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Abstract

The main contribution of this thesis is an empirical evaluation of IBE*, a synthesis
of Jeffrey Conditionalization and IBE (Inference to the Best Explanation) that
generalizes explanationist updating to cases of uncertain evidence. This thesis
furthers our line of research that earlier led to the original development of IBE*
in joint project work with Borut Trpin. First, the topic and related core concepts
are situated in the broader context of Cognitive Science. The classical paradigm
in Cognitive Science (the ‘Physical Symbol System Hypothesis’) was subject to
a ‘probabilistic turn’. This is illustrated with a case study. It is argued that
although most work done in this new paradigm is Bayesian, there are merits to be
expected from studying (probabilistic) alternatives to it. The ‘Alien Die’ model
is introduced and a version with biased coins used subsequently is discussed.
The Bayesian formula, a formalization of ‘Inference to the Best Explanation’
(IBE) and versions that can work with uncertain evidence are described. Brier
scores are introduced as means to compare prediction accuracy. A flowchart
visualizes the typical simulation workflow. Simulations are then run with full
certainty of evidence. We succeed in replicating a recent key finding by Igor
Douven: The explanationist, who adopts IBE as an updating strategy, is faster in
assigning high probability to the true bias. In doing so it incurs a slightly higher
Brier score. The effect of a specific threshold value on speed and the number
of simulations that cross this threshold is also investigated. Next, simulations
with fixed (un-)certainty for all simulations and all tosses is introduced. The
explanationist is again faster and furthermore achieves (substantially) lower Brier
scores than the Bayesian alternative. In addition, it is also more accurate, i.e. it
more often assigns probability above threshold to the true bias. Finally, we
analyse simulations with random uncertainty. Although higher for both updaters
than in the fixed uncertainty case, Brier scores for the explanationist remain
the lowest. Likewise, the explanationist remains the significantly faster variant,
and is also substantially more accurate: We find a decisive shortcoming of the
Bayesian approach. Building on these findings, we can argue that IBE* seems to
be counteracting the problem of uncertain evidence. In addition to already named
performance advantages, its adoption helps limiting false positives, i.e. assignment
of probability above threshold to wrong biases.

At this stage, we introduce networks. One by one, random networks, small
world networks, BA networks, and q-networks are discussed and visualized under
different parametrisation. Matrix representations of networks are used to compute
influence matrices. Markov chain theory helps identify under which circumstances
influence matrices converge in the limit. For this process, a natural interpretation
in opinion dynamics is available. Finally, we characterise the mechanism of
collective belief updates. We then compare collective belief updates on different
network topologies. With full certainty, the explanationist crosses the threshold



for the true bias on all topologies. The Bayesian does so only on two out of four
topologies. With a distribution of uncertainty of evidence across all agents, this
advantage is again more pronounced. We found a vast speed advantage of the
explanationist also in the collective scenario for every network topology examined.
The last sections contextualise the preceding work: Controversies regarding the
choice of specific parameters and concepts used in our simulations are addressed.
We develop a definition of computer simulations that allows us to set the stage
for a reflection on epistemological issues. In a discussion of the social sciences, we
point out the potential of simulations in this domain. Finally, current limitations
and further directions of our research are identified.

Zusammenfassung

Der zentrale wissenschaftliche Beitrag dieser Masterarbeit ist die empirische
Evaluation von IBE*, einer Synthese aus ‘Jeffrey Conditionalization’ und des
‘Schlusses auf die beste Erklärung’ (engl. ‘Inference to the Best Explanation’,
im Weiteren IBE). Dies erlaubt, auch Szenarien unsicherer Evidenz mit
‘explanationist belief updates’ zu erfassen. Damit schließt diese Masterarbeit
an Forschungsarbeiten an, die zuvor zu der Entwicklung von IBE* (gemeinsam
mit Borut Trpin) geführt haben. Zuerst, werden die verwendeten Kernkonzepte
in den allgemeinen Kontext der Kognitionswissenschaft eingebettet. Das
klassische Paradigma der Kognitionswissenschaft (die ‘Physical Symbol System
Hypothesis’) erfuhr eine probabilistische Wende. Ein Fallbeispiel illustriert dies.
Der überwiegende Großteil der Arbeiten in diesem Bereich ist bayesianisch. Es
wird argumentiert, dass es fruchtbar ist, auch (probabilistische) Alternativen dazu
zu untersuchen. Das ‘Alien Die’ Modell wird in einer Version mit verschieden
(un-)fairen Münzen vorgestellt. Die Bayessche Formel, eine Formalisierung von
‘IBE’ und Versionen davon, die mit unsicherer Evidenz arbeiten können, werden
beschrieben. Brier Punkte werden verwendet, um die Vorhersagegenauigkeit
zu vergleichen. Ein Programmablaufplan zeigt einen typischen Durchlauf
der Simulationen. Simulation mit vollständig sicherer Evidenz werden dann
ausgeführt. Es gelingt, ein zentrales Result von Igor Douven zu replizieren:
Der ‘explanationist’, der IBE als ‘updating’ Strategie verwendet, ist schneller
darin, der wahren Verzerrung der Münze hohe Wahrscheinlichkeit zuzuschreiben.
Dabei fährt der Agent aber etwas höhere Brier Punkte ein. Zusätzlich wird der
Effekt einer Reihe von verschiedenen Schwellenwerten auf Geschwindigkeit und
die Anzahl an Simulationen über diesem Wert untersucht. Im nächsten Schritt
werden Simulation mit einer fixierten Unsicherheit der Evidenz ausgeführt. Der
‘explanationist’ ist wieder schneller und erhält dabei deutlich geringere Brier
Punkte als die bayesianische Alternative. Zusätzlich ist der ‘explanationist’
auch treffsicherer, d.h. der Agent schreibt hohe Wahrscheinlichkeit (über



dem Schwellenwert) öfter der wahren Verzerrung zu. Schließlich führen wir
Simulationen mit zufälliger Unsicherheit der Evidenz durch. Brier Punkte sind
höher als in den bisherigen Szenarios für beide Typen von Agenten, jedoch
immer noch niedriger für den ‘explanationist’. Wieder ist dieser Agent signifikant
schneller und genauer: Wir finden damit eine entscheidende Schwachstelle
des bayesianischen Agenten. Ausgehend von diesen Resultaten können wir
argumentieren, dass IBE* dem Problem der unsicheren Evidenz entgegenarbeitet.
Zusätzlich zu den bereits genannten Vorteilen, schreibt IBE* weniger oft hohe
Wahrscheinlichkeit der falschen Verzerrung zu und liegt damit weniger oft falsch
positiv.

Als nächsten Schritt bringen wir Netzwerke in die Analyse ein. Nacheinander,
werden ‘random networks’, ‘small world networks’, ‘BA networks’ und ‘q-networks’
vorgestellt und unter verschiedenen Parametern visualisiert. Repräsentationen
dieser Netzwerke in Matrizenform werden verwendet, um ‘Einflussmatrizen’ zu
berechnen. Die Theorie der Markow-Ketten erlaubt es festzustellen, unter welchen
Bedingungen diese Matrizen im Limit konvergieren. Der Konvergenzprozess der
Einflussmatrizen kann als Meinungsdynamik interpretiert werden. Schließlich
charakterisieren wir den Vorgang kollektiver ‘belief updates’. Kollektive ‘belief
updates’ werden dann auf den verschiedenen Typen von Netzwerken durchgeführt.
Bei vollständiger Evidenz überschreitet der ‘explanationist’ den Schwellenwert
bei jedem Netzwerktypen. Der bayesianische Agent erreicht dies nur bei zwei
von vier Netzwerktypen. Wird die Evidenz unsicher, in einer Verteilung über
alle Agenten, treten die Vorteile des ‘explanationist’ stärker hervor. Wir
finden einen sehr großen Geschwindigkeitsvorteil des ‘explanationist’ für alle
Netzwerktypen in allen Szenarios mit kollektiven ‘belief updates’. Die letzten
Kapitel kontextualisieren die vorangegangene Arbeit: Kontroversen bezüglich
der Wahl der verwendeten Parameter und Konzepte in den Simulationen
werden behandelt. Wir erarbeiten eine Definition von ‘Computer Simulationen’
und sprechen epistemologische Aspekte an. In einer Diskussion gehen wir
auf das Potential ein, das Simulationen für die Sozialwissenschaften besitzen.
Schließlich erwähnen wir derzeitige Limitierungen unserer Arbeit und besprechen
Möglichkeiten, die Forschung weiterzuführen.
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1 Introduction

The main contribution of this thesis is an empirical evaluation of IBE*, a synthesis of
Jeffrey Conditionalization and IBE (Inference to the Best Explanation) that generalizes
explanationist updating to cases of uncertain evidence. This thesis furthers our line of
research that earlier led to the original development of IBE* in joint project work with
Borut Trpin (Pellert & Trpin, 2017).

We begin the presentation of our work by explicating the placement of our research
within the field of Cognitive Science.

1.1 Classical Cognitive Science

The classical paradigm of Cognitive Science was established in the early beginnings of
the field of Artificial Intelligence. These efforts, which started in the 1950s, culminated
in the formulation of the “Physical Symbol Systems Hypothesis” (PSSH) (Newell &
Simon, 1976). It is worth considering this significant theoretical proposal not only
because of its immense historical importance, but also because of the clarity of argument
developed in justifying it.

The Physical Symbol System Hypothesis
A physical symbol system has the necessary and sufficient means for general
intelligent action. (Newell & Simon, 1976, p. 116)

Symbols can be combined to form expressions (also called symbol structures). Processes
can operate on these expressions. Vis-à-vis the objects that inhabit the world of a
symbol system, expressions have two important functions: 1) They designate objects:
Through such designation, a system can interact with the object. 2) A system can
interpret expressions: Should an expression designate a process, the system can carry
out that process (Newell & Simon, 1976, p. 116).

The systems of interest are physical to the extent that they obey the laws of physics:
Therefore, they should be realizable by engineering efforts. The use of this term also
signifies that the proposal goes beyond purely “human” symbol systems: Necessary
refers to the view that a physical symbol system is the prerequisite for any agent to
show general intelligence. In the analysis, the conclusion is reached that every systems
capable of displaying intelligence must be a physical symbol system. Sufficient means
that one does not need to look any further: A physical symbol system (of sufficient
size) can by itself show general intelligence, without the need to add anything to it.

The origin of the hypothesis lies in the efforts of formalizing logic that started towards
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the end of the 19th century. In this tradition, logic is seen as “a game played with
meaningless tokens according to certain purely syntactic rules” (Newell & Simon, 1976,
p. 117). From the 1930s onwards, automata theory was developed, among others, by
Turing and Von Neumann. This led to the successful construction of physical machines
like “ENIAC”, guided by the theoretical blueprint of the novel science of computers1.
Then, suitable programming languages, e.g. LISP (McCarthy, 1978), were created.
Finally, the combination of these developments allowed for testing of PSSH: Newell
and Simon admit that they know of “no way of demonstrating the connection between
symbol systems and intelligence on purely logical grounds” (Newell & Simon, 1976, p.
118). Therefore, the authors’ resort to listing empirical evidence in support of PSSH:
On the one hand, attempts at mimicking human performance were successful in specific,
restricted domains such as chess. On the other hand, systems were developed that
are geared towards generality. The author’s own “General Problem Solver”2 (GPS)
(Newell & Simon, 1963) is one of the first examples of this approach. The design of this
physical symbol system was informed by data collected in psychological experiments
with probands that were thinking aloud during solving of formal problems. According
to the authors, gathering evidence in support of the claim of sufficiency of the PSSH
is part of the field of Artificial Intelligence. To justify the claim of necessity, evidence
from (cognitive) psychology is needed.

