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Abstract

The focus of this thesis is to examine the ways in which companies could collude in

quantity under asymmetric costs and investigates whether collusion is advantageous for

all companies involved. In particular, with which method can a collusive outcome in a

duopoly be achieved based on an asymmetric Cournot duopoly. With asymmetric costs it

is more difficult to sustain collusion in comparison to symmetric costs. Nevertheless, this

is an important topic, since it reflects reality much better than symmetric costs do. Gen-

eral knowledge conveys that under asymmetric costs and in the absence of side payments,

the maximization of the profit of the whole industry is unlikely. This thesis is primar-

ily based on the paper “Competitive Advantage and Collusive Optima” by Schmalensee

(1987) [17]. The main emphasis is on the characterization of four distinct collusive pro-

cedures, from which a respective optimal solution is found by means of methods taken

from the axiomatic bargaining theory. Results show that the collusive outcome for the

low-cost firm might be under-performing. Finally, Schmalensee’s research (1987) [17] is

expanded in different ways.
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1. Introduction

This thesis deals with collusion under asymmetric costs to a great extent in a duopoly. In
particular, the emphasis is on collusion in quantity. Thus, the focus mainly lies on the paper
“Competitive Advantage and Collusive Optima”, written by Richard Schmalensee (1987) [17],
which deals with this issue. In his article, Schmalensee introduced four different technologies
for collusion.

The main research question is therefore, how should firms now collude in such situations
with asymmetric costs that are based on an asymmetric Cournot duopoly? And is it profitable
for all companies?

What does that mean in particular? Four different ways are described, how the companies
can possibly collude and accordingly four methods to solve them optimally, established by
Schmalensee (1987) [17]. The collusive outcome is then compared to that of Cournot compe-
tition, which holds as an important benchmark in this study. A higher profit is expected from
collusion. Hence, the objective is to show that more profit can be obtained from collusion than
from Cournot Competition.

This thesis should be a simplification for other researchers who are interested in this topic,
especially in these four particular collusion technologies introduced by Schmalensee (1987) [17].
For this reason, I describe his model and the four collusion technologies in detail to make them
easier to understand, since Schmalensee (1987) [17] did not always go into too much detail
with his explanations and formulated some aspects in an abstract manner. While there is noth-
ing wrong with his paper, I provided accurate computations and formulas to expand upon his
explanations so that these are easy to follow. Including such computations also means that
no additional calculations on the part of the reader are required. In addition, his results are
partly verified. Although this thesis deals with theoretical rather than existing companies, it
questions whether existing companies may apply this theoretical approach in reality.

In my research I do not take into account the stability of the derived collusive solutions and
neglect the fact that the companies may have an incentive to deviate from the collusive out-
come, as Schmalensee (1987) [17] did. In particular, the firms could cheat on the agreements
in not holding on to their assigned quota or part of the market.

1.1. Motivation

A lot of literature concerning collusion in oligopolies deals with symmetric costs, since it is
generally common knowledge that asymmetric costs prevent the companies from collusion,
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see Fischer and Normann (2017) [5]. Nevertheless, it is a topic of importance and deserves
more attention, as asymmetric costs play an significant role in reality. In the actual world, two
different companies would rarely have identical costs, namely fixed costs, production costs
or the same technology, just to mention a few potential differences. Hence, when assuming
asymmetric costs in contrast to symmetric costs, the reality is better reflected and it is more
practical. Still, the theory about the case with symmetric costs is substantial.

If firms want to collude under asymmetric costs, it would be straight forward to maximize
the outcome of the whole industry, which is commonly known as the purpose of a cartel. But
solving this maximization task with asymmetric costs leads to an algebraic problem, which
will be explained in section 2.2. However, pursuing this purpose stands to reason under the
condition that some types of compensation payments are allowed, as Schmalensee (1987) [17],
Bain (1948) [1] and some others have emphasized. Furthermore, since compensation pay-
ments can be prohibited in some countries and as a consequence of diseconomies of scale, it
is misplaced in many cases for firms to use side payments or for them to merge (cf. Stigler
1964, page 45) [20]. Though there are also other studies which claim that collusion can sustain
asymmetric costs. The approach of these studies, is on the one hand “balanced temptation”
by Collie (2004) [3] and on the other hand the Cournot duopoly over an infinite horizon by
Escrihuela-Villar (2012) [4].

1.2. Structure of the thesis

Initially, I will shortly introduce the Cournot model and then explain what the exact problem is
that comes up when maximizing the joint profit of the whole industry. In Part I, to which sec-
tion 3 – 6 belong, I explicitly describe the approach of Schmalensee (1987) [17], dealing with
the aforementioned problem. In the third section, the simple model of Schmalensee (1987) [17]
is illustrated. Then follows the core part of the thesis: the characterization of the four differ-
ent collusion technologies, originally presented from Schmalensee (1987) [17]. These are
described in detail in section 4 and are compared at the end of the section. In section 5,
four collusive solution methods from the axiomatic bargaining theory, which are chosen from
Schmalensee (1987) [17], are presented to find the optimal solution for the collusion technolo-
gies. The results of Schmalensee (1987) [17] are introduced at the end of Part I in section 6.

In Part II, I expand on Schmalensee’s research (1987) [17]. In fact, I generalize his model
by modifying first the demand function, the cost function and following this, I then expand the
duopoly to a triopoly.

Finally, I shortly summarize the main issues and make a conclusion on the key results.
Additional calculations can be found in the appendix.
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2. The Problem

Before having a look at the actual problem of colluding firms, Cournot competition will shortly
be introduced. In the following sections, this model will hold as a standard for comparison,
especially if the firms are not colluding, and to examine the performance of the collusion
technologies. A higher profit will be expected from collusion than from competition.

2.1. Cournot Competition with asymmetric costs

I now consider a simple model of Cournot competition with two or more firms in the market,
which have different costs. Here there is assumed that two or more firms are competing in
quantity in a market, in which a homogeneous product is sold. Below, the variable 1+N will
describe the number of firms operating in the market. Note that N is a natural number. Why
the number of firms is 1+N and not just N, will be explained below. I try to make it more
general in using an arbitrary natural number of firms without loosing the focus.

The Cournot model is a static game with complete information of all players, who are just
the firms. That means the equilibrium derived from Cournot competition is a Nash equilibrium
in a normal form game.

Here the same demand function is chosen as from Schmalensee (1987) [17]. This demand
function will always be used in Part I. That must not be true for the extensions in Part II. Thus,
Schmalensee (1987) [17] assumed a linear inverse demand function, which looks like this:

P(Q) = max
0≤Q<∞

{1−Q, 0}. (2.1)

In the equation above P characterizes the market price and Q = qi +Q−i the total quantity,
where qi indicates the individual quantity of firm i and Q−i is the sum of the quantities of
all firms except firm i. In other words Q−i indicates which quantities the other companies
except firm i are choosing. Of course the quantity, which is the number of units the firms are
producing, cannot take a negative value. Therefore, qi ∈ [0,∞) for i = 1, . . . ,1+N. As written
in the headline it is assumed to have asymmetric cost functions with constant unit costs:

C(qi) = ci ·qi, for i = 1, . . . ,1+N c1 < c j for j = 2, . . . ,1+N. (2.2)

Without loss of generality it is assumed that firm 1 has lower costs than any other firm. Each
firm i has its individual cost parameter ci. The profit function Πi of firm i is determined by
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revenue reduced by costs, while the revenue is the price multiplied by the quantity.

Πi(Q) = P(Q) ·qi −C(qi) = (1−Q− ci) ·qi for i = 1, . . . ,1+N (2.3)

By applying the demand and cost function from above the profit function (2.3) is obtained.
The goal is now to maximize the profit of each firm i, respectively:

max
0≤qi<∞

Πi(Q) = max
0≤qi<∞

(1−Q− ci) ·qi for i = 1, . . . ,1+N. (2.4)

Differentiating the profit of firm i with respect to their quantity qi results in the following first
order conditions (FOC):

∂Πi(Q)

∂qi
= 1−2qi −Q−i − ci

!
= 0 for i = 1, . . . ,1+N. (2.5)

The equation above is set to zero to determine the extremum. Since the profit function is a
quadratic function, which is a strictly concave function, the extreme value will be a global
maximum.

Now qi is expressed for every i in each equation from (2.5) and the so-called reaction func-
tion is obtained, which shows the best ‘reaction’ of firm i in choosing its quantity against
which quantity the other firms are selecting.

qi =

⎧⎨⎩1
2 · (1−Q−i − ci) for Q−i ≤ 1− ci

0 otherwise
for i = 1, . . . ,1+N (2.6)

This distinction of cases is made, because if the other firms increase their quantities, firm i

will have more costs to produce than it can earn. In that case it will stay out of the market and
produce zero goods.

From here first the quantity of each firm is derived by solving the system of equations (2.6)
of the reaction functions for each i and then the profit by setting the calculated quantities into
the profit function (2.3) for each i. Before this is done, it will be anticipated a little bit from the
next section 3 to make it more suitable to the model of Schmalensee (1987) [17] in the next
section. In this model there are two types of firms. I will apply this here for simplification.
Hence there is firm 1 and one or more firms 2, the latter are basically identical. That means
all firms 2 have the same costs c2 and the same quantity q2. Let the number of firms 2 be N.
Therefore, the total quantity is Q = q1+Nq2. Since all firms 2 are identical, one can apply the
symmetric argument, which means q2 = · · ·= q1+N . By means of that argument, the following
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quantities below are obtained for the general case for 1+N firms. In the following the quantity
and profit in Cournot equilibrium will be marked with a superscript C.

qC
1 =

1
2+N

· [1− (1+N) · c1 +Nc2] (2.7)

qC
2 =

1
2+N

· [1−2c2 + c1] (2.8)

In addition, the quantity for all N high-cost firms is given by NqC
2 . Hence the correspond-

ing profit functions are obtained by inserting the quantities above in the profit function from
equation (2.3). Thus, the profit functions of firm 1 and one firm 2, especially for N firms 2
NΠC

2 = N · (qC
2 )

2, in Cournot equilibrium are given by:

Π
C
1 = (qC

1 )
2 =

1
(2+N)2 · [1− (1+N) · c1 +Nc2]

2 (2.9)

Π
C
2 = (qC

2 )
2 =

1
(2+N)2 · [1−2c2 + c1]

2. (2.10)

The subsequent equations focus on the two firm case. This is needed later on for some calcu-
lations.

qC
i =

1−2ci + c−i

3
(2.11)

Π
C
i =

(1−2ci + c−i)
2

9
(2.12)

The quantities in Nash equilibrium are characterized by the point (qC
1 ,q

C
2 ), as the profits in

Nash equilibrium by the point (ΠC
1 ,Π

C
2 ). Both equations above (2.11) and (2.12) and accord-

ingly (2.7) – (2.10) hold as a benchmark for the following study about collusion.
The figure 2.1 below is plotted in MATLAB and shows the reaction function of only two

firms from equation (2.6). To be more precise the graph shows the reaction functions of one
single firm 1 competing against one single firm 2. The intersection is the Nash equilibrium for
both firms, where both firms choose their optimal quantity, respectively called Cournot point.
In this point neither of the firms want to deviate from their produced quantity, since they cannot
increase their profit by changing the quantity. The exact values for the intersection point in the
figure below are determined from equation (2.11) with the costs denoted in the notes.
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Figure 2.1: Reaction function of two firms in Cournot competition

Notes: Figure 2.1 is plotted in MATLAB with the following values c1 = 0.3 and
c2 = 0.5. This corresponds to the cost difference parameter Rmiddle, which will be intro-
duced in the next section 3.

2.2. The Problem of Collusion

Starting from now the focus lays on how firms can or should collude. The easiest way how
firms can collude and to use the whole potential of the market is to maximize joint profits. To
receive these joint profit, the profits of each firm in the market are summed up. It is shown
not only for the two firm case, but directly for the general case with 1+N firms operating in
the market. Since I want to show that this works analogous for an arbitrary natural number of
firms, namely N. There are 1+N firms, because there is one single firm competing against N

other identical firms. That means the same problem is faced, if there are an arbitrary number
of firms competing against one single firm with low costs. But also if there are three different
firms competing in the market. Here I mean different in terms of various costs. The proof can
be seen in the appendix A.4. This also works analogous for the cost function introduced in the
next section 3.

Hence, the joint profit is given by Π = Π1 +N ·Π2. That means the following formula is
obtained with the profit function (2.3) from above:

Π(Q) = (1−q1 −Nq2 − c1) ·q1 +(1−q1 −Nq2 − c2) ·N ·q2, where c1 ̸= c2. (2.13)

6



Without loss of generality, it is assumed that c1 < c2. It is important to remark that asymmetric
costs are supposed, because a contradiction will be induced at the end of the argumentation.
However, here the joint profit Π will be maximized similar to section 2.1. In contrast to the
previous case now the joint profit will be differentiated and not only the firm’s own profit
separately with respect to the quantity of each firm. Then, it is set to zero. Therefore, the
FOC’s are given by:

∂Π(Q)

∂q1
= 1−2q1 −2Nq2 − c1

!
= 0 (2.14)

∂Π(Q)

∂q2
= 1−2q1 −2Nq2 − c2

!
= 0. (2.15)

If one is solving these equations for q1 and q2, these two reaction functions are obtained:

q1 =

⎧⎨⎩1
2 · (1−2Nq2 − c1) for Nq2 ≤ 1−c1

2

0 otherwise
(2.16)

q2 =

⎧⎨⎩ 1
2N · (1−2q1 − c2) for q1 ≤ 1−c2

2

0 otherwise
. (2.17)

Trying to solve the two previous equations by means of setting q2 from equation (2.17) into
q1 from equation (2.16) leads to the cancellation of the quantities q1 and q2. This results in:

⇐⇒ c1 = c2  . (2.18)

This means there is no solution to the system of equations (2.16) – (2.17) for the quantities q1

and q2 with the assumption of asymmetric costs. The equation above says that firm 1 and all
N firms 2 have the same costs. But this is a contradiction to the assumption in the beginning
of having asymmetric costs. In other words, the problem cannot be solved algebraically in
this way. What works in the symmetric cost case, ends up with an algebraic problem in the
asymmetric cost case. In the following section, Schmalensee’s approach to solve this issue
will be discussed.
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Part I.

Schmalensee’s approach

In the following part of my thesis, I work on Schmalensees paper (1987) [17]. I describe it in
more detail such that the topic is more comprehensible. Furthermore, I will provide precise
calculations to make it easier to follow without making own computations. That means this
part leans mainly on his paper and also his structure. In addition, whenever I use the phrasing
”Schmalensee’s model”, I mean the model from Schmalensee (1987) [17].

3. Framework of Schmalensee

Richard Schmalensee (1987) [17] tried to solve the problem of the previous subsection 2.2 in
another way using the following simple model. He assumed two types of companies compet-
ing in quantity in a market with a homogeneous product. The first type is a single low-cost

firm, which will also be called firm 1. The second type consists of N high-cost firms, which are
basically identical and will be named firms of type 2. Remember that N is a natural number.
In total, there are 1+N firms operating in the market.

Schmalensee (1987) [17] used the wording ”leader” and ”follower” to characterize the two
types of firms, which is maybe a bit misleading, because there is no time difference in moving.
The firms are just moving once at the same time. That is why I do not use this wording in my
thesis. That means a static game with complete information is considered.

The inverse demand function from equation (2.1) is as well employed by Schmalensee
(1987) [17]. This simple market demand function and the following cost function is selected
to simplify the calculations, particularly since one of the collusion technologies involves more
complicated computations. The subsequent cost function is chosen, which is valid for both
types of firms:

C(qi) = (1−θi) ·qi, for i = 1,2 and θi ∈ [0,1]. (3.1)

That means there are constant unit costs with a cost parameter θi, which can take values
between zero and one. The variable q1 characterizes the quantity of firm 1, while q2 indicates
the quantity of a single high-cost firm. Accordingly, the quantity of all N firms of type 2 is
N ·q2. As explained in section 2.1 the quantities cannot be negative, consequently qi ∈ [0,∞)

for i = 1,2. The cost parameters must fulfill the subsequent inequality. The reason will be
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explained below.
θ2 < θ1 < 2 ·θ2 (3.2)

The first inequality just ensures that firm 1 has lower costs than any firm of type 2, since
firm 1 is the low-cost firm. However, the second inequality makes sure that the market price
of firm 1 as a monopolist, which is 1− θ1

2 , is higher than the costs of each firm of type 2, which
are 1−θ2. Expressed in formula this means 1−θ2 = c2 < PM

1 = 1−qM
1 . In this formula the

superscript M denotes the price, respectively the quantity, of firm 1 as a monopolist. In the
appendix A.3, the determination of firm 1 and N firms of type 2 as a monopolist is shown. The
market price of firm 1 as a monopolist has to be higher, because if firm 1 drops its price, firms
of type 2 will have more costs to produce the product than they would be able to gain. In this
case, it will stay out of the market and produce nothing.

With this demand (2.1) and cost function (3.1), the following profit function is obtained

Πi(Q) = (θi −Q) ·qi for i = 1,2. (3.3)

One must not forget that the determination of the total quantity is as follows Q = q1 +N ·q2,
since there are N high-cost firms. Hence N ·q2 is the quantity of all firms of type 2. Moreover,
the corresponding joint industry profit is given by:

Π = Π1 +N ·Π2. (3.4)

The variable Π characterizes the profit of the whole industry. Thus it is the sum of the profits
of each operating firm in the market. Furthermore, Π1 is the profit of the low-cost firm,
whereas Π2 denotes the profit of a single high-cost firm. The total profit of firms of type 2 is
characterized by N ·Π2.

Schmalensee (1987) [17] introduced the parameter R, which measures the relative differ-
ence in costs, while the natural number N describes the number of high-cost firms. In addition,
R can signify how profitable the market is. With the following equation the market can be
characterized with only these two parameters, namely R and N.

R =
θ1

θ2
(3.5)

From the previous equation (3.5), equation (3.2) and the range of values of θi, it follows that
1 < R < 2. Small values of R, that means values near 1, signify that the firms have nearly
the same costs, while high values of R, near 2, indicate a proportional big difference in costs.
Schmalensee (1987) [17] used three different values of R to measure most suitably the effect
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of relative changes in costs, respectively changes in R. This is done in choosing the values
relatively well distributed over the interval of R. Therefore, there is a value near 1, which I
will name Rlow and it takes the value 1.143. Secondly, a value in the middle of the interval of
R is selected, namely Rmiddle = 1.4. Thirdly, Schmalensee (1987) [17] introduced a value near
2, which is characterized by Rhigh = 1.727. The calculations of this values can be found in the
appendix A.1. Especially the values are summed up in table A.1. Note that in the symmetric
cost case θ1 = θ2 and therefore R = 1.

Another parameter S is introduced, since it has a stronger correlation to the measured vari-
ables and thus is easier to determine. S measures the market share of the low-cost firm in
Cournot equilibrium. The market share of firm 1 in Cournot equilibrium is determined as
follows:

S =
qC

1
QC =

qC
1

qC
1 +N ·qC

2
(3.6)

=
(1+N) ·θ1 −Nθ2

θ1 +Nθ2
. (3.7)

In the second equation, the values of the Cournot quantities from equation (3.16) and (3.17),
which are determined in section 3.1, are set in the formula of S. Note that S+S2 = 1, where
S2 = 1− S is the market share of a all N firms of type 2. With small transformations R can
now also be expressed with these two parameters S and N:

R =
N · (1+S)
N +1−S

. (3.8)

The market can now be characterized instead of the parameters R and N with the above in-
troduced parameter S and N. More details on the derivation of the parameter S is to be found
in the appendix A.2. This equation (3.8) and the range of values of R imply that S lies in the
interval S ∈

[ 1
N+1 ,1

]
, see Schmalensee (1985) [16]. With easy transformation of inequalities

the interval above for S can be obtained, see in the appendix A.2 in the second part. If one
of the parameters either S or N is kept constant and the other one is raised to its limit, then
the cost benefit of the low-cost firm rises. Of course the rivalry between the different types of
firms increases with increasing values of N.

Note that Schmalensee (1987) [17] assumed that “if collusion does not occur, the market
is in Cournot equilibrium” (Schmalensee 1987, page 354) [17] and so do I. Therefore, the
Cournot equilibria for Schmalensee’s model are determined.
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3.1. Cournot competition with Schmalensee’s model

To have the exact Cournot values for Schmalensee’s model, I now shortly calculate the Cournot
quantities and profits. In section 2.1, the model of Cournot competition is introduced. There I
used the general cost function (2.2). In contrast, Schmalensee chose this cost function (3.1). I
utilize a more general cost function, such that I can adapt a different cost function more easily
in Part II, where I extend Schmalensee’s model. I chose the same demand function (2.1) in
section 2.1 as Schmalensee (1987) [17], such that there is no need for adaption. This demand
function will always be used in Part I, while in Part II some modifications can be made.

Since only the cost function is changed, one does not have to repeat the whole calculation.
Accordingly, I will determine the Cournot quantity and the Cournot profit for Schmalensee’s
model in just setting in the already calculated Cournot values from equations (2.7) – (2.10).
That means the subsequent transformation has to be done:

ci = 1−θi for i = 1,2. (3.9)

As previously described, firm 1’s quantity is characterized by qC
1 and consequently qC

2 is the
quantity of a single high-cost firm. To obtain the Cournot quantity of all N firms of type 2
just multiply qC

2 with N. Now one sets the transformation (3.9) in the equation (2.7). Thus the
Cournot quantity of firm 1 according to Schmalensee’s model is the following:

qC
1 =

1
2+N

· [1− (1+N)c1 −Nc2] (3.10)

=
1

2+N
· [1− (1+N) · (1−θ1)+N · (1−θ2)] (3.11)

=
1

2+N
· [(1+N)θ1 −Nθ2] . (3.12)

In addition, firms of type 2’s Cournot quantity is analogous transformed by setting in the
equation (2.8).

qC
2 =

1
2+N

· (1−2c2 + c1) (3.13)

=
1

2+N
· (1−2 · (1−θ2)+1−θ1) (3.14)

=
1

2+N
· (2θ2 −θ1) (3.15)
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To sum up, the Cournot quantities for Schmalensee’s model of both types of firms are:

qC
1 =

1
2+N

· [(1+N)θ1 −Nθ2] (3.16)

qC
2 =

1
2+N

· (2θ2 −θ1) (3.17)

N ·qC
2 =

N
2+N

· (2θ2 −θ1) . (3.18)

The previous characterization of the Cournot profit functions is kept, namely ΠC
1 for the

Cournot profit of the low-cost firm and accordingly ΠC
2 for a single high-cost firm. Hence

for all N firms of type 2 the term NΠC
2 is used. To determine the Cournot profit of firm 1, re-

spectively of firms of type 2, one directly uses that ΠC
i = (qC

i )
2 for i = 1,2 from equation (2.9),

respectively from equation (2.10). That means one only has to square the Cournot quantites
from equation (3.16), analogue from equation (3.17).

