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Abstract

Future linear colliders will be able to measure the top quark mass with unprecedented accuracy
using a threshold scan of the top quark pair production cross section. At threshold, the inclusive
production cross section is known from non-relativistic QCD (NRQCD), while in the continuum
it is calculated with usual fixed-order QCD. In the region between threshold and continuum the
exact form of the inclusive cross section has been unknown up to now.
The aim of this thesis is to fill this gap by matching the velocity-NRQCD (vNRQCD) next-to-
next-to-leading-logarithm (NNLL) threshold cross section to the next-to-next-to-next-to-leading-
order (N3LO) QCD continuum cross section. We perform the matching for two cases: with the
resummation of large logarithms of the velocity at threshold and without it. Apart from QCD
effects, we include leading-order electroweak effects at threshold by shifting the center-of-mass
energy into the complex plane. This gives the bulk of all contributions to the top quark pair
production cross section at threshold. Furthermore, we use the MSR mass with an adjustable scale
R in order to have a consistent mass scheme in the matching. This avoids the renormalon problem
of the pole mass as well as the power counting breaking effects of the MS mass at threshold. In
the continuum, we employ a switch-off function to turn off the non-relativistic contributions. By
varying the switch-off function, we estimate the error in our matching.
Our results show that the matched cross section differs from both the vNRQCD and the QCD cross
section in a region starting directly above the threshold peak to about 20 GeV above the threshold.
In this region the matched cross section should be used instead of the QCD and vNRQCD cross
section. On the other hand, the matched cross section is practically identical with the vNRQCD
at threshold and with the QCD cross section for energies more than 20 GeV above the threshold,
and they replace the matched cross section in these regions. Furthermore, the dependence of the
matched cross section on the switch-off function decreases when going to higher orders, showing
the consistency of the matching.



Abstract

Zukünftige Linearbeschleuniger versprechen hochpräzise Messungen der Top Quark Masse mittels
eines Scans des Wirkungsquerschnittes an der Schwelle für Top Quark Paarerzeugung. Der inklu-
sive Wirkungsquerschnitt direkt an der Schwelle wird mit nicht-relativistischer QCD (NRQCD)
berechnet. Bei höhereren Energien im Kontinuum kommt hingegen die Schleifenentwicklung der
relativistischen QCD zur Anwendung. In dem Gebiet zwischen der Schwelle und dem Kontinuum
war die genaue Form des inklusiven Wirkungsquerschnittes bis jetzt unbekannt.
Das Ziel dieser Arbeit ist es, den velocity-NRQCD (vNRQCD) Wirkungsquerschnitt auf der Ord-
nung NNLL mit dem QCD Wirkungsquerschnitt auf der Ordnung N3LO zusammenzufügen. Der
resultierende Wirkungsquerschnitt wird untersucht sowohl mit als auch ohne Resummation von
großen Logarithmen der Geschwindigkeit an der Schwelle. Neben QCD Effekten berücksichtigen
wir auch elektroschwache Beiträge an der Schwelle auf führender Ordnung, welche zusammen mit
den QCD Beiträgen den Großteil des gesamten Wirkungsquerschnitts zur Paarerzeugung von Top
Quarks an der Schwelle geben. Außerdem verwenden wir die MSR Masse mit einer veränder-
baren Skala R um ein konsistentes Massenschema an der Schwelle, im Kontinuum, und in der
intermediären Region zu erhalten. Damit vermeiden wir sowohl das Renormalon-Problem der Pol-
masse, als auch Verletzungen des Power Countings durch die MS Masse an der Schwelle. Um keine
nicht-relativistische Beiträge im Kontinuum zu haben, multiplizieren wir die nicht-relativistischen
Beiträge mit einer sogenannten Switchoff-Funktion, die von 1 an der Schwelle kontinuierlich auf
0 im Kontinuum übergeht. Variationen dieser Funktion ermöglichen uns eine Abschätzung des
Fehlers des Wirkungsquerschnitts in der intermediären Region.
Unsere Resultate zeigen, dass der zusammengefügte Wirkungsquerschnitt vom reinen vNRQCD Re-
sultat schon direkt nach der Peak-Region der Schwelle abweicht. Der reine QCD-Wirkungsquerschnitt
zeigt Abweichungen für Energien bis ca. 20 GeV oberhalb der Schwelle. Die Auswirkungen der
Variation der Switchoff-Funktion nehmen von Ordnung zu Ordnung ab. Dies zeigt die Konsistenz
unserer Methode.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics describes all known particles and interactions except
gravity and its predictions have been in remarkable agreement with experimental measurements [1].
However, the Standard Model is known to be incomplete. For example, it describes neutrinos as
massless particles, although experiments on neutrino oscillations prove that neutrinos have a small
mass [2]. Also, there could be particles not included in the SM that are responsible for dark matter
and many extensions of the Standard Model with new particles exist.

To find more inconsistencies with the SM that can point us in the right direction for extensions of
the SM, two large linear colliders are currently in planning, the International Linear Collider (ILC)
in Japan [3] and the Compact Linear Collider (CLIC) at CERN [4]. Instead of protons, they collide
electrons with positrons, which reduces the QCD background in the measurements and makes it
possible to measure the top quark and Higgs boson properties with unprecedented precision. Apart
from finding new physics by looking for deviations of the SM parameters from theory, a future
linear collider could also directly find new particles, which went undetected at the Large Hadron
Collider (LHC) [5].

One of the corner stones of the future linear colliders is a high precision measurement of the top
quark mass from a scan of the top quark pair production cross section at threshold. As the heaviest
of all SM particles, the top quark is an important input parameter for global electroweak fits [6].
It also has a large effect on the stability of the electroweak vacuum [7] and a more precise mea-
surement of its mass would finally clarify, if the electroweak vacuum is stable or metastable (in a
model assuming no new particles up to the Planck scale).
On the theory side, top quark pair production can be treated very well in perturbation theory and
non-perturbative effects are tiny. This is in contrast to all other quarks and is related to its large
mass mt ∼ 173 GeV and width Γt ∼ 1.5 GeV. The large width originates from the top quark decay
into a W boson and a bottom quark, and the top quark is the only quark with a mass large enough
to make this decay possible.

At the moment, the most precise measurements of the top quark mass come from the direct recon-
struction of the top decay products in pp̄ collisions using Monte Carlo event generators and give
mMC
t = 173.1(6) GeV [1]. However, they determine the Monte Carlo mass mMC

t , which is not a
well-defined field theoretical mass. It is not clear at the moment, how to generally relate the Monte
Carlo mass to a well defined field-theoretical mass. However, studies have been done to calibrate
the Monte Carlo mass for specific observables [8].
Future linear colliders promise a large improvement on the uncertainty of the top quark mass mea-
surement to about 50 MeV [9,10], which is about a factor of 10 smaller than the current value. For
this measurement, they perform a scan of the top quark pair production cross section at threshold.
From the cross section, the top quark mass can be extracted in a well-defined field-theoretical mass
scheme.
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Calculations of the cross section of top quark pair production at threshold have advanced greatly
in recent years. Since the perturbative series in αs does not converge at threshold, the effective
field theory non-relativistic QCD (NRQCD), or one of its derivatives vNRQCD or pNRQCD, is
used instead of QCD. For the inclusive cross section, the calculations have reached next-to-next-
to-leading-logarithmic (NNLL) order in vNRQCD [11] and next-to-next-to-next-to-leading-order
N3LO accuracy in pNRQCD [12]. However, the NRQCD calculations are only valid directly at
threshold and break down when going to higher center-of-mass (CM) energies. QCD, on the other
hand, correctly predicts the cross section in the continuum, i.e. at high energies away from the
threshold, but breaks down at threshold.

Not many studies so far have focused on the intermediate region between threshold and continuum.
This region is important for a number of reasons. First, the luminosity spectrum smears out the
CM energy and the intermediate region could therefore also contribute to measurements of the
threshold cross section. Secondly, CLIC plans to have a run also above the threshold at 380 GeV,
i.e. in the intermediate region, where a mass measurement of the top quark mass from radiative
events could supplement the one from the threshold. For this a continuous cross section from the
threshold to the continuum is needed.

A matching between threshold and contiuum has been implemented in the event generator Whizard
for the differential cross section by including NLL threshold resummations as a form factor in the
fixed-order NLO QCD cross section [13].
However, a matching for higher orders (up to NNLL in vNRQCD and N3LO in QCD) for the
inclusive cross section has not been investigated so far. We present first studies to fill this gap.

This thesis presents the threshold-continuum matching of the inclusive cross section of double-
resonant top quark pair production up to NNLL in vNRQCD and N3LO in QCD. For a first study,
we restrict ourselves to the photon induced production cross section with leading-order electroweak
effects at threshold. We will first describe the calculations of the contributions in the continuum and
at threshold separately, and then present our approach to combine them to a matched cross section.

The structure of this thesis is as follows. In Chapter 2 we describe the form of the QCD cross
section in the continuum with the optical theorem. Chapter 3 is dedicated to the threshold region.
It gives an introduction to effective field theories in general and to vNRQCD specifically. Using the
vNRQCD formalism, the form of the cross section at threshold is derived. In Chapter 4 we describe
mass schemes for the threshold, continuum, and intermediate region. The mass schemes typically
used at threshold are inadequate in the continuum and vice versa. For a mass scheme valid in all
regions, we discuss the MSR mass. The matching of the threshold and continuum contributions is
presented in Chapter 5 and the results are discussed in Chapter 6. Finally, Chapter 7 concludes
and gives an outlook for future studies of the matched cross section.
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Chapter 2

Continuum Contributions

For the matching we will consider the inclusive top quark pair production cross section with photon
exchange

σ = σ(e+e− → γ∗ → tt̄+X) (2.1)

and include QCD corrections as well as leading order electroweak effects at threshold. The cross
section is related to the top quark vector current induced vacuum polarization via the optical the-
orem (Section 2.1) and for center-of-mass (CM) energies above 400 GeV (continuum), QCD can be
used to calculate an expansion in the strong coupling constant αs. We call this cross section σQCD.
It is known up to 3 loops (Section 2.2).
For CM energies around

√
s ∼ 2mt ∼ 345 GeV (threshold) the velocity v of the top and anti-top

quark is small and the expansion has to be done in both v and αs simultaneously. We describe the
calculation of the cross section in this expansion with the effective field theory (EFT) vNRQCD in
Chapter 3 and call it σvNRQCD.

We will now use the optical theorem to relate σQCD to the vacuum polarization Πµνand present the
results for the vacuum polarization up to N3LO.

2.1 Cross Section and Vacuum Polarization

Inclusive cross sections can be calculated from the forward scattering amplitude with the optical
theorem (see Appendix A). For the unpolarized cross section, the optical theorem takes the form

σtot(e
+e− → γ∗ → tt̄) =

∑
f

∫
dΠf

∣∣∣∣∣∣∣
e+

e−

t

t̄

...

∣∣∣∣∣∣∣
2

=
1

s
Im

(−i)
e+

e−

t

t̄

e+

e−

 , (2.2)

where
√
s is the total energy in the CM frame. The sum in the first line goes over all possible final

states tt̄+X and dΠf denotes the phase space of the final state particles. The gray blobs stand for
all possible QCD corrections to the vertex and the heavy quark vacuum polarization, respectively.
Furthermore, we assume the electron and positron to be massless, because the CM energy for top
quark pair production at threshold is 2mt ∼ 345 GeV and therefore much larger than the electron
mass me ∼ 0.5 MeV. We deliberately denoted the cross section here as σtot instead of σQCD, because
the following calculation applies to both the vNRQCD and the QCD cross section.
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The factor (−i) in front of the diagram in the last line of Equation (2.2) is needed, because in
QFT one usually calculates the amplitude iM (i.e. the Feynman diagram in Equation (2.2)) and
then only uses M for the optical theorem, cross section, and decay rates. The (−i) removes the
unwanted factor of i.

The diagram in the second line of Equation (2.2) can be related to the heavy quark vacuum
polarization Πµν , which is defined as the correlator of two electromagnetic currents of the form
jµ(x) = ψ̄(x) γµ ψ(x):

q
t

t̄

= iΠµν(q) =

∫
d4x eiqx 〈0 |T jµ(x)jν(0) | 0〉 . (2.3)

Using Lorentz invariance and the Ward identity qµ Πµν(q) = 0, the Lorentz structure of Πµν can
be extracted:

Πµν(q) = (gµν q2 − qµ qν) Π(q2) . (2.4)

With s = (p1 + p2)2 = q2 the diagram in Equation (2.2) then takes the form

p1

p2

p1

p2

q

=

=
1

4

∑
r,s

Q2
t (−ie)4

[
v̄r(p1) γµ u

s(p2)
] −i
q2 + i ε

iΠµν(q)
−i

q2 + i ε

[
ūs(p2) γν v

r(p1)
]

= −iQ2
t

e4

s2
Lµν Πµν(q)

= −iQ2
t

e4

s2
Lµν Π(q2) q2 gµν , (2.5)

where Qt = 2/3 is the charge of the top quark. Lµν = 1
4

∑
r,s [v̄r(p1) γµ u

s(p2)] [ūs(p2) γν v
r(p1)] is

the leptonic tensor, and the sum over r, s averages the spins of the incoming particles. In the last
line we used Equation (2.4), where the second part of (2.4) vanishes because of the Dirac equation:

v̄(p1) /q u(p2) = v̄(p1) (/p1
p1 + /p2

p2)u(p2) = 0 .

Rewriting Lµν as a trace and using the spin sums
∑

s u
s(p) ūs(p) =

∑
s v

s(p) v̄s(p) = /p, where
me = 0, the leptonic part of Equation (2.5) takes the simple form

Lµν g
µν = gµν

1

4

∑
r, s

Tr
[
v̄r(p1) γµ u

s(p2) ūs(p2) γν v
r(p1)

]

=
1

4
Tr
[
/p1
p1 γµ /p2

p2 γ
µ
]

= −1

2
Tr
[
γαγβ

]
(p2)α(p1)β

= −2 (p1 · p2)

= −s . (2.6)
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q

(a)

q

(b) (c)

Figure 2.1: Contributions to Π0 and Π1

Finally, we combine Equations (2.2),(2.5) and (2.6) and obtain

σtot = 12πQ2
t σpt Im Π (s+ i ε) , (2.7)

where σpt = e4/(12π s) = 4πα2/(3s) and α is the electromagnetic coupling constant. The infinites-
imal term (+i ε) ensures that the correct branches are chosen for the imaginary part.
Equation (2.7) can also be written with Πµν , which we will need in Chapter 3. For this we note
that from Equation (2.4) follows

Πµ
µ(q2) = 3 q2 Π(q2) , (2.8)

where we have the changed the notation of Πµ
µ(q) to Πµ

µ(q2) to express that the vacuum polarization
with contracted indices only depends on the square of q. Using Πµ

µ Equation (2.7) can be rewritten
in the form

σtot = F (s) Im
[

Πµ
µ (s+ i ε)

]
, F (s) =

4π

s
Q2
t σpt . (2.9)

2.2 Vacuum Polarization up to N3LO

The top quark vacuum polarization is known up to order N3LO, i.e. up to α3
s. It can be written as

Π(z) = Π0(z) + CF

(
α

(nf )

s (µ)

π

)
Π1(z) +

(
α

(nf )

s (µ)

π

)2

Π2(z, µ) +

(
α

(nf )

s (µ)

π

)3

Π3(z, µ) +O
(
α4
s

)
,

(2.10)
where αs is renormalized in the MS scheme with nf active flavors and z = q2/4m2

t with the top
quark pole mass mt. Π0, . . . , Π3 are the vacuum polarization contributions up to four loops.

Π0 consists of the one loop diagram shown in Figure 2.1a and its calculation can be found in many
textbooks (e.g. [14, 15]). Its result reads (with the notation from [16]):

Π0(z) = −(−i) Nc

3 q2

∫
d4k

(2π)4

Tr
[
γµ i(/k − /q +m) γµ i(/k +m)

]
[(k − q)2 −m2 + iε] [k2 −m2 + iε]

(2.11)

=
Nc

16π2

(
20

9
+

4

3z
− 4(1− z)(1 + 2z)

3z
G(z)

)
, (2.12)

where

G(z) =
2u lnu

u2 − 1
and u =

√
1− 1/z − 1√
1− 1/z + 1

(2.13)

and Nc = 3 is the number of colors.
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Π1 includes the two-loop diagrams shown in Figure 2.1. An analytic result for Π1 was first derived
in [17] and recalculated e.g. with a dispersive approach in [18] and with integration by parts in [16].
It reads [16]:

Π1(z) =
Nc

16π2

[
5

6
+

13

6z
− (1− z)(1− 16z)

6z
G2(z)

−(1 + 2z)

6z

(
1 + 2z(1− z) d

dz

)
I(z)

z

]
,

(2.14)

where

I(z) = 6 [ ζ3 + 4 Li3(−u) + 2 Li3(u) ]− 8 [ 2 Li2(−u) + Li2(u) ] log u

−2 [ 2 log(1 + u) + log(1− u) ] log2 u
(2.15)

and CF = 4/3.

For Π2 and Π3 no fully analytic result exists. However, expansions in the limits q2 →∞, q2 → 4m2,
and q2 → 0 are known and allow an approximation of the full amplitude with Padé approxi-
mants [19]. Recently, also a numerical result for Π2 has been obtained in [20].
For the matching we will use the implementation of [19] for Π2 and Π3. In [19] the vacuum polar-
ization was calculated with nf = 6 running flavors. Since the scales at threshold are much smaller
than the top mass, the coupling at threshold only runs with nf = 5 flavors and accordingly we

change α
(nf=6)
s to α

(nf=5)
s for the matching, see Equation (D.4).

Figure 2.2a shows the total cross section σtot from Equation (2.7) at different orders in αs with
the analytical expressions from Equation (2.11) and Equation (2.14) for Π0 and Π1, respectively,
and with Padé approximations for Π2 and Π3 as described in [19]. The error bands are generated
by varying the renormalization scale µ between mt/2 < µ < 2mt and the middle line corresponds
to the default value µ = mt. The plot already shows the breakdown of the QCD calculation for
energies near threshold (

√
s = 2mt ). While in the continuum above 400 GeV the error bands

of the curves overlap, at threshold we can see a large gap between the NLO and NNLO curve.
Additionally, the contributions from Π2 and Π3 diverge and make an accurate prediction from the
QCD cross section impossible.
At threshold, leading order electroweak effects become important, as we will see in Section 3.4.4.
They can be included at threshold in σvNRQCD using the replacement

√
s+ iε→ √s+ iΓ , (2.16)

where Γ ∼ 1.5 GeV is the decay width of the top quark. To be consistent in the matching, we
make the same replacement in the vacuum polarization Π appearing in Equation (2.7). Figure 2.2b
shows σQCD with the replacement of (2.16). The sharp drop of the cross section is then smeared out,
leaving a smooth lineshape. The unphysical behavior at threshold is however still clearly visible.
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Figure 2.2: Top quark pair production cross section in QCD up to N3LO with (b) and without (a)
a shift of the CM energy

√
s into the complex plane.
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Chapter 3

Threshold Contributions

At threshold, the top quark pair is produced with a small relative velocity and forms a Coulomb-
like system, similar to the Hydrogen atom. For Coulombic systems the virial theorem relates the
kinetic and potential energy and gives the relation

v ∼ αs ∼ 0.1 . (3.1)

Three scales govern the physics of the top quark pair at small velocities: the mass of the top quarks
mt, their momentum p ∼ mv, and their energy E ∼ mv2. Here v denotes the velocity of one of
the quarks in the center-of-mass frame. The three scales have a large separation among each other
and are all much larger than ΛQCD:

m� mv � mv2 � ΛQCD . (3.2)

Together with its large width Γt � ΛQCD, this makes the tt̄ system the only quarkonium system
that can be treated fully in perturbation theory. However, as we have seen in the last chapter, one
can not simply take the perturbative QCD result at threshold. Two kinds of large contributions
arise for small v and spoil the perturbation series in the expansion in the number of loops: terms
from the Coulomb singularity and large logarithms of v.

The Coulomb singularity is generated by a potential, which is at first order the same as the Coulomb
potential known from non-relativistic quantum mechanics. With this potential one obtains the
contributions

v, αs, α
2
s/v, α

3
s/v

2, . . . . (3.3)

Because αs ∼ v they are all equally large and need to be summed to all orders. They can be
calculated either with the method of regions from the QCD amplitudes or in the framework of the
effective field theory NRQCD (non-relativistic QCD), or one of its derivatives vNRQCD (velocity
NRQCD) [21] or pNRQCD (potential NRQCD) [22]. To sum the Coulomb terms, a Bethe-Salpeter
type integral equation can be used, which is for top quark pair production just the well-known
Schrödinger equation from quantum mechanics.

Large logarithms in v arise because of the widely separated scales from Equation (3.2). The problem
of large logarithms is quite general and usually appears in perturbative QFT calculations containing
widely separated scales. There, logarithms of the scales will appear in the cross section and degrade
the perturbative expansion. For top quark pair production at threshold the logarithms appear in
the form

8



log (p/m) ∼ log (v)

log (E/m) ∼ log
(
v2
)
. (3.4)

They become sizeable at threshold, where αs log v ∼ 0.25 and αs log v2 ∼ 0.5. The contributions

αs log v, α2
s log2 v, α3

s log3 v, . . . (3.5)

therefore converge very slowly and can be considered parametrically of O (1).

Effective field theories (EFTs) provide a framework to sum these logarithmic contributions to all
orders with the renormalization group (RG) running of so-called Wilson coefficients. At threshold,
vNRQCD provides a consistent resummation of the large logarithms.

While the Coulomb resummation is mandatory, different approaches with and without the log-
arithm resummation exist at threshold. We will call calculations with the resummation of the
logarithms renormalization group improved (RGI) and results without it fixed-order (FO).
The highest precision up to now has been achieved with vNRQCD and pNRQCD. In vNRQCD
the renormalization group improved (RGI) calculation is complete up to next-to-next-to-leading-
logarithm (NNLL) for all practical purposes [11]. In pNRQCD the fixed-order (FO) perturbation
theory result has reached next-to-next-to-next-to leading order (N3LO) precision [12] .
For the matching we will use vNRQCD in an RGI and FO setting.

In this chapter we first present the method of regions for the threshold region and use it to calculate
the leading order contributions for small v (Section 3.1). Higher order contributions are more easily
calculated in vNRQCD, which we also need for resumming logarithms of v.
After giving an introduction to effective field theories in Section 3.2, we will derive the vNRQCD
Lagrangian in Section 3.3 and explain the resummation of logarithms.
Section 3.4 then applies vNRQCD to top quark pair production at threshold and explains how
the Coulomb singularity is resummed with the Schrödinger equation. Furthermore, it shows how
leading order electroweak effects are implemented with the replacement from Equation (2.16) and
discusses higher order electroweak effects. Lastly, Section 3.5 presents an analysis of the top quark
pair production cross section at threshold for both the FO and the RGI set up.

3.1 Method of Regions at Threshold

The method of regions is a powerful tool to calculate asymptotic expansions of Feynman integrals.
It is basically an expansion under the integral sign in the integration variable. The details are
described in appendix B. The application of the method of regions at threshold was developed
in [23] and is also known as ”threshold expansion”.
To calculate integrals in the threshold expansion, we first have to identify all regions where physical
scales contribute to loop integrals. Since we have the three scales m, p ∼ mv, and E ∼ mv2, we
might guess that there are the following three regions for a loop integral with the momentum
kµ = (k0,k):

hard region: (k0,k) ∼ (m,m)

soft region: (k0,k) ∼ (mv,mv)

ultrasoft region: (k0,k) ∼ (mv2,mv2) . (3.6)
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These regions indeed contribute, but there is one more region. Since the heavy quark propagator
becomes on-shell for E ∼ p2/2m, the so-called ”potential” region has to be considered, too:

potential region: (k0,k) ∼ (mv2,mv) . (3.7)

Using these four regions, we can calculate Feynman amplitudes at threshold as an expansion in v.
To illustrate how the threshold expansion works, let us consider the LO QCD vacuum polarization
from Equation (2.12) at threshold. We will work in the center-of-mass frame, where the momentum
q from Equation (2.3) takes the form

qµ = (q0, 0) = (Erel, 0) . (3.8)

Erel is the relativistic center-of-mass energy and related to the non-relativistic energy Enr = mv2

by

q0 = Erel =
2m√
1− v2

= 2m+mv2 +O
(
v4
)

= 2m+ Enr +O
(
v4
)
. (3.9)

To first order in v2 we therefore have:

q2
0/4−m2 ' mEnr . (3.10)

In the CM frame only the spatial part Πij of the vacuum polarization is non-zero, as can be seen
by plugging Equation (3.8) into Equation (2.4):

Π00 = 0

Π0i = 0

Πij = gij q2
0 Π for i, j = 1, 2, 3 . (3.11)

For the threshold expansion it turns out that a ”canonical” routing of q in the loop makes the
counting most transparent. For this, q is split up such that q/2 flows through the upper and q/2
through the lower part of the loop, respectively.

Using Equations (3.8) and (3.10) together with the canonical routing of q, the integral from Equa-
tion (2.11) in dimensional regularization becomes

Πµν
0 = −(−i) µ̃2εNc

∫
ddk

(2π)d
Tr
[
γµ i(/k − /q/2 +m) γν i(/k + /q/2 +m)

]
[(k − q/2)2 −m2]+ [(k + q/2)2 −m2]+

= −4 i µ̃2εNc

∫
ddk

(2π)d
2 kµkν − qµqν/2 + gµν(mE − k2 + 2m2)

[k2 + k0 q0 +mE]+ [k2 − k0 q0 +mE]+
, (3.12)

where a factor of (−i) was included, because we write Π here instead of iΠ. The subscript signifies
the sign of the infinitesimal imaginary part: [. . . ]± = (· · · ± iε). Using (3.6) and (3.7) to expand in
the different regions and taking only the spatial part of Πµν , the integral splits into four parts:

Πij
0 = (Πij

0 )hard + (Πij
0 )potential + (Πij

0 )soft + (Πij
0 )ultrasoft (3.13)

with
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(Πij
0 )hard = −4 i µ̃2εNc

∫
ddk

(2π)d
2 kikj + gij(−k2 + 2m2)

[k2 + k0 q0]+ [k2 − k0 q0]+

(Πij
0 )potential = −4 i µ̃2εNc

∫
ddk

(2π)d
gij 2m2

[mE − k2 + k0 q0]+ [mE − k 2 − k0 q0]+

(Πij
0 )soft = −4 i µ̃2εNc

∫
ddk

(2π)d
gij 2m2

[k0 q0]+ [−k0 q0]+

(Πij
0 )ultrasoft = −4 i µ̃2εNc

∫
ddk

(2π)d
gij 2m2

[k0 q0 +mE]+ [−k0 q0 +mE]+
. (3.14)

Πhard can be calculated using partial fractions and Feynman parameters. Expanding in d = 4− 2ε,
its result reads:

(Πij
0 )hard =

3m2

2π
gij
[

2

3 ε

1

π
+

2

3π
log

(
µ2

m2

)
+

16

9π
+O

(
v2
)]

, (3.15)

where µ̃2 = µ2 eγE/4π. Equation (3.15) has no imaginary part and therefore drops out in the total
cross section. We could have seen this already before solving the integral: The quark propagators
can not become on-shell for (k0, k) ∼ (m, m). By the optical theorem, the result can therefore not
have an imaginary part.

The potential region gives a finite result. Performing the k0 integration in Equation (3.14) by
closing the contour either in the upper or lower complex plane, one obtains

(Πij
0 )potential = 24im2gij µ̃2ε

∫
dnk

(2π)n
i

2 q0 (mE − k2)
(3.16)

and using Equation (D.4), the remaining integral evaluates to

(Πij
0 )potential = i v

3m2

2π
gij , (3.17)

where v =
√
E/m. Lastly, the soft and ultrasoft integrals are scaleless and vanish:

(Πij
0 )soft = (Πij

0 )ultrasoft = 0 . (3.18)

We can check the result by expanding the full amplitude from Equation (2.12) and using Equa-
tion (2.4):

Πij
0 =

3m2

2π
gij
(

2

3 ε

1

π
+

2

3π
log

(
µ2

m2

)
+

16

9π
+ i v +O

(
v2
))

. (3.19)

Comparing Equation (3.19) with the results of Equation (3.15) and (3.17), we see that the threshold
expansion has indeed reproduced all terms correctly. Thus, we showed that expanding the integral
in v before the integration gives the same result as expanding it after the integration.

