

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Design and Development of a BANG-File
Clustering System“

verfasst von / submitted by

Florian Fritz, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 926

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

 Masterstudium Wirtschaftsinformatik

Betreut von / Supervisor:

Univ.-Prof. Dipl.-Ing. Dr. Erich Schikuta

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides Statt, dass ich die vorliegende Arbeit selb-
ständig und ohne Benutzung anderer als der angegebenen Hilfsmittel
angefertigt habe. Die aus fremden Quellen direkt oder indirekt über-
nommenen Gedanken sind als solche kenntlich gemacht. Die Arbeit wurde
bisher in gleicher oder ähnlicher Form keiner anderen Prüfungsbehörde
vorgelegt und auch noch nicht veröffentlicht.

Wien, März 2018

Unterschrift:

Florian Fritz

3

Acknowledgements

I would like to express my sincere gratitude to my supervisor Univ.-Prof.
Dipl.-Ing. Dr. Erich Schikuta for the continuous support of my master
thesis with helpful comments, engagement, motivation and most of all,
patience.

5

Contents

1 Introduction 8
1.1 Cluster Analysis . 8
1.2 Clustering Techniques . 11

2 Grid Clustering 14
2.1 Grid File . 14

2.1.1 Splitting Operation 16
2.1.2 Merging Operation 16
2.1.3 Searching . 17
2.1.4 Inserting . 17
2.1.5 Deleting . 18

2.2 Clustering with Grid File 19
2.2.1 Idea behind GRIDCLUS 19
2.2.2 GRIDCLUS Algorithm 21

3 BANG-File Clustering 23
3.1 BANG File . 23

3.1.1 Representation of the Data Space 23
3.1.2 Mapping Function 25
3.1.3 Logical Regions . 27
3.1.4 Partitioning and Merging 29
3.1.5 Directory Structure 31
3.1.6 Advantages of BANG-File 32

3.2 Clustering with BANG File 33
3.2.1 Density Index . 34
3.2.2 Neighborhood . 35
3.2.3 Dendogram . 36

4 WEKA 39
4.1 Introduction . 39
4.2 WEKA Workbench . 39
4.3 User Interfaces . 40
4.4 Memory Management . 42
4.5 Package Management System 42
4.6 Clustering with WEKA 44

5 Software Documentation 47
5.1 BANG File Implementation 47

5.1.1 BANGFile . 47

6

5.1.2 DirectoryEntry . 49
5.1.3 GridRegion . 49

5.2 Application Architecture 50
5.3 Developer Guide . 52

5.3.1 Creating a new Clustering Method 52
5.3.2 Parametrization . 52
5.3.3 Clustering Method Lifecycle 55
5.3.4 Clusterer Factory Design Pattern 56
5.3.5 Abstract Class Clusterer 58

5.3.5.1 Declaration 58
5.3.5.2 Constructor Summary 58
5.3.5.3 Method Summary 58
5.3.5.4 Methods 59

5.4 WEKA Package . 61
5.5 User Guide . 64

5.5.1 Installation . 64
5.5.2 User Interface . 65

6 Experiment 69
6.1 Data Sets . 70
6.2 Results . 72

7 Conclusion 75

7

1 Introduction

1.1 Cluster Analysis

Cluster analysis is essential in the field known as explorative data analy-
sis. It is applied in many scientific and engineering disciplines and helps
determining patterns or structures within data based on the data’s various
attributes. With these patterns, we can form various classes, also referred
to as clusters, for the data. Data within a cluster is supposed to have a
range of similar attributes while at the same time being as different to
other clusters as possible.
Using cluster analysis to find convenient and valid organization of the

data can help significantly in understanding the attributes interrelation
within the data and if the data is grouped according to preconceived ideas.
This may suggest and refine new experiments with the data. Cluster anal-
ysis does not require assumptions common to most statistical methods and
as such it is referred to as unsupervised learning. In supervised learning
we are provided with labeled training patterns which are then used to
label new patterns appropriately. On the other hand, in the case of clus-
tering we group unlabeled patterns into meaningful clusters. These labels
are solely obtained from the data during the cluster analysis.
Organizing data into groups is fundamental for understanding the data

and learning from it. Cluster analysis is the study of algorithms for group-
ing objects, where an object is described by a set of measurements or
the relationships to other objects. These algorithms are designed to find
structure within the data, but not to separate future data into categories
[12].
The goal of a clustering method is to distribute n data points in m

clusters C, with each cluster containing a minimum of one data point and
a maximum of n data points.

C = {C1, C2, . . . , Cm}
Ci = {x1, x2, . . . , xn} i = 1, . . . ,m

Following definitions of a cluster are documented by Everitt [4].

1. “A cluster is a set of entities which are alike, and entities from dif-
ferent clusters are not alike.”

2. “A cluster is an aggregation of points in the test space such that
the distance between any two points in the cluster is less than the
distance between any point in the cluster and any point not in it.”

8

3. “Clusters may be described as connected regions of a multi-dimensional
space containing a relatively low density of points.”

Everitt’s last two definitions assume that the patterns are represented
as points in a value space. If we look at a two-dimensional plane, we can
recognize clusters with different shapes and sizes. However, the number
of clusters we see can depend on the resolution we view the value space
with, and cluster membership could also change. Figure 1 demonstrates a
data distribution in a two-dimensional value space that, if seen at different
scales, can be perceived as having either four or up to twelve clusters. The
problem in identifying clusters in the data here is to specify the pattern
proximity or distance and how we should measure it.

Figure 1: Clusters of data points in a two-dimensional value space

According to Jain and Dubes [12] the typical clustering process consists
of the following phases:

1. Pattern representation (optionally including feature extraction and
selection)

2. Definition of a pattern proximity measure appropriate to the data
domain

3. Clustering (or grouping)

4. Data abstraction if needed

5. Assessment of output if needed

9

During the pattern representation phase the number of clusters and
available patterns are specified as well as number, type and scale of the
available attributes within the data set. Following that, one might use
an appropriate subset of attributes, chosen via attribute selection or ex-
traction, to use for the clustering to accomplish a better clustering result.
Attribute selection is done by identifying a subset of the most effective and
significant attributes of the data set. Attribute extraction, on the other
hand, requires transformations of one or more attributes of the original
input to produce more distinctive attributes.
In the next phase, the pattern proximity is being measured. This is

typically done with a distance function over a pair of patterns. A variety
of distance measurements methods can be used for clustering. One of the
simplest distance measurement method to reflect dissimilarity between a
pair of patterns is the Euclidean distance, which is essentially an ordinary
straight-line distance between two points.
The clustering step of the process can yield different outputs. Clus-

tering can either be hard, where the data is partitioned into groups, or
fuzzy, where the patterns have a degree of membership to every cluster.
Furthermore, hierarchical clustering algorithms will have a nested series of
partitions that are split or merged depending on similarity to other parti-
tions. With partitional clustering algorithms we can detect the partition
that optimizes the clustering criterion the most.
During the data abstraction phase the extraction of a simple and more

compact representation of the data set is attempted. In this context,
simplicity may refer to the processing efficiency for automatic analysis or
the comprehensiveness and intuitiveness for human reading. However, the
extracted data also needs to be a compact description for every cluster.

Figure 2: Stages of a clustering process

Regardless of whether the data contains clusters or not, all cluster-
ing algorithms will produce clusters. However, clustering algorithms may
produce clusters of varying quality. Before the final assessment of the
clustering output it is important to assess the data domain, because data
that is not expected to contain clusters needs be processed in a different
way by the clustering algorithm. Prior to performing the cluster analy-

10

sis, the input data should be examined to know if a cluster analysis can
produce a meaningful output. The assessment of the clustering output
can be subjective, as such there are no gold standards. However, objec-
tive assessment of the output’s validity is possible via the existence of a
clustering structure that could not have reasonably occurred by chance.
Additionally, various statistical methods and testing hypotheses could be
used to accomplish objective validation [13].
Validation can be categorized into the studies of external, internal and

relative assessments [13]:

• The external assessment compares the output to a previous cluster-
ing result.

• The internal assessment tries to determine if the clustering structure
is appropriate for the data.

• The relative assessment compares two clustering structures by mea-
suring their relative merit.

1.2 Clustering Techniques

Clustering is a special kind of classification, so before we begin looking
at different approaches to clustering data, we first take a look at different
types of classification from figure 3. The differentiation over the tree’s
multiple levels are defined as follows [12]:

1. Exclusive vs. non-exclusive: In exclusive classification, each pattern
belongs to exactly one class, or cluster. In non-exclusive classifica-
tion, also referred to as overlapping classification, a pattern can be
assigned to multiple classes.

2. Intrinsic vs. extrinsic: Intrinsic classification is called unsupervised
learning because it only uses a proximity matrix to perform the clas-
sification and has no category labels used for a partition of patterns.
Extrinsic classification, on the other hand, uses category labels on
the patterns and the proximity matrix. With that, a discriminant
surface must be established to separate patterns according to cate-
gory.

3. Hierarchical vs. partitional: Depending on the structure imposed
on the data, we can further subdivide exclusive and intrinsic clas-
sifications into hierarchical and partitional classifications. While a
partitional classification produces a set of individual and separated

11

partitions, hierarchical classification produces a nested series of par-
titions with partitions sharing patterns.

Figure 3: Tree of classification types

We refer to exclusive, intrinsic, partitional classification as clustering
and to exclusive, intrinsic, hierarchical classification as hierarchical clus-
tering. When looking at different approaches to clustering data there is a
distinction between these two approaches. The algorithms for both clus-
tering and hierarchical clustering have the following primary algorithmic
options in common [13]:

• Agglomerative vs. divisive: Divisive, hierarchical classification is a
procedure, where we start with one cluster containing all patterns
and gradually subdivide it into smaller and more precise clusters.
Agglomerative, hierarchical classification, on the contrary, starts
with each pattern having its own cluster and then merges these clus-
ters into larger clusters until all are in a single cluster. The same
characterization can be applied to (partitional) clustering, where
clusters are glued together to partitions (agglomerative) or a single
all-inclusive cluster is fragmented into partitions (divisive).

• Exhaustive vs non-exhaustive: Exhaustive classification will cluster
every single pattern, while non-exhaustive classification will leave
some patterns, those of which with dissimilarity to all detected clus-
ters, without cluster membership [3].

12

• Incremental vs. non-incremental: Incremental procedures handle
one pattern at a time, while non-incremental procedures work with a
set of patterns at once. The importance of data mining has forested
clustering algorithms that require fewer scans through the pattern
set to reduce number of patterns examined during execution. Pro-
cessing large data sets can severely impact execution time and mem-
ory usage and will therefor affect the architecture of the algorithm.

Grid-Clustering, and in extension BANG-Clustering is ultimately an
exclusive, intrinsic, partitional classification that in its primary algorith-
mic options is agglomerative, non-exhaustive and incremental. Note that
despite BANG-Clustering using a nested architecture to organize its parti-
tions, these partitions are still all occupying a separate value space, where
nested partitions essentially take over the value space from their overlying
partition.

13

2 Grid Clustering

Before we go into detail about the BANG file, we will first take a look
at the grid file that it is based on as well as the grid-clustering algorithm
called GRIDCLUS.

