
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

Containerized Data-Intensive Applications

on Scientific Clusters

verfasst von / submitted by

Manfred Cerny-Käfer, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien 2017 / Vienna 2017

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 940

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Scientific Computing

Betreut von / Supervisor: Univ.-Prof. Dr. Siegfried Benkner
Mitbetreut von / Co-Supervisor: Dipl.-lng. Yuriy Kaniovskyi, Bakk. techn.

Abstract

Container virtualization provides effective isolation for software installa-

tions and tasks with very low performance overhead compared to virtual ma-

chines.

Traditional HPC-oriented environments used by different scientific groups

often need to support several frameworks and software stacks which creates

considerable maintenance effort. The use of container virtualization enables

fast deployment of new software stacks while avoiding any unwanted side

effects affecting other software containers or natively installed software.

Many diverse frameworks have emerged for specific purposes like running

scientific computations using MPI or processing of huge amounts of data with

frameworks like Apache Spark and Apache Hadoop. For optimal resource uti-

lization it is often desirable to run multiple frameworks in the same cluster,

sometimes even simultaneously. The use of appropriate cluster and resource

managers enables sharing of the cluster which allows sharing access to dis-

tributed datasets avoiding the need to replicate large datasets across different

clusters. Hence, dynamic partitioning of the cluster can help to achieve high

utilization and efficient data sharing. Combining resource managers with

container virtualization potentially enables effective resource utilization of a

compute cluster environment while reducing the maintenance effort.

In this work, native and containerized installations of Apache Spark in

combination with diverse resource and cluster managers are set up and com-

pared with regard to individual advantages and drawbacks, setup effort and

difficulties and the usability from the end user perspective. Using different

benchmarks, the runtime performance of selected setup combinations is com-

pared to each other. Based on the experience, we describe which setups deliv-

ered the best runtime performance indicating eligibility for broader adoption

in HPC and conclude with a discussion of encountered problems and lessons

learned from the experiments.

Zusammenfassung

Container-Virtualisierung bietet effektive Isolation für Software-

Installationen und die Ausführungsumgebung zur Laufzeit mit geringem

Performance-Overhead im Vergleich zu virtuellen Maschinen.

Traditionelle Umgebungen im High-Performance-Computing, die von ver-

schiedenen wissenschaftlichen Gruppen genutzt werden, benötigen oft Un-

terstützung für mehrere Frameworks und Software-Stacks, was erheblichen

Wartungsaufwand verursacht. Die Verwendung von Container-Virtualisierung

ermöglicht den schnellen Einsatz neuer Software-Stacks, während eine un-

erwünschte Beeinflussung anderer Installationen oder Software-Container ver-

mieden wird.

Für bestimmte Zwecke, wie die Durchführung wissenschaftlicher Berech-

nungen unter Verwendung von MPI oder die Verarbeitung riesiger Daten-

mengen mit Frameworks wie Apache Spark oder Apache Hadoop, sind viele

verschiedene Frameworks mit spezifischen Anwendungsbereichen entstanden.

Um vorhandene Ressourcen optimal auszunützen, ist es oft erwünscht, mehre-

re Frameworks, manchmal auch simultan, im selben Cluster zu betreiben. Die

Verwendung geeigneter Cluster- und Ressourcenmanager ermöglicht die ge-

meinsame Nutzung eines Clusters durch mehrere Applikation und den Zugriff

auf verteilt gespeicherte Daten, ohne große Datenmengen aufwendig zwischen

verschiedenen Clustern kopieren zu müssen. Die dadurch ermöglichte dynami-

sche Partitionierung eines Clusters kann helfen, hohe Auslastung der Ressour-

cen und effizienten Zugriff auf verteilte Daten zu erreichen. Die Kombination

von Ressourcenmanagern mit Container-Virtualisierung ermöglicht potenti-

ell die effektive Auslastung der Ressourcen eines Clusters bei gleichzeitiger

Reduktion des Wartungsaufwands.

In dieser Arbeit werden native und Container-basierte Installationen von

Apache Spark in Kombination mit verschiedenen Cluster- und Ressourcen-

managern bezüglich ihrer individuellen Vor- und Nachteile, dem Installations-

und Konfigurationsaufwand und etwaiger Schwierigkeiten sowie der Benutzer-

freundlichkeit aus der Sicht des Anwenders verglichen. Mittels verschiedener

Benchmarks wird das Laufzeitverhalten ausgewählter Kombinationen ermit-

telt. Basierend auf den Erfahrungen aus den Experimenten beschreiben wir

die Varianten mit dem besten Laufzeitverhalten, die für breiteren Einsatz im

High-Performance-Computing geeignet scheinen und schließen mit einer Dis-

kussion der aufgetretenen Probleme und möglicher Lösungsansätze.

Contents vii

Contents

List of Figures x

List of Tables xii

List of Listings xiii

1 Introduction 1

1.1 Research Objective . 2

1.2 Chapter Overview . 2

2 Related Work 5

2.1 HPC vs. Big Data Infrastructure . 5

2.2 HPC Batch Schedulers vs. Datacenter Resoure Managers 6

2.3 Virtualization and Containers in HPC 6

2.4 Benchmarking and Optimizing Data-Intensive Applications 7

2.5 Scientific Cluster Hardware Power Measurement 8

2.6 Frameworks . 8

3 Virtualization 11

3.1 Motivation and Benefits . 11

3.2 Types of Virtualization . 12

3.2.1 Full Virtualization . 12

3.2.2 Full Virtualization with Paravirtualized Drivers 13

3.2.3 Paravirtualization . 13

3.2.4 Operating-System-Level Virtualization 14

3.2.5 Docker . 14

3.2.6 Rkt Container Engine . 15

3.3 Hardware Support for Virtualization 17

viii Contents

4 Cluster and Resource Management 19

4.1 HPC vs. Big Data Infrastructure . 20

4.2 Cluster Management Overview . 20

4.3 Standalone Cluster Management . 21

4.4 General Cluster and Resource Management Software 22

4.5 Resource Abstractions . 22

4.6 Modeling Cluster Resources . 22

4.7 Resource Scheduling . 23

4.8 Cluster and Resource Management Frameworks 23

4.8.1 Apache Mesos . 23

4.8.2 Apache Hadoop YARN . 26

4.8.3 Docker Swarm . 27

5 Data-Intensive Applications Running on Scientific Clusters 29

5.1 Apache Spark . 30

5.1.1 Spark Architecture . 30

5.1.2 Submitting Applications to Spark 31

6 Preparing for the Experiments 33

6.1 Test Environment . 33

6.2 Infrastructure Preparation . 33

6.2.1 Apache Hadoop Installation and Configuration 34

6.2.2 Apache Spark Installation . 35

6.2.3 Docker Installation . 35

6.2.4 Private Docker Registry Installation 35

6.2.5 Apache Mesos Installation . 36

6.3 Benchmarks . 38

6.3.1 Pi Approximation . 38

6.3.2 Spark-Bench . 39

6.3.3 Spark-Bench Installation and Setup 40

6.3.4 Spark-Bench Benchmark Configuration 40

7 Running the Experiments 43

7.1 Native Apache Spark . 43

7.1.1 Native Apache Spark with Standalone Cluster Manager 43

7.1.2 Native Apache Spark with YARN 47

7.1.3 Native Apache Spark with Mesos 48

Contents ix

7.2 Containerized Apache Spark . 50

7.2.1 Containerized Apache Spark with Standalone Cluster Man-

ager using Host Networking 51

7.2.2 Apache Spark with Standalone Cluster Manager in Docker

Swarm . 53

7.2.3 Containerized Apache Spark with Mesos 58

8 Benchmark Results 63

8.1 Pi Approximation Benchmark Results 63

8.2 K-Means Clustering Benchmark Results 65

8.3 Terasort Benchmark Results . 66

9 Future Development 71

9.1 Sharing Cluster Resources Between Diverse Scientific Workloads . . . 71

9.2 Persistent Storage . 72

10 Conclusion and Lessons Learned 75

10.1 Conclusion . 75

10.2 Lessons Learned . 76

10.2.1 Docker Releases . 76

10.2.2 Docker and Linux Kernel Versions 76

10.2.3 Security . 77

Appendices 79

A Summary of Used Technology and Tools 79

B Building the Docker Images . 81

B.1 Building the Base Docker Image 81

B.2 Building the Spark Docker Image 81

B.3 Building the Spark-Bench Docker Image 83

B.4 Building the Spark-for-Mesos Docker Image 85

C Timing Measurement Data . 88

Bibliography 91

x List of Figures

List of Figures

3.1 Virtual Machines, adopted from [24] 16

3.2 Docker Containers, adopted from [24] 16

4.1 Mesos Architecture Overview, adopted from [18] 25

4.2 Mesos Architecture Example, adopted from [18] 26

4.3 Hadoop YARN Architecture, adopted from [10] 28

5.1 Spark Cluster Components, adopted from [13] 31

6.1 Nova Cluster Topology Overview . 34

7.1 Communication Pattern for Native Apache Spark with Standalone

Cluster Manager . 44

7.2 HDFS Access for Native Apache Spark with Standalone Cluster Man-

ager . 45

7.3 Communication Pattern for Native Apache Spark with Mesos Cluster

Manager . 49

7.4 Communication Pattern for Containerized Apache Spark with Stan-

dalone Cluster Manager Using Host Networking 51

7.5 Network Topology for Containerized Apache Spark with Standalone

Cluster Manager Using Docker Swarm Mode 54

7.6 Deployment Overview and Communication Pattern for Containerized

Apache Spark with Mesos . 59

8.1 Absolute Time Comparison for the Pi Approximation Benchmark . . 64

8.2 Relative Time Comparison for the Pi Approximation Benchmark . . . 65

8.3 Absolute Time Comparison for the K-Means Clustering Benchmark . 67

8.4 Relative Time Comparison for the K-Means Clustering Benchmark . 67

8.5 Absolute Time Comparison for the Terasort Benchmark 68

List of Figures xi

8.6 Relative Time Comparison for the Terasort Benchmark 69

xii List of Tables

List of Tables

1 Pi Approximation Benchmark Timing Data 88

2 K-Means Clustering Benchmark Timing Data 89

3 Terasort Benchmark Timing Data . 89

List of Listings xiii

List of Listings

6.1 Expand the Library Search Path . 36

6.2 Mesos Master Configuration File: mesos-master-env.sh 38

6.3 Mesos Agent Configuration File: mesos-agent-env.sh 38

6.4 Start Pi Approximation Using Spark Standalone Cluster Manager . . 39

6.5 K-Means Benchmark Configuration File 41

6.6 Terasort Benchmark Configuration File 42

7.1 Start Containerized Spark Master with Host Networking 52

7.2 Start Containerized Spark Worker with Host Networking 53

7.3 Copy Singularities Image from Docker Hub to Private Registry 56

7.4 Create an Attachable Overlay Network 56

7.5 Create Spark Master Service . 57

7.6 Create Spark Worker Service . 57

7.7 Spark Configuration for Mesos with Docker: spark-defaults.conf . 60

7.8 Start Spark Shell in Docker Container with Spark-for-Mesos Docker

Image . 60

B.1 Dockerfile for the Base Docker Image with Java SDK 82

B.2 Dockerfile for Apache Spark Based on the Base Docker Image 83

B.3 Dockerfile for the Spark-Bench Docker Image 84

B.4 Dockerfile for the Spark-for-Mesos Docker Image 85

B.5 Spark Configuration for the Spark-for-Mesos Docker Image:

spark-defaults.conf . 87

B.6 Spark Configuration for the Spark-for-Mesos Docker Image:

spark-env.sh . 87

xiv List of Listings

Chapter 1

Introduction

The ongoing growth of scale combined with the need of energy efficiency in high

performance computing (HPC) requires - besides energy-efficient hardware - optimal

resource utilization.

Excessive energy consumption has become a first-class constraint in designing and

deploying the next generation of supercomputers. The average power consumption

of the top ten supercomputers in June 2017 was 7.9 MW [16], which is not only a

major cost factor, but also corresponds to a significant amount of CO2 emissions

(depending on the means of electric power generation). Hence, energy efficiency has

become a top concern for HPC systems. [52]

Many diverse frameworks have emerged for specific purposes like running scientific

computations using message passing interface (MPI) or processing of huge amounts

of data, e.g., with Apache Spark and Apache Hadoop. For optimal resource uti-

lization it is often desirable to run multiple frameworks in the same cluster, using

the best one for each application. Sharing the cluster also allows sharing access to

distributed datasets avoiding the need to replicate large datasets across different

clusters. Static partitioning of the cluster usually does neither achieve high utiliza-

tion nor efficient data sharing. A resource manager that allows dynamic resource

allocation for compatible frameworks potentially enables high cluster utilization and

shared access to distributed data. [18]

Container virtualization provides effective isolation for software installations and

tasks as well as enforcement of resource usage limitations to a very high degree with

lower performance overhead than virtual machines. However, container virtualiza-

2 Chapter 1. Introduction

tion always uses the host kernel to run the containerized processes.

Traditional HPC-oriented environments used by different scientific groups usually

need to support several frameworks and software stacks which creates considerable

maintenance effort and makes it hard and lengthy to install new software stacks or

new versions of already installed software. It may also be impossible to install new

software due to lacking availability for the currently used OS version or incompati-

bilities with existing and still needed versions of other software. The use of container

virtualization enables fast deployment of new software while avoiding any unwanted

side effects affecting other software containers or natively installed software. [33]

Resource managers provide abstractions of compute, memory and storage resources

for single machines and entire clusters and enable the effective utilization of these

resources for single applications as well as multiple applications in shared usage

scenarios.

Combining resource managers with container virtualization potentially increases the

effective resource utilization of a compute cluster environment.

1.1 Research Objective

The primary research objective is the exploration of the provisioning of container-

ized infrastructure for data-intensive applications (Apache Spark and the Hadoop

Distributed File System are used for the purpose of the evaluation) utilizing Docker

and different means of resource management like Apache Mesos, Apache YARN

and Docker Swarm. Selected combinations of containerized and native software in-

stallations are compared in terms of performance and implications like setup and

configuration effort for the resource provider and also for the consumers.

1.2 Chapter Overview

Chapter 2 presents related work including a short summary of the respective content.

Chapter 3 gives an overview of virtualization techniques and describes the motivation

for virtualization and its benefits. The common virtualization techniques are covered

and virtual machines are compared to lightweight virtualization with containers.

1.2. Chapter Overview 3

Chapter 4 presents a short overview of cluster and resource management with par-

ticular focus on the cluster management software and frameworks used for the ex-

periments.

Chapter 5 briefly depicts the progress in various research fields leading to growing

demand for large-scale computing and data-processing systems and gives an overview

of Apache Spark, the large-scale data processing framework, that was used for the

experiments and benchmarks.

Chapter 6 gives a detailed description of the setup of all required frameworks and

tools.

Chapter 7 describes the experiments performed with Apache Spark using different

setup and configuration options. The motivation, advantages and drawbacks for

each setup are discussed elaborately and the experience including any obstacles

encountered is illustrated.

Chapter 8 discusses the results of the runtime measurements of the conducted ex-

periments in detail.

Chapter 9 presents two aspects relevant for data-intensive HPC applications as pos-

sible areas of future work.

Chapter 10 draws conclusions from the experiments and measurement results and

mentions the lessons learned.

The appendices contain a summary of the used technology and tools and the Docker

files to build the Docker images that were used for the experiments.

