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A B S T R A C T

In this work, two possible mechanisms for the photodissociation of phenol are inves-
tigated: 1) elongation of the O–H bond; 2) reorganization of solvent molecules, facil-
itating the formation of solvated electrons. In order to investigate the mechanism of
O–H elongation, scans of the O–H distance were carried out with CASPT2/CASSCF
and ADC(2)/CASSCF to determine the height of the energy barrier between the bright
ππ∗ state and the dark, dissociative πσ∗ state. While CASPT2 overestimates the bar-
rier, ADC(2) provides better agreement with the experimental time scale for the for-
mation of solvated electrons. From an energetic point of view, the mechanism of O–H
elongation is plausible. To investigate the mechanism of reorganization of the solvent
molecules, facilitating the formation of a solvated electron, the absorption spectrum
and the density of states were calculated with ADC(2) based on snapshots from a clas-
sical molecular dynamics simulation. For the description of the environment, a cluster
model comprised of 15 water molecules was chosen. While the πσ∗ states are mainly
dark, the density of states shows that for several geometries the πσ∗ state has a lower
excitation energy than the maximum of the ππ∗ band. These low-lying states can be
populated after excitation to the ππ∗ band by reorganization of the solvent molecules
without elongation of the O–H bond. A geometrical analysis reveals that the energy
of the πσ∗ state is lowered if the σ∗-orbital is well solvated by a large number of water
molecules at a rather large distance from phenol. Our work demonstrates that the re-
organization of solvent molecules may drive photodissociation of phenol and suggests
that the investigation of this mechanism in derivatives of phenol might be worthwhile.



Z U S A M M E N FA S S U N G

Im Rahmen dieser Arbeit wurden zwei Mechanismen der Photodissoziation von Phe-
nol untersucht: 1) Elongation der O–H Bindung; 2) Reorganisation der Lösungsmit-
telmoleküle und die dadurch begünstigte Entstehung von solvatisierten Elektronen.
Zur Untersuchung des Mechanismus der O–H-Elongation wurden Scans der O–H-Bin-
dungslänge mit CASPT2/CASSCF und ADC(2)/CASSCF durchgeführt um die Höhe
der Energiebarriere zwischen dem Minimum des hellen ππ∗-Zustands und dem dun-
klen, dissoziativen πσ∗-Zustand zu ermitteln. Die mit ADC(2) berechnete Barriere
stimmt besser mit der experimentellen Zeitkonstante für die Entstehung von solvati-
sierten Elektronen überein, während mit CASPT2 die Höhe der Barriere überschätzt
wird. Aus energetischer Sicht erscheint der Mechanismus der O–H-Elongation plau-
sibel. Um den Mechanismus der Reorganisierung der Lösungsmittelmoleküle zu unter-
suchen, der die Entstehung von solvatisierten Elektronen begünstigt, wurden, basierend
auf Momentaufnahmen einer klassischen Molekulardynamiksimulation, das Absorp-
tionsspektrum und die Zustandsdichte mittels ADC(2) berechnet. Für die Beschrei-
bung der Umgebung wurde ein Clustermodell bestehend aus 15 Wassermolekülen
verwendet. Während die πσ∗-Zustände weitestgehend dunkel sind, zeigt eine Analy-
se der Zustandsdichte, dass für mehrere Geometrien der πσ∗-Zustand eine geringere
Anregungsenergie als das Maximum der ππ∗-Bande hat. Durch Reorganisierung der
Lösungsmittelmoleküle können diese energetisch niedrigen Zustände nach elektronis-
cher Anregung in die ππ∗-Bande ohne Elongation der O–H-Bindung populiert werden.
Die Energie des πσ∗-Zustandes wird verringert, wenn das σ∗-Orbital durch eine große
Anzahl an Wassermolekülen in einer relativ großen Distanz von Phenol solvatisiert
wird. Unsere Arbeit zeigt die Möglichkeit der Photodissoziation von Phenol durch
Reorganisation der Lösungsmittelmoleküle und legt eine Untersuchung dieses Mecha-
nismus in Derivaten von Phenol nahe.
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F R E Q U E N T LY U S E D A C R O N Y M S

Frequently Used Acronyms
ADC(2) Algebraic Diagrammatic Construction to 2nd order
ASC Apparent Surface Charge
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MD Molecular Dynamics
MM Molecular Mechanics
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NEVPT2 n-Electron Valence State 2nd order Perturbation Theory
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PCM Polarizable Continuum Model
QM Quantum Mechanics
SA-CASSCF State-Averaged Active Space Self-Consistent Field
SCF Self-Consistent Field
TDA Tamm-Dancoff Approximation
TDDFT Time-Dependent Density Functional Theory
UV Ultraviolet

list of symbols

α̂ Observable
α(ωS) Eigenfunction of spin operator
α(t) Expectation value of α̂

α0 Ground-state expectation value of α̂

α1 Linear response of α̂

β̂ Observable
β(ωS) Eigenfunction of spin operator
∇ Nabla operator
γ Friction coefficient
γ0I One-particle transition density matrix in coordinate space
∆t Length of time step
δ Delta function
δij Kronecker delta
δt Phase
ε Orbital energy
ε0 Vacuum permittivity
εd Distance-dependent dielectric constant
εs Static dielectric constant



ε ij Depth of potential well in the Lennard-Jones potential
ζ Collision frequency
ηp Scaling factor for dimensions of simulation box
θ Angle
θ0 Equilibrium angle
λ Scaling factor
ξ Compressibility
Ξ Step function
Π Polarization propagator
ρ Electron density
ρ̂ Density operator
ρ0 Electron density of the ground state
ρ1 First-order density-density response
ρ1σ Linear response of spin density
ρC Charge distribution of the chromophore
ρS Electron density of noninteracting reference system
σ Subscript indicating spin-dependence
σij Bond distance for wich ULennard-Jones = 0
τ Time constant
τrel Relaxation time
χ Spin orbital
χαβ Retarded response function
χρρ Density-density response function
χS,ρρ′ Kohn-Sham response function
χexc Two-particle wavefunction of electron and hole
φ Basis function
φt Torsional angle
ϕ Spin orbital
ϕKS Kohn-Sham orbital
Φ First-order interaction space
Ψ Wavefunction
Ψ0 Wavefunction of the ground state
Ψ f Wavefunction of final state
Ψi Wavefunction of initial state
ΨI Wavefunction in interaction picture
ΨS Wavefunction in Schrödinger picture
ΨCASSCF CASSCF wavefunction
ΨHF Hartree-Fock wavefunction
Ψν Configuration in CASSCF
Ψ(0) Zeroth order wavefunction
Ψ(1) First-order correction to the wavefunction
Ψ(2) Second-order correction to the wavefunction
Ψ(3) Third-order correction to the wavefunction
ΨI Wavefunction of state I
ΨJ Wavefunction of state J
ψ Spatial orbital
ψe Electronic wavefunction
ψn Nuclear wavefunction
ψe Natural transition orbital of the electron
ψh Natural transition orbital of the hole
ω Frequency



ωjk Difference between the energies of orbitals j and k
ωs Spin coordinate
Ω Frequency corresponding to excitation energy
Ωexc Norm of the exciton wavefunction
Ωi Excitation energy of state i
ΩCT Charge-transfer number
Ω Diagonal matrix containing the excitation energies
â Annihilation operator
â† Creation operator
c Coefficient
C Coefficient matrix
D One-particle density matrix
DI J

µν Element of the one-particle transition density matrix
d̂ Dipole operator
dexc Exciton size
d̃exc Approximate exciton size
e Euler’s number
e Elementary charge
ep Electron population
esolv Solvated electron
e− Electron
E Energy
E Diagonal matrix containing the orbital energies
E0 Energy of the ground state
Ei Energy of state i
E(0) Zeroth order energy
E(1) First-order correction to the energy
E(2) Second-order correction to the energy
E(3) Third-order correction to the energy
Ea Activation energy
EC Energy of the chromophore
EC/EN Energy corresponding to the interaction between chromophore and environment
Ee Energy of the electrons (without internuclear repulsion)
Eee Energy of electron-electron interaction
Eel Electronic Energy (i. e. absolute energy), containing internuclear repulsion
Een Energy of electron-nuclei interaction
EEN Energy of the environment
Ekin Kinetic energy
ES Energy of the system
ESA State-averaged energy
EXC Exchange-correlation energy
Êij Excitation operator
f̂ Fock operator
f̂ KS Kohn-Sham operator
fXC Time-dependent exchange-correlation kernel
f j Occupation number of orbital j
f Spectral amplitude vectors
F Fock matrix
~F Force
~Frandom Random force
Fext External field



FHK Hohenberg-Kohn functional
FXC Exchange-correlation functional
h Planck’s constant
h̄ Reduced Planck’s constant
h+ Hole
H Hamilton function
Ĥ Hamilton operator
Ĥ′ Perturbation in the Hamiltonian
Ĥ1 Time-dependent perturbation
Ĥ(0) Zeroth order (unperturbed) Hamiltonian
Ĥ(1) First order Hamiltonian
Ĥ(2) Second order Hamiltonian
Ĥ0

C Hamiltonian of the isolated chromophore
Ĥe f f Effective Hamiltonian
Ĥe Electronic Hamiltonian
ĤS Hamiltonian of non-interacting reference system
i Imaginary unit
J Coulomb repulsion between electrons
Ĵ Coulomb operator
k Reaction rate constant
KC,s Matrix depending on cavity geometry and εs

ka Force constant for angles
kB Boltzmann’s constant
kb Force constant for bonds
kt Force constant for torsions
K̂ Exchange operator
m Mass
м Active space size
M Energy-shifted Hamiltonian
MA Mass of a nucleus
me Electron mass
n Number of electrons
ni Occupation number of orbital i
nt Periodicity
N Number of nuclei
Ncon f Number of configurations
Nexc Number of excited states
Nstate Number of states
Ô Operator
ÔI Operator in the interaction picture
ÔS Operator in the Schrödinger picture
~p Momentum
P Pressure
P0 Reference pressure
P(t) Polarization
P̂ One-electron operator
POS Average position of excitation
POSF Position of final orbital
POSI Position of initial orbital
q Charge
~q Vector containing the apparent charges of surface elements
~q∗ Charges calculated for a conductor



Q Charge
Q(t) Polarization
~r Electron spatial coordinate vector
r Distance
r0 Equilibrium distance
R Universal gas constant
~R Atomic coordinate vector
~re Position vector of electron
~rh Position vector of hole
riA Distance between electron i and nucleus A
rij Distance between electrons i and j
~R Nuclear coordinates
R̄ Parametric dependence on nuclear coordinates
RAB Distance between nuclei A and B
S Total spin
S Overlap matrix
S0 Ground state
S1 First excited state
S2 Second excited state
t Time
T Temperature
TS Kinetic energy of noninteracting reference system
T̂e Kinetic energy operator for electrons
T̂n Kinetic energy operator for nuclei
T[ρ] Functional of kinetic energy of electrons
u Potential
ũ Potential
u0 Ground-state potential
u1 Perturbational potential
uXC Exchange-correlation potential
uXC1 Linearized exchange-correlation potential
uS Effective potential for noninteracting reference system
uS1 First-order effective potential
U Unitary transformation matrix
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Ua Potential for angles
Ub Potential for bonds
Uel Potential for electrostatic interactions
Uforce field Potential of the force field
Ut Potential for torsions
UvdW,r Potential for van der Waals and repulsion interactions
~v Velocity
vHF Hartree-Fock mean field
V Unitary transformation matrix
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V̂ Electrostatic potential
VC Electrostatic potential of chromophore on surface elements
VC,EN Electrostatic potential due to chromophore and environment
V̂ee Potential energy operator for electron-electron repulsion
V̂en Potential energy operator for electron-nuclei attraction
V̂nn Potential energy operator for nuclei-nuclei repulsion
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w Weight
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1
I N T R O D U C T I O N

Phenol (Figure 1) is the chromophore of many important biomolecules, such as the
amino acid tyrosine, which is involved in photosynthesis1, the neurotransmitter dopa-
mine and the hormone adrenaline. The excited-state deactivation mechanism of phenol
has been studied extensively both theoretically and experimentally. However, not all
possible photodeactivation mechanisms have been elucidated. Especially, regarding
the O–H photodissociation mechanisms operable in solvated phenol there are still open
questions.

OH

Figure 1. Phenol

According to theoretical studies by Sobolewski et al.,2–6 the excited-state deactivation
mechanism in the gas phase occurs through detachment of the hydrogen atom of the
O–H moiety and in solution through excited-state proton transfer7 from phenol to the
solvent.2–6 For illustration, a scheme of the potential energy landscape of phenol is
shown in Figure 2.

S0

ππ∗

πσ∗

reaction coordinate

en
er
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267 nm200 nm

→ esolv after 200 fs

→ esolv after 2 ns

Figure 2. Scheme of the potential energy landscape of phenol to illustrate experimental
observations.8 After excitation with 200 nm light (blue arrow), the formation
of solvated electrons is observed after 200 fs. After excitation to the bright S1

with ππ∗ character (green arrow), solvated electrons are observed after 2 ns.
The conical intersection is indicated by the funnel.

After excitation to the bright first excited state of ππ∗ character (S1), a conical in-
tersection (CI) to the dark second excited state of πσ∗ character (S2) is present. This
πσ∗ state is dissociative with respect to the O–H distance of phenol. Thus, the reaction
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coordinate of the photodissociation reaction is the O–H bond. The transfer of electron
and proton occurs concertedly. The σ∗ orbital is located at one solvent molecule and,
therefore, represents a precursor of the solvated electron. The energy barrier between
the minimum of the ππ∗ state and the conical intersection between ππ∗ and πσ∗ states
for gas-phase phenol is about 0.8 eV. For phenol with one water molecule forming a
hydrogen bond with the acidic proton, the barrier is about 0.7 eV. With more water
molecules, the barrier height is expected to decrease, but this has never been shown.
The conical intersection between the ππ∗ and πσ∗ states is at an energy of about 5 eV.
The existence of a barrier between the ππ∗ minimum and the conical intersection be-
tween ππ∗ and πσ∗ states leads to an energy threshold determining the dynamics and
time scale occuring after excitation. Molecules with enough excess energy to overcome
this barrier can follow the πσ∗ potential energy surface and either dissociate or relax
by internal conversion via another conical intersection present in isolated phenol to
the ground state (S0). If the energy is too low, tunneling under the barrier is possible.
Thus, for excitation energies above and below this threshold, different time scales for
the photodissociation are expected. Due to this barrier a considerable kinetic isotope
effect on fluorescence lifetime and quantum yield is expected.

The hypothesis of Sobolewski et al. is supported by computations carried out by
Dixon et al.,9 who optimized the geometries of phenol with one water molecule for
different O–H distances with the complete active space self-consistent field (CASSCF)
method with 10 electrons in 10 orbitals while keeping the geometry of the phenyl ring
frozen. Excited state energies were calculated employing the complete active space
2nd order perturbation theory (CASPT2) method.

Furthermore, several experiments10–15,17,19 for gas-phase phenol support the mecha-
nism of photodissociation by O–H elongation. Iqbal et al.10 excited phenol in the gas
phase with a 200 nm laser pulse, which has an energy above the CI between the ππ∗

and πσ∗ states. A time constant for H atom formation of 103± 30 fs was measured.
After excitation with 266 nm light, which is below the energy of the CI, no signal
corresponding to the hydrogen atom was observed in the time window up to 200 ps.

Tseng et al.11 measured the translational energy distribution of the products of pho-
todissociation of gas-phase phenol after excitation with a 248 nm laser pulse. The
large velocity of the phenoxyl fragment suggests that the photodissociation occurs on
a repulsive state, as predicted by Sobolwski et al.

Nix et al.12 measured the total kinetic energy release (TKER) spectra in the gas-
phase. At excitation wavelengths above 248 nm, phenoxyl radicals and H atoms were
observed. At excitation wavelengths below 248 nm, a second peak in the TKER spec-
trum was observed, suggesting that at high excitation energies another pathway for
photodissociation exists.

Iqbal et al.13 measured the time constants of the formation of hydrogen atoms after
excitation of gas-phase phenol as well as phenol deuterated at all positions of the
aromatic ring (phenol-d5) with a 200 nm laser pulse. After 2 ps, two peaks of hydrogen
atoms corresponding to high and low kinetic energy were observed. For phenol-d5 the
time constants for the formation of the fast and slow hydrogen atoms were 88± 30 fs
and 146 ± 25 fs, respectively. If the appearance of the slow hydrogen atoms were
due to statictical unimolecular decay, i. e. dissociation of vibrationally excited phenol
molecules after internal conversion to the ground state, a larger time constant would
be expected.

In accordance with the theoretical description, in an experimental study Roberts
et al.14 observed hydrogen tunneling in gas phase phenol after photoexcitation to S1

below the predicted energy of the conical intersection to S2. Phenol was excited with a
broadband pump laser pulse centered at 275 nm, which corresponds to the zero point
energy of S1. The time constant for H elimination has been found to be larger than
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the temporal limit of this experiment, i. e.≥ 1.2 ns. Moreover, this result suggests that
tunneling of the hydrogen atom is the rate-limiting step.

