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Abstract

The topic of this thesis is towers, families with the strong finite intersection prop-
erty and pseudointersections, which are fundamental objects in combinatorial set
theory. Particularly it deals with the two cardinal characteristics p and t which
are related to these notions. It provides an overview on some of the classical
results concerning these cardinals and gives an exposition of the recent proof of
Malliaris and Shelah ([17]) stating that p = t. Furthermore some aspects of the
generalized notion of pseudointersection for uncountable regular cardinals κ and
the induced characteristics, among which we find p(κ) and t(κ), are studied.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit Türmen, Filterbasen und Pseudo-
Durchschnitten, welche fundamentale Untersuchungsobjekte der kombinatorischen
Mengenlehre sind. Insbesondere werden die damit verbundenen Kardinalzahl-
Charakteristiken p und t behandelt. Die Arbeit bietet einen Überblick über
klassische Resultate bezüglich dieser Begrifflichkeiten und gibt den Beweis von
Malliaris und Shelah ([17]), der besagt, dass p = t, wieder. Des weiteren werden
einige Aspekte der Verallgemeinerung von Türmen und Pseudo-Durchschnitten
auf überabzählbare reguläre Kardinalzahlen κ und deren Charakteristiken p(κ)
und t(κ) studiert.
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Chapter 1

Introduction

An ongoing phenomenon that is observed in the study of combinatorial set the-
ory is that given a structure consisting of objects with “finite” and “countably in-
finite information”, taking the quotient by the finite objects yields an extremely
rich structure. Examples of such quotients include the Calkin algebra, rele-
vant in the theory of C∗ algebras or the partial order (ωω, <∗), that describes
growth rates of functions. The example that we will be interested in mostly is
the Boolean algebra P(ω)/ fin. More specifically, we will be preoccupied with
the relation of almost inclusion (⊆∗, Definition 1.2.5) between subsets of the
naturals, that give rise to the notion of towers and pseudointersections.

Cardinal characteristics are typically defined as the least size of some sort of
“maximal” family in a quotient such as P(ω)/ fin. For example, the pseudoint-
ersection number p is the least size of a (downwards) directed subset of [ω]ω/ fin
with no lower bound (a so called pseudointersection). The tower number t can
be characterized as the least size of a maximal decreasing chain in [ω]ω/ fin. The
main objective in the study of cardinal characteristics is to understand the rela-
tionship between different notions of “maximality” in different quotient struc-
tures. The respective cardinal serves as a characteristic for the specific notion
of maximality. Typically, given two cardinal characteristics1 x, y there are three
possibilities:

(1) x = y

1Note that when we say “cardinal characteristic” we usually don’t refer to its particular value
(i.e. a cardinal in the proper sense) but its definition.
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1. INTRODUCTION

(2) one of them is greater or equal to the other but we know a forcing extension
in which they are separated

(3) we have a forcing extension in which x < y and one in which y < x

In the last case x, y are often, informally, called independent. Independence
usually implies that the two notions of maximality are more or less unrelated,
although there might be a relation like cf(x) = cf(y). Thus we often look for a
stronger notion of independence where given any uncountable regular cardinals
κ, λ, there is a forcing extension in which x = κ and y = λ.

In the case of p and t we have that p ≤ t but it was a long standing open
problem of whether p = t. The general feeling, conveyed by difficult results
such as the consistency of d < a ([25]), was that it is possible to separate p and
t, i.e. get a model where p < t. On these grounds, the recent proof of Malliaris
and Shelah ([17]), stating that p = t, came very surprising. A big part of the
thesis is devoted to retracing their argument.

We outline the rough structure of the thesis:
Part of the introduction is a preliminaries section that contains all important

definitions and facts that will be used throughout the thesis. In the next section
we give the formal definition of p, t, b and d and mention (with or without proof)
how they relate.

In Chapter 2, we review in detail (with proof) some of the well known aspects
surrounding towers and pseudointersections that preceded the proof of p = t. For
instance we will show how pseudointersections relate to a forcing axiom, that
will serve as a useful black box in some of the later combinatorial arguments.

In the next chapter, we provide the proof of p = t. We give an outline of the
argument at the beginning of this chapter.

The last chapter deals with the generalization of pseudointersections to larger
cardinals. We will show how some of the results of Chapter 2 lift to this case.
Apart from Section 4.4, all major results in this chapter are new. For instance,
we give a characterization of the generalized bounding number in terms of pseu-
dointersections. This will shed light on some of the apparent distinctions that
exist between the combinatorics on ω and on uncountable κ and lead to results
such as s(κ) ≤ b(κ). Moreover we will provide a proof of t(κ) ≤ add(Mκ),
where add(Mκ) is the additivity of the generalized meager ideal.
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1.1. Preliminaries

1.1 Preliminaries

Set Theory
Our set theory is ZFC (Zermelo-Fraenkel with the Axiom of Choice). This is
a first order theory in the language {∈} containing one binary relation symbol,
intended to have its usual meaning. This theory does a great job in capturing our
use of sets in mathematics and is widely accepted as a foundation for the abstract
mathematical universe. For a lot of natural questions, ZFC has given a definite
answer, i.e. it either proved or disproved a certain statement, but one of the most
important topics in modern set theoretic research is: which problems can ZFC
decide and which can it not decide?

Our notation is standard, as used in the relevant literature. For a good intro-
duction to set theory in general, we refer to [16] or [14].

ω denotes the set of natural numbers, or equivalently the first limit ordinal,
or the first infinite cardinal and we will write |X| = ω to say that X is countably
infinite and |X| < ω when X is finite. In general we will rather write ωn instead
of ℵn, even when talking about cardinality. |X| is the cardinality of X . The size
of the continuum, 2ℵ0 , is denoted c.

For any set X and a cardinal number κ, [X]κ denotes the set of subsets of X
of size κ. [X]<κ and [X]≤κ are defined analogously. For example [ω]<ω is the
set of all finite and [ω]ω the set of all infinite subsets of the naturals. Moreover,
as usual, P(X) is just the powerset of X .

HF is the set of hereditarily finite sets. Intuitively these are all sets that can
be written down making use of only finitely many brackets “{” and “}”. Also it
is Vω in the von Neumann hierarchy. It is defined as follows:

– V0 = ∅

– Vn+1 = P(Vn)

– Vω =
⋃
n<ω Vn

(HF,∈) can be used as a model of “finite set theory” and indeed it satisfies
all the axioms of ZFC except for the Axiom of Infinity. Thus (HF,∈) is pow-
erful enough to talk about objects that encode finite information. With this we
mean e.g. functions f : n→ m for some natural numbers n and m, finite partial
orders, finite graphs etc...

3



1. INTRODUCTION

Forcing is an indispensable technique in set theory and will appear in various
places throughout the thesis. It is a method used to extend a given model of set
theory by adjoining new elements to it. Explaining the exact details of forcing
is out of the scope for this thesis. The standard references for an introduction
to forcing are [16] or [14]. For a particularly gentle introduction, accessible to
non-set-theorists, we refer to [32].

We will use the following notation. A stronger condition will be smaller, i.e.
we write p ≤ q whenever p extends q. Furthermore p ⊥ q means that p and q are
incompatible and p ‖ q means they are compatible. Names usually wear dots, as
in “ẋ”, “ḟ”, etc... We will avoid using checks (e.g. “ň”) to name fixed ground
model elements as much as possible except when there is risk of confusion.

We will very often deal with σ-centered forcing notions. These are par-
tial orders P that can be written as

⋃
n∈ω Cn, where each Cn is centered, i.e.

∀P ∈ [Cn]<ω∃p ∈ P∀q ∈ P (p ≤ q).

Model Theory and Ultrapowers
We review now some of the few convenient notions of Model Theory that we
will use. For a more extensive exposition to Model Theory see [11].

Definition 1.1.1. LetM be a model in a language L. Then

– a type over M is a set p(x) of L formulas with parameters in M and x
as a free variable, so that for each q(x) ∈ [p(x)]<ω there is a ∈ M with
M |=

∧
ϕ∈q(x) ϕ(a) (i.e. p(x) is finitely realized)

– a type p(x) is realized iff there is a ∈M so that ∀ϕ ∈ p(x)[M |= ϕ(a)]

– M is κ-saturated iff any type p(x) with |p(x)| < κ is realized

A filter on a set X is a non-empty family F ⊆ P(X) \ {∅}, closed under
intersections and supersets. It is an ultrafilter if for any A ⊆ X , either A ∈ U or
X \A ∈ U . We will mostly consider ultrafilters on ω which extend {ω \ n : n ∈
ω}. These ultrafilters are referred to as non-principal.

Ultrafilters or filters in general are usually thought of as giving a notion of
“largeness”. So when a property of x ∈ X holds for all elements of a filter set
we think of it as holding “almost everywhere”.

Given a filter F on X and a n-ary relation R on a set Y (i.e. R ⊆ Y n) we
define a relation RF on Y X , by

RF(f0, . . . , fn) iff {x ∈ X : R(f0(x), . . . , fn(x))} ∈ F

4



1.2. Countable modulo finite

For example f =F g if f and g agree almost everywhere, i.e. on a filter set.
It is clear that this yields an equivalence relation. We write [f ]F to denote the
equivalence class of f under =F .

This is the basis of the ultrapower construction.

Definition 1.1.2. Suppose U is an ultrafilter on X ,M a model in a language L.
Then the ultrapowerMX/U ofM over U is defined by:

– {[f ]U : f ∈MX} is the underlying universe,

– for a relation symbol r ∈ L, r([f0]U , . . . , [fn]U) is interpreted asRU(f0, . . . , fn)
where r is interpreted as R inM,

– for a function symbol h ∈ L, h([f0]U , . . . , [fn]U) is interpreted as [g]U
where g(x) = H(f0(x), . . . , fn(x)) where h is interpreted as H inM.

It is easy to check that the definitions above are independent of the choice of
representatives for [f0]U , ..., [fn]U .

The reason why ultrapowers are so powerful and widely used comes from
the following famous theorem of Łoś.

Theorem 1.1.3 (Łoś’ Theorem). Suppose U is an ultrafilter onX ,M a model in
a language L. Then for any L formula ϕ(v0, . . . , vn) and any [f0]U , . . . [fn]U ∈
MX/U ,

MX/U |= ϕ([f0]U , . . . [fn]U) iff {x ∈ X :M |= ϕ(f0(x), . . . fn(x))} ∈ U

Łoś’ Theorem implies that any ultrapower of M satisfies the same theory
as M and that M can be elementarily embedded by the map a 7→ ca where
ca : X →M constantly maps to a.

1.2 Countable modulo finite
Definition 1.2.1. Let f, g ∈ ωω. We write

– f =∗ g iff |{n ∈ ω : f(n) 6= g(n)}| < ω,

– f <∗ g iff |{n ∈ ω : g(n) ≤ f(n)}| < ω,

– f ≤∗ g iff |{n ∈ ω : g(n) < f(n)}| < ω.

5



1. INTRODUCTION

Notice that <∗ and =∗ are just <cofin and =cofin where cofin is the filter of
cofinite sets.

Definition 1.2.2. A family F ⊆ ωω is called unbounded if there is no f ∈ ωω
so that g <∗ f for all g ∈ F . It is called dominating if for every f ∈ ωω there is
g ∈ F so that f <∗ g.

Definition 1.2.3. The bounding number b is the least size of an unbounded fam-
ily. The dominating number d is the least size of a dominating family.

Clearly we have that b ≤ d. Also it is easy to prove that ω < b. All provable
relationships between b and d are summarized in the following theorem:

Theorem 1.2.4 (see [4, Theorem 2.5]). ω1 ≤ b = cf(b) ≤ cf(d) ≤ d ≤ c and
there are no other restrictions on what b and d can be in a forcing extension.

Definition 1.2.5. Let A,B ∈ [ω]ω. We write

– A =∗ B iff |A4B| < ω, i.e. A \B ∪B \ A is finite.

– A ⊆∗ B iff A \B is finite.

– A sequence 〈Aα : α < δ〉 is called a tower if α < β implies Aβ ⊆∗ Aα.

Definition 1.2.6. Let B ⊆ [ω]ω. We say that B has the strong finite intersection
property (SFIP for short) iff ∀F ∈ [B]<ω(|

⋂
F| = ω). Whenever X ⊆∗ B for

all B ∈ B we call X a pseudointersection of B.

Families with the SFIP are strongly related to filters: they are exactly the
families that generate a filter extending the filter of cofinite sets.

Definition 1.2.7. The pseudointersection number p is the least size of a family
F with the SFIP but no pseudointersection.

The tower number t is the least length of a tower with no pseudointersection.
Such a tower is called maximal.

The existence of a maximal tower is clear by a recursive construction, or just
using Zorn’s Lemma. For a family with the SFIP but no pseudointersection you
can consider an ultrafilter.

The tower number is obviously a regular cardinal, as any cofinal subsequence
of a maximal tower is still maximal. Clearly a maximal tower also is a family
with the SFIP but no pseudointersection. Thus we can infer that p ≤ t. Also it

6



1.2. Countable modulo finite

follows by an easy diagonalization argument that p > ω. We include a proof for
completeness:

Theorem 1.2.8. p is uncountable.

Proof. Assume that B has the SFIP and |B| ≤ ω. Write B = {Bn : n ∈ ω}. For
every n ∈ ω, choose xn ∈

⋂
i≤nBi different from all previously chosen xi, i <

n. This is possible by the SFIP and clearly {xn : n ∈ ω} is a pseudointersection.

Theorem 1.2.9. ω1 ≤ p ≤ t ≤ b ≤ d ≤ c.

Proof. It suffices to show that t ≤ b. Assume {fα : α < κ} ⊆ ωω and κ < t.
We want to show that there is f ∈ ωω so that fα <∗ f for every α < κ. First
construct a tower 〈Aα : α < κ〉 so that whenever gα ∈ ωω is the increasing
enumeration of Aα, then gα > fα. The construction of such a tower is straight-
forward using that κ < t. Now given 〈Aα : α < κ〉 we find a pseudointersection
A. Note that whenever X ⊆ Y then the increasing enumeration of X dominates
(in the sense of ≥) the increasing enumeration of Y . Thus if we define for every
n ∈ ω, hn to be the enumeration of A \ n, then for any α < κ there is n ∈ ω
so that hn ≥ gα > fα. The collection {hn : n ∈ ω} is countable, so we find
f ∈ ωω with hn <∗ f for every n ∈ ω. In particular we get that fα <∗ f for
every α < κ.

7





Chapter 2

Classical results

The aim of this chapter is to present some of the well known aspects of p and t.
Most proofs in this chapter are taken either from [4] or [31].

2.1 Towers and cardinal arithmetic
t has consequences for cardinal arithmetic below c which are rather unusual for
cardinal characteristics. Usually, for a characteristic x, it is consistent that x
attains any allowed value (maybe it has to be regular as in the case of b) between
ω1 and c and cardinal arithmetic has no restrictions other than the obvious ones.

Theorem 2.1.1. Assume κ < t is an infinite cardinal. Then 2κ = c.

Proof. It is clear that 2κ ≥ c, so we are finished if we find 2κ many distinct reals
(i.e. we have an injection from 2κ to c). To achieve this we are constructing a
map c : 2<κ → [ω]ω with the property that

(1) ∀s, t ∈ 2<κ(s ⊆ t→ c(t) ⊆∗ c(s))

(2) ∀s ∈ 2<κ(c(s_0) ∩ c(s_1) = ∅)

Whenever we have such a map, each f ∈ 2κ corresponds to a tower 〈c(f �
α) : α < κ〉. As κ < t we can find a pseudointersection cf of this tower. But by
(2) above, the family {cf : f ∈ 2κ} is almost disjoint. In particular cf 6= cg for
f 6= g.

