps and data manipulation. In order to do this efficiently a Python script using the
ArcPy site package of the mapping and spatial analytics software ArcGIS was written. ArcPy can be used for
geographic data analysis, data conversion, data management and map automation with Python, a gener-
al-purpose programming language. (cf. Esri n.d.) The script can be found in full length in the appendix and
shows in detail how the daytime population was modelled.

Figure 3.11: Distribution of Patients and Subtraction from Buildings.Source: own illustration.

38 3 Method

more simple to program) which means that less code has to be inside the if-statement. At the end of part
B there is an exit command, preventing the program to run the code of part C if model 04 or 05 were cal-
culated. The difference between model 04 and 05 is that the population in model 04 is distributed to the
buildings of the digital building model (weighted by volume) while in model 05 it is distributed to the Land
Use 2012 layer (weighted by area as there are no buildings).

PART C - model 01, 02, 03
 - dissolve ZBEZ to get aggregated population (per BEZ)
 - add pendlersaldo to population (per BEZ)

--
EMPLOYEES HOSPITAL, UNIVERSITY, ADULT EDUC. CENTRE
 - distribute working pop of hospitals (age15_64) - 50% to hospitals, 50% to residential build. (whole Vienna)
 - spatial join univ, vhs to bkm
 - distribute working pop of univ/vhs (age15_64) to universities (per univ, whole Vienna)/vhs (whole Vienna)
 - get distributed population (univ/vhs) per BEZ
 - get distributed population (hospital) per BEZ

--
REGISTER OF COMPANIES (only model 01, 02)
 - dissolve adr_points, single_part after join_adr (eliminate identical addresses)
 - join population of register of companies to adr_points
 - spatial join adr_points to bkm (one_to_many)
 - dissolve bkm and summarize population of register of companies
 - get distributed population (register of companies) per BEZ

--
EMPLOYEES WIENER LINIEN
 - buffer public transportation network
 - clip buffer (eliminate areas outside of Vienna)
 - distribute 50% of pop_wrlinien to buffer
 - distribute 50% of pop_wrlinien to residential buildings (whole Vienna)
 - get distributed population (wrlinien) per BEZ

--
REMAINING WORKING POPULATION
 - get total distributed working population per BEZ
 - calculate remaining working population per BEZ ([total working pop]-[distributed working pop])
 - distribute remaining working population per BEZ where:

USE_bkm in (trade, industry) and population of register of companies IS NULL or USE_bkm = social infra-
structure and ID_hospital IS NOT NULL and working population of hospital/univ/vhs = 0

--
UNEMPLOYED
 - distribute unemployed to bkm (residential buildings, whole Vienna)

--
INFANTS
 - spatial join kindergarten to bkm
 - distribute 50% of infants to kindergarten per BEZ
 - distribute 50% of infants to residential buildings per ZBEZ

3.2 Implementation 39

PUPILS PER SCHOOL
 - spatial join schools to bkm
 - distribute pupils (compulsory school, grammar school, other upper sec. school) to schools (whole Vienna)
 - distribute 20% of pupils (trade school) to schools
 - distribute 80% of pupils (trade school) to commercial/industry/hospital buildings

--
STUDENTS PER UNIVERSITY
 - distribute 50% of students to university buildings (per university, whole Vienna)
 - distribute 50% of students to residential buildings (whole Vienna)

--
RETIREES
 - calculate retirees in need of care
 - spatial join retirement homes to bkm
 - distribute retirees in need of care to retirement homes (whole Vienna)
 - distribute retirees in need of care to residential buildings per ZBEZ

--
PATIENTS
 - distribute patients to hospitals (whole Vienna)

--
REMAINING POPULATION
 - calculate distributed population (patients excluded) & total population of Vienna
 - calculate remaining population ([distributed pop]-[total pop])
 - distribute remaining population to residential buildings (whole Vienna)
 - subtract patients from buildings weighted by their number of residents (whole Vienna)

--
 - aggregate population to raster

Part C will be executed if model number 01, 02 or 03 is selected. Model 01 is the most accurate by including
all available datasets and distributing the population based on the building volumes. If model 02 is selected
the only change is that the weighting factor is defined as the building footprint instead of the volume. In case
of model 03 where the register of companies is excluded more of the remaining employees (=[total working
population]-[distributed working population from hospital, univ, vhs, wrlinien]) are distributed among the
buildings based on their volume instead of their address point.

40 3 Method

Dataset Model Year Type

Data on land use

Land Use Vienna (Realnutzungslayer) 01, 02, 03, 04, 05 2012 polygon-shp

Data on buildings

Digital Building Model (Digitales Baukörpermodell) 01, 02, 03, 04 2015 polygon-shp

Geospatial data

Building address data 01, 02 2015 point-shp

Location of hospitals 01, 02, 03 2017 point-shp

Location of schools 01, 02, 03 2017 point-shp

Location of universities 01, 02, 03 2017 point-shp

Location of adult education centres 01, 02, 03 2017 point-shp

Location of kindergartens 01, 02, 03 2017 point-shp

Location of retirement homes 01, 02, 03 2017 point-shp

Public transportation network 01, 02, 03 2014 line-shp

Districts & Registration Districts of Vienna 01, 02, 03, 04, 05 2014 polygon-shp

Socioeconomic data

Population of Vienna per registration district in 5 year age groups 01, 02, 03, 04, 05 2013 table

Balance of commuters 01, 02, 03, 04, 05 2012 table

Employees per hospital (from register of companies) 01, 02, 03 2015 table

Employees per university & adult education centre (from register
of companies)

01, 02, 03 2015 table

Register of companies (number of employees) 01, 02 2015 table

Employees of Wiener Linien 01, 02, 03 2013 single value

Total number of employees per district 01, 02, 03 2013 table

Total number of unemployed 01, 02, 03 2013 single value

Students per school type 01, 02, 03 2012/13 table

Students per university 01, 02, 03 2013/14 table

Retirees in retirement homes (derived from percentage of people
in need of care per age group and the amount of them which are
in retirement homes)

01, 02, 03 2013 table

Number of patients (derived from number of beds per hospital
and average occupancy rate) 01, 02, 03 2013 table

Table 3.1: Input datasets of model 01-05.

4 Results 4
Result of the population disaggregation described in the previous chapter is the daytime (and nighttime)
population of Vienna in 2013. Depending on the model the outcome of the daytime population differs by
the level of detail with model 01 being the most detailed.

4.1 Comparing Daytime and Nighttime Population 4.1
This chapter describes the results of the daytime (model 01) and nighttime disaggregation. When looking at
Figure 4.1 on page 44 which depicts both populations as well as the building use per structure it can be
seen that during the day buildings with the use “Commercial“ or “Industry“ (also “Social Infrastructure“) as
well as large buildings have more population allocated to them than residential buildings. This is expected
since those are the types of buildings where people are working or attending school. During the night this
ratio is reversed as people are mostly at home. Also, there are 207,662 less persons in the city because of
the commuters.

Building Use Average Population per
Building (Daytime)

Average Population per
Building (Nighttime) Building Count

Social Infrastructure 182.31 13.27 1788
Commercial 163.36 0.33 3380
Industry 81.42 0.00 2988
Residential 10.23 22.01 72890
Recr. and Leis. Facilities 2.10 0.00 686
Techn. Infrastr./Constr. Site 1.76 0.29 746
Transportation 1.09 0.00 908
Natural Environment 0.48 0.00 162
Agriculture 0.39 0.00 297
Public Space 0.00 0.00 77
Water Bodies 0.00 0.00 8
No data 0.00 0.00 3
Total 83,933

Table 4.1 shows the average population per building during the day and night. Excluded from the statistic
are very small buildings with a height less than 5m and an area less than 30m². These make up 26% of the
buildings of the digital building model but they have only a mean daytime population of 0.06 (0.13 night-
time) and in total 3,730 (0.5% of total daytime population) inhabitants during the day and 8,389 (0.5% of
total nighttime population) inhabitants during the night. The average population per building during the day
is as expected high for commercial and social infrastructure buildings with the maximum being 182 persons
per building (social infrastructure). During the night most of the population is concentrated in residential
buildings with an average population of 22 per building. This is more than twice the amount of the daytime
population which has a value of 10. At first this seems still like a large number for the daytime but it should
be considered that residential buildings get most of the infant population (most kindergartens are located

Table 4.1: Average Population per Building (daytime & nighttime). Select Cases where building height > 5m and build-
ing area > 30m². Source: own illustration.

44 4 Results

Legend of daytime and night-
time population see Figure 4.2; legend of building use see Figure 2.5 on page 13. Source: own illustration.
Coordinate System: ETRS 1989 LAEA.

Figure 4.1: Daytime and Nighttime Population 2013 - Digital Building Model.

4.1 Comparing Daytime and Nighttime Population 45

in residential buildings), 50% of the hospital and Wiener Linien employees, 50% of the university students,
100% of the unemployed, most of the retirees as well as 100% of the remaining population. A more detailed
view of the daytime population show Figure 4.2 (2D) and Figure 4.3 (3D) which depict the inner city of Vien-
na. Here it can be seen that many of the commercial buildings have a population of between 101 and 1,000

Figure 4.2: Daytime Population 2013 - Digital Building Model. Source: own illustration. Coordinate System: ETRS 1989
LAEA.

46 4 Results

allocated to them. Museums, opera houses and churches usually don´t get population assigned because
they are often large buildings with only a few persons inside compared to their size. For that reason they
are excluded when distributing population weighted by building volume or area. However, it is possible that
they get population from the company register if the join address matches. This is for example the case with
the Natural History Museum (200 empl.) and the Museumsquartier (263 empl.). If this is the exact amount
or if the number includes employees from other locations is unknown.

Figure 4.3: Daytime Population 2013 - Digital Building Model (3D). Shown is a part of the inner city with the Hofburg,
museums and the shopping street Mariahilfer Straße. Top: daytime population; bottom: building use. Legend see Fig-
ure 4.2. Source: own illustration.

4.1 Comparing Daytime and Nighttime Population 47

Table 4.2 shows the descriptive statistics of the daytime and nighttime population. The building with the
most inhabitants of the daytime population (21,189, see Figure 4.4, left) is the Vienna University of Econom-
ics and Business (location of 2013) and the bio centre Althanstraße which belongs to the University of Vien-
na (both buildings are grouped together in one complex). It contains both students (18,661) and university
employees (2,633). This high number can be traced to the high volume of the building as the model obvi-
ously distributes more people to larger buildings. The amount is even larger if the other buildings of a group
(e.g. institutes of a university) are much smaller. Second comes the General Hospital of Vienna with 12,138
inhabitants (main building). This group is much more diverse as it includes trade school pupils (244), uni-
versity employees (4,132 of the Medical University of Vienna), hospital employees (2,914), patients (969),
students (3,060) and employees from the company register (873). The amount of university employees
and students seems very high – this is due to the fact that the Medical University of Vienna also lectures its
students at this hospital. Since it has a very high volume compared to the other institutes of that university,
a large number of students is allocated there. On the other hand, the building with the most inhabitants
during the night is a residential building complex at Rennbahnweg (see Figure 4.4, right). The high amount
of 5,434 is also because of the large volume compared to other residential buildings.

Descriptive Statistics

N Range Min Max Sum Mean Std. Dev Var Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std. Error

population_
daytime 247560 21189 0 21189 1962262 7.93 91.596 8389.792 84.957 .005 14266 .010

population_
nighttime 247560 5434 0 5434 1758870 7.10 30.965 958.817 43.721 .005 5229.836 .010

When looking at the total daytime and nighttime population (Table 4.2) the difference between the values
can be explained by the balance of commuters, as mentioned before. The mean amount of inhabitants per
building is for both populations similar. However, the standard deviation as well as the variance are for the
daytime population much higher. This is because during the day there are much more people in structures
such as industrial buildings or universities compared to residential buildings. The skewness for both pop-

Analysis of the digital building model. Source: own illustration.Table 4.2: Descriptive Statistics (daytime & nighttime).

Left: daytime population: Vienna University of Economics
and Business & Bio Centre Althahnstraße (centre); right: nighttime population: residential buildings at Rennbahnweg.
Source: own illustration

Figure 4.4: Daytime & Nighttime Population - Examples.

48 4 Results

ulations is positive meaning that the frequency of positive values is higher than negative ones. Lastly, the
kurtosis is especially high for the daytime population which means that the values spread close around the
mean forming a steep distribution. The reason is that during the day people are working or studying and are
therefore outside of their homes resulting in a much higher number of buildings with very little inhabitants
compared to the night time when residential buildings are more populated.

population digital building model (daytime)

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid 0 5747 6.8 6.8 6.8
1 - 10 55275 65.9 65.9 72.7

11 - 25 14705 17.5 17.5 90.2
26 - 100 5432 6.5 6.5 96.7

101 - 1000 2561 3.1 3.1 99.7
1001 - 3000 182 .2 .2 100.0

3001 - 21190 31 .0 .0 100.0
Total 83933 100.0 100.0

Figure 4.5 as well as Table 4.3 and Table 4.4 show the frequency (= number of buildings) of the distributed
populations which were grouped into 7 different classes. Those classes match with the ones from the figures
already shown in this chapter. Because of the high number of very small structures (see page 43), buildings

Figure 4.5: Histogram Daytime & Nighttime Population. Select Cases where building height > 5m and building
area > 30m². Source: own illustration.

Table 4.3: Frequency Table (daytime population). Select Cases where building height > 5m and building area > 30m².
Source: own illustration.

4.1 Comparing Daytime and Nighttime Population 49

population digital building model (nighttime)

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid 0 10708 12.8 12.8 12.8
1 - 10 34392 41.0 41.0 53.7

11 - 25 20509 24.4 24.4 78.2
26 - 100 16344 19.5 19.5 97.6

101 - 1000 1959 2.3 2.3 100.0
1001 - 3000 19 .0 .0 100.0

3001 - 21190 2 .0 .0 100.0
Total 83933 100.0 100.0

with a height of less than 5m and an area of less than 30m² were excluded from these statistics. Despite
the grouping of the values and the exclusion of cases the higher kurtosis of the daytime population can still
be seen as well as a slightly positive skewness for both distributions. During the day most of the buildings
(65.9%) have between 1 and 10 inhabitants whereas buildings with very high populations of between 1,001
and 3,000 are rare (0.2%). Even higher values can be found in 31 buildings. In case of the nighttime popu-
lation the distribution is more even with 41% of the buildings housing between 1 and 10 residents. In the
group with a high amount of inhabitants (1001-3000) there are just 19 buildings while in the group 3,001+
there are only 2 buildings (see Table 4.3).

A look at the total (absolute) deviation between the daytime and nighttime population (Figure 4.6) further
confirms the observation made before that during the night residential buildings are much more populated

Table 4.4: Frequency Table (nighttime population). Select Cases where building height > 5m and building area > 30m².
Source: own illustration.

Figure 4.6: Total Deviation (absolute) per Use Class - Nighttime Population. All cases selected. Source: own illustration.

50 4 Results

while commercial and social infrastructure buildings lose population. The deviation was calculated by sub-
tracting the nighttime from the daytime population per building and summarizing both the positive (red)
and negative (blue) deviations. This means that positive deviations represent a surplus of the nighttime
population while negative deviations are the opposite. It can be seen that in residential buildings there are
cases where the daytime population is actually larger than the nighttime population. The reason for this lies
mainly in the fact that when calculating the daytime population some of the residential buildings get inhab-
itants from address points (university institutes, schools, register of companies) allocated to regardless of its
use class from the digital building model/land use layer. This indicates that the use classes from the source
dataset (land use layer) are not always correct.
The disadvantage of depicting the daytime and nighttime population per building is that the building struc-
tures vary in size thus making a comparison difficult. Because of this the disaggregation results were aggre-
gated to a 100x100m raster (see Figure 4.8). Here each cell depicts the number of residents per hectare as
the area of one cell equals one hectare. During the day the concentration of population in the inner city
stands out with shopping streets such as the Mariahilfer Straße and Kärntner Straße being visible. Also
visible are large buildings like the Vienna University of Economics and Business or the General Hospital of
Vienna. In contrast, the nighttime population has less hotspots and is distributed more evenly over Vienna.
This can also be seen when depicting the grids in 3 dimensions (Figure 4.7).

Figure 4.7: Population Grid 2013 - Daytime & Nighttime (3D). Source: own illustration.

4.1 Comparing Daytime and Nighttime Population 51

Source: own illustration. Co-
ordinate System: ETRS 1989 LAEA.
Figure 4.8: Population Grid 2013 - Daytime & Nighttime.

52 4 Results

4.2 Comparison with Model 02 4.2
When looking at the descriptive statistics of the deviations between model 02 (all data, weighting by area)
and model 01 it can be seen that the standard deviations are relatively small with 22.9 for the digital building
model and 40.8 for the population grid (Table 4.5). The skewness is negative indicating that the frequency
of the negative values is higher than the positive ones, meaning that underestimations of inhabitants occur
more often. However, the skewness (-5.6) of the grid is not distinctive. A look at the sum of the deviations
shows that it equals 0. This is due to the fact that the same total population is distributed in both models.
Finally, the high kurtosis is a sign that most of the values are near the mean which is 0. A look at Table 4.6
and Table 4.7 confirms this where 96.4% of the deviations (digital building model) lie only between -19 and
20. The percentage for the grid is still 87.8%.

Descriptive Statistics

N Range Min Max Sum Mean Std. Dev Var Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std. Error

deviation_02 247560 4831 -2830 2001 0 .00 22.907 524.743 -21.238 .005 2991.950 .010

dev_02_grid 45375 2168 -1217 951 0 .00 40.800 1664.636 -5.554 .011 175.261 .023

deviations digital building model

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid -2830 to -1500 6 .0 .0 .0
-1499 to -200 201 .2 .2 .2

-199 to -100 280 .3 .3 .6
-99 to -20 1454 1.7 1.7 2.3
-19 to 20 80934 96.4 96.4 98.7
21 to 100 790 .9 .9 99.7

101 to 200 139 .2 .2 99.8
201 to 1500 126 .2 .2 100.0

1501 to 2001 3 .0 .0 100.0
Total 83933 100.0 100.0

deviations grid

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid -1217 to -200 176 .4 .4 .4
-199 to -100 309 .7 .7 1.1

-99 to -20 2584 5.7 5.7 6.8
-19 to 20 39820 87.8 87.8 94.5
21 to 100 2074 4.6 4.6 99.1

101 to 200 279 .6 .6 99.7
201 to 951 133 .3 .3 100.0

Total 45375 100.0 100.0

Table 4.5: Descriptive Statistics (deviation model 02 - digital building model & grid). Source: own illustration.

Table 4.6: Frequency Table (deviation model 02 - digital building model). Select Cases where building height > 5m and
building area > 30m². Source: own illustration.

Table 4.7: Frequency Table (deviation model 02 - grid). All cases selected. Source: own illustration.

4.2 Comparison with Model 02 53

Figure 4.9: Model 02 - Deviation & Mean Building Height (grid). Source: own illustration. Co-
ordinate System: ETRS 1989 LAEA.

54 4 Results

When looking at the deviation grid which was calculated by subtracting the population of model 02 from
the population of model 01 per 100m grid cell it can be seen that negative deviations (where model 02 dis-
tributes less population than model 01) occur primarily near the city centre where also the mean building
heights have the highest values (Figure 4.9). Positive deviations on the other hand are common throughout
the city. The highest negative deviation (-2,830) of the digital building model can be found at the Uno City of
the United Nations (Figure 4.10, left - total population model 01: 5,000) which mainly houses working popu-
lation but also pupils of trade schools and young children since a kindergarten is located in the building. The
highest positive deviation (2,001) can be found at Altes AKH which mainly houses students but also small
children (kindergarten) and university employees (total population model 01: 4,350).

Figure 4.10: Model 02 - Examples. Left: highest negative deviation; right: highest positive deviation. Legend see Figure
4.9. Source: own illustration.

Figure 4.11: Total Deviation (absolute) per Use Class - Model 02. All cases selected. Source: own illustration.

4.2 Comparison with Model 02 55

Since model 02 differs from model 01 only through the weighting of the distribution (area vs. volume) it can
be assumed that there is a correlation between the deviation and the volume of the buildings. Accordingly,
if the distribution is weighted by the building footprints the negative deviation should be higher in buildings
with a larger volume. A notable influence of the building use is not expected which can be confirmed by
looking at Figure 4.11 which shows the total absolute deviation (positive and negative) per use class. The
deviation was calculated by subtracting the population of model 01 from the one of model 02 per building
and summarizing both the positive (red) and negative (blue) deviations. Here the positive and associated
negative deviations are roughly the same and are especially pronounced for the use classes “Residential“,
“Commercial“, “Social Infrastructure“ and “Industry“ which are essentially the ones where most of the pop-
ulation is distributed. In order to quantify the correlation between the deviation and the volume, a curve
estimation as well as a Pearson Correlation coefficient was calculated (see Figure 4.12 and Table 4.8). The
result shows only a weak correlation of -0.313 (1.0 would be a perfect correlation). This can also be seen
graphically in the curve estimation which depicts the x/y-positions of all cases (=observed) with the abscissa
being the building volume and the ordinate axis being the deviation (residents) of the buildings. The cases
are dispersed in both direction showing only a slight trend to negative deviations with increasing volume.

Correlations

deviation_02 volume

deviation_02
Pearson Correlation 1 -.313**

Sig. (2-tailed) .000
N 247560 247560

volume
Pearson Correlation -.313** 1

Sig. (2-tailed) .000
N 247560 247560

**. Correlation is significant at the 0.01 level (2-tailed).

All cases selected. Source: own illustration.Figure 4.12: Curve Estimation - Total Deviation & Volume.

Table 4.8: Pearson Correlation - Total Deviation & Volume. All cases selected. Source: own illustration.

56 4 Results

4.3 Comparison with Model 03 4.3

Model 03 distributes the population like model 01 weighted by volume with the only difference being that
model 03 excludes the company register. A look at the descriptive statistics of the deviations (Table 4.10)
shows that in contrast to the deviations of model 02 the skewness is positive, indicating that in model 03
positive deviations (= overestimation of inhabitants) are more frequent that negative ones. Also, the kurtosis
is for both the digital building model and grid much higher than the one of model 02 meaning that in model
03 more cases lie close to the mean which is 0. This can be seen as a sign that the deviations of model 03 are
lower which means the population distribution is more similar to model 01. The frequency tables of model
03 (Table 4.11 and Table 4.12) confirm this assumption as 98.2% of the buildings and 96.6% of the grid cells
have a very small deviation of only +/- 20 inhabitants (in contrast to model 02 with 96.4% and 87.8%).

Figure 4.14: Model 03 - Deviation (grid). Source: own illustration. Coordinate System: ETRS 1989
LAEA.

At first glance this seems illogical but the weak correlation can be explained by considering that different
population groups with varying sizes are distributed among different building groups. For example, univer-
sity students which are a relatively large group (189,877) are distributed among the relatively small group
of university buildings (139) which means that even small buildings will get a higher number of students
leading to higher possible deviations. Furthermore, a part of the employees (114,795) is distributed from
the company register directly to the buildings without weighting. In order to avoid these problems the cor-
relation for only one population group was calculated – the unemployed. This group is distributed among all
residential buildings for the whole of Vienna using a weighting factor (area or volume). Since both numbers
for the unemployed (120,815) and residential buildings (214,267) are high there are enough cases to calcu-
late the correlation which was done by only selecting the residential buildings. Now, Figure 4.13 and Table
4.9 show that there is a strong negative Pearson Correlation of -0.834 meaning that with increasing building
volume the deviation between model 02 and 01 becomes more negative. This confirms the assumption that
the population of large buildings tends to be underestimated when it is distributed weighted only by the
building footprints instead of the volumes.

Correlations

deviation_02_unemployed volume

deviation_02_unemployed
Pearson Correlation 1 -.834**

Sig. (2-tailed) .000
N 214267 214267

volume
Pearson Correlation -.834** 1

Sig. (2-tailed) .000
N 214267 214267

**. Correlation is significant at the 0.01 level (2-tailed).

Only residential buildings selected.
Source: own illustration.
Figure 4.13: Curve Estimation - Deviation Unemployed & Volume.

Table 4.9: Pearson Correlation - Deviation Unemployed & Volume. Only residential buildings selected. Source: own il-
lustration.

4.3 Comparison with Model 03 57

4.3 Comparison with Model 03 4.3

Model 03 distributes the population like model 01 weighted by volume with the only difference being that
model 03 excludes the company register. A look at the descriptive statistics of the deviations (Table 4.10)
shows that in contrast to the deviations of model 02 the skewness is positive, indicating that in model 03
positive deviations (= overestimation of inhabitants) are more frequent that negative ones. Also, the kurtosis
is for both the digital building model and grid much higher than the one of model 02 meaning that in model
03 more cases lie close to the mean which is 0. This can be seen as a sign that the deviations of model 03 are
lower which means the population distribution is more similar to model 01. The frequency tables of model
03 (Table 4.11 and Table 4.12) confirm this assumption as 98.2% of the buildings and 96.6% of the grid cells
have a very small deviation of only +/- 20 inhabitants (in contrast to model 02 with 96.4% and 87.8%).

Figure 4.14: Model 03 - Deviation (grid). Source: own illustration. Coordinate System: ETRS 1989
LAEA.

58 4 Results

Descriptive Statistics

N Range Min Max Sum Mean Std. Dev Var Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std. Error

deviation_03 247560 6690 -1756 4934 0 .00 26.199 686.402 71.789 .005 9584.899 .010

dev_03_grid 45375 3514 -1331 2182 0 .00 43.179 1864.452 15.177 .011 699.471 .023

deviations digital building model

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid -1756 to -1500 1 .0 .0 .0
-1499 to -200 110 .1 .1 .1

-199 to -100 126 .2 .2 .3
-99 to -20 894 1.1 1.1 1.3
-19 to 20 82453 98.2 98.2 99.6
21 to 100 183 .2 .2 99.8

101 to 200 57 .1 .1 99.9
201 to 1500 95 .1 .1 100.0

1501 to 4934 14 .0 .0 100.0
Total 83933 100.0 100.0

deviations grid

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid -1331 to -200 79 .2 .2 .2
-199 to -100 160 .4 .4 .5

-99 to -20 838 1.8 1.8 2.4
-19 to 20 43848 96.6 96.6 99.0
21 to 100 233 .5 .5 99.5

101 to 200 86 .2 .2 99.7
201 to 1500 126 .3 .3 100.0

1501 to 2182 5 .0 .0 100.0
Total 45375 100.0 100.0

Figure 4.14 shows the deviation grid of model 03 where the population of model 01 is subtracted from the
population of model 03 per grid cell. Here it can be seen that the inhabitants of commercial buildings (use
class “Industry” and “Commercial”) tend to be overestimated. This is because in model 03 there is a higher
remaining working population which is distributed because the employees of the company register are
missing. Prominent in Figure 4.14 are for example the Mariahilfer Straße which can be seen as long red line
near the centre and the 1st district directly in the centre. Both contain many commercial buildings resulting
in positive deviations. On the other hand, residential buildings tend to be underestimated. A reason for this
could be that through the company register employees are also distributed to residential buildings (since
they can include also small businesses). Those employees are of course missing in model 03 because it dis-
tributes the working population exclusively to commercial buildings and hospitals. But in total the deviations

Table 4.10: Descriptive Statistics (deviation model 03 - digital building model & grid). Source: own illustration.

Table 4.11: Frequency Table (deviation model 03 - digital building model). Select Cases where building height > 5m and
building area > 30m². Source: own illustration.

Table 4.12: Frequency Table (deviation model 03 - grid). All cases selected. Source: own illustration.

4.3 Comparison with Model 03 59

between model 01 and 03 are small. The buildings with the highest negative deviation and highest positive
deviation can be seen in Figure 4.15. Interestingly, the building with the highest negative deviation of -1,756
is a shopping mall in the 15th district (use class “Commercial“). It does not match with the company register
so in model 01 and 03 the remaining working population and also pupils of trade schools are distributed
to this building weighted by its volume resulting in 5,403 inhabitants in model 01 and 3,647 inhabitants in
model 03. The building with the highest positive deviation (4,934) is also a shopping mall, located at the
subway station Wien Mitte in the 3rd district. Here in model 01 there are 824 employees distributed through
the company register (total population: 1,411), excluding it from receiving inhabitants from the remaining
working population since it has already got its employees. In model 03 the building receives its inhabitants
mainly from the remaining working population which is weighted by its large volume resulting in a large
population count.

