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Abstract

Die vorliegende Masterarbeit behandelt einige Grenzwertsätze über fast sichere
Konvergenz beziehungsweise Divergenz von Summen unabhängiger und identisch
verteilter Zufallsvariablen mit schweren

”
tails”. Insbesondere werden Zufall-

svariablen betrachtet, bei denen der Erwartungswert unendlich beziehungs-
weise nicht definiert ist und daher eine Voraussetzung für das starke Gesetz
der großen Zahlen nicht erfüllt ist. Konkret werden Integralkriterien für das
asymptotische Verhalten von Quotienten solcher Summen besprochen.



1 Introduction

In this master thesis we will present some theorems about limit theorems of
random variables, where the expected value of the random variables is not
defined or not integrable. That means we will consider sequences (Xn)n≥1 of
i.i.d. random variables, where the requirement of strong law of large numbers
is not satisfied. At first we will discuss the strong law large numbers and its
history. The idea of probability defined as limiting frequency can be found
in one early work of Cardano(1501-1576). But this idea was published after
the death of Cardano in the middle of the 17th century. An interesting fact
is, that basics of combinatorics and games of chance go back to antiquity and
the ideas like Cardano’s came so late.

The first remarkable theorem was published in the beginning of the 18th
century. Bernoulli has the first version of the limiting-frequency statement.
If Sn is the number of successes observed in n independent trials with success
probability p, then

Sn
n
→ p in probability for n→∞. (1.1)

It took almost two hundred years, that we get the first theorem with the
almost sure convergence theorem. Emil Borel has nearly the complete proof
of the strong law of large numbers for the independent trials with constant
probability of success p. After that, Cantelli extended the theorem to general
distribution with bounded fourth moments: If (Xn)n≥1 is a sequence of i.i.d.
random variables with E[|Xn − E[Xn]|4] <∞, then

1

n

n∑
i=1

(Xi − E[Xi])→ 0 a.s. for n→∞. (1.2)

In the beginning of the 20th century concepts for the law of large numbers
were developed and specified. Therefore in the of the 1920s was necessary
to distinguish the two theorems. Convergence in probability as in (1.1) has
the name weak law of large numbers and almost sure convergence as in (1.2)
is under the name strong law of large numbers. At first we will see the de-
velopment of the weak version.

Khinchin gives two proofs of the weak law of large numbers. If (Xn)n≥1
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is a sequence of i.i.d. random variables with mean µ, then

lim
n→∞

1

n

n∑
i=1

Xi → µ in probability.

After that, Kolgomorov refined this theory: If (Xn)n≥1 is a sequence of
i.i.d. random variables, then there exist constants (cn)n≥1 with

lim
n→∞

1

n

n∑
i=1

Xi − cn → 0 in probability.

Kolgomorov has two version of the strong law of large numbers. He
presented in a publication the following strong law of large numbers: If
(Xn)n≥1 is a sequence of i.i.d. random variables with mean 0 and variances
σ2 and

∞∑
i=1

σ2
i

i2
<∞,

then

lim
n→∞

1

n

n∑
i=1

Xi → 0 a.s.

Of this theorem the converse is also given: if
∑∞

i=1
σ2

i2
= ∞, then exist a

sequence of i.i.d. random variables with mean 0 and variance σ2, and the
convergence fails

lim
n→∞

1

n

n∑
i=1

Xi →∞ a.s.

The modern era of the probability theory begins with Kolgomorov’s book
[7]. Kolgomorov presents in his book without the proof: If (Xn)n≥1 is a
sequence of i.i.d. random variables then:

E[|X|] <∞ and E[X] = µ⇔ lim
n→∞

1

n

n∑
i=1

Xi → µ a.s.

His idea was to prove the previous statement: For the direct half uses the
truncation of the random variables and the Kronecker’s lemma to reduce
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to the first strong law theorem of Kolgomorov. For converse half uses the
statement:

Xn

n
=
Sn
n
− n− 1

n

Sn−1
n− 1

→ 0 a.s.

to get P[|Xn| > n i.o.] = 0. By means of Borel-Cantelli lemma he obtained:

∞∑
i=1

P[|Xn| > n] <∞

This implies E[|X1|] <∞.
It was long believed that the strong law of large numbers theorem of

Kolgomorov is not improvable. But in 1972 Etemadi [5] obtained a new
verison of this theorem. He weakened the independence to pairwise inde-
pendence.

At the same time was developed the generalizations of Kolgomorov’s
strong law theorems. The first generalization was the Birkhoff’s pointwise
ergodic theorem. The strong law of large number is a special case of the er-
godic theorem. Birkhoff consider stationary sequences of random variables.
There is a another main setting, where we obtain the strong law of large
numbers as special case of the martingale convergence theorem.

The strong law of large numbers is one of the most important theorem
of the probability theory. It is useful if we consider for example a simple
random walk. If (Xn)n≥1 is a sequence of i.i.d. random variable with

P[Xn = 1] =
1

2
and P[Xn = −1] =

1

2
∀n ≥ 1

Since the E[|Xn|] is finite, we can use the strong law of large numbers for the
random walk Sn = X1 + · · ·+Xn:

lim
n→∞

1

n
Sn =

1

n

n∑
i=1

Xi → E[X1] = 0 a.s.

But if we consider the recurrence time to m:

T (m) = inf{n ∈ N : Sn = m}

Let

T (m)0 = 0, T (m)1 := T (m)1 = inf{n ∈ N : Sn = m}
T (m)n := inf{n ≥ 1 : Sn+T (m)n = m}, T (m)n = T (m)n−1 + T (m)n
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For the sequence (T (m)n)n≥0 we cannot use the strong law of large numbers,
because the

E[T (m)] =∞.

We can show that by means of the generating function. There is another
more intresting example.

Example 1.1. If (Xn)n≥1 is a sequence of i.i.d. random variables with the
following distribution:

P[X = k] = P[X+ = k] :=
κ+
k2

for k ≥ 1 and

P[X = −k] = P[X− = k] :=
κ−

k2 log log k
for k ≥ 3

where κ+, κ− > 0 such that:

∞∑
k=1

(
κ+
k2

+
κ−

k2 log log k

)
= 1.

We consider the random walk with jumps Xn:

S0 := 0 and Sn = X1 + · · ·+Xn.

By means of the theorems of the next chapter we well see that:

lim inf
n→∞

Sn
n

= −∞ a.s. and lim sup
n→∞

Sn
n

=∞ a.s.. (1.3)

This is remarkable because the tail of X+ is truly stronger then the tail of
X−

P[X− ≥ t]

P[X+ ≥ t]
→ 0 for t→∞. (1.4)

The statement (1.3) will be proved in the end of the section 3.
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2 Two limit theorems for random variables

with heavy tails

Most of the material of this section is taken from a publication of Willian
Feller [6]. Let (Xk)k≥1 be a sequence of independent random variables and
(ak)k≥1 a positive monotonic increasing sequence. As usual we define the
sum of random variables

Sn :=
n∑
k=1

Xk, n ≥ 1.

We are interested in the probability of the following event L:

L := {|Sn| > an i.o.}

That means |Sn| is greater than an for infinitely many n. For the simpli-
city we shall consider, that Xk are identically distributed. According to the
familiar 0− 1 law, the probability for such events can be only zero or one.

For the case, where the Xk are individually bounded a theory has already
been developed. By means of law of iterated logarithm we can decide in any
special case whether the probability of L is zero or one. This theory depends
essentially on the central limit theorem. As soon as we have random variables
Xk, for which we cannot use the central limit theorem we find ourselves in a
different setting.

Theorem 2.1. Let (Xk)k≥1 be a sequence of identically distributed independ-
ent random variables and (an)n≥1 a monotonic sequence. Suppose that for
some 0 < δ < 1

E[|Xk|1+δ] =∞ ∀k ∈ N, (2.1)

but the first moment exists and

E[Xk] = 0 ∀k ∈ N.

For any sequence an for which there exists an ε with 0 ≤ ε < 1 such that

ann
−1
1+ε ↑ and

an
n
↓ (2.2)
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the probability of L:

P [|Sn| > ani.o.] =

{
0 if

∑∞
k=1 P[|X1| ≥ ak] <∞

1 if
∑∞

k=1 P[|X1| ≥ ak] =∞.
(2.3)

Proof. Part 1: At first we will assume that (2.3) converges. We define a new
random variable of Xk by truncating it and then centering it

X ′k =

{
Xk − µk if |Xk| < ak

0 if |Xk| ≥ ak
(1)

where µk := E[Xk1{|Xk|<ak}]. Now we can see, that the probability of Xk 6=
X ′k + µk is the same as in the terms of (2.3)

∞∑
k=1

P[|Xk| ≥ ak] =
∞∑
k=1

P[Xk 6= X ′k + µk].