Π
C
1 = (qC

1 )
2 =

1
(2+N)2 · [(1+N)θ1 −Nθ2]

2 (3.19)

Π
C
2 = (qC

2 )
2 =

1
(2+N)2 · [2θ2 −θ1]

2 (3.20)

N ·ΠC
2 = N · (qC

2 )
2 =

N
(2+N)2 · [2θ2 −θ1]

2 (3.21)

Be careful in Part I always to these Cournot values will be referred. That must not hold for my
extensions in Part II.

The figure 2.1 from section 2.1 is also valid for the two equations (3.16) – (3.17) above. The
values c1 = 0.3 and c2 = 0.5 are transformed according to equation (3.9) into θi = 1− ci for
i = 1,2. The transformed values for the parameter θ are the following θ1 = 0.7 and θ2 = 0.5.
To prevent confusion, the parameter θ1 has to be larger than θ2, since the cost function is 1−θi

for i = 1,2. Therefore, firm 1 would have costs of 0.3 and types of firms 2 0.5 in this case.
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4. Collusion Technologies

Schmalensee (1987) [17] introduced four general technologies for collusion. In other words,
four different methods how firms can collude, which try to solve the problem from section 2.2
in another way. These will be presented in the following subsections. That means in sec-
tions 4.1 – 4.4 Schmalensee’s collusion technologies will be illustrated in more detail and
therefore lean mainly on his paper, Schmalensee (1987) [17]. The first technology allows
compensation payments, while under the other three technologies such payments are forbid-
den. At the end of this section, all technologies are compared to each other and with the
symmetric and the Cournot case.

4.1. Side Payments

Sometimes side payments are forbidden by law or because of other restrictions, which
Schmalensee (1987) [17] did not mention in detail. He took it more for granted that com-
pensations payments are used in terms of building a cartel, which can be prohibited by com-
petition laws. In most states building a cartel is not allowed. But in this technology the firms
are allowed to make side payments or to merge. In other words, they are permitted to build a
cartel. Hence, they will behave as they would have a monopoly. This is a good way to max-
imize total industry profits and to use the whole potential of the market. Below, the quantity
and profit for this technology will be characterized with the superscript SP. Consequently, the
low-cost firm will do all the production and firms of type 2 will produce nothing which means
the quantity qSP

2 is zero. That is just because firm 1 can produce cheaper. Thus, just firm 1’s
profit is maximized as it has a monopoly.

max
0≤q1<∞

Π(q1) = max
0≤q1<∞

(θ1 −q1) ·q1 (4.1)

The detailed calculation of the case of a monopoly can be seen in the appendix A.3. In the
following, the superscript M denotes the corresponding quantity or profit of a monopolist. In
this technology, it is the same to maximize the total profit or firm 1’s profit, since here it holds
Π = ΠM

1 . Solving the maximization task analog to section 2.1, the total collusive quantity is
identical to the monopoly quantity of firm 1.

QSP = qM
1 =

θ1

2
= qSP

1 (4.2)
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Therefore, there is an explicit solution at the point:

(
qSP

1 , NqSP
2

)
=

(
θ1

2
, 0
)
. (4.3)

The equation above characterizes the optimal quantity for the Side Payments technology (SP).
To derive the profit, QSP from equation (4.2) is set in equation (3.3) for i = 1. Accordingly,
the total collusive profit equals the monopoly profit of the low-cost firm:

Π
M
1 = Π

SP = Π
SP
1 +NΠ

SP
2 =

θ 2
1
4
. (4.4)

This implies that the solution of the joint profit is explicit. Afterwards, this gain has to be
divided between the firms. It follows that there is no explicit solution for the individual firm,
since they are behaving as a cartel, instead there is a profit possibility frontier:

Π
SP
2 =

1
N

(
θ 2

1
4

−Π
SP
1

)
. (4.5)

Theoretically, the profit can be split freely. But the optimal solution for each type of firm
should be found. In section 5, four solution methods are introduced, from which three of them
can be applied to this collusion technology. Why will be explained later on in section 5.4. For
every of the three individual solution methods there exists an optimal outcome which will be
determined from the explicit profit possibility frontier (4.5).

Schmalensee (1987) [17] stated that this collusion technology should be used more to com-
pare the other technologies with and to examine what profits can be possible with collusion.
But it may not necessarily be employed for all cases as an alternative, which is close to reality.

4.2. Market Sharing

If it is not allowed to pay compensation payments or to merge, the profits of each company can
be determined “only from its own production and sales” (Schmalensee 1987, page 354) [17].
That means each firm has to produce a certain number of products at a fixed price. The
following three technologies deal with these particular ‘output quotas’ which are assigned to
each type of firm. The companies have to keep this rate for the quantity. In other words,
the cartel allocates particular ‘output quotas’ to each firm. Therefore, each firm determine its
profit with respect to its rate in quantity and as well to that of the other firm. Furthermore,
each firm holds the other firm’s profit fixed at their output quota and maximizes its own profit
with the information which quota is assigned to itself and the other type of firm. Then the
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explicit reaction function is calculated from the restricted profit function, limited in terms of
quantity, and not the other way around.

In this specific technology, the profit function (3.3) is transformed into functions of total
quantity Q to determine the profit of each type of firm with respect to their assigned output
quotas. Hence from equation (3.3) it follows:

qi =
Πi

θi −Q
for i = 1,2. (4.6)

Now the total quantity can be described by:

Q = q1 +N ·q2 =
Π1

θ1 −Q
+N · Π2

θ2 −Q
. (4.7)

From here, the profit of all N high-cost firms is expressed as a function of the profit of firm 1
and the other way around. This is done by setting Q in the profit function (3.3), but transform-
ing the part for the quantity qi from equation (4.7) for i = 1,2 into:

q1 = Q−N · Π2

θ2 −Q
and analogue (4.8)

N ·q2 = Q− Π1

θ1 −Q
. (4.9)

With these transformations the subsequent equations are obtained:

Π1(NΠ2) =

[
θ1 −

(
Q− NΠ2

θ2 −Q
+

NΠ2

θ2 −Q

)]
·
(

Q− NΠ2

θ2 −Q

)
(4.10)

NΠ2(Π1) =

[
θ2 −

(
Π1

θ1 −Q
+Q− Π1

θ1 −Q

)]
·
(

Q− Π1

θ1 −Q

)
. (4.11)

Converting the equations above, yields the following expressions for the profits Π1 and NΠ2:

max
0≤Q<∞

NΠ2 (Π1) = max
0≤Q<∞

(
Q− Π1

θ1 −Q

)
· (θ2 −Q) (4.12)

max
0≤Q<∞

Π1 (Π2) = max
0≤Q<∞

(
Q− NΠ2

θ2 −Q

)
· (θ1 −Q) . (4.13)

In the next step, both equations (4.12) and (4.13) are maximized with respect to the total
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quantity Q and then set to zero. Therefore, the FOC’s read as follows:

∂NΠ2 (Π1)

∂Q
= θ2 −2Q+

Π1 · (θ1 −θ2)

(θ1 −Q)2
!
= 0 (4.14)

∂Π1 (NΠ2)

∂Q
= θ1 −2Q+

NΠ2 · (θ2 −θ1)

(θ2 −Q)2
!
= 0. (4.15)

From the two first order conditions above, Π1 will be expressed from equation (4.14) and
analogue NΠ2 from equation (4.15), such that the explicit profits for the Market Sharing tech-
nology (MS) are given by:

Π
MS
1 =

(θ1 −Q)2 · (2Q−θ2)

θ1 −θ2
(4.16)

NΠ
MS
2 =

(θ2 −Q)2 · (θ1 −2Q)

θ1 −θ2
. (4.17)

To be sure that these are maximum values, the second derivations from equations (4.14)
and (4.15) are computed in the appendix A.5. The calculations come to the result that the
second order conditions (SOC)’s are fulfilled and the equations (4.16) and (4.17) are indeed
maximized.

Now the explicit reaction functions will be determined from the FOC’s (4.14) and (4.15)
above. Therefore, the reaction function can be derived by means of the equations (4.16), (4.17),
resulting from these FOC’s, and the profit function (3.3). Recall that Q = q1 +Nq2. To deter-
mine the reaction function of q1, first the profit function (3.3) is set in the explicit profit ΠMS

1

from equation (4.16).

(θ1 −Q) ·q1 =
(θ1 −Q)2 · (2Q−θ2)

θ1 −θ2
(4.18)

In the second step, the equation of the total quantity Q = q1+Nq2 is used and all variables are
brought on one side.

(θ1 −q1 −Nq2) ·
[
(θ1 −q1 −Nq2) · (2 · (q1 +Nq2)−θ2)

θ1 −θ2
−q1

]
= 0 (4.19)

This leads to the cubic equation above, which means that there are three solutions for the
quantity q1. This three solutions are marked with the superscript (1) – (3). In this case it is not
an exponent.

Hence, the first solution q(1)1 from equation (4.19) is the subsequent ‘guessed zero’ point,
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details see in the appendix A.6:

q(1)1 = θ1 −Nq2. (4.20)

Now only the quadratic part of equation (4.19) in the square brackets has to be solved, which
can easily be done with the small solution formula. The precise calculations of all zeros of the
polynomial (4.19) can be found in the appendix A.6, which result in the subsequent roots:

q(2,3)1 =
θ1 +2θ2

4
± 1

4
·
√

(θ1 −2θ2)
2 +8N ·q2 · (θ1 −θ2)−Nq2. (4.21)

The last equation shows the second and third solution for the reaction function of q1.

Then, the determination of the reaction function of q2 follows. This works analogue to the
derivation of the reaction function of q1. Hence, the general profit function (3.3) is set in
NΠMS

2 from equation (4.17).

N · (θ2 −Q) ·q2 =
(θ2 −Q)2 · (θ1 −2Q)

θ1 −θ2
(4.22)

Additionally, the formula of Q= q1+Nq2 is used, which leads to the following cubic equation:

(θ2 −q1 −Nq2) ·
[
(θ2 −q1 +Nq2) · (θ1 −2 · (q1 +Nq2))

θ1 −θ2
−Nq2

]
= 0. (4.23)

As above, these three solutions will be characterized by the superscript (1) – (3). Again, this is
not an exponent. Furthermore, the first solution q(1)2 is derived from equation (4.23), analogue
to q1:

q(1)2 =
1
N
· (θ2 −q1) . (4.24)

In a next step, the part of the equation (4.23) in the square brackets, which is quadratic, should
be solved with the small solution formula. In the appendix A.6, the detailed computation of
this quadratic equation is shown. The result this calculation leads to the second and third
solutions of the reaction function q2, which are given by:

q(2,3)2 =
2θ1 +θ2

4N
± 1

4N
·
√
(2θ1 −θ2)

2 −8 ·q1 · (θ1 −θ2)−
q1

N
. (4.25)

Finally, these are the explicit reaction functions for q1 and q2 for the MS technology. The
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explanation follows below.

qMS
1 =

θ1 +2θ2 −
√
(θ1 −2θ2)2 +8 ·N ·q2 · (θ1 −θ2)

4
−N ·q2 (4.26)

qMS
2 =

2θ1 +θ2 −
√
(2θ1 −θ2)2 −8 ·q1 · (θ1 −θ2)

4N
− q1

N
(4.27)

The equations (4.19) and (4.23) demand three solutions for q1 and q2, but in this case there
is only one for each qi for i = 1,2 that make sense, namely the third solutions q(3)1 and q(3)2 .
The first solutions of the reaction functions q(1)1 and q(1)2 from equation (4.20) and (4.24) can
be excluded because of a contradiction. Details and the whole calculation can be found in the
appendix A.8. The proof for the elimination for q(2)1 and q(2)2 from equation (4.21) and (4.25)
is discussed in the appendix A.7. It is an easy proof with a counterexample. In other words, it
is proven that q(2)1 and q(2)2 are not convex in the relevant area. Note that the second solutions
q(2)1 and q(2)2 are the solutions with the ‘plus’.

To understand why the second solutions cannot be used, while the third solutions can, a
small excursus to section 5 is made. In that section, bargaining solution methods are repre-
sented which are applied to the four collusion technologies. For these bargaining methods a
convex “cooperative payoff region” is needed to receive a collusive outcome (cf. Binmore
1992, page 174) [2]. In other words, a concave function with a convex hull, respectively fron-
tier is demanded (cf. Binmore 1992, page 174,193) [2]. Furthermore, whenever the expression
“cooperative payoff region” is used, I refer to the relevant frontier, which is needed for the
bargaining solutions, discussed in Binmore (1992) [2]. In contrast, Schmalensee (1987) [17]
called the same collusive area the “profit possibility frontier”. I will use both expressions as
they describe the same thing. What does this mean to the second and third solutions of the re-
action functions? First, note that the third solutions are the solutions with the ‘minus’ in front
of the root. The third solution q(3)1 comes from equation (4.21) and q(3)2 from equation (4.25).
On this subject, Schmalensee (1987) [17] referred to another paper by Bishop, stating that
“Bishop (1960, p. 948) asserts the convexity of the contract curve in this case.” (Bishop 1960,
cited from Schmalensee 1987, page 356) [17]. ‘Contract curve’ in this context refers to the re-
action function q2 from equation (4.27), respectively the third solution q(3)2 . I therefore accept
that the third solutions q(3)1 and q(3)2 are valid.

In addition, it should not be forget to calculate the quantities for the MS technology. But
if someone tries to determine the exact quantities, a problem is met. That is due to the fact
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that if the reaction function qMS
1 from equation (4.26), respectively qMS

2 from equation (4.27),
is set in qMS

2 , respectively qMS
1 , an unsolvable equation is found, at least if exact solutions

should be found. Details and the determination can be found in the appendix A.9. Since these
equations are unsolvable in terms of exactness, this means there are no exact quantities for the
MS technology. In this case, a numeric approach has to be applied.

4.3. Market Division

As the name says, in this technology the firms divide the market. That is a method to obtain
certainly a convex cooperative payoff region. This can be a realistic possibility how firms
could act in a cartel. For simplicity, Schmalensee (1987) [17] assumed that the customers are
identical regarding all characteristics of importance. In addition, each potential purchaser is
allotted to one firm in the market by the cartel. The low-cost firm gets assigned the particular
section W ∗ of customers and accordingly firms of type 2 are allocated a fragment 1−W ∗.

Now the market is divided. It can be imagined that there are two different markets, but it
should be kept in mind that actually this is not the case. Both types of firms are operating in
the same market, although each in a particular isolated part of the market, which each firm gets
assigned to. The firms cannot access the fraction of the market from the other type of firm.
Thus, each type of firm is acting in its own section of the market as a monopoly. Therefore, it
is obvious that all firms sell their product for their own monopoly price.

Furthermore, this segmentation of the market has to be taken into account and change the
original demand function from equation (2.1). I name the inverse demand function for this
technology for firm 1 P1(.), respectively for firms of type 2 P2(.). Hence, it can be said
that there is one market for firm 1, where just the low-cost firm produces the quantity q1.
Consequently, the market demand function is P1(q1). Analogue, there is another market for
the N high-cost firms, in which only firms of type 2 are selling Nq2 products. That means the
inverse demand function changes to P2(N ·q2).

As mentioned above, the market, respectively the customers, are divided into two fractions,
where the first fragment is W ∗ and the second is 1−W ∗. These two sections are summing up
to 1 = W ∗+(1−W ∗). Here 1 characterizes the ‘whole market’. This implies that each firm
cannot use the whole potential of the market, but only their fraction of the market. The total
quantity Q is the sum of all quantities produced in the ‘whole market’, which corresponds to
100%, respectively 1. Firm 1, respectively firms of type 2, cannot access the ‘whole market’.
Actually, since the firms run their business in the same market and only can access their
allocated part of the market and not the other, they are operating in their fraction only. Instead
of the ‘whole market’ the low-cost firm is performing in a fraction W ∗ of 1, which is 1

W ∗ . This
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works analogue for firms of type 2, which can only enter their fragment of the market, which
is 1

1−W ∗ . Thus, the inverse demand function of firm 1 in the MS technology is given by P( q1
W ∗ )

and firms of type 2’s inverse demand function is P( N·q2
1−W ∗ ).

P1 = P
( q1

W ∗

)
= 1− q1

W ∗ (4.28)

P2 = P
(

N ·q2

1−W ∗

)
= 1− N ·q2

1−W ∗ (4.29)

Accordingly, the profit functions can be written as:

Π1

( q1

W ∗

)
=
(

θ1 −
q1

W ∗

)
·q1 (4.30)

Π2

(
N ·q2

1−W ∗

)
=

(
θ2 −

N ·q2

1−W ∗

)
·q2. (4.31)

Taking a look on the equations (4.30) and (4.31), it is obvious that the profit of each firm only
depend on the quantity of their own product and not on that of the other. Again, the aim is to
maximize the profit. Therefore, maximization yields:

max
0≤q1<∞

Π1

( q1

W ∗

)
=
(

θ1 −
q1

W ∗

)
·q1 (4.32)

max
0≤q2<∞

Π2

(
N ·q2

1−W ∗

)
=

(
θ2 −

N ·q2

1−W ∗

)
·q2. (4.33)

From the equations of the maximization above, it is evident to obtain the following FOC’s:

∂Π1

∂q1
= θ1 −

2
W ∗ ·q1

!
= 0 (4.34)

∂Π2

∂q2
= θ2 −

2N
1−W ∗ ·q2

!
= 0. (4.35)

Immediately, the explicit values for the quantities are derived without the need of solving the
reaction functions:

q1 =
W ∗

2
·θ1 (4.36)

q2 =
1−W ∗

2N
·θ2, respectively Nq2 =

1−W ∗

2
·θ2. (4.37)

Now also the reaction function of firms of type 2 firms is determined, since it is needed for
the representation of the graph. To get a connection between the both equations above (4.36)
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and (4.37), the fragment W ∗ is expressed from equation (4.36):

W ∗ =
2
θ1

·q1. (4.38)

In setting the expression for W ∗ above in the first equation of (4.37), the explicit form of the
reaction function looks like:

qMD
2 =

θ2

2N
·
(

1− 2 ·q1

θ1

)
. (4.39)

Therefore, the explicit profits can be determined from the quantities from equations (4.36)
and (4.37).

Π1 =
W ∗

4
·θ 2

1 (4.40)

Π2 =
1−W ∗

4N
·θ 2

2 , respectively NΠ2 =
1−W ∗

4
·θ 2

2 (4.41)

Now the profit possibility frontier is determined to get a relationship between the profits of
both types of firms. Hence, the fraction W ∗ is expressed analogous to the case of the quantity:

W ∗ =
4

θ 2
1
·Π1. (4.42)

Accordingly, the explicit profit possibility frontier is given by:

Π
MD
2 =

θ 2
2

4N
·
(

1− 4 ·Π1

θ 2
1

)
. (4.43)

As mentioned above, the profit of each firm only depends on the quantity of their own product.
Consequently, both types of firms request the price of a monopolist, which means that they are
not charging the same price for the same product in this technology. In the following equation,
P1 characterizes the price of the product of firm 1 and P2 is the price, which the high-cost firms
are charging.

P1 = 1− q1

W ∗ = 1−
W ∗

2 ·θ1

W ∗ = 1− θ1

2
(4.44)

P2 = 1− Nq2

1−W ∗ = 1−
1−W ∗

2 ·θ2

1−W ∗ = 1− θ2

2
(4.45)

From equations (4.44) and (4.45), it can immediately be seen that firm 1 and firms of type 2
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are not requesting the same price for the same kind of product. Recall that it holds θ2 < θ1

from the first inequality from (3.2) and θi ∈ [0,1]. It follows that 1− θ2
2 > 1− θ1

2 . Hence, the
high-cost firms charge a higher price for the same product compared to the low-cost firm. The
difference in price is simply traceable, because firms of type 2 have higher costs than firm 1.

Since there is a price difference for the same product, while the costs of the firms vary, a
mechanism is needed that eliminates arbitrage. Schmalensee (1987) [17] did not discuss what
kind of mechanism is needed to preclude arbitrage or any other details about the mechanism.
He just noted that there should be applied some mechanism, which eliminates arbitrage at
reasonable cost, because of the price difference (cf. Schmalensee 1987, page 356) [17].

4.4. Proportional Reduction

In comparison to the more complex Market Sharing technology, the Proportional Reduction
(PR) is a more elementary method to impose particular quotas for the production volume. In
other words, it is a simplification of the Market Sharing technology. Here market shares are
preserved at their actual Cournot shares, see section 3 on page 10, and then the quantities of
firm 1 as of firms of type 2 are decreased proportional. In fact, the shares are hold tight at
competitive values. That means the market share for firm 1 in the PR technology is retained
at the Cournot share of firm 1 which is S =

qC
1

qC
1+NqC

2
. For detailed values see equation (3.7).

Accordingly, the share of the high-cost firms is preserved at their Cournot share which is
S2 =

NqC
2

qC
1+NqC

2
. For this reason, the market share is hold tight at the ratio:

S =
qC

1
QC :

NqC
2

QC = S2 ⇒ qC
1 : NqC

2 . (4.46)

Obviously, this describes a linear function from the zero point to the Cournot quantity(
qC

1 , NqC
2
)
. Therefore, all values are valid, for which the market shares have the same re-

lation as the quantities in Cournot competition and which lie between the zero point and the
Cournot quantity. As a consequence, this are all points, which fulfill

(
λ ·qC

1 , λ ·NqC
2
)

for
λ ∈ [0, 1]. Recall the quantities from Cournot competition from equation (3.12) and (3.15).
Thus, the possible quantities in the PR technology can be written as:

(
qPR

1 , NqPR
2
)
=
(

λ ·qC
1 , λ ·NqC

2

)
for λ ∈ [0, 1] (4.47)(

qPR
1 , NqPR

2
)
=

1
2+N

·
(

λ · ((1+N)θ1 −Nθ2) , λ ·N (2θ2 −θ1)
)
. (4.48)
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Hence, the parameter λ can be seen as the factor, by which the Cournot quantities are reduced.
It shows the actual percentage of reduction from the Cournot point. More precisely, λ can be
iterated over the interval [0,1] to find the optimal quantity, which maximizes the profit.

Shcherbakov and Wakamori (2015) [18] were also concerned with the PR technology, but
they had another approach and used an inverse discount factor, which describes the percentage
of the reduction. A small example will be presented, such that it is easier to understand. If
their inverse factor would be 1.25 = 1

1−0.2 , then this is a reduction by 20% in comparison to
the Cournot case (cf. Shcherbakov and Wakamori 2015, page 6) [18]. That would mean the
inverse of the inverse factor is 0.9, which is λ . Therefore, this would correspond to 80% of
the Cournot quantity.

