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As the number of hacking and intrusion attacks is increasing each year, Intrusion 

Detection Systems are becoming an extremely important component of the network 

security system. It is necessary to design system security mechanisms in a manner that 

identify unauthorized access to computer resources and data. Since complete 

prevention of unauthorized access is impossible, today's security systems aim to 

detect unauthorized intrusions and undertake a certain action before an unauthorized 

action causes damage. 

No matter how effectively may Intrusion Detection Systems be identifying malicious 

activities, false alarms are a significant limitation nowadays, though. With an 

intention of making a step forward in overcoming this obstacle, the thesis proposes an 

Intrusion Detection System based on Fuzzy Logic that is able to provide a better 

classification rate in intrusion detection focusing on anomaly detection issues, i.e. the 

situations when a regular traffic is wrongly classified as an intrusion. Arriving packets 

are correctly treated as the system is firstly trained using a specific dataset and then 

verified by the predefined Fuzzy Logic Controller and Fuzzy Rules. 

The Fuzzy framework establishment is based on the selection of most relevant input 

data which will contribute to higher precision of the classification rate. For this 

purpose, it is demonstrated how Fuzzy models can be used as an approach for 

intrusion classification and to improve the understanding and analysis of network 

input data. 

ABSTRACT 
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Durch die stetig wachsende Zahl an Hacker Angriffen und unautorisierten Zugriffen 

entgegenzuwirken, kommen Segmente wie das Intrusion Detection Systems immer 

mehr zum Einsatz. Man ist gezwungen, eine sichere Methode zu wählen die für die 

Autorisierung sowie für den Schutz der Daten verantwortlich ist. Eine Volle 

Sicherheit vor unautorisierten Zugriffen gibt es leider nicht. Dadurch fokussieren sich 

Netzwerkspezialisten solche Vorfälle immer schneller aufzudecken und zu 

unterbinden. 

Unabhängig davon wie effektiv die Sicherheitssysteme heute funktionieren, werden 

diese durch falsche Alarmsignale sabotiert (eingeschränkt). Um das Ganze zu 

vereinfachen und um dieses Hindernis zu überwinden, gibt das Intrusion Detection 

System auf der Basis von Fuzzy Logic Vorschläge. Dadurch ist eine bessere 

Klassifikationsrate bei der Erkennung von unautorisierten Zugriffen gegeben. 

Ankommende Datenpakete werden erstmal durchgeschleift, da das System zunächst 

anhand eines bestimmten Datensatzes „lernt“. Des weiteren wird ein vordefinierter 

Fuzzy Logic Controller mit den dazugehörigen Fuzzy-Regeln für die Verifizierung 

der Datenpakete genutzt. 

Die Fuzzy-Framework basiert auf der Auswahl der relevantesten Eingabedaten, die zu 

einer höheren Genauigkeit der Klassifikationsrate beiträgt. Aus diesem Grund wird 

veranschaulicht, wie Fuzzy-Modelle funktionieren und uns helfen können, solche 

Angriffe zu klassifizieren und eingehende Datenpakete besser zu durchleuchten. 
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Information technology development in the field of data collection, processing and 

distribution is additionally accelerated by the needs of modern business. Modern 

business is increasingly based on Internet, i.e. there exist various forms of electronic 

commerce. This way of doing business produces new risks to the security of 

information systems. Rapid development of information technology and the 

unstoppable growth of its application in all areas of human activity are increasing its 

vulnerability and exposure to potential hazards, especially because of the inevitable 

interdependence of the human factor and information system.  

1.1. BACKGROUND AND MOTIVATION 

Successful business operations of any organization are based on availability and 

proper functioning of all information system elements. However, new threats are 

posed every day by individuals and organizations that attack and abuse information 

systems. Since the information system supplies the necessary information to all other 

parts of an organization for its decision-making process, its security is of a great 

significance.  