Figure 4.15: Model 03 - Examples. Left: highest negative deviation; right: highest positive deviation. Legend see Figure
4.9. Source: own illustration.

Figure 4.16: Total Deviation (absolute) per Use Class - Model 03. All cases selected. Source: own illustration.

60 4 Results

Finally, Figure 4.16 shows the total absolute negative and positive deviation per use class. It confirms that
positive deviations which are driven by the distribution of the remaining working population are dominant
in commercial buildings while especially residential buildings get negative deviations. Another use class with
primarily negative deviations is Social Infrastructure. A reason for this could be that like with the residential
buildings there occur matchings with the company register resulting in distributed employees in model 01
who are missing in model 03. Additionally, the remaining working population is not distributed among all
social infrastructure buildings but only to the hospitals meaning that the effects of overestimation apply less
to this use class.

4.4 Comparison with Model 04 4.4

Figure 4.17: Model 04 - Deviation (grid). Source: own illustration. Coordinate System: ETRS 1989
LAEA.

4.4 Comparison with Model 04 61

Unlike the other models discussed so far model 04 excludes all auxiliary data except the balance of commut-
ers in order to distribute the same total population in all models for a better comparability. No auxiliary data
means that the locations of schools, universities, hospitals etc. are unknown which means that for example
school children and students have to be distributed over all social infrastructure buildings. As mentioned in
chapter 2.1, those buildings can also include churches or theatres resulting in a more inaccurate distribution
of population. Noticeable in Table 4.13 is the fact that the sum of the deviations (digital building model) is in
contrast to the other models not 0 but 4,284. This is because in model 04 the public transportation network
is missing so the employees of Wiener Linien could not be distributed to the network. Instead they are al-
located like all employees to the commercial buildings. In the end, the total population of model 04 (digital
building model) equals 1,966,546 which is the total daytime population while the total population of model
01 is missing the (working) employees of Wiener Linien (=4,284) as they are allocated not to the buildings
but to the public transportation network. After aggregating the populations of model 01 and 04 to the grid
it can be seen that the sum of the deviations between both grids is again close to 0 because now in model
01 the employees from the public transportation network are also included meaning that both grids have
the same total population. Interestingly, the kurtosis of model 04 (digital building model) is higher than the
one of model 03 although the latter has a smaller absolute deviation. This may be due to the different total
populations of both models resulting in different mean values. A look at the kurtosis of the grid shows again
that the one of model 03 (699) is much higher than the one of model 04 (123).
Further, the frequency tables (Table 4.14 & Table 4.15) show that in model 04 only 93.4% (digital building
model) and 81.8% (grid) of the cases lie within +/- 20 inhabitants which is less than in the previously dis-
cussed models.

Descriptive Statistics

N Range Min Max Sum Mean Std. Dev Var Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std. Error

deviation_04 247560 21518 -7417 14100 4284 .02 65.663 4311.647 53.225 .005 11166.593 .010

dev_04_grid 45375 4057 -1895 2162 -4 .00 92.817 8615.077 4.601 .011 122.596 .023

deviations digital building model

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid -7417 to -1500 17 .0 .0 .0
-1499 to -200 427 .5 .5 .5

-199 to -100 329 .4 .4 .9
-99 to -20 2139 2.5 2.5 3.5
-19 to 20 78424 93.4 93.4 96.9
21 to 100 1570 1.9 1.9 98.8

101 to 200 392 .5 .5 99.2
201 to 1500 586 .7 .7 99.9

1501 to 14100 49 .1 .1 100.0
Total 83933 100.0 100.0

Table 4.13: Descriptive Statistics (deviation model 04 - digital building model & grid). Source: own illustration.

Table 4.14: Frequency Table (deviation model 04 - digital building model). Select Cases where building height > 5m and
building area > 30m². Source: own illustration.

Finally, Figure 4.16 shows the total absolute negative and positive deviation per use class. It confirms that
positive deviations which are driven by the distribution of the remaining working population are dominant
in commercial buildings while especially residential buildings get negative deviations. Another use class with
primarily negative deviations is Social Infrastructure. A reason for this could be that like with the residential
buildings there occur matchings with the company register resulting in distributed employees in model 01
who are missing in model 03. Additionally, the remaining working population is not distributed among all
social infrastructure buildings but only to the hospitals meaning that the effects of overestimation apply less
to this use class.

4.4 Comparison with Model 04 4.4

Figure 4.17: Model 04 - Deviation (grid). Source: own illustration. Coordinate System: ETRS 1989
LAEA.

62 4 Results

deviations grid

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid -1895 to -1500 4 .0 .0 .0
-1499 to -200 451 1.0 1.0 1.0

-199 to -100 551 1.2 1.2 2.2
-99 to -20 4026 8.9 8.9 11.1
-19 to 20 37118 81.8 81.8 92.9
21 to 100 2032 4.5 4.5 97.4

101 to 200 515 1.1 1.1 98.5
201 to 1500 664 1.5 1.5 100.0

1501 to 2162 14 .0 .0 100.0
Total 45375 100.0 100.0

A look at Figure 4.17 also illustrates the fact that the deviations are more distinctive in model 04 than the
ones of model 02 or 03. Overestimations primarily occur at social infrastructure (=schools, universities, hos-
pitals, theatres etc.), industrial and commercial buildings while residential buildings are almost exclusively
underestimated. The overestimation of industrial and commercial buildings and simultaneous underesti-
mation of residential buildings could be affiliated to the same effects found in model 03 because model 04
does not use a company register too. However, in model 03 the share of commercial buildings which are
underestimated compared to those which are overestimated is quite high. The reason for this could be that
in model 04 the age group of the working population (15-64 years) had to be extended to the pupils from
the age of 10 because these groups share the same building classes (especially social infrastructure) and
there are no auxiliary data to distinct between e.g. schools and hospitals. Accordingly, this extended age
group had to be distributed not only among commercial buildings but also to social infrastructure buildings.
Because of this a share of the working population is also distributed to these buildings which then is missing
in the commercial buildings. The reason why this concerns especially commercial buildings and not indus-
trial buildings is that the distribution is done per district and the industrial buildings are mainly located at
the edge of Vienna where less buildings of social infrastructure exist. On the other hand, the commercial
buildings are often concentrated in the inner districts with a higher density of social infrastructure buildings.
Additionally, the latter have frequently larger volumes than commercial buildings and therefore get a higher
share of the population. This is also the reason why in model 04 buildings of social infrastructure are highly
overestimated – hence they receive not only additional inhabitants from the employees but this population
group is also allocated to all buildings of social infrastructure (including e.g. theatres, operas and churches)
because of the missing location data. In contrast, in model 01 only those social infrastructure buildings get
population allocated which could be identified as school or university by a point-shapefile. The rest (thea-
tres, churches, museums etc.) do not get population because these buildings are often very large while at
the same time they house relatively few inhabitants during the day.
Figure 4.18 shows the buildings with the highest negative and positive deviation of model 04 which have
interestingly both the use class “Social Infrastructure“. The former is a building complex which houses the Vi-
enna University of Economics and Business as well as institutes of the University of Vienna. It has a negative
deviation of -7,417 (total population model 01: 21,189). This is because in model 01 it houses a large amount
of mainly students who were allocated to the building because of the university point-shapefile while in
model 04 the age group 10-64 (including students) are distributed among all social infrastructure buildings

Table 4.15: Frequency Table (deviation model 04 - grid). All cases selected. Source: own illustration.

4.4 Comparison with Model 04 63

resulting in a smaller number of inhabitants. The building with the highest deviation of 14,100 is the Messe
Wien which houses fairs and congresses (Figure 4.18, right). In model 01 no population was allocated there
because there are no address points intersecting while in model 04 it gets as a social infrastructure building
due to its large volume a high share of the age group 10-64 (14,100 inhabitants).
Lastly, Figure 4.19 shows the total absolute negative and positive deviation per use class. It confirms the
observation that without the use of auxiliary data residential buildings tend to be underestimated while
industry, commercial and social infrastructure buildings tend to be overestimated.

Figure 4.18: Model 04 - Examples. Left: highest negative deviation; right: highest positive deviation. Legend see Figure
4.9. Source: own illustration.

Figure 4.19: Total Deviation (absolute) per Use Class - Model 04. All cases selected. Source: own illustration.

64 4 Results

4.5 Comparison with Model 05 4.5

The last model is model 05 where no auxiliary data except the balance of commuters was used like in model
04 but with the difference that the population was distributed to the Land Use 2012 dataset (see Figure 2.1
on page 8) which is the basis for the use classes of the digital building model. In contrast to the latter the
land use layer consists of areas representing whole building blocks, water bodies or parks. Therefore, it lacks
information on individual buildings including building heights. Because of this the deviations from model 01
are expected to be higher. A look at Figure 4.20 confirms this – it can be seen that the colour distribution
compared to model 04 is similar (because the same effects described in chapter 4.4 occur also here) but
more distinctive with higher deviations. Accordingly, the kurtosis of the deviation grid (Table 4.16) is even
smaller than in model 04 meaning that the distribution curve is flatter and the values are more scattered
around the mean. Table 4.17 also shows that only 75.9% of the deviations lie within +/- 20 inhabitants, being
the smallest percentage compared to the other models.

Figure 4.20: Model 05 - Deviation (grid). Source: own illustration. Coordinate System: ETRS 1989
LAEA.

4.5 Comparison with Model 05 65

Descriptive Statistics

N Range Min Max Sum Mean Std. Dev Var Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std. Error

dev_05_grid 45375 4227 -2295 1932 -2 .00 114.048 13006.937 -.212 .011 75.865 .023

deviations grid

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid -2295 to -1500 13 .0 .0 .0
-1499 to -200 750 1.7 1.7 1.7

-199 to -100 887 2.0 2.0 3.6
-99 to -20 4456 9.8 9.8 13.5
-19 to 20 34435 75.9 75.9 89.3
21 to 100 2871 6.3 6.3 95.7

101 to 200 1023 2.3 2.3 97.9
201 to 1500 927 2.0 2.0 100.0

1501 to 1932 13 .0 .0 100.0
Total 45375 100.0 100.0

Table 4.16: Descriptive Statistics (deviation model 05 - grid). Source: own illustration.

Table 4.17: Frequency Table (deviation model 05 - grid). All cases selected. Source: own illustration.

4.5 Comparison with Model 05 4.5

The last model is model 05 where no auxiliary data except the balance of commuters was used like in model
04 but with the difference that the population was distributed to the Land Use 2012 dataset (see Figure 2.1
on page 8) which is the basis for the use classes of the digital building model. In contrast to the latter the
land use layer consists of areas representing whole building blocks, water bodies or parks. Therefore, it lacks
information on individual buildings including building heights. Because of this the deviations from model 01
are expected to be higher. A look at Figure 4.20 confirms this – it can be seen that the colour distribution
compared to model 04 is similar (because the same effects described in chapter 4.4 occur also here) but
more distinctive with higher deviations. Accordingly, the kurtosis of the deviation grid (Table 4.16) is even
smaller than in model 04 meaning that the distribution curve is flatter and the values are more scattered
around the mean. Table 4.17 also shows that only 75.9% of the deviations lie within +/- 20 inhabitants, being
the smallest percentage compared to the other models.

Figure 4.20: Model 05 - Deviation (grid). Source: own illustration. Coordinate System: ETRS 1989
LAEA.

5 Comparison with Reference Data 5
Independently from the modelling approach or the number of auxiliary data used, the calculation of the
daytime population of a city remains an estimation. The real population of a building is unknown, making
accuracy evaluations of the modelling results difficult. However, it is possible to compare the results with
the daytime population of another study or agency. For this thesis this was done by analysing the daytime
population 2013 of Statistik Austria, the Austrian statistical office and comparing it to the population grid of
model 01. Since Statistik Austria disaggregated the daytime population to 100x100m raster cells a compar-
ison on the level of buildings was not possible. Instead of the digital building model Statistik Austria used
address points and non-public register data to calculate the daytime population per raster cell. Nonetheless,
by aggregating the inhabitants per building of model 01 - 05 to the same raster a comparison between the
modelling results of this thesis and Statistik Austria is possible. The deviations which are discussed later in
this chapter (see Figure 5.3) are calculated by subtracting the population of model 01 from the one of Statis-
tik Austria per raster cell. Therefore, positive deviations (red) indicate Statistik Austria has more population
allocated whereas negative deviations (blue) mean the opposite. Model 01 was chosen for the comparison
because it is presumably the most accurate.
Table 5.1 shows the descriptive statistics of the population grids of Statistik Austia and model 01 (inhabitants
per raster cell). The sum of the daytime populations of the grids differs from the one of Statistik Austria by
73,454 inhabitants (3.6%). This could be explained by the fact that Statistik Austria uses other registers and
also includes areas just outside of Vienna. Also noticeable in Table 5.1 is the different range with Statistik
Austria having a much higher maximum of 36.399 whereas the maximum of model 01 is only 3,347. How-
ever, this is only an outlier since the mean values are very similar. Table 5.2 and Table 5.3 also show that the
frequency of inhabitants per cell (summarised in 5 groups) of both grids are quite similar. Apparently, most
of the values (88.1% Statistik Austria, 88.8% model 01) lie within 1 and 100 inhabitants.

Descriptive Statistics

N Range Min Max Sum Mean Std. Dev Var Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std. Error

pop_daytime_
stat_austria 45375 36399 0 36399 2040004 44.96 253.792 64410.133 75.960 .011 9731.997 .023

pop_daytime_
model01 45375 3347 0 3347 1966550 43.34 146.078 21338.808 8.675 .011 104.962 .023

population grid (daytime) - Statistik Austria

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid 1 - 100 39989 88.1 88.1 88.1
101 - 300 4065 9.0 9.0 97.1
301 - 700 948 2.1 2.1 99.2

701 - 1500 295 .7 .7 99.8
1501 - 36399 78 .2 .2 100.0

Total 45375 100.0 100.0

Source: own illustration, Statis-
tik Austria.
Table 5.1: Descriptive Statistics (daytime population grid Statistik Austria & model 01).

Table 5.2: Frequency Table (daytime population grid Statistik Austria). Source: Statistik Austria, own illustration.

68 5 Comparison with Reference Data

population grid (daytime) - model 01

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid 1 - 100 40301 88.8 88.8 88.8
101 - 300 3758 8.3 8.3 97.1
301 - 700 860 1.9 1.9 99.0

701 - 1500 329 .7 .7 99.7
1501 - 3347 127 .3 .3 100.0

Total 45375 100.0 100.0

A look at Figure 5.1 shows the population grids of Statistik Austria and model 01. It can be seen that the
distribution of the former is much more even with high amounts of population spread punctually across
Vienna. On the other hand, the population distribution of model 01 shows local concentrations which make
structures visible like shopping streets, the high density of commercial buildings in the 1st district, Vienna´s
General Hospital or the university complex in Spittelau. However, in general the distributions are similar with
higher concentrations of population near the city centre and lower values on its periphery. The peaks of
high population of the Statistik Austria grid can be seen more clearly in Figure 5.2 which is a 3-dimensional
representation of the grids. The two highest values (36,399 and 15,492) of the Statistik Austria grid could
not be completely depicted in Figure 5.2 (top) due to the length of their bars but are shown in the smaller
inset image.

Descriptive Statistics

N Range Min Max Sum Mean Std. Dev Var Skewness Kurtosis

Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Statistic Std.Error Statistic Std. Error

deviation 45375 38025 -3336 34688 73454 1.62 247.303 61158.642 68.462 .011 8877.484 .023

deviations grid

Inhabitants Frequency Percent Valid Percent Cumulative Percent

Valid -3336 to -1500 55 .1 .1 .1
-1499 to -200 982 2.2 2.2 2.3

-199 to -100 866 1.9 1.9 4.2
-99 to -20 2258 5.0 5.0 9.2
-19 to 20 35350 77.9 77.9 87.1
21 to 100 3913 8.6 8.6 95.7

101 to 200 1140 2.5 2.5 98.2
201 to 1500 767 1.7 1.7 99.9

1501 to 34688 44 .1 .1 100.0
Total 45375 100.0 100.0

Table 5.3: Frequency Table (daytime population grid model 01). Source: own illustration.

Source: own illustration, Statistik Austria.Table 5.4: Descriptive Statistics (deviations Statistik Austria & model 01).

Table 5.5: Frequency Table (deviations Statistik Austria & model 01). Source: own illustration.

5 Comparison with Reference Data 69

Figure 5.1: Daytime Population Grid 2013 - Statistik Austria & Model 01. Source: own
illustration, Statistika Austria. Coordinate System: ETRS 1989 LAEA.

70 5 Comparison with Reference Data

Figure 5.3: Statistik Austria deviation grid & building use. Source: own illustration,
Statistik Austria. Legend see Figure 2.5 on page 13. Coordinate System: ETRS 1989
LAEA.

In order to make assertions of the similarity of the grids the deviations were calculated. Table 5.4 shows
that the mean deviation is only 1.62 with the minimal deviation being -3,336 and the maximum one being
34,688 resulting in a positive skewness of 68.5. The sum of the deviations is not null but 73,454 meaning
that Statistik Austria distributed more inhabitants as mentioned before. The frequency table also shows that
77.9% of the raster cells have a deviation of +/- 20 inhabitants (Table 5.5) which is even more than model 05
with 75.9% (Table 4.17).
Most of the negative deviations occur in commercial buildings (especially in the inner city and the shopping
street Mariahilfer Straße), the industrial areas in the south (23rd district) and northeast (21st, 22nd district)
as well as social infrastructure buildings like hospitals or universities (see Figure 5.3).

Source: own illustration, Statistik Austria.
Figure 5.2: Daytime Population Grid 2013 (3D) - Statistik Austria (top) & Model 01 (bot-
tom).

5 Comparison with Reference Data 71

Figure 5.3: Statistik Austria deviation grid & building use. Source: own illustration,
Statistik Austria. Legend see Figure 2.5 on page 13. Coordinate System: ETRS 1989
LAEA.

72 5 Comparison with Reference Data

This means that model 01 tends to distribute more population to commercial and social infrastructure build-
ings. On the other hand, positive deviations where Statistik Austria allocates more population than model
01 occur mostly in residential buildings near the city centre where the average building heights are bigger.
Small deviations of +/- 20 inhabitants occur most commonly at residential buildings in the periphery where
the daytime population of both grids is generally low.

Figure 5.4 depicts an example of the General Hospital of Vienna (AKH) which shows why sometimes high
deviations occur between the two grids. The upper image shows the population grid of Statistik Austria and
as overlay the digital building model. Since Statistik Austria did not use a digital building model for the dis-
tribution it can be seen that most of the cells which intersect with the hospital in the centre do not contain
any inhabitants with the exception of two cells with a very large population count of 9,205 and 5,141. They
probably intersect with an address point and therefore got the full daytime population of the hospital. The
lower image shows the population grid of model 01. Here it can be seen that the population of the hospital
is distributed evenly over the main as well as the smaller buildings. However, when adding up the popula-
tion count of the 33 cells which intersect with the hospital it shows that Statistik Austria distributed 16,114
inhabitants while model 01 distributed in the same area a similar amount of 18,562 inhabitants. The highest
positive deviations occur in the main buildings of the University of Vienna (34,688) as well as the Technical
University of Vienna (13,826) with the reason being similar to the situation described above where Statistik
Austria probably allocates all of the students (which is a high number for both universities) in the raster cell
where the address point of the university intersects. In model 01 the same population is distributed among
all university institutes resulting in a high deviation compared to Statistik Austria.

Figure 5.5 shows the opposite where model 01 distributes more population than Statistik Austria. This oc-
curs at the hospital Semmelweis Frauenklinik which occupies four social infrastructure buildings along the
central vertical axis of the image. Statistik Austria distributes to the southernmost building 406 inhabitants
while model 01 distributes among all four buildings a total of 7,623 persons. This number consists of 215
patients, 14 trade school pupils and 7,431 employees making up most of the population. The reason for this
high number is that this hospital is not included in the company register and therefore the remaining work-
ing population (which is the difference between the total working population and through registers already
distributed working population) is distributed among its buildings weighted by their volumes. As already
seen in Figure 4.19 on page 63 the working population tends to be overestimated without a company
register. Another example of a high negative deviation can be found at one of the buildings of the Technical
University of Vienna (Wiedner Hauptstraße 8-10) where one raster cell has a deviation of -2743. The reason
for this lies in the above described case where Statistik Austria locates all of the students of a university at
the main building where the address point is located leaving the neighbouring cells empty or with very little
inhabitants from e.g. intersecting residential buildings. The described negative deviation occurs in such a
cell.

Despite the fact that the disaggregation approaches of Statistik Austria and model 01 differ, it can be said
that both population grids show a similar distribution of inhabitants making the results of model 01 plau-
sible. Some differences occur at large buildings where Statistik Austria distributes its whole population or
the whole population of a company/university to one single raster cell whereas the distribution of model 01
is more even. However, similar errors from the register of companies are possible. On other occasions the
population numbers of Statistik Austria might be more accurate because of the non-public registers which
were used as input data.

5 Comparison with Reference Data 73

Figure 5.4: Example 1: General Hospital of Vienna (AKH). Top: Statistik Austria population grid, bottom: model 01 pop-
ulation grid. Source: own illustration, Statistik Austria. Coordinate System: ETRS 1989 LAEA.

74 5 Comparison with Reference Data

Top: Statistik Austria population grid, bottom: model 01 population
grid. Source: own illustration, Statistik Austria. Coordinate System: ETRS 1989 LAEA.
Figure 5.5: Example 2: Semmelweis Frauenklinik.

Top: Statistik Austria population grid, bottom: model 01 population
grid. Source: own illustration, Statistik Austria. Coordinate System: ETRS 1989 LAEA.
Figure 5.5: Example 2: Semmelweis Frauenklinik.

Conclusions
This thesis developed an approach how the daytime population of a city can be modelled based on areal
weighting. Through the implementation in a Python script the analysis could be automated, facilitating the
population calculation for a different time or city or the adjustment of individual parameters. Since the used
method is data driven, five different models were developed in order to examine where and how high the
population distribution deviate when some datasets are not available such as the building heights, compa-
ny register or no ancillary data at all. Model 01 uses all available datasets and distributes the population
weighted by volume. Model 02 also uses all datasets but uses only the building footprints as weighting
factor. Model 03 is the same as model 01 but excludes the company register. Modell 04 does not use any
auxiliary data at all and distributes the population to the buildings weighted by volume. Finally, model 05 is
the same as model 04 but does not use the digital building model, distributing its population to the land use
layer weighted by area.
The deviations were calculated by subtracting the population per building (or raster cell) of model 01 (which
uses all datasets) from those of model 02-05 or the population grid of Statistik Austria. It can be seen that in
case of Vienna the lowest deviations occur when the company register is excluded. The reason for this is that
the population number which is distributed through the register makes up only 5.9% of the total daytime
population. The exclusion of the company register leads particularly to overestimations in commercial and
industrial buildings and to underestimations in residential buildings. The second lowest deviations can be
found in model 02 where the disaggregation was weighted only by the building footprints rather than their
volume. Here the over- and underestimations are less dependent on the building use and instead correlated
to the building volume where the inhabitants of buildings with higher volumes tend to be rather under-
estimated which is expected. Next comes model 04 which does not use ancillary data but distributes the
population to the buildings weighted by volume resulting in overestimations in commercial, industrial and
social infrastructure buildings and underestimations in residential buildings. Similar but higher deviations
can be found in model 05 which also does not use ancillary data but distributes the population to the land
use 2012 layer.
It is rather difficult to make assumptions about the accuracy of the modelling results because the exact
number of inhabitants per building during the day is unknown. However, what can be done is a comparison
of the analysis results with other studies or institutions. In case of this thesis the results were compared to
the population grid of Vienna (2013) provided by Statistik Austria. Since Statistik Austria calculated the day-
time population on the level of 100m raster cells, the results of this study had to be aggregated to the same
raster making also the comparison between the five models easier. Figure 1 shows the distribution of the
deviations per grid cell for all models and the Statistik Austria grid. When looking at the total absolute de-
viations which are calculated by summarizing both the positive and negative deviations over all raster cells
it can be seen that the highest deviations can be found in the grid of Statistik Austria. At the same time, its
absolute deviations are closest to those of model 05 which also did not use building data. However, Statistik
Austria used a different method for its population distribution based on address points and non-public data
which manifests in the different distribution of the deviations. While especially models 04 and 05 tend to
underestimate the inhabitants of residential buildings in comparison with model 01, Statistik Austria tends
to overestimates them while underestimating commercial, industrial and social infrastructure buildings. In-
accuracies in the Statistik Austria grid especially occur where large buildings or institutions like universities
with several buildings get all their inhabitants allocated to only one grid cell based on the corresponding
address point.

78 Conclusions

In case of model 01 inaccuracies are expected through the company register because it includes companies
which list all of their domestic and/or international employees in their headquarters. To acknowledge this,
only entries of smaller companies with less than 1,000 employees were included for the modelling. Never-
theless, this threshold was estimated and probably does not exclude all cases. Other inaccuracies can lie in
the fact that not all datasets are available from the same year with many of the geospatial datasets being
from the year 2017. Furthermore, the building use is derived from the land use 2012 layer of Vienna which
can lead to buildings getting the wrong use class. This can result in warehouses or other normally empty
buildings getting inhabitants allocated to. Especially large warehouses can get large amounts of inhabitants.
Therefore, the accuracy could be improved by only using datasets of the same year, improving the use clas-
sification of the digital building model and using a company register which lists the actual employees per
company and address. Problematic though could be the availability or the amount of work needed to get
the desired information.
Although the developed approach of modelling the daytime population does include many datasets and
population groups there is still way for improvement. For example, data on tourists including hotel bookings
and visitor numbers of attractions could be considered which would be in particular helpful for disaster
management and risk assessment. Also, busy public spaces such as shopping streets could be modelled in-
cluding the consideration of police officers and other population groups working in public space. Ultimately,
much of the challenge lies in the acquisition and preparation of the datasets which are necessary for accu-
rate modelling results.

Conclusions 79

Figure 1: Deviations (grid) of all models & Statistik Austria. Source: own illustration, Statistik Austria. Legend of
building use see Figure 2.5 on page 13. Coordinate System: ETRS 1989 LAEA.

80

Literature

Amt der Oö. Landesregierung (ed.) (2014): Landeskorrespondenz Medieninfo. Unterstützungsangebote
für pflegende Angehörige in Oberösterreich – Amt der Oö. Landesregierung, Linz

Aubrecht C. et al. (2009): Integrating earth observation and GIScience for high resolution spatial and func-
tional modeling of urban land use. – In: Computers, Environment and Urban Systems 33, 15-25

Deville P. et al. (2014): Dynamic population mapping using mobile phone data. – Proceedings of the Nation-
al Academy of Sciences; doi: 10.1073/pnas.1408439111

European Commission (1993): CORINE land cover. Technical guide – Brussels and Luxembourg
European Environment Agency (2002): Towards an urban atlas. Assessment of spatial data on 25 European

cities and urban areas. – Copenhagen (= Environmental issue report 30)
Freire S., Florczyk A. and Ferri S. (2015): Modeling Day- and Nighttime Population Exposure at High Reso-

lution: Application to Volcanic Risk Assessment in Campi Flegrei. – Proceedings of the ISCRAM 2015
Conference, Kristiansand

MA18 Stadtentwicklung Wien (ed.) (2005): STEP 05. Stadtentwicklung Wien 2005 – MA 18, Vienna
MA18 Stadtentwicklung Wien (ed.) (2014): STEP 2025. Stadtentwicklungsplan Wien – MA 18, Vienna
Martin D. et al. (2014): Developing a flexible framework for spatiotemporal population modeling. – Annals

of the Association of American Geographers; doi: 10.1080/00045608.2015.1022089
Medizinische Universität Wien (ed.) (2015): Zukunft gestalten. Jahresbericht 2015 – Medizinische Univer-

sität Wien, Vienna
Mennis J. and Hultgren T. (2006): Intelligent Dasymetric Mapping and Its Application to Areal Interpolation.