To get back to the point, remember the ratio of the market shares above and the following
holds:

qPR
1 : N ·qPR

2 = qC
1 : N ·qC

2 . (4.49)

Consequently, the explicit reaction functions are achieved in transforming the ratio from equa-
tion (4.49) and expressing qPR

1 :

qPR
1 =

qC
1

qC
2
·qPR

2 =
(1+N)θ1 −Nθ2

2θ2 −θ1
·qPR

1 . (4.50)

Similarly, the reaction function of the high-cost firms is determined.

qPR
2 =

qC
2

qC
1
·qPR

1 =
2θ2 −θ1

(1+N)θ1 −Nθ2
·qPR

1 (4.51)

Additionally, in the last steps of the two equations above the Cournot quantities are inserted
in the reaction function. Note that for the plot of the reaction function the interval has to be
changed from [0,1] to [0,qC

1 ], because of the transformation above.
Accordingly, the profits are given by:

Π
PR
1 = (θ1 −qPR

1 −N ·qPR
2 ) ·qPR

1 (4.52)

NΠ
PR
2 = (θ2 −qPR

1 −N ·qPR
2 ) ·NqPR

2 . (4.53)

If the values for the Cournot quantities are set in the profit functions above, the following is
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obtained:

Π
PR
1 =

(
θ1 −

λ

2+N
((1+N)θ1 −Nθ2)−

Nλ

2+N
(2θ2 −θ1)

)
· λ

2+N
((1+N)θ1 −Nθ2) (4.54)

=
λ

(2+N)2 · ((1+N)θ1 −Nθ2) · (θ1 (2+N)−λ (θ1 +Nθ2)) (4.55)

NΠ
PR
2 =

(
θ2 −

λ

2+N
((1+N)θ1 −Nθ2)−

Nλ

2+N
(2θ2 −θ1)

)
· Nλ

2+N
(2θ2 −θ1) (4.56)

=
Nλ

(2+N)2 · (2θ2 −θ1) · (θ2 (2+N)−λ · (θ1 +Nθ2)) . (4.57)

4.5. Comparison of the collusion technologies

In this section, the differences and similarities between the four collusion technologies, which
were introduced in the previous four sections 4.1 – 4.4, will be discussed on the basis of the
subsequent figures. The differences in the graphs regarding to the different values of R are
considered. These show the quantity and profit curves of all technologies, accordingly in the
SP case a point. The subsequent figures in this section are plotted in MATLAB with 10.000
points in the relevant interval for three different values for R and N = 1. The values of R can
be found in detail in table A.1 in the appendix A.1. These are the same three values for R,
which Schmalensee (1987) [17] employed. Therefore, they are applied in this study, because
the values are well spread over the interval of R, which is [1,2]. Recall R = θ1

θ2
indicates the

measure of relative cost difference of both types of firms. The Cournot point
(
qC

1 ,q
C
2
)

used to
compare the results with. It is the point

(
qC

1 ,q
C
2
)

and not
(
qC

1 ,N ·qC
2
)
, since firm 1 is plotted

with one firm of type 2 in the following graphs in section 4.5.1. Sometimes, also the case of
symmetric costs is taken for comparison.

4.5.1. Quantity curves of the collusion technologies

First, the collusion technologies are compared according to the quantity space and afterwards
to the profit space. Below, the quantity curves of the four different technologies can be seen
for different values of R. The three figures below show that the quantities are reduced in
comparison to the Cournot case. This is done to achieve higher profits. The point of the
Cournot quantity is labeled with a light blue dot in all three figures below 4.1 and 4.2a – 4.2b.

To be precise, all equations are specified, which are used to represent the curves in fig-
ures 4.1 and 4.2. In the Side Payments technology, the curve is an exact point from equa-
tion (4.3), which is labeled with a dark blue dot. In the MS technology, the reaction function
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of q2 from equation (4.27) is plotted with a green marked line. Furthermore, the reaction curve
for q2 from equation (4.39) labeled as red line characterizes the Market Division (MD) tech-
nology. Lastly, the equation (4.51) of the reaction function of q2 marked with a yellow line
shows its graphic representation for the PR technology. For more comprehension, all used
equations in the plots are listed below:

(
qSP

1 , qSP
2

)
=

(
θ1

2
,0
)

(4.58)

qMS
2 =

2θ1 +θ2 −
√

(2θ1 −θ2)2 −8 ·q1 · (θ1 −θ2)

4N
− q1

N
(4.59)

qMD
2 =

θ2

2N
·
(

1− 2 ·q1

θ1

)
(4.60)

qPR
2 =

2θ2 −θ1

(1+N)θ1 −Nθ2
·qPR

1 . (4.61)

In the PR technology qPR
1 iterates over the interval [0,qC

1 ] with 10.000 points, while in the
other two technologies, namely MS and MD, the interval [0,qSP

1 ] is used with the same num-
ber of points. That is because qSP

1 = θ1
2 is the maximum value for the quantities of all four

technologies. Note that the SP technology is a point and therefore is plotted as a single point.

Figure 4.1: Quantity curves of all collusion technologies for Rmiddle and N = 1

Notes: Figure 4.1 is plotted in MATLAB for N = 1. The cost values for the parameter
Rmiddle = 1.4 are the following: θ1 = 0.7 and θ2 = 0.5.
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Figure 4.2: Quantity curves of all collusion technologies for Rlow and Rhigh with N = 1

(a) R low (b) R high

Notes: Figures 4.2a and 4.2b are plotted in MATLAB for the parameter N = 1 and Rlow = 8
7

with the following values for the cost parameters θ1 = 0.8 and θ2 = 0.7, respectively for
Rhigh = 1.72 with θ1 = 0.95 and θ2 = 0.55.

The SP curve is only a point, as mentioned in section 4.1, while the curves of the MD and the
PR technology is linear. The Market Sharing technology has a more complex quantity curve
in comparison to the other technologies. It has a strictly convex curve as stated in section 4.2
on page 18. The PR curve is a linear curve between the origin and the Cournot point.

The Side Payments technology is the only technology of all four which can use the whole
potential of the market. The other three fail to do so. But side payments are often forbidden by
law or other limitations. Furthermore, it is not completely realistic that just one firm produces
and the other firm is willing to shut its own production down or even exits the market. Hence,
this technology is used more as a standard of comparison than as a real alternative.

The higher the value for R, that means the higher the difference in costs, the more the MD
and MS curves differ. In addition, the Cournot quantity of firms of types 2 decreases. At low
values of R, the quantity curve of the Market Sharing technology approximates the quantity
curve of the Market Division technology.

4.5.2. Profit curves of the collusion technologies

Now the profit curves of all four technologies are discussed. Figures 4.3 and 4.4 show, that
if the profit curves lie above the black dotted line in the figures, both vertical and horizontal,
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the technologies are producing more profit for both firms than in the Cournot case. This holds
for all technologies. It does not have to be much more. The goal is to obtain more profit from
collusion than from Cournot Competition. The solutions of all technologies determined by the
solution methods, which are introduced in the next section 5, are all lying above this dashed
lines. In the figures 4.3 and 4.4 this area above the dotted lines is called collusive profit area
higher than Cournot in the legend.

Furthermore, the exact equations that describe the curves in the figures 4.3, 4.4a and 4.4b
are illustrated. The following equation (4.5) specifies the profit possibility frontier for the
Side Payments technology, which is labeled with a dark blue line in the three figures below.
While in the MS technology the profit of both types of firms are represented by means of the
equation (4.16) for firm 1 and equation (4.17) for the high-cost firms. It is marked with a red
line in the following three graphs. The profit of ΠMS

1 is plotted as x-coordinate, while ΠMS
2 as

y-coordinate. The green line in the three figures below is the curve for the profit possibility
frontier of the Market Division technology. The equation (4.43) describes the profit curve for
the MD technology. Finally the Proportional Reduction curve for the profit, which is labeled
in yellow, is specified by these equations (4.52) for firm 1 and (4.53) for firms of type 2. For
the PR technology the profit of the low-cost firm is plotted as x-coordinate and that of firms of
type 2 as y-coordinate.

Π
SP
2 =

1
N

(
θ 2

1
4

−Π
SP
1

)
(4.62)

Π
MS
1 =

(θ1 −Q)2 · (2Q−θ2)

θ1 −θ2
and (4.63)

NΠ
MS
2 =

(θ2 −Q)2 · (θ1 −2Q)

θ1 −θ2
(4.64)

Π
MD
2 =

θ 2
2

4N
·
(

1− 4 ·Π1

θ 2
1

)
(4.65)

Π
PR
1 = (θ1 −qPR

1 −N ·qPR
2 ) ·qPR

1 and (4.66)

Π
PR
2 = (θ2 −qPR

1 −N ·qPR
2 ) ·NqPR

2 . (4.67)

In the formulas of the profit of the MS technology the explicit reaction function for qMS
1 from

equation (4.26) and for qMS
2 from equation (4.27) are used. Similarly, the reaction functions

qPR
1 from equations (4.50) and qPR

2 from equation (4.51) are set in the corresponding expres-
sions of the profit in the PR technology.
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Figure 4.3: Profit curves of all collusion technologies for Rmiddle

Notes: Figure 4.3 is plotted in MATLAB for N = 1. The values for the parameter
Rmiddle = 1.4 are the following: θ1 = 0.7 and θ2 = 0.5.

Figure 4.4: Profit curves of all collusion technologies for Rlow and Rhigh

(a) R low (b) R high

Notes: Figures 4.4a and 4.4b are plotted in MATLAB for the parameter N = 1 and Rlow = 8
7

with the following values for the cost parameters θ1 = 0.8 and θ2 = 0.7. Respectively
for Rhigh = 1.72 with θ1 = 0.95 and θ2 = 0.55.

Both figures 4.3 and 4.4 indicate that both the SP and the MD technology have a linear profit
curve. Furthermore, the Side Payments technology is the most efficient technology of all four
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and ensures the highest profit, but in many situations forbidden or not realistic. That is why
one takes it more as a standard of comparison than as a realistic alternative. If no compensation
payments are allowed, profits are restricted compared to the SP technology, since the whole
potential of the market cannot be used.

About the quality in terms of efficiency and profitability of the other technologies, the fol-
lowing statements can be made. The MD method is more efficient than the MS method. That
is because all companies could alter the price of the product to raise their profits. This holds
only provided that each firm gets equal to its market share a share of consumers at a certain
point. Initializing the movement from a point on the profit curve of the MS technology, leads
to a certain point on the MD curve, when the market share is as described above and the firms
change their price (cf. Schmalensee 1987, page 356) [17].

In the graphs, it can be recognized that the PR technology can be essentially less efficient
compared to the other technologies. That is because its curve lies both horizontal and vertical
close to the edge of the area with the black dots, where the profits are lower. In the figures it
is shown that the PR profit curve can achieve a point on the MS curve, but nevertheless total
profits are lower, because the companies in the market request one price for the same product.
The differences between these technologies grow with the cost differences, respectively the
parameter R, as figures 4.4a and 4.4b indicates. If one would have symmetric costs the SP, MS
and MD technology would coincide.
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5. Bargaining solution methods

This section will discuss how firms could behave when they are cooperating. In other words,
on which explicit profit, in particular on which point from the cooperative payoff region, the
firms will agree upon. This agreement is achieved by bargaining between the two types of
firms. To determine this, Schmalensee (1987) [17] applied four solution methods for coop-
erating firms from the axiomatic bargaining theory. These procedures find the actual optimal
collusive solution for each of the four different collusion technologies from section 4. This
means that these concepts are utilized to every profit possibility frontier of the collusion tech-
nologies. All given profit possibility frontiers are explicit and the result of an analytical calcu-
lation. In addition, these collusive solutions provide a profit for both types of firms which is no
less than a point on which they have agreed in advance if the bargaining process does not suc-
ceed. Schmalensee (1987) [17] called this point “the status quo point”, but it is also known as
“disagreement point” by Binmore (1992) [2]. If the firms cannot agree upon a collusive profit
or the collusive profit is smaller than the disagreement point, then they gain the disagreement
point. I will use the notation “disagreement point”. Following Schmalensee (1987) [17], I
have taken the Cournot profit as the disagreement point, for the fact that the collusive profit
should be compared to the payoff obtained in Cournot competition. Schmalensee’s objective
is to find a higher outcome from the collusion technologies solved by the bargaining solution
methods than from the Cournot case. These particular methods are introduced below. This
means that all of the four solution methods produce a profit which lies above the dashed lines
in the figures 4.3 and 4.4 from section 4.5.2.

The following statements are made from Roth (1979) [13]. To apply these bargaining solu-
tion methods, the individual rationality of all players has to be assumed, see Roth (1979) [13].
The four axioms of Nash have to be fulfilled, such that the Nash solution method can be
used. These are the axioms: Independence of equivalent utility representations, Symmetry,
Independence of irrelevant alternatives and Pareto-Optimality, see Roth (1979) [13]. For the
Kalai-Smorodinsky (K-S) solution only the first, second and fourth axioms must hold, but ad-
ditionally individually monotonicity, see Roth (1979) [13]. By the process of determining the
four collusion technologies Schmalensee (1987) [17] took care of them and the axioms are
satisfied.

The first three solution methods can be applied to all four collusion technologies, while the
fourth, namely W ∗ = S solution, can only be used for the MD technology. That holds, since
the W ∗ = S solution is a special case of the Market Division technology. More details follow
below. Furthermore, note that not all collusion technologies can be solved analytically for
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all solution methods. There are explicit analytical solutions for the SP and MD technologies
under all feasible solution methods. While the Proportional Reduction technology is explicitly
and analytically solvable for the K-S and the Equal Gain solution (EG), it is only numerically
solvable for the Nash method. Note that for N = 1 the EG solution cannot be applied to the PR
technology. However, the MS technology can only be solved numerical for all three solution
methods.

Thomson (1994) [12] described and compared the following bargaining methods. He stated
that the solution of Nash, that of Kalai-Smorodinsky and the EG solution are the solution
methods from bargaining theory, which are the most important about collusion at his times
(cf. Thomson 1994, page 1242) [12].

5.1. Nash solution

The first bargaining method, which is introduced by Schmalensee (1987) [17] is the known
Nash bargaining solution. Recall the character ΠC

i for i = 1,2 denotes the profit of the particu-
lar firm in Cournot equilibrium, which holds as disagreement point. Meanwhile Π∗

i for i = 1,2
identifies the profit from cooperation from one of the four different technologies in each case.
The Nash solution (1950) [11] reads as follows:

max
(

Π
∗
1 −Π

C
1

)
·
(

Π
∗
2 −Π

C
2

)N
. (5.1)

This method compares the profit of both types of firms using each collusion technology to the
Cournot profit. That is exactly the gain in profit the firms get in using the particular collusion
technology instead of Cournot competition.

5.2. Kalai-Smorodinsky solution

In this solution method, the profits of all firms are again collated against the Cournot case.
Here the difference is that actually the term which is maximized in Nash’s solution is put
proportional to the highest but constrained profit of each firm. The profit Πm

i for i = 1,2
describes the profit a firm can obtain at its maximum, under the constraint that the other type
of firm does not gain less than the corresponding Cournot profit. The solution derived from
Kalai and Smorodinsky (1975) [7] is given by:

Π∗
1 −ΠC

1

Πm
1 −ΠC

1
=

Π∗
2 −ΠC

2

Πm
2 −ΠC

2
. (5.2)
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At the certain point in the cooperative payoff region, which is obtained in applying this solu-
tion method, the profits of both types of firms have the same portion of their highest outcome
(cf. Schmalensee 1987, page 358) [17].

5.3. Equal Gain solution

As well in the third solution method, the collusive payoff is compared to the profit of Cournot
competition. In addition, the Equal Gain method is searching for the maximal solution, where
the absolute profits of both types of firms compared to the Cournot profits are identical. Note
that this must not hold for the individual collusive profit Π∗

i of each firm, respectively the
relative payoff. If it is from a point of view of social and economic well-being, the method of
equal profits is willingly used (cf. Thomson 1994, page 1243) [12]. Thus, Roth (1979) [13]
introduced the following concept:

Π
∗
1 −Π

C
1 = Π

∗
2 −Π

C
2 . (5.3)

Since firms of type 2 have higher costs, their profit is lower than the profit of the low-cost firm,
especially in Cournot competition. That is why relatively considered the high-cost firms will
get more additionally profit than firm 1.

5.4. W ∗ = S solution

This last solution method is only feasible for the Market Division technology, since it focuses
on an explicit solution of the distribution of the costumer. Remember that firm 1 gets assigned
the fraction W ∗ of customers, while the section 1−W ∗ is allocated to firms of type 2. This
solution concept is simple, the part W ∗ should now be identical to the market share of the
low-cost firm in Cournot equilibrium, namely S from equation (3.7). It is as well a solution
that is almost certain considered as “fair” for both types of firms, since each company gets
assigned its original market share from Cournot competition, see Sloman (2006) [19]. Hence,
each firm of type 2 analogue obtain their share, namely 1−W ∗

N = 1−S
N .

This point W ∗ = S is a so-called “natural focal point”, also known as “Schelling point”,
Schelling (1980) [1960] [15]. That special point is characterized by an “obvious” behavior
of the players, respectively firms, if they cannot speak to each other. Obvious in terms of “so
obvious that each be sure that the other is sure that it is “obvious” to both of them.” (Schelling
1980 [1960], page 54) [15].

This procedure is relatively simple to solve. The value of the market share S is set equal
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to W ∗ in the equations (4.40) and (4.41) of both firm’s profit. Then the result is simply deter-
mined. That is of course a numerical solution.

5.5. Comparison of the collusive solution methods

In this section, the collusive solution methods will be compared to each other. In addition, the
performance of each of the four bargaining concepts is discussed as well with regard to the
four collusion technologies.

The solution method of Nash and Kalai-Smorodinsky lead to exactly the same results on
condition that the cooperative payoff region is linear (cf. Schmalensee 1987, page 358) [17].
As mentioned in section 4.5.2, this holds for the Side Payments and the Market Division
technology. Besides in figures 4.3 and 4.4 can be recognized that both of the technologies
have a linear profit curve. Furthermore, the solutions of the first three solution methods,
namely Nash, K-S and EG, are equivalent, when the Side Payments technology is applied. A
direct conclusion out of this is that the profit of both types of firms is from the same amount of
dollar, when looking at the absolute profit, see Schmalensee (1987) [17]. That must not hold
for the relative profit, see section 5.3.

By means of figure 5.1, the performance of the individual solution methods and the cor-
responding collusion technologies can be well recognized. Based on figure 5.1, it is simple
to compare the different bargaining concepts. In figure 5.1, I plotted the profit curves of all
four collusion technology for Rmiddle and N = 1 and accordingly all solutions of the particular
bargaining methods, which can be applied to the specific technology. It is exactly the same
graph as in figure 4.3 with the difference that I zoomed out the area above the dashed lines and
added the values of every solution. As mentioned above, this is the area, where both types of
firms earn more than in Cournot competition.

It can be seen that the Side Payments technology provides the highest profit for both types
of firms. No other collusion technology introduced in section 4 can reach its amount of profit.
That is because the SP technology can use the whole potential of the market.

In the graph above, it looks like the Nash and the K-S solution method come to the same
result in the MS technology. That only holds coincidentally for the parameter Rlow and Rmiddle

for N = 1 for the first decimal places. Otherwise these two bargaining concepts take differ-
ent values. Note that the Nash and the K-S solution do not coincide in the Market Sharing
technology.

To compare the profitability of the solution methods of the MS and MD technology the
following statements can be made. Due to the fact that the Nash and the K-S solution are
located to the right of the EG and the W ∗ = S solution, with the former solution firm 1 gets
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Figure 5.1: Profit curves of all collusion technologies with their solution methods for Rmiddle
and N = 1

Notes: Figure 5.1 is plotted in MATLAB with the following values for the parameter
Rmiddle = 1.4 and N = 1. The values of the cost parameters are θ1 = 0.7 and θ2 = 0.5.

more profit in absolute terms than firms of type 2. On the other hand, the high-cost firms obtain
a higher absolute payoff, if the EG or in the MD technology the W ∗ = S solution is applied.
In the Market Division technology additionally holds that the EG method lies in between the
Nash and K-S solution to the right and the W ∗ = S solution to the left. Therefore, it can be said
in general that if the outcome lies more on the left side the high-cost firms get more absolute
profit than the low-cost firm. Otherwise, if the solution is suited on the right side firm 1 obtains
the higher payoff in absolute terms than firms of type 2.

For the parameter N = 1, there cannot be found a solution, if the EG method is applied to
the Proportional Reduction technology, see Schmalensee (1987) [17]. For N > 1, at least until
N = 5, the EG solutions can be determined. Especially, if N takes the value 2 the outcome of
the low-cost firm will be maximized in the cooperative payoff region of the PR technology.
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6. Results of Schmalensee

In this section, the results obtained by Schmalensee’s model are presented. In particular, all
four solution methods from section 5 are applied to each feasible collusion technology from
section 4. Since the Market Sharing technology is not analytically solvable, Schmalensee
(1987) [17] chose a completely numeric approach to apply the solution methods to the collu-
sion technologies. However, the solutions of the Nash, K-S and EG methods can be solved
in an analytical way for the SP, MD and PR technology with exception of PR the technology,
which has to be solved with a numeric approach for the method of Nash. The W ∗ = S solution
can also be derived explicitly, obviously only for the Market division technology.

Note that the profits of each firm are very low, namely between 0 and 1, due to the chosen
inverse demand function from equation (2.1) and cost function from equation (3.1). The profit
has to be so small, since θi ∈ [0,1] for i = 1,2. That implies that Q < θi, which means the
profit Πi = (θi −Q) · qi for i = 1,2 cannot take a higher value than 1. Therefore, it should
be noticed that the maximum value 1 is unlikely to be achieved. In addition, the profit will
not get negative, since then the firm will make losses. Because of the low outcomes, in both
tables 6.1 and 6.2 the values of the profit increase are listed in percentage. In fact, these
values indicate how much both types of firms gain additionally to Cournot competition in
percentage. Remember this simple market demand and cost function is selected to simplify the
calculations, in particular, since the MS technology involves more complicated computations.

As mentioned in section 3, the market is described by two parameters R and N. Therefore,
Schmalensee (1987) [17] calculated the results for two cases. He varied one parameter while
the other one is hold constant. Now the numerical results of the four different bargaining solu-
tion methods applied to the collusion technologies are shown in the next two subsections 6.1
and 6.2. A part of the results is verified in simply recalculating, namely in applying the feasible
solution methods to the explicit profit possibility frontiers.