The start of the scientific discipline of AI is conventionally constituted by the Dartmouth
Symposium held in the summer of 1955 (McCarthy, Minsky, Rochester, & Shannon,
1955/2006). From our discussion so far it is visible that early AI researchers explicitly
introduced at least two of the core disciplines of the cognitive sciences (computer science
and psychology). In addition, also linguistics, economics and neurology also played
already a role [cf. points 2 & 3 in McCarthy et al. (1955/2006);Miller (2003); and

1The term in its modern sense is used the first time in print by Fein (1959). That author argues
for the need to establish a new institution, a “Graduate School of Computer Sciences” at American
Universities. He points out that the discipline has matured enough to do so and identifies traits relevant
to an academic field:

1. The terminology has been established; a glossary of terms exist.
2. Workers in the field do nonroutine intellectual work.
3. The field has sometimes been axiomatized.
4. The field is open, i.e., problems are self-regenerating.
5. There is an established body of literature, textbooks exist, sometimes

treatises—even handbooks; also professional journals.
6. University courses, sometimes departments and indeed schools are devoted to the

field. (Fein, 1959, p. 11)

Fein also states that “ ‘[c]omputer science’ is not isolated; it is inter-disciplinary” (p.11; italics in
original).

2The nomenclature also portrays the optimism of the first era: In a classic polemic critique, Drew
McDermott already noted in the 1970s: “By now, ‘GPS’ is a colorless term denoting a particularly stupid
program to solve puzzles. But it originally meant ‘General Problem Solver’, which caused everybody a
lot of needless excitement and distraction. It should have been called LFGNS—‘Local-Feature-Guided
Network Searcher’ ” (McDermott, 1976, p. 4).

2



Simon’s background as an economist]. In a way, the birth of cognitive science resulted
from a loose disengagement from AI and its practical, engineering approach towards
(even) more philosophically inclined basic research. Of course, like any offspring, it
inherited traditions, among them its classical paradigm: the PSSH.

To summarize: Classical Cognitive Science is using logic to formalize cognition . . .

1.2 The Probabilistic Turn in the Cognitive Sciences

. . . or rather to be more precise: “It would not be unreasonable to describe Classical
Cognitive Science as an extended attempt to apply the methods of proof theory to the
modelling of thought” (Fodor & Pylyshyn, 1988, pp. 29–30).

This blueprint was challenged and eventually dismissed (by some) as too rigid. One
objection refers to the use of classical logic. An important property of classical logic is
its monotonicity, i.e. “if a conclusion follows from some set of premises, then it still
follows when additional premises are added” (Oaksford & Chater, 1991, p. 9). This is
clearly violated in everyday reasoning, which is most of the time defeasible. Consider
the following example:

While we infer that Tweety flies on the basis of the information that Tweety
is a bird and the background knowledge that birds usually fly, we have good
reasons to retract this inference when learning that Tweety is a penguin
or a kiwi. (Strasser & Antonelli, 2016, beginning of Section 1, “1. Dealing
with the dynamics of defeasible reasoning”)

To capture this type of reasoning, non-monotonic logics have been proposed. D.
Makinson (2003) gradually transitions from classic to para-classical and finally
non-monotonic logics, thereby providing an accessible overview. Proposals of
non-monotonic logics like “default reasoning” have been shown to be able handle many
real-world scenarios that escape classical logics (Pelletier & Elio, 1997).

Around the same time the classical paradigm was objected on the grounds of defeasibility,
Bayesian approaches became popular in statistics and were subsequently applied to
the psychology of human learning and to cognitive neuroscience. This triggered a
“probabilistic turn” in cognitive science and theoretical innovation (Douven & Schupbach,
2015a, p. 1). With this approach, defeasible inferences pose substantially less of a
problem. Contrary to classical logics, a probabilistic reasoner can refrain from ascribing
the extreme values of 0 (never true) and 1 (always true) to a proposition. Instead,
there is an infinite continuum of degrees of belief in propositions in the interval ]0, 1[. If
evidence should turn up that is in contradiction with a previously held conviction, it is
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easy to account for that: The adjustment (in this case lowering) of degree of belief is
prescribed by the Bayesian formula:

P (H | E) = P (E | H) · P (H)
P (E)

H = {Hypothesis (a proposition)}
E = {Evidence (in contradiction to H) }
P (H | E) = {Posterior (new) belief in H}

(1)

(We provide a more extensive treatment of Bayes’ rule in Section 2.2.)

In case of repeated contradictions (or a really fatal one), belief in H may become
infinitesimally small. But also with a higher degree of belief than almost 0, it may not
be rationally entertained anymore (for more on this issue, see Section 11.1).

Proponents often also ascribe a normative role to Bayesian reasoning: This approach
amounts to comparing actual human reasoning to a Bayesian standard (a classical
example is Tversky & Kahneman, 1974). Systematic deviations from the posited norm
can often be identified. This has lead to the identification of a plethora of potential
biases in everyday human reasoning (cf. “List of cognitive biases,” 2017). But not only
healthy subjects can be studied in this way, as we adress in the next section.

1.3 Case Study: Bayesianism and Schizophrenia

This section provides an account of the explanatory power of Bayesian approaches by
presenting a case study in (pathological) human reasoning.

1.3.1 Clinical Considerations

Among other factors, diagnosis of schizophrenia is based on symptoms described by the
patient that can be divided in either positive or negative symptoms. Negative symptoms
are also called “signs”. They involve loss of a normal function. Typically, this is the case
with reduced speech output (alogia) or loss of motivation (avolition) (Fletcher & Frith,
2009, p. 48). Positive symptoms describe the presence of an abnormal phenomenon,
such as delusions or hallucinations.

The positive symptoms of schizophrenia can be interpreted as the result of a defect
in the mechanism that controls and limits the contents of consciousness (C. D. Frith,
1979, p. 225). This implies that the concepts of preconscious and/or subconscious
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experience play a crucial part in the analysis of schizophrenia. The disorder can be
characterized as “excessive self-awareness”. Patients are aware of (parts) of the complex
informational processing that normally goes on below the level of awareness. This
implies that not the processing itself, but the conscious experience of it is abnormal.
Symptoms of schizophrenia occur when the selective capacity of consciousness breaks
down. Ambiguity arises as there are multiple, inconsistent interpretations of absurd
events. In further consequence, there arises substantial difficulty of selecting and
carrying through an appropriate course of action. This sketch of the emergence of a very
special kind of experience of schizophrenic people gives rise to an important question:
Is there any way to study these processes systematically? Speaking historically, there
was an insistence on a negative answer to this questions for a long time. However, over
the last (few) decades there has been sustained development of a positive answer (for
an overview, see Fletcher & Frith, 2009). The core of this work lies in the conjecture,
that it is possible to give a systematic account of positive symptoms of schizophrenia
with the help of probabilistic theory.

By affirming Bayesianism as a normative reference, it is possible to study delusional
inferences as divergences from the norm. Hemsley & Garety (1986) list several of the
divergences encountered in clinical investigations on patients. These include deficits
at the stage of hypothesis formulation. Especially people suffering from disorganised
schizophrenia3 seem to translate experience directly into belief statements, without
considering any related hypothesis and evidence. With all types of schizophrenia, the
maintenance of untestable hypotheses is often observed. Often, these involve “end of
the world” scenarios directed at a specific time point (e.g., the year 2087). Furthermore,
there are also divergences at the “information search” stage: Patients can become
absolutely certain of the truth of a delusional belief. They do not see any need to search
for disconfirming evidence. This was, e.g. the case with a patient who claimed he “was
in direct contact with, and could influence, a famous athlete” (Hemsley & Garety, 1986,
p. 54). Finally, there can be problems in assessing the likelihood ratio. This can be
illustrated with an example: A patient who formed the hypothesis H =“Police is chasing
me.” is receiving evidence E =“There are police cars on the street.”, while walking to
the doctor’s appointment. She then assigns very high probability (or even absolute
certainty) to P (E|H), which seriously increases her posterior probability P (H|E) and
strengthens the paranoid belief of being chased by the police. In Bayesian analysis, the
patient forgot to assess P (E|¬H) correctly (or at all) and to compute P (¬H|E). In

3Diagnostic conventions have changed since the publication of Hemsley & Garety (1986). In the
recent version 5 of the “Diagnostic and Statistical Manual of Mental Disorders” (DSM V), schizophrenia
subtypes were removed from the definition of the disorder, “due to their limited diagnostic stability,
low reliability, and poor validity.” Instead, “a dimensional approach . . . is included . . . to capture the
important heterogeneity in symptom type and severity expressed across individuals” (APA, 2013, p.
3).
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this way, the patient can be modelled as having forgotten to consider the probability of
presence of police cars on the street without her being chased by police.

1.3.2 Evidence

The research program assessing the differences in probabilistic reasoning between healthy
and schizophrenic persons is ongoing. Kaplan et al. (2016) is a recent example of
research conducted in this area. In their study the authors presented numbers that
fluctuated slightly in a random manner around an integer to two groups of probands
(schizophrenic and not schizophrenic). After some time, the initially fixed integer
changed to another value, and subsequent values fluctuated around this new “anchoring
point”. Probands had to infer at which point the announced “context change” had
occurred. This data was compared to a Bayesian benchmark model. It turned out
that schizophrenics slightly overestimated the posterior probabilities of context change.
They declared a standard fluctuation more readily to be the context change. Control
subjects, on the other hand, more readily interpreted small prediction errors as mere
noise.

These results have to be treated cautiously as there were only small effects. What
was found is far removed from the authors’ idea to provide a marker for schizophrenia.
Nonetheless, this research shows that there systematic differences in probabilistic
reasoning between people with the disorder and those without it could be identified.
Generally, differences in general logical reasoning between deluded patients and controls
are small in studies. Kemp, Chua, McKenna, & David (1997) formed two groups of
people (deluded and not deluded) that had to answer questions from a standardized test.
Subjects could select between responses, that were either logically fallacious or valid. It
turned out that both groups often committed logical errors by selecting the fallacious
answer. Furthermore, some of the examples provided were classified as neutral, while
others were selected because of the emotional content: In the time context of the study4,
an emotional example included the mentioning of AIDS, for example. Including such
emotional component reduced logical reasoning performance of the subjects (somewhat
more so for the deluded group). Overall, findings of this study imply that impairment
of logical thinking is not sufficient to explain delusional thinking. On the contrary, it is
especially noteworthy that high IQ in schizophrenic patients is often associated with a
special set of symptoms. An anecdotal example would be the story of the highly-gifted
mathematician John Nash, who immerged himself in a very elaborate delusion (and
could escape from it much later as well). High performance in intelligence tests supports
the development of paranoid schizophrenia: Higher IQ means more capability of devising

4The late 1990s with a high number of awareness campaigns and broad media coverage on this
topic.
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complex explanatory systems for disintegrated facts (e.g. persecution). Schizophrenic
people with low IQ would not be able to make this much “sense” of their abnormal
experiences. In these cases, negative symptoms like disorganisation would prevail.
Along these lines, some authors go so far to even postulate the existence of a different
disorder called “superphrenia”. It is similar to schizophrenia but “characterised by
high pre-morbid IQ and a clinical profile featuring predominantly positive and affective
symptoms, few negative and disorganised symptoms, good insight and good global
functioning” (Černis et al., 2015, p. 5).

1.3.3 Assessment

One of the most serious arguments against most of the research covered in this
subsections comes from pharmacology: (Almost) all schizophrenic patients in studies
take medication. Dosages vary wildly, for example: 295 ± 391 mg/day5 chlorpromazine
equivalent dose of antipsychotics in Kaplan et al. (2016, p. 5). This introduces many
possible confounding variables.

Nonetheless, it has been shown that Bayesian reasoning provides a benchmark that
can be compared with the reasoning of schizophrenic patients (for more examples
see the annotated bibliography in Fletcher & Frith, 2009). As the covered examples
demonstrates, valuable insights into psychiatric disturbances can be gained by analysing
this contrast.