– In: Cartography and Geographic Information Science 33 (3), 179-194
Statistisches Bundesamt (ed.) (2013): Pflegestatistik 2013. Pflege im Rahmen der Pflegeversicherung

Deutschlandergebnisse – Statistisches Bundesamt, Wiesbaden
Steinnocher K. et al. (2014): Modellierung raum-zeitlicher Bevölkerungsverteilungsmuster im Katastro-

phenmanagementkontext. – In: Proceedings REAL CORP 2014 Tagungsband, 909-913
Steinnocher K., Köstl M. and Weichselbaum J. (2015): Grid-based population and land take trend indi-

cators. New approaches introduced by the geoland2 Core Information Service for Spatial Planning.
– Vienna; https://www.researchgate.net/publication/266285682_Grid-based_population_and_
land_take_trend_indicators_-_New_approaches_introduced_by_the_geoland2_Core_Information_
Service_for_Spatial_Planning (30.03.2017)

Taubenböck H. et al. (2008): Multi-scale Assessment of Population Distribution utilizing Remotely Sensed
Data. The Case Study Padang, West Sumatra, Indonesia – Wessling (= International Conference on
Tsunami Warning); https://www.researchgate.net/publication/259902076_Multi-scale_assessment_
of_population_distribution_utilizing_remotely_sensed_data_-_The_case_study_Padang_West_Su-
matra_Indonesia (30.03.2017)

Taubenböck H. and Dech S. (ed.) (2010): Fernerkundung im urbanen Raum. Erdbeobachtung auf dem Weg
zur Planungspraxis – WBG, Darmstadt

Wiener Linien (ed.) (2013): 2013. Zahlen Daten Fakten – Wiener Linien, Vienna
WKO (ed.) (2006): Ausbilden zahlt sich aus!. Moderne Lehrberufe im Dienstleistungsbereich – Wirtschafts-

kammer Österreich, Vienna

81

Internet

City of Vienna (n.d. a): Realnutzungskartierung - Flächennutzung im Stadtgebiet; https://www.wien.gv.at/
stadtentwicklung/grundlagen/stadtforschung/siedlungsentwicklung/realnutzungskartierung/index.
html (10.05.2017)

City of Vienna (n.d. b): Baukörpermodell - Produktinformation; https://www.wien.gv.at/stadtentwicklung/
stadtvermessung/geodaten/bkm/produkt.html (11.05.2017)

City of Vienna (n.d. c): Flächen-Mehrzweckkarte; https://www.wien.gv.at/stadtentwicklung/stadtver-
messung/geodaten/fmzk/index.html (11.05.2017)

Copernicus (n.d.): Imperviousness; http://land.copernicus.eu/pan-european/high-resolution-layers/imper-
viousness (25.06.2017)

Esri (n.d.): What is ArcPy?; http://pro.arcgis.com/en/pro-app/arcpy/get-started/what-is-arcpy-.htm
(22.05.2017)

United Nations (2014): World’s population increasingly urban with more than half living in urban areas;
http://www.un.org/en/development/desa/news/population/world-urbanization-prospects-2014.
html (02.09.2016)

82

Table of Figures

Figure 2.1: Land Use Vienna 2012. .. 8
Figure 2.2: Digital Building Model - a comparison. .. 10
Figure 2.3: Digital Building Model of Vienna - Land use. .. 12
Figure 2.4: Count of buildings per use class. .. 12
Figure 2.5: Digital Building Model of Vienna (detailed) - Land use. .. 13
Figure 2.6: Percent of Building area compared to the Total Area per District. .. 14
Figure 2.7: Geospatial datasets (excluding address points and public transportation). 15
Figure 2.8: Example: Point-shapefile (hospitals) & the digital building model. .. 16
Figure 2.9: Building Address Points. .. 17
Figure 2.10: Building Address Points. .. 17
Figure 2.11: Public Transportation Network of Vienna. ... 18
Figure 2.12: Districts and Registration Districts of Vienna. ... 19
Figure 2.13: Balance of Commuters 2012. .. 21
Figure 2.14: Students per School Type 2012/13. .. 25
Figure 2.15: Students per University 2013/14. .. 26
Figure 3.1: Principle of Population Disaggregation and Aggregation. .. 29
Figure 3.2: Distribution of Infants. ... 31
Figure 3.3: Distribution of Pupils. .. 32
Figure 3.4: Distribution of Students per University. .. 32
Figure 3.5: Distribution of Employees per University/vhs. ... 33
Figure 3.6: Distribution of Employees - Hospitals & Wiener Linien. ... 33
Figure 3.7: Distribution of Employees - Register of Companies. ... 34
Figure 3.8: Distribution of Remaining Employees and Unemployed. ... 34
Figure 3.9: Distribution of Retirees. ... 35
Figure 3.10: Distribution of Remaining Population. ... 35
Figure 3.11: Distribution of Patients and Subtraction from Buildings. .. 36
Figure 4.1: Daytime and Nighttime Population 2013 - Digital Building Model. ... 44
Figure 4.2: Daytime Population 2013 - Digital Building Model. ... 45
Figure 4.3: Daytime Population 2013 - Digital Building Model (3D). .. 46
Figure 4.4: Daytime & Nighttime Population - Examples. ... 47
Figure 4.5: Histogram Daytime & Nighttime Population. .. 48
Figure 4.6: Total Deviation (absolute) per Use Class - Nighttime Population. .. 49
Figure 4.7: Population Grid 2013 - Daytime & Nighttime (3D). ... 50
Figure 4.8: Population Grid 2013 - Daytime & Nighttime. .. 51
Figure 4.9: Model 02 - Deviation & Mean Building Height (grid). ... 53
Figure 4.10: Model 02 - Examples. .. 54
Figure 4.11: Total Deviation (absolute) per Use Class - Model 02. .. 54
Figure 4.12: Curve Estimation - Total Deviation & Volume. ... 55
Figure 4.13: Curve Estimation - Deviation Unemployed & Volume. .. 56
Figure 4.14: Model 03 - Deviation (grid). .. 57
Figure 4.15: Model 03 - Examples. .. 59
Figure 4.16: Total Deviation (absolute) per Use Class - Model 03. .. 59
Figure 4.17: Model 04 - Deviation (grid). .. 60
Figure 4.18: Model 04 - Examples. .. 63
Figure 4.19: Total Deviation (absolute) per Use Class - Model 04. .. 63
Figure 4.20: Model 05 - Deviation (grid). .. 64
Figure 5.1: Daytime Population Grid 2013 - Statistik Austria & Model 01. ... 69
Figure 5.2: Daytime Population Grid 2013 (3D) - Statistik Austria (top) & Model 01 (bottom). 70
Figure 5.3: Statistik Austria deviation grid & building use. ... 71
Figure 5.4: Example 1: General Hospital of Vienna (AKH). ... 73
Figure 5.5: Example 2: Semmelweis Frauenklinik. ... 74
Figure 1: Deviations (grid) of all models & Statistik Austria.. 79

83

Table of Tables

Table 1.1: Overview of data used in population modelling. ... 4
Table 2.1: Use case Vienna: input datasets. ... 7
Table 2.2: Total area per land use class. ... 9
Table 2.3: Average volume per building. ... 14
Table 2.4: Count of Facilities. .. 16
Table 2.5: Population of Vienna in 2013. ... 20
Table 2.6: Balance of Commuters 2012. .. 22
Table 2.7: Employees per Hospital 2015. ... 23
Table 2.8: Employees per University & Adult Education Centre 2015. ... 23
Table 2.9: Total number of Employees per District 2013. ... 24
Table 2.10: Retirees in Retirement Homes 2013. .. 26
Table 2.11: Number of Patients per Hospital 2013. .. 27
Table 3.1: Input datasets of model 01-05. .. 40
Table 4.1: Average Population per Building (daytime & nighttime). .. 43
Table 4.2: Descriptive Statistics (daytime & nighttime). ... 47
Table 4.3: Frequency Table (daytime population). ... 48
Table 4.4: Frequency Table (nighttime population). .. 49
Table 4.5: Descriptive Statistics (deviation model 02 - digital building model & grid). 52
Table 4.6: Frequency Table (deviation model 02 - digital building model). ... 52
Table 4.7: Frequency Table (deviation model 02 - grid). ... 52
Table 4.8: Pearson Correlation - Total Deviation & Volume. ... 55
Table 4.9: Pearson Correlation - Deviation Unemployed & Volume. .. 56
Table 4.10: Descriptive Statistics (deviation model 03 - digital building model & grid). 58
Table 4.11: Frequency Table (deviation model 03 - digital building model). ... 58
Table 4.12: Frequency Table (deviation model 03 - grid). ... 58
Table 4.13: Descriptive Statistics (deviation model 04 - digital building model & grid). 61
Table 4.14: Frequency Table (deviation model 04 - digital building model). ... 61
Table 4.15: Frequency Table (deviation model 04 - grid). ... 62
Table 4.16: Descriptive Statistics (deviation model 05 - grid). ... 65
Table 4.17: Frequency Table (deviation model 05 - grid). ... 65
Table 5.1: Descriptive Statistics (daytime population grid Statistik Austria & model 01). 67
Table 5.2: Frequency Table (daytime population grid Statistik Austria). .. 67
Table 5.3: Frequency Table (daytime population grid model 01). ... 68
Table 5.4: Descriptive Statistics (deviations Statistik Austria & model 01). ... 68
Table 5.5: Frequency Table (deviations Statistik Austria & model 01). ... 68

The author assures:

• that he wrote the master´s thesis independently, did not use other sources than quoted and refrained
from using other unapproved aids.

• that all passages, both literal and analogous, that come from published and non-published sources are
marked.

• that the topic of this Master´s thesis was never passed on as an auditing work to a supervisor, neither
domestically nor abroad.

• that this thesis is identical to the one assessed by the supervisor.

 Date Signature
19.09.2017

86 Appendix

Appendix
#---#

#---------------------------00-12 Disaggregate Data & Aggregate to Raster-------------------------#

#---#

import datetime

start1 = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start1)

import arcpy, os, sys

arcpy.env.overwriteOutput = True

Set analysis_no

01...etrs89_output_alldata

02...etrs89_output_alldata_noheight

03...etrs89_output_alldata_nofirmenreg

04...etrs89_output_no_auxiliary_data

05...etrs89_output_no_aux_no_bkm

analysis_no = “_02” ###

Define Workspace

ws = r”C:\Users\Aquarius\Desktop\project”

gdb = ws + os.sep + “project01.gdb”

wsInput = gdb + os.sep + “etrs89”

wsOutput2 = gdb + os.sep + “etrs89_analysis_output”

wsTemp = gdb + os.sep + “etrs89_temp”

if analysis_no == “_01”:

 wsOutput = gdb + os.sep + “etrs89_output_alldata”

elif analysis_no == “_02”:

 wsOutput = gdb + os.sep + “etrs89_output_alldata_noheight”

elif analysis_no == “_03”:

 wsOutput = gdb + os.sep + “etrs89_output_alldata_nofirmenreg”

elif analysis_no == “_04”:

 wsOutput = gdb + os.sep + “etrs89_output_no_auxiliary_data”

elif analysis_no == “_05”:

 wsOutput = gdb + os.sep + “etrs89_output_no_aux_no_bkm”

Define w_factor

if analysis_no == “_01” or analysis_no == “_03” or analysis_no == “_04”:

 w_factor = “[Shape_Area]*[height]”

elif analysis_no == “_02” or analysis_no == “_05”:

 w_factor = “[Shape_Area]”

Define Output Names

output_bkm = “bkm_output”

output_bkm2 = “bkm_output2”

output_bkm3 = “bkm_output3”

output_zbez = “zbez_output”

output_bez = “bez_etrs”

output_realnut = “realnut_output”

Appendix 87

output_realnut2 = “realnut_output2”

output_buffer_wrlinien = “public_transportation_buffer”

if analysis_no == “_01”:

 output_grid = “grid_aggregated_alldata”

elif analysis_no == “_02”:

 output_grid = “grid_aggregated_alldata_noheight”

elif analysis_no == “_03”:

 output_grid = “grid_aggregated_alldata_nofirmenreg”

elif analysis_no == “_04”:

 output_grid = “grid_aggregated_no_auxiliary_data”

elif analysis_no == “_05”:

 output_grid = “grid_aggregated_no_auxiliary_data_realnut”

Define Inputs

input_zbez = “zbez_etrs”

input_bkm = “bkm”

input_realnut = “realnut2012”

input_grid = “grid_100”

point_univ = “univOGD”

point_vhs = “vhsOGD”

point_adr = “address_point”

point_kiga = “ogd_kiga”

point_schools = “ogd_schule_wien”

point_ret_home = “ogd_wohnpflege”

network_transp = “public_transportation”

table_pendlersaldo = “pendlersaldo”

table_hosp_empl = “besch_kh”

table_univ_vhs_empl = “besch_univ_vhs”

table_firmenreg = “branche_besch_korr”

table_wrlinien_empl = “besch_wr_linien”

table_total_empl = “besch_gesamt”

table_unempl = “unemployed”

table_schueler = “schueler”

table_students_univ = “studenten”

table_patients = “patients”

#---#

Input Fields

zbez_etrs

OID = “OBJECTID”

ID_zbez = “ZBEZ_NR”

ID_bez = “BEZ”

POP_total = “pop_total”

POP_0_4 = “age0_4”

POP_5_9 = “age5_9”

POP_10_14 = “age10_14”

POP_15_19 = “age15_19”

POP_20_29 = “age20_29”

POP_30_64 = “age30_64”

POP_60_64 = “age60_64”

88 Appendix

POP_65_69 = “age65_69”

POP_70_74 = “age70_74”

POP_75_79 = “age75_79”

POP_80_84 = “age80_84”

POP_85_89 = “age85_89”

POP_90plus = “age90_plus”

bkm

w_factor_bkm = “w_factor”

ID_bkm = “code_bkm”

height_bkm = “height”

vol_bkm = “volume”

length_bkm = “Shape_Length”

area_bkm = “Shape_Area”

ID_hospital = “kh_id”

NAME_hospital = “hospital”

USE_bkm = “NUTZUNG__1”

living = “Wohn- u. Mischnutzung (Schwerpunkt Wohnen)”

trade = “Geschäfts,- Kern- und Mischnutzung (Schwerpunkt betriebl. Tätigkeit)”

industry = “Industrie- und Gewerbenutzung”

social = “soziale Infrastruktur”

realnut2012

OID_realnut = “OBJECTID”

length_realnut = “Shape_Length”

area_realnut = “Shape_Area”

w_factor_realnut = “w_factor”

USE_realnut = “NUTZUNG__1”

living2 = “Wohn- u. Mischnutzung (Schwerpunkt Wohnen)”

trade2 = “Geschäfts,- Kern- und Mischnutzung (Schwerpunkt betriebl. Tätigkeit)”

industry2 = “Industrie- und Gewerbenutzung”

social2 = “soziale Infrastruktur”

grid_100

ID_grid = “grid_id”

univOGD

NAME_univ1 = “univ1”

NAME_univ2 = “univ2”

vhsOGD

NAME_vhs = “vhs”

address_point

join_adr = “joi_adr”

ogd_kiga

TYPE_kiga = “type_kiga”

BEZ_kiga = “BEZ_kiga”

Appendix 89

ogd_schule_wien

BEZ_schule = “BEZ_schule”

TYP_GEN = “TYP_GEN”

NAME_ogd_pflichtschule = “Pflichtschule”

NAME_ogd_berufsschule = “Berufsschule”

NAME_ogd_andere_hoehere = “andere hoehere”

NAME_ogd_ahs = “AHS”

ogd_wohnpflege

BEZ_pflege = “BEZ_pflege”

TYPE_pflege = “care_home”

pendlersaldo

pendlersaldo_stud = “pendlersaldo_schueler_studenten”

pendlersaldo_working = “pendlersaldo_arbeitendeBev”

pendlersaldo_total = “pendlersaldo”

besch_kh

POP_15_64_hospital = “p15_64_w_hosp”

ID_hospital2 = “kh_id”

ID_count = “id”

besch_univ_vhs

POP_15_64_univ_vhs = “p15_64_w_univ_vhs”

ID_count2 = “id”

NAME_univ = “NAME”

TYPE_univ = “TYP”

type_univ = “University”

branche_besch_korr

POP_15_64_firmenreg = “p15_64_firmenreg”

join_adr_firmenreg = “joi_adr”

NAME_firmenreg = “Firmenname”

besch_wr_linien

POP_15_64_wrlinien = “p15_64_wr_linien”

besch_gesamt

POP_15_64_besch_ges = “age15_64_besch_gesamt”

unemployed

POP_15_64_unemployed = “p15_64_unemployed”

schueler

NAME_pflichtschule = “Pflichtschule”

NAME_berufsschule = “Berufsschule”

NAME_andere_hoehere = “andere_hoehere”

NAME_ahs = “AHS”

90 Appendix

studenten

NAME_univ_stud = “NAME”

POP_20_29_studenten = “p20_29_studenten”

patients

POP_patients = “patients”

ID_count3 = “id”

ID_hospital_pat = “kh_id”

#---#

Outputs

output_name_pendlersaldo = output_bez + analysis_no

output_name_firmenreg = output_bkm2 + analysis_no

output_name_wrlinien = output_buffer_wrlinien + analysis_no

output_name_kiga = output_zbez + analysis_no

output_name_total_pop = output_bkm3 + analysis_no

output_name_aggregate = output_grid

Define table_temp

table_temp = gdb + os.sep + “table_temp”

###

################################### MODEL 04 & 05 #######################################

###

if analysis_no == “_04” or analysis_no == “_05”:

 if analysis_no == “_04”:

 bkm_output = output_bkm + analysis_no

 bkm_output2 = output_bkm2 + analysis_no

 zbez_output = output_zbez + analysis_no

 USE_bkm_realnut = USE_bkm

 w_factor_bkm_realnut = w_factor_bkm

 elif analysis_no == “_05”:

 bkm_output = output_realnut + analysis_no

 bkm_output2 = output_realnut2 + analysis_no

 zbez_output = output_zbez + analysis_no

 USE_bkm_realnut = USE_realnut

 w_factor_bkm_realnut = w_factor_realnut

 #---#

 #--Dissolve ZBEZ to get aggregated pop (per BEZ) for age10_14, age15_19, age20_29, age30_64---#

 #-----------------------Add pendlersaldo to population (per BEZ)------------------------------#

 #---#

 print “--”

 print “---------------Add pendlersaldo to population per BEZ---------------------”

Appendix 91

 print “--\n”

 input_fc_pendlersaldo = wsInput + os.sep + input_zbez # zbez_etrs

 input_table_pendlersaldo = gdb + os.sep + table_pendlersaldo # pendlersaldo

 output_fc_pendlersaldo = wsOutput + os.sep + output_name_pendlersaldo # bez_etrs

 print “Input data:”

 print input_zbez + “ (polygon_fc)”

 print table_pendlersaldo + “ (table)”

 #--ANALYSIS---#

 print “\n----------------------------------ANALYSIS--------------------------------\n”

 # Dissolve ZBEZ to get age10_14, age15_19, age20_29, age30_64 per BEZ

 print “Process: Dissolve ZBEZ to get BEZ”

 arcpy.Dissolve_management(input_fc_pendlersaldo, output_fc_pendlersaldo, ID_bez,

 “””{} SUM;{} SUM;{} SUM;{} SUM;{} SUM;{} SUM;{} SUM;

 {} SUM;{} SUM; {} SUM; {} SUM; {} SUM; {} SUM; {} SUM”””.format(POP_total, POP_0_4,

POP_5_9, POP_10_14, POP_15_19,

 POP_20_29, POP_30_64, POP_60_64, POP_65_69, POP_70_74, POP_75_79, POP_80_84,

POP_85_89, POP_90plus),

 “MULTI_PART”, “DISSOLVE_LINES”)

 # Join pendlersaldo_arbeitendeBev & pendlersaldo_schueler_studenten from table pendlersaldo

 print “Process: Join pendlersaldo to BEZ”

 arcpy.JoinField_management(output_fc_pendlersaldo, ID_bez, input_table_pendlersaldo, ID_bez,

 “{};{}”.format(pendlersaldo_stud, pendlersaldo_working))

 # Calculate pendlersaldo

 print “Process: Calculate pendlersaldo”

 arcpy.AddField_management(output_fc_pendlersaldo, “pendlersaldo”, “DOUBLE”)

 arcpy.CalculateField_management(output_fc_pendlersaldo,”pendlersaldo”,”[{}]+[{}]”.format(pend-

lersaldo_stud, pendlersaldo_working))

 # Calculate field age10_64_plus_pendler

 print “Process: Calculate field age10_64_plus_pendler”

 arcpy.AddField_management(output_fc_pendlersaldo, “age10_64_plus_pendler”, “DOUBLE”)

 arcpy.CalculateField_management(output_fc_pendlersaldo,”age10_64_plus_pendler”,

 “[pendlersaldo]+[SUM_{}]+[SUM_{}]+[SUM_{}]+[SUM_{}]”.format(POP_10_14, POP_15_19,

POP_20_29, POP_30_64))

 #---#

 print “\n--”

 print “\nOutput Data:”

 print output_name_pendlersaldo + “ (polygon_fc)”

 print “\nOutput Fields in “ + output_name_pendlersaldo + “:”

 print “age10_64_plus_pendler”

 end = datetime.datetime.now()

92 Appendix

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s\n’ % (end-start1)

 print “\n##\n\n”

 #---#

 #------------------------------------Distribute age0_4--#

 #---#

 print “--”

 print “-------------------------Distribute age0_4--------------------------------”

 print “--\n”

 import datetime

 start = datetime.datetime.now()

 print ‘start run: %0.19s\n’ % (start)

 if analysis_no == “_04”:

 source_fc = wsInput + os.sep + input_bkm

 elif analysis_no == “_05”:

 source_fc = wsInput + os.sep + input_realnut

 arcpy.CalculateField_management(source_fc, “w_factor”, w_factor)

 arcpy.CopyFeatures_management(source_fc, wsOutput + os.sep + bkm_output)

 source_fc_kiga = wsInput + os.sep + input_zbez

 arcpy.CopyFeatures_management(source_fc_kiga, wsOutput + os.sep + zbez_output)

 input_fc_kiga = wsOutput + os.sep + bkm_output # bkm_output

 input_fc2_kiga = wsOutput + os.sep + zbez_output # zbez_output

 print “Input data:”

 print bkm_output + “ (polygon_fc)”

 print zbez_output + “ (polygon_fc)”

 #---ANALYSIS--#

 #---------------------Distribute Population (age0_4_athome) to bkm--------------------------#

 print “\n---------------------------------ANALYSIS---------------------------------”

 print “------------------Distribute Population (age0_4) to bkm-------------------\n”

 # Process: Identity (get buildings per ZBEZ)

 print “Identity (bkm, zbez)”

 output_identity = wsTemp + os.sep + “output_identity_zbez”

 arcpy.Identity_analysis(input_fc_kiga, input_fc2_kiga, output_identity)

 arcpy.AddField_management(output_identity, “w_factor2”, “DOUBLE”)

 arcpy.CalculateField_management(output_identity, “w_factor2”, w_factor)

 # Add Fields

 arcpy.AddField_management(output_identity, “w_factor_total2”, “DOUBLE”)

 arcpy.AddField_management(output_identity, “w_factor_percent2”, “DOUBLE”)

 arcpy.AddField_management(output_identity, “p0_4_w_athome”, “DOUBLE”)

Appendix 93

 print “\nDistribute p0_4_w_athome to Wohngebäude per ZBEZ:”

 SC = arcpy.SearchCursor(input_fc2_kiga)

 field_nr = OID

 field_id = ID_zbez

 field_pop = POP_0_4

 for row in SC:

 f_nr = row.getValue(field_nr)

 f_id = row.getValue(field_id)

 pop_athome = row.getValue(field_pop)

 # Selecting Features (Wohngebäude) per ZBEZ

 arcpy.MakeFeatureLayer_management (output_identity, “input_fc_f_layer”)

 if analysis_no == “_04”:

 use = living

 elif analysis_no == “_05”:

 use = living2

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

 “{} = {} and {} = ‘{}’”.format(ID_zbez, f_id, USE_bkm_

realnut, use))

 # Process: Summary Statistics (getting total w_factor of all buildings per ZBEZ)

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “w_factor2 SUM”)

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_w_factor2”

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for ZBEZ “ + str(f_id) + “(“ + str(f_nr) + “)”

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total2”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent2”, “[w_factor2]/[w_

factor_total2]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p0_4_w_athome”, “{} * [w_factor_per-

cent2]”.format(pop_athome))

 print “\nDissolve output_identity”

 output_diss_identity = wsTemp + os.sep + “output_diss_identity2”

 arcpy.Dissolve_management(output_identity, output_diss_identity, ID_bkm, “p0_4_w_athome SUM”,

“MULTI_PART”, “DISSOLVE_LINES”)

 print “Join p0_4_w_athome to bkm_output2”

 arcpy.DeleteField_management(input_fc_kiga, [“SUM_p0_4_w_athome”])

 arcpy.JoinField_management(input_fc_kiga, ID_bkm, output_diss_identity, ID_bkm, “SUM_p0_4_w_

athome”)

 # Check distributed population

 arcpy.Statistics_analysis(input_fc2_kiga, table_temp, “{} SUM”.format(POP_0_4))

94 Appendix

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(POP_0_4)

 for row in SC:

 pop_zbez = row.getValue(field_sum)

 arcpy.Statistics_analysis(input_fc_kiga, table_temp, “SUM_p0_4_w_athome SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_SUM_p0_4_w_athome”

 for row in SC:

 pop = row.getValue(field_sum)

 print “\nTotal Population (age0_4) = “ + str(int(round(pop_zbez,0)))

 print “Distributed Population (p0_4_w_athome) = “ + str(int(round(pop,0)))

 #---#

 print “\n--”

 print “\nOutput Data:”

 print bkm_output + “ (polygon_fc)”

 print “\nOutput Fields in “ + bkm_output + “:”

 print “SUM_p0_4_w_athome”

 end = datetime.datetime.now()

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s\n’ % (end-start)

 print “\n##\n\n”

 #---#

 #---------------------------------Distribute age5_9 to bkm------------------------------------#

 #---#

 print “--”

 print “-------------------------Distribute age5_9 to bkm-------------------------”

 print “--\n”

 import datetime

 start = datetime.datetime.now()

 print ‘start run: %0.19s\n’ % (start)

 input_fc_schueler = wsOutput + os.sep + bkm_output # bkm_output

 input_fc2_schueler = wsOutput + os.sep + output_name_pendlersaldo # bez_etrs

 print “Input data:”

 print bkm_output + “ (polygon_fc)”

 print output_name_pendlersaldo + “ (polygon_fc)”

 #---------------------------------------ANALYSIS---#

 #-------------------------------Distribute age5_9 to bkm-------------------------------------#

Appendix 95

 print “\n---------------------------------ANALYSIS---------------------------------”

 print “--------------------------Distribute age5_9 to bkm------------------------\n”

 # Process: Identity (get buildings per BEZ)

 print “Identity (bkm, bez)”

 output_identity = wsTemp + os.sep + “output_identity2”

 arcpy.Identity_analysis(input_fc_schueler, input_fc2_schueler, output_identity)

 arcpy.AddField_management(output_identity, “w_factor2”, “DOUBLE”)

 arcpy.CalculateField_management(output_identity, “w_factor2”, w_factor)

 # Add Fields

 arcpy.AddField_management(output_identity, “w_factor_total2”, “DOUBLE”)

 arcpy.AddField_management(output_identity, “w_factor_percent2”, “DOUBLE”)

 arcpy.AddField_management(output_identity, “p5_9”, “DOUBLE”)

 print “\nDistribute age5_9 to bkm:”

 SC = arcpy.SearchCursor(input_fc2_schueler)

 field_id = ID_bez

 field_pop = “SUM_{}”.format(POP_5_9)

 for row in SC:

 f_id = row.getValue(field_id)

 pop_5_9 = row.getValue(field_pop)

 # Selecting Features (soziale Infrastruktur) per BEZ

 arcpy.MakeFeatureLayer_management (output_identity, “input_fc_f_layer”)

 if analysis_no == “_04”:

 use = social

 elif analysis_no == “_05”:

 use = social2

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

 “{} = {} and {} = ‘{}’”.format(ID_bez, f_id, USE_

bkm_realnut, use))

 # Process: Summary Statistics (getting total w_factor of all buildings per BEZ)

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “w_factor2 SUM”)

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_w_factor2”

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for BEZ “ + str(f_id)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total2”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent2”, “[w_factor2]/[w_

factor_total2]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p5_9”, “{} * [w_factor_percent2]”.

