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Mut steht am Anfang des Handelns,
Glück am Ende.

(Demokrit)
1. Introduction

One of the major milestones in physics is clearly the introduction of quantum mechanics, i.e.
the transition from classical description of particles into the corresponding description of wave
fields. The classical trajectory in real space of a rigid particle is substituted by its quantum
mechanical counterpart, namely the probability distribution, as given due to the square of the
amplitude of the corresponding wave. Although the tools of quantum mechanics allow to treat
physical phenomena on a microscopic scale exactly, its application already beyond the simple
hydrogen problem reveals first issues. For multi-electron systems, may it be atoms, molecules
or solids the electronic many-particle wave function is unknown and simplified approximations
within in a single particle picture have been suggested, such as by Hartree or later by Fock
who introduced a first kind of correlation due to the exclusion principle for fermionic particles.
The biggest challenge for many-particle systems, though is still the proper description of the
collective motion of the particles that is traditionally summarized as correlation. Although there
is a variety of methods to tackle the solution of the many-particle problem the question about
the validity still remains. A feedback on the theoretical results can only be given by comparison
to results that are available by experiments. In particular, spectroscopic investigations allow to
draw conclusions about the electronic structure and the closely connected excitation properties.
In this context, the conceptual idea of Landau [3] and his introduction of quasiparticles being
excited states of a many-particle system bridges the gap between spectroscopy and theoretical
forecasts. The accessible quantity at this stage is the spectral function with its pronounced peaks
on the energy scale that can be related to quasiparticle energies. Moreover, this function can
be calculated through the Green’s function formalism which is the method of choice to calculate
excitation energies. In this work, we are, however, less interested in excitations that are caused
by e.g. (inverse) photoemission or energy loss spectroscopy, but rather in neutral excitations.
From the experimental point of view, one is faced with the process of photo absorption due to
impinging radiation on a macroscopic sample. The involved process generates a polarization
of the medium due to the promotion of a valence electron into the unoccupied manifold and
hence leads to the formation of electron-hole pairs. Their description is even more involved as it
requires to solve a four-point integral equation for the polarization function, commonly known
as the Bethe-Salpeter equation. In the realm of perturbation theory, Hedin’s set of coupled
integro-differential equations[4, 5] introduces not only the one-particle Green’s function but also
the polarization function and in turn allows to calculate quasiparticle energies as well as optical
excitation energies. As these equations are footed on a purely quantum mechanical treatment,
the numerical implementation results in so-called ab-initio methods and are thus free of any
parametric assumptions. With the aid of these methods a rigorous description of real materials
may be achieved and pave the way to predict materials properties a priori that might become
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2 1. Introduction

interesting for industrial applications. Setting the focus on optical absorption spectra, as it is
done in this thesis, the main motivation has been pinned down to calculate optical excitation
energies by a less expensive method than solving the Bethe-Salpeter equation[6]. Although this
method yields excellent agreement with experimental results, its huge computational work load
constrains its application to system with only few atoms. For ideal crystal structures, this is
easily manageable, and the compute time can be tuned to a moderate limit by the number of
k-points. Concerning the field of photovoltaics, a mono-crystalline sample is rather difficult to
produce and cheap commercial solar cells are usually amorphous. Due to the lower symmetry, the
resulting unit cell has to comprise a large number of atoms to adequately simulate an amorphous
crystal structure. This in turn induces a much larger number of transition pairs (electron-hole
pairs) that are necessary to calculate the underlying polarization function and thus again displays
the limiting factor for this kind of calculations. It is therefore desirable to have a method that
yields exactly the results from the solution of the Bethe-Salpeter equation but with an improved
scaling with respect to the system size.
The present thesis aims to present the theoretical background in order to integrate the de-

sired calculation of excitation energies. In the first part 2, I touch briefly the concept of density
functional theory, as it serves as the common method to calculate the Kohn-Sham orbitals and
energies. These quantities are the natural ingredients for the subsequent calculation of quasi-
particle energies and corresponding orbitals. Their derivation in terms of the Green’s function
formalism is presented in chapter 3. Additionally, I have included the topic of Feynman dia-
grams to enrich the discussion on how to calculate the one-particle Green’s function different
from Hedin’s approach. In the upcoming chapter 4, the discussion on the density response func-
tion is set up, as it is the central quantity from which the macroscopic dielectric function can
be calculated. In particular, the imaginary part is of interest, since it yields the desired optical
absorption spectrum within the long wave length limit. It is followed by a brief introduction on
time-dependent density functional theory as this method will be compared to the time evolution
of orbitals presented in the last chapter. The second last part 7 is devoted to the question in
what way the commonly applied Tamm-Dancoff approximation influences the optical absorption
spectrum as compared to the full solution of the Bethe-Salpeter equation. Results are given for
selected bulk materials such as silicon, carbon and lithium fluoride and for the lithium fluoride
dimer molecule. Additionally, the inclusion of a finite momentum transfer for the dielectric func-
tion beyond the long wave length limit is presented for silicon. The last chapter 8 is devoted
to the time evolution of orbitals as an equivalent method to calculate the dielectric macroscopic
function. Within the time-dependent density functional theory, this method is benchmarked in
terms of its computational efficiency. To compare with, the Casida method is chosen, as this
method is algebraic equivalent to the solution of the polarization function from the BSE.



2. Density functional theory

The description of the many-particle Hamiltonian and hence the solution of the electronic wave
function belongs to one of the many challenging tasks in solid state theory. In this chapter I
am introducing density functional theory, which opened the route to go beyond the classical
description of the electronic interaction, i.e. the Hartree term and the exact exchange term. The
primary concept of DFT is to answer the question in what way the electronic ground state of a
many-particle system can be calculated from a ground state density. If there is a unique relation
between the density and the wave function, it implies their equivalence and hence transforms
the many-body wave function to be a function of the density. The solution to this ambiguous
problem was given by the Hohenberg-Kohn theorems [7] which hold the tenet of this theory. It
proves that the exact treatment of any ground state property is solely given by the ground state
density.

2.1. Basic ideas

Before Hohenberg and Kohn formulated their concept of the density functional theory, several
attempts have been made to set up a density based theory. Among them are the works of
Thomas[8] and Fermi[9], the work of Dirac[10] and that of Weizsäcker[11]. All of these theories
have been developed in a short period of time, while Thomas and Fermi independently developed
the fundamental concept of density functional theory, although they were not aware about this
by that time. Without going into detail, the crucial quantity within the Thomas-Fermi theory
is the total energy of an atom expressed solely in terms of the one-particle density. This ansatz
is based on the assumption of a dense and homogenous distribution of non-interacting electrons
around the atom and allows to approximate the kinetic energy as a functional of the density. The
resulting energy functional then consists of the approximated kinetic energy term, the electron-
electron repulsion term and the attracting core-electron term. However, the simplification of
the electronic distribution around the atom results in an unphysical behaviour of the resulting
density for very short and large distances [12] and does not allow to describe the binding of
molecules [13]. Corrections to the Thomas-Fermi theory have been suggested e.g. by Weizsäcker
to account for effects of an inhomogeneous density by adding a density gradient correction to the
approximated kinetic energy term. Another missing part was added by Dirac who integrated an
approximated and local expression for the exchange energy term. However, none of these early
developed density based theories are capable to properly describe total atomic energies and lead
to unphysical behaviour for negatively charged ions [12]. From the current point of view of density
functional theory, it is well known that effects of correlation and exchange manifestly improves
not only the description of atoms and molecules but also that of extended systems. Nevertheless,

3



4 2. Density functional theory

the aforementioned theories pioneered the development of modern density functional theory
by introducing a density based energy functional and concomitantly evoked the question for
admissible densities. These questions have been answered by Hohenberg and Kohn who gave
evidence that any ground state property can be calculated from the knowledge of the ground
state density alone. Thus, the density instead of the wave function acts as the basic variable and
consequently one needs to answer the question, whether a N -particle ground state wave function
ΨN can be obtained from a given density ρN . This is the central problem of DFT, and the first
Hohenberg-Kohn theorem proves this one to one correspondence between both quantities, i.e.
ΨN ↔ ρN .

2.2. The Hohenberg-Kohn theorems

The following discussion is based on a fermionic N -particle system described by a non-relativistic
and time independent Hamiltonian Ĥ of the form

Ĥ = T̂e + V̂int + V̂ext. (2.1)

In the equation above the kinetic energy operator for the electrons T̂e is given by

T̂e = − ~2

2me

N∑
i=1

∇2
ri . (2.2)

The potential term V̂int describes the electronic Coulomb interaction,

V̂int =
1

2

∑
i 6=j

e2

|ri − rj |
, (2.3)

and the external potential V̂ext accounts for any interactions between the electrons and the nuclei
and has a general local form

V̂ext =
∑
i

Vext(ri). (2.4)

From the knowledge of the full Hamiltonian Ĥ, the many-body wavefunction is fully determined
and hence the corresponding density ρN . However, the external potential is still not yet defined
and should be chosen so that Ĥ has a non-degenerated ground state. With this restriction for
the external potential the first Hohenberg-Kohn theorem states:

Hohenberg-Kohn Theorem 1. The external potential Vext(r) for an interacting many-body
system is uniquely defined, except for a constant shift, by the ground state density.

The proof of this theorem is given by the inverse of the consecutive mapping (CD)−1, whereas
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C and D are defined as the following:

C : V 7→ W with V :=
{
Vext(r)| Ĥ has a non-degenerated ground state

}
and W :=

{
ΨN | is a N -particle ground state wave function

}
D :W 7→ D with D :=

{
ρN | is a density to a N -particle ground state

}
.

Both mappings C and D are surjective, since for every external potential the corresponding
Schrödinger equation always yields a ground state ΨN which eventually is associated to a density
ρN . What remains is to proof the existence of the inverse mapping (CD)−1 that is, given if C
and D are both surjective and injective. The injectivity of C induces that two different external
potentials Vext(r) andV ′ext(r) lead to two different ground states ΨN and Ψ′N , respectively. Under
the condition that both external potentials differ by more than a constant shift, i.e. Vext 6=
V ′ext + const., the corresponding Schrödinger equations

T̂ + V̂int + V̂ext |ΨN 〉 = Egs |ΨN 〉 (2.5)

T̂ + V̂int + V̂ ′ext |Ψ′N 〉 = E′gs |Ψ′N 〉 (2.6)

lead to a contradiction by assuming that Vext and V ′ext yield the same ground state, i.e. ΨN = Ψ′N .
Subtracting Eq.(2.6) from Eq.(2.5) one obtains the relation

Vext − V ′ext = Egs − E′gs
1 (2.7)

that refutes the condition on the two external potentials. Thus the mapping C is proven addi-
tionally to be injective and is therefore also bijective. The injectivity of the map D follows the
same line of arguments and one needs to show that two different ground states ΨN and Ψ′N yield
two different densities ρN and ρ′N , respectively. By the Rayleigh-Ritz theorem, the expectation
value of the Hamiltonian 〈Ψ|Ĥ|Ψ〉 becomes stationary, if Ψ is an eigenvector of Ĥ and takes its
minimum at the ground state ΨN . Thus the following inequality holds

Egs = 〈ΨN |T̂e + V̂int + V̂ext|ΨN 〉 < 〈Ψ′N |T̂e + V̂int + V̂ext|Ψ′N 〉 2 (2.8)

assuming Ψ′N to be not the ground state of Ĥ. The last term of Eq.(2.8) can be rewritten in the
following manner,

Egs < 〈Ψ′N |T̂e + V̂int + V̂ ′ext + V̂ext − V̂ ′ext|Ψ′N 〉 = E′gs +

∫
dr ρ′(r′)(Vext − V ′ext). (2.9)

If one considers the ground state energy to be E′gs, one arrives at the same equation, i.e. Eq.(2.9),

1In order to obtain this relation, one notes that the external potentials are multiplicative operators in real space
and the wave functions are assumed to be square integrable, i.e. 〈ΨN |ΨN 〉 > 0.

2One assumes orthogonal ground state wave function: 〈ΨN |ΨN 〉 = 1 and 〈Ψ′N |Ψ′N 〉 = 1



6 2. Density functional theory

with the primed and unprimed quantities now beging interchanged,

E′gs < 〈ΨN |T̂e + V̂int + V̂ext + V̂ ′ext − V̂ext|ΨN 〉 = Egs +

∫
dr ρ(r′)(V ′ext − Vext). (2.10)

In order to disprove that two different ground states yield the same density, i.e. ρN = ρ′N , one
adds up Eq.(2.9) and Eq.(2.10) and arrives at the final contradiction:

Egs + E′gs < Egs + E′gs. (2.11)

Thus the mapping D between the set of ground state wave functions and the set of correspond-
ing densities is also additionally injective and hence bijective. Since the mappings C and D

are invertible the inverse mapping (CD)−1 equals the consecutive mapping D−1C−1. In other
words, from a given ground state density the external potential is uniquely defined and the first
Hohenberg-Kohn theorem is proven.

As a direct consequence, the ground state density uniquely defines the full hamiltonian Ĥ and
thus determines any state ΨN that is associated to the corresponding Schrödinger equation with
the hamiltonian Ĥ. Up to now, the first HK-theorem gives no prescription how to calculate
the ground state density, and it gives no answer how to solve the many-body problem in the
presence of an external potential. However, the Hohenberg-Kohn theorem implies due to the
inverse mapping D−1 that the expectation value of an observable, and in particular the total
energy E, is a functional of the ground state density. This establishes the variational character of
the HK-theorem, since the resulting energy functional to a given external potential Ṽext, defined
by

EṼ [ρ] := 〈Ψ[ρ]|T̂ + V̂int + ˆ̃Vext|Ψ[ρ]〉 , (2.12)

takes its minimum value, the ground state energy, at the ground state density ρ̃ corresponding
to the external potential Ṽext. This allows to solve for the ground state density by minimizing
the functional EṼ [ρ]:

Egs = min
ρ∈D

EṼ [ρ] and Egs ≡ EṼ [ρ̃]. (2.13)

The second HK-theorem states:

Hohenberg-Kohn Theorem 2. For any external potential Vext(r) there exists a universal
energy functional EHK[ρ] that is minimized by the exact ground state density ρN and takes its
global minimum at the exact ground state energy.

Since the ground state ΨN is a functional of the density so is the kinetic energy term and the
Coulomb interaction term and allows to define the universal Hohenberg-Kohn functional FHK,

FHK[ρ] := 〈Ψ[ρ]|T̂ + V̂int|Ψ[ρ]〉 . (2.14)

This functional is independent of the external potential and thus is universal in the sense that it is
identical for all electron systems such as atoms, molecules and solids. The HK energy functional
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now reads
EHK[ρ] = FHK[ρ] +

∫
drVext(r)ρ(r), (2.15)

and takes its minimum value at the correct ground state density. If this functional is evaluated
at a density ρ′ different from the true ground state density one finds due to the Rayleigh-Ritz
theorem the following relation

EHK[ρ′] = FHK[ρ′] +

∫
drVext ρ

′(r) > FHK[ρ] +

∫
drVext ρ(r) = EHK[ρ], (2.16)

which proves the second HK-theorem. Hence due to the Hohenberg-Kohn theorems the calcu-
lation of the (3N-dimensional) ground state wave function is mapped onto the (3-dimensional)
ground state density by use of the Rayleigh-Ritz variational method.

In this context the question of the extensibility of the energy functional to possible degenerated
ground states or the question of the representability of the ground state densities arise quite
naturally. In the case of degenerated ground states the previous introduced mapping C does
not exist any more, but its inverse. On the other hand one can still map the (degenerated)
ground state onto a ground state density. Hence, there still exists a mapping between the
ground state density and the corresponding external potential. The proof that two different
external potentials (different by more than a constant) also yield two different ground states still
holds for degenerated ground states. Additionally, two different ground states that belong to
two different external potentials can only be associated to two different ground state densities.
Thus the correspondence between the external potential and the ground state density is still
established. However, the HK-energy functional needs to be extended to all ground state wave
functions that lead to a given ground state density, since the inverse mapping D−1 is not valid.
The question about the representability of ground state densities has been touched already in
the original paper by Hohenberg and Kohn.3 As by construction of the HK-theorems, every
density is so called pure-state V-representable and the theorem only guarantees the existence of
not more then one external potential to a given density. However, this includes the case where
no potential can be found. Hence the definition of dismissible and well-behaved4 ground state
densities needs to be extended. A new class of densities haven been suggested by Levy[14] and
Lieb[15] that includes densities that cannot be deduced by a pure ground state ΨN but a by an
ensemble of ground states {ΨN,i}, described by the corresponding density matrix. The resulting
density is then given by the trace of the density matrix Q̂, i.e.

ρQ(r) = tr
{
Q̂ ρ̂(r)

}
=

M∑
i=1

ci ρi(r)5 with Q̂ =
∑
i

ci |ΨN,i〉 〈ΨN,i| 6 (2.17)

3[7] [...]We cannot prove whether an arbitrary positive density distribution n′(r), which satisfy the condition,∫
n′(r)dr = integer can be realized by some external potential.[...]

4A well-behaved density is integrable, i.e.
∫

drρ(r) < ∞, and positive, i.e. ρ(r) > 0 and continuously differen-
tiable.

5From the density operator ρ̂(r), the density ρi(r) is given by 〈ΨN,i|ρ̂(r)|ΨN,i〉.
6The coefficients obey the condition

∑
i ci = 1 and ci = c∗i ≥ 0.
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and Eq.(2.17) shows that the density ρQ(r) cannot be generated by just one (pure) ground state
wave function but by an ensemble of ground state wave functions7. This class of densities is
called ensemble V-representable. The related extension of the Hohenberg-Kohn functional to
this class of densities requires to expand the set of possible ground state wave functionsW to the
set of density matrices Q̂ due to a given external potential. Moreover, the associated densities
are then obtained by Eq.(2.17). The proof of the first Hohenberg-Kohn theorem can be shown
in a similar way as demonstrated for the pure state V-representable densities, i.e. the subspace
of densities corresponding to two different external potentials Vext, V

′
ext that differ by more then

a constant is disjunct:
DV ∩ DV ′ = ∅. (2.18)

Since the ground state wave function is replaced by the density matrix one can define the extended
Hohenberg-Kohn functional with respect to ensemble V-representable densities as the following

FEHK[ρ] := tr
{
Q̂[ρ]

(
T̂ + V̂int

)}
. (2.19)

With regard to Eq.(2.19) the density matrix Q̂[ρ] is uniquely connected to an external potential,
which itself leads to a given ensemble V-representable density. Up to this stage the HK-functional
has been defined for densities that are uniquely associated to an external potential. As shown by
Englisch and Englisch [16], there exist densities which lead to singular external potentials and
hence are not ensemble V-representable. This however conflicts the proof that every density on a
discretized grid is ensemble V-representable. In this context Levy[17, 14] and Lieb[15] suggested
their constrained search formulation with respect to the energy functional [Eq.(2.13)]. Instead of
minimizing the energy functional with respect to the subspace of all pure-state V-representable
densities one searches the minimum in the subspace of all antisymmetric and normalized wave
functions that lead to a given density. The density itself is part of a set of non-negative densities
subject to the constraint to integrate to the total number of particles. In a second step the
resulting energy functional is minimized in the subspace of the aforementioned densities. Hence
the ground state energy can be written as

Egs = inf
ρ(r)

{
FLL[ρ] +

∫
drVext(r)ρ(r)

}
, (2.20)

where the Levy-Lieb functional is defined as

FLL[ρ] := inf
Ψ7→ρ
〈Ψ|T̂ + V̂int|Ψ〉 . (2.21)

One notes the important difference to the Hohenberg-Kohn functional, i.e. the expression by
Levy and Lieb considers any density that is derivable from an antisymmetric wave function.
Such densities are called pure-state N-representable and it has been shown that in principle every
non-negative density can be constructed from a single Slater determinant[18]. As demonstrated
by Levy[17], the functional FLL equals the HK-functional FHK for pure-state V-representable

7One assumes a set of orthogonal, linear independent and degenerated ground sates ΨN,i.
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densities since the energy functional

FLL[ρ] +

∫
drVext(r)ρ(r) (2.22)

satisfy the variational principle as it yields the ground state energy at the exact ground state
density. With regard to the extended Hohenberg-Kohn functional, there also exist a correspond-
ing functional, suggested by Lieb[19] and Valone[20], which searches the infimum in the subspace
of density matrices which lead to a prescribed density.

2.3. Kohn-Sham equations

Due to the labouring expression of the mutual Coulomb interaction [Eq.(2.3)] it is desirable to
circumvent the solution of the fully interacting many-body problem given by the Hamiltonian
in Eq.(2.1). This idea proposed by Kohn and Sham [21] is based on the introduction of an
auxiliary non-interacting system whose ground sate density ρgs,s equals the ground state density
ρgs of the interacting system. With this ansatz the resulting independent-particle problem can
be solved exactly at the expense of a new quantity that accounts for all exchange and correlation
effects. Due to the Hohenberg-Kohn theorems the density ρgs,s is then uniquely linked to a (local)
effective one-particle potential Vs(r). This is called non-interacting V-representability. Aiming to
achieve a relation between the non-interacting problem subject to the potential Vs and the fully
interacting problem one considers the energy functional of the non-interacting auxiliary system

Es[ρ] = Ts[ρ] +

∫
drVs(r)ρ(r) = Ts[ρ] + Eeff [ρ], (2.23)

with the kinetic energy functional Ts[ρ] of independent particles. The variation of Eq.(2.23)
with respect to the density and subject to the constraint of a fixed particle number N becomes
stationary at the non-interacting ground state density ρgs,s(r), i.e.

δ

δρ(r)

[
Es[ρ]− µs

∫
dr ρ(r)

]
ρ=ρgs,s

=
δTs[ρ]

δρ(r)

∣∣∣∣
ρ=ρgs,s

+ Vs(r)− µs = 0, (2.24)

and yields the solution for the effective single-particle potential up to a constant µs

Vs(r)− µs = − δTs[ρ]

δρ(r)

∣∣∣∣
ρ=ρgs,s

. (2.25)

The knowledge of Vs allows to write the corresponding Schrödinger equation for the non-interacting
system in the form of [

− ~2

2m
∇2

r + Vs(r)

]
ϕi(r) = εi ϕi(r). (2.26)

So far the kinetic energy functional Ts[ρ] is by construction only defined on the domain of
non-interacting V-representable densities. In order to map the interacting system onto the non-
interacting system, the right hand side of Eq.(2.25) must also hold for densities of an interacting
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system. By claiming this assumption to be true, it remains to find an alternative expression for
the energy functional Es[ρ] in order to capture the total energy of the fully interacting system.
As already shown by Hohenberg and Kohn [7] it is advantageous to separate additionally the
Hartree energy term from the energy functional [Eq.(2.15)] that is then stated as

EV [ρ] = Ts[ρ] +

∫
drVext(r)ρ(r) +

1

2

∫∫
drdr′ρ(r)v(r− r′)ρ(r′) + EXC[ρ]. (2.27)

The introduced exchange and correlation energy is, by comparison with Eq.(2.15), given by

EXC[ρ] = FHK[ρ]− 1

2

∫∫
drdr′ρ(r)v(r− r′)ρ(r′)− Ts[ρ] (2.28)

and includes the difference between the kinetic energy of the true interacting system and that
of the non-interacting system. Additionally, it also needs to take into account self-interaction
corrections that appear due to the Hartree energy term. The relation of the exchange-correlation
energy to the Kohn-Sham energy functional is now established by

EXC[ρ] = Eeff [ρ]− 1

2

∫∫
drdr′ρ(r)v(r− r′)ρ(r′)−

∫
drVext(r)ρ(r′)

= Es[ρ]− Ts[ρ]− 1

2

∫∫
drdr′ρ(r)v(r− r′)ρ(r′)−

∫
drVext(r)ρ(r′).

(2.29)

Hence it is clear that by Eq.(2.29) the effective potential Vs must account for all many-particle
effects of exchange and correlation via a corresponding new potential, the exchange-correlation
potential. To conclude the final calculation of the effective one-particle potential the variation
of the energy functional [Eq.(2.27)] (of interacting particles) subject to the constraint of a fixed
particle number needs to vanish at the exact ground state density ρgs as well, i.e.

0 =
δ

δρ

[
EV [ρ]− µ′

∫
dr ρ(r)

]
ρ=ρgs

=

[
δTs[ρ]

δρ
+ Vext(r) +

∫
dr′v(r− r′)ρ(r′) + Vxc[ρ](r)

]
ρ=ρgs

− µ
(2.30)

At this point the exchange-correlation potential is defined as

Vxc[ρ](r) :=
δExc[ρ]

δρ
. (2.31)

Finally, the comparison of Eq.(2.25) and the right hand side of Eq.(2.30) allows to set the non-
interacting potential Vs into relation to the interacting system under the assumption of the
equivalence of the non-interacting and interacting ground state densities. One obtains up to a
constant µ− µs:

Vs(r) = Vext(r) +

∫
dr′v(r− r′)ρgs(r

′) + Vxc[ρgs](r)− (µ− µs). (2.32)
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The crucial point is the existence of the kinetic energy functional for interacting V-representable
densities for which different extensions exist [22]. However, functional differentiability has been
proven only by Lieb [15] where the ground state density is searched from within a set of ensembles
of antisymmetric wave functions that lead to a prescribed density. In that sense, the kinetic
energy functional in Eq.(2.30) needs to be replaced by the corresponding Lieb extension TL

s [ρ]:

TL
s [ρ] = inf

Q̂→ρ
tr{Q̂T̂}. (2.33)

With Eq.(2.32) and Eq.(2.26) the Schrödinger equation is completely determined. By occupying
the N lowest energetic states, i.e. ε1 ≤ ε2 ≤ . . . ≤ εN , the corresponding ground state density is
given by

ρgs(r) = ρgs,s(r) =

N∑
i=1

|ϕi(r)|2 (2.34)

and concludes the Kohn-Sham equations. Since the single particle wave functions ϕi(r) determine
the effective potential Vs(r), which itself determines the orbitals ϕi(r), the Kohn-Sham equations
have to be solved self-consistently. This can be done iteratively with a guess of an initial density,
which is then updated iteratively. The iteration cycle terminates if the iteratively calculated
density equals the ground state density or the density at iteration n has reached a convergence
criterium. With the aid of the ground state density ρgs one obtains the ground state energy.
From the solution of the Kohn-Sham equations the non-interacting kinetic energy term can be
rewritten from Eq.(2.23) and Eq.(2.32) as

Ts[ρgs] =
N∑
i=1

εi −
∫

drVext(r)ρgs(r)−
∫

dr′ρgs(r)v(r− r′)ρgs(r
′)−

∫
drVxc(r)ρgs(r) (2.35)

and further one obtains the final expression for the ground state energy by substituting Ts[ρ]

from Eq.(2.35) in Eq.(2.27)

EV [ρgs] =
N∑
i=1

εi −
1

2

∫
dr′ρgs(r)v(r− r′)ρgs(r

′)−
∫

drVxc(r)ρgs(r) + Exc[ρgs](r). (2.36)

2.4. The exchange-correlation functional

By virtue of the Kohn-Sham approach, the introduced exchange-correlation functional is a priori
unknown and requires further consideration. In this section, I will make use of the concept
of the reduced density matrix. It formally allows to rewrite the total energy EΨ of a given
N -particle system ΨN in terms of the first-order and second-order reduced density matrix. In
consequence, the introduction of the so called exchange-correlation hole then allows to give an
explicit expression for Exc.
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2.4.1. Exchange-correlation hole and pair distribution function

The description of a quantum mechanical N -particle state is uniquely given by the density oper-
ator Q̂. For a pure state ΨN , the density operator is simply the projection operator |ΨN 〉 〈ΨN |,
from which in the spatial representation the spin-averaged density matrix of first and second
order may be defined[23]:

ρ1(r′1, r1) = N
∑
σ1

∫
dx2 . . . dxN ΨN (r′1σ1 x2 . . .xN ) Ψ∗N (r1σ1 x2 . . .xN ) (2.37)

ρ2(r′1r
′
2, r1r2) =

N(N − 1)

2

∑
σ1,σ2

∫
dx3 . . . dxN ΨN (dr′1σ1dr′2σ2 dx3 . . . dxN )×

Ψ∗N (r1σ1 r2σ2 x3 . . .xN ).

(2.38)

Since the expectation value of any observable can be expressed in terms of the density operator,
the total energy EΨ is given by

EΨ = tr
(
Q̂Ĥ

)
, (2.39)

where the trace is evaluated in terms of an arbitrary set of orthogonal basis vectors. With
Eq.(2.1) we then obtain in the continuous basis of the position space

EΨ =− ~2

2me

∫
dr1

[
∇2

r2
ρ1(r1, r2)

]
r1=r2

+

∫
drVext(r)ρ(r) +

∫∫
dr1dr2 v(r1 − r2)ρ2(r1, r2).

(2.40)

By inspection of the last term in Eq.(2.40), which is the electron-repulsion term, ρ2(r1, r2) is
the diagonal element of the second order reduced density matrix [Eq.(2.38)], i.e. ρ2(r1, r2) =

ρ2(r1r2, r1r2). It simply yields the joint probability to find an electron at point r1 and simulta-
neously a second electron at point r2. For an uncorrelated N -particle system, ρ2(r1, r2) reduces
to the product of one-particle densities 1

2ρ(r1)ρ(r2). Hence it is plausible to introduce a new
quantity, the pair correlation function h(r1, r2), which accounts for all correlation effects. Thus
we can rewrite the diagonal matrix element ρ2(r1, r2) by [23]

ρ2(r1, r2) =
1

2
ρ(r1)ρ(r2) [1 + h(r1, r2)] . (2.41)

The electron-electron interaction term is now separated into the classical Hartree-term and a
second part that incorporates the nonclassical correlation effects

Vint =
1

2

[∫
dr1dr2 ρ(r1)ρ(r2)v(r1 − r2) +

∫
dr1dr2 ρ(r1)ρ(r2)v(r1 − r2)h(r1, r2)

]
. (2.42)

Evenmore, the second term in Eq.(2.42) allows for a pictorial representation, namely the Coulomb
interaction of an electron at point r1 with its surrounding exchange-correlation hole defined as,

ρxc(r1, r2) = ρ(r2)h(r1, r2). (2.43)
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It further obeys the following sum rule∫
dr2 ρxc(r1, r2) = −1, (2.44)

which holds for all points r1. This means that the exchange-correlation hole has a net electron
charge just with opposite sign and describes the depletion of electrons around one particular
electron due to the effects of Pauli repulsion (exchange). Usually, the term in Eq.(2.42) involving
the pair-correlation function is called exchange-correlation energy. It can be calculated by use
of the adiabatic connection theorem [24]. By tuning the electron-electron interaction with a
parameter λ in the range of 0 ≤ λ ≤ 1, the transition from a non-interacting system with
eigenstate Ψ0 into a fully interacting system with corresponding eigenstate Ψ1 is induced. Every
intermediate state Ψλ is an eigenstate to the corresponding Hamiltonian

Ĥλ = T̂ + λV̂int + V̂ λ
ext. (2.45)

Simultaneously, the external potential V λ
ext scales in a way, so that the density for every λ remains

unchanged, i.e.
ρλ(r) = 〈Ψλ|ρ̂|Ψλ〉 = ρ(r). (2.46)

The existence of V λ
ext is, however, not proofen and is just an assumption. By means of the

adiabatic connection we notice that the first HK-theorem is satisfied, since to every density ρλ

an external potential V λ
ext exists. Secondly, the total energy of the interacting N -particle system,

as given by Eq.(2.15) can be calculated as

EV [ρ] = 〈Ψ1|Ĥ|Ψ1〉 = 〈Ψ0|Ĥ|Ψ0〉+

1∫
0

dλ
∂

∂λ
〈Ψλ|Ĥλ|Ψλ〉 . (2.47)

With the aid of the Hellman-Feynman Theorem [25, 26], the expectation value in the last term
of Eq.(2.47) yields

∂

∂λ
〈Ψλ|Ĥλ|Ψλ〉 = 〈Ψλ| ∂

∂λ
Ĥλ|Ψλ〉 . (2.48)

By exploiting Eq.(2.45) and Eq.(2.48) one obtains

EV [ρ] = 〈Ψ0|Ĥ|Ψ0〉+

1∫
0

dλ 〈Ψλ|V̂int|Ψλ〉+

∫
dr ρ(r)

{
V 1

ext(r)− V 0
ext(r)

}

= 〈Ψ0|T̂s|Ψ0〉+

1∫
0

dλ 〈Ψλ|V̂int|Ψλ〉+

∫
dr ρ(r)V 1

ext(r).

(2.49)
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Comparing this expression with that of Eq.(2.27) one finds

Exc[ρ] =

1∫
0

dλ 〈Ψλ|V̂int|Ψλ〉 − 1

2

∫∫
dr1dr2 ρ(r1)v(r1 − r2)ρ(r2)

=

∫∫
dr1dr2v(r1 − r2)ρ̄2(r1, r2)− 1

2

∫∫
dr1dr2 ρ(r1)v(r1 − r2)ρ(r2)

(2.41)
=

1

2

∫∫
dr1dr2 v(r1 − r2)ρ(r1)ρ(r2)h̄(r1, r2)

(2.43)
=

1

2

∫∫
dr1dr2 v(r1 − r2)ρ(r1)ρ̄xc(r1, r2)

:=

∫
dr1 ρ(r1)εxc(r1),

(2.50)

where the coupling-constant averaged two-particle density ρ̄2(r1, r2) is introduced by

ρ̄2(r1, r2) =

1∫
0

dλ ρλ2(r1, r2), (2.51)

and analogously h̄(r1, r2) and ρ̄xc(r1, r2). The exchange-correlation energy per electron εxc(r) is
then readily obtained from Eq.(2.50) by

εxc(r1) =
1

2

∫
dr2 v(r1 − r2)ρ̄xc(r1, r2). (2.52)

Hence, a proper approximation ofExc[ρ] relies on the analysis of the averaged exchange-correlation
hole ρ̄xc. As shown by Gunnarsson and Lundqvist [27], any contributions to the exchange-
correlation energy can be calculated from the spherical average of the exchange-correlation hole,
obeying the sum rule of Eq.(2.44). This is a stringent constraint test for any possible approxi-
mations for ρ̄xc.

2.4.2. Local density approximation

The question for a reasonable expression of the exchange-correlation energy, clearly depends on
the approximation of the spatial distribution of the charge density ρ. A remarkably working
approximation of Exc has been suggested by Kohn and Sham in their pioneering work [21] where
the density is assumed to vary ’slowly’ along the Wigner-Seitz radius rS. Based on this premise,
εxc is approximated at the point r by the corresponding exchange-correlation energy per electron
of an homogenous electron gas with the density at that point r:

Exc[ρ] ≈ ELDA
xc [ρ] =

∫
dr εhom

xc [ρ(r)] ρ(r). (2.53)

For the homogenous electron gas, the exchange energy per electron εhom
x can be calculated an-

alytically, and it remains to find approximative solutions of the correlation part εhom
c

8. Several

8The xc energy per particle can be split up into a correlation part and an exchange part, i.e. εhom
xc = εhom

c + εhom
x .
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methods have been suggested to determine εhom
c . Very early, Wigner[28] estimated the correlation

part for the homogenous electron gas by a simple interpolation scheme between the limits of high-
densities and low-densities. An exact expression has been given by Gell-Mann and Bruckner[29]
in the limiting case of high densities (rS → 0) by use of a perturbative treatment of εhom

c w.r.t.
rS. Further approaches are that by Hedin and Lundqvist within the random phase approxima-
tion [30], a parameter-based ansatz by Gunnarsson and Lundqvist[27], as well as results from
quantum Monte Carlo calculations[31] that have been used to extrapolate εhom

c to high or low
densities[32]. The success of the LDA is however surprising, since in real solids, the condition
of a slowly varying density is hardly complied. The reason of the success is two-fold. On the
one hand, the exchange-correlation hole ρLDA

xc fulfills the sum rule from Eq.(2.44). On the other
hand, ρLDA

xc is spherical symmetric and hence it suffices to describe the true exchange-correlation
hole for a homogenous electron gas exactly.

2.4.3. Generalized-gradient approximation

In order to account for density gradients in Exc[ρ], Kohn and Sham suggested the so-called
gradient expansion approximation (GEA)[21]. The idea behind the GEA is to expand the xc-
functional Exc[ρ] about the uniform density in a Taylor series, where the leading term is given
by ELDA

xc [ρ]. An explicit derivation can be found e.g. in Ref.[33]. Since the GEA is based on
slowly varying densities it does not lead to significant improvements upon the LDA, as it cannot
describe properly rapidly varying densities in real solids. In particular, the associated exchange-
correlation hole ρGEA

xc disobeys the sum rule (2.44). To avoid the short-comings of the GEA, the
generalized-gradient approximation introduces a general expression for Exc[ρ] in the form of

EGGA
xc [ρ] =

∫
dr f(ρ(r),∇ρ(r)) . (2.54)

Hereby, the function f is an analytic function that usually depends on several parameters sub-
ject to meet exact conditions for the exchange-correlation hole. Those conditions are e.g. the
negativity of the exchange hole ρx or the sum rule of Eq.(2.44). For spin-unpolarized systems, f
may be written as [34]

EGGA
xc [ρ] =

∫
dr ρ(r) εhom

x (ρ(r))Fxc (rS, s(r)) (2.55)

where Fxc is the enhancement factor over local exchange and s(r) is the dimensionless reduced
density gradient, which in first order reads

s1 =
|∇ρ|
2kFρ

. (2.56)

There exist several forms for the exchange part Fx of Eq.(2.55), e.g. the aforementioned GEA,
the form of Perdew and Wang [35] or the form of Becke[36], who gave an expression to capture
the long range Coulomb interaction of an electron with its surrounding exchange hole including
gradient corrections. These functionals describe the exchange energy equally for slowly varying
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density gradients, however, they show different behaviour at large density gradients. A good
reason to include the density gradient not only to the exchange hole but also to the correlation
hole is that the resulting xc-hole becomes more localized around an electron[34]. This in turn
improves the description of the xc-hole close to the electron if higher density gradient contribu-
tions, i.e. sm are taken into account. The downside of this approach is the worsened description
of the xc-hole at larger distances. Therefore, a possible solution is to truncate the long range
contribution of ρxc in real space and introduce a generalized-gradient approximation for the xc-
hole for any order of s [34]. In this work we use the PBE-GGA functional[37] which considers
density gradients of first order s1. It treats the correlation energy and exchange energy in the
following form

EPBE−GGA
c [ρ↑, ρ↓] =

∫
dr ρ(r)

[
εhom
c (rS , ξ) +H(rS , ξ, t)

]
ξ =

ρ↑ − ρ↓
ρ

and t =
|∇ρ|
2ksρ

(2.57)

EPBE−GGA
x [ρ↑, ρ↓] =

1

2

{∫
dr ρ↑(r)εhom

c (2ρ↑(r))Fx(s1) +

∫
dr ρ↑(r)εhom

c (2ρ↓(r))Fx(s)

}
. (2.58)

In Eq.(2.57), several expressions for the correlation hole of the homogenous electron gas εhom
c

exist as given in section (2.4.2). To account for the effects of density gradients in the correlation
energy, a second reduced density gradient t is introduced. It is a measure of the density variation
over the screening length ks, the characteristic length scale at which correlation between an
electron and its surrounding hole effectively occurs and is not completely screened.



3. Green’s function approach

Despite the success of the density functional theory, for a rigorous description of the electronic
problem, governed by the Hamiltonian (2.1), the full quantum mechanical problem, i.e. the
Schrödinger equation needs to be solved. This task is a basket case considering the number of
atoms of about 1023 in a real material and thus makes the exact representation of the many-
particle wave function impossible. Nevertheless, the method of the quantization of wave fields
provides another approach to the many-body problem and recasts it in terms of an operator-like
description. I follow the description of Ref.[38].

3.1. Second quantization

The many-problem boils down to the solution of the stationary many-particle Schrödinger equa-
tion

Ĥ |Ψ〉 = E |Ψ〉 (3.1)

with the Hamiltonian of the electronic problem [Eq.(2.1)]. The conceptual idea of second quan-
tization is to convert a one-particle theory into a many-particle theory. Correspondingly, the
one-particle wave function ψ is regarded as a classical field obeying a one-particle Schrödinger
equation [

− ~
2me
∇2

r + Vext(r)

]
ψ(r) = E ψ(r). (3.2)

In order to quantize the field ψ, the method of Hamilton’s least action for classical particles is
applied. Hereby, one may think of cutting down the entire field ψ into small subvolumes δV (s)

and associate the canonical coordinates qj → ψ(s)1 to the averaged field in the subvolume s [38].
Hence the Lagrangian L takes the form L =

∑
s δV

(s)L(s). From the variation principle, the
action integral in the limiting case of infinitesimal cell volumes δV (s) → 0

I =

t2∫
t1

Ldt (3.3)

becomes stationary if the variation δI vanishes. The resulting Euler-Lagrange equation for the
field ψ then becomes

d

dt

δL

δψ̇
− δL

δψ
= 02 (3.4)

1The corresponding velocities q̇j are then given by ψ̇(s).
2The conjugated momentum π is defined as δL

δψ̇
and equals − ~

i
ψ∗ since the Hamiltonian H is just the expectation

value of the Hamilton operator in Eq.(3.2).

17
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from wich the equation of motion for the field ψ, i.e. the time-dependent Schrödinger equation
might be obtained. With the Lagrangian density L = lim

δV (s)→0
L(s) and the conjugated momentum

π the Hamiltonian H, given by

H =

∫
dr
[
πψ̇ − L

]
(3.5)

allows to replace the field equations (3.4) by the corresponding canonical field equations ψ̇ = δH
δπ

and π̇ = δH
δψ̇

. The quantization of the wave field is now obtained by postulating the commutation
rules [39, 40] [

ψ(r), ψ(r′)
]

=
[
π(r), π(r′)

]
= 0

[
π(r), ψ(r′)

]
=

~
i
δ(r− r′) (3.6)

which transform the field ψ and the conjugated momentum π into hermitian operators. This
approach is known as second quantization. Eventually, the connection between the one-particle
SEQ to the many-particle SEQ is obtained, by expanding the classical wave field or respectively
the field operator by a complete and orthonormal basis set {ϕj}. Writing

ψ̂(r) =
∑
j

âj ϕj(r) (3.7)

ψ̂†(r) =
∑
j

â+
j ϕ
∗
j (r), (3.8)

the Hamiltonian of Eq.(3.5), becomes an Hermitian operator within the second quantization (sq)
formulation

Ĥ0,sq =

∫
dr ψ̂†(r)

[
− ~

2me
∇r + Vext(r)

]
ψ̂(r) (3.9)

that is defined in the space of all N -particle Hilbert spaces HN that constitute the Fock space
HFock:

HFock :=
∞⊕
N=0

HN and HN =
N⊗
i=1

H1. (3.10)

To account for the indistinguishability of the particles one needs to restrict HN to the subspaces
of completely symmetric (bosons) or antisymmetric (fermions) N -particle Hilbert spaces, i.e.
H+
N and H−N . Every state vector of the corresponding Hilbert space HνN 3 is build up from the

vacuum state |0〉 as the following:

|nr1nr2 . . . nrN 〉 ≡ |r1r2 . . . rN 〉ν =
1√∏
l

nl!
ψ†(r1)ψ†(r2) . . . ψ†(rN ) |0〉 .4 (3.11)

The real space basis vectors defined by Eq.(3.11) allow to construct any N -particle state by a
linear combination of the same. In the case of a fermionic N -particle state, the commutation
rules [Eq.(3.6)], however, do not obey the Pauli exclusion principle and hold only for bosons.
Thus, the commutation rules for the fermionic field operators require a modification, i.e. they

3For bosons we have ν = + and ν = − for fermions.
4The variable nl counts the number of particles that occupy the same quantum state. For fermions it is simply
0 or 1. The index ν at the second ket vector denotes the a complete (anti)symmetrized N -particle state.
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need to anticommute:

[
ψ(r), ψ(r′)

]
+

=
[
ψ†(r), ψ†(r′)

]
+

= 0
[
ψ(r), ψ†(r′)

]
+

= δ(r− r′). (3.12)

The Hamilton operator as defined in Eq.(3.9) includes the one-particle operators of the kinetic
energy and that of the external potential in second quantization representation. In general, an
arbitrary N -particle operator in the subspace of HνN is represented by

ÔN (t) =
1

N !

∫
dr′1 . . .

∫
dr′N

∫
dr1 . . .

∫
drN 〈r′1 . . . r′N |ÔN (t)|r1 . . . rN 〉×

× ψ̂†(r′1) . . . ψ̂†(r′N )ψ̂(rN ) . . . ψ̂(r1).5
(3.13)

Taking into account the explicit representation of the Coulomb interaction [see appendix (B)],
Ĥ0,sq is easily extendable to include the electron-electron interaction to become the Hamiltonian
of an interacting many-particle system

Ĥsq = Ĥ0,sq + V̂int,sq. (3.14)

Within the one-particle subspace Hν1 , Eq.(3.14) simply reduces to the one-particle Hamilton op-
erator [Eq.(3.9)]. Hence, for N > 1 Ĥsq accounts for all particle-particle interactions. Therefore,
the transition from a one-particle to a many-particle theory is formally established and one can
exploit the anticommutation rules beneficially to obtain a rigorous expansion of the electron-
electron interactions, which will be demonstrated in the next section. The introduction of the
field operators ψ̂ is given here in the Schrödinger picture. However, for practical applications, the
Heisenberg picture is more desirable since the dynamics of the wave function is now transferred
to the operators by a unitary transformation:

ψ̂(r, t) = e
i
~ Ĥsqt ψ̂(r) e−

i
~ Ĥsqt.6 (3.15)

Thereby, the anticommutation rules [Eq.(3.12)] remain unchanged, if the field operators are taken
at the same time t and the entire dynamic, formerly described by the time dependent SEQ, is
now carried by the operators that obey the equation of motion in the Heisenberg picture

d

dt
ÔN =

1

i~

[
Ĥ, ÔN

]
+
∂

∂t
ÔN (t). (3.16)

3.2. The quasiparticle concept

The determination of physical properties of interest is very often treated by the principle of actio
and reactio. In the context of the electronic properties and thus the solution of the many-body
problem, solving the many-body SEQ, the quasiparticle concept plays an essential role. From the
perspective of an experimental access, probing a system and watch its response is a state-of-the-
art procedure, to obtain the desired informations. The perturbation of an arbitrary electronic

6Ĥsq is the full Hamilton operator containing any kind of interactions.
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system goes along with an excitation of the same. Hence, excitation energies will be measured and
give a first insight about the physical processes. Assuming the electronic many-particle system
to be non-interacting, the excitation energy, i.e. the energy difference with and without one
extra particle added to the system, would yield the electronic energy level of that extra particle.
This process is known as indirect photoemission and would measure the electronic density of
unoccupied states. Clearly, the inverse process, then measures the density of occupied states.
Although the interactions among the electrons cannot be neglected, the idea of non-interacting
particles can be carried over to interacting particles by introducing a new kind of particle, which
is the quasiparticle. Such a particle is considered as a stable and long-lived excitation of a many-
particle system, as it is then also measurable by experiment. In the picture of the direct or indirect
photoemission the added electron or hole will be shielded by the electrons in the vicinity and thus
becomes a ’dressed’ particle. This concept goes back to Landau’s Fermi liquid theory [41, 42, 43],
who introduced the quasiparticle in the framework of the adiabatic evolution. By adiabatically
switching on the interaction among the particles plus the extra particle, the quantum states
remain unchanged which allows a one-to-one correspondence between the non-interacting and
interacting Fermi system. A necessary condition to observe a quasiparticle state is that its life
time is larger then the adiabatic switch-one time, which becomes infinite for a strict adiabatic
process. In turn, an infinite life time corresponds to an ideal non-interacting quasiparticle and
the problem of the full interaction would have been decoupled into the solution of an independent
one-particle problem. For practical purposes however, one needs to find reasonable quasiparticles,
whose interaction is small enough to be treated in a perturbative manner. Besides these single-
particle excitations, the particle concept holds for any kind of excitations in a many-particle
systems, such as phonons, plasmons or excitons. In particular, the latter one belongs to the
elementary excitation of collective modes, which is a measure of the density fluctuation due
to an external probe7. With the aid of the quantum field theory, a rigorous description of a
quasiparticle can be established and allows for a systematic, even though approximate, solution
to the many-body problem.

3.3. Green’s function - definition

3.3.1. Propagators

Motivated by the picture of the ’dressed’ particle being injected into the many-particle system,
one may ask about its countless interactions with the surrounding particles and which ’track’
this particular particle may take. This notion of a quasiparticle then can be expressed in terms
of an electron propagator G> or hole propagator G<. For spin-unpolarized systems one defines
[44]:

G>(r1t1, r2t2) =
1

i~
〈ψ̂σ1(r1t1) ψ̂†σ2

(r2t2)〉 δσ1,σ2 (3.17)

G<(r1t1, r2t2) = − 1

i~
〈ψ̂†σ2

(r2t2) ψ̂σ1(r1t1)〉 δσ1,σ2 . (3.18)

7Plasmons being collective modes as well, but due to correlation effects among the particles.
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Due to the delta function in the definition for the propagators above, they become spin indepen-
dent and I will drop the spin index from now on. The expectation value of the product of field
operators in Eq.(3.17) and Eq.(3.18) is defined in terms of the density or statistical operator %̂.
To account for finite temperatures T and a variable particle number N , we may define %̂ within
the grand canonical ensemble, i.e.

%̂ =
e−β(Ĥ−µN̂)

tr{e−β(Ĥ−µN̂)}
and β =

1

kBT
, (3.19)

where kB is the Boltzmann constant and µ denotes the chemical potential, which accounts for the
particle exchange of the thermodynamical systems with the environment. Since the Hamiltonian
Ĥ and the particle operator N̂ commute, they have the same basis of eigenfunctions {|m〉}, and
the ensemble average 〈. . .〉 is then given by

〈Ô〉 = tr{%̂ Ô} =
∑
m

%̂m 〈m|Ô|m〉 and %̂ |m〉 = %m |m〉 . (3.20)

In the zero-temperature limit, the statistical operator becomes the unity operator 1 and only
the ground state Ψ0 is fully occupied. Hence, Eq.(3.20) simplifies to

lim
T→0
〈Ô〉 = 〈Ψ0|Ô|Ψ0〉 . (3.21)

Finally, the definition of the electron and hole propagator allows for a simple interpretation,
namely as a probability amplitude. It yields the probability to find an electron at the time
point t1 and the spatial point r1 if an electron has been added to the system at an earlier time
t2 and place r2 with both particles having the same spin orientation8. Obviously, the electron
propagator describes the propagation of an added electron in positive time direction, i.e. t2 → t1,
while the hole propagates backward in time. Both propagators may be combined to ultimately
define the causal or time-ordered Green’s function

G(r1t1, r2t2) := Θ(t1 − t2)G>(r1t1, r2t2) + Θ(t2 − t1)G<(r1t1, r2t2)

:=
1

i~
〈T ψ̂(r1t1) ψ̂†(r2t2)〉 ,

(3.22)

with T denoting Wick’s time ordering operator.

3.3.2. Spectral properties

The Fourier transform of the electron and hole propagator as shown in appendix E [Eq.(E.3) and
Eq.(E.4)] allow for a representation of the Green’s function [Eq.(3.22)] in the frequency domain
in form of a Lehmann representation

G(r1, r2;ω) = lim
η→0

i

2π

∫
dω′

G>(r1, r2;ω′)

ω − ω′ + iη
− G<(r1, r2;ω′)

ω − ω′ − iη . (3.23)

8The same interpretation also holds for the hole propagator according to its definition in Eq.(3.18).
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Figure 3.1: Sketch of the complex time domain. The blue
area shows the analytic region of the hole prop-
agator G<, while the orange part concerns the
analytic region of the particle propagator G>

respectively. The red lines and the red dots
mark the non-analytic regions.

At least in the zero temperatur limit, i.e. T → 0, a spectral representation of Eq.(3.23) might
be derived

G(r1, r2;ω) = lim
η→0

1

2π

∫
dω′

A(r1, r2;ω′)

ω − ω′ + iηsgn(~ω′ − µ)
9, (3.24)

with the spectral weight function defined as

A(r1, r2;ω) = i
[
G>(r1, r2;ω)−G<(r1, r2;ω)

]
. (3.25)

At finite temperatures, however, a regular spectral representation like Eq.(3.24) of the causal
Green’s function cannot be found. One obtains instead

G(r1, r2;ω) =
1

2π

+∞∫
−∞

dω′
{
P 1

ω − ω′ − iπδ(ω − ω
′) tanh

β

2
(~ω′ − µ)

}
A(r1, r2;ω), (3.26)

with the spectral weight function from Eq.(3.25). In order to obtain a spectral representation for
the causal Green’s function at finite temperatures, the Wick theorem is exploited[45]. While in
the zero temperature limit the time differences are real, i.e. (t1 − t2) ∈ R, they become complex
otherwise10 as sketched in Fig.(3.1). On the complex time domain one finds a quasi-periodicity
of G(r1t1, r2t2) that is due to the relation of the electron and hole propagator:

G<(r1, r2, t1 − t2) = −e−βµG>(r1, r2, t1 − t2 − i~β). (3.27)

Equation (3.27) is the Martin-Schwinger relation [46] and connects both propagators on the entire
complex time domain. A more detailed derivation is given in the appendix E. The causale Green’s
function thus is quasi periodic along the imaginary time axis within the intervall |=(t1−t2)| ≤ ~β,

9Here and in the following, µ denotes the chemical potential.
10For imaginary time differences, the theta function in Eq.(3.22) takes into account the imaginary part only, i.e.