The potential energy landscape of phenol is influenced by the presence of solvent
molecules. Lipert et al. measured excited-state lifetimes of the first excited singlet state
for isolated phenol15 as well as for phenol with small clusters of 1, 2 and 3 water
molecules16 by time-resolved pump-probe photoionization. The lifetime of isolated
phenol is 2± 1 ns. Whereas the singlet-state lifetime of the phenol–(H2O)1 and phenol–
(H2O)3 clusters are 15± 1 ns and 18± 1 ns, respectively, the lifetime of the phenol–
(H2O)2 cluster is only 6± 1 ns. This difference in life time is attributed to a different
pattern of hydrogen bond formation between phenol and the water molecules. In
isolated phenol the O–H bond stretching vibration facilitates internal conversion to the
ground state. This interpretation is supported by the considerably longer lifetime of
deuterated phenol (16 ns) after excitation to S1.17 In the clusters containing one and
three water molecules the hydrogen bonds hinder the O–H stretching mode. Based
on the differences in the absorption spectra of the different clusters18 and the different
lifetimes16 the authors speculate that this hydrogen bond is weakened or nonexistent
in the phenol–(H2O)2 cluster. Ratzer et al.19 measured a lifetime of 2.4± 0.3 ns for
the first excited state of phenol, whereas the lifetime of S1 of phenol deuterated at the
hydroxyl moiety is 13.3± 1.6 ns, indicating that in the gas phase the O–H stretching
mode is involved in the photodeactivation mechanism.

The fluorescence lifetime of phenol is strongly dependent on the solvent, support-
ing the conclusion that the presence of hydrogen bonds with the O–H moiety plays
an important role in the excited-state deactivation mechanism. In the apolar aprotic
solvent cyclohexane the life time of S1 is 2.4± 0.5 ns, while in the polar protic solvent
ethanol it is 7.0± 0.5 ns.20 Specifically, it has been shown21 that in protic solvents the
fluorescence lifetimes are larger than in aprotic solvents due to the stabilizing influence
of hydrogen bonds on the first excited state of phenol.

Zhang et al.22 excited phenol in cyclohexane at two different wavelengths. After ex-
citation with 200 nm light, phenoxyl radicals were observed within the time resolution
of the experiment, 180 fs. In contrast, when phenol was excited at 267 nm, no phe-
noxyl radicals were observed within the first nanosecond. After 1.9 ns, a rising signal
attributed to the phenoxyl radical was observed. Thus, the dynamics of photodissoci-
ation in the apolar aprotic solvent cyclohexane parallels that in the gas phase, with a
marked difference in time scale depending on excitation wavelength.

Most experimental studies of the excited-state deactivation mechanism of phenol
have been carried out in the gas phase. In contrast, Oliver et al.8 carried out transient
absorption measurements in aqueous solution. For illustration, the potential energy
landscape of phenol is schematically depicted in Figure 2. For high-energy excitations
(200 nm, 6.2 eV) they observed after 200 fs vibrationally cold phenoxyl radicals and
solvated electrons. In addition, another signal attributed to the ground state phenol
radical cation PhOH+• was observed, which decays on a sub-picosecond time scale.
The occurence of this intermediate species suggests that the photodissociation mecha-
nism of phenol in water does not occur in a concerted way, rather that the electron is
transferred to the solvent first and the proton follows after less than one picosecond.
The quantum yield for the formation of solvated electrons was determined as 26% after
1 ps and decreasing to 14% after 800 ps due to recombination with phenoxyl radicals.
The ratio between solvated electrons and phenoxyl radicals was close to 1, which indi-
cates that almost no neutral hydrogen atoms are produced. For low-energy excitation
(267 nm, 4.64 eV), no solvated electrons are observed during the first 2 nanoseconds.
Only after more than 2 ns the signal corresponding to solvated electrons begins to rise.
Also, the signal corresponding to phenoxyl radicals increases. The quantum yield for
the formation of phenoxyl radicals was 13% after 13 ns and the ratio between phe-
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noxyl radicals and solvated electrons was 1. Experiments with excitation at 267 nm
were also carried out for deuterated phenol (phenol-d1). The kinetics observed was
similar, giving a value for the kinetic isotope effect of 1.0± 0.4. This small value in-
dicates that tunneling of the hydrogen atom, if it exists, is not the rate-limiting step
in solution, in contrast to the gas phase. The authors suggest that, after excitation to
vibrationally excited states of S1, the molecule relaxes to the vibrational ground state
of S1 and then undergoes slow autoionization to yield PhOH+• and solvated electrons,
after which fast deprotonation occurs. After low-energy excitation no signal due to
the intermediate species PhOH+• was observed, which can be attributed to the short
lifetime of this species. Thus, the experimental results by Oliver et al. suggest that
for phenol in bulk solution of a polar protic solvent like water a different mechanism
governs the excited-state deactivation process than in the gas phase. The time scale for
the formation of solvated electrons after low-energy excitation allows to estimate the
height of the energy barrier for this reaction based on the Arrhenius equation23

k =
kBT

h
e−Ea/RT (1)

where kB is Boltzmann’s constant, T is the temperature, h is Planck’s constant, Ea is the
activation energy, R is the universal gas constant and k is the rate constant

k =
1
τ

(2)

with τ being the time constant. Using the experimentally observed time scale of about
2 ns, the lower limit of the energy barrier is expected to be about 0.24 eV. In Chap-
ter 3, this value will be compared to energy barriers calculated with different quantum
chemical methods.

Further evidence for a sequential instead of concerted transfer of electron and proton
to the solvent was described for the phenol derivative 5,6-dihydroxyindole (DHI) by
Nogueira et al.24 5, 6-dihydroxyindole is a building block of the pigment eumelanin25,26

that protects human skin cells from photodamage due to UV radiation.27 DHI in aque-
ous buffer solution was excited with 280 nm radiation to the first excited state of ππ∗

character.24 The lifetime of this state is 103± 10 ps. Theoretical calculations employing
time-dependent density functional theory (TDDFT) were carried out for DHI with 10
water molecules. After excitation to S1, the cluster relaxes to the minimum of the ππ∗

state. The solvent molecules reorganize and facilitate the transfer of an electron from
one O–H moiety to the solvent. After the formation of the solvated electron, the proton
is transfered to a solvent molecule which is not participating in the stabilization of the
solvated electron. If D2O instead of H2O is used, the reaction is considerably slower,
with a kinetic isotope effect of 3, which suggests that the time-limiting step is the pro-
ton transfer. Thus, for 5,6-dihydroxyindole the reaction coordinate is reorientation of
the solvent molecules rather than elongation of the O–H bond.

The experiments carried out for gas-phase phenol10–15,17,19 support the hypothesis
from Sobolewski et al.2–6 that the reaction coordinate of photodissociation is the O–
H bond. In contrast, the experiment for phenol in aqueous solution8 suggests that a
different mechanism mediated by the solvent might be operative. Furthermore, the-
oretical investigations of the phenol derivative 5,6-dihydroxyindole24 show that the
reaction mechanism in water involves the formation of a solvated electron facilitated
by reorganization of solvent molecules. Therefore, the goal of this work is to investigate
the photodissociation of phenol considering two possible mechanisms: 1.) elongation
of the O–H bond; 2.) solvent reorganization facilitating the formation of a solvated
electron. For the investigation of the first mechanism, excited state optimizations for
the ππ∗ and πσ∗ state at different O–H bond distances were carried out to estimate
the height of the energy barrier of this reaction. To investigate the second mechanism,
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first, different solvent models were tested to find a suitable method. Then, the absorp-
tion spectrum and density of states (DOS) were calculated based on snapshots from
a classical molecular dynamics simulation. The electronic structure of spectrum and
DOS were analyzed to determine whether population of the πσ∗ state after excitation
to the ππ∗ state is possible already in the Franck-Condon region without elongation
of the O–H bond. Finally, a geometrical analysis was carried out in order to identify
possible geometrical features of the orientation of the solvent molecules contributing
to a lowering of the energy of the πσ∗ state.
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2
T H E O RY

In this chapter, the theoretical background of the methods employed in this work will
be explained briefly. Since configurational sampling by means of a molecular dynam-
ics simulation was used, this method will be discussed in the first section. Absorp-
tion spectra of phenol in water were calculated employing different quantum chemical
methods. Therefore, in section 2.2 the basis of quantum chemistry, the Schrödinger
equation, will be introduced. Then, one of the most commonly used approximations,
the Hartree-Fock method, will be discussed, followed by a brief explanation of two mul-
ticonfigurational methods, Complete Active Space Self-Consistent Field (CASSCF) and
Complete Active Space 2nd order Perturbation Theory (CASPT2), which were used in
this work. For the calculation of absorption spectra and density of states of phenol
solvated by small clusters of water molecules the single-reference method ADC(2) was
used. This method will be explained in section 2.6. For comparison with the CASPT2
and ADC(2) results, calculations employing density functional theory (DFT) were car-
ried out. Therefore, in section 2.7, DFT for the ground state as well as for excited
states will be discussed, including a short introduction to linear-response theory. In
order to simulate bulk solvation, two methods combining quantum mechanical calcu-
lations for the chromophore and classical calculations for the solvent were employed.
In section 2.8 these methods for the description of the environment will be explained.
After calculation of absorption spectrum and density of states, the excited states were
characterized by means of methods for the analysis of the wavefunction, which will be
outlined in the last section. When a new concept is introduced or a term is defined in
this chapter, it will be emphasized in italics. In the equations the following notational
convention will be used: vectors will be signified by arrows, e. g. ~r, matrices will be
typeset in bold, e. g. F.

2.1 molecular dynamics

2.1.1 Equations of motion

In molecular dynamics (MD),28,29 the motion of nuclei is simulated by integrating
Hamilton’s equations of motion.

d~RA

dt
=

∂H
∂~pA

=
~pA

mA
(3)

d~pA

dt
= − ∂H

∂~RA
= − ∂U

∂~RA
= ~FA (4)

where ~RA, ~pA and mA are the position, momentum and mass of particle A, H is the
Hamilton function and ~F is the force. These equations have to be solved numerically.
To accomplish this, a time step of e. g. 1 fs needs to be chosen. Beginning from a
starting geometry of a set of molecules, the equations are solved for each time step. To
integrate Hamilton’s equations of motion, several integration methods can be used.
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Verlet

In the Verlet algorithm,30 the position ~R of an atom at time t + ∆t is calculated based
on its positions at the times t and t− ∆t and the forces at time t:28

~R(t + ∆t) = 2~R(t)− ~R(t− ∆t) +
~F
m

∆t2 (5)

The velocities ~v do not explicitely enter the computation of ~R but can be calculated
afterwards from the positions:

~v(t) =
~R(t + ∆t)− ~R(t− ∆t)

2∆t
(6)

This algorithm is susceptible to a loss of accuracy during the simulation since a small
quantity (~F∆t2/m) is added to the difference of two large quantities, namely the posi-
tion vectors at times t and t − ∆t. Therefore, different mathematical formulations of
this algorithm have been developed to improve the numerical stability. In addition, ex-
plicit inclusion of velocities in the calculation of the motion would be preferable so that
they can be scaled in order to control the temperature of the system by thermostats.

Leap frog

In the Leap Frog algorithm31 the velocities explicitely enter the calculation of the posi-
tions. Moreover, this algorithm is numerically more stable since no differences of large
quantities have to be calculated. A disadvantage is that positions and velocities are not
synchronous, i. e. while positions are calculated for the times t + i∆t, the velocities are
calculated for the times t + i∆t

2 :28

~v
(

t +
∆t
2

)
= ~v

(
t− ∆t

2

)
+

~F
m

∆t (7)

~R(t + ∆t) = ~R(t) +~v
(

t +
∆t
2

)
∆t (8)

Velocity Verlet

The Velocity Verlet algorithm32 has the advantages that the velocities explicitely enter
the computation and that positions and velocities are synchronous. In addition, it is
numerically stable. First, the forces at time t are calculated based on an evalution of the
potential energy. Then, the positions at time t + ∆t are calculated from the positions,
velocities and forces at time t:

~R(t + ∆t) = ~R(t) +~v(t)∆t +
~F

2m
∆t2 (9)

As a third step, the forces at time t + ∆t are calculated since they are needed for the
computation of the velocities at time t + ∆t:

~v(t + ∆t) = ~v(t) +
~F(t) + ~F(t + ∆t)

2m
∆t (10)

2.1.2 Force Field

As can be seen in equations 5, 7, 9 and 10 the evaluation of the gradient of the potential
energy is necessary to integrate the equations of motion. The potential in which the
atoms move can be calculated by quantum chemical methods. However, for systems
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containing a large number of molecules, high-level calculations are unfeasible. In clas-
sical MD, the forces on the nuclei are calculated based on the evaluation of a potential
U described by a force field, which usually contains five terms:

Uforce field = Ub + Ua + Ut + Uel + UvdW,r (11)

For the potentials of bonds and angles, Ub and Ua, the harmonic oscillator approxima-
tion is used:28

Ub =
1
2

kb(r− r0)
2 (12)

Ua =
1
2

ka(θ − θ0)
2 (13)

where the parameters representing equilibrium bond lengths and angles, r0 and θ0,
as well as force constants, kb and ka are determined experimentally or by quantum
chemical calculations. The torsional potential is described by a sum of cosine functions:

Ut = ∑
i

1
2

kt, i
(
1 + cos(ntφt − δt, i)

)
(14)

where nt is a factor that describes the symmetry of the potential, φt is the torsional
angle and δt, i is the phase. The van der Waals and repulsion interactions are usually
approximated by a Lennard-Jones potential33 of the form28

UvdW,r = 4εAB

[(
σAB

rAB

)12

−
(

σAB

rAB

)6
]

(15)

where εAB is the depth of the potential well and σAB is the bond distance for which
UvdW,r = 0. The Coulomb potential, here written in atomic units, describes the electro-
static term for two charges qA and qB

Uel =
qAqB

rAB
(16)

The van-der-Waals and electrostatic interactions are termed nonbonded interactions.
Whereas the computational effort for the potentials for bonds, angles and torsions

grows linearly with the size of the molecule, nonbonded interactions have to be calcu-
lated between all pairs of atoms. Therefore, computational cost increases as N2, where
N is the number of atoms. For van der Waals interactions a cutoff value can be em-
ployed since the strength of the interactions decreases very fast with r−6. This cutoff
value is usually of the order of 10 Å. In contrast to the van der Waals potential, the
Coulomb potential has a comparatively long-range decay due to its r−1-dependence.
Therefore, a special treatment is necessary and it is not possible to employ a small
cutoff value.34 For systems with periodic boundary conditions (vide infra), Ewald sum35

methods can be employed to calculate the electrostatic interactions, which reduce the
scaling to N3/2 or even N logN in case of the Particle Mesh Ewald summation.36–38

2.1.3 Periodic boundary conditions

In order to avoid surface effects due to a too small number of solvent molecules, peri-
odic boundary conditions can be employed: The system is placed in a box of the form
of a cube or a truncated octahedron. This box is replicated in all directions of space, but
the equations of motion are only solved for the original box. Thus, the atoms inside the
replica boxes mimic the motion of the atoms in the original box. If a solvent molecule
leaves the box on one side, an image of this molecule enters the box at the opposite
side. Employing periodic boundary conditions, bulk solution can be simulated with a
rather limited number of solvent molecules.29

9



2.1.4 Thermostats and barostats

Chemical reactions are often carried out in open vessels, i. e. the temperature and the
pressure are kept constant. In order to simulate these conditions in molecular dynam-
ics, different thermostats39 and barostats40–49 have been developed. Here, only the
methods that have been used in this work will be explained, namely the Langevin
thermostat and the Berendsen barostat.

In a molecular dynamics simulation, the instantaneous temperature of a system is
related to the velocities of the particles as28

T =

N
∑
A

mA~v2
A

3kBN
(17)

where kB is Boltzmann’s constant. With the Langevin thermostat,50 the velocities of the
atoms A are modified every l time steps by employing a "friction coefficient" γ and a
random force ~Frandom. Thus, the Hamilton equation (4) is modified as

d~pA

dt
= ~FA − γ~vA + ~FA, random (18)

Thus, the fastest atoms experience the largest friction while the random force coun-
teracts the friction and ensures that the average temperature of the system does not
decrease.

The friction coefficient is related to the collision frequency ζ, which is commonly used
to characterize a Langevin thermostat, as51

γ = mζ (19)

The pressure of the system is calculated according to52

P =
1

3V

(
3NkBT + ∑

A 6=B

~RAB~FAB

)
(20)

where V is the volume of the box and ~RAB and ~FAB are the difference between the
coordinate vectors and the forces between particles A and B, respectively.

Employing the Berendsen barostat,41 the dimensions of the simulation box are scaled
by the factor ηp, which can induce alterations in the volume V.

ηp =

(
1 +

∆t
τrel

ξ(P− P0)

) 1
3

(21)

where τrel is the relaxation time and ξ is the compressibility of the system. P0 is the
desired pressure.