A massive flow of information between information systems is exposed to attacks by 

unauthorized users. Attackers access information systems, causing great damage to 

the overall operations of an organization. According to the reports by the U.S. Federal 

Agencies [1], the number of security incidents has been increasing over time. As 

presented in Figure 1, the trend is not consistent, but it is obvious that the number of 

network intrusions has increased sharply in the last decade. The increase in the 

number of breaches implies the greater number of data records exposed to attackers. 

[2] 

CHAPTER 1  

INTRODUCTION  
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Figure 1 Annual number of recorded data breaches in the United States [2] 

It is also important to emphasize the fact that the tools for carrying out attacks on 

information systems are becoming easier to use. According to reports from the Nato 

[3], extensive IT skills are not required anymore in order to be able to attack a system 

because of the constant growth of new and more sophisticated tools which can be 

used to carry out these attacks.  

Because of this, organizations recognize a need for implementing information security 

management systems. This type of system reduces the possibility of an attack, either 

external or internal. Apart from that, by managing data security it also allows 

management to monitor and supervise all processes and reduce business risks to a 

minimum level. By using information security management system, a corporation is 

able to achieve information security in three main aspects: confidentiality, integrity 

and availability. 

However, the main consideration of corporations used to be the costs of system 

implementation and maintenance. The cost of introducing information protection 

systems was mistakenly considered to be high in comparison to the cost incurred by 

security breaches. But an increase in the amount of attacks recovery costs has led to a 

growth of interest in the introduction of preventive and protective mechanisms. 

Organizations today realize that internal threats can be equally dangerous as external 

ones, or even more. According to a survey conducted by Forrester in November 2003 

and June 2004, investments in strengthening the security of information systems 

increased. [4] An overview is presented in Figure 2. 
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Figure 2 Survey conducted by Forrester's Business Technographics (sample of 818 

participants in November 2003 and 639 participants in June 2004) 

These pivotal background factors (rise in the number of attacks and growth of 

investment in security systems) represent an incentive for further research of the 

subject. Having in mind that no system can be perfectly secured, there is a need for 

constant improvement of protection mechanisms. Hence, the motive behind this thesis 

is to contribute to current knowledge in this field by researching the possibilities of 

usage of Fuzzy Logic technique for the purpose of intrusion detection.  

1.2. GOALS AND EXPECTED OUTCOMES 

The main goal of this thesis is to produce a theoretical framework of the Intrusion 

Detection System (IDS) which is based on Fuzzy Logic.  

Additionally, the practical part of the thesis is focused on the improvement of the 

successfully classified network intrusions rate. For this purpose, four types of 

remotely launched attacks will be used: Denial of Service, User to Toot, Remote to 

User and Probe. 

The primary focus of the practical part is to present the techniques for more effective 

analysis of network input data and to identify which input attributes are the most 

relevant for the Fuzzy rules generation process. As a result of this analysis, the rules 

are going to be more specified and improved.  

The expected outcome of the research is to improve the classification rate for all types 

of attacks by generating a set of more reliable Fuzzy rules. These Fuzzy rules are 
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obtained by processing input data and selecting the most relevant attributes from the 

given base of inputs.  

 

 

 



13 

 

The theoretical part of the thesis was written by consulting all the relevant sources 

such as books, scientific papers and web sources. In addition to that, the conclusions 

and main points made by experts at various workshops, conferences and seminars are 

also part of the used literature. The results of various pieces of research were also 

taken into account when analyzing the theoretical background of this subject. The 

most relevant sources were also used to present the existing approaches for 

improvement of successful classification rate.  

The research and construction of the framework concept are based on the usage of the 

KDD Cup ’99 dataset as the input for further experimental analysis.  The Fuzzy C-

Mean algorithm is used as a main data mining technique to improve the successful 

classification rate of all types of attacks.  