4 Chapter 1. Introduction

Chapter 2

Related Work

2.1 HPC vs. Big Data Infrastructure

An extension of the Pilot-Abstraction, that the authors have created to enable

data-aware scheduling on the application-level, is described in [38]. Based on a

comparison of the characteristics of HPC infrastructures and data storage for HPC

with infrastucture built for Apache Hadoop and Apache Spark in conjunction with

scheduling considering data-locality, the authors developed an extension of the Pilot-

Abstraction to enable data-aware scheduling on the application-level. Their work is

based on Pilot-Data [39], an extension of the Pilot-Job abstraction for supporting the

management of data in conjunction with compute tasks. Pilot-Data separates logical

data units from physical storage, providing the basis for efficient compute/data

placement and scheduling [39]. In this paper, the authors show the use of Pilot-

Abstraction as common, interoperable framework for HPC and the Apache big data

stack to support a diverse set of workloads. [38]

An attempt to bridge the gap between HPC jobs running on HPC hardware and

Hadoop jobs executing on commodity servers by allowing HPC and Hadoop jobs to

co-exist on a single hardware facility is illustrated in [51]. There is substantial exist-

ing investment in HPC facilities present in many academic, research, and commercial

institutions. With the emergence and increasing popularity of Apache Hadoop, a

reliable, scalable and open-source framework for large-scale data processing running

on cheaper commodity hardware clusters, the need to build and maintain a second

parallel facility often arised. The authors developed a Hadoop YARN-based run-

6 Chapter 2. Related Work

time system for MPJ Express software that allows executing parallel MPI-like Java

applications on Hadoop clusters. [51]

2.2 HPC Batch Schedulers vs. Datacenter Re-

soure Managers

The job scheduler as operating system of the modern data center and the different

characteristics (e.g., the duration of tasks, batch or immediate execution) of HPC

and big data workloads are depicted in [45]. The authors analyze which features

of schedulers are important for high performance data analysis jobs and compare

the support for these features for a representative set of HPC and big data sched-

ulers (Slurm, Grid Engine, Hadoop YARN, and Mesos). Their benchmark results

show similar results for Slurm, Grid Engine, and Mesos with worse performance for

YARN. The overall utilization could be further increased using a multilevel schedul-

ing technique with the LLMapReduce tool. [45]

2.3 Virtualization and Containers in HPC

A novel approach for a compute and data-intensive pipeline framework is intro-

duced in [34]. To optimize pipeline applications with respect to data and compu-

tational requirements of individual stages, the design of the framework supports

the integration of a multitude of stage variants, encapsulating each pipeline stage

and their runtime environment into containerized execution units. The containers

allow, beside efficient resource utilization, supporting concurrent utilization of dif-

ferent implementation variants based on a multitude of programming languages and

paradigms. [34]

The experiences introducing Docker to install new - and at that time incompatible -

software on a scientific cluster are discussed in [33]. The authors argue, that Docker

is ready for many workloads today, while some areas (e.g., RDMA interfaces) still

need improvement, which are already targeted by community initiatives. [33]

Shifter, a virtualization environment developed by the National Energy Research

Scientific Computing Center (NERSC) in Berkeley, that can transform user defined

Docker and other virtualization images into its own environment for execution on

2.4. Benchmarking and Optimizing Data-Intensive Applications 7

NERSC’s Cray supercomputers is introduced in [32]. By applying additional checks

on the image contents, the organization’s high security standards are still met while

the container environments run as virtualized jobs on the supercomputer. [32]

An open-source initiative to bring containers and reproducibility to scientific com-

puting is presented in [36]. Its primary use case is to provide a secure means to

capture and distribute software and compute environments. In contrast to Docker,

Singularity does not require a daemon with root privilege to start containers. [36]

2.4 Benchmarking and Optimizing Data-

Intensive Applications

A system that captures and optimizes large-scale machine learning applications for

high-throughput training with a high-level API is introduced in [49]. KeystoneML

is designed to run with large, distributed data sets on commodity clusters and

constructs a distributed acyclic graph of tasks that are executed on an Apache

Spark cluster. [49]

An approach to create job parallelism setting recommendations for Apache Spark

jobs based on machine learning techniques is illustrated in [17]. The authors argue,

that platforms like Apache Spark are complex and difficult to manage and there is

a lack of tools to better understand and optimize such platforms. In that paper,

a machine learning based method that uses statistical correlations to characterize

and predict the effect of different parallelism settings on performance is proposed.

These predictions are used to recommend optimal configuration parameters for task

parallelization in big data workloads to users before launching their workloads in

the cluster. In their evaluation, up to 51% performance gain could be achieved using

the recommended parallelism settings. The model is also interpretable and can give

users insight how different parameters affect the performance on their cluster. [17]

8 Chapter 2. Related Work

2.5 Scientific Cluster Hardware Power Measure-

ment

A heterogeneous, high performance computing infrastructure that provides detailed

power and energy-consumption data of its hardware components is presented in [52].

That system is equipped with Intel Xeon CPUs, Intel Many Integrated Cores (Xeon

Phi), Nvidia GPUs, power-aware memory systems and hybrid storage with Hard

Disk Drives (HDDs) and Solid State Disks (SSDs). Additional hardware-based

power measurement adaptors and microcontrollers with custom firmware for data

sampling were added to determine the power consumption of components without

integrated power measurement capabilities. Using software to collect and aggregate

the detailed power consumption data in conjunction with controlled job scheduling

and exclusive cluster node usage, the system provides valuable support to research

and development in energy-aware high performance computing and big data analyt-

ics. [52]

2.6 Frameworks

Mesos, a thin management layer that allows efficient resource sharing between di-

verse cluster computing frameworks is introduced in [18]. The main design elements

of Mesos are a fine-grained sharing model at the task level and a distributed schedul-

ing mechanism based on resource offers with delegation of scheduling decisions to

application frameworks. Apache Spark is also shown to work efficiently and with

performance gain with Mesos. [18]

A review of the key components, abstractions and features of Apache Spark as a

unified engine for large-scale data analysis is presented in [48]. As Apache Spark is an

open-source project with rapid adoption and development, it’s hard for beginners to

comprehend the full body of research behind it. To fill this gap, the authors provide

real world use case scenarios, an overview of the Spark core and higher level libraries

(e.g., MLlib for machine learning, GraphX for graph processing, Spark Streaming for

streaming analysis, and Spark SQL for structured data processing), cluster managers

and data sources. The core data abstraction, the Resilient Distributed Dataset

(RDD) and also newer abstractions, like the DataFrame API and the Dataset API for

structured and semi-structured data, are described in more detail. Separate chapters

2.6. Frameworks 9

provide detailed overviews on Spark’s MLlib and GraphX upper-level libraries and

for Spark streaming. [48]

The motivation for creating the SparkBench benchmark suite and a characteriza-

tion of the chosen benchmark workloads is given in [37]. Apache Spark has been

increasingly adopted by industries in recent years for big data analysis with an active

community developing a rich ecosystem around Spark. However, a Spark-specific

benchmarking suite has been missing to guide the development and cluster deploy-

ment of Spark to better fit resource demands of user applications. In that paper,

the authors present SparkBench, a benchmarking suite specific for Apache Spark,

covering four main categories of applications, including machine learning, graph

computation, SQL queries and streaming applications. [37]

How Mesos can be enriched with new resource policy capabilities as required for

managing enterprise data centers is demonstrated in [1]. Over the last years, a

number of cluster resource managers (e.g., Apache YARN, Google Borg and Omega,

Apache Mesos, and IBM Platform EGO) have appeared, aimed at providing a uni-

form technology-neutral resource representation and management substrate. Apache

Mesos is emerging as a leading open source resource management technology for

server clusters. However, the authors argue, that the default Mesos allocation

mechanism lacks a number of policy and tenancy capabilities, which are impor-

tant in enterprise deployments. Hence, they developed an experimental prototype,

integrating Mesos with the IBM EGO (enterprise grid orchestrator) technology and

tested it with SparkBench workloads. [1]

10 Chapter 2. Related Work

Chapter 3

Virtualization

Virtualization provides an abstraction for the physical hardware and enables mul-

tiple operating systems and applications to run in isolation and concurrently on a

single physical host machine [6].

The degree of abstraction can range from a highly specialized and constrained run-

time environment to the complete emulation of a physical machine. Although vir-

tualization is generally seen as an enabling technology for cloud computing, some of

its benefits are also valuable for scientific computing environments.

3.1 Motivation and Benefits

The use of virtualization is motivated by some or all of the following benefits, de-

pending on the domain (e.g., scientific computing or online transaction processing):

1. Energy saving and cost reduction through the consolidation of many - not

fully utilized - physical servers into virtual servers running on fewer physical

machines. This can also have the advantage of lower requirements for rack

space and energy for cooling. [6], [40]

2. The provisioning of a virtual server usually requires less time than the setup

of a physical machine. [40]

3. Horizontal scalability can be achieved by starting and stopping additional

instances of a (suitable) application to dynamically adapt for changing de-

mand. [40]

12 Chapter 3. Virtualization

4. Vertical scalability is achieved by changing the virtualized resources assigned

to the virtual machine. [40]

5. Reduction of a possible vendor lock-in. However, utilizing specialized hardware

can be harder or even impossible in a virtualized system. [40]

6. Increased uptime can be achieved with virtualization as it is not necessary

to hold a spare identical set of hardware, provided there are sufficient virtual

resources available. Also disaster recovery can be faster and simpler for virtual

machines. [40]

7. Applications and their runtime environments (e.g., libraries) can be isolated

from each other. This is an important aspect as often different versions of

libraries and utility programs cannot coexist without causing problems due

to incompatibilities. Also the life of outdated applications that require an

outdated runtime environment can be extended using virtualization. [40]

3.2 Types of Virtualization

To provide a runtime environment for an application, a wide range of virtualization

techniques can be used that abstracts the underlying physical machine. Among

the most commonly used techniques are full virtualization, full virtualization with

paravirtualized drivers, paravirtualization and operating-system-level virtualization

using containers.

3.2.1 Full Virtualization

Full virtualization (also known as hardware virtualization or hardware assisted virtu-

alization) simulates sufficient hardware to run an unmodified guest operating system

in isolation. It is required that the virtualized OS uses the same instruction set as

the physical machine.

Operations within a virtual machine must be kept within that virtual machine and

cannot be allowed to alter the state of another virtual machine or the hardware.

Some machine instructions can be executed directly by the hardware, as their effects

are entirely contained to the resources assigned to that virtual machine. Other

3.2. Types of Virtualization 13

instructions, that access or affect state outside the virtual machine, such as I/O

operations, need to be intercepted and simulated by the hypervisor. [50]

An example for full virtualization with support for paravirtualized drivers is the

Kernel-based Virtual Machine (KVM). [43]

The Xen project provides a hypervisor for full virtualization, full virtualization with

paravirtualized drivers and also paravirtualization support. [44]

3.2.2 Full Virtualization with Paravirtualized Drivers

This type of virtualization is identical to hardware virtualization, but uses additional

paravirtualized drivers for improved performance of the virtual machine.

3.2.3 Paravirtualization

In paravirtualization, a hypervisor provides a virtualization of the underlying phys-

ical machine, but in contrast to full virtualization, the guest operating system is

modified and uses an interface provided by the hypervisor for operations that would

have to be intercepted and simulated otherwise. Improved efficiency and perfor-

mance can be achieved by communicating the intent of the guest operating system

to the hypervisor. The guest OS is aware of running as guest in a virtual machine.

In 2005, the Virtual Machine Interface (VMI) was proposed by VMware as com-

munication mechanism between guest OS and the hypervisor. The VMI enabled

transparent paravirtualization with a single binary version of the guest OS which

can either run on native hardware or on a hypervisor in paravirtualized mode. How-

ever, due to improved hardware virtualization support in x86 hardware, the VMI

support was dropped from the Linux kernel and VMware products in 2011. [31]

In 2006, paravirt-ops (short pv-ops) - an alternative form of paravirtualization -

emerged, which was initially developed by the Xen group. Pv-ops is a piece of

Linux kernel infrastructure that allows a single compiled kernel binary that can

either run native on bare hardware (or fully virtualized) or run paravirtualized on

a suitable hypervisor (e.g., Xen). [50], [44]

14 Chapter 3. Virtualization

3.2.4 Operating-System-Level Virtualization

In operating-system-level virtualization the kernel of an operating system allows

multiple isolated user-space instances. These instances, called containers, software

containers or jails, often look and feel like a real server from the point of view of its

users. The kernel usually also provides resource-management features to limit the

impact of one container’s activity on other containers.

Although the containers are isolated, they always use the host system’s kernel. Hence

this approach is less flexible than hardware virtualization as only guest processes

that are binary compatible to the host kernel can be run within containers. On the

other hand, starting a new container is roughly equal to starting a new process on

the host which is much faster than booting a complete operating system within a

virtual machine. Also the performance overhead is very small as the processes within

the container run natively on the host kernel without any hardware or software

virtualization involved. [3]

3.2.5 Docker

Docker is a containerization platform with rapidly growing popularity using

operating-system-level virtualization. A Docker container wraps a software in a

filesystem that contains everything that the software needs to run (code, runtime,

application libraries, system tools, and system libraries). Compare figure 3.1 on

page 16 showing virtualization with virtual machines and figure 3.2 illustrating

Docker containers.

Docker can be seen as an application delivery technology. The application data does

not live in the container, it lives in a Docker volume, that can be shared between

an arbitrary number of containers. The Docker containers are optimally stateless

and immutable. Only the Docker volumes contain state and have to be backed up.

In multitenancy environments when shared kernels can’t be used or are undesired,

virtual machines can be utilized to provide an extra layer of isolation compared to

running containers on bare metal. [23]

Since Docker containers are very lightweight, developers can build stacks of Docker

containers on their laptops that replicate a production environment. Then they

can build and run their applications against that stack. Docker containers are also

3.2. Types of Virtualization 15

portable, they can be moved around. Another area with a lot of interest is called

high capacity. While in traditional VMs the hypervisor often occupies about 10 to

15 percent of the host capacity, running Docker containers on a Docker host allows to

run hyperscale numbers of containers as they sit right on top of the operating system

and are very fast. Another interesting technology Docker relies on is the concept of

copy-on-write which kernel developers call a union file system. The file system is

built from layers of file systems. Every Docker container is built on top of a Docker

image which is a prebaked file system that contains the libraries and binaries that

are required to run the application. That Docker image is a read-only file system

constructed of multiple layers, where each layer captures the changes from a specific

operation (e.g., install PHP). These layers can be cached which makes rebuilding

images extremely fast when layers can be reused. [3]

To isolate the processes within different containers from each other Docker relies on

two pieces of kernel technology: namespaces and control groups (cgroups). Name-

spaces allow to basically build a box and assign resources like access to CPU, mem-

ory, a network or part of the file system. From inside that process namespace, any

other processes outside of it are not visible. Control groups are designed to manage

and constrain the resources available to a container, e.g., limit the amount of RAM

and CPU cores or allow access to a network interface, in a fairly fine granularity. [3]

Containers also provide an isolated environment for network addresses and ports.

As each container has its own virtual network interface, multiple processes running

inside different containers can use the same port numbers. By default, the container

does not expose network ports to the outside, but any port used inside the container

can be mapped to an unused port on the host. [3]

3.2.6 Rkt Container Engine

Rkt [22] is an open-source implementation of the App Container Spec (appc) by

CoreOs [21], which defines an image format (App Container Image) and a runtime

environment for container virtualization. It was designed with strong focus on se-

curity from the beginning. Images can be fetched and run from an unprivileged

user. There is no centralized daemon to manage containers, instead containers are

directly launched from client commands, making it compatible with init systems

such as systemd, upstart, and others. Rkt can also run Docker containers. [22]

16 Chapter 3. Virtualization

Figure 3.1: Virtual Machines, adopted from [24]

Figure 3.2: Docker Containers, adopted from [24]

3.3. Hardware Support for Virtualization 17

3.3 Hardware Support for Virtualization

Although similar hardware support for virtualization was developed for different

platforms, the discussion within this section is limited to the x86 platform and uses

Intel’s terminology for specific examples.

At the beginning, virtualization on the x86 platform was achieved using complex

software techniques due to missing hardware virtualization support. Starting in 2005

Intel (and independently also AMD) developed processor extensions to improve the

performance of virtualized x86 systems. These and later added extensions are part

of “Intel virtualization” (VT-x). [7], [19]

The first generation of x86 hardware virtualization addressed privileged instructions.

In 2008, memory management unit (MMU) virtualization was added to the chipset

to address the low performance of virtualized system memory. This extension is

called Extended Page Table (EPT) which is Intel’s implementation of Second Level

Address Translation (SLAT), also known as nested paging. This avoids the overhead

associated with software-managed shadow page tables. [7]

Starting with the Haswell microarchitecture (in 2013), Intel included hardware sup-

port for Virtual Machine Control Structure (VMCS) shadowing as a technology to

accelerate nested virtualization. [7]

Today, advanced hardware support for different aspects of virtualization is available.