As the series on the right hand side converges, by means of Borel-Cantelli
A.2 we get P[Xk 6= X ′k+µk i.o.] = 0 and therefore we obtain with probability
one

lim
n→∞

(Sn −
n∑
k=1

X ′k + µk) <∞,

and hence

lim
n→∞

(
Sn
an
−
∑n

k=1X
′
k + µk

an
) = 0. (2)

Therefore, we have to show that the second fraction of (2) is 0 almost
surely. Then we would obtain, that lim

n→∞
Sn/an is 0 almost surely if

lim
n→∞

∑n
k=1X

′
k

an
= 0 a.s., and lim

n→∞

∑n
k=1 µk
an

= 0 (3)

In order to prove the first statement of (3), it suffices according to a straight-
forward application of the Kronecker’s lemma A.1. to show that

∞∑
k=1

1

ak
X ′k converges a.s.. (4)
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By definitionX ′k has vanishing expected value and according to the Khintchine-
Kolmogoroff A.4 theorem it suffices to prove that the sum of the variances
of Xk−µk

ak
is finite,

∞∑
k=1

1

a2k
E[(Xk − µk)21{|Xk|<ak}] <∞.

We are going to simplify the last expression

∞∑
k=1

1

a2k
E[(X2

k − 2Xkµk + µ2
k)1{|Xk|≤ak}]

=
∞∑
k=1

1

a2k

E[(X2
k1{|Xk|≤ak}]− 2µk E[Xk1{|Xk|≤ak}]︸ ︷︷ ︸

=µk

+P(|X1| ≤ ak)]︸ ︷︷ ︸
≤1

·µ2
k


≤
∞∑
k=1

1

a2k
E[(X2

k1{|Xk|≤ak}]

(5)

Without loss of generality a0 = 0 and by assumption that the sequence an
is nondecreasing, we can split the expected values on [0, an] into a sum of
expected values on disjoint subintervals [ai, ai+1).

∞∑
k=1

1

a2k
E[X2

k1{|Xk|<ak}] =
∞∑
k=1

1

a2k

k∑
i=1

E[X2
i 1{ai−1≤|Xi|<ai}]

=
∞∑
i=1

E[X2
i 1{ai−1≤|Xi|<ai}]

∞∑
k=i

1

a2k

≤
X2
i ≤a2i

∞∑
i=1

E[a2i1{ai−1≤|Xi|<ai}]
∞∑
k=i

1

a2k
.

(6)

The first condition of the conditions (2.2) implies that:

∞∑
k=i

1

a2k
≤ 1

a2i
· i

2
1+ε

∞∑
k=i

1

k
2

1+ε

<
3

1− ε
· i
a2i
, (7)

To see the last inequality, we consider the series:

i
2

1+ε

∞∑
k=i

1

k
2

1+ε

=
∞∑
k=i

(
k

i

)− 2
1+ε

= i ·
∞∑
k=i

(
k

i

)− 2
1+ε 1

i
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and this is the Riemann sum of the function f(x) = x−
2

1+ε with length 1
i
.

i ·
∞∑
k=i

(
k

i

)− 2
1+ε 1

i
≤
∫ ∞
i− 1

i

x−
2

1+εdx

≤ i ·
(

1 +

∫ ∞
1

x−
2

1+εdx

)
≤ i ·

(
1 + lim

z→∞

(
−1 + ε

1− ε

)
x−

1−ε
1−ε

z∣∣
1

)
= i ·

(
1 + 1 · 1 + ε

1− ε

)
=

2i

1− ε
<

3

1− ε

Therefore the last expression of (6) is less than, where the term a2i cancelled.

3

1− ε

∞∑
i=1

iE[1{ai−1≤|X1|<ai}] (8)

We are rewriting the series (8) in order that we can use the assumption((2.3)
convergence).

n∑
i=1

iE[1{ai−1≤|X1|<ai}] = 1 · E[1{a0≤|X1|<a1}]

+ 1 · E[1{a1≤|X1|<a2}] + 1 · E[1{a1≤|X1|<a2}]

...

+ 1 · E[1{an−1≤|X1|<an}] + ...+ 1 · E[1{an−1≤|X1|<an−1}]

=
n∑
i=0

E[1{ai≤|X1|<an}]

For n→∞ we obtain:

∞∑
i=1

iE[1{ai−1≤|X1|<ai}] = lim
n→∞

(E[1{a0≤|X1|<an}] + ...+ E[1{ak≤|X1|<an}])

=
∞∑
i=1

E[1{ai≤|X1|}]
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Therefore (8) is equal to

3

1− ε

∞∑
i=1

E[1{ai≤|X1|}] (9)

and the series (9) converges by assumption. As the terms of (5) are not
exceeded by those of (6), the convergence of (5) and therefore the validity of
(4) have been established.

In view of (3) it only remains to prove that

lim
n→∞

∑n
k=1 µk
an

= 0 (10)

The expected value of Xk is 0 ∀k ∈ N, hence the expected value on
{|Xk| < ak}c has to be −µk for all k ∈ N.

−µk = E[Xk1{ak≤|Xk|}]⇒ µk ≤ E[|Xk|1{ak≤|Xk|}], (11)

It follows then from (11) that the following inequalities hold for an arbit-
rary integer N and for all n ≥ N ,

| 1

an

n∑
k=1

µk| ≤ E[|X1|] ·
N

an
+

1

an

n∑
k=N

E[|Xk|1{ak≤|Xk|}]

≤ E[|X1|] ·
N

an
+

n

an
E[|Xn|1{an≤|Xn|}] +

1

an

n∑
k=N

E[|Xk|1{ak≤|Xk|<an}]

(12)

Now, using the second condition of ((2.2)) for the second term of the right
hand side from the last inequality and give us the following estimate:

n

an
E[|Xn|1{an≤|Xn|}] ≤

∞∑
i=n

i

ai
E[|Xi|1{ai≤|Xi|<ai+1}] (n/an ≤ i/ai ∀i ≥ n)

≤
∞∑
i=n

iE[1{ai≤|X1|<ai+1}]

=
∞∑
i=n

E[1{ai≤|X1|}]
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The series on the right hand side tends to zero for n → ∞ since the terms
of a convergent series with decreasing terms. It only remains to consider the
last expression in (12)

1

an

n∑
k=N

E[|Xk|1{ak≤|Xk|<an}] ≤
n∑

k=N

E[1{|X1|≥ak}]

and we see that it becomes arbitrarily small for sufficiently large N.
Therefore, we have shown the claims made in (3). We obtain that

lim
n→∞

Sn
an

= 0 a.s.

and therefore

P[|Sn| > an i.o.] = 0.

Part 2:Now we will assume that (2.3) diverges. By means of Borel-Cantelli
we know that

∞∑
k=1

P[|Xk| ≥ ak] =∞⇒ P[|Xk| > ak i.o.] = 1. (13)

The second condition of the (1.2) implies that:

a2n
2n

<
an
n
⇔ a2n > 2an

Since P[|X1| > an] are nonincreasing we obtain that:

∞∑
n=1

P[|X1| > an] =∞⇒
∞∑
n=1

P[|X1| > a2n] =∞

We have to find some connection between |Xn| and |Sn|

max(|Sn|, |Sn−1|) ≥
|Xn|

2
. (14)

To see this, start with n = 2 (max(|b1 +b2|, |b1|) ≥ |b2|/2) and then for n > 2
is trivially. From (13), (14) follows that

P[|Sm| >
am
2
i.o.] = 1
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Before we start with the second theorem of this chapter, we consider the
sequence (Xk)k≥1 of random variables with E[Xk] =∞, then we should get

lim
n→∞

1

n

n∑
k=1

Xk →∞ a.s.

If we compare the sequence with the sequence (Xk ∧ m)k≥1 for m ∈ N, by
definition we get

∑n
k=1(Xk ∧m) ≤

∑n
k=1Xk for all n, m ∈ N. Additionally

we get that

lim
n→∞

1

n

n∑
k=1

(Xk ∧m)→ E[X1 ∧m] a.s.

and by property of Xk we obtain, that E[Xk ∧m]→∞ for m→∞.
Now we consider sequences (Xk)k≥1 of random variables with property

E[|Xk|] =∞ for all k ∈ N.

Theorem 2.2. Let (Xk)k≥1 be a sequence of identically distributed independ-
ent random variables. If

E[|Xk|] =∞ ∀k ∈ N (2.4)

then for any positive increasing sequences (an)n≥1 with

an
n
↑ (2.5)

the probability of L:

P [|Sn| > an i.o.] =

{
0 if

∑∞
k=1 P[|X1| ≥ ak] <∞

1 if
∑∞

k=1 P[|X1| ≥ ak] =∞.
(2.6)

Proof. Part 1. Suppose that:

∞∑
k=1

P[|X1| ≥ ak] <∞

The steps of the proof are the same as before. One shows that

lim
n→∞

∑n
k=1X

′
k

an
= 0 a.s. and lim

n→∞

∑n
k=1 µk
an

= 0. (1)
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The proof of the first statement of (1) is the same as in Theorem 2.1. There-
fore, it only remains to prove the second statement of (1).

| 1

an

n∑
k=1

µk| ≤
1

an

n∑
k=N

E[|Xk|1{ak≥|Xk|}]

= O

(
NaN
an

)
+

n

an
E[|Xn|1{aN≤|Xn|≤an}]

≤ O

(
NaN
an

)
+

n∑
i=N

i

ai
E[|Xi|1{ai−1≤|Xi|<ai}]

We have already shown that the last expression tends to zero. Therefore
P [|Sn| > an i.o.] = 0.