2.1 Grid File

The grid file was originally detailed by J. Nievergelt, H. Hinterberger and
K.C. Sevcik in The Grid File: An Adaptable, Symmetric Multikey File
Structure in 1984. While developing the grid file many data structures
with multi-key access to records were nothing but an extension of a struc-
ture that was originally designed for single-key access. This resulted in
drawbacks, in particular when dealing with highly dynamic data. Instead
of a clear distinction between keys, i.e. primary and secondary, a bitmap
approach was used for the grid file. The problem was treated as a data
compression task where the grid file needs to adapt gracefully to the data
that is being inserted or deleted and allows single record retrieval with an
upper bound of only two disk accesses. It also is a symmetrical structure,
were every attribute of the inserted data serves as a primary key and data
is stored depending on each attribute, allowing efficient range queries with
respect to all attributes [15].
The grid file essentially consists of two major elements, buckets and a

grid directory. Buckets are the storage unit of the grid file and contain
a predefined limited amount of patterns. The grid directory serves as
the bucket management system and is made up of a grid array and lin-
ear scales. Linear scales partition the grid directory into grid blocks with
each scale being a 1-dimensional array representing one of the k attributes
of the data. Each entry in a scales array represents a (k-1)-dimensional
hyper-rectangle that partitions the value space into two partitions or-
thogonal to the respective scale. As data points are inserted into the grid
structure it adapts to the distribution of the data. The grid directory
dynamically represents the partitions of the grid structure produced by
the k scales. These partitions, or grid blocks, are stored in the grid array,
which is a dynamic k-dimensional array containing all grid blocks. Every
grid block subsequently refers to exactly one bucket. Buckets can be ref-
erenced by multiple adjacent grid blocks as shown in figure 4. The union
of multiple grid blocks (or a single block) referencing the same data block
is called a grid region, which will always be shaped like a k-dimensional
hyperspace (i.e. a rectangular cube) [15].
Because grid regions can only reference one bucket, partitions have to

14

Figure 4: 2-dimensional grid structure

be arranged so that no grid region contains more patterns than can be
contained within a bucket. If the addition of a pattern to a grid block
within a grid region causes the associated bucket to overflow then the
grid region, and its bucket, have to be partitioned again. The newly
created partition, being orthogonal to the scale, will split all blocks lying
across its plane with a (d-1) dimensional hyper-rectangle as shown in
Figure 5, despite only a single bucket overflow occurring. Simultaneously,
one bucket must be split into two. These two new buckets will each be
referenced by a respective grid region created by the indirectly overflowing
grid region. Meanwhile, for all other grid regions effected by this split,
their newly partitioned grid blocks will remain in the same region and
reference the very same bucket as their originating grid block [18].
Herein we can find a major weakness of the grid file. With a non-uniform

data distribution, the ratio of grid block entries within the directory to
actual buckets increases continuously with every split and the grid di-
rectory will eventually grow at an exponential rate. Most entries in the
grid directory will end up being dead weight and reference empty buckets.
Furthermore, this problem gets worse the more dimensions the data has
[6].

The basis for all operations on the grid file, such as searching, inserting
or deleting, lies in the splitting and merging of grid blocks. The reorgani-
zation of the grid structure after a split or merge should happen, barely
perceivable, without negative or unforeseen consequences.

15

2.1.1 Splitting Operation

Figure 5: Splitting operations with bucket size of 2

Figure 5 displays the splitting operations occurring whenever a bucket
overflows. Generally, a preexisting partition is preferred to a new partition
across an entire dimension when splitting a region. The dimension to
partition can be chosen either by cyclical order or by finding the least
partitioned dimension in the grid file. In the left grid file in figure 5,
inserting a pattern into region F would cause its associated bucket to
overflow. A suitable partitioning through region F already exists in the
grid array so that we do not need to create new partitions. Instead, we
separate the partitions within region F into two regions, with which we
distribute some records into a new region G and its bucket. Following
that, in the grid file in the middle, an insertion of a pattern would again
cause an overflow in the bucket of region E. In this case however, no
suitable partition through region E exists, so we need to partition all grid
blocks across the dimension y. Doing this allows us to form a new region
H with the newly created partition. This however also effects the regions
G and D, whose grid blocks are needlessly partitioned [15].

2.1.2 Merging Operation

If a regions bucket is relatively empty, it is possible to merge that region
with a neighboring region, provided the merge does not cause the bucket to
overflow. However, merging entries in the grid directory is often neglected
as a subsequent split of the very region has a high probability.
There are two different systems to determine which regions may be

suitable for merging with a selected region. The Buddy-system exclusively
allows a region to only merge with regions it was previously split of from.
The Neighbor -system, on the other hand, allows merging with all adjacent
regions provided the resulting region is convex.

16

2.1.3 Searching

As previously mentioned a major advantage of the grid file is that it allows
single record retrieval with an upper bound of only two disk accesses. To
search for a pattern within the grid file, with an upper bound of two disk
accesses, we need to do the following [11]:

1. First of all we need to determine the section of every dimension that
the looked for pattern belongs to. This is done by looking at the
entries of each dimensions scale array and retrieving the section for
the patterns value in the respective dimension.

2. With the section of every dimensions value, we can pinpoint the
exact grid block that contains the pattern.

3. Reading the entry for the grid block in the grid directory, we find
the referenced data bucket.

4. Reading the data bucket itself, and thus performing our second disk
access, we look for our desired pattern.

2.1.4 Inserting

In the example presented in figure 6 we attempt to insert a pattern with
the value (0.7, 0.2) into a grid file that has a maximum bucket population
of two. After determining the grid block it should be inserted into, we
notice that the regions bucket of this grid block is already filled with two
patterns and therefor at capacity. Before the pattern can be inserted,
the grid file has to be partitioned across one of the dimensions. In the
presented example the chosen dimension to split across is dimension y, as
portrayed by the dotted line. Once the grid region (and the grid block)
E has been split into two, both with their very own data bucket, we are
able to insert the pattern into the newly created region
While attempting to insert a new pattern, we need to follow a procedure

containing various checks [11]:

1. Search for the grid block, that the pattern should be inserted into,
and acquire the referenced bucket.

2. With the now loaded bucket, depending on its population, insertion
may continue:

(A) If the bucket has not reached maximum population, we can
insert our pattern and end the operation.

17

Figure 6: Inserting a pattern into a grid region at capacity

(B) If the bucket has already reached maximum population, then
we need to create a new bucket either by using an already
existing suitable partition or via a new splitting operation:

(i) In case the bucket is referenced by multiple grid blocks and
a suitable partition already exists we can dissolve the grid
region into two and have the grid blocks reference different
buckets.

(ii) In case the bucket is referenced by only one grid block,
we have to partition the grid block by splitting all blocks
with a (d-1) dimensional hyper-rectangle on the chosen
dimension.

2.1.5 Deleting

To delete an already inserted pattern from the grid file we need to do the
following:

1. Look for the grid block and its referenced data bucket containing
the pattern we wish to delete.

2. After deleting the pattern from the bucket we may chose a suitable
grid block via the Buddy-system for a merging operation.

3. In case the patterns of our original grid block and the chosen Buddy
grid block combined do not exceed the maximum number of patterns
in a bucket, we may merge said blocks to a grid region, allowing it
to reference a single bucket.

18

2.2 Clustering with Grid File

Clustering approaches based on the grid file structure are popular for
mining clusters in large data sets with high dimensionality, where clus-
ters can be formed around regions with the highest population densities.
When dealing with a large number of patterns, conventional clustering al-
gorithms may have to deal with exploding computational complexity, be-
cause of the need to compare every pattern to all others while calculating
a dissimilarity matrix. Unlike conventional clustering algorithms, which
take the data points themselves into consideration, grid-based clustering
algorithms organize the value space surrounding the patterns. Because
of this, grid-based approaches achieve a significant reduction in computa-
tional complexity when dealing with massive data sets.
A couple of clustering approaches exist that are based on the grid file,

but in general they follow these basic steps [8]:

1. Creating the grid structure by partitioning the value space into grid
regions based on the inserted data.

2. Determining the density of patterns within every grid region.

3. Sorting the grid regions according to their population densities.

4. Identifying high concentration of grid regions (and therefore pat-
terns) as cluster centers.

5. Topologically traversing neighbor grid regions and adding them to
cluster centers.

2.2.1 Idea behind GRIDCLUS

We will focus on GRIDCLUS, a hierarchical algorithm for clustering very
large data sets, proposed by Schikuta in Grid-Clustering: An Efficient
Hierarchical Clustering Method for Very Large Data Sets in 1996.
As explained in the previous chapters, the grid file structure stores

patterns according to their actual values in a d-dimensional value space.
Rather than organizing the patterns themselves, the multidimensional
grid structure organizes the value space surrounding the patterns and
groups them into blocks and regions. These blocks are d-dimensional
hyper-rectangle containing a limited amount of patterns upwards to the
block-size bs. Given d dimensions, a set of n patterns X = {x1, x2, . . . xn}
with each being a tuple containing d attributes, and blocks B1, B2, . . . , Bm

19

containing the pattern set X, the following properties are satisfied:

∀xi, xi ∈ Bj

Bj ∩Bk = ∅, if j 6= k and
j 6= ∅ and
m⋃
j=1

Bj = X

At initialization, every block is a cluster and every cluster has a pattern
cardinality of no more than the block-size bs allows. The GRIDCLUS
algorithm then clusters the grid blocks Bi(i = 1, 2, . . . ,m) together with
their stored patterns X into a nested sequence of nonempty and disjoint
clusterings C. Cu1, Cu2, . . . , CuWu represents the clustering at the u-th
iteration and Wu is the number of clusters available in the u-th iteration.
Because every block by definition represents a unique cluster with pat-

terns, at iteration u = 0 we initialize the algorithm with W0 being the
number of all blocks m and C containing m clusters with a single block
in each of them C0j = Bj(j = 1, 2, . . . ,m) [18].
GRIDCLUS uses the block information of the grid structure and at-

tempts to form clusters with surrounding blocks. To do this, the algo-
rithm first calculates a density index for each block that is defined by the
number of patterns in a block pB and the spatial volume of a block VB.
The spatial volume of a block B is the Cartesian product of the extents e
of block B in each dimension.

VB =
d∏

i=1

eBi i = 1, . . . , d

The density index DB of block B is the ratio of number of patterns pB to
the spatial volume VB of block B.

DB =
pB
VB

Sorting the blocks B according to their density index we get an ordered
sequence < Bp(i) >, with p(i) being a permutation of the index i defining
the sorted order of the blocks. In case two or more blocks have the same
density index, as an example in figure 7 shows, they are referred to as ties.
The blocks with the highest density index initially become clustering

centers. The remaining blocks are then iteratively clustered in the order
of their density index, thereby merging with already existing clusters or

20

Figure 7: Three tied blocks with DB = 6

building new cluster centers. The algorithm only allows blocks to merge
with adjacent clusters (neighbor). A neighbor search procedure works in
a similar way as the traversal of a graph to find the spanning tree, with
blocks representing the nodes of a tree. The neighbor search procedure
starts from a cluster center and inspects adjacent blocks, if a neighbor is
found the search continues recursively from this block. This procedure
can be done with a depth-first-search algorithm, where only blocks with
a density index equal or smaller to the current block are inspected [8].

2.2.2 GRIDCLUS Algorithm

The grid clustering algorithm consists of five main components:

• Inserting the patterns and building the grid file structure.

• Calculating the density index of every block.

• Sorting the blocks according to their density index.

• Identification of blocks with highest density indexes as cluster cen-
ters.

• Recursive traversal of neighbor blocks beginning from cluster cen-
ters.

The main procedure of GRIDCLUS shown in algorithm 1 iteratively
processes all blocks with the recursive procedure NEIGHBOR-Search,
found in algorithm 2, that assigns them to already existing clusters. The
number of the current iteration is u. W[u] stores the number of clusters
in iteration u and C[u,v] stores the clustered blocks of run u and cluster v.
As previously explained we initialize the algorithm with W0 = m (number
of all blocks) and C0j = Bj(j = 1, 2, . . . ,m) [18].

21

Algorithm 1 GRIDCLUS algorithm
1: procedure GRIDCLUS
2: Initialize: u := 0, W [] := {}, C[][] := {}

Create grid structure and calculate block density indexes DB

Generate ordered block sequence S :=< B1′ , B2′ , . . . , Bb′

Mark all blocks ’not active’ and ’not clustered’
3: while "not active" block exists do
4: u := u+ 1
5: mark first B1′ , . . . , Bj′ with equal density index "active"
6: for all ’not clustered’ block Bk′ := B1′ , . . . , Bj′ do
7: create new cluster set C[u]
8: W [u] := W [u] + 1
9: C[u,W [u]]← B

10: Mark block Bk′ ’clustered’
11: neighborSearch(Bk′ , C[u,W [u]])

12: for all ’not active’ block Bl do
13: W [u] := W [u] + 1
14: C[u,W [u]]← Bl

15: Mark all blocks ’not clustered’

Algorithm 2 NEIGHBOR-SEARCH algorithm
1: procedure NEIGHBOR-SEARCH(B, C)
2: for all ’active’ and ’not clustered’ neighbor Bn of B do
3: C ← Bn

4: mark Block Bn clustered
5: neighborSearch(Bn, C)

22

3 BANG-File Clustering

The BANG file, short for Balanced And Nested Grid, was originally de-
tailed by Michael W. Freeston in The BANG file: A new kind of grid
file in 1987 [6]. It is a multidimensional structure of the grid file type
that is, however, fundamentally different from previous grid file designs
in common underlying properties. For instance, it has a tree structured
directory with the self-balancing property of a B-tree that, unlike previous
grid file designs, continues to expand at the same rate as the inserted data
irregardless of the data’s distribution. Moreover, its partitioning strategy
more accurately reflects the clustering of points in the data space and also
adapts gracefully to changes in distribution.

3.1 BANG File

The BANG file structure partitions the data space into regions with suc-
cessive binary divisions on dimensions, making it an interpolation-based
grid file.