CPU virtualization features enable live migration of virtual machines and efficient

nested virtualization. Memory virtualization features include direct memory access

(DMA) remapping and extended page tables. I/O virtualization features enable

offloading of multi-core packet processing to network adapters. Virtual machines

can also have full or shared assignment of graphics processing units (GPU). [7]

18 Chapter 3. Virtualization

Chapter 4

Cluster and Resource

Management

Many academic, research, and also commercial institutions have invested heavily in

building HPC facilities for running scientific applications. Frameworks for processing

large-scale data (e.g., Apache Hadoop, Apache Spark) have emerged in recent years

and gained popularity as platform for executing even mission critical data processing

applications. As these new frameworks typically run on relatively cheaper clusters

built from commodity hardware, the situation arised to have to build and maintain

two parallel facilities. To reduce the maintenance effort and also increase the uti-

lization, it is desirable to be able to execute HPC jobs (e.g., based on MPI) and

large-scale data processing applications (e.g., using Hadoop) on the same hardware

cluster. [51]

This chapter gives a short overview of cluster and resource management with partic-

ular focus on the cluster management software and frameworks used for the experi-

ments. Within this chapter, cluster management refers to the management of tasks

or processes including monitoring and handling of failures, while resource manage-

ment refers to the management of compute resources, task isolation and low-level

constraint enforcement.

The provisioning and management of the cluster node machines is not discussed

here.

20 Chapter 4. Cluster and Resource Management

4.1 HPC vs. Big Data Infrastructure

Traditionally, HPC environments have been designed to meet the compute demand

of scientific applications and data was only a second order concern. Hence, HPC

systems generally rely on fast interconnects between compute and storage and often

use parallel file systems (e.g., Lustre or GPFS) on large, optimized storage clusters

exposing a POSIX compliant interface connected via fast interconnects. This infras-

tructure is not optimal for data-intensive, I/O-bound workloads that require a high

sequential read/write performance. [38]

Infrastructure for data-intensive workloads using the Apache Hadoop ecosystem or

newer similar frameworks (e.g., Apache Spark) relies on data-locality. Frameworks

like Hadoop co-locate compute and data, instead of moving the data to the compute

resources. In addition to MapReduce, newer frameworks like Apache Spark also

support memory-centric data processing and analytics, and machine learning. [38]

4.2 Cluster Management Overview

An application running on a compute cluster requires some management component

to discover and access the cluster resources.

The job scheduler that decides which tasks are executed on which resources can

be seen as the operating system of a data center. Job schedulers are a key part

of modern computing infrastructure. The computing capabilities can only perform

well if the job scheduler is effectively managing resources and jobs. [45]

Historically, in the domain of supercomputers, job schedulers were designed to run

massive, long running computations over days and weeks. More recently, big data

workloads have created a new class of computations consisting of many short com-

putations taking seconds or minutes that process very large quantities of data. [45]

In the simplest case, the application or framework supplies its own standalone clus-

ter manager and the worker components that need to run on each cluster node.

Such frameworks (e.g., Apache Spark, Apache Hadoop) often also contain support

for other cluster and resource managers (e.g., Apache Mesos). In that case the ap-

plication can focus on the tasks that need to run and dynamically negotiate the

required resources with the cluster and resource manager, which runs the worker

4.3. Standalone Cluster Management 21

processes on behalf of the application.

Resource managers provide abstractions of the resources for single machines and

also for entire clusters. A resource manager offers an application programming in-

terface (API), that is used by compatible client programs and frameworks to acquire

resources and to run tasks that consume the assigned resources.

Cluster managers are responsible for running the required tasks and, in case of

failures, also restarting lost tasks or services, if applicable. The task management is

often (partially) delegated to application-specific task managers. [12], [10]

4.3 Standalone Cluster Management

For single-purpose clusters the standalone cluster manager is a simple and fast way

to setup a cluster for a particular application or framework. The configuration

is specific to the framework and usually includes a list of all cluster worker node

machines and one or more dedicated master nodes. The list of worker nodes is often

only required to remotely start or stop the worker processes on the worker nodes.

The worker processes usually register themselves with the master process on the ac-

tive master node, hence it’s generally possible to add nodes dynamically by starting

new worker processes with the configuration required to contact the master.

The biggest disadvantage of standalone cluster managers is that generally only one

particular application is supported. Hence, the simultaneous use of a cluster with

dynamic resource sharing and different frameworks is normally not possible. Static

partitioning of the cluster, where each node is reserved for a predefined framework,

is easily achieved.

However, the simplicity of the setup and configuration of standalone cluster

managers works well in combination with orchestration frameworks (e.g., Meso-

sphere [26], Docker swarm [24]), that can run services on a cluster. By providing

suitable images, programs like Apache Spark can run as distributed services on a

cluster. The service then often internally uses its own standalone cluster manager

to utilize the resources that were assigned to the service by the external cluster

manager.

22 Chapter 4. Cluster and Resource Management

4.4 General Cluster and Resource Management

Software

Dedicated cluster and resource managers (e.g., Apache Mesos, YARN) offer a generic

application programming interface (API) that can be used by many different guest

frameworks simultaneously. [12], [10]

That enables dynamic and potentially more efficient sharing of cluster resources

between various applications and frameworks, provided all these frameworks are

compatible with the resource manager.

The various general cluster managers available provide different services, with

stronger focus on the resource management aspect (e.g., Mesos, YARN) or the

cluster management aspect (e.g., Docker swarm).

A resource manager generally uses some virtualization technology to isolate the

client tasks from each other and to enforce resource utilization constraints.

4.5 Resource Abstractions

The resource abstractions common in resource managers generally include the num-

ber of CPU cores, the amount of memory (RAM), available storage capacity on

hard disk drives (HDD) or solid state disks (SSD) and network interfaces and ports.

Some frameworks also support the resource management for specialized hardware,

like GPUs, which may require suitable plugins or the use of provided extension

mechanisms.

4.6 Modeling Cluster Resources

For the simple use case, that all available resources of a host machine participating

in a cluster should be offered as cluster resources, the automatic resource detection

of the framework is usually sufficient and no machine specific resource configuration

is required.

If needed, the available resources on a machine can also be specified manually using

configuration files or command line parameters for the agents running on each worker

4.7. Resource Scheduling 23

node. [12], [10]

In addition to the automatic resource discovery, user-defined key-value pairs can be

used for further distinction of the nodes or their specific properties.

4.7 Resource Scheduling

Efficient resource scheduling with a centralized scheduler is complex and challenging,

especially when considering the diverse requirements for different client frameworks.

Additionally, scalability and resilience are also hard to achieve with a complex cen-

tralized scheduler. An alternative to a centralized scheduler is delegating control

over scheduling to the client frameworks. [18]

The resource negotiation comes in two primary flavors:

• pull-model (e.g., YARN): the client actively requests resources with specific

properties which are then granted or refused by the resource manager

• push-model (e.g., Mesos): the resource manager actively makes resource of-

fers and the client decides to accept or decline the offer based on its own

requirements

4.8 Cluster and Resource Management Frame-

works

This section contains an overview of three exemplary resource and cluster manage-

ment frameworks, that were also used for the experiments in this work.

4.8.1 Apache Mesos

Apache Mesos is an open-source cluster management software. It tackles the problem

to run multiple frameworks on a single cluster of (commodity) servers enabling

dynamic sharing of cluster resources. Mesos’s goals are

• high utilization of resources

• support for diverse frameworks

24 Chapter 4. Cluster and Resource Management

• scalability to 10,000’s of nodes

• reliability in case of node failures

to improve cluster utilization and also possibly share data between frameworks. [12]

The main concepts are: [12]

• Mesos does only inter-framework scheduling via resource offers

• intra-framework scheduling is done by the framework’s schedulers, which can

account for specific requirements (e.g., data locality)

• push-model: Mesos makes resource offers, that clients can accept or decline

• task isolation using different containerizers (e.g., Docker or the Mesos con-

tainerizer using Linux containers)

Architecture

Mesos (cf. figure 4.1 on page 25) consists of two main components, a master daemon

that manages the agent daemons which are running on each cluster node (agents

were called slaves in early versions). Mesos frameworks run the actual tasks on the

cluster nodes. In a high-availability setting one active master daemon and several

standby master daemons running on different nodes coordinate the cluster state and

master election using Apache Zookeeper [15]. [18], [12]

The master facilitates fine-grained resource (CPUs, GPUs, RAM, disk, and ports)

sharing across frameworks by making resource offers. A resource offer contains a list

of ⟨agent ID, resource1: amount1, resource2: amount2, . . . ⟩. How many resources

each framework is offered is determined by the Mesos master according to a given

policy, e.g., fair sharing or strict policy. The modular architecture of the master

provides a plugin mechanism to add new allocation modules. [12]

Frameworks run on top of Mesos. Such a framework consists of a scheduler that

registers with the master to be offered resources and executor processes that are

launched on agent nodes to run the framework’s tasks. The Mesos master determines

how many resources are offered to each framework, and the framework schedulers

select which of the offered resources are used. The framework passes a description

of the tasks it wants to run to Mesos for the offered resources it accepts. Mesos, in

turn, launches the tasks on the corresponding agent nodes. [12]

4.8. Cluster and Resource Management Frameworks 25

Figure 4.1: Mesos Architecture Overview, adopted from [18]

An example of how a frameworks gets scheduled to run a task is shown in figure 4.2

on page 26. [18]

1. Agent 1 reports to the master that it has 4 CPUs and 4 GB of memory free.

2. The allocation module of the master then decides that framework 1 should be

offered all available resources. The master sends a resource offer, containing a

description of these resources, to framework 1 in step (2).

3. In step (3), the framework’s scheduler replies to the master with information

about the tasks to run on the offered resources, in this case using ⟨2 CPUs; 1

GB RAM⟩ and ⟨1 CPU; 2 GB RAM⟩ for tasks 1 and 2.

4. In the last step (4) the master sends the tasks to agent 1, which allocates the

correspondent resources to the framework’s executor, which then launches the

two tasks.

As 1 CPU and 1 GB of RAM are still free on agent 1, the allocation module can

offer them to framework 2. When tasks finish and new resources become free, this

resource offer process is repeated.

Mesos agents can run with minimal configuration and use automatic resource de-

tection in this case. For precise control over the resources offered by Mesos it is

26 Chapter 4. Cluster and Resource Management

Figure 4.2: Mesos Architecture Example, adopted from [18]

possible to define a set of key-value pairs for each node that consists of predefined

properties like CPUs, GPUs, RAM, disk, ports and also user defined properties. [12]

4.8.2 Apache Hadoop YARN

YARN is the resource management component of the Apache Hadoop map-reduce

framework.

The fundamental principle of YARN is the separation of resource management and

job scheduling into separate daemons. There is a global ResourceManager (RM)

and a per-application ApplicationMaster (AM). [10]

Refer to figure 4.3 on page 28 for an architecture overview of YARN. The

ResourceManager is the single authority that arbitrates resources among the ap-

plications in the system. The NodeManager agent runs on each machine and is re-

sponsible for containers, monitoring their resource usage (CPU, RAM, disk, and net-

work) and reporting the same to the ResourceManager. The ApplicationMaster

is an application-specific library tasked with negotiating resources from the

ResourceManager and working with the NodeManagers to execute and monitor the

tasks. [10]

4.8. Cluster and Resource Management Frameworks 27

The ResourceManager has two main components, the Scheduler and the

ApplicationsManager. The Scheduler is responsible for allocating resources to

the various running applications taking into account familiar constraints of capac-

ities, queues, etc. The Scheduler does not perform monitoring or tracking of the

status of the application and it does not offer guarantees about restarting failed

tasks either due to application failure or hardware failures. The scheduling function

of the Scheduler is solely based on the resource requirements of the application

using the abstract notion of a resource container which incorporates elements such

as CPU, RAM, disk space, network, etc. The Scheduler has a pluggable policy

which performs the partitioning of the cluster resources among the various queues,

applications, etc. [10]

The ApplicationsManager accepts job submissions, negotiates the first container

for executing the application specific ApplicationMaster and provides the service

for restarting the ApplicationMaster container on failure. The per-application

ApplicationMaster negotiates appropriate resource containers from the scheduler,

tracking their status and monitoring for progress. [10]

YARN also offers resource reservation via the ReservationSystem, that allows users

to specify a profile of resources over time and temporal constraints and reserve

resources to ensure the predictable execution of important jobs. [10]

YARN uses a pull-model for resource negotiation, where the client (e.g., an

ApplicationMaster) requests resources specified in terms of CPU, RAM, disk space,

network, etc.

4.8.3 Docker Swarm

A Docker swarm is a cluster of Docker engines that are typically distributed over

multiple hosts. The docker engines participating in a swarm are running in swarm

mode. The swarm provides cluster management and orchestration features includ-

ing scaling, replication, rolling updates and load balancing for services, which are

deployed in the swarm. For services, that are externally accessible, Docker swarm

provides ingress load balancing. It is also possible to create private overlay net-

works that are automatically extended to all nodes running a service using that

network. [24]

28 Chapter 4. Cluster and Resource Management

Figure 4.3: Hadoop YARN Architecture, adopted from [10]

Chapter 5

Data-Intensive Applications

Running on Scientific Clusters

In recent years, the progress of contemporary collaborations in various research

fields led to high demand for large-scale computing and data-processing systems.

Many domains, traditionally utilizing high-performance computing for simulation

of complex formal models, began to expand towards data-intensive computing, as

the available data volumes outgrow computing capabilites. [34]

While there are many different approaches to tackle data-intensive HPC problems,

the rest of this chapter puts the focus on Apache Spark [13], a general purpose large-

scale data processing framework, that was used for the experiments and benchmarks

in this work.

For machine learning applications, there also is (among others) the KeystoneML [2]

framework, that provides a higher level API to describe a machine learning pipeline

that is then optimized and runs on Apache Spark. [49]

Apache Hadoop [10] is a general purpose map-reduce framework that also provides a

distributed file system, the Hadoop distributed file system (HDFS), which was used

for storing the test data. Since the Hadoop map-reduce framework was not used at

all, it is not described here.

30 Chapter 5. Data-Intensive Applications Running on Scientific Clusters

5.1 Apache Spark

Apache Spark is a general engine for large-scale data processing. Spark supports

applications written in Java, Scala, Python and R. The execution engine is based

on a directed acyclic graph (DAG) and supports acyclic data flow and in-memory

computing with programmatic cache control. Interactive shells providing a read-

eval-print-loop (REPL) are offered for Scala, Python and R. Spark runs on Hadoop,

Mesos, and standalone, and can also be deployed in the cloud. [13]

Spark can run in batch mode or streaming mode (using micro-batches).

The core data abstraction in Spark is the Resilient Distributed Dataset (RDD),

which is a fault-tolerant, read-only, partitioned collection of records, providing the

base for designing scalable data algorithms and pipelines. Additional dataset repre-

sentations were developed and introduced with later releases, e.g., the DataFrame

API and the Dataset API. [48]

With its programmatic cache control, Spark is especially well suited for workloads

that require iterative processing with several passes over the same dataset (e.g. for

machine learning algorithms). [48]

Apache Spark was initially started by Matei Zaharia at UC Berkeley’s AMPLab in

2009 and open sourced in 2010 under a BSD license. [48]

5.1.1 Spark Architecture

A Spark application runs as an independent set of processes on a cluster, coordinated

by the SparkContext object in the main program (called the driver program). [13]

To run on a cluster, the SparkContext can connect to several types of cluster man-

agers (Spark standalone cluster manager, Mesos or YARN), which allocate resources

across applications. Spark then acquires executors on nodes in the cluster, which

are processes that run computations, and read and store data for the application.

Next, Spark sends the application code (supplied as JAR or Python files passed to

the SparkContext) to the executors. Finally, the SparkContext sends tasks to the

executors to run. [13]

See figure 5.1 on page 31 for a cluster component overview.