Part 2. Suppose that:

∞∑
k=1

P[|X1| ≥ ak] =∞

Since ak/k ↑ we obtain that nak ≥ ank ∀n ≥ 1 and ak ↑.

∞∑
k=1

P[|Xk| ≥ nak] ≥
∞∑
k=1

P[|Xk| ≥ ank]

≥ 1

n

∞∑
m=n

P[|X1| ≥ am]

The last observation shows that if the last series is infinite, then we get
lim sup
n→∞

|Xn|
an

= ∞ a.s.. Since max(|Sn|, |Sn−1|) ≥ |Xn|/2, it follows that

lim sup
n→∞

|Sn|
an

=∞ a.s..

Finally, we obtain that P [|Sn| > an i.o.] = 1.
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3 Connection between the limit of Sn
n and in-

tegral tests

Most of the material of this section is taken from a publication of K. Bruce
Erickson [4]. In this chapter we will generalize the theorems of the previous
chapter. For example: Feller’s strong law of large numbers does not cover
the case where

E[a−1 (|X1|)] =∞.

For convenience we begin with the sequence (an)n≥1, where an = n for n ≥ 1.
In the second part of this chapter we consider the general case of (an)n≥1.

To consider the previous statement, we have to start with some basic
probability theory. If the random variable X in some probability space
(Ω,A,P) nonnegative, then we can write the expected value as:

E[X] =

∫ ∞
0

P[X ≥ t]dt.

Let X be arbitrary random variable. Now we split the random variables X
in two terms X+ and X−, where X+ := max(X, 0) and X− := max(−X, 0).
Therefore we can write X = X+−X− and we define two functions such that
the limits of these functions are the expected value of X+ and X−.

m+(x) =

∫ x

0

P (X+ ≥ t)dt,

m−(x) =

∫ x

0

P (X− ≥ t)dt.

If E[X] defined, that means at least one of them E[X+], E[X−] has to be
finite, then the following holds:

P
[

lim
n→∞

Sn
n

= E[X1]

]
= 1 (3.1)

for (Xn)n≥1 i.i.d. sequence of random variables.
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Now we will see what happens if the expected value not defined:

Theorem 3.1. Let (Xi)i≥1 be some sequence of i.i.d. random variables in
some probability space (Ω,A,P). If E[X+

1 ] = E[X−1 ] = ∞, then one of the
following alternatives must be hold.

(i) P[ lim
n→∞

Sn
n

=∞] = 1

(ii) P[ lim
n→∞

Sn
n

= −∞] = 1

(iii) P
[
lim sup
n→∞

Sn
n

=∞ and lim inf
n→∞

Sn
n

= −∞
]

= 1

We will not prove the previous theorem, but we consider all three points
and we shall give the sufficient criterion in the following form of integral test
if m+(x) and m−(x) are not equal to 0:

J+(X) =

∫ ∞
0

x

m−(x)
dF (x),

J−(X) =

∫ ∞
0

|x|
m+(|x|)

d(1− F (−x)),

where F (x) the distribution function of X. We know already that for t→∞
holds: m+(t)→ E[X+], m−(t)→ E[X−] and both of them are nondecreasing.
Therefore we obtain the following inequalities:

J+(X) =∞⇒ E[X+] =∞, (3.2)

this statement holds also for E[X−] and J−(X).

Theorem 3.2. Let (Xi)i≥1 be some sequence of i.i.d random variables in
some probability space (Ω,A,P) and we have no assumption on E[X1].

(i) J+(X) =∞ if and only if P
[
lim sup
n→∞

Sn
n

= +∞
]

= 1

(ii) J−(X) =∞ if and only if P
[
lim inf
n→∞

Sn
n

= −∞
]

= 1

(iii) J−(X) < J+(X) =∞ if and only if P
[

lim
n→∞

Sn
n

= +∞
]

= 1

17



(iv) J+(X) < J−(X) =∞ if and only if P
[

lim
n→∞

Sn
n

= −∞
]

= 1

In combination of the previous theorem and the Hewitt-Savage theorem
A.7 we obtain, that if J+ and J− are finite, then Sn

n
must be bounded with

probability 1. But Sn
n

is bounded if and only if E[X1] < ∞. From this and
(3.2) we conclude that

J+(X) + J−(X) <∞ ⇔ E[|X1|] <∞. (3.3)

The proof of this statement is analytic and similar to the general case (an)n≥1
(See theorem 4.1). The ideas of the proofs are the same but the general one
contains some technical steps. So we will prove just the general case in the
next subsection, where we consider the limits of Sn

an
for n→∞.

Proposition 3.1. Let (Xi)i≥1 be some sequence of i.i.d random variables in
some probability space (Ω,A,P) . Assume E[|X1|] = ∞. Then at most one
of J+, J− is finite and

(i) P
[

lim
n→∞

Sn
n

= +∞
]

= 1 if and only if J−(X1) <∞

(ii) P
[

lim
n→∞

Sn
n

= −∞
]

= 1 if and only if J+(X1) <∞

(iii) P
[
lim sup
n→∞

Sn
n

= +∞ and lim inf
n→∞

Sn
n

= −∞
]

= 1 if and only if

J−(X1) = J+(X1) =∞

Proof. Suppose that E[|X1|] =∞. This implies that E[X+
1 ] or E[X−1 ] has to

be infinite.
(i): Due of (3.3) we see that:

J−(X1) <∞⇔ J−(X1) <∞ and J+(X1) =∞. (3.4)

By means of theorem 3.2 that the right side of (3.4) is equivalent to

P
[
lim sup
n→∞

Sn
n

= +∞
]

= 1.

(ii):The theorem is symmetric. We can replace X+ with X− and J+(X1)
with J−(X1). Therefore (ii) follows from (i).
(iii):This statement follows from the combination of theorem 3.2 (i) and
(ii).
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The proof of the theorem 3.2 is complicated and contains more steps.
Therefore we prepare our selves with the following lemmas for the proof.
The first lemma is just a preparation for the other lemmas. This lemma
contains a statement about the convolution of random variables. You find
the introduction in the Appendix chapter under Convolution.

Lemma 3.1. Let G be any probability distribution concentrated on [0,∞).
Put

U(t) =
∞∑
n=0

Gn∗(t) , m(x) =

∫ x

0

(1−G(t))dt,

where Gn is the n-fold convolution. Then

1 ≤ m(t)U(t) ≤ 2 for all t ≥ 0 (3.5)

and

min(1,
a

2
) ≤ U(at)

U(t)
≤ max(1, 2a) (3.6)

for all t, a > 0.

We will not prove this lemma, but in the following corollary we will see
how the statement of this lemma related to the function J+.

Corollary 3.1. Let G be any probability distribution concentrated on [0,∞)
and let F be any probability distribution. The following integral

∫∞
0
U(at)dF (t)

=
∫∞
0

∑∞
n=0G

n∗(ax)dF (x), either converges for all a > 0 or diverges for all
a > 0, according as

∫∞
0
x/m(x)dF (x) converges or diverges, where m(x) =∫ x

0
(1−G(t))dt.

This corollary is helpful to prove later Lemma. The proof of this corollary
contains one step.

Proof. In combination of (3.5) and (3.6), we obtain the following inequalities:

min
(

1,
a

2

) t

m(t)
≤ U(t) min

(
1,
a

2

)
≤ U(at)

≤ min(1, 2a)U(t) ≤ min(1, 2a)
t

m(t)
.

19



Therefore we get the following inequalities:∫ ∞
0

min
(

1,
a

2

) t

m(t)
dF (x) ≤

∫ ∞
0

U(t)dF (x) ≤
∫ ∞
0

min(1, 2a)
t

m(t)
dF (x).

Lemma 3.2. Let (Xi)i≥1 be some sequence of i.i.d random variables in some
probability space (Ω,A,P) and let a > 0 be fixed and put A0 = Ω certain
event, A1 := {X1 > 0} and An = {X−1 + · · ·+X−n−1 < aX+

n }, n > 1

(i) If
∑∞

n=0 P[An] <∞, then

lim sup
n→∞

X+
n

X−1 + · · ·+X−n
≤ 1

a
a.s.. (3.7)

(ii) If
∑∞

n=0 P[An] =∞, then

lim sup
n→∞

X+
n

X−1 + · · ·+X−n
≥ 1

a
a.s.. (3.8)

Proof. Part 1: Assume that
∑∞

n=0 P[An] < ∞. By means of Borel-Cantelli
theorem A.2 we obtain that:

P[{An i.o.}] = 0 ⇒ P
[
lim sup
n→∞

X+
n

X−1 + · · ·+X−n
>

1

a

]
= 0.

This implies:lim sup
n→∞

X+
n

X−1 +···+X−n
≤ 1

a
a.s..