The main research based on the implementation of Fuzzy Logic used in the theoretical 

background as well as in the construction of the proposed framework was conducted 

and presented by the authors Shanmugavadivu and Nagarajan. [5] 
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LITERATURE REVIEW 
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CHAPTER 3  

INTRUSION DETECTION SYSTEM: THE 

THEORETICAL BACKGROUND 

Considering the complexity of any information security management system, it can be 

easily concluded that a single line of defense is not sufficient. That is why 

organizations use “defense in depth” – a layered protection mechanism for the critical 

components of the information system. It does not rely on a single security control but 

combines complementary security mechanisms, strengthening the security of 

information systems. 

To withstand attacks, information security management system applies “defense in 

depth” by ensuring the following: 

• Defense in more places - set up protective mechanisms at multiple 

locations to protect the information system against internal and external 

attacks 

• Layered defense - set up multiple protective mechanisms so that an 

attacker must go through several layers to get to critical information 

• Intrusion Prevention System (IPS) - set up a system for prevention of 

intrusions into an information system  

• Intrusion Detections System - set up a system for detection of intrusions 

into information system 

Therefore, IDS is considered to be the essential part of the successful maintenance of 

information system security.  

3.1. INTRUSION DETECTION 

An Intrusion detection system represents a part of technologies used to raise the 

overall level of security of information system. It gathers information from defined 

input and analyzes it to detect illegal activities and abuses of the system in which it is 

located. Main operations are based on monitoring a specific part of a system, and 

analysis of headers and content of packets and data at various layers of the system 

stack to identify unusual activities and attacks.  
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RFC 2828 defines intrusion detection as “a security service that monitors and 

analyzes system events for finding and providing real-time or near real-time warning 

of attempts to access system resources in an unauthorized manner”. [6] 

The American National Standard Institute (ANSI) defines intrusion detection as “a 

process of monitoring the events occurring in a computer system or network and 

analyzing them for signs of intrusions, defined as attempts to compromise the 

confidentiality, integrity, availability, or to bypass the security mechanisms of a 

computer or network”. [7] 

3.1.1. Network-based intrusion detection 

There are different approaches that can be used as the basis for division of IDSs. The 

most common one is based on the information source. In other words, the part of the 

system that is monitored by the IDS is used as the information source. Apart from 

Host-based IDSs that supervise the work of a host, the most important are Network-

based IDSs that supervise the processes within a network.  

A Network-based IDS, as its name suggests, monitors the entire network or its 

segment, depending on its position in the network topology. The main operation is 

based on capturing and analyzing packets that traverse the network.  

A Network-based IDS is often composed of a series of simple sensors, located in 

different points inside the network. Sensors monitor and analyze network traffic 

locally, and then report detected attacks to the central management console. Many 

sensors are designed for "deceptive" mode, so that an attacker would not be able to 

detect their presence and location. 

The main advantage of a network-based IDS is that several well-distributed network-

based IDSs can monitor a large network. The implementation of a network-based IDS 

has small impact on the existing network. In fact, it is usually a passive device that 

scans the network traffic without affecting normal operations in the network.  

3.1.2. Anomaly detection 

An Anomaly detection system discovers computer or network intrusions. This is a 

process where tracked activities are compared to the ones considered as expected 

behavior patterns. IDS technologies based on anomaly detection have profiles that 
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represent normal behavior. These profiles are usually produced by using audit records 

that are already generated by the system. The main benefit of this approach is that 

unknown threats can be discovered very effectively. [8] For example, if a computer 

becomes infected by a new malicious program which consumes a lot of resources, 

sends large number of e-mails, initiates many network connections or another manner 

of behavior that is different from the already established profile for the computer, it is 

then clear that such behavior is not compatible with the usual one. The malicious 

program would be detected due to a significant deviation from the previously 

established profile and behavior.  

As said, a generated default profile can be static or dynamic. Once generated, the 

static profile cannot be changed, unless an IDS is triggered to generate a new profile. 