The threshold expansion has the useful feature that we can determine which power of v the result
will have without solving the integral. For example, in Equation (3.14), Πhard will only contribute
to the endresult in the region where d4k scales as m4. The integrand scales as m−2. The result
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should therefore be of order m2. For Πpotential we have dk0 ∼ mv2, d3k ∼ (mv)3 and (mv2)−2 for
the integrand. This gives in total m2v, which is indeed the scaling of the result we calculated in
Equation (3.17).

The power counting in v will help us now to determine the leading order contributions to the top
quark pair production cross section at threshold.

3.1.1 Leading Order Contributions to the Threshold Cross Section

Since at threshold v ∼ αs, the leading order contribution to the top quark pair production cross
section is determined by an expansion in both αs and v. Performing an expansion in v of the
diagrams

, , , , . . . (3.20)

shows that the lowest order contributions are of order

v , αs , α2
s/v , α3

s/v
2 , . . . . (3.21)

They are all of the same order and give the leading order contribution to the cross section.

To see how these terms arise, we will now expand the Feynman integrals of the vacuum polarization
diagrams with the method of regions. From the four regions at threshold, only the purely potential
region gives contributions to the leading order terms from Equation (3.20), as can be seen by power
counting in v before the integration.

At order O
(
α0
s

)
the leading order contribution in v was calculated in the last section (see Equa-

tion (3.19)). Only the potential region has an imaginary part and its contribution to the cross
section is therefore

−i
[

ji
]

pot

= iv
3m2

2π
gij . (3.22)

At order O (αs) all diagrams except the one shown in Figure 2.1c are zero at leading order. We
will now first calculate this diagram in the potential region and then show that the other diagrams
are zero.

The full diagram has the form

− i
[

i j
]

= i(−igs)2CF Nc µ̃
4ε

∫
ddp1

(2π)d
ddp2

(2π)d
−i[
p2

2

]
+

i4 (3.23)

×
Tr
[
γi(−/q/2 + /p1

p1 +m)γα(−/q/2 + /p1
p1 + /p2

p2 +m)γj(/q/2 + /p1
p1 + /p2

p2 +m)γα(/q/2 + /p2
p2 +m)

]
[(−q/2 + p1)2 −m2]+ [(−q/2 + p1 + p2)2 −m2]+ [(q/2 + p1 + p2)2 −m2]+ [(q/2 + p1)2 −m2]+

.

Remembering that in the potential region the momenta scale as p0 ∼ mv2, p ∼ mv, and that
q0 = 2m+mv2 +O

(
v4
)
, the propagator becomes
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±/q/2 + /p+m

[(±q/2 + p)2 −m2]+
=

m (1± γ0)

[mE ± 2mp0 − p2]+
+O (1/v)

=
π±

[E/2± p0 − p2/2m]+
+O (1/v) , (3.24)

where

π± =
1

2
(1± γ0) . (3.25)

Using Equation (3.24) together with the identity

Tr
[
γiπ− (γα1 π− γ

α2 . . . γαn π−) γjπ+ (γαn π+ γαn−1 π+ . . . γα1 π+)
]

= 2 gij(−1)n , (3.26)

which can be easily derived by contracting the indices α1, α2, . . . , Equation (3.23) takes the form

− i
[

i j
]

pot

= (3.27)

= iNc (2 gij) µ̃4ε

∫
ddp1

(2π)d
ddp2

(2π)d
i (4παs)CF[

p2
2

]
−

i[
E/2− p0

1 − p2
1/2m

]
+

i[
E/2 + p0

1 − p2
1/2m

]
+

× i[
E/2− (p0

1 + p0
2)− (p1 + p2)2/2m

]
+

i[
E/2 + (p0

1 + p0
2)− (p1 + p2)2/2m

]
+

.

From this expansion the power in v of the result can already be determined. In the potential region
p0 ∼ v2 and p ∼ v, so the gluon and quark propagators both scale with v−2 (where we left out
the scaling in m, because it is the same for every diagram). Together with d4p ∼ v5, the above
expression then scales with v0αs.

To see if Equation (3.27) is indeed of order v0 αs, we perform the p0
1 and p0

2 integrals. The integrand
has the pole structure shown in Figure 3.1a and closing the contour in either the upper or the lower
complex plane gives

− i
[

i j
]

pot

=

= iNc (2 gij) µ̃4ε

∫
dnp1

(2π)n
dnp2

(2π)n
i (4παs)CF[

p2
2

]
−

i[
E − p2

1/m
]
+

i

[E − (p1 + p2)2/m]+

= Nc (2 gij) (4π αsCF )m2 I(2)(1, 1, 1,mE) , (3.28)

where n = 3− 2ε and I(2)(1, 1, 1,mE) denotes the two-loop integral. I(2) is solved in appendix D.

Using E = mv2 and the solution for I(2) given in Equation (D.8), one obtains:
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−i
[

i j
]

pot

=
Nc (2 gij) (4π αsCF )

32π2
m2

[
1

2 ε
+ 1 + log

(
− µ2

Em

)
− 2 log 2

]

= αs
2m2

π

[
1

4ε
+

1

2
+

1

2
log

(
µ2

m2

)
− log (−iv)− log 2

]
gij , (3.29)

which is indeed of order αs v
0.

The other diagrams are of the form shown in Figure 2.1b, where the gluon line can be attached to
either the lower or the upper quark line. The corresponding integrals contain the term∫

ddp

(2π)d
i (4παs)CF

[p2]−

i

[E/2− p0 − p2/2m]+
. (3.30)

This integral has only one pole in p0 in the upper complex plane (see Figure 3.1b). Upon closing
the contour in the lower complex plane, the integral vanishes.

At O
(
α2
s

)
the lowest order term in v comes from the purely potential region of just one diagram.

The calculation of its threshold expansion follows the same steps as for the two-loop integral. The
p0 loop integrations have again residues in the form shown in Figure 3.1a and evaluate to

−i
[

i j
]

pot

= iNc (2 gij) µ̃6ε

∫
dnp1

(2π)n
dnp2

(2π)n
dnp3

(2π)n
i (4παs)CF[

p2
2

]
−

i (4παs)CF[
p2

3

]
−

(3.31)

× i[
E − p2

1/m
]
+

i

[E − (p1 + p2)2/m]+

i

[E − (p1 + p2 + p3)2/m]+
.

Using Equation (D.19) for the remaining loop integrals, one obtains

−i
[

i j
]

pot

= Nc (2 gij) (4π αsCF )2m3 I(3)(1, 1, 1, 1, 1,mE)

= i
α2
s

v

2πm2

9
gij . (3.32)

All other O
(
α2
s

)
diagrams have at least one loop momentum with the structures shown in Figure

3.1b and 3.1c, and therefore evaluate to zero.

At higher orders in αs the pattern from the two- and three-loop integrals continues: The purely

Im

Re

p0

(a)

p0
Im

Re

(b)

p0Im

Re

(c)

Figure 3.1: Pole structures appearing in the p0 integrations. (a) gives a non-zero, (b) and (c) a
zero contribution in the integration over p0.
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potential region of the ladder diagrams is the only one that contributes at leading order and every
additional gluon contributes a factor αs/v. Since αs ∼ v, the ladder contributions are all of the same
order and need to be resummed. We will achieve this with the Schrödinger equation in Section 3.4.3.

At higher orders in the v expansion, the hard and soft regions will also contribute in form of
mixed contributions with the potential region. Since the method of regions becomes increasingly
complicated at these orders, it is useful to calculate the contributions with the effective field theory
vNRQCD instead. vNRQCD is constructed specifically for heavy quarkonia systems at threshold
and leaves out all non-resonant degrees of freedom. Additionally, it can resum the large logarithms
of the form (αs log(v) )i, which is not possible with the method of regions.

3.2 Introduction to Effective Field Theories

Effective field theories (EFTs) describe physics in certain energy limits and neglect all degrees
of freedom that are not relevant to the problem at hand. In quantum field theory this improves
calculations in two ways: approximate symmetries become manifest and large logarithms can be
resummed.
Large logarithms generally appear in calculations containing widely separated scales. For example,
an amplitude in a theory with two scales m1 and m2, where m2 � m1, has typically the form

A =
∞∑
i=1

αis

∞∑
j=0

ci, j

[
αs log

(
m2

m1

)]j
. (3.33)

If one scale is much larger than the other, the logarithms also become large. They degrade the
convergence of the perturbation series and for

αs log

(
m2

m1

)
& 1 (3.34)

the perturbation series will break down. EFTs solve this problem by summing the large logarithms
such that the second sum in Equation (3.33) includes terms to all orders. The first sum can then
be safely truncated at some finite power of αs.
Because of the large logarithms, EFTs often not only simplify calculations by excluding degrees of
freedom not relevant to the problem, but are also the only way to make them possible.

An EFT can be constructed essentially in 4 steps. Consider for example a process involving only
scales that are much smaller than a heavy particle with mass M . An EFT integrating out the
heavy particle can then be constructed in the following way:

1) Identify all relevant scales of the problem, find the expansion parameter, and choose appropriate
fields for the EFT.
In our example there are two scales: a low scale at which the process happens, and the high scale of
the mass M . The expansion parameter is therefore 1/M and the fields of the EFT do not include
the heavy particle field, but are otherwise the same as in the full theory.

2) Construct the Lagrangian Leff of the effective theory by writing down all terms allowed by the
symmetries of the problem up to some order in the expansion parameter. Theoretically, Leff in-
cludes an infinite number of operators, but the lowest order terms in the expansion parameter are
sufficient to get a certain accuracy. For higher precision, more terms can always be included.

3) Determine the coefficients in Leff (called Wilson coefficients). This can be achieved by comput-
ing matrix elements in the effective and full theory. Since the EFT amplitude Meff has to be the
same as the full theory amplitude Mfull expanded in the expansion parameter, the coefficients are

15



found by equating the matrix elements.

4) Renormalize Leff and calculate the renormalization group (RG) running of the Wilson coef-
ficients. The effective theory will generally have more UV divergences than the full theory and
therefore more running coefficients. Using their RG evolution, the large logarithms of the full the-
ory (see Equation (3.33)) are resummed into the Wilson coefficients to all orders.

3.2.1 Example: b-Quark Decay

Let’s see how this procedure works using the example of a bottom quark decaying into a charm,
down, and anti-up quark [24,25]

b→ c ū d . (3.35)

For step 1 all the relevant scales of the problem need to be determined. The quark 4-momenta and
the bottom quark mass mb are all of order O (1 GeV). The W boson, on the other hand, introduces
with its mass the scale mW = 80 GeV � mb. Since the momenta are of O (1 GeV), the W boson
will be far off-shell and can be taken out (or ”integrated out”1) of the theory. The effective theory
will then include the same fields as the SM except of the W boson (and the Z boson and top quark,
but these particles do not occur at the order we are working at). The expansion parameter is easily
identified as 1/mW .

In step 2 the effective Lagrangian Leff is constructed. This can be done using one of two approaches.
The first approach consists in writing down all possible terms that are allowed by the symmetries
of the problem up to a certain order in 1/mW , αW = g2

W /4π and αs.
For the second approach, the matrix elements are calculated in the full theory, expanded in 1/mW ,
and a term ∆Leff in the Lagrangian is constructed, which reproduces the expanded matrix elements.

The first approach is more general and can also be applied when the full theory is not known (e.g.
when constructing an EFT of the Standard Model). In practice, however, it is often more useful
to apply the second approach. We will use the second approach now for the example of b quark
decay and also in Section 3.3 to construct the vNRQCD Lagrangian.

At tree level, the decay is mediated by the W boson, see Figure 3.2a. It gives the contribution

iMtree
full =

(
g2
W

2

)
Vcb V

∗
ud

i

(pb − pc)2 −m2
W

[
ūαpc γµ PL upb, α

][
ūβpu γ

µ PL vpd, β

]
, (3.36)

where pb, pc, pd, pu are the momenta of the b, c, d, and ū quark, respectively. PL = (1 − γ5)/2
is the projection operator for left-handed states, gW the weak coupling constant, Vcb and V ∗ud the
CKM matrix elements, and u, v the Dirac spinors. α and β denote the color of the quarks, spinor

b

c

d

ū

W

(a)

b

c

d

ū

c1

(b)

Figure 3.2: b-quark into c ū d at tree level in the full theory (a) and in the effective theory (b).

1expression coming from the path integral formulation of EFTs, where the field is taken out of the Lagrangian
by integrating over it in the path integral. See e.g. [24]
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c1, c2

Figure 3.3: One-loop QCD corrections to b-quark decay in the full theory (upper row) and in the
effective theory (lower row).

indices are suppressed.
Since pi � mW , the boson propagator can be expanded in 1/m2

W :

iMtree
eff = −i 4GF√

2
Vcb V

∗
ud

[
ūαpc γµ PL upb, α

][
ūβpu γ

µ PL vpd, β

]
, (3.37)

where GF /
√

2 = g2
W /8m

2
W is the Fermi constant. Equation (3.37) is generated in the effective

theory from a 4-particle vertex (see Figure 3.2b). At higher orders in αs we can expect a new color
structure to emerge coming from diagrams of the form shown in Figure 3.3. They will introduce a
color structure of the form

T a
αβ T

a
ρσ = − 1

2Nc
δαβ δρσ +

1

2
δασ δρβ (3.38)

and lead to a factor of

∆M1-loop
eff ∝

[
ūαpc γµ PL upb, β

][
ūβpu γ

µ PL vpd, α

]
(3.39)

in the corresponding amplitude. Reconstructing a Lagrangian that generates the structures in both
Equation (3.37) and (3.39), one obtains:

∆Leff = −4GF√
2
Vcb V

∗
ud (c1O1 + c2O2) , (3.40)

where c1 and c2 are Wilson coefficients and the operators O1, O2 read

O1 =
[
c̄ α γµ PL bα

][
ūβ γµ PL dβ

]
O2 =

[
c̄ α γµ PL bβ

][
ūβ γµ PL dα

]
. (3.41)

Equation (3.40) achieves a factorization into short- and long-distance physics. The Wilson coeffi-
cients encode the short-distance physics originating from the W-boson, whereas the operators O1,
O2 encode the long-distance physics. Note that in the effective Lagrangian Leff only the terms
containing interactions with the W boson are modified in the form of Equation (3.37). The terms
for all other particles are the same as in the Standard Model.

Having derived the Lagrangian Leff, we can now go to step 3 and determine the Wilson coefficients
of Leff. For this we compare matrix elements in the effective theory with the full theory result
expanded in 1/mW :

iMeff = iMexpanded
full . (3.42)
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At tree level, we already calculated the amplitude. Comparing the expanded amplitude in the full
theory (Equation (3.37)) with the vertex generated from the effective Lagrangian (Equation (3.40)),
we find c1 = 1.
At one-loop, the QCD corrections shown in Figure 3.3 contribute. We can simplify the calculations
for the matching by assuming that the quark masses are zero and using the same external momenta
−p2 ∼ mb for all external states. The IR divergences are then regulated by −p2 .
Note that the external momenta are off-shell. However, this does not affect the determination of
the Wilson coefficients, because they encode long-distance physics and do not depend on the quark
masses or external momenta.

The full amplitude, including wave-function renormalization, gives [24]

iM1-loop
full = −i 4GF√

2
Vcb V

∗
ud

{
D1

[
1 +

αs
4π

2CF + log

(
µ2

−p2

)
+

3

Nc

αs
4π

log

(
m2
W

−p2

) ]

−D2

[
3
αs
4π

log

(
m2
W

−p2

) ]}
,

(3.43)

where D1, D2 encode the external Dirac spinors

D1 =
[
ūαp γµ PL up, α

][
ūβp γ

µ PL vp, β

]
D2 =

[
ūαp γµ PL up, β

][
ūβp γ

µ PL vp, α

]
(3.44)

and differ only in their color structure, which is induced by the color matrices (Equation (3.38)).

In the effective theory, the diagrams with vertices from the operators O1 and O2, respectively, give

iMO1
eff =

4GF√
2
Vcb V

∗
ud c

0
1

{
D1

[
1 +

αs
4π

2CF log

(
µ2

−p2

)
+

3

Nc

αs
4π

(
1

ε
+ log

(
µ2

−p2

)) ]

−D2

[
3
αs
4π

(
1

ε
+ log

(
µ2

−p2

)) ]}

iMO2
eff =

4GF√
2
Vcb V

∗
ud c

0
2

{
D2

[
1 +

αs
4π

2CF log

(
µ2

−p2

)
+

3

Nc

αs
4π

(
1

ε
+ log

(
µ2

−p2

)) ]

−D1

[
3
αs
4π

(
1

ε
+ log

(
µ2

−p2

)) ]}
,

(3.45)

where c0
1 and c0

2 are the bare Wilson coefficients and the wave function renormalization has already
been included. In contrast to Equation (3.43), the amplitude has leftover divergences, which appear
because mW is effectively taken to infinity in the effective theory. The divergences can be absorbed
into the Wilson coefficients. The renormalized coefficients c1 and c2 are then related to the bare
coefficients byc0

1

c0
2

 = Zc

c1

c2

 with Zc = 1 + δZc = 1 +
αs
4πε

−1 3

3 −1

+O
(
α2
s

)
, (3.46)
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where δZc can be read off from Equation (3.45). Using c1 and c2, the amplitudes are free of
divergences:

iMO1
eff =

4GF√
2
Vcb V

∗
ud c1

{
D1

[
1 +

αs
4π

2CF log

(
µ2

−p2

)
+

3

Nc

αs
4π

log

(
µ2

−p2

) ]

−D2

[
3
αs
4π

log

(
µ2

−p2

) ]}

iMO2
eff =

4GF√
2
Vcb V

∗
ud c2

{
D2

[
1 +

αs
4π

2CF log

(
µ2

−p2

)
+

3

Nc

αs
4π

log

(
µ2

−p2

) ]

−D1

[
3
αs
4π

log

(
µ2

−p2

) ]}
.

(3.47)

Comparing the effective amplitude Equation (3.47) with the expanded full theory amplitude Equa-
tion (3.43), the Wilson coefficients are found to be

c1(µ) = 1 +
3

Nc

αs
4π

log

(
m2
W

µ2

)

c2(µ) = − 3
αs
4π

log

(
m2
W

µ2

)
. (3.48)

Three important observations can be made from these equations:

1) Wilson coefficients: The appearance of the αs terms in Equation (3.48) can be understood with
the method of regions. In the effective theory, every W boson propagator is effectively replaced by
i/(p2 −m2

W )→ (−i/m2
W ).

At tree level this is valid, since p� mW , but in loop diagrams such as Figure 3.3, p is an integration
variable and therefore also takes on values with p � mW . The integrand can still be expanded,
but the integral has to be split into two parts with the method of regions. This can be done with
a cutoff Λ fulfilling mW � Λ� mb.
The one-loop diagrams from Figure 3.3 then schematically take the form (considering only the
radial part of p)

αs

∫ ∞
0

dp
i[

p2 −m2
W

]
+

f(p) = αs

(∫ Λ

0
dp +

∫ ∞
Λ

dp

)
i[

p2 −m2
W

]
+

f(p)

' αs
−i
m2
W

∫ Λ

0
dp f(p) + αs

∫ ∞
Λ

dp
i

p2
f(p) . (3.49)

The first integral describes the long distance physics coming from small momenta and is the same
integral we would get from using Leff. The second integral describes the short-distance physics
and appears as the αs term in the Wilson coefficients c1 and c2 (Equation (3.48)). In practice,
dimensional regularization is used instead of a cutoff, but the principle stays the same.

2) Large logarithms: Looking at Equation (3.43) the problem of large logarithms becomes apparent:
with αs ∼ 0.2 and −p2 ∼ mb ∼ 4 GeV the logarithms become large: log(m2

W /− p2 ) ∼ 6. The one-
loop correction is then of order αs log(m2

W /− p2 ) ∼ 1 and therefore as large as the tree level term!
This pattern continues at higher loop orders where terms of the form (αs log(m2

W / − p2 ))i ∼ 1
appear to all orders in αs. The perturbative expansion in αs of the full theory is hence rendered
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meaningless.

The effective theory solves the problem of large logarithms by splitting them into two parts:[
1 + αs log

(
m2
W

−p2

)]
=

[
1 + αs log

(
m2
W

µ2

)]
·
[
1 + αs log

(
µ2

−p2

)]
. (3.50)

The first logarithm on the right hand side goes into the Wilson coefficients (Equation (3.48)) and
the second one into the matrix element (Equation (3.47)). Choosing µ ∼ mb renders the second
logarithm harmless. However, µ has to be set to the same value everywhere and would therefore
make the first logarithm large. In the EFT, this problem is solved by the Wilson coefficients. They
have an RG running, which reproduces the first logarithm in Equation (3.48), and additionally
sums logarithms of the form (αs log(m2

W /µ
2))i to all orders in αs, as we will see in step 4.

3) Scale choice in the matching : In the matching (Equation (3.42)) terms containing log(µ/− p2)
terms cancel, because the theories have to agree in the IR. The log(µ2/m2

W ) terms remain and to
render them small we have to choose µ ∼ mW in the matching.

In the last step we performed the matching and determined the coefficients c1(µ) and c2(µ) for
scales µ ∼ mW . To get the Wilson coefficients for arbitrary scales µ we now have to calculate
their RG running. The renormalized Wilson coefficients c1, c2 are related to the bare coefficients
by Equation (3.46). Note that c1 contributes to the renormalization of c2 and vice versa, a feature
often encountered in EFTs and called mixing. To calculate the running it is convenient to change

to a basis where Zc is diagonalized. Using U = U† = 1√
2

(
1 1
1 −1

)
the diagonalized matrix becomes

U† Zc U = 1 +
1

ε

αs
4π

(
2 0
0 −4

)
=

(
Z+ 0
0 Z−

)
(3.51)

and the Lagrangian takes the form

δLeff =
(
c1 c2

)
UU† Zc UU†

(
O1

O2

)
= c+Z+O+ + c−Z+O−

= c0
+O+ + c0

−O− , (3.52)

where c± = c1 ± c2, O± = 1
2(O1 ±O2), and Z± = 1 + δZ±.

The bare coefficients c0
± are independent of the renormalization scale µ:

µ
d

dµ
c0

+ = µ
d

dµ
[ c+ (1 + δZ+) ]

= Z+

(
µ
d

dµ
c+

)
+ c+

(
µ
d

dµ
δZ+

)
!

= 0 . (3.53)

Rearranging gives the renormalization group (RG) equation for c+:

µ
d

dµ
c+ = −

(
Z−1

+ µ
d

dµ
δZ+

)
c+

= γ+ c+ , (3.54)

where γ+ is the anomalous dimension of c+ and the calculation for c− is analogous. The anomalous
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dimension can be written in the form

γ± =
∞∑
i=1

(αs
4π

)i
γ

(i)
± . (3.55)

Using the RG Equation (3.54) for αs, the one-loop anomalous dimension evaluates to γ
(1)
+ = 4 and

γ
(1)
− = −8 .

Solving Equation (3.54) for c± finally gives the µ dependence of the Wilson coefficients

c±(µ1) = c±(µ0)

(
αs(µ1)

αs(µ0)

)γ(1)
± /2β0

, (3.56)

where β0 is the first coefficient of the β-function for αs. Equation (3.56) achieves a resummation
of terms of the form αs log(µ0/µ1)i to all orders, as can be seen from its expansion in αs:

c+(µ1) = c+(µ0)

(
1−

[
αs(µ0) log

(
µ1

µ0

)]
γ

(1)
+

4π
+

[
αs(µ0) log

(
µ1

µ0

)]2 γ
(1)
+

16π2
(β0 + 2 γ

(1)
+ ) + . . .

)
.

(3.57)
The problem of the large logarithms is now solved in the following way: c±(µ) can be determined
from matching at the scale µ = mW , where the logarithms are small (Equation (3.48)). Using
Equation (3.56), the coefficients c± are evolved to the scale µ2 = −p2, summing large logarithms

of the form log( µ2

m2
W

) to all orders in the process. Finally, the matrix element from Equation (3.47)

is evaluated at µ = −p2, which renders the remaining logarithms in the matrix element small.

In Equation (3.56) we used the first coefficient of γ
(1)
± . Amplitudes calculated with this leading or-

der running of c± give the leading logarithm (LL) approximation. Using higher order matching and
running, we would obtain the next-to-leading-logarithm (NLL), next-to-next-to-leading-logarithm
(NNLL) approximation, and so on.

Note that the LL calculation needed the tree-level matching with one-loop running (i.e. at tree
level we needed the full amplitudes and at one-loop only the divergent parts). This principle applies
generally, such that for the NiLL approximation one needs to match at i-loops and calculate the
running at (i+ 1) loops.

3.3 Introduction to vNRQCD

3.3.1 NRQCD, pNRQCD, and vNRQCD

The description of non-relativistic bound states has a long history. Already in 1951 Bethe and
Salpeter [26], and Schwinger [27] formulated an equation to describe bound state systems in quan-
tum field theory, now known as the Bethe-Salpeter equation. While it correctly resummed terms
of the Coulomb singularity (see section 3.4.3), it still used relativistic fields to describe a non-
relativistic system and high-precision calculations proved to be difficult.
The first formulation using only the non-relativistic degrees of freedom appeared in 1985 in the
form of the effective field theory NRQED (non-relativistic QED) [28]. It was followed in 1995 by
its QCD equivalent NRQCD (non-relativistic QCD) [29].

NRQCD describes heavy quarkonium systems at low velocities and factorizes the amplitude of a
process into Wilson coefficients ci, which contain physics at scales of the heavy quark mass m and
higher, and long-distance matrix elements 〈Oi〉, which contain the physics at the non-relativistic
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scales p ∼ mv and E ∼ mv2:

A =
∑
i

ci 〈Oi〉 . (3.58)

The Wilson coefficients can be calculated in perturbation theory only if the mass of the system is
larger than the hadronization scale, i.e. m � ΛQCD ∼ 200 MeV. With mc ∼ 1 GeV, mb ∼ 4 GeV,
and mt ∼ 173 GeV, the charmonium cc̄, bottomium bb̄ and (fictitious) toponium tt̄ fulfill this con-
dition.
The matrix element, on the other hand, can only be calculated in perturbation theory, if also the
non-relativistic scales E ∼ mv2 and p ∼ mv are larger than ΛQCD. This exclusively applies to the
tt̄ system, because for bb̄ and cc̄ non-perturbative effects can come into play.
For the matrix element further complications arise, because NRQCD does not distinguish the scales
p ∼ mv and E ∼ mv2, and therefore its Lagrangian has no clear power counting in the velocity v.
Additionally, it is not suited for dimensional regularization and uses a cutoff instead, which makes
calculations difficult.
For cc̄ and bb̄, the problems of power counting and non-perturbative effects can both be solved by
extracting the matrix element from experiment or lattice calculations [30]. The Wilson coefficient
does not depend on v, therefore has no problems with power counting, and is calculated in pertur-
bation theory.
NRQCD in this form is widely used today for the description of heavy quarkonium production,
decay, and spectroscopy.

For perturbative calculations of the matrix element, two theories were developed to achieve a sepa-
ration of the scales mv and mv2: velocity NRQCD (vNRQCD) and potential NRQCD (pNRQCD).
vNRQCD [21] was developed for theories with mv � mv2 � ΛQCD and is relevant for tt̄ production
(mt ∼ 173 GeV, vt ∼ 0.15). It matches to QCD at the scale µ = mt and includes the degrees of
freedom mv and mv2 simultaneously.
pNRQCD is constructed in two stages. First, NRQCD is matched to QCD at µ = mt and run
down to µ ∼ mv. Then NRQCD is matched to pNRQCD, integrating out degrees of freedom of
the scale mv. It can be used also for calculations where m� mv � mv2 ∼ ΛQCD.

A comprehensive review for the application of NRQCD, lattice NRQCD, and pNRQCD for heavy
quark bound states can be found in [30] [31].

For this work we use vNRQCD, which allows a consistent resummation of large logarithms of the
form (αs log(v))i. Work on power counting and separation of the scales mv and mv2 [32–36], led
to the formulation of vNRQCD in 1999 [21]. A series of papers followed calculating the one-loop
matching [37], the running of the potentials [38–40], and the running of the heavy quarkonium pro-
duction current [41]. Subtleties concerning the ultrasoft renormalization were addressed in [41–45],
which lead to small changes in some of the potentials. The application of vNRQCD for tt̄ produc-
tion at threshold was formulated in [11,46,47].

An introduction to vNRQCD can also be found in [44,48], and a comprehensive review in [49].

3.3.2 vNRQCD Lagrangian

To construct the effective Lagrangian LvNRQCD, we first identify the scales and expansion param-
eter of the problem, and find appropriate fields. The scales are the quark mass m, the momentum
p ∼ mv, and the energy E ∼ mv2. The expansion parameter is v, which is the velocity of either
the quark or the anti-quark in the CM frame.