Part 2: Assume that
∑∞

n=0 P[An] = ∞. By means of Hewitt-Savage 0-1
law we obtain that P[{An i.o.}] is either 0 or 1. Therefore is enough to show
that:

P[{An i.o.}] > 0. (1)

We know X−i is nonnegative ∀i ≥ 0. Therefore we get

An ∩ Am ⊂ An ∩ {X−n+1 + · · ·+X−m−1 < aX+
m}.

for m > n. By stationary of (Xn)n≥1 the P[Am−n] is the same as P[{X−n+1 +
· · · + X−m−1 < aX+

m}]. Since An ∈ σ(X1, ..., Xn) and {X−n+1 + · · · + X−m−1 <
aX+

m} ∈ σ(Xn+1, ..., Xm) we obtain that:
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P [An ∩ Am] ≤ P[An ∩ {X−n+1 + · · ·+X−m−1 < aX+
m}]

= P[An]P[{X−n+1 + · · ·+X−m−1 < aX+
m}]

= P[An]P[Am−n].

We define a new random variable Zn =
∑n

k=0 1Ak the number of Ak which
occur up to the time n.

E[Z2
n] ≤ 2

n∑
k=0

P[Ak]
n∑
i=k

P[Ai−k] ≤ 2

(
n∑
k=0

P[Ak]

)2

= 2 (E[Zn])2 (2)

From this we define a random variable

Rn =
Zn

E[Zn]
⇒ E[Rn] = 1

Assume (1) fails: P[An i.o] = 0. This means Zn finite for a.e., but E[Zn] =∑n
i=1 P[An] → ∞, therefore Rn → 0 a.s.. By means of the definition of Rn

and (2) we obtain that

E[R2
n] = E

[
Z2
n

E[Zn]2

]
≤ 1

E[Zn]2
· 2E[Zn]2 = 2 ∀n

That means Rn has bounded second moments and we know that Rn → 0
a.s.. This implies E[Rn]→ 0 and this a contradiction to the definition of Rn,
because the E[Rn] = 1.

Lemma 3.3. Let (Xi)i≥1 be some sequence of i.i.d random variables in some

probability space (Ω,A,P) , then lim sup
n→∞

(
X+
n

X−1 +···+X−n

)
0 or ∞ with probability

1, according as J+(X1) is finite or infinite.

Proof. Let An = {X−1 + · · · + X−n−1 < aX+
n } and G(t) = P[X−1 ≤ t] and

G(t−) = P[X−1 < t]. We start with upper bound of P[An]

P
[
X−1 + · · ·+X−n−1 < aX+

n

]
= P[An]

=

∫ ∞
0

P
[
X−1 + · · ·+X−n−1 < ay

]
P[X+

n ∈ dy]

=

∫ ∞
0

Gn−1(ay−)dF (x)

≤
∫ ∞
0

Gn−1(ay)dF (x).
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The lower bound is given by:

P[An] ≥
∫ ∞
0

Gn−1(by)dF (x)

for all 0 < b < a. Therefore by means of the corollary 3.1 and lemma 3.2 we
obtain that:

∑∞
n=0 P

[
X−1 + · · ·+X−n−1 < aX+

n

]
converges or diverges for all

a > 0 according as J+ finite or infinite.

Lemma 3.4. Let (Xi)i≥1 be some sequence of i.i.d random variables in some
probability space (Ω,A,P) and P[Xi ≥ 0] < 1. If

lim sup
n→∞

X+
n

X−1 + · · ·+X−n
=∞, (3.8)

then E[X+
1 ] =∞ and lim sup

n→∞

Sn
n

=∞ a.s..

Proof. Assume that lim sup
n→∞

X+
n

X−1 +···+X−n
=∞. This implies that the event

An = {X−1 + · · ·+X−n < 1
2
X+
n } takes place with probability one for infinitely

many time. For such n we have:

Sn = X+
n −

(
X−1 + · · ·+X−n

)
+X+

1 + · · ·+X+
n−1

≥ 2
(
X−1 + · · ·+X−n

)
−
(
X−1 + · · ·+X−n

)
+X+

1 + · · ·+X+
n−1

≥ |X1|+ · · ·+ |Xn−1|.

Hence Sn
n
≥ |X1|+···+|Xn−1|

n

lim sup
n→∞

Sn
n
≥ lim inf

n→∞

|X1|+ · · ·+ |Xn−1|
n

.

But we know already

lim sup
n→∞

Sn
n
≥ lim inf

n→∞

|X1|+ · · ·+ |Xn−1|
n

= E[|X1|] a.s.

and since X+
i ≥ Xi ∀i ≥ 1.

E[X+
1 ] = lim

n→∞

X+
1 + · · ·+X+

n

n
≥ lim sup

n→∞

Sn
n
a.s.

From follows that E[X+
1 ] ≥ E[|X1|], but by assumption P[X1 > 0] > 0 we

obtain that: E[X+
1 ] ≥ E[|X1|] =∞. From follows that Sn

n
converges to infinte

a.s. for n→∞.
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Lemma 3.5. If E[X+
1 ] =∞ and if P[Sn > 0 i.o.] > 0, then

lim sup
n→∞

X+
n

X−1 + · · ·+X−n
=∞ a.s.. (3.9)

The previous statement means, that the positive parts of random vari-
ables (Xn)n≥0 are neglectable. You can find the proof of this lemma in [3]. In
this thesis we skip the proof, because it is not relevant for the next chapters.

Proof. (Theorem 3.2) At first we may assume that:

P[X1 < 0] · P[X1 > 0] 6= 0,

because in another case we get: P[X1 ≥ 0] = 1, then E[X+
1 ] = E[X1] < ∞

if and only if J+ < ∞. It easy to see, that the theorem is symmetric. That
means we can replace Xn with X̃ = −X, then implied J̃+ = −J−. Therefore
(ii) follows form (i), and (iv) follows form (iii). At first we prove the part
(i)

Part 1: (i) (⇒): By means of theorem and lemma 3.3 we know that if:

J+(X) = ∞, then we obtain that P
[
lim sup
n→∞

X+

X−1 +···+X+
n

=∞
]

= 1 and by

lemma 3.4 we get that:

P
[
lim sup
n→∞

Sn
n

=∞
]

= 1.

(⇐): Suppose that P
[
lim sup
n→∞

Sn
n

=∞
]

= 1. We know already that

P
[

lim
n→∞

Sn
n

= E[X1]
]

= 1, therefore E[X+
1 ] has to be infinite, otherwise we

would have lim
n→∞

Sn
n

= E[X+
1 ] − E[X−1 ] 6= ∞. This assumption implies an

other statements: P[Sn > 0 i.o.] = 1. Now by lemma 3.3 and 3.5 we obtain
that J+(X) =∞.

Part 2: (iii)⇒: Assume that J+(X) =∞, J−(X) <∞. By parts of (i),
(ii) we have:

P
[
lim sup
n→∞

Sn
n

=∞ and lim inf
n→∞

Sn
n
> −∞

]
= 1.
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That implies E[X+
1 ] = ∞. Now we split the proof in two cases. At first we

consider the case: E[X−1 ] <∞. by means of (3.1) we obtain that:

P
[

lim
n→∞

Sn
n

=∞
]

= 1. (1)

In the other case: if E[X−1 ] = ∞. We consider the theorem 3.2 and we see
that: (ii), (iii) are impossible, therefore we obtain, that (1).

In the other direction: Assume that (1) holds, this implies:

P
[
lim sup
n→∞

Sn
n

= lim inf
n→∞

Sn
n

=∞
]

= 1.

From the previous statement and (i), (ii) follows, that J+(X) =∞ and
J−(X) <∞.

After the proof of theorem 3.2 we can show the statement (1.3) of example
1.1. we start with m+ and m−:

m+(t) =

∫ t

0

P[X+ ≥ s]ds, m−(t) =

∫ t

0

P[X− ≥ s]ds.

Order to prove the statement (1.3), we have to show that J+(X) = ∞ and
J−(X) =∞. At first we will show that

J+(X) =

∫ ∞
0

t

m−(t)
dF (t) =∞

and we know from [4](Remark 3), that

E[X+] =∞⇔
∫ ∞
0

t

m+(t)
dF (t) =∞.

Now we have to consider t/m−(t):

t

m−(t)
=

t

m+(t)

m+(t)

m−(t)
for t > 0.

By means of 1.4 we obtain, that the second term goes to infinite for t→∞.
That means

t

m+(t)
= o

(
t

m−(t)

)
. (3.10)
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Now we consider the J+(X) and we will find a lower bound.

J+(X) =

∫ ∞
0

t

m−(t)
dF (t) ≥

∫ ∞
c

t

m−(t)
dF (t)

≥
∫ ∞
c

t

m+(t)
dF (t) =∞.

The second inequality holds for some c > 0, because (3.10). A last integral
of the previous statement is infinite, because the integral

∫ c
0

t
m+(t)

dF (t) has

to be finite. Now we will show that J−(X) =∞. At we first we consider the
m+(t)

m+(n) =
n∑
i=1

P[X+ = k]k =
n∑
i=1

κ+
k2
k = κ+

n∑
i=1

1

k
≈ κ+ log(n).