format(pop_5_9))

96 Appendix

 print “\nDissolve output_identity”

 output_diss_identity = wsTemp + os.sep + “output_diss_identity”

 arcpy.Dissolve_management(output_identity, output_diss_identity, ID_bkm, “p5_9 SUM”, “MULTI_

PART”, “DISSOLVE_LINES”)

 print “Join p5_9 to bkm_output2”

 arcpy.DeleteField_management(input_fc_schueler, [“SUM_p5_9”])

 arcpy.JoinField_management(input_fc_schueler, ID_bkm, output_diss_identity, ID_bkm, “SUM_p5_9”)

 # Check distributed population

 arcpy.Statistics_analysis(input_fc2_schueler, table_temp, “SUM_{} SUM”.format(POP_5_9))

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_SUM_{}”.format(POP_5_9)

 for row in SC:

 p5_9 = row.getValue(field_sum)

 arcpy.Statistics_analysis(input_fc_schueler, table_temp, “SUM_p5_9 SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_SUM_p5_9”

 for row in SC:

 p5_9_distr = row.getValue(field_sum)

 print “\nTotal Population (5_9) = “ + str(int(round(p5_9,0)))

 print “Distributed Population (5_9) = “ + str(int(round(p5_9_distr,0)))

 #---#

 print “\n--”

 print “\nOutput Data:”

 print bkm_output + “ (polygon_fc)”

 print “\nOutput Fields in “ + bkm_output + “:”

 print “SUM_p5_9”

 end = datetime.datetime.now()

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s\n’ % (end-start)

 print “\n##\n\n”

 #---#

 #----------------------------------Distribute age10_64 to bkm---------------------------------#

 #---#

 print “--”

 print “------------------------Distribute age10_64 to bkm------------------------”

 print “--\n”

 import datetime

 start = datetime.datetime.now()

Appendix 97

 print ‘start run: %0.19s\n’ % (start)

 input_fc_10_64 = wsOutput + os.sep + bkm_output # bkm_output

 input_fc2_10_64 = wsOutput + os.sep + output_name_pendlersaldo # bez_etrs

 print “Input data:”

 print bkm_output + “ (polygon_fc)”

 print output_name_pendlersaldo + “ (polygon_fc)”

 #---ANALYSIS---#

 #-----------------------------------Distribute age10_64 to bkm-------------------------------#

 print “\n---------------------------------ANALYSIS---------------------------------”

 print “-------------------------Distribute age10_64 to bkm-----------------------\n”

 # Add Field

 arcpy.AddField_management(output_identity, “p10_64_plus_pendler”, “DOUBLE”)

 print “Distribute age10_64 to bkm per BEZ:”

 SC = arcpy.SearchCursor(input_fc2_10_64)

 field_id = ID_bez

 field_pop = “age10_64_plus_pendler”

 for row in SC:

 f_id = row.getValue(field_id)

 pop_10_64 = row.getValue(field_pop)

 # Selecting Features (soziale Infrastruktur) per BEZ

 arcpy.MakeFeatureLayer_management (output_identity, “input_fc_f_layer”)

 if analysis_no == “_04”:

 use1 = trade

 use2 = industry

 use3 = social

 elif analysis_no == “_05”:

 use1 = trade2

 use2 = industry2

 use3 = social2

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

 “{} = {} and {} in (‘{}’, ‘{}’, ‘{}’)”.format(ID_

bez, f_id, USE_bkm_realnut, use1, use2, use3))

 # Process: Summary Statistics (getting total w_factor of all buildings per BEZ)

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “w_factor2 SUM”)

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_w_factor2”

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for BEZ “ + str(f_id)

98 Appendix

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total2”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent2”, “[w_factor2]/[w_

factor_total2]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p10_64_plus_pendler”, “{} * [w_fac-

tor_percent2]”.format(pop_10_64))

 print “\nDissolve output_identity”

 output_diss_identity = wsTemp + os.sep + “output_diss_identity2”

 arcpy.Dissolve_management(output_identity, output_diss_identity, ID_bkm, “p10_64_plus_pendler

SUM”, “MULTI_PART”, “DISSOLVE_LINES”)

 print “Join p10_64_plus_pendler to bkm_output”

 arcpy.DeleteField_management(input_fc_10_64, [“SUM_p10_64_plus_pendler”])

 arcpy.JoinField_management(input_fc_10_64, ID_bkm, output_diss_identity, ID_bkm, “SUM_p10_64_

plus_pendler”)

 # Check distributed population

 arcpy.Statistics_analysis(input_fc2_10_64, table_temp, “age10_64_plus_pendler SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_age10_64_plus_pendler”

 for row in SC:

 p10_64 = row.getValue(field_sum)

 arcpy.Statistics_analysis(input_fc_10_64, table_temp, “SUM_p10_64_plus_pendler SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_SUM_p10_64_plus_pendler”

 for row in SC:

 p10_64_distr = row.getValue(field_sum)

 print “\nTotal Population (10_64) = “ + str(int(round(p10_64,0)))

 print “Distributed Population (10_64) = “ + str(int(round(p10_64_distr,0)))

 #---#

 print “\n--”

 print “\nOutput Data:”

 print bkm_output + “ (polygon_fc)”

 print “\nOutput Fields in “ + bkm_output + “:”

 print “SUM_p10_64_plus_pendler”

 end = datetime.datetime.now()

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s\n’ % (end-start)

 print “\n##\n\n”

 #---#

 #-----------------------------------Distribute age65_plus to bkm------------------------------#

Appendix 99

 #---#

 print “--”

 print “-----------------------Distribute age65_plus to bkm-----------------------”

 print “--\n”

 import datetime

 start = datetime.datetime.now()

 print ‘start run: %0.19s\n’ % (start)

 input_fc_65_plus = wsOutput + os.sep + bkm_output # bkm_output

 input_fc2_65_plus = wsOutput + os.sep + zbez_output # zbez_output

 print “Input data:”

 print bkm_output + “ (polygon_fc)”

 print zbez_output + “ (polygon_fc)”

 #---ANALYSIS---#

 #-------------------------Distribute age65_plus to bkm per ZBEZ----------------------------#

 print “\n---------------------------------ANALYSIS---------------------------------”

 print “------------------Distribute age65_plus to bkm per ZBEZ-------------------\n”

 # Calculate age_65_plus in zbez_output

 arcpy.DeleteField_management(input_fc2_65_plus, [“age_65_plus”])

 arcpy.AddField_management(input_fc2_65_plus, “age_65_plus”, “DOUBLE”)

 arcpy.CalculateField_management(input_fc2_65_plus, “age_65_plus”,

“[{}]+[{}]+[{}]+[{}]+[{}]+[{}]”.format(POP_65_69, POP_70_74, POP_75_79, POP_80_84, POP_85_89,

POP_90plus))

 output_identity = wsTemp + os.sep + “output_identity_zbez”

 # Add Fields

 arcpy.AddField_management(output_identity, “p65_plus_ret_athome”, “DOUBLE”)

 print “\nDistribute p65_plus_ret_athome to Wohngebäude per ZBEZ:”

 SC = arcpy.SearchCursor(input_fc2_65_plus)

 field_nr = OID

 field_id = ID_zbez

 field_pop = “age_65_plus”

 for row in SC:

 f_nr = row.getValue(field_nr)

 f_id = row.getValue(field_id)

 pop_athome = row.getValue(field_pop)

 # Selecting Features (Wohngebäude) per ZBEZ

 arcpy.MakeFeatureLayer_management (output_identity, “input_fc_f_layer”)

 if analysis_no == “_04”:

 use = living

 elif analysis_no == “_05”:

 use = living2

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

100 Appendix

 “{} = {} and {} = ‘{}’”.format(ID_zbez, f_id, USE_

bkm_realnut, use))

 # Process: Summary Statistics (getting total w_factor of all buildings per ZBEZ)

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “w_factor2 SUM”)

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_w_factor2”

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for ZBEZ “ + str(f_id) + “(“ + str(f_nr) + “)”

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total2”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent2”, “[w_factor2]/[w_

factor_total2]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p65_plus_ret_athome”, “{} * [w_factor_

percent2]”.format(pop_athome))

 print “\nDissolve output_identity”

 output_diss_identity = wsTemp + os.sep + “output_diss_identity_new”

 arcpy.Dissolve_management(output_identity, output_diss_identity, ID_bkm, “p65_plus_ret_athome

SUM”, “MULTI_PART”, “DISSOLVE_LINES”)

 print “Join p65_plus_ret_athome to bkm_output”

 arcpy.DeleteField_management(input_fc_65_plus, [“SUM_p65_plus_ret_athome”])

 arcpy.JoinField_management(input_fc_65_plus, ID_bkm, output_diss_identity, ID_bkm, “SUM_p65_

plus_ret_athome”)

 # Check distributed population

 arcpy.Statistics_analysis(input_fc2_65_plus, table_temp, “age_65_plus SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_age_65_plus”

 for row in SC:

 pop = row.getValue(field_sum)

 arcpy.Statistics_analysis(input_fc_65_plus, table_temp, “SUM_p65_plus_ret_athome SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_SUM_p65_plus_ret_athome”

 for row in SC:

 pop_distr = row.getValue(field_sum)

 print “\nTotal Population (age_65_plus) = “ + str(int(round(pop,0)))

 print “Distributed Population (age_65_plus) = “ + str(int(round(pop_distr,0)))

 #---#

 print “\n--”

 print “\nOutput Data:”

 print bkm_output + “ (polygon_fc)”

Appendix 101

 print zbez_output + “ (polygon_fc)”

 print “\nOutput Fields in “ + bkm_output + “:”

 print “SUM_p65_plus_ret_athome”

 print “\nOutput Fields in “ + zbez_output + “:”

 print “age_65_plus”

 end = datetime.datetime.now()

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s\n’ % (end-start)

 print “\n##\n\n”

 #---#

 #----------------------Create bkm_output2 and calculate total population----------------------#

 #---#

 print “--”

 print “------------Create bkm_output2 and calculate total population-------------”

 print “--\n”

 import datetime

 start = datetime.datetime.now()

 print ‘start run: %0.19s\n’ % (start)

 if analysis_no == “_04”:

 input_fc_total_pop = wsInput + os.sep + input_bkm # bkm

 elif analysis_no == “_05”:

 input_fc_total_pop = wsInput + os.sep + input_realnut

 input_fc2_total_pop = wsOutput + os.sep + bkm_output # bkm_output

 input_fc3_total_pop = wsOutput + os.sep + zbez_output # zbez_output

 output_fc_total_pop = wsOutput2 + os.sep + bkm_output2 # bkm_output2

 input_table_pendlersaldo = gdb + os.sep + table_pendlersaldo # pendlersaldo

 print “Input data:”

 if analysis_no == “_04”:

 print input_bkm + “ (polygon_fc)”

 elif analysis_no == “_05”:

 print input_realnut + “ (polygon_fc)”

 print bkm_output + “ (polygon_fc)”

 print zbez_output + “ (polygon_fc)”

 print table_pendlersaldo + “ (table)”

#--ANALYSIS---#

 #-------------------Create bkm_output2 and calculate total population-------------------------#

 print “\n---------------------------------ANALYSIS---------------------------------”

 print “------------Create bkm_output2 and calculate total population-------------\n”

102 Appendix

 # Create bkm_output2

 print “Create bkm_output2”

 arcpy.CopyFeatures_management(input_fc_total_pop, output_fc_total_pop)

 # Join Fields

 f1 = “SUM_p0_4_w_athome”

 f2 = “SUM_p5_9”

 f3 = “SUM_p10_64_plus_pendler”

 f4 = “SUM_p65_plus_ret_athome”

 print “Join Fields”

 arcpy.JoinField_management(output_fc_total_pop, “code_bkm”, input_fc2_total_pop, ID_bkm,

 [“SUM_p0_4_w_athome”, “SUM_p5_9”, “SUM_p10_64_plus_pendler”, “SUM_p65_plus_ret_athome”])

 # Replace <Null> with 0

 print “Replace <Null> with 0”

 expression = “myCalc(!SUM_p0_4_w_athome!)”

 codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

 arcpy.CalculateField_management(output_fc_total_pop, “SUM_p0_4_w_athome”, expression, “PY-

THON_9.3”, codeblock)

 expression = “myCalc(!SUM_p5_9!)”

 codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

 arcpy.CalculateField_management(output_fc_total_pop, “SUM_p5_9”, expression, “PYTHON_9.3”,

codeblock)

 expression = “myCalc(!SUM_p10_64_plus_pendler!)”

 codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

 arcpy.CalculateField_management(output_fc_total_pop, “SUM_p10_64_plus_pendler”, expression,

“PYTHON_9.3”, codeblock)

 expression = “myCalc(!SUM_p65_plus_ret_athome!)”

 codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

 arcpy.CalculateField_management(output_fc_total_pop, “SUM_p65_plus_ret_athome”, expression,

“PYTHON_9.3”, codeblock)

Appendix 103

 # Calculate total population

 print “Calculate total population”

 arcpy.AddField_management(output_fc_total_pop, “population_vienna”, “DOUBLE”)

 arcpy.CalculateField_management(output_fc_total_pop, “population_vienna”,

 “[{}]+[{}]+[{}]+[{}]”.format(f1, f2, f3, f4))

 # Check calculated population

 arcpy.Statistics_analysis(input_fc3_total_pop, table_temp, “{} SUM”.format(POP_total))

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(POP_total)

 for row in SC:

 pop = row.getValue(field_sum)

 arcpy.Statistics_analysis(input_table_pendlersaldo, table_temp, “{} SUM”.format(pendlersal-

do_total))

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(pendlersaldo_total)

 for row in SC:

 pendlersaldo = row.getValue(field_sum)

 population = pop + pendlersaldo

 arcpy.Statistics_analysis(output_fc_total_pop, table_temp, “population_vienna SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_population_vienna”

 for row in SC:

 pop_distr = row.getValue(field_sum)

 print “\nTotal Population = “ + str(int(round(population,0)))

 print “Distributed Population = “ + str(int(round(pop_distr,0)))

 #---#

 print “\n--”

 print “\nOutput Data:”

 print bkm_output2 + “ (polygon_fc)”

 print “\nOutput Fields in “ + bkm_output2 + “:”

 print “population_vienna”

 end = datetime.datetime.now()

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s\n’ % (end-start)

 print “\n##\n\n”

 #---#

 #------------------------------Aggregate population to raster--------------------------------#

104 Appendix

#---#

 print “--”

 print “-----------------------Aggregate population to raster---------------------”

 print “--\n”

 import datetime

 start = datetime.datetime.now()

 print ‘start run: %0.19s\n’ % (start)

 input_fc = wsOutput2 + os.sep + bkm_output2 # bkm_output2

 input_fc2 = wsInput + os.sep + input_grid # grid

 output_fc = wsOutput2 + os.sep + output_name_aggregate # grid_aggregated

 print “Input data:”

 print bkm_output2 + “ (polygon_fc)”

 print input_grid + “ (polygon_fc)”

 #--ANALYSIS 1---#

 #---------------------------Aggregate population to raster------------------------------------#

 print “\n--------------------------------ANALYSIS 1--------------------------------”

 print “------------------------Aggregate population to raster--------------------\n”

 # Make Feature Layer

 arcpy.MakeFeatureLayer_management(input_fc, “f_layer”, “”, “”,

 “””SUM_p0_4_w_athome SUM_p0_4_w_athome VISIBLE RATIO;

 SUM_p5_9 SUM_p5_9 VISIBLE RATIO;

 SUM_p10_64_plus_pendler SUM_p10_64_plus_pendler VISIBLE RATIO;

 SUM_p65_plus_ret_athome SUM_p65_plus_ret_athome VISIBLE RATIO;

 population_vienna population_vienna VISIBLE RATIO”””)

 # Process: Identity

 print “Identity (buildings per grid cell)”

 output_identity = wsTemp + os.sep + “identity_grid_aggr”

 arcpy.Identity_analysis(“f_layer”, input_fc2, output_identity, “ALL”, “”, “NO_RELATIONSHIPS”)

 # Process: Spatial Join

 print “Spatial Join (bkm from identity to grid)”

 FID_bkm_output2 = “FID_” + output_bkm2 + analysis_no

 arcpy.SpatialJoin_analysis(input_fc2, output_identity, output_fc, “JOIN_ONE_TO_ONE”, “KEEP_

ALL”,

 “””Shape_Length “Shape_Length” false true true 8 Double 0 0 ,First,#,{0},Shape_

Length,-1,-1;

 Shape_Area “Shape_Area” false true true 8 Double 0 0 ,First,#,{0},Shape_Area,-1,-1;

 {3} “{3}” false true true 8 Double 0 0 ,First,#,{0},{3},-1,-1;

 {1} “{1}” true true false 4 Long 0 0 ,First,#,{1},{2},-1,-1;

 {4} “{4}” true true false 8 Double 0 0 ,First,#,{2},{4},-1,-1;

 {5} “{5}” true true false 8 Double 0 0 ,First,#,{2},{5},-1,-1;

 {6} “{6}” true true false 8 Double 0 0 ,Mean,#,{2},{6},-1,-1;

 {7} “{7}” true true false 8 Double 0 0 ,First,#,{2},{7},-1,-1;

 {8} “{8}” true true false 150 Text 0 0 ,First,#,{2},{8},-1,-1;

Appendix 105

 {9} “{9}” true true false 50 Text 0 0 ,First,#,{2},{9},-1,-1;

 {10} “{10}” true true false 70 Text 0 0 ,First,#,{2},{10},-1,-1;

 SUM_p0_4_w_athome “SUM_p0_4_w_athome” true true false 8 Double 0 0 ,Sum,#,{2},SUM_

p0_4_w_athome,-1,-1;

 SUM_p5_9 “SUM_p5_9” true true false 8 Double 0 0 ,Sum,#,{2},SUM_p5_9,-1,-1;

 SUM_p10_64_plus_pendler “SUM_p10_64_plus_pendler” true true false 4 Long 0 0

,Sum,#,{2},SUM_p10_64_plus_pendler,-1,-1;

 SUM_p65_plus_ret_athome “SUM_p65_plus_ret_athome” false true true 8 Double 0 0

,Sum,#,{2},SUM_p65_plus_ret_athome,-1,-1;

 population_vienna “population_vienna” false true true 8 Double 0 0 ,Sum,#,{2},popula-

tion_vienna,-1,-1”””

 .format(input_fc2, FID_bkm_output2, output_identity, ID_grid, w_factor_bkm_realnut,

ID_bkm, height_bkm, vol_bkm, ID_hospital, NAME_hospital, USE_bkm),

 “CONTAINS”, “#”, “#”)

 # Check if Spatial Join worked - if not (code_bkm = 0) print error message and exit

 var = arcpy.da.SearchCursor(output_fc, (“{}”.format(ID_bkm),)).next()[0]

 if var == 0:

 print “ERROR IN FIELD MAPS”

 sys.exit()

 # Check calculated population

 arcpy.Statistics_analysis(output_fc, table_temp, “population_vienna SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_population_vienna”

 for row in SC:

 pop_distr = row.getValue(field_sum)

 print “\nTotal Population = “ + str(int(round(population,0)))

 print “Distributed Population = “ + str(int(round(pop_distr,0)))

 #---#

 print “\n--”

 print “\nOutput Data:”

 print output_name_aggregate + “ (polygon_fc)”

 print “\nOutput Fields in “ + output_name_aggregate + “:”

 print “SUM_p0_4_w_athome”

 print “SUM_p5_9”

 print “SUM_p10_64_plus_pendler”

 print “SUM_p65_plus_ret_athome”

 print “population_vienna”

 end = datetime.datetime.now()

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s’ % (end-start)

 print ‘\ntotal runtime: %0.7s\n’ % (end-start1)

 sys.exit()

106 Appendix

###

################################### MODEL 01 - 03 #######################################

###

print “\n##\n\n”

#---#

#---Dissolve ZBEZ to get aggregated pop (per BEZ) for age10_14, age15_19, age20_29, age30_64------#

#--------------------------------Add pendlersaldo to population (per BEZ)-------------------------#

#---#

print “--”

print “---------------Add pendlersaldo to population per BEZ---------------------”

print “--\n”

input_fc_pendlersaldo = wsInput + os.sep + input_zbez # zbez_etrs

input_table_pendlersaldo = gdb + os.sep + table_pendlersaldo # pendlersaldo

output_fc_pendlersaldo = wsOutput + os.sep + output_name_pendlersaldo # bez_etrs

print “Input data:”

print input_zbez + “ (polygon_fc)”

print table_pendlersaldo + “ (table)”

#--ANALYSIS---#

print “\n----------------------------------ANALYSIS--------------------------------\n”

Dissolve ZBEZ to get age10_14, age15_19, age20_29, age30_64 per BEZ

print “Process: Dissolve ZBEZ to get BEZ”

arcpy.Dissolve_management(input_fc_pendlersaldo, output_fc_pendlersaldo, ID_bez,

 “””{} SUM;{} SUM;{} SUM;{} SUM;{} SUM;{} SUM;{} SUM;

 {} SUM;{} SUM; {} SUM; {} SUM; {} SUM; {} SUM; {} SUM”””.format(POP_total, POP_0_4,

POP_5_9, POP_10_14, POP_15_19,

 POP_20_29, POP_30_64, POP_60_64, POP_65_69, POP_70_74, POP_75_79, POP_80_84,

POP_85_89, POP_90plus),

 “MULTI_PART”, “DISSOLVE_LINES”)

Calculate age10_29 & age15_64 for BEZ

print “Process: Calculate fields age10_29 & age15_64”

arcpy.AddField_management(output_fc_pendlersaldo, “age10_29”, “DOUBLE”)

arcpy.AddField_management(output_fc_pendlersaldo, “age15_64”, “DOUBLE”)

arcpy.CalculateField_management(output_fc_pendlersaldo, “age10_29”, “[SUM_{}]+[SUM_{}]+[SUM_{}]”.

format(POP_10_14, POP_15_19, POP_20_29))

arcpy.CalculateField_management(output_fc_pendlersaldo, “age15_64”, “[SUM_{}]+[SUM_{}]+[SUM_{}]”.

format(POP_15_19, POP_20_29, POP_30_64))

Join pendlersaldo_arbeitendeBev & pendlersaldo_schueler_studenten from table pendlersaldo

print “Process: Join pendlersaldo to BEZ”

arcpy.JoinField_management(output_fc_pendlersaldo, ID_bez, input_table_pendlersaldo, ID_bez,

 “{};{}”.format(pendlersaldo_stud, pendlersaldo_working))

Appendix 107

Calculate age10_29_plus_pendler & age15_64_plus_pendler for BEZ

print “Process: Calculate fields age10_29 & age15_64 (plus pendler)”

arcpy.AddField_management(output_fc_pendlersaldo, “age10_29_plus_pendler”, “DOUBLE”)

arcpy.AddField_management(output_fc_pendlersaldo, “age15_64_plus_pendler”, “DOUBLE”)

arcpy.CalculateField_management(output_fc_pendlersaldo, “age10_29_plus_pendler”, “[age10_29]+[{}]”.

format(pendlersaldo_stud))

arcpy.CalculateField_management(output_fc_pendlersaldo, “age15_64_plus_pendler”, “[age15_64]+[{}]”.

format(pendlersaldo_working))

#---#

print “\n--”

print “\nOutput Data:”

print output_name_pendlersaldo + “ (polygon_fc)”

print “\nOutput Fields in “ + output_name_pendlersaldo + “:”

print “age10_29_plus_pendler”

print “age15_64_plus_pendler”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start1)

###

print “\n##\n\n”

#---#

#Distribute Working Population (Hospitals [1/2], University, VHS) to bkm and subtract from bez

(age15_64_plus_pendler)#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “----Distribute Working Pop (hosp, univ, vhs) to bkm & subtract from BEZ---”

print “--\n”

source_fc_h_univ_vhs = wsInput + os.sep + input_bkm

arcpy.CalculateField_management(source_fc_h_univ_vhs, w_factor_bkm, w_factor)

arcpy.CopyFeatures_management(source_fc_h_univ_vhs, wsOutput + os.sep + output_bkm + analysis_no)

input_fc_h_univ_vhs = wsOutput + os.sep + output_bkm + analysis_no # bkm_output

input_fc2_h_univ_vhs = wsOutput + os.sep + output_bez + analysis_no # bez_etrs

input_fc3_h_univ_vhs = wsInput + os.sep + point_univ # univOGD

input_fc4_h_univ_vhs = wsInput + os.sep + point_vhs # vhsOGD

input_table1_h_univ_vhs = gdb + os.sep + table_hosp_empl # besch_kh

108 Appendix

input_table2_h_univ_vhs = gdb + os.sep + table_univ_vhs_empl # besch_univ_vhs

print “Input data:”

print input_bkm + “ (polygon_fc)”

print output_bez + analysis_no + “ (polygon_fc)”

print point_univ + “ (point_fc)”

print point_vhs + “ (point_fc)”

print table_hosp_empl + “ (table)”

print table_univ_vhs_empl + “ (table)”

#---ANALYSIS 1--#

#---Distribute Working Population (age15_64) to Group of Buildings (hospitals [1/2], univ, vhs)---#

print “\n--------------------------------ANALYSIS 1--------------------------------”

print “--------------Distribute working pop (age15_64) to buildings--------------\n”

Add Fields

arcpy.AddField_management(input_fc_h_univ_vhs, “w_factor_total”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “w_factor_percent”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “p15_64_w_hosp”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “p15_64_w_univ”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “p15_64_w_vhs”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “p15_64_w_univ_vhs”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “p15_64_w_hosp_univ_vhs”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “percent”, “DOUBLE”)

Calculate p15_64_w_hosp (1/2)

SC = arcpy.SearchCursor(input_table1_h_univ_vhs)

field_id = ID_count

field_name = ID_hospital2

field_pop = POP_15_64_hospital

for row in SC:

 f_id = row.getValue(field_id)

 name = row.getValue(field_name)

 pop_besch = row.getValue(field_pop)

 arcpy.MakeFeatureLayer_management (input_fc_h_univ_vhs, “input_fc_f_layer”)

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.for-

mat(ID_hospital, name))

 # Process: Summary Statistics

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(w_factor_bkm)

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for “ + str(name) + “ (“ + str(int(round(f_id,0))) + “)”

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total”, value)

Appendix 109

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent”, “[w_factor]/[w_factor_

total]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p15_64_w_hosp”, “{} * [w_factor_percent] *

1/2”.format(pop_besch))

 arcpy.CalculateField_management(“input_fc_f_layer”, “percent”, “1”)

#---------------------------------------#

Calculate p15_64_w_hosp_athome (1/2)

arcpy.AddField_management(input_fc_h_univ_vhs, “w_factor_total_hosp_athome”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “w_factor_percent_hosp_athome”, “DOUBLE”)

arcpy.AddField_management(input_fc_h_univ_vhs, “p15_64_w_hosp_athome”, “DOUBLE”)

Selecting Features (Wohngebäude)

arcpy.MakeFeatureLayer_management (input_fc_h_univ_vhs, “input_fc_f_layer”)

use = living

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.for-

mat(USE_bkm, use))

Process: Summary Statistics (getting total w_factor of all buildings)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Get Number of Employees at home

arcpy.Statistics_analysis(input_table1_h_univ_vhs, table_temp, “p15_64_w_hosp SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_64_w_hosp”

for row in SC:

 pop = row.getValue(field_sum)

 pop_1_2 = pop * 1/2

Process: Calculate Fields

print “Calculating Fields for p15_64_w_hosp_athome (1/2)”

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_hosp_athome”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_hosp_athome”, “[w_factor]/

[w_factor_total_hosp_athome]”)

arcpy.CalculateField_management(“input_fc_f_layer”, “p15_64_w_hosp_athome”, “{} * [w_factor_per-

cent_hosp_athome]”.format(pop_1_2))

#---------------------------------------#

Process: Spatial Join 1

print “\nSpatial Join: ogd_univ to bkm”

output_spatialjoin1 = wsTemp + os.sep + “output_spatialjoin_univ”

arcpy.SpatialJoin_analysis(input_fc_h_univ_vhs, input_fc3_h_univ_vhs, output_spatialjoin1, “JOIN_