2.2 the schrödinger equation

Most of quantum chemistry is concerned with finding approximate solutions to the
Schrödinger equation,53 which is given in its non-relativistic, time-independent form as

Ĥ |Ψ〉 = E |Ψ〉 (22)

where Ĥ is the Hamilton operator, which describes the interactions between the particles
of a system, E is the total energy and |Ψ〉 is the wavefunction of the system. For a
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molecule consisting of atomic nuclei and electrons, the Hamiltonian consists of five
parts:54

Ĥ = −
n

∑
i=1

1
2
∇2

i︸ ︷︷ ︸
T̂e

−
N

∑
A=1

1
2mA
∇2

A︸ ︷︷ ︸
T̂n

+
n

∑
i=1

n

∑
j>i

1
rij︸ ︷︷ ︸

V̂ee

+
N

∑
A=1

N

∑
B>A

ZAZB

RAB︸ ︷︷ ︸
V̂nn

−
n

∑
i=1

N

∑
A=1

ZA

riA︸ ︷︷ ︸
V̂en

(23)

T̂e and T̂n are the kinetic energy operators for n electrons and N nuclei. V̂ee and V̂nn

describe the electrostatic repulsion between electrons and nuclei, respectively. rij and
RAB are the distances between two electrons and two nuclei, respectively. ZA is the
atomic number of nucleus A. V̂en is the Coulomb operator for the electrostatic attrac-
tion between electrons and nuclei. riA is the distance between electron i and nucleus A
and

∇2 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 (24)

Here, atomic units are used to simplify notation. Thus, h̄, the mass of the electron me

and the elementary charge e are unity. mA, the mass of a nucleus, is expressed in units
of me.

For systems containing more than two particles, the Schrödinger equation cannot be
solved analytically. However, the assumption that the motion of nuclei happens on a
different timescale than that of the electrons since they are about 1000 times heavier
is often valid. Then, the total wavefunction can be split in an electronic and a nuclear
part:

|Ψ(~r, ~R)〉 = |ψe(~r, R̄)〉 |ψn(~R)〉 (25)

as proposed by Born and Oppenheimer in 1927.55 |ψn(~R)〉 and |ψe(~r, R̄)〉 are the nu-
clear and electronic wavefunctions, respectively. |ψe〉 depends parametrically on the
nuclear coordinates R̄ and explicitely on the electronic coordinates~r. Thus, for a fixed
nuclear geometry, T̂n = 0 and V̂nn is constant. In this way, the electronic Schrödinger
equation becomes:54

Ĥe |ψe〉 = Ee |ψe〉 (26)

where the Hamiltonian contains only T̂e, V̂ee and V̂en. The total energy is then obtained
as

Eel = Ee + Vnn (27)

This equation can in principle be solved for different nuclear geometries. However,
in practice, further approximations have to be introduced in order to actually solve
equation 27.

2.3 hartree-fock

The Hartree-Fock approximation54 is the basis for most higher-level methods of quan-
tum chemistry, which add corrections to it as described in later sections. In the Hartree-
Fock method, the many-electron wavefunction is approximated as a Slater determinant
consisting of one-electron wavefunctions (spin orbitals |χi(~xi)〉)

|Ψ(~x1,~x2, . . . ,~xn)〉 =
1√
n!

∣∣∣∣∣∣∣∣∣
χ1(~x1) χ2(~x1) · · · χn(~x1)

χ1(~x2) χ2(~x2) · · · χn(~x2)
...

...
. . .

...
χ1(~xn) χ2(~xn) · · · χn(~xn)

∣∣∣∣∣∣∣∣∣ (28)

where ~x denotes the spatial and spin coordinates of an electron. The spin orbitals
|χi(~xi)〉 consist of the spatial orbitals |ψi(~ri)〉, depending only on the spatial coordinates
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~r, times one of the eigenfunctions of the spin operator, |α(ωs)〉 and |β(ωs)〉 with the
spin coordinate ωs.

For the Hartree-Fock method the variation principle is used, which states that the
energy calculated for a trial wavefunction is always greater than the exact ground
state energy, unless the trial wavefunction equals the exact ground state wavefunction.
Therefore, a trial wavefunction can be improved by varying its parameters to give the
lowest obtainable energy.

In accordance with the variational principle, the energy of the Slater determinant is
minimized by optimizing the orbitals. Thus, n coupled single-particle equations are
obtained, which have to be solved iteratively.

f̂ (~xi) |χ(~xi)〉 = εν |χ(~xi)〉 (29)

εν are the orbital energies, f̂ is the Fock operator:

f̂ (~xi) = −
1
2
∇2

i −
N

∑
A=1

ZA

riA
+ vHF(~xi) (30)

where vHF is the average potential being exerted on electron i by the other electrons.

vHF(~xi) =
n

∑
b=1

(
Ĵb(~xi)− K̂b(~xi)

)
(31)

where the Coulomb operator describes the repulsion between the ith electron and elec-
tron j in spin orbital |χb〉

Ĵb(~xi) |χa(~xi)〉 =
〈

χb(~xj)

∣∣∣∣ 1
rij

∣∣∣∣ χb(~xj)

〉
|χa(~xi)〉 (32)

whereas the exchange operator does not have a classical interpretation.

K̂b(~xi) |χa(~xi)〉 =
〈

χb(~xj)

∣∣∣∣ 1
rij

∣∣∣∣ χa(~xj)

〉
|χb(~xi)〉 (33)

The Fock operator depends on its eigenfunctions, i. e. on all spin orbitals. Thus, the
Hartree-Fock equations can only be solved iteratively. In order to do this, further
approximations are introduced.

Since linear algebra problems can be very efficiently solved by modern computers,
the Hartree-Fock problem is reformulated by introducing a basis set in which the or-
bitals are expanded. If pairs of spin orbitals |χ〉 are constrained to have the same
spatial part |ψ〉, the method is termed Restricted Hartree-Fock. The linear combination of
atomic orbitals (LCAO) expansion can be written as

|ψi〉 =
k

∑
µ=1

cµi |φµ〉 (34)

where |φµ〉 is a set of k atom-centered basis functions, from which the molecular or-
bitals ψi are constructed. Many sets of basis functions for calculations with various
methods and at different levels of accuracy have been developed.56–58 Usually, linear
combinations of Gaussian functions with different parameters controlling spatial ex-
tension are used. Then, the coefficients cµi of the molecular spatial orbitals have to be
determined using equation 29

54

f̂ (~ri)
k

∑
ν

cνi |φν(~ri)〉 = ε i

k

∑
ν

cνi |φν(~ri)〉 (35)
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The Roothaan-Hall equations are obtained after premultiplying both sides by 〈φµ|

k

∑
ν

cνi 〈φµ| f̂ (~ri) |φν〉︸ ︷︷ ︸
Fµν

= ε i

k

∑
ν

cνi 〈φµ|φν〉︸ ︷︷ ︸
Sµν

(36)

which can be written in matrix form as

FC = SCE (37)

The Fock matrix F and the overlap matrix S are k× k dimensional hermitian matrices. C
contains the coefficients of the molecular spatial orbitals. The orbital energies are the
elements of the diagonal matrix E.

The Roothaan-Hall equations have to be solved iteratively with the self-consistent
field (SCF) method: A first guess of the coefficients is made. Then, the Roothaan-Hall
equations are solved, yielding a new set of coefficients, which is then used to again
solve the equations until the new and old orbitals do not differ anymore by more
than a specified threshold, i. e. until self-consistency is reached. The Hartree-Fock
wavefunction |ΨHF〉 is then constructed from the n/2 lowest-lying orbitals.

The Hartree-Fock total energy is then

EHF = 〈ΨHF|Ĥ|ΨHF〉 =

= −
n/2

∑
i=1

〈
φµ(~ri)

∣∣∣∣ 1
2
∇2

i

∣∣∣∣ φµ(~ri)

〉
+

n/2

∑
i=1

〈
φµ(~ri)

∣∣∣∣∣ N

∑
A

ZA

riA

∣∣∣∣∣ φµ(~ri)

〉

+
n/2

∑
i=1

n/2

∑
j=1

2
〈

φµ(~ri)φν(~rj)

∣∣∣∣ 1
rij

∣∣∣∣ φµ(~ri)φν(~rj)

〉
−
〈

φµ(~ri)φν(~rj)

∣∣∣∣ 1
rij

∣∣∣∣ φµ(~rj)φν(~ri)

〉
(38)

For unrestricted Hartree-Fock, where all spin orbitals are allowed to have different
spatial extent, the similar Pople-Nesbet equations have to be solved:

FαCα = SCαEα

FβCβ = SCβEβ
(39)

where the fock matrix depends on the coefficients of both α- and β-orbitals.

2.4 complete active space self-consistent field

Some chemical systems cannot be described by employing only one Slater determi-
nant. In bond dissociation, for example, the contribution of the bonding configuration
decreases while that of the antibonding configuration increases with increasing bond
distance. Thus, at elongated bond distances both configurations have to be taken into
account for an accurate description of the system. Also, in excited states calculations
often several configurations have to be considered. Then, the wavefunction can be
approximated by using a linear combination of Slater determinants:59

|ΨCASSCF〉 = ∑
ν

cν |Ψν〉 (40)

where both the coefficients cν and the coefficients of the spatial orbitals are optimized.
In CASSCF,60,61 the orbitals are divided in three categories59: The inactive orbitals

are always doubly occupied while the secondary orbitals are always empty. All distri-
butions of electrons in the orbitals of the active space are taken into account. Excitations
betwen active and inactive or secondary orbitals are not considered. However, during
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the calculation, orbitals can be exchanged between the active space and the inactive or
secondary orbitals. The number of active orbitals м and the number of active electrons
n is indicated by the nomenclature CASSCF(n, м). The choice of the size of the active
space as well as of the character of the active orbitals is nontrivial and depends on the
chemical nature of the system as well as on the question being investigated. However,
the feasible size of the active space is rather limited since the number of configurations
Ncon f for a system with total spin S grows with the Weyl formula62

Ncon f =
2S + 1
м+1

(
м+1

n/2− S

)(
м+1

n/2 + S + 1

)
(41)

In state-averaged (SA) CASSCF, the orbitals are not optimized for a single state but
for all Nstate states included in the calculation. A state-average energy function ESA,
which is a linear combination of the energies Ei of the Nstate states with the weights wi,
is employed:

ESA =
Nstate

∑
i

wiEi (42)

Ususally the weigths of all states are equal to ensure that all states are equally well
described. The states obtained by SA-CASSCF are orthogonal. However, the average
orbitals obtained this way might be less well suited to describe a given state than
orbitals obtained in a state-specific CASSCF calculation. Also, the number of states has
to be chosen in accordance with the size of the active space and the character of the
active orbitals.

CASSCF is well-suited to describe systems where only a limited number of configu-
rations with large coefficients are important for the description (static correlation). How-
ever, if a large number of configurations with small coefficients have to be considered
(dynamic correlation), additional corrections are needed. Perturbational methods like
CASPT263,64 (Complete Active Space 2nd order Perturbation Theory) and NEVPT265–67

(n-Electron Valence State Perturbation Theory) are able to introduce dynamical corre-
lation.

2.5 complete active space 2nd order perturbation theory

CASPT263,64 employs a CASSCF wavefunction and adds perturbational corrections to
better describe dynamic correlation. In perturbation theory,68 the problem to be solved is
split into an exactly solvable problem and a small perturbation. The addition of the per-
turbative corrections to the simplyfied system then gives an approximate description
of the real target system. Correspondingly, the Hamiltonian is split into the unper-
turbed zeroth order Hamiltonian Ĥ(0), for which exact solutions can be calculated, and
the small perturbation Ĥ′. In CASPT2,59 the unperturbed wavefunction is a CASSCF
wavefunction. The unperturbed Hamiltonian is the CASSCF Fock operator

F̂ = ∑
ij

f̂ijÊij (43)

where Êij is an excitation operator defined as

Êij = â†
iα âjα + â†

iβ âjβ (44)

â† and â are the creation and annihilation operators. Thus, â†
iα and â†

iβ create one electron
with spin α and one electron with spin β in orbital i whereas âjα and âjβ annihilate
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two electrons with opposite spin in orbital j. Therefore, the operator Êij excites two
electrons from orbital j to orbital i. The operator f̂ij can be expressed as

f̂ij =

〈
φi

∣∣∣∣−1
2
∇2
∣∣∣∣ φj

〉
−

N

∑
A=1

ZA

〈
φi

∣∣∣∣ 1
rA

∣∣∣∣ φj

〉
+ ∑

ij,kl
Dij

[
〈φiφj|φkφl〉 −

1
2
〈φiφk|φjφl〉

] (45)

where D is the first-order one-particle density matrix, which can be calculated from
the one-electron coupling coefficients

Dmn
ij = 〈Ψm|Êij|Ψn〉 (46)

as
Dij = ∑

mn
c∗mcnDmn

ij (47)

The first-order interaction space Φ contains all states which are generated by double
excitations from the CASSCF wavefunction into secondary orbitals.

Φ = ÊijÊkl |ΨCASSCF〉 (48)

After the zeroth-order Hamiltonian and the perturbation have been set up, the pertur-
bation equations can be solved.

If the first-order interaction space contains states for which the eigenvalue of the
zeroth-order Hamiltonian is close to the value for the CASSCF wavefunction, the
second-order energy can become too large. Such states are termed intruder states.69,70

Ideally, the orbitals contributing to these states should be included into the active
space.71 However, since the size of the active space for which calculations are still
feasible is rather limited, an arbitrary level shift69,70 can be added to the zeroth-order
Hamiltonian. Then, the second-order energy is corrected by applying a level-shift cor-
rection. If no intruder states are present, the effect of the level-shift technique on the
second-order energy is negligible.

CASPT2 can be used in a state-specific (SS) or a multistate (MS) formalism.

2.6 algebraic diagrammatic construction to 2nd order

The Algebraic Diagrammatic Construction to 2nd order (ADC(2))72 is a perturbational
method for the calculation of excitation energies.73 The basis for this method is the po-
larization propagator. A propagator describes how a perturbation propagates through a
system between the times t and t′. The polarization propagator describes a perturbation
of the electron density. The polarization P(t) can be expressed as74

P(t) = ∑
pq

P̂pq â†
q(t)âp(t) (49)

where P̂ is an arbitrary one-electron operator. Depending on the choice of P̂, differ-
ent phenomena can be described. For example, if P̂ is chosen as the Fermi-contact
Hamiltonian, indirect nuclear spin-spin coupling constants can be calculated.75 For
the description of electronic excitations, a transition moment operator should be cho-
sen, which is usually the dipole operator.74 The annihilation and creation operators
âp and â†

q annihilate and create an electron in the orbital p and q, respectively. The
polarization propagator is defined as

Πpq,rs(t, t′) = − i Ξ(t− t′) 〈Ψ0|P(t)Q(t′)|Ψ0〉 − i Ξ(t− t′) 〈Ψ0|Q(t′)P(t)|Ψ0〉 (50)
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where Ξ(t− t′) is a step function and Ψ0 is the ground state wavefunction. The polar-
ization propagator gives the probability amplitude that a polarization P of the ground
state created at time t evolves to a polarization Q at time t′, where Q can be written as

Q(t′) = ∑
rs

Q̂rs â†
r (t)âs(t) (51)

In the derivation of linear-response based methods as well as methods formulated
employing propagators76 it is often convenient to use the interaction picture77 of quan-
tum mechanics. While in the Schrödinger picture78 operators ÔS are time-independent
and only state vectors |ΨS(t)〉 are time-dependent, in the interaction picture77 both
operators ÔI(t) and state vectors |ΨI(t)〉 are time-dependent. By transformations it is
possible to convert operators from one picture to the other.

ÔI(t) = ei ĤtÔse− i Ĥt (52)

where Ĥ is the Hamiltonian in the Schrödinger picture. Converting the time-independent
polarization propagator in the Schrödinger picture Π0 to the time-dependent operator
in the interaction picture Π(t) is accomplished by74

Π(t) = ei ĤtΠ0e− i Ĥt (53)

Rewriting equation 50 employing the above expression for the time-dependency and

inserting the completeness relation
Nexc

∑
i
|Ψi〉 〈Ψi| = 1 gives

Πpq,rs(t, t′) = − i Ξ(t− t′)
Nexc

∑
i=1
〈Ψ0|P|Ψi〉 〈Ψi|Q|Ψ0〉 ei(t−t′)(E0−Ei)

− i Ξ(t− t′)
Nexc

∑
i=1
〈Ψ0|Q|Ψi〉 〈Ψi|P|Ψ0〉 ei(t−t′)(Ei−E0) (54)

Fourier transformation of the polarization propagator gives the Lehmann representa-
tion of the polarization propagator74

Πpq,rs(ω) =
Nexc

∑
i=1

〈Ψ0|â†
q âp|Ψi〉 〈Ψi|â†

r âs|Ψ0〉
ω + (ENexc

0 − ENexc
i ) + i η

−
Nexc

∑
i=1

〈Ψ0|â†
r âs|Ψi〉 〈Ψi|â†

q âp|Ψ0〉
ω− (ENexc

0 − ENexc
i )− i η

(55)

where E0 − Ei are the excitation energies of the Nexc excited states. The polarization
propagator has poles at the excitation energies.

Equation 55 can be written in matrix notation as

Π(ω) = Π+(ω)−Π−(ω) (56)

Since Π+(ω) and Π−(ω) are related by

Π+†(−ω) = −Π−(ω) (57)

only one of these matrices needs to be calculated. The polarization propagator is
expressed in the eigenstates of the Hamiltonian. Therefore, equation 55 is termed
diagonal representation, which can be written as73

Π(ω) = x†(ω1−Ω)−1x (58)

where the matrix elements are calculated as79

xi,rs = 〈Ψi|â†
r âs|Ψ0〉 (59)

Ωij = −(ENexc
0 − ENexc

i )δij (60)
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Ω is a diagonal matrix containing the excitation energies ωi while x contains the tran-
sition amplitudes.