Now we rewrite the J−(X)

J−(X) =

∫ ∞
0

t

m+(t)
dF (t) =

∞∑
n=3

P[X− = n]
n

m+(n)

≈
∞∑
n=3

κ−
n2 log log(n)

n

κ+ log(n)

=
κ−
κ+

∞∑
n=3

1

n log(n) log log(n)
.

Since Abel’s series
∑∞

n=2
1

n log(n) log log(n)
diverges we get that J−(X) =∞.
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4 Limit theorem for Sn
an

Most of the material of this section is taken from a publication of Yuan Shih
Chow and Cun-Hui Zhang [2]. We are studying further the fraction Sn

an
, where

Sn is the sum of random variables, where (an)n≥0 is sequence such that a0 = 0
and an/n is nondecreasing in n. At first we define a function a : [0,∞)→ R
:

a(x) =:

{
an if x = n,

an + (an+1 − an)(x− n) if n ≤ x < n+ 1

Let a−1(·) denote the inverse function of a(·) and

J+(a) =

∫ ∞
0

min(a−1(x), x/m−(x))dF (x)

J−(a) =

∫ ∞
0

min(a−1(x), x/m+(x))d (1− F (−x))

The following theorem gives us a first impression, how the previous integrals
and the limits of Sn

an
are related to each other.

Theorem 4.1. Let X be a random variable on some probability space.

J−(a) + J+(a) <∞ ⇔ E[a−1 (|X|)] <∞.

Proof. We can split the proof in two assumptions. In this part we will assume
that E[|X|] <∞. In this case we have to consider the following inequality:

Ea−1[|X|] ≤ a−1(1) [E[|X|] + 1]

At first we define a random variable Y := a−1(|X|) and y = a−1(1). This
implies a(y) = 1. That means the inequality is equivalent to the following
inequality:

E[Y ] ≤ y [E[a(Y )] + a(y)]
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We split the proof in two disjoints sets. At first we consider the inequality
on the set {Y ≥ y}. Since a(t)/t is nondecreasing we obtain that:

a(Y )

Y
≥ a(y)

y

a(Y ) · y ≥ a(y)Y

1{Y≥y} · a(Y ) · y ≥ 1{Y≥y} · a(y) · Y
E[a(Y ) · y] ≥ E[a(y)Y ]

Now we consider on the sets {Y ≥ y} and {Y < y}.

E[Y ] = E[1{Y≥y}Y ] + E[1{Y <y}Y ]

≤ yE[1{Y≥y}a(Y )] + y

≤ y [E[a(Y )] + 1]

This inequality is useful, because the inequality Ea−1[|X|] ≤ a−1(1) [E[|X|] + 1]
implies that Ea−1[|X|] <∞. That means as of now, we have to consider only
this case: E[|X|] =∞. We suppose that:

J−(a) + J+(a) <∞

We define H(x) := P[|X1| ≤ x] = F (x)− F (−x−) for x > 0. Set

h(x) = min

(
a−1(x),

x∫ x
0
P[|X1| ≥ t]dt

)
(1)

With short calculation we obtain:∫ x

0

P[|X1| ≥ t]dt =

∫ x

0

1− (F (t)− F (−t))dt

=

∫ x

0

1− F (t) + F (−t)dt

=

∫ x

0

1− F (t)dt+

∫ x

0

F (−t)dt = m+(x) +m−(x)

(2)
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By means of the (2) we estimate the integral of h(x) respect to the H(x).∫ ∞
0

h(x)dH(x) =

∫ ∞
0

min

(
a−1(x),

x

m+(x) +m−(x)

)
dH(x)

=

∫ ∞
0

min

(
a−1(x),

x

m+(x) +m−(x)

)
dF (x)+

+

∫ ∞
0

min

(
a−1(x),

x

m+(x) +m−(x)

)
d(1− F (−x))

≤ J+(a) + J−(a) <∞

(3)

The fact that m+(a) ≤ m−(a) +m+(a) and m−(a) ≤ m−(a) +m+(a) implies
the last inequality. We know that a−1(x) is nondecreasing, since a(x)/x is
nondecreasing. At first we have noted that m is absolutely continuous on
bounded intervals and this implies that

m′(x) = 1−H(x),

consequently the function x → x/m(x),x > 0, is absolutely continuous on
intervals [a, b] too, 0 < a < b <∞ and is nondecreasing because[

x

m(x)

]′
=
m(x)− x(1−H(x))

m2(x)
≥ 0 a.e..

Therefore we obtain that

h(x) is nondecreasing and h(x)/x is nonincreasing

Now we estimate the m(y):

m(y) =

∫ y

0

P[|X| ≥ t]dt

=

∫ ∞
0

min(t, y)dH(t)

=

∫ x0

0

min(t, y)dH(t) +

∫ ∞
x0

min(t, y)dH(t)

≤ x0 +

∫ ∞
x0

t · h(t)

t
dH(t)

≤ x0 + y(h(y))−1
∫ ∞
x0

h(t)dH(t)
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Choose x0 so that
∫∞
x0
h(x)dH(x) ≤ 1/2. Since E[|X|] =∞ we obtain:

h(y)y−1
∫ y

0

P[|X| ≥ t]dt ≤ x0
h(y)

y
+

1

2
→ 1

2

and

h(y) = a−1(y) for all large y

This and (3) finish the proof.

Set c = E[X]/( lim
n→∞

an/n) if E[|X|] < ∞ and c = 0 otherwise. With the

combination of theorems 2.2, 4.1, we obtain the following proposition:

Proposition 4.1. Let (Xn)n≥1 be a sequence of random variables on some
probability space with finite mean. For any sequence (an)n≥1 for which an

n
is

nondecreasing the following holds

J−(a) + J+(a) <∞ ⇔ P
(

lim
n→∞

Sn
an

= c

)
= 1

Proof. Without loss of generality E[X] = 0.

J−(a) + J+(a) <∞⇔ E[a−1(|X1|)] <∞

⇔
∫ ∞
0

P[a−1(|X1|) > y]dy <∞

⇔
∫ ∞
0

P[|X| > a(y)]dy <∞

⇔ P[|X1| > ani.o.] = 0⇔ lim
n→∞

Xn

an
= 0 a.s.

To extend the previous theorems, we consider nonnegative random vari-
ables. The following Lemma gives us an inequality for truncated expectations
of partial sums of i.i.d. nonnegative random variables. The inequality has its
own interest and it is useful to study the ratio of two independent nonnegative
random walks.
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Lemma 4.1. Let Y1, · · · , Yn be i.i.d. nonnegative random variables. Set
Sn = Y1 + · · · + Yn and m(x) =

∫ x
0
P(Y ≥ y)dy. Let C > 0 be a constant.

Then

E[min(Sn, C)] ≤ min(C, n ·m(C)) ≤ 16E[min(Sn, C)]

Proof. Part 1: We define Xi = min(Yi, C) for C > 0 and S ′n =
∑n

i=1Xi. We
will discuss two cases, n · m(C) > 3C and n · m(C) = uC > 3C. Suppose
that:n ·m(C) > 3C

E[S ′n] = n · E[X1] = n ·m(C) = uC

Therefore

P[Sn ≤ C] = P[−Sn ≥ −C]

= P[E[S ′n]− Sn ≥ E[S ′n]− C]

= P[E[S ′n]− Sn ≥ n ·m(C)− C]

= P[E[S ′n]− Sn ≥ (u− 1)C]

≤ (u− 1)−2C−2nE(min(Y,C))2 ≤ u

(u− 1)2
<

3

4

Now we can show the second inequality:

E[min(Sn, C)] ≥ CP[Sn ≥ C] ≥ C

4

For nm(C) = uC ≤ 3C,

nm(C) = E[S ′n]

≤ 8E[min(Sn, C)] + E[S ′n1{S′n>8C}]

E[S ′n1{S′n>8C}] ≤
nE[min(Y,C)]2 + nm(C)2

8C

≤ Cnm(C) + 3Cnm(C)

8C
=
nm(C)

2

nm(C) ≤ 16E[min(Sn, C)]

Part 2: The inequality in the other direction is a simple calculation, where
you have to calculate the expected value and use the identity property of the
random variables Xi.
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We will study the ratio of two independent nonnegative random sequences.

Theorem 4.2. Let (Wn)n≥1 and (Vn)n≥1 be two independent sequences of
i.i.d. nonnegative random variables. Suppose that

E[W1] + E[V1] + lim
n→∞

an/n =∞.

Then the following statements are equivalent.

(i) lim
n→∞

W1+...+Wn

an+V1+...+Vn
= 0 a.s.

(ii) lim sup
n→∞

W1+...+Wn

an+V1+...+Vn
<∞ a.s.

(iii) lim sup
n→∞

Wn

an+V1+...+Vn
<∞ a.s.

(iv)
∑∞

n=1 P(δWn > an + V1 + ...+ Vn) <∞ for some δ > 0

(v)
∑∞

n=1 P(δWn > an + V1 + ...+ Vn) <∞ for all δ > 0

(vi)
∫∞
0

min(a−1(x), x
mV (x)

)dP(W1 ≤ x) <∞.