The map is constructed by recursion on the height of s ∈ 2<κ. Start with
c(∅) = ω. At successor steps nodes have the form s = t_i for i ∈ 2. For

9



2. CLASSICAL RESULTS

each such t partition the already defined c(t) in two infinite sets X0,X1 and
let c(t_i) = Xi. At limit steps, given s, let c(s) be a pseudointersection of
〈c(s � α) : α < lth s〉. This exists because lth s < κ < t.

Corollary 2.1.2. t ≤ cf(c).

Proof. If cf(c) < t then 2cf(c) = c which contradicts König’s Lemma (see [16,
Theorem I.13.12]).

2.2 A forcing axiom
Forcing axioms generally express that the universe is somehow locally closed
under forcing. In this way they are examples for natural maximality principles.
Forcing axioms have shown a wide range of applications. For example they
are often used for special constructions in general topology (see e.g. [10]). In
this way they provide a good testing ground for consistency results (especially
under ¬CH). The first one of these forcing axioms was Martin’s axiom (MA,
introduced in [18]). MA asserts that given a ccc poset P and a collection 〈Di :
i < κ〉 of less than c many dense subsets of P there is a filter G ⊆ P that
intersects every Di (i.e. G ∩Di 6= ∅). It is trivially true under CH but it is also
consistent under ¬CH (although it gives some restriction on what c might be, see
[18] for more).

Later the same sort of axiom was considered for various other classes of
posets. For example it is well known that MA(countable) (MA for countable
posets) is equivalent to cov(M) = c, where cov(M) is the least number of
meager sets needed to cover the real line.

More generally, for a class K of posets, we can consider the axiom MA(K).
Furthermore we can associate with it a cardinal m(K) which is the least size κ
of a family of dense subsets of some poset in K which has no generic filter. It is
actually not too difficult to see that m(countable) = m({C}) = cov(M), where
C is Cohen forcing (this appears e.g. in [4, 7.13]).

We will consider the case of σ-centered posets. Thus we write MA(σ-
centered) to say that for any σ-centered poset P and for a collection 〈Di : i < κ〉
of less than c many dense subsets of P there is a filter intersecting all these sets.
Interestingly, the cardinal p is closely related to MA(σ-centered).

The next Theorem was proven by M. Bell ([3]).

10



2.2. A forcing axiom

Theorem 2.2.1 (Bell’s Theorem). m(σ-centered) = p, i.e. whenever P is σ-
centered and 〈Di : i < κ〉 are dense subsets, where κ < p, then there is a filter
on P intersecting these dense sets. In particular, MA(σ-centered) is equivalent
to p = c

Proof. Assume P is σ-centered and 〈Di : i < κ〉 are open dense1 subsets, κ < p.
We want to show that there is a filter G ⊆ P so that G∩Di 6= ∅ for every i < κ.

First we note that we can wlog assume that |P| ≤ κ. Namely, applying
the Löwenheim-Skolem Theorem (see [11]), we find Q ⊆ P of size ≤ κ, so
that Di ∩ Q is dense in Q for every i < κ, and if p, q ∈ Q then p ‖ q iff
∃r ∈ Q(r ≤ p, q). If G is a filter on Q that intersects each Di ∩ Q, then
{p ∈ P : ∃q ∈ G(q ≤ p)} is a filter on P that intersects every Di.

Furthermore it suffices to show that there is G ⊆ P that is linked and inter-
sects every Di. The reason is that for every p ∈ P we can define the dense open
set Dp = {q ∈ P : q ≤ p ∨ q ⊥ p}. Now if p, r ∈ G where G is linked and
q ∈ Dp ∩Dr ∩G, then q ≤ p, r.

So assume that |P| ≤ κ and P =
⋃
n∈ω Cn, where Cn 6= ∅ is centered for

n ∈ ω. Also wlog P is atomless. For any p ∈ P and i < κ we define the set
A(p, i) = {n ∈ ω : ∃q ∈ Cn(q ∈ Di ∧ q ≤ p)}.

We claim that for each n ∈ ω, the collection

Fn = {A(p, i) : p ∈ Cn, i < κ}

has the SFIP (and in particular, each A(p, i) is infinite). To see this, let F ∈
[Cn]<ω and G ∈ [κ]<ω. Then F has a lower bound p. Also notice that D =⋂
i∈GDi is also open dense. So let A be an infinite antichain in D below p

(which exists because P is atomless). Then the set {n ∈ ω : ∃q ∈ A(q ∈
Cn)} ⊆

⋂
r∈F A(r, i) and it is infinite (because A was an infinite antichain).

Thus we find pseudointersections An of Fn. Define a labeling T : ω<ω → ω,
so that T (∅) = 0 and T (s_n) = the n’th element of AT (s). Further, for each
i < κ, we define a labeling Ti : ω<ω → P such that

(1) Ti(∅) ∈ C0,

(2) Ti(s
_n) ∈ CT (s_n) ∩Di and Ti(s_n) ≤ Ti(s), if this is possible

(3) Ti(s
_n) ∈ CT (s_n) arbitrary else

1Clearly the distinction between dense and open dense is inessential here, as filters are up-
wards closed.

11



2. CLASSICAL RESULTS

for every s ∈ ω<ω, n ∈ ω.
Notice that for each i < κ and for each s ∈ ω<ω, the set {n ∈ ω : ∃q ≤

Ti(s)(q ∈ CT (s_n) ∩ Di)} is cofinite (as AT (s) ⊆∗ A(Ti(s), i)). Thus we can
define for every i < κ a function fi : ω<ω → ω so that ω \ fi(s) ⊆ {n ∈ ω :
∃q ≤ Ti(s)(q ∈ CT (s_n) ∩Di)} for every s.

As κ < p ≤ b, there is f : ω<ω → ω so that for every i < κ, f(s) ≥ fi(s)
for all but finitely many s ∈ ω<ω.

Define x : ω → ω by x(0) = f(∅) and x(n + 1) = f(x � n + 1). Now
for each i < κ, there is some n ∈ ω so that ∀m ≥ n(Ti(x � m) ∈ Di) and
〈Ti(x � m) : m ≥ n〉 is decreasing. Pick such n and let pi = Ti(x � n).

It suffices to show that {pi : i < κ} is linked. Let i, j < κ and n,m < ω,
so that pi = Ti(x � n) and pj = Tj(x � m). Wlog assume that n ≤ m. Then
Ti(x � m) ≤ pi and Ti(x � m) ∈ CT (x�m). But also pj ∈ CT (x�m) and CT (x�m) is
centered. Thus pj and pi are compatible.

In the following we give two applications of Bell’s Theorem. One is about
the cofinality of p, the other is about topology.

Theorem 2.2.2. p is regular.

Proof. Assume cf(p) = λ < p and B has the SFIP and no pseudointersection
and is of size p. Write B =

⋃
α<λ Bα, where |Bα| < p for each α < λ. We will

construct a tower 〈Cα : α < λ〉 so that each Cα is a pseudointersection of Bα.
This tower has to be maximal and puts a contradiction to p ≤ t.

The construction is done recursively. Along the recursion we assume induc-
tively that for each α < λ, {Cα} ∪ B has the SFIP. Suppose Cγ = {Cα : α < γ}
was already constructed. By assumption Cγ ∪ Bγ ∪ Bα has the SFIP for each
α < λ. Furthermore |Cγ ∪ Bγ ∪ Bα| < p, thus there is a pseudointersection Zα.

Let F be the filter generated by Cγ ∪ Bγ . We define a σ-centered poset
P as follows: P will consist of pairs (s,X) where s ∈ [ω]<ω and X ∈ F .
(s,X) ≤ (t, Y ) if t ⊆ s, s \ t ⊆ Y and X ⊆ Y . This forcing is usually
called Mathias forcing relative to the filter F . This is σ-centered because if
(s,X0), . . . , (s,Xn−1) are conditions with same first coordinate, then (s,X0 ∩
· · · ∩Xn−1) ≤ (s,Xi) for every i ∈ n.

Define the sets Dα,n for each n ∈ ω and α < λ as follows

Dα,n = {(s,X) ∈ P : ∃m ≥ n(m ∈ s ∩ Zα)}.

We show that each Dα,n is dense. For this let (s,X) be arbitrary. As Zα
was a pseudointersection of Cγ ∪Bγ every element of F has infinite intersection

12
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with Zα. In particular, there is m ≥ n so that m ∈ X \ s and we have that
(s ∪ {m}, X) ≤ (s,X) and (s ∪ {m}, X) ∈ Dα,n.

Further the sets EB = {(s,X) : X ⊆ B} for B ∈ Cγ ∪ Bγ are dense. Thus
let G be a filter intersecting all the sets in {Dα,n : n ∈ ω, α < λ} ∪ {EB :
B ∈ Cγ ∪ Bγ}. Then C =

⋃
{s ∈ [ω]<ω : ∃X((s,X) ∈ G)} is easily seen to

be a pseudointersection of Cγ ∪ Bγ and for any α < λ, Zα ∩ C is infinite. As
Zα was a pseudointersection of Cα, for every B ∈ Bα, C ∩ B is infinite. Thus
{C} ∪

⋃
α<λ Bα = {C} ∪ B has the SFIP. Let Cγ = C.

Remark. Theorem 2.2.2, and actually most applications of Theorem 2.2.1, can
also be proven using some clever applications of p ≤ b but Bell’s Theorem is a
really useful black box that makes these sorts of arguments straightforward for
someone used to forcing.

Definition 2.2.3. A subset A ⊆ X of a topological space X is called comeager
if it is the intersection of countably many open dense sets in X .

Theorem 2.2.4. Assume D is a collection of less then p many comeager subsets
in a second countable space X . Then the intersection of D is still comeager.

Proof. Let O be a countable base for X . Note that it suffices to the prove the
claim for D consisting only of open dense sets. So assume D is a collection of
less than p many open dense subsets of X . We define a σ-centered poset P as
follows. P consists of pairs (a,Y) where a is a finite subset ofO and Y is a finite
subset of D. We say that (a,Y) ≤ (b,X ) if b ⊆ a, X ⊆ Y and whenever O ∈
a \ b, then O ⊆

⋂
X . Then P is a σ-centered partial order. Consider the dense

sets ED = {(a,Y) ∈ P : D ∈ Y}, FO = {(a,Y) ∈ P : ∃O′ ∈ a(O′ ⊆ O)} for
D ∈ D and O ∈ O. It is trivial to check that the sets ED are dense in P. For FO
note that for finite X ⊆ D,

⋂
X is still open and dense.

Finally let G be a filter having non-empty intersection with all sets of the
form ED or FO. Let A =

⋃
{a ⊆ O : ∃X ((a,X ) ∈ G)}. Consider B =

{
⋃

(A \ a) : a ∈ [O]<ω,
⋃

(A \ a) is dense}. Then B is a countable collection
of open dense sets. We claim that for any D ∈ D, there is some finite a ⊆ O
so that

⋃
(A \ a) is a dense open subset of D. To see this, assume (b,X ) ∈ P is

such that D ∈ X . Let a = {O ∈ b : O 6⊆ D}.
Then

⋃
(A \ a) is dense: Let O ∈ O be arbitrary. Then there is U ∈ O so

that U ⊆ D ∩ O because D is open dense. Thus if (c,Y) ∈ FU ∩ G, there is
U ′ ⊆ U so that U ′ ∈ c and therefore U ′ ∈ A \ a.

13
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And
⋃

(A \ a) ⊆ D: If O ∈ A \ a, then there is (c,Y) ∈ G extending
(b,X ) so that O ∈ c. But then we have that either O ∈ c \ b and it follows that
O ⊆ D ∈ X (definition of ≤), or we have that O ∈ b \ a which also means that
O ⊆ D by definition of a.

Thus we have shown that the comeager set
⋂
B is a subset of every D ∈ D.

This proves the claim.

In the special case where X = 2ω is the Cantor space we have shown that
p ≤ add(M), where add(M) is the least size of a collection of comeager sets
(meager sets) with non-comeager (non-meager) intersection (union) in 2ω (or ωω

or equivalently any uncountable Polish space).

Corollary 2.2.5. p ≤ add(M).

We note that using a more sophisticated proof we can also show that t ≤
add(M) (see [4]). This will also follow from Theorem 3.4.2.

2.3 Rothberger’s Theorem
This section will give a first approximation to the much more general theorem
we will prove in the next chapter.

Theorem 2.3.1. Assume p = ω1 then also t = ω1.

This theorem was first implicitly proven by Rothberger in 1948 ([22]). It
is striking how short the proof of p = t is given the assumption that p = ω1.
The general case will require a much longer proof and has been found only sixty
years later.

Before we head to the proof of the theorem we show a lemma that is inter-
esting in its own right.

Lemma 2.3.2. Assume B ⊆ [ω]ω has the SFIP, |B| < d and C ⊆ B is countable.
Then there is X , a pseudointersection of C so that ∀Y ∈ B(|X ∩ Y | = ω).

Proof. Let C = {Cn : n ∈ ω} and define for every n ∈ ω, Dn := (
⋂
i≤nCi) \ n.

For eachB ∈ B we can define a function fB : ω → ω so that fB(n)∩Dn∩B 6= ∅
for every n ∈ ω. By assumption |B| < d, thus there is f ∈ ωω so that f 6<∗ fB
for every B. Let X =

⋃
n∈ωDn ∩ f(n).

First note that X ⊆∗ Cn for every n, because whenever m ≥ n, then Dm ∩
f(m) ⊆ Dm ⊆ Cn.
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Furthermore we have that for any B ∈ B, there are infinitely many n such
that fB(n) ≤ f(n) and thereby Dn ∩ fB(n) ⊆ Dn ∩ f(n). By definition of fB,
this means that for infinitely n there is m ≥ n so that m ∈ Dn ∩ B ∩ f(n) and
thus m ∈ X . We follow that |X ∩B| = ω.

The lemma has the following interesting corollary:

Corollary 2.3.3. Assume U is an ultrafilter generated by less than d many sets2.
Then U is a P-point.

Proof. Suppose C ⊆ U is countable and B is a base of size < d. By the lemma
there is X a pseudointersection of C so that X ∩ Y is infinite for every Y ∈ B.
Then X ∈ U as U is an ultrafilter.

Proof of Theorem 2.3.1. Assume B = {Bα : α < ω1} witnesses p = ω1, i.e. has
the SFIP but no pseudointersection. We can assume that B is closed under finite
intersections. Our goal will be to find a tower 〈Aα : α < ω1〉 which somehow
refines the family B and thus must also be maximal. More formally we will
construct a tower 〈Aα : α < ω1〉 so that for each α < ω1, Aα ⊆ Bα. Aiming
for a contradiction we may also assume p < t. Note that this means in particular
that p < d. In order to construct our sequence we require the following inductive
assumption on α:

∀B ∈ B(|Aα ∩B| = ω)

This will make sure that we can continue in successor steps. Our construction
goes as follows:

– A0 := B0, the inductive hypothesis is fulfilled.

– Aα+1 = Aα ∩ Bα+1, then |Aα+1 ∩B| = |Aα ∩Bα+1 ∩B| = ω for any
B ∈ B.

– For α a limit ordinal, apply Lemma 2.3.2 to get X a pseudointersection
hitting all B ∈ B. Note that α is countable. Finally let Aα = X ∩Bα.