3.1.1 Representation of the Data Space

As explained in the chapters about the grid file, when the distribution
of data becomes less uniform the directory expansion approaches an ex-
ponential rate and most directory entries will end up referencing empty
block regions. In interpolation-based grid files however, there is always
only one directory entry for each data bucket thanks to its representation
of the data space where block regions are represented explicitly. This is
achieved by partitioning the data space into a hierarchical set of grid re-
gions, each of which is identified by a unique pair of keys (r, l) consisting
of the region number r and the level number l. Regions, by binary parti-
tioning as shown in figure 8, are divided into two equally shaped regions
one level further down in the B-tree than the original region.
As such, the root region (0, 0) contains regions (0, 1) and (1, 1) and

through subsequent levels the respective regions contained within them.
In figure 9 we can see how this allows us to partition the data space at
varying levels of granularity appropriate to the data distribution. The
dimension to partition has to be determined by a fixed, typically cyclic,
sequence.
The BANG file follows the following two axioms [6]:

1. The union of all the sub-spaces into which the data space has been
partitioned must span the entire data space.

23

Figure 8: Numbering scheme (region number, level) for grid regions

Figure 9: Regions partitioning a non-uniform data distribution

2. If the data space has been partitioned into two sub-spaces which
interact, then one of these sub-spaces completely encloses the other.

The second axiom is responsible for the exceptional performance char-
acteristics of the BANG file. It allows nested regions, as shown in figure 9,
and enables algorithms to balance the distribution of data points between
block regions and reach more compact data structures by redistribution
[19]. The balancing algorithm guarantees that there are never any empty
block regions, while partitioning and recombination algorithms provide
flexibility in regards to changes in the data’s distribution [6].

24

3.1.2 Mapping Function

To map the coordinates of a pattern to the grid region in which it lies
(at each defined level of granularity) in the data space we use a set of
hash functions. Before that however, we have to transform the set of
values from the pattern to the scale (0 . . . 1) of every dimension. With the
transformed data values for every dimension we can accurately determine
the grid region by using each dimension’s scale. With the pattern value
for dimension i being pi and the level of granularity in dimension i being
li, the scale value representing the coordinate on the dimensions scale di,li
is defined as:

di,li = [pi ∗ 2li] i = 1, . . . , d

and the scale value of a lower (closer to root) level of granularity ji is
calculated from di,li as

di,ji = [
di,li

2(li−ji)
] ji = 0, . . . , li

As such, we do not need the original value from the pattern to calculate
the scale value of the higher level regions.
While the mapping of the pattern values to the region number can be

done in various way, the numbering scheme seen in figure 8 makes mapping
relatively simple. The mapping function can be defined by following rules
[6]:

• Level l + 1 is created on top of level l.

• The number of possible grid regions at level l is 2l.

• Grid regions (r, l) are divided into two uniquely numbered regions
at a higher level (r, l + 1) and (r + 2l, l + 1).

• Region numbers r and r + 2l result from extending the binary rep-
resentation of r by one most significant bit.

• The value domain of a dimensions scale is doubled when the level of
granularity of dimension i increases from li to li + 1. This equates
to an extension of the binary representation of the scale value by
one least significant bit.

Based on these rules it can be concluded that the single grid region
in level 0 is assigned region number 0 and that each region number of

25

level l (for l > 0) can be represented by l bits. With that we can define
a function bits(p) to determine the minimal number of bits required to
represent the value p as [3]:

bits(di,li) = li, ∀li ≥ 0,(i = l, . . . , n)

Moreover, with the sum of all sub-levels comprising the complete value
space,

l =
n∑

i=1

li, ∀li ≥ 0

it follows that

bits(r) =
n∑

i=1

bits(di,li) = l, ∀li ≥ 0.

With this we can obtain the mapping of a set of region coordinates to a
unique region number simply by concatenating the binary representations
of the scale values in a predefined order, while omitting coordinates of level
0. When a new partition is introduced in a dimension, like in figure 8, we
generate two new regions at the next level l+ 1. Of the two new regions,
one has the same region number r as the enclosing region and the other
has its region number raised to r+2l. This increase in the region number is
represented by extending the binary representation of the region number
by one (most significant) bit, while extending the binary representation
of the new level’s scale value by one (least significant) bit. A fixed cyclic
partitioning through the dimensions is advisable, as the value domain of
each dimension is between 0 and 1 [18].

Algorithm 3 MAPPING algorithm
1: procedure MAPPING(d[i])
2: Initialize: r = 0, offset = 1, k = 0
3: while k < l do
4: i = k mod n+ 1
5: j = k ÷ n
6: if li ≥ j then
7: r = r + offset ∗ bi,j
8: offset = offset ∗ 2
9: k = k + 1

return r

For the corresponding mapping algorithm 3, let bi,j be the jth bit of
coordinate di starting from the least significant bit.

26

For an example with two dimensions we will use the BANG file structure
of figure 9 and map the data record [0.9; 0.7] to a region number:

l1 = 3 //level of granularity on dimension x

l2 = 2 //level of granularity on dimension y

l = l1 + l2 = 5 //total level of granularity in BANG file

d1 = [0.9 ∗ 2l1] = [0.9 ∗ 8] = 7 //scale value of dimension x

d2 = [0.7 ∗ 2l2] = [0.7 ∗ 4] = 2 //scale value of dimension y

scale value d1 = 7 1 1 1
scale value d2 = 2 1 0

bit string length li

By bit-interleaving the scale values of both dimensions, reading from
the most significant bit to the least significant bit (left to right) while
alternating between the scales in the same sequence the partitioning was
done (top to bottom), we get the bit representation 10111. This results
in the region number r = 23 at level l = 5 (length of bit representation).
Consider that when the binary representation of scale value di does not
have the length li, that binary representation will be left padded with 0s.

3.1.3 Logical Regions

Looking at figure 10 we have a BANG file structure where the data space
S has been partitioned into two grid regions R1 and R2. Grid region
R1 encloses the entirety of the data space and grid region R2 is enclosed
(or nested) within R1. This is possible due to the second axiom of the
BANG file described in chapter 3.1.1, which proclaims that if data space
has been partitioned into two interacting sub-spaces which interact, then
one completely encloses the other.
The grid regions R1 and R2 in figure 10 define two subspaces S1 and

S2. Subspace S2 is simply defined by the space that is enclosed by R2.
However, subspace S1 is defined by the space that is enclosed by R1
minus the space that is enclosed by S2. Subspaces in the BANG file can
be defined by a set of grid regions, with one convex region enclosing all
other regions of the set. When determining the subspace of a specific
region, the subspace of regions that are enclosed within the region need
to be subtracted. As such, to define the subspace S2 we only require R2,

27

Figure 10: Grid region R2 nested within grid region R2

whereas to define the subspace S1 we require a set of both R1 and R2.
This means that subspaces are not necessarily grid regions themselves and
also do not have to be hyper-rectangles. They can contain concavities and
possess internal, as well as external, boundaries. Furthermore, a subspace
my be disjoint and composed of subspaces that do not intersect and do
not share a common boundary [18].
As the subspaces are purely logical constructs from sets of grid regions

they are also referred to as logical regions. The grid directory only stores
grid regions, logical regions can only be determined through the stored
grid regions. As a grid region may not own the entire subspace that it
encloses, we are confronted with the fact that despite patterns in data
buckets being technically mapped to grid regions, they need to be treated
as if they were mapped to a logical region. Therefore, The balancing and
distribution of patterns by the partitioning algorithm is done between
logical regions.
While mapping a pattern to a specific grid region, we need to consider

the danger of non-deterministic mapping results for nested regions. To
ensure the mapping function assigns a pattern to the correct correct logical
region, the search for grid regions begins at the very highest level and
continues to the very bottom level (as in closer to root). This assures
that no ambiguity arises in the mapping of patterns to logical regions and
their data buckets since the mapping function always finds the grid region
at the highest level.
As mentioned earlier the grid directory contains unique region identi-

fiers, consisting of the region number r and the level l. Looking back at
the BANG file structure in figure 10, the logical region of R2 is represented
in the grid directory by the region set {(3, 2)}, while the logical region of

28

R1 is represented by the region set {(0, 0); (3, 2)}. When adding pattern
p2 to the file the mapping function is applied to the patterns attributes
and generates the region identifier (3, 2). As described in a previous chap-
ter, with this region identifier we can also generate enclosing grid regions.
For grid region (3, 2) that would be grid regions (1, 1) and (0, 0). When
searching for the highest level grid region that is recorded in the directory
that encloses p2, the search stops at (3, 2), which contains a pointer to
the data bucket for the logical region R2.
However, when mapping the pattern p1 the region identifier (2, 2) will

be generated, since that would be the theoretical highest level grid region
based on the current level of granularity of ever dimension. This region
identifier is not recorded in the grid directory so the search will continue
looking for a lower level entry in the grid directory, eventually encoun-
tering the entry for grid region (0, 0). Therefore, despite the directory
not containing any explicit information about logical regions, the correct
placement of patterns in logical regions is guaranteed due to the search
order within the grid directory [6].

3.1.4 Partitioning and Merging

Whenever the insertion of a pattern causes a data bucket to overflow the
partitioning algorithm is invoked. As shown in algorithm 4, the logical
region corresponding to the data bucket is first partitioned into two logical
regions with a buddy-split. The regions do not remain buddy regions how-
ever, instead the region with less patterns is moved up a level so it encloses
the other. Following that, after having partitioned the initial region, the
enclosed region (with more patterns) is again partitioned recursively with
the redistribution algorithm 5. This is done so long until a region has
been split and the created region with a higher pattern population ends
up having a lower population than the region that is enclosing the region
that was originally split (the comparison is done over three levels: enclos-
ing region - split region - region created by split). With the created region
having a lower population than the enclosing region, the ideal balance
has been reached and the buddy split can be undone. If the ideal balance
is attained after the first split, buddy regions are created as seen in the
examples of figure 11. If not however, then a new logical region is created
in the boundary of the partitioned logical region [6].

29

Figure 11: Creation of buddy regions

Algorithm 4 Split-Region algorithm
1: procedure splitRegion(region)

Manage the buddy-split of the region and the following
redistribution

2: buddySplit(region) . produce sparseRegion and denseRegion
3: region := sparseRegion . sparseRegion becomes enclosing

region
4: redistribute(denseRegion, region) . redistribute for ideal

balance

30

Algorithm 5 Redistribute algorithm
1: procedure redistribute(region, enclosingRegion)

To ensure a nicely balanced tree we perform
redistribution after a region split

2: buddySplit(region) . produce sparseRegion and denseRegion
3: if enclosingRegion.population < denseRegion.population then
4: mergeRegion(enclosingRegion, sparseRegion) . merge

sparseRegion into enclosingRegion
5: denseRegion := checkTree(denseRegion) . find correct

position of the region
6: if enclosingRegion.population < denseRegion.population

then
7: redistribute(denseRegion, enclosingRegion) .

redistribute if best balance not yet reached
8: else
9: clearBuddySplit(region) . Undo the buddy split

The merging of logical regions in the BANG file is much simpler than in
other grid files as no deadlock checking is required and the recombination
does not have to be in the exact reverse order of partitioning. When the
population of tuples in a logical region goes below a predetermined mini-
mum the algorithm first attempts to recombine it with a region it encloses
beginning with the smallest (at highest level). If no such region exists or
the recombination would cause an overflow of a bucket, an attempt to
recombine the region with its buddy region is made. Finally, if this fails
too, an attempt is made to recombine it with its enclosing region, which
must always exist (except in the case of the root region (0, 0)) [3].

3.1.5 Directory Structure

The directory of the BANG file is implemented as a tree structure with
the number of levels determining the depth of the tree as seen in figure
12. All levels above the root level are partitions of partitions and if a
nodes population overflows, it is again split according to the partitioning
algorithm. Grid regions themselves are essentially treated as data points
and divide the data space into logical regions. Every node, that is a
leaf or only has a single successor, is a grid region that helps forming a
logical region in the data space. Additionally, these logical regions can be
partitioned by logical regions at a higher level as was previously described
in chapter 3.1.3 [6].

31

Figure 12: Binary tree storing the directory of a BANG file

When looking for a specific region we only need to look at the region
identifiers, which are an ordered set of keys consisting of the region’s region
number r and the region’s level l. We apply the algorithm that was used in
chapter 3.1.3 for finding the correct placement of patterns in logical regions
by beginning the search at the nodes that are furthest away from the root
with a Reverse Level Order Traversal. With the partitioning scheme of
the directory and the balancing algorithm, which redistributes and merges
in the same order, we end up with a very compact and balanced structure
similar to a one dimensional B-tree [3].