Θ [=(t1 − t2)].
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and hence has a Fourier representation in the following form

G(r1, r2, t1 − t2) = − 1

i~β
∑
n

G̃(r1, r2; zn)eizn(t1−t2). (3.28)

The frequencies zn are the fermionic Matsubara frequencies and are the poles of the Fermi-
function. They allow for a simple spectral representation of the causal temperature dependent
Green’s function as

G̃(r1, r2; zn) =
1

2π

+∞∫
−∞

dω
A(r1, r2;ω)

zn − ω
(3.29)

with the Matsubara frequencies

~zn = µ− πn

iβ
with n = ±1,±3,±5, . . . . (3.30)

Considering the spectral representation [Eq.(3.29)], the Fourier transform may be continued to
the entire complex plane, i.e. zn → z, except at the real frequency axis, and G̃(z) coincides with
G̃(zn) at the Matsubara frequencies. To conclude this section, two further Green’s function, the
retarded and advanced Green’s function shall be mentioned at this point. They have, like the
causal one the same physical content, but posses a spectral representation similar like Eq.(3.24)
for all temperatures. While the retarded Green’s function is analytical in the upper complex
frequency plane, the advanced Green’s function is analytical in the lower plane, respectively.
Hence they can be obtained by approaching the real frequency axis either from above or below
and one eventually finds the following relation:

Gret/av(r1, r2, ω) = lim
η→0+

G̃(r1, r2, ω ± iη), ω ∈ R. (3.31)

Although both functions yield the exact excitation energies of the many-body system, it is only
the causal Green’s function that makes a perturbative series expansion possible.

3.4. Methods for determining the Green’s function

As from the discussion of the previous sections, the Green’s function is asked to incorporate the
mutual particle interactions in the many-body system due to the additional injected electron or
hole and is required additionally to yield information about the excitation energies or simply the
quasiparticle energies. The term quasiparticle is a priori still unknown, but can be associated
to pronounced peak structures in the spectral function. Both aspects shall be sketched in this
section, following the references[60, 44, 48, 49].

3.4.1. Equation of motion for G

By inspecting the equation of motion for the field operators in the Heisenberg picture [Eq.(3.16)]
one verifies by the time derivative of G(t1 − t2) an equation of motion for the causal Green’s
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function that reads[
i~

∂

∂t1
+

~
2me
∇2

r1
− Vion(r1)

]
G(1, 2) + i~

∫
d3 v(1− 3)G(1, 3, 2, 3+) = δ(1− 2). (3.32)

Some remarks are required at this point:

- the short hand notation 1 = r1t1 is exploited

- the integral d1 abbreviates
∫

dr1

∫
dt1

- the external potential in the Hamiltonian of Eq.(3.16) is given by the local potential due
to the nuclei Vion(r1)

- the kernel of the Coulomb interaction is given by v(1− 2) ≡ e2

|r1−r2|δ(t1 − t2)

- the notation 1+ = r1t1 − iη slightly shifts the time argument into the ’past’, such that the
time ordering operator T can be properly applied within the expression G(1, 3, 2, 3+)

Obviously, the equation of motion for the causal Green’s function involves a two-particle Green’s
function that is defined as

G(r1, r2, r3, r4) =
1

(i~)2

〈
T ψ(r1t1)ψ(r2t2)ψ†(r4t4)ψ†(r3t3)

〉
. (3.33)

Due to the fact that the (causal) one-particle Green’s function requires the next higher order
two-particle Green’s function, which itself requires a three-particle Green’s function for the cor-
responding equation of motion, an infinite hierarchy is successively generated. In order to break
down this hierarchy, the equation of motion [Eq.(3.32)] can be formally rewritten by introducing
the so-called self-energy Σ. With the aid of the inverse one-particle Green’s function obeying
the relation ∫

d3G(1, 3)G−1(32) =

∫
d3G−1(1, 3)G(32) = δ(1− 2), (3.34)

the self-energy may be defined as the following∫
d3 Σ(13)G(32) = −i~

∫
d3 v(1− 3)G(1, 3, 2, 3+) (3.35)

Σ(12) = −i~
∫

d3 d4 v(1− 3)G(1, 3, 4, 3+)G−1(42). (3.36)

As a result, the equation of motion [Eq.(3.32)] reduces to the level of a one-particle description
of the many-particle system[

i~
∂

∂t1
+

~
2me
∇2

r1
− Vion(r1)

]
G(12)−

∫
d3 Σ(13)G(32) = δ(1− 2), (3.37)
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where the self-energy contains the complete description of the many-particle interactions. Usu-
ally, one splits Σ into the classical Hartree term ΣH

ΣH(12) = −i~ δ(1− 2)

∫
d3 v(1− 3)G(33+) = δ(1− 2)VH(r1)11 (3.38)

and the remaining term Σxc, which includes now all exchange and correlation effects. Since
neither the fully interacting Green’s function nor the self-energy is known, a solution of Eq.(3.37)
is a priori only possible through a non-interacting reference function G0(12), which has an explicit
expression. Due to practical purposes, such a reference Green’s function is chosen such as it
already includes a fraction of the mutual electronic interactions. This might be incorporated
by an exchange-correlation potential Vxc

12, which then results in a corresponding equation of
motion for the non-interacting one-particle Green’s function G0[

i~
∂

∂t1
+

~
2me
∇2

r1
− Vion(r1)− VH(r1)

]
G0(12)−

∫
d3Vxc(13)G0(32) = δ(1− 2). (3.39)

Taking into account the separation of the Hartree term from Σ, Eq.(3.37) and Eq.(3.39) together,
yield a self-consistent equation of motion of the one-particle Green’s function in terms of its non-
interacting counterpart

G(12) = G0(12) +

∫
d3 d4G0(13) [Σxc(34)− Vxc(34)]G(42). (3.40)

The equation above is also known as the Dyson equation.

3.4.2. Perturbative series expansion of G - zero temperature limit

The exact solution of the Dyson equation requires not only the knowledge of the complete de-
scription of the mutual electronic interaction, it also generates an infinite series of interaction
terms for the self-energy. Such a series does not necessarily converge and it is common practice
to find certain subseries in terms of Σ that summed up to infinity yields a converged but approx-
imated solution to the Dyson equation. In the following, I restrict to the zero-temperature limit
and follow the Refs. [50] and [51].

Adiabatic switch on procedure and Gell-Man and Low theorem

With the aid of the adiabatic switch on procedure the transition from a complete non-interacting
eigenstate to the corresponding interacting state can be established. The electronic interaction is
adiabatically switched on within the time intervall [−∞, 0] and switched off in the time intervall
[0,∞], while the full interaction strength is reached by construction at the time point t = 0. By
separating the many-body Hamiltonian Eq.(2.1) into a non-interacting part Ĥ0 and the remaining
Coulomb interaction term V̂int one introduces the adiabatic switch on procedure by an additional

11The Hartree potential is given by the usual expression VH(r1) =
∫

dr3v(r1 − r3)ρ(r3).
12We here assume a static and in general non-local potential, i.e. Vxc(13) = vxc(r1, r3)δ(t1 − t3)
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exponential damping function as the following

Ĥ = Ĥ0 + e−ξ|t|V̂int and ξ ∈ R≥0. (3.41)

Hence, in the limiting case t → −∞ the many-body state is just an eigenstate |Φ〉 of the non-
interacting Hamiltonian Ĥ0, which is equivalent in the Schrödinger picture as well as in the
interaction picture. The latter one is usually the more appropriate picture to choose, since the
corresponding time evolution operator ÛI,ξ then just contains the (possibly time dependent)
interaction term V̂int. Thus the resulting many-body eigenstate |Ψ〉 at full interaction strength
is then obtained by exploiting ÛI,ξ in the following way:

|ΨI(t2 = 0)〉 = ÛI,ξ(t2 = 0, t1 = −∞) |Φ〉 , (3.42)

while the time evolution operator reads

ÛI,ξ(t2, t1) =
∞∑
l=0

(
− i
~

)l 1

l!

t2∫
t1

dt′1 . . .

t2∫
t1

dt′l e
−ξ(|t′1|+...+|t′l|) T

[
V̂int,I(t

′
1) . . . V̂int,I(t

′
l)
]
.13 (3.43)

The time ordering operator T appearing in the equation above is simply due to the iterative
solution ansatz for the exact time evolution operator and arranges its arguments in descending
time order. However, the adiabatic switch on procedure requires an infinitely slow transition from
the non-interacting state to the corresponding interacting state. By inspection of Eq.(3.41), the
limes ξ → 0 has no physical meaning and diverges with ξ−1 [50]. Nevertheless, the theorem by
Gell-Mann and Low [52] guarantees the existence of the limes

lim
ξ→0

ÛI,ξ(0,−∞) |Φ〉
〈Φ|ÛI,ξ(0,−∞)|Φ〉

=
|Ψ〉
〈Φ|Ψ〉 , (3.44)

while the rhs of Eq.(3.44) is an eigenstate of the full interacting Hamiltonian Ĥ. It is the
denominator in Eq.(3.44) that cancels the diverging phase in the nominator and thus allows for
a finite expression of the ratio (lhs) to all orders in the perturbation series of the time evolution
operator ÛI,ξ.

Representation of G in a perturbation series and Wick’s theorem

Following the definition of the causal Green’s function, one finds the corresponding expression
in the zero-temperature limit given by

G(r1t1, r2t2) =
1

i~
〈Ψ0|T ψ̂(r1t1)ψ̂†(r2t2)|Ψ0〉 , (3.45)

13The term V̂int,I(t
′
1) denotes the interaction operator within the interaction picture and is given by the unitary

transformation V̂int,I(t) = e
i
~ Ĥ0tV̂inte

− i
~ Ĥ0t.
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whereas Ψ0 denotes the many-body ground state.14 Without loss of generality the rhs of Eq.(3.45)
can be easily multiplied by a factor 〈Ψ0|Ψ0〉−1 |〈Φ0|Ψ0〉|2

|〈Φ0|Ψ0〉|2 , assuming orthonormality of the ground
state Ψ0. This extension now allows to rewrite the resulting denominator of Eq.(3.45), using
Eq.(3.44), in the following way:

〈Ψ0|Ψ0〉
|〈Φ0|Ψ0〉|2

=
〈Φ0|ÛI,ξ(∞, 0)ÛI,ξ(0,−∞)|Φ0〉

|〈Φ0|Ψ0〉|2

=
〈Φ0|Ŝξ|Φ0〉
|〈Φ0|Ψ0〉|2

. (3.46)

On the other hand one obtains for the nominator of Eq.(3.45) the following expression:

〈Φ0|ÛI,ξ(∞, 0)
{
ÛI,ξ(0, t1)ψ̂I(1)ÛI,ξ(t1, 0)

}{
ÛI,ξ(0, t2)ψ̂†I (2)ÛI,ξ(t2, 0)

}
ÛI,ξ(0,−∞)|Φ0〉

|〈Φ0|Ψ0〉|2

=
〈Φ0|ÛI,ξ(∞, t1) ψ̂I(1) ÛI,ξ(t1, t2) ψ̂†I (2) ÛI,ξ(t2,−∞)|Φ0〉

|〈Φ0|Ψ0〉|2
. (3.47)

In the curly brackets, the field operators, previously given in the Heisenberg picture [see Eq.(3.45)],
are now transformed into the interaction picture. The ordering of the time arguments t1 and t2
is captured by the time ordering operator appearing in the time evolution operator ÛI,ξ. From
the ratio of Eq.(3.47) and Eq.(3.46) the causal Green’s function takes the intermediate form

G(r1t1, r2t2) =
1

i~
〈Φ0|ÛI,ξ(∞, t1) ψ̂I(1) ÛI,ξ(t1, t2) ψ̂†I (2) ÛI,ξ(t2,−∞)|Φ0〉

〈Φ0|Ŝξ|Φ0〉
(3.48)

which demonstrates the transition from the Heisenberg representation to the interaction picture.
Evenmore, the limes ξ → 0 can be performed, due to the construction of the interacting ground
state Ψ0 through the Gell-Mann and Low theorem. The final step comprises the substitution
of the explicit expression for the time evolution operator ÛI,ξ [Eq.(3.43)] into Eq.(3.48). After
a lengthy derivation [see e.g.[50]], the nominator of equation (3.48) can be rewritten as a series
expansion in terms of the Coulomb interaction V̂int,I, i.e.

G(r1t1, r2t2) =
1

i~

〈
Φ0

∣∣∣ ∞∑
l=0

(
− i
~

)l 1

l!

∞∫
−∞

dt′1 . . .

∞∫
−∞

dt′l

× T
{
V̂int,I(t

′
1) . . . V̂int,I(t

′
l)ψ̂I(1)ψ̂†I (2)

} ∣∣∣Φ0

〉
× 1

〈Φ0|Ŝ|Φ0〉
.

(3.49)

14The Gell-Mann and Low theorem, however, does not necessarily imply that by switching on the Coulomb
interaction, the resulting interacting eigenstate Ψ in Eq.(3.44) is also a ground state if Φ was ground state.
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The Coulomb operator V̂int,I(t) in the equation above is additionally expressed in second quan-
tization [see also Eq.(B.1) in the appendix], i.e.

V̂int,I(t) =
1

2

∫
dr1 dr2 ψ̂

†
I (r1, t) ψ̂

†
I (r2, t) v(r1 − r2, t)I ψ̂I(r2, t) ψ̂I(r1, t), (3.50)

so that the field operators ψ̂I are the only type of arguments of the time ordering operator T . In
particular, the zero order term of the series expansion [Eq.(3.49)] just yields the non-interacting
causal Green’s function G0(1, 2) which reads

G0(1, 2) =
1

i~

〈
Φ0

∣∣∣T ψ̂I(1)ψ̂†I (2)
∣∣∣Φ0

〉
. (3.51)

This quantity can usually be calculated explicitly if a reference system of non-interacting particles
is chosen. The corresponding orbitals form an orthogonal basis set {ϕν} and allow to represent
the non-interacting ground state |Φ0〉 as a single Slater determinant wave function. As we restrict
to a fermionic many-body system, the orbitals ϕν can be split into a spatial part ϕν(r) and an
additional spin part fν(σ) , while the index ν comprises a complete set of single particle quantum
numbers, such as the wave vector k̃ and the spin component along the z-direction mσ, which
takes the values up ↑ and down ↓:

ϕν := ϕk̃,mσ
(r)fmσ(σ) ≡ ϕk̃,σ(r). (3.52)

In consideration of a periodic lattice structure, the spatial part obeys the Bloch theorem [53]
and consists of a plane wave modulated by a lattice periodic function uk̃(r)

ϕk̃,σ(r) = unk,σ(r)eikr and unk,σ(r + R) = unk,σ(r). (3.53)

Due to the lattice periodicity, the wave vector k̃ in Eq.(3.53) can be restricted to a wave vector
k that belongs to the first Brillouin zone at the expense of the introduction of a new quantum
number, the band index n. Since the orbitals ϕν form a natural basis to represent the field
operators ψ̂I(r1t1) and ψ̂†I (r2t2), exploiting the mode expansion from Eq.(3.7) and Eq.(3.8) one
finds

ψ̂I(r1t1) =
∑
k̃≤kF

ϕk̃σ1
(r1t1)ĉk̃σ1

+
∑
k̃>kF

ϕk̃σ1
(r1t1)ĉk̃σ1

(3.54)

and
ψ̂†I (r2t2) =

∑
k̃≤kF

ϕ∗
k̃σ2

(r1t1)ĉ†
k̃σ2

+
∑
k̃>kF

ϕ∗
k̃σ2

(r2t2)ĉ†
k̃σ2

. (3.55)

The destruction and creation operators c and c† destroy or create, dependent on the k̃-point, a
particle or hole respectively. In the context of a filled Fermi sea, a particle can only be created
above the Fermi level, while a hole can be created only below the Fermi level, respectively. Hence
it is convenient to apply a canonical transformation of the operator ĉ into a so called particle
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and hole operator denoted by â and b̂ in the following way:

ck̃σ =

b
†
k̃σ

for k̃ < kF

ak̃σ for k̃ > kF

(3.56)

c†
k̃σ

=

bk̃σ for k̃ < kF

a†
k̃σ

for k̃ > kF.
(3.57)

Furthermore, the anticommutation rules between creation and destruction (annihilation) opera-
tors due to Eq.(3.12) remain unchanged under this canonical transformation, i.e.[

âk̃1,σ1
, â†

k̃2,σ2
= b̂k̃1,σ1

, b̂†
k̃2,σ2

= δk̃1,k̃2
δσ1,σ2

]
+
. (3.58)

As a result, the field operators of Eq.(3.54) and Eq.(3.55) can be recast in the following way

ψ̂I(r1t1) =
∑
k̃≤kF

ϕk̃σ1
(r1t1)b̂†

k̃σ1︸ ︷︷ ︸
ψ̂

(+)
I (1)

+
∑
k̃>kF

ϕk̃σ1
(r1t1)âk̃σ1︸ ︷︷ ︸
ψ̂

(−)
I (1)

(3.59)

and
ψ̂†I (r2t2) =

∑
k̃≤kF

ϕ∗
k̃σ2

(r1t1)b̂k̃σ2︸ ︷︷ ︸
ψ̂

(−)†
I (2)

+
∑
k̃>kF

ϕ∗
k̃σ2

(r2t2)â†
k̃σ2︸ ︷︷ ︸

ψ̂
(+)†
I (2)

. (3.60)

The transition into the particle-hole picture and the involved separation of the field operators
into creation and destruction operators plays a crucial role in the application of the Wick theorem
and also in the subsequent representation of Eq.(3.49) as Feynman diagrams. By virtue of Eq.
(3.49), for every order l the series expansion introduces 4 · l + 2 field operators 15 that need to
be reordered following their anticommutation rules. Such tedious task can be simplified with
the aid of the Wick theorem. It makes use of the fact that every time ordered product of free
field operators can be expressed as a sum of so called normal ordered products of field operators
plus remaining terms that involve so called contractions. The idea behind this is to reshuffle any
product of time ordered free field operators into a sequence whereas all annihilation operators
ψ̂(−)/ψ̂(−)† stand to the right of all creation operators ψ̂(+)/ψ̂(+)†. The corresponding difference
between time ordered and normal ordered products of field operators may be again expressed
as a sum of normal ordered products plus terms containing the anticommutator of two field
operators. The latter one is however just a simple complex number and is usually denoted as
contraction[40]. Since the expectation value of a normal ordered product of free field operators
w.r.t. the non-interacting ground state vanishes, i.e.〈

Φ0

∣∣∣N ÂB̂ . . . Ẑ∣∣∣Φ0

〉
= 0, (3.61)

15The interaction term V̂int in second quantization carries 4 field operators as shown in Eq.(B.1).
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the time ordered product can be reduced to the remaining terms of contracted field operators.
This is manifested in the Wick theorem:

Wick’s theorem. Any time ordered product of free field operators equals the sum of all normal
ordered products containing all possible contractions:

T
[
ÂB̂Ĉ . . . Ẑ

]
= N

[
ÂB̂Ĉ . . . Ẑ

]
+N

[
ÂB̂Ĉ . . . Ẑ

]
+ . . .

+N
[
ÂB̂ĈD̂ . . . Ẑ

]
+ . . .

+ . . .

+ all completely contracted pairs.

(3.62)

The contraction always comes in pairs of field operators and can be taken out of the expectation
value in Eq.(3.62). Evenmore, contractions of field operators become zero if both anticommute.
Hence, any possible combinations are restricted to pairs of annihilation and creation operators.
In particular, the non-interacting Green’s function can be written as the contraction of the free
field operators given in the interaction picture [50]

G0(r1t1, r2t2) =
1

i~
ψ̂I(r1t1)ψ̂†I (r2t2). (3.63)

By separating the field operators into creation and annihilation parts, as shown in Eq.(3.60), the
particle and hole character of G0 can be easily verified. One thus finds

i~G0(r1t1, r2t2) =


ψ̂

(−)
I (r1t1)ψ̂

(+)†
I (r2t2) if t1 > t2

ψ̂
(+)
I (r1t1)ψ̂

(−)†
I (r2t2) if t2 > t1.

(3.64)

Within the respective spatial representation, G0 represents the propagation of a particle added
to the non-interacting many-body system in positive time direction, while it yields a hole propa-
gation ’travelling’ in negative time direction. One may note that the field operators given within
the interaction picture are equivalent to their representation within the Heisenberg picture as
both operators are expressed in terms of a non-interacting orbital basis. Eventually, the evalua-
tion of the time ordered product in Eq.(3.49) is equivalent to the summation over all completely
contracted pairs of free field operators yielding in total (4 · l+ 2) possible combinations of totally
contracted field operators for every order l.

Representation by Feynman graphs

Obviously, the pairing of field operators becomes rather confusing the more operators are involved
and it becomes impossible to treat all orders of interactions by hand. However, the methods
after Feynman to represent the non-interacting Green’s function by a single line, indicating the
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direction of propagation from the second to the first argument, and the Coulomb interaction
given as a wiggly line allows to draw systematically all possible distinct topological Feynman
graphs at every order l of interaction. From the perturbation series [Eq.(3.49)] one may verify
that the first order term yields

i~G(1)(r1t1, r2t2) =
〈

Φ0

∣∣∣ (− i~
) ∞∫
−∞

dt′1 T
{
V̂int,I(t

′
1)ψ̂I(1)ψ̂†I (2)

} ∣∣∣Φ0

〉

= − i
~

〈
Φ0

∣∣∣1
2

∑
σ′1,σ

′
2

∞∫
−∞

dt′1

∫
dr′1 dr′2 T

{
ψ̂†I (r′1t

′
1)ψ̂†I (r′2t

′
1)

× v(r′1, r
′
2; t′1)I ψ̂I(r

′
2t
′
1)ψ̂I(r

′
1t
′
1)ψ̂I(r1t1)ψ̂†I (r2t2)

}∣∣∣Φ0

〉
× 1

〈Φ0|Ŝ|Φ0〉
.

(3.65)

The field operators in Eq.(3.65) carry a spin index for each spin orientation as introduced by
Eq.(3.54) and Eq.(3.55). Due to the antisymmetrized ground state wave function |Φ0〉 there
are 4 different Coulomb interaction terms due to the 2 possible spin orientations for σ′1 and
σ′2. Thus, the sum over the spin indices in Eq. (3.65) might be accounted by a factor 4 for
non-magnetic systems. Usually, the instantaneous Coulomb interaction term, which is spin
independent, is extended in increasing orders to make the integration over spatial and time
variables symmetrically. This implies for the rhs of Eq.(3.65) the following expression

= − i
~

〈
Φ0

∣∣∣4
2

∞∫
−∞

dt′1

∞∫
−∞

dt′2

∫
dr′1 dr′2 T

{
ψ̂†I (r′1t

′
1)ψ̂†I (r′2t

′
2)

× v(r′1, r
′
2; t′1, t

′
2)I ψ̂I(r

′
2t
′
2)ψ̂I(r

′
1t
′
1)ψ̂I(r1t1)ψ̂†I (r2t2)

}∣∣∣Φ0

〉
× 1

〈Φ0|Ŝ|Φ0〉
,

(3.66)

where the Coulomb kernel is simply proportional to the delta function, i.e. v(r′1, r
′
2; t′1, t

′
2) =

v(r′1, r
′
2)δ(t′1 − t′2). The application of Wick’s theorem results in 6 different terms, each of them

contains 3 pairs of contracted field operators or simply 3 products of non-interacting Green’s
functions. As a result one obtains six distinct Feynman graphs as shown in Fig.(3.2). Obviously,
the series expansion yields connected and disconnected Feynman graphs, as well as single lines
that are closed. In particular the latter one contradicts the definition of the time ordered Green’s
function, which has two distinct time arguments. However, such a loop of a fermionic line which
is a priori given as G(0)(r1t1, r1t1) may be rewritten as

G(0)(r1t1, r1t1) = lim
t2→t+1

G(0)(r1t1, r1t2), (3.67)

and displays the common applied convention, to follow the normal ordered product that appears
in Wick’s theorem[50]. Within the space time representation of Feynman diagrams, the vertex
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Figure 3.2: Feynman graph representation of the
Green’s function to first order in the
Coulomb interaction. The wiggly line de-
notes the Coulomb interaction, while the
non-interacting Green’s function G0(1, 2)
is shown as a solid line with an ar-
row heading from the second to the first
space/time argument, i.e. 1 = r, t.
Graphs are taken from [50].
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• appearing in Fig.(3.2) indicates the spatial variable and a time point on a time axis considered
to run from the bottom to the top. The integration in Eq.(3.66) involves only diagrams that are
connected by the wiggly Coulomb line and yield complex numbers. Hence, diagrams such as No.
A or No. B can be treated as products of complex numbers and may be factored out. Evenmore,
the resulting series of disconnected diagrams is exactly canceled by the denominator 〈Φ0|Ŝ|Φ0〉,
which yields all orders of the vacuum amplitude diagrams[54]. Hence, the perturbation series of
the full time ordered Green’s function has a Feynman diagram representation including connected
diagrams only and the cancellation of the disconnected contributions due to the denominator
is known as the Linked-Cluster theorem[55]. Therefore, the ultimate perturbation series for the
time ordered Green’s function can be stated as the following

G(r1t1, r2t2) =
1

i~

〈
Φ0

∣∣∣ ∞∑
l=0

(
− i
~

)l 1

l!

∞∫
−∞

dt′1 . . .

∞∫
−∞

dt′l

× T
{
V̂int,I(t

′
1) . . . V̂int,I(t

′
l) ψ̂I(1) ψ̂†I (2)

} ∣∣∣Φ0

〉
fully connected

.

(3.68)

Self-energy insertion

By inspection of Fig.(3.2) one notes that the full interacting Green’s function posses a certain
characteristic within the Feynman representation. Every diagram has an incoming fermion line
propagating the many-body system including the extra particle or hole up to the time point
where the interaction begins. The first order approximation clearly gives only one time point
at which an interaction can happen, while for every higher order, one further interaction term
at another time point is included. After that, the diagram finishes with a further fermion line
propagating the many-body system to a second specific time point. The corresponding integral
equation may then be written in the following way:

G(r1t1, r2t2) = G(0)(r1t1, r2t2)

+

∫
dr′1dr′2

∞∫
−∞

dt′1 dt′2 G
(0)(r1t1, r

′
1t
′
1)Σ̄(r′1t

′
1, r
′
2t
′
2)G(0)(r′2t

′
2, r1t1).

(3.69)
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All diagrams, which lie in-between the first and the last fermion line are called self-energy inser-
tions and contain all possible Coulomb interactions to all orders up to infinity. Their contribution
summed up to infinity yield the reducible or improper self-energy Σ̄. However, this quantity can
be split up, if one Feynman diagram (at higher orders) contains at least two self-energy insertions
connected by a single fermion line. Those diagrams can be cut off at the fermion line and one
may write the reducible self-energy itself as an infinite series containing only irreducible or proper
self-energy insertions Σ connected by single fermion line. The corresponding integral equation
becomes

Σ̄(r1t1, r2t2) = Σ(r1t1, r2t2) +

∫
dr′1dr′2

∞∫
−∞

dt′1 dt′2

× Σ(r1t1, r
′
1t
′
1)G(0)(r′1t

′
1, r
′
2t
′
2)Σ(r′2t

′
2, r2t2) + . . .

(3.70)

or in shorthand notation

Σ̄ = Σ + ΣG(0)Σ + ΣG(0)ΣG(0)Σ + . . . . (3.71)

The combination of Eq.(3.69) and Eq.(3.70) result in closed expression for the full time ordered
Green’s function. In shorthand notation one obtains:

G = G(0) +G(0)Σ̄G(0)

= G(0) +G(0)
{

Σ + ΣG(0)Σ + ΣG(0)ΣG(0)Σ + . . .
}
G(0)

= G(0) +G(0)Σ
{

1 +G(0)Σ +G(0)ΣG(0)Σ + . . .
}
G(0)

= G(0) +G(0)Σ
{
G(0) +G(0)ΣG(0) +G(0)ΣG(0)ΣG(0) + . . .

}
= G(0) +G(0)ΣG.

(3.72)

This is just the Dyson equation for the time ordered Green’s function and is explicitly given as
an integral equation

G(r1t1, r
′
1t
′
1) = G(0)(r1t1, r2t2)

+

∫
dr′1dr′2

∞∫
−∞

dt′1 dt′2G
(0)(r1t1, r

′
1t
′
1)Σ(r′1t

′
1, r
′
2t
′
2)G(r′2t

′
2, r2t2).

(3.73)

One may note that Eq.(3.73) is equivalent to Eq.(3.40) within the zero temperatur limit.16

3.4.3. Single particle excitations and quasiparticles

The coming section is devoted to the calculation of the excitation energies of a many-body system
in the context of the quasiparticle picture. As it has been discussed in section 3.2, quasiparticle

16The Dyson equation given by Eq.(3.73) differs from Eq.(3.40) only by the fact that the non-interacting Green’s
function obeys the equation of motion [see Eq.(3.39)] excluding the classical Hartree term and excluding a
mean-field approximation of the exchange and correlation effects mediated by a corresponding potential Vxc.
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energies can be identified as the corresponding energy levels of a many-body system and need to
have life times that are reasonably long to be accessible by an experimental measurement. The
condition of infinite life times would be trivially fulfilled in the case of independent particles. In
this case, the corresponding Green’s function G(0) is readily accessible and yields, assuming the
mode expansion of Eq.(3.59) and Eq.(3.60), the following expression[44]

G(0)(r1, r2; z) =
∑
k̃

ϕk̃(r1)ϕ∗
k̃
(r2)

~z − εk̃
.17 (3.74)

Assuming a reference system of independent particles that already include a certain amount
of exchange and correlation effects due to a mean-field approach, the solution of the equation
of motion for G(0) [compare Eq.(3.39)] in the frequency domain, requires the solution of the
one-particle Schrödinger equation[

− ~
2me
∇2

r1
+ Vion(r1) + VH(r1)

]
ϕk̃(r1) +

∫
dr′1 Vxc(r1, r

′
1)ϕk̃(r′1) = εk̃ ϕk̃(r1). (3.75)

Since the eigenvalues εk̃ equally represents the excitation energies of the non-interacting many-
body system, the corresponding spectral function has distinct delta peaks at those eigenvalues.
Considering the definition of the spectral function, given by Eq.(3.25), one may find with Eq.(E.3)
and Eq.(E.4)

A(r1, r2;ω) = 2π
∑
k̃

ϕk̃(r1)ϕ∗
k̃
(r2)δ(~ω − εk̃). (3.76)

Since the density of states D(~ω)is just given by
∑

k̃ δ(~ω− εk̃), one finds the following relation
to the spectral function in the independent particle case

2πD(~ω) = trA(ω) =
∑
k̃

Ak̃k̃(ω). (3.77)

The situation is more complicated in the case of interacting particles and the question of an
equivalent representation of the Green’s function and its corresponding spectral function needs
to be answered. Considering the equation of motion for G [Eq.(3.37)], the operator equation in
the frequency domain leads to a formal solution (resolvente of G)[56, 48]

G(r1, r2; z) =
∑
k̃

φk̃(r1; z)φ̄∗
k̃
(r2; z)

~z − Ek̃(z)
, (3.78)

whereas the set of eigenfunctions {φk̃(z)} and {φ̄k̃(z)} form a bi-orthogonal system, obeying the
eigenvalue problem[
− ~

2me
∇2

r1
+ Vion(r1) + VH(r1)

]
φk̃(r1; z) +

∫
dr′1 Σxc(r1, r

′
1; z)φk̃(r′1; z) = Ek̃(z)φk̃(r1; z)

(3.79)

17For the zero-temperature limit, G(0) has only a real frequency argument and the substitution ~z → ~ω +
isgn(~ω − µ)η has to be taken into account.
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that needs to be solved for every frequency z. Since the self-energy operator is non-hermitian
the resulting eigenvalues will in general be complex numbers.

Quasiparticle approximation

As it is obvious from Eq.(3.78) one may expect G(z) to have poles where the complex energy
Ek̃(z) = ~z. Separating into real and imaginary part, i.e. Ek̃(z) = <Ek̃(z) + i=Ek̃(z) one may
assume that the spectral function has a dominant peak at <Ek̃(z). Keeping that in mind, one
finds initially for the spectral function the following expression[44, 57]

Ak̃k̃(ω) =
2|=Σxc

k̃k̃
(ω)|[

~ω − εk̃ −<Σxc
k̃k̃

(ω)
]2

+
[
=Σxc

k̃k̃
(ω)
]2 . (3.80)

If the imaginary part =Σxc
k̃k̃

(ω) at the frequency ω is much smaller than the remaining part in
the denominator, the matrix element of the spectral function will in general have a dominant
peak at the quasiparticle energy defined as

Eqp

k̃
= εk̃ + <Σxc

k̃k̃

(
Eqp

k̃
/~
)
. (3.81)

Under the assumption of a slowly varying imaginary part of the self-energy in Eq.(3.80) one may
expand the spectral function around the quasiparticle energy in a Taylor series up to first order
and obtains a corresponding quasiparticle approximation of the latter one [48]

Ak̃k̃(ω) ≈ Zk̃

2Zk̃

∣∣∣=Σxc
k̃k̃

(Eqp

k̃
/~)
∣∣∣(

~ω − Eqp

k̃

)2
+
[
Zk̃=Σxc

k̃k̃

(
Eqp

k̃
/~
)]2 . (3.82)

Hence, the quasiparticle approximation leads to a Lorentzian form of the spectral function at
the corresponding excitation energy with a width at half maximum Γ = Zk̃=Σxc

k̃k̃
(Eqp

k̃
/~). The

spectral weight is then determined by the renormalization factor

Zk̃ =

1−
∂<Σxc

k̃k̃
(ω)

∂(~ω)

∣∣∣∣∣
~ω=Eqp

k̃

−1

(3.83)

and equals the residuum of the Green’s function [Eq.(3.78)] at the quasiparticle energy [56].
With the definition for the quasiparticle energy and the corresponding qp-approximation for the
spectral function, the Green’s function can be written as

Gqp(r1, r2; z) =
∑
k̃

Zk̃

φk̃(r1)φ̄∗
k̃
(r2)

~z −
[
Eqp

k̃
(z) + iZk̃=Σxc

k̃k̃
(Eqp

k̃
/~)
] . (3.84)

The expression above allows for the interpretation of a decaying particle with a life time τ = ~/Γ
[30]. The finite life time is associated with the correlation effects, i.e. the interaction among the
quasiparticles. One drawback of the quasiparticle approximation is the violation of the sum rule
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of the spectral function. However, in order to discuss quasiparticle excitations, one usually sets
the renormalization factor to 1 and hence associates the full spectral weight to the dominant
peak in the spectral function. Furthermore, it is convenient to neglect the imaginary part of
the self energy =Σxc. Hence the resulting quasiparticle has an infinite life time and can, under
these circumstances, be treated as an ideal quasi particle. Additionally, the eigenvalue problem
in Eq.(3.79) becomes a hermitian EVP with real eigenvalues, the quasiparticle energies, and
corresponding quasi particle eigenfunctions φqp

k̃
. Its evaluation at the quasiparticle energy yields

the corresponding quasiparticle equation[
− ~

2me
∇2

r1
+ Vion(r1) + VH(r1)

]
φqp

k̃
(r1)

+

∫
dr′1 Σxc(r1, r

′
1;Eqp

k̃
/~)φqp

k̃
(r′1) = Eqp

k̃
φqp

k̃
(r1).

(3.85)

This simplification to ideal quasiparticles is a priori not justified, however, for weakly correlated
systems the renormalization factor is in the range of 0.6− 0.9 and ensures an appropriate quasi-
particle description [58, 59]. Lastly, the quasiparticle wave functions are still unknown, but they
can be expanded in terms of the orbitals of the chosen reference system as the following

φqp

k̃
(r1) =

∑
k̃k̃′

ck̃k̃′ϕk̃′(r1). (3.86)

Usually, one approximates the qp wave functions simply by the orbitals of the reference systems,
i.e. φqp

k̃
(r1) ≈ ϕk̃(r1), which in the case of semiconductors yields reasonable results [58]. Hence,

the quasiparticle Green’s function is then given by

Gqp(r1, r2; z) =
∑
k̃

ϕk̃(r1)ϕ∗
k̃
(r2)

~z − Eqp

k̃
(z)

. (3.87)

Some remarks are necessary at this point. The expression of the spectral function in the basis
of the reference system goes back to the corresponding expansion of the Green’s function in this
particular basis, aiming to obtain an approximative expression for the corresponding expansion
coefficient Gk̃k̃′ . By doing so, the Dyson equation in frequency space may be written as

Gk̃k̃′(z) = G
(0)

k̃k̃
(z)

δk̃k̃′ +∑
k̃′′

δΣxc
k̃k̃′′

(z)Gk̃′′k̃(z)

 with δΣxc = Σxc − Vxc (3.88)

and yields a coupled system of equation that decouples only if the condition δΣxc
k̃k̃′′
� εk̃ − εk̃′

is fulfilled [44]. If so, the resulting Green’s function is diagonal w.r.t. the reference basis, i.e.

Gk̃k̃(z) = G
(0)

k̃k̃
(z)
[
1 + δΣxc

k̃k̃
(z)Gk̃k̃(z)

]
, (3.89)

and eventually leads to the matrix elements of the spectral function [Eq.(3.80)], if the definition
of A(ω) [Eq.(E.19)] is exploited. Additionally, the quasiparticle picture is just a model-picture
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and has little to do with the exact Green’s function which has poles only at the real frequency
axis which are associated with sharp delta peaks in the corresponding spectral function (infinite
life times).

3.5. Hedin’s set of equations

In principle the full time ordered Green’s function has a unique series expansion in terms of the
Coulomb interaction and thus allows for a systematic expansion. The question arising immedi-
ately is which kind of subseries within the full expansion are to be chosen to give a convergent
result. As Hedin pointed out in his seminal publication [4] it is convenient to have a series
expansion in terms of a screened Coulomb interaction that already accounts for effects of po-
larization and hence yields an improved convergence rate. In this context, polarization effects
emerge simply due to the repelling effect between electrons. As charges are shifted ’away’ from
each other, a positive net charge accumulates in the vicinity around a picked electron and thus
polarizes the medium and reduces or screen the interaction with the remaining electrons.

3.5.1. Variational method

The aim of the variational method is to give an explicit expression for the two-particle Green’s
function that emerges in the derivation of the equation of motion for the causal Green’s G.
One makes use of the Schwinger functional derivative technique which allows to investigate the
Coulomb interaction of the injected particle or hole in the presence of an external potential
[46]. The underlying Hamiltonian consists of the many-particle Hamiltonian Eq.(2.1) plus a
perturbation term Ĥ ′ext due to an external potential U(r)

Ĥ ′ext(t) =

∫
dr ψ̂†(r, t)U(r) ψ̂(r, t). (3.90)

The time dependence is mediated by the field operators given in the Heisenberg picture. In
general the external potential may also explicitly depend on time, while a time independent
potential allows to identify the external potential by a real physical potential such as an external
test charge. Due to the two contributions to the current Hamiltonian, i.e. Ĥ = Ĥ0 + Ĥ ′ext(t), 18

the underlying time evolution operator (within the Schrödinger picture) reads

Û(t) = e−
i
~(Ĥ0+Ĥ′ext)t. (3.91)

With regard to the separation of Ĥ into an unperturbed and perturbed part, the time evolution
operator [Eq.(3.91)] can be decomposed into the product

Û(t) = e−
i
~ Ĥ0tS(t, t0) (3.92)

where S is denoted as the scattering matrix. It is equivalent to the time evolution operator in
the interaction picture [compare Eq.(D.7)]. As a result, one may define a new Green’s function
18We treat Ĥ0 as the many-body Hamiltonian given by Eq.(2.1).
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as a functional of U in analogy with the series expansion shown in section 3.4.2, whereas the
interacting term, previously the Coulomb interaction [see Eq.(3.49)], is now governed by the ex-
ternal potential within the interaction picture Ĥ ′ext,I(t). With respect to the series representation
of the time evolution operator in the interaction picture the Green’s function may be written as
[60]

i~G(1, 2;U) =
U

〈
Ψ0

∣∣∣T ψ̂U (1)ψ̂†U (2)
∣∣∣Ψ0

〉
U

=

〈
Ψ0

∣∣∣T S ψ̂U ,I(1) ψ̂†U ,I(2)
∣∣∣Ψ0

〉
〈Ψ0 | S |Ψ0〉

. (3.93)

The subscript U 〈. . .〉U denotes the perturbed many-particle state due to the external potential.
Additionally, the field operators ψ̂U denote their representation within the Heisenberg picture
w.r.t the Hamiltonian Ĥ0 +Ĥ ′ext and ψ̂U ,I are the field operators within the according interaction
picture. On the other hand, the representation including the scattering matrix on the right
hand side, describes the propagation of the initially (at t0 = −∞) unperturbed ground state
within the time intervall [t2,−∞], the propagation of the injected particle from the time points
t2 → t1 and finally the propagation of |Ψ0〉 in the intervall [∞, t1]. During this process, U is
assumed to vanish at infinity. Since the external potential is treated as a small perturbation,
the Green’s function can be linearized and yield the desired relation to the two-particle Green’s
function[46, 60]

δG(12;U)

δU(3+)
= G(12;U)G(33+;U)−G(1, 3, 2, 3+;U). (3.94)

In analogy with the definition of the self-energy Σ [Eq.(3.36)], the two particle Green’s function
in Eq.(3.94) can be used to define the corresponding self-energy as a functional of the external
potential, i.e. Σ(U) with

Σ(12;U) = −i~
∫

d3 d4 v(1− 3)G(1, 3, 4, 3+;U)G−1(42;U). (3.95)

The comparison of Eq.(3.95) with Eq.(3.94) immediately reveals the separation of the self-energy
Σ(U) into the classical Hartree term ΣH(U)19 and the remaining term Σxc(U) that includes all
exchange and correlation effects. This might be shown by plugging the expression for the two-
particle Green’s function due to Eq.(3.94) into Eq.(3.95). One thus obtains

Σ(12;U) = −i~ δ(1− 2)

∫
d3 v(1− 3)G(33+) + i~

∫
d3 d4

δG(14;U)

δU(3+)
G−1(42;U). (3.96)

Thereby, the definition of the inverse Green’s function due to Eq.(3.34) has been used to obtain
the Hartree term ΣH (first term of Eq.(3.96)). Moreover, from the identity due to Eq.(3.34), one
deduces the relation∫

d2
δG(12;U)

δU(3+)
G−1(24;U) = −

∫
d2 G−1(12;U)

δG(24;U)

δU(3+)
. (3.97)

19Compare with Eq.(3.38).
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that is beneficial to rewrite the exchange-correlation term Σxc (the second term of Eq.(3.96)) in
the following way:

Σxc(12;U) = −i~
∫

d3 d4 G(14;U)
δG−1(42;U)

δU(3+)
. (3.98)

Hence, the introduction of a small external potential provides a useful tool to determine the
full self-energy simply by the functional derivative δG

δU . Nevertheless, the external potential
is an arbitrary quantity and the formalism of the variational method shall be valid for any
U . In particular, in the limes of a vanishing external potential, one imposes the condition
lim
U→0

Σ(U) = Σ.

3.5.2. Microscopic response functions

Through the action of a small external perturbation, we may also derive microscopic response
quantities such as the dielectric function that relates the external potential to the effective poten-
tial. The latter one is just given by the sum of the external potential plus the induced potential.
This can also be verified if one considers the equation of motion for G(U) and introduces the
effective potential Ueff as an auxiliary quantity:{

i~
∂

∂t1
+

~
2me
∇2

r1
− Vion(r1)− VH(r1)− Ueff(1)

}
G(12;U)

−
∫

d3 Σxc(13;U)G(32;U) = δ(1− 2)

(3.99)

with
Ueff(1) = U(1)− i~

∫
d2 v(1− 2)

{
G(22+;U)−G(22+)

}
(3.100)

and
VH(r1) = −i~

∫
d2 v(1− 2)G(2, 2+). (3.101)

Since the Green’s function G(11+) yields the density, the difference in the curly brackets can be
identified with the induced density due to the external potential. Again, we regard the external
potential as small perturbation and find the response of the considered system with the inverse
longitudinal dielectric function given by

ε−1(12) =
δUeff(1)

δU(2)

∣∣∣∣∣
U=0

. (3.102)

The initially desired expansion of the self-energy in terms of a screened Coulomb potential can
now also be established. If we take the exchange and correlation part, i.e. Eq.(3.98) into account,
the chain rule of functional derivatives allows to rewrite Σxc(U) in the following way

Σxc(12;U) = −i~
∫

d3 d4 d5 v(1− 3)G(14;U)
δG−1(42;U)

δUeff(5)

δUeff(5)

δU(3+)
. (3.103)

Since the last term of the rhs in Eq.(3.103) is the inverse dielectric function, it hence modifies the
Coulomb potential as it describes the screening effects of the electronic system. This suggests to
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introduce the screened potential W through the definition

W (12) =

∫
d3 v(1− 3)ε−1(23). (3.104)

Additionally, the explicit evaluation of ε−1 [Eq.(3.102)] leads to the polarization function P

P (12) = −i~δG(11+;U)

δUeff(2)

∣∣∣∣∣
U=0

(3.105)

and the introduction of the vertex function Γ in Eq.(3.103) defined as

Γ(12; 3) =
δG−1(12;U)

δUeff(3)

∣∣∣∣∣
U=0

(3.106)

leads to a closed set of equation once introduced by Hedin [4, 30]. By the explicit calculation of
the functional derivatives one obtains the set of integro-differential equations

Σxc(12) = −i~
∫

d3 d4G(13)W (14+)Γ(32; 4) (3.107)

W (12) = v(1− 2) +

∫
d3 d4W (13)P (34)v(2− 4) (3.108)

P (12) = −
∫

d3 d4P0(1, 1+, 4, 3)Γ(34; 2) (3.109)

Γ(12; 3) = −δ(1− 2)δ(1− 3) +

∫
d4 d5 d6 d7 Ξ(2, 1, 4, 5)P0(4, 5, 7, 6)Γ(67; 3). (3.110)

G(12) = G(0)(12) +

∫
d3 d4G(0)(13)Σxc(34)G(42) (3.111)

that completely describe the many-particle interactions. Additionally, for simplification, we have
introduced the polarization function of independent particles denoted by P0. It is given as the
product of two Green’s function and reads

P0(1, 2, 3, 4) = −i~G(14)G(32). (3.112)

By virtue of Eq.(3.110) and Eq.(3.109) one verifies that the three-point vertex function Γ(12; 3)

generates an integral equation for P (12) that allows to extend the polarization function to a
three-point function, i.e. P (1, 3, 2, 2+). The three-point expression origins from the extended
definition of the polarization function

P (12) = P (1, 1+, 2, 2+). (3.113)
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Eventually, an integral equation for P (1, 3, 2, 2+) might be written within a generalized four-
point notation giving rise to the so-called Bethe-Salpeter equation of the polarization function20

in the following form

P (1, 3, 2, 4) = P0(1, 3, 2, 4) +

∫
d5 d6 d7 d8P0(1, 3, 6, 5)Ξ(6, 5, 7, 8)P (7, 8, 2, 4), (3.114)

where the integral kernel, which is given by

Ξ(1, 2, 3, 4) = − 1

i~
δΣxc(21)

δG(34)
, (3.115)

mediates the electron-hole interaction. A derivation of Eq.(3.114) is presented in appendix
F. In the context of the Feynman graphs, the polarization function P is equivalent with the
representation of the irreducible polarization diagrams, which will be discussed later on.

3.5.3. Density correlation function and microscopic dielectric function

Within the context of the functional derivatives w.r.t an external potential, we want to derive a
further important quantity, the density correlation function. This quantity can also be derived
from the Kubo formalism [61] as the response quantity that yields the induced density or density
variation due to an external perturbation and hence allows to calculate the dielectric properties
via the dielectric function ε. If one carries out the derivative in Eq.(3.102) one initially finds

ε(12)−1 = δ(1− 2) +

∫
d3 v(1− 3)L(32), (3.116)

where the density correlation function L is given by

L(12) = −i~δG(11+;U)

δU(2)

∣∣∣∣∣
U=0

. (3.117)

The comparison with Eq.(3.94) and the definition of the two-particle Green’s function [Eq.(3.33)]
indeed reveals that L is equivalent to the causal density variation operator ∆ρ̂:

L(12) =
1

i~
〈T ∆ρ̂(1) ∆ρ̂(2)〉 and ∆ρ̂(1) = ρ̂(1)− 〈ρ̂(1)〉 ρ(1) = ψ†(1)ψ(1). (3.118)

In other words, the density correlation function describes the time-ordered propagation of a
density variation between the space-time point r2t2 → r1t1, caused by the action of an external
potential at r2t2. With the aid of the chain rule of functional derivatives [appendix A], the rhs
of Eq.(3.117) may be rewritten in the following way

L(12) =

∫
d3P (13) ε−1(32) (3.119)

20The extension to the four point quantity P (1, 3, 2, 4) is obtained if one considers the transition 1+ → 3 and
2+ → 4.
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which allows, using Eq.(3.116), to formulate a Dyson equation for the density correlation function

L(12) = P (12) +

∫
d3 d4P (13)v(3− 4)L(42). (3.120)

Finally, the approach to the dielectric function follows from the integral equation in Eq.(3.119)
if we use the inverse identity for the dielectric function, i.e.∫

d3ε−1(1, 3)ε(3, 1). (3.121)

The polarization function P might be linked to the density correlation function L as the following

P (12) =

∫
d3L(13) ε(32). (3.122)

Due to the Dyson equation [Eq.(3.120)] one thus finds the integral equation for the dielectric
function

ε(12) = δ(1− 2)−
∫

d3 v(1− 3)P (32). (3.123)

If one considers the definitions for the polarization function P and the density correlation function
L, one recognizes that P cannot be treated as a response quantity due to an external perturbation,
as it determines the response of the system due to a variation of the effective field. Thus, one
has to solve the problem for the inverse dielectric function [Eq.(3.116)] first, in order to obtain
the dielectric properties. The extension of the density correlation function L(12) to a general
four-point quantity L(1, 1+, 2, 2+) can also be performed in the expression of the Dyson equation
[Eq.(3.120)]. This, however, does not yield a closed integral equation such as the Bethe-Salpeter
equation for P [Eq.(3.114)] in the limit 1+ → 3 and 2+ → 4. Nevertheless, as shown in the
appendix G, an integral equation similar to Eq.(3.114) can be obtained for the density correlation
function L as well:

L(1, 3, 2, 4) = L0(1, 3, 2, 4) +

∫
d5 d6 d7 d8L0(1, 3, 6, 5) Ξ′(6, 5, 7, 8)L(7, 8, 2, 4) (3.124)

The kernel now contains the full self-energy Σ including the Hartree term ΣH and reads

Ξ′(1, 2, 3, 4) = − 1

i~
δΣ(21;U)

δG(34;U)

∣∣∣∣∣
U=0

. (3.125)

Furthermore, L0 is identical to the polarization function P0 from Eq.(3.112), i.e. L0 = P0. As
an side effect, the four-point extension of the density correlation function, allows to relate it to
the two-particle Green’s function in the following way:

L(1, 3, 2, 4) = i~ {G(1, 2, 3, 4)−G(13)G(24)} .21 (3.126)

21One note the different sequence of arguments in L(1, 3, 2, 4) compared to G(1, 2, 3, 4), which retains the two
point density correlations function L(12) = L(1, 1+, 2, 2+) in the limiting case 3→ 1+ and 4→ 2+.



3.6. GW -approximation 43

Figure 3.3: Iteration cycle to solve Hedin’s equations. To initi-
ate the cycle the self energy is set to zero, i.e. Σ = 0
with the result of the GW -approximation for the
self-energy after the first iteration.

The equation above is usually referred to, if the density correlation function is derived from a
Feynman graph analysis [see also chapter 7 ].