2There are models in which u, the least size of an ultrafilter base, is strictly below d. In fact
u = κ < d = λ is consistent for arbitrary regular uncountable κ < λ, see [6].
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Note that the proof above is actually a proof by contradiction. Thus, although
it tells us that there is some tower of size p, in general it doesn’t tell us how to
find it. Still we can observe that the proof does tell us something important.

Definition 2.3.4. Assume B has the SFIP. We say that a tower 〈Aα : α < κ〉
refines B if for any B ∈ B there is α < κ so that Aα ⊆∗ B.

Note that if X is a pseudointersection of B, then 〈X〉 is a tower refining B.
The essence of Theorem 2.3.1 is actually the following.

Proposition 2.3.5. Assume B has the SFIP and is of size ω1, where ω1 < d.
Then there is a tower refining B.

In general, without assuming p < d, there does not need to be a refining
tower for a given witness of p.

Observation 2.3.6. There is a family B ⊆ [ω]ω with the SFIP of size d, with no
refining tower.

Proof. Let D ⊆ ωω be a dominating family. For any f ∈ D we define the set
Bf = {(n,m) ∈ ω × ω : f(n) ≤ m} and for i ∈ ω we let Ci = {(n,m) ∈
ω × ω : i ≤ n}. Then {Ci : i ∈ ω} ∪ {Bf : f ∈ D} has the SFIP. But whenever
X is a pseudointersection of {Ci : i ∈ ω}, then there is f ∈ D so that f(n) >
max{m : (n,m) ∈ X} for almost all n and in particular |X ∩Bf | < ω.

We will later show (at the end of Section 3.4) that this example is somehow
optimal. More precisely, we will show that is consistent assuming p = b = κ <
d = λ that every witness for p has a refining tower, where κ and λ are arbitrary
regular uncountable cardinals.
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Chapter 3

The proof of p = t

The following proof of p = t is entirely based on the proof given by Malliaris
and Shelah in [17]. In [17] a theory of “cofinality spectrum problems” is de-
velopped, whose initial goal was to solve problems in Model Theory related to
Keisler’s order on ultrafilters. But it turned out that this framework, together
with preceding work by Shelah in [26], could be used to settle the question of
whether p = t.

Here our goal is not to present the whole framework developped by Malliaris
and Shelah, but to focus only on what is needed to understand the proof of p = t.
This has the advantage that a lot of the proofs in [17] get simplified because we
only need to consider a very special case. On the other hand this has the side
effect that some of our theorems will become valueless once we have proven
p = t, because they start with the assumption that p < t (especially the main
Theorem 3.3.6).

Let us give an overview of the argument. In the first section, we show how
to attempt a general proof of p = t based on the idea for the special case where
p = ω1 (Theorem 2.3.1). Analyzing where this attempt might break, will lead to
another question that we reduce to a problem related to special gaps in (ωω, <∗).
In order to solve this problem we work in an ultrapower of HF by a generically
added ultrafilter. The reason for this is that the gap problem we want to solve
can be translated to a problem about the linear order of the ultrapower’s version
of the naturals. It can be shown that the ultrapower has nice saturation properties
which allow for special constructions that will be used throughout. Finally The-
orem 3.3.6 will settle the question about the gaps in (ωω, <∗). We can conlude
that indeed p = t.

Before we get to the actual proof let us remark that the use of ultrapowers
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3. THE PROOF OF p = t

and forcing as outlined above is in no way essential. It is definitely possible to
translate the argument into a purely combinatorial one that can be squeezed in a
few pages. But we felt that this would make the proof more difficult to follow,
unless it was built on a completely new idea. Ultrapowers and forcing here realy
just provide us with a language that most of us are already fluent in.

3.1 Reducing the problem
This section is based on [26].

How would one go about proving p = t? Remember the proof of p = ω1 →
t = ω1. There we took a witness B = {Bα : α < ω1} for p = ω1 and we
used it to construct a tower which somehow refines the family B. Additionaly
we assumed p < t to get a contradiction. So what goes wrong if p = λ > ω1?
It was crucial that each limit step of the construction was of countable cofinality
in order to apply p < d.

Let’s just informally try again to construct the sequence 〈Aα : α < λ〉 by
induction on α. Again we will make the additional (necessary) inductive hy-
pothesis that ∀β < λ, |Aα ∩Bβ| = ω.

– For α = 0 just take Aα = ω, the inductive hypothesis is fulfilled.

– For α+1, take Aα+1 = Aα∩Bα which is infinite by the inductive hypoth-
esis.

– What to do at a limit step γ?

On one hand we want to get a “small” set, i.e. Aγ ⊆∗ Aα for every α < γ, on
the other hand we wantAγ to be big enough to have unbounded intersection with
all Bβ . Whenever γ has countable cofinality and we assume p < t in order to
get a contradiction, we can apply Lemma 2.3.2. So the interesting and difficult
cases are when γ has uncountable cofinality. By passing to a subsequence we
could also assume wlog that γ = κ is a regular cardinal. So our actual question
is the following:

Question. Assume κ < λ = p < t, where κ is a regular uncountable cardinal.
Assume {Bα : α < λ} has the SFIP and 〈Aα : α < κ〉 is a tower so that Aα∩Bβ

is infinite for every α < κ, β < λ. Is there an Aκ ∈ [ω]ω so that

– ∀α < κ(Aκ ⊆∗ Aα)
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– ∀β < λ(|Aκ ∩Bβ| = ω) ?

We are going to reduce this question to another one. For the rest of this
section assume p = λ < t, {Bβ : β < λ} has the SFIP and 〈Aα : α < κ〉 is a
tower with Aα ∩Bβ infinite for all α, β, where κ is regular.

Definition 3.1.1. Let S := {s : s : X → 2<ω where X ∈ [ω]ω}. For s ∈ S let
set(s) :=

⋃
n∈dom s{n+ i : s(n)(i) = 1}. We write s ≤∗ s′ iff dom s′ ⊆∗ dom s

and ∀∞n ∈ dom s(s(n) ⊆ s′(n)).

Lemma 3.1.2. There is a sequence 〈sβ : β < λ〉 in S so that ∀β < λ:

(1) ∀β < β′(sβ ≤∗ sβ′),

(2) ∀α < κ(set(sβ) ⊆∗ Aα), i.e. set(sβ) is a pseudointersection of 〈Aα : α <
κ〉,

(3) ∀∞n ∈ dom sβ∃i ∈ dom sβ(n)[sβ(n)(i) = 1 ∧ n+ i ∈ Bβ].

Proof. The sequence is constructed recursively. Assume 〈sβ : β < δ〉 is given
(possibly δ = 0). Then define a poset Pδ consisting of pairs (s,Y) where

– s : dom s→ 2<ω, dom s ∈ [ω]<ω

– ∀n ∈ dom s∃i[s(n)(i) = 1 ∧ n+ i ∈ Bδ]

– Y ∈ [δ ∪ κ]<ω

(s,Y) ≤ (s′,Y ′) iff s ⊇ s′, Y ⊇ Y ′ and for n ∈ dom s \ dom s′ and for
α ∈ Y ′ the following holds:

– if α < κ then {n+ i : s(n)(i) = 1} ⊆ Aα

– if α < δ then n ∈ dom sα and sα(n) ⊆ s(n).

Pδ is clearly σ-centered and the setsDα := {(s,Y) : α ∈ Y} are dense. Also
the sets Ek := {(s,Y) : ∃m ≥ k(m ∈ dom s)} for k ∈ ω are dense. Because
consider (s,Y) ∈ Pδ with dom s ⊆ k. Let m ≥ k be so that ∀n ≥ m∀α, β ∈ Y:

– if α < κ, β < δ and n ∈ dom sβ then {n+ i : sβ(n)(i) = 1} ⊆ Aα

– if α < β < δ and n ∈ dom sβ then n ∈ dom sα and sα(n) ⊆ sβ(n)

19



3. THE PROOF OF p = t

– if α < β < κ then Aβ \ n ⊆ Aα

Let β := maxY ∩ δ and n ∈ dom sβ , n ≥ m. Also let α := maxY ∩ κ.
Extend sβ(n) ∈ 2<ω to σ ∈ 2<ω, so that {n + i : σ(i) = 1} ⊆ Aα and
{n + i : σ(i) = 1} ∩ Bδ 6= ∅. This is possible because by assumption Aα ∩ Bδ

is infinite.
Put s′ = s ∪ {(n, σ)}. Then (s′,Y) ≤ (s,Y).
We have that |{Dα : α < δ ∪ κ} ∪ {Ek : k ∈ ω}| < λ = p. Thus by The-

orem 2.2.1 there is a filter G on Pδ that intersects all these dense sets. Let
sδ :=

⋃
p∈G dom p. It is clear that (1), (2) and (3) hold true.

Given a sequence 〈sβ : β < λ〉 as in Lemma 3.1.2, let X ⊆∗ dom sβ for all
β < λ. This is possible because we assumed λ = p < t (and this is the first time
we use this assumption).

Then define for each β < λ a function dβ : X → ω, dβ(n) = lth sβ(n) if
this is defined (which is the case for almost every n) and dβ(n) = 0 else.

As λ < t ≤ b, there is a function d : X → ω so that for all β < λ, dβ <∗ d.

Now consider for each β < λ the sets Snβ := {〈n, σ〉 : σ ∈ 2<d(n), σ ⊇
sβ(n)} and Sβ :=

⋃
n∈X S

n
β . We have

∀β < α < λ(Sα ⊆∗ Sβ).

Because let m be so that ∀n ∈ X \ m, sβ(n) ⊆ sα(n), then ∀n ∈ X \ m,
Snα ⊆ Snβ .

Let S ⊆∗ Sβ for all β < λ and find s ∈ S with ∀n ∈ dom s(〈n, s〉 ∈ S).

Define for every α < κ, fα : dom s→ ω by

fα(n) = max{k < d(n) : {n+ i : s(n)(i) = 1 ∧ i < k} ⊆ Aβ}

Define for every β < λ, gβ : dom s→ ω by

gβ(n) = min{i < d(n) : s(n)(i) = 1 ∧ n+ i ∈ Bβ}

Then ∀α < κ,∀β < λ,
gβ <

∗ fα

Because let m be so that ∀n ∈ dom s \m
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– lth(sβ(n)) < d(n)

– {n+ i : sβ(n)(i) = 1} ⊆ Aα

– {n+ i : sβ(n)(i) = 1} ∩Bβ 6= ∅

– sβ(n) ⊆ s

then clearly ∀n ∈ dom s \m, gβ(n) < lth sβ(n) ≤ fα(n).

Lemma 3.1.3. Assume there is X ∈ [dom s]ω and h : X → ω so that ∀α <
κ,∀β < λ, gβ � X <∗ h <∗ fα � X . Then there is Aκ ∈ [ω]ω so that

– ∀α < κ(Aκ ⊆∗ Aα)

– ∀β < λ(|Aκ ∩Bβ| = ω)

Proof. Let Aκ :=
⋃
n∈X{n + i : i ≤ h(n) ∧ s(n)(i) = 1}. If α < κ then as

h <∗ fα � X , we have that ∀∞n ∈ X ,

{n+ i : i ≤ h(n) ∧ s(n)(i) = 1} ⊆ {n+ i : i < fα(n) ∧ s(n)(i) = 1} ⊆ Aα.

And if β < λ then, as gβ � X <∗ h, ∀∞n ∈ X,

{n+i : i ≤ h(n)∧s(n)(i) = 1}∩Bβ ⊇ {n+i : i ≤ gβ(n)∧s(n)(i) = 1}∩Bβ 6= ∅

This mirrors the intuition we already gave once before: We want to find a set
which is small enough to be a pseudointersection of the Aα (h <∗ fα) but big
enough to hit all Bβ (gβ <∗ h).

We now get the following proposition:

Proposition 3.1.4. Assume λ = p < t. Then there is some κ < λ regular,
F ⊆ ωω and G ⊆ ωω with

– |F| = κ

– |G| = λ

– ∀f ∈ F ,∀g ∈ G(g <∗ f)
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so that there is no X ∈ [ω]ω and h : X → ω with ∀f ∈ F , ∀g ∈ G(g � X <∗

h <∗ f � X).

Proof. Assume λ = p < t and the conclusion of the proposition fails. Then,
given a family {Bβ : β < λ} with the SFIP but no pseudointersection, we could
construct a maximal tower 〈Aα〉α<λ of length λ using the construction described
above. But this clearly contradicts λ < t.

In [26], Shelah actually showed something stronger. Namely we can get
F = 〈fi : i < κ〉 to be a decreasing, G = 〈gi : i < λ〉 an increasing sequence
with respect to <∗ so that ∀h ∈ ωω[∀i < κ(h <∗ f) → ∃j < λ(h <∗ gj)]
and ∀h ∈ ωω[∀i < λ(gi <

∗ h) → ∃j < κ(fj <
∗ h)]. This was called a

(λ, κ)-peculiar cut. Furthermore it can be shown that the existence of a (p, κ)-
peculiar cut for κ < p is independent of ZFC (see [28]). This stronger form of
Proposition 3.1.4 will not be needed.

3.2 The generic ultrapower of HF

Definition 3.2.1. HF is the set of hereditarily finite sets. We denote with HF
the structure (HF,∈).

The following facts are easy and well known.

Lemma 3.2.2. Assume G is ([ω]ω,⊆∗)-generic over V. Then the following hold
true:

– ([ω]ω,⊆∗) is t-closed,

– thus V and V[G] have the same reals,

– and V and V[G] have the same < t-length sequences of reals,

– pV[G] = pV, tV[G] = tV,

– G generates an ultrafilter U on ω in V[G].

Theorem 3.2.3. Assume G is ([ω]ω,⊆∗)-generic over V and U ∈ V[G] is the
ultrafilter generated by G. In V[G] let HF∗ := HFω/U be the ultrapower of
HF using U . Then HF∗ is p saturated.
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For the definition of saturation we refer to the preliminaries section of the
introduction (1.1).

Proof. Assume p(x) is a type of size < p and assume wlog that it is closed
under conjunctions. Work in V. Then p(x) is an object in V by t closedness of
([ω]ω,⊆∗).

Let A ∈ G force that p(x) is finitely realized in HF∗. This means that
∀ϕ(x, ā) ∈ p(x) and ∀∞n ∈ A, HF |= ∃xϕ(x, ā(n)) (ā are the parameters
occurring in ϕ). Why? Because if there was an infinite set B ⊆ A and ϕ(x, ā) ∈
p(x) so that ∀n ∈ B, HF 6|= ∃xϕ(x, ā(n)), then B would force that p(x) is not
finitely realized and hence A couldn’t force it is.

In order to make a genericity argument, let B ⊆∗ A be arbitrary. Define a σ-
centered poset consisting of pairs (s,Y) where s is a finite partial function from
B toHF and Y ∈ [p(x)]<ω. The extension relation is defined by (s,Y) ≤ (t,X )
iff s ⊇ t, Y ⊇ X and ∀n ∈ dom s\dom t, ∀ϕ(x, ā) ∈ X , HF |= ϕ(s(n), ā(n)).
Applying Theorem 2.2.1 to the dense sets Dn := {(s,Y) : max dom s > n}
and Eϕ := {(s,Y) : ϕ ∈ Y} we get a function f : C → HF where C ⊆ B,
|C| = ω and ∀ϕ(x, ā) ∈ p(x), ∀∞n ∈ C, HF |= ϕ(f(n), ā(n)). We can extend
f arbitrarily to a function ω → HF and it is obvious that C 
 [f ] ∈ HF∗

realizes p(x).