1.4 Alternatives to Bayesianism?

As we can judge from the discussion above, there are merits in adhering to a Bayesian
approach. But, to push the issue once more, is to look beyond Bayesianism: Are there
any alternatives that are “probabilistic without being Bayesian”6 (Douven & Schupbach,
2015a, p. 1)?

A recent tradition in philosophy of science (Douven, 2013, 2016; Douven & Romeijn,
2011; Douven & Schupbach, 2015a, 2015b; Douven & Wenmackers, 2015) considers
a probabilistic adaption of “Inference to the Best Explanation” (IBE) as a promising
alternative. In its original formulation, IBE refers to the following:

In making this inference one infers, from the fact that a certain hypothesis
would explain the evidence, to the truth of that hypothesis. In general, there
will be several hypotheses which might explain the evidence, so one must

5Mean ± standard deviation
6We are interested in staying probabilistic to take advantage of the ability to revise beliefs without

being forced to subscribe to a new framework (as in the case of non-monotonic logics).
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be able to reject all such alternative hypotheses before one is warranted in
making the inference (G. H. Harman, 1965, p. 89).

IBE is similar to abduction. Nonetheless, the new name was chosen to avoid some of
the ambiguity inherent in the many different concepts of abductive inference. According
to Harman, IBE offers the possibility to get rid of controversial (enumerative) inductive
inference, which can now be treated as a special case of IBE:

From the fact that all observed A’s are B’s we may infer that all A’s are B’s
(or we may infer that at least the next A will probably be a B). [Using IBE
we are] making this inference whenever the hypothesis that all A’s are B’s
is (in the light of all the evidence) a better, simpler, more plausible (and
so forth) hypothesis than is the hypothesis, say, that someone is biasing
the observed sample in order to make us think that all A’s are B’s. (G. H.
Harman, 1965, pp. 90–91)

The advantage is gained transparency: We always have to state the total evidence
available when justifying a specific IBE. In analogy to the intermediate results sometimes
used in a mathematical proof, Harman calls the stepping stones that lead to an IBE,
lemmas. In the quotation above, a lemma would be knowledge that the sample is
unbiased7. There are also disadvantages: With adoption of Harman’s IBE we relinquish
all attempts to develop a formalized mechanism: In the end, it remains unclear where the
inferences come from. They originate from a black hole, that may be called “creativity”
or “intuition” for example.

The question of how to decide which of the competing explanations is the best8 one, is
deliberately left open in the original formulation of IBE by G. H. Harman (1965). In
our simulations, we decided to use the frequencies of specific values in the observations
so far to decide on the best explanation. We expand on this in the following sections.

THE INDIVIDUAL DOMAIN

2 Individual Belief Updating

2.1 The Simulated Scenario

This and the following sections give an introduction to the scenario that we investigated
empirically in simulations. Additionally, we introduce key terminology (for a general

7One could conclude so on the basis of a statistical test.
8The question of operationality, so to say.
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historical introduction to Bayesianism see for example Joyce, 2011).

Our simulation is populated with agents trying to discover the bias of a coin. This
setting was inspired by Van Fraassen’s statistical model of the Alien Die (1989, pp.
163–170). The name derives from the story behind the model: Van Fraassen considers
the usual die, which has the same probability of 1/6 for each value {1, 2, 3, 4, 5, 6} to
be the “human die”. His model, however, focuses on fictional dice, which, according
to the story, are to be found on an alien planet. In his discussion of naive inductive
inference (extrapolation), Van Fraassen chooses this example to circumvent problems of
background knowledge: Normally, when we reason about dice tossing, we use information
about human dice. In a formal model, this information (e.g. “its six values are all
equally likely”) should be accounted for. By supposing alien dice, Van Fraassen aims to
develop a “clean” model. He outlines the following scenario: Imagine that alien dice
are biased towards showing aces after being tossed. The bias can range between the
extremes of all aces and no aces, with any increment of sequence in-between. Without
being informed about the actual bias, how can we infer the probability that an ace will
show up on the next toss from observing tosses?9 Van Fraassen uses this setting to show
the “fundamental flaw of induction”: How to decide about what interpolation “does
with small increases in data” (pp. 133-134)? He first considers the simple “straight”
rule: The observed ratio of events is said to be the real ratio of events, and therefore
must be expected. Quickly, a problem occurs. This rule prescribes, for example, to
believe that only aces will occur (with absolute certainty, 1/1) after we have observed
just one toss of ace. Clearly, a more subtle rule is needed. Van Fraassen argues for
the adoption of the Bayesian formula. In his example, the formula specifies how much
to add to the probability that aces will show up from now on, after observing a toss
showing ace.

Douven (2013) altered and extended the Alien Die Model. Instead of dice, he considers
coins biased to showing heads. The possible biases range from 0 to 1, in steps of 0.1.
Douven compares two different belief updating strategies: Standard Bayesianism (see
Section 2.2) & IBE (see Section 2.4). To do so, he simulates 1000 rounds of 1000 coin
tosses. After each coin toss, a belief update according to either strategy takes place.
After each update, two scoring rules (log score and Brier score) are used to measure
epistemic accuracy (Leitgeb & Pettigrew, 2010). According to published results, IBE
updating is typically more accurate at various evaluation points along the sequence of
1000 tosses (e.g. after 100, 250, 500, 750 and 1000 tosses). On the other hand, average
accrued penalties for inaccuracy over the whole sequence turn out to be lower for the
Bayesian belief update strategy (Douven, 2013, pp. 439–440).

9This amounts to guessing the right bias.
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B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Bias: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Prior: 1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/11 1/11

Figure 2.1: Coins that may be used, their bias for heads and their prior probability

2.2 Standard Bayesianism

In our formulation there are the same 11 possible biases towards showing heads
(0, 0.1, . . . , 1.0), as in Douven (2013). Agents set out from a uniform distribution,
i.e. considering every bias to be equally likely (P (Bias0)10= P (Bias1) = ... =
P (Bias10) = 1

11 ; for an illustration, see Figure 2.1). The vector of these probabilities is
the so-called prior. After setting their priors, agents are confronted with a coin toss,
which results in an outcome of either heads or tails. This is called the evidence. The coin
can either be a standard, ‘fair’ coin (P (Heads) = P (Tails) = 0.5), or one with any of
the other biases (for heads). The extreme cases of P (Heads) = 0 (P (Heads) = 1) would
mean that no heads (or only heads) occur. To allow agents to alter their subjective
probabilities conditional on the evidence they receive, we need some more information.
The inverse probability or likelihood denotes the probability that either heads or tails
show up, under a certain bias (formally: likelihoodi = P (heads|biasi) with 0 ≤ i ≤ 10,
i ∈ N). If a coin is tossed, by necessity, either heads or tails show up (the coin cannot
land on its side). Because of this mutual exclusivity: 1− likelihoodi = P (tails|biasi).
The probability of evidence can be rewritten according to the “Principle of Total
Probability” (Joyce, 2011, p. 417): P (Heads) = ∑n−1

j=0 P (Heads|Biasj) ∗P (Biasj) and
P (Tails) = ∑n−1

j=0 P (Tails|Biasj) ∗ P (Biasj); again: 1 − P (Heads) = P (Tails) with
n = 11 (total number of biases).

Now, we have all the parts together that are needed for Standard Bayesian belief
updating:

P ′(Biasi) = P (Biasi)P (Evidence|Biasi)∑n−1
j=0 (Pr(Biasj)Pr(Evidence|Biasj))

i = {0, . . . , n− 1}
n = 11

(2)

10P (. . .) denotes for the Probability of . . .
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2.3 JC: Jeffrey Conditionalization

In Equation 2, the evidence is fully certain: P (Evidence) = 1. Therefore,
P (¬Evidence) = 0 and can be forgotten about. This assumption was criticized by
various philosophers (for a general overview, see Talbott, 2016, Section 6.2). It has
been argued that this view of belief updating is at odds with reality. For example, in
scientific, evidence-based reasoning, the full certainty of evidence cannot be taken for
granted. After all, scientists give up previously accepted evidence again and again. The
philosopher Richard Jeffrey formalized these considerations in a Bayesian approach
to reasoning with uncertain evidence (cf. Diaconis & Zabell, 1982). He assumes the
probability of evidence to be between 0 and 1 (0 < P (Evidence) < 1). Consequently,
P (¬Evidence) = 1 − P (Evidence) has to be taken into account in updating:
P (Biasi) = P (Biasi|Evidence)∗P (Evidence) +P (Biasi|¬Evidence)∗P (¬Evidence).
Thus, our update formula becomes:

P ′(Biasi) = [P (Biasi|Evidence)P (Evidence)] ∗ P (Evidence|Biasi)∑n
j=1(Pr(Biasj) ∗ Pr(Evidence|Biasj))

+

[P (Biasi|¬Evidence)P (¬Evidence)] ∗ P (¬Evidence|Biasi)∑n
j=1(Pr(Biasj) ∗ Pr(¬Evidence|Biasj))

i = {0, . . . , n− 1}
n = 11

(3)

Remember that H and T are the only possible outcomes, and that they are mutually
exclusive. Therefore, they constitute a partitioning of the sample space. If Evidence =
H (Evidence = T ), then ¬Evidence = T (¬Evidence = H).

An agent that is updates its beliefs according to Equation 3 will hence be referred to as
JC (or simply Bayesian, rather than Standard Bayesian).

2.4 IBE: “Simple” Explanationist Updating

In a number of publications (Douven, 2016; Douven & Romeijn, 2011; Douven &
Schupbach, 2015a, 2015b; Douven & Wenmackers, 2015), the philosopher Igor Douven
has argued in favor of an extension of Standard Bayesianism. He proposes to add
considerations of explanatory goodness to the existing framework. This is done by
adding a function f(Bias, Evidence) to Equation 2 that, on every update, assigns a
bonus to the bias that best explains the evidence so far. Formally:
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P ′(Biasi) = P (Biasi)P (Evidence|Biasi) + f(Biasi, Evidence)∑n
j=1(Pr(Biasj)Pr(Evidence|Biasj) + f(Biasj, Evidence))

i = {0, . . . , n− 1}
n = 11

(4)

In principle, Equation 4 is indifferent to the concrete measure of explanatory adequacy
that will be used. For a discussion of some other measures of explanatory goodness, see
Section 11.2.

In the present case, we operationalise explanationist updating in the following way:
After computing new probabilities using Equation 2, the bias is selected that explains
the whole sequence of heads observed so far with the highest probability. Second, this
bias is assigned a bonus. Following the example of others (e.g. Douven, 2013, p. 432),
we have used a bonus value of 0.1 throughout our present work. Then, the vector
consisting of the probabilities of each bias is normalized to 1 again. Finally, each round
of updating ends with the newly computed vector being set as the new prior.

It can be said, that the explanationist adopts a frequentist measure of explanatory
goodness.

2.5 IBE*: Explanationist Updating with Uncertain Evidence

The main contribution of this thesis is an empirical evaluation of IBE*, a synthesis of
Jeffrey Conditionalization and IBE that generalizes explanationist updating to cases
of uncertain evidence. This thesis furthers our line of research that earlier led to the
original development of IBE* in joint project work with Borut Trpin (Pellert & Trpin,
2017).

P ′(Biasi) =

[P (Biasi|Evidence)P (Evidence)] ∗ P (Evidence|Biasi) + f(Biasi, Evidence)∑n
j=1(Pr(Biasj) ∗ Pr(Evidence|Biasj) + f(Biasj, Evidence)) +

[P (Biasi|¬Evidence)P (¬Evidence)] ∗ P (¬Evidence|Biasi) + f(Biasi,¬Evidence)∑n
j=1(Pr(Biasj) ∗ Pr(¬Evidence|Biasj) + f(Biasj,¬Evidence))

i = {0, . . . , n− 1}
n = 11

(5)

An agent that updates its beliefs according to Equation 5 will hence be referred to as
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IBE* (or simply, explanationist).