3.1.6 Advantages of BANG-File

Based on Hinrich’s case study Freestone reached following conclusion [5]:

So the conclusion which we finally draw from the analysis is
that:

1. for a uniform data distribution in two dimensions, the
SG and BANG data file will be about the same size, but
the BANG directory will be about 1.5 times the size of
the SG directory; for three dimensions the directories will
be about the same size; for four or more dimensions the
BANG directory will be smaller;

2. for single or multiple data clusters, the BANG data file
can be expected to be between 10% and 15% smaller
than the SG data file, and the BANG directory may be

32

about the same size or perhaps 2 or 3 times smaller than
the SG directory, provided that the data distribution of
the clusters, and within the clusters, is approximately
uniform;

3. the size of the BANG directory will always be propor-
tional to the size of its associated data file, but the SG
directory may expand much more rapidly if the data dis-
tribution is non-uniform over a substantial proportion of
the active data space - notably in the case of correlated
data; in such a case the BANG directory could be two
orders of magnitude smaller than the equivalent SG di-
rectory;

4. the performance of the BANG file relative to the SG file
improves as the number of dimensions increases.

3.2 Clustering with BANG File

Many grid file clustering algorithms share similar characteristic problems
in specific situations. These problems can be briefly summarized as [21]:

• For specific clusterings the memory requirements of the directory
increases over-proportionally compared to the size of the data set,
and

• the performance of the grid file clustering decreases with increasing
dimensionality (number of pattern attributes) of the data set.

The BANG file, which is derived from the multidimensional grid file
data structure, was designed to overcome these drawbacks. It shows not
only better behavior for the listed problems, but also adapts more accu-
rately to clusterings in the data’s value space [6].
Similar to the grid file, the BANG file organizes the value space sur-

rounding the data values, instead of comparing the data values themselves.
The data values represent patterns in a k-dimensional value space and are,
in a first step, inserted into the BANG file structure. These patterns are
stored in the grid directory preserving their topological distribution. In
figure 13, a 2-dimensional value space is presented with 10.000 patterns
and 70 % of data clustered in three centers. For comparison, in figure
14 we can see the respective BANG file structure organizing the pat-
terns in a set of encasing rectangular blocks. A block is rectangularly
shaped and contains up to a definable maximal number of pmax patterns.
X = (x1, x2, . . . , xn) is a set of n patterns and xi is a pattern consisting

33

Figure 13: 2-dimensional value space example

Figure 14: 2-dimensional BANG file structure of figure 13

of a tuple of d describing features (pi1, pi2, . . . , pid), where d is the number
of dimensions. Using the block information of the BANG-structure, the
algorithm identifies cluster center and clusters the patterns by an iterative
neighbor algorithm accordingly to their surrounding blocks [21].

3.2.1 Density Index

Analogously to the GRIDCLUS algorithm from chapter 2.2.1, the BANG-
Clustering algorithm calculates a density index for every grid region that
is defined by the number of patterns within the region pR and the spatial
volume of the region VR. More precisely, we use the spatial volume of the
logical region. As we have learned in the chapter about logical regions,

34

because of the BANG file’s ability to have nested regions, a region might
not own the entire space it encloses. To get an accurate spatial volume of
a logical region, we have to recursively retrieve all nested regions within
the region and subtract their spatial volume.
The spatial volume of region R is the Cartesian product of the extents

e of region R in each dimension minus the spatial volume of all nested
regions inside the region.

VR =
d∏

i=1

eRi −
n∑

j=1

VRj

The density index DR of region R is the ratio of number of patterns in
the region pR to the spatial volume of the region VR.

DB =
pB
VB

Regions with the highest density index show the highest pattern concen-
tration and become our initial clustering centers. The remaining blocks
are clustered iteratively in the order of their density index, merging with
existing clusters or building new cluster centers in the process. However,
only blocks adjacent to a cluster, so called neighbors, can be merged [20].

3.2.2 Neighborhood

When talking about neighborhood inside of a BANG file we can differen-
tiate between two types. On the one hand we have normal neighborhood
when looking at actual regions and on the other hand we have refined
neighborhood when looking at logical regions. Furthermore, we can define
the degree of neighborhood via the dimensionality of the area the regions
touch on. This area’s dimensionality can vary between 0 (representing a
point) and d − 1 (representing a d − 1 dimensional hyperplane). In a 2-
dimensional structure such as in figure 15 the degree of neighborhood can
be 0, which means regions only need to touch at a point in the data space,
or 1, which means regions need to touch along an edge. In a 3-dimensional
structure they could additionally require a plane touching, making their
degree of neighborhood 2. If we set the required degree of neighborhood to
1 for the grid directory in figure 15, we have normal neighborhood between
regions R2 and R1, R3, R6 and R7, and a refined neighborhood between
regions R2 and R1, R6 and R7 [3].
Searching for neighbors is done by comparing the scale values of the grid

directory. Comparing the scale values of regions that are on the same level

35

can be done directly. However, if the regions are on different levels, the
region in the lower level has to be transformed to the level of the other
region to compare them. When looking at the grid directory in figure 15
we can see that region R2 and region R6 are neighbors, but R2 is on level
2, while R6 is on level 4. For that reason, we need to transform R2 from
level 2 (with scale values x = 1 and y = 1) to level 4. As a region from
level 2 is of course larger than from level 4, the resulting scale values will
have the ranges xmin = 2, xmax = 3 and ymin = 2, ymax = 3. R6 on
level 4 has the scale values x = 1 and y = 3 and is therefore touching
(the transformed) R2 along an edge (y dimension), making the degree of
neighborhood of the two regions 1.

Figure 15: Neighborhood - Grid directory of tree in figure 12

With the region identifiers being an ordered set of keys, the algorithm
can search for possible neighbor regions by accessing these keys. This
is especially efficient since the administration of the region identifiers is
done with the grid structure as a binary tree, as shown in figure 12, where
comprising regions are easily found by backtracking the path to the root
level [20].

3.2.3 Dendogram

With the density indexes of all regions calculated and the regions sorted
by decreasing order, the next step in the clustering algorithm is to build
the dendogram. The dendogram is an ordered list of regions filled by the
dendogram algorithm 6.

36

Algorithm 6 Dendogram algorithm
1: procedure dendogram
2: Initialize: dendogram := []

Calculate density indexes and generate region list sorted by de-
scending order of density S :=< R1′ , R2′ , . . . , Rn′

3: dendogram := R1′ . put highest density region in dendogram
4: remaining := R2′ , . . . , Rn′ . rest of regions in remaining
5: while ’regions in remaining list’ do
6: findNeighbors(dendrogram.region, remaining) . add

neighbors of current dendogram.region and add them to dendogram
7: Continue with next region in dendrogram

The region with the highest density index is initially added to the dendo-
gram and acts as our first cluster center. Iterating through the remaining
regions we look for regions that are a neighbor of a region within the den-
dogram (initially only our starting region) and add them in descending
order to the dendogram like in figure 16. This search for neighbor regions
is done recursively for every processed and added region. Following that,
detected regions are placed on the right hand side of the last processed
region in the dendogram by the following rules [3]:

• Is region R1 a neighbor of region R2 and region R3 a neighbor of
R2 and R1 > R2 > R3, then these three regions {R1, R2, R3} form
a cluster when R3 is being processed.

• Is R1 a neighbor of R2 and R3 a neighbor of R2 but R1 > R2 < R3,
then the clusters R1 and R3 are merged when R2 is being processed
to form the cluster {R1, R2, R3}.

37

Figure 16: Building a dendogram from a sorted list of regions with three
cluster centers

38

4 WEKA

WEKA is an open source free Java application that enjoys widespread
acceptance in both academia and business with an active community. It
offers a graphical user interfaces and contains a collection of visualization
tools as well as algorithms for data analysis via several data mining tasks
like classification, clustering, regression and others. WEKA’s different
algorithms are located in the package manager, which can be used to
extend WEKA with new data analysis algorithms. In addition to offering
the BANG-file clustering system in our own Java standalone application,
the clustering system is also being released as a WEKA package. This
way we can contribute the clustering method as an extension to WEKA
and hopefully have the WEKA community take advantage of it.

4.1 Introduction

WEKA, short for The Waikato Environment for Knowledge Analysis, was
developed in New Zealand at the University of Waikato in hopes of creat-
ing a unified workbench allowing researchers easy access to state-of-the-
art techniques in machine learning. Allowing comparative studies with
different learning algorithms on data sets, WEKA served as a toolbox.
Furthermore, it served as a framework for researchers to implement new
algorithms while having a comprehensive infrastructure for data manipu-
lation and scheme evaluation already in place. Being open source software,
it allowed the creation of many projects that incorporated or extended
WEKA which resulted in a widespread acceptance [10]. Being written in
Java, it runs on almost any platform and is being distributed under the
terms of the GNU General Public License, allowing free use for private or
commercial purposes [22].

4.2 WEKA Workbench

The aim of the WEKA project is to provide a collection of learning algo-
rithms and data preprocessing tools to quickly switch between different
methods and compare their results when applied on data sets. Apply-
ing different learners also allows better assessment of their performance
for predictions. Users can preprocess a data set, feed it into a learning
scheme and analyze the resulting classifier without the need to write any
code. A modular and extensible architecture allows data mining processes
to be designed with the provided tools.
The WEKA Workbench includes methods for solving common data

39

mining tasks such as regression, classification, clustering, association rule
mining or attribute selection. Most methods provide tunable parameters
through a property sheet. Data visualization facilities and data prepro-
cessing tools, called filters, allow preliminary exploration of data, which
can be combined with statistical evaluation of learning schemes to sup-
port models of data mining. These learned models can be used to generate
predictions on new instances of the data [22].

4.3 User Interfaces

WEKA offers four graphical user interfaces to chose from in addition to a
command line interface to access functionality as seen in figure 17, with
the Workbench being a unified graphical user interface that combines the
other three into a single application. The Workbench can be configured
by the user to specify what applications and plugins may be loaded and
used alongside with their settings [22].

Figure 17: The WEKA GUI Chooser interface

The core and most straight forward graphical user interface however
is the Explorer, a panel-based interface with different panels for different
data mining tasks as seen in figure 18. The individual panels are used to
perform the following tasks:

• Preprocess - Loads data from files, URLs or databases and allows
transformations via preprocessing tools called filters.

• Classify - WEKA’s classification and regression algorithms with
textual representation and, if available for the algorithm, graphical
representation.

• Cluster - Clustering algorithms to run on loaded data with basic
statistics to evaluate clustering performance.

40

• Associate - Algorithms for association rule mining with the most
well-known algorithms in this area.

• Select attributes - Variety of algorithms and evaluation criteria for
identifying most important attributes of a data set and exploratory
data analysis.

• Visualize - Color-coded scatter plot matrix with options of selecting
individual plots in the matrix and selecting only portions of the data
to visualize [10].

Figure 18: The WEKA Explorer graphical user interface

Another interface is theKnowledge Flow, which allows the user to design
configurations for processing streamed data. Streaming the data means
that unlike the Explorer, the Knowledge Flow does not have to hold all
data in main memory at once. The interface represents the data stream in
the form of boxes, representing learning algorithms and data sources that
can be joined together in the desired configuration. Components such as

41

data sources, preprocessing tools, learning algorithms, evaluation methods
or visualization modules can be connected to form the data stream.
The Experimenter interface is designed to answer basic practical ques-

tions when applying classification or regression algorithms. To answer
what methods and parameters best work for a given problem the Experi-
menter allows the automation of running classifiers or filters with different
parameter settings, while collecting performance statistics and perform-
ing significance tests. Furthermore, the Experimenter can be set up to
distribute the computing load of large-scale statistical experiments across
multiple machines via Java remote method invocation [22].

4.4 Memory Management

Most of WEKA’s learning algorithms operate on data held in main mem-
ory, as such RAM is a limiting factor on the data that can be processed
at once. The graphical user interface Explorer is designed for batch-based
data processing and always loads the complete data set into main memory,
which may make handling large data sets impossible.
There are WEKA classifiers and clusterers that can be trained and

build in an incremental fashion, one row of data at a time. However, the
incremental nature of these algorithms is ignored by the Explorer (and
also the Workbench). To take advantage of incremental handling of data
WEKA recommends using their command-line interface instead or even
writing the code to build the classifier or clusterer yourself with WEKA’s
provided API. These methods only require the current data row to be
present in main memory and have a runtime that is linear to the number
of rows. Clustering methods employing this way of handling data need to
implement the weka.clusterers.UpdateableClusterer Interface [10].
Additionally, since version 3.7.2, WEKA includes a package that allows

use of data streaming learners with Massive On-line Analysis (MOA),
a framework to allow massive data stream mining. MOA also includes
routines for automatic memory management that can prevent a learned
model from exceeding a user-specified maximum memory constraint [9].