Remark. The above theorem applies to HF replaced by any countable model.

Theorem 3.2.4. Let HF∗ be as in Theorem 3.2.3 and δ < t.
Let T ∈ HF∗ be a partial order, i.e. HF∗ |= ϕ(T ) where ϕ(x) is a formula in
the language {∈} expressing that x is a partial order.
Let 〈sα : α < δ〉 be an increasing sequence in T , i.e. ∀α < δ(HF∗ |= sα ∈ T )
and ∀α < β < δ(HF∗ |= sα ≤T sβ).
Then 〈sα : α < δ〉 has an upper bound s, i.e. ∀α < δ(HF∗ |= sα ≤T s).

Proof. We have that 〈sα : α < δ〉 ∈ V and T ∈ V. Each sα is a function from
ω to HF so we will write sα(n) for the n’th component 1. The same applies to
T and Tn = T (n).

LetA ∈ U force that T is a partial order and that 〈sα : α < δ〉 is increasing in
T . This means that ∀α < β, ∀∞n ∈ A, Tn is a (finite) partial order, sα(n) ∈ Tn
and sα(n) ≤Tn sβ(n).

1Formally the elements of HF∗ are equivalence classes but we will always treat them as
specific representatives for their class.
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Now consider for each α < δ the set

Sα := {(n, x) : n ∈ A ∧ x ∈ Tn ∧ sα(n) ≤Tn x}

It is clear that Sβ ⊆∗ Sα when α < β. So let S ⊆∗ Sα for every α < δ be an
infinite set. As Tn ∈ HF is finite, it must be that domS is infinite. Pick for each
n ∈ domS a xn so that (n, xn) ∈ S. Let C := domS, s : ω → HF a function
so that s(n) = xn when n ∈ C. Then C 
 [s] is an upper bound of 〈sα : α < δ〉
in T .

The last two theorems express that both, p and t, are related to a sort of
saturation property in the structure HF∗.

3.3 Cuts in the generic ultrapower of HF

We have discussed in the last section some properties of the ultrapower of HF
by a generic ultrafilter. Throughout this section we fix a ([ω]ω,⊆∗)-generic G
over V and we let HF∗ be as before.

Definition 3.3.1. Let (X,<) be a linear order. Let {ai : i < δ}, {bα : α < γ} ⊆
X . Then (〈ai : i < δ〉, 〈bα : α < γ〉) is a ((δ, γ)-) precut if

– 〈ai : i < δ〉 is strictly increasing in X

– 〈bα : α < γ〉 is stricly decreasing in X

– ∀i < δ,∀α < γ(ai < bα)

It is filled if ∃x ∈ X, ∀i < δ,∀α < γ(ai < x < bα). If it is not filled we call it a
((δ, γ)-) cut.

Notice that whenever {ai : i ≤ δ} is a strictly increasing sequence in a linear
order X (so it has an upper bound aδ), we can always find a strictly decreasing
sequence {bα : α < γ} so that (〈ai : i < δ〉, 〈bα : α < γ〉) is a cut. Moreover
when γ is infinite, if we pass to a cofinal subsequence 〈αi : i < cf(γ)〉 of γ, then
(〈ai : i < δ〉, 〈bαi : i < cf(γ)〉) is a cut.

We are going to be interested in cuts in the linear order N∗ := (N)HF∗ , that
is, in the natural numbers of HF∗.

Definition 3.3.2. We let C := {(κ, λ) : κ, λ are regular and there is a (κ, λ) cut in N∗}

24



3.3. Cuts in the generic ultrapower of HF

Basic facts
Notice the following very easy observation about C:

Lemma 3.3.3. For all regular κ, λ, (κ, λ) ∈ C iff (λ, κ) ∈ C.

Proof. When (〈ai : i < κ〉, 〈bα : α < λ〉) is a cut in N∗ then ({b0 − bα : α <
λ}, {b0 − ai : i < κ}) is also a cut. For this just notice that in N, if x < y ≤ z
then z − x > z − y ≥ 0.

Lemma 3.3.4. There are no κ, λ < p so that (κ, λ) ∈ C.

Proof. Apply the p-saturation of HF∗ (Theorem 3.2.3). More precisely, given
a precut (〈ai : i < κ〉, 〈bα : α < λ〉) in N∗ define the type p(x) containing
formulas expressing:

– x is a natural number

and for all i < κ, α < λ:

– ai < x

– x < bα

This type is finitely realized and of size < p. Thus the precut (〈ai : i < κ〉, 〈bα :
α < λ〉) is filled.

Uniqueness
Theorem 3.3.5. Let κ ≤ p and κ < t. Then there is a unique λ so that (κ, λ) ∈
C.

Proof. For the existence just notice that we can find a strictly increasing se-
quence 〈ai : i < κ〉 ∈ N∗ with an upper bound using κ < t ≤ b.

For the uniqueness assume (κ, λ) ∈ C and (κ, λ′) ∈ C and assume λ 6= λ′.
This means that there is

– (〈ai : i < κ〉, 〈bα : α < λ〉) a cut in N∗

– (〈a′i : i < κ〉, 〈b′α : α < λ′〉) a cut in N∗
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3. THE PROOF OF p = t

Let b := b0 and b′ := b′0. Also let n∞ be a distinguished element of N∗ so
that HF∗ |= k < n∞ for every standard natural number k ∈ ω. Let T be the tree
consisting of s ∈ (b× b′)n for n < n∞ which are increasing in both coordinates,
i.e. ∀m < m′ < n[s(m)(0) ≤ s(m′)(0) ∧ s(m)(1) ≤ s(m′)(1)].

We are going to construct an increasing sequence 〈si : i < κ〉 in T so that,
putting ni := max dom si: si(ni)(0) = ai, si(ni)(1) = a′i and for each k ∈ ω,
ni < n∞−k. This last property will be used to be able to continue our recursion
in the successor step.

– For i = 0, let ni = 0, si(0)(0) = a0 and si(0)(1) = a′0.

– For i = j+ 1 let si = sj
_(ai, a

′
i). This works because then ni = nj + 1 <

n∞ − k for each k.

– For i limit, first apply Theorem 3.2.4 to get an upper bound s of 〈sj : j <
i〉. Let n := max dom s. Consider the precut (〈nj : j < i〉, 〈n − k : k ∈
ω〉). By Lemma 3.3.4 it is filled, say by m. Now let s′ := s � m and let
si := s′_(ai, a

′
i). By construction ni = m < n − k ≤ n∞ − k for every

k ∈ ω.

Finally let s be an upper bound of 〈si : i < κ〉 in T and n := max dom s.
This again exists by Theorem 3.2.4 because we assumed κ < t. Consider

– lα := max{m ≤ n : s(m)(0) ≤ bα} for α < λ

– l′α := max{m ≤ n : s(m)(1) ≤ b′α} for α < λ′

Notice that these sequences are decreasing and they can’t be eventually con-
stant (else we could fill our initial cut). Thus we can pass to strictly decreasing
subsequences 〈mα : α < λ〉, 〈m′α : α < λ′〉.

Then we have that both (〈ni : i < κ〉, 〈mα : α < λ〉) and (〈ni : i < κ〉, 〈m′α :
α < λ′〉) are cuts. But then 〈mα : α < λ〉 is coinitial in 〈m′α : α < λ′〉 and
vice-versa. So λ = λ′ by regularity.

No cuts below p

The following is the main theorem of the proof of p = t and corresponds to
Theorem 8.5 in [17].

Theorem 3.3.6. Suppose κ < p < t. Then (κ, p) /∈ C.
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3.3. Cuts in the generic ultrapower of HF

Since the proof is much more technical than the ones before, we will first give
an informal proof in which we describe the setting that will later be constructed
formally.

Informal proof. The proof is by contradiction. Let p = λ and assume that
(κ, λ) ∈ C. This means that there is a cut (〈ai〉i<κ, 〈bα〉α<λ) in N∗. This cut
is represented in the following picture:

. . . . . . . . . . . . b0b1b3a0 a1 a2 ai bα

We imagine a set of points on this line living below b0. We are going to push
these points more and more to the left, but while doing so we make sure that if
two points were initialy some distance appart, they will still stay at least this far
from each other. While moving the points we will also constantly add new ones.
And also these new points need to preserve the initial distance they had to other
points when they were first added.

. . .
y0y1y0y1y2y0y1y2 y3

b0b1b3
a0 a1 a2 ai

bα

Thus we carefully move points more and more to the left while adding new
ones and impose distances between the points to be preserved. This process
is carried out for λ many steps and at each step α < λ the points will live only
below bα. Then Theorem 3.2.4 will tell us that we can find a limit of this process.
Furthermore we will have pushed the points so far to the left whereupon every
point has to be completely below all the bα. As (〈ai〉i<κ, 〈bα〉α<λ) was a cut this
means each point lives now below some ai. By a pigeonhole argument a lot of
them can be found below one fixed ai. But they also still need to be far appart
from each other and the way we introduced them tells us that there is simply no
place for that many points to live below ai and still obey the distance imposition.
This leads to a contradiction.

We now give the real proof and hope that the informal one is helpful to the
reader in order to get a clearer picture of the definitions and notation that is to
come.
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3. THE PROOF OF p = t

Proof. Fix for the whole proof κ < p = λ and assume that (κ, λ) ∈ C.

Claim 1. There is a cut (〈ai〉i<κ, 〈bα〉α<λ) in N∗ with the additional property
that:

– ∀j < i < κ(2 · ai > aj).

For technical reasons we will use a cut of this special form.

Proof of Claim 1. Using κ < b construct a sequence 〈fi : i < κ〉 in ωω so that
∀i < j < κ, ∀∞n ∈ ω(2 · fi(n) < fj(n)). This induces a sequence 〈ai〉i<κ in N∗
with the required property. We can then find 〈bα〉α<λ′ strictly decreasing so that
(〈ai〉i<κ, 〈bα〉α<λ′) is a cut and λ′ regular. By Theorem 3.3.5, λ′ = λ.

Let (〈ai〉i<κ, 〈bα〉α<λ) be according to Claim 1. As before, we fix a distin-
guished element n∞ so that k < n∞ for every standard natural number k ∈ ω,
i.e. n∞ is “big enough” for our purposes.

In order to implement the picture given in the informal proof above, we make
the following definitions:

Let F ∈ HF∗ be the tree (or rather, what HF∗ thinks is the tree) consisting
of x : n→ (b0 + 1)⊆n∞ for n < n∞ ((b0 + 1)⊆n∞ is the set of partial functions
from n∞ to b0 + 1 = {a ∈ N∗ : a ≤ b0}). Thus an element of F is a sequence
of functions from a subset of n∞ to b0 + 1. x is below y in this tree if ∀n ∈
domx(x(n) = y(n)). As usual, we write lthx for the (possibly nonstandard)
natural number n which equals the domain of x.

We imagine the position of points on the line N∗ to be coded by a function
that maps “names” or “labels” for the points to their position. In our case these
labels are simply numbers below n∞. The process of moving points and adding
new ones (maybe even removing old ones) is then captured by a sequence of
such functions, i.e. an element of F . In the informal proof we also indicated that
we want certain distances to be preserved along this process. This leads us to the
following definitions:

For x ∈ F defineD(x) :=
⋃
n<lthx domx(n). Furthermore define the partial

function dx : [D(x)]2 → n∞ as dx(a, b) := |x(n)(a)− x(n)(b)| where n :=
min{m < lthx : {a, b} ⊆ domx(m)} whenever this is defined. This is the
distance of the images of a, b when they first appeared (if this ever happened) in
the domain of a function in the sequence of functions x.
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3.3. Cuts in the generic ultrapower of HF

Coming back to the analogy of our informal proof, D(x) is the set of all
possible (labels of) points that appeared somewhere in x. dx(a, b) is the distance
of the points a, b when they first appeared together (if they ever did).

Remember that all the defitions above are made internally in HF∗. We hope
this will always be clear enough from context.

Now let T ∈ HF∗ be the definable subtree of F which consists of all x ∈ F
with the additional property that:

(a) ∀a, b ∈ D(x), ∀n < lthx({a, b} ∈ dom dx ∧ {a, b} ⊆ domx(n) →
|x(n)(a)− x(n)(b)| ≥ dx(a, b))

(b) ∀n < m < lthx[max ranx(m) ≤ max ranx(n)].

(a) says that the first appearance of a and b sets a lower bound on the later
distances between the images of a and b (i.e. the points labeled by a and b).

(b) says that in the sequence x, the range of some function sets an upper
bound on the ranges of later functions.

Claim 2. There is a function g : [κ+]2 → κ so that for any W ∈ [κ+]κ
+ , g′′[W ]2

is unbounded in κ.

Proof. For any α < β, define g(α, β) according to a bijection β → κ. Then,
given W ∈ [κ+]κ

+ , there is β ∈ W so that |W ∩ β| = κ. But then {g(α, β) :
α ∈ W ∩ β} is clearly unbounded in κ.

Fix such a function g.

Claim 3. There are increasing sequences 〈sα : α < λ〉 in T , 〈nα : α < λ〉 and a
set {yα : α < κ+}, so that for all α < λ the following properties hold true of the
sequence 〈sβ : β ≤ α〉:

(1) nα = max dom sα

(2) if α < κ+, then yα ∈ dom sα(nα)

(3) if β < α ∩ κ+, then {γ ≤ α : yβ ∈ dom sα(nγ)} = [β, α]

(4) if α < κ+, then for all β < α, ag(α,β) ≤ dsα(yα, yβ) < ai for some i < κ

(5) ran sα(nα) ⊆ bα + 1 ∧ bα ∈ ran sα

(6) D(sα) < n∞ − k for every k ∈ ω
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3. THE PROOF OF p = t

Proof of Claim 3. We construct 〈sα : α < λ〉 and {yα : α < κ+} recursively in
λ steps. The construction of the yα will be finished after the first κ+ many steps
(notice that κ+ = λ might be the case).

For α = 0, take sα = s, where dom s = {0} and s(0) maps 0 to b0. yα = 0,
nα = 0. (1)-(6) are clearly fulfilled.

For 0 < α < λ, first let s be an upper bound for 〈sβ : β < α〉 and n :=
max dom s. We can assume that |D(s)| < n∞ − k for every standard k ∈
ω (Consider ({nβ : β < α}, {nk : k < ω}) where nk := max{m ≤ n :
|D(s � m)| < n∞ − k} and apply Lemma 3.3.4).

Similarly we can assume that n < n∞ − k for every k ∈ ω.
Furthermore we can also assume that ∀m ≤ n, ran s(m) 6⊆ bα (Let n′ :=

max{m ≤ max dom s : ran s(m) 6⊆ bα}, which exists and is greater than ev-
ery nβ for β < α by induction hypothesis (5) and (b). Then consider s � (n′+1)).

Our goal will now be to extend s with one new function f on top so that
the inductive assumptions hold true. The construction of f will be split into two
cases:

Case 1: α < κ+.
Then |α| ≤ κ. We first find a function H : α→ κ so that:

– ∀β, β′ < α[
∣∣aH(β) − aH(β′)

∣∣ > ds(yβ, yβ′)]

– ∀β < α[aH(β) > ag(α,β)]

To construct H fix a bijection B : |α| → α. Assume H(B(ξ)) has been con-
structed for all ξ < γ < |α|. Note that for each ξ < γ, there is i < κ so that
ds(yB(γ), yB(ξ)) < ai − aH(B(ξ)). This is because by (4), ds(yB(γ), yB(ξ)) < aj
for some j and thus if we let i′ = max{j,H(B(ξ))} and i = i′ + 1, then
ai − aH(B(ξ)) ≥ ai − ai′ > ai′ ≥ aj > ds(yB(γ), yB(ξ)) (remember that ai >
2 · ai′). As γ < |α| ≤ κ, we find that there is a large enough i < κ so that
ds(yB(γ), yB(ξ)) < ai − aH(B(ξ)) for every ξ < γ and ag(α,B(γ)) < ai. Define
H(B(γ)) = i. Then our requirements are fulfilled.