2.6 Brier Scores

Brier scores are an intuitive way to measure the accuracy of probability predictions. The
idea originates from meteorology and was used to assess the precision of probabilistic
weather predictions. The following Brier score equation relates the predicted probability
of a binary event—for example, {rain,¬rain}—to the actual outcome, i.e. we compute
the mean squared prediction error:

BS = 1
N

N∑
t=1

(ft − ot)2

ft . . . probability that was forecast
ot . . . actual outcome of the event at instance t
(0 if it does not happen and 1 if it does happen)
N . . . number of forecasting instances

(6)

(For Equation 6 see “Brier score,” 2017, Section “Definition of the Brier score”).

In our simulations, the sample space is also binary: {Heads, Tails}. Therefore, we can
use this simplified version of the Brier score for binary events. (The original formulation
of Brier (1950) allows for more than two classes of events happening.) Because we
compute Brier Scores after every update, we use N = 1 and then track the values over
all tosses. With the following formula, an adaption of Equation 6, we compute Brier
scores after every belief update:

BRIER = (1− P (Biasc))2 +
∑

i

(0− P (Biasi))2)

c = {Index of the true bias}
i = {Indices of the false biases}

(7)

3 Workflow of Running a Simulation with Typical
Parameterization

Figure 3.1 shows the workflow in a simulation with typical parameters.
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Figure 3.1: Flowchart of the simulations
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4 Technical Details

The original simulation was developed in Python. By using the library “PythonInR” in
RStudio, it was possible to take advantage of the power of R in statistical evaluation
and visualization. The R package “ggplot2” was used extensively to create plots. In
a later stage, we were provided with an R source file, used in Douven (2016): By
adapting and extending this script, it was possible to shift the simulation part of
the project from Python to R. Directly working in R increased efficiency, because
the package that allowed to source Python scripts in R proved to be a performance
bottleneck. Furthermore, some parts of the new simulation code were rewritten in C++
and integrated into R with the package Rcpp. This allowed to shorten time needed
for computation even further, by a factor of approximately 0.5: Loops can be pretty
costly in R, while in C++ they are not. Especially the bonus assignment function for
the explanationist benefited from this change. The R package “parallel” was used in
the thesis for some simulation runs. It allows to take full advantage of multicore CPUs.
Standardly, R uses only one core even if more (in the author’s case, four) cores are
available. We decided to use three out of the four cores cores to have one core available
for other tasks. In this way, we were able to speed up operations substantially, by a
factor of approximately 2.5.

This master thesis was written in RMarkdown, which allows to create documents with
Markdown formatting in combination with dynamically created R and LATEX content.

In the implementation of the mechanism of belief updating in our simulations we
take advantage of the“Reduce” function in R (cf. the online documentation “Common
Higher Order Functions in R package ‘base’ version 3.5,” 2017). It is modeled after
functions commonly found in other programming languages (e.g. “accumulate” in C++:
“Accumulate - C++ Reference,” 2017).

“Reduce” from the R package “base”, takes two vectors and a function as arguments.
The first vector consists of a sequence of integers from 1 to number of coin tosses. The
second vector is the so-called “initialization vector”. In our case this is the vector of
our uniform priors. The function that is provided must be binary, i.e. it must take
exactly two arguments. “Reduce” first feeds it the initialization vector as first argument
and the first value of the coin tosses. The vector returned by the binary function is
recursively fed to the function itself, as first argument, with the second value of the
first argument vector to the Reduce function as second argument. The return vector is
again fed as the new first argument, together with the third value of the first argument
of the Reduce function. And so on, for all values of the first argument of the Reduce
function. The sequence of all vectors returned by the binary functions is returned by
the Reduce function (rather than the result of the final invocation), if specified so by
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the optional additional Boolean “accumulate” argument.

What happens in the call to the binary function? The first argument, the vector, is used
as the prior in the belief update procedure. The second argument, an integer, is used as
an index to look up the outcome of the actual coin toss, which is the relevant evidence
on which belief updating is then performed. Additional tasks are also performed: In
the case of the explanationist, a function is called that assigns the bonus. In this way,
the Reduce function can be used to implement belief updating according to different
strategies.

4.1 Work environment

R version 3.4.1 (2017-06-30)

ggplot2: 2.2.1
igraph: 1.1.2
network: 1.13.0
pander: 0.6.1
Rcpp: 0.12.12
rmarkdown: 1.6
xtable: 1.8.2

Windows 8.1 x64 (build 9600)

x86_64-w64-mingw32/x64 (64-bit)

5 Simulations With Fully Certain Evidence

In this section we explore a scenario with fully certain evidence, where IBE* updating
reduces to IBE and Jeffrey Conditionalization to Standard Bayesianism. Put more
formally: P (Evidence) = 1 and P (¬Evidence) = 0, which cancels out the second part
of Equation 3 & 5.

5.1 Parameter Settings

The following settings are used:

• Certainty is fixed at 1 (there is full certainty of evidence).
• Number of simulations: 500.
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– To prevent memory problems we decided not to set a higher number (see
Section 13.2).

• Number of coin tosses per simulation: 1000.
• Threshold is set at 0.9.

– Different values are discussed in Section 11.1.
• Bonus is set at 0.1.

– We stick to this value in accordance with recent literature on IBE (cf.
Section 2.4).

5.2 Aggregate Belief Evolution
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This plot shows the replication of an earlier finding (Douven, 2013, p. 433): The
explanationist is faster in assigning high subjective probability to the true bias. The
explanationist’s degree of belief in Bias 7 (yellow line) is steeper for (roughly) the first
400 tosses compared to Bayesian’s belief in that bias (light blue line). That means
that adopting explanationist updating provides a speed advantage in the case of fully
certain evidence compared to Bayesian updating: It takes the explanationist a smaller
number of observed tosses to form a degree of belief in the true bias above threshold of
0.9, i.e. it faster.

Speed issues are investigated in-depth in Section 5.5 & 6.5.
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5.3 Brier Plots

Mean

Bias10
Bias0
Bias1
Bias9
Bias8
Bias7
Bias2
Bias6
Bias4
Bias3
Bias5

Mean

Bias10
Bias0
Bias1
Bias9
Bias2
Bias8
Bias7
Bias6
Bias3
Bias4
Bias5

Bayesian Explanationist

0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000

0.0

0.4

0.8

1.2

1.6

2.0

Number of Tosses

B
rie

r 
S

co
re

 V
al

ue
 (

A
ve

ra
ge

s 
ov

er
 5

00
 S

im
ul

at
io

ns
)

Evolution of Brier Scores

In terms of Brier Scores (i.e. overall accuracy of beliefs), both updaters perform almost
equally well. Because the Explanationist is more easily “led in the wrong direction”
during the first few tosses, its overall mean is slightly higher (0.1 to 0.08). This
divergence in the beginning is due to the sparse information that is available for the
bonus function. Naturally, the sequence of coin tosses (the frequencies of heads and
tails) has not much explanatory power if it consists only of a few entries. Therefore,
wrong hypotheses are easily rewarded after observing only a few tosses, which explains
the early (small) spike in Brier scores for the explanationist. This was already noted
and discussed by Douven (2013): “[The higher average Brier scores are] due to the
fact, noted earlier, that the explanationist reacts in a bolder fashion to the evidence
than does the Bayesian and is therefore more easily led astray by rows of tosses which
produce subsequences with deviating relative frequencies” (p. 441).

5.4 Performance Tables

As can be seen from the table below, both updaters perform well in assigning a
probability equal or higher than 0.9 to any of the biases over the course of 1000 coin
tosses:
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Table 5.1: Number of Cases With Belief Above Threshold of 0.9 (Fully Certain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 500 500 500 500 500 499 500 500 500 500 500
Bayes. 500 500 499 498 499 498 497 500 500 500 500

It turns out that they in almost every case assign the probability to the correct bias:

Table 5.2: Number of Cases With True Belief Above Threshold of 0.9 (Fully Certain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 500 500 500 499 499 498 500 500 500 500 500
Bayes. 500 500 499 497 499 497 497 500 500 500 500

But, the Explanationist is faster in doing so. It assigns a probability ≥ 0.9 to the true
bias on average with 64.7 (SD = 41.2) fewer tosses than the Bayesian. This means that
it is on average 1.98 (SD = 0.25) times faster:

Table 5.3: Average Number of Tosses Needed to Form a Belief in the True Bias Above
Threshold of 0.9 (Fully Certain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 10 37.7 75.2 87.5 90.9 96.0 102.8 83.3 77.6 43.1 10
Bayes. 22 62.8 133.7 185.0 198.0 214.9 206.2 175.5 139.0 66.4 22
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5.5 Speed and Threshold (Fully Certain)
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Note that we use a non-linear abscissa in order to bring the high thresholds (≥ 0.95) in
the focus, while still being able to show the two plots next to each other.

With these plots we show that the Explanationist is faster in detecting the true bias
(for every bias) at every threshold. The Bayesian is starting not to manage to cross
threshold for the true bias for some of the higher thresholds. This can be inferred from
its missing points, e.g. for Bias 7 (light red) at threshold 0.98.

5.5.1 Threshold and Evolution of Belief in Any Bias (Fully Certain)

Table 5.4: Explanationist: # of Simulations Above Threshold (Fully Certain)

Threshold B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

0.50 500 500 500 500 500 500 500 500 500 500 500
0.60 500 500 500 500 500 499 500 500 500 500 500
0.70 500 500 500 500 500 499 500 500 500 500 500
0.80 500 500 500 500 500 499 500 500 500 500 500
0.90 500 500 500 500 500 499 500 500 500 500 500
0.95 500 500 500 500 500 499 500 500 500 500 500
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Threshold B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

0.96 500 500 500 500 500 499 500 500 500 500 500
0.97 500 500 500 500 500 499 500 500 500 500 500
0.98 500 500 500 500 500 499 500 500 500 500 500
0.99 500 500 500 500 500 499 499 500 500 500 500

Table 5.5: Bayesian: # of Simulations Above Threshold (Fully Certain)

Threshold B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

0.50 500 500 500 500 500 500 500 500 500 500 500
0.60 500 500 500 500 500 500 500 500 500 500 500
0.70 500 500 500 500 500 500 499 500 500 500 500
0.80 500 500 499 499 500 499 498 500 500 500 500
0.90 500 500 499 498 499 498 497 500 500 500 500
0.95 500 500 499 498 498 498 495 500 500 500 500
0.96 500 500 499 497 498 498 495 499 500 500 500
0.97 500 500 499 497 498 497 495 499 500 500 500
0.98 500 500 499 496 497 496 495 499 500 500 500
0.99 500 500 499 495 497 495 493 498 499 500 500

Both updaters easily get over threshold, even at very high levels. They assign probability
higher than the respective threshold in (almost) all cases to any of the biases (not
necessarily the true one).

6 Simulations With Fixed Uncertainty of Evidence

In this section we explore a scenario with fixed uncertainty of evidence. The
explanationist updates according to IBE* and the Bayesian according to Jeffrey
Conditionalization.

6.1 Parameter Settings

The following parameter is changed, the others remain as before:

• Certainty is fixed at 0.8.
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– We move away from full certainty (P (E) = 1), but decide not to choose a
value below P (E) = 0.5: In the case that evidence is less than 0.5 certain,
¬Evidence becomes relatively more certain. If for example, the outcome
was heads with 0.3 certainty, it would appear more likely the outcome to
have been tails. Such probability of evidence is however misleading and will
therefore be excluded from our simulations. We therefore had to decide on
a single value in the range of ]0.5, 1[ for certainty that stays fixed for both
agents over all tosses in all simulations. We set P (E) = 0.8 which seems far
enough removed from both the minimum and the maximum values in the
admissible range to provdide a balanced example. Nonetheless, this decision
remains arbitrary to some extent.