4.5 Package Management System

The WEKA software also allows new algorithms and features to be added
to the system by the community. Many algorithms and community con-
tributions have been placed into plugin-packages that can be selectively
installed through the package management system. A WEKA package
is an archive containing various resources such as source code, compiled

42

code, documentation and package meta data via property files that is dis-
tributed as a ZIP file. The package management system was introduced
to make the process of contributing to the WEKA software easier and also
ease the maintenance burden on the WEKA development team where only
the package metadata has to be tracked.
The package manager displays packages in three lists; installed, avail-

able (not yet installed) or all packages. Besides the name, the package
list also displays the broad category the algorithm belongs to and the in-
stalled or the most recent available version compatible to the used WEKA
version. Figure 19 shows information about a package, such as the web
location, author, maintainer, license and a brief description. Packages can
have dependencies of other packages and every package has at least the
minimum version of the WEKA system required as a dependency. If a
new official package or a new version of an existing one becomes available,
the package is appropriately marked in the package list.

Figure 19: The WEKA Package Manager user interface

43

The WEKA package manager only lists official packages that have been
reviewed by the WEKA team and had their metadata added to the official
metadata repository. However, packages can also be offered through unof-
ficial capacity. These packages can be installed with the package manager
by manually providing the URL or file location to the package and will
then be listed in the installed packages list [22].

4.6 Clustering with WEKA

To explain the clustering process using WEKA’s tools we will showcase
a brief example. For this purpose we will use the core WEKA interface
Weka Explorer with our our own BANG file clustering method installed
as a WEKA package.
Data can be loaded from a variety of formats and data sources, but

for our example we will be using WEKA’s own ARFF file format. As
soon as the file has been selected with the Open file dialog box the
Preprocess tab shows information, such as relation, number of instances
and number of attributes in the Current relation box. We can select
an attribute from the Attributes list to display additional information
about the attribute in the Selected Attribute box [22]. This box dis-
plays characteristics of the currently selected attribute that may affect
preprocessing requirements such as:

• Name - Name of the attribute

• Type - Type of the attribute, most commonly numeric or nominal

• Missing - Number and percentage of instances in data where this
attribute is missing

Our desired clustering method requires exclusively numeric data that
has been normalized to a [0, 1] interval. In figure 20 we can see that the
attributes are numeric, but have not been normalized yet. To do so we
apply a WEKA filter to transform the data. Clicking the Choose button
in the Filter box we are able to select the Normalize filter. Afterwards,
by clicking in the textfield next to the Choose button we can set the
filter’s properties in the so called GenericObjectEditor dialog. For our
example we want to set the option ignoreClass to true to normalize all
attributes (if set to false the last attribute is considered the class attribute
and is not normalized). Once set we can click the Apply button and
transform the data that has been loaded into memory. In figure 21 we
now see that the minimum and maximum values of our attributes are
respectively 0 and 1.

44

Figure 20: Preprocessing with Weka Explorer

In the Cluster tab, which can be seen in figure 18, we can select a
clustering method similarly to how we selected a filter, by clicking the
Choose button in the Clusterer box. As previously mentioned, we will
select our own BANGFile clustering method. The Cluster mode box
provides options that determine what to cluster and how to evaluate the
results. Additionally, if certain attributes should be exempt from the
clustering we can do so by specifying them with the Ignore attributes
button. To build the clustering model, we click Start and once finished,
are presented with information about the data set and the clustering re-
sult in the Clusterer output textbox. Right clicking the new entry in
the Result list brings up a menu with the option Visualize cluster
assignments to visualize the result for further analysis.

45

Figure 21: Applying the Normalize filter

46

5 Software Documentation

With this thesis we have also developed the foundation for a flexible soft-
ware solution that can serve as a framework to analyze multidimensional
data sets with various grid based clustering methods, such as the BANG
file. The programming language of choice to develop the standalone ap-
plication was Java. It offers both a command line interface as well as a
graphical user interface.
To help analyzing the clustering result, the graphical user interface

offers visualizations for the BANG file clustering method. In addition to
the dendogram, which shows the density of regions, a two dimensional
representation of the final BANG file directory is presented to the user.
A Data Access Object (DAO) layer has been implemented to deal with

multidimensional data coming from different data sources. Currently how-
ever, only files in the Comma Seperated Value (CSV) format are supported
as a data source. In the future the DAO layer can be extended with sup-
port for additional types of data sources.
In addition to releasing the BANG file clustering method with our Java

standalone application, the clustering system is also being released as a
WEKA package. Contributing the clustering method as an extension to
WEKA will allow the large WEKA community to take advantage of it.

5.1 BANG File Implementation

The BANG file grid structure and its clustering model are managed by
three classes inside the bangfile package. The UML class diagram in
figure 22 shows the bangfile package with interactions and references
between the classes inside of it. Note that for readability not all operations
and attributes are included in the diagram. Additionally, the diagram also
includes the abstract class Clusterer and the class ClustererFactory.
The abstract class is used by the application to access operations of the
various Clusterer implementations. For the bangfile package, the class
implementing the abstract class is simply called BANGFile. The Cluster
erFactory is the very common Factory pattern, responsible for creating
an object of a class that implemented the Clusterer abstract class. This
design pattern is further explained in section 5.1.3.

5.1.1 BANGFile

The BANGFile class extends the abstract class Clusterer and therefor of-
fers all operations required by the application to build a clustering model.
Consequently, this class’ purposes can be summarized into three parts:

47

Figure 22: Class Diagram (reduced) of the bangfile package

• Handling the parametrization of the BANG file clustering model

• Inserting data into the grid directory and managing the directories
structure and balance

• Building clusters from the final BANG file structure

The BANG file clustering model offers three parameters to impact the
clustering process and result:

bucketsize: Determines the max population inside a single
data bucket. Smaller buckets may yield more accurate
results for the cost of performance, depending on the
size of the data set.

48

neighborhood-margin: Determines the margin of touch-
ing dimensions required to acquiesce neighborhood be-
tween regions. The strictest possible value is 1, mean-
ing a degree of neighborhood of d− 1 is required.

cluster-percent: Percentage of data and regions to consider
when expanding a cluster with regions around initial
cluster centers.

Besides handling the parametrization of the BANG file clustering model,
this class manages and balances the actual BANG file directory structure.
Whenever a pattern is being inserted into the BANG file, the correct grid
region within a directory has to be determined. To accomplish this, a sin-
gle reference to the root DirectoryEntry object is stored from which the
directory is continuously traversed through. Necessary tasks to keep an
effective and nicely balanced directory, such as split or redistribution oper-
ations, are performed if necessary. When all patterns have been inserted,
the dendogram is filled with regions to ultimately determine clusters with
their associated regions.

5.1.2 DirectoryEntry

Objects of the DirectoryEntry class represent single entries within the
BANG file grid directory. By keeping references to preceding as well
as succeeding directory entries it allows the traversal of the entire grid
directory in both directions beginning from any entry. In addition to
references to other directory entries, the directory entry may also keep
a reference to a GridRegion, provided the directory entry does not have
two directly succeeding entries, turning it into an empty region. The
two succeeding entries are referred to as the left and the right region due
to the binary partitioning strategy. Following various operations such
as a split or a redistribution operations, the directory entry ensures that
all references are properly updated and that patterns are correctly moved
between their GridRegion objects. Furthermore, this class calculates both
the size and the density of a logical region. To correctly determine the
size and density of a logical region, sizes of succeeding regions have to be
assessed and subtracted in the calculations.

5.1.3 GridRegion

The GridRegion class encapsulates, as the name would suggest, all prop-
erties of a single region within the BANG file. It is responsible for storing

49

information such as region-number, level, population and density, as well
as storing the actual patterns that are inserted into the clustering model.

5.2 Application Architecture

To get an overview of the architecture of our standalone clustering appli-
cation we will first take a look at the project file and hierarchy shown in
figure 23.

BANGFile
src

at.ac.univie.clustering
cli ... Command Line Interface.

CliMain.java
clusterers ... Clusterer interface and

implementations.
bangfile ... Package of BANG file

implementation.
Clusterer.java
ClustererFactory.java

dataWorkers ... DAO interface and
implementations.

CsvWorker.java
DataWorker.java
DataWorkerFactory.java

gui ... Controllers of JavaFX2
GUI.

dialogs ... Controllers of dialogs.
Controller.java
Main.java

resources
gui ... Views of JavaFX2 GUI.

dialogs ... Views of dialogs.
Main.fxml

test ... JUnit4 Unit Tests.
pom.xml ... Maven Project POM file.

Figure 23: Standalone application file hierarchy

For our project we used Maven as a project management tool. The p

50

om.xml file (POM stands for Project Object Model) is the representation
of a Maven project, containing all information about the projects build
life-cycle, plugins and dependencies to be used during the build process.
Most projects have dependencies on other projects to be built and run.
Managing dependencies however, can be a complicated task depending on
the amount of dependencies. Maven simplifies dependency management
with its dependency list in the POM file, which automatically downloads
and links dependencies during compilation [17].
With Maven the building process and the deployment of the project

can be controlled through a small set of commands. The most important
commands for a Maven project are [16]:

clean - remove all files generated by the previous build.
install - install the package into the local Maven repository,

for use as a dependency in other projects locally.
test - run tests using a suitable unit testing framework. These

tests should not require the code be packaged or de-
ployed.

package - take the compiled code and package it in its dis-
tributable format, such as a JAR.

The command line and the graphical user interface are respectively
located in the cli and gui packages of the project. The architectural
pattern of model-view-controller (MVC) was followed while coding the
graphical interface to achieve a more structured and maintainable code.
Using JavaFX2 for our graphical user interface every scene and dialog are
made up of a JavaFX FXML view file and an associated JavaFX controller
class. A JavaFX FXML file is an XML file that provides the structure
of the user interface separated from the application logic code [1]. The
controller class handles the DataWorker or Clusterer models while also
accessing and modifying the interface defined in the associated FXML file
by tagging objects in the interface with the @FXML annotation.

Contained within the clusterers package are the Clusterer interface,
the ClustererFactory class and various implementations of clustering
methods. Similarly, the dataWorkers package contains various implemen-
tations of Data Access Objects (DAO) as well as the DataWorker interface
and the DataWorkerFactory class.
The test directory contains JUnit4 software unit tests of implemented

clustering methods and DAO to verify that their logic is correct. Run-
ning these tests automatically helps identifying software regressions when
changes are introduced. Needless to say, higher test coverage results in
less manual testing required when developing new features.

51

5.3 Developer Guide

As previously mentioned, the standalone application was designed with
the intention of being extended with additional grid based clustering meth-
ods or support for additional data sources in the future. In this section
we will explore how a new clustering method can be introduced to the
application.

5.3.1 Creating a new Clustering Method

The abstract class Clusterer was written to serve as an interface be-
tween the application and all future grid based clustering methods. The
functions offered by the interface aim to cover the parametrization and
preparation of the clustering method, as well as the insertion of patterns
and the creation of the clustering model.

For a new clustering method a new package within the at.ac.univie
.clustering.clusterers package should be created to encapsulate the
entire code and all classes of the clustering method. Additionally, it is
required for the clustering method to extend the already mentioned ab-
stract class Clusterer that is also inside the at.ac.univie.clustering
.clusterers package as seen in listing 1.

Listing 1: Starting new clustering method
1 package at . ac . un iv i e . c l u s t e r i n g . c l u s t e r e r s . b an g f i l e ;
2
3 import at . ac . un iv i e . c l u s t e r i n g . c l u s t e r e r s . C lu s t e r e r ;
4
5 pub l i c c l a s s BANGFile extends C lu s t e r e r {
6 . . .
7 }

5.3.2 Parametrization

For parametrization, the Apache Commons CLI library was used,
which provides an API for parsing command line options passed to pro-
grams. While this library is mainly used for command line interfaces, the
parameter parsing of the library is used for both the command line inter-
face and the graphical user interface. Consequently, when implementing
parameters for a clustering method they are available in both user inter-
faces without additional code being required.

52

Three functions need to be implemented to list available options, parse
provided options or get currently set options. The listOptions func-
tion provides meta-information about available options of the clustering
method. To be returned is an Options object that is essentially a list
of Option objects. Each Option should be made up of a short-option, a
long-option, a boolean on whether the option requires an argument or not
and a short description as seen in listing 2. Note that in the graphical
user interface, only the long-option is displayed in the settings dialog and
not the short-option.