3.6. GW -approximation

The solution of Hedin’s equation together with the Dyson equation is a rather complicated task,
because the self-energy itself is a functional of the Green’s function, while the latter one should
coincide with Eq.(3.107) and Eq.(3.111) at the same footing. Hence, to obtain a self-consistent
solution to this problem, it is convenient to start with an initial approximation for the self-energy,
which decouples the functional dependence of Σxc w.r.t G. This immediately leads to the starting
point

Σxc(12) = 0 (3.127)

and subsequently to an iteration of Hedin’s equation as shown in Fig.(3.3). If one follows this
iteration cycle, the Green’s function is given by the non-interacting Green’s function within the
Hartree-approximation, while the vertex function becomes

Γ(12, 3) = −δ(1− 2)δ(1− 3). (3.128)

Thus, in the first iteration cycle, vertex corrections due to electron-hole interactions are com-
pletely neglected and means that the polarization function is to be replaced by the random phase
approximation

P (12) = P0(1, 1+, 2, 2+) = −i~G0(12)G0(21). (3.129)

This in turn generates a self-consistent integral equation for the screened Coulomb interaction
in the following way

W (12) = v(1− 2) +

∫
d3 d4W (14)P0(34)v(2− 4) (3.130)

and finally yields the GW -approximation of the self-energy

Σxc(12) = i~G(12)W (1+2). (3.131)
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Basically, the iteration cycle can be performed until a self-consistent result is obtained for the
Green’s function. However, even at the second iteration step the evaluation of Ξ [Eq.(3.115)]
is required to update the vertex function Γ [Eq.(3.110)]. The latter one, however, is given only
implicitly and gives no explicit solution for vertex function [30]. To circumvent this problem,
Hedin suggested to stick to a power expansion of Σxc and the polarization function P in terms
of the screened potential only [30]. For systems with a large polarizability, such as valence
electrons in metals and semiconductors that have a strong screening, one expects to obtain a fast
convergence of the expansion of Σxc w.r.t the screened interaction. In fact, the GWA can be seen
as an extension to the early developed Hartree-Fock approximation, with the substitution of the
bare Coulomb potential with the screened interaction. Hence, correlation effects are included
within the dynamical interaction W and give rise to an improved description of quasiparticle
energies and corresponding life times [62]. If one considers only the static contributions of W ,
one obtains the so-called COHSEX (Coulomb hole plus screened exchange) approximation [4].
This corresponds, as the name suggests, to a separation of Σxc into a screened exchange part,
plus a Coulomb hole term that describes the interaction of the added particle via an induced
(local) potential with the surrounding electrons [63, 58]. An early approximate version of the
GW -approximation has been already developed before Hedin came up with his equations, and is
known as the shielded potential approximation [64]. Concerning the full self-consistent iteration
of Hedin’s equation, a possible disentanglement of Eq.(3.110) w.r.t the vertex function has been
shown in [65] and gives a recipe to systematically include vertex correction that go beyond the
GW -approximation.

Practical application and quasiparticle energies

Since the iteration of Hedin’s equation after the first cycle is already a rather involved task, one
usually sticks to the neglect of vertex corrections and tries to find the most sophisticated GW -
approximation. This basically involves the question which orbital basis set is to be chosen for
the Green’s function and hence for the calculation of the screened interaction. If one considers
Hedin’s equation alone, the Green’s function is given within the Hartree approximation. This
however, is not an appropriate starting point, since neither the resulting orbital energies nor
the orbitals are reasonable quantities to describe a many-particle system22. Evenmore, the
resulting density cannot be compared to the true ground state density, as it is the case within
density functional theory. Therefore, the Kohn-Sham formalism seems to serve as a well defined
starting point, as it guarantees an appropriate approximation of the ground state density. By
doing so, the self-energy is now initially approximated by the corresponding exchange-correlation
potential, i.e. Σxc = Vxc. The resulting Green’s function G0 is thus constructed from the
orbitals and eigenvalues of the corresponding eigenvalue problem [Eq.(2.26)]. Due to the non-
vanishing self-energy, the vertex function [Eq.(3.110)] yields contributions that go beyond the
bare vertex [Eq.(3.128)] and enters into the calculation of the polarization function and hence
into the screened interaction [66, 58, 62, 67]. If these vertex corrections are taken into account

22The Hartree approximation neglects completely effects of the antisymmetric interactions (exchange term) and
includes self-interaction effects.
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one obtains the so-called GWΓ-approximation for the self-energy, and the screened interaction
is then given beyond the RPA approximation. In practical calculations, however, these vertex
corrections are not taken into account, and the self-energy after the first iteration takes the usual
GW form, from which the already included static exchange and correlation effects (due to Vxc)
need to be subtracted in Eq.(3.111), i.e. Σxc → Σxc−Vxc. On the other hand, the calculation of
the quasiparticle energy [Eq.(3.81)] requires a self-consistent solution, since the self-energy itself
depends on the latter one. This is achieved iteratively by use of the Newton-Raphson method
as follows:

Eqp,N+1

k̃
= Eqp,N

k̃
+ Zk̃<

[
Σxc
k̃k̃

(Eqp,N/~)− Vxc,k̃k̃

]
and Eqp,0

k̃
≡ εk̃, (3.132)

where Zk̃ is the renormalization factor

Zk̃ =

1−
∂<Σxc

k̃k̃
(ω)

∂(~ω)

∣∣∣∣∣
~ω=Eqp,N

k̃

−1

. (3.133)

Equation (3.132) is obtained by linearizing the self-energy at the reference energy εk̃, assuming
the energy difference Eqp

k̃
− εk̃, which is usually denoted as the quasiparticle correction, to be

small compared to εk̃. Commonly, the very first iteration of Eq.(3.132) with N = 0 is the
method of choice to perform the quasiparticle calculation and is known as G0W0. Nevertheless,
the quasiparticle energies can be iterated up to any order N meaning an update of the poles
of the Green’s function. If only the Green’s function is updated, one often speaks of a GNW0

approximation, while the additional update of the screened potential W due to Eq.(3.130) is
denoted as GNWN -approximation. What all approximation have in common are fixed orbitals
ϕk̃ of the reference system. Since the screened potential is kept at the RPA level, every iteration
in the quasiparticle energy, means an iteration of Hedin’s equation without updating the vertex
function. Results and discussion of the applicability of the various GW flavors [68, 69] are of
great interest, in particular, focussing on an improved band gap for semiconductors and insulators
[70, 71]. There are methods, however, that go beyond the aforementionedGNWN -approximations
that include also an update of the orbitals ϕk̃[72, 73, 74]. This quasiparticle self-consistent GW
approximation considers the solution of the full eigenvalue problem [Eq.(3.85)]23 and takes also
the non-diagonal matrix elements of the Hermitian part of the self-energy into account.

Consequences for the Bethe-Salpeter equation

Through the GW -approximation of the self-energy Σxc, the electron-hole interaction given by the
kernel of the BSE for the polarization function and the modified kernel for the density correlation
function is directly affected. With Eq.(3.131) and the definition of Ξ [Eq.(3.115)] one finds

Ξ(2, 1, 3, 4) = −δ [G(12)W (1+2)]

δG(34)
= −δ(1− 3)δ(2− 4)W (1+2)−G(12)

δW (1+2)

δG(34)
(3.134)

23The expansion of Σxc(Eqp

k̃
) around the reference energy εk̃ in Eq.(3.85) leads to a generalized EVP.
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and similarly for Ξ′

Ξ′(2, 1, 3, 4) =
δ [ΣH(12) + Σxc(12)]

δG(34)
= δ(1− 2)δ(3+ − 4)v(1− 3) + Ξ(2, 1, 3, 4). (3.135)

The variation of the screened potential w.r.t. the Green’s function at the rhs of Eq.(3.134)
is proportional to W 2 [64] and is usually neglected due to its hopefully little contribution in
practical applications but also because of its complexity. Hence the Bethe-Salpeter equation
takes a simplified form, which for the density correlation function reads

L(1, 3, 2, 4) = L0(1, 3, 2, 4)

+

∫
d5 d6 d7 d8L0(1, 3, 6, 5)δ(5− 6)δ(7− 8)v(5− 8)L(7, 8, 2, 4)

−
∫

d5 d6 d7 d8L0(1, 3, 6, 5)δ(5− 7)δ(6− 8)W (5+6)L(7, 8, 2, 4)

(3.136)

As already indicated by Eq.(3.126), the density correlation function may be derived from the
two-particle Green’s function and hence allows a Feynman graph representation. Therefore, one
might swap the second and the third argument in L(1, 3, 2, 4) as it can be found e.g. in Ref.[75].
I, however, keep the initial notation to avoid any confusions. With Eq.(3.136) one then obtains
the following integral expression

L(1, 3, 2, 4) = −i~ G(14)G(23)− i~
∫

d6 d8G(16)G(63)v(6− 8)L(8, 8, 2, 4)

+ i~
∫

d7 d8G(17)G(83)W (7+8)L(7, 8, 2, 4),

(3.137)

which has a diagrammatic representation as shown in Fig.(3.6). One notes, that the density
correlation function is represented by two Green’s function lines heading in opposite directions
and thus allow the interpretation of an electron-hole propagation. This comes due to the initial
three-point expression of L, i.e. lim

4→2+
L(1, 3, 2, 4) = L(1, 3, 2, 2+). Furthermore, one obtains

the causal two-point density correlation function, also known as the polarizability χ(12), by
contraction of arguments [75]:

χ(12) ≡ L(1, 1+, 2, 2+). (3.138)

Hence, Eq.(3.137) represents the basic equation to calculate the microscopic density response
function, from which the inverse dielectric function ε−1 is derived. The screened interaction
W [Eq.(3.108)] is then usually approximated within the random phase approximation, with the
polarization function P [Eq.(3.109)] approximated as P = GG.
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Figure 3.4.: Graphical representation of the Bethe-Salpeter equation for the density-correlation
function L due to Eq.(3.124). The thick solid lines display a dressed Green’s function.
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Figure 3.5.: Figure (3.6) with the self-energy approximated by the GW approximation. The
wiggly line corresponds to the Coulomb interaction, while the double wiggly line
represents the screened Coulomb interaction W .



4. Density response formalism

In this section I want to put the time-ordered response function derived from the Green’s function
formalism into the relation to physical accessible retarded response quantities. Furthermore, the
previously introduced microscopic quantities such as the density correlation function L or the
polarization function P and related response quantities such as ε−1 and ε would in general require
a calculation on an atomic scale. This is, however, an unfeasible task concerning the number of
electrons per volume in real systems. Hence, it is convenient to express the microscopic relations
by their corresponding macroscopic counterpart, which thus enables us to treat the response of
a particular many-particle system on a macroscopic footing. In particular, we are interested in
the optical absorption process and hence consider the response within the scale of visible wave
lengths. As they lie within the range of 400 . . . 700nm, they cannot resolve the microscopic inter-
atomic distances of about ∼3Å. Finally, the last parts are then devoted to alternative methods
that allow to calculate the density response function and subsequently the dielectric function.

4.1. Linear response

Within the framework of the linear response theory we follow the question about the response of a
microscopic system that is exposed to a weak external perturbation. As this is a retarded process,
one can impose the following form of the resulting Hamiltonian that includes the perturbation
Ĥ ′(t) [76, 41]

Ĥ(t) = Ĥ + Ĥ ′(t)Θ(t− t0). (4.1)

Here, we denote the many-body Hamiltonian [Eq.(2.1)] by Ĥ and the theta function suddenly
switches on the perturbation at the time point t0. Considering the initial many-particle state
|Ψ(t0)〉, its time evolution under the influence of the perturbation is then governed by the corre-
sponding time evolution operator U(t, t0) [Eq.(D.9)]. To first order in the perturbation one thus
finds

|Ψ̃(t)〉 =

e− i
~ Ĥ(t−t0) +

1

i~

t∫
t0

dt′e−
i
~ Ĥ(t−t′)Ĥ ′(t′)e−

i
~ Ĥ(t′−t0)

 |Ψ(t0)〉 . (4.2)

The response of the considered systems is now manifested by the change of an observable mea-
sured with and without the external perturbation. Hence one needs to calculate the difference
〈Ψ̃(t)|Ô(t)|Ψ̃(t)〉 − 〈Ψ(t)|Ô(t)|Ψ(t)〉. From Eq.(4.2) one deduces the following expression of the
expectation value of the observable Ô(t) at the time point t if the factor proportional to the

48
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square to Ĥ ′ is neglected:

〈Ψ̃(t)|Ô(t)|Ψ̃(t)〉 =
〈

Ψ(t0)
∣∣∣e i~ Ĥ(t−t0)Ô(t) e−

i
~ Ĥ(t−t0)

∣∣∣Ψ(t0)
〉

+
〈

Ψ(t0)
∣∣∣ 1

i~

t∫
t0

dt′ e
i
~ Ĥ(t−t0)Ô(t)e−

i
~ Ĥ(t−t′)Ĥ ′(t′)e−

i
~ Ĥ(t′−t0)

∣∣∣Ψ(t0)
〉

−
〈

Ψ(t0)
∣∣∣ 1

i~

t∫
t0

dt′ e
i
~ Ĥ(t′−t0)Ĥ ′(t′)e

i
~ Ĥ(t−t′)Ô(t)e−

i
~ Ĥ(t−t0)

∣∣∣Ψ(t0)
〉
.

(4.3)

The first term in the equation above simply yields the expectation value of the unperturbed state
|Ψ(t)〉 at the time point t, so that the change of the observable Ô(t) caused by the perturbation
Ĥ ′(t) is then given by

〈Ψ̃(t)|Ô(t)|Ψ̃(t)〉 − 〈Ψ(t)|Ô(t)|Ψ(t)〉 =
1

i~

t∫
t0

dt′
〈

Ψ0

∣∣∣ [ÔH(t), Ĥ ′H(t′)
] ∣∣∣Ψ0

〉
. (4.4)

The operators at the rhs are represented within the Heisenberg picture wrt to the many-particle
Hamiltonian Ĥ, which is denoted by the index H. Furthermore, the remaining exponential factors
e±

i
~ Ĥ(t−t0) in Eq.(4.3) transform the state |Ψ(t0)〉 (respectively the c.c.) back to the time point

t0 = 0 and thus to the unperturbed and initial ground state |Ψ0〉. As we want to study the
response that couples to the density ρ, the external perturbation may be written as an external
potential and thus reads

Ĥ ′(t) =

∫
dr ρ̂(r)Ṽ (r, t). (4.5)

If one seeks for the density variation one immediately finds

δρ(r, t) =
1

i~

t∫
t0

dt′
∫

dr′
〈

Ψ0

∣∣∣ [ρ̂H(rt), ρ̂′H(r′t′)
] ∣∣∣Ψ0

〉
Ṽ (r′, t′). (4.6)

The commutator, however, may be rewritten, if one substitutes the density operator with the aid
of the density deviation operator [50] ∆ρ̂(rt) ≡ ρ̂(rt)− 〈Ψ0|ρ̂(rt)|Ψ0〉 that measures the density
fluctuation around the ground state density. Thus, Eq.(4.6) takes the final form

δρ(r, t) =

∞∫
−∞

dt′
∫

dr′χret(rt, r′t′)Ṽ (r′, t′), (4.7)

where χret denotes the retarded density-density correlation function:

χret(rt, r′t′) =
1

i~
Θ(t− t′)

〈
Ψ0

∣∣∣ [∆ρ̂H(rt),∆ρ̂′H(r′t′)
] ∣∣∣Ψ0

〉
. (4.8)

By inspection of the time-ordered density correlation functions [Eq.(3.118)], both functions, χret

and L simply differ by the different time arguments in the theta functions. This, however,
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restricts the possible calculation of the density correlation function with the aid of the Wick
theorem to the time-ordered quantity L. The question in what way both quantities can be
related to each other, is seen by their Fourier transformation.

4.1.1. Analytical properties of χret

The transition to the frequency domain can be performed following the definition in Eq.(C.1)
and taking into account the representation of the theta function Θ(t− t0) [Eq.(C.2)]. Since the
many-particle Hamiltonian Ĥ is homogenous in time, the retarded density correlation function,
defined in the Heisenberg picture w.r.t Ĥ, thus depends on the time difference t − t′ only and
becomes a function of one frequency argument. Correspondingly, one obtains the frequency
component χret(ω) as the following

χret(r, r′;ω) = lim
η→0

∑
β 6=0

[〈Ψ0|ρ̂(r)|Ψβ〉 〈Ψβ|ρ̂(r′)|Ψ0〉
~ω − (Eβ − E0) + i~η

− 〈Ψ0|ρ̂(r′)|Ψβ〉〈Ψβ|ρ̂(r)|Ψ0〉
~ω + (Eβ − E0) + i~η

]
. (4.9)

The summation at the rhs explicitly excludes the ground state with index β = 0 because of
the density deviation operator. Moreover, the same analysis as for χret(ω) would yield the
(contracted) causal density correlation function χ(ω) ≡ L(ω), which in the end differs only by the
complex term in the second term of the rhs of Eq.(4.9), i.e. one simply has to substitute +iη →
−iη. Nevertheless, both quantities yield the same excitation energies ~Ωβ = Eβ − E0, which
lie completely below the real frequency axis in case of χret(ω) and otherwise are located below
the same axis for positive frequencies and above for negative frequencies, respectively. Hence for
positive real frequencies, i.e. ω ≥ 0, one finds that χret(ω) = L(ω). One may additionally note
that compared to the Lehman representation of the time-ordered Green’s function [see Eq.(E.6)],
the Lehman representation of χret(ω) or that of L(ω) differ by the minus sign between the two
terms in Eq.(4.9), which is due to the bosonic character of the density operator in contrast to the
fermionic character of the field operators in the definition of the Green’s function. Considering
the summation in Eq.(4.9) one identifies the many-particle state Ψβ to be an N -particle state,
due to the definition of the density operator ρ̂. Hence, the density fluctuation response function
describes neutral excitations of a many-particle system, exactly those excitation, which are the
main topic of this work.

4.1.2. Independent particle approximation for χ (T = 0)

Similarly to the analysis of the determination of the Green’s function in terms of Feynman
diagrams, the time-ordered density correlation function χ may also be written as a perturbation
series in terms of the Coulomb interaction V̂int. I follow closely [51] and [50]. By analogy of the
procedure of deriving the Feynman graph representation for the Green’s function [Eq.(3.68)], the
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1 2

Figure 4.1.: Feynman graph for χ0(1, 2). The thin black lines denote the independent particle
Green’s function.

correlation function χ has the following series expansion

i~ χ(r1t1, r2t2) =
〈

Φ0

∣∣∣ ∞∑
l=0

(−i
~

)l 1

l!

∞∫
−∞

dt′1 . . .

∞∫
−∞

dt′l

× T
[
V̂int,I(t

′
1) . . . V̂int,I(t

′
l)ρ̂I(r1t1)ρ̂I(r2t2)

] ∣∣∣Φ0

〉
fully connected

.

(4.10)

The expansion above is expressed in terms of the density operator instead of the correspond-
ing deviation density operator, which can be done, because one can proof that [ρ̂(1), ρ̂(2)] =

[∆ρ̂(1),∆ρ̂(2)] holds1. We will give now the explicit expression for the independent particle ap-
proximation of the density correlation function χ0 that is derivable from the first term l = 0 of
Eq.(4.10). One thus finds with the definition of the density operator, i.e. ρ̂(r) = ψ̂†(r)ψ̂(r), the
time ordered expression

i~ χ0(r1t1, r2t2) =
〈

Φ0

∣∣∣T [ψ̂†I (r1t1)ψ̂I(r1t1)ψ̂†I (r2t2)ψ̂I(r2t2)
] ∣∣∣Φ0

〉
, (4.11)

which can be further formulated as the sum over all contractions due to the Wick theorem.
Therefore only contributions with contractions of one creation and one destruction field operator
remain. Hence, Eq.(4.11) may be rewritten as the following:

i~ χ0(r1t1, r2t2) = ψ̂I(r1t1)ψ̂†I (r1t1)ψ̂I(r2t2)ψ̂†I (r2t2)− ψ̂I(r1t1)ψ̂†I (r2t2)ψ̂I(r2t2)ψ̂†I (r1t1). (4.12)

The first term on the rhs of Eq.(4.12) simply yields two unconnected fermionic loops and thus
drops out. What remains is a product of two contractions, the second term on the rhs, that
can be identified as the product of two non-interacting Green’s functions G0. Consequently, the
independent particle approximation for the density correlation function then reads

χ0(r1t1, r2t2) = −i~G0(r1t1, r2t2)G0(r2t2, r1t1) (4.13)

In terms of a Feynman diagram, χ0 is represented by a so called ’bubble’-diagram as shown in
Fig(4.1.2).

1One substitute the density operator by ∆ρ̂+ 〈ρ̂〉 and calculates the commutator, taking into account that 〈ρ〉
is a complex number and complex numbers always commute.
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4.1.3. Fourier transformation and Bloch representation of χ0

At this point it proves beneficial to switch from the time domain into the frequency domain in
order to find the excitation energies Ωβ of the independent particle response function χ0. On
the other hand, the Fourier transformation from real space to the momentum domain allows to
discuss the coupling of the external potential via the density response function in terms of plane
waves with the many-particle system. Starting with the Fourier transform χ0(ω) we find using
Eq.(C.1)

χ0(r1, r2;ω) =− i~
∞∫
−∞

dt eiω(t1−t2) 1

2π

∞∫
−∞

dω1 e
−iω1(t1−t2)G0(r1, r2;ω1)

× 1

2π

∞∫
−∞

dω2 e
−iω2(t2−t1)G0(r1, r2;ω2)

=− i~ 1

2π

∞∫
−∞

dω1 dω2G0(r1, r2;ω1)G0(r1, r2;ω2)δ(ω − ω1 + ω2)

=− i~ 1

2π

∞∫
−∞

dω2G0(r1, r2;ω + ω2)G0(r1, r2;ω2).

(4.14)

Obviously, the frequency component χ0(ω) depends on an additional frequency ω2 that, however,
can be eliminated if one considers the explicit expression for Green’s function for real frequencies
G0(ω). Since G0(ω) has poles above and below the real frequency axis, the integral in the last
line of Eq.(4.14) can be evaluated as a contour integral that is closed either in the upper or lower
half complex plane. It yields two non-vanishing contributions and one obtains

χ0(r1, r2;ω) =
∑
k̃1,k̃2

ϕk̃1
(r1)ϕ∗

k̃1
(r2)ϕk̃2

(r2)ϕ∗
k̃2

(r1)

×
[

Θ(εk̃1
− εF)Θ(εF − εk̃2

)

~ω + εk̃2
− εk̃1

+ i~η
−

Θ(εF − εk̃1
)Θ(εk̃2

− εF)

~ω + εk̃2
− εk̃1

− i~η

] (4.15)

where εF denotes the Fermi energy. As the Green’s function is supposed to have a lattice
symmetry2, and thus χ0(r1, r2), the transition to the momentum domain is then obtained by

χ0(q + G,q + G′;ω) =
1

V

∫
dr1dr2 e

−i(q+G)r1χ0(r1, r2;ω)ei(q+G′)r2 , (4.16)

where q is a vector of the first Brillouin zone and V denotes the crystal volume. Hence, with
Eq.(4.15) we find the corresponding representation of χ0 in reciprocal momentum space as the

2A lattice symmetric function f(r1, r2) coincide with f(r1 + R, r2 + R) if R is a Bravais lattice vector.
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following

χ0(q + G,q + G′;ω) =
1

V

∑
k̃1,k̃2

Bk̃1∗
k̃2

(q + G)Bk̃1

k̃2
(q + G′)

×
[

Θ(εk̃1
− εF)Θ(εF − εk̃2

)

~ω + εk̃2
− εk̃1

+ i~η
−

Θ(εF − εk̃1
)Θ(εk̃2

− εF)

~ω + εk̃2
− εk̃1

− i~η

]
.

(4.17)

Here we have introduced the Bloch integrals defined as

Bk̃1

k̃2
(q + G) ≡ B(n1k1)

(n2k2)(q + G) :=

∫
V

drϕ∗n1k1
(r)ei(q+G)rϕn2k2(r). (4.18)

With the definition of the Bloch orbitals [Eq.(3.53)], the integral on the rhs of Eq.(4.18) reduces
to

B
(n1k1)
(n2k2)(q + G) = δk1,k2+q

1

V0

∫
V0

dr u∗n1k1
(r) eiGr un2k2(r).3 (4.19)

The Bloch integral thus describes the transition from a state with momentum k2 to the state
k2 + q + G under the influence of an external perturbation ei(q+G)r and thus implies the mo-
mentum conservation rule k1 = k2 +q. In the limiting case q = 0 momentum conservation then
restricts that k1 = k2 and thus vertical transitions (within the picture of the corresponding band
structure) need to be taken into account only.

Long wave length limit q→ 0

At the interesting case of an external perturbation due to an optical wave vector with vanishing
momentum q→ 0, the Bloch integral

lim
q→0

B
(n1k2+q)
(n2k2) (q) = lim

q→0

∫
V

dr ϕ∗n1k2+q(r)eiqrϕn2k2(r) (4.20)

needs to be evaluated. This might be done by a Taylor series expansion of the exponential
around q = 0 and thus yields the dipol approximation of Eq.(4.20) with the dipol moment
iq 〈n1k2 + q|r|n2k2〉. This matrix element, however, becomes difficult to solve if periodic bound-
ary conditions need to be considered. Instead, one may evaluate the matrix element of the
commutator

[
eiqr, Ĥ

]
with the Hamiltonian separated as Ĥ = p̂2

2me
+ V̂loc + V̂nl, where the po-

tential terms are divided into a local V̂loc and a non-local part V̂nl. With the orbitals ϕnk being
eigenstates of Ĥ one finds on the one hand

〈n1k2 + q|
[
eiqr, Ĥ

]
|n2k2〉 = (εn2k2 − εn1k2+q) 〈n1k2 + q|eiqr|n2k2〉 , (4.21)

3Here V0 denotes the unit cell volume and unk(r) is the cell periodic part of the Bloch orbital ϕnk(r).
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while on the other hand the commutator is given by [47]

[
eiqr, Ĥ

]
= − ~q

me
p̂eiqr +

~2q2

2me
eiqr +

[
eiqr, V̂nl

]
. (4.22)

Thus from Eq.(4.21) and Eq.(4.22) one obtains

〈n1k2 + q|eiqr|n2k2〉

=

(
εn1k2+q − εn2k2 +

~2q2

2me

)−1 ~
me
〈n1k2 + q|qp̂|n2k2〉+ 〈n1k2 + q|

[
eiqr, V̂nl

]
|n2k2〉 .

(4.23)

At this point the limes q→ 0 can be taken if both sides are manipulated with a factor 1/|q| that
introduces the unit vector q̂ = q

|q| . We thus define the optical matrix element as the following

Mn1k2
n2k2

(q̂) := lim
q→0

1

|q|B
n1k2+q
n2k2

(q)

=
~q̂
me

〈n1k2|p̂|n2k2〉
(εn1k2 − εn2k2)

−
iq̂ 〈n1k2|

[
r, V̂nl

]
|n2k2〉

(εn1k2 − εn2k2)

(4.24)

with the unit vector q̂ indicating the direction of the incident wave vector. The commutator
of the non-local potential needs to be evaluated separately. Alternatively, Eq.(4.24) would have
been obtained, if we evaluated the limit lim

q→0

1
|q|

[
eiqr, Ĥ

]
in Eq.(4.22) first, thus yielding the

equivalent velocity representation of Eq.(4.24) with the velocity operator [77, 78, 79, 80]

v̂ =
p̂

me
− i

~

[
r, V̂nl

]
. (4.25)

4.1.4. Retarded dielectric function of independent particles

With regard to the definition of the dielectric function and its inverse one immediately verifies
that within the independent particle approximation, the density correlation function and the
polarization function are equivalent, i.e. Lip = P ip ≡ χ0. Thus the dielectric function is obtained
from Eq.(3.123), which in reciprocal space takes the form [c.f. Eq.(H.3)]

εGG′(q;ω) = δGG′ − v(q + G)P ip(q + G,q + G′;ω). (4.26)

However, the physical accesible quantities are just retarded quantities and one needs to find the
corresponding retarded expression for the independent particle approximation of χ0. This can
be easily achieved if one switches the complex term −iη to iη in Eq.(4.17). What remains is a
common nominator of the type Θ(εk̃1

− εF)Θ(εF− εk̃2
)−Θ(εF− εk̃1

)Θ(εk̃2
− εF) that obviously

can be reduced to Θ(εF− εk̃2
)−Θ(εF− εk̃1

). Hence the resulting retarded microscopic dielectric
function of independent particles can be calculated with the corresponding retarded expression
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of P ip in Eq.(4.26) and reads

εGG′(q;ω) = δGG′ −
4πe2

|q + G|2
∑
k̃1,k̃2

Bk̃1∗
k̃2

(q+G)Bk̃1

k̃2
(q+G′)

Θ(εF − εk̃2
)−Θ(εF − εk̃1

)

~ω + εk̃2
− εk̃1

+ i~η
(4.27)

Equation (4.27) has been also independently derived by Adler[81] and Wiser [82] within the
self-consistent field methods. Even in the simplest approximation of the microscopic dielectric
function one observes that in reciprocal space εGG′(q) is a matrix of the reciprocal lattice vectors
G. This is due to the fact that the microscopic dielectric function in real space ε(r, r′) is non-
local and thus takes into account all inhomogeneities on the microscopic scale. Within the
concept of an external perturbation the response function χ determines the induced density [see
Eq.(4.7)] that gives rise to induced microscopic fields at every spatial point and are usually
denoted as local fields. Their inclusion requires to keep the Fourier components with G 6=
0,G′ 6= 0 in the microscopic dielectric function of Eq.(4.27). If local fields effect are neglected,
i.e. εGG′(q) = ε00(q), one obtains the Ehrenreich-Cohen formula [83]. It further simplifies to the
Lindhard-function if the electrons are considered as free moving particles in the presence of an
homogenous background, such as in the homogenous electron gas. In this case the orbitals ϕk̃(r)

become simply plane waves and the Bloch integrals reduce to simple delta functions, namely
Bk1

k2
(q) = δk1,k2+q. At the end of this section we want to discuss a special case of the dielectric

function, namely that of a vanishing momentum vector q. Following the formulas derived above,
Eq.(4.24) and Eq.(4.27) then yields

lim
q→0

εGG′(q) = 1− lim
q→0

v(q)P ip
00(q)

= 1− 4πe2~2

V

∑
k,n1,n2

|〈n1k|q̂v̂|n2k〉|2
(εn1k2 − εn2k2)2

Θ(εF − εn2k2)−Θ(εF − εn1k2)

~ω + εn2k2 − εn1k2 + i~η
.

(4.28)

The fact that we treat the dielectric function in Eq.(4.28) as a response function due to an
external potential with vanishing momentum vector q = 0 is only possible if local fiel effects are
neglected. In general, one has to invert the inverse dielectric function ε−1

GG′(q) first and the take
the limes q→ 0. If, however, the Fourier components εG6=0G′ 6=0 are set to zero, the matrix of the
inverse dielectric function is equal to its inverse, and hence one finds 1

ε−1
00 (q)

= ε00(q). Since ε−1

couples the induced microscopic fields to the externally applied field, the neglect of the Fourier
components ε−1

GG′ means to disregard this particular coupling to local fields and thus considers
only the coupling between the (macroscopic) external field with the macroscopic or averaged
microscopic fields of the sample. For real applications, the macroscopic dielectric function is
the quantity that is accessible and we will discuss its calculation in section 4.1.8 and chapter
7. Before I do that, one needs to answer the question about the calculation of the microscopic
dielectric function that goes beyond the independent particle approximation.
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4.1.5. Beyond the independent particle approximation of χ (T = 0)

In order to find approximations of the density response function χ that go beyond χ0 we want
to discuss its corresponding approximation to first order, χ(1), w.r.t. the Coulomb interaction.
From Eq.(4.10) one initially finds with l = 1:

i~χ(1)(r1t1, r2t2) =
〈

Φ0

∣∣∣ (−i~
)

1

2

∑
σ1,σ2

σ′1,σ
′
2

∞∫
−∞

dt′1 dt′2

∫
dr′1dr′2

T
[
ψ̂†I (r′1t

′
1)ψ̂†I (r′2t

′
2)v(r′1, r

′
2; t′1, t

′
2)ψ̂I(r

′
2t
′
2)ψ̂I(r

′
1t
′
1)

× ψ̂†I (r1t1)ψ̂I(r1t1)ψ̂†I (r2t2)ψ̂I(r2t2)
]∣∣∣Φ0

〉
δσ1,σ2 .

(4.29)

Applying Wick’s theorem, the time-ordered product of field operators yields 24 contractions
from which only 12 Feynman diagrams are fully connected. Among those 12 diagrams one
finds one reducible polarization part [Fig.(4.1.5a)] as well as one irreducible polarization part
[Fig.(4.1.5b)]. Additionally, self-energy insertions in the form of skeleton diagrams appear such
as shown in figure (4.1.5(c)) and figure (4.1.5(d)). The latter one, also known as the Tadpole-
diagram, yields the Hartree energy, while in figure (4.1.5(c)) the corresponding red diagram
displays the exchange energy. Both diagrams (c) and (d) appear in two topological equivalent
representations and thus need to be counted twice. Furthermore, the same skeleton diagrams
are obtained also for the Green’s function line heading in the opposite direction. Thus, following
the principle of partial summation of repetitive self-energy insertions, we can replace the single
non-interacting Green’s function line by its dressed counterpart, which is, retaining the Hartree
energy and the exchange diagram only, equivalent to the Hartree-Fock approximation of G.4

However, at higher orders l > 1, the Coulomb line in figure (c), being the lowest order of the
so-called polarization diagrams, will be replaced by higher order polarization diagrams giving rise
to an effective or dressed interaction. Possible polarization diagrams consist of any polarization
parts, connected by an incoming and outgoing Coulomb line. By a partial summation over
all possible polarization diagrams, the Coulomb line could be replaced by the full screened
interaction W0. The index 0 denotes that the screened interaction is obtained by the non-
interacting Green’s function G0. This replacement of the interaction line can, however, be done
only for the exchange diagram and not for the Tadpole-diagram in figure (d). For this diagram,
the insertion of polarization diagrams would yield so-called anomalous diagrams that cannot
occur as they violate momentum conservation [84]. Hence, one would obtain a screened exchange
skeleton diagram with a non-interacting Green’s function line. The summation of (c) and (d)
including the repetitive collocation of the screened exchange diagram in (c) and the repetitive
Tadpol-diagram in (d), at every orders of l, yields a single polarization part with a dressed Green’s
function line as sketched in figure (c’) 5. In general, just a certain class of polarization diagrams
is considered giving rise to different approximations to W . In particular, the restriction to the

4A dressed Green’s function line assumes a self-consistent solution of the self-energy.
5Here, the dressed line representing the Green’s function is the solution of the Dyson equation with the self-energy
approximated by Σxc ≈ G0W0
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bubble diagram shown in Fig. (4.1.2) yields the random phase approximation of W . For our
purposes and within the ordinary GW -calculations, this is the method of choice to approximate
the screened interaction. Again, a self-consistent solution ofW [G] results in the full random phase
approximation of the screened interaction and implies a self-consistent solution of G. As both
skeleton diagrams will also emerge at the polarization parts in figure (a) and (b) at higher orders
l > 1, the same arguments to replace the non-interacting Green’s function line by its dressed
counterpart holds as well. Hence, we can substitute figure (a) and (b) with the corresponding
dressed Green’s function lines. One may note that only the irreducible polarization diagram
contains a dressed Coulomb line, while the reducible diagram in figure (a’) is connected by a
bare Coulomb line. In general, any substitution of the bare Coulomb line in Fig. (a’) by a dressed
interaction line would not yield a new irreducible diagram as this particular one can be always
cut into two disjoint polarization parts and one remaining polarization diagram. Eventually,
comparing the resulting diagrams (a’) and (b’) with those diagrams of the four-point density
correlation function L, we find the same expressions if and only if one performs the contraction
of arguments in L(1, 3, 2, 4), i.e. 3 → 1 and 4 → 2. In other words, the solution of χ(1, 2) is
obtained by the solution of the Bethe-Salpeter equation for L and finally taking the limit as
indicated above.

4.1.6. Independent quasiparticle approximation of L

In the previous section we have discussed how to solve the two-point density-response function
χ(1, 2) from a perturbation expansion w.r.t the Coulomb interaction and the screened interaction,
respectively. However, as χ(1, 2) does not obey a Bethe-Salpeter equation like the four point
function L(1, 3, 2, 4) due to the non-local interaction W (1, 2) one needs to solve the full BSE, i.e.
Eq.(3.137). As we aim to find the two-particle excitation energies, the Fourier coefficients in the
frequency domain of the density correlation function need to be calculated. With regard to the
four time point arguments of L, it will have three frequency arguments due to three possible time
differences. A reduction of this particular time arguments is however possible, since the four point
expression of the density correlation function is just a generalization of the original three-point
quantity L(1, 3, 2, 2+) [60].6 Therefore we can take without loss of generality the limit t4 → t+2
to obtain L(r1t1, r3t3, r2t2, r4t

+
2 ). The transition to the frequency space can now be performed

introducing one fermionic Matsubara-frequency zl and one bosonic Matsubara-frequency ζl as
the following [85] (the time arguments are complex valued):

L(r1t1, r3t3, r2t2, r4t
+
2 ) =

1

(−i~β)2

∑
l,l′

e−izl′ (t1−t3)e−iζl(t1−t2)L(r1, r3, r2, r4; ζl, zl′). (4.30)

6This particular three point expression is reasoned in the three point vertex Ξ within the corresponding Bethe-
Salpeter equation [see Eq. (3.137)].
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Figure 4.2.: A selection of Feynman diagrams obtained by applying the Wick theorem to the time
ordered expression in Eq.(4.29). The non-interacting Green’s function is displayed
by a thin solid line, while a thick line corresponds to the dressed Green’s function. A
wiggly line represents the Coulomb interaction v and the double wiggly line denotes
the dressed or screened Coulomb interaction W . To the very left side the time-
ordered Feynman diagrams are presented to in first order l = 1. Since the Coulomb
interaction is instantaneous in time, the Coulomb line can be rotated like in figure (a)
and (c) to obtain a conformal representation of all Feynman diagrams. In figure (c),
the exchange skeleton diagram is shown (red color), while in figure (d) the Tadpole-
diagram (red color) is presented . The summation of (c) and (d), including repetitive
skeleton diagrams at higher orders l > 1, leads to digram (c’). The dressed Green’s
function line in (c’) is either the Hartree-Fock approximation of G or corresponds to
G within the GW -approximation of the self-energy Σ = ΣH + Σxc,GW . Space/time
points are abbreviated by 1 = r, t.

From the two frequency expression for L(ζl, zl′) one can easily obtain the one frequency dependent
density correlation function L(ζl) by summation over all fermionic Matsubara-frequencies

L(r1, r3, r2, r4; ζl) =
1

−i~β
∑
l′

L(r1, r3, r2, r4; ζl, zl′). (4.31)

With regard to the solution of the Bethe-Salpeter equation for L in the frequency domain, we have
to determine the independent particle approximation of the four-point density-correlation func-
tion, i.e. L0(1, 3, 2, 4) = G(14)G(23). More precisely, as the Green’s function is approximated
within the quasiparticle formulation, L0(1, 3, 2, 4) is equivalent to the independent quasiparticle
approximation, thus L0 = LIQPA. With the aid of Eq.(4.30) and the Fourier expansion of the
Green’s function [Eq.(3.28)] one finds the corresponding expression for L0(1, 3, 2, r4t2+) as the
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following

L0(r1, r3, r2, r4; ζl) =
1

β

∑
l′

G(r1r4; zl′ + ζl)G(r2r3; zl′). (4.32)

In order to resolve the summation over the fermionic frequency we will switch to the Bloch
representation of L0. According to the expression of the Green’s function within the quasiparticle
approximation [Eq.(3.87)] it is convenient to express L0 in a Bloch orbital basis in the following
way:

L0(r1, r3, r2, r4; ζl) =
∑

k̃1,k̃2,k̃3,k̃4

ϕk̃1
(r1)ϕ∗

k̃3
(r3)ϕk̃2

(r2)ϕ∗
k̃4

(r4)L0
k̃1k̃3

k̃2k̃4
(ζl) (4.33)

while the matrix element is defined as

L0
k̃1k̃3

k̃2k̃4
(ζl) =

∫∫∫∫
dr1 dr2 dr3 dr4 ϕ

∗
k̃1

(r1)ϕk̃3
(r3)ϕ∗

k̃2
(r2)ϕk̃4

(r4)L0(r1, r3, r2, r4; ζl). (4.34)

Since the quasiparticle Green’s function is diagonal in this particular orbital basis set, the matrix
element defined above becomes

L0
k̃1k̃3

k̃2k̃4
(ζl) =

1

β

∑
l′

1

~(zl′ + ζl)− Eqp

k̃1

δk̃1k̃4

1

~zl′ − Eqp

k̃3

δk̃2k̃3
. (4.35)

The summation over the fermionic frequency, however, can be resolved using the relation

1

~β
∑
l

1

zl − ω
= f(~ω)− 1

2
, (4.36)

with the Fermi function f(~ω) and its property to remain unchanged if it is shifted by a bosonic
Matsubara frequency ζl, i.e. f(~ω+~ζl) = f(~ω) [44]. To benefit from Eq.(4.36), the product on
the rhs of Eq.(4.35) can be formulated alternatively in terms of a partial fraction decomposition
that results in the expression

δk̃1k̃4
δk̃2k̃3

−~ζl + Eqp

k̃1
− Eqp

k̃3

∑
l′

{
1

~ (zl′ + ζl)− Eqp

k̃1

− 1

~zl′ − Eqp

k̃3

}
1

β
. (4.37)

As a result one immediately finds

L0
k̃1k̃3

k̃2k̃4
(ζl) =

f(Eqp

k̃1
)− f(Eqp

k̃3
)

Eqp

k̃1
− Eqp

k̃3
− ~ζl

δk̃1k̃4
δk̃2k̃3

. (4.38)

Hence, the resulting expression for the four-point density correlation function at the bosonic
frequency ζl can be summarized as

L0(r1, r3, r2, r4; ζl) =
∑
k̃1,k̃2

ϕk̃1
(r1)ϕ∗

k̃2
(r3)ϕk̃2

(r2)ϕ∗
k̃1

(r4)
f(Eqp

k̃1
)− f(Eqp

k̃2
)

Eqp

k̃1
− Eqp

k̃2
− ~ζl

. (4.39)
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The transition to the zero temperatur limit, i.e. T → 0, can be performed in Eq.(4.39), noticing
that the fermi function becomes the theta function as shown below

lim
T→0

f(~ω) = Θ(µ− ~ω). (4.40)

Additionally, L0(ζl) at the bosonic frequency ζl can be transfered to the whole imaginary complex
plane in analogy with the procedure of the Green’s function w.r.t. to the fermionic frequency
zl. This allows to express the independent particle approximation of the density correlation
function in terms of real frequencies ω. Thus one finds in analogy with χ0(1, 2) the time ordered
expression of L0

L0(r1, r3, r2, r4;ω) =
∑
k̃1,k̃2

ϕk̃1
(r1)ϕ∗

k̃2
(r3)ϕk̃2

(r2)ϕ∗
k̃1

(r4)

×
[

Θ(Eqp

k̃1
− µ)Θ(µ− Eqp

k̃2
)

~ω + Eqp

k̃2
− Eqp

k̃1
+ i~η

−
Θ(µ− Eqp

k̃1
)Θ(Eqp

k̃2
− µ)

~ω + Eqp

k̃2
− Eqp

k̃1
− i~η

]
.

(4.41)

Obviously, the contraction of the spatial arguments, i.e. r4 → r2 and r3 → r1 can be performed,
thus obtaining the independent quasiparticle approximation of the two-point density correlation
function χIQPA

0 (r1, r2;ω) = L0(r1, r2, r1, r2;ω). The comparison of the resulting expression for
χIQPA

0 with that of χ0 immediately shows that the transition from the independent particle
approximation to the corresponding independent quasiparticle approximation goes along with
the substitution εk̃ → Eqp

k̃
of the corresponding term in the frequency domain. Evenmore,

we find the retarded microscopic dielectric function in analogy with the derivation within the
independent particle approximation and can simply adopt the result that leads to

εIQPA
GG′ (q;ω) = δGG′−

4πe2

|q + G|2
∑
k̃1,k̃2

Bk̃1∗
k̃2

(q+G)Bk̃1

k̃2
(q+G′)

Θ(µ− Eqp

k̃2
)−Θ(µ− Eqp

k̃1
)

~ω + Eqp

k̃2
− Eqp

k̃1
+ i~η

.7 (4.42)

4.1.7. Excitonic Hamiltonian 8

So far, we have examined the solution of the independent (quasi)-particle approximation for the
microscopic dielectric function ε(ω). In order to include excitonic effects due to the electron-hole
coupling, we have to solve the full Bethe-Salpeter equation for the density correlation function
L. Although, the inverse dielectric function is a two-point quantity as given by Eq.(3.116), the
density correlation function L(12) does not obey a Bethe-Salpeter equation due to the coupling
kernel Ξ′. Just in the case if the non-local screened interaction is neglected, i.e. Ξ = 0 the result-
ing BSE for L(1, 3, 2, 4) turns into a closed Dyson equation for the two-point density correlation
function L(12). This approximation is also known as the random phase approximation for the

7One may note that the inverse microscopic dielectric function is related to the density correlation function L.
Within the independent (quasi-)particle approximation we have LI(Q)P = P I(Q)P. Therefore it is equivalent
to solve the dielectric function from ε

I(Q)P

GG′ (q) = δGG′ − vG(q)P
I(Q)P

GG′ (q). It can be shown with the aid of the
Sherman-Morrison formula that by inversion of the matrix ε−1 I(Q)P

GG′ (q) = δGG′ + vG(q)P
I(Q)P

GG′ (q) one obtains
exactly the expression for εI(Q)P

GG′ (q).
8I follow partially Refs. [44, 49].
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density correlation function denoted by LRPA. However, in order to obtain the full solution for
L(1, 3, 2, 4) we can exploit the Bloch representation as discussed in the previous section also for
L as it is a functional of L0. Hence, substituting Eq.(4.33) into the BSE [Eq.(3.136)] for L and
taking the limes t4 → t2+ , one eventually finds by comparison of the coefficients the following
relation

Lk̃1k̃3

k̃2k̃4
(t1 − t3, t1 − t2) = −i~Gk̃1k̃4

(t1 − t2+)Gk̃2k̃3
(t2 − t3)

+ i~
∑
k̃′5,k̃

′
6

k̃′7,k̃
′
8

[
Gk̃1k̃′5

(t1 − t6)Gk̃′6k̃3
(t6 − t3) v

k̃′5k̃
′
6

k̃′8k̃
′
7

L
k̃′7k̃
′
8

k̃2k̃4
(t6 − t6, t6 − t2)

− i~
∫∫

dt7 dt8 Gk̃1k̃′5
(t1 − t7)Gk̃′6k̃3

(t8 − t3) W
k̃′5k̃
′
6

k̃′8k̃
′
7

(t7 − t8) L
k̃′7k̃
′
8

k̃2k̃4
(t7 − t8, t7 − t2)

]
.

(4.43)

In particular, the matrix elements for the Coulomb term and the screened interaction read in
position space

v
k̃′5k̃
′
6

k̃′8k̃
′
7

=

∫∫∫∫
dr5 dr6 dr7 dr8 ϕ

∗
k̃′5

(r5)ϕk̃′6
(r6)δ(r5 − r6)δ(r7 − r8)v(r5 − r8)ϕ∗

k̃′8
(r8)ϕk̃′7

(r7)

=

∫∫
dr6 dr8 ϕ

∗
k̃′5

(r6)ϕk̃′6
(r6) v(r6 − r8) ϕ∗

k̃′8
(r8)ϕk̃′7

(r8)

(4.44)

and

W
k̃′5k̃
′
6

k̃′8k̃
′
7

=

∫∫∫∫
dr5 dr6 dr7 dr8 ϕ

∗
k̃′5

(r5)ϕk̃′6
(r6)δ(r5 − r7)δ(r6 − r8)W (r5, r6)ϕ∗

k̃′8
(r8)ϕk̃′7

(r7)

=

∫∫
dr7 dr8 ϕ

∗
k̃′5

(r7)ϕk̃′6
(r8) W (r7, r8) ϕ∗

k̃′8
(r8)ϕk̃′7

(r7)

(4.45)

Equation (4.43) reveals that as long as the density-correlation function depends on two time
arguments, the GW -approximation of the BSE for L does not yield a closed equation in terms
of the time arguments and eventually also in terms of the frequency arguments. As we are
interested in a one-frequency dependent density-correlation function L(ζl), which then can be
related to the one-frequency dependent dielectric function, the limes t3 → t1+ in Eq.(4.43) can
be performed without loss of generality. However, due to the dynamic screened interaction, the
resulting equation for L still requires the solution of a two-time dependent density correlation
function. This can be done for instance in an approximative manner exploiting the Shindo-
approximation [86, 85]. The inclusion of such dynamical effects, however, does not give rise
to an improved description of the excitonic effects in determining optical properties. This is
mainly due to a compensation of dynamical quasiparticle effects and dynamical vertex corrections
[87]. Therefore, one usually sticks to the static approximation of the screened interaction, i.e.
W (r1t1, r2t2) ≈ W (r1, r2)δ(t1 − t2). Obviously, this affects Eq.(4.43) and turns it into a closed
equation with a density correlation function that depends only on one time argument t1− t2 and
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can thus be transformed to a one-frequency dependent quantity within the frequency domain:

L k̃1k̃3

k̃2k̃4
(ζl) =

1

β

∑
l′

[
Gk̃1k̃4

(zl′ + ζl)Gk̃2k̃3
(zl′)

+
∑

k̃′5,k̃
′
6,k̃
′
7,k̃
′
8

Gk̃1k̃′5
(zl′ + ζl)Gk̃′6k̃3

(zl′) v
k̃′5k̃
′
6

k̃′8k̃
′
7

L
k̃′7k̃
′
8

k̃2k̃4
(ζl)

−
∑

k̃′5,k̃
′
6,k̃
′
7,k̃
′
8

G k̃1k̃′5
(zl′ + ζl)G k̃′6k̃3

(zl′) W
k̃′5k̃
′
6

k̃′8k̃
′
7

L
k̃′7k̃
′
8

k̃2k̃4
(ζl)
]
.

(4.46)

Again, the summation over the fermionic Matsubara frequencies can be performed by use of
Eq.(4.38) and the corresponding diagonal matrix element of the quasiparticle Green’s function
[Eq.(3.87)]

L k̃1k̃3

k̃2k̃4
(ζl) =

f(Eqp

k̃1
)− f(Eqp

k̃3
)

Eqp

k̃1
− Eqp

k̃3
− ~ζl

δk̃1k̃4
δk̃2k̃3

+
∑
k̃′7,k̃

′
8

[
v k̃1k̃3

k̃′8k̃
′
7

−W k̃1k̃3

k̃′8k̃
′
7

]
L

k̃′7k̃
′
8

k̃2k̃4
(ζl)

 . (4.47)

With Eq.(4.47) the Bethe-Salpeter equation for the density-correlation function has been trans-
formed to a matrix form in terms of pairs of Bloch orbitals, i.e. (k̃1k̃3) and (k̃2k̃4). These pairs
obviously appear in combination of occupied and unoccupied pairs as it is clearly seen from the
difference of the Fermi function in Eq.(4.47) for the upper pair of Bloch orbitals. However, also
the second lower pair of the matrix element L k̃1k̃3

k̃2k̃4
yields contributions for L in the combination

of occupied and unoccupied Bloch orbitals. This can be deduced from the Bethe-Salpeter equa-
tion for L [Eq.(3.124)], which explicitly can be written like L = L0 +L0[v−W ]L0 + . . . . The full
solution of the matrix L k̃1k̃3

k̃2k̃4
(ζl) can be obtained by matrix inversion. For that one introduces

the excitonic Hamilton operator H, which is given within the basis of Bloch orbitals as

H k̃1k̃3

k̃2k̃4
=
(
Eqp

k̃1
− Eqp

k̃3

)
1

k̃1k̃3

k̃2k̃4
−
[
f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

) ]
I k̃1k̃3

k̃4k̃2
, (4.48)

while the interaction kernel I abbreviates the difference of the Coulomb term and the screened
interaction term from Eq.(4.47), i.e. I = v −W . It allows, as shown in the appendix I, to write
a matrix equation for the density correlation function as

f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

)
1

k̃1k̃3

k̃4k̃2
=
∑
k̃′7,k̃

′
8

[
H k̃1k̃3

k̃′7k̃
′
8

− ~ζl 1 k̃1k̃3

k̃′7k̃
′
8

]
L

k̃′7k̃
′
8

k̃2k̃4
(ζl). (4.49)

The inversion of the matrix [H−~ζl1] leads to the desired matrix for L. One may note, however,
that by inspection of Eq.(4.49) the matrix on the rhs differs in the lower index pair compared
to the unity matrix on the lhs. The previously introduced indexing k̃1k̃3

k̃2k̃4
stems from Eq.(4.33)

and can, without loss of generality, be interchanged to k̃1k̃3

k̃4k̃2
. By doing so, the lower index of

L in Eq.(4.49) can be swapped so that Eq.(4.49) displays a valid matrix equation given by the
general matrix product C ab

cd =
∑

e,f A
ab
ef B

ef
cd [49].
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Structure of the excitonic Hamiltonian

As mentioned above, the matrix elements of the density correlation function L k̃1k̃3

k̃2k̃4
are restricted

to pairs of occupied and unoccupied Bloch orbitals. Since these matrix elements enters into the
calculation of the (inverse) microscopic dielectric function εGG′(q) the index pairs are explicitly
given as

(k̃1k̃3) = (ck, vk + q), (vk, ck + q) and (k̃2k̃4) = (c′k′, vk′ + q), (v′k′, c′k′ + q) (4.50)

or within the optical limes q→ 0 where only vertical transitions are considered

(k̃1k̃3) = (cv,k), (vc,k) and (c′v′,k′), (v′c′,k′). (4.51)

For the latter case the excitonic Hamiltonian given in Eq.(4.48) has the following structure

H k̃1k̃3

k̃2k̃4
=


↓ (k̃1k̃3)

→(k̃2k̃4)
c′v′k′ v′c′k′

cvk rH c v k
c′v′k′ I c v k

c′v′k′

vck −
[
I c v k
c′v′k′

]∗ aH v c k
v′c′k′

 . (4.52)

The upper left submatrix denotes the resonant part of H and reads explicitly

rH c v k
c′v′k′ = δcc′δvv′δkk′

(
Eqp
ck − E

qp
vk

)
+ I c v k

v′c′k′ . (4.53)

Furthermore, the matrix element of the interaction kernel I are hermitian, i.e. I k̃4k̃2

k̃1k̃3
=
[
I k̃1k̃3

k̃4k̃2

]∗
,

because the Coulomb kernel v(|r1 − r2|) as well as the static screened interaction W (r1, r2) are
symmetric w.r.t their spatial arguments [60]. The antiresonant part of the excitonic Hamiltonian
can be written as

aH v c k
v′c′k′ = δcc′δvv′δkk′

(
Eqp
vk − E

qp
ck

)
− I v c kc′v′k′ = −

[
rH c v k

c′v′k′

]∗
. (4.54)

Finally, the matrix representation of L, as given in Eq.(4.49), is obtained from the solution of
the matrix

[
H̄ − ~ζl1̄

]−1. This can be achieved by the resolvent of the excitonic operator H.
Therefore, one has to solve the corresponding eigenvalue problem of H, i.e.