5.1. Apache Spark 31

Figure 5.1: Spark Cluster Components, adopted from [13]

5.1.2 Submitting Applications to Spark

Spark provides a spark-submit script to launch applications on a cluster. That

script allows to specify the cluster manager and other application specific options,

which can also be specified programmatically within the application. The applica-

tion can be submitted with two different deploy modes, client and cluster mode.

Client Deploy Mode

It’s a common deployment strategy to submit the applications from a gateway ma-

chine which is physically co-located with the cluster worker machines. That machine

can also be the master node in a cluster using the Spark standalone cluster man-

ager. The client deploy mode is appropriate in this setup and the driver is launched

directly within the spark-submit process, which acts as a client to the cluster. The

standard input and output streams are attached to the console, hence the client

mode is especially suitable for applications with user interaction, like the REPL

(e.g., the Spark shell). [13]

A fast, low-latency and reliable network connection between the machine, where the

application is submitted, and the cluster node is essential in client deploy mode. [13]

32 Chapter 5. Data-Intensive Applications Running on Scientific Clusters

Cluster Deploy Mode

If the application is submitted from a machine far from the cluster worker machines,

it is common to use cluster deploy mode to minimize network latency between the

drivers and the executors. [13]

In cluster deploy mode the driver runs on any of the cluster worker nodes and thus

cannot interact with the user. The application needs to read and write all data and

results using an external data storage (e.g., HDFS).

Chapter 6

Preparing for the Experiments

This chapter gives a detailed description of the setup of all frameworks and tools

required for the experiments.

The cluster consists of only four identical nodes, thus the high availability setup was

not used.

6.1 Test Environment

The nova scientific cluster, that was used to perform the experiments, consists of

four identical machines with two AMD Opteron(tm) Processor 6172 CPUs (in total

24 cores) and 48 GB of RAM each running CentOS Linux release 7.3.1611 (Core) at

the time of the experiments. Only the front end machine (nova) is connected to the

internet, while all four cluster nodes (nova, nova-compute01, nova-compute02,

nova-compute03) are connected to a separate high-speed (Infiniband) LAN.

The cluster topology is shown in figure 6.1 on page 34.

6.2 Infrastructure Preparation

This chapter describes the preparations regarding the installation and configura-

tion of the software required for all of the experiments. Additional software and

configuration for individual experiments is described in the respective section.

34 Chapter 6. Preparing for the Experiments

nova

nova-compute02 nova-compute03nova-compute01

LAN (InfiniBand)

internet

Figure 6.1: Nova Cluster Topology Overview

To minimize the maintenance overhead, whenever possible, software was installed

into a shared file system mounted on each cluster node. This includes the Java

Virtual Machine (JVM), Apache Hadoop, and Apache Spark.

Only Apache Mesos was compiled from source using the shared filesystem and in-

stalled locally on each node.

6.2.1 Apache Hadoop Installation and Configuration

In addition to the already existing, older JVM, a current version (Oracle Java SE

Development Kit 8u112) was installed into a directory in the shared filesystem and

the JAVA HOME environment variable was updated accordingly for the relevant user

accounts.

Apache Hadoop (version 2.7.3, later updated to 2.8.0) was installed into a shared

directory as described on the project homepage [10] with its own user hadoop and

configured to run the Hadoop NameNode on the primary node and a Hadoop DataN-

ode on each cluster node.

6.2. Infrastructure Preparation 35

The included Hadoop startup scripts require the setup of a login without password

on every cluster node to be able to start and stop the Hadoop master, worker,

NameNode, and DataNode processes, which was enabled using SSH keys.

Hadoop is used primarily to run the Hadoop distributed file system (HDFS) and

also the YARN resource manager for some setup variants.

The HDFS cluster was started and stopped using the supplied shell scripts

($HADOOP HOME/sbin/start-dfs.sh and $HADOOP HOME/sbin/stop-dfs.sh).

6.2.2 Apache Spark Installation

Apache Spark (version 2.0.2 with the Hadoop 2.7 client libraries) was installed into

a directory in the shared file system as described on the project homepage [13] with

its own user spark. The initial configuration used the Spark standalone cluster

manager on the primary node (nova) and a Spark worker on all four cluster nodes.

The included Spark startup scripts require the setup of a login without password on

every cluster node to be able to start and stop the Spark master and agent processes,

which was enabled using SSH keys.

The specific configurations for different cluster managers are described in the re-

spective sections.

6.2.3 Docker Installation

The already installed outdated version of Docker (1.10.3) was removed and a cur-

rent version (1.12.5, later upgraded to 1.13.0 and then to 17.04.0-ce) was installed

according to the instructions for CentOS 7 on the Docker web page [24].

6.2.4 Private Docker Registry Installation

A private (insecure) Docker registry was installed on nova according to the descrip-

tion on the Docker web page [24]. Since the registry is publicly available as Docker

image on the Docker hub, it was simply started as Docker container with the registry

service port bound to the local area network interface for the cluster nodes, which

36 Chapter 6. Preparing for the Experiments

is not accessible from the internet. The data folder from the container was mapped

to a directory in the local filesystem on the host.

To make the private registry accessible from Docker, the --insecure-registry

nova:5000 option needs to be added to the Docker service configuration file

/etc/systemd/system/docker.service.d/docker.conf on each cluster node and

after reloading the service configuration, the Docker daemon must be restarted.

6.2.5 Apache Mesos Installation

Apache Mesos is not available as pre-built binary package. The complete source code

and all other files required to build it are available as download from the project

web page [12].

The Mesos source package (version 1.1.0) was downloaded and extracted into a folder

on the shared file system. The binaries were built following the instructions given on

the Mesos web page [12] for CentOS 7.1. All required dependencies were installed

using the yum package manager on each cluster node.

After successfully running the tests, Mesos was installed on each node using “make

install”. That command installs the mesos binary files into /usr/local/bin and

the libraries into /usr/local/lib.

Initially, that library path was part of the library search path only on the

primary cluster node. The resulting problem surfaced with the following error

message each time a worker task was started on any other cluster node than the

primary one: mesos-executor: error while loading shared libraries:

libmesos-1.1.0.so: cannot open shared object file: No such file or

directory

Hence, it was essential to create the necessary configuration file and to update the

library search path on each node with the commands shown in listing 6.1.

Listing 6.1: Expand the Library Search Path

echo ”/ usr / l o c a l / l i b ” > / e tc / ld . so . conf . d/mesos . conf

l d c on f i g −v

Running the Mesos master and agents with their own non-root user (mesos) did not

work as intended, since other non-root users (e.g., spark) were unable to submit

6.2. Infrastructure Preparation 37

tasks to the cluster. The Mesos documentation [12] also states, that, to enable

multiple Unix users to submit to the same cluster, the Mesos agents need to run as

root.

Thus, for all experiments the Mesos master and agents were run as root.

To prevent the guest processes running on the cluster resources to also run as root,

the parameter switch user=true can be set for the agents. However, then the

Mesos slaves still created the sandbox folders with owner root with exclusive access

permission for the owner, which caused the guests running as non-root (e.g., spark)

to fail immediately with permission denied error for the sandbox directory.

Hence, the parameter switch user=false had to be used for all experiments, cre-

ating a less secure setup.

Mesos provides shell scripts to start and stop the Mesos master and agents on all

cluster nodes which need to be run as root on the master node:

• /usr/local/sbin/mesos-start-cluster.sh

• /usr/local/sbin/mesos-stop-cluster.sh

For this to work, the IP addresses of the master and agent nodes need to be added

to the respective configuration file:

• /usr/local/etc/mesos/masters contains the IP address of the master node

• /usr/local/etc/mesos/slaves contains the IP addresses of all cluster nodes

Each Mesos worker requires its own IP address as environment variable. To avoid

having to set the correct IP address on each node, an auto-discovery command was

specified as follows: MESOS ip discovery command="hostname -i"

The Mesos containerizer and Docker containers were used for the experiments, which

was set with the containerizers=docker,mesos parameter.

See listings 6.2 and 6.3 on page 38 for the Mesos configuration files, which reside in

the directory /usr/local/etc/mesos.

38 Chapter 6. Preparing for the Experiments

Listing 6.2: Mesos Master Configuration File: mesos-master-env.sh

export MESOS ip=10 .0 .0 . 1

export MESOS log dir=/var / log /mesos

export MESOS work dir=/var / l i b /mesos

Listing 6.3: Mesos Agent Configuration File: mesos-agent-env.sh

export MESOS ip discovery command=”hostname − i ”
export MESOS master=10 .0 . 0 . 1 : 5050

export MESOS switch user=fa l se

export MESOS containerizers=docker , mesos

export MESOS work dir=/var / l i b /mesos

export MESOS log dir=/var / log /mesos

6.3 Benchmarks

The following benchmarks were executed for each setup:

1. Pi approximation using a Monte Carlo method

2. K-Means clustering benchmark from Spark-Bench [5]

3. Terasort benchmark from Spark-Bench [5]

All benchmarks were run in Spark client mode on the primary cluster node (nova).

6.3.1 Pi Approximation

The pi approximation is part of Apache Spark’s examples and was run for three

different numbers of partitions (1,000, 5,000, and 10,000), which is specified as the

last command line parameter in listing 6.4 on page 39. For each partition 100,000

samples are calculated to estimate the value of pi.

6.3. Benchmarks 39

The parameter (--master) for the cluster manager is dependent on the installation

and deployment mode variant.

Listing 6.4 shows the command to submit the pi approximation for the Spark stan-

dalone cluster manager, which is accessible at spark://nova:7077.

Listing 6.4: Start Pi Approximation Using Spark Standalone Cluster Manager

$SPARKHOME/bin / spark−submit \
−−c l a s s org . apache . spark . examples . SparkPi \
−−master spark :// nova :7077 \
−−executor−memory 2G \
$SPARKHOME/examples / j a r s / spark−examples 2 . 11 −2 .0 . 2 . j a r \
1000

6.3.2 Spark-Bench

Spark-Bench is an open-source benchmarking suite specific for Apache Spark. It

comprises a comprehensive set of workloads currently supported by Apache Spark.

It also includes a data generator that allows users to generate input data of arbitrary

size. [37]

Spark-Bench lists the following use cases: [5]

1. Enables quantitative comparison for Apache Spark system optimizations such

as caching policy, memory management optimization and scheduling policy

optimization.

2. Provides quantitative comparison for different platforms and hardware cluster

setups such as Google cloud and Amazon cloud.

3. Offers insights and guidance for cluster sizing and provision and also helps to

identify bottleneck resources.

4. Allows in-depth study of the performance implications of various aspects in-

cluding workload characterization, configuration parameter impact, scalability,

and fault tolerance behavior of an Apache Spark system.

40 Chapter 6. Preparing for the Experiments

6.3.3 Spark-Bench Installation and Setup

Spark-Bench was installed by cloning the public Git repository with the command

“git clone https://github.com/SparkTC/spark-bench.git” and following the

instructions given on the project page [5], which included locally building one missing

dependency (wikixmlj, cloned from https://github.com/delip/wikixmlj.git).

Both projects can be built using Apache Maven [11], which was already installed on

nova, with the command “mvn clean install”.

However, the Spark version (1.6.1), Hadoop version (2.3.0), and Scala version

(2.10.5) originally used in Spark-Bench was outdated. Hence, the pom.xml file was

edited to update the Spark version to 2.0.2, Hadoop version to 2.7.3 and the Scala

version to 2.11.8. This produced some compile errors, which all had the same orig-

inal cause: object Logging is not a member of package org.apache.spark.

That object in the Spark source code was moved to a private package in Spark

version 2.0.0. The offending statements, which only printed some debug logs, were

simply removed to fix the compile errors.

The included shell scripts require the bc calculator utility to be installed, which was

done using the yum package manager.

6.3.4 Spark-Bench Benchmark Configuration

The base directory for the Spark-Bench test data was created in the HDFS using

the command “hdfs dfs -mkdir /SparkBench”.

The following modifications were made in the main configuration file

${SPARK BENCH HOME}/conf/env.sh:

• master=nova

• HDFS URL="hdfs://${master}:9000"

For both benchmarks - described in the following two sections - the number of

partitions of the input data was chosen to be close to a multiple of the overall

number of CPU cores (which is 96). Especially for long running tasks, to avoid

having a large number of CPU cores waiting for few tasks to finish, the number

of partitions should be close to, but not just slightly greater than a multiple of the

overall number of CPU cores. The chosen number of partitions was 270 for large and

6.3. Benchmarks 41

medium size data sets and 90 for small data sets. As Spark can efficiently support

tasks as short as 200 ms [13], it is reasonable to increase the level of parallelism for

the larger data sets to keep each task’s input set relatively small.

Even if this choice possibly may not yield optimal performance for the given hard-

ware configuration, the most important factor was to provide a working configuration

that remained unchanged for the experiments to produce comparable results.

K-Means Benchmark Configurations

The K-Means benchmark was run with three configurations which differ in the

number of points in the input data (1 million, 5 million, and 10 million points)

and in the number of partitions (90 or 270 partitions).

The input data was generated for each configuration with the command

“${SPARK BENCH HOME}/KMeans/bin/gen data.sh”.

Each benchmark run was started with the command “${SPARK BENCH HOME}
/KMeans/bin/run.sh”.

For the large input data set the content of the configuration file

${SPARK BENCH HOME}/KMeans/conf/env.sh is shown in listing 6.5.

Listing 6.5: K-Means Benchmark Configuration File

NUM OF POINTS=10000000

NUM OF CLUSTERS=100

DIMENSIONS=20

SCALING=0.6

NUM OF PARTITIONS=270

MAX ITERATION=10

NUMRUN=1

NUM TRIALS=10

For the medium sized input data set the line with the NUM OF POINTS was changed

according to:

NUM_OF_POINTS=5000000

42 Chapter 6. Preparing for the Experiments

And for the small input data two lines in the configuration file were changed accord-

ing to:

NUM_OF_POINTS=1000000

NUM_OF_PARTITIONS=90

Terasort Benchmark Configurations

The Terasort benchmark was run with three configurations which differ in the num-

ber of elements (5 million, 10 million, and 50 million) in the input data.

The input data was generated for each configuration with the command

“${SPARK BENCH HOME}/Terasort/bin/gen data.sh”.

Each benchmark run was started with the command “${SPARK BENCH HOME}
/Terasort/bin/run.sh”.

For the large input data set (roughly 5 GB) the content of the configuration file

${SPARK BENCH HOME}/Terasort/conf/env.sh looks as shown in listing 6.6:

Listing 6.6: Terasort Benchmark Configuration File

NUMOFRECORDS=50000000

NUM OF PARTITIONS=270

MAX ITERATION=12

NUM TRIALS=10

For the medium sized input data set (approximately 1 GB) the line with the

NUM OF RECORDS was changed to:

NUM_OF_RECORDS=10000000

And for the small input data (approximately 500 MB) the configuration file was

changed according to:

NUM_OF_RECORDS=5000000

Chapter 7

Running the Experiments

This chapter describes the experiments performed with Apache Spark using different

setup and configuration options. The motivation, advantages, and drawbacks for

each setup are discussed elaborately and the experience is described including any

obstacles encountered.

7.1 Native Apache Spark

This section describes the experiments performed with the native installation of

Apache Spark using different resource and cluster management strategies.

7.1.1 Native Apache Spark with Standalone Cluster Man-

ager

This setup uses the native Spark installation with the standalone cluster manager

and will be referred to as “Spark standalone” configuration. The input and output

data is stored in the HDFS provided by the native Hadoop installation.

The deployment overview and runtime communication pattern is shown in figure 7.1

on page 44.

See figure 7.2 on page 45 for the HDFS payload and control data flows.

44 Chapter 7. Running the Experiments

nova

nova-compute02 nova-compute03nova-compute01

driver
app

Spark
executor

Spark

worker

Hadoop
name
node

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark
master

Spark
executor

Spark
executor

Spark
executor

1

1.1

1.11.1 1.1

1.1.11.1.11.1.1

1.1.1

2

2
2 2

Figure 7.1: Communication Pattern for Native Apache Spark with Standalone Clus-

ter Manager. 1. The driver program asks the Spark master for resources. 1.1 The

Spark master contacts the Spark worker processes on the cluster nodes. 1.1.1 The

Spark workers start the executor processes which then connect to the driver and reg-

ularly send heartbeat messages. 2. The driver program sends tasks to the executors

and collects the result data.