Listing 2: Listing available options
1 import org . apache . commons . c l i . Options ;
2 . . .
3
4 @Override
5 pub l i c Options l i s tOp t i o n s () {
6 Options opt ions = new Options () ;
7 opt ions . addOption (" s " , // shor t opt ion
8 " bucke t s i z e " , // long opt ion
9 true , // has argument?
10 "The max . . . ") ; // d e s c r i p t i o n
11 opt ions . addOption ("n" ,
12 "neighborhood" ,
13 true ,
14 "Provided neighborhood . . . ") ;
15 opt ions . addOption ("c" ,
16 " c l u s t e r−percent " ,
17 true ,
18 "Percentage o f data . . . ") ;
19
20 re turn opt ions ;
21 }

The setOptions function is responsible for parsing arguments provided
to the application and assigning values to corresponding variables of the
clustering method. In addition to that, the method is supposed to perform
checks on whether the provided argument is a legal value. If an illegal
option or argument value is provided, the function throws a ParseExcep
tion with a brief error message as seen in listing 3.

Listing 3: Parse and set provided options

53

1 import org . apache . commons . c l i . CommandLine ;
2 import org . apache . commons . c l i . CommandLineParser ;
3 . . .
4
5 @Override
6 pub l i c void setOpt ions (S t r ing [] a rgs) throws

ParseException {
7 CommandLineParser pa r s e r = new Defau l tParse r () ;
8 CommandLine cmdLine = par s e r . parse (l i s tOp t i o n s () ,

a rgs) ;
9
10 i f (cmdLine . hasOption (" s ")) {
11 i n t s = In t eg e r . pa r s e In t (cmdLine .

getOptionValue (" s " , "10")) ;
12 i f (s < 4) {
13 throw new ParseException ("Bucket s i ze may

not be lower than 4") ;
14 }
15 t h i s . bucke t s i z e = s ;
16 }
17
18 i f (cmdLine . hasOption ("n")) {
19 i n t n = In t eg e r . pa r s e In t (cmdLine .

getOptionValue ("n" , "1")) ;
20 i f (n < 1) {
21 throw new ParseException ("Neighborhood−

Margin may not be sma l l e r than 1") ;
22 }
23 t h i s . neighborMargin = n ;
24 }
25 . . .
26 }

Finally, the getOptions function simply returns the currently set clus-
tering method options with their assigned value as a Map variable as shown
in listing 4. It is important for the key of the option in our map to be
identical to the option’s long-option as defined in listing 2. This allows
the application to present the user with the currently selected options in
the settings dialog.

Listing 4: Listing available options

54

1 @Override
2 pub l i c Map<Str ing , Str ing> getOptions () {
3 Map<Str ing , Str ing> opt ions = new HashMap<Str ing ,

Str ing >() ;
4 opt ions . put (" bucke t s i z e " , "" + th i s . bucke t s i z e) ;
5 opt ions . put ("neighborhood" , "" + th i s .

neighborMargin) ;
6 opt ions . put (" c l u s t e r−percent " , "" + th i s .

c l u s t e rPe r c en t) ;
7 re turn opt ions ;
8 }

5.3.3 Clustering Method Lifecycle

For the implementation of the functions offered by the abstract class it
is helpful to understand the lifecycle of the clustering method within the
application and the order in which the application calls its functions:

1. ClustererFactory.createClusterer(String clusteringMethod)
- Create object of clustering method (constructor)

2. listOptions() - Retrieve available options of clustering method

3. prepareClusterer(int dimensions) - Provide clustering method
with number of dimensions for potential pre-processing

4. setOptions(String[] args) - Apply provided options to clustering
method

5. insertTuple(double[] tuple) - Insert patterns into clustering model

6. finishClusterer() - Perform required post-processing of clustering
method

7. toString() - Present string representation of clustering model to
user

8. numberOfClusters() - Retrieve number of clusters

9. getCluster(int index) - Get all patterns of a single cluster

55

5.3.4 Clusterer Factory Design Pattern

In order to create the object of the desired clustering method the Factory
Design Pattern has been implemented, which is categorized as a creational
design pattern. A design pattern describes how to solve common recur-
ring design problems during software development to build flexible and
reusable object-oriented software [7].
The principle behind the Factory Design Pattern is to get an object,

in our case that of a clustering method, at runtime based on a parameter
we passed. This is being done with the actual implementation of the
clustering method effectively staying behind closed doors. At runtime we
simply pass the name of the desired clustering method to the Clustere
rFactory, which returns the reference of a newly created instance of the
respective class. This way, the application does not need to concern itself
with different implementations of clustering methods.
The foundation of the ClustererFactory is the ClustererEnum enu-

meration, where every entry has a getClusterer() method returning
their respective implementation of the Clusterer abstract class. A new
clustering method needs to be added to this enumeration, as shown with
a NewClusterer example in listing 5.

Listing 5: Clusterer Enumeration
1 p r i va t e enum ClustererEnum {
2 /∗∗
3 ∗ BANGFile enum entry .
4 ∗/
5 BANGFile ("BANGFile") {
6 @Override
7 pub l i c C lu s t e r e r g e tC lu s t e r e r () {
8 re turn new BANGFile () ;
9 }
10 } ,
11 /∗∗
12 ∗ New Clu s t e r e r enum entry .
13 ∗/
14 NewClusterer ("NewClusterer ") {
15 @Override
16 pub l i c C lu s t e r e r g e tC lu s t e r e r () {
17 re turn new NewClusterer () ;
18 }
19 } ;

56

20
21 /∗ c l u s t e r i n g method name ∗/
22 p r i va t e St r ing method ;
23
24 /∗∗
25 ∗ Used to re turn new Clu s t e r e r ob j e c t .
26 ∗
27 ∗ @return C lu s t e r e r ob j e c t
28 ∗/
29 pub l i c ab s t r a c t C lu s t e r e r g e tC lu s t e r e r () ;
30
31 /∗∗
32 ∗ Provide a method name to e n t r i e s in the enum .
33 ∗
34 ∗ @param method c l u s t e r i n g method name
35 ∗/
36 ClustererEnum (St r ing method) {
37 t h i s . method = method ;
38 }
39 }

Additionally, a Map variable was used to maintain a list of all clustering
methods and their corresponding entry in the enumeration. The name of
the clustering method should be used as a key in the map. Adding our
NewClusterer example to this map, as seen in listing 6, ensures that
the application offers it as a selectable clustering method with the chosen
key as its name [14].

Listing 6: Map containing enum entries
1 /∗ Map to r e t r i e v e ob j e c t s v ia method name ∗/
2 p r i va t e s t a t i c Map<Str ing , ClustererEnum>

clustererMap = new HashMap<Str ing , ClustererEnum
>() ;

3
4 /∗∗
5 ∗ Class i n i t i a l i z a t i o n method . New c l u s t e r i n g

methods need to be added to the map .
6 ∗/
7 s t a t i c {
8 c lustererMap . put ("BANGFile" , ClustererEnum .

BANGFile) ;

57

9 c lustererMap . put ("NewClusterer " , ClustererEnum .
NewClusterer) ;

10 }

5.3.5 Abstract Class Clusterer

Abstract class for managing and building a clustering model. Inserting
tuples is done in incremental fashion.
The method prepareClusterer is called before data is inserted. After-
wards, the method finishClusterer will be called.

5.3.5.1 Declaration

public interface Clusterer

5.3.5.2 Constructor Summary

Clusterer() Initialize Clusterer Object.

5.3.5.3 Method Summary

clusterTuple(double[]) Predicts the cluster membership for
a provided instance.

finishClusterer() Performs required post-processing of the
clustering model after the data has been inserted and
produces clusters filled with tuples.

getCluster(int) Return all tuples contained within a specific
cluster.

getOptions() Lists options with their currently assigned value.

insertTuple(double[]) Insert tuple into the clustering model.

listOptions() Build Options object used to to list and display
available options of clustering method.

numberOfClusters() Return number of clusters available in
clustering model.

numberOfTuples() Return number of total tuples inserted
into clustering model.

prepareClusterer(int) Generates and resets the clusterer.
setOptions(String[]) Parse provided arguments and set op-

tions of clustering method.

58

5.3.5.4 Methods

• clusterTuple

pub l i c ab s t r a c t i n t c lu s t e rTup l e (double [] tup l e)

– Description

Predicts the cluster membership for a provided instance.

– Parameters

∗ tuple – tuple to be classified

– Returns – index of cluster

• finishClusterer

pub l i c ab s t r a c t void f i n i s hC l u s t e r e r ()

– Description

Performs required post-processing of the clustering model after
the data has been inserted and produces clusters filled with
tuples.

• getCluster

pub l i c ab s t r a c t java . u t i l . L i s t g e tC lu s t e r (i n t
index) throws java . lang .
IndexOutOfBoundsException

– Description

Return all tuples contained within a specific cluster.

– Parameters

∗ index – index of cluster in cluster-list

– Returns – tuples contained within cluster

– Throws
∗ java.lang.IndexOutOfBoundsException – If index not in

cluster-list

• getOptions

59

pub l i c ab s t r a c t java . u t i l .Map getOptions ()

– Description

Lists options with their currently assigned value.

– Returns – currently set clustering method options

• insertTuple

pub l i c ab s t r a c t void in s e r tTup l e (double [] tup l e)

– Description

Insert tuple into the clustering model.

– Parameters

∗ tuple – tuple of the dataset to be inserted

• listOptions

pub l i c ab s t r a c t Options l i s tOp t i o n s ()

– Description

Build Options object used to to list and display available op-
tions of clustering method.

– Returns – available clustering method options

• numberOfClusters

pub l i c ab s t r a c t i n t numberOfClusters ()

– Description

Return number of clusters available in clustering model.

– Returns – number of clusters in clustering model

• numberOfTuples

pub l i c ab s t r a c t i n t numberOfTuples ()

– Description

Return number of total tuples inserted into clustering model.

60

– Returns – number of tuples in clustering model

• prepareClusterer

pub l i c ab s t r a c t void p r epa r eC lu s t e r e r (i n t
dimensions) throws java . lang . Exception

– Description

Generates and resets the clusterer.
Perform setup that may need to happen before inserting data.
Initialize all variables of the clusterer that were not set with
options.

– Parameters

∗ dimensions – dimensions of dataset

– Throws
∗ java.lang.Exception – If clusterer setup is not possible

• setOptions

pub l i c ab s t r a c t void setOpt ions (java . lang . S t r ing
[] a rgs) throws ParseException

– Description

Parse provided arguments and set options of clustering method.

– Parameters

∗ args – arguments provided by user

– Throws
∗ ParseException – If invalid option or illegal value pro-

vided

5.4 WEKA Package

To extend WEKA with our BANG file clustering method as a package
we first have to take a look at how clustering methods are executed
within WEKA. WEKA allows both the implementation of batch train-
able and incrementally trainable clustering methods [22]. For our cluster-
ing method however, we chose to only implement batch trainable meth-
ods. The largest factor for this decision was the ability of the BANG file

61

WEKA package to automatically normalize the data, which requires the
entire data set to be present at once.
Training by batch-insertion of data happens in two stages:

1. setOptions(String []) - Set cluster-specific options.

2. buildClusterer(Instances) - Provides the entire data set as an
Object and builds the clustering model. Subsequent calls of this
method need to reset the model and ultimately result in the same
model again.

The incremental insertion of data starts with the same two stages as
the batch-insertion to initialize the model. When calling the buildClust
erer(Instances) method, one might use an empty or an initial set of the
data for initialization. Following that, incremental clustering happens in
two additional stages:

3. updateClusterer(Instance) - Updates the model row-by-row.

4. updateFinished() - Performs required post-processing of the clus-
tering model after the model has been updated with the new data.

In order for our clustering method to be visible in WEKA it must im-
plement the Clusterer interface from the package weka.clusterers. To
make the implementation easier however, WEKA offers the abstract class
AbstractClusterer, which implements many of the interface’s functions.

The AbstractClusterer additionally implements other WEKA inter-
faces, some of which have proven useful or even necessary for the imple-
mentation of our BANG file clustering method:

java.io.Serializable - WEKA uses serialization to store the
clustering model with all inserted data. This requires
all classes associated with the clustering model to be
serializable.

weka.core.CapabilitiesHandler - To provide meta-information
on what type of data can be handled. For our clustering
method we need to specify that only numeric attributes
and no missing values are allowed.

weka.core.OptionHandler - Allows listing available options
and to provide options to the clustering method.

weka.core.CommandlineRunnable - Allows the method to
be run from WEKA’s command line interface.

62

weka.core.TechnicalInformationHandler - Return paper
references and publications this clustering method is
based on.