For the calculation of the excitation energies, Π+ has to be brought into a non-
diagonal form according to

Π+(ω) = f †(ω1−M)−1 f (61)

M is the energy-shifted Hamiltonian79 with the matrix elements

MI J = 〈ΨI |Ĥ − E0|ΨJ〉 (62)

where E0 is the ground-state energy and ΨI and ΨJ are the wavefunctions of the ex-
cited states I and J. These wavefunctions usually correspond to the orthogonalized
eigenstates of the Hamiltonian for which M is diagonal.

f are the spectral amplitude vectors

fpq,I = 〈ΨI |â†
p âq|Ψ0〉 (63)

where Ψ0 is the ground state wavefunction and the effect of the creation and annihila-
tion operators â†

p and âq is the excitation of an electron from orbital q to orbital p. The
excited state wavefunctions can be obtained by carrying out a Møller-Plesset80 (MP)
perturbational calculation of the desired (usually second) order to obtain the ground
state wavefunction and then acting on Ψ0 with excitation operators generating single,
double and, if wanted, higher excitations.79 In this way, an ADC(i) calculation can be
carried out by starting with an MPi computation.

The Hamiltonian and the transition amplitudes are expanded in a perturbational
series.73

M = M(0) + M(1) + M(2) + M(3) + · · · (64)

f = f (0) + f (1) + f (2) + f (3) + · · · (65)

Thus, the polarization propagator can be written as

Π+(ω) = ( f (0)† + f (1)† + f (2)† + · · · )(ω1−M(0) −M(1)

−M(2) − · · · )−1( f (0) + f (1) + f (2) + · · · )
(66)

Then, the matrix expressions can be ordered according to the order of expansion. The
zeroth and first order terms are:72

Π(0)(ω) = f (0)†(ω1−M(0))−1 f (0) (67)

Π(1)(ω) = f (1)†(ω1−M(0))−1 f (0) + f (0)†(ω1−M(0))−1 f (1)

+ f (0)†(ω1−M(0))−1M(1)(ω1−M(0))−1 f (0)
(68)

The second order terms are:

Π(2)(ω) = f (1)†(ω1−M(0))−1 f (1) + f (1)†(ω1−M(0))−1M(1)(ω1−M(0))−1 f (0) + c.c.

+ f (0)†(ω1−M(0))−1M(1)(ω1−M(0))−1M(1)(ω1−M(0))−1 f (0)

+ f (0)†(ω1−M(0))−1M(2)(ω1−M(0))−1 f (0) + f (2)†(ω1−M(0))−1 f (0) + c.c.
(69)

where c.c. denotes the complex conjugate of the preceding term.
Different ADC(i) approximation schemes with truncation of the expansion at order i

are possible.73 The most commonly used method ADC(2) includes terms up to second
order.
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By diagrammatic analysis, explicit algebraic expressions can be derived. For exam-
ple, the zeroth-order terms can be calculated as

Π(0) = ∑
jk

D∗jk︸︷︷︸
f (0)†

(1− nj)nk

ω + εk − ε j︸ ︷︷ ︸
(ω1−M(0))−1

Djk︸︷︷︸
f (0)

(70)

where Djk means the matrix element 〈ϕj|d̂|ϕk〉 with d̂ being the dipole operator, ni is
the occupation number of orbital i and ε i is its energy.

Then, the matrix M, truncated at the chosen order, can be diagonalized, which cor-
responds to solving the eigenvalue problem

MY = YΩ (71)

From the eigenvectors Y the spectroscopic amplitudes x can be calculated as

x = y† f (72)

2.7 density functional theory

2.7.1 Ground state density functional theory

In density functional theory81 (DFT) the central quantity is the electron density ρ(~r).
Like the wavefunction, the electron density contains all information that can be known
about a system: it integrates to the number of electrons and contains information
about the position and charge of the nuclei. According to the first Hohenberg-Kohn
theorem,82 the electron density uniquely determinates the Hamilton operator81 and
thus all properties of the system, including the energy of the ground state as well
as the energy of excited states. The ground state energy can be divided into parts
depending on the actual system (i. e. the attraction between nuclei and electrons) and
parts whose form is independent of the number of electrons as well as the position and
charge of the nuclei:

E[ρ] = T[ρ] + Eee[ρ]︸ ︷︷ ︸
universally valid

+ Een[ρ]︸ ︷︷ ︸
system dependent

= FHK[ρ] + Een[ρ] (73)

The system-independent parts are collected into the Hohenberg-Kohn functional FHK. Ac-
cording to the second Hohenberg-Kohn theorem, the energy of a trial electron density
calculated with the exact Hohenberg-Kohn functional is greater than the exact ground
state energy, unless the trial density equals the true ground-state density. However,
this variational principle is only valid for the exact Hohenberg-Kohn functional, which
unfortunately is not known. Several approximate functionals have been developed.
Most of them employ the Kohn-Sham approach, in which a reference system of non-
interacting electrons with the same electron density as the real system is assumed. The
Hamilton operator ĤS of this non-interacting system contains an effective potential
VS(~ri) in order to generate the same electron density as the interacting system.

ĤS = −1
2

n

∑
i=1
∇2

i +
n

∑
i=1

Vs(~ri) (74)

The ground state wavefunction is described by one single Slater determinant. By em-
ploying the Kohn-Sham operator

f̂ KS = −1
2
∇2 + VS(~r) (75)
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the Kohn-Sham orbitals ϕKS
i are calculated, analogously as in the Hartree-Fock method.

f̂ KSϕKS
i = ε i ϕ

KS
i (76)

Then, the electron density is calculated from the Kohn-Sham orbitals as

ρ(~r) =
k

∑
i=1
|ϕKS

i |2 (77)

The kinetic energy of the non-interacting system can then be calculated as

TS = −1
2

k

∑
i=1
〈ϕKS

i |∇2|ϕKS
i 〉 (78)

The Hohenberg-Kohn functional is separated into three parts:

FHK[ρ] = TS[ρ] + J[ρ] + FXC[ρ] (79)

where J[ρ] decribes the Coulomb repulsion between the electrons. The unknown quan-
tities about the system are collected into the exchange-correlation functional FXC[ρ], which
is used to approximately describe the non-classical effects of exchange and correlation
(the dependency of the probability density of one electron on the probability density
of all other electrons), self-interaction correction and the part of the kinetic energy that
is not captured by the kinetic energy of the non-interacting system. The Kohn-Sham
operator is then

f̂ KS = −1
2
∇2

i︸ ︷︷ ︸
TS

−
N

∑
A=1

ZA

riA︸ ︷︷ ︸
Ven

+
∫

ρ(~r′)
|~ri −~r′|

dr′︸ ︷︷ ︸
J

+
∂EXC[ρ(~r)]

∂ρ(~r)︸ ︷︷ ︸
FXC

(80)

where EXC[ρ(~r)] is the exchange-correlation energy. Thus, the energy of the real, interact-
ing system is

E[ρ(~r)] = −1
2

k

∑
i=1
〈ϕKS

i |∇2|ϕKS
i 〉︸ ︷︷ ︸

TS

−
N

∑
A=1

ZA

RA

∫
ρ(~r)
RA

dr︸ ︷︷ ︸
Een

+
1
2

∫∫
ρ(~r)ρ(~r′)
|~r−~r′| drdr′︸ ︷︷ ︸

J

+EXC[ρ(~r)]

(81)
Many exchange-correlation functionals at different levels of accuracy have been pro-
posed,83 but there is no way to improve the functionals in a systematic way.

2.7.2 Time-dependent density functional theory

The foundation for the calculation of excited states with density functional theory is
the Runge-Gross theorem,84 which states that the time-dependent electron density ρ(~r, t)
determines the time-dependent wavefunction Ψ(~r, t) up to a time-dependent phase.85

Thus, all observable properties can be deduced from the time-dependent density.86

In this section, some important definitions of linear response theory will be briefly
outlined. Then, the application of linear response theory to the electron density and
to a non-interacting reference system, as in the Kohn-Sham method, will be shown.
Finally, the Casida equation will be discussed and a commonly used approximation
will be introduced.
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Linear response theory

Linear response theory is a perturbational theoretical ansatz with the goal to describe how
an observable changes when a small time-dependent perturbation acts on a system.

The ground state expectation value of an observable α is α0 = 〈Ψ0|α̂|Ψ0〉, where Ψ0 is
the ground state wavefunction. At t = t0, a time-dependent perturbation Ĥ1 consisting
of an external field Fext(t) coupled to an observable β86

Ĥ1 = Fext(t)β̂ (82)

perturbs the system and affects the wavefunction. Thus, the expectation value of α

becomes time-dependent: α(t) = 〈Ψ(t)|α̂|Ψ(t)〉.
The response of α̂ is α(t)− α0, i. e. the difference between the time-dependent and

the ground-state expectation value. It can be expanded in powers of the external field:

α(t)− α0 = α1(t) + α2(t) + α3(t) + · · · (83)

The linear response is the first order response, α1(t). The linear response of α̂ at time t
to a perturbation that has occured at an earlier time t′ can be calculated as

α1(t) = − i
∫ t

t0

Fext(t′) 〈Ψ0|[α̂(t− t′), β̂]|Ψ0〉 dt′ (84)

where i denotes the imaginary unit and [α̂, β̂] is the commutator of the operators α̂ and
β̂. Equation 84 can be rewritten as

α1(t) =
∫ ∞

−∞
χαβ(t− t′)Fext(t′)dt′ (85)

where the integration limit t0 can be replaced by −∞ since the external potential is
zero before t0, and χαβ is the retarded response function, which is defined as

χαβ(t− t′) = − i Ξ(t− t′) 〈Ψ0|[α̂(t− t′), β̂]|Ψ0〉 (86)

where Ξ(t− t′) denotes a step function corresponding to the fact that the perturbation
occured earlier than the response.

Linear response of the electron density

Let u(~r, t) be a time-dependent potential of the form86

u(~r, t) = u0(~r) + u1(~r, t)Ξ(t− t0) (87)

u0 corresponds to the (time-independent) ground state potential, i. e., in the simplest
case, the potential due to the positively charged nuclei. u1(~r, t) is a small perturbational
potential that is switched on at time t0, which is signified by the step function Ξ.

The density operator ρ̂(~r) is defined as

ρ̂(~r) =
n

∑
i=1

δ(~r−~ri) (88)

where the δ-function does not vanish at the position of the electrons ~ri. The density
operator gives the electron density when operating on the wavefunction:

ρ(~r) = 〈Ψ|ρ̂(~r)|Ψ〉 (89)

If the perturbation is a scalar potential u1(~r′, t′) coupling to the density operator,

Ĥ1(t) =
∫

u1(~r′, t′)ρ̂(~r′) d3r′ (90)
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the first-order density-density response is

ρ1(~r, t) =
∫ ∞

−∞
dt′
∫

χρρ(~r,~r′, t− t′)u1(~r′, t′)d3r′ (91)

with the density-density response function being:

χρρ(~r,~r′, t− t′) = − i Ξ(t− t′) 〈Ψ0|[ρ(~r, t− t′), ρ(~r′)]|Ψ0〉 (92)

where [ρ(~r, t − t′), ρ(~r′)] signifies the commutator. Picturesquely, equation 91 can be
imagined in the following way: several perturbances u1(~r′, t′) are carried out at posi-
tions~r′ at time t′, each of them influencing the whole electron density at all~r. Therefore,
the retarded response functions due to these small perturbations have to be integrated
over space.

As in the general case (equation 83), the response of the density can be expanded as
a Taylor series in powers of the perturbation

ρ(~r, t)− ρ0(~r) = ρ1(~r, t) + ρ2(~r, t) + ρ3(~r, t) + · · · (93)

Thus, the density-density response function can be expressed as

χρρ(~r,~r′, t, t′) =
δρ[u](~r, t)
δu(~r′, t′)

∣∣∣∣
u0(~r)

(94)

where δ signifies the functional derivative. The initial potential u0 corresponds to the
ground state and is, according to the first Hohenberg-Kohn theorem, a functional of the
density. Since the Taylor series is evaluated around u0, i. e. the ground state potential,
the linear response function is a functional of the ground state density and not of the
perturbed density.

Lehmann representation of the linear response function

The time-dependent linear response function can by Fourier transformation be ex-
pressed as a frequency-dependent linear response function. Fourier transformation
of equation 86 gives86

χαβ(ω) = − i
∫ ∞

−∞
Ξ(t) 〈Ψ0|[α̂(t), β̂]|Ψ0〉 ei ωt dt (95)

Employing the completeness relation

∞

∑
i=0
|Ψi〉 〈Ψi| = 1 (96)

where Ψi are the eigenfunctions of the Hamiltonian with the energy differences Ei− E0

corresponding to the excitation energies Ωi, equation 95 can be written as

χαβ(ω) = − i
∞

∑
i=1

∫ ∞

−∞
Ξ(t)ei ωt

{
〈Ψ0|α̂|Ψi〉 〈Ψi|β̂|Ψ0〉 e− i Ωit

− 〈Ψ0|β̂|Ψi〉 〈Ψi|α̂|Ψ0〉 ei Ωit
}

dt (97)

Since the step function can be expressed as

Ξ(t) = lim
η→0+

i
2π

∫ ∞

−∞

e− i ωt

ω + i η
dω (98)

the Lehmann representation of the linear response function can be written as

χαβ(ω) = lim
η→0+

∞

∑
i=1

{
〈Ψ0|α̂|Ψi〉 〈Ψi|β̂|Ψ0〉

ω−Ωi + i η
− 〈Ψ0|β̂|Ψi〉 〈Ψi|α̂|Ψ0〉

ω + Ωi + i η

}
(99)
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where β̂ is the operator the perturbation couples to while α̂ is the operator whose linear
response is of interest.

The Lehmann representation of the density-density response function is then

χρρ(~r,~r′, ω) = lim
η→0+

∞

∑
i=1

{
〈Ψ0|ρ̂(~r)|Ψi〉 〈Ψi|ρ̂(~r′)|Ψ0〉

ω−Ωi + i η
− 〈Ψ0|ρ̂(~r′)|Ψi〉 〈Ψi|ρ̂(~r)|Ψ0〉

ω + Ωi + i η

}
(100)

where the notation ~r′ denotes the spatial coordinates of the perturbation coupling to
the density operator ρ̂(~r′) while the linear response of the density operator ρ̂ at all
positions ~r is of interest. From equation 100 it can be seen that χρρ has poles at the
excitation energies Ω.

Time-dependent Kohn Sham

The time-dependent Kohn-Sham method can be used to (in principle, exactly) model
the evolution of a system in time, similarly to a solution of the time-dependent Schrö-
dinger equation; however, solving the time-dependent Kohn-Sham equations is not
necessary for the computation of the excitation energies since, instead, a perturbational
theoretical ansatz is used. Therefore, in the following subsection only the necessary
aspects of time-dependent Kohn-Sham method will be discussed.

According to the van Leeuwen theorem,87 a noninteracting reference system with the
same time-dependent electron density ρS(~r, t) as the real system can be constructed,
comparable to the time-independent Kohn-Sham method. This reference system is
described by one single Slater determinant, from which its density is calculated as86

ρ(~r, t) = ρS(~r, t) =
n

∑
i=1
|ϕi(~r, t)|2 (101)

Since the external potential u1(~r′, t′) is time-dependent, the Kohn-Sham orbitals ϕi(~r, t)
are now also time-dependent. The effective potential for this non-interacting system is

us[ρ](~r, t) = u(~r, t) +
∫

ρ(~r′, t)
|~r−~r′|d

3r′ + uXC[ρ](~r, t) (102)

Conversely, the time-dependent density can be expressed as a functional of the effective
potential, which is itself a functional of the external potential:

ρ(~r, t) = ρ[uS[u]](~r, t) (103)

where the potential u contains the time-independent ground state potential u0 and the
time-dependent potential u1 (see equation 87). As in equation 93, the time-dependent
density response can be expanded in powers of the effective potential, where the first-
order term is

ρ1(~r, t) =
∫ ∞

−∞
dt′
∫

χρρ, S(~r, t,~r′, t′)uS1(~r′, t′)d3r′ (104)

which is the linear response equation of TDDFT, where

χρρ, S(~r,~r′, t, t′) =
δρ[uS](~r, t)
δuS(~r′, t′)

∣∣∣∣
uS[ρ0](~r)

(105)

The first-order effective potential is

uS1[ρ](~r, t) = u1(~r, t) +
∫

ρ1(~r′, t)
|~r−~r′| d3r′ + uXC1(~r, t) (106)

where uXC1 is the linearized exchange-correlation potential

uXC1(~r, t) =
∫

dt′
∫

δuXC[ρ](~r, t)
δρ(~r′, t′)

∣∣∣∣
ρ0(~r)

ρ1(~r′, t′)d3r′ (107)
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with the time-dependent exchange-correlation kernel

fXC(~r, t,~r′, t′) =
δuXC[ρ](~r, t)

δρ(~r′, t′)

∣∣∣∣
ρ0(~r)

(108)

Then, a Fourier transformation is carried out to obtain a frequency-dependent exchange-
correlation kernel.