110 Appendix

ONE_TO_ONE”, “KEEP_ALL”, “”,

 “INTERSECT”, “0.5 Meters”)

del_list = [NAME_univ1, NAME_univ2]

arcpy.DeleteField_management(input_fc_h_univ_vhs, del_list)

arcpy.JoinField_management(input_fc_h_univ_vhs, ID_bkm, output_spatialjoin1, ID_bkm, “{}; {}”.for-

mat(NAME_univ1, NAME_univ2))

Process: Spatial Join 2

print “Spatial Join: ogd_vhs to bkm\n”

output_spatialjoin2 = wsTemp + os.sep + “output_spatialjoin_univ”

arcpy.SpatialJoin_analysis(input_fc_h_univ_vhs, input_fc4_h_univ_vhs, output_spatialjoin2, “JOIN_

ONE_TO_ONE”, “KEEP_ALL”, “”,

 “INTERSECT”, “0.5 Meters”)

arcpy.DeleteField_management(input_fc_h_univ_vhs, [“{}”.format(NAME_vhs)])

arcpy.JoinField_management(input_fc_h_univ_vhs, ID_bkm, output_spatialjoin2, ID_bkm, “{}”.for-

mat(NAME_vhs))

Calculate p15_64_w_univ & p15_64_w_vhs

SC = arcpy.SearchCursor(input_table2_h_univ_vhs)

field_id = ID_count2

field_name = NAME_univ

field_type = TYPE_univ

field_pop = POP_15_64_univ_vhs

for row in SC:

 f_id = row.getValue(field_id)

 name = row.getValue(field_name)

 type = row.getValue(field_type)

 pop_besch = row.getValue(field_pop)

 arcpy.MakeFeatureLayer_management (input_fc_h_univ_vhs, “input_fc_f_layer”)

 if type == type_univ:

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.

format(NAME_univ1, name))

 # Process: Summary Statistics

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(w_factor_bkm)

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for “ + str(name) + “ (“ + str(int(round(f_id,0))) + “)”

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent”, “[w_factor]/[w_fac-

tor_total]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p15_64_w_univ”, “{} * [w_factor_per-

Appendix 111

cent]”.format(pop_besch))

 arcpy.CalculateField_management(“input_fc_f_layer”, “percent”, “1”)

 else:

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} IS NOT

NULL”.format(NAME_vhs))

 # Process: Summary Statistics

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(w_factor_bkm)

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for “ + str(name) + “ (“ + str(int(round(f_id,0))) + “)”

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent”, “[w_factor]/[w_fac-

tor_total]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p15_64_w_vhs”, “{} * [w_factor_per-

cent]”.format(pop_besch))

 arcpy.CalculateField_management(“input_fc_f_layer”, “percent”, “1”)

Calculate p15_64_w_hosp_univ_vhs and p15_64_w_univ_vhs, replace <NULL> with 0

expression = “myCalc(!p15_64_w_hosp!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(input_fc_h_univ_vhs, “p15_64_w_hosp”, expression, “PYTHON_9.3”,

codeblock)

expression = “myCalc(!p15_64_w_hosp_athome!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(input_fc_h_univ_vhs, “p15_64_w_hosp_athome”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!p15_64_w_univ!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(input_fc_h_univ_vhs, “p15_64_w_univ”, expression, “PYTHON_9.3”,

112 Appendix

codeblock)

expression = “myCalc(!p15_64_w_vhs!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(input_fc_h_univ_vhs, “p15_64_w_vhs”, expression, “PYTHON_9.3”,

codeblock)

arcpy.CalculateField_management(input_fc_h_univ_vhs, “p15_64_w_univ_vhs”, “[p15_64_w_univ] +

[p15_64_w_vhs]”)

arcpy.CalculateField_management(input_fc_h_univ_vhs, “p15_64_w_hosp_univ_vhs”, “[p15_64_w_hosp] +

[p15_64_w_univ] + [p15_64_w_vhs]”)

Statistics

print “\nStatistics:”

arcpy.Statistics_analysis(input_table1_h_univ_vhs, table_temp, “{} SUM”.format(POP_15_64_hospital))

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(POP_15_64_hospital)

for row in SC:

 pop = row.getValue(field_sum)

 pop_1_2 = pop * 1/2

 print “Number of employees (hospital) = “ + str(int(round(pop,0)))

 print “Number of employees (hospital) * 1/2 = “ + str(int(round(pop_1_2,0)))

arcpy.Statistics_analysis(input_fc_h_univ_vhs, table_temp, “p15_64_w_hosp SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_64_w_hosp”

for row in SC:

 distr_empl_hosp = row.getValue(field_sum)

 print “Number of distributed employees (hospital) = “ + str(int(round(distr_empl_hosp,0)))

arcpy.Statistics_analysis(input_fc_h_univ_vhs, table_temp, “p15_64_w_hosp_athome SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_64_w_hosp_athome”

for row in SC:

 empl_hosp_athome = row.getValue(field_sum)

 print “Number of distributed employees (hospital) at home = “ + str(int(round(empl_hosp_ath-

ome,0)))

arcpy.Statistics_analysis(input_table2_h_univ_vhs, table_temp, “{} SUM”.format(POP_15_64_univ_vhs))

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(POP_15_64_univ_vhs)

for row in SC:

 pop = row.getValue(field_sum)

 print “\nNumber of employees (university + vhs) = “ + str(int(round(pop,0)))

arcpy.Statistics_analysis(input_fc_h_univ_vhs, table_temp, “p15_64_w_univ SUM”)

SC = arcpy.SearchCursor(table_temp)

Appendix 113

field_sum = “SUM_p15_64_w_univ”

for row in SC:

 distr_empl1 = row.getValue(field_sum)

arcpy.Statistics_analysis(input_fc_h_univ_vhs, table_temp, “p15_64_w_vhs SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_64_w_vhs”

for row in SC:

 distr_empl2 = row.getValue(field_sum)

distr_empl = distr_empl1 + distr_empl2

print “Number of distributed employees (university + vhs) = “ + str(int(round(distr_empl,0)))

arcpy.Statistics_analysis(input_fc_h_univ_vhs, table_temp, “p15_64_w_hosp_univ_vhs SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_64_w_hosp_univ_vhs”

for row in SC:

 distr_empl_total = row.getValue(field_sum)

contr_sum = distr_empl_hosp + distr_empl

print “\nNumber of total distr empl (hosp + univ + vhs) = “ + str(int(round(distr_empl_total,0))) +

“ (“ + str(int(round(contr_sum,0))) + “)”

#---ANALYSIS 2--#

#----------------------------Get distributed Population per BEZ-----------------------------------#

print “\n---------------------------------ANALYSIS 2---------------------------------”

print “---------------------Get distributed Population per BEZ---------------------\n”

Select buildings of bkm_output where population has been distributed

print “Select buildings of bkm_output (univ+vhs)”

arcpy.MakeFeatureLayer_management (input_fc_h_univ_vhs, “input_fc_f_layer”)

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “p15_64_w_univ_vhs IS

NOT NULL”)

Make Feature Layer for Identity

arcpy.MakeFeatureLayer_management(“input_fc_f_layer”, “input_fc_f_layer2”, “”, “”, “percent percent

VISIBLE RATIO”)

Identity, Dissolve (get distributed population per BEZ)

print “Identity (bkm, bez_etrs)”

output_identity = wsTemp + os.sep + “output_identity_univ_vhs”

arcpy.Identity_analysis(“input_fc_f_layer2”, input_fc2_h_univ_vhs, output_identity, “ALL”, “”, “NO_

RELATIONSHIPS”)

arcpy.AddField_management(output_identity, “distr_pop_univ_vhs”, “DOUBLE”)

arcpy.CalculateField_management(output_identity, “distr_pop_univ_vhs”, “[p15_64_w_univ_vhs]*[per-

cent]”)

print “Dissolve”

output_dissolve = wsTemp + os.sep + “output_dissolve”

arcpy.Dissolve_management(output_identity, output_dissolve, ID_bez, “distr_pop_univ_vhs SUM”, “MUL-

114 Appendix

TI_PART”, “DISSOLVE_LINES”)

Get distributed Population per BEZ

print “Join Field SUM_distr_pop_univ_vhs to bkm”

arcpy.DeleteField_management(input_fc2_h_univ_vhs, [“SUM_distr_pop_univ_vhs”])

arcpy.JoinField_management(input_fc2_h_univ_vhs, ID_bez, output_dissolve, ID_bez, “SUM_distr_pop_

univ_vhs”)

print “\nGet distributed population per BEZ:”

SC = arcpy.SearchCursor(input_fc2_h_univ_vhs)

f_id = ID_bez

field_val = “SUM_distr_pop_univ_vhs”

for row in SC:

 bez_id = row.getValue(f_id)

 val = row.getValue(field_val)

 if val is not None:

 print “Distributed Population (univ+vhs) for BEZ “ + str(bez_id) + “ = “ +

str(int(round(val,0)))

 else:

 print “Distributed Population (univ+vhs) for BEZ “ + str(bez_id) + “ = “ + str(val)

arcpy.Statistics_analysis(input_fc2_h_univ_vhs, table_temp, “SUM_distr_pop_univ_vhs SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_distr_pop_univ_vhs”

for row in SC:

 sum1 = row.getValue(field_sum)

 print “\nTotal Distributed Population = “ + str(int(round(sum1,0)))

#---#

Select buildings of bkm_output where population has been distributed

print “\nSelect buildings of bkm_output (hosp)”

arcpy.MakeFeatureLayer_management (input_fc_h_univ_vhs, “input_fc_f_layer”)

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “p15_64_w_hosp IS NOT

NULL”)

Make Feature Layer for Identity

arcpy.MakeFeatureLayer_management(“input_fc_f_layer”, “input_fc_f_layer2”, “”, “”, “percent percent

VISIBLE RATIO”)

Identity, Dissolve (get distributed population per BEZ)

print “Get distributed population per BEZ:”

output_identity = wsTemp + os.sep + “output_identity_hosp”

arcpy.Identity_analysis(“input_fc_f_layer2”, input_fc2_h_univ_vhs, output_identity, “ALL”, “”, “NO_

RELATIONSHIPS”)

arcpy.AddField_management(output_identity, “distr_pop_hosp”, “DOUBLE”)

arcpy.CalculateField_management(output_identity, “distr_pop_hosp”, “[p15_64_w_hosp]*[percent]”)

output_dissolve = wsTemp + os.sep + “output_dissolve”

arcpy.Dissolve_management(output_identity, output_dissolve, ID_bez, “distr_pop_hosp SUM”, “MULTI_

Appendix 115

PART”, “DISSOLVE_LINES”)

Get distributed Population per BEZ

arcpy.DeleteField_management(input_fc2_h_univ_vhs, [“SUM_distr_pop_hosp”])

arcpy.JoinField_management(input_fc2_h_univ_vhs, ID_bez, output_dissolve, ID_bez, “SUM_distr_pop_

hosp”)

SC = arcpy.SearchCursor(input_fc2_h_univ_vhs)

f_id = ID_bez

field_val = “SUM_distr_pop_hosp”

for row in SC:

 bez_id = row.getValue(f_id)

 val = row.getValue(field_val)

 if val is not None:

 print “Distributed Population (hosp) for BEZ “ + str(bez_id) + “ = “ +

str(int(round(val,0)))

 else:

 print “Distributed Population (hosp) for BEZ “ + str(bez_id) + “ = “ + str(val)

arcpy.Statistics_analysis(input_fc2_h_univ_vhs, table_temp, “SUM_distr_pop_hosp SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_distr_pop_hosp”

for row in SC:

 sum1 = row.getValue(field_sum)

 print “\nTotal Distributed Population = “ + str(int(round(sum1,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_bkm + analysis_no + “ (polygon_fc)”

print output_bez + analysis_no + “ (polygon_fc)”

print “\nOutput Fields in “ + output_bkm + analysis_no + “:”

print “p15_64_w_hosp”

print “p15_64_w_hosp_athome”

print “p15_64_w_univ”

print “p15_64_w_vhs”

print “p15_64_w_univ_vhs”

print “p15_64_w_hosp_univ_vhs”

print “\nOutput Fields in “ + output_bez + analysis_no + “:”

print “SUM_distr_pop_hosp”

print “SUM_distr_pop_univ_vhs”

print “SUM_distr_pop_hosp_univ_vhs”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

116 Appendix

###

print “\n##\n\n”

#---#

#Distribute Working Population (Firmenreg) to bkm and subtract from bez (age15_64_plus_pendler----#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

if analysis_no == “_03”:

 print “--”

 print “-----------Create bkm_output2 and set SUM_p15_64_firmenreg to 0-----------”

 print “--\n”

 input_fc_firmenreg = wsOutput + os.sep + output_bkm + analysis_no # bkm_output

 input_fc2_firmenreg = wsOutput + os.sep + output_bez + analysis_no # bez_etrs

 output_fc = wsOutput + os.sep + output_name_firmenreg # bkm_output2

 print “Input data:”

 print output_bkm + analysis_no + “ (polygon_fc)”

 print output_bez + analysis_no + “ (polygon_fc)”

 arcpy.Copy_management (input_fc_firmenreg, output_fc)

 arcpy.AddField_management (output_fc, “SUM_p15_64_firmenreg”)

 arcpy.CalculateField_management (output_fc, “SUM_p15_64_firmenreg”, “0”)

 arcpy.DeleteField_management (input_fc2_firmenreg, [“SUM_distr_pop_firmenreg”])

 arcpy.AddField_management (input_fc2_firmenreg, “SUM_distr_pop_firmenreg”)

 arcpy.CalculateField_management (input_fc2_firmenreg, “SUM_distr_pop_firmenreg”, “0”)

 #---#

 print “\n--”

 print “\nOutput Data:”

 print output_name_firmenreg + “ (polygon_fc)”

 print output_bez + analysis_no + “ (polygon_fc)”

 print “\nOutput Fields in “ + output_name_firmenreg + “:”

 print “SUM_p15_64_firmenreg”

 print “\nOutput Fields in “ + output_bez + analysis_no + “:”

 print “SUM_distr_pop_firmenreg”

 end = datetime.datetime.now()

Appendix 117

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s\n’ % (end-start)

else:

 print “--”

 print “----Distribute Working Pop (firmenregister) to bkm & subtract from BEZ----”

 print “--\n”

 input_fc_firmenreg = wsOutput + os.sep + output_bkm + analysis_no # bkm_output

 input_fc2_firmenreg = wsOutput + os.sep + output_bez + analysis_no # bez_etrs

 input_fc3_firmenreg = wsInput + os.sep + point_adr # address_point

 input_table_firmenreg = gdb + os.sep + table_firmenreg # bkm_firmenreg

 output_fc = wsOutput + os.sep + output_name_firmenreg # bkm_output2

 print “Input data:”

 print output_bkm + analysis_no + “ (polygon_fc)”

 print output_bez + analysis_no + “ (polygon_fc)”

 print point_adr + “ (point_fc)”

 print table_firmenreg + “ (table)”

#---ANALYSIS 1--#

 #----------Distribute Population from Firmenregister to Buildings-----------------------#

 print “\n---------------------------------ANALYSIS 1-------------------------------”

 print “----------Distribute Population from Firmenregister to Buildings----------\n”

 print “Dissolve adr_points”

 adr_points_diss = wsTemp + os.sep + “adr_points_diss”

 arcpy.Dissolve_management(input_fc3_firmenreg, adr_points_diss, join_adr, “”, “SINGLE_PART”,

“DISSOLVE_LINES”)

 print “Join Field”

 arcpy.JoinField_management(adr_points_diss, join_adr, input_table_firmenreg, join_adr_firmenreg,

“{};{}”.format(POP_15_64_firmenreg, NAME_firmenreg))

 # Spatial Join: ONE TO MANY because occasionally there are multiple points for one building

 print “Spatial Join (1)”

 temp_fc = wsTemp + os.sep + “output_spatial_join”

 arcpy.SpatialJoin_analysis(input_fc_firmenreg, adr_points_diss, temp_fc, “JOIN_ONE_TO_MANY”,

“KEEP_ALL”,

 “””{2} “{2}” true true false 8 Double 0 0 ,First,#,{0},{2},-1,-1;

 {3} “{3}” true true false 8 Double 0 0 ,First,#,{0},{3},-1,-1;

 {4} “{4}” true true false 8 Double 0 0 ,First,#,{0},{4},-1,-1;

 {5} “{5}” true true false 8 Double 0 0 ,First,#,{0},{5},-1,-1;

 {6} “{6}” true true false 150 Text 0 0 ,First,#,{0},{6},-1,-1;

 {7} “{7}” true true false 50 Text 0 0 ,First,#,{0},{7},-1,-1;

 {8} “{8}” true true false 70 Text 0 0 ,First,#,{0},{8},-1,-1;

 {9} “{9}” false true true 8 Double 0 0 ,First,#,{0},{9},-1,-1;

 {10} “{10}” false true true 8 Double 0 0 ,First,#,{0},{10},-1,-1;

 w_factor_total “w_factor_total” true true false 8 Double 0 0 ,First,#,{0},w_factor_to-

tal,-1,-1;

118 Appendix

 w_factor_percent “w_factor_percent” true true false 8 Double 0 0 ,First,#,{0},w_fac-

tor_percent,-1,-1;

 p15_64_w_hosp “p15_64_w_hosp” true true false 8 Double 0 0 ,First,#,{0},p15_64_w_hosp,-

1,-1;

 p15_64_w_univ “p15_64_w_univ” true true false 8 Double 0 0 ,First,#,{0},p15_64_w_univ,-

1,-1;

 p15_64_w_vhs “p15_64_w_vhs” true true false 8 Double 0 0 ,First,#,{0},p15_64_w_vhs,-1,-

1;

 p15_64_w_hosp_univ_vhs “p15_64_w_hosp_univ_vhs” true true false 8 Double 0 0

,First,#,{0},p15_64_w_hosp_univ_vhs,-1,-1;

 percent “percent” true true false 8 Double 0 0 ,First,#,{0},percent,-1,-1;

 {11} “{11}” true true false 250 Text 0 0 ,First,#,{0},{11},-1,-1;

 {12} “{12}” true true false 150 Text 0 0 ,First,#,{0},{12},-1,-1;

 {13} “{13}” true true false 250 Text 0 0 ,First,#,{0},{13},-1,-1;

 {14} “{14}” true true false 100 Text 0 0 ,First,#,{1},{14},-1,-1;

 {15} “{15}” true true false 8 Double 0 0 ,Sum,#,{1},{15},-1,-1;

 {16} “{16}” true true false 150 Text 0 0 ,First,#,{1},{16},-1,-1”””

 .format(input_fc_firmenreg, adr_points_diss, w_factor_bkm, ID_bkm, height_bkm, vol_bkm,

ID_hospital, NAME_hospital, USE_bkm,

 length_bkm, area_bkm, NAME_univ1, NAME_univ2, NAME_vhs, join_adr_firmenreg,

POP_15_64_firmenreg, NAME_firmenreg),

 “INTERSECT”, “0.5 Meters”, “#”)

 # Check if Spatial Join (1) worked - if not (code_bkm = 0) execute spatialjoin again

 var = arcpy.da.SearchCursor(temp_fc, (“code_bkm”,)).next()[0]

 if var == 0:

 print “Spatial Join (2)”

 temp_fc = wsTemp + os.sep + “output_spatial_join”

 arcpy.SpatialJoin_analysis(input_fc_firmenreg, adr_points_diss, temp_fc, “JOIN_ONE_TO_MANY”,

“KEEP_ALL”,

 ““”{2} “{2}” true true false 8 Double 0 0 ,First,#,{0},{2},-1,-1;

 {3} “{3}” true true false 8 Double 0 0 ,First,#,{0},{3},-1,-1;

 {4} “{4}” true true false 8 Double 0 0 ,First,#,{0},{4},-1,-1;

 {5} “{5}” true true false 8 Double 0 0 ,First,#,{0},{5},-1,-1;

 {6} “{6}” true true false 150 Text 0 0 ,First,#,{0},{6},-1,-1;

 {7} “{7}” true true false 50 Text 0 0 ,First,#,{0},{7},-1,-1;

 {8} “{8}” true true false 70 Text 0 0 ,First,#,{0},{8},-1,-1;

 {9} “{9}” false true true 8 Double 0 0 ,First,#,{0},{9},-1,-1;

 {10} “{10}” false true true 8 Double 0 0 ,First,#,{0},{10},-1,-1;

 w_factor_total “w_factor_total” true true false 8 Double 0 0 ,First,#,{0},w_factor_to-

tal,-1,-1;

 w_factor_percent “w_factor_percent” true true false 8 Double 0 0 ,First,#,{0},w_fac-

tor_percent,-1,-1;

 p15_64_w_hosp “p15_64_w_hosp” true true false 8 Double 0 0 ,First,#,{0},p15_64_w_hosp,-

1,-1;

 p15_64_w_univ “p15_64_w_univ” true true false 8 Double 0 0 ,First,#,{0},p15_64_w_univ,-

1,-1;

 p15_64_w_vhs “p15_64_w_vhs” true true false 8 Double 0 0 ,First,#,{0},p15_64_w_vhs,-1,-

1;

 p15_64_w_hosp_univ_vhs “p15_64_w_hosp_univ_vhs” true true false 8 Double 0 0

,First,#,{0},p15_64_w_hosp_univ_vhs,-1,-1;

Appendix 119

 percent “percent” true true false 8 Double 0 0 ,First,#,{0},percent,-1,-1;

 {11} “{11}” true true false 250 Text 0 0 ,First,#,{0},{11},-1,-1;

 {12} “{12}” true true false 150 Text 0 0 ,First,#,{0},{12},-1,-1;

 {13} “{13}” true true false 250 Text 0 0 ,First,#,{0},{13},-1,-1;

 {14} “{14}” true true false 100 Text 0 0 ,First,#,{1},{14},-1,-1;

 {15} “{15}” true true false 8 Double 0 0 ,Sum,#,{1},{15},-1,-1;

 {16} “{16}” true true false 150 Text 0 0 ,First,#,{1},{16},-1,-1”””

 .format(input_fc_firmenreg, adr_points_diss, w_factor_bkm, ID_bkm, height_bkm, vol_bkm,

ID_hospital, NAME_hospital, USE_bkm,

 length_bkm, area_bkm, NAME_univ1, NAME_univ2, NAME_vhs, join_adr_firmenreg,

POP_15_64_firmenreg, NAME_firmenreg),

 “INTERSECT”, “0.5 Meters”, “#”)

 # Check if Spatial Join (2) worked - if not (code_bkm = 0) print error message and exit

 var = arcpy.da.SearchCursor(temp_fc, (“{}”.format(ID_bkm),)).next()[0]

 if var == 0:

 print “ERROR IN FIELD MAPS”

 sys.exit()

 # Dissolve bkm and build sum of p15_64_firmenreg

 print “Dissolve”

 temp_fc2 = wsTemp + os.sep + “diss_firmenreg”

 arcpy.Dissolve_management(temp_fc, temp_fc2, ID_bkm, “{} SUM”.format(POP_15_64_firmenreg), “SIN-

GLE_PART”, “DISSOLVE_LINES”)

 # Join field SUM_p15_64_firmenreg from input_table to bkm

 print “Join Field”

 arcpy.Copy_management (input_fc_firmenreg, output_fc)

 arcpy.JoinField_management (output_fc, ID_bkm, temp_fc2, ID_bkm, [“SUM_{}”.format(POP_15_64_fir-

menreg)])

 # Get number of distributed employees

 arcpy.Statistics_analysis(output_fc, table_temp, “SUM_{} SUM”.format(POP_15_64_firmenreg))

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_SUM_{}”.format(POP_15_64_firmenreg)

 for row in SC:

 distr_empl = row.getValue(field_sum)

 print “\nNumber of distributed employees = “ + str(int(round(distr_empl,0)))

#---ANALYSIS 1--#

 #-------------------------Get distributed Population per BEZ----------------------------------#

 print “\n--------------------------------ANALYSIS 2--------------------------------”

 print “--------------------Get distributed Population per BEZ--------------------\n”

 # Select buildings of bkm_output where population has been distributed

 print “Select buildings of bkm_output”

 arcpy.MakeFeatureLayer_management (output_fc, “input_fc_f_layer”)

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “SUM_{} IS NOT

NULL”.format(POP_15_64_firmenreg))

 arcpy.CalculateField_management(“input_fc_f_layer”, “percent”, “1”)

120 Appendix

 # Make Feature Layer for Identity

 arcpy.MakeFeatureLayer_management(“input_fc_f_layer”, “input_fc_f_layer2”, “”, “”, “percent

percent VISIBLE RATIO”)

 # Identity, Dissolve (get distributed population per BEZ)

 print “Get distributed population per BEZ:”

 output_identity = wsTemp + os.sep + “output_identity”

 arcpy.Identity_analysis(“input_fc_f_layer2”, input_fc2_firmenreg, output_identity, “ALL”, “”,

“NO_RELATIONSHIPS”)

 arcpy.AddField_management(output_identity, “distr_pop_firmenreg”, “DOUBLE”)

 arcpy.CalculateField_management(output_identity, “distr_pop_firmenreg”, “[SUM_{}]*[percent]”.

format(POP_15_64_firmenreg))

 output_dissolve = wsTemp + os.sep + “output_dissolve”

 arcpy.Dissolve_management(output_identity, output_dissolve, ID_bez, “distr_pop_firmenreg SUM”,

“MULTI_PART”, “DISSOLVE_LINES”)

 # Get distributed Population per BEZ

 arcpy.DeleteField_management(input_fc2_firmenreg, [“SUM_distr_pop_firmenreg”])

 arcpy.JoinField_management(input_fc2_firmenreg, ID_bez, output_dissolve, ID_bez, “SUM_distr_pop_

firmenreg”)

 SC = arcpy.SearchCursor(input_fc2_firmenreg)

 f_id = ID_bez

 field_val = “SUM_distr_pop_firmenreg”

 for row in SC:

 bez_id = row.getValue(f_id)

 val = row.getValue(field_val)

 if val is not None:

 print “Distributed Population for BEZ “ + str(bez_id) + “ = “ + str(int(round(val,0)))

 else:

 print “Distributed Population for BEZ “ + str(bez_id) + “ = “ + str(val)

 arcpy.Statistics_analysis(input_fc2_firmenreg, table_temp, “SUM_distr_pop_firmenreg SUM”)

 SC = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_SUM_distr_pop_firmenreg”

 for row in SC:

 sum1 = row.getValue(field_sum)

 print “\nTotal Distributed Population = “ + str(int(round(sum1,0)))

 #---#

 print “\n--”

 print “\nOutput Data:”

 print output_name_firmenreg + “ (polygon_fc)”

 print output_bez + analysis_no + “ (polygon_fc)”

 print “\nOutput Fields in “ + output_name_firmenreg + “:”

 print “SUM_{}”.format(POP_15_64_firmenreg)

Appendix 121

 print “\nOutput Fields in “ + output_bez + analysis_no + “:”

 print “SUM_distr_pop_firmenreg”

 end = datetime.datetime.now()

 print ‘\nfinished run: %0.19s\n’ % (end),

 print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

#---#

#----------Distribute Working Population (Wr Linien) to public_transportation and subtract from bez

(age15_64_plus_pendler)---------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “---Distr Work Pop (Wr Linien) to public_transportation & subtr from BEZ---”

print “--\n”

input_fc_wrlinien = wsInput + os.sep + network_transp # public_transportation

input_fc2_wrlinien = wsOutput + os.sep + output_bez + analysis_no # bez_etrs

input_fc3_wrlinien = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_table_wrlinien = gdb + os.sep + table_wrlinien_empl # besch_wr_linien

output_fc_wrlinien = wsOutput + os.sep + output_name_wrlinien # public_transportation_buffer

print “Input data:”

print network_transp + “ (line_fc)”

print output_bez + analysis_no + “ (polygon_fc)”

print table_wrlinien_empl + “ (table)”

#--ANALYSIS 1---#

#--------Distribute Wiener Linien Population (age15_64) to public_transportation------------------#

print “\n---------------------------------ANALYSIS 1-------------------------------”

print “----Distribute Working Population (Wr Linien) to public_transportation----\n”

print “\nProcess: Buffer (2.5m)”

out_buffer = wsTemp + os.sep + “public_transportation_buffer_temp”

arcpy.Buffer_analysis (input_fc_wrlinien, out_buffer, “2.5 Meters”, “FULL”, “ROUND”, “ALL”)

print “Process: Clip”

arcpy.Clip_analysis (out_buffer, input_fc2_wrlinien, output_fc_wrlinien)