6.1. Results with variation in R

Initially, Schmalensee (1987) [17] changed the values of R, while the value N = 1 is held
constant. In the first case, the value Rlow = 1.143 is taken which means a relative small cost
difference between the firms. Then it follows Rmiddle = 1.4 which is nearly in the middle and
Rhigh = 1.727 indicates a relatively high cost difference. The calculations of the values of R

can be found in the appendix A.1.
In table 6.1 below, the results of Schmalensee (1987) [17] are presented (cf. Schmalensee

1987, page 360) [17]. Firstly, the difference between the symmetric and the asymmetric costs
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Table 6.1: Results for N = 1 and with variation of R
Profit on top of Cournot in %

Value of R Technology Solution Firm 1 Firms of type 2 Profit Sacrifice

1.000
Symmetric All 12.50 % 12.50 % 0 %

(S = 0.50)

1.143 SP All 16.67 % 37.50 % 0 %

(S = 0.60) MD Nash/K-S 9.86 % 16.99 % 8.95 %

EG 8.55 % 19.29 % 9.13 %

W ∗ = S 6.67 % 22.50 % 9.37 %

MS Nash 9.50 % 18.69 % 9.33 %

K-S 9.50 % 18.69 % 9.33 %

EG 8.22 % 22.49 % 9.50 %

PR Nash 6.67 % 20.14 % 9.97 %

K-S 6.40 % 21.60 % 9.75 %

1.400 SP All 12.5 % 112.5 % 0 %

(S = 0.75) MD Nash/K-S 7.17 % 32.91 % 10.42 %

EG 4.84 % 43.58 % 11.25 %

W ∗ = S 2.08 % 56.25 % 12.24 %

MS Nash 5.81 % 25.18 % 12.05 %

K-S 5.81 % 25.18 % 12.05 %

EG 3.78 % 34.00 % 12.82 %

PR Nash 2.08 % 31.73 % 14.25 %

K-S 1.70 % 40.82 % 13.79 %

1.727 SP All 5.09 % 412.50 % 0 %

(S = 0.90) MD Nash/K-S 3.87 % 105.02 % 4.51 %

EG 1.94 % 157.31 % 5.66 %

W ∗ = S 0.28 % 202.50 % 6.56 %

MS Nash 2.51 % 48.01 % 6.35 %

K-S 2.52 % 47.95 % 6.35 %

EG 0.96 % 78.08 % 7.41 %

PR Nash 0.28 % 42.93 % 8.42 %

K-S 0.21 % 61.27 % 8.27 %

Notes: The results shown in this table 6.1 are the solutions, which Schmalensee (1987) [17]
obtained (cf. Schmalensee 1987, page 360) [17]. This outcomes are partly verified in
simply recalculating.
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case can be recognized. Secondly, between the different technologies applied to the bargaining
methods, especially between the SP and the other three technologies a bigger difference can
be noticed. As mentioned in section 5.5, there is no difference which bargaining method the
firms are using in the SP technology, since the solution methods come to the same results.

Firms using the MS, MD or PR technology have to take losses in profit into account in
comparison to the SP technology, which can use the full potential of the market. That is due
to the opportunity to reduce the produced quantity, when the firms are colluding. The Side
Payments technology can benefit from the whole opportunity. By means of this reduction the
cartel members can increase their profits. In other words, in the SP technology the firms are
able to maximize the outcomes of the whole industry, since they have the possibility to act
as a monopoly in the whole market and only the low-cost firm is producing. In table 6.1,
the row with the description ‘Profit Sacrifice’ gives information about how much more profit
is possible, if the firms are allowed to apply the in many cases forbidden SP technology. It
describes the loss in profit in percentage of the whole industry. In the case of symmetric costs
on the one hand, the firms can benefit from joint profit maximization, on the other hand they
cannot profit from the above mentioned opportunity. Nevertheless, in the collusive outcome
the payoffs of both types of firms are increased by the same amount. Furthermore, it can be
noticed that all solution methods coincide in the symmetric case.

An interesting fact can be found, when looking at the ‘Profit Sacrifice’. If the parameter R

takes values close to 1 or close to 2 the loss in profit gets smaller, while the deficit for values
in the middle of the interval of R is relatively high. Schmalensee (1987) [17] said that the loss
reaches its maximum for values, which are in the middle of the interval of R (cf. Schmalensee
1987, page 361) [17].

In table 6.1, it can immediately be recognized that for every collusion technology applied
to each solution concept the profit increase of firm 1 is considerably less than the outcome of
firms of type 2 compared to Cournot competition. The higher the value of R, which means the
higher the cost difference, the higher becomes the difference in this profit increase between
the both types of firms. That means the additional profit from collusion compared to that from
Cournot competition gets less and less for the low-cost firm until it reaches zero supplementary
profit.

What can be said about the performance of the other technologies? In case side payments
are forbidden, both types of firms obtain remarkably lower profits. This is because they cannot
make use of the opportunity to reduce the quantity, as previously mentioned above. This is
due to the fact that in the Side Payments technology, only firm 1 produces goods, whereas
in the other three technologies, both types of firms manufacture products. Furthermore, in
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the MS, MD and PR technologies, it has to be taken into account that firms of type 2 have
higher production costs, which directly induce a higher price for the product. Incidentally, it
is interesting that in table 6.1 it can be seen that the solutions for the profit of firm 1 according
to each solution method have the same sequence for all three values of R. This will not be
the case in table 6.2, meaning that the SP technology always provides, as explained above, the
highest profit followed by the Nash solution for the MD technology. The lowest profit is given
by the K-S solution applied to the PR technology. This is only the case for firm 1.

When looking on the efficiency of the bargaining methods, it can be recognized that the PR
technology provides under both feasible solution methods perceivable less profit for the low-
cost firm. If the EG solution method is used, firms of type 2 get noticeable more profit than
firm 1, when compared to the Nash and the K-S solution method. As mentioned in section 5.5,
the Nash and the K-S methods are very close to each other, but not identical, when the MS
technology is applied. The solutions obtained by all feasible solutions methods adapted to the
MS and MD technology are quite similar. While with the W ∗ = S solution method the high-
cost firms are better off and the low-cost firm is worse off in comparison to the other three
bargaining methods. Therefore, it can be concluded that the fraction W ∗ must be higher than
the market share of firm 1, namely S, such that it is more profitable for firm 1, when the Nash,
K-S or EG method is applied.

6.2. Results with variation in N

Now Schmalensee’s results (1987) [17] are shown, when the parameter R is fixed at the value
Rmiddle = 1.4, while there will be a variation in N. The number of high-cost firms N will take
the values 1 as before and additionally 3 and 5.

Before the table with the numeric values of the solutions are introduced, the curves of the
quantities and profits of the four technologies are shown for higher N, namely for N = 3
and N = 5, in the following figures 6.1 and 6.2. These graphs serve as an illustration of
the performance of the collusion technologies with a higher number of high-cost firms, as
well as comparison to the case with only one single firm of type 2. To plot the graphs in
MATLAB, in figures 6.1 and 6.2 exactly the same formulas are used as in section 4.5, both
for the quantity and the profit curves. The only difference is that in the formulas higher values
for N are applied. Note that the following figures are plotted only for the parameter Rmiddle.
Additionally, there is only one of the N identical high-cost firms compared to firm 1 in the
graph.
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Figure 6.1: Quantity curves of all collusion technologies for Rmiddle and N = 3 and N = 5

(a) N = 3 (b) N = 5

Notes: Figures 6.1a and 6.1b are plotted in MATLAB for the parameter Rmiddle = 1.4 with
the following values for the cost parameters θ1 = 0.7 and θ2 = 0.5. Additionally, the
number of high-cost firms is N = 3, respectively N = 5.

The values of the x-axis for firm 1 stay the same, since there is only one firm 1 and this
does not change. On the contrary, the highest possible value on the y-axis decrease, which
means that the quantity for each high-cost firm gets less, due to that the number of firms of
type 2 is increasing and they have to split the production. Furthermore, the quantity curves of
the three technologies MS, MD and PR become flatter with higher N. Accordingly, the MS
curve approximates the MD curve, when the number N of firms of type 2 grows. In addition,
the value of the Cournot point of each firm of type 2 falls. But from the point of view of all
high-cost firms together the highest possible value for the quantity remain constant. The other
properties can be found in section 4.5.1.

In the following figure 6.2 the graphs of the profit curves of all four collusion technolo-
gies are plotted in MATLAB for the parameter Rmiddle = 1.4 and one graph each for N = 3
and N = 5. Here the same fact about the change in values of the quantity curves on both axes
holds as well for the profit curves. Similarly, the curves get flatter with an increase in the value
N. In addition, the shape of the peak of the profit curve from the PR technology changes. But
it cannot be made a high quality statement about the performance of the PR payoff curve,
since the form of this curve is completely different from that of the other three technologies.
In the same way, the y-coordinate of the Cournot point which corresponds to firms of type 2
decreases with a higher number of high-cost firms, namely N. Again, when looking at all firms
of type 2, the highest possible profit, namely that under the SP technology, is identical to the
case with N = 1. However, with the difference that all N firms of type 2 have to distribute the
profit among themselves. The graphs for N = 1, the corresponding facts about the comparison
of the technologies and more characteristics of the curves are described in section 4.5.2.
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Figure 6.2: Profit curves of all collusion technologies for Rmiddle and N = 3 and N = 5

(a) N = 3 (b) N = 5

Notes: Figures 6.2a and 6.2b are plotted in MATLAB for the parameter Rmiddle = 1.4 with
the following values for the cost parameters θ1 = 0.7 and θ2 = 0.5. Additionally, the
number of high-cost firms is N = 3, respectively N = 5.

To illustrate the difference between the four collusion technologies and the applied solution
methods, the values of both firm’s profits are shown for each collusive solution in table 6.2.
This table shows the results of Schmalensee (cf. Schmalensee 1987, page 362) [17].

Similarly as before, first the dissimilarity between the symmetric case and asymmetric case
are discussed. In the second place, the performance of the different technologies and their
corresponding solutions by means of the bargaining methods are described.

Concerning Cournot competition and symmetric costs it can be said that the higher the num-
ber of high-cost firms, the higher the degree of competition grows. Therefore, the outcomes
of all firms in the market can be raised by means of collusion. Considering the actual inter-
esting case of asymmetric costs, the higher the number of firms of type 2 gets, the higher the
additional profit from collusion becomes for both firms. But especially the profit of the high-
cost firms grow even more, because their profits are smaller in Cournot competition. That is
due to the fact that the higher N gets, the higher the bargaining power of all firms of type 2
together is raised. Hence this leads to a loss in profit compared to the SP technology, because
of collusion, which adjusts the profits more fairly for all firms in the market. This loss even
grows with higher N, as can be seen in table 6.2. On the other hand, the increase in profit of
firms of type 2 is higher, since with a higher number of high-cost firms, the share in Cournot
competition grows. That is owing to the reduction in quantity, see Schmalensee (1987) [17].

A high-quality statement cannot be made as regards the differences between the collusion
technologies and the corresponding bargaining methods, since at first it seems that the differ-
ence increases, but then some of the values change not according to the sequence in table 6.1.
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Table 6.2: Results for R = 1.4 and with variation of N
Profit on top of Cournot in %

Value of N Technology Solution Firm 1 Firms of type 2 Profit Sacrifice

1 Symm. (R = 1) All 12.5 % 12.5 % 0 %

(S = 0.75) SP All 12.5 % 112.5 % 0 %

MD Nash/K-S 7.17 % 39.21 % 10.42 %

EG 4.84 % 43.58 % 11.25 %

W ∗ = S 2.08 % 56.25 % 12.24 %

MS Nash 5.81 % 25.18 % 12.05 %

K-S 5.81 % 25.18 % 12.05 %

EG 3.78 % 34.00 % 12.82 %

PR Nash 2.08 % 31.73 % 14.25 %

K-S 1.70 % 40.82 % 13.79 %

3 Symm. (R = 1) All 56.25 % 56.25 % 0 %

(S = 0.59) SP All 16.31 % 306.25 % 0 %

MD Nash/ K-S 12.47 % 119.52 % 18.58 %

EG 7.25 % 136.19 % 19.99 %

W ∗ = S 7.08 % 136.74 % 20.04 %

MS Nash 11.32 % 107.28 % 20.30 %

K-S 11.47 % 106.80 % 20.26 %

EG 6.52 % 122.48 % 21.60 %

PR Nash 7.02 % 104.99 % 22.87 %

K-S 6.19 % 119.19 % 22.08 %

EG 6.29 % 118.18 % 22.11 %

5 Symm. (R = 1) All 104.17 % 104.17 % 0 %

(S = 0.53) SP All 15.63 % 493.06 % 0 %

MD Nash/ K-S 12.86 % 210.74 % 22.36 %

EG 7.15 % 229.48 % 23.71 %

W ∗ = S 10.34 % 219.01 % 22.96 %

MS Nash 11.84 % 195.24 % 24.02 %

K-S 12.14 % 194.25 % 23.95 %

EG 6.62 % 212.51 % 25.24 %

PR Nash 10.05 % 184.56 % 25.68 %

K-S 9.29 % 196.84 % 25.13 %

EG 6.62 % 212.50 % 25.24 %

Notes: The results shown in this table 6.2 are the solutions, which Schmalensee (1987) [17]
obtained (cf. Schmalensee 1987, page 362) [17]. This outcomes are partly verified in
simply recalculating.
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In other words, the solutions for the profits of firm 1 had the same sequence for all three values
of R. In contrast, this sequence change for different values of N. More precisely, there is not
such a particular sequence in this case. But the Side Payments technology is again the most
efficient technology. In addition, an increase of the number of high-cost firms gives the im-
pression that the profit of firm 1 grows for lower N. This is due to the reduction of the quantity.
But for higher N, it is obvious that the relative outcome gets smaller, because the bargaining
power of firms of type 2 grows.
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Part II.

Extensions

So far, the problem of collusion and Schmalensee’s model became familiar, such that it can
be taken a look at some extensions of his approach. In particular, if and how the model of
Schmalensee (1987) [17] can be expanded. Some ideas for diversification are described in the
following. What will a change of the inverse demand function or the cost function bring with
it? Or is it possible to implement the four collusion technologies and accordingly the four
bargaining methods, if there are more than two firms with different costs in the market?

7. Variations of Schmalensee’s model

Now the model of Richard Schmalensee (1987) [17] will be expanded in the following ways.
Firstly, I will change the inverse demand function to a more general one, while everything else
remains the same. Then the same thing is done with the cost function. Finally, the duopoly will
be extended to a triopoly. In fact, additionally to the low-cost firm, there will be N middle-cost
firms and M high-cost firms.

In the following sections 7.1 – 7.3, I will modify Schmalensee’s model by recalculating all
four collusion technologies with the adaptations and discuss if all solution methods can still
be applied. It is examined if the collusion technologies also work with the modifications or
if a problem is met. Consider that in this Part II, there will be partly new details and some
other parts will stay the same as in Part I. I will describe these differences and similarities.
Furthermore, the calculations will be shorter and less detailed than in section 4, since the
explanations are similar.

7.1. Inverse demand function

In this section, the focus lies on a modification of the simple market demand function from
equation (2.1). The inverse demand function is again linear, but it is more general. Now this
new inverse demand function will be applied to all four collusion technologies. Every other
facts of Schmalensee’s model from section 3 stays the same. That means there are as well
two types of firms and the same cost function (3.1) is used. This change just holds for this
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section 7.1. Thus, the new inverse market demand function is given by:

P(Q) = max
0≤Q<∞

{A−b ·Q, 0} for A,b > 0. (7.1)

In addition, the condition A > b ·Q− (1−θi) for i = 1,2 has to be satisfied for A, since the
profit should be positive.In difference to the original inverse demand function (2.1), there are
two new parameters A and b. A variation of the parameter A describes for values above 1 an
upward shift on the y-axis, which means on the price, and a shift to the right on the x-axis,
which means on the market demand. Conversely an alternation for values below 1 leads to a
downward shift for the price (lower prices) and a shift to the left for the market demand. A
variation in b characterizes a change in the slope. For values above 1 the slope gets steeper,
while for values in between 0 and 1, the slope becomes flatter. Note that for A = b = 1 this
demand function is identical to the demand function from equation (2.1) in Schmalensee’s
model.

The corresponding profit functions are given by:

Πi (Q) = (A+θi −1−b ·Q) ·qi for i = 1,2. (7.2)

Before diving into the recalculations of the collusion technologies, the new values for the
Cournot model and the monopoly outcome are shortly determined in the next section.

7.1.1. Cournot competition

Analogous to section 2.1, the aim is to find the maximum value of the profit of each firm i for
i = 1, . . . ,1+N.

max
0≤qi<∞

Πi(Q) = max
0≤qi<∞

(A+θi −1−b ·Q) ·qi for i = 1, . . . ,1+N (7.3)

Hence, differentiating leads to the following FOC’s:

∂Πi (Q)

∂qi
= A+θi −1−2b ·qi −b ·Q−i

!
= 0 for i = 1, . . . ,1+N. (7.4)

As a result of the first order conditions above, the following reaction functions are obtained:

qi =

⎧⎨⎩ 1
2b · (A+θi −1−b ·Q−i) for Q−i ≤ 1

b (A+θi −1)

0 otherwise
for i = 1, . . . ,1+N. (7.5)
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To prove if the maximization above results indeed in a maximum, the subsequent SOC’s have
to be fulfilled:

∂ 2Πi

∂q2
i
=−2b < 0. (7.6)

Due to the fact that b has to be positive, which means that −2b is negative, the second
order condition is satisfied. Furthermore, since all N high-cost firms have identical costs
1− θ2 and produce the same quantity q2, the symmetric argument can be applied, namely
q2 = · · · = q1+N . Hence solving the system of reaction functions (7.5), yields the following
quantities in Cournot equilibrium:

qC
1 =

1
b(2+N)

· [A−1+(1+N) ·θ1 −Nθ2] (7.7)

N ·qC
2 =

N
b(2+N)

· [A−1+2θ2 −θ1] . (7.8)

Setting these quantities in the profit function (7.2), leads to the subsequent Cournot profit:

Π
C
1 =

1

b · (2+N)2 · [A−1+(1+N) ·θ1 −Nθ2]
2 (7.9)

N ·ΠC
2 =

N

b · (2+N)2 · [A−1+2θ2 −θ1]
2 . (7.10)

7.1.2. Side Payments

From section 4.1, it is known that if side payments or mergers are allowed, firm 1 undertakes
the whole production of the industry, while firms of type 2 shut down their production. This
implies that qSP

2 is zero and firm 1’s profit as a monopolist will be maximized. Thus, the profit
of the whole industry is identical to that of firm 1 as a monopolist, namely Π = ΠM

1 .

max
0≤q1<∞

Π(q1) = max
0≤q1<∞

(A+θ1 −1−b ·q1) ·q1 (7.11)

In the appendix B.1 the precise computation of the maximization of a monopoly can be found.
Considering that the quantity produced of firm 1 corresponds to the total quantity produced in
the industry, the following is obtained:

QSP = qM
1 =

1
2b

· (A+θ1 −1) = qSP
1 . (7.12)

45



Therefore, the explicit solution for the quantity is:

(
qSP

1 , NqSP
2

)
=

(
A+θ1 −1

2b
, 0
)
. (7.13)

The total profit of the industry for the SP technology is explicitly determined by setting the
total quantity QSP from above in the profit function (7.2) for i = 1.

Π
M
1 = Π

SP = Π
SP
1 +NΠ

SP
2 =

1
4b

· (A+θ1 −1)2 (7.14)

From the equation above, the subsequent profit possibility frontier is derived.

Π
SP
2 =

1
N

(
(A+θ1 −1)2

4b
−Π

SP
1

)
(7.15)

The joint profit should be split between the firms. The optimal solution will be found by
means of the solution methods from the cooperative payoff region above. Remember that this
technology serve as comparison.

7.1.3. Market Sharing

In the Market Sharing technology all firms in the market get assigned particular ‘output quo-
tas’. They have to retain their quotas and maximize their profits with respect to this rate,
while holding the other type of firm fixed at its quota. Therefore, the quantity of each firm is
expressed through its profit and the total quantity:

qi =
Πi

A+θi −1−b ·Q
for i = 1,2. (7.16)

Now the total quantity can be described by:

Q = q1 +N ·q2 =
Π1

A+θ1 −1−b ·Q
+N · Π2

A+θ2 −1−b ·Q
. (7.17)

Hence, transforming the equations above yields, these expressions:

q1 = Q−N · Π2

A+θ2 −1−b ·Q
and analogue (7.18)

q2 = Q− Π1

A+θ1 −1−b ·Q
. (7.19)
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Now the profit of all N high-cost firms will be expressed as a function of firm 1’s profit and
vice versa. By inserting q1 from equation (7.18) and q2 from equation (7.16) for i = 2 into the
profit function of firm 1 from equation (7.2) for i = 1, the transformed profit of firm 1 below
is obtained. This works analogous for firms of type 2. Since some terms immediately cancel
out similarly to section 4.2, one step is skipped and the following is obtained:

max
0≤Q<∞

NΠ2 (Π1) = max
0≤Q<∞

(
Q− Π1

A+θ1 −1−b ·Q

)
· (A+θ2 −1−b ·Q) (7.20)

max
0≤Q<∞

Π1 (Π2) = max
0≤Q<∞

(
Q− NΠ2

A+θ2 −1−b ·Q

)
· (A+θ1 −1−b ·Q) . (7.21)

These profits are directly maximized with respect to the total quantity Q, such that the ‘output
quotas’ are fulfilled. Maximization yields the subsequent FOC’s:

∂NΠ2 (Π1)

∂Q
= A+θ2 −1−2b ·Q+

bΠ1 · (θ1 −θ2)

(A+θ1 −1−b ·Q)2
!
= 0 (7.22)

∂Π1 (Π2)

∂Q
= A+θ1 −1−2b ·Q+

bNΠ2 · (θ2 −θ1)

(A+θ2 −1−b ·Q)2
!
= 0. (7.23)

Converting the equations above and expressing the profit of firm 1, respectively of firms of
type 2, leads to these explicit profits below for the MS technology:

Π
MS
1 =

(A+θ1 −1−b ·Q)2 · (2b ·Q−A−θ2 +1)
b · (θ1 −θ2)

(7.24)

NΠ
MS
2 =

(A+θ2 −1−b ·Q)2 · (A+θ1 −1−2b ·Q)

b · (θ1 −θ2)
. (7.25)

Moreover, it can be seen that only the change of the demand function makes the formulas for
the Market Sharing technology more complex in comparison to equations (4.16) and (4.17) in
section 4.2.

Now the reaction functions for both types of firms should be determined from the cor-
responding cubic equation. For q1 the profit function from equation (7.2) is set in the just
calculated profit of firm 1 from equation (7.24) for the MS technology. The determination
proceeds analogous to section 4.2 on page 16.

(A+θ1 −1−b ·Q) ·q1 =
(A+θ1 −1−b ·Q)2 · (2b ·Q−A−θ2 +1)

b · (θ1 −θ2)
(7.26)

(A+θ1 −1−b ·Q) ·
[
(A+θ1 −1−b ·Q) · (2b ·Q−A−θ2 +1)

b · (θ1 −θ2)
−q1

]
= 0 (7.27)
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From the last equation, the first solution of q1 can be derived by means of Q = q1 +N ·q2.

q(1)1 =
1
b
· (A+θ1 −1−bN ·q2) (7.28)

The determination of the roots of the quadratic part of equation (7.27) can be found in the

appendix B.3. It results in:

q(2,3)1 =
3(A−1)+θ1 +2θ2

4b
−Nq2

± 1
4b

·
√

(θ1 −2θ2)
2 +8bN ·q2 · (θ1 −θ2)+2 · (A−1)(2θ2 −θ1)+(A−1)2. (7.29)

As well, the reaction function for q2 is computed analogous to q1, such that the following

formula is achieved:

N · (A+θ2 −1−b ·Q) ·q2 =
(A+θ2 −1−b ·Q)2 · (A+θ1 −1−2b ·Q)

b · (θ1 −θ2)
(7.30)

(A+θ2 −1−b ·Q) ·
[
(A+θ2 −1−b ·Q) · (A+θ1 −1−2b ·Q)

b · (θ1 −θ2)
−Nq2

]
. (7.31)

The first solution q(1)2 is derived from the first non-quadratic part of the equation (7.31).

q(1)2 =
1

bN
· (A+θ2 −1−b ·q1) (7.32)

The second and third solutions are derived in the appendix B.3.

q(2,3)2 =
3(A−1)+2θ1 +θ2

4bN
− q1

N

± 1
4bN

·
√

(2θ1 −θ2)
2 −8b ·q1 · (θ1 −θ2)+2 · (A−1)(2θ1 −θ2)+(A+1)2 (7.33)

Analogous to the MS technology introduced in section 4.2, the third solutions of the reaction
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functions q1 and q2 can be applied. Hence, the explicit reaction functions are given by:

qMS
1 =

3(A−1)+θ1 +2θ2

4b
−Nq2

− 1
4b

·
√

(θ1 −2θ2)
2 +8bN ·q2 · (θ1 −θ2)+2 · (A−1)(2θ2 −θ1)+(A−1)2 (7.34)

qMS
2 =

3(A−1)+2θ1 +θ2

4bN
− q1

N

− 1
4bN

·
√

(2θ1 −θ2)
2 −8b ·q1 · (θ1 −θ2)+2 · (A−1)(2θ1 −θ2)+(A+1)2. (7.35)

With the choice of a slightly more complex demand function (7.1) instead of (2.1), the formu-
las get longer and thereby the calculations become longer and more complex.