6.2 Brier Plots
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Evolution of Brier Scores

After a slight fall in the beginning, Brier scores for the Bayesian averaged over all
biases increase for all subsequent tosses. For the explanationist, they are declining. The
overall mean (over all hypotheses, over every toss) of Brier scores is substantially lower
for the explanationist (0.12 to 0.96; SD = 0.03 to 0.53). This is a novel finding: Belief
updating according to IBE* seems to counteract the problem of uncertain evidence. In
contrast to the simulations with full certainty of Section 5, the explanationist is now
more accurate than the Bayesian.
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Note the symmetry: In Bayesian updating, biases that lie exactly opposite in the range
of possible biases (e.g. B1 and B9, B3 and B7) incur the same Brier scores.

6.3 Evolution of Belief in Randomly Selected Simulations

In this section, we select random runs out of the 500 simulations. We plot the results to
highlight the dynamics of belief updating over 1000 coin tosses. This allows to discuss
results that may be lost through averaging over all simulation runs.
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The explanationist’s lines are steep, i.e. it reacts to evidence in a bold fashion. It crosses
threshold for the first time for the wrong bias. This can happen precisely because of the
boldness of IBE*, when evidence is not abundant. Nonetheless, IBE* can correct its
mistake when more information becomes available through the subsequent coin tosses
and the true bias takes over. The Bayesian is slower. It also manages to cross the
threshold of 0.9 for the true bias 6, but the it does so slower and not persistent: It
starts to assign high probability to the wrong bias 5 and eventually oscillates between
these two biases below threshold. The explanationist, on the other hand, sticks with
believing in the true bias above threshold.
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The explanationist crosses the threshold for the first time with toss 49. It then shortly
falls below threshold again. This can be attributed to the still low number of observed
tosses at the time, which results in sparse information to be used in bonus assignment.
In line with this reasoning, it shortly afterwards crosses threshold persistently with toss
64. The Bayesian does so with toss 491 (and stays there). The explanationist has a
vast speed advantage in this simulation run.

6.4 Comparison Tables

The explanationist is believing in any bias above threshold more often than the Bayesian:

Table 6.1: Number of Cases With Belief Above Threshold of 0.9 (Fixed Uncertain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 0 3 367 500 500 499 500 500 365 0 0
Bayes. 0 4 274 331 63 492 63 342 271 14 0

The explanationist is much more accurate. By comparing Table 6.1 and 6.2, one can
see that the Bayesian often runs the risk of assigning high probability to the wrong bias.
The explanationist is much less prone do so. In fact, if it assigns probability above
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threshold, in the vast majority of simulations, it does so to the true bias:

Table 6.2: Number of Cases With True Belief Above Threshold of 0.9 (Fixed Uncertain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 0 3 367 499 499 498 500 500 365 0 0
Bayes. 0 0 0 0 62 492 58 0 0 0 0

Not only is the explanationist much better at detecting the right bias at all, it is also on
average much faster in doing so. For the few biases (B4, B5, B6), where the Bayesian
reaches the threshold for the true bias, the explanationist assigns a probability of 0.9
on average with 516.1 (SD = 154.5) fewer steps than the Bayesian. This means it is on
average 6.04 (SD = 1.52) times faster:

Table 6.3: Average Number of Tosses Needed to Form a Belief in the True Bias Above
Threshold of 0.9 (Fixed Uncertain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 0 413.7 94.5 101.6 98.8 100.7 107.8 94.8 97.9 0 0
Bayes. 0 0.0 0.0 0.0 724.5 440.1 691.1 0.0 0.0 0 0
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6.5 Speed and Threshold (Fixed Certain)
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0.5 0.6 0.7 0.8 0.9 0.95 0.96 0.97 0.98 0.99 0.5 0.6 0.7 0.8 0.9 0.95 0.96 0.97 0.98 0.99

0

100

200

300

400

500

600

700

800

900

1000

Value of Threshold

A
ve

ra
ge

 A
m

ou
nt

 o
f T

os
se

s

Bias0

Bias1

Bias2

Bias3

Bias4

Bias5

Bias6

Bias7

Bias8

Bias9

Bias10

# of Tosses Needed to Believe in the True Bias Above Threshold

Note that we use the same non-linear abscissa as in Section 5.5.

The steepness of the Bayesian’s lines show its severe weaknesses: It is slow compared to
the explanationist. Additionally, missing dots and lines indicate again that the Bayesian
fails to cross the threshold for the true bias (even for quite low values).
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6.5.1 Threshold and Evolution of Belief in Any Bias (Fixed Certain)
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The plot above shows that the number of simulations with any bias above threshold
decreases quicker with increasing threshold value for the Bayesian. The explanationist
passes the threshold for a high number of simulation until a threshold value of 0.8 and
we see decreasing numbers of simulations afterwards. For the Bayesian there is steady
decrease starting already with a threshold of 0.5.

6.6 Evaluation

In this section, uncertain evidence was introduced. Certainty was fixed at 0.8 for both
updaters in all tosses and all simulations. We found that the explanationist can increase
its lead over the Bayesian in terms of various dimensions of performance. It manages to
cross threshold more often and does so, most of the time, for the true bias. It is faster
and contrary to the simulations with full certainty of evidence, it does incur lower Brier
penalties.

By adopting an explanationist updating strategy it also seems possible to limit false
positives: The Bayesian often believes in a wrong bias above threshold. If the
explanationist, on the other hand, believes in a bias above threshold, it is much
more often the true one (see Table 6.1 and 6.2). The relevance of this feature depends
on the context: In medical diagnosing, it is very valuable, given the grave consequences
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of errors in this domain. In a scenario in which any decision for action is better than
being passive (principle of “action is required”) more importance may be placed on
reaching the threshold for any bias as often as possible. Generally, there is a trade-off
between being bold (more often threshold reached, less often for the true bias) and
being correct (less often threshold reached, more often for the true bias). The validity
of this finding depends on the domain: We are investigating a scenario, where evidence
is abundant. In scenarios with scarce evidence, e.g. observation of rare events, IBE*
may not help in limiting false positives.

In general, measures of explanatory goodness in belief updating strategies seem to
help to counteract the problem of uncertainty of evidence. To investigate whether this
finding holds for values of certainty other than 0.8(as investigated in this section), we
investigate a scenario with random uncertainty in the next section.

7 Simulations with Random Uncertainty of Evidence
(RT+)

7.1 Parameter Settings

The following parameter is changed, the others remain as in Section 5:

• Uncertainty of evidence is established Randomly on every coin Toss in the range
of ]0.5, 1[. This means that evidence changes randomly, but it is not misleading
(cf. Section 6.1).
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7.2 Brier Plots
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Evolution of Brier Scores

For the Bayesian, different biases lead to a different Brier score evolution. In detecting
some biases it does not accumulate high Brier values, in others (the majority) it does.
For the explanationist, Brier scores decrease for all biases and settle around slightly
different (low) values. Compared to the case of fixed uncertainty of evidence, Brier
scores are higher for both updaters. Overall, the explanationist still has a much lower
average Brier score (0.17 to 1.21; SD = 0.04 to 0.51).

7.3 Evolution of Belief in a Randomly Selected Simulation
(RT+)

As in Section 6.3, we again selected random runs out of the 500 simulations. This
allows to examine the effect that the introduction of random uncertainty has on belief
updating in a single simulation.

29



Bias10
Bias0
Bias9
Bias8
Bias1
Bias7
Bias2
Bias6
Bias3

Bias5

Bias4

Bias10
Bias0
Bias1
Bias9
Bias2
Bias3
Bias8
Bias7
Bias6
Bias5

Bias4

Bayesian Explanationist

0 100 200 300 400 500 600 700 800 9001000 0 100 200 300 400 500 600 700 800 9001000

0.0

0.2

0.4

0.6

0.8

1.0

Number of Tosses

D
eg

re
e 

of
 B

el
ie

f
True Bias: 4
Simulation Number: 270

Random uncertainty introduces more volatility in the beginning of the simulations.
After initially believing above threshold in the wrong B5, the explanationist concludes
on the right B4. The Bayesian just slightly crosses threshold of 0.9 for the true bias
at toss 640. After that, there is a match between B4 and B5 for a few hundred tosses.
After 1000 coin tosses, it settles on the true B4, but under threshold.

7.4 Comparison Tables

The full and almost full biases (B0, B1, B9, B10) do pose problems, but overall the
explanationist is quite often crossing threshold for any bias. The Bayesian does so in a
smaller number of simulations:

Table 7.1: Number of Cases With Belief Above Threshold of 0.9 (Random Certain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 6 42 217 500 500 499 500 498 226 37 6
Bayes. 0 476 11 483 28 485 27 480 13 472 0

Here, the Bayesian fails decisively. Except for B5 (and for some cases of B4 and B6) it
always believed in the false bias, when it managed to believe in any bias at all. This is
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in sharp contrast to the explanationist: In all but 3 simulations, it believed in the true
bias, in case it managed to cross threshold:

Table 7.2: Number of Cases With True Belief Above Threshold of 0.9 (Random Certain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 6 42 217 499 499 498 500 498 226 37 6
Bayes. 0 0 0 0 16 485 10 0 0 0 0

It takes the explanationist a little bit longer than in the scenario with fixed certainty to
reach the threshold (averaged over all biases: 100.9 to 128.5 tosses). The Bayesian is
very slow in forming a belief in the true bias above threshold for the few biases (B4, B5,
B6), where it actually manages to do so. With random uncertainty, the explanationist
assigns a probability of 0.9 on average with 582.2 (SD = 181.7) fewer tosses than the
Bayesian for B4, B5 & B6. This makes the Explanationist on average 6.61 (SD = 1.65)
times faster:

Table 7.3: Average Number of Tosses Needed to Form a Belief in the True Bias Above
Threshold of 0.9 (Random Certain)

B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 B10

Expl. 263 123.9 103.5 105 101.1 100.7 108.4 101.9 108.9 114 183
Bayes. 0 0.0 0.0 0 777.0 473.4 806.3 0.0 0.0 0 0

7.5 Summarizing Findings

The simulations of Sections 5, 6 and 7 show that it can be rewarding to go beyond a
Standard Bayesian belief updating strategy. IBE, an alternative strategy in the case of
fully certain evidence, allows for faster belief formation. If evidence is uncertain, IBE*
is superior to (Standard) Jeffrey Conditionalization in terms of speed and accuracy.
With randomized uncertainty of evidence, these advantages are even more pronounced.
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THE COLLECTIVE DOMAIN

8 Introducing Networks

The systematic study of networks (conventionally called “graphs”) has a long history
in mathematics. Leonhard Euler’s analysis of the problem of the “Seven Bridges of
Königsberg” in 1736 is seen as the starting point of graph theory. Twenty years ago,
modern “network science” began to boom. It has caused a lot of euphoria since and is
sometimes proclaimed to be the “next scientific revolution” (Barabási, 2002, p. 8).

In the following, different types of networks are presented. The number of vertices and
edges is kept at a certain limit (typically 20), because static visualizations of bigger
networks tend to become unintelligible hairballs.

8.1 Random Networks

Erdős & Rényi (1959) introduced probabilistic methods in graph theory. The authors’
main idea can be summarized along the following lines:

“The random graph model . . . assumes that we start with N vertices and
connect each pair of vertices with probability p” (Barabási & Albert, 1999,
p. 510).

In this subsection, we consider the case of N = 20.

8.1.1 Explaining p

Of
(

20
2

)
= 190 possible edges, we actually realize a fraction p.

Therefore, we should expect, e.g.

• None for p = 0
• 38 edges for p = 0.2
• 76 edges for p = 0.4
• 114 edges for p = 0.6
• 152 edges for p = 0.8
• All for p = 1 (fully connected)
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p=0 p=0.2 p=0.4

p=0.6 p=0.8 p=1

Figure 8.1: Static random networks with different values for p

Note that in Figure 8.1, we are using a combination (“Combination,” 2017) to compute
the number of possible edges, which implies the following:

• Without repetition there are no self-edges.
• We consider undirected graphs, because order is not important.