122 Appendix

SC = arcpy.SearchCursor(input_table_wrlinien)

field = “{}”.format(POP_15_64_wrlinien)

for row in SC:

 employees_wr_linien = row.getValue(field)

 employees_wr_linien2 = employees_wr_linien/2

arcpy.AddField_management(output_fc_wrlinien, “p15_64_wr_linien”, “DOUBLE”)

arcpy.CalculateField_management(output_fc_wrlinien, “p15_64_wr_linien”, “{}/2”.format(employees_wr_

linien))

print “\nNumber of employees = “ + str(int(round(employees_wr_linien,0)))

print “Number of employees / 2 = “ + str(int(round(employees_wr_linien2,0)))

arcpy.Statistics_analysis(output_fc_wrlinien, table_temp, “p15_64_wr_linien SUM”)

SC = arcpy.SearchCursor(table_temp)

field = “SUM_p15_64_wr_linien”

for row in SC:

 distr_empl = row.getValue(field)

print “Number of distributed employees (empl/2) = “ + str(int(round(distr_empl,0)))

#--ANALYSIS 2---#

#----------------Distribute Wiener Linien Population (age15_64) to Wohngebäude--------------------#

print “\n---------------------------------ANALYSIS 2-------------------------------”

print “------Distribute Wiener Linien Population (age15_64) to Wohngebäude-------\n”

Calculate p15_64_w_wrlinien_athome

arcpy.DeleteField_management(input_fc3_wrlinien, [“w_factor_total_wrlinien_athome”, “w_factor_per-

cent_wrlinien_athome”,

 “p15_64_w_wrlinien_athome”])

arcpy.AddField_management(input_fc3_wrlinien, “w_factor_total_wrlinien_athome”, “DOUBLE”)

arcpy.AddField_management(input_fc3_wrlinien, “w_factor_percent_wrlinien_athome”, “DOUBLE”)

arcpy.AddField_management(input_fc3_wrlinien, “p15_64_w_wrlinien_athome”, “DOUBLE”)

Selecting Features (Wohngebäude)

arcpy.MakeFeatureLayer_management (input_fc3_wrlinien, “input_fc_f_layer”)

use = living

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.for-

mat(USE_bkm, use))

Process: Summary Statistics (getting total w_factor of all buildings)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Appendix 123

Process: Calculate Fields

print “Calculating Fields for p15_64_w_wrlinien_athome (1/2)”

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_wrlinien_athome”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_wrlinien_athome”, “[{}]/[w_

factor_total_wrlinien_athome]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p15_64_w_wrlinien_athome”,

 “{} * [w_factor_percent_wrlinien_athome]”.format(employees_wr_lin-

ien2))

Statistics

arcpy.Statistics_analysis(input_fc3_wrlinien, table_temp, “p15_64_w_wrlinien_athome SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_64_w_wrlinien_athome”

for row in SC:

 sum = row.getValue(field_sum)

 print “\nNumber of employees / 2 = “ + str(int(round(employees_wr_linien2,0)))

 print “Distributed employees at home = “ + str(int(round(sum,0)))

#--ANALYSIS 3---#

#-------------------------------Get distributed Population per BEZ--------------------------------#

print “\n---------------------------------ANALYSIS 3---------------------------------”

print “---------------------Get distributed Population per BEZ---------------------\n”

arcpy.AddField_management(output_fc_wrlinien, “percent”, “DOUBLE”)

arcpy.CalculateField_management(output_fc_wrlinien, “percent”, “1”)

Make Feature Layer for Identity

arcpy.MakeFeatureLayer_management(output_fc_wrlinien, “input_fc_f_layer”, “”, “”, “percent percent

VISIBLE RATIO”)

Identity, Dissolve (get distributed population per BEZ)

print “Get distributed population per BEZ:”

output_identity = wsTemp + os.sep + “output_identity”

arcpy.Identity_analysis(“input_fc_f_layer”, input_fc2_wrlinien, output_identity, “ALL”, “”, “NO_RE-

LATIONSHIPS”)

arcpy.AddField_management(output_identity, “distr_pop_wrlinien”, “DOUBLE”)

arcpy.CalculateField_management(output_identity, “distr_pop_wrlinien”, “[p15_64_wr_linien]*[per-

cent]”)

output_dissolve = wsTemp + os.sep + “output_dissolve”

arcpy.Dissolve_management(output_identity, output_dissolve, ID_bez, “distr_pop_wrlinien SUM”, “MUL-

TI_PART”, “DISSOLVE_LINES”)

Get distributed Population per BEZ

arcpy.DeleteField_management(input_fc2_wrlinien, [“SUM_distr_pop_wrlinien”])

arcpy.JoinField_management(input_fc2_wrlinien, ID_bez, output_dissolve, ID_bez, “SUM_distr_pop_

wrlinien”)

SC = arcpy.SearchCursor(input_fc2_wrlinien)

f_id = ID_bez

124 Appendix

field_val = “SUM_distr_pop_wrlinien”

for row in SC:

 bez_id = row.getValue(f_id)

 val = row.getValue(field_val)

 if val is not None:

 print “Distributed Population for BEZ “ + str(bez_id) + “ = “ + str(int(round(val,0)))

 else:

 print “Distributed Population for BEZ “ + str(bez_id) + “ = “ + str(val)

arcpy.Statistics_analysis(input_fc2_wrlinien, table_temp, “SUM_distr_pop_wrlinien SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_distr_pop_wrlinien”

for row in SC:

 sum1 = row.getValue(field_sum)

 print “\nTotal Distributed Population = “ + str(int(round(sum1,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_name_wrlinien + “ (polygon_fc)”

print output_bez + analysis_no + “ (polygon_fc)”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print “\nOutput Fields in “ + output_name_wrlinien + “:”

print “p15_64_wr_linien”

print “\nOutput Fields in “ + output_bez + analysis_no + “:”

print “SUM_distr_pop_wrlinien”

print “\nOutput Fields in “ + output_bkm2 + analysis_no + “:”

print “p15_64_w_wrlinien_athome”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

#---#

#-------------------Distribute remaining working population to Gewerbegebäude---------------------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

Appendix 125

print “--”

print “--------Distribute remaining working population to Gewerbegebäude--------”

print “--\n”

input_fc_rem_workpop = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_fc2_rem_workpop = wsOutput + os.sep + output_bez + analysis_no # bez_etrs

input_table_rem_workpop = gdb + os.sep + table_total_empl # besch_gesamt

print “Input data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print output_bez + analysis_no + “ (polygon_fc)”

print table_total_empl + “ (table)”

#--ANALYSIS 1---#

#-------Calculate distributed working pop (hosp, univ, firmenreg, wrlinien) per BEZ----------------#

#----------------------------------and subtract from besch_gesamt---------------------------------#

print “\n---------------------------------ANALYSIS 1-------------------------------”

print “----Calculate distributed working pop per BEZ and subtr from besch_ges----\n”

Get distributed working pop

print “Get distributed working pop (hosp, univ, firmenreg, wrlinien):”

arcpy.Statistics_analysis(input_fc2_rem_workpop, table_temp, “SUM_distr_pop_hosp SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_distr_pop_hosp”

for row in SC:

 sum_hosp = row.getValue(field_sum)

 print “Distributed Working Pop (hosp) = “ + str(int(round(sum_hosp,0)))

arcpy.Statistics_analysis(input_fc2_rem_workpop, table_temp, “SUM_distr_pop_univ_vhs SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_distr_pop_univ_vhs”

for row in SC:

 sum_univ_vhs = row.getValue(field_sum)

 print “Distributed Working Pop (univ, vhs) = “ + str(int(round(sum_univ_vhs,0)))

arcpy.Statistics_analysis(input_fc2_rem_workpop, table_temp, “SUM_distr_pop_firmenreg SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_distr_pop_firmenreg”

for row in SC:

 sum_firmenreg = row.getValue(field_sum)

 print “Distributed Working Pop (firmenreg) = “ + str(int(round(sum_firmenreg,0)))

arcpy.Statistics_analysis(input_fc2_rem_workpop, table_temp, “SUM_distr_pop_wrlinien SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_distr_pop_wrlinien”

for row in SC:

 sum_wrlinien = row.getValue(field_sum)

 print “Distributed Working Pop (wrlinien) = “ + str(int(round(sum_wrlinien,0)))

sum_distr_working_pop = sum_hosp + sum_univ_vhs + sum_firmenreg + sum_wrlinien

sum_distr_working_pop_incl_athome = (sum_hosp * 2) + sum_univ_vhs + sum_firmenreg + (sum_wrlinien *

126 Appendix

2)

print “\nTotal Distributed Working Population = “ + str(int(round(sum_distr_working_pop,0)))

print “Total Distributed Working Population (incl. hosp_athome & wrlinien_athome) = “ +

str(int(round(sum_distr_working_pop_incl_athome,0)))

Calculate remaining working pop

print “\nCalculate remaining working pop (hosp, univ, firmenreg, wrlinien) per BEZ:”

arcpy.DeleteField_management(input_fc2_rem_workpop, [“{}”.format(POP_15_64_besch_ges)])

arcpy.JoinField_management(input_fc2_rem_workpop, ID_bez, input_table_rem_workpop, ID_bez, “{}”.

format(POP_15_64_besch_ges))

expression = “myCalc(!SUM_distr_pop_hosp!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(input_fc2_rem_workpop, “SUM_distr_pop_hosp”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!SUM_distr_pop_univ_vhs!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(input_fc2_rem_workpop, “SUM_distr_pop_univ_vhs”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!SUM_distr_pop_firmenreg!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(input_fc2_rem_workpop, “SUM_distr_pop_firmenreg”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!SUM_distr_pop_wrlinien!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(input_fc2_rem_workpop, “SUM_distr_pop_wrlinien”, expression, “PY-

THON_9.3”, codeblock)

arcpy.DeleteField_management(input_fc2_rem_workpop, [“remaining_working_pop”])

arcpy.AddField_management(input_fc2_rem_workpop, “remaining_working_pop”, “DOUBLE”)

arcpy.CalculateField_management(input_fc2_rem_workpop, “remaining_working_pop”,

 “[{}]-(([SUM_distr_pop_hosp]*2)+[SUM_distr_pop_univ_vhs]+[SUM_distr_pop_firmenreg]+([SUM_dis-

Appendix 127

tr_pop_wrlinien]*2))”.format(POP_15_64_besch_ges))

Statistics

SC = arcpy.SearchCursor(input_fc2_rem_workpop)

f_id = ID_bez

field_val = “remaining_working_pop”

for row in SC:

 bez_id = row.getValue(f_id)

 val = row.getValue(field_val)

 if val is not None:

 print “Remaining Working Population for BEZ “ + str(bez_id) + “ = “ +

str(int(round(val,0)))

 else:

 print “Remaining Working Population for BEZ “ + str(bez_id) + “ = “ + str(val)

arcpy.Statistics_analysis(input_table_rem_workpop, table_temp, “{} SUM”.format(POP_15_64_besch_

ges))

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(POP_15_64_besch_ges)

for row in SC:

 sum1 = row.getValue(field_sum)

 print “\nTotal Working Population = “ + str(int(round(sum1,0)))

arcpy.Statistics_analysis(input_fc2_rem_workpop, table_temp, “remaining_working_pop SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_remaining_working_pop”

for row in SC:

 sum2 = row.getValue(field_sum)

 sum3 = sum1-sum_distr_working_pop_incl_athome

 print “Total Remaining Working Population = “ + str(int(round(sum2,0))) + “(“ + str(int(round(-

sum3,0))) + “)”

#--ANALYSIS 2---#

#-----------------Distribute remaining working population to Gewerbegebäude-----------------------#

print “\n---------------------------------ANALYSIS 2-------------------------------”

print “---------Distribute remaining working population to Gewerbegebäude--------\n”

Process: Identity (get buildings per BEZ)

print “\nIdentity (bkm, bez)”

output_identity = wsTemp + os.sep + “output_identity2”

arcpy.Identity_analysis(input_fc_rem_workpop, input_fc2_rem_workpop, output_identity)

arcpy.AddField_management(output_identity, “w_factor2”, “DOUBLE”)

arcpy.CalculateField_management(output_identity, “w_factor2”, w_factor)

Add Fields

arcpy.AddField_management(output_identity, “w_factor_total2”, “DOUBLE”)

arcpy.AddField_management(output_identity, “w_factor_percent2”, “DOUBLE”)

arcpy.AddField_management(output_identity, “p15_64_w_remaining_working_pop”, “DOUBLE”)

print “\nDistribute remaining working population to Gewerbegebäude:”

SC = arcpy.SearchCursor(input_fc2_rem_workpop)

128 Appendix

field_id = ID_bez

field_pop = “remaining_working_pop”

for row in SC:

 f_id = row.getValue(field_id)

 pop_besch = row.getValue(field_pop)

 # Selecting Features (Gewerbegebäude) per BEZ

 arcpy.MakeFeatureLayer_management (output_identity, “input_fc_f_layer”)

 use1 = trade

 use2 = industry

 use3 = social

 if analysis_no == “_01” or analysis_no == “_02”:

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

 “{0} = {1} and {2} in (‘{3}’, ‘{4}’) and SUM_{5} IS NULL or {0} = {1} and {2} = ‘{6}’ and

{7} IS NOT NULL and p15_64_w_hosp_univ_vhs = 0”

 .format(ID_bez, f_id, USE_bkm, use1, use2, POP_15_64_firmenreg, use3, ID_hospital))

 elif analysis_no == “_03”:

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

 “{0} = {1} and {2} in (‘{3}’, ‘{4}’) and SUM_{5} = 0 or {0} = {1} and {2} = ‘{6}’ and {7}

IS NOT NULL and p15_64_w_hosp_univ_vhs = 0”

 .format(ID_bez, f_id, USE_bkm, use1, use2, POP_15_64_firmenreg, use3, ID_hospital))

 # Process: Summary Statistics (getting total w_factor of all buildings per BEZ)

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “w_factor2 SUM”)

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_w_factor2”

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for BEZ “ + str(f_id)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total2”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent2”, “[w_factor2]/[w_fac-

tor_total2]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p15_64_w_remaining_working_pop”, “{} *

[w_factor_percent2]”.format(pop_besch))

print “\nDissolve output_identity”

output_diss_identity = wsTemp + os.sep + “output_diss_identity”

arcpy.Dissolve_management(output_identity, output_diss_identity, ID_bkm, “p15_64_w_remaining_work-

ing_pop SUM”, “MULTI_PART”, “DISSOLVE_LINES”)

print “Join p15_64_w_remaining_working_pop to bkm_output2”

arcpy.DeleteField_management(input_fc_rem_workpop, [“SUM_p15_64_w_remaining_working_pop”])

arcpy.JoinField_management(input_fc_rem_workpop, ID_bkm, output_diss_identity, ID_bkm, “SUM_

p15_64_w_remaining_working_pop”)

Appendix 129

Check distributed population

arcpy.Statistics_analysis(input_fc_rem_workpop, table_temp, “SUM_p15_64_w_remaining_working_pop

SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_p15_64_w_remaining_working_pop”

for row in SC:

 remaining_empl = row.getValue(field_sum)

print “\nDistributed Population = “ + str(int(round(remaining_empl,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_bez + analysis_no + “ (polygon_fc)”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print “\nOutput Fields in “ + output_bez + analysis_no + “:”

print “remaining_working_pop”

print “\nOutput Fields in “ + output_bkm2 + analysis_no + “:”

print “SUM_p15_64_w_remaining_working_pop”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

#---#

#----------------------------------Distribute Unemployed to bkm-----------------------------------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “-----------------------Distribute Unemployed to bkm-----------------------”

print “--\n”

input_fc_unempl = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_table_unempl = gdb + os.sep + table_unempl # unemployed

print “Input data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

130 Appendix

print table_unempl + “ (table)”

#--ANALYSIS---#

#------------------------------------Distribute Unemployed to bkm-------------------------------#

print “\n---------------------------------ANALYSIS---------------------------------”

print “-----------------------Distribute Unemployed to bkm-----------------------\n”

Add Fields

arcpy.DeleteField_management(input_fc_unempl, [“w_factor_total_unempl”, “w_factor_percent_unempl”,

“p15_64_w_unemployed”])

arcpy.AddField_management(input_fc_unempl, “w_factor_total_unempl”, “DOUBLE”)

arcpy.AddField_management(input_fc_unempl, “w_factor_percent_unempl”, “DOUBLE”)

arcpy.AddField_management(input_fc_unempl, “p15_64_w_unemployed”, “DOUBLE”)

Selecting Features (Wohngebäude)

arcpy.MakeFeatureLayer_management (input_fc_unempl, “input_fc_f_layer”)

use = living

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.for-

mat(USE_bkm, use))

Process: Summary Statistics (getting total w_factor of all buildings)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Get Number of Unemployed

SC = arcpy.SearchCursor(input_table_unempl)

field_sum = POP_15_64_unemployed

for row in SC:

 pop_unempl = row.getValue(field_sum)

Process: Calculate Fields

print “Calculating Fields”

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_unempl”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_unempl”, “[{}]/[w_factor_to-

tal_unempl]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p15_64_w_unemployed”, “{} * [w_factor_percent_

unempl]”.format(pop_unempl))

Check distributed population

arcpy.Statistics_analysis(input_fc_unempl, table_temp, “p15_64_w_unemployed SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_64_w_unemployed”

for row in SC:

 pop = row.getValue(field_sum)

Appendix 131

print “\nNumber of Unemployed = “ + str(int(round(pop_unempl,0)))

print “Distributed Population (p15_64_w_unemployed) = “ + str(int(round(pop,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print “\nOutput Fields in “ + output_bkm2 + analysis_no + “:”

print “p15_64_w_unemployed”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

#---#

#------------Distribute Population (age0_4_kiga - 50% and age0_4_athome - 50%) to bkm-------------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “-------Distribute Population (age0_4_kiga and age0_4_athome) to bkm-------”

print “--\n”

source_fc_kiga = wsInput + os.sep + input_zbez

arcpy.CopyFeatures_management(source_fc_kiga, wsOutput + os.sep + output_name_kiga)

input_fc_kiga = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_fc2_kiga = wsOutput + os.sep + output_name_kiga # zbez_output

input_fc3_kiga = wsInput + os.sep + point_kiga # ogd_kiga

input_fc4_kiga = wsOutput + os.sep + output_bez + analysis_no # bez_etrs

print “Input data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print input_zbez + “ (polygon_fc)”

print output_bez + analysis_no + “ (polygon_fc)”

print point_kiga + “ (point_fc)”

132 Appendix

#--ANALYSIS 1---#

#----------------------Calculate age0_4_athome (50%) and age0_4_kiga (50%)------------------------#

print “\n--------------------------------ANALYSIS 1--------------------------------”

print “-------------Calculate age0_4_athome (50%) and age0_4_kiga (50%)----------\n”

print “Spatial Join: kiga to bkm”

del_list = [TYPE_kiga, BEZ_kiga]

arcpy.DeleteField_management(input_fc_kiga, del_list)

output_spatialjoin = wsTemp + os.sep + “output_spatialjoin_kiga”

arcpy.SpatialJoin_analysis(input_fc_kiga, input_fc3_kiga, output_spatialjoin, “JOIN_ONE_TO_ONE”,

“KEEP_ALL”, “”, “INTERSECT”, “0.5 Meters”)

arcpy.JoinField_management(input_fc_kiga, ID_bkm, output_spatialjoin, ID_bkm, “{}; {}”.format(TYPE_

kiga, BEZ_kiga))

print “Calculate age0_4_athome (50%) and age0_4_kiga (50%)”

arcpy.DeleteField_management(input_fc2_kiga, [“age0_4_athome”, “age0_4_kiga”])

arcpy.AddField_management(input_fc2_kiga, “age0_4_athome”, “DOUBLE”)

arcpy.AddField_management(input_fc2_kiga, “age0_4_kiga”, “DOUBLE”)

arcpy.CalculateField_management(input_fc2_kiga, “age0_4_athome”, “[{}]*0.5”.format(POP_0_4))

arcpy.CalculateField_management(input_fc2_kiga, “age0_4_kiga”, “[{}]*0.5”.format(POP_0_4))

print “Process: Dissolve (get age0_4 SUM per BEZ)”

output_dissolve = wsTemp + os.sep + “output_dissolve_zbez2”

arcpy.Dissolve_management(input_fc2_kiga, output_dissolve, ID_bez, “age0_4_kiga SUM”, “MULTI_PART”,

“DISSOLVE_LINES”)

arcpy.DeleteField_management(input_fc4_kiga, [“SUM_age0_4_kiga”])

arcpy.JoinField_management(input_fc4_kiga, ID_bez, output_dissolve, ID_bez, “SUM_age0_4_kiga”)

Statistics

print “\nStatistics:”

arcpy.Statistics_analysis(input_fc2_kiga, table_temp, “{} SUM”.format(POP_0_4))

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(POP_0_4)

for row in SC:

 sum1 = row.getValue(field_sum)

 print “age0_4 SUM (100%) = “ + str(int(round(sum1,0)))

arcpy.Statistics_analysis(output_dissolve, table_temp, “SUM_age0_4_kiga SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_age0_4_kiga”

for row in SC:

 sum2 = row.getValue(field_sum)

 print “age0_4_kiga SUM (50%) = “ + str(int(round(sum2,0)))

arcpy.Statistics_analysis(input_fc2_kiga, table_temp, “age0_4_athome SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_age0_4_athome”

for row in SC:

 sum3 = row.getValue(field_sum)

 print “age0_4_athome SUM (50%) = “ + str(int(round(sum3,0)))

Appendix 133

#--ANALYSIS 2---#

#--------------------------Distribute Population (age0_4_kiga - 50%) to bkm-----------------------#

print “\n--------------------------------ANALYSIS 2--------------------------------”

print “--------------Distribute Population (age0_4_kiga - 50%) to bkm------------\n”

Process: Add Fields

print “Adding Fields”

arcpy.DeleteField_management(input_fc_kiga, [“w_factor_total_kiga”, “w_factor_percent_kiga”,

“p0_4_w_kiga”])

arcpy.AddField_management(input_fc_kiga, “w_factor_total_kiga”, “DOUBLE”)

arcpy.AddField_management(input_fc_kiga, “w_factor_percent_kiga”, “DOUBLE”)

arcpy.AddField_management(input_fc_kiga, “p0_4_w_kiga”, “DOUBLE”)

print “\nDistribute age0_4_kiga to bkm per BEZ:”

SC = arcpy.SearchCursor(output_dissolve)

field_id = ID_bez

field_pop = “SUM_age0_4_kiga”

for row in SC:

 f_id = row.getValue(field_id)

 pop_kiga = row.getValue(field_pop)

 # Selecting Features (kiga) per BEZ

 arcpy.MakeFeatureLayer_management (input_fc_kiga, “input_fc_f_layer”)

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = {}”.for-

mat(BEZ_kiga, f_id))

 # Process: Summary Statistics (getting total w_factor of all buildings per BEZ)

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(w_factor_bkm)

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for BEZ “ + str(f_id)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_kiga”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_kiga”, “[{}]/[w_factor_

total_kiga]”.format(w_factor_bkm))

 arcpy.CalculateField_management(“input_fc_f_layer”, “p0_4_w_kiga”, “{} * [w_factor_percent_

kiga]”.format(pop_kiga))

Statistics 2

arcpy.Statistics_analysis(input_fc_kiga, table_temp, “p0_4_w_kiga SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p0_4_w_kiga”

for row in SC:

 sum4 = row.getValue(field_sum)

 print “\nDistributed Population (p0_4_w_kiga) = “ + str(int(round(sum4,0)))

134 Appendix

#--ANALYSIS 3---#

#--------------------------Distribute Population (age0_4_athome - 50%) to bkm-------------------#

print “\n--------------------------------ANALYSIS 3--------------------------------”

print “-------------Distribute Population (age0_4_athome - 50%) to bkm-----------\n”

Process: Identity (get buildings per ZBEZ)

print “Identity (bkm, zbez)”

output_identity = wsTemp + os.sep + “output_identity3”

arcpy.Identity_analysis(input_fc_kiga, input_fc2_kiga, output_identity)

arcpy.AddField_management(output_identity, “w_factor2”, “DOUBLE”)

arcpy.CalculateField_management(output_identity, “w_factor2”, w_factor)

Add Fields

arcpy.AddField_management(output_identity, “w_factor_total2”, “DOUBLE”)

arcpy.AddField_management(output_identity, “w_factor_percent2”, “DOUBLE”)

arcpy.AddField_management(output_identity, “p0_4_w_athome”, “DOUBLE”)

print “\nDistribute p0_4_w_athome to Wohngebäude per ZBEZ:”

SC = arcpy.SearchCursor(input_fc2_kiga)

field_nr = OID

field_id = ID_zbez

field_pop = “age0_4_athome”

for row in SC:

 f_nr = row.getValue(field_nr)

 f_id = row.getValue(field_id)

 pop_athome = row.getValue(field_pop)

 # Selecting Features (Wohngebäude) per ZBEZ

 arcpy.MakeFeatureLayer_management (output_identity, “input_fc_f_layer”)

 use = living

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

 “{} = {} and {} = ‘{}’”.format(ID_zbez, f_id, USE_bkm,

use))

 # Process: Summary Statistics (getting total w_factor of all buildings per ZBEZ)

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “w_factor2 SUM”)

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_w_factor2”

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for ZBEZ “ + str(f_id) + “(“ + str(f_nr) + “)”

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total2”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent2”, “[w_factor2]/[w_fac-

tor_total2]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p0_4_w_athome”, “{} * [w_factor_per-

Appendix 135

cent2]”.format(pop_athome))

print “\nDissolve output_identity”

output_diss_identity = wsTemp + os.sep + “output_diss_identity2”

arcpy.Dissolve_management(output_identity, output_diss_identity, ID_bkm, “p0_4_w_athome SUM”, “MUL-

TI_PART”, “DISSOLVE_LINES”)

print “Join p0_4_w_athome to bkm_output2”

arcpy.DeleteField_management(input_fc_kiga, [“SUM_p0_4_w_athome”])

arcpy.JoinField_management(input_fc_kiga, ID_bkm, output_diss_identity, ID_bkm, “SUM_p0_4_w_ath-

ome”)

Check distributed population

arcpy.Statistics_analysis(input_fc_kiga, table_temp, “SUM_p0_4_w_athome SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_p0_4_w_athome”

for row in SC:

 pop = row.getValue(field_sum)

print “\nDistributed Population (p0_4_w_athome) = “ + str(int(round(pop,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print output_bez + analysis_no + “ (polygon_fc)”

print output_name_kiga + “ (polygon_fc)”

print “\nOutput Fields in “ + output_bkm2 + analysis_no + “:”

print “p0_4_w_kiga”

print “SUM_p0_4_w_athome”

print “\nOutput Fields in “ + output_bez + analysis_no + “:”

print “SUM_age0_4_kiga”

print “\nOutput Fields in “ + output_name_kiga + “:”

print “age0_4_athome”

print “age0_4_kiga”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

136 Appendix

#---#

#-----------Distribute Population (pflichtschule, ahs, andere hoehere, berufsschule) to bkm--------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “----Distr Pop (pflichtschule, ahs, andere hoehere, berufsschule) to bkm---”

print “--\n”

input_fc_schueler = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_fc2_schueler = wsInput + os.sep + point_schools # ogd_schule_wien

input_table_schueler = gdb + os.sep + table_schueler # schueler

print “Input data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print point_schools + “ (point_fc)”

print table_schueler + “ (table)”

#--ANALYSIS 1---#

#---------------------------------Join ogd_schule_wien to bkm-------------------------------------#

print “\n---------------------------------ANALYSIS---------------------------------”

print “----Distr Pop (pflichtschule, ahs, andere hoehere, berufsschule) to bkm---\n”

Process: Spatial Join

print “Spatial Join: ogd_schule_wien to bkm”

output_spatialjoin = wsTemp + os.sep + “output_spatialjoin_schule”

arcpy.SpatialJoin_analysis(input_fc_schueler, input_fc2_schueler, output_spatialjoin, “JOIN_ONE_TO_

ONE”, “KEEP_ALL”, “”, “INTERSECT”, “0.5 Meters”)

print “Join Fields”

del_list = [TYP_GEN, BEZ_schule]

arcpy.DeleteField_management(input_fc_schueler, del_list)

arcpy.JoinField_management(input_fc_schueler, ID_bkm, output_spatialjoin, ID_bkm, “{}; {}”.format(-