For the fields we can use the findings from the method of regions (Section 3.1). We identified four
regions contributing to processes with small velocity: hard, potential, soft, and ultrasoft. Accord-
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ingly, we can split up the quark and gluon fields into hard, potential, soft, and ultrasoft modes. We
can immediatly integrate out the hard modes, because they have k0 ∼ k ∼ m and are much larger
than the scales of the problem.

Similar to b quark decay in Section 3.2.1, only the modes that can become real, on-shell particles
are kept in the EFT. For heavy quarkonia the soft heavy quarks as well as the potential gluons,
potential light quarks and potential ghosts are always off-shell and therefore integrated out. This
leaves the following fields for vNRQCD:

potential heavy quarks (E ∼ mv2, p ∼ mv)

soft gluons, light quarks, and ghosts (E ∼ mv, p ∼ mv)

ultrasoft gluons, light quarks, and ghosts (E ∼ mv2, p ∼ mv2) . (3.59)

Note that we assume only the heavy quark to have a mass, all other particles are massless. The
vNRQCD Lagrangian has a kinetic part Lkin and an interaction part Lint. Both can be further
divided into a potential, soft and ultrasoft piece:

LvNRQCD = Lkin + Lint

= Lp
kin + Ls

kin + Lus
kin + Lp

int + Ls
int + Lus

int . (3.60)

We will now find the explicit form of the fields from Equation (3.59) and then construct the pieces
of the Lagrangian in Equation (3.60).

Fields

The heavy quark and anti-quark fields can be derived from the QCD field

ψfull(x) =
∑
λ

∫
d3p

(2π)3

(
aλp u

λ
p e
−ipx + (bλp)† vλp e

ipx
)
, (3.61)

where Erel =
√
p2 +m2 and the spinors in the Dirac basis are

uλp =

√
Erel +m

2Erel

(
ζλ

σ·p
Erel+m

ζλ

)
, vλp =

√
Erel +m

2Erel

(
σ·p

Erel+m
( iσ2 ξ

∗
λ )

( iσ2 ξ
∗
λ )

)
. (3.62)

ψfull(x) describes both particles and anti-particles. It can annihilate particles with aλp and create

anti-particles with (bλp)†.
In the non-relativistic limit, the heavy quark and anti-quark can neither annihilate each other nor
be produced in loops, since this would introduce a scale much larger than mv and mv2. Therefore
they are independent and can be described with separate fields in the vNRQCD Lagrangian.
Additionally, the spinors uλp and vλp get a large upper and lower component, respectively, for
p ∼ mv � m. Instead of 4-momentum spinors one can therefore switch to the simpler 2-component
spinors:
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mv2

p ps

pus

Figure 3.4: Every momentum p can be split into a soft and an ultrasoft part. The soft part ps is
discrete and points to a box of size mv2.

ψ(x) =
∑
λ

∫
d3p

(2π)3
aλp e

−i(p0x0−px) ζλ

χ(x) =
∑
λ

∫
d3p

(2π)3
bλp e

−i(p0x0−px) ( iσ2 ξ
∗
λ ) , (3.63)

where p0 = m + mv2 +O
(
v4
)

= m + Enr +O
(
v4
)

in the non-relativistic limit. e−imt describes
relativistic fluctuations at the scale m � mv and will be taken out of the final expression for the
quark field. Without e−imt , the quark field will only contain fluctuations at the scales mv and
mv2.
In order to have a consistent power counting in the Lagrangian, we need a way to distinguish the
mv and mv2 modes. This can be achieved by splitting the momentum p into an ultrasoft part
pus ∼ mv2 and a soft part ps ∼ mv:

p = ps + pus . (3.64)

Since ps � pus, the soft momentum ps can be viewed discretely, while the ultrasoft momentum
is continuous (see Figure 3.4). The integral over p is then decomposed into a sum over the soft
label-momenta ps and an integral over pus:∫

dp →
∑
ps

∫
dpus . (3.65)

Plugging this integral into Equation (3.63), one gets:

ψ(x) =
∑
λ

∑
ps

∫
d3pus
(2π)3

aλp e
−imt e−iEnrt ei(ps+pus)x ζλ

= e−imt
∑
ps

eipsx ψps(x) (3.66)

with

ψps(x) =
∑
λ

∫
d3pus
(2π)3

aλp e
ipusx e−iEnrt ζλ . (3.67)
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The quark field ψps now contains only the long-distance fluctuations from pus and any derivative
acting on it will give a factor of mv2 ∼ pus: −i∂ ψps = pusψps . The momentum ps of ψps is called
label momentum.
The heavy anti-quark field χps is constructed in the same way. Also for the soft gluon field Aµq (x),
the soft and ultrasoft momenta need to be separated

Aµ(x) =
∑
q

e−iqxAµq (x) . (3.68)

Note that the sum goes over all four momentum components, while in Equation (3.66) it included
only the three momenta. The soft gluon field has (k0, k) ∼ (mv, mv) and therefore needs the sep-
aration in soft and ultrasoft momenta in all four momentum components. In contrast, the heavy
quark field scales with (k0, k) ∼ (mv2, mv). The k0 component does not have a soft part and
therefore no separation is necessary.
The ultrasoft gluon only has ultrasoft momenta (k0,k) ∼ (mv2, mv2) and is denoted by Aµ(x),
without a soft momentum label.

This method of separating momenta at different scales is called label-formalism. It was originally
devised for HQET [50] and is also used in SCET [51].

Kinetic Terms: Lkin

Starting with the kinetic term Lp
kin for the heavy quark and anti-quark field, we rewrite the 4-spinor

field ψfull(x) from the full theory with the explicit separation into soft and ultrasoft momenta:

ψfull(x) = e−imt
∑
ps

eipsx ψ+
full(x) + eimt

∑
ps

e−ipsx ψ−full(x) , (3.69)

where

ψ+
full(x) =

∑
λ

∫
d3pus
(2π)3

e−iEnrt eipusx aλp u
λ
p

ψ−full(x) =
∑
λ

∫
d3pus
(2π)3

eiEnrt e−ipusx (bλp)† vλp (3.70)

and p = ps + pus. Plugging ψfull(x) into the QCD Lagrangian, one gets:

Lkin
QCD = ψfull(x) (i/∂ −m)ψfull(x)

=
∑
ps

[
ψ

+
full(x) (i/∂ −m)ψ+

full(x) + ψ
−
full(x) (i/∂ −m)ψ−full(x)

]
. (3.71)

The mixed contributions with e−2imt, e+2imt, and ei(ps+ps
′)x vanish, since in the path integral for-

mulation, they would lead to rapid oscillations and thus cancel.
The kinetic term is now separated into a quark and an anti-quark part. Writing out the spinors
and Dirac matrices explicitly, and using Enr ∼ mv2, ps ∼ mv, pus ∼ mv2 to expand in v, we obtain
the kinetic term for the heavy quark field (the calculation for the anti-quark field goes along the
same lines):
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ψ
+
full(x) (i/∂ −m)ψ+

full(x) =

=
∑
λ, λ′

∫
d3pus
(2π)3

d3p′us
(2π)3

(aλp′)
†

(
ζλ′

− σ·p
Erel+m

ζλ′

)† (
γ0Erel − γp−m

)( ζλ
σ·p

Erel+m
ζλ

)
aλp

(
Erel +m

2Erel

)

=
∑
λ, λ′

∫
d3pus
(2π)3

d3p′us
(2π)3

(aλp′)
†aλp ζ

†
λ ζλ

(
Enr −

(ps + pus)
2

2m
+
ps

4

8m3
+O

(
v5
))

= ψ†ps

(
i∂0 −

(ps − i∇)2

2m
+
ps

4

8m3
+O

(
v5
))

ψps , (3.72)

where p′ = ps + pus
′. The calculation for the second term of Equation (3.71) is analogous and the

kinetic terms for the heavy quark and anti-quark therefore read

Lp
kin =

∑
ps

ψ†ps

(
i∂0 −

(ps − i∇)2

2m
+
ps

4

8m3
+O

(
v5
))

ψps + (ψps −→ χps) . (3.73)

The form (ps − i∇) here is no coincidence: When we split the full momentum into a soft and an
ultrasoft part, we left the possibilty to reparametrize pus and ps by a momentum q ∼ mv2:

p = ps + pus = (ps − q) + (pus + q) . (3.74)

The Lagrangian should therefore be invariant under the change of variable ps → ps − q and
pus → pus + q. This is only possible, if every soft momentum occurs with an ultrasoft derivative:
(ps − i∇). When we include gauge invariance, this becomes (ps − iD). This invariance under the
change of variables is called reparametrization invariance and appears in a similar form also in
HQET and SCET.

In the v-expanded effective Lagrangian (3.73), the lowest order term can easily be identified to be
(i∂0 − p2/2m) and gives the Feynman rule for the propagator

i

p0 − ps2/2m
. (3.75)

Since the kinetic term for the quark and anti-quark fields are exactly the same, also the anti-quark
propagator has the form shown in Equation (3.75). The arrows on the propagators always point
in the direction of positive energy flow, which leads to different arrows than in QCD. For example
the Feynman diagram for the O

(
α0
s

)
vacuum polarization is

, (3.76)

where the cross denotes an insertion of a production current.

The higher order corrections ps·∇, ps
4, and ∇2 in Equation (3.73) give insertions on the propagator.

For example, an insertion of ps ·∇ on a propagator gives

i

p0 − ps2/2m

(
−i ps · pus

m

) i

p0 − ps2/2m
. (3.77)
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Note that in Equation (3.75) the propagator is independent of the ultrasoft three momentum. An
ultrasoft loop diagram at lowest order therefore gives

p

k

p− k

= (−igUS)2CF

∫
ddk

(2π)d
i

[(p0 − k0)− p2/2m]+

−i
[k2]+

, (3.78)

where Feynman gauge was used. The gluon propagator depends on all four components of kµ, but
the quark propagator only involves the k0 component.

This separation of soft and ultrasoft momenta for the quark propagator could also be achieved by
a multipole expansion in the Lagrangian 2.

Coming next to the kinetic terms Ls
kin and Lus

kin of the soft and ultrasoft gluons, we observe that
gluons are not affected by the non-relativistic dynamics of the heavy quark. Therefore their kinetic
terms are the same as in QCD, just rewritten with the label-formalism:

Ls
kin = −1

2

∑
p

Tr
[
F pµνF

µν, p
]
, F pµν =

(
pµA

p, a
ν − pνAp, aµ − gS fabcAp, bµ Ap, cν

)
T a

Lus
kin = −1

2
Tr [GµνG

µν ] , Gµν =
(
∂µA

a
ν − ∂νAaµ − gUS fabcAbµAcν

)
T a ,

(3.79)

where gS and gUS are the soft and ultrasoft coupling constant, respectively.

Ultrasoft Interactions: Lus
int

The ultrasoft gluons interact with each other and with the heavy quark or antiquark, but not with
the soft fields, because the ultrasoft modes live at much larger time and length scales than the
soft modes. The ultrasoft modes therefore appear frozen with respect to the soft modes and their
interactions decouple.

Among each other, the ultrasoft gluons interact in the same way as in QCD, since vNRQCD changes
only the structure of the terms involving the heavy quark or antiquark.
The interactions of the ultrasoft gluons with the heavy quark can be determined using gauge
invariance. Gauge invariance holds separately for ultrasoft gluons under gauge transformations of
length and time scales of (mv2)−1, and for soft gluons under transformations with scales of order
(mv)−1. Replacing ∂µ → ∂µ + iµεU gUS A

µ, where Aµ = AµaT a, the lowest order interactions of the
ultrasoft gluons with the heavy quark and anti-quark field read∑

ps

−i gUS µεU (ψ†ps A
a
0 T

a ψps + χ†ps A
a
0 T̄

a χps) , (3.80)

where the interaction with the anti-quark field χps involves the generators T̄ a = −(T a)T of the
anti-fundamental representation. This replacement can be explained from expanding the interaction
term in the QCD Lagrangian. There we have ψfull T

a ψfull, which generates the term χA T aAB χ†B

2instead of using the label formalism, the ultrasoft momentum can be multipole expanded to give Aµ(x) =
Aµ(0)+. . . , which leads to the non-conservation of the ultrasoft momentum in the fermion-gluon vertex (see e.g. [52]).
Hence the name ”multipole expansion”.
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(a) (b) (c) (d)

Figure 3.5: QCD diagrams generating soft-potential vertices in the effective theory.

in the effective theory, where A and B are the color indices. To obtain the same form as in Equa-
tion (3.80), the fermion fields have to be exchanged, which gives −χ†B T aAB χA = χ† T̄ a χ.

The factor µεU in Equation (3.80) follows from power counting. The measure in dimensional regu-
larization scales with (mv2)−4+2ε for ultrasoft terms and the derivative ∂µ scales with mv2. Since
the action should not depend on the regulator, we can see from Equation (3.79) that Aµ has to
scale with (mv2)1−ε. Consequently, ψ†Aµψ has an additional factor (mv2)−ε compared to ψ† ∂µ ψ.
Multiplying with µεU ∼ (mv2)ε then removes the factor and makes the action independent of ε.

Altogether, the Lagrangian for interactions of ultrasoft gluons in d dimensions reads

Lus
int =

∑
ps

[
ψ†ps

(
iD0− (ps − iD)2

2m

)
ψps + (ψps → χps , T

a → T̄ a)

]
+ ( interactions involving only ultrasoft particles ) . (3.81)

Soft Interactions: Ls
int

In analogy to the ultrasoft interactions, the soft gluons can interact only with each other and the
heavy (anti-)quark.

The interactions among the soft particles have again the same structure as in QCD. The structure
of the interactions with the heavy quark, however, is different in the soft sector. Since the heavy
quark scales with (E, p) ∼ (mv2, mv), an interaction with a soft gluon with (E, p) ∼ (mv, mv)
would throw it off-shell by an amount of mv. Therefore interactions with soft gluons must involve
at least two soft gluons. In Figure 3.5a - 3.5c the lowest order QCD diagrams inducing soft interac-
tions are shown. Integrating out the intermediate soft heavy quark propagator in Figure 3.5a and
3.5b, as well as the potential gluon propagator in Figure 3.5c, one obtains the soft vertex shown in
Figure 3.6a.

Intermediate heavy quark propagators in soft diagrams like Figure 3.5a have the form 1/q0 - the
same as in HQET. Loop diagrams in the soft sector therefore have the same divergence structure
as in HQET and the RG running can be taken from HQET calculations. To obtain the terms in
the vNRQCD Lagrangian, the diagrams in Figure 3.5a-3.5c with HQET vertices are matched to
the soft vertices, giving:

(a) (b)

Figure 3.6: Soft vertices in vNRQCD.
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Ls
int = −g2

S µ
2ε
S

1

2

∑
p,p′, q, q′, σ

{
ψ†p′
[
Aµq′ , A

ν
q

]
U (σ)
µν ψp+

+ψ†p′
{
Aµq′ , A

ν
q

}
W (σ)
µν ψp + . . .

}
+ (ψ → χ, T a → T̄ a) +

∑
σ

C
(σ)
2A O

(σ)
2A ,

(3.82)

where U and W are functions of the external momenta and σ is the order in v of the vertex. The
last term comes from 6-field vertices and is described below. Equation (3.82) shows only the soft
vertices generated by gluons. Additionally, there are 4-vertices involving the light quarks and ghost
fields. The full expressions for Ls

int, U , and W can be found in [37]. Let us here just consider two
terms of U for illustration:

U
(0)
00 =

1

q0

U
(1)
0i = −(p+ p′)i

2mq0
+
i cF (q × σ)i

2mq0
+

q0(p+ p′)i

2m (p− p′)2
+
i cF q0 [(p− p′)× σ]i

2m (p− p′)2
. (3.83)

U
(0)
00 comes from integrating out the intermediate heavy quark propagator in Figure 3.5a and 3.5b.

U
(1)
0i has parts coming from all three diagrams 3.5a - 3.5c, as can be seen from the denominators.

They are just the propagators of the intermediate quark and gluon, respectively, which have been
integrated out of the theory. cF is a HQET coefficient, coming from the chromomagnetic term
δLHQET = Q† cF g

σ·B
2m Q in the HQET Lagrangian [53]. It has a running, which can be taken from

HQET.

As can be seen from Equation (3.82), gauge invariance in the soft sector is not manifest. It can be
restored, however, by combining it with reparametrization invariance [21].

There is one more type of soft operator corresponding to the diagram in Figure 3.6b. Its struc-
ture comes from QCD diagrams of the form shown in Figure 3.5d and generates the last term in

Equation (3.82). The terms consist of the Wilson coefficients C
(σ)
2A and the operators O(σ)

2A , given
by

C
(σ)
2A (ν = 1) = 0

O(σ)
2A = g4

S µ
4ε
S

[
ψp′ Γ

(σ)
A,ψ ψp

] [
Aµ−q Γ

(σ)
A,µν A

ν
q

] [
χ−p′ Γ

(σ)
A,χ χ−p

]
, (3.84)

where the Γ’s are functions of the external momenta. In addition to the six-field vertices involving
soft gluons, there are vertices of the same form with soft ghosts and light quarks. The exact form
of these vertices can be found in [42], together with the expressions for the Γ’s.
ν is the subtraction velocity, which is related to the soft and ultrasoft renormalization scales by
µS ∼ mν and µU ∼ mν2. The matching to the QCD amplitudes is done at ν = 1 and large
logarithms of v can be resummed by evolving the Wilson coefficients from ν = 1 to ν = v. The
details are described in Section 3.3.4.
In the matching at ν = 1, the Wilson coefficients of all six-field soft operators vanish at leading

order. The reason is that the only diagram which could produce the operators O(σ)
2A (Figure 3.5d)

is already accounted for by combining two soft 4-vertices from Figure 3.6a. For ν < 1, however,
the Wilson coefficients are not zero, because they receive a running from divergences in diagrams
with an additional ultrasoft gluon (see Section 3.3.4).
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The factors of µS appearing in Equation (3.84) and (3.82) can again be determined with power
counting. The soft fields Aµ scale with (mv)1−ε and the measure with (mv)−4+2ε. Together with
ψ ∼ (mv)3/2−ε, this gives an extra factor (mv)−2ε in Equation (3.82), which is absorbed by the
term µ2ε

S ∼ (mv)2ε. Note that µS ∼ mv differs from µU ∼ mv2 by a factor of v.

Potential Interactions: Lp
int

The diagram in Figure 3.5c had an intermediate potential gluon (E, p) ∼ (mv2, mv) and integrating
it out led to the vNRQCD vertex in Figure 3.6a. Similarily, the diagrams in Figure 3.7a and
3.7b have a potential gluon and give the 4-quark interaction vertex shown in Figure 3.8. The
corresponding term in the Lagrangian reads

∆L = −µ2ε
S

∑
p,p′

Vαβγδ(p, p
′) ψ†p′α ψpβ χ

†
−p′γ χ−p δ , (3.85)

where the indices α, β, γ, δ encode the spin and color structure of the vertex and V is called a
potential. It is determined by matching the diagram from Figure 3.8a to the QCD amplitudes in
Figure 3.7. Multiplying out the γ matrices and expanding the 4-spinors up and vp in the velocity
v, one obtains from the QCD amplitude in Figure 3.7a:

p

−p

p′

−p′

= −i
(

4παs
k2

) [
ūp′ γ

µ T a up
] [
v̄p γµ T

a vp′
]

= −i
(
T a ⊗ T̄ a

)(4παs
k2

)
ζ†λ ζλ ξ

†
λ ξλ +O

(
v−1
)
, (3.86)

where k = p′−p and
(
T a ⊗ T̄ a

)
ζ†ζ ξ†ξ = T aij T̄

a
kl ζ
†
i ζj ξ

†
kξl encodes the color structure of the vertex.

The term in Equation (3.86) is reproduced in the effective theory by the Coulomb potential

V (p, p′) =
(
T a ⊗ T̄ a

) V(T )
c

k2
+O

(
v−1
)
, (3.87)

where V(T )
c = 4π αs(m) is the Wilson coefficient. The annihilation diagram (Figure 3.7b) can also

be expanded, but gives no contribution at this order. We have seen the Coulomb potential already
in Section 3.1, where it appeared in the potential regions of the vacuum polarization amplitudes
(e.g. Equation (3.27)).

(
T a ⊗ T̄ a

)
reduces to −CF in this amplitude, since the top-antitop quark

pair is produced as a color singlet state.

The Coulomb potential induces also higher order terms, which follow from reparametrization in-
variance. Changing p → (p − iD), the denominator obtains higher order terms in v. Expanding
in v then gives the operators [39]

∆L =
(
T a ⊗ T̄ b

)
µ2ε
S µ

ε
U

V(T )
c

k4
2igS f

abc (k ·Ac) ψp′ψp χ−p′χ−p + . . . , (3.88)

where the dots denote terms of the same order involving kinetic insertions. The first term couples
a gluon to the Coulomb vertex and the corresponding Feynman diagram is shown in Figure 3.8b.

Let’s see what happens when we go to higher orders in αs and v for the matching of the potential
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(a) (b)

Figure 3.7: QCD vertices leading to 4-fermion vertices in the EFT.

V (p, p′). For higher order corrections in v the diagrams 3.7 have to be expanded further. At order
O
(
v0
)

both diagrams from Figure 3.7 contribute. They have different color structures, but these
can be rewritten in the form

V (p, p′) = (1⊗ 1)V (1) +
(
T a ⊗ T̄ a

)
V (T ) (3.89)

with Fierz identities. Also when matching at higher orders in αs, the potentials can always be
reduced to this form.
However, for physical applications another basis is more useful. The heavy quarkonium is produced
either in a color singlet or octet state and Equation (3.89) is therefore rewritten in a color singlet
and octet basis [45,54,55]

V (p, p′) =

(
1

9
1⊗ 1− 2

3
T a ⊗ T̄ a

)
V (s) +

(
8

9
1⊗ 1 +

2

3
T a ⊗ T̄ a

)
V (o)

= Ps V
(s) + Po V

(o) , (3.90)

where Ps and Po are the projection operators on the color singlet and octet state, respectively.
In this thesis, we consider the process e+e− → γ∗ → tt̄, where the quark-antiquark pair is produced
in a color singlet state. Therefore we will include from now on only the singlet contribution in the
Lagrangian LvNRQCD.

Returning to the higher order correction in v, Equation (3.86) and the annihilation diagram are
expanded. This generates higher order potentials in the effective theory:

V (p, p′) = Ps

[
V (s)
c + V (s)

r + V
(s)

2 + V (s)
s + V

(s)
Λ + V

(s)
t

]
+ O

(
v1
)

= Ps

[
V(s)
c

k2
+
V(s)
r

m2

(p 2 + p′2

k2

)
+
V(s)

2

m2
+
V(s)
s

m2
S2 +

V(s)
Λ

m2
Λ(p,p′) +

V(s)
t

m2
T (k)

]
+ O

(
v1
)
,

(3.91)
where

S =
σ1 + σ2

2
, Λ(p,p′) = −i S · (p

′ × p)

k2
, T (k) = σ1 · σ2 −

3 (k · σ1) (k · σ2)

k2
(3.92)

V

(a)

Vc

(b)

Figure 3.8: Potential vertices in the EFT.
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and

V(s)
c = − 4π αs(m)CF , V(s)

r = −4π αs(m)CF , V(s)
2 = 0,

V(s)
s =

4π αs(m)

3
CF , V(s)

Λ = 6π αs(m)CF , V(s)
t =

παs(m)

3
CF . (3.93)

σ1, σ2 are the spin operators acting on the quark and the anti-quark field, respectively. Vi =
Vi (ν = 1) are the Wilson coefficients of the different potentials at the matching scale µ = m .

V2 (ν = 1) vanishes in the matching at this order, but similarly to the Wilson coefficient C
(σ)
2A of

the soft interaction term in Equation (3.82), it is non-zero for ν < 1 (see Section 3.3.4).
The higher order potentials are all of order αs and are therefore two orders higher than the Coulomb
potential Vc ∼ αs/v2.

After examining higher order corrections in v, let us take a look into higher order corrections in
αs. For this, the QCD amplitude has to be computed at higher loop orders. It gives contributions
of the form

+ + · · · = A · α
2
s

|k| + . . . . (3.94)

The first term from Equation (3.94) is not fully reproduced with the operators from Equation (3.91)
and therefore generates a new operator of the form α2

s/|k|. This operator is of order α2
s/v and be-

cause of αs ∼ v it is of the same order as the higher order potentials from Equation (3.91).

The corresponding operator in the Lagrangian is [41]

∆L = V(s)
k O

(s)
k , (3.95)

where

V(s)
k (ν = 1) = 1

O(s)
k =

g4
S µ̃

4ε
S

4m

∑
p,p′, q

[
C1 g0 + CACF g1 + C2

F g2

] [
ψp′ψp χ−p′χ−p

]
Ps . (3.96)

The functions g0, g1, g2 depend on the momenta q, p, p′ and can be found in the appendix of [41].
In contrast to the potential operators from Equation (3.85), this operator has a sum over the free
index q. It is therefore called ”sum operator” and denoted by the diagram in Figure 3.9a. The free
index arises from performing only the q0 integration of the loop diagrams from Equation (3.94).
The q integrations are left unevaluated to ensure consistent renormalization in the effective theory.
The 1/|k| structure can be recovered when performing the sum

∑
q →

∫ dnq
(2π)n in n = 3 − 2ε

dimensions and expanding for ε→ 0 [41]

Ok

(a)

Oc

(b)

Figure 3.9: Sum operators in the EFT.
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∫
dnq

(2π)n
[
C1 g0 + CACF g1 + C2

F g2

]
= − 1

4 |k|

(
C2
F

2
− CF CA

)
+O (ε) . (3.97)

Note that leaving the sum over q unevaluated makes a difference for matrix elements with UV
divergences. Together with the O (ε) terms of the sum operators in Equation (3.97), the UV di-
vergences would give UV finite terms, which are not present if the integral in Equation (3.97) was
performed on the Lagrangian level and the O (ε) terms discarded. Hence it is important to keep
the sum unevaluated.

Renormalization induces two more types of sum operators

∆L =
3∑
i=1

V(s)
ki O

(s)
ki +

3∑
i=1

V(s)
ci O

(s)
ci , (3.98)

where

V(s)
ki (ν = 1) = 0

V(s)
ci (ν = 1) = 0 (3.99)

O(s)
k1 = −

(
V(T )
c µ2ε

S

)2

m

∑
p,p′, q

[ f0 + f1 + 2 f2 ]
[
ψp′ψp χ−p′χ−p

]
Ps

O(s)
c1 = −

(
V(T )
c µ2ε

S

)3 ∑
p,p′, q,q′

[ 2h0 − h1]
[
ψp′ψp χ−p′χ−p

]
Ps . (3.100)

Only the operators O(s)
k1 and O(s)

c1 are displayed here. The other operators have a similar form and
can be found in [42,45]. In contrast to the sum operators in Equation (3.95), the Wilson coefficients

V(s)
ki , V(s)

ci are zero at the matching scale ν = 1 and are non-zero only for ν < 1.
The functions fi and hi depend on the sum indices p, p′, q, q′, similarily to gi in Equation (3.95).
Evaluating the sums over the free indices q and q′, they take the form

∫
dnq

(2π)n
fi ∝

1

|k| +O (ε)

∫
dnq

(2π)n
dnq′

(2π)n
hi ∝

1

k2
+O (ε) . (3.101)

O(s)
ki and O(s)

ci therefore give contributions of order α2
s/v and α3

s/v
2, respectively.