A dynamic profile adjusts itself as new events are observed, so it learns and adapts 

constantly. As the systems and networks are changing during time, the proper 

behavior is changing too, so a static profile will eventually become inaccurate, which 

implies that it should be periodically generated. Dynamic profiles do not have this 

problem. 

3.2. FUZZY LOGIC 

There are situations where it is not possible to represent a knowledge of system in a 

precise manner. In other words, sometimes it is not enough to rely on Binary logic 

where something is either black or white. To overcome the limit of classical Binary 

logic, Fuzzy Logic can be used to widen the range of options (all shades of gray). 

To compare Binary and Fuzzy logic, a typical example is reviewed. It is a process of 

determination of belonging to a set of tall people. Conventional boundaries are strictly 

determined (Figure 3), so two people are classified differently even though their 

height varies with just a few centimeters. [9] 

 

Figure 3 Conventional membership function  
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The approach above would make sense in a case of an abstract representation, such as 

numbers. It could be said that all numbers greater than a specific number are in 

general “larger” (than it number) and that smaller numbers in comparison with the 

specific number are in general “smaller” (than it number).  However, when something 

is conditioned by age and social characteristics, such as estimation whether a person is 

high or not, setting such a sharp boundary does not make sense. That is why a 

continuous membership function is introduced to determine whether and how tall the 

person is (Figure 4).  

 

Figure 4 Continuous membership function  

Continuous membership function gives an opportunity to consider to whom it applies 

(children, female persons or to all adults, etc.). The only requirement is that 

membership function needs to be scaled between  0 and 1, which defines membership 

level of a variable to the function. [10] 

3.3. EXISTING APPROACHES FOR INTRUSION DETECTION 

The development of the Intrusion System has gone through different phases. In 1972, 

James P. Anderson pointed out the gravity of computer security issues. The main 

problem, still present nowadays, was segmenting the network into domains, providing 

unobstructed information flow between them, but with keeping the integrity and 

security of every domain. [11]  

During the 1980s the same author was working on improving security auditing and 

surveillance. He takes credit for the original idea behind automated intrusion 

detection. This postulate represents the core of misuse detection. With the analysis of 

audit data, the first attack patterns were made, and they were used in the process of 

intrusion detection. [12] 

The first model of real-time intrusion detection was developed between 1984 and 

1986 by Dorothy Denning and Peter Neumann. The aim was to detect various types of 
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security violations. The idea behind this model was to track regular activities in the 

system and identify malicious activities. It focused on the basic system activities 

without having information about system security shortcomings. [13] 

In the mid-1990s, the US Army was developing a prototype which was 

commercialized during the year 1995. This model was working real-time, using 

misused detection as engine. In 1997 RealSecure tool was released for commercial 

use and was running on Windows platform. [14] 

Until the 2000s firewalls were used mostly because of their capability of processing 

traffic more quickly since they did not do deep packet inspection. But, at the 

beginning of the 2000s, new types of attacks able to pass the firewall started to 

appear, which made IDS main security mechanism. [15] Some organizations still used 

IPS which is positioned between home network and the internet. It functions in a way 

that drops each packet which it recognizes as an attack. Every packet needs to be 

checked and compared with signature entries in a database, which is constantly 

growing due to novel attacks. A problem that occurs is a large number of dropped 

packets that are in fact not malicious. Also, a large signature database is used to 

hinder IPS performance. Due to these problems, organizations turned to IDS, which is 

located aside. When a threat is detected, IDS does not drop the packet, but alerts the 

organization so that the management could decide how to proceed. Later, popularity 

of IPS began to grow again, after signature database was optimized and only most 

relevant signatures were used. [16] 

3.3.1. Data Mining Techniques for Network Intrusion 

Detection 

One of recent algorithms which is applied for patterns discovery from big data for 

intrusion detection is Data mining (DM). DM extracts knowledge from data. [17] It 

establishes a relationship within data samples which enables it to detect anomalous 

patterns. There are numerous DM techniques. An overview is presented in Table 1.  