TYP_GEN, BEZ_schule))

Process: Add Fields

print “Adding Fields”

arcpy.DeleteField_management(input_fc_schueler, [“w_factor_total_pflichtschule”, “w_factor_percent_

pflichtschule”, “p5_14_w_pflichtschule”])

arcpy.AddField_management(input_fc_schueler, “w_factor_total_pflichtschule”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “w_factor_percent_pflichtschule”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “p5_14_w_pflichtschule”, “DOUBLE”)

arcpy.DeleteField_management(input_fc_schueler, [“w_factor_total_ahs”, “w_factor_percent_ahs”,

“p10_19_w_ahs”])

arcpy.AddField_management(input_fc_schueler, “w_factor_total_ahs”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “w_factor_percent_ahs”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “p10_19_w_ahs”, “DOUBLE”)

Appendix 137

arcpy.DeleteField_management(input_fc_schueler, [“w_factor_total_andere_hoehere”, “w_factor_per-

cent_andere_hoehere”, “p15_19_w_andere_hoehere”])

arcpy.AddField_management(input_fc_schueler, “w_factor_total_andere_hoehere”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “w_factor_percent_andere_hoehere”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “p15_19_w_andere_hoehere”, “DOUBLE”)

arcpy.DeleteField_management(input_fc_schueler, [“w_factor_total_berufsschule”, “w_factor_percent_

berufsschule”, “p15_19_w_berufsschule_schule”])

arcpy.AddField_management(input_fc_schueler, “w_factor_total_berufsschule”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “w_factor_percent_berufsschule”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “p15_19_w_berufsschule_schule”, “DOUBLE”)

arcpy.DeleteField_management(input_fc_schueler, [“w_factor_total_berufsschule_betrieb”, “w_factor_

percent_berufsschule_betrieb”, “p15_19_w_berufsschule_betrieb”])

arcpy.AddField_management(input_fc_schueler, “w_factor_total_berufsschule_betrieb”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “w_factor_percent_berufsschule_betrieb”, “DOUBLE”)

arcpy.AddField_management(input_fc_schueler, “p15_19_w_berufsschule_betrieb”, “DOUBLE”)

#--ANALYSIS 2---#

#------------------------------Distribute pflichtschueler to Buildings-----------------------------#

print “\nDistribute pflichtschueler to bkm for the whole of Vienna”

Selecting Features (Pflichtschule)

arcpy.MakeFeatureLayer_management (input_fc_schueler, “input_fc_f_layer”)

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.format(T-

YP_GEN, NAME_ogd_pflichtschule))

Process: Summary Statistics (getting total w_factor of all buildings (Pflichtschule) for the whole

of Vienna)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value (w_factor SUM)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Get Field Value (Total number of population Pflichtschule)

SC = arcpy.SearchCursor(input_table_schueler)

field_sum = NAME_pflichtschule

for row in SC:

 pop_pflichtschule = row.getValue(field_sum)

Process: Calculate Fields

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_pflichtschule”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_pflichtschule”, “[{}]/[w_fac-

tor_total_pflichtschule]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p5_14_w_pflichtschule”, “{} * [w_factor_per-

cent_pflichtschule]”.format(pop_pflichtschule))

138 Appendix

#--ANALYSIS 3---#

#-------------------------------Distribute population of ahs to Buildings-------------------------#

print “Distribute population of ahs to bkm for the whole of Vienna”

Selecting Features (ahs)

arcpy.MakeFeatureLayer_management (input_fc_schueler, “input_fc_f_layer”)

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.format(T-

YP_GEN, NAME_ogd_ahs))

Process: Summary Statistics (getting total w_factor of all buildings (AHS) for the whole of Vien-

na)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value (w_factor SUM)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Get Field Value (Total number of population AHS)

SC = arcpy.SearchCursor(input_table_schueler)

field_sum = NAME_ahs

for row in SC:

 pop_ahs = row.getValue(field_sum)

Process: Calculate Fields

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_ahs”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_ahs”, “[{}]/[w_factor_total_

ahs]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p10_19_w_ahs”, “{} * [w_factor_percent_ahs]”.

format(pop_ahs))

#--ANALYSIS 4---#

#--------------------------Distribute population of andere hoehere to Buildings-------------------#

print “Distribute population of andere hoehere to bkm for the whole of Vienna”

Selecting Features (andere hoehere)

arcpy.MakeFeatureLayer_management (input_fc_schueler, “input_fc_f_layer”)

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.format(T-

YP_GEN, NAME_ogd_andere_hoehere))

Process: Summary Statistics (getting total w_factor of all buildings (andere hoehere) for the

whole of Vienna)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value (w_factor SUM)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Appendix 139

Get Field Value (Total number of population andere hoehere)

SC = arcpy.SearchCursor(input_table_schueler)

field_sum = NAME_andere_hoehere

for row in SC:

 pop_andere_hoehere = row.getValue(field_sum)

Process: Calculate Fields

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_andere_hoehere”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_andere_hoehere”, “[{}]/[w_

factor_total_andere_hoehere]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p15_19_w_andere_hoehere”, “{} * [w_factor_per-

cent_andere_hoehere]”.format(pop_andere_hoehere))

#--ANALYSIS 5---#

#---------------------------Distribute population of berufsschule to Buildings--------------------#

print “Distribute population of berufsschule to bkm (schule) for the whole of Vienna”

Selecting Features (berufsschule)

arcpy.MakeFeatureLayer_management (input_fc_schueler, “input_fc_f_layer”)

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.format(T-

YP_GEN, NAME_ogd_berufsschule))

Process: Summary Statistics (getting total w_factor of all buildings (berufsschule) for the whole

of Vienna)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value (w_factor SUM)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Get Field Value (Total number of population berufsschule)

SC = arcpy.SearchCursor(input_table_schueler)

field_sum = NAME_berufsschule

for row in SC:

 pop_berufsschule = row.getValue(field_sum)

 pop_berufsschule_schule = pop_berufsschule * 0.2

 pop_berufsschule_betrieb = pop_berufsschule * 0.8

Process: Calculate Fields

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_berufsschule”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_berufsschule”, “[{}]/[w_fac-

tor_total_berufsschule]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p15_19_w_berufsschule_schule”, “{} * [w_fac-

tor_percent_berufsschule]”.format(pop_berufsschule_schule))

Distribute population of berufsschule to bkm (betrieb) for the whole of Vienna

print “Distribute population of berufsschule to bkm (betrieb) for the whole of Vienna”

Selecting Features (Gewerbegebäude)

140 Appendix

arcpy.MakeFeatureLayer_management (input_fc_schueler, “input_fc_f_layer”)

use1 = trade

use2 = industry

use3 = social

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

 “{0} in (‘{1}’, ‘{2}’) or {0} = ‘{3}’ and {4} IS NOT NULL”.

format(USE_bkm, use1, use2, use3, ID_hospital))

Process: Summary Statistics (getting total w_factor of all buildings)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value

SC2 = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row2 in SC2:

 value = row2.getValue(field_sum)

Process: Calculate Fields

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_berufsschule_betrieb”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_berufsschule_betrieb”, “[{}]/

[w_factor_total_berufsschule_betrieb]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p15_19_w_berufsschule_betrieb”, “{} * [w_fac-

tor_percent_berufsschule_betrieb]”.format(pop_berufsschule_betrieb))

#---#

Statistics

arcpy.Statistics_analysis(input_fc_schueler, table_temp, “p5_14_w_pflichtschule SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p5_14_w_pflichtschule”

for row in SC:

 sum1 = row.getValue(field_sum)

print “\nStatistics:”

print “Total number of population Pflichtschule = “ + str(int(round(pop_pflichtschule,0)))

print “Distributed Population (p5_14_w_pflichtschule) = “ + str(int(round(sum1,0)))

arcpy.Statistics_analysis(input_fc_schueler, table_temp, “p10_19_w_ahs SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p10_19_w_ahs”

for row in SC:

 sum2 = row.getValue(field_sum)

print “\nTotal number of population AHS = “ + str(int(round(pop_ahs,0)))

print “Distributed Population (p10_19_w_ahs) = “ + str(int(round(sum2,0)))

arcpy.Statistics_analysis(input_fc_schueler, table_temp, “p15_19_w_andere_hoehere SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_19_w_andere_hoehere”

Appendix 141

for row in SC:

 sum3 = row.getValue(field_sum)

print “\nTotal number of population andere hoehere = “ + str(int(round(pop_andere_hoehere,0)))

print “Distributed Population (p15_19_w_andere_hoehere) = “ + str(int(round(sum3,0)))

arcpy.Statistics_analysis(input_fc_schueler, table_temp, “p15_19_w_berufsschule_schule SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_19_w_berufsschule_schule”

for row in SC:

 sum4 = row.getValue(field_sum)

arcpy.Statistics_analysis(input_fc_schueler, table_temp, “p15_19_w_berufsschule_betrieb SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p15_19_w_berufsschule_betrieb”

for row in SC:

 sum5 = row.getValue(field_sum)

print “\nTotal number of population berufsschule = “ + str(int(round(pop_berufsschule,0)))

print “Population berufsschule in schule (20%) = “ + str(int(round(pop_berufsschule_schule,0)))

print “Population berufsschule in betrieb (80%) = “ + str(int(round(pop_berufsschule_betrieb,0)))

print “Distributed Population (p15_19_w_berufsschule_schule) = “ + str(int(round(sum4,0)))

print “Distributed Population (p15_19_w_berufsschule_betrieb) = “ + str(int(round(sum5,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print “\nOutput Fields in “ + output_bkm2 + analysis_no + “:”

print “p5_14_w_pflichtschule”

print “p10_19_w_ahs”

print “p15_19_w_andere_hoehere”

print “p15_19_w_berufsschule_schule”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

#---#

#-----------------------------------Distribute University Students--------------------------------#

#---#

142 Appendix

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “----------------------Distribute University Students----------------------”

print “--\n”

input_fc_univ_stud = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_table_univ_stud = gdb + os.sep + table_students_univ # studenten

print “Input data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print table_students_univ + “ (table)”

#--ANALYSIS 1---#

#-----------------------------Distribute Students (*0.5) to University Buildings------------------#

print “\n--------------------------------ANALYSIS 1--------------------------------”

print “------------Distribute Students (*0.5) to University Buildings------------\n”

Add Fields

arcpy.DeleteField_management(input_fc_univ_stud, [“w_factor_total_univ”, “w_factor_percent_univ”,

“p20_29_studenten_univ”])

arcpy.AddField_management(input_fc_univ_stud, “w_factor_total_univ”, “DOUBLE”)

arcpy.AddField_management(input_fc_univ_stud, “w_factor_percent_univ”, “DOUBLE”)

arcpy.AddField_management(input_fc_univ_stud, “p20_29_studenten_univ”, “DOUBLE”)

Calculate p20_29_studenten

SC = arcpy.SearchCursor(input_table_univ_stud)

field_name = NAME_univ_stud

field_pop = POP_20_29_studenten

for row in SC:

 name = row.getValue(field_name)

 pop_stud = row.getValue(field_pop)

 print “Number of Students (“ + name + “) = “ + str(int(round(pop_stud,0)))

print “\n”

SC = arcpy.SearchCursor(input_table_univ_stud)

field_name = NAME_univ_stud

field_pop = POP_20_29_studenten

for row in SC:

 name = row.getValue(field_name)

 pop_stud = row.getValue(field_pop)

 arcpy.MakeFeatureLayer_management (input_fc_univ_stud, “input_fc_f_layer”)

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.for-

mat(NAME_univ2, name))

 # Process: Summary Statistics

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Appendix 143

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(w_factor_bkm)

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields (Students * 0.5)

 print “Calculating Fields for “ + name

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_univ”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_univ”, “[{}]/[w_factor_

total_univ]”.format(w_factor_bkm))

 arcpy.CalculateField_management(“input_fc_f_layer”, “p20_29_studenten_univ”, “{} * [w_factor_

percent_univ] * 0.5”.format(pop_stud))

Statistics

arcpy.Statistics_analysis(input_table_univ_stud, table_temp, “{} SUM”.format(POP_20_29_studenten))

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(POP_20_29_studenten)

for row in SC:

 pop = row.getValue(field_sum)

 pop_univ = pop * 0.5

 pop_athome = pop * 0.5

 print “\nTotal number of students = “ + str(int(round(pop,0)))

 print “Number of students at university (0.5) = “ + str(int(round(pop_univ,0)))

 print “Number of students at home (0.5) = “ + str(int(round(pop_athome,0)))

arcpy.Statistics_analysis(input_fc_univ_stud, table_temp, “p20_29_studenten_univ SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p20_29_studenten_univ”

for row in SC:

 distr_stud = row.getValue(field_sum)

 print “Number of distributed students = “ + str(int(round(distr_stud,0)))

#--ANALYSIS 2---#

#-----------------------------Distribute p20_29_studenten_athome to bkm-------------------------#

print “\n--------------------------------ANALYSIS 2--------------------------------”

print “-----------------Distribute p20_29_studenten_athome to bkm----------------\n”

Add Fields

arcpy.DeleteField_management(input_fc_univ_stud, [“w_factor_total_stud_athome”, “w_factor_percent_

stud_athome”, “p20_29_studenten_athome”])

arcpy.AddField_management(input_fc_univ_stud, “w_factor_total_stud_athome”, “DOUBLE”)

arcpy.AddField_management(input_fc_univ_stud, “w_factor_percent_stud_athome”, “DOUBLE”)

arcpy.AddField_management(input_fc_univ_stud, “p20_29_studenten_athome”, “DOUBLE”)

Selecting Features (Wohngebäude)

arcpy.MakeFeatureLayer_management (input_fc_univ_stud, “input_fc_f_layer”)

use = living

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.for-

144 Appendix

mat(USE_bkm, use))

Process: Summary Statistics (getting total w_factor of all buildings)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Process: Calculate Fields

print “Calculating Fields”

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_stud_athome”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_stud_athome”, “[{}]/[w_fac-

tor_total_stud_athome]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p20_29_studenten_athome”, “{} * [w_factor_per-

cent_stud_athome]”.format(pop_athome))

Check distributed population

arcpy.Statistics_analysis(input_fc_univ_stud, table_temp, “p20_29_studenten_athome SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p20_29_studenten_athome”

for row in SC:

 pop = row.getValue(field_sum)

print “\nNumber of p20_29_studenten_athome = “ + str(int(round(pop_athome,0)))

print “Distributed Population (p20_29_studenten_athome) = “ + str(int(round(pop,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print “\nOutput Fields in “ + output_bkm2 + analysis_no + “:”

print “p20_29_studenten_univ”

print “p20_29_studenten_athome”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

Appendix 145

#---#

#--------------------------------------Distribute Retirees to bkm---------------------------------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “------------------------Distribute Retirees to bkm------------------------”

print “--\n”

input_fc_retirees = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_fc2_retirees = wsOutput + os.sep + output_zbez + analysis_no # zbez_output

input_fc3_retirees = gdb + os.sep + point_ret_home # ogd_wohnpflege

print “Input data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print output_zbez + analysis_no + “ (polygon_fc)”

print point_ret_home + “ (point_fc)”

#--ANALYSIS 1---#

#---------------------Calculate Number of Retirees in care homes and at home----------------------#

print “\n--------------------------------ANALYSIS 1--------------------------------”

print “----------Calculate Number of Retirees in care homes and at home----------\n”

Calculate Retirees in care homes

print “Calculate Retirees in care homes”

arcpy.DeleteField_management(input_fc2_retirees, [“age65_plus”, “age65_69_pflege”, “age70_74_pflege”,

“age75_79_pflege”, “age80_84_pflege”, “age85_89_pflege”, “age90_plus_pflege”, “age65_plus_pflege”])

arcpy.AddField_management(input_fc2_retirees, “age65_plus”, “DOUBLE”)

arcpy.AddField_management(input_fc2_retirees, “age65_69_pflege”, “DOUBLE”)

arcpy.AddField_management(input_fc2_retirees, “age70_74_pflege”, “DOUBLE”)

arcpy.AddField_management(input_fc2_retirees, “age75_79_pflege”, “DOUBLE”)

arcpy.AddField_management(input_fc2_retirees, “age80_84_pflege”, “DOUBLE”)

arcpy.AddField_management(input_fc2_retirees, “age85_89_pflege”, “DOUBLE”)

arcpy.AddField_management(input_fc2_retirees, “age90_plus_pflege”, “DOUBLE”)

arcpy.AddField_management(input_fc2_retirees, “age65_plus_pflege”, “DOUBLE”)

arcpy.CalculateField_management(input_fc2_retirees, “age65_plus”, “[{}]+[{}]+[{}]+[{}]+[{}]+[{}]”.

format(POP_65_69, POP_70_74, POP_75_79, POP_80_84, POP_85_89, POP_90plus))

arcpy.CalculateField_management(input_fc2_retirees, “age65_69_pflege”, “[{}] * 0.03 * 0.291”.for-

mat(POP_65_69))

arcpy.CalculateField_management(input_fc2_retirees, “age70_74_pflege”, “[{}] * 0.05 * 0.291”.for-

mat(POP_70_74))

arcpy.CalculateField_management(input_fc2_retirees, “age75_79_pflege”, “[{}] * 0.098 * 0.291”.for-

mat(POP_75_79))

arcpy.CalculateField_management(input_fc2_retirees, “age80_84_pflege”, “[{}] * 0.21 * 0.291”.for-

mat(POP_80_84))

arcpy.CalculateField_management(input_fc2_retirees, “age85_89_pflege”, “[{}] * 0.382 * 0.291”.for-

146 Appendix

mat(POP_85_89))

arcpy.CalculateField_management(input_fc2_retirees, “age90_plus_pflege”, “[{}] * 0.644 * 0.291”.

format(POP_90plus))

arcpy.CalculateField_management(input_fc2_retirees, “age65_plus_pflege”,

 “[age65_69_pflege]+[age70_74_pflege]+[age75_79_pflege]+[age80_84_

pflege]+[age85_89_pflege]+[age90_plus_pflege]”)

Calculate Retirees at home

print “Calculate Retirees at home”

arcpy.DeleteField_management(input_fc2_retirees, [“age65_plus_athome”])

arcpy.AddField_management(input_fc2_retirees, “age65_plus_athome”, “DOUBLE”)

arcpy.CalculateField_management(input_fc2_retirees, “age65_plus_athome”, “[age65_plus]-[age65_plus_

pflege]”)

Statistics

print “\nStatistics:”

arcpy.Statistics_analysis(input_fc2_retirees, table_temp, “age65_plus SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_age65_plus”

for row in SC:

 sum = row.getValue(field_sum)

 print “SUM_age65_plus = “ + str(int(round(sum,0)))

arcpy.Statistics_analysis(input_fc2_retirees, table_temp, “age65_plus_pflege SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_age65_plus_pflege”

for row in SC:

 sum_pflege = row.getValue(field_sum)

 print “SUM_age65_plus_pflege = “ + str(int(round(sum_pflege,0)))

arcpy.Statistics_analysis(input_fc2_retirees, table_temp, “age65_plus_athome SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_age65_plus_athome”

for row in SC:

 sum_athome = row.getValue(field_sum)

 print “SUM_age65_plus_athome = “ + str(int(round(sum_athome,0)))

#--ANALYSIS 2---#

#---------------------Distribute SUM_age65_plus_pflege to bkm (ogd_wohnpflege)----------------------#

print “\n--------------------------------ANALYSIS 2--------------------------------”

print “---------Distribute SUM_age65_plus_pflege to bkm (ogd_wohnpflege)---------\n”

Process: Spatial Join

print “Spatial Join: ogd_wohnpflege to bkm”

output_spatialjoin = wsTemp + os.sep + “output_spatialjoin_wohnpflege”

arcpy.SpatialJoin_analysis(input_fc_retirees, input_fc3_retirees, output_spatialjoin, “JOIN_ONE_TO_

ONE”, “KEEP_ALL”, “”, “INTERSECT”, “0.5 Meters”)

del_list = [TYPE_pflege, BEZ_pflege]

arcpy.DeleteField_management(input_fc_retirees, del_list)

arcpy.JoinField_management(input_fc_retirees, ID_bkm, output_spatialjoin, ID_bkm, “{}; {}”.format(-

Appendix 147

TYPE_pflege, BEZ_pflege))

Process: Add Fields

print “Adding Fields”

arcpy.DeleteField_management(input_fc_retirees, [“w_factor_total_wohnpflege”, “w_factor_percent_

wohnpflege”, “p65_plus_wohnpflege”])

arcpy.AddField_management(input_fc_retirees, “w_factor_total_wohnpflege”, “DOUBLE”)

arcpy.AddField_management(input_fc_retirees, “w_factor_percent_wohnpflege”, “DOUBLE”)

arcpy.AddField_management(input_fc_retirees, “p65_plus_wohnpflege”, “DOUBLE”)

Selecting Features (kiga) per BEZ

arcpy.MakeFeatureLayer_management (input_fc_retirees, “input_fc_f_layer”)

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} IS NOT NULL”.for-

mat(TYPE_pflege))

Process: Summary Statistics (getting total w_factor of all buildings per BEZ)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value

SC2 = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row2 in SC2:

 value = row2.getValue(field_sum)

Process: Calculate Fields

print “Distribute p65_plus_wohnpflege to bkm (ogd_wohnpflege)”

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_wohnpflege”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_wohnpflege”, “[{}]/[w_factor_

total_wohnpflege]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p65_plus_wohnpflege”, “{} * [w_factor_percent_

wohnpflege]”.format(sum_pflege))

Statistics

arcpy.Statistics_analysis(input_fc_retirees, table_temp, “p65_plus_wohnpflege SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_p65_plus_wohnpflege”

for row in SC:

 sum = row.getValue(field_sum)

 print “\nDistributed Population (p65_plus_wohnpflege) = “ + str(int(round(sum,0)))

#--ANALYSIS 3---#

#-----------------------Distribute SUM_age65_plus_athome to bkm per ZBEZ--------------------------#

print “\n--------------------------------ANALYSIS 3--------------------------------”

print “-------------Distribute SUM_age65_plus_athome to bkm per ZBEZ-------------\n”

Process: Identity (get buildings per ZBEZ)

print “Identity (bkm, zbez)”

output_identity = wsTemp + os.sep + “output_identity4”

arcpy.Identity_analysis(input_fc_retirees, input_fc2_retirees, output_identity)

arcpy.AddField_management(output_identity, “w_factor3”, “DOUBLE”)

arcpy.CalculateField_management(output_identity, “w_factor3”, w_factor)

148 Appendix

Add Fields

arcpy.AddField_management(output_identity, “w_factor_total_ret_athome”, “DOUBLE”)

arcpy.AddField_management(output_identity, “w_factor_percent_ret_athome”, “DOUBLE”)

arcpy.AddField_management(output_identity, “p65_plus_ret_athome”, “DOUBLE”)

print “\nDistribute p65_plus_ret_athome to Wohngebäude per ZBEZ:”

SC = arcpy.SearchCursor(input_fc2_retirees)

field_nr = OID

field_id = ID_zbez

field_pop = “age65_plus_athome”

for row in SC:

 f_nr = row.getValue(field_nr)

 f_id = row.getValue(field_id)

 pop_athome = row.getValue(field_pop)

 # Selecting Features (Wohngebäude) per ZBEZ

 arcpy.MakeFeatureLayer_management (output_identity, “input_fc_f_layer”)

 use = living

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”,

 “{} = {} and {} = ‘{}’”.format(ID_zbez, f_id, USE_bkm,

use))

 # Process: Summary Statistics (getting total w_factor of all buildings per ZBEZ)

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “w_factor3 SUM”)

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_w_factor3”

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields

 print “Calculating Fields for ZBEZ “ + str(f_id) + “(“ + str(f_nr) + “)”

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_ret_athome”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_ret_athome”, “[w_fac-

tor3]/[w_factor_total_ret_athome]”)

 arcpy.CalculateField_management(“input_fc_f_layer”, “p65_plus_ret_athome”, “{} * [w_factor_per-

cent_ret_athome]”.format(pop_athome))

print “\nDissolve output_identity”

output_diss_identity = wsTemp + os.sep + “output_diss_identity3”

arcpy.Dissolve_management(output_identity, output_diss_identity, ID_bkm, “p65_plus_ret_athome SUM”,

“MULTI_PART”, “DISSOLVE_LINES”)

print “Join p65_plus_ret_athome to bkm_output2”

arcpy.DeleteField_management(input_fc_retirees, [“SUM_p65_plus_ret_athome”])

arcpy.JoinField_management(input_fc_retirees, ID_bkm, output_diss_identity, ID_bkm, “SUM_p65_plus_

ret_athome”)

Appendix 149

Check distributed population

arcpy.Statistics_analysis(input_fc_retirees, table_temp, “SUM_p65_plus_ret_athome SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_SUM_p65_plus_ret_athome”

for row in SC:

 pop = row.getValue(field_sum)

print “\nSUM_age65_plus_athome = “ + str(int(round(sum_athome,0)))

print “Distributed Population (SUM_p65_plus_ret_athome) = “ + str(int(round(pop,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print output_zbez + analysis_no + “ (polygon_fc)”

print “\nOutput Fields in “ + output_bkm2 + analysis_no + “:”

print “p65_plus_wohnpflege”

print “SUM_p65_plus_ret_athome”

print “\nOutput Fields in “ + output_zbez + analysis_no + “:”

print “age65_plus_pflege”

print “age65_plus_athome”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

#---#

#---------------------------------Distribute Patients to Hospitals--------------------------------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “---------------------Distribute Patients to Hospitals---------------------”

print “--\n”

input_fc_patients = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_table_patients = gdb + os.sep + table_patients # patients

150 Appendix

print “Input data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print table_patients + “ (table)”

#---ANALYSIS--#

#-----------------------------------Distribute Patients to Hospitals------------------------------#

print “\n---------------------------------ANALYSIS---------------------------------”

print “----------------------Distribute Patients to Hospitals--------------------\n”

Add Fields

arcpy.DeleteField_management(input_fc_patients, [“w_factor_total2”, “w_factor_percent2”, “pa-

tients”])

arcpy.AddField_management(input_fc_patients, “w_factor_total2”, “DOUBLE”)

arcpy.AddField_management(input_fc_patients, “w_factor_percent2”, “DOUBLE”)

arcpy.AddField_management(input_fc_patients, “patients”, “DOUBLE”)

Calculate patients

SC = arcpy.SearchCursor(input_table_patients)

field_id = ID_count3

field_name = ID_hospital_pat

field_pop = POP_patients

for row in SC:

 f_id = row.getValue(field_id)

 name = row.getValue(field_name)

 pop_patients = row.getValue(field_pop)

 arcpy.MakeFeatureLayer_management (input_fc_patients, “input_fc_f_layer”)

 arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.for-

mat(ID_hospital, name))

 # Process: Summary Statistics

 arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “w_factor SUM”.format(w_factor_bkm))

 # Get Field Value

 SC2 = arcpy.SearchCursor(table_temp)

 field_sum = “SUM_{}”.format(w_factor_bkm)

 for row2 in SC2:

 value = row2.getValue(field_sum)

 # Process: Calculate Fields (w_factor_percent2 already calculated in script “Distribute Working

Population (Hospitals, Univ, vhs)”)

 print “Calculating Fields for “ + str(name) + “ (“ + str(int(round(f_id,0))) + “)”

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total2”, value)

 arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent2”, “[{}]/[w_factor_to-

tal2]”.format(w_factor_bkm))

 arcpy.CalculateField_management(“input_fc_f_layer”, “patients”, “{} * [w_factor_percent2]”.

format(pop_patients))

Statistics

print “\nStatistics:”

arcpy.Statistics_analysis(input_table_patients, table_temp, “{} SUM”.format(POP_patients))

Appendix 151

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(POP_patients)

for row in SC:

 pop = row.getValue(field_sum)

 print “Number of patients = “ + str(int(round(pop,0)))

arcpy.Statistics_analysis(input_fc_patients, table_temp, “patients SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_patients”

for row in SC:

 distr_pop = row.getValue(field_sum)

 print “Number of distributed patients = “ + str(int(round(distr_pop,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print “\nOutput Fields in “ + output_bkm2 + analysis_no + “:”

print “patients”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

###

print “\n##\n\n”