For UV finite matrix elements, the sums over the free indices can be performed in the Lagrangian.
The sum operators and the Coulomb potential are then replaced by the effective potentials

−∆V (p,p′) =

 π2

m|k| V
(s)
k, eff +

V(s)
c, eff

k2

 Ps (3.102)

with
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V(s)
k, eff =

(
C2
F

2
− CACF

)
α2
s(mν) + 2α2

s

(
3V(s)

k1 + 2V(s)
k2

)
V(s)

c, eff = V(s)
c + π α3

s(mν)
(
V(s)
c2 + V(s)

c3

)
. (3.103)

Combining the contributions from Equation (3.85), (3.95), and (3.98), the potential interaction
Lagrangian takes the form

Lp
int =− µ2ε

S

∑
p,p′

Vαβγδ(p, p
′) ψ†p′α ψpβ χ

†
−p′γ χ−p δ +

+ V(s)
k O

(s)
k +

3∑
i=1

V(s)
ki O

(s)
ki +

3∑
i=1

V(s)
ci O

(s)
ci . (3.104)

3.3.3 Power counting

The fields in the Lagrangian scale with specific orders of v, as we have already seen in the previous
sections:

[ψ ] ∼ v3/2−ε [
Aqµ
]
∼ v1−ε [p ] ∼ v

[χ ] ∼ v3/2−ε [Aµ ] ∼ v2 (1−ε) [ ∂µ ] ∼ v2 . (3.105)

The unique scaling in v of the fields and of momenta in loop graphs allows to determine the power of
v for Feynman diagrams without calculating any loop integrals. The corresponding power counting
formula was derived in [21]. We will denote Feynman diagrams without closed heavy fermion lines
to be of order vA, where [42]

A =
∑
i

[
(i− 8) V

(U)
i + (i− 5) V

(P )
i + (i− 4) V

(S)
i −NS

]
. (3.106)

Here NS is the number of soft loops (loops which only involve soft fields) and Vi denotes the number
of vertices with power vi, where the power of v is determined from the fields in the Lagrangian.
The superscripts stand for ultrasoft (U), soft (S), and potential (P). A potential vertex has at least
one fermion field and no soft fields, a soft vertex at least one soft field, and an ultrasoft vertex only
ultrasoft fields. As an example, consider the soft loop from Figure 3.11a, which has two soft vertices
of order i = 4 for σ1 = σ2 = 0 and one soft loop NS = 1. Using Equation (3.106) and includ-
ing also the factor α2

s coming from the two soft vertices, one finds that the diagram is of order α2
s/v.

Using for the power counting the convention of Equation (3.106), the power in v can simply be

Vc

(a)

Vc VcVc

(b)

Vc

(c)

Figure 3.10: Application of the power counting formulas: for (a) and (b) Equation (3.106) is used.
(a) is of order αs/v and (b) of order α2

s/v
2. In (c) the fermion lines are closed using an insertion of

the electromagnetic current. Applying Equation (3.107), (c) is of order αs v
0.

34



(a) (b)

Figure 3.11: Soft loop diagrams renormalizing the potentials.

added together when joining the heavy quark and anti-quark lines of two separate diagrams. For
example, the diagram in 3.10a is of order αs/v. Joining two diagrams of this form, the resulting
diagram is then of order α2

s/v
2.

If the fermion lines are closed, as is necessary for the calculation of the vacuum polarization, the
power in v of the overall diagram is

A′ = A+ 1 . (3.107)

Interestingly, the 4-fermion Coulomb vertex (4παs)/k
2 is of order αs/v ∼ 1. Since Equation (3.106)

tells us, that every insertion will give an additional factor of αs/v, we can insert an arbitrary amount
of these vertices in Feynman diagrams without changing the overall order of the diagram!
This behavior is called ”Coulomb singularity” and we have encountered it already in section 3.1.1
in the form of the ladder diagrams (Equation (3.20)).

Also the insertion of soft loops can add a factor of 1/v to a diagram, because the lowest order soft
vertices have i = 4 and NS = 1. However, soft vertices also come with a factor of αs and the lowest
order loop is therefore of order α2

s/v. In contrast to the Coulomb vertex, a soft loop insertion
changes the overall order of the diagram.

Lastly, consider ultrasoft lines. Naively one would expect that one insertion of an ultrasoft line
contributes as αs at lowest order, because ψ†A0ψ is of order v5. However, the leading term ψ†A0ψ
can be eliminated from the action with a field redefinition [44]. The lowest order coupling of an
ultrasoft gluon to the heavy quark is therefore O

(
v6
)

and insertions of ultrasoft lines in a diagram
come with a factor of at least αsv

2.

3.3.4 Renormalization and Resummation of Logarithms

Due to the large separation of the scales E, p, and m for heavy quarkonium production near
threshold, large logarithms of v appear in QCD (Equation (3.4)). In vNRQCD, they can be
rendered harmless by resumming them to all orders using the renormalization group equations of
the Wilson coefficients.
As described in Section 3.2, effective field theories have in general more divergences than the
original theory. The additional divergences are absorbed into the Wilson coefficients and induce a
renormalization group (RG) running. By running the coefficients from the matching scale µh to the
scale of the process, the logarithms can be resummed. For vNRQCD, we already encountered the
soft and ultrasoft renormalization scales µS and µU respectively, in the construction of the effective
Lagrangian. When calculating amplitudes, logarithms of the form

log

( |p |
µS

)
, log

(√
E/m

µS

)
, log

(
E

µU

)
(3.108)

will appear. By choosing µU ∼ E and µS ∼ |p|, the logarithms become small and do not pose a
problem. To first order, the energy E of the top-antitop pair and the momentum p of either of the
quarks is
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|p | ∼ mv , E ∼ mv2 . (3.109)

They are related by the equation of motion for the heavy quarkonium system E = p2/m (see
section 3.4.3). Accordingly, also the renormalization scales µU and µS have to be correlated by
µU ∼ µ2

S/m. They can be expressed by one single scale in analogy to Equation (3.109)

µS ∼ mν , µU ∼ mν2 , (3.110)

where ν is called ”subtraction velocity”. This correlation between the renormalization scales is a
very unique feature of vNRQCD and allows to resum logarithms of the form in Equation (3.108) si-
multaneously. For this the subtraction velocity is evolved from ν = 1 at the matching scale to ν ∼ v.

There are 3 types of coefficients, which can receive an RG running through renormalization. Looking
at the interaction Lagrangians from Equation (3.81), (3.82), and (3.104), one finds the following
coefficients:

• the soft and ultrasoft couplings gS and gUS

• the couplings between the heavy quark and soft gluon fields

• the Wilson coefficients V(s)
i of the potentials and sum operators

The renormalization of the soft and ultrasoft couplings gS and gUS is very simple. vNRQCD only
modifies the interactions of gluons with the heavy quark, but not the structure of the interactions
of the gluons amongst themselves. The interactions for these fields in the soft and ultrasoft sector
is the same as in QCD and the renormalization of gS and gUS can be taken from the strong
coupling constant g in QCD. Only the choice of the renormalization scale differs between the soft
and ultrasoft sector, because ultrasoft particles live at scales mv2, while soft particles live at mv:

g2
S

4π
= αS = αs(µS) ,

g2
US

4π
= αUS = αs(µU ) , (3.111)

where µS ∼ mν is the soft and µU ∼ mν2 the ultrasoft scale. The couplings between the heavy
quark and the soft gluons describing e.g. the vertices from Figure 3.6a, are renormalized only
by soft modes. Their renormalization can be taken from HQET and is encoded in the HQET
coefficients cF , cs, . . . .
Note that ultrasoft modes do not contribute to the renormalization of the soft 4-vertex, because
soft and ultrasoft modes can not be distinguished in the single heavy quark sector [39,42].
The 6 particle vertex from Figure 3.6b, on the other hand, has both the heavy quark and anti-quark
and is therefore also renormalized by ultrasoft gluons:

σ = 2
renormalized at LL by σ = 0

σ = 0

, . . . [42, 43]

σ = 2
renormalized at NLL by , . . . [42, 43] , (3.112)

where σ = 0, 2 refer to the v scaling of the soft vertices and the dots stand for all possible combi-
nations of attaching the gluon line to the fermion lines. Note that only the σ = 2 vertex receives a
running, because the soft vertices on the right side are already of the lowest order in v and gluon
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lines add alltogether at least a factor of v2 to the counting.

The Wilson coefficients V(s)
i can be renormalized by both soft and ultrasoft fields. Consider first

the Coulomb potential Vc. It is renormalized only by soft loops, two of which are shown in Figure
3.11. At lowest order in v (i.e. σ1 = σ2 = 0), the first diagram has a divergence proportional to
the β0 coeffcient of the αs β-function [49]

= −iµ2ε
S

g4
S

4π k2

β0

ε

(
T a ⊗ T̄ a

)
+ . . . . (3.113)

It is therefore associated to the renormalization of the running coupling gS . At two and three loops,
the divergences are also related to the β coefficients and are absorbed by the counterterms of gS .

The Wilson coefficient V(s)
c with three-loop running therefore has the particularly simple form

V(s)
c = −4π α[3]

s (mν)CF , (3.114)

where the superscript [3] denotes the three-loop running of αs.

Note that the diagrams renormalizing a certain potential have to reproduce the momentum and
spin structure of the potential, and therefore also the correct power of v. The Coulomb potential,
for example, is of order αs/v. Using Equation (3.106) we can see that the soft one-loop diagram in
Figure 3.11a is of order α2

s/v (for σ1 = σ2 = 0) and can therefore renormalize the Coulomb potential.

Adding one ultrasoft line, on the other hand, produces diagrams, which can not renormalize Vc.
The gluon lines add a factor of v2 in the counting and a diagram of the form

Vc

(3.115)

is of order αsv. This is the order of the higher order potentials and therefore renormalizes them
instead of Vc.
The only diagrams that have the same power in v as Vc appear at higher orders, e.g.

Vc Vc Vc

. (3.116)

Diagrams of this type are of order α3
s/v

3 · v2 ∼ α3
s/v. However, their divergences are of the form

1
ε

∑
q f(p, p′, q) and they therefore renormalize the sum operators O(s)

c1 , O(s)
c2 , and O(s)

c3 instead of

the Coulomb potential. The resulting expressions of the Wilson coefficients V(s)
c1 , V(s)

c2 , V
(s)
c3 can be

found in [42].

The other potentials receive their running through soft diagrams like Figure 3.11a (with σ1+σ2 = 2)
and through mixing from diagrams like Equation (3.115). The LL renormalization of the potentials
has the following structure
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V2, r

renormalized by
Vc

, [38]

Vc, r, 2, s, t,Λ

renormalized by [38,42]

Ok

renormalized by , . . . [39, 41,42]

Ok1, k2

renormalized by

Vc Vc

, . . . [42]

Oc1, c2, c3

renormalized by

Vc Vc Vc

, . . . [42] . (3.117)

The dots stand for diagrams of similar form and the details of the renormalization can be found in
the references next to the diagrams.
Note that interactions with ultrasoft gluons and soft gluons with a σ = 0 vertex do not depend on
the spin of the heavy quark and anti-quark. Consequently, diagrams including only these vertices
renormalize the spin-independent potentials Vc, V2, and Vr, as can be seen in the first line (the
vertex of the soft loop is non-zero only through its running, and the running in turn originates from
diagrams with σ = 0 vertices, see (3.112)).
The soft loop in the second line, on the other hand, has σ1 = σ2 = 0 for the renormalization of Vc
and σ1 + σ2 = 2 for the higher order potentials. It has terms that affect the spin structure and

therefore renormalizes also the spin-dependent potentials. The O(s)
k in the third line involves only

soft loops and the loop diagrams are proportional to the β function coefficients. Therefore, they
simply renormalize the coupling gS , leaving the form given in Equation (3.96) otherwise unchanged.

At NLL, the ultrasoft renormalization of the spin-independent potentials V2 and Vr, and the sum

operators O(s)
k1 , O(s)

k2 , O(s)
k3 has been calculated in [43–45]. It involves diagrams of the form

V2, r

renormalized by

Vc

, . . . [43, 44]

Ok1, k2, k3

renormalized by

Vc Vc

, . . . [44, 45] . (3.118)

The full NLL running of the potentials also includes further soft contributions. They are currently
unknown, but are assumed to be tiny for top quark pair production when compared to the error
from the variation of the renormalization scales (see also the discussion in Section 3.4.1).
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3.4 Top Quark Pair Production in vNRQCD

Now that we have set up the formalism of vNRQCD to calculate contributions at threshold and
resum logarithms of v to all orders, we can finally tackle the problem of the Coulomb singuarity.

In Section 3.1.1 we saw, that the leading order contributions are of order v, αs, α
2
s/v, . . . . In this

work we will consider contributions up to NNLO, which take schematically the form

σFO
NNLO = v

∞∑
n

(αs
v

)n
+ v2

∞∑
n

(αs
v

)n
+ v3

∞∑
n

(αs
v

)n
. (3.119)

Here the first term corresponds to the LO contributions and adding the second and third part gives
the NLO and NNLO cross section, respectively. Since the logarithms are not resummed, we call
this form of the cross section fixed-order (FO).

Using vNRQCD to resum the logarithms in v, the cross section takes the form:

σRGI
NNLL = v

∞∑
n,m

(αs
v

)n
(αs log v)m

+ v2
∞∑
n,m

(αs
v

)n
(αs log v)m

+ v3
∞∑
n,m

(αs
v

)n
(αs log v)m . (3.120)

The first line now gives the leading-logarithm (LL) contributions the second NLL, and the third
NNLL. The logarithms are resummed with the renormalization group equation of the Wilson coef-
ficients and we will therefore call this cross section renormalization-group-improved (RGI).

We will now calculate the contributions to the NNLL RGI cross section in three steps. First, we
have to know the coupling of the photons to the heavy quark fields, which we have not treated up
to now. Second, we need to identify the NLO and NNLO order contributions. Finally, the Coulomb
singularity needs to be resummed, which we will achieve with the Schrödinger equation.

3.4.1 Production Current

The inclusive top quark pair production cross section can be calculated in QCD from the vacuum
polarization (Section 2.1), which is defined with the electromagnetic current jµ(x) = ψ̄(x) γµ ψ(x).
Using Equation (3.69), the current can be rewritten in the form

ji(x) = e−2imt
∑
p

[
ψ+

full(x, p) γi ψ−full(x, −p)

]
+ h.c.

= e−2imt
∑
p

(
J ip(x) + h.c.

)
+O

(
v3
)
, (3.121)

where p is the soft momentum and J ip is the non-relativistic current including terms up to O
(
v2
)
.

To calculate the non-relativistic current, we expand the spinors up and v−p, which are contained
in ψ+

full and ψ−full, respectively:
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ūp γ
i v−p = ζ†p σ

i ( iσ2 ξ
∗
−p )− 1

2m2
ζ†p

[
(σ · p) pi

]
( iσ2 ξ

∗
−p )

= ζ†p σ
i ( iσ2 ξ

∗
−p ) +

1

m2
ζ†p

[
−1

2

(
(σ · p) pi − 1

3
p2 σi

)
− 1

6
p2 σi

]
( iσ2 ξ

∗
−p ) ,

(3.122)

where the spin indices have been suppressed. Plugging (3.122) into ψ±full in Equation (3.121), the
non-relativistic current takes the form

J ip = c1Oip, 1 + c2Oip, 2 + c4Oip, 4 , (3.123)

where

c1 = 1 +O (αs) , Oip, 1 = ψ†p σ
i ( iσ2 χ

∗
−p )

c2 = −1

6
+O (αs) , Oip, 2 =

1

m2
ψ†p p

2 σi ( iσ2 χ
∗
−p )

c4 = −1

2
+O (αs) , Oip, 4 =

1

m2
ψ†p

(
(σ · p) pi − 1

3
p2 σi

)
( iσ2 χ

∗
−p ) . (3.124)

The first two operators produce s-wave states and are of order v0 and v2, respectively. They
can contribute to the NNLO cross section in the form 〈Op, 1 O

†
p, 1〉 and 〈Op, 2 O

†
p, 1 + Op, 1 O

†
p, 2〉.

〈Op, 2 O
†
p, 2〉 is suppressed by v4 and is therefore beyond NNLO.

The third operator describes d-wave states, which are orthogonal to s-wave states: 〈Op, 1 O
†
p, 4〉 = 0.

It can therefore only contribute through 〈Op, 4 O
†
p, 4〉, which is v4 suppressed, and is not included

in the NNLO cross section.

There is also a p-wave current Op, 3 coming from the expansion of the axial production current. It

contributes at NNLO through 〈Op, 3 O
†
p, 3〉 and comes from Z-boson exchange. We do not consider

Z-boson exchange in this thesis, but the contribution originating from Op, 3 can be found in [47].

With the expansion in v of Equation (3.122) we have already performed the tree level matching for
the Wilson coefficients c1 and c2. They will however receive higher order corrections through loop
diagrams. Figure 3.12 shows the matching for c1 at NLO. The left diagram is the QCD diagram,
which can be calculated with the method of regions. It has a potential part and a hard part.
The potential part is reproduced by the vNRQCD diagram 3.12b and the hard part goes into the
Wilson coefficient c1. At higher orders, divergences appear in the matching, which are canceled by
the counterterm Zc1 of c1. Together with the NNLO matching, the renormalized Wilson coefficient
c1 for ν = 1 reads [56]

c1(1, h) = 1− CF
2

π
αh + α2

h

[
C2
F

(
log 2

3
− 31

24
− 2

π2

)
+ CF CA

(
log 2

2
− 5

8

)
+
κ

2

]
, (3.125)

where µh = hm is the matching scale and κ can be found in [46]. For the NNLO contributions, c1

is needed up to α2
s, because Op, 1 is of order v0. For c2 on the other hand, the O

(
α0
s

)
matching is

sufficient, because Op, 2 is already of order v2.

Additionally to corrections in αs, c1 absorbes divergences from loop diagrams and therefore has an
RG running. For the NNLL cross section, we need the running of c1 and c2. For c2 the LL running
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(a)

Vc

(b)

Figure 3.12: Determination of c1 at NLO by matching. The difference between the QCD diagram
(a) and the effective diagram (b) is put into Wilson coefficient c1.

is sufficient and was calculated in [47]:

c2(ν, h) = −1

6
− 8CF

3β0
log

(
αUS
αh

)
with αUS = αs(mhν

2) . (3.126)

For c1, on the other hand, the running up to NNLL is needed, i.e. the three-loop anomalous
dimension

ν
∂

∂ν
log [c1(ν, h)] = γNLL + γNNLL

mix + γNNLL
non-mix , (3.127)

where the NNLL anomalous dimension is split into non-mixing γNNLL
non-mix and mixing γNNLL

mix contri-
butions, which are explained below.

At one-loop, the diagram from Figure 3.12b is finite and the LL anomalous dimension of c1 is
therefore zero. At two-loop, however, the anomalous dimension is not zero. There are three types
of diagrams which generate divergences at this order. An example is shown in Figure 3.13a. Using
the V2 potential in this diagram, the integral takes the form of I(2)(1, 1, 1; m2) (see appendix D)
and using Equation (D.9) the diagram has the following divergence:

V2 Vc

= −c1 V(s)
c V(s)

2 σi

(
1

16π2 ε
+ . . .

)
. (3.128)

Absorbing the divergence in c1, the running of c1 originating from Equation (3.128) can easily be

calculated to be ν ∂ log c1
dν = −V(s)

c (ν)V(s)
2 (ν) 1

64π2 . Including also diagrams with the Vr, s potentials,
as well as diagrams with sum operators and kinetic insertions, the full NLL anomalous dimension
reads [21,41]:

γNLL = − V
(s)
s

16π2

[
V(s)
c

4
+ V(s)

2 + V(s)
r + S2 V(s)

s

]
+ α2

s(mν)

[
C2
F

2
− CF CA

]

+ α2
s(mν)

[
3V(s)

k1 + 2V(s)
k2

]
, (3.129)

V2, r, s Vc

(a)

Vc Vc

(b)

Figure 3.13: Example diagrams for the running of c1 at (a) NLL and (b) NNLL order.
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where the potentials and αs have LL running.

At NNLL order, there are two kinds of contributions. Including the NLL running of the poten-
tials in Equation (3.129) gives the mixing contributions γNNLL

mix . Additionally, three-loop vertex
diagrams with an extra soft or ultrasoft loop lead to the non-mixing contributions γNNLL

non-mix. An
example of a diagram contributing to γNNLL

non-mix is shown in Figure 3.13b and the full calculation of
all contributions can be found in [41].

The solution of the RG Equation (3.127) for c1 can be written as

log

[
c1(ν, h)

c1(1, h)

]
= ξNLL(ν, h) + ξNNLL

non-mix, us(ν, h) + ξNNLL
mix, us(ν, h) + ξNNLL

non-mix, s(ν, h) + ξNNLL
mix, s1(ν, h) ,

(3.130)
where the exact expressions for ξ can be found in [56].
For ξNNLL

mix , the ultrasoft contributions to the NLL running of the potentials have been calculated
in [43–45]. For the soft mixing contributions, only the linear logarithmic term α3

s log ν is known [41]
and denoted above as ξNNLL

soft1 , but the remaining terms are expected to be small. In fact, the known
soft contributions to ξNNLL

non-mix, s are about 20 times smaller than the overall ultrasoft contributions

ξNNLL
non-mix, us. Expecting a similar size for the unknown soft mixing contributions, their effect would

be much smaller than the variation of the renormalization scale ν and can safely be neglected. For
a detailed discussion see [57].

3.4.2 LO, NLO, and NNLO Contributions

With the vNRQCD formalism set up in Section 3.3 and the non-relativistic expansion of the pro-
duction current in Equation (3.123), we can now identify the LO, NLO, and NNLO contributions
to the top quark pair production cross section at threshold.

Taking Equations (2.9) and (2.3) for the cross section derived in Chapter 2 and replacing the
relativistic current with its non-relativistic form from Equations (3.121) and (3.123), the non-
relativistic cross section becomes [47]

σvNRQCD =
4π

s
Q2
t σpt Im

[
−i
∫
d4x eiq·x 〈0 | T jµ(x) jµ(0) | 0〉

]

=
4π

s
Q2
t σpt Im

 i ∑
p,p′

∫
d4x eiq̂·x 〈0 | T Jp(x)J†p′(0) | 0〉


=

4π

s
Q2
t σpt Im

[
c2

1(ν)A1(v, m, ν) + 2 c1(ν) c2(ν)A2(v, m, ν)
]
, (3.131)

where q = (
√
s, 0) and q̂ = (

√
s− 2m, 0).

√
s is the CM energy and is related to the velocity v by

v =

√
E

m
=

√√
s− 2m+ iε

m
. (3.132)

The form of the exponential eiq̂·x in Equation (3.123) follows from Equation (3.121). c1 and c2 are
the Wilson coefficients, and A1, A2 the matrix elements containing the production currents Op, 1,
Op, 2:
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A1(v, m, ν) = i
∑
p,p′

∫
d4x eiq̂·x 〈0 | T Op, 1(x) O†p′, 1(0) | 0〉

A2(v, m, ν) =
i

2

∑
p,p′

∫
d4x eiq̂·x 〈0 | T

(
Op, 1(x) O†p′, 2(0) + Op, 2(x) O†p′, 1(0)

)
| 0〉 . (3.133)

Since the only difference between Op, 1 and Op, 2 is a factor of p2/m2 = v2, A2 is related to A1 by

A2 = v2A1 . (3.134)

The contributions to A1 and A2 follow from power counting (see Equation (3.106)): an insertion
of the Coulomb potential Vc increases the power of the overall diagram by a factor αs/v and the
lowest order soft loop increases it by a factor of α2

s/v. The higher order potentials V2, r, s add αsv to
the counting and the sum operators Oki a factor of α2

s. Additionally, using the production current
Op, 2 instead of Op, 1 increases the power of v by 2.

At LO, there are only insertions of Vc, denoted here by black circles:

+ + + . . .

v αs α2
s/v

, (3.135)

where the term below the diagrams denotes their power in αs and v. The crossed circle denotes an
insertion of the Op, 1 current.
At NLO there are additionally insertions of soft loops, which raise the power of the diagram by
α2
s/v:

+ + + . . .

α2
s α3

s/v α4
s/v

2

. (3.136)

Finally, at NNLO higher order soft loops contribute:

+ + + . . .

α3
s α4

s/v α4
s/v

. (3.137)

Additionally, there are contributions from the higher order potentials V2, r, s, , the sum operators,
and kinetic insertions:

c1 c2
+

c2c1
+

c2c1
+

c2c1
+

c2c1
+ . . .

v3 v3 αs v
2 αs v

2 αs v
2

,

(3.138)
where the cross denotes a kinetic insertion and the square a 4-fermion vertex coming from the
higher order potentials. Note that ultrasoft loops only contribute beyond NNLO, since ultrasoft
lines add at least a factor of αs v

2 to a diagram. From the higher order potentials in Equation (3.91)
all potentials contribute except VΛ and Vt.

43



The soft loops in Equation (3.136) and (3.137) behave similar to a potential, because they are
proportional to 1/k2 and therefore have a similar form as the Coulomb potential.
Hence an effective Coulomb potential can be defined by [47]

Vc, eff =
V(s)

c, eff

k2
− α2

s(mν)

k2
CF
[
−β0 log(k2/m2ν2) + a1

]
− α3

s(mν)

k2

CF
4π

[
β2

0 log2(k2/m2ν2)− (2β0 a1 + β0) log(k2/m2ν2) + a2

]
, (3.139)

where the second and third term are contributions from one-loop and two-loop soft diagrams and
were first calculated in [58, 59]. β0 and β1 are the coefficients of the αs β-function and a1, a2 can

be found in [59]. V(s)
c, eff is the Wilson coefficient of the effective potential including the Oci sum

operators (see Equation (3.103)).

Using the effective Coulomb potential, the insertions at LO, NLO, and NNLO can be summarized
in the form:

VLO = V LO
c, eff

VNLO = V NLO
c, eff

VNNLO = V NNLO
c, eff + V

(s)
2 + V (s)

s + V (s)
r + V

(s)
k +

∑
i

V
(s)
ki , (3.140)

where V LO
c, eff, V NLO

c, eff , and V NNLO
c, eff include the contributions from Equation (3.139) up to αs, α

2
s, and

α3
s, respectively. V

(s)
k and V

(s)
ki are the potentials coming from the sum operators in Equation (3.95)

and (3.98), respectively. V
(s)
k and V

(s)
k1 read

V
(s)
k = V(s)

k

g4
S µ̃

4ε
S

4m

∑
p,p′, q

[
C1 g0 + CACF g1 + C2

F g2

]

V
(s)
k1 = V(s)

k1

(
V(T )
c µ2ε

S

)2

m

∑
p,p′, q

[ f0 + f1 + 2 f2 ] (3.141)

and V
(s)
k2 and V

(s)
k3 follow analogously from Equation (3.98).

3.4.3 Resummation of the Coulomb Singularity

The infinite sum from Equation (3.135)-(3.138) can be rewritten into an integral equation, which
turns out to be just the non-relativistic Schrödinger equation known from quantum mechanics. By
solving it the contributions are resummed to all orders.

For the derivation of the integral equation we start with the expressions for the LO contributions
after the p0 integrations. They were calculated for the first three loop orders using the method of
regions in Equation (3.16), (3.28), and (3.31), respectively, and have the form:
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(−i) = 6Nc µ̃
2ε
S

∫
dnp

(2π)n
P (p)

(−i) = −6Nc µ̃
4ε
S

∫
dnp1

(2π)n
dnp2

(2π)n
P (p1) ṼLO(p1, p2)P (p2)

(−i) = 6Nc µ̃
6ε
S

∫
dnp1

(2π)n
dnp2

(2π)n
dnp3

(2π)n
P (p1) ṼLO(p1, p2)P (p2) ṼLO(p2, p3)P (p3)

...

...

(3.142)

where

P (p) =
−1

E − p2/m+ iε

ṼLO(p1, p2) =
−4παsCF
(p1 − p2)2

. (3.143)

In this section we use a tilde over V and G to distinguish between momentum and position space.
The diagrams above correspond to the leading order contributions of A1 (Equation (3.133)) and
therefore the indices on gij have been contracted to (2 gii) Nc = 6Nc. The pattern of Equa-
tion (3.142) continues to all orders, as can be easily seen by applying the methods described in
Section 3.1 to the higher loop orders. To sum the contributions, we define the function G(p1,p2)

A1,LO = (−i) + (−i) + . . .