7.1.4. Market Division

The market is divided between the two types of firms. Hence, recall that firm 1 got assigned a
fraction W ∗ of all potential customers, while firms of type 2 were allocated a fragment 1−W ∗

of them. Both firms are selling their products in the same market, but can only access their
own section. In its part each type of firm has a monopoly position. Evidently, the products of
all firms are sold at their price as monopolist. Therefore, because of the same reasons as in
section 4.3 the inverse demand function of firm 1 changes to P( q1

W ∗ ), respectively of firms of
type 2 to P( N·q2

1−W ∗ ). The calculations proceed similarly to section 4.3.

P1 = P
( q1

W ∗

)
= A−b · q1

W ∗ (7.36)

P2 = P
(

N ·q2

1−W ∗

)
= A−b · N ·q2

1−W ∗ (7.37)

Thus, the profit functions are given by:

Π1

( q1

W ∗

)
=
(

A+θ1 −1−b · q1

W ∗

)
·q1 (7.38)

Π2

(
N ·q2

1−W ∗

)
=

(
A+θ2 −1−b · N ·q2

1−W ∗

)
·q2. (7.39)

Hence, these profit functions should be maximized.

max
0≤q1<∞

Π1

( q1

W ∗

)
=
(

A+θ1 −1−b · q1

W ∗

)
·q1 (7.40)

max
0≤q2<∞

Π2

(
N ·q2

1−W ∗

)
=

(
A+θ2 −1−b · N ·q2

1−W ∗

)
·q2 (7.41)
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Obviously, the maximization of the equations above yields to the following FOC’s:

∂Π1

∂q1
= A+θ1 −1− 2b

W ∗ ·q1
!
= 0 (7.42)

∂Π2

∂q2
= A+θ2 −1− 2bN

1−W ∗ ·q2
!
= 0. (7.43)

Solving the equations above for the quantities q1, respectively q2, leads to the explicit values
for both quantities:

q1 =
W ∗

2b
· (A+θ1 −1) (7.44)

N ·q2 =
1−W ∗

2b
· (A+θ2 −1) , respectively q2 =

1−W ∗

2bN
· (A+θ2 −1) . (7.45)

The explicit reaction function for the MD technology is derived in expressing the fraction W ∗

from the equation (7.44) and inserting into the equation (7.45) for Nq2.

W ∗ =
2b

A+θ1 −1
·q1 (7.46)

⇒ q2 =
1− 2b

A+θ1−1 ·q1

2Nb
· (A+θ2 −1) (7.47)

Therefore, the explicit reaction function looks like:

qMD
2 =

A+θ2 −1
2bN

·
(

1− 2b ·q1

A+θ1 −1

)
. (7.48)

Furthermore, the explicit profits can be determined from the quantities from equations (4.36)
and (4.37).

Π
MD
1 =

W ∗

4b
· (A+θ1 −1)2 (7.49)

NΠ
MD
2 =

1−W ∗

4b
· (A+θ2 −1)2 , respectively Π

MD
2 =

1−W ∗

4bN
· (A+θ2 −1)2 (7.50)

Analogous, the profit possibility frontier is computed to connect the profits of both types of
firms. Hence, the fraction W ∗ is expressed analogue to the case for the quantity:

W ∗ =
4b

(A+θ1 −1)2 ·Π1. (7.51)
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Accordingly, the cooperative payoff region is given by:

Π
MD
2 =

(A+θ2 −1)2

4bN
·

(
1− 4b ·Π1

(A+θ1 −1)2

)
. (7.52)

Finally, the price is examined in setting the explicit quantity q1, respectively q2 in the corre-
sponding inverse demand function. From section 4.3, it is known that each type of firm sells
their products for the price of having a monopoly.

P1 =
1
2
· (A−θ1 +1) (7.53)

P2 =
1
2
· (A−θ2 +1) (7.54)

That means that the products of each type of firm are sold for different prices. Consequently,
the price of the high-cost firms will be higher than that of the low-cost firm, due to their higher
costs. This is shown in the following two inequalities, since 1

2 ·(A−θ1 +1)< 1
2 ·(A−θ2 +1),

it follows θ1 > θ2, which is true. Keep in mind that because of the different prices, arbitrage
can be a problem.

7.1.5. Proportional Reduction

Remember from section 4.4 the PR technology is a simplified version of the Market Sharing
technology, which holds the market shares fixed at their values in Cournot. The Cournot
quantities further are decreased proportionally. It follows that the market share of the low-cost
firm is preserved at its share in Cournot competition, analogous for N high-cost firms:

S =
qC

1

qC
1 +NqC

2
=

A−1+(1+N) ·θ1 −Nθ2

(1+N) ·A− (1+N)+θ1 +Nθ2
(7.55)

S2 =
NqC

2

qC
1 +NqC

2
=

N · (A−1+2θ2 −θ1)

(1+N) ·A− (1+N)+θ1 +Nθ2
. (7.56)

Accordingly, the market share is retained tight at the ratio, details see section 4.4.

S =
qC

1
QC :

NqC
2

QC = S2 ⇒ qC
1 : NqC

2 (7.57)

Evidently, a line from the zero point until the Cournot quantity
(
qC

1 , NqC
2
)

is characterized
with this ratio. Consequently, all points, which satisfy

(
λ ·qC

1 , λ ·NqC
2
)

for λ ∈ [0, 1], can be
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possible quantities, see section 4.4.

(
qPR

1 , NqPR
2
)
=
(

λ ·qC
1 , λ ·NqC

2

)
for λ ∈ [0, 1] (7.58)(

qPR
1 , NqPR

2
)
=

1
b · (2+N)

·
(

λ · (A−1+(1+N) ·θ1 −Nθ2) , λN · (A−1+2θ2 −θ1)
)

(7.59)

Furthermore, the ratio from equation (7.57) implies:

qPR
1 : N ·qPR

2 = qC
1 : N ·qC

2 . (7.60)

Expressing qPR
2 from the ratio (7.60) leads to the subsequent explicit reaction function:

qPR
2 =

qC
2

qC
1
·qPR

1 =
A−1+2θ2 −θ1

A−1+(1+N) ·θ1 −Nθ2
·qPR

1 . (7.61)

The corresponding profits can be written as:

Π
PR
1 = (A+θ1 −1−b ·qPR

1 −bN ·qPR
2 ) ·qPR

1 (7.62)

NΠ
PR
2 = (A+θ2 −1−b ·qPR

1 −bN ·qPR
2 ) ·NqPR

2 . (7.63)

If the values for the Cournot quantities are set in the profit functions above, the following is
obtained:

Π
PR
1 =

(
A+θ1 −1− bλ

2+N
(A−1+(1+N) ·θ1 −Nθ2)−

bNλ

2+N
(A−1+2θ2 −θ1)

)
· λ

2+N
· (A−1+(1+N) ·θ1 −Nθ2) (7.64)

=
λ

(2+N)2 · (A−1+2θ2 −θ1) · [(2+N) · (A+θ1 −1)−bλ · ((1+N) · (A−1)+θ1 +Nθ2)]

(7.65)

NΠ
PR
2 =

(
A+θ2 −1− bλ

2+N
(A−1+(1+N) ·θ1 −Nθ2)−

bNλ

2+N
(A−1+2θ2 −θ1)

)
(7.66)

· bNλ

2+N
· (A−1+2θ2 −θ1) (7.67)

=
Nλ

(2+N)2 · (A−1+2θ2 −θ1) · [(2+N) · (A+θ2 −1)−bλ · ((1+N) · (A−1)+θ1 +Nθ2)] .

(7.68)
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7.1.6. Bargaining solution methods

If all relevant axioms are fulfilled, the three solution methods presented in section 5, namely
the Nash, the K-S and the EG solutions, can be applied to all of the modified collusion tech-
nologies from sections 7.1.2 – 7.1.5. Since the W ∗ = S solution method is a special case, more
precisely a special point, in the Market Division technology, this method can be used without
making adaptions.

7.1.7. Graphic representation of the collusion technologies

In this section, the graphic illustrations are shown for all collusion technologies with the mod-
ified demand function. Therefore, two different values are plotted for the new parameters A

and b, as well, for the known parameters Rmiddle and N = 1.
In figure 7.1, the quantity curves of the collusion technologies are illustrated with the new

demand function. The explicit reaction functions of the respective collusion technology de-
termined in sections 7.1.2 – 7.1.5 were used for the graphic representation. Furthermore, the
profit curves of all collusion technologies are shown in figure 7.2. Accordingly, this figures are
plotted by means of the equations of the respective profit possibility frontiers of all collusion
technologies with the modified demand function.

It can be seen that in the figures 7.1 and 7.2 the MS and the MD curves are closer than in
the Schmalensee’s model in the figures in section 4.5.1 and 4.5.2. In particular, it seems that
the curves are identical. However, the shape of the curves and the corresponding performance
of the collusion technologies do not differ from the case in Part I.
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Figure 7.1: Quantity curves of all collusion technologies with changed demand function

(a) A = 2, b = 2 (b) A = 5, b = 2

Notes: Figure 7.1a is plotted in MATLAB for N = 1 and A = 2, b = 2, while figure 7.1b is
plotted for A= 5 and b= 2. The values for the parameter Rmiddle = 1.4 are the following:
θ1 = 0.7 and θ2 = 0.5.

Figure 7.2: Profit curves of all collusion technologies with changed demand function

(a) A = 2,b = 2 (b) A = 5,b = 2

Notes: Figure 7.2a is plotted in MATLAB for N = 1 and A = 2,b = 2, while figure 7.2b is
plotted for A= 5 and b= 2. The values for the parameter Rmiddle = 1.4 are the following:
θ1 = 0.7 and θ2 = 0.5.
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7.2. Cost function

To generalize the cost function from equation (3.1), the idea of a generalized modification of
the cost function is described in the following. Again, the basic principle is to modify only
the cost function while everything else stays the same. Therefore, the demand function (2.1)
is not changed. Firstly, the cost parameters θi for i = 1,2 would be alternated according to
equation (3.9) as used in section 2.1. Secondly, the interval of the cost parameters θi for
i = 1,2 should be increased to a broader range of values, namely to [0,T ]. The parameter T

should be a natural number. In addition, individual fixed costs for each type of firm should be
introduced by means of the parameter d. Thus, the new cost function would look like:

C(qi) = ci ∗qi +di for i = 1,2. (7.69)

Furthermore, the following has to hold for the cost parameters:

c1 < c2 and ci ∈ [0,T ] for i = 1,2 (7.70)

d1 < d2 and di ∈ [0,T ] for i = 1,2. (7.71)

This way of modifying the cost function is limited to the demand function (2.1), since a nega-
tive profit for the firms does not make sense. But this change of the cost function would lead
to an even less profit of the firms. That means if this demand function is retained, the cost
function cannot be arbitrarily generalized. Hence, it makes sense to generalize the demand
function additionally to the cost function, such that all types of firms gain a positive profit.

7.3. Triopoly

Now the original model of Schmalensee (1987) [17] from section 3 is expanded from a
duopoly to a triopoly. More precisely, there are now three types of firms operating in the
market and competing in quantity. Each type of firm has different costs. In the first place,
firm 1 is again the only low-cost firm in the market, while in the second place there are N

middle-cost firms, which are named firms of type 2. In the third place, there are M firms
of type 3, which represent the high-cost firms. Note that N and M are natural numbers. As
previously described firm 1 is the low-cost firm, while firms of type 2 are the N middle-cost
firms. The M high-cost firms are named firms of type 3. The total number of firms operating
in the market is then 1+N +M, since there is one firm 1 and N firms of type 2 and M firms
of type 3. The inverse demand function (2.1) stays the same except that there are now three
firms producing goods. It follows that the total quantity sums up to Q = q1+Nq2+Mq3. The
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cost and profit function also remain the same except that there are now three functions instead
of two.

C(qi) = (1−θi) ·qi and θi ∈ [0,1] for i = 1,2,3 (7.72)

Πi = (θi −Q) ·qi for i = 1,2,3 (7.73)

The cost parameters θi for i = 1,2,3 have to fulfill the subsequent inequalities:

θ3 < θ2 < θ1 < 2 ·θ2 and θ1 < 2 ·θ3. (7.74)

The first and second part of the first inequality makes sure that firm 1 has the lowest costs, all
firms of type 2 have the second lowest costs and all firms of type 3 have the highest costs. The
third inequality, respectively the last inequality, ensures that the market price of firm 1 having
a monopoly, namely 1− θ1

2 , is higher than the costs of each middle-cost firm, namely 1−θ2,
respectively of each high-cost firm, namely 1− θ3. In addition, the market price of firms of
type 2 as a monopolist, namely 1− θ2

2 , has to be higher than the costs of each firm of type 3.
This is already fulfilled, since the price of firm 1 as monopolist is higher than the costs of the
high-cost firms, see the last inequality above. That is due to the fact that if firm 1 decreases its
price, the middle-cost firms as well as the high-cost firms would have more costs to produce
the good than they could obtain through the purchase.

Furthermore, the joint profit sums now up to:

Π = Π1 +N ·Π2 +M ·Π3. (7.75)

In this case, a even lower profit gain will be expected, since there are more firms in the market,
which have to split the profit by any means. Therefore, it is a more generalized version.

Here there will not be only one parameter R, which should measure the relative difference
in costs. Instead, there are now three different parameters R, such that the cost differences be-
tween each two firms can be measured. In the following, R1 measures the relative differences
in costs between firm 1 and firms of type 2, as R did in Part I. Additionally, R2 characterizes
the relative gap between the low-cost firms and firms of type 3, while R3 describes the relative
cost difference between firms of type 2 and the high-cost firms.

R1 =
θ1

θ2
and R2 =

θ1

θ3
and R3 =

θ2

θ3
(7.76)

From the interval of the cost parameters θi for i = 1,2,3, equation (7.74) and equation (7.76),
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it can be concluded that all three parameters Ri for i = 1,2,3 lie in the interval [1,2], as in
section 3. That means the same implications as in section 3 follows. Values of Ri for i = 1,2,3
close to 1 point out that the different types of firms have nearly identical costs. By way of
contrast, values near 2, characterize a relative big difference in costs.

Furthermore, it follows that now the market can be described by these new parameters of
R and the number of middle and high-cost firms, namely N and M. In Part I, there were only
two parameters that characterized the market, namely R, respectively S, and N. Now there
are five parameters, which describe the market, namely R1, R2, R3, N and M. That means the
description of the market gets more complex.

Additionally, the parameter S will also be introduced as in Part I. S characterizes again the
market share of the low-cost firm in Cournot competition, while S2 is the market share of one
firm of type 2 in Cournot equilibrium and accordingly S3 = 1−S−S2 is the share in Cournot
competition of one firm of type 3. Note that S+ S2 + S3 = 1. Setting the Cournot quantities
from equations (7.91) – (7.93) in the equation for the market share, the following equations
are obtained:

S =
qC

1
QC =

qC
1

qC
1 +N ·qC

2 +M ·qC
3
=

(1+N +M) ·θ1 −Nθ2 −Mθ3

θ1 +Nθ2 +Mθ3
(7.77)

S2 =
NqC

2
QC =

NqC
2

qC
1 +N ·qC

2 +M ·qC
3
=

N · [(2+M) ·θ2 −θ1 −Mθ3]

θ1 +Nθ2 +Mθ3
(7.78)

S3 =
MqC

3
QC =

MqC
3

qC
1 +N ·qC

2 +M ·qC
3
=

M · [(2+N) ·θ3 −θ1 −Nθ2]

θ1 +Nθ2 +Mθ3
. (7.79)

The parameters R1 and R2 can also be characterized with these four parameters. The compu-
tation can be found in the appendix B.5.

R1 =

(
N + M

R3

)
· (S+1)

1+N +M−S
(7.80)

R2 =
(N ·R3 +M) · (S+1)

1+N +M−S
(7.81)

Now the market can be described by four parameter, namely R3, S, N and M.
In addition, if the joint profit is maximized with three different firms operating in the market,

the same problem as in section 2.2 is faced. The proof can be found in the appendix A.4. For
this reason, in the following sections 7.3.2 – 7.3.5 the four collusion technologies introduced
in the sections 4.1 – 4.4 are applied to three types of firms. Before this is done, the Cournot
model is determined in the next section.
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7.3.1. Cournot competition

Similarly to section 2.1 and 7.1.1, the profits of each firm i for i = 1, . . . ,1+N +M are maxi-
mized. Remember that in total there are 1+N+M firms operating in the market. The demand
function (2.1) remains the same as well as the cost function (3.1), which is only adapted to the
new number of firms.

C(qi) = (1−θi) ·qi for i = 1, . . . ,1+N +M (7.82)

According to the number of firms, the total quantity now sums up to Q = q1 + . . .q1+N+M.
Therefore, the profit functions of each firm is given by:

Πi = (θi −Q) ·qi for i = 1, . . . ,1+N +M. (7.83)

These profit functions are now maximized.

max
0≤qi<∞

Πi (Q) = max
0≤qi<∞

(θi −Q) ·qi for i = 1, . . . ,1+N +M (7.84)

Thus, maximization yields the subsequent FOC’s:

∂Πi (Q)

∂qi
= (θi −Q) ·qi

!
= 0 for i = 1, . . . ,1+N +M. (7.85)

From the first order conditions above, the following reaction functions can be determined:

qi =

⎧⎨⎩1
2 · (θi −Q−i) for Q−i ≤ θi

0 otherwise
for i = 1, . . . ,1+N +M. (7.86)

To prove if the maximization results indeed in a maximum, the subsequent SOC’s have to be
fulfilled:

∂ 2Πi

∂q2
i
=−2 < 0. (7.87)

Since the second derivatives are negative, the SOC’s are satisfied and the quantities qi for
i = 1+N +M definitely are maxima.

In section 7.3, it was mentioned that there are N identical firms of type 2. For this reason,
the symmetric argument can be applied, which means that q2 = · · · = q1+N . Consequently,
all N firms of type 2 have costs of (1− θ2) · q2. Thus, the total quantity sums now up to
Q = q1 +N · q2 + q2+N + · · ·+ q1+N+M. Furthermore, there are M identical firms of type 3,
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which means that again the symmetric argument can be used. The quantity produced by each
firm of type 3 is then named q3 := q2+N = · · ·= q1+N+M. Accordingly, all M firms of type 3
have costs of (1−θ3) ·q3. Finally, the total quantity is now Q = q1+N ·q2+M ·q3. Therefore,
the system of reaction function (7.86) changes to:

q1 =
1
2
· (θ1 −N ·q2 −M ·q3) (7.88)

q2 =
1
2
· (θ2 −q1 − (N −1) ·q2 −M ·q3) (7.89)

q3 =
1
2
· (θ3 −q1 −N ·q2 − (M−1) ·q3) . (7.90)

Solving the system of the three equations above (7.88) – (7.90), leads to the following explicit
quantities in Cournot competition for the triopoly case.

qC
1 =

1
2+N +M

· [(1+N +M) ·θ1 −Nθ2 −Mθ3] (7.91)

NqC
2 =

N
2+N +M

· [(2+M) ·θ2 −θ1 −Mθ3] (7.92)

MqC
3 =

M
2+N +M

· [(2+N) ·θ3 −θ1 −Nθ2] (7.93)

Correspondingly, the explicit profit functions for each type of firm are given by:

Π
C
1 =

(
qC

1

)2
=

1

(2+N +M)2 · [(1+N +M) ·θ1 −Nθ2 −Mθ3]
2 (7.94)

NΠ
C
2 = N ·

(
qC

2

)2
=

N

(2+N +M)2 · [(2+M) ·θ2 −θ1 −Mθ3]
2 (7.95)

MΠ
C
3 = M ·

(
qC

3

)2
=

M

(2+N +M)2 · [(2+N) ·θ3 −θ1 −Nθ2]
2 . (7.96)

7.3.2. Side Payments

Since compensation payments are allowed in this technology, only the most efficient firm
is producing goods to maximize the total profit of the industry. The low-cost firm, namely
firm 1, can manufacture at the lowest costs. Consequently, only firm 1 produces goods at
its monopoly price, while firms of type 2 and firms of type 3 are not producing any goods.
Instead, the middle-cost firms and the high-cost firms will get compensation payments. That
means the resulting quantity and profit in the Side payments technology for a triopoly is very
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similar to that of a duopoly. Accordingly, firm 1’s monopoly profit will be maximized:

max
0≤q1<∞

Π(q1) = max
0≤q1<∞

(θ1 −q1) ·q1. (7.97)

Total industry profit is equal to the profit of firm 1 as a monopolist, namely Π = ΠM
1 . Max-

imization of firm 1’s monopoly profit yields the following quantity for the whole industry:

QSP = qM
1 =

θ1

2
= qSP

1 . (7.98)

It follows that there is an explicit solution for the quantity of all types of firms at the point:

(
qSP

1 , NqSP
2 , MqSP

3

)
=

(
θ1

2
, 0, 0

)
. (7.99)

The profit is determined in setting QSP from equation (7.98) in the monopoly profit of firm 1:

Π
SP = Π

SP
1 +NΠ

SP
2 +MΠ

SP
3 = Π

M
1 =

θ 2
1
4
. (7.100)

This is an explicit solution for the joint profit, whereas there is no explicit solution for the
individual firms. But there is an explicit cooperative payoff region:

Π
SP
3 =

1
M

·
(

θ 2
1
4

−Π
SP
1 −NΠ

SP
2

)
. (7.101)

Furthermore, the profit of each type of firm is less compared to the duopoly case, since the
total profit in the duopoly case equals the total profit in the triopoly case, namely the monopoly
profit of firm 1. The difference in the triopoly case is that the profit has to be split now between
three types of firms, which are 1+N +M firms in total, instead of two types of firms, namely
1+N firms.