8.2 Small World Model of Watts and Strogatz

Watts and Strogatz offer these instructions for creating small world networks:

“Starting from a ring lattice with n vertices and k edges per vertex, we
rewire each edge at random with probability p” (Watts & Strogatz, 1998, p.
440).

The networks depicted in Figure 8.2 derive their name from social psychological
experiments from the 1960s documented by Milgram (1967). They were conducted
to test whether the claim that humans inhabit “a small world” can be empirically
corroborated. The folk notions of the “small world” mainly arose because many can
report some apparently incredible coincidences of mutual acquaintances when meeting
complete strangers.
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p=0 p=0.05 p=0.1

p=0.2 p=0.5 p=1

Figure 8.2: Small world networks with different rewiring probabilities p

To prepare the experiment, researchers chose two target persons from the vicinity of
their university (Harvard) in Massachusetts on the East Coast. Then, they decided on
two places in the middle of the United States: Wichita, Kansas and Omaha, Nebraska.
From these two cities, they sampled several hundred starting persons who received a
package: It contained the name of one of the target persons and instructions:

If you do not know the target person on a personal basis, do not try to
contact him directly. Instead, mail this folder . . . to a personal acquaintance
who is more likely than you to know the target person . . . it must be someone
you know on a first-name basis. (Milgram, 1967, p. 64)

Then, the proband was encouraged to send a postcard justifying his choice and providing
sociodemographic information of the acquaintance to the researchers. This allowed to
keep track of the packages.

What were the results? In the Nebraska group, 160 participants got the package, 44
reached their target and 11611 died out before doing so. Those that were completed,
however, reached the target person through a surprisingly low number of 2 to 10
intermediate acquaintances, with a median of 5. Therefore, the author concluded that

11In the original paper there is a mistake: “Of 160 chains that started in Nebraska, 44 were
completed and 126 dropped out” (Milgram, 1967, p. 65). In a diagram next to the text, also 44
completed itineraries are mentioned, therefore we conclude that, very likely, 126 is the wrong number.
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the claim of a “small world” can indeed be empirically justified.

Subsequently, more systematic experiments by Travers & Milgram (1969) on long
distance acquaintance chains led to the development of the “small-world method” in
the study of social networks.

8.3 Barabási–Albert Model

The authors provide the following description for creating a Barabási–Albert (BA)
network:

. . . starting with a small number (m0) of vertices, at every time step
we add a new vertex with m(≤ m0) edges that link the new vertex to m

different vertices already present in the system. To incorporate preferential
attachment, we assume that the probability Π that a new vertex will be
connected to vertex i depends on the connectivity ki of that vertex, so that
Π(ki) = ki/

∑
j kj . After t time steps, the model leads to a random network

with t + m0 vertices and mt edges. (Barabási & Albert, 1999, p. 511)

With these instructions, BA networks can be created from different starting
configurations, which introduces a certain degree of arbitrariness. For example, it is
not clear ether a vertex can link to the same vertex more than once, i.e. if multiedges
are allowed.

8.3.1 Growth

BA networks are dynamically created, i.e. they grow by the addition of new nodes. This
is different from random networks and small world networks, which are static, at least
in their original formulations: Their size has to be set beforehand, while BA networks
can in principle grow endlessly.

8.3.2 Preferential Attachment12

Preferential Attachment (PA) is also referred to as a “rich-get-richer” process: Nodes
with more links have a higher probability of receiving a newly created link. The number
of links a node possesses is also called the degree of that node. “The degree distribution
P (k) of a network is then defined to be the fraction of nodes in the network with
degree k” (“Degree distribution,” 2017). A PA process creates degree distributions that
are characterized by a power law. This is intriguing, because with this, findings from

12Figure 15.2 in the Appendix shows the history of this idea.
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1) 2) 3)

4) 5) 6)

Figure 8.3: Barabási–Albert models with different starting configurations

network science are added to the wide range of empirical data where power laws are
commonly found (for an early overview see Simon, 1955).

Size m0 m
1) 10 2 2
2) 10 4 4
3) 10 6 6
4) 20 2 2
5) 20 4 4
6) 20 6 6

Table 8.1: Parameters used for creating the BA networks of Figure 8.3

Figure 8.4 exemplifies the dynamics of the growth of a BA network with the following
parameters at different time steps:

• m0 = 2
• m = 2
• Growing until time step t = 30

Vertex size corresponds to vertex degree. The formation of hubs (nodes with a degree
that is much higher than the average degree), is clearly visible.
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t=1−5 t=6−10 t=11−15

t=16−20 t=21−25 t=26−30

Figure 8.4: Dynamical evolution of a Barabási–Albert model

8.3.3 The Linearized Chord Diagram (LCD)

In the introduction to this Section 8.3, the original description of the process that
creates a BA network is vague. For example, “as the degrees are initially zero, it is
not clear how the process is supposed to get started” (Bollobás, Riordan, Spencer, &
Tusnády, 2001, p. 281). Also, the precise initial configuration of m0 is not specified.
For a rigorous mathematical treatment, the need for strict protocol arose. The proposal
by Bollobás et al. (2001) became the new standard, under the name “Linearized Chord
Diagram (LCD)” (Barabási, 2017, Section 5.3).

As an illustration, we consider the case of m = 1 under LCD: We start from graph
(t = 0) with no nodes and add one node (t = 1). This node creates a self-edge, as it has
no other possibility than to link to itself. At t = 2, node 2 is created. Equation (8) gives
the probabilities of 2

3 of it linking to node 1 and 1
3 of linking to itself. Following this

schema, we can then compute the network for any number of subsequent time steps.

p =


ki

2t−1 , if 1 ≤ i ≤ t− 1
1

2t−1 , if i = t
(8)

We see that, according to LCD, self-edges and multiple edges are explicitly allowed.
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q=0 q=0.2 q=0.4

q=0.6 q=0.8 q=1

Figure 8.5: Q-networks with different values for q

8.4 q-Networks / Hybrid Networks

Namatame & Chen (2016, pp. 48–49) describe a network structure that is a hybrid
between a dynamical random and a BA network, called the q-network.

8.4.1 Parameter q

A proportion q of all realized links—itself a fraction p of all logically possible links—is
preferentially attached.

A proportion 1− q is randomly attached.

• q = 0 creates a purely random network.
• If q ∈ ]0, 1[, a hybrid is created.
• q = 1 creates a purely scale-free network with PA.

In Figure 8.5, vertex size again corresponds to vertex degree. The transition from a
random network (upper left) to a BA network (bottom right) is characterized by the
formation of hubs.
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9 Collective Belief Updates

9.1 Adjacency Matrices

A network can be fully represented by an adjacency matrix. For example, this matrix
shows the dynamic BA network of Section 8.3.3 (Figure 8.4) at timestep 10:

1 2 3 4 5 6 7 8 9 10 11
1 0 1 0 0 0 0 0 0 0 0 0
2 1 0 1 1 1 1 1 0 1 1 1
3 0 1 0 0 0 1 0 0 1 0 0
4 0 1 0 0 1 0 0 0 0 0 0
5 0 1 0 1 0 0 0 0 0 0 0
6 0 1 1 0 0 0 0 0 0 1 0
7 0 1 0 0 0 0 0 1 0 0 0
8 0 0 0 0 0 0 1 0 0 0 0
9 0 1 1 0 0 0 0 0 0 0 0
10 0 1 0 0 0 1 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0 0

Table 9.1: Adjacency Matrix

The rows show the links connecting to the the node specified in the row heading. The
columns specify the links from the node specified in the column heading: 1 means there
exists a link; 0 stands for “no link”. (for an introduction see M. Newman, 2010, Part
II). Because our network is undirected, the adjacency matrix is symmetric. If node 6
connects to node 10 ([6,10]=1), node 10 also connects to node 6 ([10,6]=1).

9.2 Influence Matrices

9.2.1 Baseline

By dividing every entry of a row by the row sum, we obtain the so-called “influence
matrix” of Table 9.2. This matrix is not symmetric anymore: e.g. while node 1 is fully
influenced by node 2, it is only 1 of 9 nodes influencing node 2, i.e. [2,1]=1/9. At this
stage, all nodes connected to a node exert equal influence, i.e. averaging with uniform
weights is applied. Also, nodes place no weight on themselves.
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1 2 3 4 5 6 7 8 9 10 11
1 0 1 0 0 0 0 0 0 0 0 0
2 1/9 0 1/9 1/9 1/9 1/9 1/9 0 1/9 1/9 1/9
3 0 1/3 0 0 0 1/3 0 0 1/3 0 0
4 0 1/2 0 0 1/2 0 0 0 0 0 0
5 0 1/2 0 1/2 0 0 0 0 0 0 0
6 0 1/3 1/3 0 0 0 0 0 0 1/3 0
7 0 1/2 0 0 0 0 0 1/2 0 0 0
8 0 0 0 0 0 0 1 0 0 0 0
9 0 1/2 1/2 0 0 0 0 0 0 0 0
10 0 1/2 0 0 0 1/2 0 0 0 0 0
11 0 1 0 0 0 0 0 0 0 0 0

Table 9.2: Influence Matrix Without Self-Edges

9.2.2 Self-influencing

In a next step, we add self-edges to account for the fact, that nodes may influence
themselves, too:

1 2 3 4 5 6 7 8 9 10 11
1 1/2 1/2 0 0 0 0 0 0 0 0 0
2 1/10 1/10 1/10 1/10 1/10 1/10 1/10 0 1/10 1/10 1/10
3 0 1/4 1/4 0 0 1/4 0 0 1/4 0 0
4 0 1/3 0 1/3 1/3 0 0 0 0 0 0
5 0 1/3 0 1/3 1/3 0 0 0 0 0 0
6 0 1/4 1/4 0 0 1/4 0 0 0 1/4 0
7 0 1/3 0 0 0 0 1/3 1/3 0 0 0
8 0 0 0 0 0 0 1/2 1/2 0 0 0
9 0 1/3 1/3 0 0 0 0 0 1/3 0 0
10 0 1/3 0 0 0 1/3 0 0 0 1/3 0
11 0 1/2 0 0 0 0 0 0 0 0 1/2

Table 9.3: Influence Matrix With Self-Edges

In this case, a node places as much weight on itself as it does on the other nodes
connected to it. We can also introduce a parameter (say, s) that defines how much
more weight it puts on it itself (for example, double or triple the weight it places on
others). This can lead to interesting scenarios with sticky beliefs.

9.3 Markov Chain Theory

The self-influencing influence matrix in Section 9.2.2 is a row stochastic matrix, i.e. its
rows add up to 1. It can be interpreted as a finite state Markov chain, which can be
defined along these lines:
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Let the finite set of states be denoted S. If the state of the system is st = s

at time t, then there is a well-defined probability that the system will be in
state st+1 = s′ at time t + 1. Let Π be the n× n matrix describing these
transition probabilities with entries Π = Pr(st+1 = s′|st = s) (Jackson,
2010, p. 161).

These matrices Π are called Markovian to refer to their memorylessness.

9.3.1 Two Properties

It is useful to know two facts about Markov chains:

Irreducibility of a Markov chain refers to the property that for any two pairs
of states there is a positive probability of reaching one from the other at
any future point if we start from the first.

As we are dealing with a matrix that was derived from a full representation of a network,
this can be translated into saying that this network has to be connected. This means
that “there is a path between every pair of vertices” (“Connectivity (graph theory),”
2017), i.e. there are no isolated nodes. For the BA networks and the q-networks created
in this thesis this is always the case, because we always add new nodes to existing ones13.
Small world networks are connected by definition, as they set out as ring networks.
For random networks, the necessary connection probability p depends on the size n of
the network. Whether a random network will be connected, can be checked with the
following condition (“Erdős–Rényi model,” 2017):

If p > (1+ε) ln n
n

the random graph will almost surely be connected.

In the case of n = 20 (as in the visualizations in Section 8.1) this amounts to requiring
p ≥ 0.15 in order to ensure connectedness.