Table 1 An overview of Data mining techniques  

Data Mining technique Characteristic 

Feature selection data analysis “Discard all data attributes that have 

insufficient level of predictive information or 
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do not have it all to create a group of suitable 

attributes” [18] 

Classification analysis “Assign attacks to classes according to values 

of attack’s data attributes; could be used for 

anomaly and misuse; in misuse, training data 

is used to learn classifiers of different types 

used for detection of known intrusions; in 

anomaly, training data is used to establish 

normal behavior pattern; classification could 

be used for learning and detection of 

intrusions” [19] 

Clustering analysis “Assign attacks to clusters based on distance 

measurements made on attacks; unsupervised 

learning process; similarity measure 

represents an important factor in grouping 

observations” [19] 

Association and correlation analysis “Discover association relationships between 

specific attributes in dataset” [19] 

Stream data analysis “Attacks are dynamic by nature, so it 

perceives data streams as a whole since a 

record might be normal on its own but 

malicious if viewed as part of sequence” [19] 

Distributed data mining “Attacks could be performed from different 

locations and target different destinations, so 

it analyses data from several network 

locations” [19] 

Visualization and querying tools “Graphical user interface enables users to 

view classes, associations, clusters, etc.” [19] 

 

Currently, clustering is the most used data mining technique for intrusion detection. 

Various researchers have proposed many different clustering techniques so far. In the 

group of many algorithms, Fuzzy C-Mean is considered very efficient. [20], [21], [5], 
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[22] Some of notable frameworks are constructed by using other algorithms such as 

Classification and Regression Tree [23] and Genetic algorithm combined with Fuzzy 

Logic. [24], [25] 

In spite of improvements which can be made by implementation of these data mining 

techniques, there are still some downsides that should be taken into consideration. The 

main weakness of data mining approaches refers to data correlation. When the system 

has not collected sufficient audit trail data, it cannot reach full potential. Another 

drawback is that correlation between entities does not imply causation. So, it can be 

possible to have hundreds of data correlated, with only a few of them that are 

worthwhile. 

3.3.2. Artificial Neural Networks for Network Intrusion 

Detection 

Artificial Neural Network (ANN) is also a very intensively researched approach. The 

concept of Intrusion detection using neural networks is based on the fact that a user 

leaves a print when using a system. So, neural network is used to identify the print 

and the users based on their specific behavior patterns.  

ANN represents a collection of artificial neurons which are connected and interactive 

throughout operations of processing the signals. It is modeled like a human brain. 

Neurons and connections have a weight that adjusts as learning process proceeds. The 

weight represents the strength of the signal at a connection. The connections between 

neurons are activated if the condition set by the so-called activation function has been 

fulfilled.  [26] 

Some of efficient applications of the ANN are also done by using different algorithms 

such as Multilayer Perception, Radial Base Function, Logistic Regression, Voted 

Perception [27], Radial Basis Functions [28] and Multy Layer Back Propagation [29]. 

There is also a tendency to compare outputs generated by different algorithms such as 

Feed Forward Neural Network, Probabilistic Neural Network and Radial Basis Neural 

Network classifiers. [30]  

The neural network approach can accomplish an excellent job in structuring a profile 

of user behavior that is adaptable over time. However, the potential drawback of ANN 
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might be the scalability of neural network systems. That problem might appear in a 

situation when the number of users exceeds the size of small or medium enterprises. 

Intrusion Detection System is an essential part of “defense in depth” architecture. 