Now let yα and y be arbitrary different elements in n∞ \D(s). It is possible
to chose them because |D(s)| < n∞ − 2. Consider the following type in the
variable f :
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3.3. Cuts in the generic ultrapower of HF

(i) f ∈ b⊆n∞0

for every β < α:

(ii) yβ ∈ dom f and f(yβ) = aH(β)

(iii) yα ∈ dom f and f(yα) = 0

(iv) y ∈ dom f and f(y) = bα

(v) ran f ⊆ bα + 1

(vi) ∀a, b ∈ D(s)({a, b} ∈ dom ds ∧ {a, b} ⊆ dom f → |f(a)− f(b)| ≥
ds(a, b))

for every k ∈ ω

(vii) |D(s) ∪ dom f | < n∞ − k

This type has size less than λ and it is finitely satisfiable:
Let Γ ∈ [α]<ω and consider the function g with dom g = {yβ : β ∈

Γ} ∪ {yα, y}, g(yα) = 0, g(y) = bα and g(yβ) = aH(β). Then ran g ⊆ bα + 1
and |D(s) ∪ dom g| = |D(s)|+ 2 < n∞ − k for every k ∈ ω. (vi) holds true by
the way we defined the function H .

Let f realize this type and let sα := s_f , nα := n+ 1.
First sα ∈ T : (a) holds true because of (vi). (b) is true because max ran f =

bα ≤ max ran s(n) ≤ max ran s(m) for any m ≤ n.
Secondly sα satisfies (1)-(6). (1)-(3), (5) and (6) are trivial to check. (4) is

true because of (ii),(iii) and the way we chose H .

Case 2: α ≥ κ+.
In particular κ+ < λ = p and all yβ are already defined. Let y ∈ n∞ \D(s) be
arbitrary. Again define a type:

(i) f ∈ b⊆n∞0

for all β < κ+

(ii) yβ ∈ dom f

(iii) ran f ⊆ bα + 1 and f(y) = bα
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3. THE PROOF OF p = t

(iv) ∀a, b ∈ D(s)({a, b} ∈ dom ds ∧ {a, b} ⊆ dom f → |f(a)− f(b)| ≥
ds(a, b))

for every k ∈ ω

(v) |D(s) ∪ dom f | < n∞ − k

This type has size κ+ < λ and it is finitely satisfiable:

Let Γ = {β0 < · · · < βk} ∈ [κ+]<ω and i < κ so that max{ds(yβ, y′β) :
β, β′ ∈ Γ} < ai (by (4)). Define the function g with dom g := {yβ : β ∈
Γ}∪{y}, g(yβl) := l·ai for l ≤ k and g(y) = bα. (i)-(iii) are clear. (iv) is because
y /∈ D(s) and for l < l′,

∣∣g(yβl)− g(yβl′ )
∣∣ ≥ (l′ − l) · ai ≥ ai > ds(yβl , yβl′ ).

(v) is because |D(s) ∪ dom g| = |D(s)|+ 1 < n∞ − k for every k ∈ ω.

Let f satisfy this type and let sα := s_f , nα = n + 1. Again sα ∈ T and
(1)-(6) are trivial to check.

Let 〈sα : α < λ〉, 〈nα : α < λ〉 and {yα : α < κ+} be given by Claim 3.
As λ < t there is an upper bound s of 〈sα : α < λ〉 in T . Let m = lth s. Then
by Theorem 3.3.5 there is a decreasing sequence 〈mi : i < κ〉 below m so that
(〈nα : α < λ〉, 〈mi : i < κ〉) is a cut in X .

For any β < κ+ let l(β) := min{i < κ : yβ ∈ dom s(mi)}. This is
well defined because else if we define in HF∗, m := max{m ≥ nβ : yβ ∈
dom s(m)} then m would fill (〈nα : α < λ〉, 〈mi : i < κ〉).

By the pigeonhole principle there is an unbounded subset W ⊆ κ+ on which
l is constant, say with value i. But now notice that ran s(mi) ⊆ aj for some
j < κ because by the definition of T , max ran s(mi) ≤ max ran s(nα) ≤ bα for
every α < λ and (〈ai〉i<κ, 〈bα〉α<λ) was a cut. We also have that g is unbounded
on [W ]2, so there are β < β′ ∈ W so that g(β, β′) > j. Also by definition of T ,
|s(mi)(yβ)− s(mi)(yβ′)| ≥ ds(yβ, yβ′) ≥ ag(β,β′) > aj , which is contradicting
ran s(mi) ⊆ aj .

3.4 Concluding p = t

Theorem 3.4.1. Assume p = λ < t and assume κ < λ is regular, F ⊆ ωω and
G ⊆ ωω with

– |F| = κ
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– |G| = λ

– ∀f ∈ F ,∀g ∈ G(g <∗ f)

Then there is X ∈ [ω]ω and h : X → ω so that ∀f ∈ F ,∀g ∈ G(g � X <∗ h <∗

f � X).

Proof. Let G be ([ω]ω,⊆∗) generic over V. Then κ is still regular, and |F| = κ,
|G| = λ still hold true. Form the generic ultrapower of HF using G. Every
f ∈ F and g ∈ G can be interpreted as a natural number in HF∗ and we have that
HF∗ |= g < f . By applying the results of the last sections we can find h ∈ HF∗

so that h fills a precut given by F and G (define a sequence that is cofinal in G
and one that is coinitial in F). This means that HF∗ |= g < h < f for every
f ∈ F , g ∈ G. This statement must be forced by some X ∈ [ω]ω (remember that
the forcing didn’t add reals, so h ∈ V). But then g � X < h � X < f � X has
to hold true for every f ∈ F , g ∈ G because else we could pass to an extension
of X that forces the contrary.

Theorem 3.4.2. p = t.

Proof. Assume that p < t. Then Theorem 3.4.1 and Proposition 3.1.4 immedi-
ately yield a contradiction.

It should be noted that again, as in the proof of Theorem 2.3.1, when con-
structing the tower of size p we actually assume the whole time that p < t. Thus
the proof tells us there is always some tower of size p but it doesn’t give any
explicit example of such a tower. But in contrast to the proof of Theorem 2.3.1
where, in order to construct a refining tower, all we needed was to assume p < d
(which is consistent), here we really used the full assumption of p < t at several
places. This is somewhat unsatisfying because it means that the theorems that
we proved become completely unsubstantial. We may thus ask what happens if
we only assume p < d or even p < b. Does this imply that any witness for p has
a refining tower (especially when p ≥ ω2)?

In Observation 2.3.6 we constructed an example of a family with the SFIP of
size d and no refining tower. Thus obviously we need to assume at least p < d
to get that every witness for p can be refined. We will show that consistently
this can happen, even when b = p. For this we define a product like forcing that
refines any given family with the SFIP (possibly adding a pseudointersection).
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Definition 3.4.3. Assume F : γ → B where γ is an ordinal and B has the SFIP.
Then we define the “refining” poset RF as follows. RF consists of finite partial
functions p : γ → 2<ω so that for all α ∈ dom p, p(α)(n) = 1 implies n ∈ F (α).
The extension relation is defined by q ≤ p iff dom p ⊆ dom q, if α ∈ dom p
then p(α) ⊆ q(α) and for all α < β ∈ dom p and n ∈ dom q(β) \ dom p(β),
q(β)(n) = 1 implies q(α)(n) = 1.

The poset RF adds a tower 〈Aα : α < γ〉 so that Aα ⊆ F (α) for every
α < γ. Thus whenever F is surjective it refines B. But note that whenever
F � α is already surjective for some α < γ, then Aα will be a pseudointersection
of B. It is a standard delta system argument to show that RF is ccc.

Lemma 3.4.4. RF is ccc.

Proof. Assume {pi : i < ω1} ⊆ RF . Then, by the Delta System Lemma (see
[16, III.2.6]), we can assume that there is r ∈ [γ]<ω so that dom pi ∩dom pj = r
for all i 6= j < ω1. But then we can further refine {pi : i < ω1} to assume that
pi(α) = pj(α) for every i, j < ω1 and α ∈ r. But now, if i 6= j are arbitrary,
q := pi ∪ pj is a condition of RF . And whenever β ∈ dom pi, then q(β) = pi(β)
and thus dom q(β) \ dom pi(β) = ∅. This shows that q ≤ pi and in the same
way we have that q ≤ pj . Thus {pi : i < ω1} cannot be an antichain.

Lemma 3.4.5. Assume F : γ → B and α ≤ γ. Then RF �α lRF .

Proof. We show that the natural inclusion map from RF �α to RF is a complete
embedding (see [16, III.3.65] for a definition). It is obvious that this map pre-
serves the extension and incompatibility relation. We only need to show that
any maximal antichain A in RF �α is still maximal in RF . For this simply note
that p, q are compatible iff p � (dom p ∩ dom q) and q � (dom p ∩ dom q) are
compatible. Thus whenever p ∈ RF is incompatible with every q ∈ A, then
p � α ∈ RF �α has to be incompatible with every q.

Before we get to our forcing construction we need to recall some well estab-
lished preservation results for towers and unbounded families.

Lemma 3.4.6 (Baumgartner, Dordal [2]). Assume Ā = 〈Aα : α < κ〉 is a
maximal tower, δ is limit and 〈Pi〉i≤δ a ccc finite support iteration so that 
Pi
“Ā is maximal” for every i < δ. Then 
Pδ “Ā is maximal”.
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Lemma 3.4.7 (e.g. [1]). Assume f̄ = 〈fα : α < κ〉 is an unbounded family
well-ordered by <∗, δ is limit and 〈Pi〉i≤δ a ccc finite support iteration so that

Pi “f̄ is unbounded” for every i < δ. Then 
Pδ “f̄ is unbounded”.

Lemma 3.4.8. Let κ be regular. Assume Ā = 〈Aα : α < κ〉 is a maximal
tower and |P| < κ. Then 
P “Ā is maximal”. The analogue statement holds for
〈fα : α < κ〉, an unbounded family well-ordered by <∗.

Proof. Assume ẋ is a P name for a real which is forced to be a pseudointersec-
tion of Ā. Then, as |P| < κ, we find one condition p ∈ P, one natural number
n ∈ ω and an unbounded set X ⊆ κ so that p 
 ẋ \ n ⊆ Aα for every α ∈ X .
But then p 
 ẋ \ n ⊆

⋂
α∈X Aα which means that

⋂
α∈X Aα has to be infinite.

But then
⋂
α∈X Aα is a pseudointersection of Ā because X is unbounded in κ.

The proof for 〈fα : α < κ〉 is essentially the same.

Lemma 3.4.9. Let κ be regular uncountable and suppose that Ā = 〈Aα : α < κ〉
is a maximal tower. Further assume that F : κ→ B where B has the SFIP. Then

RF “Ā is maximal”. The analogue statement holds for 〈fα : α < κ〉, an
unbounded family well-ordered by <∗.

Proof. Assume ẋ is a name for a real. Then, by the ccc, ẋ can be decided using
only conditions in RF �α for α < κ. We have that RF �α l RF and thus a RF

generic induces a RF �α generic. As |RF �α| < κ we can apply Lemma 3.4.8.
Again the proof for 〈fα : α < κ〉 is the same.

Theorem 3.4.10. Assume GCH and let κ < λ be uncountable regular cardinals.
Then there is a ccc forcing extension in which p = b = κ < d = λ and for every
family with the SFIP of size p there is a refining tower.

Proof. Using standard bookkeeping arguments we can construct a ccc finite sup-
port iteration 〈Pi, Q̇i : i < λ〉 using posets of the form RF , so that whenever Ḃ
is a Pλ name for a family with the SFIP of size less or equal to κ, then there
is i < λ so that Q̇i is of the form ṘḞ for Ḟ a Pi name for a surjection from κ
to Ḃ. Note that whenever |B| < κ, then a corresponding poset of the form RF

adds a pseudointersection of B. This shows that in an extension by Pλ, p ≥ κ.
Further we have that, by a reflection argument, there is δ < λ of cofinality κ so
that in VPδ , κ ≤ p ≤ b ≤ κ, and thus p = b = κ (b ≤ κ because of cofinaly
many Cohen reals added). This means that in this extension there is a maximal
tower of length κ and an unbounded family of functions well-ordered by <∗ of
size κ. Using Lemma 3.4.9, Lemma 3.4.6 and Lemma 3.4.7 we find that this
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3. THE PROOF OF p = t

tower is still maximal in VPλ and that the family of functions stays unbounded.
This shows that in VPλ , p = b = κ. Further we have that after forcing with
Pλ, d = c = λ because we add cofinaly many Cohen reals and thus unbounded
reals.

Remark. The same theorem as above but with p = κ < b = d = λ also
holds true. This can be achieved with the same construction, additionally adding
Hechler dominating reals. The preservation results from [2] then imply that in
this extension p = κ.

Now the really interesting question is whether p < d or p < b already
imply the conclusion of the above theorem. A positive result would be a remark-
able and very surprising new proof of p = t. We believe that the answers to
both questions are negative, although we couldn’t get any simple construction to
work. Also this quite natural question seems, to our best knowledge, to be left
untouched by the literature. In [8] the authors investigate which filters contain
towers, but our question is not adressed. Also, we ask for filters being refined by
towers, which do not need to be contained in the filter.

In [28], the consistency of a (p,ω1)-peculiar cut (see the end of Section 3.1)
is claimed, where ω1 < p < c. Such a cut induces a witness of p with no refining
tower in the following way. Given a peculiar cut (〈fi : i < κ〉, 〈gi : i < ω1〉)
with κ > ω1, we can define Fi = {(n,m) ∈ ω × ω : m ≥ f(n)} for i < κ and
Gi = {(n,m) ∈ ω × ω : m ≤ g(n)} for i < ω1. Then B = {Fi, Gj : i < κ, j <
ω1} has the SFIP and if 〈Aα : α < κ〉 refines B then there is some α < κ so
that h <∗ gi for all i < ω1 where h(n) = max({m ∈ ω : (n,m) ∈ Aα} ∪ {0}).
But then h <∗ fi for some i < κ which implies that Aα ∩ Fi is finite. We do not
know the values of b and d in the model of [28].

One related question is the following:

Question. Does p = u < d (where u is the least size of an ultrafilter base) imply
that every ultrafilter generated by u many sets is generated by a tower?

By Lemma 2.3.2 a positive answer requires u ≥ ω2 and in the model of
ω2 ≤ u < d constructed by Blass and Shelah in [6], the witness for u is generated
by a tower.
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Chapter 4

Generalizations to uncountable κ

The notion of almost inclusion can be generalized to arbitrary regular cardinals
κ. For A,B ∈ [κ]κ we write A ⊆∗ B iff |A \B| < κ. Thus we call X ∈ [κ]κ a
pseudointersection of B ⊆ [κ]κ when X ⊆∗ B for every B ∈ B. Similarly we
can generalize the ≤∗ relation to κκ: f ≤∗ g iff |{α ∈ κ : g(α) < f(α)}| < κ,
f <∗ g is defined analogously.