Whereas the exact exchange-correlation kernel is frequency-dependent, TDDFT most
often uses the adiabatic approximation, i. e. a non-frequency dependent exchange-cor-
relation kernel is used. In temporal space, this corresponds to using an exchange-
correlation kernel that depends only on the instantaneous time-dependent density
while the exact exchange-correlation kernel depends also on the density at all earlier
times.

By construction, the density response of the non-interacting system (equation 104)
is equal to the density response of the real, interacting system (equation 91). Since
the effective potential depends on the response of the density, as can be seen from
equations 106 and 107, but the density response depends on the effective potential,
as can be seen from equation 104, it can only be calculated iteratively. A Fourier
transformation of the Kohn-Sham response function can be carried out, giving

χS,ρρ′(~r,~r′, ω) =
∞

∑
j,k=1

( fk − f j)
ϕ0

j (~r)ϕ0∗
k (~r)ϕ0∗

j (~r′)ϕ0
k(~r
′)

ω−ωjk + i η
(109)

To ensure that only terms with one occupied and one unoccupied orbital contribute,
the factor ( fk − f j) is used, where f j and fk are the occupation numbers of the spin
orbitals in the ground state (1 or 0). ωjk is the difference between orbital energies

ωjk = ε j − εk (110)

When ω goes to ωjk, the denominator goes to zero. Therefore, the linear response
function has poles at the frequencies corresponding to the excitation energies of the
system.

Analogously to the spin-independent formulation described above, the linear re-
sponse of the Kohn-Sham density can be formulated in an explicitely spin-dependent
way.

The Casida equation

The linear response of the spin density without an external perturbation is86

ρ1σ(~r, Ω) = ∑
σ′σ′′

∫
χS,σσ′(~r,~r′, Ω)d3r′

∫ { 1
|~r′ −~r′′| + fXC,σ′σ′′(~r′,~r′′, Ω)

}
ρ1σ′′(~r′′, Ω) d3r′′

(111)
σ describes the spin-dependence of the quantities. This equation has the form of an
eigenvalue equation: A frequency-dependent integral operator acts on ρ1σ(~r, Ω). Those
frequencies Ω, which give an eigenvalue of 1, are the excitation energies. From this
equation, the Casida equation88 can be derived:86[

A B
B A

] [
X
Y

]
= Ω

[
−1 0
0 1

] [
X
Y

]
(112)

where the elements of the matrices A and B are calculated as

Aiaσ,i′a′σ′(Ω) = δii′δaa′δσσ′ωa′i′σ′ + Biaσ,i′a′σ′ (113)

Biaσ,i′a′σ′(Ω) =
∫

d3r
∫

d3r′ϕ∗iσ(~r)ϕaσ(~r)
(

1
|~r−~r′| + fXCσσ′(~r,~r′, ω)

)
ϕi′σ′(~r′)ϕ∗a′σ′(~r

′)

(114)
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where the subscripts i and a denote occupied and unoccupied orbitals, respectively.
In the commonly applied Tamm-Dancoff approximation (TDA), the matrix elements of

B, which correspond to deexcitations, are set to zero.
In practice, in TDDFT often the density functionals developed for ground state calcu-

lations are also employed for the calculation of excited states.86 For a better description
of charge-transfer states, range-separated functionals89–92 can be used, which use two dif-
ferent expressions for the calculation of the Coulomb interaction for short and long
distances and thus give the correct asymptotic behaviour, i. e. the potential falls of as
r−1 and not exponentially fast.

2.8 description of environment

Employing molecular mechanics (MM), calculations on systems containing several hun-
dred thousand atoms can be carried out. With quantum mechanics (QM), such calcu-
lations are unfeasible. In order to include a description of a larger environment in
an ab initio calculation, different approaches to combine a QM calculation of the chro-
mophore with a classical simulation of the solvent can be used. In hybrid Quantum
Mechanics/Molecular Mechanics93–96 (QM/MM) models the environment is described
with atomistic resolution employing force fields. In QM/continuum models, such as
apparent surface charge (ASC) methods, the environment is described as a dielectric
continuum.97–99 In the most commonly used additive approach in QM/classical calcu-
lations, the total energy of the system ES is calculated from three parts:100

ES = EC(QM) + EEN(classical) + EC/EN (115)

The energy of the chromophore EC is calculated employing a quantum chemical method
while the energy of the environment EEN is computed classically. In QM/MM cal-
culations EEN is calculated from a force field as described in Section 2.1.2 while in
QM/continuum calculations this term is neglected. The interaction between chro-
mophore and environment EC/EN can be described at different levels of accuracy. Usu-
ally only electrostatic interactions between environment and chromophore are consid-
ered at QM level. For QM/MM calculations van der Waals and repulsion interactions
between pairs of atoms in the QM and MM region are described by a Lennard-Jones
potential (see equation 15) and in QM/continuum calculations empirical corrections
are used.99

For both QM/MM and QM/continuum approaches, EC(QM) and EC/EN are calcu-
lated together by employing in the QM calculation an effective Hamiltonian He f f that
contains the Hamiltonian of the chromophore Ĥ0

C and the classically treated charges q
from the environment100

Ĥe f f = Ĥ0
C + ∑

i
qi(~Ri)V̂(~Ri) (116)

where V̂(~Ri) is the electrostatic potential the chromophore exerts on the environment
charges.

In QM/MM, in the electrostatic embedding approach, the one used here, the MM point
charges are included in the quantum mechanical Hamiltonian by adding a one-electron
term of the form:93

ĤC/EN = −
n

∑
i

L

∑
α

qα

|~ri − ~Rα|
+

N

∑
A

L

∑
α

qαZA

|~RA − ~Rα|
(117)

The first term describes the electrostatic attraction between the n quantum mechani-
cally treated electrons at positions ~ri and the L MM point charges qα at positions ~Rα.
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The second term contains the electrostatic repulsion between the N QM nuclei with
charge ZA at ~RA and the MM point charges. By including this term in the QM Hamil-
tonian, the polarization of the electron density due to the presence of the MM charges
is taken into account. However, with the commonly employed nonpolarizable force
fields it is not possible to take into account the polarization of the environment due to
the chromophore. While electrostatic embedding has been used for accurate calcula-
tions of biomolecules, overpolarization can occur when the distance between MM point
charges and the QM electron density becomes small since at short distances the point
charge does not accurately model the effects of the more spread-out charge distribu-
tion.94 Overpolarization is exacerbated if the distance between MM point charges and
the QM electron density decreases and if the electron density is spatially flexible due
to the use of a larger basis set including polarization and diffuse functions.93

In QM/continuum approaches the chromophore is placed inside a cavity surrounded
by a polarizable continuum representing the solvent. To calculate the environment
charges at the surface of the cavity, the Poisson equation is employed100

−∇ · [εd(~r)∇VC,EN(~r)] = 4πρC(~r) (118)

which relates the charge distribution of the chromophore ρC and the electrostatic po-
tential VC,EN due to both the chromophore and the environment. εd is the distance-
dependent dielectric constant. With the introduction of a cavity, the permittivity equals
one inside the cavity; outside it is the static dielectric constant εs of the simulated sol-
vent. The surface of the cavity is divided into small segments with constant charge
density. The compensating charges induced by the charge density of the chromophore
on the small surface elements are calculated. These point charges~q, which are included
in the QM Hamiltonian (Equation 116), can be calculated as100

~q = −KC,s~VC (119)

where the matrix KC,s depends on the geometry of the cavity as well as on εs and
~VC is the electrostatic potential the chromophore exerts on the small surface areas.
In the conductor-like polarizable continuum model101,102 (C-PCM) and the conductor-
like screening model103–105 (COSMO), which differ in the way the elements of KC,s are
calculated, the environment is initially described as a conductor with ε = ∞. Then,
the surface charges ~q∗ are scaled by an empirical function to reflect a finite dielectric
constant of the medium.

~q =
εs − 1
εs + k

~q∗ (120)

where k equals 0.5 in COSMO and 0 in the C-PCM model. The surface charges ~q
are then included in the Hamiltonian of the chromophore to describe the effect of
the dielectric medium on the chromophore. Thus, the solvent-induced changes of the
charge density of the chromophore are calculated self-consistently, i. e. the solvent is
also polarized by the chromophore.

QM/MM methods are suited to describe explicit interactions with high directionality,
such as hydrogen bonding and stacking. However, the electrostatics are not calculated
in a self-consistent way since the environment cannot be polarized by the chromophore.
In contrast, QM/continuum models describe the electrostatic interactions with bulk
solvation well.

2.9 wavefunction analysis

The goal of wavefunction analysis106 is to achieve an accurate and quantitative anal-
ysis of the wavefunction obtained in an electronic structure calculation. In this work,
wavefunction analysis was used to characterize excited states as local excitations or
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charge-transfer states, for which also the root mean square electron-hole separation
was calculated for further analysis.

To facilitate comparisons between different quantum chemical methods, the density
matrix is calculated from the wavefunction. Then, different properties can be calculated
from it. The elements of the reduced one-particle transition density matrix between the
states I and J can be calculated as

DI J
µν = 〈ΨI |â†

µ âν|ΨJ〉 (121)

where the annihilation operator âν annihilates the electron in orbital χν while the cre-
ation operator â†

µ creates an electron in orbital χµ. For I = J, the resulting matrix is
termed state density matrix. The expectation value of an one-electron operator Ô can be
calculated directly from the density matrix:

〈ΨI |Ô|ΨJ〉 = ∑
µν

DI J
µν 〈χµ|Ô|χν〉 (122)

The excited state can be considered as consisting of an electron at position~re and a
hole at position~rh. The two-particle wavefunction χexc describes the correlated move-
ment of the electron and the hole. The expectation value of an operator acting on the
electron-hole wavefunction can be calculated as

〈Ô〉exc =
〈χexc|Ô|χexc〉
〈χexc|χexc〉

(123)

The one-particle transition density matrix γ0I between the ground state and the excited
state I in coordinate space is

γ0I(~rh,~re) = ∑
ij

ψ∗i (~rh) 〈Ψ0|â†
i âj|ΨI〉︸ ︷︷ ︸

D0I
µν

ψj(~re) (124)

To facilitate the distinction between local excitations and charge-transfer states, the
system is divided into fragments, e. g. by defining the chromophore as one fragment
and the solvent molecules as the second fragment. For illustration, a depiction of
the transition density matrix for a system consisting of four fragments is depicted
in Figure 3. The elements of the transition density matrix are ordered into blocks
corresponding to the fragments. Local excitations occur within the diagonal blocks
(blue) while charge-transfer transitions occur in the off-diagonal blocks.

The charge-transfer number ΩCT
AB

ΩCT
AB =

∫
A

∫
B

γ0I(~rh,~re)
2 drhdre (125)

describes the probability that the hole is located in fragment A whereas the electron is
located in fragment B.

The charge-transfer number is calculated from contributions of the single atoms
of the fragments. Employing the Mulliken population analysis scheme,107 it can be
calculated as106

ΩCT
AB =

1
2 ∑

µ∈A
∑
ν∈B

[(D0IS)µν(SD0I)µν + D0I
µν(SD0IS)µν] (126)

where the elements of the matrix S are108

Sµν =
∫

χµ(~r)χν(~r) dr (127)
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Figure 3. Representation of the transition density matrix of a system comprised of
four fragments. Local excitations (blue) correspond to the diagonal elements
while charge-transfer states (white) correspond to the off-diagonal elements.

and thus give the overlap between the basis functions. The sum of the charge-transfer
numbers over all fragments gives the norm of the exciton wavefunction Ωexc,109

∑
A,B

ΩCT
AB = Ωexc = 〈χexc|χexc〉 (128)

which corresponds to the amount of single excitation character of an excited state. For
normalized wavefunctions 0 ≤ Ωexc ≤ 1.

The average positions of the initial (POSI) and final (POSF) orbitals, corresponding
to the hole and the electron, are calculated as110

POSI =
∑
A

A(∑
B

ΩCT
AB)

Ωexc

POSF =
∑
B

B(∑
A

ΩCT
AB)

Ωexc

(129)

Then, the mean position of the excitation is

POS =
POSI + POSF

2
(130)

The average separation between electron and hole (exciton size) is defined as109

d2
exc = 〈(~rh −~re)

2〉exc =
〈χexc|(~rh −~re)2|χexc〉

〈χexc|χexc〉

=
1

Ωexc

∫ ∫
γ0I(~rh,~re)(~rh −~re)

2γ0I(~rh,~re) drhdre

(131)

It can be calculated approximately as

d̃exc =

√
1

Ωexc
∑

M,N
ΩCT

MNd2
MN (132)

where dMN is the distance between the nuclei M and N.
Instead of canonical orbitals, as an alternative basis natural transition orbitals85 (NTOs)

can be used to describe electronic transitions. NTOs can be calculated from the transi-
tion density matrix. Since the transition density matrix is not symmetric, it cannot be
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diagonalized. However, the hole matrix106 DD† and the electron matrix D†D can be
diagonalized by the unitary transformation matrices U and V , respectively. Then, the
hole natural transitions orbitals ψh

i are

ψh
i (~r) = ∑

j
Uijψj(~r) (133)

and the electron NTOs are
ψe

i (~r) = ∑
j

Vijψj(~r) (134)

In this work, the charge-transfer numbers ΩCT and POS values are used to char-
acterize the states and to distinguish between local excitations corresponding to ππ∗

states and charge-transfer states corresponding to πσ∗ excitations. Furthermore, NTOs
are employed to visualize the excitations. Additionally, the approximate exciton size
of the πσ∗ states was calculated and the correlation with the excitation energy was
investigated.
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3
R E S U LT S A N D D I S C U S S I O N

In this chapter, the results of the investigations of the mechanism of O–H elongation
(Section 3.1) and solvent reorganization (Section 3.2) will be discussed. The computa-
tional details of the calculations that were carried out will be described together with
the results.

3.1 mechanism 1 : elongation of o–h bond

As described in Chapter 1, the mechanism for photodissociation of phenol proposed
by Sobolewski et al.2,3 after excitation to the bright ππ∗ state involves overcoming
a barrier between the minimum of the bright ππ∗ state and the conical intersection
between the ππ∗ and the dark πσ∗ state which is dissociative with respect to the O–H
bond of phenol. The reaction coordinate of this mechanism is the O–H bond distance.
To investigate the energetic barrier associated with this mechanism, scans of the O–H
distance have been carried out with CASPT2 and ADC(2). The scans described in the
following differ from those by Sobolewski et al.2,3 in the choice of the active space:
for the CASSCF geometry optimizations Sobolewski et al. used a (6,6) active space,
containing the six π and π∗ orbitals for the ππ∗ optimized scan. In case of the πσ∗

optimized scan, three π, two π∗ and the σ∗ orbitals were included while the highest
π∗ orbital was removed from the active space. For the CASPT2 energy calculations
of phenol, a (8,8) active space was used by them, containing all valence π orbitals of
phenol and the σ∗ orbital. For the calculations on phenol-water clusters, an additional
π orbital located at the oxygen atom of water was included by them in the active space.
Use of different active spaces can introduce inconsistencies in the results. In order to
see whether the results from Sobolewski et al. were consistent, we used the same active
space in the whole computational procedure: in the CASSCF and CASPT2 calculations
described as the following, a (6,7) active space containing the six π and π∗ orbitals as
well as the σ∗ orbital, was used. For comparison, calculations have also been carried
out with a (6,9) active space (see Appendix A.3).

3.1.1 CASPT2 O–H scan

Since CASPT2 has been used in the past to study the photophysics of phenol along the
reaction coordinate of O–H bond elongation,2,3 for phenol with one water molecule a
scan of the O–H bond distance has been carried out employing this method (see Fig-
ure 4a: Geometries of the ππ∗ and the πσ∗ states at different O–H distances were opti-
mized with SA-CASSCF(6,7) for three states employing MOLCAS, version 8.0.111. The
augmented correlation-consistent polarized valence-only double zeta (aug-cc-pvdz) ba-
sis set56,113–115 was used. To obtain accurate energies, multi-state (MS)116 CASPT263,64

calculations were performed on the CASSCF-optimized geometries using the corre-
sponding active space size and number of states. A level shift of 0.3 was used to
avoid the occurence of intruder states even in geometries far from the Frank-Condon
region. Test calculations for the ground-state and excited-state optimized geometries
without level shift showed the occurence of intruder states (see Section A.2 in the Ap-
pendix). No IPEA shift was used.117 The energies are plotted relative to the energy
of the ground-state optimized geometry. The energies plotted for S0 were calculated
at πσ∗-optimized geometries. The O–H distance at the crossing and the height of the
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Figure 4. a) MS-CASPT2 energies of geometries of phenol with one water molecule optimized with SA-
CASSCF(6,7) in the ππ∗ and the πσ∗ state plotted relative to the energy of the S0-optimized
geometry. Energies of S0 were calculated at πσ∗-optimized geometries. Numbers in the
right corner give the O–H distance at the ππ∗/πσ∗ crossing and the height of the energy
barrier between these states. b) Absorption spectrum calculated with MS-CASPT2 with
one explicitely treated water molecule and PCM for 100 snapshots from a classical MD
simulation. Experimental data from Ref. 112

energy barrier, calculated as the energy difference between the minimum of the ππ∗

state and the crossing, are also shown. Here, the term "crossing" refers to the point of
intersection between the fitted curves corresponding to the πσ∗ and ππ∗ states. We did
not try to optimize the conical intersection between ππ∗ and πσ∗ state. The orbitals
included in the (6,7) active space are depicted in Figure 5.