H |ΥΛ〉 = EΛ |ΥΛ〉 or
∑

(n2n4k2)

H n1n3k1
n2n4k2

Υn2n4k2
Λ = E n1n3k1

λ Υn1n3k1
Λ .9 (4.55)

The bosonic problem of solving the matrix
[
H̄ − ~ζl1̄

]−1 hence reduces to the familiar problem of
solving the Green’s function operator G that obeys the equation [H − ~ζl]G = 1 or equivalently
G = 1

[H−~ζl] . With the aid of the closure relation, the Green’s operator can be expressed in terms

9The summation over the indices n2, n4 runs over all bands with the condition n2 = c↔ n4 = v and vice versa.
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of the eigenvectors ΥΛ and yields the resolvent representation of H10:

G =
∑
Λ,Λ′

|ΥΛ〉 〈ΥΛ|
1

[H − ~ζl]
|Υ′Λ′〉 〈Υ′Λ′ |

=
∑
Λ,Λ′

|ΥΛ〉 〈ΥΛ|
−1

~ζl
(

1− H
~ζl

) |Υ′Λ′〉 〈Υ′Λ′ |
=
∑
Λ,Λ′

|ΥΛ〉 〈ΥΛ|
−1

~ζl
(

1− EΛ
~ζl

) |Υ′Λ′〉 〈Υ′Λ′ |
=
∑
Λ,Λ′

|ΥΛ〉 〈Υ′Λ′ |
EΛ − ~ζl

δΛ,Λ′ .

(4.56)

The derivation above requires, however, some explanation. First of all, the matrix H̄ is, by its full
representation as displayed in Eq.(4.52), not hermitian, although its submatrices are hermitian.
Under the assumption of the resonant part rH̄ being positiv definite, one may show that H has
only real eigenvalues EΛ[60, 49]. Secondly, the matrix H̄ has, as it is not hermitian, a set of left
{|ΥΛ〉} and right eigenvectors {|Υ′Λ〉} that are additionally bi-orthogonal, i.e. 〈ΥΛ|Υ′Λ〉 = δΛ,Λ′

and have eigenvalues EΛ and E∗Λ, respectively [88] and leads to the representation of the Green’s
operator in Eq.(4.56). Hence, Eq.(4.49) can now be inverted to obtain the density correlation
function in terms of the Bloch basis as the following

L k̃1k̃3

k̃2k̃4
(ζl) =

[
f
(
Eqp
n1k1

)
− f

(
Eqp
n3k1

)]∑
Λ

Υn1n3k1
Λ Υ′n2n4k2 ∗

Λ

EΛ − ~ζl
. (4.57)

Even though the density correlation function has to be evaluated for every frequency ζl, the re-
solvent representation due to Eq.(4.57) circumvents to evaluate the inverse matrix

[
H̄ − ~ζl1̄

]−1

for every frequency. Nevertheless, the corresponding eigenvalue problem for the excitonic Hamil-
tonian [Eq.(4.55)] is indispensable in order to include the excitonic effects for the calculation
of the microscopic dielectric function. It is therefore the main numerically demanding task and
thus limits the inclusion of the number of pairs of conduction/valence-bands in practical appli-
cations. In particular, the neglect of the off-diagonal submatrices in Eq.(4.52), i.e. the couplings
terms I c v k

c′v′k′ , decomposes the excitonic Hamiltonian to the sum of the resonant and antiresonant
submatrices. Additionally, the resonant part rH is related to the antiresonant part, simply by
its conjugation and thus it is sufficient to solve the resulting hermitian eigenvalue problem for
rH only. The corresponding eigenvectors of the antiresonant submatrix aH are then obtained
from the eigenvectors corresponding to the solution of the EVP of rH. Hence one finds

aΥ vck ∗
Λ = rΥ cvk

Λ and rEΛ = −aEΛ. (4.58)

This approximation is known as the Tamm-Dancoff approximation (TDA)[89, 90] and gives
reasonable results for semiconducting materials[91, 92, 93], as in these materials the inclusion of
the coupling terms I c v k

c′v′k′ do not yield improved optical spectra. Furthermore, the application

10We use in the following derivation the series expansion 1
1−x = 1 + x+ x2 + . . . .
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of the full excitonic Hamiltonian to extended systems requires a transformation to a Hermitian
expression and is one part of the main work of this thesis. Additionally, it has been shown
that the inclusion of the off-diagonal matrices yields to different optical spectra for systems with
distinctive electronic density inhomogeneities [94].

4.1.8. Macroscopic dielectric function - beyond the independent quasiparticle
approximation (TDA)

Within the Tamm-Dancoff approximation, the density correlation function L, if expressed in the
Bloch basis, can be eventually expressed by a full resonant part and a full antiresonant part.
With the definition given by Eq.(4.33) and the inclusion of only vertical transition pairs, one
finds

LTDA(r1, r3, r2, r4|ζl) =∑
c,v,k
c′,v′,k′

ϕck(r1)ϕ∗vk(r3)ϕc′k′(r2)ϕ∗v′k′(r4)

[
−
∑

Λ

Υ cvk
Λ Υ c′v′k′∗

Λ

EΛ − ~ζl

]

+
∑
c,v,k
c′,v′,k′

ϕvk(r1)ϕ∗ck(r3)ϕv′k′(r2)ϕ∗c′k′(r4)

[∑
Λ

Υ vck
Λ Υ v′c′k′∗

Λ

−EΛ − ~ζl

]
.

(4.59)

Similar to the case for the independent (quasi)-particle approximation, we can take the limes
w.r.t the spatial coordinates, i.e. r3 → r1 and r4 → r2 to obtain the inverse microscopic dielectric
function in the reciprocal space. As we already imply the long wave length limit by considering
only vertical transitions between the pairs (cvk) and (vck), the resulting Bloch integrals reduces
to the components Bck

vk(q) and we obtain the intermediate result for the inverse dielectric function
in the reciprocal space:

ε−1
G=0G′=0(q) = 1 +

4πe2

|q|2
∑

Λ
c,v,k
c′,v′,k′

Bck∗
vk (q)Bc′k′

v′k′(q)Υ(cvk)Υ(c′v′k′)∗
[ −1

EΛ − ~ζl
+

−1

EΛ + ~ζl

]
(4.60)

In principle, Eq.(4.60) is exact but needs to be treated carefully, if the limes q→ 0 is considered.
First of all, this equation can also be written as ε−1

00 (q) = 1 + v(q)LTDA
00 (q), with the reciprocal

Fourier coefficient LTDA
GG′ (q) obtained from Eq.(3.120) given in Fourier space

LGG′(q) = PGG′(q) +
∑
G̃

PGG̃(q)vG̃(q)LG̃G′(q) (4.61)

and taken at reciprocal lattice vectors G = G′ = 0. Obviously, there are two diverging terms,
the Coulomb kernel in Eq.(4.60) and the Coulomb kernel in Eq.(4.61) that seemingly appears
in the interaction kernel I. In principle, in gapped systems the 1

|q|2 divergence in Eq.(4.60) is
cancelled due to the matrix elements Bck

vk(q) decaying like q. However, this requires carefully
coding, and in non-cubic materials results also depend on how the limes q→ 0 is approached.
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About the divergence due to the Coulomb kernel in I, it can be shown that by a substitution
of the original kernel vG(q) through an amputated kernel v̄G(q)

v̄G(q) =

0 if G = 0

vG(q) if G 6= 0,
(4.62)

the limes in Eq.(4.60) can be safely performed if Eq.(4.60) is evaluated with the amputated
density correlation function L̄ ≡ L0 +L0(v̄−W )L. Evenmore, the macroscopic limit of L is then
given by L̄00(q) and the macroscopic dielectric function is given as [62]

εM(q̂|ζl) = 1− lim
q→0

[
v0(q)L̄00(q|ζl)

]
. (4.63)

Taking this modifications into account, the rhs of Eq.(4.60) immediately leads to the macroscopic
dielectric function εM(q̂) within the TDA

εTDA
M (q̂|ζl) = 1 + 4πe2

∑
Λ

c,v,k

∣∣∣M ck∗
vk (q̂)Ῡ

(cvk)
Λ

∣∣∣2 [ 1

EΛ − ~ζl
+

1

EΛ + ~ζl

]
.11 (4.64)

Eventually, the transition from the complex frequency ζl → ω + iη allows to access the retarded
dielectric function. To summarize, Eq.(4.60) is not the appropriate equation that can be used to
obtain the macroscopic limit of the dielectric function as is contains a divergent Coulomb kernel
in the reciprocal space. However, the simple modification by substituting the Coulomb kernel
with its amputated counterpart yields the possibility to solve the macroscopic dielectric function
immediately from equation 4.63. I will give evidence in section 4.1.10.

4.1.9. Microscopic and macroscopic relations

In this section I want to shortly demonstrate the relation between the microscopic and macro-
scopic description of the involved response quantities. Within the linear response theory we
are interested in the response of the underlying many-particle system due to a small external
perturbation. The latter one is usually taken as potential Vext associated to an external charge
distribution that causes a response of the system building up a screened potential Vtot. It is
related to the external potential by the inverse microscopic dielectric function

Vtot(r, t) =

∫
dr′dt′ε−1(r, r′; t− t′)Vext(r

′, t′) (4.65)

or equivalently in Fourier space

V tot
G (q, ω) =

∑
G′

ε−1
GG′(q, ω)V ext

G′ (q, ω). (4.66)

11We want to distinguish between the eigenvectors ΥΛ corresponding to the original excitonic Hamiltonian and
those, i.e. ῩΛ, that are eigenvectors of H with the amputated Coulomb kernel v̄.
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Since the dielectric function, as well as the total potential are conform with the lattice symmetry,
the vector q belongs to the first Brillouin zone, while the vectors G and G′ are reciprocal lattice
vectors. As the external potential will have a macroscopic characteristic it will consist of a main
Fourier component associated to a wave length large against the microscopic structure, but still
small enough compared to the length of the sample. The microscopic field in the crystal are
responsible for the so-called local field and are accounted by the non-local form of the dielectric
function. Hence, the macroscopic perturbation given by V ext

G δ0,G still lead to a modification of
the local fields that contributes to the total potential. In particular, in many-particle system with
a strongly varying electron density, the local field effects play a crucial role when the dielectric
properties are of interest and thus cannot be neglected. Eq.(4.65) as well Eq.(4.66) represent the
microscopic equations. Since for practical applications only macroscopic quantities are accessible,
the microscopic potential undergoes an average procedure, i.e. one calculates the corresponding
potential averaged over a unit cell with volume V0 and with origin at point R. One thus obtains

Vtot,M(R, ω) = 〈V tot(r, ω)〉R =
1

V0

∫
V0(R)

dr′ Vtot(r
′, ω). (4.67)

Decomposing the total potential in Fourier components, i.e.

Vtot(r, ω) =
∑
G

V tot
G (q, ω)ei(q+G)r (4.68)

and substitute Eq.(4.68) in Eq.(4.67) one obtains

Vtot,M(R, ω) =
1

V0

∑
G

V tot
G (q, ω)

∫
V0(R)

dr′ ei(q+G)r′ . (4.69)

The equation above can be further simplified by taking the exponential eiqr′ in front of the
integral because the wave vector q associated to the external potential varies only slowly over
the unit cell and can be treated as a constant [95]. Thus one finds

Vtot,M(R, ω) =
1

V0

∑
G

V tot
G (q, ω)eiqR

∫
V0(R)

dr′ eiGr′ (4.70)

The integral in Eq.(4.70) contributes only for a vanishing reciprocal lattice vector and yields
V0 δ0,G. As a consequence, the Fourier coefficient V tot

G (q, ω)δ0,G of the microscopic potential is
equivalent to the Fourier coefficient of the corresponding macroscopic potential, i.e.

V tot
G,M(q, ω) = V tot

G (q, ω)δ0,G. (4.71)
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With this result, the relation between the macroscopic total potential and a macroscopic external
potential can be set up from Eq.(4.66) as

V tot
G,M(q, ω)δ0G =

∑
G′

ε−1
00 (q, ω)V ext

G′ (q, ω)δ0,G′ . (4.72)

The crucial quantity is the head of the inverse of microscopic dielectric function ε−1
00 (q, ω) that

obviously relates both macroscopic potentials, i.e. V tot
M and V ext to each other. Following

Eq.(4.66), it can be considered as the inverse of the macroscopic dielectric function ε−1
M :

ε−1
M (q, ω) = ε−1

00 (q, ω)↔ εM(q, ω) =
1

ε−1
00 (q, ω)

≡ 1

ε−1
GG′(q, ω)|G=G′=0

(4.73)

In other words, the macroscopic dielectric function is gained from the microscopic response
function, i.e. the inverse dielectric function, taking the head of the Fourier component G =

G′ = 0 and finally calculating the inverse. In the case of so called homogenous materials, such as
the homogenous electron gas, with a smoothly varying background potential on the microscopic
scale, higher Fourier components VG(q, ω) with G 6= 0 may be disregarded and thus local field
effects are not taken into account. Under these special circumstances, the macroscopic dielectric
function is then obtained by

εn.l.f.M (q, ω) = ε00(q, ω). (4.74)

The relations between the microscopic and macroscopic dielectric function have been derived
independently by Adler[81] and Wiser[82] and by Ehrenreich[95].

4.1.10. Reasoning of the amputed Coulomb kernel in the BSE for L

Dyson form for L

As we have pointed out in the previous section, the macroscopic dielectric function is determined
by the amputed density-correlation function L̄ in Eq.(4.63). As this equation is the central
equation that will be used to calculate εM, we want to shortly verify it and show the necessity
to introduce the amputed Coulomb kernel v̄ that leads to the corresponding BSE for L̄. For this
reason, it is important to recall the BSE for L given in the four point notation due to Eq.(3.136).
It may be transformed to a Dyson-like equation that connects the irreducible part of the density-
correlation function, call it L̃, to the reducible part, i.e. L. Considering the four point quantities
in Eq.(3.136) as matrices in the spatial arguments, the same equation may be written in short
form as

L = L0 + L0 (v −W )L, (4.75)

or equivalently
L−1 = L−1

0 − (v −W ) . (4.76)

If we define the irreducible part L̃−1 = L−1
0 + W , then a Dyson-like equation of the form

L̃ = L0 −L0WL̃ can be deduced by analogy with Eq.(4.75). On the other, Eq.(4.76) reads with
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the aid of L̃
L−1 = L̃−1 − v (4.77)

and yields the following Dyson-like equation

L = L̃+ L̃vL. (4.78)

The Coulomb kernel in the equation above is given in its four-point notation, i.e. v(1, 2, 3, 4) =

δ(1− 2)δ(3− 4)v(1− 4). Substituting the kernel into Eq.(4.78) one finally obtains[96, 60]

L(1, 3, 2, 4) = L̃(1, 3, 2, 4) + L̃(1, 3, 5, 5)v(5− 6)L(6, 6, 2, 4). (4.79)

One may note that by contraction of arguments, i.e. 3 → 1 and 4 → 2 in Eq.(4.79), the Dyson
equation for the two-point density-correlation function χ(12) ≡ L(1, 2) [Eq.(3.120)] is obtained
from Eq.(4.79)12. The procedure of taking only the diagonal elements of L into account would
not have been possible from Eq.(3.136). The reason is the non-local term, due to the screened
interaction W . Therefore, one has to solve the full four-point BSE for L first, and take the
diagonal elements only a posteriori.

The Coulomb divergence

We will now show, why the inclusion of the amputed Coulomb kernel into the Dyson equa-
tion for the two-point density-correlation function is necessary, when one aims to calculate the
macroscopic dielectric function εM. From the definition of the microscopic dielectric function
[see Eq.(H.3)], which reads in short form notation ε = 1− vP , the Dyson equation for χ can be
rewritten (in reciprocal space) in the following way[62]:

χ = P + Pvχ←→ χ = P + Pε−1vP. (4.80)

In order to obtain now the macroscopic dielectric function, ε needs to be inverted first. Written
in a matrix form in the reciprocal space, the microscopic dielectric function becomes

ε =

(
εh εTw

εw εb

)
. (4.81)

In Eq.(4.81) the head εh is given by the components G = G′ = 0, while the wings εw and εTw,
and the body εb contains components with non-vanishing reciprocal lattice vectors G:

εh = 1− v0(q)P00(q) (4.82)

εw = −vG(q)PG0(q) (4.83)

εTw = −v0(q)P0G′(q) (4.84)

εb = δGG′ − vG(q)PGG′(q). (4.85)

12From the limes 4→ 2 and 3→ 1 the irreducible two-point polarizability P is obtained, thus L̃(12; 12) ≡ P (12).
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The inversion of the matrix in Eq.(4.81) can be calculated as shown in Refs.[62, 97]. One obtains
for ε−1 the following matrix representation

ε−1 =

(
0 0

0 ε−1
b

)
+
[
εh − εTwε−1

b εw
]−1

(
1 −εTwε−1

b

−ε−1
b εw ε−1

b εwε
T
wε
−1
b

)
. (4.86)

The macroscopic dielectric function εM after Wiser[82] and Adler[81] is calculated from the inverse
of the head of the inverse microscopic dielectric function. Since the head is now simply given by
the term

[
εh − εTwε−1

b εw
]−1 in Eq.(4.86), it yields

εM =
1

ε−1
00

= 1− v0(q)P00(q)−
∑

G̃,G̃′ 6=0

v0(q)P0G̃(q)ε−1
b G̃,G̃′

vG̃′(q)PG̃′0(q)

= 1− v0(q)

PGG′(q) +
∑

G̃,G̃′ 6=0

PGG̃(q)ε−1
b G̃,G̃′

vG̃′(q)PG̃′G′(q)


G=G′=0

.

(4.87)

By inspection of the expression in brackets one observes a striking similarity with the expression
of the two-point correlation function given on the rhs in Eq.(4.80) with the exception of missing
the long-range components G̃ = G̃ = 0. This problem, however, can be cured if the Coulomb
kernel within the definition of the microscopic dielectric function is substituted by an amputed
kernel

v̄G(q) =

0 if G = 0

vG(q) if G 6= 0
. (4.88)

This modification simplifies the inversion of the corresponding matrix ε̄13 as it can be deduced
from Eq.(4.86). One thus obtains

ε̄−1 =

(
1 0

−ε−1
b εw ε−1

b .

)
(4.89)

By exploiting the modified inverse dielectric function [Eq.(4.89)], Eq.(4.87) can be rewritten in
the following way

εM = 1− v0(q)

PGG′(q) +
∑
G̃,G̃′

PGG̃(q)ε̄−1
G̃,G̃′

vG̃′(q)PG̃′G′(q)


G=G′=0

(4.90)

or equivalently
εM = 1− v0(q)χ̄(q)00. (4.91)

In the latter equation we made use of the alternative formulation of the Dyson equation [Eq.(4.80)]
with the amputed Coulomb kernel, i.e. χ̄ = P + P ε̄−1v̄P . An alternative derivation for the
macroscopic dielectric function is also given in section 8.1.

13The modified microscopic dielectric function is now given by ε̄ = 1− v̄P .
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4.1.11. Longitudinal or transverse dielectric function

Within the preceding sections, the dielectric function has been noticed to link the total poten-
tial to an arbitrary external potential. However, when talking about optical properties we are
faced with electromagnetic fields as an external perturbation. The main difference between both
perturbations is that an external charge distribution is related to a longitudinal field since the
electric field Eext is determined by the gradient of the corresponding external potential Vext,
i.e. Eext(r) = −∇rVext(r). On the other hand, the electric field of an electromagnetic wave is
perpendicular to the direction of propagation and hence addresses a transverse external pertur-
bation. However, both kinds of perturbations will in general induce longitudinal and transverse
charge densities as well as current densities in the medium, respectively. This is accounted by
the complex dielectric tensor ε̂ that relates the total electric field E to the external field, which
is equivalent to the displacement field D in Maxwell’s equations:

D = ε̂ E (4.92)

With respect to the cartesian coordinate system the dielectric function is a tensor with dimension
3 × 3 and rank 2. It consists of the components εα,β with α, β = x, y, z denoting the cartesian
x, y, z−directions. The total electric field E can, as it is know from classical electrodynamics, be
decomposed into a longitudinal part EL and a transverse part ET, respectively. Hence, Eq.(4.92)
may be also written as (

DL

DT

)
=

(
ε̂LL ε̂LT

ε̂TL ε̂TT

)(
EL

ET

)
. (4.93)

Hereby, the individual components describe the purely longitudinal ε̂LL, the purely transverse ε̂TT

dielectric function, while the off-diagonal elements couple the transverse (longitudinal) induced
electric field due to a longitudinal (transverse) external field. In order to relate the longitudinal
and transverse components to the cartesian axes, one notes, that the dielectric tensor in Eq.(4.92)
may be written as [98]

ε̂ =

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 . (4.94)

In order to project out the longitudinal part ε̂LL the tensor on the rhs of Eq.(4.94) will be
multiplied with the dyadic 1L on both sides and similar for the remaining components in Eq.(4.93)
one finds:

ε̂LL = 1L · ε̂ · 1L (4.95)

ε̂TT = 1T · ε̂ · 1T (4.96)

ε̂LT = 1L · ε̂ · 1T and L↔ T. (4.97)

From the definition of the longitudinal unit dyadic, i.e. 1L = q ⊗ q/q2, one obtains the corre-
sponding transverse unit dyadic by the relation 1T = 1−1L, while 1 denotes the unit dyadic. In
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practical applications the calculation of the dielectric function for optical properties goes along
with the calculation of the longitudinal dielectric function ε̂LL. Hereby, the static case is assumed,
so that an external field induces only a static total electric total field. Therefore, the transverse
part ET is neglected.14 Equation (4.93) thus simplifies to

DL = ε̂LL EL. (4.98)

The question now arises, how can we link the longitudinal dielectric function to the transverse
one, obtained by experimental measurements, e.g. by the reflectivity measurements. For isotropic
media, like crystals with cubic symmetry, it has been proven that within the long wave length
limit q → 0 the longitudinal and transverse components of ε̂ decouple. Even more, the compo-
nents of the tensors ε̂LL(q = 0) and ε̂TT (q = 0) become equal, i.e. εLLαβ (q = 0) = εTTαβ (q = 0)

[81, 99]. In terms of the cartesian axes, one finds for an electromagnetic wave travelling in say
x−direction the following relation:

εLL
xx (qx = 0) =

εTT
yy (qx = 0)

εTT
zz (qx = 0)

.15 (4.99)

For an arbitrary direction of the propagation vector q, the longitudinal dielectric function is
obtained by

εLL = q̂ · ε̂ · q̂, (4.100)

which, in the simplest case with q̂ = q · êx, reduces to εLL = εLL
xx . Thus, electromagnetic waves in

the optical long wave length limit, either longitudinal or transverse, become indistinguishable for
an isotropic medium. For noncubic materials, the relation in Eq.(4.99), however, does not hold
due to different symmetries along different crystal axes. Nevertheless, a comparison between
the longitudinal and transverse dielectric function is still possible, as long as the direction of
polarization of the medium, due to the electric field D, is in the same direction for both modes
of the external perturbation [98].

14If the underlying Maxwell equations are solved, even within the quasi-stationary case, the electric field E
consists of a longitudinal (curl free) and a transverse (divergence free) part. The latter one is given by the
time-derivative of the vector potential A.

15For cubic materials, the dielectric tensor in Eq.(4.94) reduces to the diagonal components εαβδα,β , since the
cartesian x, y, z−directions correspond to the principle axes.



5. Time-dependent density functional theory

In the previous section, we have demonstrated in what way the density response function can
be calculated exploiting the Green’s function formalism. Thereby, we have to calculate the
so-called density fluctuation propagator that basically evolves the density fluctuation due to a
weak external perturbation in time. However, the computation of the density response function
involves not only the laborious calculation of accurate quasiparticle corrections due to the one
particle Green’s function but also the subsequent calculation of the four point quantity L. This
has encouraged the development of a linear response theory footing on the density functional
theory, namely the time-dependent density functional theory. It is the extension of the static
ground state DFT to a formalism that covers the relation of a time-dependent density to a
time-dependent external potential1. This method allows formally to trace the density evolution
in time starting from a previous calculated initial state of the many-body system. From the
density variation with respect to the ground state density, one then obtains a route to calculate
the density response function. In the following, the main features of time-dependent density
functional theory shall be demonstrated as well as its applicability to solid state problems.

5.1. The Runge-Gross theorem

In order to construct a time-dependent formalism that incorporates the one-to-one mapping
between the external potential and the density, one notes that a time-dependent external po-
tential determines the corresponding time-dependent density due to the underlying Hamiltonian
Ĥ ({r}, t). The latter one consists of a kinetic part

T̂ = − ~2

2me

N∑
i=1

∇2
ri , (5.1)

the mutual Coulomb interaction

V̂int =
1

2

∑
i 6=j

e2

|ri − rj |
(5.2)

and a time-dependent external potential

V̂ext =
∑
i

Vext(ri, t). (5.3)

1This one-to-one correspondence between time-dependent density and time-dependent external potential has
been proofed by the Runge and Gross. [100]
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The dynamics of the many-body system is then completely determined by the time-dependent
Schrödinger equation, i.e.

i~
∂

∂t
Ψ({r}, t) = Ĥ ({r}, t) Ψ({r}, t) , with Ψ({r}, t0) given (5.4)

where Ψ is the (interacting) many-body wave function that eventually yields the corresponding
(interacting) electronic one-body density

ρ(r, t) = N

∫
dr2 . . .

∫
drN |Ψ(r, r2, . . . , rN , t)|2.2 (5.5)

Given the potential Vext, it is always possible to solve the corresponding Schrödinger equation
and thus establish the mapping from the external potential Vext(r, t) to the density ρ(r, t). With
the Runge-Gross theorem [100] the inverse mapping, i.e. ρ(t) 7→ Vext(r, t) has been proven, and
concludes a unique one-to-one correspondence between the external potential and the density.
The proof is based on the SEQ (5.4) and considers the time evolution of two different densities
ρ1(t) and ρ2(t) under the influence of two different external potentials Vext,1(r, t) and Vext,2(r, t)

that are supposed to differ by more than a purely time-dependent function h(t):

Vext,2(r, t) 6= Vext,1(r, t) + h(t).3 (5.6)

Furthermore, both densities are required to evolve from a fixed initial many-particle state Ψ(t0)

at a finite time t0.4 Similar to the static DFT the question arises what are dismissible potentials
for the time-dependent DFT. They are a priori supposed to be smoothly varying functions in
time and are finite in the whole real space. Thus they are Taylor expandable about the initial
time t0:

Vext(r, t) =

∞∑
m=0

cm(r)

m!
(t− t0)m with cm(r) =

∂

∂tm
Vext(r, t)

∣∣∣
t=t0

. (5.7)

Since the initial state Ψ(t0) is not required to be an eigenstate of the initial external potential
Vext(t0) , external potentials that are switched on suddenly are also covered [101] and thus takes
scenarios in spectroscopy into account, where an external perturbation is switched on at a given
time t = t0. Additionally, two potentials owing to the expansion in Eq.(5.7) will differ by more
than a time dependent function h(t) if some of the Taylor coefficients cm,1(r) and cm,2(r) differ
by more than a constant. This translates to the fact that there exist an integer m ≥ 0 such that
the difference of the expansion coefficient cm,1(r)− cm,2(r) ≡ wm(r) from Eq.(5.7) is more than
a trivial constant, but a spatial dependent function [102]:

cm,1(r)− cm,2(r) =
∂m

∂tm
[Vext,1(r, t)− Vext,2(r, t)]t=t0 6= const. (5.8)

2The density shall be normalized to the total number of electrons N , i.e.
∫

dr ρ(r, t) = N .
3The addition of a purely time dependent function to the potential manifests in an additional phase factor in
the many-particle wave function Ψ. Taking any expectation value such as the density ρ = 〈Ψ|ρ̂|Ψ〉 will cancel
the phase factor and yields the same density.

4For practical application this initial many-particle state is taken as the ground state. This, however, is not
compulsory for the Runge-Gross theorem.
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The following proof of the Runge-Gross theorem follows closely the references [101, 102, 103]. It
makes use of the fact that during the time propagation the electronic charges are conserved. This
is expressed by the continuity equation that links the time derivative of the electronic charge
density ρ to the current density j as the following

∂

∂t
ρ(r, t) = −∇ · j(r, t). (5.9)

In the first step, one may show that two different external potentials lead to two different current
densities j1(r, t) and j2(r, t) immediately after the time evolution, i.e. for times t > t0. From
the rules of quantum mechanics, we exploit the time evolution of a quantum mechanical expec-
tation value, i.e. i~ d

dt 〈Ô(t)〉 = 〈
[
Ô(t), Ĥ(t)

]
〉 + 〈∂Ô(t)

∂t 〉 and apply this to the difference of the
aforementioned current densities:

i~
d

dt
{j1(r, t)− j2(r, t)}

∣∣∣
t=t0

= 〈Ψ0|
[̂
j(r), Ĥ1(t0)− Ĥ2(t0)

]
|Ψ0〉

= 〈Ψ0|
[̂
j(r), V̂ext,1(t0)− V̂ext,2(t0)

]
|Ψ0〉

= −iρ(r, t0)∇ [Vext,1(r, t0)− Vext,2(r, t0)]

= −iρ(r, t0)∇w0(r).

(5.10)

Thereby, we have used the definition of the paramagnetic current density operator ĵp(r, t) [101]
that yields the time-dependent current density j(r, t)

j(r, t) = 〈Ψ(t)|̂jp(r)|Ψ(t)〉

=
1

2i
〈Ψ(t)|

N∑
j=1

∇j δ(r− rj) + δ(r− rj)∇j |Ψ(t)〉

=
N

2i

∫
dr2 . . .

∫
drN

{
−∇Ψ∗(r, r2, . . . , rN , t)Ψ(r, r2, . . . , rN , t)

+ Ψ∗(r, r2, . . . , rN , t)∇Ψ(r, r2, . . . , rN , t)
}
.

(5.11)

If now the rhs of Eq.(5.10), i.e. the third line, differs already in the very first Taylor coefficient
withm = 0, then Vext,1(r, t0)−Vext,2(r, t0) cannot cancel due to the construction of both external
potentials by Eq.(5.6). Hence, for an infinitesimally later time t with t > t0, the two induced
current densities j1(r, t) and j2(r, t) due to the two external potentials Vext,1(r, t0) and Vext,1(r, t0)

are different. The same argument holds, if the smallest integer m in Eq.(5.8) is greater than
zero. In this case a repeated application of the time derivative of Eq.(5.10) yields eventually

i~
dm+1

dtm+1
{j1(r, t)− j2(r, t)}

∣∣∣
t=t0

= −iρ(r, t)∇wm(r)
∣∣∣
t=t0

. (5.12)

If the function wm(r) does not vanish identically, then the two external potentials differ at least
by one Taylor coefficient and thus the condition of deviating current densities for t > t0 is
fulfilled.
In a second step, it remains to show the difference of the corresponding current densities. For
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this purpose one exploits the continuity equation (5.9) by taking the time derivate on both sides
and obtains the following relation

∂m+2

∂tm+2

[
ρ1(r, t)− ρ2(r, t)

]
t=t0

= −∇ · ∂
m+1

∂tm+1

[
j1(r, t)− j2(r, t)

]
t=t0

= ∇ ·
[
ρ(r, t0)∇wm(r)

]
.

(5.13)

The proof were complete without the divergence on the rhs in Eq.(5.13). For the sake of evidence,
we follow again Ref.[102] and need to show that divergence does not render the rhs to zero in
the equation above. By means of the Green’s theorem the expression of interest is provided due
to the relation∫

dr ρ(r, t0)
[
∇wm(r)

]2
=

∫
dr wm(r)∇ ·

[
ρ(r, t0)∇wm(r)

]
+

∮
df ·

[
ρ(r, t0)wm(r)∇wm(r)

]
.

(5.14)
In the original proof [100, 102], the external potentials are assumed to be realizable by experi-
ments and thus are generated by real and normalizable external charge densities. Thus, they fall
off with 1/r and the surface integral on the rhs in Eq.(5.14) vanishes when r goes to infinity5. As
by construction, the function wm(r) is a spatially varying function and not a constant, the lhs of
Eq.(5.14) is strictly positive. Therefore, the first term on the rhs must be strictly positive as well
and demonstrate that the divergence does not causes the rhs of Eq.(5.13) to become zero. This
concludes the proof of the Runge-Gross theorem. For practical applications, one often deals with
extended systems such as periodic crystals instead of finite systems as assumed in Runge-Gross
theorem. However, the divergence term on the rhs of Eq.(5.13) can only vanish if the function
wm(r) has the following expression [104]

wm(r) = wm(r0)−
r∫

r0

ρ(r0, t0)

ρ(r′, t0)
Em ·dr′, (5.15)

where Em is a constant vector and r0 is some arbitrary fixed space point. Since the density ρ
is always a positive quantity, wm(r) increases continuously as one approaches large distances,
i.e. |r| → ∞. This implies, however, that at least one of the external potentials Vext,1(r, t0)

or Vext,2(r, t0) are infinite and disagrees with the condition of being Taylor expandable in the
time domain. In summary, the one-to-one correspondence between the external potential and
the time-dependent density implies a functional dependence of the external potential w.r.t. the
density and vice versa. Thus, the knowledge of the time-dependent density specifies the external
potential and eventually the complete Hamiltonian and also the many-body wave function Ψ(t).
The latter one is thus a functional of the density but also a functional of the initial many-
body wave function Ψ0(t) due to the construction of the Runge-Gross theorem. In turn, every
quantum mechanical observable is ultimately determined and is furthermore a unique function
of the density and Ψ0(t). Clearly, the initial state dependence is a limiting factor6 and apart

5The proof assumes only finite systems where also the potentials are assumed to decay to zero as r→∞.
6As the external potential is a functional of the initial state Ψ0, which generates the density ρ, the inversion of
the Hamiltonian with a given wave function Ψ0 may lead to unphysical potentials. This is associated to the
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from general cases [105, 106], this limitation is resolved if the initial many-particle wave function
is chosen as a non-degenerate ground state wave function Ψgs [102], as by virtue of the static
Hohenberg-Kohn theorem, Ψgs is itself a unique functional of the (unperturbed) ground state
density at time point t0.

5.2. Time-dependent Kohn-Sham equations

Having established the unique functional dependence between the time-dependent potential and
corresponding density, the Runge-Gross theorem gives no prescription on how to obtain the de-
sired time-dependent density. Therefore it would be advantageous to have a Kohn-Sham scheme
similar to the static DFT case that can be adopted to the time-dependent scenario. The validity
of it has been given by the van Leeuwen theorem[107]. It serves as the fundamental theorem
that proves the existence of an alternative many-particle system with a different interaction term
and a different but unique external potential that reproduces the same density as obtained from
the original many-particle system. It further requires the initial state Ψ′(t0) to yield the original
density ρ. In that manner, one can chose the interaction term V ′inter to be zero, thus generating
an auxiliary non-interacting many-particle state Φ(t0) yielding the interacting density ρ, such
as in the static Kohn-Sham scheme. By the Runge-Gross theorem, the resulting external poten-
tial is then a unique functional of ρ up to a time-dependent function. This correspondence is
also known as the non-interacting V -representability problem, because the Runge-Gross theorem
only ensures the uniqueness of the functional dependence of the potential, but not its existence.
If, however, such a potential exists, the van Leeuwen theorem then formally justifies the time-
dependent Kohn-Sham approach. Under this assumption the interacting density can be obtained
from

ρ(r, t) =

N∑
j=1

|ϕj(r, t)|2, (5.16)

where the Kohn-Sham orbitals ϕj(r, t) obey the time-dependent Kohn-Sham equation[101]

i~
∂

∂t
ϕj(r, t) =

[
− ~2

2me
∇2 + Vs[ρ](r, t)

]
ϕj(r, t), (5.17)

including the wanted external potential Vs[ρ](r, t). The latter one is denoted as the time-
dependent Kohn-Sham potential. Its explicit expression can, however, not be obtained by min-
imizing the total energy like in the static DFT, since the energy is not a conserved quantity in
the time-dependent case. Instead, the variation principle can be applied to the action functional
A[Ψ]

A[Ψ] =

∫ t1

t0

dt 〈Ψ(t)|i~ ∂
∂t
− Ĥ(t)|Ψ〉 . (5.18)

It takes a stationary point at the exact many-body wave-function Ψ(t), so that the variation
δA[Ψ̃(t)]

δ〈Ψ̃(t)|

∣∣∣
|Ψ̃(t)〉=|Ψ(t)〉

vanishes. As a result, the time-dependent Schrödinger equation (5.4) is then

obtained. By virtue of the Runge-Gross theorem, the interacting many-body wave function is

v-representability problem.
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mapped onto the interacting density. Thus the action integral [Eq.(5.18)] may be rewritten as a
corresponding density functional A[Ψ]→ A[ρ]

A[ρ] =

∫ t1

t0

dt 〈Ψ[ρ](t)|i~ ∂
∂t
− Ĥ(t)|Ψ[ρ](t)〉 . (5.19)

The true interacting density then makes the functional A[ρ] stationary and can be obtained by
solving the corresponding Euler equation

δA[ρ]

δρ(r, t)
= 0. (5.20)

In the spirit of the energy functional from the static DFT, the functional A[ρ] may be decomposed
into a universal functional B[ρ] and the contribution from the external potential in the following
way

A[ρ] = B[ρ]−
∫ t1

t0

dt

∫
dr ρ(r, t)Vext(r, t). (5.21)

Hereby, B[ρ] is defined as

B[ρ] =

∫ t1

t0

dt 〈Ψ[ρ](t)|i~ ∂
∂t
− T̂ − V̂int|Ψ[ρ](t)〉 . (5.22)

Similarly to the action functional A[ρ] of the interacting density, an equivalent functional As[ρ]

for the non-interacting density can be formulated, including a universal functional Bs[ρ] that
reads

Bs[ρ] =

∫ t1

t0

dt 〈Φ[ρ](t)|i~ ∂
∂t
− T̂ |Φ[ρ](t)〉 . (5.23)

As this functional must become stationary at the true interacting density, its variation w.r.t the
density needs to vanish as well. One thus obtains the condition

δAs[ρ]

δρ(r, t)
=

δBs[ρ]

δρ(r, t)
− Vext(r, t) = 0. (5.24)

By equation (5.24) the variation of the functional Bs[ρ] at the true interacting density yields
the wanted external potential of the non-interacting system, which can be identified as the
time-dependent Kohn-Sham potential Vs(r, t). In order to obtain an explicit expression of the
Kohn-Sham potential, the action integral may be decomposed into a suitable form by separating
the time-dependent Hartree term from the mutual Coulomb interaction Vint. As a result, the
action integral in Eq.(5.21) may be rewritten as

A[ρ](r, t) =Bs[ρ](r, t)−
∫ t1

t0

dt

∫
dr ρ(r, t)Vext(r, t)

− 1

2

∫
dt

∫
drdr′

ρ(r, t)ρ(r′, t)

|r− r′| −Axc[ρ],

(5.25)
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where the still unknown exchange-correlation part Axc has been introduced. It contains, similar
to the static DFT case, the difference of the non-interacting and interacting kinetic energy
respectively, as well as all exchange and correlation effects and is a functional of the time-
dependent density. The solution of the Euler equation (5.20) now allows formally to obtain the
final expression of the Kohn-Sham potential

Vs(r, t) = Vext(r, t) +

∫
dr′

ρ(r′, t)

|r− r′| +
δAxc[ρ]

δρ(r, t)
, (5.26)

including the time-dependent Hartree potential as the second term. The third term yields the
time-dependent exchange-correlation potential Vxc[ρ](r, t) that causes, however, difficulties. First
of all, one notices that the introduced action functional A[ρ] [Eq.(5.18)] is not a unique functional
of the time-dependent density, since the latter one determines the external potential only up to
time-dependent constant. This constant is reflected by an additional phase factor in the many-
particle wave function Ψ[ρ]. Although any expectation value 〈Ψ[ρ]| · |Ψ[ρ]〉 remains unaffected
due to the cancellation of the phase factor, the action integral is, however, affected. Therefore
one needs to impose further boundary conditions on the many-particle wave function[108]. The
more severe problem is encountered by the definition of the xc-potential. If one examines its
variation w.r.t. the density, it can be performed only at previous times, i.e. the variation of
the xc-potential can be affected only by densities at earlier times. This, however, results into a
causality paradox[109, 101] as can be seen by the following relation:

δVxc[ρ](r, t)

δρ(r, t)
=

δ2Axc[ρ]

δρ(r, t)δρ(r′, t′)
. (5.27)

While the left hand side of Eq.(5.27) is causal and thus nonzero only for t > t′, the right hand
side is symmetric with respect to the time and space arguments (r, t) and (r′, t′). Thus causality
contradicts the symmetry requirement and the xc-potential cannot (formally) be derived by the
density variation of the functional Axc, i.e. the last term in Eq.(5.26). This dilemma has been
noted soon [101, 110] and several advanced methods haven been derived to cure this problem.
Among those solutions is the approach by van Leeuwen, who formulates a different action integral
based on the Keldysh (pseudo-)time contour method[111]. Another formulation of a generalized
action has been suggested by Mukamel[112] introducing so-called Liouville space pathways. These
quantities have the desired time symmetry and may be derived from a generalized action integral.
Furthermore, they yield the causal response function as given by Eq.(5.27). More recently,
Vignale[113] gave reasons why theorems, although proved under the wrong assumption that Vxc

is derivable as a functional derivative, turned out to be true. From a more elementary point of
view, he showed that the original variation principle, i.e. δA[ρ] = 0, does not vanish but leads
to an additional boundary term due to V -representability of the action integral A[ρ].
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5.3. Adiabatic approximation

In order to set up a complete density functional description of the interacting many-particle sys-
tem, the discussion above shows that the time-dependent xc-potential needs to be approximated
as it is still the unknown quantity in the Kohn-Sham approach. For real applications, one must
note that the xc-potential has a functional dependence on the density of all times. This means
it ’remembers’ all densities from the past. This is a complicated task as one might need to store
ρ(t) at many time points and thus increases the computational effort. Therefore, the adiabatic
approximation comes into play. It approximates the functional Vxc[ρ](r, t) in a way by ignoring
the functional ’memory’ of the past densities and one thus evaluates the xc-potential only at the
instantaneous density:

V adiab
xc [ρ](r, t) = Vxc[ρ](r)|ρ=ρ(r′,t). (5.28)

Moreover, to make the adiabatic approximation exact, the xc-potential is taken from static DFT,
as this potential yields an exact expression if evaluated at the ground state density. If the external
time-dependent potential obeys the adiabatic theorem of quantum mechanics, the many-particle
system remains in its instantaneous eigenstate and the xc-potential can thus be evaluated at the
density at the very same time t [114, 115, 103, 116], i.e.

V adiab
xc [ρ](r, t) = V sDFT

xc [ρgs](r)|ρgs=ρ(r′,t). (5.29)

With respect to the time argument, the xc-potential becomes a local function. This in turn has
an immediate consequence for the xc-kernel fxc. It is obtained as the density variation of the
xc-potential as shown by Eq.(5.27) and reads in the adiabatic approximation

fadiab
xc [ρ](r, t; r′, t′) =

δV adiab
xc [ρ](r, t)

δρ(r′, t′)
δ(t− t′). (5.30)

Thus, in the frequency domain, the resulting xc-kernel fadiab
xc (ω) is then frequency-independent.

That quantity is of particular interest in terms of the linear response theory applied to TDDFT
and will be discussed in section 5.4.3. Although, the adiabatic approximation considers external
potentials that are formally excluded (as they vary adiabatically slow in time) by the Runge-
Gross theorem, it has become the working horse in current TDDFT applications as it is easy to
compute and has given reliable results if weakly time-dependent phenomena are considered.

5.4. Linear response applied to TDDFT - excitation energies

In the previous section we already have introduced the concept of the linear response theory
and have demonstrated how it applies to the many-body description within the Green’s function
formalism. In this section, the principles of the linear response theory shall be examined in terms
of the time-dependent density functional theory. Besides the success of the Green’s function for-
malism to calculate the density response function, TDDFT offers a much easier tool to calculate
the same quantity, if only the exchange-correlation kernel were known exactly. In this work we
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will also apply the TDDFT to calculate the density response function χ in the context of the
time evolution method, shown in the following chapter 8.

The Dyson equation for χ

In the realm of the linear response theory, the external potential Vext(r, t) can be decomposed,
such that it contains a time-dependent part δVext(r, t) that is switched on at a particular time
t0 and the initial static external potential Vext(r) of the unperturbed system:

Vext(r, t) =

Vext(r) if t < t0

Vext(r) + δVext(r, t) if t ≥ t0.
(5.31)

Due to the one-to-one correspondence between the interacting density ρ and the external potential
by the Runge-Gross theorem [100], the functional dependence ρ[Vext] allows a Taylor expansion
of the density ρ under the constraint of a sufficiently small time-dependent part δVext(r, t), i.e.
ρ(r, t) = ρ(r) + δρ(r, t) + . . . . Hence techniques of the functional derivative can be applied to
calculated the time-dependent density variation due to the time-dependent external potential.
This is just the density response function χ of the interacting many-body system, i.e.

χ(r1t1, r2t2) =
δρ[Vext](r1, t1)

δVext(r2, t2)

∣∣∣∣
Vext=Vext(r)

. (5.32)

The same arguments apply to the response of the non-interacting system. Here, the Kohn-
Sham potential acts as the ’external’ potential of the corresponding Kohn-Sham system [see also
Eq.(5.24)]. Since the Runge-Gross theorem also holds in the case of non-interacting particles, i.e.
we have the functional dependence ρ[Vs], one obtains the response function of the non-interacting
Kohn-Sham system as the following

χKS(r1t1, r2t2) =
δρ[Vs](r1, t1)

δVs(r2, t2)

∣∣∣∣
Vs=Vs[ρgs](r)

. (5.33)

Since the density and thus the density variation δρ are the same in the real physical system as
well in the Kohn-Sham system the corresponding response functions are ultimately connected.
This might be shown using the chain rule of functional derivatives and applying this to Eq.(5.32):

χ(r1t1, r2t2) =

∫
dr3 dt3

δρ(r1, t1)

δVs(r3, t3)

δVs(r3, t3)

δVext(r2, t2)

∣∣∣∣
ρgs

. (5.34)

The last term in Eq.(5.34) can be calculated explicitly, if the definition of the Kohn-Sham po-
tential Vs [Eq.(5.26)] is exploited. One obtains

δVs(r1, t1)

δVext(r2, t2)

∣∣∣∣
ρgs

= δ(r1 − r2)δ(t1 − t2)

+

∫
dr3 dt3

[
δ(t1 − t3)

|r1 − r3|
+

δ2Axc[ρ]

δρ(r1, t1)δρ(r3, t3)

∣∣∣∣
ρ=ρgs

]
δρ(r3, t3)

δVext(r2, t2)
,

(5.35)
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where the chain rule has been applied once more in the equation above. With the aid of Eq.(5.32)
and Eq.(5.33) the density response function χ is finally obtained by substituting the expression
of Eq.(5.35) into Eq.(5.34). As a result one ends up with a Dyson equation that reads

χ(r1t1, r2t2) = χKS(r1t1, r2t2) +

∫∫
dr3 dt3 dr4 dt4 χKS(r1t1, r3t3)

×
[
δ(t3 − t4)

|r3 − r4|
+

δ2Axc[ρ]

δρ(r3, t3)δρ(r4, t4)

∣∣∣∣
ρ=ρgs

]
χ(r4t4, r2t2).

(5.36)

The expression in the square bracket contains two terms, the Hartree kernel (first term) and the
exchange-correlation kernel fxc as the second term, i.e.

fxc[ρ](r1t1, r2t2) =
δ2Axc[ρ]

δρ(r1, t1)δρ(r2, t2)

∣∣∣∣
ρ=ρgs

=
δVxc[ρ](r1, t1)

δρ(r2, t2)

∣∣∣∣
ρ=ρgs

. (5.37)

While the Kohn-Sham response function χKS can be expressed explicitly as shown below, the
kernel fxc requires an approximate expression. The most widely used approximation is the
adiabatic approximation as already discussed in section 5.3. With respect to Eq.(5.30) the
choice of a suitable approximation of the static exchange-correlation potential then depends on
the many-particle system of interest.

Excitation energies

In order to calculate the excitation properties of a given many-particle system, we have shown in
the previous chapter that the poles of the frequency dependent density response function χ(ω)

yield the desired excitation energies. Concerning the external and time-dependent potential
within the TDDFT framework, only Taylor expandable potential with respect to the time argu-
ment are admissible. Among those potentials, there are such ones that are switched on suddenly.
This is mathematically realized by the introduction of a theta function like in Eq.(4.1). How-
ever, this kind of perturbation causes a subtle problem. As one aims to calculate the excitation
energies of the physical system of interest, one actually wants to measure the resonances of the
system. Following the arguments in Refs. [41, 42], a suddenly switched on perturbation due to
an external field will cause, however weak it is, a deformation of the wave function of the system.
Such a perturbation will effectively heat up the system by transferring energy to it. Hence, the
wave function is modified to an extent that does not allow to describe the time dependent wave
function in linear order with respect to the perturbation, since non-linear effects might occur.
Hence, the wave function suffers from a permanent deformation. In contrast to it, an adiabati-
cally switched on perturbation yields only a reversible deformation of the wave function, while
the boundary conditions of the wave function remains unchanged, i.e. the wave function turns
back to its ground state as the lower bound t0 of the time integral in Eq.(4.2) goes to minus
infinity if the perturbation is modified with an extra factor eηt. As we will see in the following, an
adiabatically switched perturbation yields the real retarded response function χret(ω) [102], the
same expression one would obtain by imposing a theta function to the external perturbation a
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priori. In view of the Runge-Gross theorem, adiabatically switched on time-dependent potentials
are excluded and the set of admissible potentials needs to be extended. A discussion on that
topic about V -representability within linear response and the resulting issues on that can be
found e.g. in Refs. [117] and [118]. We now focus on the exact expression of the density response
function χ(ω) that relates the density variation δρ to an external perturbation δVext. To within
linear order of the external potential we have the following relation

δρ(r1t1) =

∫∫
dr2 dt2 χ(r1t1, r2t2) δVext(r2t2) (5.38)

that results from the functional derivative given by Eq.(5.32). The density variation may be
obtained from the difference

δρ(r, t) = 〈Ψ(t)|ρ̂|Ψ(t)〉 − 〈Ψ(t0)|ρ̂|Ψ(t0)〉 , (5.39)

with the time-dependent wave function that obeys the time-dependent Schrödinger equation

i~
∂

∂t
|Ψ(t)〉 =

[
Ĥ + Ĥ ′(t)

]
|Ψ(t)〉 . (5.40)

Here, Ĥ is the Hamiltonian of the unperturbed system, while Ĥ ′(t) denotes the time-dependent
perturbation. Within the adiabatic treatment, the perturbation shall additionally couple to the
density of the many-particle system and thus takes the explicit form [42]

Ĥ ′(t) =
1

2π

∫∫
dr′ dω δVext(r

′, ω) e−iωteηt ρ̂(r′) + c.c.. (5.41)

The complex conjugated term in Eq.(5.41) ensures the potential to be a real function. Under
the condition of a small perturbation, which is usually enforced by an additional parameter λ,
the time evolution of the wave function |Ψ(t)〉 is governed by the corresponding time evolu-
tion operator Û(t, t0) that is introduced in Eq.(D.16). Working within the Schrödinger picture
and exploiting the principles of time-dependent perturbation theory [see e.g. Ref.[119]], the
wave function |Ψ(t)〉 is expressed in terms of the unperturbed and time-dependent eigenstates
|Ψ0

j (t)〉 = |Ψ0
j (t0)〉 e− i

~Ej(t−t0) that corresponds to the unperturbed Hamiltonian Ĥ. One even-
tually finds:

|Ψi(t)〉 =
∑
j

|Ψ0
j (t)〉〈Ψ0

j (t)| Û(t, t0) |Ψ0
i (t0)〉

= |Ψ0
i (t)〉+

λ

i~

t∫
−∞

dt′ |Ψ0
j (t)〉 〈Ψ0

j (t
′)|Ĥ ′(t′)|Ψ0

i (t
′)〉

= |Ψ0
i (t)〉+ λ

∑
j 6=i

cj(t) |Ψ0
j (t)〉 , (5.42)

with the unperturbed initial wave function denoted by |Ψ0
i (t0)〉. Furthermore, the lower bound of

the time integral has been taken as−∞ to comply with the adiabatically switched on perturbation
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Ĥ ′(t). The transition coefficient cj(t) in Eq.(5.42) become with the aid of Eq.(5.41)

cj(t) =
1

i~
1

2π

t∫
−∞

dt′
∫∫

dr′ dω δVext(r
′, ω) e−iωt

′
eηt
′
ei(ωj−ωi)(t

′−t0) 〈Ψ0
j (t0)|ρ̂(r′)|Ψ0

i (t0)〉

=
1

~
1

2π

∫∫
dr′ dω δVext(r

′, ω)
e−i[ω+iη−(ωj−ωi)]t

ω − (ωj − ωi) + iη
〈Ψ0

j (t0)|ρ̂(r′)|Ψ0
i (t0)〉 e−i(ωj−ωi)t0 (5.43)

+
[
ω → −ω

]
.