We may thus generalize the cardinal characteristics that we defined for κ = ω
to the more general case of κ regular uncountable. Throughout this chapter we
fix κ to be a regular uncountable cardinal.

Definition 4.0.1. The κ-bounding number b(κ) is defined as

b(κ) := min{|B| : B is unbounded wrt ≤∗}.

The κ-dominating number d(κ) is defined as

d(κ) := min{|D| : D is dominating wrt ≤∗}.

Note that the definition of b(κ), d(κ) also works when κ is singular, but
we will only consider the case of regular cardinals which reflect much more of
the properties that hold at ω. Some of the cardinal characteristics for singular
cardinals have been studied in the author’s Bachelor thesis ([23],[24]).

Before we define the analogues of p and t we like to make the following
remark:

Remark. Whenever κ is regular uncountable there is a sequence 〈An : n ∈ ω〉,
∀n(An ∈ [κ]κ), which is decreasing wrt ⊆∗ and has no pseudointersection. For
this just partition κ as

⋃
n∈ωXn, where |Xn| = κ, and take An :=

⋃
m≥nXm. If
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4. GENERALIZATIONS TO UNCOUNTABLE κ

X was a pseudointersection of 〈An : n ∈ ω〉 then one finds α so thatX \α ⊆ An
holds for all n, which is impossible as

⋂
n∈ω An = ∅.

Thus we have to make some restrictions in our general definition.

Definition 4.0.2. A family B ⊆ [κ]κ has the κ-intersection property (κ-IP) if for
every B′ ∈ [B]<κ,

⋂
B′ ∈ [κ]κ.

A sequence 〈Aα : α < δ〉 in [κ]κ is called a κ-tower if ∀α < β < δ(Aβ ⊆∗
Aα) and {Aα : α < δ} has the κ-IP.

The definitions of p(κ) and t(κ) now come naturally:

Definition 4.0.3. The κ-pseudointersection number p(κ) is defined as

p(κ) := min{|B| : B has the κ-IP but no pseudointersection}.

The κ-tower number t(κ) is defined as

t(κ) := min{δ : there is a κ-tower of length δ that cannot be further extended}.

The reader may not have noticed this but we actually didn’t justify that the
sets in the definition above are non-empty. In the case κ = ω this follows by an
easy application of Zorn’s lemma. But when κ is uncountable this is less clear.
Our justification for p(κ) is that the set of club subsets of κ have the κ-IP and
no pseudointersection. For t(κ) apply Zorn’s lemma to construct a κ-tower only
consisting of clubs (and notice that the closure of a pseudointersection of clubs
is club and still a pseudointersection).

The following follows in a straightforward manner.

Theorem 4.0.4. t(κ) is a regular cardinal. κ+ ≤ p(κ) ≤ t(κ) ≤ 2κ, κ+ ≤
b(κ) ≤ d(κ) ≤ 2κ.

It can also be shown that p(κ) is regular (see [13]) and that b(κ) is regular
(the proof is as for κ = ω). Other known results that we won’t prove include the
generalization of Theorem 2.1.1, which states that if κ<κ = κ and κ ≤ µ < t(κ),
then 2µ = 2κ (see [30]).

We will show in the next section that also t(κ) ≤ b(κ).
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4.1. A characterization of bounding

4.1 A characterization of bounding
In this section we want to point out a nice characterization of the bounding and
dominating numbers for regular uncountable κ. Our feeling is that this has been
used implicitly before but was never mentioned explicitly. This is surprising
because we find it very natural and useful. For example the proof of the quite
surprising result that s(κ) ≤ b(κ) for regular uncountable κ will become, a
posteriori, almost straightforward. We will also draw conclusions for the gener-
alized version of Mathias forcing.

We begin with the following well known and easy fact. It says that the “clo-
sure” points of any f ∈ κκ make a club set.

Lemma 4.1.1. For any f ∈ κκ, the set Cf := {α ∈ κ : f ′′α ⊆ α} is a club in κ.

For now let us define Cg := {α ∈ κ : g′′α ⊆ α} for any g ∈ κκ.

Lemma 4.1.2. Whenever f ≤∗ g, then Cg ⊆∗ Cf .

Proof. Assume δ < κ is such that f(α) ≤ g(α) for all α ≥ δ and let additionally
δ ∈ Cf . Now assume γ ∈ Cg \ Cf , γ ≥ δ. But this means that γ is not closed
under f but closed under g. But then for some iwith δ ≤ i < γ, f(i) ≥ γ > g(i),
which is a contradiction.

For any clubC we can consider the function fC defined by fC(α) := minC∩
(α, κ). Then CfC = limC ∪ {0} (limC is the set of limit points of C).

Lemma 4.1.3. Whenever C ⊆∗ C ′, then fC dominates fC′ .

Proof. Let δ be such that C \δ ⊆ C ′. Let i > δ. Then fC′(i) = minC ′∩(i, κ) ≤
minC ∩ (i, κ) = fC(i).

Lemma 4.1.4. For any f ∈ κκ, fCf > f .

Proof. fCf (i) = minCf ∩ (i, κ) > f(i).

Now we get:

Proposition 4.1.5. b(κ) = min{|B| : B is a set of clubs with no pseudointersection}

Notice that when X ⊆∗ C where C is club then X̄ ⊆∗ C where X̄ is the
closure of X .
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4. GENERALIZATIONS TO UNCOUNTABLE κ

Proof. For G an unbounded family, consider B := {Cg : g ∈ G}. This fam-
ily has no club pseudointersection, because if C would be one then fC would
dominate all fCg for g ∈ G which in turn dominates g.

On the other hand, if H is a semanuret of clubs with no pseudointersection,
then G := {fC : C ∈ H} is unbounded. Because if g dominates all fC , then Cg
is almost included in all CfC = limC ∪ {0} for C ∈ B.

There is now a dual characterization of d(κ) in terms of clubs and almost
containment, which basically says that d(κ) is the cofinality of the club filter at
κ.

Proposition 4.1.6. d(κ) = min{|F| : F ⊆ [κ]κ,∀C ∈ C∃X ∈ F(X ⊆∗ C)},
where C denotes the club filter.

Proof. The proof is dual to the one for b(κ).

We can also translate the above characterization to the following:

Proposition 4.1.7. b(κ) is the smallest size of a collection F of non stationary
sets so that for every X ∈ [κ]κ there is N ∈ F with |N ∩X| = κ.

Dually:

Proposition 4.1.8. d(κ) is the smallest size of a collection F of clubs so that for
every N non-stationary there is C ∈ F with |N ∩ C| < κ.

Theorem 4.1.9. κ+ ≤ p(κ) ≤ t(κ) ≤ b(κ) ≤ d(κ) ≤ 2κ.

Proof. We only need to show that t(κ) ≤ b(κ). For this we construct a maximal
tower of length b(κ). Let {Cα : α < b(κ) = λ} be a collection of clubs on κ
with no pseudointersection as given by Proposition 4.1.5. We construct a tower
〈Aα : α < λ〉 consisting only of clubs as follows:

– A0 = C0

– Aα+1 = Aα ∩ Cα

– If γ is limit then 〈Aα : α < γ〉 has a pseudointersection C ′ as γ < λ =
b(κ). Let C be the closure of C ′. Then C is still a pseudointersection of
〈Aα : α < γ〉. Let Aγ = C ∩ Cγ .

The constructed tower is obviously maximal.
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Definition 4.1.10. Assume U is a κ-complete ultrafilter on κ (i.e. κ is measur-
able). Then Mathias forcing for U , M(U) consists of pairs (a, U) ∈ [κ]<κ × U .
The order is defined as (b, V ) ≤ (a, U) iff a ⊆ b, V ⊆ U and b \ a ⊆ U .

Mathias forcing for a κ-complete ultrafilter is the natural analogue of Mathias
forcing for ultrafilters at ω. One of its main features is that it adds unsplit reals
and can be used to make the splitting number s large. On the other hand it is
sometimes possible to construct the ultrafilter in a special way, so that some
fixed unbounded family of reals will be preserved unbounded. This can be used
to get a model where b < s (see e.g. [9]).

However at κ the situation seems to be very different. First of all we will
show that Mathias forcing for κ-complete ultrafilters always adds dominating
reals. Secondly it is a result by Raghavan and Shelah ([20]) that s(κ) ≤ b(κ) for
κ regular uncountable. We will give an intuitive sketch of the proof. The proof
of this result was also covered in [23].

Lemma 4.1.11 (Scott, see [15]). Assume U is a κ-complete ultrafilter on κ.
Then there is a function f ∈ κκ, so that the κ-complete ultrafilter V = {X ⊆ κ :
f−1(X) ∈ U} extends the club filter.

Proposition 4.1.12. Assume U is a κ-complete ultrafilter on κ. Then M(U) adds
a κ-dominating real.

Proof. Let f be as in Lemma 4.1.11. M(U) adds a pseudointersection X of
U . Let C be an arbitrary ground model club on κ. Then f−1(C) ∈ U and
so X ⊆∗ f−1(C). But then f ′′X ⊆∗ C. Furthermore, as V contains only
unbounded sets, we have that |f ′′U | = κ for all U ∈ U . Thus by genericity we
have that |f ′′X| = κ. So we have shown that f ′′X is a pseudointersection of the
ground model club filter.

Definition 4.1.13. A family S ⊆ [κ]κ is called splitting if ∀X ∈ [κ]κ∃Y ∈
S(|X ∩ Y | = κ ∧ |X \ Y | = κ). s(κ) is the least size of a splitting family.

Theorem 4.1.14. s(κ) ≤ b(κ).

Proof sketch. Let B be a family of clubs and M and elementary submodel of
some large enough H(θ) of size |B| containing all elements of B and κ.

SupposeM∩ [κ]κ is not splitting, i.e. there isX ∈ [κ]κ unsplit overM . Then
X generates an ultrafilter U = {Y ∈ M ∩ [κ]κ : X ⊆∗ Y } over M , κ-complete
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over M (this means that any A ⊆ U in M of size less then κ has intersection in
U).

Using a similar proof as the one of Lemma 4.1.11 we find f ∈ κκ ∩M so
that V = {A ∈ [κ]κ ∩M : f−1(A) ∈ U} extends the club filter on M . Then X
induces a pseudointersection (f ′′X) of V ⊇ B.

A lot of the combinatorics at ω generalize in a straightforward manner to the
uncountable case. But the results in this section indicate a tendency in the other
direction. Namely that cardinal characteristics at κ can behave very differently
to their analogues at ω. Our feeling is that one of the main reasons for this
behavior is the additional existence of clubs at κ. As an additional example we
mention that the proof of d(κ) = κ+ → a(κ) = κ+ by Blass, Hyttinen and
Zhang (see [5]) makes an essential use of club guessing sequences (this result
has recently been weakend to b(κ) = κ+ → a(κ) = κ+, see [21]). a(κ) is
the almost disjointness number. For a = a(ω) it is still unknown whether the
analogue implication (d = ω1 → a = ω1) holds.

4.2 The generalized meager ideal
The ideal of meager subsets of 2ω, denoted byM, has been studied a lot over
past decades (see [1] for an extensive study of the relationship between the ide-
als of meager and null sets; [19] is another classic text that treats this topic). In
particular, the related cardinal characteristics add(M), cov(M), non(M) and
cof(M) have shown to have interesting characterizations in terms of combina-
torial properties of sets of reals. This is used to draw strong connections to the
notion of bounding, which appears in the famous Cichoń Diagram whose middle
part (the one concerning the meager ideal) is shown below (the arrows indicate
inequalities between the cardinals).

The additivity add(M) of the meager ideal is the least size of of a collec-
tion of meager sets whose union is not meager anymore. cov(M), the cov-
ering number, is the least number of meager sets needed to cover the whole
real line. non(M), the uniformity number, is the smallest size of a non-meager
set and cof(M), the cofinality, is the smallest size of a base for the meager
ideal. All of these cardinals can easily be seen to lie between ω1 and c. Apart
from the inequalities shown in Cichoń’s Diagram, we have that add(M) =
min{b, cov(M)} and cof(M) = max{d, non(M)}.
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non(M) cof(M)

b d

add(M) cov(M)

Figure 4.1: The middle part of Cichoń’s Diagram

Recently there has been increasing interest in generalizing the classical re-
sults (ZFC results as well as independence results) to the space 2κ for κ regular
uncountable ([12],[5],[27],[29],[7]). The topology we put on 2κ is the κ-box
topology, also called bounded topology, i.e. the topology generated by basic
open sets of the form [s] = {x ∈ 2κ : s ⊆ x} where s ∈ 2<κ. The definition
of the meager idealMκ on 2κ and the cardinals add(Mκ), cov(Mκ), non(Mκ)
and cof(Mκ) is then done as in the case of 2ω (we will later define formally
those that we need). One of the main results of [7] is that the diagram pic-
tured in Figure 4.1 holds more generally for κ which is strongly inaccessible.
Moreover in this case we still have that add(Mκ) = min{b(κ), cov(Mκ)} and
cof(Mκ) = max{d(κ), non(Mκ)}.

Another one of the classical results that hold on 2ω, is the following connec-
tion with the tower number:

Theorem 4.2.1. t ≤ add(M).

For a direct proof of this inequality we refer to [4]. It also follows from
Corollary 2.2.5 and Theorem 3.4.2. We want to generalize this theorem to the
case where κ is regular and uncountable and κ<κ = κ. The last assumption
is needed because by [7, Observation 23], add(Mκ) is equal to κ+ whenever
κ<κ > κ. Let us define more clearly what add(Mκ) is. We always assume that
κ is regular.

Definition 4.2.2. A set X ⊆ 2κ is called nowhere dense, if for any s ∈ 2<κ there
is s′ ∈ 2<κ, s′ ⊇ s so that [s′] ∩X = ∅. A set X ⊆ 2κ is called meager, if it is
the union of κ many nowhere dense sets. A set X ⊆ 2κ is called comeager if it
is the complement of a meager set. We letMκ be the collection of meager sets.

Definition 4.2.3. add(Mκ) = min{|A| : A ⊆Mκ,
⋃
A /∈Mκ}.
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Theorem 4.2.4. Assume κ = κ<κ, then t(κ) ≤ add(Mκ).

In order to prove the theorem we introduce a notion of “club” subset of 2<κ:

Definition 4.2.5. Let C ⊆ 2<κ. Then we call C club iff:

– ∀s ∈ 2<κ∃s′ ⊇ s(s′ ∈ C)

– for every sequence 〈si : i < δ〉 where δ < κ, si ∈ C for every i < δ and
si ⊆ sj for i < j,

⋃
i<δ si ∈ C.

Lemma 4.2.6. Let δ < κ, Ci a club subset of 2<κ for every i < δ. Then
⋂
i<δ Ci

is also club.

Proof. We first show that
⋂
i<δ Ci is dense. Given s ∈ 2<κ construct an increas-

ing sequence (wrt ⊆) 〈sα : α < δ · ω〉 so that sδ·n+i ∈ Ci for every n ∈ ω and
i < δ and s0 ⊇ s. Then clearly

⋃
α<δ·ω sα ∈

⋂
i<δ Ci.

To show that
⋂
i<δ Ci is closed is trivial using that each Ci is closed.