= 6Nc µ̃
2ε
S

∫
dnp1

(2π)n
dnp2

(2π)n
G̃LO(p1, p2) . (3.144)

Using the expressions for the ladder diagrams from Equation (3.142), the above equation takes the
form

G̃LO(p1, p2) = (2π)n δ(n)(p1 − p2) P (p1)− P (p1) ṼLO(p1, p2)P (p2)

+ µ̃2ε
S

∫
dnp3

(2π)n
P (p1) ṼLO(p1, p3)P (p3) ṼLO(p3, p2)P (p2)

− . . . , (3.145)

which can be rewritten into the following integral equation:

G̃LO(p1, p2) = (2π)n δ(n)(p1−p2) P (p1)− µ̃2ε
S

∫
dnp3

(2π)n
P (p1) ṼLO(p1, p3) G̃LO(p3, p2) . (3.146)

Inserting P (p) and rewriting the equation gives

(
p2

1

m
− E

)
G̃LO(p1, p2) + µ̃2ε

S

∫
dnp3

(2π)n
ṼLO(p1, p3) G̃LO(p3, p2) = (2π)n δ(n)(p1 − p2) . (3.147)
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This is just the Schrödinger equation in momentum space and G can be identified with its Green’s
function. Translating to position space with n = 3 it takes the more familiar form

(H0 + VLO(x)− E)GLO(x, y) = δ(3)(x− y) , (3.148)

where H0 = −∇2
x/m. Rewriting Equation (3.144) with GLO in position space, one thus finds

that the matrix element A1 is proportional to the zero distance Green’s function G(0, 0) of the
non-relativistic Schrödinger equation

A1 = 6Nc lim
|x|→0

G(x, 0) . (3.149)

This equality holds at NLO and NNLO as well. Note that in the derivation of GLO the exact form
of the potential V was not needed. Since at NLO only the Coulomb potential and potential-like
soft loops contribute, Equation (3.147) also holds at NLO. At NNLO, kinetic insertions start to
contribute, which gives the NNLO Schrödinger equation:

(
p2

1

m
− p4

1

8m3
− E

)
G̃NNLO(p1, p2) +

+ µ̃2ε
S

∫
dnp3

(2π)n
ṼNNLO(p1, p3) G̃NNLO(p3, p2) = (2π)n δ(n)(p1 − p2) . (3.150)

LO Solution

At leading order, the solution of Equation (3.147) has already been obtained in the 1960s [60–62].
It reads

GLO(x, 0) = −i m
2v

2π

∫ ∞
0

dt eimv|x|(1+2t)

(
1 + t

t

) iα
2v

, (3.151)

where v was defined in Equation (3.132). A derivation of this solution is given in Appendix C and
it can also be easily checked by plugging GLO(x, 0) into the Schrödinger equation (3.148). The
expansion for small |x| gives

GLO(0, 0) = lim
|x|→0

m2

4π

(
1

m|x| + iv

− αsCF
[
log (m|x|) + log (−iv) + ψ

(
1− iαsCF

2v

)
+ γE −

1

2
+ log 2

])
,

(3.152)

where γE is the Euler-Mascheroni constant and ψ(x) = Γ′(x)/Γ(x) the diagmma function. The
digamma function resums αs/v terms to all orders, as can be seen from its expansion for αs/v < 1

ψ

(
1− iαsCF

2v

)
= −γE − i CF

π2

12

αs
v

+ C2
F

ζ(3)

4

α2
s

v2
+ . . . . (3.153)

GLO(0, 0) is divergent. In Equation (3.152) the divergence is regulated with |x|, which acts as a
cutoff. In dimensional regularization, the power divergence vanishes and the term log(m|x|) turns
into a 1/ε divergence. Since the divergent term appears only at order αs, it can be determined
by calculating the O (αs) two-loop integral from Equation (3.142) in dimensional regularization.
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The corresponding integral I(2)(1, 1, 1; Em) is solved in Appendix D and generates a divergent

contribution of the form αs CF m
2

16πε + αs CF m
2

4π log(µ/m) + . . . .

GLO in dimensional regularization therefore reads

GLO(0, 0) =
m2

4π

(
αsCF

4ε
+ iv − αsCF

[
log

(−iv
ν

)
+ ψ

(
1− iαsCF

2v

)
+ γE −

1

2
+ log 2

])
,

(3.154)

where ν is the subtraction velocity defined by µ = mν. At this point the type of regularization for
GLO(0, 0) is not important for the final result, because the divergence appears only in the real part
and therefore does not contribute to the cross section, see Equations (3.131) together with (3.149).
This is also true at NLO. At NNLO, however, divergences appear also in the imaginary part and
need to be renormalized in dimensional regularization.

Leading order electroweak effects can be implemented in Equation (3.154) by giving the energy from
Equation (3.132) an imaginary part E+iε→ E+iΓt, where Γt = 1.5 GeV is the top width (see also
Section 3.4.4 ). Figure 3.14 shows the cross section σLO ∼ Im[GLO] with and without electroweak
effects. In Figure 3.14a the cross section is continuously non-zero only above the threshold. This

region corresponds to scattering states. Below threshold it has divergences at
√
s = 2m − mα2

sC
2
F

4(1+n)2

for n = 0, 1, 2, 3, ..., which come from the digamma function and correspond to bound states of
the tt̄ pair.
However, when taking into account the top quark width, the poles are shifted away from the
imaginary axis and the resonances smear out. Figuratively speaking, the tt̄ pair decays before
it can form a bound state and therefore no peaks appear in the leading order cross section in
Figure 3.14b.
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Figure 3.14: The leading order cross section σLO with a very small width (a) and the top width
(b). The black horizontal line corresponds to 2mt.

NLO and NNLO Solution

At NLO and NNLO two kind of corrections appear. First, the Coulomb potential obtains αs and
α2
s corrections from soft loops and secondly, higher order potentials V2, Vs, ... as well as kinetic

insertions start to contribute (see Equations (3.136)-(3.138)).

The higher order corrections to the Coulomb potential do not change the divergence structure
of the Green’s function. As for GLO, the divergences are real and drop out for the inclusive cross
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section. The contributions generated by Vc, eff can therefore be resummed into the Coulomb Green’s
function G̃c(p1, p2) by solving the Schrödinger equation

(
p2

1

m2
− E

)
G̃c(p1, p2) + µ̃2ε

S

∫
dnp3

(2π)n
Ṽc,eff(p1, p3) G̃c(p3, p2) = (2π)n δ(n)(p1 − p2) . (3.155)

with the effective Coulomb potential Vc, eff.
An analytic solution for G̃c(p1, p2) at NLO and NNLO does not exist, but it can be calculated
numerically by solving the Schrödinger equation. For this thesis, we use the program TOPPIK [63],
which calculates the Coulomb Green’s function numerically using a cutoff.

The other potentials and the kinetic insertions generate divergences that do affect the cross section
and need to be renormalized in dimensional regularization. To see this, consider contributions to
the cross section with insertions of the leading order Coulomb potential together with one insertion
of the V2 potential. Since the Green’s function G0 of the Schrödinger equation with the leading
order Coulomb potential is known exactly, G0 can be used to find solutions for the Green’s function
G2 for the Schrödinger equation with the V2 potential perturbatively. Similar to the perturbative
expansion in Equation (C.5) from Appendix C, the first correction takes the form

δG2(0, 0) = − lim
|x|→0

∫
d3x1 GLO(x, x1)V2(x1)GLO(x1, 0) . (3.156)

where V2(x1) is the Fourier transform of Ṽ2(p, p′). Since V2(p, p′) does not depend on the momen-
tum, its Fourier transformation is

V2(x) =
V(s)

2

m2
δ(3)(x) (3.157)

and Equation (3.156) therefore becomes

δG2(0, 0) =
V(s)

2

m2

[
GLO(0, 0)

]2

= V(s)
2

m2

16π2

[
αsCF

4ε
+ iv + . . .

]2

. (3.158)

δG2 has divergent imaginary parts, which need to be renormalized. They are canceled by the
counterterms of the Wilson coefficent c1. The remaining quadratic divergence is real and drops out
in the total cross section.
The NNLO order corrections δGr, δGs, δGk, δGk1, δGk2 and δGkin coming from the other potentials,
sum operators, and kinetic insertions, are calculated in a similar way and can be found in [41,42,47].
To resum the logarithms of the velocity v, the subtraction velocity ν is chosen to be of order ν ∼ v
and the full NNLL cross section with general ν then takes the form:

σvNRQCD = F (s)R(s) , (3.159)

where

48



F (s) =
4π

s
Q2
t σpt

R(s) = 6Nc Im

[
2 c1(ν, h) c2(ν, h) v2GLL

c (v, m, ν, h)

+c2
1(ν, h)

(
GNNLL

c (v, m, ν, h) + δG2(v, m, ν, h) + δGs(v, m, ν, h)

+ δGr(v, m, ν, h) + δGkin(v, m, ν, h) + δGk1(v, m, ν, h)

+ δGk2(v, m, ν, h) + δGk(v, m, ν, h)
)]

.

(3.160)

Note that the notation used here is slightly different from [41,42,47]. Here the Wilson coefficients
Vi of the potentials are contained in the δG’s and δGk includes the contributions coming from
insertions of the sum operator Ok (which corresponds to δGCF2 and δGCACF in [41]).
Up to now, we have been working in the pole mass scheme and accordingly the mass m in Equa-
tion (3.159) is the pole mass. However, in QCD it is better to use a short-distance mass, as will
be described in Chapter 4. We will use for σvNRQCD the 1S mass and in this massscheme, R(s) will
receive an additional contribution δG1S from the mass conversion, see Section 4.3.

3.4.4 Electroweak and Non-Perturbative Effects

In the last sections we mostly considered QCD contributions to the top quark pair production cross
section. Electroweak effects, however, contribute already at LO and the finite lifetime of the top
quark in particular is essential for obtaining a smooth lineshape (as shown in Figure 3.14). In the
matching, we will consider only the leading order effects of the top width, which already give the
bulk of all contributions.

We now give a short overview of the electroweak contributions at threshold. The electroweak
coupling αEW counts as

αEW ∼ α2
s ∼ v2 (3.161)

and electroweak effects are therefore more suppressed than QCD effects.

Nevertheless, at LL there are already three different kinds of electroweak contributions: the finite
width of the top quark, the intermediate γ or Z boson, and initial state QED effects from the e+e−

pair. Initial state QED effects include initial state radiation, beamstrahlung, and beam energy
spread. They are combined in the luminosity spectrum, which differs from collider to collider (see
e.g. [9] for predictions of the luminosity spectrum at CLIC, ILC, and FCC-ee). They are included
in the cross section by convoluting the luminosity spectrum with the theoretical calculation.
The intermediate particle producing the top quark pair can be either a photon or a Z boson. The
bulk of all contributions comes from the γ induced cross section. The Z boson leads to small
changes in the coupling of the vector current and induces an axial vector current, which is however
v2 suppressed and therefore only appears at NNLL.

The width of the top quark enters through the matching of the quark bilinear terms. Consider the
one-loop self-energy contribution

− iΣ0 =

t tb

W

. (3.162)
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Figure 3.15: The effective velocity veff with and without the width Γt. Without Γt, the velocity is
zero at threshold, but with Γt it is always non-zero.

The momentum in the loop is much larger than the scales mtv and mtv
2 and therefore this diagram

is integrated out in the effective theory. To match it to a bilinear quark term, we observe that the
real part is absorbed into the pole mass definition, since we work with on-shell renormalization.
The imaginary part, on the other hand, is related to the decay width of the top quark by the
optical theorem, see Equation (A.8). With the non-relativistic renormalization uū = 1 for the
Dirac spinors, one gets

Im
[
ūΣ0 u

]
=

Γt
2
. (3.163)

This term is reproduced in the vNRQCD Lagrangian by

i
∑
p

ψp
Γt
2
ψp . (3.164)

Because Γt = 1.5 GeV ∼ mv2, this term is of leading order in the Lagrangian and therefore
contributes to the non-relativistic propagator. In loop diagrams contributing to the tt̄ production
cross section, the heavy quark propagator therefore takes the form

i

( E2 ± p0 )− ps2

2m + iΓt
2

, (3.165)

where pµ is the loop momentum and E =
√
s − 2m the non-relativistic CM energy. In practice,

the width can be implemented in the vNRQCD calculations of the previous chapters by a simple
prescription. Observing that Γt and E only appear in the heavy quark propagators, the width can
be included in the results for the cross section from Equation (3.159)-(3.160) by

√
s+ iε→ √s+ iΓt , (3.166)

which was first realized in [64]. The implementation of the width at leading order is crucial, since
it leads to large changes in the cross section by smearing out the bound state resonance states. It
is also essential for suppressing non-perturbative effects, since it renders the effective velocity

veff(
√
s+ iΓt) =

∣∣∣∣∣
√

(
√
s+ iΓt)− 2m

m

∣∣∣∣∣
finite even at threshold, see Figure 3.15. Non-perturbative effects are therefore estimated to be
tiny ( δσ/σ ∼ 10−4 ) [65–68] and can be neglected (uncertainties in the NNLL cross section due to
scale variations are larger than 10−2, see Figure 3.20).
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Figure 3.16: Example of an electroweak correction at NNLL: the full theory diagram (a) contains
two Z bosons, which are integrated out in the EFT, giving the 4-fermion vertex (b).

At NLL and NNLL, effects from additional insertions of the W boson, Z boson, and the photon
come into play. At NLL, exchanges of Coulomb photons lead to similar effects as from the exchange
of Coulomb gluons. At NNLL, electroweak one-loop corrections to e+e− → tt̄ appear (see for ex-
ample Figure 3.16a) and have to be integrated out, giving the 4-fermion vertex in Figure 3.16b.
Interesting implications arise from the large top quark decay width. Since the top decays almost
instantly into W+b, the experimentally measured final state is not tt̄, but rather W+bW−b. There-
fore also diagrams with a single on-shell top quark have to be considered (e.g. Figure 3.17b). The
top quark decay is integrated out in the EFT, giving imaginary contributions to the Wilson coeffi-
cients from Figure 3.16b [69]. The effects described above apply to top-quarks near their mass-shell.
However, also off-shell top quarks can contribute, giving so-called non-resonant effects at NLL and
NNLL order [70,71].

For details on the higher order electroweak contributions see [69–73].
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Figure 3.17: Diagrams with the final state bW+ bW−. While (a) is double-resonant, (b) contains
only one top quark.
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3.5 Analysis of the Threshold Contributions

For the matching we will consider the photon induced double-resonant tt̄ production cross section
with NNLL QCD effects, and LO electroweak contributions at threshold. The NNLL order QCD
contributions are computed with Equation (3.159) and (3.160), and the LO electroweak effects
are included with the prescription given in Equation (3.166). The contributions R(s) to the cross
section at LL, NLL, and NNLL order then read

RLL(s) = 6Nc Im
[ (
cLL

1

)2
GLL

c

]
RNLL(s) = 6Nc Im

[ (
cNLL

1

)2
GNLL

c

]
RNNLL(s) = 6Nc Im

[
2 cLL

1 cLL
2 +

(
cNNLL

1

)2
GNNLL

c

+
(
cLL

1

)2 (
δG2 + δGs + δGr + δGkin + δGk + δGk1 + δGk2

)]
(3.167)

where the superscripts on Gc denote the order of the Coulomb potential in the Green’s function
and the superscripts on c1, c2 stand for the order of the running and the power of αs included, e.g.

cLL
1 = 1

cNLL
1 =

(
1− 2CF

π
αs(µh)

)2

exp
[
ξNLL(h, ν)

]
=

(
1− 4CF

π
αs(µh) +O

(
α3
s

))
exp

[
ξNLL(h, ν)

]
. (3.168)

cNNLL
1 is expanded in the same way up to α3

s. This choice for c1 is not unique and we discuss different
choices at the end of this section. Both the Wilson coefficients c1, c2 and the Green’s functions
depend on h and ν. h describes the variation of the matching scale µh and ν the variation of the
renormalization scales µS and µU . The renormalization scales are related to the matching scale by

µS = ν µh , µU = ν2 µh , (3.169)

where ν is called ”subtraction velocity”. These relations ensure that µ2
S ∼ µU is fulfilled at all

times. With µh = hm, the scales take the form

µh = hm , µS = hmν , µU = hmν2 . (3.170)

h and ν can be used to estimate the theoretical error of σvNRQCD. The cross section is independent
of ν and h when including all powers in αs and v. Taking only the contributions up to NNLL, the
cross section will exhibit a ν and h dependence, which has to cancel with the (unknown) higher
order corrections. By varying ν and h, the size of the missing corrections can be estimated. The
values for h and ν are restricted, because they have to be chosen such that they neither produce
large logarithms nor make the coupling αs non-perturbative.

In this work two different choices for ν are considered: ν ∼ v resums logarithms of the velocity v to
all orders through the renormalization group running of the potentials and the production current.
We therefore call σvNRQCD(ν ∼ v) the renormalization-group-improved (RGI) cross section. We also
consider ν = 1, which switches the resummation of logarithms off. We therefore call σvNRQCD(ν = 1)
the fixed-order (FO) cross section.
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RGI Cross Section

The RGI cross section resums large logarithms of v to all orders. To estimate the theoretical error
we use scale variations as presented in [57]. At threshold we have the three scales µh, µS , and µU
with the default values

µdef
h = m , µdef

S = mν , µdef
U = mν2 , (3.171)

where ν = f ν∗ and ν∗ is related to the effective velocity:

ν∗ = 0.05 +

∣∣∣∣∣
√√

s− 2m+ iΓt
m

∣∣∣∣∣ , (3.172)

The small constant offset of 0.05 is motivated in [56,57]. The dependence of ν∗ on the CM energy√
s is shown in Figure 3.18.

Since µS and µU are correlated, only µh and either µS or µU can be varied independently. We
choose to vary µh and µU between 1/2 and 2:

1

2
µdef

h < µh < 2µdef
h

1

2
µdef

U < µU < 2µdef
U . (3.173)

For h and ν this translates to

1

2
< h < 2

1

2
< hf2 < 2 , (3.174)

where h = 1, f = 1 give the default values from Equation (3.171). The values covered by these
conditions are shown in Figure 3.19. µU is chosen such that the coupling αs(µU ) does not become
non-perturbative. With Equation (3.174), the lowest value of µU is
(νmin
∗ )2 (1/2)m ∼ 0.142 ·0.5·170 ∼ 1.7 GeV, for which the ultrasoft coupling is αs(µU = 1.7) ∼ 0.27.

Smaller values of h and f would make the coupling even larger and spoil the perturbative expansion
in αs(µU ).
The RGI cross section in the 1S mass scheme is shown in Figure 3.20b (for a discussion of the mass
schemes see Chapter 4) .
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Figure 3.18: Dependence of ν∗ on the CM energy
√
s.
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Fixed Order Cross Section

The RG running of the Wilson coefficients resums logarithms of log(µh/µS) and log(µh/µU ) to all
orders in αs. For the fixed-order (FO) cross section we do not use this resummation and therefore
choose

µh = µS = µU . (3.175)

This leaves only one scale, the matching scale µh = hm, to estimate the theoretical error.

When choosing a value for µh, two effects have to be considered. One the one hand, the large log-
arithms of log(µh/µS) can be partially resummed by the running of the strong coupling constant.
At LL, the only coefficient with an RG running is the LL Coulomb potential and it is determined
fully by the running of αs (see Equation (3.114)). By choosing µh ∼ mv all large logarithms are
resummed at this order.
At NLL, the matrix element A1 includes again only terms whose running is determined by αs(µS).
However, its Wilson coefficient c1 depends on µh, µS , and µU , and the large logarithms can not
be resummed into c1 by choosing µh ∼ µS ∼ mv. Finally, at NNLL order the matrix element A1

includes the higher order potentials, which have soft as well as ultrasoft running. The logarithms
are therefore not fully resummed neither in the matrix elements nor in c1 and c2.
On the other hand, if the scale µh becomes smaller, αs(µh) gets larger, which degrades the conver-
gence of the perturbative series. The missing higher order logarithms will therefore become even
larger and lower the accuracy of the calculated terms.
As a compromise between the partial resummation of large logarithms into the coupling constant
for µh ∼ hmν∗ and the small coupling at µh ∼ hm, we choose the geometric mean of the two
scales:

µh = hm
√
ν∗ , 1/2 < h < 2 , (3.176)

where h is varied to estimate the theoretical error.
The fixed-order cross section at order LO, NLO, and NNLO is shown in Figure 3.20a. At LO and
NLO the error band is thinner than the corresponding one of the RGI cross section. This occurs,
because the coupling αs(µ) and therefore also the cross section, vary more strongly at small scales
µ. This can be seen from the leading-order cross section, which only depends on one scale, µS .
The value for the scale µS = µh = mh

√
ν∗ is larger than the corresponding RGI value µS = hmν∗.

Correspondingly, the scale variations are larger for the RGI cross section. At NLO the situation
is similar. At NNLO, however, a large part of the logarithms resummed in the RGI cross section
is not included in the fixed-order cross section, leading to the larger error band of the fixed-order
cross section when compared to the RGI cross section.
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Figure 3.19: Values for h and f covered by Equation (3.174).
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Figure 3.20: vNRQCD cross section in the 1S mass scheme: (a) fixed-order cross section at order
LO, NLO, and NNLO and (b) RGI cross section at order LL, NLL, and NNLL.

Comparison of Choices for the Current Wilson Coefficient c21

In Equation (3.167) we expanded c2
1 in αh such that no higher order terms beyond NLL or NNLL

were generated. At threshold, c2
1 could instead also be left unexpanded. For the matching, however,

the expanded version is needed.
If at every order the highest order of c1 is used, R(s) from Equation (3.167) takes the form

RLL(s) = 6Nc Im
[ (
cLL

1

)2
GLL

c

]
RNLL(s) = 6Nc Im

[ (
cNLL

1

)2
GNLL

c

]
RNNLL(s) = 6Nc Im

[
2 cNNLL

1 cLL
2 +

(
cNNLL

1

)2
GNNLL

c

+
(
cNNLL

1

)2 (
δG2 + δGs + δGr + δGkin + δGk + δGk1 + δGk2

)]
,

(3.177)

where
(
cNNLL

1

)2
and

(
cNLL

1

)2
are left unexpanded and therefore produce terms of order (1, αh, α

2
h)

and (1, αh, α
2
h, α

3
h, α

4
h), respectively. This generates order terms up to order N4LO. The higher

order term can be an advantage since c1 contains factorized long-distance contributions and one
could expect that including all known contributions up to c2

1 reduces the theoretical error of the
cross section. The form given in Equation (3.177) was used in [57] to estimate the NNLL uncer-
tainties of the top quark pair production cross section at threshold for a future linear colliders.

At threshold, we are free to choose the expanded or unexpanded version of c2
1. For the match-

ing, however, using the unexpanded coefficient with the terms beyond NNLL leads to problems.
Consider for example the contribution

(
cNNLL

1

)2
δGkin to the cross section. δGkin generates NNLL

contributions of the form v3, v2αs, vα
2
s, . . . . Multiplying with

(
cNNLL

1

)2
then gives a term of order

αsv
3, for example. At threshold, we have αs ∼ v ∼ 0.15 and therefore αsv

3 ∼ 5 · 10−4, which is of
N3LL order. In the intermediate region however, v becomes large and for v ∼ 0.5 the contribution
is of order v3αs ∼ 2 · 10−2, which is already NLL order.
Note that the αsv

3 term generated by
(
cNNLL

1

)2
is not the full αsv

3 contribution to the cross section.
Therefore this term would have to be subtracted in the matched cross section, and all other terms
beyond NNLL with vi with i = 1, 2, 3 as well (terms of the form of e.g. α5

s/v are not a problem
above threshold, since they get smaller for larger v and are therefore in the intermediate region
even more suppressed than at threshold).
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Instead of subtracting the terms beyond NNLL, one can also expand c2
1 in αs to ensure they are

not generated in the first place. For the corrections to the Green’s function δGkin, δGk, . . . this
means that cexpanded

1 = 1, since the Green’s function corrections are already of NNLL order. Ad-
ditionally, the coefficients c2

1 multiplying the Coulombic Green’s function Gc need to be expanded.
The resulting contributions then take the form presented in Equations (3.167) and (3.168). This is
the form we will use for the matching.

A comparison of the cross section with the full and the expanded implementation of the Wilson co-
efficient c2

1 is shown in Figure 3.21 for both the fixed-order and the RGI setting. The leading order
cross section is not shown, since it is the same for both cases. At NLL the difference between the
full and the expanded implementation of the Wilson coefficient is very small. At NNLL, however,
the difference is large and for the fixed-order cross section the error bands of the two versions even
have no overlap at all above ∼ 378 GeV. The large change comes mainly from changing the Wilson
coefficients multiplying the Green’s function corrections δG from cNNLL

1 to cLL
1 . For the RGI cross

section, including more long-distance contributions by using the full Wilson coefficients reduces the
error band slightly at threshold, but leaves the form at threshold otherwise unchanged. Both in
the fixed-order as well as the RGI setting, the curves with the expanded and full Wilson coefficient,
respectively, start to differ soon after the peak region. For the fixed-order cross section, the dif-
ference is clearly visible directly after the peak and for the RGI cross section, the curves start to
differ at

√
s ∼ 352 GeV (v ∼ 0.2), indicating that higher order contributions become sizeable. This

suggests, that above 352 GeV we will very likely need the matched cross section, which includes
higher order contributions beyond NNLL.
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Figure 3.21: Comparison of the cross section with the full contributions from the Wilson coefficient
c2

1 (gray) and the expanded version of c2
1 (green and red, respectively) for the fixed-order cross

section (left) and the RGI cross section (right). All plots are in the 1S mass scheme.
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Chapter 4

Mass Schemes

In most areas of physics the mass of a particle is a fixed concept and it is typically identified with the
rest mass. In QFT, however, masses are defined by renormalization and different renormalization
schemes give different values for the mass of a particle. For physical observables, it should of course
not matter, which mass scheme is chosen in the calculation. A change between mass schemes just
reorganizes the perturbation series of the observable, leaving the observable itself unchanged. It
can, however, affect the convergence of the perturbation series. Since we can usually only calculate
the first few terms in the perturbation series, it is important to choose the mass scheme carefully.

In this chapter four different mass scheme are described: the pole mass, MS mass, 1S mass, and
MSR mass. The pole mass corresponds most closely to the physical rest mass, but it is sensitive
to the IR region, which causes a rapid divergence in its relation to the bare mass and to short
distances masses [74, 75]. This divergent behavior is called renormalon and it not only causes a
bad convergence in the perturbation series of physical observables, but also leads to an intrinsic
ambiguity of the pole mass of order ΛQCD.
Masses free of the renormalon are called short-distance masses. An example is the MS mass,
which is well-suited for calculations in the continuum. At threshold, however, it breaks the power
counting in v. Instead, so-called ”threshold masses”, which are specifically designed for threshold
application, have to be used. Examples are the 1S mass [63, 76, 77], the PS mass [78], and the
kinetic mass [79].
For the matching a mass scheme is needed, that is renormalon-free and can be used both at threshold
and in the continuum. We choose the MSR mass for this purpose. The MSR mass depends on an
adjustable scale R, which can be used to interpolate between a threshold mass at low scales and
the MS in the continuum.

4.1 Pole Mass

The pole mass is closely related to the physical mass of a particle, since it corresponds to the
pole in the full propagator SF . SF in terms of the bare mass m0 and the one particle-irreducible
self-energy contributions Σ reads

SF =
i

/p−m0 + Σ(/p, m0)
. (4.1)

The pole mass mpole is defined as the pole of the propagator [14]:

/p−m0 + Σ(/p, m0)
∣∣
p2=m2

pole
= 0 . (4.2)

mpole not only absorbs UV divergences, but also finite contributions from the self-energy Σ. To
study the finite contributions, consider the relation of the pole mass to the MS mass. Since the
MS mass only contains the UV divergent contributions of Σ, mpole − mMS provides insight into
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Figure 4.1: Self-energy diagram containing a chain of fermion bubbles.

the behaviour of the finite terms. To illustrate their behaviour at large orders in αs, consider the
bubble-chain (see Figure 4.1) contributions to Σ [80]. Replacing −2nf/3 → β0 to include non-
abelian contributions (known as naive non-Abelization), they give the following contribution to
mpole −mMS [80]:

mpole −mMS(µ) =

− i CF g2µ̃2ε
∞∑
n=0

∫
ddk

(2π)d

(
β0 αs(µ)

4π

)n
log

(
−µ

2 e5/3

k2

)n
γµ (/p+ /k +mMS) γµ

((p+ k)2 −m2
MS

) k2

∣∣∣∣∣
p2=m2

pole

,

(4.3)

where mMS is the MS mass and β0 = 11−2nf/3. For large n, the logarithm enhances contributions
from small and large k to the integrand. For small k, the integrand scales as dk k3/k3 and the
logarithm enhances the contributions in the IR region. Expanding in small k and performing the
integral, the divergent behaviour becomes apparent [80]

mpole −mMS(µ) = e5/6µ
CF αs
π

∞∑
n=0

(
αs β0

2π

)n
n! . (4.4)

This factorial pattern of divergence is known as IR renormalon (UV renormalons also exist - they
have a negative sign in the (αsβ0/(2π))n term). It often leads to a bad convergence of the petur-
bative expansion already at low orders, which is also the case for the top quark production cross
section at threshold. Additionally, it can be shown that the divergent behaviour of Equation (4.4)
leads to an intrinsic ambiguity of order ΛQCD in the pole mass [80]. Since the renormalon appears
in the finite self-energy contributions absorbed by the pole mass, it is an intrinsic problem of the
pole mass. The MS mass and other short-distance masses are free of renormalons and they all
exhibit the large order asymptotic behaviour shown in Equation (4.4) when they are related to the
pole mass.

In Figure 4.3 the RGI vNRQCD cross section is shown in the pole mass scheme and the 1S mass
scheme. The peak position is very sensitive to the top quark mass and will be used to determine
the top quark mass to high precision at future linear colliders. In the pole mass scheme, however,
the peak position shows a large variation from order to order. From NLL to NNLL it varies by

...