The last exponential term in Eq.(5.43) can be safely set to 1. This phase factor stems from the
phase oscillation of the unperturbed eigenstates of Ĥ. Due to the adiabatic boundary conditions
at t0 → −∞, these eigenstates are simply the static eigenstates and thus have no phase oscil-
lations. The resulting density variation δρ(r, t) due to Eq.(5.39) computes to first order in the
parameter λ as the following

δρ(r, t) = λ
[
〈Ψ0

i (t)|ρ̂(r)|Ψ0
j (t)〉 cj(t) + c∗j (t) 〈Ψ0

j (t)|ρ̂(r)|Ψ0
i (t)〉

]
. (5.44)

Taking into account the explicit expression for the coefficients cj(t) as well as the phase factors
of the matrix elements of Eq.(5.44) one finally obtains [42]

δρ(r, t) =
1

2π~

∫∫
dr′ dω δVext(r

′, ω)e−i(ω+iη)t ×

×
∑
j 6=i

[
〈Ψ0

i |ρ̂(r)|Ψ0
j 〉 〈Ψ0

j |ρ̂(r′)|Ψ0
i 〉

ω − (ωj − ωi) + iη
−
〈Ψ0

i |ρ̂(r′)|Ψ0
j 〉 〈Ψ0

j |ρ̂(r)|Ψ0
i 〉

ω + (ωj − ωi) + iη

] (5.45)

or equivalently in frequency space

δρ(r, ω) =

∫
dr′δVext(r

′, ω)
∑
j 6=i

[
〈Ψ0

i |ρ̂(r)|Ψ0
j 〉 〈Ψ0

j |ρ̂(r′)|Ψ0
i 〉

~ω − (Ej − Ei) + i~η
−
〈Ψ0

i |ρ̂(r′)|Ψ0
j 〉 〈Ψ0

j |ρ̂(r)|Ψ0
i 〉

~ω + (Ej − Ei) + i~η

]
.

(5.46)
From Eq.(5.46) one finally deduces the (retarded) density response function that is given by

χret(r, r′|ω) =
δρ(r, ω)

δV (r′, ω)

=
∑
j 6=i

[
〈Ψ0

i |ρ̂(r)|Ψ0
j 〉 〈Ψ0

j |ρ̂(r′)|Ψ0
i 〉

~ω − (Ej − Ei) + i~η
−
〈Ψ0

i |ρ̂(r′)|Ψ0
j 〉 〈Ψ0

j |ρ̂(r)|Ψ0
i 〉

~ω + (Ej − Ei) + i~η

]
(5.47)

Kohn-Sham response function

We will now shortly sketch how to calculate the Kohn-Sham response function χKS(r, ω). Since by
assumption the density variation of the interacting system, as well as, that of the non-interacting
system are identical, one may obtain the KS response function from Eq.(5.47). At a glance at
Eq.(5.47), the many-particle states |Ψ0

i 〉 and |Ψ0
j 〉 can be described as a single slater determinant,

respectively, if we are concerned with non-interacting particles like in the Kohn-Sham system. In



5.4. Linear response applied to TDDFT - excitation energies 85

general, an arbitrary determinantal state that refers to an antisymmetric fermionic wave function
|Ψa〉 has the following expression:

|Ψa〉 ≡ |Ψa(r1σ1, r2σ2, . . . , rNσN )〉 =
1√
N !

∣∣∣∣∣∣∣∣∣∣
ϕν1(r1, σ1) ϕν1(r2, σ2) . . . ϕν1(rN , σN )

ϕν2(r1, σ1) ϕν2(r2, σ2) . . . ϕν2(rN , σN )
...

... . . .
...

ϕνN (r1, σ1) ϕνN (r2, σ2) . . . ϕνN (rN , σN )

∣∣∣∣∣∣∣∣∣∣
,

(5.48)
where the one-particle orbitals ϕνi(r, σ) can be identified as the corresponding Kohn-Sham or-
bitals with the spatial argument r, the spin argument σ and the index νi that denotes a given
set of quantum numbers as previously described due to Eq.(3.53). The corresponding spin part
fνi(σ) allows to give the most general spin state of the orbital ϕνi(r, σ) as a linear combination

of the two possible spin states, i.e. fνi = c↑ fνi,↑+ c↓ fνi,↓ =

(
c↑

c↓

)
. Here we have used the spinor

notation [see. e.g. Ref. [120]], and c↑ and c↓ denote the probability to find an electron with spin
’up’ or ’down’, respectively. Therefore, the orbital ϕνi(r, σ) has two components and the index
number N in Eq.(5.48) may be reduced to M = N/2. With the aid of the explicit determinantal
expression, we note that the excited states |Ψ0

j 〉 differ from the ground state |Ψ0
i 〉 by one index

νi, corresponding to the promotion of one electron into the unoccupied manifold. While in the
ground state the N orbitals are distributed over the indices νi with i ≤ M , it is one orbital
that takes an index νj with j > M in the excited state |Ψ0

j 〉. Furthermore, the spin-orbitals are
orthogonal so that the matrix elements in Eq.(5.47) then read

〈Ψ0
j |ρ̂(r)|Ψ0

i 〉 = 〈ϕν1(r1) . . . ϕνj (rl) . . . ϕνM (rM )|
∑
l

δ(r− rl)|ϕν1(r1) . . . ϕνi(rl) . . . ϕνM (rM )〉

= ϕ∗νj (r)ϕνi(r) with j > M. (5.49)

In order to shorten the notation, we use in the following the index i for an occupied state and the
index a for an unoccupied state, respectively. From Eq.(5.47), the Kohn-Sham response function
results and reads

χKS(r, r′, ω) =
∑
i∈occ
a∈unocc

ϕ∗i (r)ϕa(r)ϕ∗a(r
′)ϕi(r

′)

~ω − (εa − εi) + i~η
− ϕ∗i (r

′)ϕa(r
′)ϕ∗a(r)ϕi(r)

~ω + (εa − εi) + i~η
. (5.50)

In the equation above, the eigenvalue εi correspond to the static eigenfunction ϕi(r) of the un-
perturbed Hamiltonian Ĥ, i.e. the static Kohn-Sham Hamiltonian. Their difference results from
the energy difference of the excited state with energy Ej and the ground state energy Ei in
the denominator of Eq.(5.47) due to the underlying non-interacting Kohn-Sham particles. By
inspection of Eqs.(5.50) and (5.47) the excitation energies of the non-interacting and interact-
ing system are the poles of the corresponding density response function. Both expressions are
very similar to their time-ordered counterparts and differ only by the complex term +iη in the
denominator. In the retarded expressions, the excitation energies are of course real quantities
as well and one needs to take the limes η → 0+ in Eq.(5.50) and Eq.(5.47) that is missing in
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both equations a priori. However, this limes can be performed and is related to fact that the
energy transfer due to the perturbation takes place until the time t = 1

η . This time rate becomes
infinitely long as η goes to zero. Hence, in the ideal adiabatic process, no energy is transferred
to the system if η → 0+ [42]7.

5.4.1. Calculation of the excitation energies from χret

In order to calculate explicitly the excitation energies, i.e. the poles of the density response
function χret, one makes use of the fact that the density response δρ(r, ω) has poles at the true
excitation energies, now denoted as Ω. This can be readily seen from the definition of the density
response function [Eq.(5.39)] that reads in frequency space

δρ(r1, ω) =

∫
dr2 χ(r1, r2|ω)δVext(r2, ω). (5.51)

On the other hand, the same density variation is linked to the density response function of the
non-interacting Kohn-Sham system through the variation of the Kohn-Sham potential

δρ(r1, ω) =

∫
dr2 χKS(r1, r2|ω) δVs(r2, ω). (5.52)

The variation δVs(r2, ω) is readily derived when looking at Eq.(5.26) and Fourier transforming
to frequency space. On thus obtains

δVs(r1, ω) = Vext(r, ω) +

∫
dr2

[
1

|r1 − r2|
+ fxc(r1, r2|ω)

]
δρ(r2, ω). (5.53)

One notes that the combination of Eq.(5.52) and Eq.(5.53) yields a self-consistent equation for the
density variation δρ. After some straightforward algebraic manipulations one finds the following
relation∫

dr3

{
δ(r2 − r3)−

∫
dr2 χKS(r1, r2|ω)

[
1

|r2 − r3|
+ fxc(r2, r3|ω)

]}
δρ(r3, ω)

=

∫
dr2 χKS(r1, r2|ω)Vext(r2, ω).

(5.54)

More importantly, the integral operator in curly brackets on the left hand side has to cancel out
the poles of δρ(r, ω), i.e. when ω → Ω, to make the right hand side of Eq.(5.54) finite. The latter
one becomes infinite only at the Kohn-Sham excitation energies, but not at the exact energies
Ω. Hence the necessary condition for this integral operator is to have zero eigenvalues if ω = Ω.
In other words, one needs to solve the corresponding eigenvalue problem∫∫

dr2 dr3 χKS(r1, r2|ω)

[
1

|r2 − r3|
+ fxc(r2, r3|ω)

]
ζ(r3, ω) = λ(ω)ζ(r1, ω) (5.55)

7We may note that the external potential contributes to the energy transfer at first glance. That is why the
introduced parameter λ is chosen to keep this energy contribution due to the external potential as small as
possible [42]. In the ideal adiabatic case the perturbation is supposed to go to zero.
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obeying the condition λ(Ω) = 1. The solution of the eigenvalue problem can be performed
either by choosing a real space basis such as it is given by Eq.(5.55) or one chooses a basis
within a transition space with basis elements defined as the product of occupied and unoccupied
orbitals. The latter choice becomes clear if the eigenvalue problem of Eq.(5.55) is modified as
discussed e.g. in the Refs.[101, 121]. If one considers the definition of the orbital transition pair
Φml(r) := ϕ∗m(r)ϕl(r), the explicit expression of the Kohn-Shame response function [Eq.(5.50)]
may be rewritten as the following:

χKS(r1, r2|ω) = (fl − fm)
∑
m,l

Φ∗ml(r1)Φml(r2)

~ω − (εm − εl) + i~η
. (5.56)

The indices m, l now denote occupied and unoccupied orbital states respectively, and fn is the
Fermi occupation number. Hence, the eigenvalue problem from Eq.(5.55) reduces to

∑
m,l

(fl − fm) Φ∗(ml)(r1)

~ω − (εm − εl) + i~η
γml(ω) = λ(ω)ζ(r1|ω), (5.57)

including the definition

γml(ω) =

∫∫
dr2 dr3 Φml(r2)

[
1

|r2 − r3|
+ fxc(r2, r3|ω)

]
ζ(r3|ω). (5.58)

The solution for the eigenvector ζ(r1, ω) from Eq.(5.57) may be substituted into Eq.(5.58) to
obtain a self-consistent expression for the coefficient γml(ω)

γml(ω) =

∫∫
dr2 dr3 Φml(r2)

[
1

|r2 − r3|
+ fxc(r2, r3|ω)

]
×

×
∑
m′,l′

(fl′ − fm′) Φ∗m′l′(r3)

~ω − (εm′ − εl′) + i~η
γm′l′(ω)λ−1(ω)

(5.59)

from which the transformed eigenvalue problem of Eq.(5.55) into the transition space is gained:

∑
m′,l′

[
(εm − εl)δm,m′δl,l′ + (fl′ − fm′)

∫∫
dr2 dr3 Φml(r2)fHxc(r2, r3|Ω)Φ∗m′l′(r3)

]
βm′l′

= ~Ω βml
8

(5.60)

This particular form as given by the equation above, though, can be further simplified since
the index pair ml can be chosen either to describe the transition between the occupied and
unoccupied manifold, i.e. by the transition pair ai and the opposite direction as given by the
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index ia, only. Thus, Eq.(5.60) yields two coupled equations∑
j∈occ
b∈unocc

{
[(εi − εa)δa,b δi,j −Kia,jb(Ω)]βjb +Kia,bj(Ω)βbj

}
= ~Ωβia (5.61)

∑
j∈occ
b∈unocc

{
−Kai,jb(Ω)βjb + [(εa − εi)δa,b δi,j +Kai,bj(Ω)]βbj

}
= ~Ωβai. (5.62)

To make this set of equations more symmetric, we let X(ia) = βia and Yai = −βai and obtain

∑
j∈occ
b∈unocc

{
[−(εa − εi)δa,b δi,j −Kia,jb(Ω)]Xjb −Kia,bj(Ω)Ybj

}
= ~ΩXia (5.63)

∑
j∈occ
b∈unocc

{
−Kai,jbXjb + [−(εa − εi)δa,b δi,j −Kai,bj(Ω)]Ybj

}
= −~ΩYai, (5.64)

and further the compact notation [103](
A(Ω) B(Ω)

B∗(Ω) A∗(Ω)

)(
X

Y

)
= ~Ω

(
1 0

0 −1

)(
X

Y

)
. (5.65)

where

Kia,jb(Ω) =

∫∫
dr1 dr2 ϕ

∗
i (r1) ϕa(r1) fHxc(r1, r2|Ω) ϕj(r2) ϕ∗b(r2) (5.66)

Aia,jb(Ω) = −δa,b δi,j(εa − εi)−Kia,jb(Ω) (5.67)

Bia,jb(Ω) = −Kia,bj(Ω) (5.68)

By Eq.(5.65) we have found the central equation from which in principle excitation energies
within the linear response regime are computable. One many note, however, that the given
expression for the kernel K itself depends on the solution of the eigenvalue problem due to
its Ω-dependence. Thus, some kind of iterative method needs to be applied. For practical
applications, the exchange-correlation kernel fxc is chosen within the adiabatic approximation
and thus looses any frequency dependence and so does K. Moreover, if the Kohn-Sham orbitals
ϕm(r) are additionally real valued, the resulting matrices A,B become real as well turning the
entire matrix on the left hand side of Eq.(5.65) to an Hermitian matrix.

5.4.2. Casida approach and the macroscopic polarizability

The very first derivation to calculate the excitation energies Ω was given by Casida[122, 123]
in his seminal work. We want to demonstrate shortly his idea, as the solution of the resulting
Casida equation is the state of the art method when it comes to solving excitation properties
within the TDDFT. Casdia’s ansatz is based on the expression of the density variation in terms
of the unperturbed Kohn-Sham orbitals that result in the so-called Kohn-Sham density matrix



5.4. Linear response applied to TDDFT - excitation energies 89

δρml(ω). This density matrix is readily obtained from Eq.(5.52) as it gives the relation

δρ(r1, ω) =

∑
m,l

(fl − fm)

~ω − (εm − εl) + i~η

∫
dr2 ϕ

∗
m(r2)ϕl(r2)δVs(r2, ω)

ϕm(r1)ϕ∗l (r1)

=
∑
m,l

δρml(ω)ϕm(r1)ϕ∗l (r1). (5.69)

The expansion of the density as given by Eq.(5.69) may be used to express the variation of the
Kohn-Sham potential δVs [Eq.(5.35)] in terms of the Kohn-Sham density matrix. As a result
one obtains the same working equation [see Eq.(J.4)] that is identical to Eq.(5.60) except for the
additional term due to the external potential. As Casida assumes the Kohn-Sham orbitals as
real quantities, the density response [Eq.(5.69)] recasts into the following matrix equation[(

A(ω) B(ω)

B(ω) A(ω)

)
− ~ω

(
1 0

0 −1

)](
δρ(ω)

δρ∗(ω)

)
=

(
Vext(ω)

V∗ext(ω),

)
, (5.70)

as shown in the appendix J. One notes that the matrix (in square brackets) on the left hand side
is nothing else than the inverse of the density response function, i.e. χ−1(r, r′;ω), expressed in
the basis of the product of Kohn-Sham orbitals Φml(r). Since χ(r, r′;ω) has poles at the exact
excitation frequencies Ω, the aforementioned matrix is not invertible at these frequencies. We
thus have to solve the same eigenvalue problem as it is given by Eq.(5.65) to determine Ω. To
underpin this argument, inspection of Eq.(5.70) reveals an inhomogeneous set of equation. It has
a complete solution that consists of the solution to the homogeneous equation plus a particular
solution to the inhomogeneous equation. In particular, Eq.(5.70) resembles the equation of
motion of a system of forced oscillators known from classical mechanics [see e.g. [124]]. The
solution of the unforced system, when Vext = 0 describes the free oscillation of the system or its
eigenmodes with eigenfrequencies Ω that are of interest. Hence, in the context of linear response
theory the external potential is usually treated as a small perturbation that triggers the system
at its eigenfrequencies (the resonance frequencies of the system). As it is further supposed to
be switched on adiabatically, the system then oscillates in phase with the external potential
Vext(ω), which allows to describe the resonances of the system unambiguously. In the work of
Casida [122, 123], the eigenvalue problem from Eq.(5.65) is also solved but re-expressed into a
squared eigenvalue problem. Instead of solving the homogenous set of equation due to Eq.(5.70),
the Casida approach solves for the real part of the density variation < [δρ(ω)] from Eq.(5.70)
and makes use of the explicit expression for the macroscopic polarizability α(ω) that relates the
induced dipol moment to the external field strength. From classical electrodynamics one knows
that a weak applied external field acting on a medium causes a displacement of the internal
charges. Assuming the medium to be charge-neutral from the outside, its total charge expanded
into a multipol expansion, starts with the dipol moment term denoted as µ.9 Hence, the charge
displacement leads to a induced dipol moment δµ. Due to the weakness of the external field,

9The contribution to the total charge Q due to the dipol moment is then given by Qdipol ≡ µ =
∫

dr′ρ(r′)r′.
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the polarization10 may be expanded into a series expansion in powers of the electric field [see
e.g.[125]] and we may write

δµγ(t) ≡ µγ(t)− µγ =

∫
dt′αγ β(t− t′)Eβ(t′), (5.71)

where the indices γ and β denote the cartesian components of the corresponding vector in
Eq.(5.71) and the polarizability αγ β is a second rank tensor with γ, β = x, y, z. After a Fourier
transformation of Eq.(5.71) to frequency space, the components of the macroscopic polarizability
tensor are easily related to the applied external field components:

αγ β(ω) =
δµγ(ω)

Eβ(ω)
. (5.72)

On the other hand, the induced dipol moment is given by

δµγ(ω) =
∑
m,l

δρml(ω)γlm, (5.73)

where the matrix elements are expressed in terms of the unperturbed Kohn-Sham orbitals. For
the cartesian coordinate γ we thus have γlm =

∫
dr′ϕl(r

′)ϕ∗m(r′) γ and the corresponding ex-
pression for the density variation δρml(ω) is already given by Eq.(5.69). To proceed with the
macroscopic polarization one notes first that due to the Eqs.(5.72) and (5.73) the corresponding
matrix elements αγ β(ω) are given by

αγ β(ω) =
∑
m,l

< [δρml(ω)] γlm
Eβ(ω)

. (5.74)

Hereby, we take into account only the real part of the density variation, as the density itself is
real valued. What remains is to solve for the real part of the density variation from Eq.(5.70). As
shown in previous publications[122, 103], this is obtained by a suitable unitary transformation
that finally yields

< [δρml(ω)] = [A(ω)−B(ω)]
1
2
[
C(ω)− ω2

]−1
[A(ω)−B(ω)]

1
2 < [Vext(ω)] . (5.75)

The matrix C(ω) is thereby defined as

C(ω) = [A(ω)−B(ω)]
1
2 [A(ω) + B(ω)] [A(ω)−B(ω)]

1
2 (5.76)

and obeys the squared generalized eigenvalue problem

C(ω)Z = Ω2Z with Z = [A(ω)−B(ω)]
1
2 [X−Y] . (5.77)

The vectors X and Y can be identified with δρ(ω) and δρ∗(ω), respectively and form a super-
vector that eventually solves the homogenous eigenvalue problem of Eq.(5.70). We will show

10The polarization is usually called as the dipol density and is related to the dipol moment by P(r) = µδ(r).
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in chapter 7 how to generate the quadratic eigenvalue problem due to Eq.(5.77) in more de-
tail. Finally, the combination of Eq.(5.74) and Eq.(5.75) allows to solve for the macroscopic
polarizability, if we assume furthermore a spatially homogeneous11 electric field E as an external
perturbation. Thus, the external potential may be written as Vext = γ̂Eγ

12, while the tensor
components of the macroscopic polarizability become

αγ β(ω) = 2γ† [A(ω)−B(ω)]
1
2
[
C(ω)− ω2

]−1
[A(ω)−B(ω)]

1
2 β13. (5.78)

What remains is to solve the inverse matrix
[
C(ω)− ω2

]−1, that can be done in the same
manner as we have demonstrated for the excitonic operator in section 4.1.7. The underlying
Green’s function operator G is now defined by the relation

[
C(ω)− ω2

]
G = 1. Hence, by use of

the resolvent for C we find[103, 122]

[
C(ω)− ω2

]−1
=
∑
n

ZnZ
†
nRn

Ω2
n − ω2

. (5.79)

The frequency dependence of the matrix C(ω) turns the squared eigenvalue problem into an
anti-Hermitian problem and similar for the generalized homogeneous eigenvalue problem due to
Eq.(5.70)[103]. This is usually cured, by choosing a static exchange-correlation kernel fxc(ω = 0),
which results from the adiabatic approximation. In this particular case, the eigenvalue problem
in Eq.(5.77) becomes Hermitian and may be solved explicitly yielding pure real eigenvalues Ω2.
Furthermore, the normalization factor Rn in Eq.(5.79) then becomes 1. In particular, from the
macroscopic polarizability tensor one can conclude to the macroscopic dielectric tensor εγβ,M
through the relation[126]

εγβ,M(ω) = 1− 4παγβ(ω). (5.80)

In particular, the longitudinal component of the dielectric tensor εγβ,M(ω), given by Eq.(4.95),
is the algebraic equivalent to Eq.(4.63).

5.4.3. Approximations of the xc-kernel fxc

Local density approximation and related issues

The general problem with the exchange-correlation kernel is that it cannot be derived as the
second functional derivative due to the contradiction of causal and symmetry requirements as
discussed in section 5.2. Since the fxc[ρ] kernel itself is given by a functional derivative one
concludes that the time-dependent Vxc[ρ](r, t) cannot be given as a functional derivative [109].
This issue can be circumvented by imposing the adiabatic approximation to fxc[ρ](rt, r′t′) a priori,
thus approximating the time-dependent xc-potential with a static ground state xc-potential.
The latter one then is given explicitly as a functional derivate with respect to the density as

11An homogeneous field captures the long wave length limit, i.e. the q = 0 component of the corresponding
Fourier coefficient E(q).

12The vector γ̂ denotes the unit vector along a cartesian direction.
13Different to the unit vector γ̂ the vectors γ and β are expressed within the basis of the product of unperturbed

Kohn-Sham orbitals, i.e. Φml(r) with matrix elements as denoted in the text.
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known from static density functional theory. On the other hand the xc-kernel is additionally
non-local with respect to the spatial arguments and has a functional dependence on the entire
density ρ(r). As a straightforward approximation it suggests itself to approximate fxc[ρ] by
the homogeneous counterpart fhom,adiab

xc (ρ) that is explicitly known for a homogeneous density
ρ(r) = const. Applied to the actual inhomogeneous density the corresponding xc-kernel depends
then only upon the spatial distance, i.e. fhom,adiab

xc (ρ(r); |r − r′|), thus we have a local density
approximation upon the density dependence[109]. However, in this context it is not obvious at
which spatial point the density needs to be evaluated along the range of fhom

xc (ρ(r); |r − r′|).
Assuming that not only the density ρ(r) but also its variation varies slowly of over the distance
|r− r′| one might impose a kind of double local density approximation [127] on the xc-kernel. As
a result the adiabatic local density approximation[127] is obtained

fALDA
xc [ρ](rt, r′t′) = δ(t− t′)δ(r− r′)

d2ehom
xc (ρ)

dρ

∣∣∣∣
ρ=ρgs(r)

(5.81)

where ehom
xc is the exchange-correlation energy per particle of the homogeneous electron gas.

Moreover, the Fourier analysis of fhom
xc (ρ(r); |r− r′|) with respect to |r− r′| reveals that within

the adiabatic local density approximation the xc-kernel is also independent of the wave vector
since

fALDA
xc (q) = lim

q→0
fhom,adiab

xc (q).14 (5.82)

Therefore, as the xc-kernel within ALDA is q-independent, it cannot have a divergence that
goes with 1/q2 for vanishing wave vector when q → 0. This particular divergence is important to
capture excitonic effects in extended systems with respect to the calculation of optical absorption
spectra of extended systems[128]. The physical concept behind this missing divergence is that
within the local density approximation the correct long range behaviour of fxc(r, r

′), if evaluated
at the actual inhomogeneous density, is not captured. If one wishes to include this long range
behaviour, the xc-kernel needs to be in general frequency dependent and thus requires a non-
adiabatic formulation, i.e. fxc(ω). This is a consequence of the zero-force theorem for the
xc-kernel [103] that implies a strong non-local character for fxc(r, r

′;ω). In that context one is
faced with the ultra-nonlocality problem, i.e. the non-local xc-kernel is additionally dependent
on the time difference t− t′. An explicit expression for a dynamic and long ranged xc-kernel has
been given e.g. by Nazarov [129] for weakly inhomogeneous densities and has the desired 1/q2

dependence in the limit q→ 0.

14For the homogeneous electron gas, the q-dependence reduces to the absolute length of the wave vector q = |q|,
since there is no dependence on the direction of q in the uniform electron gas.



6. The computational approach

The main purpose of this work concerns the calculation of the optical spectra of bulk systems and
molecules. As we have seen in the previous sections, one major contribution to the calculation
of the density response function are the energies of independent (quasi)particles.1 In the case of
optical transition energies, we exclusively deal with transitions from the valence band into the
unoccupied manifold. The reason is due to the small excitation energies compared to the strongly
bound core states whose inclusion to the optical spectrum can be safely neglected. Hence, an
accurate description of the involved valence states or the corresponding orbital wave functions is
required.

6.1. Pseudopotentials

Their numerical description, however, proves to be difficult. In a crystal with periodic boundary
conditions, the Bloch states already imply a representation in terms of plane waves. Such a basis
set has the advantage to be a complete set and thus allows for an exact representation. On the
other hand, the all-electron valence orbitals show distinct oscillations close to the nucleus where
the core electrons are localized. These oscillations are owing to the necessary orthogonalization
of the valence states with respect to the core states[130]. This can be reasoned since the tightly
bound core electrons repel the valence electrons much stronger in the atomic core neighborhood
and thus give rise to a kinetic energy contribution. In a plane wave representation this requires a
high number of Fourier components and renders the numerical description difficult. Therefore it
would be desirable to circumvent this rapid oscillations near the nucleus and construct a valence
state that behaves smoothly within the atomic region. A first approach in this direction was
the method of orthogonalized plane waves[131] where a single plane wave was orthogonalized
to all atomic core orbitals. The resulting (pseudo) valence state indeed has a less pronounced
oscillation close to the nucleus at the cost of non-orthonormality. The resulting Hamiltonian
transform into a pseudo-Hamiltonian that also contains a corresponding pseudopotential. The
latter one, however, still depends on the atomic core states and thus cannot generate an atomic
potential that could be expanded by a moderate number of plane waves. In order to get rid of
the core states at all, ionic pseudopotential have been ’invented’ with the task to replace the
potential of the nucleus and the core electrons, and hence reduce the many-particle problem to
a problem of only interacting valence electrons. The construction of a suitable pseudopotential
interlaces the demand of transferability and smoothness. While the first point concerns the
universal application of the pseudo potential within different atomic environments, the second

1Within the framework of TDDFT, we are interested in the Kohn-Sham energies of the reference system of inde-
pendent particles, while the solution of the BSE for the density correlation function requires the independent
quasiparticle energies.
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point refers to its spatial extend. The more localized it is the more Fourier coefficient are required
in a plane wave description but localization improves the transferability. Usually, a cut-off radius
rc is introduced to set a boundary at which the real and the pseudo potential coincide and the
cut-off radius might be regarded as a variable that controls the ’hardness’ of the PP. Moreover,
the cut-off radius separates the entire atomic environment into two parts. The first part is an
interstitial region where the PP equals the real atomic potential (nucleus and core electrons)
while in the second part close to the nucleus the potentials differ. For the generation of the PP,
the corresponding free atom is taken as a reference system for which all-electron orbitals and
energies are obtained (e.g. within DFT) from the solution of the radial Schrödinger equation{

− ~2

2me

[
d2

dr2
− l(l + 1)

2r2

]
+ Veff(r)− εn,l

}
φn,l(r) = 0. (6.1)

Hereby, the effective potential comprises (in the case of a DFT approach) the external potential,
as well as the Hartree potential and the exchange-correlation potential. The index n, l denote the
main quantum number and the angular quantum number, respectively. The general approach
to generate the pseudopotential consists of either a basis set expansion [132, 133] or parametric
ansatz [134, 135] with the main objective to match the real potential outside the cut-off radius
and giving a smooth continuation inside the core region. On the other hand, a numerical approx-
imation of the pseudo wave function seems to be more appropriate, since it is connected with
certain boundary conditions at the cut-off radius. Then from a given pseudo wave function φ̃n,l,
the corresponding effective PP is obtained by inversion of the radial Schrödinger equation (6.1).
In this procedure, the orbital pseudo energy ε̃ is usually set to the eigenenergy of the bound
states φn,l of the all-electron calculation. As a result, the atomic pseudopotential is gained by
subtracting the Hartree and the exchange-correlation part from the effective PP (’unscreening’).
As the pseudo orbitals obey a corresponding Schrödinger equation of the form

ˆ̃H |φ̃i〉 = ε̃i |φ̃i〉 (6.2)

they satisfy the orthonormality condition

〈φ̃i|φ̃j〉 = δij . (6.3)

Pseudopotentials that reproduce orthonormal valence orbitals are called norm-conserving and
satisfy several conditions. Among them is that the integrated charge Ql evaluated on a radial
grid is the same for the radial pseudo orbital φ̃l(r) and for the corresponding all-electron orbital
φl(r), i.e.

Ql =

∫ rc

0
dr φl(r) =

∫ rc

0
dr φ̃l(r). (6.4)

This condition, however, might hamper to construct PP that are required to be as smooth as
possible. The method of ultrasoft pseudopotentials[136] hence gives up this constraint, but needs
to introduce the correct norm by introducing augmentation or depletion charges. The price to be
paid is the non-orthonormality of the corresponding pseudo orbital φ̃US that obeys a generalized
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eigenvalue problem
ˆ̃HUS |φ̃US

i 〉 = ε̃i S̃ |φ̃US
i 〉 (6.5)

where S̃ is the overlap operator. As the only condition for the valence orbital φ̃US
i (r) is to match

the all-electron orbital at the boundary rc its construction becomes more flexible.Due to the
construction idea of the pseudopotentials, information about the core electrons gets lost that
introduces errors e.g. for total energies in the order of about 10−2eV. More importantly, is the
fact that by the PP method the corresponding full all-electron wave function (for valence and
core states) is not provided. Hence there is no access to the true physical quantities such as
all-electron charge densities and other core related properties.

6.2. The projected augmented wave method

The electronic structure calculations that have been performed in this work are based on the
Vienna Ab-initio package (VASP). It makes use of the PAW method that comprises the essen-
tial ideas of the ultrasoft pseudopotential method[136] and of the linearized augmented wave
method[137]. It became popular as it gives access to the all-electron wave function by a linear
transformation and formally includes the core states within the frozen core approximation. I
follow closely the Refs.[138, 139, 140]. The key point within the PAW method is to find a proper
linear transformation between the full all-electron wave function Ψ and the corresponding pseudo
wave function Ψ̃ tied with the linear operator T

|Ψ〉 = T |Ψ̃〉 . (6.6)

While both wave functions Ψ and Ψ̃ shall coincide outside the core region, defined by a cut-off
radius, the operator T needs to recast the nodal structure of the all-electron wave function close
to the nucleus from the pseudo wave function. In order to regain the oscillating character of the
AE wave function, the contribution of the smooth function due to the PP approach has to be
replaced by an atomic-like wave function obtained from the radial Schrödinger equation (6.1).
Hence, a reasonable form of the transformation reads as a sum of the identity plus a local term
specific for each atomic site R:

T = 1 +
∑
R

TR. (6.7)

The effect of the transformation operator becomes more obvious if the pseudo wave function is
expressed as a linear combination in terms of the complete basis set of the pseudo partial waves
φ̃ inside the core region ΩR

|Ψ̃〉 =
∑
j

cj |φ̃j〉 within ΩR (6.8)

and similar for the AE wave function

|Ψ〉 =
∑
j

cj |φj〉 within ΩR. (6.9)
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Due to Eq.(6.6) the action of the local part TR is thus given by

TR |Ψ̃〉 =
∑
j

(
|φj〉 − |φ̃j〉

)
cj within ΩR, (6.10)

where the index j collates the set of quantum numbers {m, l} at a specific site R. The yet
unknown expansion coefficients cj are defined through the projector functions p̃j

cj = 〈p̃j |Ψ̃〉 (6.11)

that act only locally in the core region. If one substitutes Eq.(6.11) into Eq.(6.8) the pseudo
partial wave function and the projector function have to fulfill the closure relation

∑
j |φ̃j〉〈p̃j | =

1. Moreover, both set of functions constitute a bi-orthogonal system with the orthogonality
relation

〈p̃i|φ̃j〉 = δij . (6.12)

As a result the full transformation operator T becomes

T = 1 +
∑
j′

(
|φj′〉 − |φ̃j′〉

)
〈p̃j′ | , (6.13)

whereas the index j′ now includes also the summation over all atomic sites. Outside the core
region the operator is simply the unity operator, which means that AE and pseudo wave functions
are the same. This region is usually denoted as the interstitial region. As the AE wave function
approaches the nucleus it starts oscillating, which is accounted for by the summation over the
partial AE waves. However, the correct behaviour of the AE wave function is only obtained
if the contribution of the smoothly varying pseudo partial waves are subtracted. Hereby, the
projector p̃j probes the local character of the pseudo wave function Ψ̃ inside the core region and
thus determines the fraction of φ̃j that needs to subtracted through the coefficient cj [Eq.(6.12)].
Additionally, within the PAWmethod the AE partial waves, obtained from the radial Schrödinger
equation (6.1) are restricted to the valence orbitals and are hence consistently orthogonal to the
core states of the atom. The latter one are treated independently to the valence orbitals. They
usually do not overlap with adjacent atomic core states, e.g. in a solid. Therefore, core states
from an isolated atom are kept frozen when they are imported into the solid framework (frozen
core approximation). The split up of the AE wave function is again shown schematically in
Fig. 6.1 and illustrates the augmentation procedure. Within the interstitial region, the AE wave

Figure 6.1.: Graphical representation of the all-electron wave function Ψ from Eq.(6.14). The
circles associates the one-center regions.
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function is expressed by a moderate number of plane waves. The core or augmentation region is
enriched by the difference term

(
|φj〉 − |φ̃j〉

)
cj and the set of basis functions of plane waves to

express the AE wave function, is extended by the function h(r) ≡ ∑j

(
φj(r)− φ̃j(r)

)
cj . Due

to the transformation operator T , the AE wave function can be decomposed into three different
parts:

|Ψ〉 = |Ψ̃〉+
∑
j′

|φj′〉 〈p̃j′ |Ψ̃〉︸ ︷︷ ︸∑
R|Ψ1

R〉

−
∑
j′

|φ̃j′〉 〈p̃j′ |Ψ̃〉︸ ︷︷ ︸∑
R|Ψ̃1

R〉

. (6.14)

The first term describes the smooth part in the interstitial region and is numerically calculated
on a regular real space grid. The second term |Ψ1

R〉 denotes the one-center expansion of the true
AE wave function within the core region ΩR, while the third term |Ψ̃1

R〉 is the corresponding one-
center expansion of the smooth pseudo wave function within ΩR. As the partial waves φj vary
rapidly close to the nucleus, the one-center expansions are calculated on a radial grid. Moreover,
in practical applications the one-center expansion due to Eq.(6.9) is not strictly fulfilled and the
expansion is truncated. In that case the missing expansion terms are substituted by plane waves
and lead to a rapid convergence of the one-center expansion [140].

Expectation values and overlap operator

Similar to the separation of the AE wave function due to Eq.(6.14) one finds a similar form for
the real space density or any other local operators. The density plays, however, an essential role,
as it is required for the calculation of the total energy. It is calculated from the expectation value
of the real space density operator |r〉 〈r| and hence given by

ρ(r) = 〈Ψ|r〉 〈r|Ψ〉 (6.15)

and further with the aid of Eq.(6.14) one obtains

ρ(r) =
〈

Ψ̃ +
∑
R

(
Ψ1
R − Ψ̃1

R

) ∣∣∣r〉〈r∣∣∣ Ψ̃ +
∑
R′

(
Ψ1
R′ − Ψ̃1

R′

)〉
. (6.16)

The resulting contributions may be grouped into one non-vanishing term

〈Ψ̃|r〉〈r|Ψ̃〉+
∑
R

(
〈Ψ1

R|r〉〈r|Ψ1
R〉 − 〈Ψ̃1

R|r〉〈r|Ψ̃1
R〉
)

(6.17)

and two vanishing contributions

+
∑
R

(
〈Ψ1

R − Ψ̃1
R|r〉〈r|Ψ̃− Ψ̃1

R〉+ 〈Ψ̃− Ψ̃1
R|r〉〈r|Ψ1

R − Ψ̃1
R〉
)

(6.18)

+
∑
R 6=R′

〈Ψ1
R − Ψ̃1

R|r〉〈r|Ψ1
R′ − Ψ̃1

R′〉 (6.19)

for the local real space density operator. Concerning the term Ψ1
R − Ψ̃1

R, it obviously vanishes
outside the core region ΩR since the AE partial waves and pseudo partial waves coincide in the
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interstitial region. On the other hand, the expression Ψ̃−Ψ̃1
R becomes zero inside the core region

as the pseudo wave function is given by the one-center expansion (6.8). Therefore, no matter
which spatial region is considered the expression in Eq.(6.18) vanishes at any point. A similar
argument also holds for Eq.(6.19). Since the one-center terms are restricted to one specific atomic
site they cannot become non-zero anywhere else outside a particular core region ΣR. Hence, the
real space density contains a smooth pseudo part and two one-site expressions:

ρ(r) =
∑
p

fp 〈Ψ̃p|r〉〈r|Ψ̃p〉︸ ︷︷ ︸
ρ̃(r)

+
∑
p,i′,j′

fp 〈Ψ̃p|p̃i′〉〈φi′ |r〉〈r|φj′〉〈p̃j′ |Ψ̃p〉︸ ︷︷ ︸
ρ1(r)

−
∑
p,i′,j′

fp 〈Ψ̃p|p̃i′〉〈φ̃i′ |r〉〈r|φ̃j′〉〈p̃j′ |Ψ̃p〉︸ ︷︷ ︸
ρ̃1(r)

,

(6.20)

where the Fermi function is denoted as fp. The core states have not been considered yet. However,
they can be decomposed similar to the valence states [see Eq.(6.14)] as

|Ψc〉 = |Ψ̃c〉+ |φc〉 − |φ̃c〉 , (6.21)

and give rise to core state densities ρ̃c(r), ρ̃1
c(r) and ρ1

c(r) similar to the valence states. However,
the one-site density matrix Di,j defined for the valence states [compare Eq.(6.20)]

Di,j =
∑
p

fp 〈Ψ̃p|p̃i′〉 〈p̃j′ |Ψ̃p〉 (6.22)

becomes 1 in the case of core states. Hence, to obtain the full real space density, the corresponding
core densities can be added to the valence densities separately for the smooth terms and the one-
center terms. Within the PAW method, another charge density is usually introduced, which is
known as the compensation charge ρ̂. This becomes important for the calculation of the total
energy, in particular, the Hartree term. The compensation charge needs to be added to the pseudo
density ρ̃ as well as to the corresponding one-center term ρ̃1, whenever the integrated charge of
the pseudo wave function and the AE wave function inside the core region (augmentation region)
yields non-vanishing contributions. The resulting augmentation charge is hence given by

ρaug(r) = ρ1(r)− ρ̃1(r) =
∑

(i,j)∈R

DijQij with Qij = φ∗i (r)φj(r)− φ̃∗i (r)φ̃j(r) (6.23)

and yields a net charge density that interacts with charges outside the augmentation region
[138]. This might be suppressed by a compensation charge that has the same multipoles as
the augmentation charge density. From classical electrodynamics [see e.g.[141]] multipoles of a
charge distribution are expressed by spherical harmonics YL. Hence, the augmentation charge
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reads
qij,L =

∫
ΩR

dr Qij |r−R|Y ∗L (r−R) (6.24)

and allows to calculate the corresponding compensation charge density in the following manner
[142]

ρ̂(r) =
∑

(i,j),L

Dij qij,L gl(|r−R|)YL(|r−R|) (6.25)

with the function gl that is expressed in terms of Bessel functions in VASP. It confines the
compensation charge into a spherical region where the AE and pseudo charge coincides at the
boundary [142]. The resulting energy contributions to the total energy have been discussed
e.g. in [138] and [142]. To conclude this section, the overlap operator shall be given. It is
readily obtained from the derivation of the real space charge density demonstrated in Eq.(6.20).
Substituting the real space density operator |r〉 〈r| by the unity operator

∫
dr |r〉〈r| = 1 one

obtains
S̃ = 1 +

∑
i′,j′

|p̃i′〉
(
〈φi|φj〉 − 〈φ̃i|φ̃j〉

)
〈p̃j | . (6.26)

Due to the linear transformation operator, the Schrödinger equation in the PAWmethod becomes
a generalized eigenvalue problem because of the overlap operator. To give evidence, one notes that
the transformation due to the operator T is a unitary transformation as it leaves the eigenvalue
of the expectation value unchanged, i.e.

E = 〈Ψ|Ĥ|Ψ〉 = 〈Ψ̃|T̂ †HT̂ |Ψ̃〉 = 〈Ψ̃| ˆ̃H|Ψ̃〉 . (6.27)

With the Rayleigh-Ritz method the pseudo part of the expectation value can be varied with
respect to pseudo function Ψ̃. If the latter one is a ground state pseudo wave function, the
variation δE vanishes and the pseudo Schrödinger equation is obtained(

T †Ĥ − T †E
)
T |Ψ̃〉 = 0⇐⇒ ˆ̃H |Ψ̃〉 = ET †T |Ψ̃〉 = ES̃ |Ψ̃〉 (6.28)

with the pseudo eigenstates satisfying the orthogonalization condition

〈Ψ̃i|S̃|Ψ̃j〉 = δij . (6.29)



7. Beyond the Tamm-Dancoff approximation for

extended systems using exact diagonalization∗

The study of optical properties of condensed matter and molecular systems is a field of growing
interest, not least because of the emerging importance of renewable energies, and the requirement
to accurately predict the optical properties of novel composite materials and nanostructures.
Time-dependent density functional theory (TDDFT) has certainly been the most widely used
approach to date, although it is not without problems. In TDDFT, an effective two-point Dyson
like equation relates the density response function of the non-interacting Kohn-Sham system
χ0(r, r′, t− t′) to the (linear) density response function of the interacting system χTD(r, r′, t− t′):
χTD = χ0 +χ0(v+ fxc)χ

TD.[143] The "interaction" terms are described by the Coulomb kernel v
and the exchange-correlation kernel fxc. Unfortunately though, the interaction kernel does not
allow for a systematic improvable expansion of the microscopic particle-particle interaction as
would be the case e.g. for Green’s function methods. Furthermore or rather resultantly, only
few 2-point kernels, fxc(r, r

′, t− t′), yield a satisfactory description of excitonic effects.[144, 145]
Among them the most successful approximate kernels are the nano-quanta kernel,[146, 147, 148]
the boot strap kernel of Sharma,[149] and kernels based on the jellium with a gap.[150] The
nano-quanta kernel requires one to explicitly calculate the two-electron four-orbital integrals
making it almost as expensive as the methods discussed below, whereas the latter two are yet
not satisfactorily derived from first principles and fail to describe bound excitons accurately.[149]
Alternative descriptions rely on the so called Bethe-Salpeter equation. After some manipula-

tion, the conventional Bethe-Salpeter equation— known from nuclear theory— can be cast, into
a Dyson like equation

P = P0 + P0IP,

where P (1, 2, 3, 4) is the four-point time-ordered polarization propagator and I denotes the in-
teraction kernel,[151] and we use the common notation for space and time points 1 = (r1, t1).
This equation resembles the response equation for χTD from TDDFT, where P can be regarded
to be a generalized linear density matrix response function to an non-local perturbation [c.f. Eq.
(63) in Ref. [152]].
Obviously manipulation of such 4-point quantities is much more involved than the simpler

TDDFT 2-point quantities. In practice, the polarization propagator P (1, 2, 3, 4) is expressed
in a suitable two-orbital basis made up by all relevant combinations of electron and hole pairs.
Furthermore, the electron-hole interaction kernel I is approximated by the Coulomb kernel v and
a static (or more correctly instantaneous) screened interaction W . This static approximation

∗Based on: T. Sander, E. Maggio and G. Kresse, Beyond the Tamm-Dancoff approximation for extended systems
using exact diagonalization, Physical Review B 92, 045209 (2015).
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is commonly applied to simplify the calculations. Inclusion of frequency dependent kernels
is possible and e.g. important for the description of double excitations but computationally
much more demanding[153, 154]. Also it has been shown that QP renormalization effects cancel
against dynamical effects in the interaction kernel[153]. Hence, neglecting dynamical effects as
done throughout this work is expected to yield accurate results.

The excitation energies are determined by calculating the resolvent of the polarization propa-
gator. This usually requires the diagonalization of a large matrix, where the matrix dimension
equals the number of occupied times the number of unoccupied states. Formally, the solution
of this equation is then entirely equivalent to solving the so called "Casida" equation for time
dependent DFT and time dependent Hartree-Fock.[155] For hybrid functionals, the only differ-
ence is that, in Casida’s equation, the screened interaction W between electrons and holes is
replaced by the Coulomb kernel v "screened" by the mixing parameter α. The mixing parameter
α determines how much of the non-local exchange is included (in most cases α = 1/4).

In addition to the static approximation W (t, t′) = W δ(t, t′), which is exactly observed for hy-
brid functionals, since the Coulomb kernel there is per construction instantaneous, a further ap-
proximation is commonly applied. To solve the BSE/Casida equation, the response functions (be
it the 2-point or 4-point variants) are usually Fourier transformed to frequency space, where they
are symmetric <χ(ω) = <χ(−ω). In principle, terms between positive and negative frequency
branches exist, describing the annihilation of two electron-hole pairs against each other, or the
creation of two electron-hole pairs as a result of vacuum fluctuations. These diagrams and thus
the interaction terms between the positive and negative frequency branch are often neglected, an
approximation that is commonly referred to as Tamm-Dancoff approximation.[89, 90] Applying
the Tamm-Dancoff approximation simplifies the computations tremendously, since the original
full interaction matrix is not Hermitian and hence can not be solved via standard "canned"
eigenvalue solvers. After decoupling the positive and negative frequency part, however, the
polarization propagator becomes an Hermitian matrix, for which the resolvent can be easily
calculated. It is common practice to consider only the resonant part of the polarization prop-
agator, and we refer to it as Tamm-Dancoff approximation (TDA) within the manuscript. In
the physics community, the full solution is usually determined by iterative solvers or time evo-
lution algorithms,[156, 157] whereas in quantum chemistry, it is common to square the original
problem.[158, 159] For solid state problems, the equivalent path has not yet been explored, essen-
tially because the involved matrices are complex instead of symmetric, and it is not immediately
obvious how to generalize the equations used in quantum chemistry to the complex case. By
employing time inversion symmetry and mapping Bloch wave vectors k to −k in the negative
frequency branch, we circumvent this problem and show that a similar approach as in quantum
chemistry can be used. This allows to calculate all eigenvalues and eigenvectors of the 2-particle
problem with an effort that is only about 2-3 times larger then for the Hermitian Tamm-Dancoff
approximation. This opens a route to efficient and convenient calculations beyond Tamm-Dancoff
with full access to all eigenvectors. We test the present approach for four simple systems, namely
silicon (Si), carbon (C), lithium fluoride (LiF) and cyclic lithium fluoride dimer (Li2F2). We find
essentially no (Si, C, LiF) or little (Li2F2) difference between the Tamm-Dancoff approximation
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and the full approach, except for small errors in the static dielectric constant. However, the
Tamm-Dancoff approximation clearly fails in the case of finite momentum transfer, and we give
evidence for silicon by calculating the macroscopic dielectric function within TDA and beyond
TDA at finite q. Before discussing the present theoretical approach in detail, we present a concise
derivation of, what is called the BSE/Casida equation. This includes a brief formal re-derivation
and introduction of the squared problem. Our results are then presented in Sec. 7.7. The present
calculations are based on an entirely parameter free description, in particular, the preceding GW
calculations are state of the art. They are performed self-consistently in the Green’s function
G, using the quasiparticle (QP) GW method.[72] This allows to access how well state of the art
procedures reproduce the experiment.