Proof. • (i) ⇒ (ii): Let (xn)n≥1 be an arbitrary nonnegative sequence
such that lim

n→∞
xn = 0. Then we know that lim sup

n→∞
xn <∞.

• (ii)⇒ (iii): Since Wn is nonnegative, we can see that:

Wn

an + V1 + · · ·+ Vn
≤ W1 + · · ·+Wn

an + V1 + · · ·+ Vn
∀n ∈ N

• (iii)⇒ (iv): There are some constants δ > 0 and k <∞ such that:

P [∩∞n=k (δWn > an + V1 + · · ·+ Vn)] ≤ 1− δ < 1. (1)

At first we define the following events for the simplicity:

An := [δWn > an + V1 + · · ·+ Vn] .

Our aim is to find an overset of An ∩ An+m, where the sets are inde-
pendent.

An ∩ Am+n ⊂ An ∩ [δWm+n > an + Vm + · · ·+ Vn+m]
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The independence and stationary implies the following inequality:

P [An ∩ An+m] ≤ P[An]P[Am].

Now we have to generalize the previous statement and then we can use
our assumption (1)

P
[
An ∩ ∪∞j=1An+jk

]
≤ P[An]P

[
∪∞j=1Ajk

]
≤ P[An](1− δ).

By means of set operation we get the following estimate of δP[An].

δP[An] ≤ P
[
An ∩

(
∪∞j=1A(n+j)k

)c]
The previous statement gives us

δ
N∑
n=1

P [Ank+i] ≤
N∑
n=1

P
[
Ank+i ∩

(
∪∞j=1A(n+j)k+i

)c] ≤ 1

That means, that for all δ > 0 exist some N ∈ N. Therefore

∞∑
n=1

P(δWn > an + V1 + ...+ Vn) <∞ for some δ > 0

• (iv) ⇒ (v) : We already saw that a(2n) ≥ 2a(n), and with a short
calculation we obtain

P[2δW2n+1 > a2n+1 + V1 + · · ·+ V2n+1]

≤ P[2δW2n > a2n + V1 + · · ·+ V2n].

Therefore

∞∑
n=1

P(2δWn > an + V1 + ...+ Vn)

≤ 1 + 2
∞∑
n=1

P(2δW2n > a2n + V1 + ...+ V2n)

≤ 1 + 4
∞∑
n=1

P(δWn > an + V1 + ...+ Vn)
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• (v) ⇒ (vi) ⇒ (iv) : Let stopping time T := inf{k : Sk > C}, Sk =∑k
i=1 Vi, S

′
k =

∑k
i=1 min(Vi, C) for C > 0. Then, from Wald’s lemma

follows that ∫ C

0

P[V1 ≥ t]dtE[min(T, n)] = E[S ′min(T,n)]

⇔ E[min(T, n)] =
E[S ′min(T,n)]∫ C
0
P[V1 ≥ t]dt

=
E[S ′min(T,n)]

m(C)

Now we have to calculate the expected value of the stopping time
min(T, n) for n ∈ N

E[min(T, n)] = 1 +
n∑
k=1

P[V1 + · · ·+ Vn ≤ C]

To see this, we have to start with n = 2 as a usual expected value.

E[min(T, 2)] = 1 · P[V1 > C] + 2 · P[V1 ≤ C]

= 1 · (1− P[V1 ≤ C]) + 2 · P[V1 ≤ C]

= 1 + P[V1 ≤ C]

Therefore, by Lemma 1.1:

∞∑
n=1

P[Wn > an + V1 + · · ·+ Vn]

≤
∫ ∞
0

∑
a1≤an<x

P[x > V1 + · · ·+ Vn]dP[W1 ≤ x]

≤ 2

∫ ∞
0

min

(
a−1(x),

x∫ x
0
P[V1 ≥ t]dt

)
dP[W1 ≤ x]

≤ 32 + 32

∫ ∞
0

∑
a1≤an<x

P[x ≥ V1 + · · ·+ Vn]dP[W1 ≤ x]

≤ 32 + 32

∫ ∞
0

∞∑
n=1

P[2x > an + V1 + · · ·+ Vn]dP[W1 ≤ x]

= 32 + 32
∞∑
n=1

P[2W1 > an + V1 + · · ·+ Vn]dP[W1 ≤ x].
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• (iv)⇒ (i). The first step of the proof is the same as in (iv)⇒ (v).

∞∑
n=1

P(2δ(W1 +W2) > an + V1 + ...+ Vn)

≤ 1 + 2
∞∑
n=1

P(2δ(W1 +W2) > a2n + V1 + ...+ V2n)

≤ 1 + 2
∞∑
n=1

P(δW1 > an + V1 + ...+ Vn)

+ 2
∞∑
n=1

P(δW2 > an + V1 + ...+ Vn) <∞.

Let T (M) := inf{n : an + V1 + · · ·Vn + M ≥ δ(W1 + W2)}. Now we
choose M such that E[T (M)] < 2. Set

T1 = T (1) = T (M),

T (n) = inf{j : aj + Vk+1 + · · ·+ Vk+j +M ≥ δ(W2n−1 +W2n)}

on {Tn−1 = k}, and

Tn = Tn−1 + T (n), n = 2, 3, ...

Then, as per the strong law of large numbers there exists an integer-
valued random variable N such that

Tn = T (1) + · · ·+ T (n) < 2n− 1 for any n ≥ N

Since an
n

is nondecreasing,

a(T (1) + · · ·+ T (n)) ≤ a(Tn) < a(2n− 1)for any n ≥ N

δ(W1 + · · ·+W2n) ≤ nM + a(2n− 1) + V1 + · · ·+ V2n−1 n ≥ N

By the condition that E[W1] + E[V1] + lim
n→∞

an
n

=∞,

lim
n→∞

nM

an + V1 + · · ·+ Vn +W1 + · · ·+Wn

= 0 a.s.

Hence

lim
n→∞

W1 + · · ·+Wn

an + V1 + · · ·+ Vn
≤ 1

δ
a.s.

Since δ is arbitrary, follows (i).
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At this moment we consider the ratio of the positive and negative contri-
butions X− of the random walks. By means of the previous theorem we can
show that if we know something about the random variable |X| or the limes
of an

n
, then there are two possible outcomes of the integral test J+(a).

Theorem 4.3. Suppose that E[|X|] =∞ or lim
n→∞

an
n

=∞. Then, one of the

following alternatives must prevail:

(i) J+(a) =∞ and P
[
lim sup
n→∞

X+
n

an+X
−
1 +···+X−n

=∞
]

= 1

(ii) J+(a) <∞ and P
[

lim
n→∞

X+
1 +···+X+

n

an+X
−
1 +···+X−n

= 0
]

= 1

To prove the previous theorem we need the following lemma about stop-
ping time. You find the Introduction to the stopping times and finite times
in Appendix chapter under Stopping time.

Lemma 4.2. If (Xn)n≥1 is a sequence of i.i.d. random variables in some
probability space (Ω,A,P), T is a finite stopping time with respect to the
{Fn} where Fn = σ(X1, ...., Xn), then FT and σ(XT , ....) are independent
and (XT+n)n≥1 are i.i.d. with the same distribution as X1.

The proof of this lemma contains the usual steps as a proof of theorems
with stopping time statements. That means we start the proof with some
set A ∈ FT and show the same equality for Ω.

Proof. Let λ1, ..., λn ∈ R and A ∈ FT

P[A ∩ni=1 [XT+i < λi]] =
∞∑
k=1

P[A ∩ [T = k] ∩ni=1 [Xk+i < λi].

By assumption, A ∩ [T = k] ∈ Fk for all k ≥ 1, and we get

∞∑
k=1

P[A ∩ [T = k] ∩ni=1 [Xk+i < λi]] =
∞∑
k=1

P[A ∩ [T = k]]P[∩ni=1[Xk+i < λi]].

Hence

P[A ∩ni=1 [XT+i < λi]] =
∞∑
k=1

P[A ∩ [T = k]]
n∏
i=1

P[Xi < λi]

= P[A]
n∏
i=1

P[Xi < λi]
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and now we choose A = Ω and we know that

P[∩ni=1XT+i < λi] =
n∏
i=1

P[Xi < λi], for 1 ≤ i ≤ n.

Since n arbitrary integer , (XT+n)n≥1 i.i.d sequence of random variables with
the same distribution as X1. Therefore we obtain that

P[A ∩ni=1 [XT+i < λi]] = P[A]
n∏
i=1

P[XT+i < λi]

Since λ1, ..., λn are arbitrary we get FT and σ(XT+1, XT+2, ....) are independ-
ent.

Proof. (theorem 4.3):
We may assume that P[X > 0] 6= 0 and P[X < 0] 6= 0. Let

T0 = S0 = 0, T1 := T (1) = inf{k ≥ 1 : Xk > 0}
T (n) = inf{k ≥ 1 : Xk+Tn > 0}, Tn = Tn−1 + T (n), n ≥ 2,

and

Wn = XTn , Vn = −
(
STn − STn−1 −Wn

)
, n ≥ 1.