7.1. Native Apache Spark 45

nova

nova-compute02 nova-compute03nova-compute01

driver
app

Spark
executor

Spark

worker

Hadoop
name
node

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark
master

Spark
executor

Spark
executor

Spark
executor

heartbeat

data transfer

namenode lookup

Figure 7.2: HDFS Access for Native Apache Spark with Standalone Cluster Man-

ager. The Spark executor’s (potential) access to Hadoop data nodes on other cluster

nodes is omitted. Also not shown is the communication between Hadoop data nodes

for data replication.

46 Chapter 7. Running the Experiments

Motivation

The native Apache Spark and Hadoop installation is the simplest and most straight

forward way to install the software.

This setup with statically defined cluster resources does not add any overhead and

is expected to yield the best runtime performance for exclusive cluster usage. With

the Spark master and the Spark workers already running, the job startup latency

should also be minimal. Hence the benchmark results from this setup will define

the baseline for performance comparisons.

Drawbacks

The standalone cluster manager has a simple first in - first out (FIFO) scheduler,

that may not work as well as the other cluster managers supported by Spark (Mesos

and YARN) when several jobs run in parallel.

The native installation can require some work for setup and upgrades to newer

versions, especially when customizing is required or additional software dependencies

need to be maintained on the machines. Running multiple versions simultaneously

requires even more maintenance overhead, particularly when different versions of the

same programs and libraries are needed. The use of a configuration management

tool like Puppet [28] or Chef [20] can mitigate part of that maintenance overhead,

but also requires substantial up-front time investment.

Running the Experiments

First, the distributed file system HDFS was started as described in section 6.2.1

on page 34 and the Spark cluster was started using the provided shell script

$SPARK HOME/sbin/start-all.sh. After the experiments were finished, the Spark

cluster was stopped with the shell script $SPARK HOME/sbin/stop-all.sh.

Next, the pi approximation benchmark was run as described in section 6.3.1 with

the Spark master parameter set for the standalone cluster manager (--master

spark://nova:7077).

Then, the Spark-bench configuration parameter for the Spark master in the pri-

mary configuration file was changed to SPARK MASTER=spark://${master}:7077.

7.1. Native Apache Spark 47

Both benchmarks (K-Means and Terasort) were run as described in section 6.3.4 on

page 40.

Experience

Running the benchmarks was simple and straightforward and did not cause any

problems.

7.1.2 Native Apache Spark with YARN

This setup uses the native Spark installation with the YARN resource manager from

Hadoop. The input and output data is stored in the HDFS provided by the native

Hadoop installation.

Motivation

Running Spark with YARN as resource manager can be useful if Spark is deployed on

an existing Hadoop cluster, that is used to run map-reduce jobs. In that case YARN

is already configured and available and can easily be used as cluster manager for

Spark. The pull-model, where the client actively requests resources from the cluster

manager, should work well with the desired data locality for Spark jobs when the

data is stored in the HDFS on the same cluster nodes.

Drawbacks

Running Spark on YARN requires a binary distribution of Spark which is built with

YARN support (e.g., a version with built-in Hadoop support) [13].

Running the Experiments

The experiments did not run successfully.

The primary problem was the configured memory limit of 2 GB per task for YARN

which is exceeded by the effective memory requirement of the executors used for the

benchmarks.

48 Chapter 7. Running the Experiments

My colleague and second supervisor for this work was simultaneously using the nova

cluster for his work on another project which required the YARN resource manager.

He upgraded Hadoop to version 2.8.0 because of new features that he required.

The installed Spark version also contained the Hadoop libraries for version 2.7. This

might have caused problems, which could have been solved with a newer version of

Spark. However, this was not a good option since the benchmark experiments for all

other configuration were already finished with the exact same Spark version (2.0.2).

To avoid interfering with the work of my colleague at that time, I decided not

to change the YARN configuration. Due to time constraints, the work on this

configuration was not resumed later.

7.1.3 Native Apache Spark with Mesos

This setup uses the native Spark installation with Mesos as cluster manager and

is referred to as “Spark with Mesos” configuration. The input and output data is

stored in the HDFS provided by the native Hadoop installation (the Hadoop nodes

are not managed by Mesos).

See figure 7.3 on page 49 for the deployment diagram including the communication

pattern.

Motivation

Using Mesos as cluster manager enables dynamic partitioning of the cluster resources

between Spark and other frameworks and also between multiple instances of Spark.

Drawbacks

Running Spark with Mesos requires the Spark binary distribution to be available

on all nodes (creating some overhead if it is extracted from the archive into the

sandbox each time). Alternatively, Spark can also be installed in the same loca-

tion on all Mesos worker nodes. As Spark was already installed in a shared di-

rectory, which is mounted in the same location on all nodes, the Mesos parameter

spark.mesos.executor.home was used to point to the Spark home directory (the

actual value of $SPARK HOME).

7.1. Native Apache Spark 49

nova

nova-compute02 nova-compute03nova-compute01

driver
app

Spark
executor

Mesos

agent

Hadoop
name
node

Hadoop
data
node

Mesos

agent

Hadoop
data
node

Mesos

agent

Hadoop
data
node

Mesos

agent

Hadoop
data
node

Mesos
master

Spark
executor

Spark
executor

Spark
executor

1

3.1

3.13.1 3.1

3.1.13.1.13.1.1

3.1.1

2
3

4

4
4 4

Figure 7.3: Communication Pattern for Native Apache Spark with Mesos Cluster

Manager. 1. The driver program registers itself as framework with the Mesos master.

2. The Mesos master makes resource offers to the driver program. 3. The driver

program asks the Mesos master to run Spark executors on the accepted resources.

3.1 The Mesos master contacts the Mesos agent processes on the cluster nodes.

3.1.1 The Mesos agents start the Spark executor processes which then connect to

the driver and regularly send heartbeat messages. 4. The driver program sends

tasks to the executors and collects the result data.

50 Chapter 7. Running the Experiments

Running the Experiments

First, the distributed file system HDFS was started as described in section 6.2.1 on

page 34.

Next, the Mesos cluster manager was started as described in section 6.2.5 on page 36.

Then, the pi approximation was run as described in section 6.3.1 with the Spark mas-

ter parameter set for the Mesos resource manager (--master mesos://nova:5050).

The Spark-bench configuration parameter for the Spark master in the primary con-

figuration file was also changed to SPARK MASTER=mesos://${master}:5050. Both
benchmarks (K-Means and Terasort) were run as described in section 6.3.4 on

page 40.

Experience

Getting the tests to run required some extra work and research. With the initial

Mesos setup, which included running the Mesos master and agents with the mesos

user, any user without root privilege (e.g., spark) cannot submit tasks to the clus-

ter manager. To overcome this, the Mesos master and agents were started as root.

Then, all submitted tasks failed immediately. The reason - permission denied er-

ror - was found in the stdout and stderr stream contents logged in the sandbox

directories of the tasks on the used worker nodes. The Mesos agents created the

sandbox directories as root with exclusive access for the owner, hence the spark

user, that was supposed to run the executor binary, could not access its sandbox

directory. Using the root user to run the tasks solved that problem. However,

regarding security this is not an optimal solution.

7.2 Containerized Apache Spark

This section describes the experiments performed with different containerized in-

stallations of Apache Spark using miscellaneous cluster managers.

The majority of the experiments uses host networking, where the containerized

application uses the host’s network stack, but there is one setup that uses a private

Docker overlay network.

7.2. Containerized Apache Spark 51

nova

nova-compute02 nova-compute03nova-compute01

Docker
Docker

DockerDocker Docker

driver
app

Spark
executor

Spark

worker

Hadoop
name
node

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark
master

Spark
executor

Spark
executor

Spark
executor

1

1.1

1.11.1 1.1

1.1.11.1.11.1.1

1.1.1

2

2
2 2

Figure 7.4: Communication Pattern for Containerized Apache Spark with Stan-

dalone Cluster Manager Using Host Networking. 1. The driver program asks the

Spark master for resources. 1.1 The Spark master contacts the Spark worker pro-

cesses on the cluster nodes. 1.1.1 The Spark workers start the executor processes

which then connect to the driver and regularly send heartbeat messages. 2. The

driver program sends tasks to the executors and collects the result data.

7.2.1 Containerized Apache Spark with Standalone Cluster

Manager using Host Networking

In this setup Spark is running within manually managed Docker containers on each

node using host networking, that means the container uses the host’s network stack.

This setup is referred to as “Spark standalone with Docker” configuration. The input

and output data is stored in the HDFS provided by the native Hadoop installation.

See figure 7.4 for the deployment overview and the communication pattern.

52 Chapter 7. Running the Experiments

Motivation

This setup offers the advantages of containerized software while simultaneously

avoiding the overhead of a bridged network for the containers. Access to local

network resources (also on the same host) is provided without further configuration.

The runtime characteristics can be expected to be similar to the native installation.

Drawbacks

The application directly uses the host’s network ports and the application’s configu-

ration may need to be changed to utilize other than the application standard ports.

Without additional configuration, only one instance can be run at a time due to

network port collisions. The containerization could possibly cause some noticeable

performance degradation.

Running the Experiments

Refer to sections B.1 and B.2 (page 81) for the creation of the required Docker

images.

First, the distributed file system HDFS was started as described in section 6.2.1 on

page 34.

Next, the Spark master was started on the primary node as shown in listing 7.1.

Then, the Spark workers were started on each cluster node as shown in listing 7.2

on page 53.

Listing 7.1: Start Containerized Spark Master with Host Networking

docker run − i t −−rm \
−−name=sparkmaster \
−−network=host \
−e SPARKMASTER HOST=10 .0 .0 . 1 \
nova :5000/mck/ spark : 2 . 0 . 2 / bin /bash

in s i d e the conta iner (c t r l−c to s top) :

/ usr / local / spark −2.0.2/ sb in / s ta r t−master . sh

7.2. Containerized Apache Spark 53

Listing 7.2: Start Containerized Spark Worker with Host Networking

docker run − i t −−rm \
−−name=sparkworker \
−−network=host \
−e SPARKMASTER HOST=10 .0 .0 . 1 \
nova :5000/mck/ spark : 2 . 0 . 2 / bin /bash

in s i d e the conta iner (c t r l−c to s top) :

/ usr / local / spark −2.0.2/ sb in / s ta r t−s l a v e . sh nova :7077

The pi approximation benchmark was run as described in section 6.3.1 on page 38

with the Spark master parameter set for the standalone cluster manager (--master

spark://nova:7077).

The Spark-bench configuration parameter for the Spark master in the primary con-

figuration file was also changed to SPARK MASTER=spark://${master}:7077. Both
benchmarks (K-Means and Terasort) were run as described in section 6.3.4 on

page 40.

Experience

Running the benchmarks was simple and straightforward. From the user’s point of

view, there is no difference between the native Spark installation and this setup.

There was no noticeable performance degradation compared to the native installa-

tion.

7.2.2 Apache Spark with Standalone Cluster Manager in

Docker Swarm

In this setup Docker is run in swarm mode on each cluster node with all nodes at-

tached to a single Docker swarm. Apache Spark and Hadoop (providing the HDFS)

run within Docker containers managed by Docker swarm with each container con-

nected to the same overlay network.

See figure 7.5 on page 54 for the network topology.

54 Chapter 7. Running the Experiments

nova

nova-compute02 nova-compute03nova-compute01

DockerDocker

Docker

DockerDocker Docker

overlay network

driver
app

Spark
executor

Spark

worker

Hadoop
name
node

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark

worker

Hadoop
data
node

Spark
master

Spark
executor

Spark
executor

Spark
executor

Figure 7.5: Network Topology for Containerized Apache Spark with Standalone

Cluster Manager Using Docker Swarm Mode

7.2. Containerized Apache Spark 55

Motivation

This setup offers the advantages of containerized software combined with simple

cluster management provided by Docker swarm. The number of Spark worker in-

stances can be scaled even while the application is running (if the application, like

Spark, can adapt to node failures and newly started nodes).

It is possible to publish specific ports of the application, e.g., to submit new tasks or

to access the Spark web UI. Alternatively, without publishing any ports, the Spark

cluster can be used from other Docker containers connected to the same overlay

network.

Drawbacks

For processes within a Docker container, that does not use host networking, it is

difficult and cumbersome to enable access to network ports on the local host. For

that reason the HDFS was also run within a Docker container without using external

data storage, which is not suitable for long-term data storage. Docker volumes can

be used to overcome that problem, but require additional configuration.

Running the Experiments

First, a Docker swarm was created on the primary cluster node and the other cluster

nodes were then added to that swarm as described in the Docker documentation [24].

Additionally, the primary node was tagged with node.role = manager, to ensure

that the Spark master will run on the primary node when started with suitable

arguments (cf. listing 7.5 on page 57).

The singularities/spark image [47], which can be found on Docker Hub

(https://hub.docker.com/), was used as it conveniently also contains Hadoop.

To prevent multiple image downloads, the image was copied to the local private

repository as shown in listing 7.3 on page 56.

56 Chapter 7. Running the Experiments

Listing 7.3: Copy Singularities Image from Docker Hub to Private Registry

pu l l image from Docker hub

docker pu l l s i n g u l a r i t i e s / spark : 2 . 0

tag wi th name fo r p r i v a t e r e g i s t r y

docker tag s i n g u l a r i t i e s / spark : 2 . 0 nova :5000/ spark : 2 . 0

push image to p r i v a t e r e g i s t r y

docker push nova :5000/ spark : 2 . 0

An overlay network, which is required to connect the containers running on different

nodes, is created as shown in listing 7.4. The network must be created with the

--attachable option to be accessible by Docker containers that are not managed

by Docker swarm.

Listing 7.4: Create an Attachable Overlay Network

docker network c r e a t e \
−−at tachab l e \
−−d r i v e r ove r l ay \
−−subnet 1 0 . 0 . 9 . 0 / 24 \
nova−net

The single instance of the Spark master is created with the command shown in

listing 7.5, and multiple instances of the Spark worker are created as indicated

in listing 7.6 on page 57. A Docker version of at least 1.13.0 is required as the

--hostname parameter was added with this version. That parameter is required to

specify a hostname for a node, such that other nodes can resolve that name to the

actual IP address within the overlay network.

7.2. Containerized Apache Spark 57

Listing 7.5: Create Spark Master Service

docker s e r v i c e c r e a t e \
−−name=sparkmaster \
−−hostname=sparkmaster \
−−network=nova−net \
−−pub l i sh 8080:8080 \
−−env HDFS USER=hadoop \
−−c on s t r a i n t ’ node . r o l e == manager ’ \
−−r e p l i c a s 1 \
nova :5000/ spark : 2 . 0 master

Listing 7.6: Create Spark Worker Service

docker s e r v i c e c r e a t e \
−−name sparkworker \
−−network nova−net \
−−mode r e p l i c a t e d \
−−r e p l i c a s 4 \
−−env HDFS USER=hadoop \
nova :5000/ spark : 2 . 0 worker sparkmaster

Experience

The setup basically worked with Docker version 1.13.0. However, only some of

the published ports were actually accessible from the primary cluster node. Hence,

it was impossible to access the Spark master and to submit tasks. To overcome

this limitation, the Spark-Bench benchmark suite was packaged and run as Docker

container (see section B.3 on page 83), which was attached to the overlay-network

nova-net. Preliminary tests without recorded timing looked fine. Also scaling the

number of Spark worker instances up and down using the tools for Docker swarm

worked well.

Prior to running the measurements, Docker was updated to version 17.04.0-ce. After

that update, the Spark cluster within the Docker containers did not work any more.

The Spark workers, which were not residing on the primary node, could not connect

to the Spark master. Although the hostname mapping can be specified explicitly

58 Chapter 7. Running the Experiments

using the --host parameter (e.g., --host sparkmaster:10.0.9.2) when creating

the sparkworker service, the problem persisted. In effect, there was a single node

cluster instead of a four node cluster.