7.1. 4-point two particle propagator and Bethe-Salpeter equation

We consider a non-relativistic N -electron system with Hilbert space HN = ∧NH, H = L2 and
the standard Hamiltonian Ĥ = Ĥ0 + V̂ , where Ĥ0 corresponds to the sum of a kinetic term and a
lattice periodic potential, whereas V̂ denotes the Coulomb interaction. We assume Ψ0 to be the
non-degenerate ground-state of Ĥ with energy EN0 . The 4-point propagator is defined[160, 161]
as (~ is set to 1 from now on)

i2G4(r1t1, r2t2, r3t3, r4t4) = 〈Ψ0|T
[
ψ̂(r1t1)ψ̂(r2t2)ψ̂†(r4t4)ψ̂†(r3t3)

]
|Ψ0〉,

where T denotes the time ordering operator and ψ̂(†)(rt) the field operators, the time-dependence
being induced by the Heisenberg picture. The free 4-point propagatorG4

0 is defined analogously in
terms of Ĥ0 and the corresponding ground-state Φ0 (again supposed to be non-degenerate). The
Wick theorem[160] for the free 2n-point Green’s functions implies for the free 4-point propagator
the equality

G4
0(1, 2, 3, 4) = G0(1, 3)G0(2, 4)−G0(1, 4)G0(2, 3) (7.1)

where G0(1, 2) corresponds to the free propagator. For the full 4-point propagator, one therefore
usually makes the ansatz[161]

G4(1, 2, 3, 4) = G(1, 3)G(2, 4)−G(1, 4)G(2, 3)

−i

∫
d(5, 6, 7, 8) G(1, 5)G(2, 6)Γsc(5, 6, 7, 8)G(7, 3)G(8, 4), (7.2)

where the so-called scattering amplitude Γsc is implicitly defined by this ansatz. G(1, 2) denotes
the Green’s function defined by

iG(rt, r′t′) = 〈Ψ0|T
[
ψ̂(rt)ψ̂†(r′t′)

]
|Ψ0〉. (7.3)

A Feynman graph analysis shows that the scattering amplitude Γsc is the sum over all amputated,
skeleton graphs that can be put between two electron-hole pairs. If one defines a sub-sum I which
corresponds to all graphs that are irreducible in the electron-hole channel, then one necessarily
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Figure 7.1.: Four-point formalism for matrix multiplication: (AB)(1, 2, 3, 4)
def
=∫

d(5, 6) A(1, 5, 3, 6)B(6, 2, 5, 4). The index order is chosen to yield a conve-
nient order in the two-electron four orbital integrals.

has
Γsc = I + i IGGI + i2 IGGIGGI + . . .

implying

Γsc(1, 2, 3, 4) = I(1, 2, 3, 4) + i

∫
d(5, 6, 7, 8) I(1, 5, 3, 6)G(6, 7)G(8, 5)Γsc(7, 2, 8, 4). (7.4)

This is the well-known Bethe-Salpeter equation for the scattering amplitude.[161]

7.2. Dyson like equation for two particle propagator

Introducing
L(1, 2, 3, 4) = G4(1, 2, 3, 4)−G(1, 3)G(2, 4) (7.5)

one shows easily by the Bethe-Salpeter equation for Γ that L fulfills a Dyson like equation of the
form

L(1, 2, 3, 4) = L0(1, 2, 3, 4) + i

∫
d(5, 6, 7, 8)L0(1, 5, 3, 6)I(6, 7, 5, 8)L(8, 2, 7, 4), (7.6)

where L0 denotes the "free part" −G(1, 4)G(2, 3). Inherent to the above 4-point matrix notation
is the definition of the matrix product of 4-point quantities (see Fig.(7.1)) as

(AB)(1, 2, 3, 4)
def
=

∫
d(5, 6) A(1, 5, 3, 6)B(6, 2, 5, 4). (7.7)

As it has been stressed in Ref. [151], the simplest contribution to the interaction kernel I,
which can be written as I = V + Ĩ, is the Coulomb interaction V . All other interaction diagrams
are then obtained by approximating Ĩ, which means the inclusion of certain classes of Feynman
diagrams. One class of diagrams are the particle-hole ladder diagrams that includes the so-called
W -approximation of Ĩ, where W is the screened interaction known from Hedin’s equations,[5]
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but given in a four-point notation:

I(1, 2, 3, 4) ≈ V (1, 2, 3, 4)−W (2, 1, 3, 4), (7.8)

V (1, 2, 3, 4) := v(1, 4+)δ(4, 2+)δ(3, 1+), (7.9)

W (1, 2, 3, 4) := w(1, 4+)δ(4, 2+)δ(3, 1+), (7.10)

v(1, 4+) := v(r1 − r4)δ(t1 − t+4 ),

w(1, 4+) ≈ w̃(r1, r4;ω = 0)δ(t1 − t+4 ),

δ(1, 2+) = δ(r1 − r1)δ(t1 − t+2 ).

The W -approximation is equivalent to the second iteration of Hedin’s equations[5] with the
approximation δΣ/δG ≈ W for the (irreducible) vertex function. This approximation further
determines a Bethe-Salpeter Equation for the irreducible polarizability [c.f. Eq. (13.19c) in Ref.
[5]], with W approximated in the random-phase approximation.
Notice that we assume here and in the following that both interactions are instantaneous and

involve equal times δ(t1 − t4)δ(t4 − t2)δ(t3 − t1). This allows for a significant simplification. In
particular, integrals of the form∫

d(5, 6, 7, 8) L0(1, 5, 3, 6)I(6, 7, 5, 8)L(8, 2, 7, 4), (7.11)

simplify to ∫
dt′L0(t1, t

′, t3, t
′+)(v − w̃)L(t′, t2, t

′+, t4), (7.12)

where the spatial indices have been dropped for notational simplicity, and the interaction I

possesses no frequency dependence. The crucial point is that the time limits t3 → t+1 and
t4 → t+2 can now be performed under the integral and Eq.(7.12) then reads∫

dt′L0(t1, t
′, t+1 , t

′+)(v − w̃)L(t′, t2, t
′+, t+2 ). (7.13)

This suggests that two time indices suffice to solve the BSE/Casida equation, as long as the
interaction is entirely static or more precisely instantaneous.

7.3. Polarization propagator and density fluctuation response
function

The 4-point propagator L is a computationally demanding object in that it depends on 4 argu-
ments involving three time differences. As discussed above, the static approximation in terms
of V [Eq.(7.9)] and W [Eq.(7.10)] allows one to reduce L to a quantity containing only the
difference between two time arguments t1 and t2 and four spatial arguments. We will call this
quantity henceforth the time-reduced 4-point polarization propagator or density fluctuation re-
sponse function P (r1, r2, r3, r4; t1 − t2) = iL(r1t1, r2t2, r3t

+
1 , r4t

+
2 ) and stick consistently with

the notation of previous publications[6, 162, 163] except for a factor i. The relation to the
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(time-ordered) density-density fluctuation response function χ(1, 2) is obtained by contraction
of spatial arguments, i.e. r3 → r1 and r4 → r2 or simply χ(1, 2) = P (1, 2, 1+, 2+):

χ(rt, r′t′) = −i 〈Ψ0|T
[
ρ̂1(rt)ρ̂1(r′t′)

]
|Ψ0〉 (7.14)

where the density fluctuation operator is defined as

ρ̂1(rt) =ψ̂†(rt)ψ̂(rt)− 〈ψ̂†(rt)ψ̂(rt)〉
=ψ̂†(rt)ψ̂(rt)− ρ(r),

(7.15)

and ρ(r) is the ground state density. The relation between P and χ can be straightforwardly
shown using Eqs. (7.1,7.3) and (7.5). The free 4-point polarization propagator P0 is given in the
frequency domain by a Lehmann representation, which reads

P0(r1, r2, r3, r4, ω) =
∑

a∈unocc
i∈occ

[
ϕa(r1)ϕ∗i (r3)ϕi(r2)ϕ∗a(r4)

ω − (εa − εi) + iη
+
ϕi(r1)ϕ∗a(r3)ϕa(r2)ϕ∗i (r4)

−ω − (εa − εi) + iη

]
. (7.16)

Here and in the following, we have disregarded the spin: for the non-magnetic case, a factor 2
must be added, whereas in the spin polarized case, an additional sum over spins needs to be
included. The set of orbitals {ϕi(r)} constitute an orthogonal basis and P0 can be reformulated
as

P0(r1, r2, r3, r4, ω) =
∑

k,l,m,n

ϕk(r1)ϕ∗l (r3)ϕm(r2)ϕ∗n(r4)P km
0 ln (ω), (7.17)

where the sum goes over all states k, l,m, n. The matrix elements P km
0 ln (ω) take the simple form

P km
0 ln (ω) =

nm(1− nk)− (1− nm)nk
ω − (εk − εm) + sgn(εk − εm)iη

δnkδ
m
l , (7.18)

with the occupation numbers nm,k = ni = 〈Φ0|n̂i|Φ0〉 = 〈Φ0|a†iai|Φ0〉 referring to the non-
interacting ground-state Φ0, i.e. ni = 1 for ϕi ∈ {ϕi1 , . . . , ϕiN } where Φ0 = 1/

√
N ! det(ϕik(rl))

and nk,m = na = 0 otherwise. We use an index notation that takes into account the different
transformation behaviour under changes of the basis in the one-particle Hilbert space.[151] That
means if one performs a change of basis in the one-particle Hilbert space given by a unitary
matrix U , then the lower indices transform with U and the upper indices with U∗. For later
purposes, we note that the matrix elements of the Coulomb potential are given (as usual) by

V mn
kl = 〈mn|V |kl〉 = 〈ϕmϕn|V |ϕkϕl〉

=

∫
dr dr′ ϕ∗m(r)ϕ∗n(r′)v(r, r′)ϕk(r)ϕl(r

′)
(7.19)

and the exchange terms are correspondingly defined as:

Wmn
kl = 〈nm|W |kl〉 = 〈ϕnϕm|W |ϕkϕl〉

=

∫
drdr′ ϕ∗n(r)ϕ∗m(r′)w(r, r′)ϕk(r)ϕl(r

′).
(7.20)
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Figure 7.2.: Graphical representation (Goldstone diagrams) for two particle interactions through
the Coulomb potential V (wiggly line) and the static screened interactionW (double
wiggly line) between electron (→) and hole (←), where a/b refers to unoccupied and
i/j to occupied states. (A) + (C) corresponds to the resonant-resonant coupling
between incoming e/h-pairs (a, i) and outgoing e/h-pairs (b, j). Picture (A): e/h-
pair (a, i) is destroyed at point r annihilating into a new pair (b, j) at point r′.
Picture (C): scattering process of (a, i) into (b, j). (B)+(D) describe the coupling
between resonant and antiresonant e/h-pairs. Picture (B): incoming pair (a, i) with
positive frequency annihilates with pair (b, j) associated with negative frequency.
Picture (D): e/h-pair (a, i) scatters into pair (b, j) associated to negative frequency.

7.4. Solving the Bethe-Salpeter equation

According to the previous two sections, one needs to solve the Bethe-Salpeter equation for P in
the frequency domain given by a Dyson like equation [compare Eq.(7.6)]

P (ω) = P0(ω) + P0(ω)I P (ω), (7.21)

where I is given by Eq.(7.8). It is natural to discretize the one-particle Hilbert space by restricting
it to the span of the N orbitals occupied in the non-interacting reference ground-state (given
by a Slater determinant) and a (finite) number of M unoccupied orbitals (corresponding to
excitations out of the reference ground-state). This induces a discretization of the fermionic
Fock space F+(H) over H. Correspondingly, P , V and W turn into finite matrices in the orbital
indices. In particular, P (ω) is now a frequency dependent matrix. Before continuing, we note
that the Dyson equation implies that P can be chosen to span the exact same Hilbert space as
P0, which can be shown easily by iterating the Dyson equation [Eq.(7.21)]. It is hence convenient
to restrict the two particle space to a subspace B of products of M unoccupied orbitals a, and
N occupied orbitals i, ϕi ⊗ ϕ∗a ∈ B0 [first term in Eq.(7.16)] and ϕa ⊗ ϕ∗i ∈ B′0 [second term
in Eq.(7.16)]. The dimension of B is 2MN and the subspace can be decomposed in terms of
B = B0 ⊕ B′0 with dim B0 = dim B′0 = MN . With this choice P (ω) can be simply calculated
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according to
P (ω) =

[
P0(ω)−1 − I

]−1
. (7.22)

Introducing the resonant Φr
K and antiresonant Φa

K two-orbital states (spanning B0 and B′0 re-
spectively),

Φr
K(r, r′) :=ϕi(r)ϕ∗a(r

′)

Φa
K(r, r′) :=ϕa(r)ϕ∗i (r

′)
(7.23)

with the super-index K = (i, a) (i ∈ occ., a ∈ unocc.), the static interaction kernel I [c.f.
Eq.(7.8)] reduces to coupling matrix elements, where the resonant-resonant coupling reads

H(r,r)
KJ :=

∫
dr1..dr4 Φr

K
∗(r2, r4)I(r1, r2, r3, r4)Φr

J(r3, r1).

The other interactions are defined analogously. With the restriction of Eq.(7.8) and the definition
of Eq.(7.19) and Eq.(7.20), we can write all coupling terms in the following compact manner:

H(r,r)
KJ = 〈bi|V |ja〉 − 〈bi|W |aj〉 = V ja

bi +W aj
bi (7.24)

H(a,a)
KJ = 〈ja|V |bi〉 − 〈ja|W |ib〉 = V bi

ja +W ib
ja (7.25)

H(r,a)
KJ = 〈ji|V |ba〉 − 〈ji|W |ab〉 = V ba

ji +W ab
ji (7.26)

H(a,r)
KJ = 〈ba|V |ji〉 − 〈ba|W |ij〉 = V ji

ba +W ij
ba, (7.27)

with the second super index J = (j, b) (j ∈ occ., b ∈ unocc.). Using a graphical representation
and considering the explicit time ordering, as commonly adopted for Goldstone diagrams, the first
term in Eq.(7.24) describes an annihilation process [Fig. 7.2(A)] with the subsequent creation of
a new e/h pair, whereas the second term involves the scattering process between an electron and
a hole [Fig. 7.2(C)]. The same processes appear also in Eq.(7.25) and result from the complex
conjugated pair. The third coupling term [Eq.(7.26)] involves matrix elements of the interaction
I between resonant and antiresonant two-orbital states. Here, the first term corresponds to an
annihilation of an e/h-pair against a conjugated h/e-pair [Fig. 7.2(B)], and the second term
describes the exchange process where the electron in the first pair annihilates against the hole
in the second pair (and vice versa) [Fig. 7.2(D)]. The final equation describes the same process
for the conjugated pairs. The inverse of P (ω) is rewritten in a matrix form(

ω1 0

0 −ω1

)
︸ ︷︷ ︸

ω∆

+

(
P−1

0 (0) 0

0 P−1
0 (0)

)
−
(
H(r,r) H(r,a)

H(r,a)∗ H(a,a)

)
, (7.28)

where P0(0) is the frequency independent part of the previously defined time-reduced free 4-point
propagator involving only energy differences:

(P−1
0 )KJ(0) = −(εa − εi)δabδij . (7.29)
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It is common to define the matrices A and B as(
A B

B∗ A∗

)
=

(
H(r,r) H(r,a)

H(r,a)∗ H(r,r)∗

)
−
(
P−1

0 (0) 0

0 P−1
0 (0)

)
. (7.30)

To determine P (ω) in Eq.(7.22), one needs to determine the poles of P0(ω)−1 − I, i.e. those
frequencies Ω where the determinant of Eq.(7.28) is zero valued [164]. Hence one has to solve
the resultant generalized eigenvalue problem (EVP)(

A B

B∗ A∗

)(
X

Y

)
= Ω ∆

(
X

Y

)
. (7.31)

For real-valued orbitals in the one-particle Hilbert space, the matrices A and B are real valued
and the expression can be fairly easily recast into a symmetric eigenvalue problem. [158, 159]
This is, however, not possible in the present case, since B and A are complex, albeit Hermitian
matrices.
As we work in a Bloch basis, we can instead proceed along the following lines. If we are interested
in the response function at the wave vector q = 0, only pairs of states K = (i, a) at the same
wave vectors in the Brillouin zone need to be considered, K = (ik, ak). The super index now
consists of two orbital indices i and a and an additional index for the wave vector k.
Time-inversion symmetry implies that for a Bloch eigenstate ϕnk of a one-particle Hamiltonian
with eigenvalue εn(k), the orbital ϕn,−k(r) = ϕ∗nk(r) is also an eigenfunction with the same
eigenvalue. We use this property to replace orbitals at k by those at −k in the antiresonant
two-particle basis. As a first simple example, we consider the independent particle case P0

[Eq.(7.16)]:

∑
k

a∈unocc
i∈occ

wk
ϕak(r1)ϕ∗ik(r3)ϕik(r2)ϕ∗ak(r4)

ω − (εak − εik) + ßη
+

∑
k′

a∈unocc
i∈occ

wk′
ϕik′(r1)ϕ∗ak′(r3)ϕak′(r2)ϕ∗ik′(r4)

−ω − (εak′ − εik′) + ßη
, (7.32)

where wk are k-point weights summing to 1. By replacing ϕn,k′(r) = ϕ∗n−k′(r) = ϕ∗nk(r), one
immediately obtains for the antiresonant part

∑
k

a∈unocc
i∈occ

wk
ϕ∗ik(r1)ϕak(r3)ϕ∗ak(r2)ϕik(r4)

−ω − (εak′ − εik′) + iη
,

which is the resonant term with the position coordinates exchanged. A convenient choice, for
the resonant basis and the antiresonant basis is therefore given by:

Φr
K(r, r′) :=ϕik(r)ϕ∗ak(r′)

Φa
K(r, r′) :=ϕ∗ak(r)ϕik(r′)

(7.33)
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It is then easy to show that in this basis, H is of the form(
A B

B A

)
, (7.34)

where A and B are still Hermitian matrices. For instance, the Hartree term in the antiresonant-
antiresonant block becomes (commas are introduced to separate the two bra and two ket states)

H(a,a)
KJ = 〈j−k, a−k′|v|b−k, i−k′〉

= 〈bk, ik′|v|jk, ak′〉 = H(r,r)
KJ .

Similar relations apply to the exchange term involving W , as well as the coupling terms between
resonant and antiresonant contributions. For the Hartree term, even the antiresonant-resonant
block becomes identical to the resonant-resonant block

〈j−k, ik′|v|b−k, ak′〉 = H(r,r)
KJ ,

i.e. as in TDA, a single calculation suffices to set up all terms involving the bare Coulomb
operator V , and the A and B matrices only differ by the diagonal matrix A = B +P0(0)−1. For
the RPA and TDDFT case, setup of the matrices is therefore not more expensive than for TDA
calculations. Only for the exchange term involving W additional matrix elements corresponding
to Fig. 7.2(D) need to be calculated.

The solution to the generalized eigenvalue problem [Eq.(7.31)] can be performed by a method
discussed e.g. by Stratman et al. [158] and in great detail by Furche.[165, 159] We summarize
some aspects briefly.

Introducing a partition of the eigenvector Λ in B as(
XΛ

YΛ

)
, (7.35)

where XΛ ∈ B0 and YΛ ∈ B′0, the generalized EVP reads(
A B

B A

)(
XΛ

YΛ

)
= ΩΛ

(
1 0

0 −1

)(
XΛ

YΛ

)
. (7.36)

This is equivalent to the system of equations

AXΛ +BYΛ = ΩΛXΛ

−BXΛ −AYΛ = ΩΛYΛ

(7.37)

or

(A−B)(XΛ − YΛ) = ΩΛ(XΛ + YΛ) (7.38)

(A+B)(XΛ + YΛ) = ΩΛ(XΛ − YΛ). (7.39)
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From Eq.(7.38) and Eq.(7.39) one obtains the relation

(A−B)(A+B)1(XΛ + YΛ) = Ω2
Λ (XΛ + YΛ). (7.40)

The advantage of Eq.(7.40) is that it is formulated in B0 exclusively, however, it still does not
correspond to a Hermitian eigenvalue problem. This can be cured by introducing the identify
1 = (A−B)

1
2 (A−B)−

1
2 in Eq.(7.40) and defining

S = (A−B)
1
2 (A+B)(A−B)

1
2 (7.41)

zΛ = (A−B)−
1
2 (XΛ + YΛ) (7.42)

such that
S zΛ = Ω2

Λ zΛ. (7.43)

Note that all eigenvalues come in pairs with positive and negative frequencies ±ΩΛ corresponding
to the resonant and antiresonant part of the response function. On the other hand, from Eq.(7.38)
and Eq.(7.42) it follows

(XΛ − YΛ) = (A−B)−
1
2 ΩΛ zΛ. (7.44)

This equation and Eq.(7.42) allow to determine XΛ and YΛ. However, the "super"-vector
(XΛ, YΛ) is not necessarily normalized [i.e. (XΛ, YΛ)∆(XΛ, YΛ)∗ 6= 1]. Since the eigenvectors
of equation (7.43) are only defined but for a scaling constant. Correct normalization can be
achieved by multiplying each eigenvector zΛ of the squared problem with a suitable scaling
factor zΛ → |ΩΛ|−

1
2 zΛ before solving the two linear equations [Eqs.(7.42), (7.44)]:

(XΛ + YΛ) = (A−B)
1
2 |ΩΛ|−

1
2︸ ︷︷ ︸

C

zΛ (7.45)

(XΛ − YΛ) = ± (A−B)−
1
2 |ΩΛ|

1
2︸ ︷︷ ︸

C′

zΛ, (7.46)

were the plus sign applies to positive eigenvalues +ΩΛ, and the minus sign to the negative
eigenvalues −ΩΛ. It is then simple to prove that[165]

(XΛ + YΛ) · (XΛ − YΛ)∗ = 1 (7.47)

XΛY
∗

Λ − YΛX
∗
Λ = 0 (7.48)

and eventually (XΛ, YΛ)∆(XΛ, YΛ)∗ = 1, if the vectors zΛ form an orthonormal set. The so-
lution of the squared EVP [Eq.(7.43)] yields two frequencies ±ΩΛ and the two corresponding
eigenvectors (X±Λ , Y

±
Λ ) read (

X±Λ
Y ±Λ

)
=

1

2

(
(C ± C ′)zΛ

(C ∓ C ′)zΛ

)
. (7.49)

We note, however, that in most cases, it suffices to calculate X+
Λ + Y +

Λ as shown below for the
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polarizability. This sum of the eigenvectors can be trivially obtained from Eq.(7.45).

A few points need to be emphasized here. (i) The matrices A and B are both Hermitian.
(ii) To determine (A − B)1/2 [Eq.(7.43)], (A − B) needs to be positive definite to make its
square roots well defined and single-valued. Since A and B are Hermitian, so is (A − B).
Furthermore the eigenvalues of (A − B) are not only real but also positive, because positive
definiteness of (A±B) guarantees the stability of the reference state |Ψ0〉 from which excitations
are considered.[166, 167, 165] For TDDFT, if |Ψ0〉 is the (stable) groundstate, (A±B) is positive
definite and thus the excitation energies ΩΛ are positive. Of course for GW+BSE, the positive
definiteness is not guaranteed as the groundstate is not determined fully consistently with the
subsequent BSE calculations. However, in all cases considered here the solutions were well defined
and eigenvalues of (A-B) are checked to be positiv.

A final comment on the RPA and TDDFT case is in place here. As emphasized before, for
RPA and TDDFT the difference matrix (A−B) is a simple diagonal matrix with the eigenvalue
differences between the conduction and valence band energies in the diagonal [compare Eq.(7.29)].
This shows that the matrix is always positive definite, and the calculation of (A−B)1/2 can be
done at essentially no extra cost. Hence, RPA and TDDFT calculations using Casida’s equation
beyond TDA can be done at no extra cost compared to TDA.

The macroscopic dielectric function (DF) εM is finally obtained from the polarizability P : [62]

εM(q, ω) = 1− lim
q→0

[
v(q)

∫
dr1 dr2 e

−iq(r1−r2) P (r1, r2, r1, r2, ω)
]
. (7.50)

By exploiting the orbital representation [Eq.(7.17)] and the spectral representation [c.f. (A18)
in Ref. [165]] of P (ω), the DF [62] reads in terms of the eigenvectors (X+

Λ , Y
+

Λ )

εM(q, ω) = 1 + lim
q→0

v(q)
∑

Λ

(
1

ΩΛ − ω
+

1

ΩΛ + ω

)
×{∑

k

wk

∑
a,i

〈ak|eiq·r|ik〉X+(i,a)k
Λ +

〈i − k|eiq·r|a − k〉Y +(a,i)−k
Λ

}
×
{
c.c.

}
.

(7.51)

Using time inversion symmetry, the transition probabilities (term in curly brackets) simplify to∑
k

wk

∑
a,i

〈ak|eiq·r|ik〉
[
X

+(i,a)k
Λ + Y

+(a,i)−k
Λ

]
. (7.52)

Equation (7.51) assumes that the q = 0 component of Coulomb kernel v has been set to zero,
when evaluating the matrix elements of V in Eq.(7.24-7.27), as discussed in detail in Ref. [62].
One can derive this result by observing that the relation between the reducible (two point)
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polarizability χ and independent particle polarizability χ0 is given by

χ−1 = χ−1
0 − v̄︸ ︷︷ ︸
χ̄−1

−v0. (7.53)

Here v0 is the (usually diverging) Coulomb kernel at the wave vector q = 0, and v̄ is the rest.
The standard equation for the macroscopic dielectric constant is

ε−1
M = (1 + vχ)00 (7.54)

= (1 + v0(χ̄−1 − v0)−1)00 (7.55)

where, the subindex 00 implies evaluation of the matrix elements at q = 0. Straightforward
algebraic manipulation of the term after the second equation sign yields

εM = 1− v0χ̄, (7.56)

which corresponds to Eq.(7.51). This equation is most likely used in most solid state BSE codes
to evaluate the dielectric constant. It is important to note that the summation is over positive
and negative frequency branches, thus restoring the sum of the resonant and antiresonant part,
even in the TDA case. Strictly speaking such an implementation goes beyond what the TDA
does (entirely neglecting one frequency branch).

7.5. Dielectric function at finite q-vectors

For finite momentum transfer q, the two orbital basis reads

Φr
Kq

(r, r′) :=ϕi,k(r)ϕ∗a,k+q(r′)

Φa
Kq

(r, r′) :=ϕa,k′(r)ϕ∗i,k′+q(r′) = ϕ∗a,k+q(r)ϕi,k(r′),
(7.57)

where we have used time-inversion symmetry in the second line. With the definition Eq.(7.57),
matrix elements of H are set up in a similar manner as in Eqs.(7.24-7.27). For the sake of clarity,
we will show the relation for the antiresonant-antiresonant coupling pair for the Hartree-kernel
V . At finite momentum transfer, the resonant-resonant matrix element reads

H(r,r)
KqJq

= 〈bk + q, ik′|vq|jk, ak′ + q〉 . (7.58)

Replacing the momenta in the antiresonant two-orbital state Φa
Kq

by k→ −k and k+q→ −k− q

we find

H(a,a)
KqJq

= 〈j − k− q, a− k′|v−q|b− k, i− k′ − q〉
= 〈bk, ik′ + q|v−q|jk + q, ak′〉
= 〈bk + q, ik′|vq|jk, ak′ + q〉
= H(r,r)

KqJq
.
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The same relation also holds for matrix elements involving W and the entire matrix H has the
same algebraic structure as in the case of vanishing q vectors [Eq.(7.34)]. The dielectric function
is finally evaluated as

ε−1
M (q, ω) = 1− v(q)

∑
Λ

(
1

ΩΛ − ω
− 1

ΩΛ + ω

)
×{∑

k

wk

∑
a,i

〈ak + q|eiq·r|ik〉

(
X

+(i,a)k+q
Λ + Y

+(a,i)−k−q
Λ

)}
×
{
c.c.

}
.

(7.59)

Note that at finite q, the full Coulomb kernel is used without disregarding any component, we
thus rely on the standard expression for the macroscopic dielectric function (7.54). If the q = 0

component of Coulomb kernel v had not been set to zero in the previous section, one would have to
use Eq.(7.59) as well (compare Eq.(2.7) and (2.9) in [62]). The divergence of the Coulomb kernel
is then canceled by the orthogonality relation between occupied and un-occupied states, and k.p
perturbation theory must be used to obtain the long wave length contributions to the two-electron
four orbital integrals of the Coulomb kernel (for the PAW method see e.g. [168]). Our RPA-GW
implementation for instances uses Eqs.(7.54,7.59) to determine the dielectric matrix, whereas the
BSE code relies on the simpler to implement relation (7.51). Both yield exactly identical results
as both relations are algebraically equivalent (compare previous section). Matter of fact, at any
momentum transfer q, both codes (GW and BSE) yield exactly identical results for the RPA
(the GW code uses two-point polarizabilities and can be applied only to the RPA).

A subtle point however needs to be considered. In the TDA case, Eq.(7.51) and Eq.(7.59)
are no longer equivalent, with the first equation yielding significantly more accurate results.
Eq.(7.51) disregards the coupling at all wave vectors different from q = 0, but reintroduces the
antiresonant contribution exactly in the final evaluation of the macroscopic dielectric constant;
furthermore the equation is additive in dielectric constant. Eq.(7.59) is additive in the inverse
of the dielectric constant, and if εM needs to be determined, it is not obvious whether the
antiresonant part should be added before or after inversion. In both cases, TDA results differ
from Eq.(7.51) as well as from the full treatment. As to why, equation (7.51) is more accurate, we
return to the derivation at the end of the previous section. Using (7.56), one first calculates χ̄−1 =

χ−1
0 − v̄ neglecting the resonant-antiresonant coupling. However, when determining εM the fully

restored χ̄ is used, implying that the resonant-antiresonant coupling at q = 0 is exactly accounted
for. Eqs.(7.54,7.59) are fundamentally different, they include the self-consistent response of the
electrons to their own field from the outset, as Eq.(7.53) can be rephrased as,

χ = χ0 + χ0vχ0 + χ0vχ0vχ0 + ... .

If only the resonant part is included in χ0, the selfconsistent response to the incorrect (resonant
only) part is included in the evaluation of the polarization propagator. There is no way to restore
the correct response including the antiresonant part a posteriori. Thus Eq.(7.51) is preferable to
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Table 7.1.: PAW potentials used in the present work. The columns rs,p,d specify the core radii
for each angular quantum number in a.u. The “default” plane wave cutoff energy Epw

cut

for the orbitals is specified in eV. Column “local” specifies the chosen local potential.
This is usually the all-electron potential replaced by a soft approximation inside the
specified core radius.

rs rp rd local Epw
cut

C 1.20 1.20 1.50 d 413
Si 1.90 1.90 1.90 d 245
Li 1.40 1.40 1.40 d 498
F 1.20 1.52 1.50 d 400

Eq.(7.59) and goes beyond TDA, since it correctly includes beyond TDA contributions at q = 0.
To resolve this issue at finite q, one should clear the Coulomb kernel at the considered wave
vector q, and apply Eq.(7.51), an approach we might want to test in future work.
This line of thought also implies that many solid state TDDFT and BSE codes yield results

much superior to what the TDA should yield. It also explains why errors in the TDA are often
substantial in quantum chemistry codes, which can not easily single out the most relevant wave
vector q = 0, and often rely on Eq.(7.59) to determine the response function.

7.6. Computational methods

7.6.1. PAW method and potential parameters

The ab initio calculations presented in the paper employ a plane-wave basis set and are performed
using the VASP code. [169, 170] The potentials are generated using the projector augmented
wave method (PAW) [138] to describe interactions between valence electrons and ionic cores (for
details see Table 7.1). We use the PAW implementation of Kresse and Joubert. [142] The compu-
tational procedure is the following. For each system we perform a standard DFT calculation to
obtain the Kohn-Sham orbitals and Kohn-Sham one-electron energies. The exchange-correlation
part is approximated by the functional of Perdew, Burke, and Ernzerhof (PBE) [37] for silicon,
whereas the local density approximation (LDA) is employed for lithium fluoride and carbon.
The results are, however, independent of the starting point for the materials considered here.
The subsequently calculated quasiparticle (QP) energies and orbitals are calculated within a
self-consistent (sc) QPGW0 approach. [72, 73, 74] The QP energies and QP orbitals are up-
dated iteratively. The screened interaction W0 is kept fixed at the RPA level using the original
Kohn-Sham orbitals and one-electron energies. Within the sc-QPGW0 calculations, a Hermitian
eigenvalue problem is solved [c.f. Eq. (3) in Ref. [74]]

S̄−1/2H̄S̄−1/2Ū = Ū Λ̄. (7.60)

Initially, the QP Hamiltonian H̄ [c.f. Eq. (2) in Ref. [74]] is expressed in the basis set {φ(1)
n }, for

which we use DFT orbitals. In iteration i, the solution of Eq.(7.60) yields the diagonal matrix
Λ̄ with the eigenvalues E(i+1)

n and the unitary matrix Ū holds the corresponding eigenvectors of
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H̄({E(i)
n }, {φ(i)

n }). After that, the QP Hamiltonian H̄({E(i+1)
n }, {φ(i+1)

n }) is set up with the new
eigenvalues and eigenfunctions φ(i+1)

n =
∑

m Umnφ
(i)
m . The corresponding new eigenvalue problem

is solved in the new basis set. This procedure is iterated until self-consistency is reached. We
perform seven self-consistency steps, which gives QP energies converged to about 1 meV. After
the final step, the optical matrix elements are recalculated using the final sc-QPGW0 orbitals,
and the screened Coulomb kernels W0 are stored. In the final step, the BSE matrix is set up and
the EVP Eq.(7.36) is solved.

7.6.2. Symmetry reduced k-point meshes

To reduce the computational demand, we apply a method that was first introduced in Ref. [171].
A similar approach was later also discussed in Ref. [172].

Table 7.2.: The column L specifies the number of irreducible k-points obtained from an ordinary
n×n×n k-mesh, Γ-centred or Monkhorst-Pack (shifted off Γ). Calculations are then
performed on L new k-grids (Mp=1...L) obtained by shifting a m × m × m k-grid
along each irreducible k-point k̃np=1...L.

k-mesh n L k-mesh (Mp) m

Si Γ 3 4 Γ 16
LiF Γ 4 8 Γ 6
C MP 4 10 Γ 8

In order to reach an accurate sampling of the Brillouin zone, we perform independent calcu-
lations for many k-point grids systematically shifted off Γ. The systematic shifts are calculated
from a symmetry reduced n× n× n k-mesh. The procedure is the following:

(i) Generate all irreducible k-points k̃np=1...L with weight wp=1...L from a Γ-centred or Monkhorst-
Pack[173] n× n× n k-mesh.

(ii) Generate L, m × m × m k-point grids shifted off Γ by the previously calculated shifts
k̃np=1...L; this creates L setsMp=1...L. Calculations are performed independently for each of
these sets. The results of each shifted mesh are then weighted by the previously determined
weight wp and summed up.

It is easy to see, that the set ∪pMp includes all k-points of a regular (n ·m)× (n ·m)× (n ·m)

k-mesh with the proper weights. Using this trick the computational time reduces roughly by
factor (n3)2 in the GW calculations and (n3)3 in the Bethe-Salpeter calculations, at the expense
of truncating the long range part of the Coulomb kernel at roughly m times the unit cell size.
Since the exciton is well localized in LiF, m can be small for LiF without causing sizeable errors,
whereas larger values m are required for C and Si. The used k-point sets are summarized in
Table 7.2.

The dielectric function of Si, C and LiF shown in Figs. (7.3,7.6,7.7) are averaged over the L



1167. Beyond the Tamm-Dancoff approximation for extended systems using exact diagonalization

independent calculations. The average is calculated as

X =
1

W

L∑
p=1

wpXp and W =
L∑
p=1

wp, (7.61)

where Xp denotes the dielectric function calculated on the k-meshMp shifted by an irreducible
k-point k̃np .

7.7. Results at vanishing momentum transfer

Previous ab-initio calculations for silicon,[62, 174, 175, 93, 176, 91, 177, 178, 92, 179] carbon[91]
and lithium fluoride[180, 181, 178] usually included only the resonant part of the BSE-Hamiltonian.
Although it is common consensus that the effects of the coupling between the resonant and an-
tiresonant part are small,[175, 182, 183, 184, 94] optical spectra explicitly including the coupling
term have rarely been published. [94, 185, 186, 187]

7.7.1. Residual basis set errors

The calculation of the frequency dependent dielectric function [Eq.(7.51)] requires the summation
over all possible transition pairs between occupied and unoccupied states. By imposing a cut-off
for the transition states (compare Table 7.3), high energy excitations are neglected. This yields
a residual error for the dielectric function at each frequency point. In order to estimate the total
residual error for the dielectric constant (Table 7.4) we first calculate Re εM(ω= 0) on a single
non-shifted Γ-centred m×m×m k-mesh including 12 unoccupied bands for Si, C and LiF. This
calculation is repeated including now only 7 (Si) or 8 (C, LiF) unoccupied bands, with 4 valence
bands taken into account in both cases. The residual error ε̂ for the dielectric constant on this
k-mesh is the difference of both calculations, i.e. ε̂ = Re εM(ω=0; 12 CB)−Re εM(ω=0; 7/8 CB),
where CB denotes conduction bands. In Table 7.4 the dielectric constants are given without and
with these basis set corrections.

Table 7.3.: Number of occupied and unoccupied (virtual) bands included in the calculation of
the optical transition matrix elements.

occupied virtual
Si 4 7
LiF 4 8
C 4 8

7.7.2. Silicon

Figure 7.3 shows the real and imaginary part of the dielectric function (DF) of silicon. Electron-
hole pairs from the 4 valence bands and the lowest 7 conduction bands were included to compute
the dielectric function [c.f. Eq.(7.51)]. The turquoise (solid) curve represents the results of a
calculation where the full BSE-Hamiltonian is used. First of all, the present spectrum agrees
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Figure 7.3.: Real and imaginary part of dielectric function εM (< εM/= εM) of silicon predicted us-
ing sc-QPGW0+BSE using Tamm-Dancoff approximation (black-dashed/black line)
and full BSE (turquoise-dashed/turquoise line) compared to the experimental spec-
trum (red dots). [188] Theoretical spectra are smoothened by a Lorenzian using a
complex shift of 0.1 eV. Inset: comparison of the imaginary part of the dielectric
function calculated using (i) LDA (dashed line) and PBE (double-dotted dashed
line) orbitals and quasiparticle energies calculated at the G0W0 level, and (ii) using
self-consistently iterated quasiparticle energies and orbitals (blue dotted-dashed line)
based on PBE orbitals and eigenvalues.
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Figure 7.4.: Imaginary part of the dielectric function εM(ω) of silicon for previous calculations
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k-point sampling. In sequence of appearance in figure: (i) Ref. [189] (double-dotted
dashed line), Ref. [178] (dashed line), (iii) Ref. [190] (dotted line), (iv) Ref. [175]
(double-dashed dotted line). Experimental measurement (red dots). [188]
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Table 7.4.: Static dielectric constant Re εM(ω= 0) from the solution of Eq.(7.51) in the Tamm-
Dancoff Approximation (TDA) and beyond TDA. The values in parentheses are the
corrected dielectric constants, where the estimated residual basis set error is taken
into account, i.e. Re εM(ω= 0) + ε̂ (see section 7.7.1). Experimental data are taken
from Ref. [70].

Re εM(ω=0) Si C LiF
TDA 11.82 (11.87) 5.31 (5.81) 1.76 (1.96)
bey. TDA 11.42 (11.49) 5.25 (5.65) 1.75 (1.89)
Exp. 11.90 5.70 -

very well with the experimental spectrum for the peak positions, although we have not applied
any empirical shifts in the preceding quasiparticle calculations to fit the spectrum. Most notably,
the position of the pronounced E1 peak differs only by about 110 meV from experiment (at room
temperature [188]) and by about 80 meV compared to measurements at 20K. [191] The E2 peak
position agrees perfectly with the measured spectrum. According to Ref. [192, 191] interband
transitions exhibit a temperature dependence with respect to energy shifts and broadening.[193]
In particular the E1 peak position is renormalized due to electron-phonon interactions. Even at
zero temperature, zero-point vibrations are suggested to give rise to a shift of about 100 meV
[192]. The effect of lattice vibrations has also been calculated entirely ab-initio [179] indicating
a redshift of about 80 meV for the E1 and E2 peaks at T = 0 K. This compares favorably to our
calculated spectrum which does not include any phonon contributions. The agreement for the
intensities is not entirely satisfactory. In particular the E1 peak is slightly overestimated and the
ratio of intensities (E2/E1) is nearly one. The present calculations correspond to an exceedingly
accurate k-point sampling of 48 × 48 × 48 points and seem to be reasonably converged with
respect to the number of k-points. However, the interaction range of the exciton is still limited
by the 16×16×16 subset that we used in each individual GW and BSE calculation. In fact, the
spectrum is rather sensitive to the selected k-points as shown in Fig. 7.4. For instance, if the the
sampling is reduced from 48×48×48 to 40×40×40 (and 10×10×10 for the exciton interaction
range) the E1 and E2 peaks are less pronounced. This underlines the fact that the exciton in
silicon has a rather large spatial extent in real space and a dense k-point sampling is necessary.
To determine how much the starting point influences the results, the inset of Fig. 7.3 shows a
comparison of BSE calculations based on G0W0 calculations using either PBE or LDA orbitals.
The shape of the curves agrees almost perfectly with the sc-QPGW0+BSE calculations, however,
sc-QPGW0+BSE slightly decreases the amplitudes and shifts the spectrum to the right, thereby
improving the agreement with experiment. In Fig 7.4, we compare our results with previous
calculations. We suspect that the main reason for discrepancies to previous calculations are the
different k-point sets. None of the previous calculations seems to be very well converged with
respect to the number of k-points. Some k-point sets, enhance certain features such as the E1

or E2 peak. Overall it is obvious that the present calculations match the experimental results
much better than previous data.
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7.7.3. Dielectric function of silicon at a finite q-vector

The dielectric function at finite momentum transfer has previously been calculated mainly to
investigate the dynamic structure factor [194, 195, 196] or electron energy loss spectra [146].
However, the explicit q-dependence of the dielectric function has been little explored [183, 184],
and results from the solution of the full excitonic Hamiltonian have not been published to the
best of our knowledge.

In Fig. 7.5 we show the dielectric function of silicon at a finite wave vector |q| = 0.795

a.u. along the [111] direction at different levels of approximations of the polarizability. The
calculations are based on the same k-point grid as above, but since differences between different
shifts are tiny, we have calculated the dielectric function only for a single set of shifted 16×16×16

k-points. The highest considered excitation energy was 24 eV, resulting in a BSE-Hamiltonian
of roughly 200.000 × 200.000 if the Tamm-Dancoff approximation is not applied. Results for
time dependent DFT were previously published by Weissker et al. [183]. The important point of
that study was that (i) the independent particle (IP) approximation yields very unsatisfactory
results independent of whether the results are based on DFT or GW one electron energies (not
shown). (ii) Time dependent DFT yields excellent agreement with experiment. On the level of
the RPA, our present data are similar to the previous results, although our present calculations
yield less intensity for the peak at 19 eV. The GW+BSE data follow the TDDFT and thus
experiments well, although the amplitude is reduced compared to the TDDFT data. For the
TDA, the peak around 17 eV clearly disappears, an effect that was also observed for TDDFT in
Ref.[183] (Fig. 4). Note that in our TDA calculations we have entirely neglected the antiresonant
part i.e. disregarding the negative frequency branch in Eq.(7.59). Including it yields even worse
agreement with the beyond TDA spectrum. We can therefore conclude that GW+BSE describes
excitonic features at zero wavelength and finite wave length almost equally well, whereas TDDFT
works well at finite momentum transfer but fails at zero wave length, as it is not able to resolve
the E1 peak in Si.

7.7.4. Carbon

The optical spectrum of carbon is shown in Figure 7.6(b). Transition energies are considered up
to 36 eV including up to 4 valence and 8 conduction bands. As before, the various characteristic
positions are reproduced remarkably well, for instance the onset of absorption around 7 eV, the
main peak around 12.2 eV, or the "kink" around 13 eV. However, for carbon, the peak intensity
in the BSE calculations is significantly overestimated compared to the experimental values. A
similar, albeit not as pronounced overestimation, was observed in a previous BSE calculation.
[146] This overestimation is most likely caused by exclusion of any temperature effects on the
spectrum; as shown in Ref. [179] (only for silicon), there is a gradual redshift of the peak position
as well as an increase of the peak width as the temperature increases. As for Si, the difference
between TDA and the full BSE equation is almost entirely negligible. The intensity of the main
peak differs only by about 2%, so as for Si, it is save to neglect effects beyond the TDA.
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Figure 7.7.: Dielectric function εM(ω) of lithium fluoride. Color coding as in Fig. 7.3. Experi-
mental spectrum (red dots). [198]

7.7.5. Lithium fluoride

The optical spectrum of LiF (Fig. 7.7) is obtained including the highest 4 valence bands and the
lowest 8 conduction bands. Comparison to experiment suggest again that the sc-QPGW0+BSE
yields excellent results. The first peak is slightly blue shifted compared to the experiment (about
16 meV). At first sight, the first minimum — in the experiment located around 13.6 eV —
seems to be red shifted in the calculations. However this could well be a result of the finite
experimental resolution or finite temperature broadening of the measured spectrum. As in most
previous calculations we also observe an additional sharp peak around 22.2 eV, which is absent
in experiment. This peak was also present in all previous BSE calculations[180, 146] and might
be an artifact of either the static W kernel or the simplified QP picture used as starting point
for the BSE calculations.
In comparison to Si and C, LiF shows almost no differences for the DF calculated within the

TDA or solving the full BSE. This is in line with simple perturbation theory, which suggests that
the coupling strength between the resonant and antiresonant part will be inverse proportional to
the energy difference between the most prominent peaks in the resonant and antiresonant part.
Therefore, as the excitation energies increase, beyond TDA effects become less important, which
is entirely in line with our observations.

7.7.6. Benchmarking the BSE code - lithium fluoride (dimer)

The previous results for the bulk systems show that solving the full excitonic BSE-Hamiltonian
makes only little (Si, C) or almost no contribution (LiF) to the DF compared to the TDA at
q = 0. However, for low dimensional systems like molecules, exclusion of the coupling terms of
resonant/antiresonant e-h pairs leads to larger errors in the optical spectrum. [94] We choose
the cyclic lithium fluoride dimer (Li2F2) to demonstrate that the TDA is less satisfactory in
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Figure 7.8.: Frequency dependent dielectric function [Re ε(ω)/Im ε(ω)] for Li2F2 obtained from a
HF+TD-HF calculation, applying the TDA (black lines) and beyond TDA (turquoise
lines). The latter ones are compared to the dielectric function obtained from a real-
time propagation of the orbitals on a Hartree-Fock level (red dots). Transition pairs
with an energy difference up to 16 eV are included. Structural data are taken from
Ref. [199].

describing the dielectric function of low dimensional systems. Moreover, to give evidence that
our BSE code works correctly, we compare our results obtained from time-dependent Hartree-
Fock (TD-HF) calculations [on top of Hartree-Fock (HF)] against the results from a real-time
propagation of the orbitals. Solving the polarizability within the TD-HF approximation requires
to solve an eigenvalue problem that is algebraically equivalent to the solution of the excitonic
BSE-Hamiltonian. In the framework of TDDFT, this is known as the Casida equation.[155]
Computationally, one has to calculate the same matrix elements as given in Eqs.(7.24-7.27).
However, the screened Coulomb potential W is replaced by the bare Coulomb exchange kernel.
This allows us to use the same routines to calculate the polarizability as in the case of the
excitonic BSE-Hamiltonian. On the other hand, propagating orbitals in real time for the HF-
Hamiltonian, allows one to calculate the polarizability for TD-HF beyond TDA without any
further approximations.[200, 201, 202] We have implemented this time-propagation method in
the VASP code and use it to evaluate our results for the DF beyond TDA (obtained from
matrix diagonalization). The cyclic dimer Li2F2 shows a distinct difference between the dielectric
function calculated within the TDA and beyond TDA (Fig. 7.8). Compared to the TDA, the
entire spectrum is slightly red-shifted and less pronounced at higher energies, clearly showing
that coupling of resonant/antiresonant electron-hole pairs contribute to the polarizability. Similar
features in the absorption spectrum have been observed for the trans-azobenzene molecule. [94]
The overall perfect agreement of the DF using the diagonalization of the TD-HF equation and
the time-propagation method confirms the correctness of the exchange terms in the beyond TDA
code.
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7.8. Summary and conclusion

The purpose of the present paper is two fold. First we have discussed a simple and efficient
method to calculate all eigenvalues and eigenvectors of the full BSE and Casida equation for
solids (in the absence of spin-orbit coupling). To achieve this goal, we have replaced the orbitals
at the k-points k by orbitals at the k-points −k in the antiresonant part of the BSE matrix.
This approach allows to apply methods previously used in the quantum chemistry community:
the BSE equation can then be reformulated into a quadratic equation involving the square of the
original eigenfrequencies. At the same time, the dimension of the matrix is reduced from 2N to
N , where N is the number of particle-hole pairs. Instead of a single 2N non-Hermitian eigenvalue
problem, now two diagonalizations of Hermitian matrices are required. This results in significant
savings in compute time. All in all, the present approach is about 2 times more expensive than
a standard Tamm-Dancoff calculation, a fairly modest computational increase. Furthermore, for
time-dependent DFT, the present approach is as efficient as the Tamm-Dancoff approximation
(requiring only few trivial additional calculation steps), and the required modifications of existing
codes should be straightforward.

To ascertain the correctness of the implementation, we have compared the present results
against a time-evolution code and found that the present approach yields exactly identical results
for the Li2F2 dimer. Likewise, for the RPA (i.e. neglecting exchange terms), the code yields
identical frequency dependent dielectric constants as our GW-RPA implementation at q = 0,
as well as at finite momentum transfer q 6= 0. Compared to the time evolution approach, the
present method in combination with scaLAPACK is competitive for matrix sizes of up to 100.000-
150.000. Most important, it allows to calculate all eigenvectors and eigenvalues, which is difficult
for time-evolution and Lanczos algorithms that often only yield the "optical" density of states.

In the present studies, we find that the difference between TDA and beyond TDA results is
tiny in most considered simple solids. This observation is in agreement with literature, where
many authors have claimed that they have not observed any difference between TDA and beyond
TDA (albeit almost always without showing the actual results). A visible change of the dielectric
function is only observed for Si at finite wave vectors and for the cyclic dimer Li2F2. In section
7.5 we have argued why the effects beyond TDA are so small. Our implementation, as well as all
BSE implementations following Onida et al. [62] include beyond TDA effects (we are not certain,
though, whether all BSE codes follow this recipe). They do so by first disregarding the resonant-
antiresonant coupling but at the same time disregarding the response at q = 0. However, in
the final calculation step determining the macroscopic dielectric constants, the response at the
wave vector q = 0 is exactly included beyond TDA. Strictly speaking the calculated response
functions go beyond the TDA. As to why this approach is less effective for molecules or larger
supercells is also clear: as the cell size increases, the spacing of the reciprocal lattice vectors
decreases and singling out one of the densely spaced wave vectors (e.g. q = 0) and treating it
exactly becomes less accurate. Hence, for a molecule in a box, results are less accurate for what
is commonly called the "TDA" approximation.

The second purpose of the paper was an evaluation of state of the art GW+BSE calculations
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in comparison to experiment. To date, many BSE calculations are based, on DFT orbitals and
DFT one-electron energies, where the unoccupied eigenenergies are shifted to higher energies
prior to the BSE calculation. Often the shift is determined by preceding GW calculations or
even chosen to reproduce the peak positions in the experimental optical spectrum. Here we
have instead performed self-consistent quasiparticle GW calculations (sc-QPGW0), where the
screening in W0 was determined at the level of density functional theory and the random phase
approximation. The predicted spectra are all in excellent agreement with experiment as far as
the peak positions are concerned; it is impressive how well parameter-free methods nowadays
perform.



8. Macroscopic dielectric function within

time-dependent density functional theory - Real

time evolution versus the Casida approach∗

In 1984, E.K.U Gross suggested an extension to standard density functional theory, which is
nowadays referred to as time-dependent density functional theory (TDDFT). [100] It was shown
that the fundamental concept of the one-to-one mapping between the one-body density and
an external potential also holds in the case of time dependent quantities. In this context, the
time-dependent Kohn-Sham equations are set up that include the time-dependent exchange-
correlation potential vxc. Although the exact vxc is unknown, there are several approximations
to vxc. Among them is the adiabatic local density approximation (ALDA). [143] This approxima-
tion yields a computationally tractable working scheme to solve for time-dependent properties
such as the response of the ground state to an external perturbation, although the ALDA is
known to give rather poor results for the dielectric function, in particular, for large gap materi-
als. It lacks for instance bound excitons. For weak perturbations, the linear response function
χ relates the change of the interacting density to an external perturbation. Analogously, the
independent particle response function of the Kohn-Sham system χKS connects the variation
of the Kohn-Sham density to the change of the Kohn-Sham potential. Since the Kohn-Sham
equations formally yield the exact interacting density and hence the exact density variation, one
can link both response functions. This yields the central equation of time-dependent density
functional theory χ(ω) = χKS(ω) + χKS(ω) [vH + fxc(ω)]χ(ω), where vH is the Coulomb kernel
and fxc is the frequency dependent exchange-correlation kernel. The kernel is defined as the
functional derivative of the exchange-correlation potential w.r.t. the density. For slowly varying
densities in time, the already mentioned adiabatic local density approximation is a commonly
applied approximation for fxc. It takes into account only the instantaneous density when deter-
mining vxc and likewise fxc and results in the static limit of the exchange-correlation kernel for
the homogenous electron gas, i.e. fxc(ω) → fxc.[143] Gross and Kohn suggested an alternative
kernel within the local density approximation that allows to include the frequency dependence
of the exchange-correlation kernel. [127] Further approximations have been suggested, such as
the nano-quanta kernel[146, 147, 148], the boot strap kernel[149] and kernels based on jellium
with a gap.[150]
Casida picked up the idea of Gross. He formulated the density variation in terms of the density

matrix response and expressed the equations in terms of an orbital basis.[203] In particular, he
showed that it is sufficient to restrict the matrix elements of the density matrix response to

∗Based on: T. Sander and G. Kresse, Macroscopic dielectric function within time-dependent density functional
theory - Real time evolution versus the Casida approach, The Journal of Chemical Physics 146, 064110 (2017).
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terms of particle-hole and hole-particle coefficients. The essential outcome is a coupling matrix
that relates the variation of the self-consistent part of the Kohn-Sham potential to the density-
matrix response. It contains the Hartree kernel and the exchange-correlation kernel and can
be seen as an interaction matrix that couples the (resonant) particle-hole and (antiresonant)
hole-particle two-orbital states. The poles of the response function correspond to the desired
excitation energies, and one finally, has to solve a generalized eigenvalue problem, the Casida
equation.[204] It is the key quantity in linear response theory to calculate excitation energies
and has the same algebraic structure as the BSE matrix from field theory.[175] The Casida
matrix includes matrix elements that couple among the group of resonant/antiresonant two-
orbital states, but also between both groups. For computational reasons, it is common practice
to neglect the resonant-antiresonant coupling terms in solid state problems. This is known as
the Tamm-Dancoff approximation[89, 90]. Such decoupling of resonant and antiresonant terms
reduces the computational cost tremendously, as it makes the Casida matrix Hermitian and
reduces its dimension by a factor 2. The resulting eigenvalue problem can be solved independently
for the positive, as well as for the negative frequency branch. Since the TDA is an additional
approximation, results from TDA are generally not exact and differ from the time evolution
discussed below.