The value of the O–H distance at the crossing between ππ∗ and πσ∗ states of 1.25 Å
as well as the height of the energy barrier between these states of 0.7 eV agree with the
results obtained by Sobolewski et al.2 From the experimentally observed timescale for
the formation of solvated electrons,8 which is about 2 ns, the expected height of the
barrier which has to be overcome after excitation to the ππ∗ state can be calculated
based on the Arrhenius equation (see Chapter 1), giving a value of about 0.24 eV . The
barrier calculated with CASPT2 corresponds, according to the Arrhenius equation, to
a time constant of about 0.09 s, whereas the formation of the solvated electron was
experimentally observed after about 2 ns. With an energy barrier of 0.7 eV the pho-
todissociation mechanism of phenol by O–H bond elongation would seem improbable.
Sobolewski et al. suggest that the height of the barrier should decrease with increasing
number of water molecules, but this has never been shown. Unfortunately, investigat-
ing this hypothesis by including larger numbers of water molecules in the CASPT2
calculations is unfeasible due to difficulties with the selection of the active space.

Our results suggest that the energy of the ππ∗ state is underestimated because
the barrier height calculated with CASPT2 is considerably higher than that estimated
based on the experimental time scale for the formation of the solvated electron. In
order to corroborate this hypothesis, an absorption spectrum was calculated with
CASPT2 with one explicitely treated water molecule and the polarizable continuum
method (PCM) to simulate bulk solvation for 100 snapshots from a classical molecular
dynamics simulation. This CASPT2(6,7) spectrum was calculated with a development
version of MOLCAS that supports wavefunction analysis by the library libwfa. The
MD simulation has been carried out with AMBER 16118 using the general AMBER
force field (GAFF)119 on graphics processing units (GPUs).120–122 Phenol was solvated
in a truncated octahedral box extending to a distance of 15 Å from any solute atom,
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Figure 5. (6,7) active space depicted for πσ∗ optimized geometry at O–H distance of
1.4 Å.

filled with 1223 TIP3P123 water molecules, using the leap module of AmberTools14.
First, a minimization employing the steepest descent method has been carried out for
500 steps, followed by a conjugate gradient minimization for another 500 steps. Then,
the system was heated during 200 ps with a timestep of 1 fs to 300 K at constant
volume (NVT) employing a Langevin thermostat with a collision frequency of 5 ps−1.
After heating, an NPT molecular dynamics simulation was performed for 5 ns with a
timestep of 2 fs. Every hundreth geometry was saved. A Berendsen barostat41 was
employed to keep the pressure at a value of 1 bar with a pressure relaxation time of
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5 ps. A cutoff of 10 Å was used for the nonbonded interactions. For the calculation of
electrostatic interactions, the particle mesh Ewald method36–38 was employed. During
the heating and the NPT MD simulation the bonds involving hydrogen atoms were
constrained employing the SHAKE124,125 algorithm. In order to allow for a more effi-
cient sampling of relevant conformations, where a water molecule forms a hydrogen
bond with the acidic hydrogen atom of phenol, during the heating and the 5 ns NPT
MD trajectory the water molecule closest to the acidic hydrogen atom of phenol was
restrained employing a harmonic potential at an equilibrium distance of 1.58 Å with a
force constant of 50 kcal/molÅ2. Since an analysis of an unconstrained MD simulation
shows that a water molecule is hydrogen-bonded to phenol more than 80% of the time,
the introduction of the constraint does not adulterate the simulation.

As can be seen from Figure 4 b, the CASPT2 spectrum is red-shifted compared to
experiment by 0.157 eV. Thus, CASPT2 slightly underestimates the energy of the ππ∗

state and thus overestimates the height of the barrier, leading to wrong mechanistic con-
clusions. In order to investigate whether a different method gives a better description
of the system and can be employed for calculations involving several water molecules,
a scan of the O–H distance has been carried out with ADC(2).

3.1.2 ADC(2) O–H scan

As shown in the previous subsection, CASPT2 overestimates the height of the energy
barrier between ππ∗ and πσ∗ states. One reason for this result could be the limited size
of the active space. Therefore, an O–H scan has been carried out employing ADC(2),
which is an accurate method that avoids difficulties with the selection of an active
space (see Fig. 6). The ADC(2)72 calculations have been carried out employing the Tur-
bomole126–130 program package with the aug-cc-pVDZ basis set.56,113–115 The energies
of the πσ∗ and ππ∗ state were calculated based on the CASSCF-optimized geome-
tries. The natural transition orbitals for the πσ∗ and ππ∗ states at an O–H distance of
1 Å, which were calculated with the TheoDORE program package,106,108,109,131–133 are
depicted in Figure 7.
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Figure 6. Energies calculated with ADC(2) of the geometries of phenol with one water
molecule optimized employing CASSCF.
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Figure 7. Natural transition orbitals calculated with ADC(2) at an O–H distance of 1 Å
involved in the bright state, whose main transitions are π3π∗1 and π2π∗2 , and
the repulsive state, whose main transition is π1σ∗.

For the πσ∗ transition, there is only one transition with large contribution, which
involves the participation of only two orbitals, whereas the ππ∗ state contains two
transitions involving four NTOs corresponding to the two π orbitals with one nodal
plane and the two π∗ orbitals with two nodal planes orthogonal to the ring.

The crossing bond distance and energy barrier height calculated with ADC(2) are
1.08 Å and 0.16 eV. The height of the barrier corresponds to a time constant of 78 ps,
showing better agreement with the experimental time of 2 ns than the CASPT2 value.
However, as will be shown in section 3.2.1, ADC(2) overestimates the energy of the
ππ∗ state and therefore underestimates the height of the barrier.

With an energy barrier of about 0.2 eV the photodissociation mechanism by O–
H bond elongation is plausible. Since ADC(2) agrees better with experiment than
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CASPT2, this method will be used in the calculations with more water molecules. Also,
CASPT2 calculations with several solvent molecules become rather expensive and the
choice of the correct active space becomes more difficult the more water molecules are
included.

3.2 mechanism 2 : solvent reorganization

As described in Chapter 1, for the photodissociation of the phenol derivative 5,6-
dihydroxyindole a mechanism involving reorganization of the solvent molecules, facil-
itating the formation of a solvated electron and, thusly, sequential transfer of electron
and proton to the solvent, was demonstrated by Nogueira et al.24 In order to investi-
gate whether this mechanism is also operative in phenol, the absorption spectrum and
density of states were calculated after identification of a suitable solvent model. Since
the σ∗ orbital is located in the solvent, certain solvent configurations could stabilize this
orbital, thereby decreasing the energy of the πσ∗ state already in the Franck-Condon
region.

In this section, the investigated models for the description of the environment will
be discussed: The size of the small cluster of explicitely treated water molecules was
varied and the effects of bulk solvation were simulated by employing a continuum
model and a hybrid QM/MM method. Then, the electronic structure of the absorption
spectrum and the density of states will be analyzed. Finally, the results of the analysis
to identify a geometrical feature of the solvent orientation lowering the energy of the
πσ∗ state will be described.

3.2.1 Solvent Description: Explicit Cluster Models

Inclusion of the environment in the description of phenol is crucial since experiments
suggest that the excited-state deactivation mechanism is different in polar solvents
than in the gas phase or unpolar solvents. In order to investigate by which approach
bulk solution could be simulated, both explicit and implicit solvation models were
investigated.

To investigate the potential formation of a solvated electron, chemical intuition sug-
gests that at least five water molecules should be included in the calculations explicitely
since four water molecules are needed in the theoretical description of the solvated elec-
tron134 and one water molecule acts as hydrogen acceptor in a hydrogen bond with the
acidic proton of phenol. However, more water molecules might be needed. In the clus-
ter model used by Nogueira et al.24 10 water molecules were included. On the other
hand, the energies of the πσ∗ and ππ∗ states might already be converged with fewer
water molecules. In order to determine the number of water molecules that should be
considered explicitely, the absorption spectrum of phenol with different sizes of the
cluster model was calculated with ADC(2) (see Figure 9) for up to 101 snapshots taken
from the last 2 ns of the constrained classical molecular dynamics simulation. Due
to difficulties with the generation of redundant internal coordinates with larger num-
bers of water molecules, the number of geometries varies between 96 and 101 for the
different cluster sizes. Table 2 lists the number of snapshots on which the calculated
absorption spectra are based. Since the position of the σ∗ orbital of the πσ∗ state is ex-
pected to be close to the water molecule forming a hydrogen bond to the acidic proton
of phenol, this water molecule was included for the cluster of size one. For the larger
cluster sizes the four and fourteen water molecules closest to this hydrogen-bonded
water molecule were included in the calculations. The states were convoluted with
Gaussian functions of full width at half maximum of 0.2 eV and height proportional
to the oscillator strength. Since the energetic region of the ππ∗ band is of interest for
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this study, only transitions with energies below 5.2 eV were included in the absorp-
tion spectra plotted below. For comparability the height of the spectra was scaled to
one. For better comparison, the energy of the peak of the spectra and the difference to
experiment is listed in Table 3.

Table 2. Number of geometries for different numbers of explicitely treated water
molecules based on which the absorption spectrum and density of states were
calculated.
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1 101
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Figure 8. Absorption speectrum calculated with ADC(2) for different water cluster
sizes based on 96 to 101 geometries from a constrained classical molecular
dynamics simulation. Experimental data from Ref. 112

Table 3. Excitation energy at the maximum of the peak and difference to experiment112

for different cluster sizes in eV.

Cluster size energy at peak diff. to exp.

experiment112 4.59
gas phase 4.86 0.27

1 4.75 0.16
5 4.74 0.15
15 4.79 0.20

The calculated spectra agree well with experiment. However, the experimental spec-
trum, which peaks at an excitation energy of 4.59 eV, has a shoulder at lower energies
which is not reproduced by the calculated spectra. This shoulder could be due to
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vibronic transitions or the presence of dimers, factors that are not considered by the
theoretical model here. The gas phase spectrum, peaking at 4.86 eV, is blue-shifted
by 0.27 eV compared to experiment, indicating that ADC(2) slightly overestimates the
energy of the ππ∗ state, consistent with the small underestimation of the energy bar-
rier between the ππ∗ and πσ∗ states described in Section 3.1.1. Inclusion of just one
water molecule leads to a red shift of 0.11 eV, decreasing the difference to experiment
to 0.16 eV. Increasing the size of the water cluster to five water molecules causes only
a small red shift of 0.01 eV. However, a further increase of the cluster size to 15 water
molecules causes a blue shift of 0.05 eV compared to the cluster size of five. With this
energy behaviour one cannot be sure if the energy of the ππ∗ state is already con-
verged with respect to the number of water molecules treated explicitely. However,
calculations including more explicitely treated water molecules quickly become unfea-
sible. In order to simulate the effects of bulk solvation, QM/continuum and QM/MM
calculations were carried out. Since the largest shift occurs when going from the gas
phase to a cluster of one water molecule and experimental observations suggest that
hydrogen bonding plays an important role in the photodeactivation mechanism of phe-
nol, in these continuum and QM/MM calculations one water molecule was included
explicitely.

The 101 snapshots from the constrained classical MD simulation with the hydrogen-
bonded water molecule were used for the calculation of absorption spectra employing
the COSMO implicit solvation model and a hybrid QM/MM approach. The spectra
were calculated as described above. Figure 9 shows these spectra and, for comparison,
the experimental spectrum as well as the spectrum calculated with the cluster size of
15 water molecules. The energy of the maximum of the peaks and the difference to
experiment is listed in Table 4.
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Figure 9. Absorption spectrum calculated with ADC(2) for different solvent models.

The spectrum calculated with one explicitely treated water molecule and the COSMO
continuum model, peaking at an excitation energy of 4.78 eV, agrees very well with the
spectrum based on a cluster size of 15, which peaks at 4.79 eV. The QM/MM spec-
trum with one water molecule in the QM region is blue-shifted by 0.07 eV compared
to the spectrum of the continuum model. Since the electrostatic interactions between
the solvent model and the QM region are described self-consistently in the continuum
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Table 4. Excitation energy at the maximum of the peak and difference to experiment
for different solvent models in eV.

Solvent model energy at peak diff. to exp.

experiment112 4.59
1 water COSMO 4.78 0.19
1 water QM/MM 4.85 0.26

15 water 4.79 0.20

model but the MM region in the QM/MM calculation is not polarizable, it is to be
expected that the COSMO model is better able to describe the interactions with bulk
solvation. For calculations of excited states, polarizability of the environment is even
more important than for ground-state calculations since the electronic distribution of
the chromophore changes considerably, and the solvent needs to react accordingly
which is not possible with electrostatic-embedding QM/MM. The good agreement
between the spectrum based on one water and COSMO, which models complete bulk
solvation, and the spectrum with the 15 water molecules cluster size suggests that the
energy of the ππ∗ state is already converged with this number of water molecules.
Therefore, in the following analysis this cluster model will be used.

3.2.2 Electronic structure analysis of absorption spectrum and density of states

If the photodissociation mechanism of formation of a solvated electron facilitated by
solvent reorganization is operable, it is expected that for some geometries obtained
in the configurational sampling by molecular dynamics the energy of the πσ∗ state
is already low in the Franck-Condon region. In order to investigate this hypothesis,
the electronic structure of the absorption spectrum and the density of states calcu-
lated with the chosen cluster model was analyzed with the TheoDORE program pack-
age.106,108,109,131–133 For the population analysis the Löwdin method135,136 was used. In
order to distinguish between local excitations at the phenol molecule, corresponding
to ππ∗ states, and charge-transfer states between the phenol and the water molecules,
a combination of two criteria from the wavefunction analysis was used: The charge-
transfer number (CT) gives the percentage of charge-transfer character. A value of
0.5 was used to identify charge-transfer states corresponding to πσ∗ excitations. The
POS value gives the fragment of the average position of the excitation. Phenol was
defined as the first fragment and a POS value of 6 1.2 was employed as the threshold
to identify excitations which are located mainly at phenol and not at the solvent. Ex-
citations with a charge-transfer number 6 0.5 and a POS value 6 1.2 were classified
as ππ∗ states. Figure 10 shows the absorption spectrum and the decomposition into
ππ∗ and πσ∗ states, according to this classification. The percentages of the spectrum
comprised of ππ∗ and πσ∗ states were calculated as the ratios between the areas under
the corresponding curves.

The πσ∗ states have low oscillator strength, accounting for only 5% of the total
absorption spectrum, whereas the ππ∗ states are bright and account for 90% of the
spectrum. In addition, the πσ∗ states are found at the blue end of the spectrum,
mostly at higher energies than the peak of the ππ∗ band. Thus, it seems unlikely that
direct excitation to the πσ∗ band is possible. However, only states with a sufficiently
large oscillator strength are included in the absorption spectrum. If there exist dark
πσ∗ states at lower energies than the peak of the ππ∗ band, population of these dark
πσ∗ states might be possible after excitation to the ππ∗ state and subsequent internal
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conversion. The density of states, which takes into account all states irrespective of
their oscillator strength, is depicted in Figure 11.
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Figure 10. Absorption spectrum of phenol microsolvated by a cluster of 15 water
molecules calculated with ADC(2) and decomposition into ππ∗ states and
πσ∗ states.
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Figure 11. Density of states of phenol solvated by a cluster of 15 water molecules and
decomposition into ππ∗ and πσ∗ states.

The density of states is comprised to 36% of πσ∗ and 54% of ππ∗ states. Thus,
πσ∗ states have a considerably larger contribution to the DOS than to the absorption
spectrum. While most of these πσ∗ states are in the blue region of the spectrum, a
significant number also exists at energies below the maximum of the ππ∗ band. These
dark πσ∗ states can in principle be populated by internal conversion after excitation to
the ππ∗ state.

Among the 96 geometries on which the absorption spectrum and the DOS are based,
there are six geometries for which the ππ∗ and πσ∗ states are nearly degenerate. The
energies of the first and second excited states of these geometries as well as charge-
transfer numbers and O–H bond distances are listed in Table 5. Figure 12 shows for
one exemplary geometry the natural transition orbitals of S1 and S2. For illustration,
the excitation energies of these states are highlighted in the density of states depicted
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Figure 12. Natural transition orbitals of the first (excitation energy 4.78444 eV) and
second (4.83825 eV) excited state of one geometry with nearly degenerate
ππ∗ and πσ∗ states. Hole natural transition orbitals are denoted with h+,
electron NTOs with e−.
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in Figure 13. The natural transition orbitals show a considerable contribution of both
π∗ and σ∗ orbitals in both the first and second excited state, indicating that both states
are mixed.

Table 5. Excitation energy (in eV) and charge-transfer number of the first and second
excited state as well as difference between the energies of S1 and S2 (in eV) and
O–H bond distance (in Å) of the geometries with nearly degenerate ππ∗ and
πσ∗ states.

S1 exc. energy S1 CT S2 exc. energy S2 CT energy diff. O–H distance

4.78 0.41 4.84 0.60 0.06 0.974
4.64 0.37 4.81 0.43 0.17 0.975
4.65 0.38 4.68 0.42 0.03 0.974
4.74 0.55 4.76 0.44 0.02 0.974
4.62 0.40 4.85 0.23 0.23 0.974
4.78 0.20 4.83 0.38 0.05 0.973
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Figure 13. Density of states with the excitation energies of the nearly degenerate πσ∗

and ππ∗ states depicted as vertical lines. For this illustration, the DOS of
these states is depicted arbitrarily as 0.1 for better visibility.