7.3.3. Market Sharing

Analogous to section 4.2, all types of firms get assigned particular quotas for the quantities,
which they have to hold. It follows that the firms are fixed at their quotas for their quantity.
The aim of each type of firm is to maximize its profit according to this quota and the profit
of the other types of firms. Similarly to equation (4.6), the individual quantity is expressed
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through the total quantity Q and the profit Πi for i = 1,2,3.

qi =
Πi

θi −Q
for i = 1,2,3 (7.102)

Therefore, the total quantity can be characterized by:

Q = q1 +N ·q2 +M ·q3 =
Π1

θ1 −Q
+N · Π2

θ2 −Q
+M · Π3

θ3 −Q
. (7.103)

Transforming the equations above, leads to the subsequent equations for the quantities:

q1 = Q−N · Π2

θ2 −Q
−M · Π3

θ3 −Q
(7.104)

N ·q2 = Q− Π1

θ1 −Q
−M · Π3

θ3 −Q
(7.105)

M ·q3 = Q− Π1

θ1 −Q
−N · Π2

θ2 −Q
. (7.106)

The profit of each type of firm is now expressed as a function of the profit of the other two
types, analogue to section 4.2.

Π1 (NΠ2,MΠ3) =

[
θ1 −

(
Q− N ·Π2

θ2 −Q
− M ·Π3

θ3 −Q
+

N ·Π2

θ2 −Q
+

M ·Π3

θ3 −Q

)]
·
(

Q− N ·Π2

θ2 −Q
− M ·Π3

θ3 −Q

)
(7.107)

NΠ2 (Π1,MΠ3) =

[
θ2 −

(
Π1

θ1 −Q
+Q− Π1

θ1 −Q
− M ·Π3

θ3 −Q
+

M ·Π3

θ3 −Q

)]
·
(

Q− Π1

θ1 −Q
− M ·Π3

θ3 −Q

)
(7.108)

MΠ3 (Π1,NΠ2) =

[
θ3 −

(
Π1

θ1 −Q
+

N ·Π2

θ2 −Q
+Q− Π1

θ1 −Q
− N ·Π2

θ2 −Q

)]
·
(

Q− Π1

θ1 −Q
− N ·Π2

θ2 −Q

)
(7.109)

61



Hence, the following profits are maximized according to the total quantity.

max
0≤Q<∞

Π1 (NΠ2,MΠ3) = max
0≤Q<∞

(
Q− N ·Π2

θ2 −Q
− M ·Π3

θ3 −Q

)
· (θ1 −Q) (7.110)

max
0≤Q<∞

NΠ2 (Π1,MΠ3) = max
0≤Q<∞

(
Q− Π1

θ1 −Q
− M ·Π3

θ3 −Q

)
· (θ2 −Q) (7.111)

max
0≤Q<∞

MΠ3 (Π1,NΠ2) = max
0≤Q<∞

(
Q− Π1

θ1 −Q
− N ·Π2

θ2 −Q

)
· (θ3 −Q) (7.112)

Therefore, the subsequent FOC’s are obtained by maximizing the profits above:

∂Π1 (NΠ2,MΠ3)

∂Q
= θ1 −2Q+NΠ2 ·

θ2 −θ1

(θ2 −Q)2 +MΠ3 ·
θ3 −θ1

(θ3 −Q)2
!
= 0 (7.113)

∂NΠ2 (Π1,MΠ3)

∂Q
= θ2 −2Q+Π1 ·

θ1 −θ2

(θ1 −Q)2 +MΠ3 ·
θ3 −θ2

(θ3 −Q)2
!
= 0 (7.114)

∂MΠ3 (Π1,NΠ2)

∂Q
= θ3 −2Q+Π1 ·

θ1 −θ3

(θ1 −Q)2 +NΠ2 ·
θ2 −θ3

(θ2 −Q)2
!
= 0. (7.115)

Determining the explicit profit possibility frontiers from the equations (7.113) – (7.115), leads
to even longer and more complex formulas than in section 4.2, such that the formulas cannot
be presented in an appropriate way. The degree of complexity of the equations increases from
equations of the third degree, namely cubic equations, in the duopoly case to equations of the
fifth degree in the triopoly case. Following Galois, equations of the fifth degree can generally
not be expressed through roots (cf. Muthsam 2006, page 189) [10].

7.3.4. Market Division

In the case of a duopoly, as presented in Part I, identical customers were assigned to each
type of firm. More precisely, firm 1 was allocated a section W ∗ of them. Now, there are three
different types of firms in the market. For this reason, the market has to be divided into three
fractions. In the triopoly case firm 1 is allotted a fragment W ∗

1 , while all N middle-cost firms
are assigned the part W ∗

2 of customers. Finally, all M firms of type 3 are allocated a fraction
1−W ∗

1 −W ∗
2 . Since each type of firm can only access its assigned part of the market, it follows

that each type of firm can only operate in its fraction, namely 1
W ∗

1
for firm 1, 1

W ∗
2

for firms of
type 2 and 1

1−W ∗
1 −W ∗

2
for firms of type 3. For more details, how the inverse demand function

for the Market Division technology is derived, see section 4.3. That means the inverse demand
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functions are given by the following equations:

P1 = P
(

q1

W ∗
1

)
= 1− q1

W ∗
1

(7.116)

P2 = P
(

N ·q2

W ∗
2

)
= 1− N ·q2

W ∗
2

(7.117)

P3 = P
(

M ·q3

1−W ∗
1 −W ∗

2

)
= 1− M ·q3

1−W ∗
1 −W ∗

2
. (7.118)

Thus, the corresponding profit functions look like:

Π1

(
q1

W ∗
1

)
=

(
θ1 −

q1

W ∗
1

)
·q1 (7.119)

Π2

(
N ·q2

W ∗
2

)
=

(
θ2 −

N ·q2

W ∗
2

)
·q2 (7.120)

Π3

(
M ·q3

1−W ∗
1 −W ∗

2

)
=

(
θ3 −

M ·q3

1−W ∗
1 −W ∗

2

)
·q3. (7.121)

As in section 4.3, the profit functions are only dependent on the produced quantity of the own
type of firm. The aim of each firm is to maximize its own profit.

max
0≤q1<∞

Π1

(
q1

W ∗
1

)
= max

0≤q1<∞

(
θ1 −

q1

W ∗
1

)
·q1 (7.122)

max
0≤q2<∞

Π2

(
N ·q2

W ∗
2

)
= max

0≤q2<∞

(
θ2 −

N ·q2

W ∗
2

)
·q2 (7.123)

max
0≤q3<∞

Π3

(
M ·q3

1−W ∗
1 −W ∗

2

)
= max

0≤q3<∞

(
θ3 −

M ·q3

1−W ∗
1 −W ∗

2

)
·q3 (7.124)

Maximization yields the following FOC’s:

∂Π1

∂q1
= θ1 −

2
W ∗

1
·q1

!
= 0 (7.125)

∂Π2

∂q2
= θ2 −

2N
W ∗

2
·q2

!
= 0 (7.126)

∂Π3

∂q3
= θ3 −

2M
1−W ∗

1 −W ∗
2
·q3

!
= 0. (7.127)
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Therefore, the explicit quantities for each type of firm are given by:

q1 =
W ∗

1
2

·θ1 (7.128)

q2 =
W ∗

2
2N

·θ2, respectively Nq2 =
W ∗

2
2

·θ2 (7.129)

q3 =
1−W ∗

1 −W ∗
2

2M
·θ3, respectively Mq3 =

1−W ∗
1 −W ∗

2
2M

·θ3. (7.130)

Since the quantities are immediately derived from the FOC’s, the reaction function for firms
of type 3 are determined separately. Hence, the fraction W ∗

1 , respectively W ∗
2 , is expressed

from equation (7.128), respectively from equation (7.129).

W ∗
1 =

2
θ1

·q1 (7.131)

W ∗
2 =

2N
θ2

·q2 (7.132)

The explicit reaction function of one high-cost firm is obtained in setting the values for W ∗
1

and W ∗
2 from above in the explicit quantity q3 from equation (7.130):

qMD
3 =

θ3

2M
·
(

1− 2
θ1

·q1 −
2N
θ2

·q2

)
. (7.133)

Furthermore, the quantities from equations (7.128) – (7.130) are inserted into the profit func-
tions of the corresponding type of firm to calculate the subsequent explicit profits.

Π
MD
1 =

W ∗
1

4
·θ 2

1 (7.134)

Π
MD
2 =

W ∗
2

4N
·θ 2

2 , respectively NΠ
MD
2 =

W ∗
2

4
·θ 2

2 (7.135)

Π
MD
3 =

1−W ∗
1 −W ∗

2
4M

·θ 2
3 , respectively MΠ

MD
3 =

1−W ∗
1 −W ∗

2
4

·θ 2
3 (7.136)

To determine the cooperative payoff region, the fragment W ∗
1 is derived from equation (7.134),

while W ∗
2 is deduced from equation (7.135). As a result of setting these fragments in the profit

of one firm of type 3, the following explicit cooperative payoff region is given by the third
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equation below.

W ∗
1 =

4
θ 2

1
·ΠMD

1 (7.137)

W ∗
2 =

4N
θ2

·ΠMD
2 (7.138)

Π
MD
3 =

θ 2
3

4M
·
(

1− 4
θ 2

1
·ΠMD

1 − 4N
θ2

·ΠMD
2

)
(7.139)

Finally, the market price of all three types of firms are determined.

P1 = 1− q1

W ∗
1
= 1− θ1

2
(7.140)

P2 = 1− N ·q2

W ∗
2

= 1− θ2

2
(7.141)

P3 = 1− M ·q3

1−W ∗
1 −W ∗

2
= 1− θ3

2
(7.142)

From the equations above can be seen that each type of firm charges its own monopoly price.
That means that each type of firm demand a different price. As a consequence, a mechanism,
which can prevent arbitrage, should also be found in the triopoly case.

7.3.5. Proportional Reduction

In the Proportional Reduction technology the market shares are retained at the share in Cournot
competition, as aforementioned in section 4.4. Then the quantities of all firms are lowered
proportional. Therefore, the market share of firm 1 is preserved at the Cournot share of
firm 1, namely S =

qC
1

QC , see equation (7.77), while the share of firms of type 2 is maintained

at S2 =
NqC

2
QC , see equation (7.78). In addition, firms of type 3’s market share is retained at the

share in Cournot of firms of type 3, which is S3 =
MqC

3
QC from equation (7.79). Hence, market

shares have to be preserved at the following ratio:

S : S2 : S3 ⇒ qC
1 : NqC

2 : MqC
3 . (7.143)

Evidently, this ratio characterizes a linear function in three dimensions. More precisely, it
describes a plane from the origin to the Cournot point

(
qC

1 , NqC
2 , MqC

3
)
. Thus, all values are

feasible, for which the ratio (7.143) holds and which lie between the origin and the point of the
Cournot quantities. This are all points, which satisfy the following

(
λ ·qC

1 , λ ·NqC
2 , λ ·MqC

3
)
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for λ ∈ [0,1]. All feasible quantities in the PR technology are given by:

(
qPR

1 , NqPR
2 , MqPR

3
)
=
(

λ ·qC
1 , λ ·NqC

2 , λ ·MqC
3

)
for λ ∈ [0,1]. (7.144)

Since the formulas are long, each coordinate is separately presented:

qPR
1 =

λ

2+N +M
· [(1+N +M) ·θ1 −Nθ2 −Mθ3] (7.145)

NqPR
2 =

N ·λ
2+N +M

· [(2+M) ·θ2 −θ1 −Mθ3] (7.146)

MqPR
3 =

M ·λ
2+N +M

· [(2+N) ·θ3 −θ1 −Nθ2] . (7.147)

Furthermore, the subsequent ratio has to hold for the quantities:

qPR
1 : NqPR

2 : MqPR
3 = qC

1 : NqC
2 : MqC

3 . (7.148)

This is a problem of a triple ratio, which can also be described by:

qPR
1

qC
1

=
qPR

2

qC
2

=
qPR

3

qC
3
. (7.149)

Consequently, the profits functions look like:

Π
PR
1 =

(
θ1 −qPR

1 −N ·qPR
2 −M ·qPR

3
)
·qPR

1 (7.150)

NΠ
PR
2 =

(
θ2 −qPR

1 −N ·qPR
2 −M ·qPR

3
)
·NqPR

2 (7.151)

MΠ
PR
2 =

(
θ2 −qPR

1 −N ·qPR
2 −M ·qPR

3
)
·MqPR

3 . (7.152)

In setting the Cournot quantities in the corresponding profit function, the following profits for
each type of firm is obtained:

Π
PR
1 =

λ

(2+N +M)2 · [(2+N +M) ·θ1 −λ · (θ1 +N ·θ2 +M ·θ3)]

· [(1+N +M) ·θ1 −Nθ2 −Mθ3] (7.153)

NΠ
PR
2 =

N ·λ
(2+N +M)2 · [(2+N +M) ·θ2 −λ · (θ1 +N ·θ2 +M ·θ3)]

· [(2+M) ·θ2 −θ1 −Mθ3] (7.154)
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MΠ
PR
2 =

M ·λ
(2+N +M)2 · [(2+N +M) ·θ2 −λ · (θ1 +N ·θ2 +M ·θ3)]

· [(2+N) ·θ3 −θ1 −Nθ2] . (7.155)

7.3.6. Bargaining solution methods

In this section, the question is discussed if the solution methods from section 5 can be extended
to more than two players, especially for three players.

According to Krishna and Serrano (1996) [9], the Nash solution method introduced in sec-
tion 5.1 can be expanded to more players, namely to n players, without the need of a modi-
fication (cf. Krishna and Serrano 1996, page 61) [9]. That means the bargaining method of
Nash can be applied to the triopoly case.

Can the K-S solution method be applied to bargaining games with n players?
Roth (1979) [14] ascertained that the method of Kalai-Smorodinsky does not always satisfy
the axiom of Pareto optimality, and thus the generalization to n players cannot be done easily
(cf. Roth 1979, page 60). However, Karos, Muto and Rachmilevitch (2017) [8] and others
tried to solve this problem. The strategy of Karos, Muto and Rachmilevitch (2017) [8] is to
use a “efficiency-free axiomatization”, in which the K-S and the EG method are considered,
and to apply not such strong axioms (cf. Karos, Muto and Rachmilevitch 2017, page 2) [8].

Furthermore, the W ∗ = S solution method, which is only applicable for the Market Division
technology, can be expanded to more players. In the triopoly case, this would mean that the
fraction W ∗

1 , which was assigned to firm 1, now equals the market share of firm 1 in Cournot
competition, which is S from equation (7.77). Expressed in formulas, the following holds
W ∗

1 = S. Consequently, firms of type 2’s fragment is equated with their share in Cournot equi-
librium. Thus, the fraction of one middle-cost firm is then identical to its share: W ∗

2
N = S2

N . In
this method, the fragment of a single firm of type 3 equal its market share: 1−W ∗

1 −W ∗
2

N = 1−S−S2
N .
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8. Conclusion

To sum up the objective and the results of this research, first a few words should be said about
what can be learned from Part I, particularly from Schmalensee’s approach (1987) [17]. Then,
whether new insights can be obtained from the extensions of Schmalensee’s model in Part II.

The symmetric cost case makes sense in theory, but not that much in reality, since two
different firms would rarely have identical costs in the real world. This research was carried out
to determine if there is another way of making collusion possible, because the maximization
of joint profits, while assuming asymmetric costs, leads to an algebraic problem. Moreover,
if compensation payments are not allowed, the production performed in collusion has to be
inefficient.

Therefore, the simple model introduced by Schmalensee (1987) [17] is described in full
detail to make it easier to follow for other interested researchers. Furthermore, this simple
model with asymmetric costs better reflects reality. To find whether there is another pos-
sible way for firms to collude in quantity, four collusive technologies that originate from
Schmalensee (1987) [17] are analysed. These technologies provide a cooperative payoff re-
gion, from which a respective optimal solution is found. For that reason, four solution meth-
ods from the axiomatic bargaining theory are applied to the collusion technologies, which
were chosen from Schmalensee (1987) [17]. An entirely numeric approach was selected from
Schmalensee (1987) [17], due to the fact that not all collusion technologies were analytically
solvable for every solution method, especially for the Market Sharing technology. Following
this, Schmalensee’s results (1987) [17] were discussed. The main result found that if side
payments are not allowed, because of competition laws or other restraints, collusion can be
possible, but will most probably not be very profitable for the low-cost firm. In other words,
in the absence of the Side Payments technology, firm 1’s additional profit from collusion is
relatively small in comparison to that of the high-cost firms. This is due to the already high
profit of the low-cost firm in Cournot competition, with which the profit of both firms in col-
lusion is compared to. Therefore, it is even more advantageous for the high-cost firms, since
in comparison to firm 1 their profit in Cournot competition is relatively low.

In Part II, some extensions are presented. First, the inverse demand function and then the
cost function is expanded. Furthermore, the duopoly was extended to a triopoly. In addition to
firm 1, were added N middle-cost firms and M high-cost firms. In the expansion to the triopoly,
it was observed that the complexity of the problem increases with only one additional type of
firm. This was especially the case for the Market Sharing technology, which became too
complex.
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8.1. Discussion

To conclude, there are two respective parameters, with which the market can be described.
These parameters are either the market share of firm 1 (S) and the number of high-cost firms
(N), or the relative difference in costs (R) and N. There are some differences in the profitability
of collusion for each firm, when the two parameters are varied. The most important ones will
be explained. With a higher cost difference R, the low-cost firm has a greater advantage from
Cournot competition. It is the same, when firm 1 has a large market share, since R can be
expressed through N and S. In comparison, the high-cost firms benefit from a larger number
of high-cost firms, for the reason that the bargaining power raises with the number of high-cost
firms.

Due to the reason that the low-cost firm does not achieve much more profit from collusion,
it is a debatable point whether firm 1 will agree upon such a collusive outcome. Moreover,
without making an analysis of stability, it can be concluded that especially under the MD, MS
and the PR technology the low-cost firm would most likely not make such a collusive agree-
ment, since in comparison to the high-cost firms firm 1 attains much less profit additionally to
Cournot competition. In contrast to that, firms of type 2 have a high increase in profit from
collusion. The difference becomes even greater with an increased number of high-cost firms
and higher cost difference.

It can be discussed whether the PR technology does make sense, since a quality statement
cannot be made about its performance compared to the other technologies. That can be seen
in the completely different curves of the PR technology in section 4.5. However, it is a good
and simply way to set ‘output quotas’ and is thus a simplification of the more complex MS.

8.2. Prospect

Which improvements can be made for further research, such that a collusive outcome can be
achieved and it reflects reality in a good way?

Firstly, an analysis of stability can be made, because in this study stability of the collusive
outcome is not proven. But in reality it will be an issue, if the collusive outcome is stable
against cheating, since the cartel will make sure that each firm holds on to the assigned ‘output
quotas’. Therefore, some types of punishments can also be introduced.

Secondly, the cost function can be generalized. For that reason, a change of the inverse
demand function is needed in addition to a modification of the cost function. That means the
demand and the cost function are simultaneous modified such that the firms earn a positive
profit.
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Thirdly, maybe a new technology can be found, which assigns ‘output quotas’ such that
discrepancies in the difference of additional profit can be better reflected.

Finally, it may be possible to find a completely new approach.
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Appendix A

A.1. Values of R

Schmalensee (1987) [17] employed three different values for the parameter R. Here the de-
termination of these three values, which I call Rlow,Rmiddle and Rhigh according to its level of
relative difference in costs, are shown. This computations are presented, since these different
values of R are needed both for the graphic representation of the collusion technologies, which
concerns all graphs in this thesis, and to calculate the results of the solution methods shown
in table 6.1 and 6.2, because an entirely numeric approach is chosen. Schmalensee only used
all three values for N = 1, except Rmiddle is also applied to N = 3 and N = 5. He also stated
the dependent value for S. Accordingly, these values are named SN

R . In particular, these are
SN=1

low , SN=1
middle, SN=1

high , followed by SN=3
middle and SN=5

middle. From section 3, the following equations
are known (3.5), (3.8) and (3.6), respectively (3.7). These equations are shortly repeated:

R =
θ1

θ2
(A.1.1)

R =
N · (1+S)
N +1−S

(A.1.2)

S =
qC

1

qC
1 +NqC

2
=

(1+N) ·θ1 −Nθ2

θ1 +Nθ2
. (A.1.3)

Besides Schmalensee (1987) [17] provided different values for the parameters R and S. Given
each pair of these values, the values for the cost parameters θ1 and θ2 are determined. There-
fore, each value, which satisfy the following equations and inequality, is a valid cost parameter
for the corresponding value of R and S.

θ1 = R ·θ2 (A.1.4)

SN
R =

(1+N) ·θ1 −Nθ2

θ1 +Nθ2
and θ2 < θ1 < 2θ2 (A.1.5)

To compute both cost parameters, the parameter θ2 is iterated over the interval (0,1) in 0.05
steps. In addition, it has to be verified, if the equations and the inequality (A.1.4) and (A.1.5)
from above are satisfied. Why the open interval (0,1) is used and not the closed one [0,1] is
easily explained. To be exact, the cost parameter θ2 must not reach the value 0, since then the
formula R = θ1

θ2
cannot be applied, because that would mean to divide by zero. On the other

hand, θ2 cannot take the value 1, since then the equation θ2 < θ1 is not fulfilled, because θ1

cannot reach a value above 1. Analogue, also θ1 could be taken in steps of 0.05 and then the
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values for θ2 could be determined.
The conditions (A.1.4) and (A.1.5) are fulfilled for many values. All these values could be

used for the plots of all graphs in this thesis and the calculations of the results in section 6.
For simplicity and to have accurate calculations, the most precise values are chosen, which
are presented in table A.1. If different values than in table A.1 are selected, which satisfy the
equations (A.1.4) and (A.1.5), all figures plotted in this thesis will keep its shape. This is due
to the fact that the proportion of the respective R in equation (A.1.4) does not change. I tested
this and plotted graphs with some other values, which fulfill the equations (A.1.4) and (A.1.5),
and the shape always stayed the same, just the range of values changed.

Some of the values of R and S selected by Schmalensee are not exact, which means they
are rounded. The exact value can be determined from equation (A.1.2) or respectively from
equation (A.1.3).

In conclusion, the values, which are used in this thesis, are summed up in the following
table A.1:

Table A.1: Summary of the used values

R S N θ1 θ2

Rlow = 1.142857 = 8
7 SN=1

low = 0.6 = 3
5 1 0.8 = 4

5 0.7 = 7
10

Rmiddle = 1.4 = 7
5 SN=1

middle = 0.75 = 3
4 1 0.7 = 7

10 0.5 = 1
2

Rhigh = 1.72 = 19
11 SN=1

high = 0.9 = 9
10 1 0.95 = 19

20 0.55 = 11
20

Rmiddle = 1.4 = 7
5 SN=3

middle = 0.590 = 13
22 3 0.7 = 7

10 0.5 = 1
2

Rmiddle = 1.4 = 7
5 SN=5

middle = 0.53125 = 17
32 5 0.7 = 7

10 0.5 = 1
2

To be precise, Schmalensee (1987) [17] published the following values. For N = 1 and
small values of R, he chose R = 1.143 and S = 0.60, while he selected R = 1.4 and S = 0.75
for values of R in the middle of its interval. In addition, Schmalensee adopted R = 1.727 and
S = 0.90 for a relative big difference in costs and N = 1. Furthermore, for R = 1.4 he chose
on the one hand S = 0.59 and N = 3 and on the other hand S = 0.53 and N = 5.
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A.2. Derivation of the parameter S

Remember the parameter S characterizes the market share of firm 1 in Cournot equilibrium.
The first equation just states the sentence directly above in formula, see section 3.