If one wants to obtain an exact solution, one has to solve the Casida equation exactly without
the TDA. The core problem then is that the Casida equation is non-Hermitian. The generalized
parallel diagonalization routines provided e.g. by scaLAPACK[205] do not exploit the symmetry
of the Casida equation and are therefore at least 4 times slower than our present algorithm
(diagonalization of a single generalized eigenvalue problem of rank 2N instead of diagonalization
of two eigenvalue problems of rank N). The full solution of the non-Hermitian Casida equation
is thus often determined using custom built iterative methods, which can require significant
coding effort.[206, 207]Alternatively, for quantum chemistry problems, the exact solution can be
obtained by squaring the original problem.[158, 159] The latter approach has not been used in
solid state physics, since it was not obvious how to generalize it to complex Bloch states. Only
recently, we have shown that a squared Hermitian problem can be obtained for periodic systems
by employing the time inversion symmetry to the group of anti-resonant two-orbital states.[1]
This approach now allows to solve for the exact response function without relying on the TDA
for solid state problems. Compared to the TDA, the computational effort only doubles and,
equally important, standard parallel diagonalization routines can be used to obtain the exact
response function.

A completely different approach to obtain response functions is taken by simply following the
time evolution of the dipole moment after an external time-dependent delta-function pulse. [201,
208] The frequency dependent polarizability is then extracted from the Fourier transformation
of the time evolved dipole moment.[209, 210] For linear properties, the perturbed orbitals are
commonly linearized to first order and the free oscillations are followed in time. In order to
solve the time-dependent Schrödinger equation, the second order differencing scheme is often
applied to propagate the orbitals.[211] The propagation of the orbitals can also be carried out
using e.g. predictor-corrected methods [212] or higher order Taylor expansions.[213] Besides the
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classical propagation schemes, the time evolution operator can be also calculated by iterative
methods, such as the Chebyshev expansion, which has been successfully applied to solid state
problems.[208] What all these methods have in common is that they yield the exact polarizability
beyond the Tamm-Dancoff approximation. It is commonly assumed that the time-evolution
methods are computationally advantageously compared to the Casida approach, as they avoid
storing and diagonalizing the Casida matrix. Closely related to time-evolution approaches are
methods that determine the response function using Lanczos algorithms. [214, 206] The super
operator for propagating the orbital coefficients is equivalent to the time-evolution operator, but
instead of calculating the spectrum from a Fourier transformation of evolving dipole moments,
the Lanczos algorithm is used to determine the spectral function of the time-evolution operator.
According to literature about 2000 evaluations of the time-evolution super-operator are required
to obtain converged spectra in this case. This is roughly similar to the number of applications of
the time-evolution operator in our present calculations. We thus expect that those method are
about as efficient as the time-evolution used here.

The main focus of the present work is to compare the approach suggested by Casida with
the time evolution of the orbitals. In particular, we focus on the performance, if the exchange-
correlation functional contains a nonlocal exchange contribution. Within the local-density ap-
proximation [21] and the generalized gradient approximation (PBE) [37], we test our implemented
time evolution code for silicon carbid (SiC), silicon (Si) and the molecule C60 and show that both
approaches yield exactly the same spectrum, as expected. Concerning computational require-
ments, we show that, although time evolution is very efficient for semi-local functionals, time
evolution is fairly slow if nonlocal exchange is included. Hence in this case, the Casida approach
is computationally clearly preferable.

In the following, we give a brief introduction to the time evolution method in the projected
augmented wave (PAW) method and demonstrate how it is related to the Casida equation. Our
results are then shown in section 8.3.

8.1. Time evolution method

In the presence of an external perturbation, we know from classical quantum mechanics that the
transition probabilities to first order are related to the dipole transition moments. Applying a
sharp delta pulse peak δ(t) to the system in the ground state [201], all optically allowed transitions
from the occupied manifold into the unoccupied manifold can be induced. In order to capture
the long wave length limit, we consider a spatially constant electric field. This external field,
which corresponds to the displacement field D in Maxwell’s equation, is treated in the Coulomb
gauge and gives rise to an external potential, which is given by

φext(r, t) = λ r ·D δ(t). (8.1)
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Immediately after the delta pulse, the occupied orbitals obtained from standard first order per-
turbation theory read

|ϕi(t=0+)〉 = |ϕ0
i 〉+ λ

∑
a∈virt.

cai |ϕ0
a〉 , (8.2)

with the transition coefficient
cai = D · 〈ϕ0

a|r|ϕ0
i 〉︸ ︷︷ ︸

µai

. (8.3)

Here and hereafter we index occupied orbitals and unoccupied (virtual) orbitals as i, j and a, b,
respectively and λ denotes the perturbation strength parameter. The superscript 0 indicates the
unperturbed single particle orbitals. In Eq. (8.3), µai are the dipole matrix elements. What
remains is to follow the free oscillation of the total induced dipole moment. Hence one needs to
solve the time-dependent Schrödinger equation. In contrast to the unperturbed solution where
the orbitals are simply driven by a phase factor e−εit, the orbitals from Eq. (8.2) contain a small
deviation and one seeks a solution of the time-dependent Schrödinger equation that oscillates
around the ground state solution. Thus the time-dependent solution can be written as

|ϕi(t)〉 =
{
|ϕ0
i 〉+ λ |δϕi(t)〉

}
e−iεit, (8.4)

with εi the eigenvalue of the orbital |ϕ0
i 〉. The second term on the r.h.s. in Eq. (8.4) contains

the time-dependent transition matrix elements cai(t)

|δϕi(t)〉 =
∑
a∈virt.

cai(t) |ϕ0
a〉 . (8.5)

The total dipole moment µ is given by the expectation value of the dipole operator r

µ =
∑
i∈occ.

〈ϕi(t)|r|ϕi(t)〉 (8.6)

and the induced dipole moment µ(1) is thus in first order given by

µ(1) =
∑
i∈occ.

λ
(
〈ϕ0

i |r|δϕi(t)〉+ 〈δϕi(t)|r|ϕ0
i 〉
)
. (8.7)

From the expression for the induced dipole moment, the polarizability tensor is extracted via a
Fourier transformation [215]

αγβ(ω) =
1

V

1

Dβ

∞∫
0

dt
∑
a∈virt.
i∈occ.

(
µγ ∗ai c

β
ai(t) + c.c.

)
e−i(ω−iδ)t. (8.8)

The introduced indices γ and β stand for the individual cartesian x, y, z-directions and δ is
an artificial Lorentzian broadening factor to account for a finite time propagation. Dβ is the
field strength of the delta pulse and V is the unit cell volume. The time evolution needs to be
performed three times for the three cartesian directions β, yielding cβai(t). As the dipole moment
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µai is ill-defined for periodic systems [79], one makes use of the commutator [Hsc, r] between
the self-consistent Hamiltonian and the dipole operator r. Since the local part of the potential
commutes with r, the dipole matrix element in Eq.(8.3) can be rewritten as

µai =
〈ϕ0

a| [Hsc, r] |ϕ0
i 〉

εa − εi
=
〈ϕ0

a|p− [r, Vnl] |ϕ0
i 〉

εa − εi
. (8.9)

Here, p is the momentum operator and Vnl denotes a nonlocal potential, which does not commute
with the dipole operator r.[79] In Bloch notation, the indices a and i collates the band and k-
point index (a → ck and i → vk). Thus the corresponding matrix elements for the momentum
operator reads

〈ϕ0
ck|p|ϕ0

vk〉 = 〈uck|i∇− k|uvk〉 , (8.10)

where unk is the cell periodic part, and c and v denote a conduction and valence band, respec-
tively. Matrix elements of the commutator [r, Vnl] need to be evaluated explicitly [see e.g. Ref.
[80]]. The corresponding nonlocal terms stem either from the nonlocal part of the pseudopotential
or from the nonlocal exchange in the Fock term. For a detailed discussion about the evaluation
of the matrix element in Eq.(8.10) within the PAW method, we refer the reader to Ref. [168].
From the solution of the (macroscopic) polarizability tensor the macroscopic dielectric function
εM(ω) can be calculated as[126]

εγβ,M(ω) = 1− 4παγβ(ω). (8.11)

The derivation of this equation assumes that only the Coulomb kernel diverges like 1/q2 as one
approaches q → 0. For exchange correlation kernels with a similar 1/q2 divergence, this equation
needs to be modified, as we discuss in the following paragraph. In density functional perturbation
theory, the macroscopic dielectric function is given by the head of the dielectric matrix[62]

ε−1
M (ω) = [1 + v0χ(ω)]00 . (8.12)

Here and in the following, χ are matrices of two reciprocal wave vectors q, q′, and the subscript
00 implies evaluation of the head, the component at q, q′ → 0. The polarizability matrix χ(ω)

and the independent particle polarizability χ0(ω) are related by the equation

χ(ω) = χ0(ω) + χ0(ω) [v + fxc]χ(ω), (8.13)

or equivalently
χ(ω)−1 = χ0(ω)−1 − [v + fxc] . (8.14)

In time evolution, the macroscopic field is zero during the time propagation, and only the q 6= 0

components of the potential evolve in time. To capture this situation, one needs to separate the
Coulomb kernel and the exchange correlation kernel into components q → 0, call them v0 and
fxc

0 , and the rest v̄ + f̄ = v + fxc − v0 − fxc
0 .[62] In time-evolution only the response related

to the amputated kernels v̄ and f̄ are included. Thus the time-evolution yields the head of the
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response function χ̄(ω) given by

χ̄(ω) =
(
χ0(ω)−1 −

[
v̄ + f̄

])−1
. (8.15)

The full response needs to be determined by

χ(ω) =
(
χ̄(ω)−1 − [v0 + fxc

0 ]
)−1

. (8.16)

Inserting this in Eq. (8.12) yields

ε−1
M (ω) =

{
1 + v0

[
χ̄(ω)−1 − v0 − fxc

0

]−1
}

00
. (8.17)

After some straightforward algebraic manipulation the macroscopic dielectric function reads

εM(ω) =

[
χ̄(ω)−1 − v0 − fxc

0

χ̄(ω)−1 − fxc
0

]
00

=
[
1− v0 [1− χ̄00(ω)fxc

0 ]−1 χ̄00(ω)
]
. (8.18)

It is easy to see that only the head of χ̄, χ̄00 needs to be known to determine εM. For an exchange
correlation kernel that does not diverge at q = 0, the macroscopic dielectric function reduces
to Eq.(8.11) (α(ω) = limq→0 χ̄q,q(ω)/q2, vq = 4π/q2). This is the appropriate form for local
or semi-local functionals, which generally lack a divergence as q approaches zero. To make the
correction more immediate for the case that the exchange-correlation kernel contributes, one can
also Taylor expand the equation yielding:

εM(ω) ≈ 1− v0χ̄00(ω) + χ̄00(ω)fxc
0 χ̄00(ω). (8.19)

If fxc
q diverges like 1/q2, a correction term needs to be added to obtain the macroscopic dielectric

function (note that χ̄qq ∝ q2). This is reportedly the case for meta-GGA functionals that
also depend on the kinetic energy density. However, for the Tao, Perdew, Staroverov, Scuseria
(TPSS)[216] functional used here, fxc

0 χ̄00(ω) is only of the order of 10−3 and can be safely
neglected.[128]

8.1.1. Time evolution in the PAW method

In the PAW method,[138, 142] the time-dependent Schrödinger equation involves the overlap
operator S̃ = T †T in front of the time derivative [212]

iS̃
∂

∂t
|ϕ̃(t)〉 = H̃ |ϕ̃(t)〉 . (8.20)

The equation above is valid as long as the projection operator T , given by

T = 1 +
∑
j

(|ϕ0
j 〉 − |ϕ̃0

j 〉) 〈p̃j | , (8.21)
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is time independent, i.e. for immobile ions. We adopt the notation of the pseudized one-electron
wave functions |ϕ̃〉, the pseudized Hamiltonian H̃ and the projector functions |p̃j〉 as in the
original paper of Blöchl.[138] Assuming the Hamiltonian to be constant during the time step
t, t+ dt the time evolution operator then can be cast in the form

Û(t, t+ dt) = S̃−
1
2 exp

(
−iS̃− 1

2
ˆ̃HS̃−

1
2 dt
)
S̃

1
2 . (8.22)

For a full time-dependent Hamiltonian the corresponding expression is given elsewhere. [210]
In order to approximate the time derivative in Eq.(8.20) the second order differencing scheme
(SOD) is exploited. It is obtained by Taylor expanding |ϕ̃(t)〉 backward and forward in time
and subtracting both terms from each other. With a Taylor series expansion of Û(t, t+ dt) one
obtains

S̃ |ϕ̃(t+dt)〉 ≈ S̃ |ϕ̃(t−dt)〉 − 2i dt H̃ |ϕ̃(t)〉 . (8.23)

The transition to a finite time step propagation is then understood in terms of a substitution
dt→∆t in Eq.(8.23). This time propagation scheme has the advantage to be symplectic, how-
ever, it is obviously not self-starting, since information at two time points is required, although
the differential equation is of first order. In Eq.(8.23) the overlap operator causes additional com-
plications. We solve this by projecting onto unoccupied ground state orbitals ϕ̃0

n and using the
orthogonality relation 〈ϕ̃0

n|S̃|ϕ̃0
m〉 = δn,m. As shown in the previous section, the time evolution

of the orbitals is basically driven by the time-dependent dipole transition moments cia(t). They
are easily obtained by projecting the time propagated orbitals onto the unoccupied manifold.
Given the expression of Eq.(8.4) and Eq.(8.5) and projecting Eq.(8.23) onto 〈ϕ0

a| we have

cia(tn+1) = cia(tn−1) + 2i∆t 〈ϕ0
a|H̃|ϕi(t)〉 . (8.24)

The full time evolution algorithm is summarized in the following. To initialize the propagation,
the orbitals at time step t0 + ∆t need to be calculated. For this purpose, we choose a small
interval between t0 and t1 and propagate in steps of (t1−t0)

N . For the very first time propagation
from t0 → t0 + ∆t

N the time evolution operator is approximated by a first order Taylor series
expansion. After that, the propagation is performed on the next N − 1 time steps by exploiting
Eq.(8.24) until time step t1 is reached. From now on the remaining computational steps are
summarized below:

for n = 1 . . . tmax:

– set up orbitals at time step tn

– update Hamiltonian H̃{ϕ̃i(tn)}
– calculate 〈ϕ̃0

a|H̃{ϕ̃i(tn)}|ϕ̃i(tn)〉 ≡ δcia(tn)

– cia(tn+1) = cia(tn−1) + 2i∆t δcia(tn).

We note that this algorithm requires no implementation of linearized first order equations, instead
the standard ground state routines can be used. One only needs to make certain that the initial
cia are sufficiently large to avoid rounding errors and sufficiently small to remain in the linear
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response regime. At least in the VASP code, this is the case for a very wide range with typical
initial transition matrix elements of the order of |cia| ≈ 0.01 . . . 0.1 eÅ. Increasing or decreasing
|cia| by several orders of magnitude by multiplying with different values of λ did not change the
results. As an optimum value, the perturbation parameter was set to λ = 0.05 for the systems
presented here.
A further issue is that even with relatively modest time steps, the oscillation frequencies of
|ϕ̃(t)〉 are modified compared to the original exact problem. This also affects the dynamical
state of the transition matrix element cai(t) in Eq.(8.8). To show this, we exploit a mode ansatz
for the full time dependent solution given in Eq.(8.4). As one seeks an oscillatory solution that
deviates from the ordinary time-dependent solution we follow Hedin and Lundqvist [5] and write

|ϕ̃i(t)〉 =
[
|ϕ̃0
i 〉+ λ

∑
a∈

virt.

(
Xaie

−iΩt + Y ∗aie
iΩt
)
|ϕ̃0
a〉
]
e−iεit. (8.25)

This ansatz is motivated by the theorem of Thouless, which yields a condition for collective
modes to be stable in the random phase approximation.[217] One finds this ansatz also in other
publications [218, 219] that solve for a stable time dependent solution within time-dependent
density functional theory. We will also use this ansatz in the next section to show the correspon-
dence to the Casida equation. Basically, this ansatz yields an oscillatory solution with frequency
Ω around the time independent solution, where Ω can be identified as an excitation energy. The
error of the oscillation frequency can be estimated by inserting this mode ansatz in the second
order finite difference equation [Eq.(8.23)] first and subsequently calculating the induced dipole
moment from Eq.(8.7). This yields the relation between the numerically obtained frequency Ω′

and the exact frequency Ω, as
sin
(
Ω′∆t

)
= Ω ∆t. (8.26)

For very small time steps ∆t, the sinus term can be approximated by its argument and thus the
approximate oscillation approaches the exact one. To compensate the frequency shift for larger
timesteps ∆t the Fourier transform in Eq.(8.8) is rescaled by changing the frequency from ω to
arcsin(ωt)/t in the exponential. Furthermore, the choice of the maximal time step depends on

Figure 8.1.: Time step grid on which the coefficients c(tn) are propagated. The propagation on
the red interval

[
t0, t0 + ∆t

N

]
is performed with the time evolution operator approx-

imated by a simple first order Taylor expansion. The coefficients on the remaining
black intervals are calculated with the aid of Eq.(8.23).

the maximum transition energies Emax considered and needs to satisfy the stability condition

∆t ≤ ~/Emax. (8.27)
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8.1.2. Connection to the Casida equation

Instead of solving the time-dependent Schrödinger equation, the von Neumann equation for the
density matrix can be solved alternatively. Considering a noninteracting fermionic many-particle
system, the associated density matrix ρ(r, r′, t) can be written in terms of a set of orthonormal
orbitals {ϕj(r, t)} as

ρ(r, r′, t) =
∑
j∈occ.

ϕj(r, t)ϕ
∗
j (r
′, t). (8.28)

These orbitals are solutions of a self-consistent (sc) HamiltonianHsc(r, r
′, t) which we additionally

extend to include a fraction of nonlocal exchange

i
∂

∂t
ϕi(r, t) = Hsc(r, r

′, t)ϕi(r, t)

=
[
H(r, r′, t) + cxHnl(r, r

′, t)
]
ϕi(r, t). (8.29)

Note that we have disregarded the overlap operator here and in the following to simplify the
notation. The one-electron part H(r, r′, t) contains the kinetic energy operator and the potential
due to the nuclei denoted by h, the Hartree potential VH and the exchange-correlation potential
Vxc and is defined as

H(r, r′, t) = δ(r− r′)[h(r) + VH(r, t)

+V DFA
xc (r, t) + (1− cx)V DFA

x (r, t)]. (8.30)

In the equation above, the exchange-correlation potential V DFA
xc and the exchange potential

V DFA
x are given in a density functional approximation (DFA). The remaining nonlocal part Hnl

of Eq.(8.29) is represented by the Fock operator, i.e.

Hnl(r, r
′, t) =

ρ(r, r′, t)

|r− r′| . (8.31)

If we set the parameter cx to zero we obtain the time-dependent Kohn-Sham Hamiltonian and
thus control the amount of exact exchange by cx which is chosen to be 1/4 in our hybrid-DFT
calculations. The corresponding equation of motion for the density matrix can be written in
position space as

i
∂

∂t
ρ(r, r′, t) =

∫
dr′′

[
Hsc(r, r

′′, t)ρ(r′′, r′, t)− ρ(r, r′′, t)Hsc(r
′′, r′, t)

]
. (8.32)

In a matrix representation, the density matrix is rewritten as

ρ(r, r′, t) =
∑
m,n

ϕ0
m(r)ϕ0 ∗

n (r′)ρmn(t), (8.33)

while its matrix elements are given in terms of the stationary orbitals of Eq.(8.29)

ρmn(t) =

∫
dr dr′ϕ0 ∗

m (r)ϕ0
n(r′)ρ(r, r′, t). (8.34)
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We use the indices m,n to denote all occupied and unoccupied orbitals. By use of Eq.(8.33) the
equation of motion [Eq.(8.32)] can be cast into the form

i
∂

∂t
ρmn(t) =

∑
l∈

occ.,virt.

Hml(t)ρln(t)−Hln(t)ρml(t), (8.35)

where matrix elements of the sc Hamiltonian are defined as

Hml(t) =

∫
drdr′ ϕ0 ∗

m (r)Hsc(r, r
′, t)ϕ0

l (r
′). (8.36)

By linearizing the density matrix, the equation of motion for the response of the density matrix
ρ(1) is given by [5]

i
∂

∂t
ρ(1)
mn(t) = (εm − εn)ρ(1)

mn(t) + (fn − fm)H(1)
mn(t) (8.37)

or equivalently in the frequency domain [203, 220]

ρ(1)
mn(ω) =

fm − fn
εm − εn − ω

H(1)
mn(ω). (8.38)

In the equation above, the superscript (1) means the perturbed part of the sc Hamiltonian, fn
are the Fermi weights and the εn are the eigenvalues of the corresponding orbitals ϕ0

n(r). For
an explicit expression of the matrix elements H(1)

mn in Eq.(8.38) w.r.t. the local Hartree potential
and the exchange-correlation potential, we refer the reader to Ref. [203, 220]. The corresponding
nonlocal term H

(1)
nl,mn is derived in the appendix [see Eq.(K.4)].

We now briefly discuss the relation to the time propagation discussed before. Equation (8.35)
is of course exactly equivalent to the equation used for the propagation of the orbital coefficients.
Equation (8.35) describes the oscillations of the density matrix driven by the sc Hamiltonian of
Eq.(8.29), in the absence of an external potential. This is equivalent to time evolution, where the
initial action of the external potential φext only induced transitions from the occupied manifold
into the unoccupied manifold spanned by the set of stationary orbitals ϕ0

i of the unperturbed
Hamiltonian. After the pulse, the external potential is zero, and the changes of the Hamiltonian
are then simply given by the time dependence of the sc Hamiltonian induced by the time-
dependent density matrix [compare Eq.(8.29) and (8.37)].

To obtain the final Casida equation, one can use a mode ansatz, as discussed in this paragraph.
By virtue of Eq.(8.38), the solution of the density matrix response turns into a self-consistent
time-dependent problem. For gaped systems it is convenient to consider the matrix elements
ρ

(1)
ai or ρ(1)

ia only, which results in the common ’electron-hole’ and ’hole-electron’ notation. By
exploiting the mode ansatz of Eq.(8.25), the Fourier transform of the first order density matrix
response yields for a single mode with frequency Ω

ρ(1)(r, r′, ω) =
∑
i∈occ
a∈virt

{
ϕi(r) [X∗ai δ(ω − Ω) + Yai δ(ω + Ω)]ϕ∗a(r

′)

+ ϕ∗i (r
′) [Xai δ(ω + Ω) + Y ∗ai δ(ω − Ω)]ϕa(r)

}
.

(8.39)
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It is evident that the density matrix response consists of two modes corresponding to eiΩt and
e−iΩt which results in the corresponding delta peaks δ(ω − Ω) and δ(ω + Ω) in the frequency
domain, respectively. One can insert the ansatz Eq.(8.39) into Eq.(8.38) for either the positive or
negative frequency but needs to consider both, ρ(1)

ai and ρ(1)
ia . For the positive mode one obtains

a coupled matrix equation given by:

ΩX∗ai = (εa − εi)X∗ai +
∑
j,b

{
〈ib|K|aj〉 − cx 〈ib|v|ja〉

}
X∗bj +

{
〈ij|K|ab〉 − cx 〈ij|v|ba〉

}
Y ∗bj

−ΩY ∗ai = (εa − εi)Y ∗ai +
∑
j,b

{
〈ab|K|ij〉 − cx 〈ab|v|ji〉

}
X∗bj +

{
〈aj|K|ib〉 − cx 〈aj|v|bi〉

}
Y ∗bj .

(8.40)

This can be rewritten in a more compact form as(
A B

B∗ A∗

)(
X∗

Y∗

)
= Ω

(
1 0

0 −1

)(
X∗

Y∗

)
, (8.41)

where matrix elements of the submatrices A and B read

Aai,bj = (εa − εi)δi,jδa,b + 〈ib|K|aj〉 − cx 〈ib|v|ja〉 (8.42)

Bai,jb = 〈ij|K|ab〉 − cx 〈ij|v|ba〉 . (8.43)

Here, the kernel K is the sum of the Coulomb kernel v(r, r′) = |r − r′|−1 and the exchange-
correlation kernel fxc(r, r

′), and the corresponding matrix elements of K and of the Coulomb
kernel v have the general form

〈mn|g|pq〉 ≡
∫

dr dr′ϕ∗m(r)ϕ∗n(r′)g(r, r′)ϕp(r)ϕq(r
′). (8.44)

Within the adiabatic formulation of TDDFT, the xc kernel is local in time and hence frequency
independent. In this commonly applied approximation we have

fxc(r, r
′) ≈ δ2{EDFA

c + (1− cx)EDFA
x }

δρ(r)δρ(r′)
+ cx

δ2Eexact
x

δ2ρ(r, r′)
. (8.45)

Here, the density ρ(r) is the diagonal of the density matrix ρ(r) ≡ ρ(r, r). The second term
of the r.h.s of Eq.(8.45) involves the second derivative of the exact exchange energy w.r.t the
density matrix and gives rise to the last term in Eq.(8.42) and Eq.(8.43). An algebraic equivalent
formulation of Eq.(8.41) follows for the conjugated eigenvector (Y,X) with eigenvalues −Ω. The
solution of the generalized eigenvalue problem [Eq.(8.41)] yields the desired excitation energies.
To solve for the eigenvalues Ω, we proceed as in our previous publication.[1] In contrast to
quantum chemistry, where the matrices A and B are real valued, the matrices are complex
albeit Hermitian in solid state theory. Since the matrix elements of A and B are expressed in
terms of Bloch functions, the orbital index now contains the band and k point index, i.e. (nk).
This allows to apply the time inversion symmetry where to every Bloch orbital ϕnk a complex
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conjugated orbital ϕ∗n−k is associated, both having the same orbital energy. We exploit this
time inversion and can thus rewrite the complex conjugated matrices in Eq.(8.41) by means of
B∗ → B and A∗ → A, i.e. we replace the orbital ϕnk by ϕ∗n−k in the lower and right part
of the square matrix.[1] What remains is to solve the following now Hermitian but generalized
eigenvalue problem (

A B

B A

)(
X∗

Y∗

)
= Ω

(
1 0

0 −1

)(
X∗

Y∗

)
. (8.46)

We note that this eigenvalue problem can also be solved in terms of the eigenvector (Y,X) at
the frequency −Ω. This is however redundant, since both vectors, i.e. (Y,X) and (X∗,Y∗) yield
the same algebraic eigenvalue problem.
The final step is to rephrase the generalizes eigenvalue problem as a quadratic Hermitian

eigenvalue problem that can be solved efficiently using available linear algebra packages. From
Eq.(8.46), an equivalent quadratic eigenvalue problem can be derived and reads[

(A−B)
1
2 (A + B)(A−B)

1
2

]
(A−B)−

1
2 (X∗ + Y∗) = Ω2(A−B)−

1
2 (X∗ + Y∗). (8.47)

A well documented and a detailed derivation of Eq.(8.47) can be found e.g. in Ref. [159, 158, 1].
From Eq.(8.46) one reads off that the eigenvectors form a supervector: while X∗ holds particle-
hole matrix elements of the density matrix response ρ(1), Y∗ holds the hole-particle elements,
respectively. At this point, some further comments are appropriate concerning the solution of
Eq.(8.47). First of all, if the eigenvalues Ω are real the oscillatory ansatz in Eq.(8.25) represents
a stationary oscillation about the ground state.[221, 5] Secondly, the matrix (A − B) needs to
be positive definite so that its square root is well defined and single valued. Even more, positive
definiteness of (A±B) guarantees a stable reference state from which excitations are considered
and hence yields positive definite eigenvalues Ω.[222] The condition of positive definiteness of (A−
B) is easy to establish in the case of TDDFT, because with our ansatz (time inversion symmetry)
the matrix (A − B) is only diagonal with elements εa − εi and hence positive definiteness is
guaranteed for pure density functionals. For hybrid functionals, positive definiteness is not
generally provable, but in practice commonly observed.
The final quantity of interest is the long wave length limit of the polarizability, i.e. the

macroscopic dielectric which is given by [1]

εM(ω) =1− 4πe2

V

∑
Λ

(
1

ω − ΩΛ
− 1

ω + ΩΛ

)
×

×
{∑

k

∑
c,v

wk q̂
[
µcv,kX

∗(i,a)k
Λ + µ∗cv,−k Y

∗(a,i)−k
Λ

]}
×
{
c.c.

}
,

(8.48)

where µcv,k denotes the matrix dipole element as defined by Eq.(8.9) with the conduction band
index c, the valence band index v and the k-point index k, respectively. The unit vector q̂

indicates the direction of the applied external field D. Furthermore, by the index −k we denote
the dipole matrix element calculated with the corresponding Bloch orbital at the negative k

vector, Λ is the eigenvector index of Eq.(8.46), wk denotes the k-point weight and V is the
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volume of the unit cell. This equation is the exact analog of (8.11), which relates to the fact
that solving the Casida equation or the time-evolution equation is done in the absence of a
macroscopic field, as already discussed a few lines above. This point is also discussed in detail
in Ref. [1].

8.2. Computational complexity

The computational requirements are summarized in Tab. 8.1. The time evolution method
behaves in most parts as a conventional ground state calculation. Application of the Hamiltonian
on the occupied manifold scales linear in the number of k-points Nk and the number of occupied
orbitals Nocc. In most cases, the cost for each evaluation of the Hamiltonian is dominated by
the cost for Fast-Fourier transformations (Nplw lnNplw). There is one point requiring additional
compute time compared to groundstate calculations: we evaluate the update of the orbital
coefficients δcia(tn) (compare Eq. (8.24) and schematics following Eq. (8.24)) by projection
onto the virtual orbitals. Hence the code needs to pre-calculate and store a certain number
of unoccupied orbitals and project onto these orbitals in each step. However, within the linear
response regime, it is commonly sufficient to use a fairly small number of virtual orbitals, typically
as many or twice as many as the occupied orbitals. With present high performance basic linear
algebra subroutines (BLAS), the cost for this projection is fairly modest for the system sizes
considered here. Alternatively one could also invert the overlap operator as was done in Ref.
[223] reducing the scaling of the projection step for very large systems. Overall, for the system
sizes considered here, one step in the time propagation requires half the compute time of one
step in groundstate calculations, as the Hamiltonian is only applied once to each orbital in the
TE, whereas VASP usually applies the Hamiltonian two to three times per step and orbital for
groundstate calculations.

Table 8.1.: Memory and compute time of the time evolution method and the Casida approach.
For the time evolution, the compute time for hybrid functionals increases, because of
the need to evaluate the nonlocal exchange. Nk is the number of k-points, Nocc and
Nvirt the number of occupied and virtual (unoccupied) orbitals, and Nplw the number
of plane waves.

Time evolution Casida
Memory Nk × (Nocc +Nvirt)Nplw (Nk ×Nocc ×Nvirt)

2

Compute time Nk ×Nocc ×Nplw lnNplw+ (Nk ×Nocc ×Nvirt)
3

+ Nk ×Nocc ×Nvirt ×Nplw

Nonlocal exchange +N2
k ×N2

occ ×Nplw lnNplw -

Contrary to this, the cost for the Casida approach in the present VASP implementation is
dominated by the diagonalization of the Casida matrix, which has a dimension of Nrank =

Nk ×Nocc ×Nvirt. Storing the matrix requires N2
rank entries, whereas the diagonalization scales

cubically with the matrix rank N3
rank. If we consider that the number of k-points can be usually

reduced when the number of atoms N in the box increases, we find that the total compute time
increases quadratic with N for TE (disregarding the projection step), and cubically with N for
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Casida’s approach. This suggests that time evolution should usually be more efficient, and as we
will discuss below this is always the case for density functional theory calculations. For hybrid
functionals, the TE, however, requires one to evaluate the nonlocal exchange in each time step.
The cost for this step is quadratic in the number of k-points and occupied orbitals as shown in
the last line of Tab. 8.1. Obviously this does not worsen the scaling with the number of atoms
N , which is in total still quadratic for TE. However, if many k-points are included the compute
cost of hybrid functionals is usually two, sometimes even three, orders of magnitude larger than
for local or semi-local functionals. We hence, expect that TE will be inefficient for small systems,
ultimately outperforming the Casida approach only for very large system sizes. We note that the
additional compute cost for the Casida approach for hybrid functionals is modest: essentially
the setup of the A and B matrices becomes about a factor two more time-consuming, since
additional integrals need to be calculated.
Before continuing, we note that many time evolution implementations forgo on the projection

step, and instead simply propagate the orbitals using some higher order difference scheme or
the split operator approach.[210, 224] This certainly has several advantages: the computational
complexity is reduced, and the scaling with system size is improved. Furthermore, results are
from the outset essentially basis set converged without the need to check for convergence with
respect to the number of virtual orbitals. However, without projection the numerical stability
significantly worsens and the time steps need to be chosen much smaller than in the present
implementation. At least for solids, reasonable convergence with respect to the number of virtual
orbitals is often already achieved by including as many virtual as occupied orbitals. Then the
projection step is very cheap, and our present implementation efficient. Certainly the situation
is different for molecules in a box, but in that specific case, Gaussian basis set codes are usually
much more efficient than plane wave implementations, and these type of systems are therefore
not the main focus of the plane wave code VASP. Nevertheless, below we will demonstrate that
good results can be obtained with reasonable computational effort even for such cases.

8.3. Results

In this section, we compare the results for the macroscopic dielectric function from the solution
of the Casida equation against the results of the time evolution of the orbitals. We apply both
methods to the bulk systems silicon (Si) and silicon carbide (SiC) and to the molecule carbon
C60. The crucial point is to discuss the computational efficiency of the time evolution method
compared to the direct diagonalization in the Casida method.

8.3.1. Numerical details

First of all, we shall give some details about the computational aspects. All calculations have
been performed with the plane-wave code VASP using the PAW method to calculate all electron
orbitals and energies. When we work within the framework of density functional theory, exchange
and correlation effects are approximated by either the local-density approximation (LDA) [21]
or the generalized gradient approximation (PBE).[37] The latter one is exploited for silicon
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Table 8.2.: Three different k-point grids are used for each of the applied exchange and correlation
functionals. All grids are shifted off-Γ by s = (1/12, 3/12, 5/12).

LDA/PBE hybrid-LDA/hybrid-PBE TPSS
12× 12× 12 8× 8× 8 24× 24× 24

and carbon C60, whereas the LDA is applied for silicon carbide. In order to include also exact
exchange, we extend our calculations and employ the hybrid functionals hybrid-PBE (PBEh)[225]
and a similar hybrid-LDA.[225] As a third group of density functionals, meta-GGA functionals
that additionally depend on the kinetic energy density are used. These functionals seem to be
promising to give improved results for optical properties.[128] In this work, we employ the Tao,
Perdew, Staroverov, Scuseria (TPSS) functional[216] within the time evolution method.

For the bulk systems silicon carbid and silicon, the Brillouin zone was sampled by three different
k-point grids shifted off-Γ as shown in table 8.2. In the case of carbon C60, the molecule was
put into a simple cubic supercell surrounded by vacuum of about 5Å to minimize the overlap
of the orbitals with adjacent molecules. Its structural parameters have been relaxed using a
hard pseudo-potential that gives an all-electron precision. As we aim for the calculation of the
macroscopic dielectric function from Eq.(8.11) and Eq.(8.48), we first perform a DFT ground
state calculation for all three different exchange and correlation functionals and obtain the desired
Kohn-Sham orbitals and corresponding Kohn-Sham energies. These quantities then serve as
input to calculate the macroscopic polarizability using the time evolution method and the Casida
equation, respectively. Concerning the computational effort, the Casida method requires to set
up the matrices A and B introduced in section 8.1.2. Their dimension equals the number
of occupied bands times the number of unoccupied bands times the number of k-points which
defines the system size in the Casida approach. Thus the memory demand increases quadratically
with the system size and hence illustrates that this method might require a prohibitive amount
of memory. On the other hand, modern multicore, multiprocessor systems often have a huge
amount of memory. This can be used efficiently if the matrices are stored distributed, as it is
done in VASP, and if parallel diagonalization routines provided by linear algebra packages, such
as scaLAPACK [205], are employed.

In contrast to this, the time evolution method involves calculating the action of the Hamil-
tonian on each of the occupied orbitals, projection onto the unoccupied groundstate orbitals,
and a propagation of the density matrix. The memory demand increases linear with the number
of bands, the number of plane waves and the number k-points. This means that the memory
demand and the compute time per time step is roughly comparable to an ordinary DFT calcu-
lation. To initialize the time propagation, we apply a spatially constant external field separately
in all three cartesian directions which concomitantly breaks the crystal symmetry. The action of
the external potential onto the electronic part is calculated from Eq.(8.2). Subsequently the time
propagation is then carried out on an equally spaced time grid with a total simulation time of 33
fs. We have chosen the time steps ∆t to be 1/2∆tmax, where the maximum time step depends
on the maximum transition energy [see Eq.(8.27)].
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Table 8.3.: Total computational time for solving the Casida equation versus the time evolution
(TE) simulation. The numbers below are given in minutes and are obtained from
the wall clock time multiplied by the number of CPU cores. For each xc-functional a
different k-point grid is used, as shown in Table 8.2 and by the numbers in brackets
in the third line. A Γ-only k-point grid is used for C60.

DFT hybrid-DFT TPSS
TE/Casida TE/Casida TE

k-points (12× 12× 12) (8× 8× 8) (24× 24× 24)
SiC 179/5 793 19 082/173 5 407
Si 183/8 800 17 406/279 5 366
C60 13 845/25 453 112 637/30 861 26 238

8.3.2. Density functional theory

Our results for silicon carbide (SiC), silicon (Si) and carbon C60 are shown in the Fig. 8.2,8.3 and
8.4. To cover a sufficient spectral range of the dielectric function the transition space is made up
by 4 occupied bands Nocc and 8 unoccupied bands Nunocc for silicon carbide and silicon. This
allows to include transition energies up to 28 eV. For carbon C60 we include transition pairs
between 120 occupied bands and 600 unoccupied bands which covers transition energies up to 50
eV. In turn, the maximum transition energy yields a maximum time step ∆tmax of about 0.023 fs
for silicon carbide and silicon and a maximum time step of about 0.011 fs for carbon C60. For a
total simulation time of 33 fs this yields 1400 time steps for silicon and silicon carbide and 3000
time steps for carbon C60. The time steps have been chosen to converge the spectra w.r.t. peak
positions as the resolution of the transition frequencies depends on the total simulation time. In
Fig. 8.2 the results for the macroscopic dielectric function for silicon carbide are shown. First of
all, we can observe a perfect agreement of the peak positions as well as of the peak intensities
obtained from both methods within the local density approximation. In the case of silicon, where
we have used the PBE functional, the agreement is also very satisfactory as demonstrated in Fig.
8.3. Slight disagreement of the intensities is found which is due to different implementations
of the density gradient corrections of the PBE functional in the Casida approach and in the
time evolution method. Clearly, in comparison with the experiment, the calculated spectrum is
unsatisfying with respect to the peak intensities as well as the peak positions, which are red-
shifted by about 0.48 eV. This shift has been added to the experimental data to match the peak
positions in Fig. 8.3. The same qualitative results comparing the time evolution method and the
Casida approach are obtained also for carbon C60 as presented in Fig. 8.4. Of particular interest
is the comparison of the total computational time. For both methods, VASP was executed
in parallel and the best computational setup was chosen to achieve optimal efficiency for the
number of used cores. From Tab. 8.3 one reads off the total computational time. With the
Casida method chosen as reference value, the time evolution method takes only about 3% for
SiC and about 2% for Si of the total reference time. A less pronounced difference in the total
computational time is found for carbon C60 which is about 54% of the reference time of the
Casida method.
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Figure 8.2.: Real (broken) and imaginary (full and dotted) part of the macroscopic dielectric
function εM(ω) of silicon carbide (SiC) obtained from the solution of the Casida
matrix (black broken/black) and from the time evolution of the orbitals (cyan bro-
ken/cyan dotted). The exchange-correlation functional is approximated using the
local-density approximation (LDA) and a 12 × 12 × 12 k-point grid shifted off-Γ is
used.
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Figure 8.3.: Real and imaginary part of the macroscopic dielectric function εM(ω) of silicon (Si).
Color coding as in Fig. 8.2. The generalized gradient approximation PBE is applied
to approximate the exchange and correlation functional and a 12× 12× 12 k-point
grid shifted off-Γ is used. Experimental data (red dots) are taken from Ref. [188]
and are additionally red-shifted by 0.48 eV.
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Figure 8.4.: Real and imaginary part of the macroscopic dielectric function εM(ω) of carbon C60.
Color coding as in Fig. 8.2. The PBE functional is applied.

8.3.3. Hybrid functionals

In the following, we present the results for the macroscopic dielectric function now including
an admixture of exact exchange to the exchange-correlation functional. The exchange energy
functional includes 1/4 of the exact exchange and 3/4 of the density functional theory exchange
of LDA or PBE, respectively. All calculations were performed on a shifted 8 × 8 × 8 k-point
grid. Using more k-points would have made the time-evolution calculations computationally
prohibitive.
Again we find overall excellent agreement of the macroscopic dielectric function for the two

theoretical methods for all three systems as shown in Fig. 8.5, 8.6 and 8.7. The inclusion of
exact exchange clearly improves the spectrum of silicon by enhancing the first peak that is only
visible as a shoulder at around 3 eV in the corresponding DFT spectrum. The intensity of the
second peak at around 4 eV changes only slightly. The calculated spectrum, though, is still red-
shifted by about 0.23 eV with respect to the experimental data. This shift has been taken into
account in Fig. 8.6 by red-shifting the experimental spectrum by the same amount. The effect of
the additional exchange contribution, however, is recognizable in the spectrum as the two main
peaks E1 and E2 become clearly resolved. For silicon carbide, the peak around 7 eV exhibits a
gain of intensity at the expense of a reduced intensity for the peak around 9 eV. Carbon C60

also shows a gain of intensity for the peak around 4 eV, whereas the second main peak at about
5 eV becomes less pronounced. Due to the additional computational cost caused by the exact
exchange treatment in the time evolution case, solving the Casida equation obviously is now
clearly more favorable. The explicit calculation of the exchange part scales quadratic with the
number of k-points and its repetitive calculation within the time evolution increases the total
computational time tremendously. This is also reflected by the numbers given in table 8.3. With
the Casida method as reference, the time evolution method is slower by a factor of about 110
for silicon carbid, and is about 60 times slower for silicon. For carbon C60 the computational
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Figure 8.5.: Real and imaginary part of the macroscopic dielectric function εM(ω) of silicon
carbide (SiC) calculated on a shifted 8 × 8 × 8 k-point grid. A hybrid density
functional composed of 1/4 of the exact exchange Ex and 3/4 of the exchange of the
LDA density functional ELDA

x is used. The LDA correlation is fully included. Color
coding as in Fig.(8.2)

performance is about 4 times slower compared to the solution of the Casida method. In this
case, the increase in compute time from DFT to the hybrid functional for the time evolution
algorithm is only about a factor 10, which is typical for single k-point calculations. What makes
exchange so expensive in solids is the double-loop over k-points.

8.3.4. TPSS

An advantage of the time evolution method is that frequency dependent properties can be calcu-
lated for any functional for which groundstate properties are computable, since second derivatives
of the exchange-correlation functional do not need to be implemented. In the following section,
we present results for the macroscopic dielectric function where the exchange-correlation func-
tional is now approximated by the meta-GGA functional TPSS.[216] For this functional, the time
evolution method has been applied exclusively and the Brillouin zone was sampled by a shifted
24×24×24 k-point grid. In contrast to the (semi-)local approximations (GGA) LDA, meta-GGA
functionals incorporate a 1/q2 divergence of the exchange-correlation kernel fxc in the long wave
length limit q → 0.[128] This divergence stems from the nonlocality of fxc(r, r

′) and has been
suggested to reproduce excitonic effects in the optical spectrum. The nonlocality vanishes com-
pletely in the local-density approximation.[147, 226] In the light of these arguments, our TPSS
results for SiC, Si and carbon C60 shown in Fig. 8.8, 8.9 and 8.10 are somewhat disappointing,
since they apparently do not manifest a significant improvement compared to the LDA results
for SiC or the PBE results for Si and carbon C60. All in all, the spectra exhibit a slight blue
shift, whereas peak intensities do not change qualitatively. This result is not too surprising. As
already discussed in Ref. [128] the TPSS functional possesses only a negligible 1/q2 divergence
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Figure 8.6.: Real (broken) and imaginary (full and dotted) part of the macroscopic dielectric
function εM(ω) of silicon (Si) calculated on a shifted 8 × 8 × 8 k-point grid. The
hybrid functional PBEh is used to approximate exchange and correlation effects.
Color coding as in Fig. 8.2. Experimental data (red dots) are taken from Ref. [188]
and are additionally red-shifted by 0.23 eV.
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Figure 8.7.: Real and imaginary part of the macroscopic dielectric function εM(ω) of carbon C60.
The PBEh hybrid functional is applied. Color coding as in Fig. 8.2.
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for the exchange correlation kernel. This explains why the spectra are hardly modified compared
to standard local or semi-local functionals. Furthermore, in the present implementation we have
even neglected the 1/q2 divergence of the kernel as discussed at the end of section 8.1. This
approximation is fully justified for the TPSS functional, as shown in Ref. [128].

Other functionals, for instance the VS98 functional,[128] yield better agreement with experi-
ment (see Fig. 8.9), although it should be noted that the calculations in Ref. [128] only included
a long wave length approximation to the exact exchange correlation kernel. Our present code in
principle allows to include the response at all wave vectors, once the diverging part is properly
taken into account [compare Eq. (8.18)].
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Figure 8.8.: Real (black broken) and imaginary (black) part of the macroscopic dielectric func-
tion εM(ω) of silicon carbide (SiC). Calculations were performed using the meta-GGA
functional (TPSS) on a shifted 24×24×24 k-point grid. In cyan color, the imaginary
part of εM(ω) from Fig. 8.2 is shown. Results are obtained from the time evolution
method.

8.4. Summary and conclusion

In this article, we have addressed the calculation of the macroscopic dielectric function from
two equivalent methods. On the one hand, the Casida method is the common approach to
calculate the linear response of the density matrix and, concomitantly, the polarizability. Within
the long wave length limit, it allows then to obtain the macroscopic dielectric function. The
disadvantage of the Casida approach is that it requires to store a huge matrix. The rank of this
matrix is determined by the number of occupied times the number of considered unoccupied
orbitals times the number of k-points. The other common approach is time evolution. After
application of a long wave length delta pulse in time, the time evolution of the induced dipole
moments allows one to calculate the macroscopic polarizability from the time evolution of the
orbitals. Our present implementation uses a very simple second order difference method. To
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Figure 8.9.: Macroscopic dielectric function of silicon (Si). Color coding, k-point grid and
method as in Fig. 8.8. In cyan color, the imaginary part of εM(ω) from Fig. 8.3
is shown. Results for the imaginary part of εM obtained with the meta-GGA func-
tional VS98 (brown dots) are taken from Ref. [128]. Experimental data (red dots)
are obtained from Ref. [188].
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Figure 8.10.: Macroscopic dielectric function εM(ω) of carbon C60. Color coding and method as
in Fig. 8.8. In cyan color, the imaginary part of εM(ω) from Fig. 8.4 is shown.
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preserve orthogonality of the propagated orbitals at every time step, we project them onto a set
of orthogonal virtual orbitals. This facilitates a simple implementation for generalized eigenvalue
problems (PAW method) and improves the stability allowing for large time steps compared to
other time evolution implementations that only propagate the orbitals in time. Therefore, we can
also use a fairly long simulation time which yields an accurate resolution of individual eigenmodes
Ω. Furthermore, we have discussed how calculated frequencies are effected by the use of a second
order difference scheme, and how the resulting error can be easily corrected using a simple relation
[see Eq. (8.26)].

We have used both methods for standard DFT and hybrid functionals paying particular at-
tention to the computational complexity of the two approaches. The presented results for the
bulk systems silicon carbide and silicon, and for the molecule C60 clearly demonstrate the exact
equivalence of the Casida method and the time evolution method as they produce virtually indis-
tinguishable spectra. With regard to the computational complexity, the time evolution method
benefits from its approximately linear scaling w.r.t. the number of considered occupied bands
and k-points and linear scaling w.r.t the number of plane wave coefficients. Hence, the compu-
tational complexity is comparable to an ordinary DFT ground state calculation. In fact, in our
present implementation, we simply reused the ground state routines; the only difference is that
the initial orbitals are prepared using a short delta ’kick’ and then evolved in time. Compared to
the Casida approach, time evolution also benefits from a reduced storage demand, since one has
to store only the time developed transition coefficients. Those require at most the same amount
of storage as the occupied orbitals in groundstate calculations. This allows to go beyond the
k-point settings usually applied in the Casida method. In practice, we, however, found that time
evolution is only competitive, if the xc-kernel is approximated by a (semi)-local approximation
LDA, PBE or a meta-GGA functional. For such functionals, time evolution is on average more
than 40 times faster than solving the eigenvalue problem in the Casida approach for typical
k-point grids.

The drawback of the time evolution method is the repetitive update and application of the
Hamiltonian at every time step. This makes the inclusion of nonlocal exchange very time con-
suming, since the evaluation of the exchange kernel scales quadratic, both with the number of
k-points as well as with the number of occupied bands. As we know from groundstate calcula-
tions, evaluation of the nonlocal exchange can take up to 100-1000 times longer than calculation
of the Hamiltonian for standard DFT calculations, if many k-points are included. Hence, the
time evolution turns out to be not competitive with the diagonalization of the Casida equation
for hybrid functionals: although we have used about 3 times less k-points than for the DFT
calculations, the inclusion of exact exchange increases the computational effort by a factor 110
for silicon carbide and by a factor 60 for silicon. If only a single k-point is used, for instance, if
the molecule C60 in a box is considered, the total computational time for time evolution is only
about a factor 8 larger for hybrid functionals than for semi-local functionals. In this case, the
time evolution can be competitive with diagonalization of the Casida equation, although in our
specific test case, it was still slower than solving the Casida equation. Hence, for the systems
considered here, solving the Casida equation for hybrid functionals is always superior to the time
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evolution of the orbitals.
Another disadvantage of the time-evolution should also not remain unmentioned. The eigen-

functions of the excited problem are not readily available in TE, since TE only yields the density
of states of the optically excited system. This makes a precise analysis of the orbitals involved
in the excitations difficult, if not impossible.
The main drawback of solving the Casida equation, i.e. the huge memory requirements, has

already been mentioned. What has yet not been pointed out is that implementing the Casida ap-
proach requires one to implement the second derivative of the exchange-correlation kernel. These
are readily available only for few selected functionals. Here time evolution can have an advan-
tage, and in fact, our present time evolution implementation works for any functional for which
groundstate calculations are possible. This gave us the opportunity to evaluate optical prop-
erties for the meta-GGA functional TPSS. Unfortunately, we found no improvement compared
to standard DFT functionals: the excitonic features, which are absent using local or semi-local
approximations for the xc-kernel, are also absent using the meta-GGA functional TPSS. Com-
pared to our semi-local DFT calculations, we find for all three considered systems only a slightly
blue shifted spectrum, while the peak intensities remained nearly unchanged. We attribute this
observation to the small contribution of the singularity correction from the TPSS xc-kernel as
argued by the authors in Ref. [128].
In summary, time evolution and solving the Casida equation yield exactly identical spectra,

and both approaches have advantages as well as disadvantages. Clearly for local, semi-local or
meta-GGA functionals, time evolution methods are extremely efficient. For hybrid functionals,
though, the Casida approach is faster, since it avoids the repetitive evaluation of the nonlocal
exchange kernel.



9. Final summary

The present thesis aims to give a deeper insight of the calculation of the macroscopic dielec-
tric function. This quantity is accessible by experimental investigations and yields the optical
absorption spectrum for any kind of materials. It takes therefore an important role within the
research of new materials that are potentially applicable in the field of photovoltaics.