Aperiodicity of a Markov chain means that “the greatest common divisor of
its cycle lengths is one” (Jackson, 2010, p. 162).

The length of a cycle refers to the number of “hops” it takes from a state s to reach s

again. In the examples of our networks, it suffices to say that the presence of self-edges
makes the associated influence matrix aperiodic.

13Note that if one creates BA networks strictly according to LCD, there is the possibility (albeit a
very remote one) that a node comes into existence, links to itself and receives no links from then on.
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9.3.2 Steady State

The “Perron–Frobenius theorem” implies that the largest eigenvalue of an irreducible
matrix with non-negative entries is real-valued (Jackson, 2010, pp. 77–78;
“Perron–Frobenius theorem,” 2017). For a row stochastic matrix14 (like our influence
matrix with self-edges in Section 9.2.2), this eigenvalue will be 1 (unit eigenvalue)
and its associated left-hand eigenvector will be non-negative. If we normalize this
eigenvector to 1, it then contains the so-called steady state distribution of the matrix.

9.3.3 Interpretation in Opinion Dynamics

It is possible to derive very precise predictions about the long run behaviour of a system
that can be described as a Markov chain: If the steady state is reached, the system stays
there. In our context, this means that the steady state distribution of the influence
matrix (which is a Markov chain) contains the limiting influence of every agent on the
network, i.e. the influence each agent has in the steady state.

9.4 The Collective Belief Update Mechanism

The information from the previous sections allows to detail the way the actual collective
belief update works. First, we create a specific network configuration that is converted
into an adjacency matrix. This is then turned into an influence matrix. Next, we
obtain the limiting influences through computation of the normalized15 eigenvector
corresponding to the unit eigenvalue of the influence matrix.

In the next step, a certain number of individual belief updates is computed16. After
the series of (typically: 10) individual belief updates—called a phase—one collective
update takes place. In a simplified example of only five agents, this would resemble the
following:



1/5 2/15 2/15 1/5 1/3
1/5 2/15 2/15 1/5 1/3
1/5 2/15 2/15 1/5 1/3
1/5 2/15 2/15 1/5 1/3
1/5 2/15 2/15 1/5 1/3





0.00 0.01 0.06 0.13 0.19 0.17 0.24 0.14 0.05 0.00 0.00
0.00 0.00 0.02 0.08 0.15 0.17 0.28 0.20 0.07 0.01 0.00
0.00 0.00 0.01 0.05 0.11 0.16 0.31 0.24 0.10 0.01 0.00
0.00 0.00 0.00 0.03 0.08 0.13 0.31 0.29 0.14 0.02 0.00
0.00 0.00 0.00 0.01 0.05 0.11 0.30 0.32 0.18 0.03 0.00



14Again, this term denotes a matrix with rows that all add up to 1.
15Again, normalized to 1.
16See, Section 2.
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The left matrix contains the limiting influence of the agents.

The right matrix contains:

• Rows: A subjective probability distribution for the respective agent over the
eleven biases.

• Columns: The degree of belief in the respective hypothesis of every agent about
each of the (possible) biases of the coin.

By multiplying the two matrices we perform a collective belief update. We arrive at a
matrix containing the limiting beliefs of the agents. A new phase of individual updating
is performed and is then followed by another collective update, along the lines described.
This process if repeated until an established number of phases is reached.

10 Comparison of network types

10.1 Certainty of Evidence

We ran simulations of 300 phases, i.e. coins are tossed 300 × 10 times in total, with the
following settings:

• Each of the four different types of networks is populated with 50 agents of each
type.

• Evidence is fully certain.

• The true bias is 0.5.

In the following you can see a comparison of the results of updating according to the
two agent types on different networks:
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We see that the speed advantage of the explanationist (using IBE) persists also in the
collective scenario. IBE reaches a very high threshold (> 0.99) within 300 phases on all
of the network topologies. The (Standard) Bayesian does so only on the small world
network and q-network.

10.2 Uncertainty of Evidence

In this section, certainty of evidence is uniformly distributed over all agents with a mean
of 0.79 and standard deviation of 0.12. The mean uncertainty therefore corresponds
(almost) to the value used in Section 6 (“fixed certainty”). Everything else is as before.
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The speed advantage of the explanationist (using, in this case, IBE*) is now more
pronounced. Also, the Bayesian (JC) is not as accurate. It does not arrive at a degree
of belief in the true bias that is as high as that of IBE*.

10.2.1 Findings from the Collective Domain

Generally, collective belief updating is slower than individual updating. The
explanationist shows collectively even more pronounced speed advantages than in
individual updating.

10.3 The Influence of Network Topology on Speed

How do the parameters used in creating networks influence the number of (individual
and collective) updates needed to (permanently) cross threshold? To answer this
question, we created several networks of each type with different parameters. The
values reported in the tables below denote the number of phases. Minimum values are
highlighted to allow for easier comparison.

The following parameters stay fixed:

• We simulate 500 phases and therefore 500× 10 = 5000 tosses.
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• We create 50 agents per network.

• Certainty is uniformly distributed over all agents in [0.6, 1], which results in a
mean of ≈ 0.817.

• Bias is 0.5.

Table 10.1: Random Networks: # of phases needed to cross threshold of 0.95 for
different connection probabilities p

0.25 0.3 0.35 0.4 0.5 0.6 0.7 0.8 0.9 1

Bayes 347 337 340 495 - 490 - 457 491 -
Expl 49 47 45 38 37 37 37 37 37 37

When p becomes larger than 0.35 for random networks, the Bayesian starts to slow
down (or does not cross threshold at all). This is different for the explanationist: If the
number of realized edges

(
N
2

)
· p increases with p, the explanationist becomes quicker.

Table 10.2: Small World Networks: # of phases needed to cross threshold of 0.95 for
different rewiring probabilities p (continued below)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

Bayes 299 266 228 229 229 246 252 403 346 342 339 416 388
Expl 44 49 47 44 47 44 44 38 36 37 36 37 40

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Bayes 396 275 288 288 342 265 304 281
Expl 37 37 33 37 33 38 33 38

The explanationist is quicker on small world networks with high p. The performance of
the Bayesian is better with small values of p.

For the analysis of BA networks, column labels refer to the number of nodes in the
starting configuration (m0). Row labels show the number of edges that are added from
each node that came into existence to already existing nodes (m).

17For a (continuous) uniform distribution we can compute the expected mean E(X) = 1
2 (a + b),

with a, b being the boundaries.
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2 4 6 8 10
2 306 415 393 419 393
4 261 356 367 429 438
6 284 403 418 398 457
8 251 308 393 372 379
10 287 369 393 - 398

Table 10.4: BA Networks: # of phases needed to cross threshold of 0.95 for different
starting configurations (Bayesian)

2 4 6 8 10
2 38 39 34 34 39
4 38 39 29 34 39
6 39 39 34 29 39
8 38 30 34 39 39
10 38 29 35 39 39

Table 10.5: BA Networks: # of phases needed to cross threshold of 0.95 for different
starting configurations (Explanationist)

For the following matrices on q-networks (Tables 10.6 and 10.7), column labels
correspond to the number of nodes in the starting configuration and to the number of
links added per round. Rows depict the value of q.

2 4 6 8 10
0 243 332 399 416 352
0.1 322 323 455 455 297
0.2 398 334 454 275 364
0.3 341 339 292 331 352
0.4 340 229 319 457 373
0.5 295 299 405 456 352
0.6 301 373 407 375 260
0.7 340 455 417 290 375
0.8 415 472 286 370 345
0.9 341 301 340 353 443
1 241 353 407 448 357

Table 10.6: q-Networks: # of phases needed to cross threshold of 0.95 for different
starting configurations (Bayesian)
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2 4 6 8 10
0 43 44 38 37 39
0.1 53 49 38 38 40
0.2 48 48 40 51 40
0.3 53 49 51 40 38
0.4 49 53 40 40 37
0.5 50 53 40 40 38
0.6 48 48 38 37 41
0.7 49 38 38 37 38
0.8 48 38 43 40 39
0.9 44 37 37 39 42
1 53 44 38 39 32

Table 10.7: q-Networks: # of phases needed to cross threshold of 0.95 for different
starting configurations (Explanationist)

For the explanationist, a q-network with parameters that disable the creation a hybrid
is the fastest: With q = 1, it is in fact a BA network. This is in line with the findings
at the beginning of this section, which show that random networks (at the opposite
extreme of q-networks) are generally slower to converge than BA networks.

In summary, it can be said that in the collective scenario the explanationist is always
faster in assigning a degree of belief above threshold of 0.95 to the true bias. This holds
for all the different network topologies examined in this section.

11 Objections and Challenges

In this section we want to provide some remarks on controversies regarding the choice
of specific parameters and concepts used in our simulations.

11.1 The Threshold

It may be argued that the value for the threshold that the agents have to pass is set
arbritrarily. To some extent, this is the case. Nonetheless, this admission does not
mean that the problem has not been subjected to systematic inquiry. In this section
we try to provide arguments for the specific threshold values researched, in order to
answer the key question: Which degree of belief must be reached to make it rational
for an agent to believe in a proposition?

A good first start is to choose a number other than 1, but still close to it, e.g. 0.99.
We do not want to make absolute certainty our criterion, because that would be overly
strict: For example, in the simulation runs documented in this thesis, 1 is generally
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never reached18. Therefore, a threshold of 0.99 sounds like a good, first proposal.
However, that is not so. Let us consider the following example (“Lottery paradox,”
2017): Suppose that there is a lottery of 100 tickets, with 1 winning ticket. Because
P(Ticket 1 does not win)=0.99, under the chosen threshold it is rational to believe that.
The same is true for P(Ticket 2 does not win)=0.99, P(Ticket 3 does not win)=0.99
and so on, until P(Ticket 100 does not win)=0.99. If you believe that every single
ticket will not be the winning ticket, it is rational to believe the conjunction, i.e. no
ticket will win. Of course, now you run into a contradiction: You know that the lottery
is fair and believe that one ticket will win, while at the same time you believe that
no ticket will win. It turns out that the threshold cannot be different from 1 under
these assumptions19. But, we already excluded this possibility. Therefore, the so-called
“lottery paradox” poses a subtantial problem.

On the other hand, a natural lower bound seems exceed a threshold of 0.5, because, at
least, “you need to have more confidence in a proposition than in its negation” (Foley,
1992, p. 112). But, this time another paradox (D. C. Makinson, 1965) refutes this
proposal: You write a book in which you make many claims. You can defend all these
claims, i.e. your degree of belief is above the threshold (which is not 1, but sufficient for
belief). It is common for an author to take responsibility for any errors in their book’s
preface. You do so as well, because a lengthy book (like yours) is likely to contain a
few errors. Again, a contradiction occurs: You believe that all your claims in the book
are correct, while at the same time you believe that at least one of them may be wrong.
This contradiction even arises if you choose a threshold below 0.5: Also then, you have
to believe the conjunction, which contradicts the preface.

Generally, in philosophy of science “the relationship between the rationality of beliefs
and the rationality of degrees of belief” became known as “the Lockean thesis” (Foley,
1992, p. 111). There is an ongoing tradition of research in this domain, and it is still
heavily debated (for an overview see Huber, 2016).

11.2 Measures of Explanatory Goodness

In the simulations of this thesis, the best hypothesis is identified with a “frequentist”
measure. It is especially suited for the given scenario: If there is a binary event
{head, tail}, it can be coded {1, 0}. Then you sum up the observed evidence so far and
divide it by the number of tosses. You get a number in [0, 1] that can “naturally” be

18Although, after very many belief updates on coin tosses, the degree of belief in a bias may grow
that close to 1 that the internal logic of the programming language R eventually rounds it to 1.

19It may be possible to “sidestep” the lottery argument by giving up the conjunctivity assumption
(Foley, 1992, p. 117).
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translated into the “most explanatory” bias20 so far.