For C,D clubs on 2<κ let us write C ⊆∗∗ D iff C \ D ⊆ 2<α for some
α < κ. Note that ⊆∗∗ agrees with ⊆∗ in case κ is inaccessible. We call a
sequence 〈Dα : α < γ〉 where each Dα ⊆ 2<κ is club and Dα ⊆∗∗ Dβ for
β < α, a ⊆∗∗-tower on 2<κ.

Lemma 4.2.7. Let κ<κ = κ. Assume 〈Dα : α < γ〉 is a ⊆∗∗-tower on 2<κ and
γ < t(κ), cf(γ) ≥ κ. Then there is a set C ∈ [2<κ]κ so that C ⊆∗ Dα for every
α < γ and C 6⊆ 2<α for any α < κ.

Proof. The case where κ is inaccessible is obvious as 〈Dα : α < γ〉 is simply a
tower which cannot be maximal.

If κ is not inaccessible we find a sequence 〈αi : i < κ〉 cofinal in κ so that∣∣∣∣∣2<αi \⋃
j<i

2<αj

∣∣∣∣∣ = κ

for every i < κ. Write Xi := 2<αi \
⋃
j<i 2

<αj and fix bijections Gi : κ→ Xi.
We define for every α < γ a function fα ∈ κκ as follows:

fα(i) =

{
min{j < κ : Gi(j) ∈ Dα} if Xi ∩Dα 6= ∅
0 else

44



4.2. The generalized meager ideal

As γ < t(κ) ≤ b(κ) there is f ∈ κκ so that fα <∗ f for every α < γ. Define
Cα =

⋃
i<κDα ∩ G′′i f(i) for every α < γ. It is easy to see that 〈Cα : α < γ〉

is a tower. Thus we find C a pseudointersection of 〈Cα : α < γ〉. C is as
required.

Lemma 4.2.8. Let κ<κ = κ. Assume 〈Dα : α < γ〉 is a ⊆∗∗-tower on 2<κ and
γ < t(κ). Then there is a club C on 2<κ so that C ⊆∗∗ Dα for every α < γ.

Proof. In case cf(γ) < κ, pass to a cofinal subsequence of 〈Dα : α < γ〉 of
cofinality cf(γ) and take an intersection D which is club by Lemma 4.2.6. D is
as required.

Now assume cf(γ) ≥ κ. For each s ∈ 2<κ and α < γ let Ds
α := {s′ ∈ Dα :

s′ ⊇ s}. Applying Lemma 4.2.7, for each s ∈ 2<κ there is a set Cs which is a
pseudointersection of 〈Ds

α : α < γ〉 and Cs 6⊆ 2<α for any α < κ.
For each α < γ we define a function fα : 2<κ → κ so that Cs \ 2<fα(s) ⊆ Dα

for every s ∈ 2<κ. As γ < t(κ) ≤ b(κ) we can find a single f : 2<κ → κ so
that |{s ∈ 2<κ : fα(s) ≥ f(s)}| < κ for every α < γ. For each s ∈ 2<κ choose
σs ∈ Cs \ 2<f(s). The set C ′ = {σs : s ∈ 2<κ} is a pseudointersection of
〈Dα : α < γ〉. C ′ is not necessarily club but if we let C be the closure of C ′,
then C is club and for any α < γ, as C ′ \ 2<β ⊆ Dα for some β < κ, we have
that C ⊆∗∗ Dα.

C is as required.

Proof of Theorem 4.2.4. Assume 〈Yα : α < λ〉 are open dense sets in 2κ and
λ < t(κ). The theorem is proven if we show that

⋂
α<λ Yα is comeager.

First note that for each α we can write Yα =
⋃
s∈Sα [s] where Sα ⊆ 2<κ and

Sα is upwards closed, i.e. s′ ⊇ s ∈ Sα implies s′ ∈ Sα. Each set Sα is clearly
club as defined in Definition 4.2.5.

We are going to construct a ⊆∗∗ tower 〈Dα : α < λ〉 of clubs on 2<κ so that
Dα ⊆ Sα for every α < λ. The construction is as follows:

– D0 = S0

– Dα+1 = Dα ∩ Sα+1, this set is still club by Lemma 4.2.6.

– For γ limit we consider two cases:

– Case 1: cf(γ) < κ, then pass to a cofinal subsequence of cofinality
cf(γ) and take an intersectionC which is club by Lemma 4.2.6. Then
take Dγ = C ∩ Sγ .
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– cf(γ) ≥ κ. Then apply Lemma 4.2.8 to get C club with C ⊆∗∗ Dα

for all α < γ. Let Dγ = C ∩ Sγ .

Given the sequence 〈Dα : α < λ〉 we can again find a club C ⊆∗∗ Dα for
each α < λ. Finally let

Y :=
⋂
i<κ

⋃
s∈C,

lth s≥i

[s]

For every i < κ,
⋃
s∈C,
|s|≥i

[s] is open dense. Thus Y is comeager. Now fix

α < λ. As C ⊆∗∗ Dα ⊆ Sα, there is i < κ so that {s ∈ C : |s| ≥ i} ⊆ Sα. In
particular

⋃
s∈C,
|s|≥i

[s] ⊆ Yα and thus Y ⊆ Yα.

Note that the notion of a club subset of 2<κ was essential in the above proof
in order to continue the construction at limits of small cofinality. Clubs on 2<κ

are combinatorial objects that seem to be very interesting in their own right. We
show that they behave similar to clubs on κ. Namely we will show how to define
a diagonal intersection and prove a version of Fodor’s Lemma.

Definition 4.2.9. Let 〈Dα : α < κ〉 be clubs on 2<κ. Then we define the diagonal
intersection of 〈Dα : α < κ〉 as

4α<κDα = {s ∈ 2<κ : ∀α < lth(s)(s ∈ Dα)}.

Lemma 4.2.10. If 〈Dα : α < κ〉 are clubs on 2<κ, then D = 4α<κDα is club
and D ⊆∗∗ Dα for every α < κ.

Proof. Assume {si : i < δ} is increasing in D. Let s =
⋃
i<δ si and α = lth s.

Then we have that for any i < α that for all j with i < j < α, sj ∈ Di. This
shows that for any i < α, s ∈ Di. In particular s ∈ D. Thus D is closed.

Let s ∈ 2<κ be arbitrary. Find an increasing sequence 〈sn : n ∈ ω〉 with
s0 = s and for every n, ∀α < lth sn∃s′(sn ⊆ s′ ⊆ sn+1 ∧ s′ ∈ Dα). Then⋃
n∈ω sn ∈ D and extends s. Thus D is unbounded.

Fix α < κ. Assume s ∈ D \ 2≤α. Then s ∈ Dα by definition of D. Thus
D ⊆∗∗ Dα.

There is another candidate for a notion of diagonal intersection that we will
use in the proof of our version of Fodor’s Lemma below.
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Definition 4.2.11. Let 〈Ds : s ∈ 2<κ〉 be clubs. Then we define

4s∈2<κDs = {s ∈ 2<κ : ∀s′ ⊆ s(s ∈ Ds′)}.

The proof that 4s∈2<κDs is club is analogous to the one of Lemma 4.2.10.
Note that4s∈2<κDs agrees with4α<κDα whenever Ds = Dlth s.

Definition 4.2.12. A set S ⊆ 2<κ is called stationary if S∩C 6= ∅ for every club
C.

A typical example of a stationary set would be one of the form {s : σ ⊆ s}
for some σ ∈ 2<κ. We can now prove a version of Fodor’s Lemma.

Lemma 4.2.13 (Fodor’s Lemma for 2<κ). Let S ⊆ 2<κ be stationary and sup-
pose that f : S \ {∅} → 2<κ is such that f(s) ⊆ s for every s ∈ 2<κ. Then f is
constant on a stationary set.

Proof. Assume not. This means that for any s ∈ 2<κ there is a club Cs so that
Cs ∩ f−1(s) = ∅. Let C = 4s∈2<κCs. Then C is club and in particular C ∩ S
is non empty. So let s ∈ C ∩ S. Then f(s) ⊆ s and s ∈ f−1(f(s)), and so
s /∈ Cf(s). But from the definition of C it follows that s ∈ Cf(s). We have
arrived at a contradiction.

We have proven some structural properties of the collection of clubs on 2<κ.
But several other questions can be asked about them. For instance we may intro-
duce a new cardinal p2<κ as the least size of a family B of clubs on 2<κ with no
club ⊆∗∗ pseudointersection. We will determine the value of p2<κ completely in
terms of the values in Cichoń’s Diagram. This shows that the notion of club on
2<κ is not simply an artifact of the proof of Theorem 4.2.4 but is strongly related
to the combinatorics on the generalized Cantor space and could serve as a useful
tool.

We can first show the following:

Proposition 4.2.14. p2<κ ≤ add(Mκ).

Proof. Assume 〈Yα : α < λ〉 are open dense subsets of 2κ. As before, we can
write Yα =

⋃
s∈Sα [s] where Sα ⊆ 2<κ and Sα is upwards closed for every α < λ.

Clearly each of the Sα is a club set. If S is club and S ⊆∗∗ Sα for every α < λ,
then Y :=

⋂
i<κ

⋃
s∈S,
|s|≥i

[s] is comeager and a subset of each Yα.

Moreover, analyzing the proof of Theorem 4.2.4 we find that

47



4. GENERALIZATIONS TO UNCOUNTABLE κ

Proposition 4.2.15. If κ<κ = κ, then t(κ) ≤ p2<κ .

The following is also an easy observation:

Proposition 4.2.16. p2<κ ≤ b(κ).

Proof. Assume B is a family of clubs on κ. For B ∈ B, let CB =
⋃
α∈B 2α

which obviously is a club subset of 2<κ. Assume that there is a club C ⊆∗∗ CB
for every B ∈ B. Then the set D = {α : ∃s ∈ 2α ∩ C} is a pseudointersection
of B.

Definition 4.2.17. The κ-covering number cov(Mκ) is the least size of a fam-
ily of meager sets covering 2κ. Equivalently it is the least size of a family of
comeager sets with empty intersection.

It follows easily from the fact that 2κ is not meager that add(Mκ) ≤ cov(Mκ).
We can now characterize p2<κ as follows.

Theorem 4.2.18. Assume κ<κ = κ, then p2<κ = min{b(κ), cov(Mκ)}.

Proof. Let {Cα : α < λ} be a family of clubs on 2<κ with λ < cov(Mκ), b(κ).
Consider the sets Yα =

⋂
i<κ

⋃
s∈Cα,
|s|≥i

[s]. Every Yα is comeager, thus Y :=⋂
α<λ Yα is dense in 2κ as λ < cov(Mκ) (It follows from the definition of

cov(Mκ) that Y is non empty. Applying the result to the homeomorphic spaces
of the form [s] yields that Y is dense). Thus we can find a dense subset {xi : i <
κ} ⊆ Y (use that κ<κ = κ). Note that for every i < κ and every α < λ, the set
Ci
α = {j < κ : x � j ∈ Cα} is a club in κ. This follows from the definition of Y

and because Cα is club. As λ < b(κ), for each i < κ, Bi = {Ci
α : α < λ} has a

pseudointersection Bi ∈ [κ]κ. Again applying λ < b(κ) we can find a function
f ∈ κκ so that

∀α < λ(|κ \ {i ∈ κ : Bi \ 2<f(i) ⊆ Ci
α}| < κ).

Now enumerate 2<κ as 〈si : i < κ〉 and for every i find σi ⊇ si so that
σi ∈ Bj \ 2<f(j) for some j > i. The collection C ′ = {σi : i ∈ κ} is unbounded
in 2<κ. Furthermore we have that C ′ ⊆∗ Cα for every α. If C is the closure of
C ′, then C ⊆∗∗ Cα for every α. Thus we have shown that {Cα : α < λ} has a
⊆∗∗ pseudointersection which is club.
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4.2. The generalized meager ideal

This is very interesting because we have that add(M) = min{b, cov(M)},
although in the general case add(Mκ) = min{b(κ), cov(Mκ)} was first only
shown for κ inaccessible (see [7] and especially Question 29). The author was
told that the more general result of add(Mκ) = min{b(κ), cov(Mκ)} for all
regular κ is an unpublished result of J. Brendle. Thus this gives the characteri-
zation of add(Mκ) = p2<κ .

In the last section we showed that the bounding number b(κ) can be charac-
terized using clubs. Now we will do the opposite for p2<κ . We will show that
p2<κ can be characterized as a sort of bounding number.

Definition 4.2.19. Suppose f : 2<κ → 2<κ is such that ∀s ∈ 2<κ(f(s) ⊇ s).
Then we call f normal.

If f, g are normal functions on 2<κ, we write f <∗ g whenever

|{α < κ : ∃s ∈ 2<α∀s′ ∈ 2<κ(s ⊆ s′ ⊆ g(s)→ f(s′) 6⊆ g(s))}| < κ.

We write b2<κ for the least size of a family of normal functions on 2<κ un-
bounded with respect to <∗.

Intuitively f <∗ g if eventually every “interval” [s, g(s)] contains an “inter-
val” of the form [s′, f(s′)]. This is a very natural notion of bounding and looks
similar to notion of an interval partition dominating another interval partition
(see [4]).

Proposition 4.2.20. b2<κ = p2<κ .

The proof is very similar to the one of Proposition 4.1.5.

Proof. We first show b2<κ ≤ p2<κ . For this let {Cα : α < λ} be a collection of
clubs on 2<ω. Define for each α an normal function fα on 2<κ with the property
that fα(s) ∈ Cα for every s ∈ 2<κ.

Assume that {fα : α < κ} can be bounded by f . Consider the set C = {s ∈
2<κ : ∀s′ ( s∃s′′(s′ ⊆ s′′ ∧ f(s′′) ⊆ s)}. It is not difficult to see that C is club
and is a ⊆∗∗ pseudointersection of {Cα : α < λ}.

We now show that p2<κ ≤ b2<κ . For this let {fα : α < λ} be an unbounded
collection of normal functions on 2<ω. For each α < λ define Cα as we did for
f above, i.e. Cα = {s ∈ 2<κ : ∀s′ ( s∃s′′(s′ ⊆ s′′ ∧ fα(s′′) ⊆ s)}. Again these
sets are club. If C ⊆∗∗ Cα for every α and C is club, then any normal function
f with f(s) ∈ C for every s ∈ 2<κ would bound {fα : α < λ}.
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The next question is a reformulation of Question 84 in [7] where it was asked
whether add(Mκ) and b(κ) can be separated when κ is (at least) inaccessible.

Question. If κ is inaccessible, is b2<κ = b(κ)?

Another question, that can be motivated by the proof of Theorem 4.1, is the
following:

Question. Is s(κ) ≤ add(Mκ)? Equivalently, knowing s(κ) ≤ b(κ), is s(κ) ≤
cov(Mκ)?

4.3 Bell’s Theorem generalized
In this section we will try to generalize Bell’s Theorem (Theorem 2.2.1) to the
uncountable case. For this we need to find the right analogue of σ-centered
posets.

Definition 4.3.1. A subset C ⊆ P of a poset P is called κ-directed if ∀D ∈
[C]<κ∃q∀p ∈ D(q ≤ p). A poset P is κ-centered if P =

⋃
i<κCi where each Ci

is κ-directed.

Note that it is impossible to get a theorem of the form “for every κ-centered
poset and a collection of less than p(κ) many dense sets, there is a filter inter-
secting each of them”. Simply observe that any poset of size ≤ κ is κ-centered.
In particular if 2ω ≤ κ, then almost all posets typically considered in set theory
of the reals (e.g. tree forcings) are κ-centered.