In the first part of this thesis the theoretical background has been presented and paves the
way to the final derivation of the dielectric function. Its numerical calculation, within an ab-
initio approach, is usually performed in a three step-method that starts with a density-functional
theory calculation to obtain the Kohn-Sham orbitals and corresponding eigenenergies. As this
method suffers from yielding proper band structures in particular for semiconductors, many-
body effects are usually taken into account, additionally. This is done in terms of the Green’s
function formalism. The underlying quantity to obtain the desired quasiparticle corrections, is
the self-energy that is usually approximated within the G0W0-approximation. In this work the
computational even more elaborate self-consistent GW -approximation is exploited, where the
Kohn-Sham energies but also the corresponding Kohn-Sham orbitals are updated iteratively. As
this step is very expensive, the scissor-operator technique is very often applied which simply
shifts the unoccupied Kohn-Sham eigenenergies to higher energies. However, this method yields
a less improved bandstructure compared to the self-consistent GW approach. More importantly,
the previously calculated one-electron orbitals and corresponding eigenenergies serve as input
to calculate the desired dielectric function in the final third step. Therefore, the inclusion of
quasiparticle effects is inevitable to have excellent agreement of results from ab-initio methods
with experiment. As it has been demonstrated in section 3.5.3, the dielectric function is obtained
from the density correlation function, while the latter one obeys a closed integral-equation, the
Bethe-Salpeter equation (BSE). Its solution is the central problem and covers the first key point
of this thesis. In the theory part, section 4.1.7, the formal solution of the Bethe-Salpeter equation
is derived. As discussed in this section, a non-Hermitian eigenvalue problem needs to be solved
to calculate the density correlation function. This can be avoided, if the commonly applied
Tamm-Dancoff approximation (TDA) is exploited. It turns the underlying eigenvalue problem
into an Hermitian one that can be solved numerically with standard eigenvalue solvers. One task
of this thesis, was to introduce the method of time inversion symmetry that allows to calculate
the full eigenvalue problem and thus to obtain the dielectric function beyond the Tamm-Dancoff
approximation. This topic has been addressed in the first publication, presented in section 7. In
there, we also give evidence why results for the optical absorption spectrum beyond the Tamm-
Dancoff approximation have little difference compared to those obtained with the TDA and give
furthermore reasons when this statement does not hold anymore. The second key point in this
thesis considers the limitation of the Bethe-Salpeter approach. As the density correlation function
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is represented within a basis set of two-orbital states (transition pairs), namely a product of one
occupied and one unoccupied orbital, the resulting and aforementioned eigenvalue problem is
numerically solvable only for matrix sizes of up to 100.000-150.000. Due to this, the number
of transition pairs limits the solution of the Bethe-Salpeter equation. For this reason, we have
implemented the time evolution of orbitals as described in the second publication, section 8. This
method allows to calculate the polarizability from which the macroscopic dielectric function is
obtained. Within the time dependent density functional theory, the TE method is equivalent
with the Casida method, while the latter one involves an equivalent algebraic eigenvalue problem
as the BSE method. Therefore, we can make statements about the computational efficiency
of both methods. With the TE method in hand, the Casida matrix is not required at all, to
calculate the polarizability and subsequently the macroscopic dielectric function. This has a huge
computational advantage, in terms of memory requirements (there is no matrix to be stored)
and compute time, since there is no eigenvalue problem to be solved numerically. Therefore,
the limitation of the number of transition pairs is removed. This allows to calculate optical
absorption spectra for systems that contains more than a few atoms per unit cell, as it is usually
done within the Casida/BSE approach. In section 8 we also discuss the advantages of the TE
method but also show its limitations and argue when the TE method becomes competitive.
In summary, I present the calculation of the dielectric function obtained from two different

methods. On the one hand the BSE approach is the common method that yields reliable results
for optical absorption spectra within the Tamm-Dancoff approximation. In this work, we give
evidence for the success of the TDA one the one hand, but also show when this approximation
fails. In order to go beyond the TDA, the time inversion symmetry has been exploited and allows
to solve the full eigenvalue problem. As a second key point, the time evolution of orbitals has been
introduced within the framework of time dependent density functional theory. Its computational
advantages have been presented in terms of compute time and offers the possibility to calculate
optical absorption spectra for nanostructures.



A. Functional derivative

Given a linear functional F [f ], its variation with respect to the argument f is defined as the
limes

lim
τ→0

F [f + τh]− F [f ]

τ
=

d

dτ
F [f + τh]

∣∣∣∣
τ=0

. (A.1)

If the limes in A.1 exists, the functional F is said to be differentiable. Thereby, h is an arbitrary
function with a given norm ||h||. From functional analysis, the functional F [f + τh] obeys the
condition F [f + τh]→ F [f ] for ||h|| → 0. As the test function h is arbitrary it may be chosen as
a simple delta function, that eventually yields the definition of the functional derivative as the
following:

δF

δf(x′)
:= lim

τ→0

F [f + τδ(x− x′)]− F [f ]

τ
(A.2)

From Eq.(A.2) the variation of the functional, i.e. δF , is then obtained by

δF =: F [f + δf ]− F [f ] =

∫
dx′

δF

δf(x′)
δf(x′) (A.3)

with δf(x′) = τδ(x− x′).

Chain rule of functional derivative

Like in ordinary analysis, a chain rule can also be stated for the functional derivative. Let F be
a functional of the form F = F [G[f ]], where G is a functional of f , the derivative w.r.t f is then
given by

δF

δf(x′)
=

∫
dx

δF [G]

δG[f ](x)

δG[f ](x)

δf(x′)
. (A.4)
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B. Second quantization - Coulomb interaction

In order to obtain the representation of the Coulomb interaction [Eq.(2.3)] within the framework
of second quantization, one finds with Eq.(3.13):

V̂int,sq =
1

2

∫
dr′1 dr′2 dr1 dr2 ψ̂

†(r′1)ψ̂†(r′2) 〈r′1r′2|
e2

|r̂1 − r̂2|
|r1r2〉 ψ̂(r2)ψ̂(r1)

=
1

2

∫
dr′1 dr′2 dr1 dr2 ψ̂

†(r′1)ψ̂†(r′2)
e2

|r1 − r2|
〈r′1r′2|r1r2〉︸ ︷︷ ︸

δ(r′1−r1)δ(r′2−r2)

ψ̂(r2)ψ̂(r1)

=
1

2

∫
dr1 dr2 ψ̂

†(r1)ψ̂†(r2)
e2

|r1 − r2|
ψ̂(r2)ψ̂(r1).

(B.1)

From Eq.(B.1) the expectation value of 〈Ψ|V̂int,sq|Ψ〉 with |Ψ〉 ∈ H+
1 becomes zero as a conse-

quence of the fundamental relation, that no particle can be removed from the vacuum state |0〉1.
The action of the field operators on the rhs then yields:

ψ̂(r2)ψ̂(r1) |Ψ〉 = ψ̂(r2)ψ̂(r1)ψ̂†(r1) |0〉
= −ψ̂(r1)ψ̂(r2)ψ̂†(r1) |0〉

= ψ̂(r1)
[
ψ̂†(r1)ψ̂(r2)− δ(r1 − r2)

]
|0〉

= 0.

(B.2)

1ψ̂(r) |0〉 = 0
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C. Fourier transform

The Fourier transform between the time and frequency domain used in this work employs the
following conventions:

f(t) =
1

2π

+∞∫
−∞

dω f(ω) e−iωt ←→ f(ω) =

+∞∫
−∞

dt f(t) eiωt. (C.1)

Fourier transform of the Theta function

In the context of the Green’s function formalism, the theta function appears in the definition of
the Green’s function and ensures either the causal or retarded/advanced properties. To obtain
the frequency component for G the following identity is exploited

Θ(t1 − t2) = lim
η→0

i

2π

∞∫
−∞

dω
e−iω(t1−t2)

ω + iη
. (C.2)

Fourier transform with periodic boundary conditions

Based on the crystalline structure of a solid, one is faced with a resulting symmetry that every
function has to obey. Thereby, the crystal consists of a smallest symmetric region, the unit cell,
that contains all non-equivalent space points with respect to a given crystal symmetry. This cell
is spanned by the corresponding basis vectors {ai} with i = 1, 2, 3. In order to have a complete
description of the solid, the unit cell is enriched with a given basis set of atoms and is then
continued periodically along the Bravais vectors R given by

R =

3∑
i=1

ni ai. (C.3)

For finite extended crystalline structures with a volume V , the Born and von Karman boundary
conditions [227] need to be satisfied. Therefore, the Fourier transform of a spatially function
f(r) can be expressed by a series of plane waves with momentum vector k + G

f(r) =
1

V

∑
k,G

f(k + G)ei(k+G)r. (C.4)

Hereby, the set of reciprocal lattice vectors {G} constitutes the reciprocal space to the real space
lattice associated with the set of Bravais lattice vectors {R}. They obey the condition

{RG} = 2πm with m ∈ Z. (C.5)
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The vector k in Eq.(C.4) belongs to the first Brillouin zone, the reciprocal counterpart of the
real space unit cell. It hence contains all non-equivalent smallest reciprocal lattice vectors. Their
number dependes on the entire periodic region V and is discrete, as long as the crystal volume
is finite. On the contrary, the set of G-vectors is infinitely large as it describes the periodicity
of the unit cell. Their number is artificially truncated within a numerical calculation. To finally
obtain the Fourier component, the inverse Fourier transformation yields

f(k + G) =

∫
dre−i(k+G)rf(r). (C.6)

If a two point function f(r′, r′) is considered, such as the dielectric function ε(r, r′), the Fourier
expansion becomes

f(r, r′) =
1

V

∑
k,G

∑
k′,G′

ei(k+G)rf(k + G,k′ + G′)e−i(k
′+G′)r′ , (C.7)

with the Fourier coefficient

f(k + G,k′ + G′) =
1

V

∫∫
drdr′ e−i(k+G)rf(r, r′)ei(k

′+G′)r′ . (C.8)

If, however, the function f(r, r′) obeys the periodicity of the crystal lattice structure, i.e. f(r +

R, r′+R) = f(r, r′), the Fourier coefficient f(k+G) is solely described by the reciprocal lattice
vector, i.e. f(k + G) = δk,0f(G). For the corresponding coefficient of the two point function
one obtains [51]

f(k + G,k′ + G′) =

∫
drdr′ e−i(k+G)rf(r, r′)ei(k

′+G′)r′

=

∫∫
drdr′ e−i(k+G)rf(r + R, r′ + R)ei(k

′+G′)r′

=

∫∫
drdr′ e−i(k+G)(r−R)f(r, r′)ei(k

′+G′)(r′−R)

= ei(k−k
′)Rei(G−G

′)R

∫∫
drdr′ e−i(k+G)rf(r, r′)ei(k

′+G′)r′

(C.9)

Equation (C.9) is valid only if the difference vector k − k′ is a reciprocal lattice vector such
that k = k′ + G̃. But this implies the vector k to be symmetrically equivalent to k′ and thus
would lie outside the first Brillouin zone and reveals the contradiction that both vectors k and
k′ belong to the first BZ. Hence it is the reciprocal vector G̃ = 0 that eventually fulfills the
necessary condition ei(k−k′) = 1. In turn the Fourier coefficient is diagonal with respect to the k
component:

f(k + G,k′ + G′) = δk,k′f(k + G,k′ + G′). (C.10)

By Eq.(C.9) one easily verifies, why the Fourier coefficient f(k + G) depends only on the single
reciprocal lattice vector G.



D. Pictures in quantum mechanics

Schrödinger picture

The time dependent Schrödinger equation describes the dynamics of a quantum mechanical state

i~
d
dt
|Ψ(t)〉S = ĤS |Ψ(t)〉S . (D.1)

It is based on the assumption of a conservative system whose energy is given by the Hamiltonian,
such that the eigenstates oscillates with their corresponding eigenenergy. The time evolution of
an arbitrary state |Ψ(t)〉S is formally governed by a time evolution operator Û(t1, t0). Therefore,
the time dependent Schrödinger equation can be rewritten as

i~
d
dt
Û(t, t0) |Ψ(t0)〉S = ĤS Û(t, t0) |Ψ(t0)〉S . (D.2)

Since Eq.(D.2) shall be valid for every eigenstates of the Hamiltonian, the time evolution operator
is then obtained from the solution

i~
d
dt
Û(t, t0) = ĤS Û(t, t0), (D.3)

which in the case of an time independent Hamiltonian (conservative system) takes the usual
expression

Û(t1, t0) = e−
i
~ ĤS(t1−t0) ≡ Û0(t1, t0), (D.4)

with the initial condition Û(t0, t0) = 1. However, the formal solution of Eq.(D.3), i.e.

Û(t1, t0) = 1 +
1

i~

t1∫
t0

dt′1ĤS(t′1) Û(t′1, t0), (D.5)

allows likewise to solve for the time evolution operator if the Hamiltonian is time dependent.
The solution to Eq.(D.5) is then obtained by iteration starting with the initial condition for Û :

Û(t1, t0) = 1 +
1

i~

t1∫
t0

dt′1 ĤS(t′1)

1 +
1

i~

t1∫
t0

dt′2 ĤS(t′2) Û(t′2, t0)

+ . . .

= 1 +
1

i~

t1∫
t0

dt′1 ĤS(t′1) +
1

(i~)2

t1∫
t0

dt′1 ĤS(t′1)

t1∫
t0

dt′2 ĤS(t′2) Û(t′2, t0) + . . .

= 1 + Û (1)(t, t0) + Û (2)(t, t0) + . . . .

(D.6)
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Since the time evolution operator itself is unknown, but appears in the series expansion, it makes
the solution of Û rather difficult. However, if the stationary Hamiltonian ĤS is given and hence
the solution for Û0 is known, it is convenient to exploit a product ansatz for the full time evolution
operator, such as [228]

Û(t1, t0) = Û0(t1, t0)ÛI(t1, t0) (D.7)

This allows to evaluate the differential equation for the time evolution operator Eq.(D.3) as
shown below:

i~
[
d
dt
U0(t, t0)

]
U ′(t, t0) + i~U0(t, t0)

[
d
dt
U ′(t, t0)

]
= HS(t)U0(t, t0)U ′(t, t0) (D.8)

After multiplication with Û †0 from the lhs one obtains:

i~
d
dt
ÛI(t, t0) = U †0(t, t0)ĤS(t)Û0(t, t0)ÛI(t, t0)− i~

[
d
dt
Û0(t, t0)

]
UI(t, t0)

= Û †0(t, t0)

[
ĤS(t)Û0(t, t0)− i~ d

dt
Û0(t, t0)

]
UI(t, t0)

= Û †0(t, t0)
[
ĤS(t)Û0(t, t0)− ĤSÛ0(t, t0)

]
ÛI(t, t0)

= Û †0(t, t0)
{[
ĤS(t)− ĤS

]
Û0(t, t0)

}
ÛI(t, t0)

=
[
Û †0(t, t0)Ĥ ′S(t)Û0(t, t0)

]
Ûi(t, t0)

= Ĥ ′I(t)ÛI(t, t0)

(D.9)

From the last two lines we can draw the conclusion that any time-dependent Hamiltonian ĤS(t)

can be separated into a time-independent part ĤS plus a time-dependent part Ĥ ′S(t). As, in
general, the solution of the time-independent problem is known and hence the corresponding
time evolution operator Û0, we can decouple the full time evolution governed by ĤS(t) into the
transformed time evolution, which is now driven by the time-dependent part Ĥ ′I(t) only.

Interaction picture

The transition from the Schrödinger picture to the interaction picture is, as one deduces from
Eq.(D.9), ruled by the unitary operator Û †0 . For an arbitrary operator ÔS(t) within the Schrödinger
picture, the corresponding operator in the Dirac picture is then given by

ÔD(t) = e
i
~ ĤSt ÔS e

− i
~ ĤSt. (D.10)

By considering the time derivative of Eq.(D.10), one may write down the corresponding equation
of motion of ÔD(t) as the following

i~
∂

∂t
ÔI(t) =

[
ÔI(t), ĤS

]
+ i~

∂ÔI(t)

∂t
(D.11)
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Furthermore, the time dependent state vector (in the interaction picture) is then defined as

|Ψ(t)〉I = e
i
~ ĤSt |Ψ(t)〉S , (D.12)

while its time evolution is carried by ÛI, i.e.

|Ψ(t)〉I = ÛI(t, t0) |Ψ(t0)〉I . (D.13)

The equation of motion for ÛI is already given in Eq.(D.9) and allows to write down its formal
solution:

ÛI(t1, t0) = 1 +
1

i~

t1∫
t0

dt′1 Ĥ
′
I(t
′
1) ÛI(t

′
1, t0) (D.14)

Again, we can proceed as in Eq.(D.6) and solve ÛI(t1, t0) iteratively. If one restricts the iteration
up to first order, one obtains

ÛI(t1, t0) = 1 +
1

i~

t1∫
t0

dt′1 Ĥ
′
I(t
′
1) + . . . (D.15)

With the solution of the time evolution operator within the interaction picture, we also obtain
the corresponding equation within the Schrödinger picture, which w.r.t Eq.(D.7) reads

Û(t1, t0) = Û0(t1, t0) +
1

i~

t1∫
t0

dt′1 Û0(t1, t
′
1) Ĥ ′S(t′1) Û0(t′1, t0) + . . . (D.16)

In fact, both equations, Eq.(D.15) and Eq.(D.16) are equivalent in their corresponding quantum
mechanical picture and describe the time evolution of a quantum state under the influence of a
small perturbation that is given by Ĥ ′S,I.

Heisenberg picture

The transition into the Heisenberg picture allows to transfer the dynamics of a quantum me-
chanical state to the operators. With the unitary transformation

|Ψ(t)〉H = Û †(t1, t0) |Ψ(t)〉S = Û(t0, t1) |Ψ(t)〉S = |Ψ(t0)〉S = |Ψ〉H , (D.17)

all state vectors in the Heisenberg picture become time independent. In contrast to it, any
operator is transformed like

ÔH(t) = Û †(t1, t0)ÔS(t)Û(t1, t0) (D.18)

and obeys the equation of motion

i~
∂

∂t
ÔH(t) =

[
ÔH(t), ĤH(t)

]
+ i~

∂ÔH(t)

∂t
. (D.19)



E. Thermodynamic Green’s function formalism∗

In order to augment the discussion about the Green’s functions, their spectral properties shall
be highlighted in this section by giving explicit expressions and showing their relation to the
previous introduced formula in section 3.3.

Fourier transform

We begin with the explicit representation of the previously defined electron propagator [Eq.(3.17)]
and insert a complete set of Heisenberg states {|Ψα〉}, which yields

G>(r1t1, r2t2) =
1

i~
∑
α,α′

%α 〈Ψα|ψ̂(r1t1) |Ψα′〉 〈Ψα′ | ψ̂†(r2t2)|Ψα〉

=
1

i~
∑
α,α′

%α 〈Ψα|e
i
~ Ĥt1ψ̂(r1)e−

i
~ Ĥt1 |Ψα′〉 〈Ψα′ | e

i
~ Ĥt2ψ̂†(r2)e−

i
~ Ĥt2 |Ψα〉

=
1

i~
∑
α,α′

%α 〈Ψα|ψ̂(r1) |Ψα′〉 〈Ψα′ | ψ̂†(r2)|Ψα〉 e−
i
~ (t1−t2)(εα′−εα).

(E.1)

Under the assumption of a time independent Hamiltonian Ĥ, the electron propagator depends
on the time differences (t1 − t2) only. The field operators in the last line of Eq.(E.1) are given
within the Schrödinger picture at time t = 0 and their matrix elements become non-zero if the
eigenvalues Nα of the particle operator N̂ differ by one, i.e. Nα′ − Nα = 1. Similarly, the hole
propagator [Eq.(3.18)] becomes

G<(r1t1, r2t2) = − 1

i~
∑
α,α′

%α 〈Ψα|ψ̂†(r2)|Ψα′〉 〈Ψα′ |ψ̂(r1)|Ψα〉 e
i
~ (t1−t2)(εα′−εα), (E.2)

with the condition that Nα′ − Nα = −1. Since both propagators are homogenous in the time
difference t1 − t2, their Fourier transform in the frequency domain is then obtained with aid of
Eq.(C.1) and yields

G>(r1, r2;ω) = −2iπ
∑
α,α′

%α 〈Ψα|ψ̂(r1)|Ψα′〉 〈Ψα′ |ψ̂†(r2)|Ψα〉 δ(~ω + εα − εα′) (E.3)

and

G<(r1, r2;ω) = 2iπ
∑
α,α′

%α 〈Ψα|ψ̂†(r2)|Ψα′〉 〈Ψα′ |ψ̂(r1)|Ψα〉 δ(~ω − εα + εα′). (E.4)

∗The Refs. [60, 44, 49] have been used.
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From Eq.(E.3) and Eq.(E.4) one reads off the exact excitation energies, i.e. ±(εα + εα′) of the
considered many-particle system. These energies can be additionally related to the chemical
potential µ from Eq.(3.24) and shall be demonstrated here for the electron propagator1:

~ω + εα − εα′ = ~ω −
[
ε

(N+1)
α′ − εNα

]
= ~ω −

[
ε

(N+1)
α′ − ε(N+1)

α

]
−
[
ε(N+1)
α − εNα

]
= ~ω − ε(N+1) − µ.

(E.5)

The chemical potential µ, defined as
(
∂E
∂N

)
SV

2, may be approximated by the energy difference
ε

(N+1)
α − εNα , if the difference of the particle number (N + 1)−N � N , which is the case for a
regular many-particle system containing about 1023 particles. Thus, the Lehman representation
given by Eq.(3.23) reads in the zero-temperature limit as the following

G(r1, r2;ω) = lim
η→0+

∑
α

{
〈Ψ0|ψ̂(r1)|Ψα〉 〈Ψα|ψ̂†(r2)|Ψ0〉

~ω − ε(N+1) − µ+ i~η

+
〈Ψ0|ψ̂†(r2)|Ψα〉 〈Ψα|ψ̂(r1)|Ψ0〉

~ω + ε(N−1) − µ− i~η

}
.

(E.6)

From the representation above one notices that if G(ω) is continued into the complex frequency
plane, it possesses poles slightly above and slightly below the real frequency axis. It is hence not
analytic neither in the upper nor in the lower half complex plane. An extension of Eq.(E.6) for
finite temperatures can be found in many text books, e.g. in Ref.[57].

Spectral representation at finite temperatures (real time arguments)

First of all, the Martin-Schwinger relation [Eq.(3.27)] allows to link the Fourier components of
the electron and the hole propagator through the relation

G<(r1, r2;ω) = −e−β(~ω−µ)G>(r1, r2;ω), (E.7)

and further relates both propagator functions to the spectral function [Eq.(3.25)]

G<(r1, r2;ω) = if(~ω)A(r1, r2, ω) (E.8)

G>(r1, r2;ω) = −i [1− f(~ω)]A(r1, r2, ω), (E.9)

whereas f(~ω) denotes the Fermi function

f(~ω) =
1

1 + eβ(~ω−µ)
. (E.10)

1The corresponding expression for the hole propagator yields ~ω − εα + εα′ = ~ω + ε(N−1) − µ, whereas ε(N−1)

denotes the excitation energy if a particle is removed from the system, i.e. ε(N−1) ≤ 0.
2If Ψα denotes the ground state, the entropy S vanishes and the derivative is taken at constant volume only.
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On the other hand, the definition of the causal Green’s function at real time arguments [Eq.(3.22)]
can be Fourier transformed with the aid of the Fourier transform of the theta function Θ(t1− t2).
The resulting Lehmann representation [Eq.(3.23)] is then obtained and can be further rewritten
by use of the Dirac identity

lim
η→0

1

ω ± iη =
P
ω
∓ iπδ(ω) (E.11)

in the following way

G(ω) = lim
η→0

i

2π

+∞∫
−∞

dω′
{
PG

>(ω′) +G<(ω′)

ω − ω′ − iπδ(ω − ω′)
[
G>(ω′) +G<(ω′)

]}
(E.12)

where P denotes the principle value. Concerning the difference term of the rhs of Eq.(E.12), one
finds with the use of Eq.(E.9) and Eq.(E.8)

G>(ω) +G<(ω) = i [−1 + 2f(~ω)]

= i

[
1− eβ(~ω−µ)

1 + eβ(~ω−µ)

]

= i

[
e−β(~ω−µ)/2 − eβ(~ω−µ)/2

e−β(~ω−µ)/2 + eβ(~ω−µ)/2

]

= −i tanh

[
β

2
(~ω − µ)

]
(E.13)

that proofs the spectral representation of the causal Green’s function as given by Eq.(3.26).

Retarded and advanced Green’s function (real time arguments)

The retarded and advanced Green’s function are defined as the following

Gret(r1t1, r2t2) = Θ(t1 − t2)
1

i~

〈[
ψ(r1t1), ψ†(r2, t2)

]
+

〉
= Θ(t1 − t2)

[
G>(r1t1, r2t2)−G<(r1t1, r2t2)

] (E.14)

Gadv(r1t1, r2t2) = Θ(t2 − t1)
1

i~

〈[
ψ(r1, t1), ψ†(r2, t2)

]
+

〉
= Θ(t2 − t1)

[
G>(r1t1, r2t2)−G<(r1t1, r2t2)

] (E.15)

and differ by the theta function as compared to the causal Green’s function [Eq.(3.22)]. Both
functions have a Lehmann representation similar to Eq.(3.23) but with a different but unchanged
complex factor +iη for the retarded and −iη for the advanced Green’s function in the denom-
inators with respect to Eq.(3.23). With the aid of the Fourier transform of the theta function
and the definition of the spectral function [Eq.(3.25)], one obtains the spectral representation of
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the retarded and advanced Green’s function, which is

Gret/adv(r1, r2;ω) = lim
η→0

+∞∫
−∞

dω′
A(r1, r2;ω′)

ω − ω′ ± iη . (E.16)

In contrast to the causal Green’s function, which posses a spectral representation such as
Eq.(E.16) only for the zero-temperature limit [see Eq.(3.24)], the expression above is valid for any
finite temperatures. Furthermore, one reads off from Eq.(E.16) that the retarded and advanced
Green’s function are analytic in the upper and lower half complex frequency plane, respectively.
The comparison of Eq.(3.24) and Eq.(E.16) immediately shows that if G(ω) is analytical contin-
ued to the complex plane, it resolves into the retarded Green’s function by

G(r1, r2;ω + iη)
∣∣∣
T=0

= Gret(r1, r2;ω) (E.17)

and into the advanced Green’s function

G(r1, r2;ω − iη)
∣∣∣
T=0

= Gadv(r1, r2;ω), (E.18)

respectively.

Properties of the spectral function

The spectral function turns out to be the central quantity as it gives the access to (i) excitation
energies of the many-body system and (ii) generates all wanted Green’s functions. Moreover, it
retains the discontinuity of the causal Green’s function as it can be also obtained by the difference
of the retarded and advanced Green’s function, i.e.

A(r1, r2;ω) = i
[
Gret(r1, r2;ω)−Gadv(r1, r2;ω)

]
. (E.19)

The proof of Eq.(E.19) exhibits the Dirac identity plus the definition of the spectral function
Eq.(3.25). Furthermore, the spectral function is Hermitian

A(r1, r2;ω) = A∗(r2, r1;ω) (E.20)

and fulfills the important sum rule

1

2π

∫
dωA(r1, r2;ω) =

∑
α,α′

%α

{
〈Ψα|ψ(r1)|Ψα′〉 〈Ψα′ |ψ†(r2)|Ψα〉

+ 〈Ψα|ψ†(r2)|Ψα′〉 〈Ψα′ |ψ(r1)|Ψα〉
}

=
〈
ψ(r1)ψ†(r2) + ψ†(r2)ψ(r1)

〉
= δ(r1 − r2).

(E.21)
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Matsubara formalism

The treatment of the thermodynamic Green’s function may be reduced to usage of complex time
arguments only. This is due to the quasi-periodicity of the causal Green’s function as a result of
the Martin-Schwinger relation. The proof of this relation makes use of the cyclic property of the
trace. From the expression of the electron propagator3.17 one finds with Z = tr{e−β(Ĥ)−µN̂}:

i~G>(r1t1, r2t2) = tr
{
e−β(Ĥ−µN̂)ψ̂(r1t1) ψ̂†(r2t2)

}
Z−1

= tr
{
ψ̂†(r2t2)e−βĤeβµN̂ ψ̂(r1t1)eβ(Ĥ−µN̂)e−β(Ĥ−µN̂)

}
Z−1

= tr
{
ψ̂†(r2t2)e−βĤ ψ̂(r1t1)eβĤe−βµe−β(Ĥ−µN̂)

}
Z−1

= e−βµ
〈
ψ̂†(r2t2)ψ̂(r1t1 + i~β)

〉
= −e−βµG<(r1t1 + i~β, r2t2).

(E.22)

Moreover, both propagators are homogenous in time3 and the time arguments can be replaced
by their difference, i.e. (t1, t2)→ (t1− t2). The causal Green’s function defined for complex time
arguments then reads

G(r1, r2, t1 − t2) = Θ [=(t2 − t1)]G>(r1, r2, t1 − t2) + Θ [=(t1 − t2)]G<(r1, r2, t1 − t2) (E.23)

and becomes quasi periodic along the imaginary time axis due to the Martin-Schwinger relation:

G(r1, r2, t1 − t2) = −eβµG(r1, r2, t1 − t2 − i~β). (E.24)

Hence it suffices to restrict the definition of the causal Green’s function to purely imaginary
time arguments. This transition from real to imaginary time arguments is also known as Wick
rotation, in which the real time axis is rotated by −π/2 into the complex time plane and results
in the transformation (t1 − t2) → i(t1 − t2)4 [229]. It unifies the treatment of the time and
temperature dependence of G. Within the intervall |=(t1− t2)| < ~β, G(t1− t2) is quasi-periodic
and one may express the causal Green’s function as a Fourier series

G(r1, r2, t1 − t2) = − 1

i~β
∑
n

G̃(r1, r2; zn)e−izn(t1−t2). (E.25)

Due to the defined complex time domain and the Martin-Schwinger relation, the Fourier coeffi-
cients G̃(zn) are obtained by

G̃(r1, r2; zn) =

−i~β∫
0

dt1G(r1, r2, t1 − t2)eizn(t1−t2) 5. (E.26)

3The statistical operator and the time evolution operator in Eq.(E.22) do commute. By use of the cyclic property
of the trace, the time homogeneity can be proven.

4In the following, the time argument t1− t2 is understood as complex valued and the imaginary unit is dropped.
5The proof of Eq.(E.26) makes use of the Martin-Schwinger relation, which reduces the integral to the upper or
lower complex time domain.
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Thereby, the complex frequencies zn take only discret values, the fermionic Matsubara frequen-
cies, at which G̃(zn) becomes non-zero. These values are given by

~zn = µ+ i
nπ

β
n = ±1,±3,±5, . . . (E.27)

and coincide with the poles of the Fermi function [Eq.(E.10)] in the complex frequency domain.
In case of a purely periodic function along the complex time axis, i.e. f(t) = f(t − i~β), the
corresponding Fourier coefficients f̃(ωn) are only defined at the bosonic Matsubara frequencies
[60, 44, 48, 49]

~ζm = i
mπ

β
m = 0,±2,±4, . . . . (E.28)

Based on Eq.(E.26) one may derive a spectral representation of the thermodynamic causal
Green’s function which can be cast in the form of

G̃(r1, r2; zn) =
1

2π

+∞∫
−∞

dω
A(r1, r2;ω)

zn − ω
(E.29)

and allows G̃(zn) to be continued either into the upper or lower complex frequency domain by
G̃(zn) → G̃(z). The fact, that both (half) complex planes serves as a continuation domain, is
due to a common accumulation point zacc = ±i∞ between the set of Matsubara frequencies {zn}
and the domain {z ∈ C : |=(z)| > 0}6. Hence, one can approach the real axis from above or from
below, which in the limes yields the retarded or advanced Green’s function at real frequencies.
Thus one finds

Gret/adv(ω) = lim
η→0

G̃(ω ± iη), (E.30)

as it is also evident from Eq.(E.16). Due to the spectral function, G̃(z) has a branch cut along
the real frequency axis and shows a discontinuity there. This discontinuity is again given by the
difference of the retarded and advanced Green’s function from Eq.(E.30) and can be shown to
yield the spectral function

A(ω) = i
[
Gret(ω)−Gadv(ω)

]
. (E.31)

The formalism of complex time arguments hence allows to obtain also a simple relation between
the causal Green’s function G̃(z) and the spectral function A(ω) as for the case of vanishing
temperatures where real time arguments are exploited.

6This is a consequence of the uniqueness of the analytic continuation from the complex analysis. See e.g. [230]



F. Four-point representation of the polarization

function P from Hedin’s equation

In the section about the microscopic response functions [Sec. 3.5.2] the polarization function P
has been introduced as a two-point quantity within Hedin’s equation [Eq.(3.109)]. As it shall
be demonstrated now, it obeys a closed integral equation if formulated as a three-point or more
general as a four-point quantity. Starting from the definition of P (12) due to Eq.(3.105) one may
rewrite this expression by introducing a delta function to obtain

P (12) = −i~
∫

d3
δG(13;U)

δUeff(2)
δ(3− 1+)

∣∣∣∣∣
U=0

. (F.1)

This manipulation allows to exploit Eq.(3.34) and yields

P (12) = −i~
∫

d3 d4
δG(13;U)

δUeff(2)
G−1(34;U)G(41+;U)

∣∣∣∣∣
U=0

. (F.2)

The next step makes use of the chain rule of functional derivatives to the following expression

P (12) = −i~
∫

d3 d4 d5
δG(13;U)

δU(5)
G−1(34;U)

δU(5)

Ueff(2)
G(41+;U)

∣∣∣∣∣
U=0

. (F.3)

In the equation above, the term δG
δUeff

G−1 can be rewritten due to the identity from Eq.(3.97).
As an intermediate result the polarization function becomes

P (12) = i~
∫

d3 d4 G(13;U)
δG−1(34;U)

δUeff(2)
G(41+;U)

∣∣∣∣∣
U=0

P (12)
(3.112),(3.106)

= −
∫

d3 d4 P0(1, 1+, 4, 3)Γ(34; 2). (F.4)

The final step involves the manipulation of the vertex function Γ(12; 3) in such a way so that
on the rhs of Eq.(F.4) the polarization function appears. This makes the explicit calculation
of the functional derivative δG−1

δUeff
necessary. Considering the equation of motion for the Green’s

function G(U) [Eq.(3.99)], a Dyson equation such as Eq.(3.40) might be obtained as well:

G(12;U) = G0(12;U) +

∫
d3 G0(13;U)Σxc(34;U)G(42;U). (F.5)
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With the aid of the definition for the inverse Green’s function [Eq.(3.34)], the Dyson equation
for G(U) can be rewritten in the following way

G−1(12;U) = G−1
0 (12;U)− Σxc(12;U) (F.6)

and allows to calculate the functional derivative that appears in the definition of the vertex
function, explicitly. The inverse of the non-interacting Green’s function G−1

0 (12;U) is derivable
in the same manner from the equation of motion for G0(U). This is simply given by Eq.(3.99)
with Σxc = 0. Again, the inverse identity due to Eq.(3.34) applies and yields

G−1
0 (12;U) =

{
i~

∂

∂t1
+

~
2me
∇2

r1
− Vion(r1)− VH(r1)− Ueff(1)

}
δ(1− 2). (F.7)

Hence, the vertex function [Eq.(3.106)] becomes

Γ(12; 3) =
δG−1(12;U)

δUeff(3)

∣∣∣∣∣
U=0

= −δ(1− 2)δ(1− 3)−
∫∫

d4 d5
δΣxc(12;U)

δG(45;U)

δG(45;U)

δUeff(3)

∣∣∣∣∣
U=0

(F.8)

= −δ(1− 2)δ(1− 3) +

∫∫
d4 d5 Ξ(2, 1, 4, 5)P (4, 5, 2, 2+), (F.9)

while the chain rule has been applied additionally in Eq.(F.8) and in the last line the Eqs.
(3.115),(3.105) and (3.113) have been used. Finally, with Eq.(F.4) and Eq.(F.9), the polarization
P (12) function, now expressed in a general four-point notation, becomes

P (1, 1+, 2, 2+) = P0(1, 1+, 2, 2+) +

∫
d5 . . . d8 P0(1, 1+, 6, 5)Ξ(6, 5, 7, 8)P (7, 8, 2, 2+). (F.10)

Without loss of generality, the transition from 1+ → 3 can be performed and leads to a closed
integral equation for the three-point function P (1, 3, 2, 2+) and similarly to a four-point function
P (1, 3, 2, 4) with the transition 2+ → 4. In the latter case, the Bethe-Salpeter equation (3.114)
is obtained.



G. Four-point representation of the density correlation

function L

The derivation for the Bether-Salpeter equation of the density correlation function L is similar to
the derivation presented in appendix F. Starting from Eq.(3.117), the introduction of the delta
function δ(3 − 1+) one may obtain with the definition of the inverse Green’s function due to
Eq.(3.34) the expression

L(12) = −i~
∫

d3 d4
δG(13;U)

δU(2)
G−1(34;U)G(41+;U)

∣∣∣∣∣
U=0

. (G.1)

With the aid of the identity given by Eq.(3.97), one further obtains

L(12) = i~
∫

d3 d4 G(13;U)
δG−1(34;U)

δU(2)
G(41+;U)

∣∣∣∣∣
U=0

(G.2)

=

∫
d3 d4 L0(1, 1+, 4, 3)Γ′(34; 2), (G.3)

with the modified vertex function

Γ′(34; 2) =
δG−1(34;U)

δU(2)

∣∣∣∣
U=0

. (G.4)

Different from the vertex function Γ in Eq.(F.4), the functional derivative with respect to the
external potential is required. Therefore, we make use of the Dyson equation

G(12;U) = G0(12;U) +

∫
d3 G0(13;U)Σ(34;U)G(42;U) (G.5)

that results from the equation of motion [Eq.(3.99)], if the explicit expression for the effective
potential [Eq.(3.100)] is substituted back into Eq.(3.99). Again, the inverse Green’s function
may be obtained similar to Eq.(F.6) from the Dyson equation (G.5)

G−1(12;U) = G−1
0 (12;U)− Σ(12;U), (G.6)

where the inverse non-interacting Green’s function obeys the relation

G−1
0 (12;U) =

{
i~

∂

∂t1
+

~
2me
∇2

r1
− Vion(r1)− U(1)

}
δ(1− 2). (G.7)
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Consequently, the vertex function Γ′ can be evaluated explicitly to give the following expression

Γ′(12; 3) =
δG−1(12;U)

δU(3)

∣∣∣∣
U=0

(G.8)

= −δ(1− 2)δ(1− 3)−
∫∫

d4 d5
δΣ(12;U)

δG(45;U)

δG(45;U)

δU(3)

∣∣∣∣
U=0

(G.9)

= −δ(1− 2)δ(1− 3) +

∫∫
d4 d5 Ξ′(2, 1, 4, 5)L(4, 5, 3, 3+). (G.10)

In the equation above, the definition of the density correlation function L due to Eq.(3.117) and
the definition of the kernel Ξ′ due to Eq.(3.125) has been exploited. Finally, the combination of
Eq.(G.3) and Eq.(G.10) yields the following integral equation

L(1, 1+, 2, 2+) = L0(1, 1+, 2, 2+) +

∫
d5 . . . d8 L0(1, 1+, 6, 5)Ξ′(6, 5, 7, 8)L(7, 8, 2, 2+). (G.11)

that, if taken transitions 1+ → 3 and 2+ → 4 are taken into account, yields the Bethe-Salpeter
equation for the four-point density correlation function as given by Eq.(3.124).



H. Momentum representation of the microscopic

dielectric function

Based on the definition of the microscopic dielectric function [Eq.(3.123)] we have in position
space

ε(r1, r2) = δ(r1 − r2)−
∫

dr3 v(r1 − r3)P (r3, r2). (H.1)

Using the definition of the Fourier transform [Eq.(C.8)] one finds

εGG′(q) =
1

V

∫
dr1dr2 e

−i(q+G)r1ε(r1, r2)ei(q+G′)r2 (H.2)

If we express the Coulomb kernel and the polarization function in terms of their inverse Fourier
representation one obtains

εGG′(q) =
1

V

∫
dr1dr2 e

−i(q+G)r1δ(r1 − r2)ei(q+G′)r2

− 1

V

∫
dr1dr2

∫
dr3 e

−i(q+G)r1

 1

V

∑
k2,G2

v(k2 + G2)ei(k2+G2)(r1−r3)



×

 1

V

∑
k1,

G1,G′1

ei(k1+G1)r3P (k1 + G1,k1 + G′1)e−i(k1+G′1)r2

 ei(q+G′)r2

= δG,G′

−
∑
k2,G2

∑
k1,

G1,G′1

δq,k2δG2,Gδq,k1δG′,G′1δk1,k2δG1,G2v(k2 + G2)P (k1 + G1,k1 + G′1)

= δG,G′ − v(q + G)P (q + G,q + G′).

(H.3)
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I. Excitonic Hamiltonian

In section 4.1.7 we have introduced the excitonic Hamiltonian that shall be here derived. Within
the Bloch representation of the density correlation function we have found the following expres-
sion from Eq.(4.46)

L k̃1k̃3

k̃2k̃4
(ζl) =

f(Eqp

k̃1
)− f(Eqp

k̃3
)

Eqp

k̃1
− Eqp

k̃3
− ~ζl

δk̃1k̃4
δk̃2k̃3

+
∑
k̃′7,k̃

′
8

[
v k̃1k̃3

k̃′8k̃
′
7

−W k̃1k̃3

k̃′8k̃
′
7

]
L

k̃′7k̃
′
8

k̃2k̃4
(ζl)

 . (I.1)

Rearranging on the lhs and rhs and abbreviating the interaction terms by I = v −W one finds[
f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

) ]
δk̃1k̃4

δk̃2k̃3

=
(
Eqp

k̃1
− Eqp

k̃3
− ~ζl

)
L k̃1k̃3

k̃2k̃4
(ζl)−

∑
k̃′7,k̃

′
8

[
f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

) ]
I k̃1k̃3

k̃′8k̃
′
7

L
k̃′7k̃
′
8

k̃2k̃4
(ζl)

=
∑
k̃′7,k̃

′
8

{(
Eqp

k̃1
− Eqp

k̃3

)
δk̃1k̃′7

δk̃3k̃′8
−
[
f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

) ]
I k̃1k̃3

k̃′8k̃
′
7

− ~ζl δk̃1k̃′7
δk̃3k̃′8

}
L

k̃′7k̃
′
8

k̃2k̃4
(ζl).

(I.2)

Introducing the identity matrix 1 within the Bloch representation reading 1 k̃1k̃3

k̃2k̃4
= δk̃1k̃2

δk̃3k̃4
,

Eq.(I.2) then becomes

f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

)
1

k̃1k̃3

k̃4k̃2

=
∑
k̃′7,k̃

′
8

{(
Eqp

k̃1
− Eqp

k̃3

)
1

k̃1k̃3

k̃′7k̃
′
8

−
[
f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

) ]
I k̃1k̃3

k̃′8k̃
′
7

− ~ζl 1 k̃1k̃3

k̃′7k̃
′
8

}
L

k̃′7k̃
′
8

k̃2k̃4
(ζl).

(I.3)

From Eq.(I.3) we deduce the excitonic Hamiltonian

H k̃1k̃3

k̃2k̃4
=
(
Eqp

k̃1
− Eqp

k̃3

)
1

k̃1k̃3

k̃2k̃4
−
[
f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

) ]
I k̃1k̃3

k̃4k̃2
(I.4)

and thus find

f
(
Eqp

k̃1

)
− f

(
Eqp

k̃3

)
1

k̃1k̃3

k̃4k̃2
=
∑
k̃′7,k̃

′
8

[
H k̃1k̃3

k̃′7k̃
′
8

− ~ζl 1 k̃1k̃3

k̃′7k̃
′
8

]
L

k̃′7k̃
′
8

k̃2k̃4
(ζl). (I.5)
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J. Casida’s equation

Given the expansion of the density in terms of the unperturbed Kohn-Sham orbitals [Eq.(5.69)],
the reinsertion of this expression into Eq.(5.53) yields

δVs(r1, ω) = Vext(r1, ω) +

∫
dr2 fHxc(r1, r2;ω)

∑
m′,l′

δρm′l′(ω)ϕm′(r2)ϕ∗l′(r2)

 . (J.1)

In the following we need to obtain the corresponding matrix element of the induced Kohn-Sham
potential. Like the density variation, δVs is also a function of only one spatial variable and can
be expressed in the same basis of products of Kohn-Sham orbitals such as δρ(r). Thus we can
project both sides on a particular Kohn-Sham orbital pair to obtain:∫

dr1 ϕ
∗
m(r1)ϕl(r1)δVs(r1, ω) =

∫
dr1 ϕ

∗
m(r1)ϕl(r1)δVext(r1, ω)

+
∑
m′,l′

[∫
dr1 dr2 ϕ

∗
m(r1)ϕl(r1)fHxc(r1, r2;ω)ϕm′(r2)ϕ∗l′(r2)δρm′l′(ω)

] (J.2)

The integral term on the left hand side is already given due to Eq.(5.69). We thus find

δρml(ω)

[
~ω − (εm − εl)

(fl − fm)

]
= Vextml(ω) +

∑
m′,l′

fHxcml,m′l′(ω)δρm′l′(ω) (J.3)

and finally after rearranging individual terms

∑
m′,l′

{[
~ω − (εm − εl)

(fl − fm)

]
δm,m′δl,l′ − fHxcml,m′l′(ω)

}
δρm′l′(ω)

= Vextml(ω)δρml(ω).

(J.4)

Since the pair of indices (ml) and (m′l′) survive only for pairs of occupied and unoccupied orbitals
and vice versa, we obtain a set of two coupled equations that read∑

j,b

({
[−~ω + (εi − εa)] δi,jδa,b −Kia,jb(ω)

}
δρjb −Kia,bj(ω)δρbj

)
= Vext ia(ω)δρia(ω)

(J.5)

∑
j,b

(
−Kai,jb(ω)δρjb(ω) +

{
[~ω − (εa − εi)] δa,bδi,j −Kai,bj(ω)

}
δρbj

)
= Vext ai(ω)δρai(ω).

(J.6)
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To be consistent with section 5.4, we have used the abbreviation for the four-orbital integral
as given by Eq.(5.66). Both equations, J.5 and J.6 allow for a compact notation in terms of a
matrix equation, [(

A(ω) B(ω)

B(ω) A(ω)

)
− ~ω

(
1 0

0 −1

)](
δρ(ω)

δρ∗(ω)

)
=

(
Vext(ω)

V∗ext(ω),

)
(J.7)

where the submatrices A(ω) and B(ω) are identical with Eqs. (5.67) and (5.68). The vector
notation of the density variation and the external potential is meant to be within the space of
Kohn-Sham transition pairs, whereas the complex conjugate is associated with the interchange
of the index pair, i.e. δρlm = δρ∗ml.



K. Matrix elements of the perturbed Fock operator

We derive the explicit expression for the matrix elements H(1)
nl,mn(ω) of the nonlocal part of the

perturbed sc Hamiltonian given in the frequency domain. First, considering the Fock operator
[Eq.(8.31)] the Fourier transform simply reads

Hnl(r, r
′, ω) =

ρ(r, r′, ω)

|r− r′| . (K.1)

Second, the variation of Eq.(K.1) w.r.t. the density matrix at a fixed frequency ω can be
calculated using standard techniques of functional derivatives:

δHnl [ρ(r, r′, ω)]

δρ(y,y′, ω)
= lim

ε→0

Hnl [ρ(r, r′, ω) + εδ(r− y)δ(r′ − y′)]−Hnl [ρ(r, r′, ω)]

ε

= lim
ε→0

ρ(r, r′, ω) + εδ(r− y)δ(r′ − y′)

ε|r− r′| − ρ(r, r′, ω)

ε|r− r′|

=
δ(r− y)δ(r′ − y′)

|r− r′| .

(K.2)

Thus the variation of the nonlocal part of the sc Hamiltonian is calculated by integrating over
the density matrix variation:

H
(1)
nl (r, r′, ω) ≡ δHnl(r, r

′, ω) =

∫
dy dy′

δ(r− y)δ(r′ − y′)

|r− r′| δρ(y,y′, ω)

=
δρ(r, r′, ω)

|r− r′|

≡ ρ
(1)(r, r′, ω)

|r− r′| .

(K.3)

From Eq.(K.3) we calculate the corresponding matrix elements as

H
(1)
nl,mn(ω) =

∫
drdr′ ϕ∗ 0

m (r)ϕ0
n(r′)

ρ(1)(r, r′, ω)

|r− r′| , (K.4)

where ρ(1)(r, r′, ω) is the frequency dependent first order density matrix response and ϕn(r)

denote the stationary orbitals of Eq.(8.29).
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Abstract

The research of novel materials or material compounds is important in the field of material
science. Many of these materials have found applications in industrial products. Theoretical
methods that make predictions on electronic and optical properties are essential in the search of
these new materials. The solution of the underlying many-body problem is traditionally tackled
with the aid of ab-initio calculations. Hereby, one aims to solve the many-body Hamiltonian in a
parameter-free approach. With the aid of these methods a rigorous description of real materials
can be achieved.
Density functional theory (DFT) is one of the most applied methods to calculate electronic

properties and in the framework of time-dependent functional theory (TDDFT), even optical
properties can be calculated. Like all theories, they are as good as the involved approxmiations,
may it be for the exchange-correlation potential in DFT or for the exchange-correlation kernel
in TDDFT. The field theoretical approach gives a rigourous access to the many-body problem
and allows to close the gap between results from DFT/TDDFT and experiment. Moreover, it
yields results that can be compared to real experiments such as (inverse)photoemission.
In this thesis neutral excitations due to photoabsorption process are investigated. The quan-

titiy of interest, is the macroscopic dielectric function that is obtained from the polarization
function. The latter is usually calculated from a closed integral equation of four-point quanti-
ties, denoted as the Bethe-Salpeter equation (BSE). As this method involves the solution of an
in general non-Hermitian eigenvalue problem (EVP), one reduces the entire EVP to a Hermi-
tian one. This is known as the Tamm-Dancoff approximation (TDA). In this work, we answer
the question how the optical absorption spectrum changes when going beyond the TDA and
what kind of materials show a pronounced difference between both approaches. Furthermore,
the macroscopic dielectric function is also solved for finite momentum transfer, different to the
optical absorption that happens at the long wave length limit.
The second part of this thesis covers the implementation of the real time evolution (TE) of

orbitals. This method yields exactly the same optical spectrum, but with less computational
effort. Therefore, it is the method of choice when dealing with amorphous or large scale systems,
involving many atoms in the unit cell.



Abstract

Die Erforschung neuer Materialien oder neuer Verbindungen ist eines der Schwerpunkte in der
Materialwissenschaft, da diese Materialien oft Anwendung in der Industrie finden. Die Suche
nach solchen neuen Materialien wird durch theoretische Methoden unterstützt. Dabei steht die
Lösung des Vielteilchen-Problems an erster Stelle welches mit Hilfe von ab-initio Rechnungen
gelöst wird. Diese Methode erlaubt eine genaue Beschreibung von echten Materialien.
Eine der am häufigsten verwendeten Methode ist die Dichtefunktionaltheorie (DFT) um elek-

tronische Eigenschaften zu berechnen. Optische Eigenschaften können sogar im Rahmen der
zeitabhängigen DFT (TDDFT) berechnet werden. Wie alle Theorien, sind ihre Ergebnisse nur so
gut wie es ihre Approximation erlaubt. Im Fall der DFT betrifft dies das Austausch-Korrelations
Potential sowie den Austausch-Korrelation Kernel in der TDDFT. Im Gegensatz dazu, ermöglicht
die feldtheoretische Beschreibung einen direkten Zugang zum Vielteilchen-Problem und schliesst
die Lücke zwischen Ergebnissen aus der DFT/TDDFT und dem Experiment. Zudem können in
diesem Fall Ergebnisse mit echten realen Experimenten wie z.B. der (inversen) Photoemission
verglichen werden.
In dieser Arbeit, interessieren wir uns jedoch für neutrale Anregungen, wie der Photoab-

sorption. Die dabei interessante Grösse ist die makroskopische dielektrische Funktion, welche
mit Hilfe der Polarisationsfunktion berechnet werden kann. Letztere wird gewöhnlich aus der
Lösung einer geschlossenen Integral-Gleichung, der Bethe-Salpeter Gleichung (BSE) gewonnen.
Diese Methode bedarf im Allgemeinen der Lösung eines nicht-hermitischen Eigenwertproblems
(EVP), welches sich im Rahmen der Tamm-Dancoff Approximation (TDA) zu einem hermitischen
EVP reduziert. In dieser Arbeit soll die Frage beantwortet werden, inwiefern sich das optische
Spektrum ändert, wenn man über die TDA hinausgeht. Des Weiteren wird die makroskopische
dielektrische Funktion auch für endliche Wellenvektoren berechnet, im Gegensatz zum optischen
Spektrum an verschwindenden Wellenvektoren.
Der zweite Abschnitt dieser Arbeit betrifft die Implementierung der Methode zur Echtzeitprop-

agation von Orbitalen. Diese Methode erlaubt es ebenfalls das optische Spektrum zu berechnen,
jedoch mit einem geringeren Rechenaufwand. Daher kann diese Methode als Alternative betra-
chtet werden, wenn amorphe Systeme oder Systeme mit einer grossen Anzahl von Atomen in der
Einheitszelle berücksichtigt werden müssen.
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