The random variables Vn, Wn are nonnegative, therefore we can hope to use
the theorem 2.4. But first we will consider the sequences (Vn)n≥1, (Wn)n≥1.
Since T (n) are copies of T (1), one can show that (Vn,Wn) are i.i.d..

Rn := (Vn,Wn) =
(
T (n) = m,−(XTn−1+1 +XTn−1+2 + · · ·+XTn−1), XTn

)
It is easily seen from the definition,that Tn is a finite stopping time and that
Rn FTn-measurable and hence also the (R1, ..., Rn). By the lemma 4.2 we can
see that σ(XTn+1, XTn+2...) is independent of FTn n ≥ 1, and that the T (n+1)

and (XTn+1, ...., XTn+1) are σ(XTn+1, XTn+2...)-measurable. Now we need the
combination of the previous statements and then we obtain that: FTnand
σ(Rn+1) are independent for n ≥ 1. Therefore has to be Rn+1 independent
of (R1, ..., Rn) and so we get that the sequence (Rn)n≥1 is independent. It
remains to show that Rn are identically distributed.
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By means of lemma A.1 there are sets Cm ∈ (Rm,Bm) we have for λ1, λ2
∈ R for all n ≥ 1 and for some m ≥ 1:

qn := P[T (n) = m,Vn < λ1,Wn < λ2]

= P[T (n) = m,−(XTn−1+1 +XTn−1+2 + · · ·+XTn−1) < λ1, XTn < λ2]

= P[T (n) = m,
m−1∑
i=1

XTn−1+i < λ1, XTn−1+m < λ2]

= P[(XTm−1+1, XTn−1+2, ..., XTn−1+m) ∈ Cm,
m−1∑
i=1

XTn−1+i < λ1, XTn−1+m < λ2]

= P[(X1, X2, ..., Xm) ∈ Cm,
m−1∑
i=1

Xi < λ1, Xm < λ2]

= P[T (1) = m,
m−1∑
i=1

Xi < λ1, Xm < λ2]

= P[T (1) = m,V1 < λ1,W1 < λ2] = q1.

Since m arbitrary,

P[V1 < λ1,W1 < λ2] = P[Vn < λ1,Wn < λ2].

Therefore we obatain that (Rn)n≥1 are i.i.d. random variables. Now we
have to find some connection between J+(a) and the integral test of V respect
to the W . At first we calculate the distribution of W1 and a lower bound of
E[W1]:

P[W1 > t] =
P[X > t]

P[X > 0]
, E[W1] ≥ E[X+

1 ], (1)

We can write V1 as:

V1 =

T1∑
n=1

X−n ≥ X−1

That implies , E[V1] ≥ E[X−1 ]. We calculate an upper bound of the integral:∫ x

0

P[V1 ≥ t]dt = E[min(V1, x)] ≤ E[
T∑
n=1

min(X−n , x)]

= E[T ]E[min(X−1 , x)],

(2)
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Our assumption was that Xi are independent. Therefore the probability of
{T1 > n} is equal to nth power of P[X1 ≤ 0].

P[T1 > n] = (P[X1 ≤ 0])n .

That implies:

E[T1] <∞. (3)

The statements (1), (2), (3) lead us to the observation:

J+(a) <∞⇔∫ ∞
0

min

(
a−1(x),

x∫ x
0
P[V1 ≥ t]dt

)
dP[W1 ≤ x] <∞.

(4)

Let k be an integer with E[T1 > k]. As per strong law of large numbers

P[Tn ≥ kn i.o.] = 0.

Now we will see, how the X+
n , X−n and Vn, Wn are related to each other.

STn = STn−1 + (Wn − Vn)

STn−1 = STn−1 − Vn

We consider the following limit:

lim sup
n→∞

X+
n

an +X−1 + · · ·+X−n
≥ lim sup

n→∞

Wn

a(Tn) + V1 + · · ·+ Vn

≥ lim sup
n→∞

Wn

a(kn) + V1 + · · ·+ Vkn

≥ lim sup
n→∞

Wn+i

a(kn+ i) + V1 + · · ·+ Vkn+i
∀i

= lim sup
n→∞

Wn

an + V1 + · · ·+ Vn
a.s.

From this statement and theorem 1.4 and (4) follows that:

P
[
lim sup
n→∞

X+
n

an +X−1 + · · ·+X−n
=∞

]
= 1 if J+(a) =∞
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Part 2. In the other case the calculation is similar to Part 1:

lim sup
n→∞

X+
1 + · · ·+X+

n

an +X−1 + · · ·+X−n
≤ lim sup

n→∞

W1 + · · ·+Wn

a(Tn−1) + V1 + · · ·+ Vn−1

≤ lim sup
n→∞

W2 + · · ·+Wn

an−1 + V2 + · · ·+ Vn−1

= lim sup
n→∞

W1 + · · ·+Wn

an + V1 + · · ·+ Vn
a.s.

From this statement and from theorem 1.4 and (4) follows that:

P[lim sup
n→∞

X+
1 + · · ·+X+

n

an +X−1 + · · ·+X−n
= 0] = 1

if J+(a) <∞.

In the next theorem we consider the following case: at least one of J+(a),
J−(a) is infinite. With these cases we can extend theorem 3.2.

Theorem 4.4. Let (Xn)n≥1 be a i.i.d. sequence in some probability space,
then we obtain that:

(i) J+(a) =∞ if and only if P
[
lim sup
n→∞

Sn
an

=∞
]

= 1

(ii) J−(a) < J+(a) =∞ if and only if

P
[
lim inf
n→∞

Sn
an

= lim inf
n→∞

(
|X1|+···+|Xn|

an

)]
= 1 and

P
[
lim sup
n→∞

Sn
an

=∞
]

= 1

To prove the previous theorem, we need some lemmas. The statement
and the proof of the following lemma are similar to the lemma 3.4.

Lemma 4.3. If

lim sup
n→∞

X+
n

an +X−1 + · · ·+X−n
=∞ (4.1)

then E[X+
1 ] =∞ and lim sup

n→∞

Sn
an

=∞ a.s..

We record the following proposition easy consequence of theorem 4.3.
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Proposition 4.2. Let (Xi)i≥1 be some sequence of i.i.d. random variables in
some probability space (Ω,A,P). Suppose that E[|X1|] + lim

n→∞
an
n

=∞. Then

J+(a) <∞ and

Sn
n

=
−
(∑n

i=1X
−
i

)
an

(1 + o(1)) + o(1) a.s.

This statement equivalent to:

n∑
i=1

X+
i = o

(
−

n∑
i=1

X−i

)
+ o(1). (4.2)

Proposition 4.3. Suppose that lim an
n

= ∞, Then it is impossible for any
random walk, that

−∞ < lim inf
Sn
an

< 0.

Proof. (Theorem 4.4)
Part 1(i) (⇒): Suppose J+(a) =∞. By means of theorem 4.3 and lemma

4.3 we obtain that:

P
[
lim sup
n→∞

Sn
an

=∞
]

= 1. (1)

(⇐): Suppose that P
[
lim sup
n→∞

Sn
an

=∞
]

= 1. This implies a statement:

E[X+
1 ] = ∞ or lim

n→∞
an
n

= ∞. By (1) we get, that Theorem 4.3 (ii) is

impossible and therefore J+(a) =∞.
Part 2 (ii) ⇒: At first we change X+ with X− and by (i) we get that

J−(a) <∞ ⇔ P
[
lim inf
n→∞

Sn
an

> −∞
]

= 1.

Since J+(a) = ∞ we obtain that lim
n→∞

an
n

= ∞ or E[|X1|] = ∞. Therefore if

J−(a) <∞ we get:

n∑
i=1

X−i = o

(
+

n∑
i=1

X+
i

)
+ o(1).
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Finally we obtain that:

P
[
lim inf
n→∞

Sn
an

= lim inf
n→∞

(
|X1|+ · · ·+ |Xn|

an

)]
= 1.

⇐: At first suppose that P
[
lim sup
n→∞

Sn
an

=∞
]

= 1 we get J+(a) =∞. Now

we suppose that: P
[
lim inf
n→∞

Sn
an

= lim inf
n→∞

(
|X1|+···+|Xn|

an

)]
= 1 and this implies:

lim inf
n→∞

(
|X1|+ · · ·+ |Xn|

an

)
> −∞ a.s.

and by means of (i) we obtain that J−(a) <∞.
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A Appendix

A.1 Analysis

Theorem A.1. (Kronecker lemma) Let (xn)n≥1 a sequence with xn ∈ R
∀n ≥ 1 and a sequence (an)n≥1 with 0 < an ≤ an+1 ∀n ≥ 1 and lim

n→∞
an =∞.

If the sequence (sn)n≥1

sn :=
n∑
k=1

xk
ak

converges, then follows:

lim
n→∞

1

an

n∑
k=1

xk = 0.