S =
qC

1
QC =

qC
1

qC
1 +N ·qC

2
(A.2.1)

=
1

2+N · [(1+N) ·θ1 −Nθ2]
1

2+N · [(1+N) ·θ1 −Nθ2]+
N

2+N · (2θ2 −θ1)
(A.2.2)

=
(1+N) ·θ1 −Nθ2

θ1 +Nθ2
(A.2.3)

=

θ1
θ2
· (1+N)−N

N + θ1
θ2

(A.2.4)

θ1
θ2
=R
=

R · (1+N)−N
N +R

(A.2.5)

In the second step, will be to set the Cournot quantities from equation (3.16) and (3.17) are
set in the first formula. Then the equation is simplified. In the next-to-last step, a small trick
is used. The whole expression above and below the fraction line is divided by θ2 to obtain the
term θ1

θ2
. This is exactly the ratio of R = θ1

θ2
. In the last step, the formula of R from above is

just switched with its character R.
Now the objective is to express the parameter R as a formula of the parameters S and N.

The following equations show the easy transformations:

S · (N +R) = R · (1+N)−N (A.2.6)

SN +N = R · (N +1−S) (A.2.7)

R =
N · (S+1)
N +1−S

. (A.2.8)

The last equation is exactly the equation (3.8) stated at the end of section 3.
Finally, the range of values of S is determined. Remember the interval of R, which is

1 < R < 2 and the equation (3.8) from section 3, respectively (A.2.8). First I derive the lower
bound of S and afterwards the upper bound. This is done by taking the lower bound of R and
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setting it smaller than the new formula of R:

1 <
N · (S+1)
N +1−S

(A.2.9)

N +1−S < N · (S+1) (A.2.10)
1

N +1
< S. (A.2.11)

In the next steps, S is expressed to obtain the lower bound of S. By the way the sign does
not change with the multiplication, because the term N +1−S is positive. That is, since N is
a natural number, which does not take a value below 1 and the market share S cannot reach
a value above 1, because firm 1 cannot have more than 100% market share. Hence, there is
already a upper bound for the parameter S. For completeness, the calculation of the upper
bound is shown:

N · (S+1)
N +1−S

< 2 (A.2.12)

N · (S+1)< 2 · (N +1−S) (A.2.13)

S < 1. (A.2.14)

To sum up, the parameter S lies inbetween 1
N+1 < S < 1.

A.3. Monopoly

Here it will be derived how a firm behaves as a monopolist in the market, particularly the
monopoly quantity and profit. Remember that this demand function (2.1) and this cost func-
tion (3.1) is used. With the assumption that firm 1, respectively N high-cost firms, has a
monopoly position in the market, the subsequent profit function results in:

Π1 (Q) = Π1 (q1) = (θ1 −q1) ·q1, respectively (A.3.1)

NΠ2 (Q) = NΠ2 (Nq2) = (θ2 −Nq2) ·Nq2. (A.3.2)

Certainly, the total quantity of the industry is in this case just the quantity of firm 1, respec-
tively N high-cost firms, as the only firm, respectively firms, in the market. Thus, Q = q1,
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respectively Q = Nq2. Now the goal of the monopolist will be to maximize its own profit:

max
0≤q1<∞

Π1 (q1) = (θ1 −q1) ·q1, respectively (A.3.3)

max
0≤q2<∞

NΠ2 (Nq2) = (θ2 −Nq2) ·Nq2. (A.3.4)

Therefore, the derivation of the profit is the following:

∂Π1 (q1)

∂q1
= θ1 −2q1

!
= 0, respectively (A.3.5)

∂NΠ2 (Nq2)

∂q2
= N · (θ2 −2Nq2)

!
= 0. (A.3.6)

In expressing qi for i = 1,2, respectively Nq2, the monopoly quantity for the respective firm
are obtained:

qM
1 =

θ1

2
, respectively (A.3.7)

NqM
2 =

θ2

2
, respectively qM

2 =
θ2

2N
. (A.3.8)

The monopoly profit can directly be determined in setting the monopoly quantity in the profit
function (A.3.1).

Π
M
1 =

(
θ1 −

θ1

2

)
· θ1

2
=

θ 2
1
4

= (qM
1 )2, respectively (A.3.9)

NΠ
M
2 =

(
θ2 −

θ2

2

)
· θ2

2
=

θ 2
2
4

=
(
NqM

2
)2
, respectively Π

M
2 =

θ 2
2

4N
= N ·

(
qM

2
)2

(A.3.10)

Additionally, the monopoly price, characterized by Pi for i = 1,2, is calculated by means of
the demand function (2.1).

PM
i = 1−QM = 1− θi

2
for i = 1,2 (A.3.11)

A.4. Problem of Collusion with three different firms

The calculations in this section are analogue to section 2.2. The only difference is that there
are now three different firms competing against each other in the market. Thus there is one
single low-cost firm, N middle-cost firms and M high-cost firms operating in the market.
Hence the joint profit sums up to Π = Π1 +N ·Π2 +M ·Π3. Accordingly the total quantity is
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Q = q1+N ·q2+M ·q3. Since there are three firms with different costs, I assume c1 ̸= c2 ̸= c3.
Without loss of generality I can also suppose c1 < c2 < c3. The known demand function (2.1)
and cost function (2.2) is used.

Π=(1−Q−c1)·q1+N ·(1−Q−c2)·q2+M ·(1−Q−c3)·q3, where c1 < c2 < c3 (A.4.1)

As in the case with two different firms, here it is also important to assume asymmetric costs.
Now the joint profit will be maximized by taking the derivation respective to the quantities qi

for i = 1,2,3.

∂Π(Q)

∂q1
= 1−2q1 −2Nq2 −2Mq3 − c1

!
= 0 (A.4.2)

∂Π(Q)

∂q2
= 1−2q1 −2Nq2 −2Mq3 − c2

!
= 0 (A.4.3)

∂Π(Q)

∂q3
= 1−2q1 −2Nq2 −2Mq3 − c3

!
= 0 (A.4.4)

To achieve the reaction function for qi for i = 1,2,3, these equations above have to be solved
for each qi for i = 1,2,3:

⇐⇒ q1 =

⎧⎨⎩1
2 · (1−2Nq2 −2Mq3 − c1) for Nq2 +Mq3 ≤ 1−c1

2

0 otherwise
(A.4.5)

⇐⇒ q2 =

⎧⎨⎩ 1
2N · (1−2q1 −2Mq3 − c2) for q1 +Mq3 ≤ 1−c2

2

0 otherwise
(A.4.6)

⇐⇒ q3 =

⎧⎨⎩ 1
2M · (1−2q1 −2Nq2 − c3) for q1 +Nq2 ≤ 1−c3

2

0 otherwise
. (A.4.7)

This solution system consisting of the three equations directly above is normally solved by
setting qi in Q−i. But trying to solve the three equations above, lead to an elimination of the
quantities qi for i = 1,2,3 and the following equation is obtained:

⇐⇒ c1 = c2 = c3  . (A.4.8)

Thus, the same result as in section 2.2 is achieved with the same conclusion that the problem
cannot be solved in this way.
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A.5. MS: Second order conditions

The second order condition from equations (4.14) and (4.15) are determined to ensure that the
profits of both types of firms are maximized. With the chain rule the subsequent SOC’s are
obtained:

∂ 2NΠ2 (Π1)

∂Q2 =−2−2 · Π1 · (θ1 −θ2)

(θ1 −Q)3 < 0 (A.5.1)

∂ 2Π1 (Π2)

∂Q2 =−2−2 · NΠ2 · (θ2 −θ1)

(θ2 −Q)3 < 0. (A.5.2)

Both equations above are smaller than zero, since the profit Πi = (θi−Q) ·qi for i= 1,2 should
be positive. For that reason, also the expression θi −Q for i = 1,2 does not get negative. In
addition, from equation (3.2) it follows that θ1 < θ2. Furthermore, the second SOC from above
is negative, since NΠ2, accordingly θ2 −Q, cannot take values above 1, because of θi ∈ [0,1].
That means the SOC’s are satisfied and the equations (4.16) and (4.17) take a maximum value.

A.6. MS: determination of the roots of the reaction functions

In this section, the calculations of the zeros of the reaction functions q1 form equation (4.19)
on page 16 and q2 from equation (4.23) on page 17 are shown. Starting with the computations
of q1 from equation (4.19), the following is given:

(θ1 −q1 −Nq2) ·
[
(θ1 −q1 −Nq2) · (2 · (q1 +Nq2)−θ2)

θ1 −θ2
−q1

]
= 0. (A.6.1)

This is a cubic equation, which implicates that it has three solutions. In the following the
superscript (1) – (3) characterizes each of these solutions. The cubic equation in the form
ax3 +bx2 + cx+d = 0 looks like:

2 ·q3
1 +q2

1 · (6Nq2 −3θ1 −2θ2)+q1 ·
(
6N2q2

2 −7Nθ1q2 −3Nθ2q2 +θ
2
1 +3θ1θ2

)
+
(
2N3q3

2 −4N2
θ1q2

2 −N2
θ2q2

2 +2Nθ
2
1 q2 +2Nθ1θ2q2 −θ

2
1 θ2
)
= 0. (A.6.2)

The equation above is obtained by simply expanding equation (A.6.1). If the Horner schema
or the polynomial division is applied to equation (A.6.2) with the ‘guessed’ zero point (A.6.4),
the results can be verified and the equation (A.6.1) is obtained. Therefore, the first solution
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q(1)1 from equation (A.6.1) is already known, namely the ‘guessed zero’ point:

θ1 −q(1)1 −Nq2 = 0 (A.6.3)

q(1)1 = θ1 −Nq2. (A.6.4)

Now the quadratic part of the equation (A.6.1) has to be solved, which can easily be done with
the small solution formula. Hence, the other two solutions q(2,3)1 will be determined from the
following equation:(

θ1 −q(2,3)1 −Nq2

)
·
(

2q(2,3)1 +2Nq2 −θ2

)
−q(2,3)1 · (θ1 −θ2) = 0. (A.6.5)

Thus, the equation above (A.6.5) is transformed into the form x2+ px+q = 0. In this equation
and only in this case q is not the quantity.(

q(2,3)1

)2
· (−2)+q(2,3)1 · [2θ1 −2Nq2 +θ2 −2Nq2 −θ1 +θ2]

+
[
2Nθ1q2 −θ1θ2 −2N2q2

2 +Nθ2q2
]
= 0 (A.6.6)(

q(2,3)1

)2
+

q(2,3)1
2

· [−θ1 −2θ2 +4Nq2]+
1
2
·
[
θ1θ2 +2N2q2

2 −Nq2 · (2θ1 +θ2)
]
= 0.

(A.6.7)

The last transformation above is done, such that the small solution formula1 can be applied.

q(2,3)1 =−
1
2 · (−θ1 −2θ2 +4N ·q2)

2
±√

1
4 · (−θ1 −2θ2 +4N ·q2)

2

4
− 1

2
·
[
θ1θ2 +2N2q2

2 −Nq2 · (2θ1 +θ2)
]

(A.6.8)

=
θ1 +2θ2

4
− 4Nq2

4
±√

1
16

·
[
θ 2

1 +4θ 2
2 +4θ1θ2 −8Nθ1q2 −16Nθ2q2 −8θ1θ2 +8Nq2 · (2θ1 +θ2)

]
(A.6.9)

=
θ1 +2θ2

4
−Nq2 ±

1
4
·
√

θ 2
1 +4θ 2

2 −4θ1θ2 +8Nq2 · (−θ1 −2θ2 +2θ1 +θ2)

(A.6.10)

1Recall the small solution formula for the equation x2 + px+q = 0 is x(1,2) =− p
2 ±
√

p2

4 −q.
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q(2,3)1 =
θ1 +2θ2

4
± 1

4
·
√

(θ1 −2θ2)
2 +8N ·q2 · (θ1 −θ2)−Nq2 (A.6.11)

The equations above are the second and third solution of the reaction function q1.

Then, the roots of the reaction function q2 from equation (4.23) are derived. These three
roots will as well be marked with the superscript (1) – (3). Again, this is not an exponent.
Additionally, the cubic equation in the form ax3 +bx2 + cx+d = 0 is given by:

q3
2 ·
(
2N3)+q2

2 ·
(
6N2q1 −2N2

θ1 −3N2
θ2
)
+q2 ·

(
6Nq2

1 −3Nθ1q1 −7Nθ2q2 +3Nθ1θ2 +Nθ
2
2
)

+
(
2q3

1 −θ1q2
1 −4θ2q2

1 +2θ1θ2q1 +2θ
2
2 q1 −θ1θ

2
2
)
= 0. (A.6.12)

The ‘guessed zero point’ was already determined in section 4.2, such that only the computation
of the quadratic part of the reaction function q2 from equation (4.23) is missing, which is in
the square brackets. For that reason, the quadratic equation (A.6.13) below is transformed into
the form x2 + px+q = 0 to apply the small solution formula.(

θ2 −q1 −Nq(2,3)2

)
·
(

θ1 −2q1 −2Nq(2,3)2

)
−Nq(2,3)2 · (θ1 −θ2) = 0 (A.6.13)(

q(2,3)2

)2
·
(
2N2)+q(2,3)2 · [4Nq1 −2Nθ1 −Nθ2]+

[
θ1θ2 −θ1q1 −2θ2q1 +2q2

1
]
= 0 (A.6.14)(

q(2,3)2

)2
+

q(2,3)2
2N

· [4q1 −2θ1 −θ2]+
1

2N2 ·
[
θ1θ2 −θ1q1 −2θ2q1 +2q2

1
]
= 0 (A.6.15)

Now the small solution formula1 is used to determine the second and third solution q(2,3)2 .

q(2,3)2 =−
1

2N · (4q1 −2θ1 −θ2)

2
±√

1
4N2 · (4q1 −2θ1 −θ2)

2

4
− 1

2N2 ·
(
θ1θ2 −θ1q1 −2θ2q1 +2q2

1
)

(A.6.16)

=
2θ1 +θ2 −4q1

4N
±√

1
16N2 ·

(
4θ 2

1 +θ 2
2 +4θ1θ2 −16θ1q1 −8θ2q1 −8θ1θ2 +8θ1q1 +16q1θ2

)
(A.6.17)

=
2θ1 +θ2

4N
− q1

N
± 1

4N
·
√

4θ 2
1 +θ 2

2 −4θ1θ2 +8q1 · (θ2 −θ1) (A.6.18)

=
2θ1 +θ2

4N
± 1

4N
·
√

(2θ1 −θ2)
2 −8 ·q1 · (θ1 −θ2)−

q1

N
(A.6.19)

The last equation describes the second and third solutions of the reaction function q2.
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A.7. MS: exclusion of the 2nd solutions of the reaction functions

Here I want to discuss the elimination of some of the solutions from the Market Sharing tech-
nology in section 4.2. First the elimination of the second solutions of both reaction functions,
namely q(2)1 and q(2)2 , is shown, since then the calculations of the exclusion of the first solu-
tions get shorter. In the following should be proved that q(2)1 and q(2)2 are not convex, by means
of an easy counterexample. If the solutions are not convex, they cannot be solved with the
collusive solution methods, see more details in section 4.2. Before this is done, I recall shortly
the definition of convexity. The definition of a convex function according to Heuser (2009) [6]
is the following:

Definition A.1. “ Let a function f be convex in the interval I, if for each of the two points

x1,x2 ∈ I and for all λ ∈ (0,1) holds:

f ((1−λ ) · x1 +λ · x2)≤ (1−λ ) · f (x1)+λ · f (x2) .” (A.7.1)

(Heuser 2009, page 282) [6]2.

For the counterexample, it is enough to find one λ for which the equation (A.7.1) above is
not fulfilled. First the function q(2)1 from equation (4.21) is observed in the relevant interval[
0, θ2

2N

]
and then q(2)2 from equation (4.25) in the interval

[
0, θ1

2

]
. At these points there is an

intersection with the axis in question.

Proof. Let q(2)1 be convex in the interval
[
0, θ2

2N

]
, if for each two points x1,x2 ∈

[
0, θ2

2N

]
and

for all λ ∈ (0,1) holds:

q1 ((1−λ ) · x1 +λ · x2)≤ (1−λ ) ·q1 (x1)+λ ·q2 (x1) . (A.7.2)

It is incidental to choose the values on the border x1 = 0 and x2 = θ2
2N for q2 to have an

easier calculation. In the following, the inequality above (A.7.2) should be proved or rather
disproved. Now the value of the function q(2)1 (q2) on this two particular points x1 and x2 is
determined.

q1 (0) =
θ1 +2θ2

4
+

1
4
·
√

(θ1 −2θ2)
2 +0−0 (A.7.3)

=

⎧⎨⎩
θ1
2

θ2

(A.7.4)

2This definition is translated from (Heuser 2009, page 282) [6].
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The function q(2)1 (q2) at the point x2 =
θ2
2N is:

q1

(
θ2

2N

)
=

θ1 +2θ2

4
+

1
4
·
√

(θ1 −2θ2)
2 +8N · θ2

2N
· (θ1 −θ2)−N · θ2

2N
(A.7.5)

=
θ1 +2θ2 −2θ2

4
+

1
4
·
√

(θ1 −2θ2)
2 +4 ·θ2 · (θ1 −θ2) (A.7.6)

=
θ1

4
+

1
4
·
√

θ 2
2 (A.7.7)

=

⎧⎨⎩
θ1
2

0.
(A.7.8)

Lastly, the value of the function in the following point (1−λ ) ·0+λ · θ2
2N is calculated.

q1

(
(1−λ ) ·0+λ · θ2

2N

)
=

=
θ1 +2θ2

4
+

1
4
·
√

(θ1 −2θ2)
2 +8N ·λ · θ2

2N
· (θ1 −θ2)−Nλ · θ2

2N
(A.7.9)

=
θ1 +2θ2 −2λ ·θ2

4
+

1
4
·
√

(θ1 −2θ2)
2 +4λ ·θ2 · (θ1 −θ2) (A.7.10)

=
θ1 +2θ2 · (1−2λ )

4
+

1
4
·
√
(θ1 −2θ2)

2 +4λ ·θ2 · (θ1 −θ2) (A.7.11)

Then the determined values from above are set in the inequality from equation (A.7.2). In this
case, the first solutions of the not unique solutions are taken.

θ1 +2θ2 · (1−2λ )

4
+

1
4
·
√

(θ1 −2θ2)
2 +4λ ·θ2 · (θ1 −θ2)≤ (1−λ ) · θ1

2
+λ · θ1

2

(A.7.12)
1
4
· (2θ2 · (1−2λ )−θ1)+

1
4
·
√
(θ1 −2θ2)

2 +4λθ2 · (θ1 −θ2)  
>0

≤ 0 (A.7.13)

In a counterexample just one value for λ has to be found to lead to a contradiction. Without
loss of generality choose λ = 0.5. The numerical values for Rmiddle which mean θ1 = 0.7 and
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θ2 = 0.5 lead to the following result of the inequality above:

1
4
· (−θ1)+

1
4
·
√
(θ1 −2θ2)

2 +2λ ·θ2 · (θ1 −θ2)≤ 0 (A.7.14)

−θ1 +
√

θ 2
1 −2θ1θ2 +2θ 2

2 ≤ 0 (A.7.15)

−0.7+1.1358 ≤ 0  (A.7.16)

The value above is rounded to 4 decimal places. It is strictly positive, which means the in-
equality is not fulfilled. That leads to a contradiction. Thus it is proven that the function q(2)1

and therefore the solution q(2)1 is not convex. The first part of the proof is done.
Furthermore, analogue let the function q(2)2 be convex in the interval

[
0, θ1

2

]
, if for each two

points y1,y2 ∈
[
0, θ1

2

]
and for all λ ∈ (0,1) holds:

q2 ((1−λ ) · y1 +λ · y2)≤ (1−λ ) ·q2 (y1)+λ ·q2 (y1) . (A.7.17)

Without loss of generality, the values on the border y1 = 0 and y2 =
θ1
2 are analogue selected

for q1. Then the inequality above (A.7.17) is disproved. Firstly, the value of the function
q(2)2 (q1) on the two specific points y1 and y2 is determined.

q2 (0) =
2θ1 +θ2

4N
+

1
4N

·
√
(2θ1 −θ2)

2 −0−0 (A.7.18)

=
2θ1 +θ2

4N
± 1

4N
· (2θ1 −θ2) (A.7.19)

=

⎧⎨⎩
θ1
N
θ2
2N

(A.7.20)

Secondly, the value of the function at the point y2 =
θ1
2 is calculated:

q2

(
θ1

2

)
=

2θ1 +θ2

4N
+

1
4N

·
√

(2θ1 −θ2)
2 −8 · θ1

2
· (θ1 −θ2)−

1
N
· θ1

2
(A.7.21)

=
2θ1 +θ2 −2θ1

4N
+

1
4N

·
√
(2θ1 −θ2)

2 −4θ1 · (θ1 −θ2) (A.7.22)

=
θ2

4N
+

1
4N

·
√

θ 2
2 (A.7.23)

=

⎧⎨⎩
θ2
2N

0.
(A.7.24)
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Thirdly, the determination of the function q(2)1 in the point (1−λ ) ·0+λ · θ1
2 follows:

q2

(
(1−λ ) ·0+λ · θ1

2

)
= (A.7.25)

=
2θ1 +θ2

4N
+

1
4N

·
√

(2θ1 −θ2)
2 −8λ · θ1

2
· (θ1 −θ2)−λ · θ1

2N
(A.7.26)

=
2θ1 · (1−2λ )+θ2

4N
+

1
4N

·
√

(2θ1 −θ2)
2 −4λ ·θ1 · (θ1 −θ2). (A.7.27)

Lastly, the just determined values are set in the inequality (A.7.17). The second solution is
taken for the non explicit values.

2θ1 (1−2λ )+θ2

4N
+

1
4N

·
√

(2θ1 −θ2)
2 −4λθ1 (θ1 −θ2)≤ (1−λ )

θ2

2N
+λ ·0

(A.7.28)

2θ1
>0

(1−2λ )+ θ2
>0

(1−2λ )+

√
(2θ1 −θ2)

2 −4λθ1 (θ1 −θ2)  
>0

≤ 0 (A.7.29)

When choosing λ = 0.5, the following is obtained:√
2θ 2

1 +2θ1θ2 +θ 2
2 ≤ 0  . (A.7.30)

It is easy to assert that the value under the root is strictly positive for λ = 0.5. That means the
inequality above leads to a contradiction, from which it follow that q(2)2 is not convex.

The proof shows that q(2)1 and q(2)2 are not convex and hence can be excluded.