Before defining the class of posets that we will work with we introduce some
notation. Whenever p̄ is a decreasing sequence in P and q ∈ P we write q ≤ p̄
if q is a lower bound for p̄. Suppose P is a poset and C̄ = 〈Ci : i < κ〉 is a
sequence of subsets of P. For any s ∈ κ<κ \ {∅} we write S(s, C̄) for the set of
decreasing sequences 〈pα : α < lth s〉 in P so that ∀α < lth s(pα ∈ Cs(α)).

Definition 4.3.2. A poset P is κ-specially-centered if P is κ-centered as wit-
nessed by a collection {Ci : i < κ} so that additionally for any s ∈ κ<κ \ {∅}
and any P ∈ [S(s, C̄)]<κ, the sequences in P have a common lower bound, i.e.
there is q ∈ P so that q ≤ p̄ for every p̄ ∈ P .

Note that in the above definition it is very much possible that some of the
sets S(s, C̄) are simply empty, i.e. there are no decreasing sequences 〈pi〉 so that
pi ∈ Cs(i). But e.g. when s has length 1, i.e. is of the form 〈i〉, then S(s, C̄)
simply corresponds to Ci. Also note that κ-specially-centered implies κ-closed.
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4.3. Bell’s Theorem generalized

κ-specially-centered expresses a sort of “locality” of the compatibility rela-
tion. If 〈pi〉 and 〈qi〉 are decreasing sequences so that each pi, qi always live in
a common centered set (in particular are compatible), then they have a common
lower bound.

Theorem 4.3.3. Assume P is κ-specially-centered and below every p ∈ P there
is a κ sized antichain. Also assume that κ<κ = κ. Then whenever {Dα : α < λ}
is a collection of dense subsets of P, where λ<κ = λ and λ < p(κ), then there is
a filter intersecting every Dα.

The proof follows the same lines as the one of Theorem 2.2.1, but contains
some more technicalities. Thus it is highly suggested to first read and understand
the (already complicated enough) proof of Theorem 2.2.1.

Proof. We can assume wlog that |P| ≤ λ. The reason is that given P and {Dα :
α < λ} dense open we can find Q ⊆ P with |Q| ≤ λ so that

– for every α < λ, Dα ∩Q is dense in Q,

– for every p, q ∈ Q, p ‖ q in P iff ∃r ∈ Q(r ≤ p, q),

– for every B ∈ [Q]<κ, if B has a lower bound in P, then it has one in Q

– for every p ∈ Q, there is a κ-sized antichain in Q below p.

Then whenever the Theorem is true for Q, we get a filter on Q, generating
one on P intersecting all Dα.

The construction of Q is a standard Löwenheim-Skolem argument. We con-
struct recursively a sequence 〈Qi〉i≤κ so that |Qi| ≤ λ will hold true for every
i ∈ κ+ 1.

– Q0 = {1},

– Qγ =
⋃
i<γ Qi for γ limit, |Qγ| ≤ |γ| · λ ≤ λ,

– Qi+1 is obtained by adding to Qi, κ sized antichains below every p ∈ Qi,
a condition q ∈ Dα below p for every α < λ and for every B ∈ [Qi]

<κ a
lower bound, if there is one in P. Then |Qi+1| ≤ λ · κ+ λ+ λ<κ ≤ λ.
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4. GENERALIZATIONS TO UNCOUNTABLE κ

Q = Qκ works and is still κ-specially-centered.

Now we also notice that it suffices to get G ⊆ P which is linked, instead of a
filter. The reason is the same as in the proof of Theorem 2.2.1.

Let P =
⋃
i<κCi be as witnessed by κ-specially-centeredness. Moreover fix

S to be the set of s ∈ κ<κ \ {∅} so that S(s, C̄) is non-empty.
For each α < λ and any p̄ a decreasing sequence in P of length < κ we let

A(α, p̄) = {i ∈ κ : ∃q ≤ p̄(q ∈ Dα ∧ q ∈ Ci)}. For every s ∈ S the family

Fs = {A(α, p̄) : p̄ ∈ S(s, C̄), α < λ}

has the κ-IP. To see this, assume that P ∈ [S(s, C̄)]<κ, F ∈ [λ]<κ and P 6= ∅.
Then P has a lower bound q ∈ P. Notice that by κ-closedness of P, D =⋂
α∈F Dα is still open dense. So let A be a κ-sized antichain in D below q. Then

the set {j < κ : ∃q ∈ A(q ∈ Cj)} ⊆
⋂
p̄∈P,α∈F A(α, p̄) is of size κ.

Thus let As be a pseudointersection of Fs for every s ∈ S . Also let A∅ = κ.
We define a map S : κ<κ → κ<κ recursively with the following requirements:

(1) S(∅) = ∅,

(2) for any s, S(s_i) = S(s)_j where j ∈ AS(s) is such that i < j and
S(s)_j ∈ S

(3) and if s has limit length then S(s) =
⋃
s′⊂s S(s′).

Note that in order to construct S, we need to make sure that S(s) ∈ S
inductively, especially in the limit steps. In order to ensure this we can si-
multaneously define an auxiliary map T : κ<κ → P<κ with the property that
T (s) ∈ S(S(s), C̄) and T (s) ⊆ T (s′) for any s, s′ with s ⊆ s′. We leave the
details to the reader.

Further we define a second labeling Φα : Succ(κ<κ)→ P, where Succ(κ<κ) =
{s ∈ κ<κ : ∃ξ(lth s = ξ+1)}, for every α < λwith the following requirements:

(1) Φα(s) ∈ CS(s)(lth s−1) for any s ∈ Succ(κ<κ),

(2) if s′ = s_i, and there is ζ < lth s with the property that 〈Φα(s � ξ +
1) : ξ ∈ [ζ, lth s)〉 is decreasing, then Φα(s′) ∈ Dα ∩ CS(s′)(lth s) and
Φα(s′) ≤ 〈Φα(s � ξ + 1) : ξ ∈ [ζ, lth s)〉 whenever this is possible,

(3) if s′ = s_i and the conditions in (2) are not satisfied, Φα(s′) ∈ CS(s′)(lth s)

is arbitrary.
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4.3. Bell’s Theorem generalized

Note that for any α < λ and for any s ∈ κ<κ so that there is ζ < lth s
with the property that 〈Φα(s � ξ + 1) : ξ ∈ [ζ, lth s)〉 is decreasing, the set
{i ∈ κ : ∃p ∈ Dα ∩ CS(s_i)(lth s)(p ≤ 〈Φα(s � ξ + 1) : ξ ∈ [ζ, lth s)〉)} is
cobounded in κ. This follows because AS(s) is a pseudointersection of Fs and
thus in particular of A(α, 〈Φα(s � ξ + 2) : ξ ∈ [ζ, lth s)〉). This means that
Φα(s_i) ∈ Dα and is below 〈Φα(s � ξ + 1) : ξ ∈ [ζ, lth s)〉 for almost all i ∈ κ.

Thus we can define for every α < λ a function Fα : κ<κ → κ, so that for any
s ∈ κ<κ and and any i ≥ Fα(s), Φα(s_i) ∈ Dα and Φα(s_i) ≤ 〈Φα(s � ξ+1) :
ξ ∈ [ζ, lth s)〉 if ζ is such that 〈Φα(s � ξ + 1) : ξ ∈ [ζ, lth s)〉 is decreasing (e.g.
when lth s is a successor, then ζ = lth s− 1 works because |[ζ, lth s)| = 1).

As |κ<κ| = κ and λ < p(κ) ≤ b(κ) we find a single F : κ<κ → κ so that for
each α < λ and almost all s ∈ κ<κ, Fα(s) ≤ F (s).

Let x ∈ κκ be defined by letting x(0) = F (∅) and x(i) = F (x � i). Define
Z =

⋃
i<κ S(x � i) ∈ κκ.

For every α < λ there is some iα large enough so that Ψα(iα) := Φα(x �
iα + 1) ∈ Dα and for every j ≥ j′ ≥ iα, Ψα(j) := Φα(x � j + 1) ≤ Ψα(j′) :=
Φα(x � j′ + 1), i.e. 〈Ψα(j) : j ∈ [iα, κ)〉 is decreasing.

Define G = {Ψα(iα) : α < λ}. Clearly G ∩ Dα 6= ∅ for every α < λ.
We claim that G is linked. To see this let α, β be such that iα ≤ iβ . Then
Ψα(iβ) ≤ Ψα(iα) and {Ψα(iβ),Ψβ(iβ)} ⊆ CZ(iβ) and so Ψα(iβ),Ψβ(iβ) are
compatible and also Ψα(iα),Ψβ(iβ) are compatible.

This proves the theorem.

We note that all κ-centered, κ-closed posets that are usually considered (e.g.
Hechler forcing or Mathias forcing for κ-complete filters) are actually κ-specially-
centered and we are not sure whether special centeredness is a real restriction.
We are not aware of any example of a κ-centered, κ-closed but not κ-specially-
centered poset, although we think that these notions can be separated.

A lot of the usual κ-centered, κ-closed posets fall in the class described by
the following Proposition.

Proposition 4.3.4. Let κ<κ = κ. Suppose F is any set, S ⊆ κ× κ is a relation
and R ⊆ κ × F is a relation. Then the poset P consisting of pairs (a,X ) ∈
[κ]<κ×[F ]<κ so that ∀α, β ∈ a(S(α, β)) together with the order (b,Y) ≤ (a,X )
iff a ⊆ b, X ⊆ Y and ∀α ∈ b \ a∀X ∈ X (R(α,X)), is κ-specially-centered.

Proof. For any a ∈ [κ]<κ, let Ca = {p ∈ P : p(0) = a}. We show that {Ca : a ∈
[κ]<κ} witnesses κ-specially-centeredness. Suppose s : δ → [κ]<κ for δ < κ and

53



4. GENERALIZATIONS TO UNCOUNTABLE κ

S(s, C̄) is non empty. If P ∈ [S(s, C̄)]<κ we find that (
⋃
i<δ s(i),

⋃
p̄∈P

⋃
i<δ pi(1))

is a lower bound for P .

For example Mathias forcing for a κ-complete ultrafilter U corresponds to
the poset described above where F = U , S = κ×κ andR(α,X) iff α ∈ X . For
Hechler forcing, we identify κ with κ× κ and define S((α, β), (γ, δ)) iff α 6= γ.
Then we let F = κκ and R((α, β), f) iff β > f(α).

4.4 Rothberger generalized
In this section we prove the analogue of Theorem 2.3.1. More specifically we
will prove:

Theorem 4.4.1. Assume κ<κ = κ. Then p(κ) = κ+ → t(κ) = κ+.

We roughly follow the proof of S. Garti given in [13]. The main difference
with the proof of Theorem 2.3.1 is that when constructing a tower on κ we need
to additionally ensure that at limit steps of small cofinality (< κ) we have a
pseudointersection (i.e. the tower has the κ-IP). It is in general not clear how to
achieve this. For example, even though the proof of Theorem 2.1.1 only takes
a few lines, it needs a big effort to get the general result specifically because of
these small limits (see [30]).

Proof. Assume 〈Bα : α < κ+〉 ⊆ [κ]κ has the κ-IP and b(κ) > κ+ (else
κ+ ≤ t(κ) ≤ b(κ) ≤ κ+). We will construct a κ-tower 〈Tα : α < κ+〉 so that
Tα ⊆∗ Bα for every α < κ+. This clearly suffices.

First fix for every α < κ+ a pseudointersection Aα of 〈Bβ : β < α〉. We
will construct 〈Tα : α < κ+〉 with the additional property that Aξ ⊆∗ Tα, for all
α < κ+ and ξ ∈ [α, κ+).

Suppose we have achieved to construct such a tower up to stage α < κ+.
If α is of cofinality < κ, say α = supi<δ αi for δ < κ, then Aξ ⊆∗

⋂
i<δ Tαi

for every ξ ∈ [α, κ+). Because assume Aξ ∩ κ \ (
⋂
i<δ Tαi) has size κ, then

Aξ ∩ κ \ Tαi has size κ for some i < δ. This contradicts Aξ ⊆∗ Tαi . Thus we
may continue by setting Tα =

⋂
i<δ Tαi .

If α is of cofinality κ, say α = supi<κ αi, then do the following. Let Xi =⋂
j<i Tαj . Then Xi ⊆ Xj whenever j < i and Aξ ⊆∗ Xi for every ξ ∈ [α, κ+)

(the same argument as above). For any ξ ∈ [α, κ+) define a function fξ ∈ κκ so
that Aξ \ fξ(i) ⊆ Xi+1 for every i < κ. We assumed b(κ) > κ+. Thus there is
f ∈ κκ so that fξ <∗ f for every ξ ∈ [α, κ+). Consider X =

⋃
i<κXi ∩ f(i).
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This is clearly a pseudointersection of 〈Xi : i < κ〉 and thus of 〈Tβ : β < α〉.
Fix ξ ∈ [α, κ+). We show that Aξ ⊆∗ X . To this end let i < κ be such that
f(j) > fξ(j) for every j > i. Assume there is γ ∈ (Aξ ∩ Xi) \ X , then
there is a minimal j > i so that γ /∈ Xj (else γ ∈ X). Note that j has to
be a successor ordinal, because Xj =

⋂
j′<j Xj′ . So write j = j′ + 1. But then

γ ∈ Xj′∩fξ(j′) ⊆ Xj′∩f(j′) ⊆ X , because else γ ≥ fξ(j
′) but γ ∈ Aξ \Xj′+1,

contradicting the definition of fξ(j′). But this means that γ ∈ X contradicting
our assumption. We have thus shown that Aξ ∩ Xi ⊆ X and as Aξ ⊆∗ Xi we
follow that Aξ ⊆∗ X . We may take Tα = X .

The main invent of the proof above is to ensure that our tower has some sort
of lower bound that guarantees the κ-IP. Apart from that the proof wasn’t really
different from the case κ = ω. Thus it may be conceivable that using a similar
trick we could generalize the proof of p = t. But it should be noted that, e.g.
when trying to reproduce the reduction in Section 3.1, there are still a lot of
places where the problem of having limits of small cofinality is not obvious to
overcome. Further one should be aware of the following:

Observation 4.4.2. There is no sequence 〈fn : n ∈ ω〉 ⊆ κκ that is decreasing
wrt <∗.

Proof. Assume 〈fn : n ∈ ω〉was strictly decreasing. Then there is α < κ so that
∀n < m ∈ ω(fm(α) < fn(α)). But then 〈fn(α) : n ∈ ω〉 is a strictly decreasing
sequence of ordinals.
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Open questions

From Chapter 3:

Question. Does p < b or even p < d imply that every filter base of size p has a
refining tower?

Question. Does p < d imply that every ultrafilter base of size p is generated by
a tower?

From Chapter 4:

Question. Is add(Mκ) < b(κ) consistent (assuming κ<κ = κ)?

Question. Is s(κ) ≤ add(Mκ)? Equivalently, is s(κ) ≤ cov(Mκ)?

Question. Is p(κ) = t(κ)?
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[30] Saharon Shelah and Zoran Spasojević. Cardinal invariants bκ and tκ. Publ.
Inst. Math. (Beograd) (N.S.), 72(86):1–9, 2002.

[31] Eric Van Douwen. The integers and topology. In Kenneth KUNEN and
Jerry E. VAUGHAN, editors, Handbook of Set-Theoretic Topology, pages
111 – 167. North-Holland, Amsterdam, 1984.

[32] Nik Weaver. Forcing for mathematicians. World Scientific Publishing Co.
Pte. Ltd., Hackensack, NJ, 2014.

61