#---#

#----------------------------Create bkm_output3 and calculate total population--------------------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “------------Create bkm_output3 and calculate total population-------------”

print “--\n”

input_fc_total_pop = wsInput + os.sep + input_bkm # bkm

input_fc2_total_pop = wsOutput + os.sep + output_bkm2 + analysis_no # bkm_output2

input_fc3_total_pop = wsInput + os.sep + input_zbez # zbez_etrs

output_fc_total_pop = wsOutput2 + os.sep + output_name_total_pop # bkm_output3

input_table_patients = gdb + os.sep + table_patients # patients

input_table_wrlinien = gdb + os.sep + table_wrlinien_empl # besch_wr_linien

152 Appendix

input_table_pendlersaldo = gdb + os.sep + table_pendlersaldo # pendlersaldo

print “Input data:”

print input_bkm + “ (polygon_fc)”

print output_bkm2 + analysis_no + “ (polygon_fc)”

print output_name_total_pop + “ (polygon_fc)”

print table_patients + “ (table)”

print table_wrlinien_empl + “ (table)”

print table_pendlersaldo + “ (table)”

#---ANALYSIS--#

#--------------------------Create bkm_output3 and calculate total population----------------------#

print “\n---------------------------------ANALYSIS---------------------------------”

print “------------Create bkm_output3 and calculate total population-------------\n”

Create bkm_output3

print “Create bkm_output3”

arcpy.CopyFeatures_management(input_fc_total_pop, output_fc_total_pop)

Join Fields

f0a = “p15_64_w_hosp”

f0b = “p15_64_w_univ”

f0c = “p15_64_w_vhs”

f0 = “p15_64_w_hosp_athome”

f1 = “p15_64_w_hosp_univ_vhs”

f2 = “SUM_{}”.format(POP_15_64_firmenreg)

f3 = “p15_64_w_wrlinien_athome”

f4 = “SUM_p15_64_w_remaining_working_pop”

f5 = “p0_4_w_kiga”

f6 = “SUM_p0_4_w_athome”

f7 = “p15_64_w_unemployed”

f8 = “p5_14_w_pflichtschule”

f9 = “p10_19_w_ahs”

f10 = “p15_19_w_andere_hoehere”

f11 = “p15_19_w_berufsschule_schule”

f12 = “p15_19_w_berufsschule_betrieb”

f13 = “p20_29_studenten_univ”

f14 = “p20_29_studenten_athome”

f15 = “p65_plus_wohnpflege”

f16 = “SUM_p65_plus_ret_athome”

f17 = “patients”

join_list = [f0a, f0b, f0c, f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11, f12, f13, f14, f15,

f16, f17]

print “Join Fields”

arcpy.JoinField_management(output_fc_total_pop, “code_bkm”, input_fc2_total_pop, “code_bkm”, join_

list)

Replace <Null> with 0

print “Replace <Null> with 0”

Appendix 153

expression = “myCalc(!p15_64_w_hosp_univ_vhs!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p15_64_w_hosp_univ_vhs”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!SUM_{}!)”.format(POP_15_64_firmenreg)

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “SUM_{}”.format(POP_15_64_firmenreg), expres-

sion, “PYTHON_9.3”, codeblock)

expression = “myCalc(!p15_64_w_wrlinien_athome!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p15_64_w_wrlinien_athome”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!SUM_p15_64_w_remaining_working_pop!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “SUM_p15_64_w_remaining_working_pop”, expres-

sion, “PYTHON_9.3”, codeblock)

expression = “myCalc(!p0_4_w_kiga!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p0_4_w_kiga”, expression, “PYTHON_9.3”, code-

block)

expression = “myCalc(!SUM_p0_4_w_athome!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

154 Appendix

arcpy.CalculateField_management(output_fc_total_pop, “SUM_p0_4_w_athome”, expression, “PYTHON_9.3”,

codeblock)

expression = “myCalc(!p15_64_w_unemployed!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p15_64_w_unemployed”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!p5_14_w_pflichtschule!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p5_14_w_pflichtschule”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!p10_19_w_ahs!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p10_19_w_ahs”, expression, “PYTHON_9.3”,

codeblock)

expression = “myCalc(!p15_19_w_andere_hoehere!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p15_19_w_andere_hoehere”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!p15_19_w_berufsschule_schule!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p15_19_w_berufsschule_schule”, expression,

“PYTHON_9.3”, codeblock)

expression = “myCalc(!p15_19_w_berufsschule_betrieb!)”

codeblock = “””def myCalc (population):

 if population == None:

Appendix 155

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p15_19_w_berufsschule_betrieb”, expression,

“PYTHON_9.3”, codeblock)

expression = “myCalc(!p20_29_studenten_univ!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p20_29_studenten_univ”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!p20_29_studenten_athome!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p20_29_studenten_athome”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!p65_plus_wohnpflege!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p65_plus_wohnpflege”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!SUM_p65_plus_ret_athome!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “SUM_p65_plus_ret_athome”, expression, “PY-

THON_9.3”, codeblock)

expression = “myCalc(!patients!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “patients”, expression, “PYTHON_9.3”, code-

block)

156 Appendix

Calculate total population (patients in hospitals not accounted) (no rest_bev)

print “Calculate total population (patients unaccounted)”

arcpy.AddField_management(output_fc_total_pop, “population_vienna_no_patients”, “DOUBLE”)

arcpy.CalculateField_management(output_fc_total_pop, “population_vienna_no_patients”,

 “[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]+[{}]”.for-

mat(f0, f1, f2, f3, f4, f5,

 f6, f7, f8, f9, f10, f11, f12, f13, f14, f15, f16))

Check calculated population (patients in hospitals not accounted)

arcpy.Statistics_analysis(output_fc_total_pop, table_temp, “population_vienna_no_patients SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_population_vienna_no_patients”

for row in SC:

 population = row.getValue(field_sum)

print “\nTotal Population (patients not accounted) = “ + str(int(round(population,0)))

#--------------------------Calculate p5_64_w_rest_bev & total population--------------------------#

Calculate p5_64_w_rest_bev

print “\nCalculate p5_64_w_rest_bev”

arcpy.AddField_management(output_fc_total_pop, “w_factor_total_rest_bev”, “DOUBLE”)

arcpy.AddField_management(output_fc_total_pop, “w_factor_percent_rest_bev”, “DOUBLE”)

arcpy.AddField_management(output_fc_total_pop, “p5_64_w_rest_bev”, “DOUBLE”)

Selecting Features (Wohngebäude)

arcpy.MakeFeatureLayer_management (output_fc_total_pop, “input_fc_f_layer”)

use = living

arcpy.SelectLayerByAttribute_management(“input_fc_f_layer”, “NEW_SELECTION”, “{} = ‘{}’”.for-

mat(USE_bkm, use))

Process: Summary Statistics (getting total w_factor of all buildings)

arcpy.Statistics_analysis(“input_fc_f_layer”, table_temp, “{} SUM”.format(w_factor_bkm))

Get Field Value

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(w_factor_bkm)

for row in SC:

 value = row.getValue(field_sum)

Get rest_bev

arcpy.Statistics_analysis(output_fc_total_pop, table_temp, “population_vienna_no_patients SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_population_vienna_no_patients”

for row in SC:

 population = row.getValue(field_sum)

SC = arcpy.SearchCursor(input_table_wrlinien)

field = POP_15_64_wrlinien

for row in SC:

Appendix 157

 employees_wr_linien = row.getValue(field)

 employees_wr_linien2 = employees_wr_linien/2

pop_plus_wrlinien = population + employees_wr_linien2

arcpy.Statistics_analysis(input_fc3_total_pop, table_temp, “{} SUM”.format(POP_total))

SC = arcpy.SearchCursor(table_temp)

field = “SUM_{}”.format(POP_total)

for row in SC:

 pop_total = row.getValue(field)

arcpy.Statistics_analysis(input_table_pendlersaldo, table_temp, “{} SUM”.format(pendlersaldo_to-

tal))

SC = arcpy.SearchCursor(table_temp)

field = “SUM_{}”.format(pendlersaldo_total)

for row in SC:

 pendlersaldo = row.getValue(field)

pop_total_pendler = pop_total + pendlersaldo

rest_bev = pop_total_pendler - pop_plus_wrlinien

Process: Calculate Fields

print “Calculating Fields for p5_64_w_rest_bev”

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_total_rest_bev”, value)

arcpy.CalculateField_management(“input_fc_f_layer”, “w_factor_percent_rest_bev”, “[{}]/[w_factor_

total_rest_bev]”.format(w_factor_bkm))

arcpy.CalculateField_management(“input_fc_f_layer”, “p5_64_w_rest_bev”, “{} * [w_factor_percent_

rest_bev]”.format(rest_bev))

expression = “myCalc(!population_vienna_no_patients!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “population_vienna_no_patients”, expression,

“PYTHON_9.3”, codeblock)

expression = “myCalc(!p5_64_w_rest_bev!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “p5_64_w_rest_bev”, expression, “PYTHON_9.3”,

codeblock)

Calculate total population (patients in hospitals not accounted)

print “Calculate total population (patients unaccounted)”

arcpy.AddField_management(output_fc_total_pop, “population_vienna_no_patients_restbev”, “DOUBLE”)

arcpy.CalculateField_management(output_fc_total_pop, “population_vienna_no_patients_restbev”,

158 Appendix

“[population_vienna_no_patients]+[p5_64_w_rest_bev]”)

Statistics

arcpy.Statistics_analysis(output_fc_total_pop, table_temp, “p5_64_w_rest_bev SUM”)

SC = arcpy.SearchCursor(table_temp)

field = “SUM_p5_64_w_rest_bev”

for row in SC:

 distr_restbev = row.getValue(field)

arcpy.Statistics_analysis(output_fc_total_pop, table_temp, “population_vienna_no_patients_restbev

SUM”)

SC = arcpy.SearchCursor(table_temp)

field = “SUM_population_vienna_no_patients_restbev”

for row in SC:

 distr_totalbev = row.getValue(field)

distr_totalbev_inclWrlinien = distr_totalbev + employees_wr_linien2

print “\nTotal Population (+ pendlersaldo) = “ + str(int(round(pop_total_pendler,0)))

print “Distributed Population incl. Wr Linien = “ + str(int(round(pop_plus_wrlinien,0)))

print “rest_bev = “ + str(int(round(rest_bev,0)))

print “Distributed rest_bev = “ + str(int(round(distr_restbev,0)))

print “Distributed Total Population = “ + str(int(round(distr_totalbev,0)))

print “Distributed Total Population incl. Wr Linien = “ + str(int(round(distr_totalbev_inclWrlin-

ien,0))) + “ (“ + str(int(round(pop_total_pendler,0))) + “)”

#---#

Subtract Patients from buildings weighted by their number of residents

print “\nAdding Fields”

arcpy.DeleteField_management(output_fc_total_pop, [“w_factor_total_pop”, “w_factor_percent_total_

pop”, “minus_patients”, “population_vienna_temp”, “population_vienna”])

arcpy.AddField_management(output_fc_total_pop, “w_factor_total_pop”, “DOUBLE”)

arcpy.AddField_management(output_fc_total_pop, “w_factor_percent_total_pop”, “DOUBLE”)

arcpy.AddField_management(output_fc_total_pop, “minus_patients”, “DOUBLE”)

arcpy.AddField_management(output_fc_total_pop, “population_vienna_temp”, “DOUBLE”)

arcpy.AddField_management(output_fc_total_pop, “population_vienna”, “DOUBLE”)

Process: Summary Statistics

arcpy.Statistics_analysis(input_table_patients, table_temp, “{} SUM”.format(POP_patients))

Get Field Value

SC2 = arcpy.SearchCursor(table_temp)

field_sum = “SUM_{}”.format(POP_patients)

for row2 in SC2:

 patients = row2.getValue(field_sum)

Process: Calculate Fields

print “Calculate total population (patients accounted)”

arcpy.CalculateField_management(output_fc_total_pop, “w_factor_total_pop”, distr_totalbev)

arcpy.CalculateField_management(output_fc_total_pop, “w_factor_percent_total_pop”, “[population_vi-

Appendix 159

enna_no_patients_restbev]/[w_factor_total_pop]”)

arcpy.CalculateField_management(output_fc_total_pop, “minus_patients”, “{} * [w_factor_percent_to-

tal_pop]”.format(patients))

arcpy.CalculateField_management(output_fc_total_pop, “population_vienna_temp”, “[population_vien-

na_no_patients_restbev]-[minus_patients]”)

expression = “myCalc(!population_vienna_temp!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc_total_pop, “population_vienna_temp”, expression, “PY-

THON_9.3”, codeblock)

arcpy.CalculateField_management(output_fc_total_pop, “population_vienna”, “[population_vienna_

temp]+[patients]”)

Check distributed population

arcpy.Statistics_analysis(output_fc_total_pop, table_temp, “population_vienna SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_population_vienna”

for row in SC:

 population = row.getValue(field_sum)

pop_plus_wrlinien = population + employees_wr_linien2

print “\nDistributed Total Population (patients accounted) = “ + str(int(round(population,0)))

print “Distributed Total Population incl. Wr Linien = “ + str(int(round(pop_plus_wrlinien,0)))

Delete Fields

arcpy.DeleteField_management(output_fc_total_pop, [“w_factor_total_pop”, “w_factor_percent_total_

pop”, “minus_patients”, “population_vienna_no_patients”,

 “population_vienna_temp”])

arcpy.DeleteField_management(output_fc_total_pop, [“w_factor_total_rest_bev”, “w_factor_percent_

rest_bev”, “population_vienna_no_patients_restbev”])

#---#

print “\n--”

print “\nOutput Data:”

print output_name_total_pop + “ (polygon_fc)”

print “\nOutput Fields in “ + output_name_total_pop + “:”

print “population_vienna”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s\n’ % (end-start)

160 Appendix

###

print “\n##\n\n”

#---#

#--Aggregate population to raster---------------------------#

#---#

import datetime

start = datetime.datetime.now()

print ‘start run: %0.19s\n’ % (start)

print “--”

print “-----------------------Aggregate population to raster---------------------”

print “--\n”

import arcpy, os, sys

arcpy.env.overwriteOutput = True

input_fc = wsOutput2 + os.sep + output_bkm3 + analysis_no # bkm_output3

input_fc2 = wsInput + os.sep + input_grid # grid

input_fc3 = wsOutput + os.sep + output_name_wrlinien # public_transportation_buffer

input_table_wrlinien = gdb + os.sep + table_wrlinien_empl

output_fc = wsOutput2 + os.sep + output_name_aggregate # grid_aggregated

print “Input data:”

print output_bkm3 + analysis_no + “ (polygon_fc)”

print input_grid + “ (polygon_fc)”

print output_name_wrlinien + “ (polygon_fc)”

#--ANALYSIS 1---#

#--------------------------------Aggregate population to raster-----------------------------------#

print “\n--------------------------------ANALYSIS 1--------------------------------”

print “------------------------Aggregate population to raster--------------------\n”

Make Feature Layer

arcpy.MakeFeatureLayer_management(input_fc, “f_layer”, “”, “”,

 “””p15_64_w_hosp p15_64_w_hosp VISIBLE RATIO;

 p15_64_w_hosp_athome p15_64_w_hosp_athome VISIBLE RATIO;

 p15_64_w_univ p15_64_w_univ VISIBLE RATIO;

 p15_64_w_vhs p15_64_w_vhs VISIBLE RATIO;

 p15_64_w_hosp_univ_vhs p15_64_w_hosp_univ_vhs VISIBLE RATIO;

 SUM_{0} SUM_{0} VISIBLE RATIO;

 p15_64_w_wrlinien_athome p15_64_w_wrlinien_athome VISIBLE RATIO;

 SUM_p15_64_w_remaining_working_pop SUM_p15_64_w_remaining_working_pop VISIBLE RATIO;

 p15_64_w_unemployed p15_64_w_unemployed VISIBLE RATIO;

 p0_4_w_kiga p0_4_w_kiga VISIBLE RATIO;

 SUM_p0_4_w_athome SUM_p0_4_w_athome VISIBLE RATIO;

 p5_14_w_pflichtschule p5_14_w_pflichtschule VISIBLE RATIO;

Appendix 161

 p10_19_w_ahs p10_19_w_ahs VISIBLE RATIO;

 p15_19_w_andere_hoehere p15_19_w_andere_hoehere VISIBLE RATIO;

 p15_19_w_berufsschule_schule p15_19_w_berufsschule_schule VISIBLE RATIO;

 p15_19_w_berufsschule_betrieb p15_19_w_berufsschule_betrieb VISIBLE RATIO;

 p20_29_studenten_univ p20_29_studenten_univ VISIBLE RATIO;

 p20_29_studenten_athome p20_29_studenten_athome VISIBLE RATIO;

 p65_plus_wohnpflege p65_plus_wohnpflege VISIBLE RATIO;

 SUM_p65_plus_ret_athome SUM_p65_plus_ret_athome VISIBLE RATIO;

 patients patients VISIBLE RATIO;

 p5_64_w_rest_bev p5_64_w_rest_bev VISIBLE RATIO;

 population_vienna population_vienna VISIBLE RATIO”””.format(POP_15_64_firmenreg))

Process: Identity

print “Identity (buildings per grid cell)”

output_identity = wsTemp + os.sep + “identity_grid”

arcpy.Identity_analysis(“f_layer”, input_fc2, output_identity, “ALL”, “”, “NO_RELATIONSHIPS”)

Process: Spatial Join

print “Spatial Join (bkm from identity to grid)”

FID_bkm_output3 = “FID_” + output_bkm3 + analysis_no

arcpy.SpatialJoin_analysis(input_fc2, output_identity, output_fc, “JOIN_ONE_TO_ONE”, “KEEP_ALL”,

 “””Shape_Length “Shape_Length” false true true 8 Double 0 0 ,First,#,{0},Shape_Length,-1,-1;

 Shape_Area “Shape_Area” false true true 8 Double 0 0 ,First,#,{0},Shape_Area,-1,-1;

 {3} “{3}” false true true 8 Double 0 0 ,First,#,{0},{3},-1,-1;

 {1} “{1}” true true false 4 Long 0 0 ,First,#,{1},{2},-1,-1;

 {4} “{4}” true true false 8 Double 0 0 ,First,#,{2},{4},-1,-1;

 {5} “{5}” true true false 8 Double 0 0 ,First,#,{2},{5},-1,-1;

 {6} “{6}” true true false 8 Double 0 0 ,Mean,#,{2},{6},-1,-1;

 {7} “{7}” true true false 8 Double 0 0 ,First,#,{2},{7},-1,-1;

 {8} “{8}” true true false 150 Text 0 0 ,First,#,{2},{8},-1,-1;

 {9} “{9}” true true false 50 Text 0 0 ,First,#,{2},{9},-1,-1;

 {10} “{10}” true true false 70 Text 0 0 ,First,#,{2},{10},-1,-1;

 p15_64_w_hosp “p15_64_w_hosp” true true false 8 Double 0 0 ,Sum,#,{2},p15_64_w_hosp,-1,-1;

 p15_64_w_hosp_athome “p15_64_w_hosp_athome” true true false 8 Double 0 0

,Sum,#,{2},p15_64_w_hosp_athome,-1,-1;

 p15_64_w_univ “p15_64_w_univ” true true false 8 Double 0 0 ,Sum,#,{2},p15_64_w_univ,-1,-1;

 p15_64_w_vhs “p15_64_w_vhs” true true false 8 Double 0 0 ,Sum,#,{2},p15_64_w_vhs,-1,-1;

 p15_64_w_hosp_univ_vhs “p15_64_w_hosp_univ_vhs” true true false 8 Double 0 0

,Sum,#,{2},p15_64_w_hosp_univ_vhs,-1,-1;

 {11} “{11}” true true false 250 Text 0 0 ,First,#,{2},{11},-1,-1;

 {12} “{12}” true true false 150 Text 0 0 ,First,#,{2},{12},-1,-1;

 {13} “{13}” true true false 250 Text 0 0 ,First,#,{2},{13},-1,-1;

 {14} “{14}” true true false 8 Double 0 0 ,Sum,#,{2},{14},-1,-1;

 p15_64_w_wrlinien_athome “p15_64_w_wrlinien_athome” true true false 8 Double 0 0

,Sum,#,{2},p15_64_w_wrlinien_athome,-1,-1;

 SUM_p15_64_w_remaining_working_pop “SUM_p15_64_w_remaining_working_pop” true true false 8

Double 0 0 ,Sum,#,{2},SUM_p15_64_w_remaining_working_pop,-1,-1;

 p15_64_w_unemployed “p15_64_w_unemployed” true true false 8 Double 0 0 ,Sum,#,{2},p15_64_w_

unemployed,-1,-1;

 p0_4_w_kiga “p0_4_w_kiga” true true false 8 Double 0 0 ,Sum,#,{2},p0_4_w_kiga,-1,-1;

 SUM_p0_4_w_athome “SUM_p0_4_w_athome” true true false 8 Double 0 0 ,Sum,#,{2},SUM_p0_4_w_

162 Appendix

athome,-1,-1;

 p5_14_w_pflichtschule “p5_14_w_pflichtschule” true true false 8 Double 0 0

,Sum,#,{2},p5_14_w_pflichtschule,-1,-1;

 p10_19_w_ahs “p10_19_w_ahs” true true false 8 Double 0 0 ,Sum,#,{2},p10_19_w_ahs,-1,-1;

 p15_19_w_andere_hoehere “p15_19_w_andere_hoehere” true true false 8 Double 0 0

,Sum,#,{2},p15_19_w_andere_hoehere,-1,-1;

 p15_19_w_berufsschule_schule “p15_19_w_berufsschule_schule” true true false 8 Double 0 0

,Sum,#,{2},p15_19_w_berufsschule_schule,-1,-1;

 p15_19_w_berufsschule_betrieb “p15_19_w_berufsschule_betrieb” true true false 8 Double 0 0

,Sum,#,{2},p15_19_w_berufsschule_betrieb,-1,-1;

 p20_29_studenten_univ “p20_29_studenten_univ” true true false 8 Double 0 0

,Sum,#,{2},p20_29_studenten_univ,-1,-1;

 p20_29_studenten_athome “p20_29_studenten_athome” true true false 8 Double 0 0

,Sum,#,{2},p20_29_studenten_athome,-1,-1;

 p65_plus_wohnpflege “p65_plus_wohnpflege” true true false 8 Double 0 0 ,Sum,#,{2},p65_plus_

wohnpflege,-1,-1;

 SUM_p65_plus_ret_athome “SUM_p65_plus_ret_athome” true true false 8 Double 0 0 ,Sum,#,{2},-

SUM_p65_plus_ret_athome,-1,-1;

 patients “patients” true true false 8 Double 0 0 ,Sum,#,{2},patients,-1,-1;

 p5_64_w_rest_bev “p5_64_w_rest_bev” true true false 8 Double 0 0 ,Sum,#,{2},p5_64_w_rest_

bev,-1,-1;

 population_vienna “population_vienna” true true false 8 Double 0 0 ,Sum,#,{2},population_

vienna,-1,-1”””

 .format(input_fc2, FID_bkm_output3, output_identity, ID_grid, w_factor_bkm, ID_bkm, height_

bkm, vol_bkm, ID_hospital, NAME_hospital, USE_bkm, NAME_univ1, NAME_univ2, NAME_vhs, POP_15_64_fir-

menreg), “CONTAINS”, “#”, “#”)

Check if Spatial Join worked - if not (code_bkm = 0) print error message and exit

var = arcpy.da.SearchCursor(output_fc, (“{}”.format(ID_bkm),)).next()[0]

if var == 0:

 print “ERROR IN FIELD MAPS”

 sys.exit()

#--ANALYSIS 2---#

#-----------------------------Aggregate population (wrlinien) to raster---------------------------#

print “\n--------------------------------ANALYSIS 2--------------------------------”

print “------------------Aggregate population (wrlinien) to raster---------------\n”

Make Feature Layer

arcpy.MakeFeatureLayer_management(input_fc3, “f_layer”, “”, “”, “p15_64_wr_linien p15_64_wr_linien

VISIBLE RATIO”)

Process: Identity

print “Identity (p15_64_wr_linien per grid cell)”

output_identity = wsTemp + os.sep + “identity_grid_wrlinien”

arcpy.Identity_analysis(“f_layer”, input_fc2, output_identity, “ALL”, “”, “NO_RELATIONSHIPS”)

Process: Spatial Join

print “Spatial Join (bkm from identity to grid)”

output_join = wsTemp + os.sep + “join_grid_wrlinien”

arcpy.SpatialJoin_analysis(input_fc2, output_identity, output_join, “JOIN_ONE_TO_ONE”, “KEEP_ALL”,

Appendix 163

 “””p15_64_wr_linien “p15_64_wr_linien” true true false 8 Double 0 0 ,Sum,#,{0},p15_64_wr_lin-

ien,-1,-1;

 {1} “{1}” true true false 8 Double 0 0 ,First,#,{0},{1},-1,-1”””

 .format(output_identity, ID_grid), “CONTAINS”, “#”, “#”)

Check if Spatial Join worked - if not (p15_64_wr_linien = 0) print error message and exit

var = arcpy.da.SearchCursor(output_join, (“p15_64_wr_linien”,)).next()[0]

if var == 0:

 print “ERROR IN FIELD MAPS”

 sys.exit()

Join Field p15_64_wr_linien

print “Join Field”

arcpy.JoinField_management(output_fc, ID_grid, output_join, ID_grid, “p15_64_wr_linien”)

Replace <Null> with 0

print “Replace <Null> with 0”

expression = “myCalc(!population_vienna!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc, “population_vienna”, expression, “PYTHON_9.3”, code-

block)

expression = “myCalc(!p15_64_wr_linien!)”

codeblock = “””def myCalc (population):

 if population == None:

 return 0

 else:

 return (population)”””

arcpy.CalculateField_management(output_fc, “p15_64_wr_linien”, expression, “PYTHON_9.3”, codeblock)

Calculating fields

print “Calculating fields”

arcpy.AddField_management(output_fc, “population_vienna_plus_wrlinien”, “DOUBLE”)

arcpy.CalculateField_management(output_fc, “population_vienna_plus_wrlinien”, “[population_vien-

na]+[p15_64_wr_linien]”)

Statistics

arcpy.Statistics_analysis(input_fc, table_temp, “population_vienna SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_population_vienna”

for row in SC:

 population = row.getValue(field_sum)

SC = arcpy.SearchCursor(input_table_wrlinien)

field = POP_15_64_wrlinien

for row in SC:

 employees_wr_linien = row.getValue(field)

164 Appendix

 employees_wr_linien2 = employees_wr_linien/2

pop_plus_wrlinien = population + employees_wr_linien2

print “\nTotal Population (bkm_output3) = “ + str(int(round(pop_plus_wrlinien,0)))

arcpy.Statistics_analysis(output_fc, table_temp, “population_vienna_plus_wrlinien SUM”)

SC = arcpy.SearchCursor(table_temp)

field_sum = “SUM_population_vienna_plus_wrlinien”

for row in SC:

 population = row.getValue(field_sum)

 print “Total Population (grid_aggregated) = “ + str(int(round(population,0)))

#---#

print “\n--”

print “\nOutput Data:”

print output_name_aggregate + “ (polygon_fc)”

print “\nOutput Fields in “ + output_name_aggregate + “:”

print “p15_64_w_hosp”

print “p15_64_w_hosp_athome”

print “p15_64_w_univ”

print “p15_64_w_vhs”

print “p15_64_w_hosp_univ_vhs”

print “SUM_{}”.format(POP_15_64_firmenreg)

print “p15_64_w_wrlinien_athome”

print “SUM_p15_64_w_remaining_working_pop”

print “p15_64_w_unemployed”

print “p0_4_w_kiga”

print “SUM_p0_4_w_athome”

print “p5_14_w_pflichtschule”

print “p10_19_w_ahs”

print “p15_19_w_andere_hoehere”

print “p15_19_w_berufsschule_schule”

print “p15_19_w_berufsschule_betrieb”

print “p20_29_studenten_univ”

print “p20_29_studenten_athome”

print “p65_plus_wohnpflege”

print “SUM_p65_plus_ret_athome”

print “patients”

print “p5_64_w_rest_bev”

print “population_vienna”

print “population_vienna_plus_wrlinien”

end = datetime.datetime.now()

print ‘\nfinished run: %0.19s\n’ % (end),

print ‘runtime: %0.7s’ % (end-start)

print ‘\ntotal runtime: %0.7s\n’ % (end-start1)