Figure 4.2: Fermion bubble chain contributing to the potential V (x).
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500 MeV, which is much larger than the expected experimental precision of below 100 MeV at a
future linear collider. Luckily, the large uncertainty is not intrinsic to σvNRQCD, but rather induced
by the renormalon of the pole mass. To see this, consider the terms

H0 − V (x) + E = H0 − V (x) +
√
s+ 2mpole . (4.5)

that appear in the non-relativistic Schroedinger equation (Equation (3.148)). The potential V (x)
has a renormalon ambiguity similar to the pole mass. To see this, consider the contributions to V (x)
generated by the bubble chain shown in Figure 4.2. Although the potential at lowest order depends
on 1/|x|, the contributions become independent of |x| at large orders and behave asymptotically
for n fermion loops as [49]

− 2 e5/6µ
CF αs
π

(
αs β0

2π

)n
n! . (4.6)

V (x) therefore has a similar asymptotic large order behaviour as (mpole−mMS) from Equation (4.4),
or more generally, as (mpole − msd), where msd is a short-distance mass. Rewriting the pole
mass as mpole = msd + δm, where δm contains the renormalon with the large order behaviour of
Equation (4.4), the sum of the potential and the pole mass from Equation (4.5) becomes

V (x) + 2 (msd + δm) (4.7)

and the renormalon ambiguity cancels between V (x) and δm (see Equations (4.4) and (4.6)). Thus
the manifestation of the renormalon from Figure 4.3a can be avoided in the tt̄ production cross
section by using a short-distance mass msd. In Figure 4.3b the RGI vNRQCD cross section is
shown in the 1S scheme, which is a low-scale short distance mass scheme. The large variation from
order to order has vanished for the 1S scheme and the peak position is stable.

For the short-distance mass, we will use at threshold the 1S mass and MSR mass, and in the
continuum the MS mass.
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Figure 4.3: vNRQCD cross section in the pole mass scheme (a) and the 1S scheme (b). The vertical
line denotes the threshold at 2m1S.
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4.2 MS Mass

The MS mass only absorbs the divergent terms from the self-energy diagrams. The denominator
of the full propagator therefore takes the form

/p−m0 + Σ = /p−mMS + Σfinite . (4.8)

Together with Equation (4.2), the perturbative relation to the pole mass can be obtained. It reads:

mpole = m+m
∞∑
n=1

an(nl, nh)

(
α

(nf )
s (m )

4π

)n
. (4.9)

where m is a shorthand notation for the MS mass evaluated at µ = mMS:

m = mMS(µ = mMS) . (4.10)

The coefficients contain contributions from the self-energy diagrams with nh = 1 heavy quarks nl
light (massless) quarks. The coupling αs runs with nf = nh + nl flavors. The relation has been
calculated up to 4-loop order [81–88]. a1, a2, and a3 are known analytically, while a4 has been
obtained numerically. A summary of the coefficients can be found in [89].

The MS mass is well-suited for calculations in the continuum. At threshold, however, it breaks the
power counting. To see this, consider the full propagator of a heavy quark with the non-relativistic
energy Epole =

√
s/2−mpole [49]

i

Epole − p2/2mpole + p4/8m3
pole + . . .

, (4.11)

which is calculated from the vNRQCD effective Lagrangian. In Section 3.3 m was the pole mass,
since on-shell renormalization is well-suited for the matching and renormalization [49]. Changing
to the MS mass with mpole = m+ δm, the denominator of the full propagator takes the form

EMS − δm−
p2

2m
+
δm

m

p2

2m
+

p4

8m3 + . . . , (4.12)

where EMS =
√
s/2−m. EMS and p2/2m are both of order mv2 ∼ mα2

s. The first order correction
δm, in contrast, is of order mαs. It is therefore much larger than the leading order terms, should
not be counted as a perturbation and therefore breaks the power counting.

Another way to see the power breaking explicitly is to change the mass scheme of the terms in
σvNRQCD. Consider the contribution vpole =

√
(
√
s− 2mpole)/mpole to σvNRQCD, which contributes

at leading order, see Equation (3.135). Converting vpole to the MS scheme with Equation (4.9) and

using As = α
(nf )
s (m )/4π, the velocity in the pole mass scheme transforms into

vpole =

√√
s− 2mpole

mpole
=

√√
s− 2 (m+ma1As)

m+ma1As

= vMS −As a1

(
vMS

2
+

1

vMS

)
+A2

s a
2
1

(
3 vMS

8
+

1

2 vMS

− 1

2 v3
MS

)
+O

(
A3
s

)
, (4.13)

where vMS =
√

(
√
s− 2m)/m and only the first order correction mAsa1 to the mass was used.

Higher order corrections of the mass give similar contributions.
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A good mass scheme should only generate contributions that are of the same order in αs and v as
the original term, and additionally subleading contributions. For the conversion above, however,
vpole generates terms of order αs/vMS, α2

s/v
2
MS

, . . . , which are larger than the leading order terms.
This is a manifestation of the power counting breaking and makes MS unusable at threshold.
These contributions can be avoided in a short distance mass scheme, which has a first order cor-
rection of order δm ∼ msd α

2
s in its relation to the pole mass. The conversion of the velocity takes

the form

vpole =

√√
s− 2 (msd +msd a1A2

s)

msd +msd a1A2
s

= vsd −A2
s a1

(
vsd
2

+
1

vsd

)
+A3

s a
2
1

(
3 vsd

8
+

1

2 vsd
− 1

2 v3
sd

)
+O

(
A4
s

)
, (4.14)

which has only leading order terms ( v, As, A
2
s/v, . . . ) and subleading contributions. We will use

as the low-energy short-distance mass the 1S mass.

4.3 1S Mass

To construct a renormalon-free threshold mass with δm ∼ mα2
s in the relation to the pole mass at

lowest order,the potential V (x) can be used, because it has a renormalon ambiguity similar to the
one of the pole mass.
For stable quarks (Γt = 0), the binding energy Ebin of the heavy quark-antiquark pair in the spin-
triplet ground state can be calculated from the potential. Ebin contains the renormalon, which
cancels in the sum of the binding energy with 2mpole:

M3S1
tt = Ebin + 2mpole , (4.15)

M3S1
tt is the physical mass of the tt̄ system up to non-perturbative corrections [49] and renormalon-

free. The 1S mass of the top quark is then defined as half the mass of the entire system [63,76,77]:

m1S =
1

2
M3S1
tt = mpole +

1

2
Ebin . (4.16)

Since Ebin ∼ mv2 ∼ mα2
s at threshold, the first order correction in the relation to the pole mass

is of order mα2
s and complies with the non-relativistic power counting. Ebin can be calculated

perturbatively from the Schroedinger equation using time-independent perturbation theory and is
known up to NNLL order [40], where the ELL

bin contribution involves the LL Coulomb potential, the
ENLL

bin the NLL Coulomb potential, and ENNLL
bin the NNLL Coulomb potential, the kinetic insertions,

and the higher order potentials.

The perturbative relation between mpole and m1S reads

m1S = mpole −mpole

[
∆LL(h, ν) + ∆NLL(h, ν) + ∆NNLL

c (h, ν) + ∆NNLL
m (h, ν)

]
= mpole −

2

9
α2
smpole + . . . . (4.17)

where ∆LL = −2/9α2
s is the LL term. ∆NNLL

c originates from corrections to the binding energy
related to the Coulomb potential at NNLL and ∆NNLL

m comes from corrections related to the higher
order potentials as well as kinetic insertions. The expressions for ∆NLL, ∆NNLL

c , and ∆NNLL
m can

be found in [47] together with the modifications described in [42], which concern changes in V(s)
c
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and V(s)
k due to the sum operators.

We use the implementation of the 1S mass described in [47], where ∆LL, ∆NLL, and ∆NNLL
c are

implemented directly in the Coulomb Schrödinger equation, see Equation (3.155). The correc-
tion ∆NNLL

m is treated as a perturbation, similar to the higher order potentials as described in
Section 3.4.3. The vNRQCD cross section from Equation (3.159) then receives an additional con-
tribution of the form [47]

∆σvNRQCD = F (s) Im
[
δG1S(v1S, m1S, ν, h)

]
δG1S = −∆NNLL

m

v1S

d

dv1S

GLO(v1S, m1S, ν, h) , (4.18)

where v1S is the velocity with the 1S mass.

4.4 MSR Mass

While the 1S mass is well-suited for threshold applications and the MS mass works well in the
continuum, for the matching a mass scheme is needed, that can be used both at threshold and in
the continuum.

The MSR mass [89–91] is well-suited for this purpose. It is a low-scale short-distance mass and
directly connected to the MS mass. The basic idea is that the renormalon ambiguity in the relation
of the pole mass to the MS mass is independent of the mass. Therefore, the scale of the corrections
on the right hand side of Equation (4.9) can be changed from m to an arbitrary scale R without
changing the asymptotic behaviour of the series in the conversion:

mpole = mMSRn(R) +R

∞∑
n=1

an(nl, 0)

(
α

(nl)
s (R )

4π

)n
, (4.19)

where µ = R and mMSRn is the natural MSR mass. The coefficients an coming from self-energy
diagrams are the same coefficients as in the definition of the MS mass in Equation (4.9). However,
they do not include the contributions coming from the heavy quark mass and therefore nh = 0
in Equation (4.19)). The heavy quark contributions are integrated out, because the MSR mass
is designed for low-scale applications, i.e. for problems that involve only dynamical scales smaller
than the heavy quark mass. At these scales, the heavy quark mass is typically integrated out, such
that the running of αs, and the coefficients an coming from self-energy contributions, only depend
on the number of light flavors nl.

It is also possible to only change the coupling α
(nl+nh)
s from the MS mass definition to nl flavors

and leave the contributions from the self-energy unchanged. The resulting MSR mass is called
”practical MSR mass” mMSRp and is numerically very similar to the natural MSR mass [89]. It is
called practical, because its relation to the MS mass at R = mMSRp has a particularly simple form:
mMSRp(mMSRp) = mMS(mMS).

The natural MSR mass, however, is conceptually cleaner and we therefore use mMSRn. It depends
on the scale R, which can be varied to interpolate between a threshold mass for R ∼ mv and a mass
very similar to the MS mass for R ∼ mMSRn. R can be interpreted as a cutoff on the self-energy
contributions that are absorbed into the mass [92]. It only contains the self-energy contributions
from scales larger than R. For R = 0 it therefore absorbes all of the self-energy and we obtain the
pole mass.

Similarly as the MS mass evolves with the UV cut-off µ, the MSR mass can be varied with both
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the UV-cutoff µ and the IR-cutoff R. The running of R is called ”R evolution” and follows from
the R-independence of the pole mass:

R
d

dR
mpole = R

d

dR
mMSRn(R) +R

d

dR

(
R
∞∑
n=1

an

(
αs(R )

4π

)n)
= 0

R
d

dR
mMSRn(R) = −R

∞∑
n=1

an

(
αs(R )

4π

)n
−
∞∑
n=1

an R
d

dR

(
αs(R )

4π

)n

= −R
∞∑
n=0

γRn

(
αs(R )

4π

)n+1

(4.20)

−→ mMSRn(R2)−mMSRn(R1) = −
∞∑
n=0

γRn

∫ R2

R1

dR

(
αs(R )

4π

)n+1

, (4.21)

where γRi can be calculated from the coefficients ai and the RG-equation of αs (see Appendix E). At
the first two orders we have γR0 = a1, γR1 = a2−2β0 a1 and the general formula for γRi at any order
i can be found in [89]. Since the cofficients ai are known up to a4, the highest known anomalous
dimension is γR3 . Equation (4.21) can be solved either numerically or analytically. At leading order,
its solution can be computed in terms of incomplete gamma functions and its asymptotic expansion
for αs → 0 reads [90]

mMSRn(R2)−mMSRn(R1) =
γR0 R2

2β0

∞∑
n=0

(
β0 αs(R2)

2π

) ∞∑
k=n+1

n!

k!
logk

(
R2

R1

)
. (4.22)

Two important observations can be made from Equation (4.21). First, it is a convergent series
and therefore the evolution from one scale R1 to another R2 is renormalon-free. Second, it sums
logarithms of log(R2/R1) to all orders.
Note that mMSRn(R1) and mMSRn(R2) could also be related directly using the fixed order expansion
from Equation (4.19). However, for R1 � R2 logarithms of (R2/R1) become large and degrade the
perturbative expansion. Using Equation (4.21)then improves the accuracy of the conversion.

Logarithms of infrared scales similar to log (R2/R1)also occur when relating the MS mass to a low-
scale short-distance mass. For example, the relation between the 1S mass and the MS mass includes
logarithms of the form log(m/m1S αsCF ). Using R-evolution, these logarithms can be resummed
an the convergence of the MS mass to the 1S improved. For this the MS mass is first related to
the MSR mass at the high scale R1 ∼ m, where no large logarithms occur in the conversion. Then
the MSR mass is evolved to the low scale R2 ∼ mv ∼ 20 GeV with Equation (4.21), resumming
large logarithms of R2/R1 to all orders in the process. At the low scale, the MSR mass can then
be related to the 1S mass. This procedure improves the precision of the conversion between the 1S
mass and the MSmass, when compared to the fixed order conversion without resummation of the
logarithms. Details on the improvement can be found in [89].
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Figure 4.4: Profile for the parameter R used in the cross section in Figure 4.5b.

4.5 QCD Cross Section in the MSR Mass Scheme

At threshold, the QCD cross section does not converge well from order to order, because it is
missing higher order threshold contributions. For Γt = 0 the QCD cross section even diverges at
threshold at NNLO and N3LO, see Figure 2.2a.
The convergence near threshold can be improved by converting σQCD to the MSR mass. To avoid
power counting breaking effects we have to choose R ∼ mv near threshold. We parametrize R in
the form

R = m1S ν∗ for m1S ν∗ < m

R = m for m1S ν∗ ≥ m , (4.23)

where ν∗ was defined in Equation (3.172) and the profile of R at threshold and in the intermediate
region is shown in Figure 4.4. With this choice for R we effectively interpolate between a low-scale
short-distance mass at threshold and a mass nearly identical with the MS mass in the continuum.
In Equation (4.23) we use the 1S mass, because in the matching the vNRQCD cross section is also
in the 1S scheme. A different value for the mass is also possible, as long as R ∼ mv is fulfilled.
Changing to the MSRn scheme and using (4.23), the QCD cross section takes the form shown in
Figure 4.5b. Comparing Figure 4.5b with the QCD cross section in the pole mass scheme (Fig-
ure 4.5a), one can see that the convergence from order to order near threshold is better for the
MSRn mass scheme. In addition, the change from the pole mass to the MSRn mass rearranges the
perturbation series such that the cross section becomes less divergent at threshold.
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Figure 4.5: QCD cross section near threshold: the cross section in the MSRn mass scheme (b)
converges better from order to order than in the pole mass scheme (a).
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Figure 4.6: QCD cross section at N3LO order in the pole mass scheme (gray) and the MSRn mass
scheme (red).

Physical observables should of course be independent of the mass scheme. Comparing the cross
section in the pole mass and MSRn mass scheme at N3LO shows that above 380 GeV they are
indeed very similar, see Figure 4.6. Below 360 GeV, however, they diverge, indicating that threshold
contributions not included in the QCD cross section become important. From Figure 4.6 we can
assume that in the region between 360 GeV and 380 GeV higher order threshold contributions
become important and a matched cross section including these contributions is needed.
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Chapter 5

Matching Threshold and Continuum
Contributions

The vNRQCD cross section is only valid directly at threshold. This was shown explicitly in Sec-
tion 3.5, where different choices for the Wilson coefficients indicated that shortly after the threshold
higher order corrections beyond NNLL seem to become relevant.
On the other hand, the QCD cross section is clearly unusable below about 360 GeV, because the
values in different mass schemes start to diverge (see Figure 4.6).
In this chapter the matched cross section for the intermediate region between the threshold and
the continuum is constructed. The matching is based on a simple principle (Section 5.1): σQCD and
σvNRQCD include different powers of αs and v In order to include all relevant contributions, we just
add them together. Some terms, however, appear in both σQCD and σvNRQCD. These double counted
terms have to be identified and subtracted (Section 5.2 and 5.3). Lastly, we use a combination of
the 1S and the MSR mass scheme to implement a consistent mass scheme in all regions (Section 5.4 ).

5.1 Matching Formula

In the intermediate region, contributions from both σQCD and σvNRQCD are important. The matched
cross section σmat is therefore a combination of σQCD and σvNRQCD, minus the double counted terms
σexp, that are contained in both σQCD and σvNRQCD. The double counted terms can be determined
from expanding σvNRQCD and σQCD and therefore we call σexp the expanded cross section. Since
vNRQCD is valid only for v � 1, we turn the non-relativistic contributions σvNRQCD − σexp off in
the continuum using a switch-off function fs:

σmat(µh, µS , µU ) = σQCD(µh) + fs

[
σvNRQCD(µh, µS , µU )− σexp(µh, µS , µU )

]
, (5.1)

where µh, µS , and µU are the hard, soft, and ultrasoft renormalization scale, respectively. We vary
the scales of the QCD, vNRQCD, and expanded cross section simultaneously according to scale
choices described in Section 3.5.
The switch-off function fs is one at threshold and zero in the continuum. The exact form in between,
as well as the exact points where it starts to differ from 0 and 1 are to some degree arbitrary and
can be used to estimate the theoretical error of the matching. The switch-off function should be
continuously differentiable to ensure that there are no unphysical kinks in the cross section. We
choose a quadratic switch-off function of the form
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fs =



1 veff < v1

1− 2 (veff−v1)2

(v2−v1)2 v1 < veff <
v1+v2

2

2 (veff−v2)2

(v2−v1)2
v1+v2

2 < veff < v2

0 v2 < veff

, (5.2)

where veff is the effective velocity

veff =

∣∣∣∣∣∣
√√

s− 2m1S + iΓt
2m1S

∣∣∣∣∣∣ (5.3)

and depends on the 1S mass m1S, because in the matching the vNRQCD cross section is in the 1S
mass scheme. The starting and end points of fs are given by v1 and v2. Exactly at threshold, fs
has to be zero, since the non-relativistic corrections are dominant. Directly over the peak region,
however, the relativistic corrections start to get large and we therefore choose the starting point of
the switch-off function in a region directly over the peak region. For the end point we choose values
around 370 GeV, which corresponds to v ∼ 0.4, since Figure 4.6 indicates that the non-relativistic
corrections are already small in this region. Additionally, the velocity becomes large in this region
and the non-relativistic cross section can therefore not be trusted anymore. Thus we choose for v1

and v2 the following values

0.1 < v1 < 0.2 ←→ 344.5 GeV <
√
s1 < 349.9 GeV (5.4)

0.3 < v2 < 0.5 ←→ 358.5 GeV <
√
s2 < 386.0 GeV , (5.5)

where
√
s1 and

√
s2 are the values of the CM-energy corresponding to v1 and v2 according to

Equation (5.3). Figure 5.1 shows the values of fs covered by these conditions.

We perform the matching with the RGI as well as fixed-order cross section. In order to examine
the behaviour of the matched cross section from order to order, we consider the following orders:

σLL
mat = σNLO

QCD + fs(σ
LL
vNRQCD − σLL

exp )

σNLL
mat = σNNLO

QCD + fs(σ
NLL
vNRQCD − σNLL

exp )

σNNLL
mat = σN3LO

QCD + fs(σ
NNLL
vNRQCD − σNNLL

exp ) , (5.6)

The exact form of the expanded cross section σexp is specified in Section 5.2 and 5.3. The super-
scripts LL, NLL, and NNLL indicate the use of the RGI cross section with the resummation of
large logarithms of the velocity. For the fixed-order cross section we use the equivalent formulas,
only with LL, NLL, NNLL replaced by LO, NLO, NNLO to indicate that the logarithms of v are
not resummed.

To complete the matching formula, the double counted contributions σexp have to be identified,
which we will do in the next two sections.
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Figure 5.1: Switch-off function fs: the shaded area shows all values covered by the condition in
Equation (5.4). The vertical line denotes the threshold at 2m1S .

5.2 Expanded Cross Section at Leading Order

In the intermediate region between v ∼ 0.1 and v ∼ 0.5, αs and v fulfill the relations

v < 1 ,
αs
v
< 1 , αs log v < 1 , (5.7)

where v is the real velocity v =

√√
s−2m+iε
m without electroweak effects. We will use it to construct

the expanded cross section and change iε → iΓ in the end to include leading order electroweak
effects at threshold. Note that in the intermediate region the real velocity is numerically very
similar to the absolute value of the complex velocity (see Figure 3.15). The leading order vNRQCD
cross section can be expanded in αs/v and αs log ν. Using Equations (3.154), (3.159), and (3.167),
it takes the form

σLL
vNRQCD = F (s) 6Nc

m2

4π
Im

{
i v−CF αs(µS)

[
log(−i v) + log

(
m

µS

)
− 1

2
+ log 2

]
+C2

F

α2
s(µS)

v

i π2

12
+O

(
α3
s

v2

)}
.

(5.8)

In order to compare this expansion to the relativistic QCD cross section, it has to be expanded in
αs(µh). Using Equation (D.3) to expand αs(µS), σvNRQCD takes the form

σLL
vNRQCD =F (s) 6Nc

m2

4π

× Im

{
i v−CF

(
αs(µh) + α2

s(µh)
β0

2π
log

(
µh
µS

)) [
log(−i v) + log

(
m

µS

)
− 1

2
+ log 2

]

+C2
F

α2
s(µh)

v

i π2

12
+O

(
α3
s

v2

)}
.

(5.9)

The QCD cross section σNLO
QCD can be expanded using the analytic expressions given in Section 2.2.

Transforming
√
s = m(2 + v2) to the velocity v, we obtain:
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σNLO
QCD = F (s) 6Nc

m2

4π
Im

{[
i v − 8 v2

9π
+O

(
v3
)]

− αs(µh)CF

[(
log(−i v) +

3

2
log 2− 11

16
− 3

2π2
+

21 ζ(3)

4π2

)
+

4

π
iv +O

(
v2
)]}

.

(5.10)

Equations (5.9) and (5.10) both contribute at the orders v and αs. Their contributions to the cross
section are exactly the same and the double counted terms are

σLL
exp = F (s) 6Nc

m2

4π
Im
[
i v − αs(µh)CF log(−i v)

]
, (5.11)

where all other contributions from Equations (5.9) and (5.10) are real and drop out when taking
the imaginary part.
To calculate the fixed-order expanded terms, the soft scale in Equation (5.8) is set to µS = µh
and compared to the QCD cross section in Equation (5.10). At leading order, one can see that
the higher order logarithms in the RGI vNRQCD cross section do not appear in the QCD cross
section and therefore do not contribute to σLL

exp. The fixed-order and RGI expanded cross section
are therefore the same at leading order:

σLO
exp = σLL

exp . (5.12)

5.3 Expanded Cross Section at Higher Orders

In the last section we showed that the double counted terms from the QCD and vNRQCD cross
section are exactly the same for the leading order matching. This has to be the case, since the
effective theory calculation and the expanded full theory terms have to be the same for physical
observables.

At higher orders, however, it turns out that some of the double counted terms appearing in both
σvNRQCD and σQCD are not the same. There are two reasons for this. First, at order O

(
α2
s

)
and

O
(
α3
s

)
we are using Padé approximations for the QCD cross section, because the analytic ex-

pressions are currently unknown. Secondly, the vNRQCD cross section misses some contributions
induced by the finite width. The effective field theory approach only includes QCD modes (i.e. the
velocity v is real) and the width is included only after the EFT calculation is completed.

To examine the higher order contributions, we define

σ =
4m2

s
Im
[
%
]
. (5.13)

The expanded cross section for the fixed-order cross section then has the general form

%FO
exp =

nmax∑
i=1

nmax∑
j=0

vi
(αh
v

)j
bij(m, µh, v) , (5.14)

where nmax = (1, 2, 3) for the (LO, NLO, NNLO) cross section, respectively. The coefficients

bij = bpoleij include logarithms of v, m, and µh and are specified in Appendix G. Note that up to
now, we have been in the pole mass scheme and therefore m = mpole. A different mass scheme is
discussed in Section 5.4.
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For the RGI matching, the resummed logarithms in the vNRQCD cross section lead to additional
double counted terms:

%LL
exp = %LO

exp

%NLL
exp = %NLO

exp + v2
(αh
v

)
c211(L) αh

%NNLL
exp = %NNLO

exp + v2
(αh
v

)
c212(L) α2

h + v3
2∑
j=0

3−j∑
k=1

(αh
v

)j
c3jk(L) αkh , (5.15)

where the functions cijk(L) include logarithms of power Lk and L = (log v, log ν) can be a logarithm
of either v or ν. We will now calculate the expansions of the vNRQCD and QCD cross section for
both the fixed-order and RGI matching, and discuss which of their terms to include in the expanded
cross section σexp.

Fixed-Order Matching

For the QCD cross section the extraction of the expanded terms is simple, because the analytic
expressions are known. However, the analytic expressions are only exact at order O

(
α0
s

)
and

O
(
α1
s

)
. At order O

(
α2
s

)
and O

(
α3
s

)
Padé approximations are used and only the lowest order

terms O
(
α2
s/v, α

2
s, v α

2
s

)
and O

(
α3
s/v

2, α3
s/v, α

3
s

)
, which are used together with expansions in the

low energy and high energy limit to construct the Padé approximation, are exact. They are taken
from vNRQCD calculations and therefore are the same in the QCD and vNRQCD cross section.
The QCD cross section σQCD expanded in v is listed in Table F.1 and Table F.2.

The vNRQCD cross section from Equation (3.159) has contributions coming from the effective
Coulomb potential on the one hand and the higher order potentials as well as kinetic insertions on
the other hand. The contributions coming from the higher order potentials and kinetic insertions
are known analytically, cf. Section 3.4.3). The Coulombic part of the cross section coming from
GNNLL

c , on the other hand, is determined by solving the Schrödinger equation numerically. To find
the lowest order terms generated by GNNLL

c , we calculate the lowest order loop diagrams with the
effective Coulomb potential from Equation (3.139). For the expanded cross section we need the
terms up to α3

s, since the QCD amplitude also includes powers in αs up to this order. The relevant
diagrams are

GNNLL
c = GLL

c + (−i)
V NLO
c,eff

V NLO
c,eff

+ 2 (−i)
V LO
c,effV NLO

c,eff

V NLO
c,eff

+ (−i)
V NNLO
c,eff

V NLO
c,eff

+ . . . .

(5.16)

These diagrams were calculated in Section 3.1.1 with the leading order Coulomb potential V LO
c, eff ∝

1
k2 using the method of regions. At higher orders the effective Coulomb potential has terms of the

form V NNLO
c, eff ∝

(
1
k2 ,

log k2

k2 , log2 k2

k2

)
, which can be rewritten with the trick

logn
(
k2
)

k2
= (−1)n

dn

dxn
1

(k2)x

∣∣∣∣
x=1

. (5.17)

The integrals from Equation (5.18) can then be reduced to the same form as the integrals from
Section 3.1.1 and take the form
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(−i)
V NLO
c,eff

V NLO
c,eff

= (6Nc)
(
α2
S CF

)
m2

[
a1 I(2)(1) + β0

(
log
(
µ2
S

)
I(2)(1) +

d

dx
I(2)(x)

)] ∣∣∣∣∣
x=1

(−i)
V LO
c,effV NLO

c,eff

V NLO
c,eff

= (4π) (6Nc)
(
α3
S C

2
F

)
m2

×
[
a1 I(3)(1) + β0

(
log
(
µ2
S

)
I(3)(1) +

d

dx
I(3)(x)

)] ∣∣∣∣∣
x=1

(−i)
V NNLO
c,eff

V NLO
c,eff

= (6Nc)

(
α3
S CF
4π

)
m2

×
[
a2 I(3)(1) + (2β0 a1 + β1)

(
log
(
µ2
S

)
I(3)(1) +

d

dx
I(3)(x)

)

+ β2
0

(
log2

(
µ2
S

)
I(2)(1) + log

(
µ2
S

) d

dx
I(3)(x) +

d2

d2x
I(3)(x)

)]∣∣∣∣∣
x=1

,

(5.18)

where m = mpole and αS = αs(µS). I(2)(x) = I(2)(1, x, 1; mE) and I(3)(x) = I(3)(1, x, 1, 1, 1; mE)

are calculated in Appendix D. Using the results given in Equations (D.8) and (D.19) for I(2) and
I(3), respectively, the imaginary part of GNNLL

c evaluates to

Im
[
GNNLL

c

]
= Im

{
GLL

c + α2
S

2

9π

[
log(−i v)

(
−23 log

(
µ2
S

m2

)
− 43

3
+ 46 log(2)

)
+ 23 log2(−i v)

]

+
α3
S

v

4π

27

[
+

23 i

3
log

(
µ2
S

m2

)
+

43 i

9
− 92 i ζ(3)

π2
− 46 i

3
log(2)− 46 i

3
log(−i v)

]

+ α3
S

1

81π2

[
log(−i v)

(
− 1587

2
log2

(
µ2
S

m2

)
− 1511 log

(
µ2
S

m2

)
+ 3174 log

(
µ2
S

m2

)
log(2)

+ 279 ζ(3) +
243π4

8
− 2559π2

2
− 7217

12
− 3174 log2(2) + 3022 log(2)

)

+ log2(−i v)

(
1587 log

(
µ2
S

m2

)
+ 1511− 3174 log(2)

)
− 1058 log3(−i v)

]
+O

(
α4
s

)}
.