WEKA packages are distributed as a ZIP archive. To automatically
build the package we used the Apache Ant build processes that were
already included in a template project offered by WEKA. The anatomy of
a WEKA package requires at least a JAR file with compiled java classes B
ANGFile.jar and a property file Description.props to exist. Additional
resources such as documentation or source code are not mandated, but
are encouraged. Our BANGFile ZIP contains, besides the required JAR
and property files, the generated Javadoc documentation and the entire
source code of both the clustering method and associated JUnit unit-
tests. When the ZIP archive is unpacked it creates the directory structure

BANGFile.zip
doc ... Generated Javadoc

documentation.
src

main
java

at/ac/univie/clustering/clusterers/bangfile
BANGFile.java
DirectoryEntry.java
GridRegion.java

weka
clusterers

BANGFile.java
test

java
at/ac/univie/clustering/clusterers/bangfile

BANGFileTest.java
DirectoryEntryTest.java
GridRegionTest.java

weka
clusterers

BANGFileTest.java
BANGFile.jar
Description.props

Figure 24: WEKA package file hierarchy

63

shown in figure 24.
When installed with WEKA’s package manager, a directory named

BANGFile will be created in $WEKA_HOME/packages holding the contents
of the package. The default location for $WEKA_HOME is user.home/wekaf
iles, where user.home is the user’s home directory [22].

5.5 User Guide

5.5.1 Installation

The project for the standalone application, including the BANG file algo-
rithm, is located in the GitHub online repository https://github.com/
fritziF/BANGFile. The prerequisites for building the project are:

• Apache Maven 3.x

• Java Development Kit (JDK) 1.8

To download the project one might choose to Download ZIP from
the GitHub-website or to clone the Git repository into a local repos-
itory. Most modern integrated development environment (IDE) have a
Git plugin that enables cloning a repository directly into the IDE. Alter-
natively, a user may choose to clone the repository via a terminal with
the command in listing 7.

Listing 7: Git command to clone repository
1 $ g i t c l one https : // github . com/ f r i t z i F /BANGFile . g i t

The application uses Maven as a build automation tool. With the
cloned and downloaded Git repository, the application can quickly be
built by using Maven commands. Listing 8 contains the go-to command
for building and installing a package into a local repository. This also
automatically downloads all dependencies and performs all unit tests of
the package. Note that prior to the building process, all generated files
from previous builds are removed.

Listing 8: Maven command to install in local repository
1 $ mvn c l ean i n s t a l l

This will compile and package the code into a JAR fileBANGFileClustering-
x.x.x.jar in the target directory with all dependencies present. Addi-
tionally, the package will be installed into the local maven repository for
use as a dependency in other projects.

64

https://github.com/fritziF/BANGFile
https://github.com/fritziF/BANGFile

5.5.2 User Interface

When launching the application the user is greeted with a rather barren
interface, as seen in figure 25, having most buttons disabled. Through the
menu the user has the menu-item Clusterer to select a clustering method
and the menu-item File - Select File. . . to open a file dialog.

Figure 25: Main scene with menu to select clustering methods

By clicking File - Select File. . . , the dialog of figure 26 opens with
a browse button and three settings for the format of the CSV file. The
browse button opens a file chooser GUI of the respective operating sys-
tem for navigating the file system and choosing the desired CSV file con-
taining the data set. As a starting directory the file chooser GUI will
always point to the users home directory, which depends on the operating
system’s settings and of course the operating system itself. Once a file
has been selected, we can change the settings in the dialog to match the
format of the CSV file:

Figure 26: Select File dialog

65

• Delimiter - Delimiter symbol used to separate values in a row of
the file.

• Decimal - The decimal symbol used for the numbers in the data
set.

• Header - If this checkbox has been checked, the first line is skipped.

As soon as the file selection is confirmed with the OK button, provided
no error occurred while reading the file, the buttons Start and Settings
will become enabled. Additionally, some meta-information is now shown
in the interface, such as the filename and the number of dimensions and
records of the data set. An example with meta-information is shown in
figure 27.

Figure 27: Main scene with file selected

After clicking the Settings button, we are presented with the individual
options of the selected clustering method and their default values. In the
case of the BANGFile clustering method, the options shown in figure 28
are available.

Figure 28: Settings dialog of clustering method BANGFile

66

With the data set selected and the parameters of the clustering method
set the actual clustering method can now be executed. This is being done
by clicking the Start button. As soon as the clustering model has finished,
the result is presented within a text-area in the Console tab as seen in
figure 29.

Figure 29: Console showing clustering results

The user may save the clustering result by clicking the Save button,
which opens up a dialog that allows the user to choose a directory-location
and a format for the resulting CSV files. These options can be seen
in figure 30. Confirming the options with the OK button displays the
dialog in figure 31 containing information on the files stored to the chosen
directory.

67

Figure 30: Save dialog to store clustering result

Figure 31: Information dialog about saved clustering result

68

6 Experiment

For this experiment we will use WEKA 3.8.1 with Java 8 to compare
the BANG file clustering method to some known clustering algorithms.
WEKA allows us to easily apply different clustering algorithms on the
same data sets. Additionally, if the data set contains a class-attribute that
signals the supposed cluster assignment, we can tell WEKA to evaluate
the result of the clustering model based on correctly clustered patterns.
We will use the command line interface Simple CLI of WEKA for the

experiment. The commands for the preprocessing of the data set and
execution of the clustering algorithm can be seen in listing 9. This will
reduce the additional processing or memory required by the application
itself. Unlike the graphical user interface, the command line interface does
not store the results of executions in memory, further reducing the impact
on successive executions.
WEKA only displays the actual time taken to build the clustering model

in a graphical user interface like the Explorer, but strangely not the Simple
CLI interface. Because of this, the source code of WEKA had to be
modified to allow the Simple CLI interface to print information about
the time taken to build the model.

The option force-batch-training will be provided to load the entire
data set into memory prior to execution, as such the times presented are
pure processing times for the completion of the clustering algorithms. As
Java by default allows allocation of only a fourth of heap memory from
the systems physical memory, we will increase the so called MaxHeapSize
of Java to 12 GB for processing of larger data sets.

Listing 9: WEKA CLI preprocessing and clustering
1 # Convert f i l e from CSV format to WEKA’ s ARFF format
2 $ java weka . core . c onve r t e r s . CSVLoader input . csv −H −F

" ; " −L " 3 : Cluster1 , C lus te r2 " > input . a r f f
3 # Normalize data to a [0 , 1] i n t e r v a l with the ’

Normalize ’ f i l t e r
4 $ java weka . f i l t e r s . unsuperv i sed . a t t r i b u t e . Normalize

−S 1 .0 −T 0.0 −decimal 7 − i input . a r f f −o
input_normalized . a r f f

5 # Running our i n s t a l l e d c l u s t e r i n g a lgor i thm ’
BANGFile ’

6 $ java weka .Run BANGFile −S 150 −t input_normalized .
a r f f −c 2 −f o r c e−batch−t r a i n i n g

7 # Running a pre−i n s t a l l e d c l u s t e r i n g a lgor i thm

69

i nc luded in WEKA
8 $ java weka . c l u s t e r e r s . Fa r th e s tF i r s t −N 3 −S 1 −t

input_normalized . a r f f −c 2 −f o r c e−batch−t r a i n i n g −
S 150

We compared the BANG file clustering method to the well known con-
ventional clustering algorithms k-means and Canopy. The used WEKA
packages are called SimpleKMeans, Canopy and of course ourBANG-
File. For the BANG file we used a dynamic block size of 5% of the data
set size. Sizes of the data sets ranged from 150 thousand to 30 million
patterns. Presented times are an average of at least three executions.

6.1 Data Sets

For this experiment, we will use synthetic data sets with the supposed
cluster assignments already known a priori. Using the cluster assignment
of every pattern, we can evaluate the clustering model created by the
BANG file clustering algorithm. To obtain data sets with sufficient data
and complexity we used the data set generator included in ELKI. ELKI
is an open source data mining software written in Java with a focus on un-
supervised methods in cluster analysis. The generator can be configured
with a XML specification file and supports uniform, normal and gamma
distributions to generate non-overlapping clusters of specified size, rota-
tion and scaling [2].
Figure 32 shows a two-dimensional data set created using a normal

distribution that was generated with the XML specification file seen in
listing 10. The data set contains three clusters with each cluster containing
5000 patterns and an additional 500 patterns as noise spread across the
entire data space. In the corresponding BANG file grid structure in figure
33 we can see the partitioning algorithm adapting to the data distribution.

Listing 10: ELKI data set XML specification file
1 <datase t random−seed="3">
2 <!−− 3 C lu s t e r s with Normal d i s t r i b u t i o n in both

dimensions −−>
3 <c l u s t e r name="Cluste r1 " s i z e="5000">
4 <normal mean=" 0 .3 " stddev=" 0 .09 " />
5 <normal mean=" 0 .3 " stddev=" 0 .09 " />
6 </ c l u s t e r>
7 <c l u s t e r name="Cluste r2 " s i z e="5000">
8 <normal mean=" 0 .85 " stddev=" 0 .05 " />

70

Figure 32: Two-dimensional data set generated with the ELKI’s data set
generator

Figure 33: BANG file grid structure of figure 32

9 <normal mean=" 0 .35 " stddev=" 0 .10 " />
10 </ c l u s t e r>
11 <c l u s t e r name="Cluste r3 " s i z e="5000">
12 <normal mean=" 0 .45 " stddev=" 0.035 " />
13 <normal mean=" 0 .85 " stddev=" 0.035 " />
14 </ c l u s t e r>
15 <!−− "Noise " with Uniform d i s t r i b u t i o n ac r o s s

e n t i r e data space −−>

71

16 <c l u s t e r name="Noise " s i z e="500" dens i ty−c o r r e c t i o n
=" 1 .0 ">

17 <uniform min="0" max="1" />
18 <uniform min="0" max="1" />
19 </ c l u s t e r>
20 </ datase t>

The data sets generated for comparing different clustering methods con-
tain either 2, 3 or 10 dimensions, with each data set containing three
clusters and additional patterns spread across the entire data space as
noise.

6.2 Results

With data sets of up to 1.5 million patterns, the BANG file cluster-
ing method was marginally slower than the conventional clustering al-
gorithms. However, with the data sets consisting of 15 and 30 million
patterns, BANGFile managed to outperform the competition. To clus-
ter the data set with 2 dimensions and 30 million patterns, BANGFile
returned a result in less than halve the time compared to Canopy or
SimpleKMeans (see figure 34). For the data set with 3 dimensions and
30 million patterns, BANGFile took only about 55 seconds, while Sim-
pleKMeans took 72 and Canopy took 88 seconds (see figure 35).
The time difference increased when switching to the data set with 10 di-

mensions and 30 million patterns, where BANGFile managed to severely
outperform its peers. BANGFile clustered the data in about 124 seconds
and was more than three times faster than Canopy, which took about
439 seconds (see figure 36). Moreover, SimpleKMeans was not able to
cluster the massive data set and the WEKA application ended up killing
the clustering process on multiple attempts.

72

150
000

150
000

0

150
000

00

300
000

00

10

20

30

40

50

60

70

80

90

No. of Patterns

T
im

e
in

Se
co
nd

s

Canopy
SimpleKMeans
BANGFile

Figure 34: Processing times with 2-dimensional data sets

150
000

150
000

0

150
000

00

300
000

00

10

20

30

40

50

60

70

80

90

No. of Patterns

T
im

e
in

Se
co
nd

s

Canopy
SimpleKMeans
BANGFile

Figure 35: Processing times with 3-dimensional data sets

73

150
000

150
000

0

150
000

00

300
000

00

50

100

150

200

250

300

350

400

450

No. of Patterns

T
im

e
in

Se
co
nd

s

Canopy
SimpleKMeans
BANGFile

Figure 36: Processing times with 10-dimensional data sets

74

7 Conclusion

We presented the hierarchical clustering algorithm BANG file clustering,
which is an extension of the grid file clustering algorithm presented in [18].
The algorithm manages to cluster massive multi-dimensional data sets in
a fast and timely manner compared to conventional clustering methods.
To showcase the clustering algorithm a standalone Java application has

been developed offering a graphical interface to prepare, configure and
execute it on data sets. The application’s architecture has also been de-
signed with the intention of being extended with additional grid based
clustering methods or support for additional data sources in the future.
Additionally, the clustering algorithm was released as an official WEKA

package. After a review by the WEKA team the package was added to
WEKA’s central package repository to have the WEKA community take
advantage of it.

75

References

[1] Gail Chappell and Nancy Hildebrandt. Oracle JavaFX Documen-
tation Home - Getting Started with JavaFX. 2013. url: https :
//docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm
(visited on 01/27/2018).