A.8. MS: exclusion of the 1st solutions of the reaction functions

Now some more eliminations of the solutions from the Market Sharing technology are shown.
The second solutions are already ruled out in section A.7, because they are not convex. The
first solutions cannot be eliminated in this way, since a linear function, which both solutions
q(1)1 and q(2)1 are, are concave and convex at the same moment. That means for lines the
equation (A.7.1) holds with an equal sign instead of a ‘smaller as’ sign. But of course they
are not strictly convex or concave. I will not prove this, since I will not need it here. Though,
it is easy to prove in setting two points in the definition from equation (A.7.1) and change the
‘smaller as’ sign to an equal sign. Therefore, it remains to discuss the exclusion of the first
solutions. Hence, these solutions can be ruled out because of a contradiction in the following
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calculation. First, the solution q(1)1 from equation (4.20) is set in the two remaining solutions
of q2, namely q(1)2 and q(3)2 . Starting with the first solution q(1)2 from equation (4.24), recall the
just mentioned solutions, which should be eliminated:

q(1)1 = θ1 −N ·q2 (A.8.1)

q(1)2 =
1
N
· (θ2 −q1) (A.8.2)

⇔ q(1)1 = θ1 −N · 1
N
· (θ2 −q1) = θ1 −θ2 +q1 (A.8.3)

⇔ θ1 = θ2  . (A.8.4)

This solutions would require identical costs, but at the beginning asymmetric costs are as-
sumed. That is a contradiction. As well, if the solution q(1)2 is set in q(1)1 , analogue the follow-
ing is obtained:

⇔ q(1)2 =
1
N
· (θ2 − (θ1 −N ·q2)) =

1
N
· (θ2 −θ1)+q2 (A.8.5)

⇔ θ2 = θ1  . (A.8.6)

Consequently, this solution pair can be excluded. Now also the solution pair q(1)1 and q(3)2

should be eliminated. Recall the third solution of q2 from equation (4.25):

q(3)2 =
2θ1 +θ2

4N
− 1

4N
·
√

(2θ1 −θ2)
2 −8 ·q1 · (θ1 −θ2)−

q1

N
. (A.8.7)

In the first step, the solution q(1)1 is set in to the other solution q(3)2 :

q(3)2 =
2θ1 +θ2

4N
− 1

4N
·
√

(2θ1 −θ2)
2 −8 · (θ1 −N ·q2) · (θ1 −θ2)−

θ1 −N ·q2

N
(A.8.8)

= q2 +
1

4N
·
[

2θ1 +θ2 −4θ1 −
√
(2θ1 −θ2)

2 −8 ·
(
θ 2

1 +θ1θ2 +Nq2 · (θ2 −θ1)
)]
(A.8.9)

⇔
√
(2θ1 −θ2)

2 −8θ 2
1 +8 ·θ1θ2 −8N ·q2 · (θ2 −θ1) = θ2 −2θ1 (A.8.10)

(2θ1 −θ2)
2 −8θ

2
1 +8 ·θ1θ2 −8N ·q2 · (θ2 −θ1) = (−1)2 · (2θ1 −θ2)

2 (A.8.11)

8N ·q2 · (θ2 −θ1) = 8 ·
(
θ1θ2 −θ

2
1
)

(A.8.12)

q2 =
θ1 · (θ2 −θ1)

(θ2 −θ1)
=

θ1

N
. (A.8.13)
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Furthermore, to determine q1, the solution q2 =
θ1
N is inserted in q(1)1 :

q(1)1 = θ1 −N · θ1

N
= 0. (A.8.14)

The proof, if the solution is unique, is given by:

q(3)2 =
2θ1 +θ2

4N
− 1

4N
·
√
(2θ1 −θ2)

2 −0− 0
N

(A.8.15)

=
1

4N
· (2θ1 +θ2)∓ (2θ1 +θ2) (A.8.16)

=

⎧⎨⎩
θ2
2N
θ1
N .

(A.8.17)

This means that there is no unique solution, since (2θ1 −θ2)
2 =(−1)2 ·(θ2 −θ1)

2. In addition,
the profits for both firms for the values q1 = 0 and q2 = θ1

N are determined by setting in the
equations (4.16) and (4.17).

Π
MS
1 =

(θ1 −Q)2 · (2Q−θ2)

θ1 −θ2
(A.8.18)

=

(
θ1 −0−N · θ1

N

)2
·
(

2 ·0+2N · θ1
N −θ2

)
θ1 −θ2

(A.8.19)

= 0 (A.8.20)

NΠ
MS
2 =

(θ2 −Q)2 · (θ1 −2Q)

θ1 −θ2
(A.8.21)

=

(
θ2 −0−N · θ1

N

)2
·
(

θ1 −2 ·0−2N · θ1
N

)
θ1 −θ2

(A.8.22)

=
(−1)2 · (θ1 −θ2)

2 · (−θ1)

θ1 −θ2
(A.8.23)

= (−θ1) · (θ1 −θ2)< 0  (A.8.24)

Firm 1 would have no profit at all, while firms of type 2 would have a negative profit, since
θ2 < θ1 from equation (3.2). It is assumed that both types of firms have strictly positive profit,
otherwise they would not use the MS technology. In addition, it would not be an optimal
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solution. For completion, also the profits for q1 = 0 and q2 =
θ2
2N are calculated:

Π
MS
1 =

(
θ1 −0−N · θ2

2N

)2
·
(

2 ·0+2N · θ2
2N −θ2

)
θ1 −θ2

= 0 (A.8.25)

NΠ
MS
2 =

(
θ2 −0−N · θ2

2N

)2
·
(

θ1 −2 ·0−2N · θ2
2N

)
θ1 −θ2

(A.8.26)

=

(
θ2
2

)2
· (θ1 −θ2)

θ1 −θ2
=

θ 2
2
4
. (A.8.27)

This would not be an optimal solution for firm 1. That means the solution pair q(1)1 and q(3)2

can be eliminated. In section 5 the particular optimal solution should be found by three of the
solution methods via maximization of the relevant cooperative payoff region. If the profit is
already zero, it cannot be maximized to find the better solution than zero. Thus, it is assumed
that both types of firms have a strictly positive profit possibility frontier.

Finally, the solution pair q(3)1 and q(1)2 should be ruled out. Recall that q(3)1 is determined in
equation (4.21).

q(3)1 =
θ1 +2θ2

4
− 1

4
·
√

(θ1 −2θ2)
2 +8Nq2 · (θ1 −θ2)−Nq2 (A.8.28)

Now the solution q(3)1 is inserted into the other solution q(1)2 .

q(1)2 =
1
N
·
[

θ2 −
θ1 +2θ2

4
+

1
4
·
√

(θ1 −2θ2)
2 +8Nq2 · (θ1 −θ2)+Nq2

]
(A.8.29)

= q2 +
1

4N
·
[

4θ2 −θ1 −2θ2 +

√
(θ1 −2θ2)

2 +8Nq2 · (θ1 −θ2)

]
(A.8.30)

⇔ θ1 −2θ2 =

√
(θ1 −2θ2)

2 +8Nq2 · (θ1 −θ2) (A.8.31)

(θ1 −2θ2)
2 = (θ1 −2θ2)

2 +8Nq2 · (θ1 −θ2) (A.8.32)

q2 = 0 (A.8.33)

Furthermore, the new solution q2 = 0 is set in the reaction function q(3)1 .

⇔ q(3)1 =
θ1 +2θ2

4
− 1

4
·
√

(θ1 −2θ2)
2 +0−0 (A.8.34)

=
1
4
· [θ1 +2θ2 ∓ (θ1 −2θ2)] (A.8.35)
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=

⎧⎨⎩θ2

θ1
2

(A.8.36)

Hence, the solution above is not unique, because of (θ1 −2θ2)
2 = (−1) · (2θ2 −θ1)

2. More-
over, the profits of firm 1 and firms of type 2 are calculated for the values q1 = θ2 and q2 = 0:

Π
MS
1 =

(θ1 −θ2 −N ·0)2 · (2θ2 −2N ·0−θ2)

θ1 −θ2
(A.8.37)

= θ2 · (θ1 −θ2) (A.8.38)

NΠ
MS
2 =

(θ2 −Q)2 · (θ1 −2Q)

θ1 −θ2
(A.8.39)

=
(θ2 −θ2 −N ·0)2 · (θ1 −2θ2 −2N ·0)

θ1 −θ2
(A.8.40)

= 0. (A.8.41)

Then analogue the gains for the values q1 =
θ1
2 and q2 = 0 are determined:

Π
MS
1 =

(
θ1 − θ1

2 −N ·0
)2

·
(

2θ1
2 +2N ·0−θ2

)
θ1 −θ2

(A.8.42)

=

(
θ1
2

)2
· (θ1 −θ2)

θ1 −θ2
=

(
θ1

2

)2

(A.8.43)

NΠ
MS
2 =

(
θ2 − θ1

2 −N ·0
)2

·
(

θ1 −2θ1
2 −2N ·0

)
θ1 −θ2

= 0. (A.8.44)

This would not be an optimal solution for firms of type 2. That means this solution pair q(3)1

and q(1)2 can be excluded because of the same reasons as the solution pair q(1)1 and q(3)2 above.
In summary, both first solutions q(1)1 and q(1)2 can be ruled out.

A.9. MS: determination of the quantity

The solution pair q(3)1 and q(3)2 is a valid solution, see section 4.2. Now the quantity should be
determined from the usable reaction functions. Recall q(3)1 was mentioned in equation (4.21)

87



and q(3)2 in equation (4.25).

q(3)1 =
θ1 +2θ2

4
− 1

4
·
√

(θ1 −2θ2)
2 +8N ·q2 · (θ1 −θ2)−Nq2 (A.9.1)

q(3)2 =
2θ1 +θ2

4N
− 1

4N
·
√

(2θ1 −θ2)
2 −8q1 · (θ1 −θ2)−

q1

N
(A.9.2)

For a better demonstration, the equation above for q(3)2 is rearranged. Then set the reaction
function q(3)1 in q(3)2 .

q(3)2 =
2θ1 +θ2

4N
− q1

N
− 1

4N

√
(2θ1 −θ2)

2 −8q1 · (θ1 −θ2) (A.9.3)

q(3)2 =
2θ1 +θ2

4N
− 1

N

[
θ1 +2θ2

4
− 1

4

√
(θ1 −2θ2)

2 +8Nq2 · (θ1 −θ2)−Nq2

]
− 1

4N

√
(2θ1 −θ2)

2 −8 ·
[

θ1 +2θ2

4
− 1

4

√
(θ1 −2θ2)

2 +8Nq2 · (θ1 −θ2)−Nq2

]
· (θ1 −θ2)

(A.9.4)

= q2 +
2θ1 +θ2

4N
− θ1 +2θ2

4N
+

1
4N

·
√

(θ1 −2θ2)
2 +8Nq2 · (θ1 −θ2)

− 1
4N

√
(2θ1 −θ2)

2 +

[
−2 · (θ1 +2θ2)+2 ·

√
(θ1 −2θ2)

2 +8Nq2 · (θ1 −θ2)+8Nq2

]
· (θ1 −θ2)

(A.9.5)
⇔

θ1 −θ2 +

√
(θ1 −2θ2)

2 +8Nq2 · (θ1 −θ2)

=

√
2θ 2

1 −6θ1θ2 +5θ 2
2 +8Nq2 · (θ1 −θ2)+2 · (θ1 −θ2) ·

√
(θ1 −2θ2)

2 +8Nq2 · (θ1 −θ2)

(A.9.6)

This last equation cannot be solved exactly. That means the solution has to be solved by a
numeric approximation. To get a better view, the values for the cost parameters for Rmiddle =

1.4 with θ1 = 0.7 and θ2 = 0.5 and N = 1 are set in the equation above.

0.2+
√

0.09+1.6 ·q2 =

√
0.13+1.6 ·q2 +0.4 ·

√
0.04+1.6 ·q2 (A.9.7)

Now also the quantity q1 should be calculated by setting q(3)2 in q(3)1 . The order of equa-
tion (A.9.1) is changed to have a better representation for the following computing.

q(3)1 =
θ1 +2θ2

4
−Nq2 −

1
4

√
(θ1 −2θ2)

2 +8N ·q2 · (θ1 −θ2) (A.9.8)
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=
θ1 +2θ2

4
−N

(
2θ1 +θ2

4N
− 1

4N

√
(2θ1 −θ2)

2 −8q1 · (θ1 −θ2)−
q1

N

)
− 1

4

√
(θ1 −2θ2)

2 +8N
[

2θ1 +θ2

4N
− 1

4N

√
(2θ1 −θ2)

2 −8q1 · (θ1 −θ2)−
q1

N

]
· (θ1 −θ2)

(A.9.9)

= q1 +
θ1 +2θ2

4
− 2θ1 +θ2

4
+

1
4

√
(2θ1 −θ2)

2 −8q1 · (θ1 −θ2)

− 1
4

√
(θ1 −2θ2)

2 +

[
2 · (2θ1 +θ2)−2

√
(2θ1 −θ2)

2 −8q1 · (θ1 −θ2)−8q1

]
· (θ1 −θ2)

(A.9.10)
⇔

θ2 −θ1 +

√
(2θ1 −θ2)

2 −8 ·q1 · (θ1 −θ2)

=

√
5θ 2

1 −6θ1θ2 +2θ 2
2 −8q1 · (θ1 −θ2)−2 · (θ1 −θ2) ·

√
(2θ1 −θ2)

2 −8 ·q1 · (θ1 −θ2)

(A.9.11)

This equation also does not have an exact solution. Therefore, it is unsolvable in terms of
accurateness. That is why, analogue to the case before a numeric approximation is needed. I
show here the equation above for the cost parameters for Rmiddle.

−0.2+
√

0.81−1.6 ·q1 =

√
0.85−1.6 ·q1 −0.4 ·

√
0.81−1.6 ·q1 (A.9.12)
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Appendix B

B.1. Inverse demand function: monopoly

Briefly, as well the profit of firm 1 and of N firms of type 2 is derived, when each has a
monopoly.

max
0≤q1<∞

Π1 (q1) = max
0≤q1<∞

(A+θ1 −1−b ·q1) ·q1 (B.1.1)

max
0≤q2<∞

NΠ2 (Nq2) = max
0≤q2<∞

(A+θ2 −1−bN ·q2) ·Nq2. (B.1.2)

By maximizing the monopoly profit, the following FOC’s are obtained:

∂Π1 (q1)

∂q1
= A+θ1 −1−2b ·q1

!
= 0 (B.1.3)

∂NΠ2 (Nq2)

∂q2
= N · (A+θ2 −1−2bN ·q2)

!
= 0. (B.1.4)

Thus, the monopoly quantity, the corresponding profit and the price as monopolist of firm 1 is
given by:

qM
1 =

1
2b

· (A+θ1 −1) (B.1.5)

Π
M
1 =

1
4b

· (A+θ1 −1)2 (B.1.6)

PM
1 =

1
2
· (A−θ1 +1) . (B.1.7)

However, when N firms of type 2 would have a monopoly, the quantity, the profit and the
prices of N high-cost firms, respectively a single high-cost firm, is:

N ·qM
2 =

1
2b

· (A+θ2 −1) , respectively qM
2 =

1
2bN

· (A+θ2 −1) (B.1.8)

N ·ΠM
2 =

1
4b

· (A+θ2 −1)2 , respectively Π
M
2 =

1
4bN

· (A+θ2 −1)2 (B.1.9)

N ·PM
2 =

1
2
· (A−θ2 +1) , respectively PM

2 =
1

2N
· [(2N −1)A−θ2 +1] . (B.1.10)
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B.2. Inverse demand function (MS): second order conditions

Here the second order conditions are determined for the Market Sharing technology to prove
that the total quantity Q is really a maximum.

∂ 2Π2 (Π1)

∂Q2 =−2−2 · b2Π1 · (θ1 −θ2)

(A+θ1 −1−b ·Q)3 < 0 (B.2.1)

∂ 2Π1 (Π2)

∂Q2 =−2−2 · b2NΠ2 · (θ2 −θ1)

(A+θ2 −1−b ·Q)3 < 0 (B.2.2)

It follows that the SOC’s are satisfied, because of the same reasons as in section A.5.

B.3. Inverse demand function (MS): calculations of the roots

In this section, the roots of the quadratic part of both q1 and q2 will be determined. First, the
solutions q(2)1 and q(3)1 are derived from the quadratic part of equation (7.27). To apply the
small solution formula, the quadratic part of the aforementioned equation is expressed in the
form x2 + px+q = 0. Note that q is here not the quantity.

(A+θ1 −1−bq1 −bNq2) · (2bq1 +2bNq2 −A−θ2 +1)−q1b · (θ1 −θ2) = 0 (B.3.1)(
q(2,3)1

)2
+

q(2,3)1
2b

· (−3A+3+4bNq2 −θ1 −2θ2)+
1

2b2 ·
(
2b2N2q2

2 +1
)

+
1

2b2 ·
(
bN ·q2 · (3−3A− (2θ1 +θ2))+A2 −2A+(A−1)(θ1 +θ2)+θ1θ2

)
= 0 (B.3.2)

With the small solution formula applied to the equation above, the subsequent explicit reaction
functions are obtained:

q(2,3)1 =
3(A−1)+θ1 +2θ2

4b
−Nq2

± 1
4b

·
√

(θ1 −2θ2)
2 +8bN ·q2 · (θ1 −θ2)+2 · (A−1)(2θ2 −θ1)+(A−1)2. (B.3.3)

Then, the roots of the quadratic part of the equation (7.31) should be computed to find the
solutions q(2)2 and q(3)2 . Similarly to the calculation above, the quadratic part of the equa-
tion (7.31) is transformed into the form x2 + px+q = 0. Note that q is again not the quantity.

(A+θ2 −1−b ·q1) · (A+θ1 −1−2b ·Q)−b ·q2 · (θ1 −θ2) = 0 (B.3.4)
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(
q(2,3)2

)2
+

q(2,3)2
2bN

· (−3A+3+4bq1 −2θ1 −θ2)+
1

2b2N2 ·
(
2b2q2

1 +1
)

+
1

2b2N2 ·
(
bq1 · (−3A+3−θ1 −2θ2)+A2 −2A+(A−1) · (θ1 +θ2)+θ1θ2

)
= 0 (B.3.5)

The second and third solutions are:

q(2,3)2 =
3(A−1)+2θ1 +θ2

4bN
− q1

N

± 1
4bN

·
√

(2θ1 −θ2)
2 −8b ·q1 · (θ1 −θ2)+2 · (A−1)(2θ1 −θ2)+(A+1)2. (B.3.6)

B.4. Triopoly: monopoly

All M firms of type 3 have a monopoly position in the market. Now the monopoly quantity
and profit should be determined. If M firms of type 3 have a monopoly, the following profit
function is assumed:

MΠ3 (Q) = MΠ3 (Mq3) = (θ3 −Mq3) ·Mq3. (B.4.1)

The profit above is obtained, since the total quantity of the industry is here Q = Mq3. Then
the profit is maximized:

max
0≤q3<∞

MΠ3 (Q) = max
0≤q3<∞

(θ3 −Mq3) ·Mq3. (B.4.2)

Accordingly, the FOC is given by:

∂MΠ3 (Mq3)

∂q3
= M (θ3 −2M ·q3)

!
= 0. (B.4.3)

The superscript M characterizes the quantity of firms of type 3 as a monopolist, while the
variable M denotes the number of high-cost firms.

MqM
3 =

θ3

2
, respectively qM

3 =
θ3

2M
(B.4.4)

In setting the quantity above in the profit function (B.4.1), the following is obtained:

MΠ
M
3 =

θ 2
3
4

=
(
MqM

3
)2
, respectively Π

M
3 =

θ 2
3

4M
= M ·

(
qM

3
)2
. (B.4.5)
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Finally, the monopoly price is determined.

PM
3 = 1−MqM

3 = 1− θ3

2
(B.4.6)

B.5. Triopoly: derivation of the parameter S

The parameter S describes firm 1’s market share in Cournot competition and thus is given by:

S =
qC

1
QC =

qC
1

qC
1 +N ·qC

2 +M ·qC
3
=

(1+N +M) ·θ1 −Nθ2 −Mθ3

θ1 +Nθ2 +Mθ3
(B.5.1)

=

θ1
θ2
· (1+N +M)−N −M · θ3

θ2
θ1
θ2
+N +M · θ3

θ2

(B.5.2)

θ1
θ2
=R
=

R1 · (1+N +M)−N −M · 1
R3

R1 +N +M · 1
R3

. (B.5.3)

The determination follows analogous to section A.2 with a small trick, in which the whole ex-
pression is divided through θ2. To obtain the expression for R1, the following transformations
are done:

S ·
(

R1 +N +M · 1
R3

)
= R1 · (1+N +M)−N −M · 1

R3
(B.5.4)

SN +SM · 1
R3

+N +M · 1
R3

= R1 · (1+N +M−S) (B.5.5)

R1 =

(
N + M

R3

)
· (S+1)

1+N +M−S
. (B.5.6)

Furthermore, also R2 should be expressed through the four parameters S, N, M and R3.

S =
(1+N +M) ·θ1 −Nθ2 −Mθ3

θ1 +Nθ2 +Mθ3
(B.5.7)

=

θ1
θ3
· (1+N +M)−N · θ2

θ3
−M

θ1
θ3
+N · θ2

θ3
+M

(B.5.8)

θ1
θ3
=R2
=

R2 · (1+N +M)−N ·R3 −M
R2 +N ·R3 +M

(B.5.9)
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Therefore, the same steps are needed as in the computation of R1.

S · (R2 +N ·R3 +M) = R2 · (1+N +M)−N ·R3 −M (B.5.10)

SN ·R3 +SM+N ·R3 +M = R2 · (1+N +M−S) (B.5.11)

R2 =
(N ·R3 +M) · (S+1)

1+N +M−S
(B.5.12)
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Kurzfassung

Der Schwerpunkt dieser Masterarbeit basiert auf der Untersuchung, auf welche Art

und Weisen Firmen unter asymmetrischen Kosten bezüglich der Stückzahl kolludieren

können und, ob Kollusion für alle beteiligten Unternehmen von Vorteil ist. Insbesondere,

mit welcher Methode ein kooperativer Ausgang in einem Duopol, ausgehend von einem

asymmetrischen Cournot Duopol, erreicht werden kann. Vergleichsweise ist es mit asym-

metrischen Kosten schwieriger Kollusion aufrechtzuerhalten als bei symmetrischen Kos-

ten. Dennoch ist dies ein wichtiges Thema, da die Realität besser widerspiegelt wird als

bei symmetrischen Kosten. Es ist allgemein bekannt, dass die Maximierung des Gesamt-

profits der Industrie unter asymmetrischen Kosten und ohne Kompensationszahlungen

nicht plausibel ist. Diese Masterarbeit basiert hauptsächlich auf dem Artikel “Competi-

tive Advantage and Collusive Optima” von Schmalensee (1987) [17]. Der Hauptakzent

liegt auf der Beschreibung der vier verschiedenen Kollusionsverfahren, von denen die

jeweilige optimale Lösung unter Zuhilfenahme von axiomatischer Verhandlungstheorie

gefunden wird. Die Ergebnisse zeigen, dass der kooperative Ausgang für das Unterneh-

men mit den niedrigsten Kosten ernüchternd sein kann. Abschließend wird Schmalensee’s

Arbeit (1987) [17] auf untrschiedliche Weise erweitert.

Schlüsselwörter. asymmetrische Kosten, Cournot, Duopol, Kartell, Kollusion, Verhand-

lungstheorie
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