(5.19)

Note that I(2) produces a real divergence, which drops out when taking the imaginary part. The
logarithms of µS are generated only by the running of αs and Equation (5.19) at the hard scale µh
therefore has the same form, only with µS replaced by µh, and αS replaced by αh.
Multiplying Equation (5.19) with the Wilson coefficient c1(h, ν) and adding the expansions in v
of the contributions generated by the higher order potentials and kinetic insertions, we obtain the
expansions given in the Tables F.3 and F.4. Note that in the Tables F.3 and F.4 ν is set to one for
the fixed-order contributions.

Comparing the expansions of the QCD and vNRQCD cross section in Appendix F up to order
v3
(
αs
v

)i
for i = 0, 1, 2, 3, one finds that two terms are different: the contributions of order v2 and
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αsv
2. The difference occurs, because in our use of vNRQCD the top quark is treated as a stable

particle in all calculation, and the top width is only introduced at the end with the prescription
E → E+ iΓt. Contributions of the form (b v2) with (b ∈ R) are real for stable quarks and therefore
do not contribute to the stable cross section. This explains why all terms with a non-zero imaginary
part for Γt = 0 are the same and only the terms with a real coefficient are different between the
QCD and vNRQCD cross section.
These terms are, however, suppressed by Γt/m and their difference is very small. We choose the
expanded terms of the vNRQCD cross section for σexp. The coefficients bij from Equation (5.14)
can then be read off from the tables in Appendix F and are listed in Appendix G.

RGI Matching

For the RGI matching the QCD amplitude stays the same, but the vNRQCD cross section includes
the resummed logarithms of v. Some of the higher order logarithms appear in both σvNRQCD and
σQCD and therefore have to be included in σexp.

To find the extra logarithms in σvNRQCD, we expand the vNRQCD cross section in αh. The loga-
rithms are resummed into the Wilson coefficients, which in turn depend on αh, αS , and αUS . sing
the RG running of αs, the Wilson coefficients can be expanded in αh.

As an example, consider the following vNRQCD contribution to the cross section from Section 3.5:

∆σ =
(
σpt (6Nc) F (s)

)
2 cLL

1 cLL
2 Im

[
v2GLL

c

]
(5.20)

Expanding the Wilson coefficients in αh with Equation (3.126) and Equation (D.3), we obtain:

cLL
1 = 1 (5.21)

cLL
2 = −1

6
+

16

9π
αh log(ν2) + . . . (5.22)

v2GLL
c =

m2

4π

(
i v3 + . . .

)
. (5.23)

Together, they evaluate to

∆σ = Im

[
−2

3
iv3 +

128

9π
iv3 αs log ν

](
σpt

4m2

s

)
= Im

[
−0.67 iv3 + 4.53 iv3 αs log ν

](
σpt

4m2

s

)
(5.24)

At the order v3αh log ν this already gives the full contribution, cf. Table F.3. Expanding all other
Wilson coefficients and couplings in the same way, we obtain the higher order logarithms listed in
the Tables F.3 and F.4.

Contributions including logarithms of the form i log(v)ivjαks with k = 1, 2, 3 appear in both the vN-
RQCD and QCD cross section. For k+j ≤ 3 they are exactly the same, since the fixed-order NNLO
vNRQCD cross section was used as input for the construction of the Padé approximations [19].
For k + j > 3, however, the expansions are not the same. Although the Padé approximations
do not incorporate these terms explicitly, some information of them is still included through the
low-energy and high-energy expansions that are used to construct the Padé approximation. This
becomes apparent when comparing the QCD terms of order v3αs log v and v3 α2

s log2 v in Tables F.1
with the vNRQCD terms in F.3: they are strikingly similar to each other.
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Figure 5.2 and 5.3 compare the expanded cross section to the QCD and vNRQCD cross section.
For the RGI setting, Figure 5.2 compares additionally the expanded cross section with the RGI
logarithms taken from the vNRQCD cross section to the expanded terms that are obtained from
the QCD cross section. The QCD expansions approximate the QCD cross section very well below
∼ 344 GeV, indicating that corrections beyond NNLL are very small at threshold. The NRQCD
expansions on the other hand are practically identical with σvNRQCD above 360 GeV. This already
suggests, that below 344 GeV the vNRQCD cross section can be used instead of the matched cross
section, since σQCD and σexp cancel in Equation (5.1). Above 360 GeV on the other hand σvNRQCD

and σexp cancel and therefore the QCD cross section can be used in this region instead of the
matched cross section.
Comparing the expansions σvNRQCD

exp and σQCD
exp , one can see that in the intermediate region their

central value is approximately the same, but the error on the vNRQCD expansions is much larger
than the one from the QCD expansions. At threshold, on the other hand, their deviation is only
small. In order to avoid an artificially large error in the matched cross section coming from the
difference of the QCD expansions to the vNRQCD cross section, we choose the vNRQCD expansions
for the matching. The explicit expressions of the resulting coefficients cijk are given in Appendix G.

5.4 Mass Scheme

The mass scheme for the matching has to be chosen carefully, since the pole mass leads to a bad
convergence of the perturbative series, the MS mass breaks the power-counting at threshold, and
the 1S mass is designed only specifically for applications at threshold (see Chapter 4). The MSR
mass, on the other hand, can be used both at threshold and in the continuum, if the free scale R
is chosen appropriately.

We use a mixed 1S-MSR mass scheme for the matching. The vNRQCD cross section only con-
tributes at threshold and in the intermediate region. It is not used in the continuum and therefore
we take the 1S mass scheme for σvNRQCD. The QCD cross section, on the other hand, is used in all
regions and therefore needs the MSR scheme with R ∼ mv (cf. Section 4.5). Accordingly, we also
choose the MSR scheme for the double counted terms σexp. By setting R = m1Sν∗ with ν∗ from
Equation (3.172), we ensure that R is at all times of order mv.

The QCD cross section can be easily converted to the MSR mass scheme using Equation (4.19).
Plugging the pole mass expressed in the MSRn mass scheme into σQCD and expanding in αs, one
obtains the QCD cross section in the MSRn mass scheme.
The conversion of the expanded cross section is similar, but the expansion has to be done in αs, v,
and in R, since R is of order mv. For example, v3

pole generates the terms

v3
pole = v3

MSRn − 3 a1
R

mMSRn

(αs vMSRn) +
3 a1

2

R2

m2
MSRn

α2
s

vMSRn

+
a1

2

R3

m3
MSRn

α3
s

v3
MSRn

+O
(
α4
s

)
, (5.25)

where a1 is the coefficient in the conversion formula between the pole and MSRn mass (see Equa-
tion (4.19)). Counting only αs and v, the terms above would be NNLO, NLO, LO, and even beyond
LO. However, when counting also R as mv, one can see that all terms actually belong to NNLO.
The coefficient bij and cijk from Equation (5.14) and Equation (5.15) in the MSRn scheme then
take the form given in Appendix G.

We choose as input for the matching the MS mass

m = mMS(mMS) = 163 GeV (5.26)
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and calculate all other masses from m:

mMSRn(m) = 163.032 GeV

m1S = 171.557 GeV

mpole = 172.6 GeV . (5.27)

In order to have a good convergence between m and mMSRn, the MSR mass is first calculated at
R = m from the MS mass and subsequently run down from m to R ∼ mv with Equation (4.21),
which resums logarithms of m/R to all orders in αs. To calculate mMSRn(R = m) from m, we
subtract Equation (4.19) from Equation (4.9) and use the three loop conversion (ai, i = 0, 1, 2),
since the highest power of αs in the QCD cross section is α3

s.
For the 1S mass, we first calculate mMSRn(R) at R = m and use the R evolution equation to
run it down to R = 35 GeV. Then we can obtain m1S from mMSRn(R = 35 GeV) by subtracting
Equation (4.17) from Equation (4.19). Since R ∼ mv for R = 35 GeV, R has to be counted as an
mαs term in the conversion.
Note that instead of converting from MS to mMSRn(m), running down to mMSRn(35 GeV), and
then converting to the 1S mass, one could also calculate the 1S mass directly from the MS mass
using Equation (4.9) and Equation (4.17). However, this method is inferior in terms of accuracy,
because the MSR mass with R evolution resums logarithms of R/m = 35 GeV/m to all orders in
αs, which is not possible in the direct conversion. The resummation improves the theoretical error
from scale variation by about a factor 2 as compared to the direct conversion [89].
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Figure 5.2: Comparison of the expanded cross section (yellow) to the QCD cross section (dark
gray) and the vNRQCD cross section (light gray) at LL, NLL, and NNLL for the RGI setting. The
expanded cross section can be constructed with higher order logarithms from either the vNRQCD
cross section (left) or the QCD cross section (right). The QCD and expanded cross section are in
the natural MSR mass scheme, and the vNRQCD cross section in the 1S mass scheme.
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Figure 5.3: Comparison of the expanded cross section (yellow) to the QCD cross section (dark gray)
and the vNRQCD cross section (light gray) at LO, NLO, and NNLO for the fixed-order setting.
The QCD and expanded cross section are in the natural MSR mass scheme, and the vNRQCD
cross section in the 1S mass scheme.
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Chapter 6

Results and Discussion

Figures 6.1-6.3 show the results for the matched cross section in the fixed-order and the RGI set-
ting. Figure 6.1 compares the matched cross section at different orders. It includes both the error
coming from the switch-off function and the error from the renormalization scales and shows that
the error decreases when going to higher orders in the matching. It can also be seen that the
cross section has two increases in error. The first increase is directly at threshold and comes from
the variation of the renormalization scales. The second increase above threshold is caused by the
switch-off function.
The sources of the theoretical error can be seen in Figure 6.2 and Figure 6.3, where the dark colored
area corresponds to the variation of the switch-off function with the renormalization scales fixed
to the default values f = 1 and h = 1. The light colored area is obtained by including additionally
the variation of the renormalization scales. The dark colored line is our default curve, which is the
mean of the maximum and mininmum values of the dark colored area.
The curves in Figure 6.2 and 6.3 show that at leading order the error coming from the switch-off
function is large, but at next-to-leading order it is already much smaller. At the highest order, the
dependence on the switch-off function is barely visible and much smaller than the error coming
from the renormalization scales. The small error can be traced back to the expanded cross section
shown in Figure 5.2 and 5.3: In the intermediate region, the vNRQCD cross section at NNLO
and NNLL is very well approximated by the expanded cross section. Therefore, their contributions
cancel in the matching formula (5.1) and the dependence on the switch-off function becomes small.

Comparing the matched cross section to the QCD and the vNRQCD cross section, respectively,
(see Figure 6.2) the region where the matched cross section differs from both the QCD and the
vNRQCD can be identified. In the intermediate region from v = 0.1 to v = 0.5, the leading order
cross section has a strong dependence on the switch-off function and therefore differs in the whole
region from the QCD and the vNRQCD cross section. At NLO and NLL, the expanded cross
section converges more quickly to the QCD cross section and therefore the matched and the QCD
cross section overlap already at 360 GeV, far below the end of the switch-off. At the highest order,
they are nearly identical already at 355 GeV.
At threshold, the vNRQCD and the matched cross section overlap, but they have a small vertical
offset. For the fixed-order matching at LO, NLO, and NNLO, and for the RGI matching at LL and
NLL, the offset arises, because the expansions do not approximate the QCD cross section at thresh-
old exactly. They have a small offset (see Figures 5.2 and 5.3) which is passed on to the matched
cross section. Also the NNLL RGI matched cross section has a small offset to the vNRQCD cross
section, but it originates from using the vNRQCD expansions instead of the QCD expansions in the
expanded cross section: The QCD expansions in Figure 5.2f show that the matched cross section
and the QCD expanded cross section overlap exactly at threshold, while the vNRQCD expanded
cross section in Figure 5.2e has a small vertical offset to the QCD cross section.
The matched cross section starts to differ significantly from the vNRQCD cross section already di-
rectly after the peak region. At lowest order, the starting point of the deviation depends strongly on
the starting point of the switch-off function, since the expanded cross section does not approximate
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the vNRQCD in the intermediate region well. This also causes an increase of the theoretical error.
At the highest order, however, the deviation of the matched cross section from the vNRQCD cross
section is almost independent of the exact starting point of the switch-off function. In addition,
the theoretical error decreases in the intermediate region. In particular it is much smaller than
the error of the vNRQCD cross section already directly after the peak region. From the points,
where the matched cross section starts to deviate from the QCD and the vNRQCD cross section,
respectively, we can conclude that at NLO, NNLO, and NLL, NNLL, the matched cross section
should be used in a region starting from directly after the peak region to about 360 GeV. Below
and above this region the vNRQCD and the QCD cross section, respectively, can be used instead
of the matched cross section.
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Figure 6.1: Matched cross section at different orders including errors from the variation of both
the switch-off function and the renormalization scales. The top row shows the absolute theoretical
error of the matched cross section for (a) the fixed-order and (b) the RGI setting. In the bottom
row the relative errors for the fixed-order (c) and the RGI (d) setting are shown. The dark lines
correspond to the default curves and the vertical lines denote the threshold at

√
s = 2m1S, the

lowest starting point of the switch-off function at v = 0.1, and its highest end point at v = 0.5.
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Figure 6.2: Comparison of the matched cross section (colored) to the vNRQCD cross section (light
gray) and the QCD cross section (dark gray) for the fixed-order setting (left column) and the RGI
setting (right colum). For the matched cross section the error caused by the switch-off function
from variations around default curve (f = 1, h = 1) is shown as the dark colored area.
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Figure 6.3: Comparison of the relative errors coming from the switch-off function (dark colored
area) to the errors from the combined variations of the switch-off function and the renormalization
scales (light colored area). The curves are shown for the fixed-order setting (left column) as well
as the RGI setting (right colum).
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Chapter 7

Conclusions

In this thesis we performed a study on the matching of the inclusive, photon induced top quark
pair production cross section σ(e+e− → γ∗ → tt̄) between threshold and continuum. tt̄ production
at and near threshold is one of the main goals of a future linear collider and will provide high
precision measurements of the top quark mass and width.

The main contributions at and near threshold come from QCD, together with leading order top
decay. Therefore we included QCD effects up to N3LO for the QCD cross section, and effects up
to NNLL in the RGI setting and NNLO in the fixed order setting for the vNRQCD cross section.
Additionally, we shifted the center-of-mass energy

√
s into the complex plane by an amount of the

top decay width Γt to include leading order electroweak effects at threshold. We leave higher order
electroweak effects and non-resonant contributions for further studies.

For the matching we used a mixed 1S-MSR mass scheme to have a consistent mass scheme in the
matching without the renormalon ambiguity from the pole mass and the power counting breaking
effects from the MS mass. We studied the matching for both the fixed-order and the renormal-
ization group improved threshold cross section. For both cases we found good convergence of the
matched cross section from order to order. In particular, the dependence on the switch-off function,
which quantifies the theoretical error in our matching, nearly vanishes at the highest order, showing
the consistency of our matching procedure.
At threshold, we used a computation of the cross section with the effective field theory vNRQCD,
which resums logarithms of the velocity to all orders. We gave an overview of vNRQCD and the
calculation of the threshold cross section in Chapter 3 and showed how the logarithms and the
Coulomb singularity contributions are resummed to all orders.

Using the matched cross section, we determined in which region the threshold and continuum cross
section are valid. We found that the matched cross section starts to differ from the threshold cross
section already directly after the peak region, indicating that higher order relativistic corrections
become important. On the other hand, the continuum cross section differs from the matched cross
section below ∼ 360 GeV, indicating that higher order corrections from the Coulomb singularity
and the threshold logarithms become large. Thus we conclude that the matched cross section
is needed to interpolate between the vNRQCD and QCD cross section in a region starting from
directly above the threshold peak up to about 360 GeV .
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Appendix A

Optical Theorem

The optical theorem is based on the principle of probability conservation. Suppose we have a state
|i〉, whose time evolution into the state |b〉 is described by the S matrix, such that 〈b| = S 〈i|. If
the probability for the initial state state was 〈i|i〉2 = p, then the probability after time evolution

should remain the same 〈b|b〉2 = 〈i|S†S|i〉2 = p. This is only possible, if S is unitary:

S†S = 1 . (A.1)

The S matrix can be divided into two parts:

S = 1 + iT . (A.2)

1 means there is no change in the state over time, only T contains the changes of state. T includes
an overall δ-function, which is pulled out when relating T to the transition amplitude M:

〈i|T |b〉 = (2π)4 δ(4)(pi − pb)M(i→ b) . (A.3)

Note that we pulled out also an overall factor of i. This corresponds to the usual convention, where
the quantity calculated with Feynman rules is iM. Using the unitarity of the S matrix, we can
derive a relation for T :

S†S = 1

i(T † − T ) = T †T

〈b|T † − T |i〉 = 〈b|T †T |i〉 . (A.4)

Inserting a complete set of intermediate states we obtain a relation for the imaginary part of M

〈i|T |b〉∗ − 〈i|T |b〉 =
∑
f

∫
dΠf 〈b|T †|f〉 〈f |T |i〉

iM∗(i→ b)− iM(i→ b) = −
∑
f

∫
dΠf (2π)4 δ(4)(pi − pf )M(i→ f)M∗(b→ f) , (A.5)

where
∑

f

∫
dΠf |f〉 〈f | = 1 is the set of intermediate states and dΠf =

∏
j∈{f}

d3kj
(2π)3

1
2Ej

is the phase

space of j intermediate particles. If the initial and final state are the same, the imaginary part of
M can be related to the sum over the intermediate states and we obtain the optical theorem:
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2i ImM(i→ i) = i
∑
f

∫
dΠf (2π)4 δ(4)(pi − pf )

∣∣M(i→ f)
∣∣2 . (A.6)

Looking at the right-hand side of A.6, we can see that it is very similar to the total cross section
σtot or the total decay width Γtot, which have the form

σtot(i→ f) =
1

4ECM |pCM|

∫
dΠf (2π)4 δ(4)(pi − pf )

∣∣M(i→ f)
∣∣2

Γtot =
∑
f

Γ(i→ f) =
1

2mi

∑
f

∫
dΠf (2π)4 δ(4)(pi − pf )

∣∣M(i→ f)
∣∣2 , (A.7)

where the initial state i for the decay width is a one-particle state and for the cross section it is a
two particle state. ECM is the total energy in the center-of-mass frame and pCM is the 3-momentum
of either of the initial particles for σtot in the CM frame.

If i in Equation (A.6) is a one-particle state, the optical theorem relates the imaginary part of the
full propagator to the total decay width:

Γtot =
1

mi
ImM(i→ i) . (A.8)

On the other hand, if i is a two-particle state, it relates the total cross section to the imaginary
part of the forward scattering amplitude:

σtot(i→ f) =
1

2ECM |pCM|
ImM(i→ i) . (A.9)

Cutting rules

The optical theorem only holds for the total cross section and does not apply to individual Feynman
diagrams. However, also for Feynman diagrams a similar relation for the imaginary part was derived
in 1960 by Cutkolsky [93] and goes by the name cutting rules. They give the same result as the
optical theorem for unitary theories, but they are also applicable to more general matrix elements,
because their derivation does not rely on unitarity [94]. To calculate the imaginary part of a
diagram, it is ”cut” in all possible ways and the cut propagators are put on-shell.
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Appendix B

Method of regions

Feynman diagrams with external momenta q1, . . . , qn, masses m1, . . . , mk and loop momenta
k1, . . . , km have integrals of the general form∫

ddk1 . . . d
dkn f(k1, . . . , km; q1, . . . , qn; m1, . . . , mk) , (B.1)

where f is a function of the momenta and masses. For multi-loop diagrams, these integrals may
be hard or even impossible to solve. The integral may simplify, however, if the external momenta
and the masses have values in certain regions, for example large external momenta qi → ∞. The
integrand f can then be expanded under the integral sign, the expression simplifies and the inte-
gration may become possible. This method was first invistigated by Smirnov [32] and is called the
method of regions.

To illustrate the principle, consider the following one-dimensional integral [95]

I =

∫ ∞
0

dk
1

k +m

1

k + q
=

log(m/q)

m− q . (B.2)

This integral can be solved exactly and we will therefore be able to check if the result obtained
with the method of regions is correct. Let’s assume q is much larger than m and expand the result
in m/q:

I =
log(m/q)

m− q = − log(m/q)

q
+O (m/q) . (B.3)

Now we will switch the order and expand under the integral sign. Looking at Equation (B.2), we
see that expanding under the integral sign is not possible in this form, because k goes over the
whole integration range from 0 to ∞.
For expanding we first have to divide the integration range into different regions:

I =

∫ ∞
0

dk
1

k +m

1

k + q

=

∫ Λ

0
dk

1

k +m

1

k + q
+

∫ ∞
Λ

dk
1

k +m

1

k + q

= I1 + I2 , (B.4)

where Λ is chosen such that m� Λ� q. Λ is an artificial parameter and since I does not depend
on Λ, it should vanish in the endresult.
Since k � q in the whole integration range of I1 and k � m in I2, we can now expand under the
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integral and subsequently do the integration:

I1 =

∫ Λ

0
dk

[
1

q

1

k +m
+O (k/q)

]
=

log(Λ/m)

q
+O (m/Λ) +O (m/q)

I2 =

∫ ∞
Λ

dk

[
1

k

1

k + q
+O (m/k)

]
=

log(q/Λ)

q
+O (Λ/q) +O (m/q) . (B.5)

Adding I1 and I2, the dependence on Λ vanishes and we obtain the first term of the expansion of
I from Equation (B.3):

I = I1 + I2 =
log(q/m)

q
+O (m/q) +O (m/Λ) +O (Λ/q) . (B.6)

Expanding before the integration can simplify integrals enormously. However, note that we intro-
duced the scale Λ as a cutoff in the process. Feynman integrals with a cutoff are in general much
more complicated to solve than integrals in dimensional regularization.
Let’s see how this procedure can be translated to dimensional regularization. First, we continue to
D = 1− 2ε dimensions, which give

I = µ2ε

∫ ∞
0

dk k−2ε 1

k +m

1

k + q
. (B.7)

I1 and I2 can be rewritten in the form

I1 =

∫ ∞
0

dk
1

q

1

k +m
−
∫ ∞

Λ
dk

1

q

1

k +m
+ . . .

I2 =

∫ ∞
0

dk
1

k

1

k + q
−
∫ Λ

0
dk

1

k

1

k + q
+ . . . , (B.8)

where the dots represent higher order terms. The second integral in both lines can be expanded
again, giving

I1 =

∫ ∞
0

dk
1

q

1

k +m
−
∫ ∞

Λ
dk

1

q

1

k
+ . . .

I2 =

∫ ∞
0

dk
1

k

1

k + q
−
∫ ∞

0
dk

1

q

1

k
+ . . . . (B.9)

Adding I1 and I2, and continuing to D dimensions gives

I = I1 + I2

= µ2ε

∫ ∞
0

k−2ε

(
1

q

1

k +m
+

1

k

1

k + q

)
+ µ2ε

∫ ∞
0

1

q

1

k1+2ε
+ . . . . (B.10)

The second integral is scaleless and therefore zero in dimensional regularization. The remaining
integral is independent of the cutoff and can be solved in dimensional regularization. Integrating
and taking the limit ε→ 0 gives
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I =

(
1

2ε q
+

log(µ/m)

q

)
+

(
− 1

2ε q
+

log(q/µ)

q

)
+O (ε) +O (m/q)

=
log(q/m)

q
+O (ε) +O (m/q) . (B.11)

Both I1 and I2 have a divergence, coming from taking the cutoff to infinity and 0, respectively, but
they cancel in the final result along with the µ-dependence.

This example illustrated the general principle of the method of regions. It can be summarized as
follows:

• Identify all relevant regions (= scales) of the integrand.
(in the example above: m and q)

• Divide the integral domain into different regions such that each loop momentum is of order
of one of the scales.
(Equation (B.4))

• Taylor expand in each region in the parameters which are small in this region.
(Equation (B.5))

• Integrate over the whole integration range.
(Equation (B.10))

Determining the relevant regions can be a non-trivial task. A good indicator for the correct regions
are the locations of the propagator poles [96].

The method of region is a powerful tool, but a mathematical proof for it only exists for special
cases [95]. It has been proven, for example, for diagrams with off-shell external particles with large
momenta or masses [97]. For other regions, no general proof exists, but no counterexamples have
been found when comparing known full diagrams with their expansions computed with the method
of regions [95].
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Appendix C

Derivation of the Schrödinger Green’s
Function

In this appendix we derive the solution for the Green’s function G of the leading order non-
relativistic Schrödinger equation

(H0 + V (x)− E) G(x, y) = δ(3)(x− y) , (C.1)

where H0 = −∇2
x/m is the free Hamiltonian and V (x) is the leading order Coulomb potential

in position space. Perturbatively, G can be calculated from G0, the Green’s function of the free
Schrödinger equation

(H0 − E) G0(x, y) = δ(3)(x− y) . (C.2)

To find the perturbative solution, we rewrite Equation (C.1) with G0

G(x, y) = G0(x, y)−
∫
d3x1 G0(x, x1)V (x1)G(x1, y) , (C.3)

This equation can be proven by applying (H0 − E) to both sides and using Equation (C.2):

(H0 − E) G(x, y) = (H0 − E) G0(x, y)−
∫
d3x1

[
(H0 − E) G0(x, x1)

]
V (x1)G(x1, y)

(H0 − E) G(x, y) = δ(3)(x− y)− V (x)G(x, y)

(H0 + V (x)− E) G(x, y) = δ(3)(x− y) . (C.4)

Solving Equation (C.3) perturbatively gives

G(x, 0) = G0(x, 0)−
∫
d3x1 G0(x, x1)V (x1)G0(x1, 0)

+

∫
d3x1 d

3x2 G0(x, x1)V (x1)G0(x1, x2)V (x2)G0(x2, 0)− . . .

= G0(x, 0) +G1(x, 0) +G2(x, 0) + . . . , (C.5)

where G0, G1, . . . can be written in the form
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G1(x, 0) = −
∫
d3x1 G0(x, x1)V (x1)G0(x1, 0)

G2(x, 0) = −
∫
d3x1 G0(x, x1)V (x1)G1(x1, 0)

G3(x, 0) = . . . . (C.6)

To find the solution of G(x, y) to all orders, we will first derive G0, G1, . . . separately and then
show how the sum of all terms exponentiates. The solution for G0 is

G0(x, 0) =
meimv|x|

4π|x| , (C.7)

where v =
√
E/m. It can be easily checked by plugging the result into Equation (C.2). For G1 we

need the Fourier transformation of the leading order Coulomb potential from Equation (3.140) to
position space

V (x) = − αs CF|x| . (C.8)

G1 then takes the form

G1(x, 0) = −
∫
d3x1 G0(x, x1)V (x1)G0(x1, 0)

=

∫
d3x1

meimv|x−x1|

4π|x− x1|
αs CF
|x1|

meimv|x1|

4π|x1|

=
iαsCF

2v

1

x

∫ ∞
0

dx1

(
eimv|x−x1| − eimv|x+x1|

) meimvx1

4πx1
, (C.9)

where in the last step the integration over the radial components of x1 was performed. The
remaining integrand diverges for x1 → 0. To make it well-defined, 1/x1 can be expressed as

1

4πx1
= −i mv

2π

∫ ∞
0

dt e2imv x1t , (C.10)

where v has an infinitesimal positive imaginary part. Using Equation (C.10), Equation (C.9) takes
the form

G1(x, 0) = −i
(
m2v

2π

)(
iαsCF

2v

)
1

x

∫ ∞
0

dt

∫ ∞
0

dx1

(
eimv|x−x1| − eimv|x+x1|

)
eimv x1(1+2t)

= −i
(
m2v

2π

) (
iαsCF

2v

)
1

2imvx

∫ ∞
0

dt
1

t(1 + t)

(
eimvx(1+2t) − eimvx

)

= −i
(
m2v

2π

)∫ ∞
0

dt

(
iαsCF

2v

)
log

(
1 + t

t

)
eimvx(1+2t) , (C.11)

where in the last step a partial integration was performed. Using this result, G2 can be calculated
from G1 by Equation (C.6). Since G1(x, 0) only depends on the norm of x, the radial integration
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is analogous to Equation (C.9). Taking the result from Equation (C.9), G2 becomes

G2(x, 0) =

= −i
(
m2v

2π

)(
iαsCF

2v

)2 1

x

∫ ∞
0

dt

∫ ∞
0

dx1 log

(
1 + t

t

)(
eimv|x−x1| − eimv|x+x1|

)
eimv x1(1+2t)

= −i
(
m2v

2π

)(
iαsCF

2v

)2 1

2imvx

∫ ∞
0

dt
log
(

1+t
t

)
t(1 + t)

(
eimvx(1+2t) − eimvx

)

= −i
(
m2v

2π

)∫ ∞
0

dt
1

2!