[2] ELKI Data Set Generator. url: https://elki-project.github.
io/datasets/generator (visited on 02/18/2018).

[3] Martin Erhart. “Entwurf und Implementation eines BANG-File-
basierten Clusteranalyseverfahrens”. MA thesis. University of Vi-
enna, 1995.

[4] Brian S. Everitt, Sabine Landau, and Morven Leese. Cluster Analy-
sis. 4th. Wiley Publishing, 2009. isbn: 0340761199, 9780340761199.

[5] Michael Freeston. “Data Structures for Knowledge Bases: Multi-
Dimensional File Organisations”. In: ECRC, Technical Report TR-
KB-13 (1986).

[6] Michael Freeston. “The BANG File: A New Kind of Grid File”. In:
SIGMOD Rec. 16.3 (Dec. 1987), pp. 260–269. issn: 0163-5808. doi:
10.1145/38714.38743. url: http://doi.acm.org/10.1145/
38714.38743.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-oriented Software.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1995. isbn: 0-201-63361-2.

[8] G. Gan, C. Ma, and J. Wu. Data Clustering: Theory, Algorithms,
and Applications. Society for Industrial and Applied Mathematics,
2007. doi: 10.1137/1.9780898718348. eprint: http://epubs.
siam.org/doi/pdf/10.1137/1.9780898718348. url: http://
epubs.siam.org/doi/abs/10.1137/1.9780898718348.

[9] Mark Hall. Pentaho Community Wiki Handling Large Data Sets
with Weka. 2016. url: https://wiki.pentaho.com/display/
DATAMINING/Handling+Large+Data+Sets+with+Weka (visited on
10/12/2017).

[10] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Pe-
ter Reutemann, and Ian H. Witten. “The WEKA Data Mining Soft-
ware: An Update”. In: SIGKDD Explor. Newsl. 11.1 (Nov. 2009),
pp. 10–18. issn: 1931-0145. doi: 10.1145/1656274.1656278. url:
http://doi.acm.org/10.1145/1656274.1656278.

76

https://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm
https://docs.oracle.com/javafx/2/get_started/fxml_tutorial.htm
https://elki-project.github.io/datasets/generator
https://elki-project.github.io/datasets/generator
http://dx.doi.org/10.1145/38714.38743
http://doi.acm.org/10.1145/38714.38743
http://doi.acm.org/10.1145/38714.38743
http://dx.doi.org/10.1137/1.9780898718348
http://epubs.siam.org/doi/pdf/10.1137/1.9780898718348
http://epubs.siam.org/doi/pdf/10.1137/1.9780898718348
http://epubs.siam.org/doi/abs/10.1137/1.9780898718348
http://epubs.siam.org/doi/abs/10.1137/1.9780898718348
https://wiki.pentaho.com/display/DATAMINING/Handling+Large+Data+Sets+with+Weka
https://wiki.pentaho.com/display/DATAMINING/Handling+Large+Data+Sets+with+Weka
http://dx.doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278

[11] Martin Haseneyer. “Grid Files, Eine dynamische Datenstruktur mit
mehrdimensionalen Zugriffspfaden”. Friedrich-Schiller-Universität Jena,
2005.

[12] A. K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1988. isbn: 0-13-
022278-X.

[13] A. K. Jain, M. N. Murty, and P. J. Flynn. “Data Clustering: A
Review”. In: ACM Comput. Surv. 31.3 (Sept. 1999), pp. 264–323.
issn: 0360-0300. doi: 10.1145/331499.331504. url: http://doi.
acm.org/10.1145/331499.331504.

[14] Debadatta Mishra. DZone Factory Design Pattern - An Effective
Approach. 2012. url: https://dzone.com/articles/factory-
design-pattern (visited on 01/29/2018).

[15] J. Nievergelt, Hans Hinterberger, and Kenneth C. Sevcik. “The Grid
File: An Adaptable, Symmetric Multikey File Structure”. In: ACM
Trans. Database Syst. 9.1 (Mar. 1984), pp. 38–71. issn: 0362-5915.
doi: 10.1145/348.318586. url: http://doi.acm.org/10.1145/
348.318586.

[16] Brett Porter. Apache Maven Project Introduction to the Build Life-
cycle. 2015. url: https://maven.apache.org/guides/introduction/
introduction-to-the-lifecycle.html (visited on 01/27/2018).

[17] Eric Redmond and Karl Heinz Marbaise. Apache Maven Project
POM Reference. 2016. url: https://maven.apache.org/pom.html
(visited on 01/27/2018).

[18] Erich Schikuta. “Grid-clustering: an efficient hierarchical clustering
method for very large data sets”. In: Proceedings of 13th Interna-
tional Conference on Pattern Recognition. Vol. 2. Aug. 1996, 101–
105 vol.2. doi: 10.1109/ICPR.1996.546732.

[19] Erich Schikuta and Martin Erhart. “BANG-Clustering: A novel grid-
clustering algorithm for huge data sets”. In: Advances in Pattern
Recognition: Joint IAPR International Workshops SSPR’98 and SPR’98
Sydney, Australia, August 11–13, 1998 Proceedings. Ed. by Adnan
Amin, Dov Dori, Pavel Pudil, and Herbert Freeman. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 1998, pp. 867–874. isbn: 978-3-
540-68526-5. doi: 10.1007/BFb0033313. url: https://doi.org/
10.1007/BFb0033313.

77

http://dx.doi.org/10.1145/331499.331504
http://doi.acm.org/10.1145/331499.331504
http://doi.acm.org/10.1145/331499.331504
https://dzone.com/articles/factory-design-pattern
https://dzone.com/articles/factory-design-pattern
http://dx.doi.org/10.1145/348.318586
http://doi.acm.org/10.1145/348.318586
http://doi.acm.org/10.1145/348.318586
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/guides/introduction/introduction-to-the-lifecycle.html
https://maven.apache.org/pom.html
http://dx.doi.org/10.1109/ICPR.1996.546732
http://dx.doi.org/10.1007/BFb0033313
https://doi.org/10.1007/BFb0033313
https://doi.org/10.1007/BFb0033313

[20] Erich Schikuta and Martin Erhart. “The BANG-clustering system:
Grid-based data analysis”. In: Advances in Intelligent Data Analy-
sis Reasoning about Data: Second International Symposium, IDA-97
London, UK, August 4–6, 1997 Proceedings. Ed. by Xiaohui Liu,
Paul Cohen, and Michael Berthold. Berlin, Heidelberg: Springer
Berlin Heidelberg, 1997, pp. 513–524. isbn: 978-3-540-69520-2. doi:
10.1007/BFb0052867. url: https://doi.org/10.1007/BFb0052867.

[21] Erich Schikuta and Florian Fritz. “An Execution Framework for
Grid-clustering Methods”. In: Procedia Comput. Sci. 80.C (June
2016), pp. 2322–2326. issn: 1877-0509. doi: 10.1016/j.procs.
2016.05.430. url: https://doi.org/10.1016/j.procs.2016.
05.430.

[22] Ian H. Witten, Eibe Frank, Mark A. Hall, and Christopher J. Pal.
Data Mining, Fourth Edition: Practical Machine Learning Tools and
Techniques. 4th. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2016. isbn: 0128042915, 9780128042915.

78

http://dx.doi.org/10.1007/BFb0052867
https://doi.org/10.1007/BFb0052867
http://dx.doi.org/10.1016/j.procs.2016.05.430
http://dx.doi.org/10.1016/j.procs.2016.05.430
https://doi.org/10.1016/j.procs.2016.05.430
https://doi.org/10.1016/j.procs.2016.05.430

List of Figures

1 Clusters of data points in a two-dimensional value space . 9
2 Stages of a clustering process 10
3 Tree of classification types 12
4 2-dimensional grid structure 15
5 Splitting operations with bucket size of 2 16
6 Inserting a pattern into a grid region at capacity 18
7 Three tied blocks with DB = 6 21
8 Numbering scheme (region number, level) for grid regions 24
9 Regions partitioning a non-uniform data distribution . . . 24
10 Grid region R2 nested within grid region R2 28
11 Creation of buddy regions 30
12 Binary tree storing the directory of a BANG file 32
13 2-dimensional value space example 34
14 2-dimensional BANG file structure of figure 13 34
15 Neighborhood - Grid directory of tree in figure 12 36
16 Building a dendogram from a sorted list of regions with

three cluster centers . 38
17 The WEKA GUI Chooser interface 40
18 The WEKA Explorer graphical user interface 41
19 The WEKA Package Manager user interface 43
20 Preprocessing with Weka Explorer 45
21 Applying the Normalize filter 46
22 Class Diagram (reduced) of the bangfile package 48
23 Standalone application file hierarchy 50
24 WEKA package file hierarchy 63
25 Main scene with menu to select clustering methods 65
26 Select File dialog . 65
27 Main scene with file selected 66
28 Settings dialog of clustering method BANGFile 66
29 Console showing clustering results 67
30 Save dialog to store clustering result 68
31 Information dialog about saved clustering result 68
32 Two-dimensional data set generated with the ELKI’s data

set generator . 71
33 BANG file grid structure of figure 32 71
34 Processing times with 2-dimensional data sets 73
35 Processing times with 3-dimensional data sets 73
36 Processing times with 10-dimensional data sets 74

79

Listings

1 Starting new clustering method 52
2 Listing available options 53
3 Parse and set provided options 53
4 Listing available options 54
5 Clusterer Enumeration . 56
6 Map containing enum entries 57
7 Git command to clone repository 64
8 Maven command to install in local repository 64
9 WEKA CLI preprocessing and clustering 69
10 ELKI data set XML specification file 70

80

Abstract

Cluster analysis is essential in the field known as explorative data
analysis. The Balanced And Nested Grid (BANG) file is a hierar-
chical clustering system of the grid file type. To efficiently clus-
ter massive data sets the BANG file uses a multidimensional grid
structure to organize the value space surrounding pattern values.
Its tree structured directory partitions the value space into regions
with successive binary divisions on dimensions, which results in self-
balancing features of a B-tree. Consequently, unlike previous grid
file designs, the directory expands proportionally to the data re-
gardless of the data distribution. The partitioning strategy accu-
rately reflects the clustering of patterns in the value space, with
densely populated regions identified as cluster centers, and adapts
to changes in the distribution. This thesis concludes with a demon-
stration of the BANG file clustering system both as a standalone
Java application as well as a WEKA package.

81

Zusammenfassung

Die Clusteranalyse spielt eine zentrale Rolle in der explorativen
Datenanalyse. Das Balanced And Nested Grid (BANG) File ist
ein hierarchisches Clustering-Verfahren des Typs Grid-File. Um
riesige Datenmengen effektiv zu clustern bildet das BANG File eine
mehrdimensionale Raster-Struktur, welche Daten gruppiert. Der
Datenraum wird dabei durch kontinuierliches zweiteilen, orthogonal
zu einer der Dimensionen, in Regionen gegliedert. Diese Regionen
werden in einem Verzeichnis indexiert, welches die Eigenschaften
eines balancierten Baums bietet. Anders als bisherige Grid-File De-
signs wächst dieses Verzeichnis dadurch proportional zu den Daten,
unabhängig von der Verteilung der Daten. Die hierarchische Par-
titionierungsstrategie spiegelt Cluster im Datenraum wider, wobei
Regionen mit den höchsten Dichten an Daten als Zentrum eines
Clusters identifiziert werden. Diese Arbeit demonstriert das BANG
File Clustering-Verfahren innerhalb einer eigenständigen Java An-
wendung und auch als ein WEKA Plugin.

82

	Introduction
	Cluster Analysis
	Clustering Techniques

	Grid Clustering
	Grid File
	Splitting Operation
	Merging Operation
	Searching
	Inserting
	Deleting

	Clustering with Grid File
	Idea behind GRIDCLUS
	GRIDCLUS Algorithm

	BANG-File Clustering
	BANG File
	Representation of the Data Space
	Mapping Function
	Logical Regions
	Partitioning and Merging
	Directory Structure
	Advantages of BANG-File

	Clustering with BANG File
	Density Index
	Neighborhood
	Dendogram

	WEKA
	Introduction
	WEKA Workbench
	User Interfaces
	Memory Management
	Package Management System
	Clustering with WEKA

	Software Documentation
	BANG File Implementation
	BANGFile
	DirectoryEntry
	GridRegion

	Application Architecture
	Developer Guide
	Creating a new Clustering Method
	Parametrization
	Clustering Method Lifecycle
	Clusterer Factory Design Pattern
	Abstract Class Clusterer
	Declaration
	Constructor Summary
	Method Summary
	Methods

	WEKA Package
	User Guide
	Installation
	User Interface

	Experiment
	Data Sets
	Results

	Conclusion