Proof. There exist s ∈ R such that s = lim
n→∞

sn since the sequence sn is

convergent. We will use the summation by parts

1

an

n∑
k=1

xk = sn −
1

an

n−1∑
k=1

(ak+1 − ak)sk. (1)

We split the series of right hand side (1) in two sums and we use usual trick
(a = b + (a − b)). Pick ε > 0 and we can choose N ∈ N such that sn is
ε− close to s for all k > N .

1

an

N−1∑
k=1

(ak+1 − ak)sk −
1

an

n−1∑
k=N

(ak+1 − ak)sk

=
1

an

N−1∑
k=1

(ak+1 − ak)sk −
1

an

n−1∑
k=N

(ak+1 − ak)s−
1

an

n−1∑
k=N

(ak+1 − ak)(sk − s)

=
1

an

N−1∑
k=1

(ak+1 − ak)sk −
1

an
(an − aN)s− 1

an

n−1∑
k=N

(ak+1 − ak)(sk − s).

Now, we let n go to infinity and we see that the first term go to 0 since 1
an

go
to zero and the series is finite . The second term converges to s. Since the
(ak)k≥1 sequence is increasing, the last term is bounded by ε(an−aN)/an ≤ ε.
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Therefore we obtain for (1):

lim
n→∞

1

an

n∑
k=1

xk = lim
n→∞

sn − (0− s+ 0) = s− s = 0

A.2 Probability Theory

A.2.1 First auxiliary results

Theorem A.2. (Borel-Cantelli) Let (An)n≥1 be a sequence of events in some
probability space (Ω,A,P). If

∞∑
n=1

P(An) <∞

then

P({An i.o.}) = 0

Proof.

P({An i.o.}) = P(lim sup
n→∞

An)

= lim
n→∞

P(∪∞k=nAk)

≤ lim
n→∞

∞∑
k=n

P(Ak)

and the tail series converges to zero for n → ∞ under the assumption the
series converges.

Theorem A.3. (Converse Borel-Cantelli)Let (An)n≥1 a sequence of inde-
pendent events in some probability space (Ω,A,P). If

∞∑
n=1

P(An) =∞

then

P({An i.o.}) = 1
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Proof. First note that

P({An i.o.}c) = P(lim inf
n→∞

Acn) = lim
n→∞

P(∩∞k=nAck)

because of independence of An hence we have independent of Acn. Therefore
we see that for every n ∈ N

P(∩∞k=nAck) = lim
N→∞

P(∩Nk=nAck)

= lim
N→∞

N∏
k=n

(P(1− Ak))

≤ lim
N→∞

N∏
k=n

(exp (−P(Ak)))

= lim
N→∞

exp (
N∑
k=n

(−P(Ak))) = 0

since the series diverges, then the exponent approaches to −∞.

Theorem A.4. (Khintchine and Kolgomorov) Suppose Xn are independent
random variable with mean zero such that the sum of variances is finite,

∞∑
n=1

V ar(Xn) <∞.

Then the sum of the random variables converges almost surely ,
∞∑
n=1

Xn converges a.s..

Proof. We define Am,ε = {maxj>m |Sj − Sm| ≤ ε}. Hence

{
∞∑
n=1

Xn converges} = ∩ε>0 ∪m Am,ε,

by Kolgomorov inequality we obtain:

P[ max
n≥j>m

|Sj − Sm| > ε] ≤ V ar(Sn − Sm)

ε2

≤ 1

ε2

n∑
i=m+1

V ar(Xi) ≤
1

ε2

∞∑
i=m+1

V ar(Xi)
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By letting n to infinity and then m to infinity, we have

lim
m→∞

P[max
j>m
|Sj − Sm| > ε] = 0.

Then the lim
m→∞

P[Am,ε] = 1 and so P[∪m≥1Am,ε] = 1 for every ε > 0. Hence

we obtain

P[
∞∑
n=1

Xn converges] = P[∩ε>0 ∪m≥1 Am,ε] = 1

and almost surely convergence holds for Sn.

Theorem A.5. Let τ be a stopping time with respect to an i.i.d. sequence
(Xn)n≥1. If E[τ ] <∞ and E[|X1|] <∞, then

E

[
τ∑

n=1

Xn

]
= E[X1] · E[τ ]

Proof.

τ∑
n=1

Xn = [
∞∑
n=1

Xn1{τ>n−1}]

Since the sequence (Xn)n≥1 i.i.d., Xn is independent of {X1, ..., Xn−1}, so
that Xn is independent of event {τ > n− 1}.

E
[
Xn1{τ>n−1}

]
= E[X1] · E[1τ>n−1]

By means of the previous statement we get:

E

[
τ∑

n=1

Xn

]
= E[X1]

(
∞∑
n=1

E[1τ>n−1]

)

= E[X1]

(
∞∑
n=1

P[τ > n− 1]

)

= E[X1]

(
∞∑
n=0

P[τ > n]

)
= E[X1] · E[τ ]
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A.2.2 Convolution

Let X, Y be two independent real valued random variable in some probability
space (Ω,A,P) with density functions f1(x) and f2(x). Let Z = X + Y a
random variable and we want determinate the distribution function f3(x) of
Z. The convolution f3(x) = f1(x) ∗ f2(x) is given by

f3(x) =

∫ ∞
−∞

f1(y) · f(x− y)dy.

In general case: Let (Ω,A,P1), (Ω,A,P2) be a probability spaces, A ⊗ A
product− σ− algebra on Ω×Ω and P1⊗P2 product measure. The function

X : Ω× Ω→ Ω

defined as

(x, y) 7→ x+ y

is a A⊗A−A measurable function. The image measure P1⊗P2 of X called
the convolution of probability measure P1 and P2. The convolution is given
by

P1 ∗ P2(B) = P1 ⊗ P2((x, y) ∈ Ω× Ω|x+ y ∈ B).

A.2.3 Stopping time

Let (Ω,A,P) be a probability space and (An)n≥1 increasing sequence of
sub σ−algebra. A random variable T : Ω→ N is called stopping time if {ω ∈
Ω : T (ω) ≤ n} ∈ An holds for all n ∈ N(often called (An)− stopping time).
A stopping time called finite if P[T = ∞] = 0 and defective if P[T =
∞] > 0. Let (Xn)n≥1 sequence of random variable then {Xn,An, n ≥ 1}
will be called adapted sequence if Xn is An measurable for all n ≥ 1 and
{Xn, σ(X1, ..., Xn), n ≥ 1} is a adapted sequence too.

We define

XT (ω) = XT (ω)(ω), where X∞(ω) = lim inf
n→∞

Xn(ω)

and

A∞ = σ(∪∞n=1An), AT := {A : A ∈ A∞, A ∩ [T = n] ∈ An, n ≥ 1}

for any adapted sequence {Xn,An, n ≥ 1} and any An − stopping time T .
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Lemma A.1. Let (Xn)n≥1 be sequence of i.i.d. random variables in some
probability space (Ω,A,P). If T is a An − stopping time, where An =
σ(X1, ...Xn), then exist some sequence of (Cn)n≥1 of disjoint Borel sets of
BRn, whose corresponding bases Bn are n-dimensional Borel sets n ≥ 1, such
that

{ω : T = n} = {ω : (X1, ..., Xn) ∈ Cn}.

A.2.4 Zero-one laws

Theorem A.6. Let (Xn)n≥1 be sequence of independent random variables in
some probability space (Ω,A,P). Define the tail sigma-field

T = ∩n≥1σ(Xn+1, Xn+2, ....)

Then T is trivial: ∀A ∈ T holds P[A] ∈ {0, 1}
Proof. At first we set Tm = σ(Xm+1, Xm+2, ...., ) and Fn = σ(X1, ..., Xn).
Then we obtain that Tm and Fn are independent for all m ≥ n. Hence
σ(∪nFn) is also independent of T . Let A ∈ T , then A has to be in σ(∪nFn)
. By independent we obtain that :

P[A] = P[A ∪ A] = P[A]P[A].

Therefore P[A] ∈ {0, 1}
Defintion A.1. An exchangeable sequence (Xn)n≥1 of random variables is
a finite or infinite sequence of random variables such that for any finite per-
mutation of the indices 1, 2... the joint probability distribution of the permuted
sequence is the same as the joint distribution of the original sequence.

Theorem A.7. Let (Xn)n≥1 be sequence of i.i.d. random variable in some
probability space (Ω,A,P). Then the sigma field of exchangeable events E is
trivial.

Proof. We take A ∈ E and we approximate this event by sequence (An)n≥1,
where An ∈ Fn and we know that ∪nFn generated the σ − field therefore
we get P[A4 An] → 0. We write the event An = {(X1, ..., Xn) ∈ Bn} and
we set Ãn = {(Xn+1, ..., X2n) ∈ Bn}. By exchangeability An 7→ Ãn. Then we
get P[A4An] = P[A4 Ãn]→ 0 and therefore P[An ∩ Ãn]→ P[An]. By (Xi)
are i.i.d. we get:

P[An ∩ Ãn] = P[An]P[Ãn] = P[An]2 → P[A]2

Hence P[A] ∈ {0, 1}
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