For these energetically degenerate states the charge-transfer numbers are usually
slightly below 0.5, indicating that the ππ∗ and πσ∗ states are mixed since the values
are between those of pure ππ∗ states with charge-transfer numbers of the order of 0.05
and those of pure πσ∗ states (CT > 0.5). For four of the geometries, the difference
between the energies of the first and second excited state is below 0.1 eV, for one
geometry the energy difference is as small as 0.018 eV. The excitation energies of the
geometries with nearly degenerate ππ∗ and πσ∗ state are below or near the maximum
of the ππ∗ band. Thus, the near-degeneracy occurs for geometries for which the πσ∗

state decreases in energy and not due to an increase of the energy of the ππ∗ state.
In order to investigate whether the factor contributing to decreasing the energy of the
πσ∗ state is O–H elongation as suggested by Sobolewski et al.,2,3 the O–H distances
of these geometries were compared to the average of the ensemble. The average O–H
bond length of the geometries with degenerate ππ∗ and πσ∗ states is 0.97412 Å while
that of all snapshots that were used for the calculation of the spectrum is 0.97393 Å.
The negligible difference between the O–H distances suggests that an elongation of the
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O–H bond is not necessary but rather the orientation of the solvent molecules plays an
important role. Therefore, an anaylsis to identify a geometrical feature that contributes
to a lowering of the energy of the πσ∗ state was carried out in the next subsection.

3.2.3 Factors contributing to lowering of energy of πσ∗ state

The energy of the πσ∗ state depends partially on the orientation of the solvent molecules.
A σ∗ orbital surrounded by several water molecules, with their hydrogen atoms point-
ing towards it, is probably better stabilized than a less well solvated σ∗ orbital. Thus,
a good solvation of the σ∗ orbital requires a large separation between phenol and the
electron, which reduces the Coulomb attraction between electron and hole. In order
to quantify these geometrical analyses, two investigations of the charge-transfer states
were carried out. First, the distance between the hole and the electron was computed
as the root-mean-squared electron-hole separation employing the TheoDORE wave-
function analysis package. Second, the number of water molecules involved in the
solvation sphere of the σ∗ orbital was determined.

Figure 14 shows a plot of the root-mean-square electron-hole separation versus the
excitation energy.
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Figure 14. Root-mean-square (RMS) electron-hole separation versus excitation energy
of all charge-transfer states.

Although the distribution is rather broad, a trend is clearly visible: Lower excitation
energies are associated with larger root-mean-square electron-hole separations. This
results seems curious since a larger electron-hole separation reduces the Coulombic
interaction between electron and hole and should therefore increase the energy. How-
ever, a larger distance from the electron to the hole, which is located on phenol, allows
for more water molecules to surround the orbital, thus providing a better solvation
and lowering the energy of the πσ∗ state. In order to investigate this hypothesis, the
correlation between the number of water molecules containing more than 10% of elec-
tron population and the root-mean-square electron-hole separation was examined. The
results are plotted in Figure 15.

As expected, the number of water molecules solvating the σ∗-orbital increases with
the electron-hole separation. As a consequence, the solvation energy that stabilizes the
system increases, which can counteract the loss of Coulombic energy between the elec-
tron and the hole due to the larger separation. For further investigation, a geometrical
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Figure 15. Root mean square (RMS) electron-hole separation versus number of water
molecules containing > 10% of electron population. The standard deviation
is indicated by the shaded area.

analysis was carried out to examine whether a correlation between excitation energy
and number of water molecules in close proximity to the orbital exists.

In order to allow for a partially automated analysis of the 96 geometries based on
which a total of 244 charge-transfer states were calculated, an approximation of the
position of the σ∗ orbital needs to be defined. For this purpose, in the wavefunction
analysis each water molecule was defined as a single fragment and the electron and
hole populations for each fragment were calculated. Then, for each charge-transfer
state the water molecules containing more than 10% of electron population were iden-
tified. The approximate position of the σ∗ orbital was defined as the center of mass
of these water molecules. For illustration, for one exemplary state the orbital and the
center of mass are depicted in Figure 16. For each number of water molecules con-
taining more than 10% of electron population the average of the excitation energies
of all charge-transfer states was calculated. The results are plotted in Figure 17. The
numbers of states corresponding to the different cluster sizes are listed in Table 6.

Table 6. Number of states with different numbers of water molecules containing more
than 10% of electron population.

0 1 2 3 4
7 58 112 59 16

Although the standard deviation is rather large, a lower excitation energy is clearly
associated with a larger number of water molecules solvating the orbital. This result
agrees with the result that a lower energy correlates with a larger electron-hole separa-
tion, allowing for better stabilization of the orbital due to the presence of several water
molecules close to it.

In general, the excitation energy clearly decreases with increasing number of water
moleculs in close proximity to the approximate position of the σ∗ orbital. Chemical
intuition suggests that the orientation of the water molecules also plays an important
role, but it was not possible to identify further conditions neccesary to lower the energy
of the πσ∗ state.
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Figure 16. σ∗ orbital of one exemplary charge-transfer state and center of mass (figured
as blue sphere) of the three water molecules containing more than 10% of
electron population. The three water molecules are depicted in the bottom
picture.
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Figure 17. Average of the excitation energy of charge-transfer states with different num-
bers of solvent molecules containing > 10% of electron population. The
standard deviation is represented by the shaded area.

To summarize the findings of the investigation of the mechanism of solvent reorga-
nization, a cluster size of 15 water molecules seems to be enough since the spectrum
calculated with this environment model agrees very well with the spectrum calculated
with the QM/continuum model, which is able to describe the effects of bulk solva-

43



tion. An electronic structure analysis of the absorption spectrum and density of states
shows that while the πσ∗ states are mainly dark, there exist several low-lying πσ∗

states which can be populated by internal conversion after excitation to the ππ∗ band.
The factor contributing to lowering the energy of the πσ∗ state is not O–H elongation
but rather the orientation of the solvent molecules. In order to lower the energy of the
πσ∗ state the σ∗ orbital has to be well solvated by several water molecules. Lowest πσ∗

excitation energies were obtained if the σ∗ orbital is solvated by 4 water molecules. A
large number of solvating water molecules is only possible if the σ∗ orbital is located
at a comparatively large distance from phenol, with a root-mean-square electron-hole
separation of about 6 Å. These water molecules likely also have to be oriented in a
certain way to better stabilize the orbital.
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4
C O N C L U S I O N S A N D O U T L O O K

The goal of this work was to investigate two possible mechanisms for the photodisso-
ciation of phenol. After excitation to the bright first excited state of ππ∗ character, a
conical intersection to a dark, dissociative state of πσ∗ character is present. For the
reaction coordinate, two hypotheses have been examined: 1) elongation of the O–H
bond; 2) reorganization of the solvent molecules, facilitating the formation of a sol-
vated electron.

In order to investigate the mechanism of O–H bond elongation, the geometries of the
ππ∗ and the πσ∗ state for different O–H distances for phenol with one water molecule
forming a hydrogen bond to the acidic proton were optimized with CASSCF. The en-
ergies of these geometries were calculated with CASPT2 and ADC(2). The height of
the energy barrier between the ππ∗ and πσ∗ states computed with CASPT2 is 0.7 eV.
The experimental time scale8 for the formation of solvated electrons in phenol in aque-
ous solution (> 2 ns) corresponds to a barrier height of about 0.24 eV. While CASPT2
overestimates the barrier height, the value calculated with ADC(2) (0.16 eV), although
slightly underestimated, agrees better with experiment. Thus, the mechanism of O–H
elongation seems plausible.

For the investigation of the mechanism of solvent reorganization, first a suitable
model for the description of the environment had to be found. Therefore, the absorp-
tion spectrum of phenol microsolvated by clusters comprised of different numbers of
water molecules based on 101 snapshots of a classical molecular dynamics simulation
was calculated and compared to experiment. The excited-state energies calculated with
a cluster size of 15 water molecules agree very well with the results of QM/COSMO
calculations, which are able to describe the effects of bulk solvation. The electronic
structure of the absorption spectrum and the density of states calculated with this
model were analyzed in order to investigate whether for some orientations of solvent
molecules the πσ∗ state is the lowest excited state already in the Franck-Condon re-
gion. While the πσ∗ state is mainly dark and direct excitations to it seem improbable,
an analysis of the density of states shows that for several geometries the πσ∗ state has
a lower energy than the maximum peak of the ππ∗ band. These low-lying πσ∗ states
can in principle be populated by internal conversion after excitation to the ππ∗ band.
Finally, an analysis to identify factors contributing to lowering the energy of the πσ∗

state was carried out. The excitation energy of charge-transfer states decreases with
increasing root-mean-square electron-hole. While this finding seems curious since a
larger electron-hole separation reduces the Coulomb attraction between electron and
hole and should therefore increase the energy, a larger electron-hole separation allows
for more water molecules solvating and stabilizing the σ∗-orbital, reducing the energy
of the πσ∗ state without elongation of the O–H bond. Thus, a larger number of water
molecules with an electron population > 10% and a larger number of water molecules
within 3 Å around the approximate position of the σ∗-orbital are associated with a
lower excitation energy. To conclude, the mechanism of solvent reorganization facili-
tating the formation of a solvated electron seems plausible. Lower energy of the πσ∗

state was obtained if the σ∗ orbital was solvated by 4 water molecules. This is possible
when the root-mean-square electron-hole separation is around 6 Å.

For further investigation of the mechanism of photodissociation of phenol, it would
be interesting to carry out excited-state dynamics. However, due to the long time scale
of the formation of solvated electrons, enhanced sampling methods137,138 like acceler-
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ated molecular dynamics would have to be used, which are currently not implemented
in the program packages for non-adiabatic dynamics. Furthermore, the possibility of
the mechanism of solvent reorganization could be investigated for derivatives of phe-
nol.
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A
A P P E N D I X

The following Appendix contains further results that were obtained in the course of
this work. Apart from CASPT2 and ADC(2) results discussed in Section 3.1, scans
along the O–H elongation coordinate have been performed with different methods in
order to aid in the choice of a compuational method (Section A). The electronic struc-
ture of absorption spectrum and density of states calculated for phenol with different
numbers of water molecules was analyzed to investigate the influence of the cluster
size on the occurence of low-lying πσ∗ states (Section B). Absorption spectra with
different methods and environment models were calculated based on snapshots from
a classical MD simulation in order to aid in the choice of a suitable computational
model including solvent and electronic structure of the chromophore (Section C). For
the cluster model comprised of 15 water molecules, further geometrical analysis was
carried out to investigate the relation between excitation energy and number of water
molecules in close proximity to the σ∗ orbital (Section D).

a benchmarking of quantum chemical methods along proton trans-
fer

Scans of the O–H distance for phenol with one water molecule have been carried out
with different methods. First, the energies calculated with CASSCF are presented
(subsection A.1). Then, in subsection A.2, the effect of not including a level shift in
the CASPT2 calculations will be investigated, followed by a discussion of the effects of
increasing the size of the active space (subsection A.3).

In addition to the CASPT2 and ADC(2) results discussed in Section 3.1, scans have
also been performed employing CC2 (subsection A.4) and TDDFT (subsection A.5).
Additionally, the possibility to carry out optimizations in the ground state with CASSCF
and DFT as an approximation to excited state optimizations has been investigated since
excited-state optimizations including several water molecules turned out to be unfea-
sible (subsection A.6). For comparison of the height of the energy barrier, a scan of the
O–H distance of gas-phase phenol has been carried out employing CASPT2/CASSCF
(subsection A.7).

a.1 CASSCF

The geometries of the πσ∗ and the ππ∗ state of phenol·(H2O) were optimized with
CASSCF(6,7). Thus, in addition to the CASPT2 energies discussed in Section 3.1.1,
also CASSCF energies were obtained. Figure A.1 shows the O–H scan calculated with
CASSCF. The height of the energy barrier (0.7 eV) agrees with the value calculated with
CASPT2 (0.7 eV) while the O–H separation at the crossing is 0.11 Å shorter.

a.2 CASPT2: Level shift

In order to investigate the effect of the level shift on the CASPT2 calculations, test cal-
culations without level shift were carried out for the ground-state optimized geometry
and for several excited-state optimized geometries for the phenol·(H2O) system. The
excitation energies and reference weights of the three states, calculated at different O–
H bond lengths, with and without level shift, for geometries optimized for the πσ∗
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Figure A.1. O–H scan with geometries optimized in the ππ∗ and πσ∗ states employ-
ing CASSCF(6,7), energies calculated with CASSCF. Numbers in the right
corner give the O–H distance at the ππ∗/πσ∗ crossing and the height of
the energy barrier between these states.

state are shown in Figure A.2a and b, the values of the ππ∗ optimized geometries are
depicted in Figure A.2c and d. The values of the ground-state optimized geometry are
listed in Table A.1.

Table A.1. Excitation energies and reference weights calculated for the ground-state
optimized geometry with and without level shift.

ex. energy [eV] ref. weight

level shift S1 S2 S0 S1 S2

0.3 4.45 5.66 0.77 0.75 0.76
none 4.61 5.62 0.73 0.67 0.70

Without level shift, for most geometries the reference weight (see Figure A.2b and
d) of the ππ∗ state is considerably smaller than that of the ground state and the πσ∗

state, indicating that intruder states are present. The energy of the πσ∗ state is only
slightly (generally < 0.05 eV) shifted by including a level shift. In contrast, the energy
of the ππ∗ state is susceptible to the introduction of a level shift due to the removal of
intruder states. With a level shift of 0.3, the reference weights of the three states are
similar, suggesting that this value of the level shift is suited for the calculations.

a.3 CASPT2(6,9)

In order to investigate whether the size of the active space is sufficient, two addi-
tional σ∗ orbitals were included in the active space and a scan of the O–H distance
was performed with MS-CASPT2/SA-CASSCF for 6 states. The results are plotted in
Figure A.3. The orbitals included in the (6,9) active space are depicted in Figure A.4.
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Figure A.2. Excitation energies and reference weights calculated for geometries opti-
mized in the πσ∗ state (top) and the ππ∗ state (bottom) with and without
level shift (LS).
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Figure A.3. O–H scan with geometries optimized in the ππ∗ and πσ∗ states employing
SA-CASSCF(6,9) for 6 states, energies calculated with MS-CASPT2.

49



π1 π2 π3

π∗1 π∗2 π∗3
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Figure A.4. (6,9) active space depicted for πσ∗ optimized geometry at O–H distance of
1.4 Å.

The scan computed with 7 active orbitals agrees very well with the results of the com-
putations employing an active space size of 9 orbitals. This good agreement suggests
that for the O–H reaction coordinate the (6, 7) active space is sufficiently large. The
overestimation of the height of the energy barrier between the minimum of the ππ∗

state and the conical intersection between ππ∗ and πσ∗ state discussed in Section 3.1.1
is probably not due to an insufficiently large active space but rather due to the dynam-
ical correlation computed in the CASPT2 calculation. However, no calculations with
larger active spaces, including e. g. the corresponding σ orbitals, were carried out in
this work.

a.4 CC2

The energies of the CASSCF-optimized geometries of the ππ∗ and πσ∗ states were
calculated with CC2139 employing the Turbomole126–130 program package with the
aug-cc-pvdz basis set.56,113–115 The results are shown in Figure A.5.

The O–H distance at the crossing calculated with CC2 of 1.07 Å agrees very well
with the ADC(2) result of 1.08 Å. The height of the energy barrier of 0.13 eV is sligthly
more underestimated than the ADC(2) barrier.
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Figure A.5. Energies of the CASSCF-optimized geometries in the ππ∗ and πσ∗ states
calculated with CC2.

a.5 TDDFT

In order to compare the results of TDDFT with that of CASPT2/CASSCF and ADC(2),
for phenol with one water molecule geometries at different O–H distances have been
optimized in the ππ∗ and πσ∗ states employing the ωB97XD functional92 with the
Gaussian 09140 program package. The aug-cc-pvdz basis set56,113–115 and the "Ultra-
Fine" integration grid were used.
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Figure A.6. O–H scan with geometries optimized in the ππ∗ and πσ∗ states employing
the ωB97XD functional, energies calculated at the same level of theory.

The O–H distance at the crossing is only 1.1 Å and thus 0.14 Å shorter than that
calculated with CASPT2/CASSCF. Also, the energy barrier is only 0.2 eV, which is less
than one third of the CASPT2 barrier. These results agree well with the ADC(2) values
for crossing distance and energy barrier.

The energy barrier of 0.2 eV corresponds to a time scale of ≈ 0.37 ns and thus agrees
better with the experimental time scale of 2 ns than the ADC(2) value. While TDDFT
is able to describe phenol with a cluster size of one water molecule well, TDDFT tends
to underestimate the energy of charge-transfer states.89,91,141–143 This problem becomes
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more prominent when the cluster size is increased. For this reason, ADC(2) rather than
TDDFT was employed for the calculations on clusters comprised of 15 water molecules.