For that reason, there are no performance measurements for this setup.

7.2.3 Containerized Apache Spark with Mesos

In this setup Apache Mesos is used as resource manager for the Spark worker in-

stances running in Docker containers. The Spark binaries are provided as Docker

image (see section B.4 on page 85). This setup is referred to as “Spark with Mesos

and Docker” configuration.

The distributed filesystem HDFS is provided by the native Apache Hadoop instal-

lation, which is not managed by Mesos.

See figure 7.6 on page 59 for the deployment overview and communication patterns.

Motivation

This setup offers the advantages of containerized software combined with flexible

cluster management provided by Mesos. Diverse frameworks or different versions

of the same framework (e.g., Spark) with specific configurations and dependencies

can simply be provided using Docker images and can be run simultaneously with

dynamic cluster resource sharing.

Drawbacks

Mesos uses host networking for the Docker containers, at least in version 1.1.0, which

was used for the experiments. If the managed software requires fixed network ports,

this may require additional configuration to avoid port collisions. In most cases,

like for Apache Spark, this in not an issue, as the executor processes only need to

connect to the process that is running the SparkContext, which does not require

any fixed ports on the worker nodes and simply uses ephemeral ports.

7.2. Containerized Apache Spark 59

nova

nova-compute02 nova-compute03nova-compute01

Docker

DockerDocker Docker

driver
app

Spark
executor

Mesos

agent

Hadoop
name
node

Hadoop
data
node

Mesos

agent

Hadoop
data
node

Mesos

agent

Hadoop
data
node

Mesos

agent

Hadoop
data
node

Mesos
master

Spark
executor

Spark
executor

Spark
executor

1

3.1

3.13.1 3.1

3.1.13.1.13.1.1

3.1.1

2
3

4

4
4 4

Figure 7.6: Deployment Overview and Communication Pattern for Containerized

Apache Spark with Mesos. 1. The driver program registers itself with the Mesos

master. 2. The Mesos master makes resource offers. 3. The driver program accepts

all or a part of the offered resources. 3.1. The Mesos master instructs the Mesos

agents to start Spark executors on the accepted resources. 3.1.1 The Mesos agents

start Spark executors using the specified Docker image. 4. The Spark executors

connect to the driver which then sends tasks to the executors and collects the result

data.

60 Chapter 7. Running the Experiments

Running the Experiments

Refer to section B.4 on page 85 for the creation of the required Spark-for-Mesos

Docker image.

First, the Spark configuration was adapted to use the Docker image and the Spark

installation directory within the Docker image according to listing 7.7. Note: The

Docker image name must be specified completely with its version (e.g., latest).

Listing 7.7: Spark Configuration for Mesos with Docker: spark-defaults.conf

spark . mesos . executor . home /opt/ spark

spark . mesos . executor . docker . image ←↩
↪→ nova :5000/mck/ spark−mesos−docker : l a t e s t

Next, the distributed file system HDFS was started as described in section 6.2.1 on

page 34.

Then, the Mesos cluster manager was started as described in section 6.2.5 on page 36.

The Spark application can be run or submitted, respectively, from within a Docker

container as well as from a compatible and properly configured native installation.

All benchmarks with timing were run using the native Spark installation.

As first test for running Spark within a Docker container, a container was started

as shown in listing 7.8 running the Spark shell, which was working as expected.

Note: It is necessary to use host network mode or additional network configuration

for the Docker container to access the Mesos master on the local machine.

Listing 7.8: Start Spark Shell in Docker Container with Spark-for-Mesos Docker

Image

docker run − i t −−rm \
−−network host \
−e SPARKMASTER=”mesos : / / 1 0 . 0 . 0 . 1 : 5 0 5 0 ” \
−e SPARK IMAGE=”nova :5000/mck/ spark−mesos−docker : l a t e s t ” \
nova :5000/mck/ spark−mesos−docker \
/opt/ spark /bin / spark−s h e l l

After setting the Spark master parameter for Mesos as cluster manager (--master

7.2. Containerized Apache Spark 61

mesos://nova:5050), the pi approximation was started as described in section 6.3.1

on page 38.

The Spark-bench configuration parameter for the Spark master in the primary con-

figuration file was also changed to SPARK MASTER=mesos://${master}:5050. Both
benchmarks (K-Means and Terasort) were run as described in section 6.3.4 on

page 40.

Experience

Initially, the executors on the worker nodes could not be started and were

killed prematurely by Mesos. The saved output from the standard error stream

stderr on the worker nodes revealed that the download and extraction of

the required Docker image took too long. The problem was fixed by manu-

ally pulling the images on each worker node using the command “docker pull

nova:5000/mck/spark-mesos-docker:latest”. Alternatively, the executor regis-

tration timeout value could be increased.

Then, the pi approximation ran without any problems.

However, the K-Means clustering benchmark exhibited problems with the medium

and large input data size. The measured time showed large variations between subse-

quent runs and the log from the benchmark program contained warnings, reporting

lost tasks due to executors being stopped because of executor heartbeat timeouts.

Although the affected executors were restarted subsequently, there was a significant

delay due to the default heartbeat timeout of 180 s after which the executor is

restarted and the lost tasks are rescheduled (on the same node or on another one).

The original problem that caused the heartbeat timeouts could not be determined.

It was verified, that the Docker container was not stopped by the Docker daemon

due to an internal error or exceeding its memory limit. Another warning in the log

stating a timeout waiting for an executor to terminate within 10 s might indicate a

problem in the executor process itself. However, the observed warning could also be

caused by a network operation, that times out after an extended period, making the

process seemingly unresponsive. See section 8.2 on page 65 for a detailed discussion

of the problems and the probable cause.

The Terasort benchmark also showed problems similar to the K-Means benchmark.

While some stages of the job (e.g., stage 1) ran fine with high CPU utilization in

62 Chapter 7. Running the Experiments

approximately the same time as with the “Spark with Mesos” configuration, other

stages (e.g., stage 2) took much longer with very low CPU utilization.

Chapter 8

Benchmark Results

In this chapter the results of the runtime measurements of the conducted experi-

ments are discussed in detail.

The complete aggregated timing data can be found in section C on page 88ff.

All the figures in this section use the minimum time value for a data series corre-

sponding to a single configuration and problem size. For the cases, where the figures

would significantly change if another value (e.g., the mean value) was used, this is

discussed in detail in the text.

8.1 Pi Approximation Benchmark Results

See figure 8.1 on page 64 for the absolute wall-clock times for each configuration

and problem size, which is specified as the number of partitions. Figure 8.2 on

page 65 shows the times relative to the “Spark standalone” configuration and the

same number of partitions.

Surprisingly, the fastest setup for the pi approximation was the configuration with

Spark using the standalone cluster manager running in Docker, but this configura-

tion was just slightly faster (up to 0.5 s) than the native Spark installation with the

standalone cluster manager. Access to the locally stored Docker image being faster

than the file access in the shared file system, where the native Spark installation and

the JVM were located, seems the most probable explanation for this observation.

The configurations using Mesos as cluster manager show an overhead, compared

64 Chapter 8. Benchmark Results

1,000 partitions 5,000 partitions 10,000 partitions

0

10

20

30

40

50

60

70

80

90

100

Configuration

T
im

e
[s

]

Spark Standalone Spark Standalone with Docker Spark with Mesos Spark with Mesos and Docker

Figure 8.1: Absolute Time Comparison for the Pi Approximation Benchmark

to the standalone cluster manager, which is roughly independent of the number

of partitions. The containerized configuration using Mesos and Docker exhibits

slightly higher overheads. The start of the Spark executor processes on demand

works similar in all configurations. Hence, it’s unclear what causes the overhead

in the configurations using Mesos. However, the “Spark standalone with Docker”

configuration, that uses Docker in a similar way, also using host networking, performs

roughly as well as the “Spark standalone” configuration.

Although this approximately constant time overhead is noticeable for short overall

run times, the relative overhead diminishes with longer run time and already drops

below 5 % for an overall runtime of approximately 100 s. For long running tasks,

this overhead may be negligible.

Aside from the different startup overheads, the concrete choice of the cluster manager

and using containerization or not seems to be insignificant for a workload similar to

the pi approximation, which is CPU intensive with little inter-node communication.

8.2. K-Means Clustering Benchmark Results 65

1,000 partitions 5,000 partitions 10,000 partitions

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

Configuration

R
el

at
iv

e
T

im
e

Spark Standalone Spark Standalone with Docker Spark with Mesos Spark with Mesos and Docker

Figure 8.2: Relative Time Comparison for the Pi Approximation Benchmark

8.2 K-Means Clustering Benchmark Results

See figure 8.3 on page 67 for the absolute wall-clock times for each configuration and

problem size, which is specified as the number of points. Figure 8.4 on page 67 shows

the times relative to the “Spark standalone” configuration and the same number of

points.

For the small and medium sized problem (1 million and 5 million points) the fastest

configuration for the k-means clustering was “Spark standalone”, while “Spark stan-

dalone with Docker” and “Spark with Mesos” exhibited a similar overhead being

approximately 4 % to 5 % slower.

However, for the large sized problem (10 million points) the configurations “Spark

standalone with Docker” and “Spark with Mesos” both performed significantly bet-

ter than the “Spark standalone” configuration, showing speedups of 16 % and 19 %,

respectively.

On the other hand, the “Spark with Mesos and Docker” configuration always per-

formed significantly worse, with an overhead of 45 % to 55 %, relative to the “Spark

66 Chapter 8. Benchmark Results

standalone” configuration.

For the large problem size, the standard deviation of the time measurements was

136 s (with minimum 191.2 s and maximum 694.6 s) for the “Spark with Mesos and

Docker” configuration, but only approximately 22 s for the other configurations.

The extremely high maximum value was caused by Spark executors being killed

and restarted on behalf of the SparkContext due to communication timeouts. It

is unclear why the Spark executors did not finish their work. The CPU utilization

of the executor dropped for a longer period on the node where an executor was

subsequently restarted, which indicates that it was not the CPU workload that

took too long. That also rules out extensive garbage collection in the JVM due to

insufficient memory limits. The problem also occurred on different worker nodes

and it could be verified that the Docker containers of the affected Spark executors

were not stopped by the Docker daemon due to an internal error or exceeding its

memory limit.

A possible explanation for the problem, that was not noticed at the time of the

experiments, is the Linux kernel version mismatch between the host machine running

kernel version 3.10.0-514.16.1.el7.x86 64 and the image, which is based on Ubuntu

17.04 using a 4.10 kernel. Although different kernel versions for the host and the

container generally are fine, that may have caused network performance problems

in this case. The problem seems to be related to an open issue in Docker with host

kernel version 3.10 (cf. [46]).

For this mixed workload, which involves both high CPU utilization and network

communication, the “Spark with Mesos” and “Spark standalone with Docker” con-

figurations are the best choice for the large problem size.

8.3 Terasort Benchmark Results

See figure 8.5 on page 68 for the absolute wall-clock times for each configuration

and problem size, specified as the number of points (or elements). Figure 8.6 on

page 69 shows the times relative to the “Spark standalone” configuration and the

same number of points.

Regardless of the problem size, the fastest configurations are “Spark standalone

with Docker” and “Spark with Mesos” with roughly up to 20 % (only 10 % when

8.3. Terasort Benchmark Results 67

1e6 points 5e6 points 1e7 points

0

20

40

60

80

100

120

140

160

180

200

Configuration

T
im

e
[s

]

Spark Standalone Spark Standalone with Docker Spark with Mesos Spark with Mesos and Docker

Figure 8.3: Absolute Time Comparison for the K-Means Clustering Benchmark

1e6 points 5e6 points 1e7 points

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

Configuration

R
el

at
iv

e
T

im
e

Spark Standalone Spark Standalone with Docker Spark with Mesos Spark with Mesos and Docker

Figure 8.4: Relative Time Comparison for the K-Means Clustering Benchmark

68 Chapter 8. Benchmark Results

5e6 points 1e7 points 5e7 points

0

50

100

150

200

250

300

350

Configuration

T
im

e
[s

]

Spark Standalone Spark Standalone with Docker Spark with Mesos Spark with Mesos and Docker

Figure 8.5: Absolute Time Comparison for the Terasort Benchmark

considering the average run time) speedup relative to the “Spark standalone” con-

figuration.

The “Spark with Mesos and Docker” configuration was always slower with the over-

head increasing with the problem size from 6 % to 274 %.

The problem also showed in the run times of the different stages of the computation,

e.g., stage 1 took approximately the same time and high CPU utilization for all

configurations. However, stage 2 took much longer with the “Spark with Mesos

and Docker” configuration while the CPU utilization dropped from a high level

(averaged over all 24 CPU cores per node) to only 2 CPU cores actually being

used. No executor processes were stopped in this case. This observation suggests

a problem in the inter-node (and possibly also inter-process) communication of the

executors and the driver program hosting the SparkContext. The reason for this

problem could not be determined. However, as already stated in section 8.2, the

issue was probably caused by a problem related to the Linux kernel version mismatch

between the host machine and the Docker image (cf. [46]).

8.3. Terasort Benchmark Results 69

5e6 points 1e7 points 5e7 points

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

2.4

2.6

2.8

Configuration

R
el

at
iv

e
T

im
e

Spark Standalone Spark Standalone with Docker Spark with Mesos Spark with Mesos and Docker

Figure 8.6: Relative Time Comparison for the Terasort Benchmark

70 Chapter 8. Benchmark Results

Chapter 9

Future Development

Based on the good performance seen in the experiments using Docker, further steps

towards a more complete containerized environment seem to be promising.

In the following section, two aspects relevant for data-intensive HPC applications

are presented as possible areas of future work.

9.1 Sharing Cluster Resources Between Diverse

Scientific Workloads

It is desirable to be able to also have distributed scientific applications based on

other programming models participate in a cluster with resource sharing.

An important model for HPC is MPI, and while the Mesos documentation states

running an MPI application as use case example [12], it’s currently hard to find

examples or open source projects with recent development activity that integrate

MPI applications with Mesos as cluster manager. Nevertheless, efforts should be

made to run an MPI application on a Mesos cluster as the sole application using the

cluster and also with dynamic cluster sharing, even if the number of MPI processes

may need to remain fixed for the time that the MPI application runs.

72 Chapter 9. Future Development

9.2 Persistent Storage

For the experiments described in this work, the long-term persistent storage (in the

Hadoop distributed file system) was set up natively on the cluster machines. One

reason for the native installation was the complex setup for consistent local storage

when using Docker in swarm mode or with Apache Mesos as resource manager.

The primary commercial contributor to the development of Apache Mesos is the

company Mesosphere [26], which also builds the Datacenter Operating System

(DC/OS) [25] that utilizes Mesos as resource management framework, together

with the container orchestration platform Marathon. Marathon [35] is a Mesos

meta framework for container orchestration, that can start other frameworks such

as Apache Storm [14] and ensures they survive machine failures.

DC/OS is Open Source Software that is available as community-supported free prod-

uct and also as an enterprise product with commercial support by Mesosphere [27]

and can be installed on a single machine, in the local cluster or data center or in

the cloud using different cloud providers.

A product like DC/OS, even in the free community-supported version, provides use-

ful tools to set up frameworks like Apache Hadoop, Apache Spark as well as many

other distributed software products that can be run within a container and supports

dynamic assignment of cluster resources to enable effective resource utilization. Such

a product can simplify the scheduling and dynamic cluster partitioning for multi-

ple cluster guest frameworks with different resource requirements and load profiles,

which also scientific applications may benefit from.

Using local storage features of Mesos, Marathon also provides different options

for storage of persistent data for stateful applications. As an example a MySQL

database instance can use a local persistent volume and Marathon ensures that the

corresponding container is pinned to that node and will reuse the local storage when

the container is restarted, hence preventing data loss. These mechanisms allow a

simplified setup of distributed data stores (e.g., Apache Cassandra [9]) and file sys-

tems (like the Hadoop distributed file system) for data-intensive applications. Other

storage options include the use of remote block storage devices that prevent data

loss in case of a permanent node failure.