Of course, this is just one proposal that is well suited for the scenario investigated.
Speaking logically, there is an infinite number of possible measures: “IBE is best thought
of as a slogan that can be fleshed out in different ways” (Douven, 2016, p. 1). Douven
& Schupbach (2015a, p. 4) collect the following more advanced measures from the
literature:

Popper’s measure: Pr(E|H)− Pr(E)
Pr(E|H) + Pr(E)

Good’s measure: ln Pr(E|H)
Pr(E)

The measure of Schupbach & Sprenger (2011): Pr(H|E)− Pr(H|¬E)
Pr(H|E) + Pr(H|¬E)

11.3 Network Hype

As mentioned earlier, there has been a boom in network science since the end of the
1990s. In particular, networks that display scale-free properties, such as BA networks,
have become a center of attention. For many decades, evidence has been collected
from many different contexts, demonstrating the importance of power laws (e.g. from
economics, sociology and biology, see Simon, 1955). On the one hand consilience—the
convergence of evidence from (disparate) areas—adds to the relevance of the concept21.
On the other hand, there are also more and more dissenting voices that claim that
power laws are not as ubiquitous as often proclaimed (e.g. Clauset, Shalizi, & Newman,
2009).

It may be argued that a similar hype arose and, arguably, died out again around the
concept of “genetic algorithms.”22 It is still too soon to say whether network science
will share such a fate (or possibly undergo seasonal cycles, as the field of AI).

20Or into the two equal best biases, in case of a tie.
21For a recent treatment of the general concept, see Bookstein (2014). For a historical introduction,

Snyder (2012, Section 3).
22In this development, the name which is hinting at “confirmed, hard science” played an important

role.
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12 Epistemological Considerations

12.1 Simulations

Speaking generally, we can treat as a simulation “any system that is believed, or hoped,
to have dynamical behavior that is similar enough to some other system such that the
former can be studied to learn about the latter” (Winsberg, 2015, Section 1.1). In this
view, a simulation shares many characteristics of a model23: It can be studied as a
surrogate of some interesting phenomenon.

A classical example of a simulation is the working hydraulic scale model of the San
Francisco Bay and Sacramento-San Joaquin River Delta System24, completed in 1957
(“U.S. Army Corps of Engineers Bay Model,” 2017). It was build on a scale of 1:1000
on the horizontal axes and 1:100 on the vertical axis. The authorities used it to test
the effect of interventions in the area that were proposed by engineers.

12.2 Computer Simulations

Computer simulations have their roots in nuclear physics and weather science. Defined
narrowly, “a computer simulation is a program that is run on a computer and that uses
step-by-step methods to explore the approximate behavior of a mathematical model”
(Winsberg, 2015, Section 1.1) Computer simulations began to be used in physics in
the analysis of systems characterized by differential equations that could not be solved
analytically. The more and more widespread availability of digital computers made
simulations a (potential) tool of almost any scientific discipline.

For the present purposes, we can almost work with the narrow definition above, we just
have to alter one part of it: We are not only interested in equation-based modeling, but
in agent-based modeling. In this context, an agent is best thought of as a container. It
can be filled with any interaction rules, not exclusively mathematical ones. Crucially,
we are interested in non-equilibrium states: These are often hard to model purely
mathematically.

One of the main strengths of agent-based simulations lies in their ability to extend
current scientific knowledge. Conventional, purely mathematical assumptions can be
relaxed or replaced by local interaction rules. Therefore assumptions show that they
are heuristic. They are stepping stones, that are employed in a method of successive
approximation (Musgrave, 1981, p. 383) towards more and more realistic ones.

23In fact, the two names are commonly used interchangeably.
24Figure 15.3 shows it as it is currently displayed in a museum.
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Although computer simulations share many characteristics of conventional
(mathematical) models, they introduce (at least) one new component: Errors
that may arise from the specific system used for creating the simulation. This includes
malfunctioning of programming packages, compilers and hardware, among other things.
An example would be the specific way of “randomizing the agent call order, where
various methods — with different effects on output — are possible” (Epstein, 1999, p.
52).

Its pioneers saw computer science as the empirical study of machines: “Each new machine
that is built is an experiment” (Newell & Simon, 1976, p. 114). At the same time,
computer simulations run on these machines may constitute “experiments” of their own.
It can be argued that these experiments are identical to those in the natural sciences.
Classic experiments can be conducted—if not on the physical targets themselves—on
a substitute that is often qualitatively similiar. The “in silico” experiments run on
computers are generally more abstract. Nonetheless, this can prove to be an advantage
if experiments on the study material itself cannot be conducted because they would be
practically impossible or unethical, for example.

To make the attempt at developing a binding thread, a fitting characterization of the
type of computer simulation developed in this thesis could be argued along the following
lines:

A computer simulation is a program that is run on a computer and that
uses step-by-step methods to explore the inter-actions between agents and
the intra-actions between the constituting processes of an agent.

12.3 The Context of Social Science

In his methodological discussion, Epstein (1999) puts forwards the argument that the
adoption of agent-based modelling made the social sciences generative. According to
Epstein, this approach cannot be classified as neither inductive or deductive in a classical
sense25. He dismisses the first because no generative social scientist just “assembles
macroeconomic data and estimates aggregate relations econometrically” (p.43). His
argument stops here, but it can be extended: In general, no researcher is ever able to
proceed in a naive inductive way. This is due to several reasons, one of them being the

25An inductive inference “passes from singular statements . . . such as accounts of the results of
observations or experiments, to universal statements, such as hypotheses or theories”. Deduction works
the other way round: “From a new idea . . . - an anticipation, a hypothesis, a theoretical system, or
what you will - conclusions are drawn by means of logical deduction” (Popper, 1959/1983, pp. 27–34).
These conclusions (also called predictions) can then be tested empirically. Their veri- or falsification
extends also to the theory they originate from.
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problem of theory-ladenness. Leaving aside perception26, there are at least two more
aspects of this argument.

Semantically, there will never be a neutral term for an observation. “[T]heoretical
commitments exert a strong influence on observation descriptions” (Bogen, 2017). In
the history of science, a swinging stone became a pendulum for some but not for others,
who stayed with seeing constrained fall. With the concept of “transaction costs” in
economics, accounts of the emergence of institutions are likewise understood differently.

Background knowledge also co-determines the salient features of an observation. It may
well be that different data will be collected by researchers with different theoretical
beliefs. If a theory does not account for systemic risks, its proponents will not spend
time researching the tipping points of large interconnected structures such as the
interbanking network (research that has in fact only recently been carried out, cf.
Battiston et al., 2016). Data is not given, but collected because of decisions driven by
theoretical demands. For example, the demand to collect more precise information (tax
records) about the distribution of wealth is driven by a newly established (or better:
revived) research program on inequality (A., 2014).

Deduction is more closely related to generative social science. Theoretical computer
science can show that in principle “for every computation there is a corresponding
logical deduction” (Epstein, 1999, pp. 43–44). But, generative implies constructive: In
deduction, this is not always the case, as non-constructive existence proofs show.

Epstein advocates to choose between models according to their power in prediction.
If two models are equally good in predicting a macrophenomenon, the underlying
microstructures should be compared. The one that is more in line with the data
collected in laboratoy experiments should be preferred. Good agent-based models
capture structures and dynamics.

In principle, one could come up with differential equations that describe the dynamics
of a system over time. Why would one need agent-based models then? The answer
lies in their explanatory power: Agent-based models are characterized by a bottom-up
approach. It is possible to draw inferences from agent behaviour to (emergent) macro
phenomena. A set of differential equations is “devoid of explanatory power despite its
[potential] descriptive accuracy” (Epstein, 1999, p. 51).

All of the reasoning above culminates in the generativist motto:

26In this context, Thomas Kuhn invokes his famous duck-rabbit (Figure 15.1 in the Appendix).
The picture “shows that two men with the same retinal impressions can see different things.” This
implies, that “sensory experience” is not “fixed and neutral”.(1970, pp. 126–127) Although they are
commonly used interchangeably—from an etymological point of view—the word fact (Latin “factum”,
“that which was made”), is more compatible with this view than the word data (Latin “datum”, “that
which was given”).
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“If you didn’t grow it, you didn’t explain its emergence” (Epstein, 1999, p.
43).

This amounts to creating a simulated world as a means to test theories against the real
world.

13 Conclusions and Outlook

13.1 Interdisciplinarity

We are using methods from computer science to investigate questions from philosophy,
in particular from the subfield of formal epistemology. We are only aware of scant
and scattered work27 on computational methods in philosophy (an early, rudimentary
example is Van Fraassen, Hughes, & Harman, 1986), although simulations carry huge
potential for this field. Additionally, we build on, compare, and aim to reconcile and
integrate work in the social sciences on agents and networks. This is complemented
by mathematics (graph theory). Network science arose out of graph theory, and is by
now one of the core disciplines of complexity science, itself a highly interdisciplinary
field. Finally, statistics is not only at the heart of Bayesian modeling, but is also used
to evaluate simulation results.

13.2 Computing Power

In the case of collective belief updates, even with (only) 50 agents, a standard laptop of
2014 (such we currently use) showed its limits. Especially the analysis of the effect of
different parametrisations (as in Section 10.3) leads to long waiting times. With access
to more computing power, it would be possible to devise much more complex scenarios
of collective dynamics.

Memory limitations are an important class of problems that arise when using the
programming language R: The exclusive storage of data structures in working memory
ensures quick computations but creates frequent (overflow) errors. This is a relict of
the past to some degree. By now, new performant hardware is commonly available. In
Principal, it should be possible to use solid state drives as virtual memory if needed.
At the moment, however, without the use of (mostly unstable) external packages, the
manipulation of large data structures (for example, adjacency matrices of very large
networks) is limited by the available RAM. Access to professional systems equipped

27Although this may be changing, see for example Knobe (2015).
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with large working memory enables collection of much more fine-grained temporal data
on a much bigger scale (e.g. with hundreds or thousands of agents).

13.3 Further Extensions

The next logical step for the scenarios investigated in this thesis would be an
implementation of a version of the “DeGroot model” developed by Krause (Jackson,
2010, pp. 293–327). There, agents connect to a subset of other agents and update only
if the other agents have beliefs similiar to them. This amounts to establishing an
intervall of acceptable beliefs for every agent. Any of the other agents that falls into this
intervall is an acceptable updating partner and gets linked. In this way, the network
becomes partitioned into sets of agents that perform internal belief updates. Agent
interactions play the dominant role in the model. On the downside, the mathematics
becomes more complicated, e.g. consensus of beliefs is not always guaranteed. Also,
only indirect control for the effect of a specific network topology is possible, because the
agents create the network themselves. Possible interventions then include manipulating
the range of acceptable beliefs, or the distribution of certainties over all agents (e.g.,
via so-called coordination media).

It could also be expected to be rewarding to work out the differences of network
topologies in more detail. To do so, it may be illuminating to start with very simple
“grid networks”, to have an even more stark contrast to dynamical networks.

In the end, the proof of the pudding stays in the eating: The big question is how to
overcome toy model aspects. Krackhardt (1987) collected questionnaires from a small
manufacturing firm and constructed an influence matrix from them. Along these lines,
one could study the dynamics of information hierarchies, e.g. with the following scenario:
One agent is really close to the source (almost certainty of evidence), for the other
agents this varies according to their distance to the “chosen one”.
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Figure 15.1: Kuhn’s Duck-Rabbit

Source: https://commons.wikimedia.org/wiki/File:PSM_V54_D328_Optical_illusion_of_a_duck_
or_a_rabbit_head.png
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Figure 15.2: History of Preferential Attachment

Source: http://barabasi.com/f/622.pdf
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Figure 15.3: View of the San Francisco Bay portion of the Bay Model

Source: https://upload.wikimedia.org/wikipedia/commons/thumb/8/87/USCAE_Bay_Model_-_
San_Francisco_Bay_Detail.jpg/1280px-USCAE_Bay_Model_-_San_Francisco_Bay_Detail.jpg
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