When malicious behavior is noticed, an alarm is raised allowing administrators to 

react according to the security policy. Because of that, the main objective of such a 

system is to treat the input data properly.  
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CHAPTER 4  

PROBLEM DESCRIPTION 

To achieve good performance predictions, IDS must meet two criteria:  

• It must be able to accurately identify an intrusion  

• It must not identify a regular action in the network environment as an 

intrusion 

Assessing IDS performance prediction includes Detection Rate (DR) and False Alarm 

Rate (FAR). DR is defined as the ratio of the number of correctly detected attacks and 

the total number of attacks, while FAR is defined as the ratio of the number of normal 

connections that are incorrectly classified as attacks and the total number of normal 

connections. [31] The data on which the DR and FAR are determined can be 

presented via the confusion matrix. It consists of the following elements: True 

Negative (TN), False Positive (FP), False Negative (FN) and True Positive (TP), 

where: 

• TN - correctly indicates connections that are normal (regular) traffic 

• FP - indicates normal connections that are wrongly classified as non-

regular (intrusions) 

• FN - indicates non-regular connections (intrusions) that are wrongly 

classified as regular 

• TP - correctly indicates connection that are non-regular (intrusions) 

Table 2 Standard Metric and Confusion Matrix 

STANDARD METRIC 

IDS OUTPUT 

NORMAL  INTRUSION 

ACTUAL STATUS 

OF TRAFFIC RECORD 

NORMAL  TN FP 

INSTRUSION FN TP 

 

Among all issues that might appear, FP alarms are the most common problem 

someone must deal with when implementing an IDS. Almost every rule can cause an 
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FP alarm. The main issue is that FP alarms can undermine valid IDS alerts. It is 

possible to have one IDS sensor that generates thousands of alerts caused by a single 

rule. Additionally, reviewing large volume of alerts and logic can be overwhelming 

and time consuming to an analyst. As an assumption, if there are around 100 alarms 

on daily basis, an analyst has a few minutes to review each of them. Due to this 

approach it is a common situation that alerts causing repetitive FP alarms are 

overlooked or ignored, so that a company is not able to realize and examine the actual 

problem.   
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As it is mentioned in the Chapter 1, one of the goals of this research is to provide 

theoretical framework of corporate network-based Intrusion Detection System which 

uses Fuzzy Logic as its engine.  

5.1. FRAMEWORK DESIGN 

The anomaly or outlier detection technique, in case of intrusion detection, identifies 

anomalous user behavior which does not match the expected behavior patterns. This 

technique ensures that the process will take place in real time. All input data should 

pass directly through anomaly detection system, undergo an assessment, and be 

isolated and checked again if there is any doubt of intrusion (Figure 5).  

 

Figure 5 Real-time anomaly detection system 

The amount of data passing through the system is usually large. Data is very different 

in nature. Construction of anomaly-based intrusion detection system requires a model 

of normal and anomalous behavior. Fortunately for a corporate network, but delicate 

from the mathematical point of view, the system is dealing with a large number of 

normal data (up to 99%). Anomalous data represents low percentage of data. Because 

of such uneven distribution, it is difficult to get a system that correctly detects the 

difference between normal and anomalous. It is even more difficult to apply this 

system in real-time. 

Before moving on to the construction of the system, it is necessary to provide a 

representative data sample that consists of different types of attacks, as well as normal 

packets.  This data will be used for the training of the system. It is important to treat 

CHAPTER 5  
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the data properly and prepare it for further processing. All irregularities of data and 

unnecessarily data should be filtered out. 

The next step is the selection of relevant attributes that will be applied for intrusion 

detection. Fuzzy logic is applied as anomaly-based intrusion detection data mining 

technique.  

As a final step, it is necessary to choose the environment in which the intrusion 

detection code will be developed. The code should be as universal as possible, based 

on reliability and scalability. Scalability of the solution is of great importance since 

both the corporate network that should be secured and the attackers’ techniques have 

been constantly changing.   

5.2. FRAMEWORK ARCHITECTURE 

The proposed intrusion detection system represents a multilayered security 

mechanism based on very simple but powerful Pipe-And-Filter architecture. [32]  

This way of implementing the system enables more efficient and sophisticated 

analysis, since the data could be tracked after every iteration during the processing. 