An alternative option to explore is OpenShift by Red Hat R⃝ [30] which includes

container orchestration using the open source software Kubernetes [4] which is based

9.2. Persistent Storage 73

on Google’s experience running massive data centers. OpenShift is the commercial

product based on the open source community project OpenShift Origin [29].

74 Chapter 9. Future Development

Chapter 10

Conclusion and Lessons Learned

10.1 Conclusion

The experiments show that operating-system-level virtualization has reached a level

of efficiency that is very close to running an application natively on a machine.

For Apache Spark, the distributed big data application framework used in the experi-

ments, the natively running application and the version running in Docker containers

with host networking deliver nearly identical performance. For some workloads and

problem sizes the containerized version was even running up to 20 % faster.

Also Apache Spark running natively with Apache Mesos as resource manager per-

formed very similar to the natively running version with the standalone cluster man-

ager. The Mesos containerizer, which basically uses the same Linux kernel features

(e.g., namespaces and control groups) as the Docker daemon for the task isolation

shows a similarly small runtime overhead.

Apache Spark using Apache Mesos as resource manager using the Docker container-

izer did not work satisfyingly as it showed poor performance or even severe problems,

like workers being killed and restarted due to communication timeouts probably

caused by network related problems. The cause of the problems could not be veri-

fied without a doubt due to time constraints, but the most compelling explanation

seems to be a Docker issue [46] in conjunction with a specific Linux kernel version

mismatch, which was unintentionally introduced by building the respective Docker

image based on Ubuntu 17.04 using a kernel version 4.10. The host machines are run-

ning with an older kernel version (3.10.0-514.16.1.el7.x86 64) and the problem seems

76 Chapter 10. Conclusion and Lessons Learned

closely related to an open issue in Docker with host kernel version 3.10 (cf. [46]).

Taking the good performance of Spark running in Docker containers into account,

provided that a Linux kernel version compatible to the host is used in the image,

the performance of Spark with Mesos and Docker can be expected to be equal to

Spark running natively and using Apache Mesos as resource manager. However, this

expectation is yet to be verified.

Regarding the user experience there is no significant difference between running in

Docker containers and the native installation with the standalone cluster manager

or with Mesos as resource manager.

From an administrative point of view, deploying a pre-tested, complete software

stack within a single container image without any side effects on other software

running on the host, can tremendously speed up the setup of new software.

While for our experiments only the moderately restrictive default security options

of Docker were used, for production systems it is advisable to apply more restrictive

policies, e.g., by using custom AppArmor [42] profiles, as any user defined image

should be treated like untrusted software.

10.2 Lessons Learned

10.2.1 Docker Releases

The development pace for Docker is quite fast, releasing stable versions with new

features every three months. However, sometimes working things break with new

releases, as was the case with private overlay networks. While the Spark cluster with

the standalone cluster manager was working well in Docker swarm mode with Docker

version 1.13.0, the worker processes residing on another host could not connect to

the Spark master any more with Docker version 17.04.0-ce.

10.2.2 Docker and Linux Kernel Versions

Although it is generally not required to have identical Linux kernel versions on the

host machine and inside the Docker images, it is preferable to use a recent kernel

on the host to minimize the chances of version related problems, which may emerge

10.2. Lessons Learned 77

as subtle or even severe effects. If it is not possible to upgrade the host machine to

use a more recent kernel, an alternative solution may be to base the Docker image

on a system image with the same or a similar Linux kernel version.

10.2.3 Security

While security regarding protecting the cluster from threats originating from user-

supplied software and images was not within the focus of the experiments, this is

generally an important concern.

The problems we faced trying to run the Mesos agents as non-root user (cf. sec-

tion 6.2.5 on page 36) showed that we need to expect further configuration effort for

the setup of a sufficiently secure environment.

For running Docker images it may be advisable to create a suitable custom default

AppArmor [42] profile or even specific profiles for each containerized application.

To provide further protection against privilege escalation from Docker containers

internally running as root user, user id remapping to an unprivileged or even non-

existent user on the host system should be considered. [24]

78 Chapter 10. Conclusion and Lessons Learned

Appendices

A Summary of Used Technology and Tools

This section gives a brief summary of the technology and tools used for the experi-

ments.

Apache Spark [13], [48] as generic framework to build data-intensive applications is

used to run several benchmark applications with different setup configurations. The

Spark installation also contains the simplest benchmark used in the experiments

(the pi approximation) as example for creating Spark applications.

From Apache Hadoop [10] the Hadoop Distributed File System (HDFS) was used

to store the benchmark test data, and YARN was utilized as resource manager for

one of the setups. The Hadoop MapReduce framework itself was not used in any

way.

The K-Means and Terasort benchmarks to assess the runtime performance of the

different setups were provided by the Spark-Bench [5], [37] benchmark suite, which

is available as source code (written in Java and Scala). The project was slightly

adapted to use a more recent Spark version (2.0.2) and built with the Apache

Maven [11] build tool.

The common runtime for all Java virtual machine based programs (Hadoop, Spark,

Spark-Bench, Maven) is the Java virtual machine contained in the Oracle Java

Development Kit [8].

Docker [24] was used to build the Docker images and to run Docker containers from

these images. The private Docker registry was installed to store the private Docker

images and make them accessible to all cluster nodes.

Apache Mesos [12], [18] served as cluster manager for some of the setup variants.

80 Appendix A

Summary of applications, tools and frameworks:

• Apache Hadoop and Apache Hadoop YARN [10]

• Apache Maven [11]

• Apache Mesos [12], [18]

• Apache Spark [13], [48]

• Docker and Docker registry [24]

• Oracle Java SE Development Kit 8 [8]

• Spark-Bench benchmark suite [5], [37]

Appendix B 81

B Building the Docker Images

B.1 Building the Base Docker Image

The base Docker image is based on the official CentOS image and contains the

Oracle Java SDK. The CentOS image version matches the version running on the

host machine. That Docker image was built with the command “docker build

-t nova:5000/mck/base .” from the directory containing the Dockerfile shown in

listing B.1 on page 82.

B.2 Building the Spark Docker Image

The Spark image is based on the base Docker image and additionally contains

Apache Spark.

That Docker image was built with the command “docker build -t

nova:5000/mck/spark:2.0.2 .” from the directory containing the Docker-

file shown in listing B.2 on page 83. The creation of that Docker image was

inspired by the singularities/spark image [47] which can be found on Docker

Hub (https://hub.docker.com).

https://hub.docker.com

82 Appendix B

Listing B.1: Dockerfile for the Base Docker Image with Java SDK

FROM centos : 7 . 3 . 1 6 1 1

RUN yum i n s t a l l −y cu r l nc ; yum update −y ; yum c l ean a l l

ENV JDK VERSION 8u121

ENV JDK BUILD VERSION b13

RUN \
cu r l −LO \
”http :// download . o r a c l e . com/otn−pub/ java / jdk /\

$JDK VERSION−$JDK BUILD VERSION/\
e9e7ea248e2c4826b92b3f075a80e441 /\
jdk−$JDK VERSION−l inux−x64 . rpm” \
−H ’ Cookie : o r a c l e l i c e n s e=accept−securebackup−cookie ’ && \
rpm − i jdk−$JDK VERSION−l inux−x64 . rpm ; \
rm −f jdk−$JDK VERSION−l inux−x64 . rpm ; \
yum c lean a l l

ENV JAVAHOME /usr / java / d e f au l t

Appendix B 83

Listing B.2: Dockerfile for Apache Spark Based on the Base Docker Image

FROM nova :5000/mck/base

ENV SPARK VERSION=2.0.2

ENV SPARKHOME=/usr / local / spark−$SPARK VERSION

I n s t a l l Apache Spark

RUN mkdir −p ”${SPARKHOME}” \
&& export ARCHIVE=spark−$SPARK VERSION−bin−hadoop2 . 7 . tgz \
&& export \

DL PATH=apache/ spark / spark−$SPARK VERSION/$ARCHIVE \
&& cu r l −sSL https : // mi r ro r s . o c f . be rke l ey . edu/$DL PATH | \

ta r −xz −C $SPARKHOME −−s t r i p−components 1 \
&& rm −r f $ARCHIVE

ENV PATH=$PATH:$SPARKHOME/bin

Ports

EXPOSE 7077 8080 8081

Fix environment f o r a l l u ser s

RUN echo ’export SPARKHOME=$SPARKHOME’ >> / e tc / bashrc \
&& echo ’export PATH=$PATH:$SPARKHOME/bin ’>> / e tc / bashrc

B.3 Building the Spark-Bench Docker Image

The Spark-Bench Docker image is based on the Spark Docker image and adds all

files from the previously built Spark-Bench benchmark suite (see chapter 6.3.3 on

page 40). Some configuration files need to be adapted, which is done when the image

is created.

The Docker image was built with the command “docker build -t nova:5000

/spark-bench .” from the directory containing the Dockerfile shown in listing B.3

on page 84.

84 Appendix B

Listing B.3: Dockerfile for the Spark-Bench Docker Image

based on the Spark Docker image

FROM nova :5000/mck/ spark : 2 . 0 . 2

i n s t a l l t he bc u t i l i t y

RUN apt−get update && apt−get i n s t a l l −y bc vim \
&& apt−get c l ean

con f i gu r e Hadoop f i l e system acces s

RUN echo ’< con f i gu ra t i on><property>\
<name>f s . defaultFS</name>\
<value>hdfs : // sparkmaster :8020</ value>\
</property></con f i gu ra t i on >’ \
> $HADOOP CONF DIR/ core−s i t e . xml

crea t e d i r e c t o r y and s e t acces s r i g h t s

ENV SPARKBENCH=/spark−bench
RUN mkdir ${SPARKBENCH} && chmod 777 ${SPARKBENCH}

crea t e hadoop user

RUN \
adduser −−no−create−home −−di sab led−login \
−−gecos ”” −−uid 1000 hadoop

copy spark−bench f i l e s and modify c on f i g u r a t i on

COPY . ${SPARKBENCH}/
RUN \
sed ’ s /nova/ sparkmaster / ; s / : 9000/ :8020/ ’ \
− i ${SPARKBENCH}/ conf /env . sh && \
sed ’ s / ssh ${master} ”date +%F−%T”/date +%F−%T/ ’ \
− i ${SPARKBENCH}/ bin / funcs . sh

RUN chown −R hadoop ${SPARKBENCH}/∗

USER hadoop

WORKDIR ${SPARKBENCH}

Appendix B 85

B.4 Building the Spark-for-Mesos Docker Image

The Docker image containing Apache Spark for use with Apache Mesos was inspired

by the work of Bernardo Gomez Palacio showing how to build a single node Spark

cluster with Mesos [41].

This image is based on a current Ubuntu Docker image. The required Mesos libraries

and their dependencies (i.e., libcrypto.so.10, libcurl.so.4, libmesos.so,

libsasl2.so.3, libssh2.so.1, libssl.so.10, libsvn delta-1.so.0, and

libsvn subr-1.so.0) were copied from the local Mesos installation and the

/usr/lib64 directory, due to the fact that no Mesos build is available in any public

repository.

The Docker image was built with the command “docker build -t nova:5000/mck

/spark-mesos-docker .” from the directory containing the Dockerfile shown in

listing B.4.

The Spark configuration files spark-defaults.conf and spark-env.sh are shown

in listings B.5 and B.6 on page 87.

Listing B.4: Dockerfile for the Spark-for-Mesos Docker Image

FROM ubuntu

i n s t a l l u t i l i t i e s

RUN apt−get update && \
apt−get i n s t a l l −y cu r l so f tware−prope r t i e s−common && \
apt−get c l ean

i n s t a l l l a t e s t Oracle Java 8 JDK and c lean up

RUN \
echo orac l e−java8− i n s t a l l e r \
shared / accepted−orac l e−l i c e n s e−v1−1\
select true | debconf−set−s e l e c t i o n s && \

add−apt−r e p o s i t o r y −y ppa : webupd8team/ java && \
apt−get update && \
apt−get i n s t a l l −y orac l e−java8− i n s t a l l e r && \
rm −r f / var / l i b /apt/ l i s t s /∗ && \
rm −r f / var / cache / orac l e−jdk8− i n s t a l l e r

86 Appendix B

Define commonly used JAVAHOME va r i a b l e

ENV JAVAHOME /usr / l i b /jvm/ java−8−o r a c l e

ge t Apache Spark 2 . 0 . 2

RUN \
cu r l http :// d3kbcqa49mib13 . c l oud f r on t . net /\
spark −2.0.2−bin−hadoop2 . 7 . tgz | ta r −xzC /opt && \

mv /opt/ spark∗ /opt/ spark

copy l o c a l spark con f i g and s c r i p t s

COPY spark−conf /∗ /opt/ spark / conf /

COPY s c r i p t s / s c r i p t s

add requ i r ed mesos l i b r a r y and dependencies

COPY l i b /∗ / usr / l i b /

RUN chmod +x / s c r i p t s /∗

ENV SPARKHOME /opt/ spark

i n s t a l l o ther Mesos dependencies

RUN apt−get update && \
apt−get i n s t a l l −y bui ld−e s s e n t i a l python−dev \
python−v i r tua l env l i b c u r l 4−nss−dev l i b s a s l 2−dev \
l i b s a s l 2−modules maven l ibapr1−dev l ibsvn−dev \
z l ib1g−dev &&

apt−get c l ean

se t en t r ypo in t to the s t a r t s c r i p t

ENTRYPOINT [”/ s c r i p t s /run . sh”]

Appendix B 87

Listing B.5: Spark Configuration for the Spark-for-Mesos Docker Image:

spark-defaults.conf

spark . master SPARKMASTER

spark . mesos . mesosExecutor . c o r e s MESOS EXECUTORCORE

spark . mesos . executor . docker . image SPARK IMAGE

spark . mesos . executor . home /opt/ spark

spark . d r i v e r . host CURRENT IP

spark . executor . extraClassPath /opt/ spark /custom/ l i b /∗
spark . d r i v e r . extraClassPath /opt/ spark /custom/ l i b /∗

Listing B.6: Spark Configuration for the Spark-for-Mesos Docker Image:

spark-env.sh

#!/ usr / b in /env bash

export MESOS NATIVE JAVA LIBRARY=\
${MESOS NATIVE JAVA LIBRARY:−/ usr / l i b / l ibmesos . so}
export SPARK LOCAL IP=${SPARK LOCAL IP:−” 1 2 7 . 0 . 0 . 1 ”}
export SPARK PUBLIC DNS=${SPARK PUBLIC DNS:−” 1 2 7 . 0 . 0 . 1 ”}

88 Appendix C

C Timing Measurement Data

This section contains the aggregated timing data from the experiments. Each sce-

nario is identified by the configuration used to run Apache Spark (Spark standalone

cluster manager, Spark standalone cluster manager with Docker, Spark with Mesos,

and Spark with Mesos and Docker) and the respective problem size. The data

contains the aggregated timing data in seconds given as minimum, average and

maximum wall-clock time and the standard deviation (SD). The number of runs is

given in the column denoted with count.

Table 1 shows the pi approximation timing data for the different configurations and

problem sizes given as the number of partitions.

Table 2 on page 89 presents the K-Means clustering timing data for the different

configurations and input data sizes given as the number of points.

Table 3 on page 89 presents the Terasort timing data for the different configurations

and input data sizes given as the number of elements.