To investigate how well geometries optimized with TDDFT agree with CASSCF op-
timized geometries, the energies of the CASSCF-optimized geometries were calculated
with the range-separated functionals ωB97XD92 and CAM-B3LYP91 (Figure A.7). Since
DFT tends to underestimate the energy of charge-transfer states,89,91,141–143 non-range-
separated functionals seem less well suited for this system, and where therefore not
tested. Additionally, the energies of the ωB97XD-optimized geometries of the O–H
scan were computed with CASPT2 (Figure A.8).
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Figure A.7. O–H scan with geometries optimized with CASSCF, energies calculated
with a) CAM-B3LYP, b) ωB97XD

CAM-B3LYP overestimates the ππ∗ state to such an extent that even in the Franck-
Condon region the πσ∗ state is the lowest excited state and there is no crossing between
the states. The values obtained with ωB97XD for O–H distance at the crossing (1.07 Å)
and energy barrier (0.2 eV) for the CASSCF-optimized geometries are similar to the
values of the ωB97XD/ωB97XD calculation. Furthermore, the O–H distance (1.25 Å)
and energy barrier (0.7 eV) from the CASPT2/ωB97XD calculation agree very well with
the values obtained in the CASPT2/CASSCF calculation. These results suggest that
ωB97XD is similarly well suited for geometry optimizations as CASSCF. Unfortunately,
it was not possible to carry out geometry optimizations employing ωB97XD for excited
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states with more water molecules since there exist many low-frequency modes which
hinders the convergence of optimizations.
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Figure A.8. O–H scan with geometries optimized with ωB97XD in the ππ∗ and πσ∗

states, energies calculated with CASPT2.

To summarize, several methods have been employed to calculate the height of the
energy barrier between the minimum of the ππ∗ and the conical intersection between
the ππ∗ and πσ∗ states (see Table A.2). The fact that ADC(2), CC2 and ωB97XD
agree very well indicates that ADC(2) accurately describes the system and can be
employed for calculations including more water molecules. Due to the underestima-
tion of charge-transfer states by TDDFT, which becomes more severe when the cluster
size is increased, ωB97XD was not employed for the calculations including 15 water
molecules.

Table A.2. O–H distance at the crossing between ππ∗ and πσ∗ states (in Å) and height
of the energy barrier between the minimum of the ππ∗ state and the cross-
ing between the ππ∗ and πσ∗ states (in eV) calculated with different meth-
ods used for geometry optimizations and calculation of excitation energies.

method

geometries opt. energies O–H distance barrier

CASSCF(6,7) CASPT2(6,7) 1.25 0.7
CASSCF(6,7) ADC(2) 1.08 0.16
CASSCF(6,7) CASSCF(6,7) 1.14 0.7
CASSCF(6,7) CC2 1.07 0.13
ωB97XD ωB97XD 1.1 0.2
CASSCF(6,7) CAM-B3LYP no crossing
CASSCF(6,7) ωB97XD 1.07 0.2
ωB97XD CASPT2(6,7) 1.24 0.7

a.6 CASSCF and DFT: Ground state optimizations

Since excited-state optimizations for phenol with several water molecules turned out
to be unfeasible, it was examined whether the approach to approximate excited-state
optimized geometries by geometries optimized in the ground state144 can be employed
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for this system. For this purpose, geometries with different O–H distances were opti-
mized with CASSCF and ωB97XD in the ground state. The resulting scans are shown
in Figure A.9.

For the geometries optimized with CASSCF in the ground state, the values for bond
distance at the crossing and energy barrier are 1.28 Å and 1.55 eV. Thus, the bond
distance is 0.03 Å longer than the value obtained in the CASPT2 calculations on ge-
ometries optimized with CASSCF in the excited states while the energy barrier is more
than twice as high. The values obtained in the ωB97XD/ωB97XD calculation for the
ground state optimized geometries are 1.13 Å and 0.4 eV. Thus, while the O–H dis-
tance at the crossing agrees with the value obtained in the excited-state optimizations
(see subsection A.5), the energy barrier is twice as high. The distance at the crossing
and the barrier height from the CASPT2/ωB97XD calculation are 1.34 Å and 1.0 eV.
These values do not agree with the CASPT2/CASSCF optimizations in the ground
state, indicating that the ground-state optimized geometries differ more strongly be-
tween CASSCF and ωB97XD than the excited state optimized ones.

For none of the tested methods the values obtained for O–H distance at crossing
and height of the energy barrier based on ground-state optimized geometries agree
with values based on excited-state geometry optimizations. Therefore, the approach
to use ground-state optimized geometries cannot be employed for the O–H reaction
coordinate in phenol.

54



0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
0

1

2

3

4

5

6

7 1.28 Å
1.55 eV

R O–H [Å]

en
er

gy
[e

V
] S0

πσ∗
ππ∗

0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7
1.13 Å
0.4 eV

R O–H [Å]

en
er

gy
[e

V
]

S0

πσ∗
ππ∗

0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7
1.34 Å
1.0 eV

R O–H [Å]

en
er

gy
[e

V
]

S0

πσ∗
ππ∗

a)

b)

c)

Figure A.9. a) MS-CASPT2(6,7) energies of geometries optimized employing SA-
CASSCF(6,7) in the ground state. b,c) Energies calculated employing b)
ωB97XD c) CASPT2(6,7) of geometries optimized with ωB97XD in the
ground state.
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a.7 CASPT2: Gas-phase phenol

In order to compare the height of the energy barrier between the ππ∗ and πσ∗ states
for phenol with one water molecule to the value in isolated phenol, a scan of the O–H
distance for phenol in the gas phase has been carried out. The geometries of the ππ∗

and πσ∗ states were optimized employing CASSCF(6,7). The energies were computed
with CASPT2(6,7). The results are shown in Figure A.10.
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Figure A.10. CASPT2(6,7) energies of the geometries optimized with CASSCF(6,7)
of the ππ∗ and πσ∗ states of gas-phase phenol plotted relative to the
ground-state optimized geometry; energies of S0 were calculated at πσ∗-
optimized geometries.

The O–H distance at the crossing is 1.22 Å, which is 0.03 Å smaller than the value
calculated for phenol with one water molecule. The energy barrier between ππ∗ and
πσ∗ states is 0.88 eV, which is about 0.18 eV larger than the energy barrier for phenol
with a cluster size of one water molecule.

The ground-state optimized value for the O–H distance for phenol in the gas phase
(0.94039 Å) is slightly smaller than the O–H distance for phenol with one water molecule
(0.94633 Å).
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b electronic structure analysis of the adc(2) and cc2 spectrum and

density of states for different cluster sizes

The electronic structure of the absorption spectrum and the density of states calculated
with ADC(2) for phenol with cluster sizes of one, five and fifteen water molecules was
analyzed in order to investigate the influence of the inclusion of larger numbers of
water molecules on the occurence of πσ∗ states at low energies. The decomposed
spectra and densities of states are plotted in Figure B.11. The ππ∗ and πσ∗ states
were identified as described in Section 3.2.2 by using two values from the TheoDORE
wavefunction analysis, with πσ∗ states defined as excitations with a charge-transfer
number > 0.5 and ππ∗ states as having a charge-transfer number 6 0.5 and a POS
value 6 1.2, i. e. excitations located at phenol.

The πσ∗ contribution to the spectrum increases slightly with increasing number of
water molecules. For a cluster size of one water molecule, πσ∗ states contribute to
about 1% to the spectrum, for five and fifteen water molecules, the percentage is 4%
and 5%, respectively. However, the πσ∗ states are always mainly dark and direct
excitation to the πσ∗ states is unlikely.

The πσ∗ contribution to the density of states is considerably larger. With one water
molecule, πσ∗ states make up about 18% of the DOS. However, they are found mainly
at the blue end of the spectrum at higher excitation energies than the peak of the
ππ∗ band. The πσ∗ fraction increases to 31% for a cluster size of five. In addition, a
considerable amount of πσ∗ states is now found at lower energies. For the fifteen water
molecules cluster, the percentage further increases slightly to 36%. The πσ∗ states
extend even further to the red end of the spectrum. A considerable fraction of πσ∗

states has excitation energies below the maximum of the ππ∗ band. These πσ∗ states
can in principle be populated after excitation to the ππ∗ state followed by internal
conversion induced by reorganization of the solvent molecules without elongation of
the O–H bond.

Figure B.12 shows the decomposition of the absorption spectrum and of the density
of states calculated with CC2 for a cluster size of five water molecules.

The πσ∗ contribution to the CC2 spectrum of 4% is equal to the value in the ADC(2)
calculation for the same solvent model. Also, the πσ∗ contribution to the density of
states is equal with 31%, whereas the ππ∗ contribution (58%) is slightly smaller. Thus,
the decomposition of the spectrum agrees very well between CC2 and ADC(2).
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Figure B.11. Absorption spectrum and density of states below an energy threshold of
5.2 eV calculated with ADC(2) for phenol with water clusters consisting
of one (top), five (middle) and fifteen (bottom) water molecules.
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Figure B.12. Decomposition of the absorption spectrum and of the density of states
below an energy threshold of 5.2 eV in ππ∗ and πσ∗ states computed
with CC2 for a cluster size of five water molecules.
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c benchmarking in the franck-condon region

In order to aid in the choice of a suitable computational model, absorption spectra
were calculated with different methods and environment models based on up to 101
snapshots from the constrained molecular dynamics simulation. The energy at the
maximum of the peak, the difference to experiment and to the value calculated in the
gas phase with the respective method are listed in Table C.3. In the following, the
plotted spectra will be shown and discussed.

Table C.3. Energy of the peak with highest intensity calculated with the different meth-
ods as well as the experimental value in eV. For comparison, the difference
to experiment and the difference to the gas phase value, calculated with the
respective method, is also listed.

Method Environment Energy Diff. to Diff. to
description exp. gas phase

experiment 4.585

CASPT2(6,6) gas phase 4.488 −0.097
CASPT2(6,6) QM/MM 4.528 −0.057 0.040
CASPT2(6,6) IPEA QM/MM 4.880 0.295 0.392
CASPT2(6,6) 1 water 4.428 −0.157 −0.060
CASPT2(6,6) 1 water, PCM 4.472 −0.113 −0.016
CASPT2(6,7) 1 water 4.368 −0.217
CASPT2(6,7) 1 water, PCM 4.428 −0.157
ADC(2) gas phase 4.864 0.279
ADC(2) QM/MM 4.904 0.319 0.040
ADC(2) COSMO 4.872 0.287 0.008
ADC(2) 1 water 4.752 0.167 −0.112
ADC(2) 5 water 4.736 0.151 −0.128
ADC(2) 15 water 4.792 0.207 −0.072
ADC(2) 1 water, COSMO 4.784 0.199 −0.08
ADC(2) 1 water, QM/MM 4.852 0.267 −0.012
CC2 gas phase 4.884 0.299
CC2 QM/MM 4.924 0.339 0.040
CC2 5 water 4.764 0.179 −0.120

The gas phase spectra calculated with the different methods are shown in Fig-
ure C.13.

Compared to experiment, the CASPT2(6,6) spectrum, which was calculated with
MOLCAS 8.0, is red-shifted by 0.097 eV. The ADC(2) and CC2 spectra agree very well
with each other. Both spectra are blue-shifted by 0.279 and 0.299 eV compared to ex-
periment, respectively. The underestimation of the energy of the ππ∗ state by CASPT2
agrees with the overestimation of the height of the energy barrier between ππ∗ and
πσ∗ state described in Section 3.1.1. In contrast, ADC(2) overestimates the energy of the
ππ∗ state and therefore underestimates the height of the energy barrier, as described
in Section 3.1.2.

Figure C.14 shows spectra calculated with several environment models employing
ADC(2) and CC2.
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Figure C.13. Absorption spectra of phenol in the gas phase based on 101 snapshots
from a MD simulation calculated with different methods.
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Figure C.14. Absorption spectra calculated with different environment models employ-
ing ADC(2) and CC2.

The ADC(2) gas phase spectrum is red-shifted by 0.02 eV compared to the CC2
spectrum. The ADC(2) spectrum with a cluster size of five water molecules is red-
shifted by 0.028 eV and the ADC(2)/MM spectrum is red-shifted by 0.02 eV compared
to the corresponding CC2 spectra, respectively. Thus, the ADC(2) and CC2 spectra
calculated with the same environment model agree very well with each other.

To demonstrate the effect of the choice of the active space, Figures C.15 and C.16

show the spectra calculated with CASPT2(6,7) and CASPT2(6,6) for one water molecule
in the gas phase and with PCM, respectively, which were calculated with a develop-
ment version of MOLCAS that supports wavefunction analysis by the library libwfa.

The CASPT2(6,7) spectrum for a cluster size of one water molecule, peaking at an
excitation energy of 4.368 eV, is red-shifted by 0.06 eV compared to the CASPT2(6,6)
spectrum, which has a maximum at 4.428 eV. When including the PCM model, the
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CASPT2(6,7) spectrum peaks at 4.428 eV while the CASPT2(6,6) spectrum has a max-
imum at 4.472 eV. Again, the CASPT2(6,7) spectrum is red-shifted by 0.044 eV. Thus,
including the σ∗ orbital in the active space leads to a lowering of the excitation energy
of the ππ∗ state.

4 4.2 4.4 4.6 4.8 5 5.2 5.4
0

0.2

0.4

0.6

0.8

1

energy [eV]

in
te

ns
it

y
[a

rb
it

ra
ry

un
it

s]

exp. (water)
CASPT2(6,7), 1 water
CASPT2(6,6), 1 water

Figure C.15. Spectra calculated with CASPT2(6,7) and CASPT2(6,6) with one water
molecule in the gas phase.
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Figure C.16. Spectra calculated with CASPT2(6,7) and CASPT2(6,6) with one water
molecule with PCM.

To highlight the effect of including a continuum model, the same spectra are plotted
together in Figure C.17.

When including the PCM solvation model, the CASPT2(6,6) spectrum is blue-shifted
by 0.044 eV with respect to the gas-phase spectrum. The CASPT2(6,7) spectrum with
PCM is blue-shifted by 0.06 eV compared to the gas-phase spectrum. Incidentally, the
CASPT2(6,6) gas phase spectrum and the CASPT2(6,7) spectrum with PCM overlap,
both peaking at 4.428 eV.
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Figure C.17. Spectra calculated with CASPT2(6,7) and CASPT2(6,6) with one water
molecule with and without PCM.

Figure C.18 shows the spectra calculated with ADC(2) for cluster sizes of zero and
one water molecule with and without the COSMO solvation model.
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Figure C.18. Spectra calculated with ADC(2) for phenol with zero or one water
molecule with or without COSMO.

The ADC(2) spectrum calculated with the COSMO solvation model is slightly (0.008 eV)
blue-shifted compared to the gas-phase spectrum.

The spectrum calculated for a cluster size of one water molecule using the COSMO
solvation model is blue-shifted by 0.032 eV compared to the corresponding gas-phase
spectrum.

Figure C.19 shows the absorption spectra calculated with CASPT2(6,6) with different
environment models, calculated with MOLCAS 8.0.

The spectrum calculated with one explicitely treated water molecule, peaking at
4.428 eV, is red-shifted with respect to the gas-phase spectrum, which has a maximum
at 4.488 eV. Thus, including one water molecule increases the difference to experiment
from 0.097 eV to 0.157 eV. The QM/MM spectrum, which has a maximum at 4.528 eV, is
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Figure C.19. Absorption spectra calculated with CASPT2(6,6) with different environ-
ment models.

blue-shifted by 0.04 eV with respect to the gas-phase spectrum, reducing the distance
to experiment to 0.057 eV. For comparison, a calculation with the default IPEA shift
was carried out. The QM/MM spectrum with IPEA shift is blue-shifted compared to
the QM/MM spectrum without IPEA shift by 0.352 eV. The difference to experiment
with IPEA is increased to 0.295 eV.
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d further geometry analysis

As described in Section 3.2.3, a lower excitation energy of charge-transfer states is asso-
ciated with a larger number of water molecules containing more than 10% of electron
population. In order to further investigate the correlation between the number of water
molecules in proximity to the σ∗ orbital and the excitation energy, the number of water
molecules within a radius of 3 Å around the approximate position of the orbital, which
was defined as discussed in Section 3.2.3 as the center of mass of the water molecules
containing more than 10% of electron population, was determined. To simplify the
calculations, the distances to the oxygen atoms of the water molecules instead of their
centers of mass were used. The results are plotted in Figure D.20. The number of states
for the different numbers of water molecules are listed in Table D.4. The seven states
with zero water molecules containing more than 10% of electron population were not
considered for this further analysis since the definition of the approximate position of
the σ∗ orbital could not be used. Furthermore, only excitation energy averages calcu-
lated for at least ten states are considered in the analysis.
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Figure D.20. Average of the excitation energy for charge-transfer states with different
numbers of water molecules within 3 Å around the approximate posi-
tion of the σ∗ orbital. The standard deviation is indicated by the shaded
area. Only excitation energy averages calculated for at least ten states are
considered.

Table D.4. Number of states with different numbers of water molecules within 3 Å of
the approximate position of the σ∗ orbital.

1 2 3 4 5
11 81 90 46 10

From one to two water molecules the average excitation energy increases while from
two to five water molecules the trend shows a decrease of the excitation energy with
increasing number of water molecules within 3 Å of the approximate position of the σ∗

orbital, in accordance with the result that the excitation energy decreases with increas-
ing number of water molecules with an electron population > 10% (see Section 3.2.3).
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