(
iαsCF

2v

)2

log

(
1 + t

t

)2

eimvx(1+2t) . (C.12)

The calculation is analogous to (C.11): first the x1 integration was performed and then integration
by parts was used.

The results for G0, G1, and G2 from Equation (C.7), (C.11), and (C.12) follow the pattern

Gn(x, 0) = −i
(
m2v

2π

)∫ ∞
0

dt
1

n!

(
iαsCF

2v

)n
log

(
1 + t

t

)n
eimvx(1+2t) . (C.13)

This pattern holds to all orders, as can be easily proven by induction. The result for the full Green’s
function therefore reads

G(x, 0) =− i
(
m2v

2π

)∫ ∞
0

dt eimvx(1+2t)×

×
[

1 +

(
iαsCF

2v

)
log

(
1 + t

t

)
+

1

2!

(
iαsCF

2v

)2

log

(
1 + t

t

)2

+ . . .

]
(C.14)

and exponentiates into the form

G(x, 0) = −i
(
m2v

2π

)∫ ∞
0

dt

(
1 + t

t

) iαsCF
2v

eimvx(1+2t) . (C.15)
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Appendix D

Multiloop Integrals

I(2)(α, β, γ; m2)

The integral

I(2)(α, β, γ; m2) = µ̃4ε

∫
dnk

(2π)n
dnq

(2π)n
1

(k2 −m2 − iε)α [(k − q)2 − iε]β (q2 −m2 − iε)γ
(D.1)

can be solved with Feynman parameters. Performing first the integral over q gives:

I(2) = µ̃4ε

∫
dnk

(2π)n
dnq

(2π)n
1

(k2 −m2)α
Γ (β + γ)

Γ (β) Γ (γ)

∫ 1

0
dx

xβ−1 (1− x)γ−1

[ q2 + k2 x(1− x)−m2(1− x)]β+γ

= µ̃4ε

∫
dnk

(2π)n

∫ 1

0
dx

xβ−1 (1− x)γ−1 xn/2−β−γ (1− x)n/2−β−γ

(k2 −m2/x)β+γ−n/2 (k2 −m2)α
, (D.2)

where the (−iε) terms have been omitted for better readability. In the first line the second and
third denominator where combined using the Feynman trick

1

AnBm
=

Γ (n+m)

Γ (n) Γ (m)

∫ 1

0
dx

xn−1 (1− x)m−1

[Ax+B(1− x)]n+m (D.3)

and subsequently changing the integration variable q → q + kx. The integration variable k then
only appears once in the denominator and the integral over q can be solved with the standard
relation (see e.g. [14])

I(1)(α; m2) = µ̃2ε

∫
dnk

(2π)n
1

(k2 −m2 − iε)α

= µ̃2ε 1

(4π)n/2
Γ (α− n/2)

Γ (α)

1

(−m2 − iε)α−n/2 (D.4)

Repeating the same procedure for the k integration, one obtains after combining the denominators
and performing the k integration with Equation (D.4)

I(2) = µ̃4ε Γ (α+ β + γ − n)

(4π)n Γ (α) Γ (β) Γ (γ)
×

×
∫ 1

0
dx

∫ 1

0
dy

xn/2−γ−1 (1− x)n/2−β−1 yβ+γ−n/2−1 (1− y)α−1

[−m2/x (y + x(1− y))]α+β+γ−n . (D.5)

90



Changing the integration variables to x→ (1− x) and y → (1− y), Equation (D.5) becomes

I(2) =µ̃4ε (−m2)n−α−β−γ
Γ (α+ β + γ − n)

(4π)n Γ (α) Γ (β) Γ (γ)

∫ 1

0
dy (1− y)β+γ−n/2−1 yα−1 ×

× 2F1(n− α− β − γ, n/2− β; α; y)
Γ (n/2− β) Γ (α+ β − n/2)

Γ (α)
, (D.6)

where 2F1 is the ordinary hypergeometric function defined as

Γ (b) Γ (c− b)
Γ (c)

2F1(a, b; c; z) =

∫ 1

0
dx xb−1 (1− x)c−b−1 (1− zx)−a . (D.7)

Performing the remaining integral of Equation (D.6) with Mathematica finally gives

I(2)(α, β, γ; m2) = µ̃4ε (−m2 − iε)n−α−β−γ
(4π)n

×

× Γ (n− α− β − γ) Γ (α+ β − n/2) Γ (β + γ − n/2) Γ (n/2− β)

Γ (α+ 2β + γ − n) Γ (n/2) Γ (α) Γ (γ)
,

(D.8)

where the (−iε) term has been restored.

For α = β = γ = 0, this integral arises when calculating the vacuum polarization with one insertion
of the leading order Coulomb potential. Its expansion for n = 3− 2ε dimensions is

I(2)(1, 1, 1; Em) =
1

32π2

[
1

2ε
+ 1 + log

(
µ2

m2

)
− 2 log (−iv)− 2 log 2

]
+O (ε) , (D.9)

where v2 = E/m.

For α = 1, γ = 1, and general β it can be used to compute insertions of the higher order effective
Coulomb potential Vc, eff , see section 5.3.
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I(3)(1, β, 1, 1, 1; m2)

The three-loop integral

I(3)(1, β, 1, 1, 1; m2) = µ̃6ε

∫
dnk

(2π)n
dnl

(2π)n
dnq

(2π)n

× 1

(k2 −m2 − iε)[(k − l)2 − iε]β(l2 −m2 − iε)[(k − q)2 − iε](q2 −m2 − iε) (D.10)

can be solved by reducing it to simpler integrals with integration by parts (IBP). IBP in the
context of Feynman integrals refers to the fact, that in dimensional regularization the integral over
the derivative of a function is zero: ∫

ddq

(2π)d
∂

∂qµ
f(q) = 0 , (D.11)

i.e. that the surface terms are zero [98,99].

Using IBP we obtain the relation

0 =

∫
dnq

(2π)n
∂

∂qµ

[
(l− q)µ

(k2 −m2) (k − l)2β (l2 −m2)(l− q)2 (q2 −m2)

]

=

∫
dnq

(2π)n

[
−n

(k2 −m2) (k − l)2β (l2 −m2)(l− q)2 (q2 −m2)

+
2 (l− q)2

(k2 −m2) (k − l)2β (l2 −m2)(l− q)4 (q2 −m2)

+
−2 q · (l− q)

(k2 −m2) (k − l)2β (l2 −m2)(l− q)2 (q2 −m2)2

]

= (3− n) I(3)(1, β, 1, 1, 1) + I(3)(1, β, 1, 0, 2) − I(3)(1, β, 0, 1, 2) , (D.12)

where the relation

2 q · (l− q) = −(l− q)2 + (l2 −m2)− (q2 −m2) (D.13)

was used in the last step.

The full integral now reduces to

I(3)(1, β, 1, 1, 1) =
1

n− 3

[
I(3)(1, β, 1, 0, 2)− I(3)(1, β, 0, 1, 2)

]
. (D.14)

The first integral decomposes into two independent integrals, which we already know:

I(3)(1, β, 1, 0, 2) = µ̃6ε

∫
dnk

(2π)n
dnl

(2π)n
dnq

(2π)n
1

(k2 −m2) (k − l)2β (l2 −m2) (q2 −m2)2

= I(2)(1, β, 1; m2) · I(1)(2) . (D.15)
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I(1) and I(2) were calculated in Equation (D.8) and (D.4), respectively.

The second integral from Equation (D.14) has the form

I(3)(1, β, 0, 1, 2) = µ̃6ε

∫
dnk

(2π)n
dnq

(2π)n
1

(k2 −m2)(q2 −m2)2

∫
dnl

(2π)n
1

(k − l)2(l− q)2
. (D.16)

The last integral can be solved by first shifting l → l + q. Then the standard procedure is used:
the denominators are combined using Feynman parameters (Equation (D.3)) and the integral over
l is solved with Equation (D.4). The result is

∫
dnl

(2π)n
1

(k − l)2(l− q)2
=

1

(k − q)2(1+β−n/2)

Γ (1 + β − n/2) Γ (n/2− 1) Γ (n/2− β)

Γ (β) Γ (n− β − 1) (4π)n/2
. (D.17)

Plugging this result into Equation (D.16), we see that the remaining integral is of the form

I(3)(1, β, 0, 1, 2) = µ̃6ε Γ (1 + β − n/2) Γ (n/2− 1) Γ (n/2− β)

Γ (β) Γ (n− β − 1) (4π)n/2
×

×
∫

dnk

(2π)n
dnq

(2π)n
1

(k2 −m2) (k − q)2(1+β−n/2) (q2 −m2)2

= µ̃2ε Γ (1 + β − n/2) Γ (n/2− 1) Γ (n/2− β)

Γ (β) Γ (n− β − 1) (4π)n/2
I(2)(1, 1 + β − n/2, 2; m2) .

(D.18)

Combining Equation (D.15) and (D.18) in Equation (D.14), and using the previous results for I(1)

and I(2), the final result reads

I(3)(1, β, 1, 1, 1; m2) = µ̃6ε (−m2 − iε)3n/2−4−β

(4π)3n/2

Γ
(
1 + β − n

2

)
Γ
(
n
2 − β

)
(n− 3) Γ

(
n
2

) ×

[
Γ (2 + β − n) Γ

(
1 + β − n

2

)
Γ
(
2− n

2

)
Γ (2 + 2β − n)

− Γ
(
n
2 − 1

)
Γ
(
4 + β − 3n

2

)
Γ (3 + β − n) Γ (2 + β − n)

Γ (5 + 2β − 2n) Γ (β)

]
.

(D.19)

For β = 1, this integral appears when calculating the vacuum polarization with two insertions of
the lowest order Coulomb potential. Expanding in n = 3− 2ε gives

I(3)(1, 1, 1, 1, 1; Em) =
1

3 · 44 · π
√
−Em +O (ε) . (D.20)

In contrast to I(2) in Equation (D.9), I(3) has no divergent term.

For β 6= 1, Equation (D.20) can be used to calculate diagrams with two potential insertions: one
Coulomb insertion of order αs/v, and one higher order potential insertion of order αsv, see section
5.3.
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Appendix E

Running of the Strong Coupling αs

In the MS scheme, the strong coupling constant αs is renormalized by absorbing only the diver-
gent terms of vacuum polarization, self-energy and vertex diagrams. From the µ-independence
of the bare coupling α0

s, the RGE for αs in the MS scheme can be derived. Using dimensional
regularization with d = 4− 2ε the RGE in the limit ε→ 0 has the form [1]:

µ
d

dµ
α

(nf )

s (µ) = −ε α(nf )

s − 2α
(nf )

s

(α(nf )

s

4π

)
β

(nf )

0 +

(
α

(nf )

s

4π

)2

β
(nf )

1 +

(
α

(nf )

s

4π

)3

β
(nf )

2 + . . .

 ,

(D.1)

where β
(nf )

0 = 11− 2
3nf and nf is the number of active flavors. The other β-coefficients up to β

(nf )

4

can be found in [100]. The term ε αs is set to zero when calculating the running for αs, but it
has to be included when the RGE of αs is used to calculate the running of other quantities, as for
example the running of the MS mass or the Wilson coefficients of the potentials in Section 3.3.4.

In this thesis we use the four-loop running of αs with the β-coefficients up to β
(nf )

3 .

Equation (D.1) can be solved by separation of variables, subsequent integration and finally expand-
ing the result perturbatively in αs. The solution reads

1

α1
=

x

α0
+

β1

4π β0
log x+

α0

16π2

[
β2

1

β2
0

(
log x

x
+

1

x
− 1

)
+
β2

β0

(
1− 1

x

)]

+
α2

0

128π3 x2

[
β3

1

β3
0

(
(x− 1)2 − log2 x

)
+

2β1β2

β2
0

(
x− x2 + log x

)
− β3

β0
(1− x2)

]
, (D.2)

where α0 = α
(nf )

s (µ0), α1 = α
(nf )

s (µ1), x = 1 + α0
β0

2π log
(
µ1

µ0

)
, and the nf superscripts on the

β-coefficients have been suppressed. This solution resums logarithms of µ1/µ0 to all orders in αs,
as can be seen from the expansion in α0 of the leading order term x/α0 from Equation (D.2):

α1 = α0

[
1 +

β0

2π
α0 log

(
µ0

µ1

)
+

(
β0

2π
α0 log

(
µ0

µ1

))2

+ . . .

]
. (D.3)

This equation includes the leading logarithmic contributions of the form αs
∑∞

n=0 (αs log(µ0/µ1))n.
To resum subleading logarithmic terms, higher loop orders in the running have to be used. For ex-
ample, the next-to-leading order logarithmic contributions are of the form α2

s

∑∞
n=0 (αs log(µ0/µ1))n

and need the two-loop running.
In perturbative calculations, µ is usually set to the typical energy scale of the problem to avoid
large logarithms of the form shown inn Equation (D.3).
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Flavor Thresholds

When a perturbative calculation in α
(nf )

s (µ) only involves energy scales larger than the top mass,
µ
When a perturbative calculation only involves energy scales far below a heavy quark with mass
mh, the coupling has to be evolved to this scale and one would expect that the running of the
coupling becomes independent of mh. This is indeed the case in other renormalization schemes, as
for example the momentum subtraction scheme, but in the MS scheme the dependence does not
vanish. Instead, the heavy quark flavor is integrated out by hand and the running coupling is then

calculated in an effective theory without the heavy quark. α
(nf )

s therefore depends on the number

of active flavors nf , which in turn is determined by µ. The connection between α
(nf )

s and α
(nf−1)

s at
the scale µ = mh can be calculated through their relations to the bare coupling α0

s and gives [101]:

α
(nf )

s (mh) = α
(nf−1)

s (mh) +
7π

24

(
α

(nf−1)

s (mh)

π

)3

+O
[(
α

(nf−1)

s

)4
]
. (D.4)

In this thesis we only need the relation with corrections up to α3
s as given here. Higher order

corrections up to α5
s and can be found in [101,102].
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Appendix F

Expansions of the QCD and the
vNRQCD Cross Section

In this appendix we summarize the expansions of the QCD cross section described in Chapter 2
and the vNRQCD as presented in Chapter 3. We use the pole mass scheme for both cross sections,
the expanded terms in the MSR mass scheme can be found in Chapter 5. The QCD cross section
at N3LO (i.e. at O

(
α3
h

)
) is expanded in v =

√
(q − 2m+ iε)/m and the vNRQCD cross section

up to NNLL is expanded in αh/v and αh log v. The following tables summarize the overlapping
contributions of the two cross sections. We use the following abbreviations

αh = αs(µh) , LV = log v , Lν = log ν , Lµm = log

(
µ

mpole

)
, (D.1)

where µh = hmpole is the hard scale and we expand all Wilson coefficients of the vNRQCD cross
section in αh. The vNRQCD cross section also contains two types of terms beyond NNLL, which
are suppressed at threshold. These are on the one hand logarithms generated by the running of
the Wilson coefficients, as for example (−0.43 − 5.6i)α3

hv
2 Lν (see Table F.4), which is of N3LL

order. On the other hand, the Wilson coefficients also generate off-shell terms, which are real for
stable top quarks and would drop out of the final cross section for Γt = 0. An example would be
the term (−3.2)α2

hv
2 Lν from Table F.3. For Γt 6= 0 these contributions are suppressed by about

a factor Γt/m compared to the on-shell NNLL terms. Only the on-shell NNLL give the correct
contributions at threshold and the off-shell terms as well as the terms beyond NNLL are therefore
not considered when comparing the vNRQCD and QCD cross section. In Tables F.3 and F.4 we
wrote all on-shell NNLL terms in black and the off-shell as well as higher order terms in gray.
For the QCD cross section in Tables F.1 and F.2 we wrote all orders in black that also appear in
the vNRQCD NNLL cross section.
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α0
h α1

h α2
h

v1
(αh
v

)i
v (2.i) αh

[
4.18879i− 2.66667LV

]
α2
h/v (2.92433i)

v2
(αh
v

)i
v2 (−0.565884) αhv (−3.39531i)

α2
h

[
(−9.06127i) + (−5.11111i)Lµm

+ ((5.76858− 5.11111i)− 3.25383Lµm)LV + 1.62692L2
V

]

v3
(αh
v

)i
v3 (0.583333i) αhv

2
[
(−5.09206 + 6.98132i)− 4.44444LV

]
α2
hv
[
(−16.2897 + 4.60874i)− (4.14291i)Lµm − (10.3704i)LV

]

v4
(αh
v

)i
v4 (−0.141471) αhv

3
[
(7.11111− 4.39441i)+ (4.52707i)LV

] α2
hv

2
[
(36.2564− 30.792i)− (6.21327− 8.51852i)Lµm

+(−5.42306Lµm+(19.6028− 6.81481i))LV +2.16922L2
V

]

v5
(αh
v

)i
v5 (0.192708i) αhv

4
[
(−2.23327 + 0.349066i)− 0.222222LV

] α2
hv

3
[
(−38.5761 + 69.8969i) + (8.67689− 5.36201i)Lµm

+((−17.3538− 24.5583i) + (5.52388i)Lµm)LV + (−5.52388i)L2
V

]

v6
(αh
v

)i
v6 (−0.113177) αhv

5
[
(−0.414815− 0.890636i)− (0.264079i)LV

] α2
hv

4
[
(−172.076 + 11.3068i)− (2.72501− 0.425926i)Lµm

+((−7.1981 + 6.24691i)− 0.271153Lµm)LV − 1.98845L2
V

]

Table F.1: %QCD expanded in v up to order α2
h. The abbreviations and colorings are explained in the text.
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α3
h

v1
(αh
v

)i
α3
h/v

2 (−1.42466)

v2
(αh
v

)i
α3
h/v
[
(−11.2099− 12.9025i) + (7.13646i)Lµm − (7.13646i)LV

]

v3
(αh
v

)i α3
h

[
(7.60697i) + (−20.0616i)Lµm + (6.23652i)L2

µm

+ ((1.68812− 10.335i) + (12.7716− 12.473i)Lµm − 3.97029L2
µm)LV + ((3.28972 + 6.23652i) + 3.97029Lµm)L2

V − 1.32343L3
V

]

v4
(αh
v

)i
α3
hv
[
(12.6918 + 45.569i)− (39.7531− 9.5843i)Lµm − (5.05513i)L2

µm+((−15.8812+ 8.07986i)− (25.3076i)Lµm)LV − (5.05513i)L2
V

]

v5
(αh
v

)i α3
hv

2
[
(−310.311 + 16.329i) + (85.9855− 71.7252i)Lµm − (7.58136− 10.3942i)L2

µm

+((2.66638− 21.2435i) + (45.6617− 16.6307i)Lµm − 6.61715L2
µm)LV +(5.29372Lµm+(6.76202+ 12.473i))L2

V−2.64686L3
V

]

v6
(αh
v

)i α3
hv

3
[
(27.8926− 837.298i)− (90.6578− 168.423i)Lµm + (10.5874− 6.54266i)L2

µm

+((−60.9385− 15.5045i)− (42.3498 + 57.7146i)Lµm + (6.74017i)L2
µm)LV +((31.7623− 19.3973i)− (13.4803i)Lµm)L2

V + (6.74017i)L3
V

]

Table F.2: %QCD expanded in v at order α3
h. The abbreviations and colorings are explained in the text.
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α0
h α1

h α2
h

v1
(αh
v

)i
v (2.i) αh

[
4.18879i− 2.66667LV

]
α2
h/v (2.92433i)

v2
(αh
v

)i
0 αhv (−3.39531i)

α2
h

[
(−9.06127i) + (5.11111i)Lµm

+ ((5.76858− 5.11111i)− 3.25383Lµm)LV + 1.62692L2
V

]

v3
(αh
v

)i
v3 (0.583333i) αhv

2
[
(0.586013 + 6.98132i)− 4.44444(LV − Lν − Lµm)

]
α2
hv
[
(−16.2897 + 4.60874i)− (4.14291i)Lµm − (10.3704i)LV

]

v4
(αh
v

)i
0 αhv

3 (4.52707i)Lν
α2
hv

2
[
(4.00835Lµm + (−3.17331 + 6.2963i))Lν

+ (4.00835L2
ν − 4.00835Lν LV )

]

v5
(αh
v

)i
0 0 α2

hv
3 (−5.52388i)L2

ν

v6
(αh
v

)i
0 0 0

Table F.3: %vNRQCD expanded in αh/v: terms of order α0
h, α1

h, α2
h. The abbreviations and colorings are explained in the text.
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α3
h

v1
(αh
v

)i
α3
h/v

2 (−1.42466)

v2
(αh
v

)i
α3
h/v
[
(−11.2099− 12.9025i) + (7.13646i)Lµm − (7.13646i)LV

]

v3
(αh
v

)i α3
h

[
(7.60697i)− (20.0616i)Lµm + (6.23652i)L2

µm

+ ((1.68812− 10.335i) + (12.7716− 12.473i)Lµm − 3.97029L2
µm)LV + ((3.28972 + 6.23652i) + 3.97029Lµm)L2

V − 1.32343L3
V

]

v4
(αh
v

)i
α3
hv
[
((−7.35802− 49.9713i)− (25.3076i)Lµm)Lν + ((2.34213i)L2

ν − (4.68426i)Lν LV )
]

v5
(αh
v

)i α3
hv

2
[
((−0.430697− 5.5594i)− 3.53923Lµm)Lν

+ ((2.14009− 29.0134i)L2
ν−18.4705Lµm L

2
ν + 3.53923Lν LV ) + (−18.4705L3

ν + 18.4705L2
ν LV )

]

v6
(αh
v

)i
α3
hv

3 (8.9869i)L3
ν

Table F.4: %vNRQCD expanded in αh/v: terms of order α3
h. The abbreviations and colorings are explained in the text.
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Appendix G

Coefficients of the Expanded Cross
Section

As described in Section 5.3, the contributions to the fixed-order expanded cross section can be
written in the form

%FO
exp =

nmax∑
i=1

nmax∑
j=0

vi
(αh
v

)j
bij(m, µh, v) . (D.1)

and for the RGI expanded cross section in the form

%LL
exp = %LO

exp

%NLL
exp = %NLO

exp + v2
(αh
v

)
c211(L) αh

%NNLL
exp = %NNLO

exp + v2
(αh
v

)
c212(L) α2

h + v3
2∑
j=0

3−j∑
k=1

(αh
v

)j
c3jk(L) αkh . (D.2)

In the pole mass scheme, the coefficients for the fixed-order expanded cross sectiion are

bpole

10 = 2.i

bpole

20 = 0

bpole

30 = 0.583333i

bpole

11 = 4.18879i− 2.66667LV

bpole

21 = − 3.39531i

bpole

31 =
[
(0.586013 + 6.98132i) + 4.44444Lpole

µm

]
− 4.44444LV

bpole

12 = 2.92433i

bpole

22 =
[
−9.06127i+ (5.11111i)Lpole

µm

]
+
[
(5.76858− 5.11111i)− 3.25383Lpole

µm

]
LV + 1.62692L2

V

bpole

32 =
[
(−16.2897 + 4.60874i)− (4.14291i)Lpole

µm

]
− (10.3704i)LV

bpole

13 = − 1.42466

bpole

23 =
[
(−11.2099− 12.9025i) + (7.13646i)Lpole

µm

]
− (7.13646i)LV

bpole

33 =
[
7.60697i− (20.0616i)Lpole

µm + (6.23652i)(Lpole
µm)2 + 1.32343(Lpole

µm)3
]

+
[
(1.68812− 10.335i) + (12.7716− 12.473i)Lpole

µm − 3.97029(Lpole
µm)2

]
LV

+
[
(3.28972 + 6.23652i) + 3.97029Lpole

µm

]
L2
V − 1.32343L3

V
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where LV = log v, Lν = log ν, and Lpole
µm = log

(
µ

mpole

)
. The terms for the RGI cross section read

as follows:

cpole

211 = (−10.3704i)LV

cpole

212 = (2.34213i)L2
ν − (4.68426i)Lν LV

cpole

301 = (4.52707i)Lν

cpole

302 = (−5.52388i)L2
ν

cpole

303 = (8.9869i)L3
ν

cpole

311 = (6.2963i)Lν

cpole

312 = (−29.0134i)L2
ν

cpole

321 =
[
(−49.9713i)− (25.3076i)Lpole

µm

]
Lν . (D.3)

In the MSRn mass scheme, the fixed-order coefficients are

bMSRn
10 = 2.i

bMSRn
20 = 0

bMSRn
30 = 0.583333i

bMSRn
11 = (4.18879i− 2.66667LV )− 0.848826i

(
R

mMSRnv

)
bMSRn
21 = − 3.39531i

bMSRn
31 =

[
(0.586013 + 6.98132i) + 4.44444LRm − 4.44444LV

]
+ 0.530516i

(
R

mMSRnv

)
bMSRn
12 = 2.92433i+ 1.13177

(
R

mMSRnv

)
− 0.180127i

(
R

mMSRnv

)2

bMSRn
22 =

[
− 9.06127i+ 5.11111i LMSRn

µm + ((5.76858− 5.11111i)− 3.25383LMSRn
µm )LV + 1.62692L2

V

]
−
[
0.207077i+ 1.03573i LµR

](
R

mMSRnv

)
bMSRn
32 =

[
((−16.2897 + 4.60874i)− 4.14291i LMSRn

µm )− 10.3704i LV

]
+

[
((0.822974− 2.37037i)− 1.50902LRm) + 1.50902LV

](
R

mMSRnv

)
− (0.382769i)

(
R

mMSRnv

)2

bMSRn
13 = − 1.42466 + 1.24112i

(
R

mMSRnv

)
+ 0.480337

(
R

mMSRnv

)2

− 0.0764481i

(
R

mMSRnv

)3

bMSRn
23 =

[
((−11.2099− 12.9025i) + 7.13646i LMSRn

µm )− 7.13646i LV

]
+

[
((−0.250811 + 2.16922i) + 2.76194LµR + 1.38097LRm)− 1.38097LV

](
R

mMSRnv

)
+

[
− 0.393678i− 0.439576i LµR

](
R

mMSRnv

)2
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bMSRn
33 =

[
(7.60697i− 20.0616i LMSRn

µm + 6.23652i(LMSRn
µm )2)

+ ((1.68812− 10.335i) + (12.7716− 12.473i)LMSRn
µm − 3.97029(LMSRn

µm )2)LV

+ ((3.28972 + 6.23652i) + 3.97029LMSRn
µm )L2

V − 1.32343L3
V

]
+

[
((6.91358 + 3.72745i)− 0.921032i LµR − 1.26378i L2

µR + 1.75831i LRm)

+ 4.40132i LV

](
R

mMSRnv

)
+ 0.160112

(
R

mMSRnv

)2

− 0.0923748i

(
R

mMSRnv

)3

where LMSRn
µm = log

(
µ

mMSRn

)
, LµR = log

( µ
R

)
, and LRm = log

(
R

mMSRn

)
. The RGI coefficients read

cMSRn
211 = (−10.3704i)LV

cMSRn
212 = (2.34213i)L2

ν − (4.68426i)Lν LV

cMSRn
301 = (4.52707i)Lν

cMSRn
302 = (−5.52388i)L2

ν

cMSRn
303 = (8.9869i)L3

ν

cMSRn
311 = (6.2963i)Lν − (5.76405i)Lν

(
R

mMSRnv

)
cMSRn

312 = − (29.0134i)L2
ν + (7.03322i)L2

ν

(
R

mMSRnv

)
cMSRn

321 =

[
(−(49.9713i)Lν − (25.3076i)LRm Lν − (25.3076i)LµR LV )

]
+

[
− (5.34446i)Lν − (4.33845i)LV

](
R

mMSRnv

)
+ (1.22317i)Lν

(
R

mMSRnv

)2

.

(D.4)
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