Spark configuration partitions min time avg time max time SD time count
[s] [s] [s] [s]

Standalone 1,000 18.9 19.5 20.1 0.4 10

Standalone with Docker 1,000 18.4 19.1 19.7 0.4 10

Mesos 1,000 20.6 20.9 21.3 0.2 10

Mesos and Docker 1,000 24.0 24.5 24.8 0.3 10

Standalone 5,000 53.4 55.3 57.2 1.3 10

Standalone with Docker 5,000 53.4 55.4 57.8 1.5 10

Mesos 5,000 55.5 57.3 58.2 0.8 10

Mesos and Docker 5,000 59.0 60.1 62.0 0.9 10

Standalone 10,000 97.7 101.1 103.5 2.1 10

Standalone with Docker 10,000 98.1 100.9 103.8 2.0 10

Mesos 10,000 98.3 102.5 107.0 2.4 10

Mesos and Docker 10,000 102.8 106.0 108.8 1.8 10

Table 1: Pi Approximation Benchmark Timing Data

Appendix C 89

Spark configuration points min time avg time max time SD time count
[s] [s] [s] [s]

Standalone 1× 106 33.4 34.2 37.2 1.1 10

Standalone with Docker 1× 106 34.8 36.4 39.2 1.3 10

Mesos 1× 106 35.3 37.7 39.4 1.6 10

Mesos and Docker 1× 106 50.1 51.7 53.3 1.1 10

Standalone 5× 106 69.1 105.4 187.7 43.2 10

Standalone with Docker 5× 106 71.8 83.1 107.7 12.0 10

Mesos 5× 106 72.1 80.6 93.1 6.9 10

Mesos and Docker 5× 106 99.5 107.8 136.4 10.9 10

Standalone 1× 107 125.7 157.5 190.2 22.8 12

Standalone with Docker 1× 107 108.2 135.0 178.4 19.0 10

Mesos 1× 107 105.8 133.8 176.8 23.0 10

Mesos and Docker 1× 107 191.2 282.6 694.6 136.4 13

Table 2: K-Means Clustering Benchmark Timing Data

Spark configuration elements min time avg time max time SD time count
[s] [s] [s] [s]

Standalone 5× 106 47.2 49.0 51.6 1.3 10

Standalone with Docker 5× 106 34.8 45.9 53.8 7.3 10

Mesos 5× 106 36.8 44.2 53.4 6.1 10

Mesos and Docker 5× 106 50.0 54.8 63.1 5.3 10

Standalone 1× 107 53.1 59.1 62.8 3.0 10

Standalone with Docker 1× 107 50.6 60.5 67.3 5.9 10

Mesos 1× 107 42.5 54.4 69.3 8.5 10

Mesos and Docker 1× 107 73.2 88.0 99.6 8.2 10

Standalone 5× 107 136.6 154.6 167.2 9.8 10

Standalone with Docker 5× 107 103.2 134.4 165.9 20.6 10

Mesos 5× 107 111.5 125.9 135.6 9.1 10

Mesos and Docker 5× 107 374.8 473.4 567.6 64.6 10

Table 3: Terasort Benchmark Timing Data

90 Appendix C

Bibliography 91

Bibliography

[1] Abed Abu-Dbai, David Breitgand, Gidon Gershinsky, Alex Glikson, and Khalid

Ahmed. Enterprise resource management in mesos clusters. In Proceedings of

the 9th ACM International on Systems and Storage Conference, page 17. ACM,

2016.

[2] UC Berkeley AMPLab. Keystoneml main page. http://keystone-ml.org/,

2017. Accessed: 2017-10-14.

[3] Charles Anderson. Docker. IEEE Software, 32(3), 2015.

[4] The Kubernetes Authors. Kubernetes production-grade container orchestra-

tion. https://kubernetes.io, 2017. Accessed: 2017-05-27.

[5] The Spark Bench authors. Benchmark suite for apache spark. https://github.

com/SparkTC/spark-bench, 2016. Accessed: 2016-12-28.

[6] Mariana Carroll, Paula Kotzé, and Alta Van der Merwe. Secure virtualization:

benefits, risks and constraints. 2011.

[7] Intel Corporation. Intel R⃝ main page. http://www.intel.com, 2016. Accessed:

2016-11-23.

[8] Oracle Corporation. Oracle main page. http://www.oracle.com, 2017. Ac-

cessed: 2017-09-23.

[9] The Apache Software Foundation. Apache cassandra. http://cassandra.

apache.org, 2017. Accessed: 2017-05-27.

[10] The Apache Software Foundation. Apache hadoop. http://hadoop.apache.

org, 2017. Accessed: 2017-05-27.

http://keystone-ml.org/
https://kubernetes.io
https://github.com/SparkTC/spark-bench
https://github.com/SparkTC/spark-bench
http://www.intel.com
http://www.oracle.com
http://cassandra.apache.org
http://cassandra.apache.org
http://hadoop.apache.org
http://hadoop.apache.org

92 Bibliography

[11] The Apache Software Foundation. Apache maven. https://maven.apache.

org, 2017. Accessed: 2017-06-24.

[12] The Apache Software Foundation. Apache mesos. http://mesos.apache.org,

2017. Accessed: 2017-05-27.

[13] The Apache Software Foundation. Apache spark. https://spark.apache.org,

2017. Accessed: 2017-05-27.

[14] The Apache Software Foundation. Apache storm. http://storm.apache.org,

2017. Accessed: 2017-05-27.

[15] The Apache Software Foundation. Apache zookeeper. https://zookeeper.

apache.org, 2017. Accessed: 2017-09-10.

[16] Prometeus GmbH. Top500 main page. https://www.top500.org/, 2017. Ac-

cessed: 2017-10-14.

[17] Álvaro Brandón Hernández, Maŕıa S Perez, Smrati Gupta, and Victor Muntés-

Mulero. Using machine learning to optimize parallelism in big data applications.

Future Generation Computer Systems, 2017.

[18] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D

Joseph, Randy H Katz, Scott Shenker, and Ion Stoica. Mesos: A platform for

fine-grained resource sharing in the data center. In NSDI, volume 11, pages

22–22, 2011.

[19] Advanced Micro Devices Inc. Amd main page. http://www.amd.com, 2016.

Accessed: 2016-11-23.

[20] Chef Software Inc. Chef configuration management. https://www.chef.io,

2017. Accessed: 2017-06-22.

[21] CoreOS Inc. App container spec. https://coreos.com/rkt/docs/latest/

app-container.html, 2017. Accessed: 2017-06-24.

[22] CoreOS Inc. rkt - the pod-native container engine. https://github.com/rkt/

rkt, 2017. Accessed: 2017-06-24.

[23] Docker Inc. Docker for the virtualization admin. E-book re-

ceived per e-mail after registration at https://goto.docker.com/

docker-for-the-virtualization-admin.html.

https://maven.apache.org
https://maven.apache.org
http://mesos.apache.org
https://spark.apache.org
http://storm.apache.org
https://zookeeper.apache.org
https://zookeeper.apache.org
https://www.top500.org/
http://www.amd.com
https://www.chef.io
https://coreos.com/rkt/docs/latest/app-container.html
https://coreos.com/rkt/docs/latest/app-container.html
https://github.com/rkt/rkt
https://github.com/rkt/rkt
https://goto.docker.com/docker-for-the-virtualization-admin.html
https://goto.docker.com/docker-for-the-virtualization-admin.html

Bibliography 93

[24] Docker Inc. Docker. https://www.docker.com, 2017. Accessed: 2017-05-27.

[25] Mesosphere Inc. The definitive platform for modern apps dc/os. https://

dcos.io, 2017. Accessed: 2017-05-27.

[26] Mesosphere Inc. Mesosphere. https://mesosphere.com, 2017. Accessed: 2017-

05-27.

[27] Mesosphere Inc. Mesosphere enterprise dc/os. https://mesosphere.com/

product, 2017. Accessed: 2017-05-27.

[28] Puppet Inc. Puppet configuration management. https://puppet.com, 2017.

Accessed: 2017-06-22.

[29] Red Hat Inc. Openshift origin the open source container application platform.

https://www.openshift.org, 2017. Accessed: 2017-05-27.

[30] Red Hat Inc. Red hat openshift. https://www.openshift.com, 2017. Accessed:

2017-05-27.

[31] VMware Inc. Vmware main page. https://www.vmware.com, 2016. Accessed:

2016-11-23.

[32] Douglas M Jacobsen and Richard Shane Canon. Contain this, unleashing docker

for hpc. Proceedings of the Cray User Group, 2015.

[33] Spencer Julian, Michael Shuey, and Seth Cook. Containers in research: Initial

experiences with lightweight infrastructure. In Proceedings of the XSEDE16

Conference on Diversity, Big Data, and Science at Scale, XSEDE16, pages

25:1–25:6, New York, NY, USA, 2016. ACM.

[34] Yuriy Kaniovskyi, Martin Koehler, and Siegfried Benkner. A containerized

analytics framework for data and compute-intensive pipeline applications. In

Proceedings of the 4th Algorithms and Systems on MapReduce and Beyond,

BeyondMR’17, pages 6:1–6:10, New York, NY, USA, 2017. ACM.

[35] Tobias Knaup and Florian Leibert. Marathon. https://github.com/

mesosphere/marathon, 2017. Accessed: 2017-05-27.

[36] Gregory Kurtzer, Vanessa Sochat, and Michael Bauer. Singularity: Scientific

containers for mobility of compute. PLoS One, May 2017, Vol.12(5), 2017.

https://www.docker.com
https://dcos.io
https://dcos.io
https://mesosphere.com
https://mesosphere.com/product
https://mesosphere.com/product
https://puppet.com
https://www.openshift.org
https://www.openshift.com
https://www.vmware.com
https://github.com/mesosphere/marathon
https://github.com/mesosphere/marathon

94 Bibliography

[37] Min Li, Jian Tan, Yandong Wang, Li Zhang, and Valentina Salapura. Spark-

bench: a comprehensive benchmarking suite for in memory data analytic plat-

form spark. In Proceedings of the 12th ACM International Conference on Com-

puting Frontiers, page 53. ACM, 2015.

[38] Andre Luckow, Pradeep Mantha, and Shantenu Jha. Pilot-abstraction: A valid

abstraction for data-intensive applications on hpc, hadoop and cloud infras-

tructures? arXiv preprint arXiv:1501.05041, 2015.

[39] Andre Luckow, Mark Santcroos, Ashley Zebrowski, and Shantenu Jha. Pilot-

data: an abstraction for distributed data. Journal of Parallel and Distributed

Computing, 79:16–30, 2015.

[40] David Marshall. Top 10 benefits of server virtualization. http:

//www.infoworld.com/article/2621446/server-virtualization/

server-virtualization-top-10-benefits-of-server-virtualization.

html, 2011. Accessed: 2017-02-10.

[41] Bernardo Gomez Palacio. Running your spark job executors in docker con-

tainers. https://github.com/berngp/mesos-spark-docker, 2015. Accessed:

2017-05-02.

[42] AppArmor Project. Apparmor main page. http://wiki.apparmor.net, 2017.

Accessed: 2017-09-23.

[43] KVM Project. Kvm main page. https://www.linux-kvm.org/page/Main_

Page, 2016. Accessed: 2016-11-23.

[44] Xen Project. Xen project main page. https://xenproject.org, 2016. Ac-

cessed: 2016-11-23.

[45] Albert Reuther, Chansup Byun, William Arcand, David Bestor, Bill Bergeron,

Matthew Hubbell, Michael Jones, Peter Michaleas, Andrew Prout, Antonio

Rosa, et al. Scalable system scheduling for hpc and big data. arXiv preprint

arXiv:1705.03102, 2017.

[46] Ed Sabol. Slow networking inside containers (tried host and bridge). https:

//github.com/moby/moby/issues/30801, 2017. Accessed: 2017-09-07.

[47] Jhoel Salas. Singularities spark docker image. https://hub.docker.com/r/

singularities/spark, 2016. Accessed: 2017-01-14.

http://www.infoworld.com/article/2621446/server-virtualization/server-virtualization-top-10-benefits-of-server-virtualization.html
http://www.infoworld.com/article/2621446/server-virtualization/server-virtualization-top-10-benefits-of-server-virtualization.html
http://www.infoworld.com/article/2621446/server-virtualization/server-virtualization-top-10-benefits-of-server-virtualization.html
http://www.infoworld.com/article/2621446/server-virtualization/server-virtualization-top-10-benefits-of-server-virtualization.html
https://github.com/berngp/mesos-spark-docker
http://wiki.apparmor.net
https://www.linux-kvm.org/page/Main_Page
https://www.linux-kvm.org/page/Main_Page
https://xenproject.org
https://github.com/moby/moby/issues/30801
https://github.com/moby/moby/issues/30801
https://hub.docker.com/r/singularities/spark
https://hub.docker.com/r/singularities/spark

Bibliography 95

[48] Salman Salloum, Ruslan Dautov, Xiaojun Chen, Patrick Xiaogang Peng, and

Joshua Zhexue Huang. Big data analytics on apache spark. International

Journal of Data Science and Analytics, pages 1–20, 2016.

[49] Evan R Sparks, Shivaram Venkataraman, Tomer Kaftan, Michael J Franklin,

and Benjamin Recht. Keystoneml: Optimizing pipelines for large-scale ad-

vanced analytics. In Data Engineering (ICDE), 2017 IEEE 33rd International

Conference on, pages 535–546. IEEE, 2017.

[50] Leendert van Doorn. Hardware virtualization trends. https://www.usenix.

org/legacy/event/vee06/full_papers/vandoorn-keynote.pdf, 2006. Ac-

cessed: 2016-11-23.

[51] Hamza Zafar, Farrukh Aftab Khan, Bryan Carpenter, Aamir Shafi, and

Asad Waqar Malik. Mpj express meets yarn: towards java hpc on hadoop

systems. Procedia Computer Science, 51:2678–2682, 2015.

[52] Ziliang Zong, Rong Ge, and Qijun Gu. Marcher: A heterogeneous system

supporting energy-aware high performance computing and big data analytics.

Big Data Research, 8:27–38, 2017.

https://www.usenix.org/legacy/event/vee06/full_papers/vandoorn-keynote.pdf
https://www.usenix.org/legacy/event/vee06/full_papers/vandoorn-keynote.pdf

	List of Figures
	List of Tables
	List of Listings
	Introduction
	Research Objective
	Chapter Overview

	Related Work
	HPC vs. Big Data Infrastructure
	HPC Batch Schedulers vs. Datacenter Resoure Managers
	Virtualization and Containers in HPC
	Benchmarking and Optimizing Data-Intensive Applications
	Scientific Cluster Hardware Power Measurement
	Frameworks

	Virtualization
	Motivation and Benefits
	Types of Virtualization
	Full Virtualization
	Full Virtualization with Paravirtualized Drivers
	Paravirtualization
	Operating-System-Level Virtualization
	Docker
	Rkt Container Engine

	Hardware Support for Virtualization

	Cluster and Resource Management
	HPC vs. Big Data Infrastructure
	Cluster Management Overview
	Standalone Cluster Management
	General Cluster and Resource Management Software
	Resource Abstractions
	Modeling Cluster Resources
	Resource Scheduling
	Cluster and Resource Management Frameworks
	Apache Mesos
	Apache Hadoop YARN
	Docker Swarm

	Data-Intensive Applications Running on Scientific Clusters
	Apache Spark
	Spark Architecture
	Submitting Applications to Spark

	Preparing for the Experiments
	Test Environment
	Infrastructure Preparation
	Apache Hadoop Installation and Configuration
	Apache Spark Installation
	Docker Installation
	Private Docker Registry Installation
	Apache Mesos Installation

	Benchmarks
	Pi Approximation
	Spark-Bench
	Spark-Bench Installation and Setup
	Spark-Bench Benchmark Configuration

	Running the Experiments
	Native Apache Spark
	Native Apache Spark with Standalone Cluster Manager
	Native Apache Spark with YARN
	Native Apache Spark with Mesos

	Containerized Apache Spark
	Containerized Apache Spark with Standalone Cluster Manager using Host Networking
	Apache Spark with Standalone Cluster Manager in Docker Swarm
	Containerized Apache Spark with Mesos

	Benchmark Results
	Pi Approximation Benchmark Results
	K-Means Clustering Benchmark Results
	Terasort Benchmark Results

	Future Development
	Sharing Cluster Resources Between Diverse Scientific Workloads
	Persistent Storage

	Conclusion and Lessons Learned
	Conclusion
	Lessons Learned
	Docker Releases
	Docker and Linux Kernel Versions
	Security

	Appendices
	Summary of Used Technology and Tools
	Building the Docker Images
	Building the Base Docker Image
	Building the Spark Docker Image
	Building the Spark-Bench Docker Image
	Building the Spark-for-Mesos Docker Image

	Timing Measurement Data

	Bibliography