The system architecture consists of three layers: Sensor, Detection and Reaction 

(Figure 6). [33] 

 

Figure 6 IDS multilayered architecture 

The Sensor layer represents the interface to network elements. Raw data is collected 

by various agents that acquire different types of packets based on protocol types used 

on Network (ICMP) and Transport layer (TCP, UDP). Agents filter out unnecessary 

input data and trigger initial data processing that provides valuable information 

needed to construct an event. The event consists of predefined attributes. 
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The Detection layer is the core architecture element. Data processing is done here in 

order to prepare the data for Fuzzy Logic part of the layer. Additionally, classifiers 

assess at this layer the events passed from the Sensor layer and check if malicious 

behavior exists (anomaly detection). Fuzzy logic is the main data mining technique 

used for the process of determination whether a packet is corrupted or not. In case of 

an attack, an alert is generated and forwarded to the Reaction layer. 

It is the Reaction layer where final processing is done. The alerts are aggregated 

according to the type of an attack that they belong to. The final output is reflected in 

security analyst action made according to the provided information. Learned 

signatures could be added to the IPS engine database. An important characteristic of 

this layer is its possibility of reporting, which could be useful for forecasting and 

generation of custom reports for the management. 

5.3. MODEL STRUCTURE 

Intrusion detection system needs appropriate data for the system training and testing. 

Agents in the Sensor layer are in charge of this step. Due to an inability to simulate 

real-traffic scenarios, certain datasets will be used. They consist of already generated 

events. The Detection layer consists of the tools for cleaning and classification of 

training/testing data and the tools for intrusion detection. These tools are the engine of 

the system. The final output, an alert, is forwarded to the Reaction layer. Based on the 

implemented logic or simply an analyst’s estimation, it is decided how an alert will be 

treated. 

 

Figure 7 Intrusion detection system 

The steps which take place in the system are illustrated in Figure 7. The system 

consists of two flows. One flow is related to the training data and the other to the 

testing data. However, it is obvious that the training and testing data pass through the 

same processing mechanisms and that the tools for data training may also be used for 

processing of the testing data.  



27 

 

5.3.1. Tools for cleaning and classification of data 

In the absence of streaming data from a corporate network, a database is selected as a 

training and testing dataset. The database is used for the design of data processing 

tools: a tool for data analyzing, for duplicates cleaning and for incomplete data 

cleaning. In case of training data, this type of processing is carried out using some 

existing software. Since the same tools are applied for testing and for real-time 

intrusion detection, they are developed and included in the framework.  

The second step is attribute analysis. The attributes have symbolic as well as 

numerical values. Symbolic attributes can be used in anomaly detection system, built 

on Fuzzy logic, only if the symbolic values are replaced by numerical ones. The tool 

for analysis of symbolic attributes is constructed in order to collect as much 

information as possible and to get familiarized with common trends in data.  

The scalability of the system also represents an important part of implementation. 

This characteristic applies especially to the tools intended for numerical attributes. 

The tool for classification and selection of this type of attributes is built in such a way 

that it can be easily adapted and modified according to additional needs or 

requirements.  

In order to use Fuzzy C-Mean clustering, the method that is selected to be the main 

data mining technique as a part of intrusion detection system, data must be converted 

into an appropriate format. The first series of formatting is performed with the 

previously mentioned tools. Final formatting, or the normalization of data, is 

performed on the data to which clustering is applied.   

5.3.2. Fuzzy logic controller 

Clustering method is used as data mining technique and embedded into the intrusion 

detection system. The clustering methods are extensively studied since they can 

perform successful natural grouping of data from large databases into meaningful 

subgroups called clusters. Fuzzy C-mean clustering enables each data point to belong 

to several clusters and the degree of membership can be defined and controlled by a 

certain parameter. The number of clusters can also be defined, or other techniques can 

be applied for determination of cluster number.  
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The heart of intrusion detection system, Fuzzy logic controller, is illustrated in Figure 

8. The all Fuzzy processing elements are also presented through the controller 

illustration.  

 

Figure 8 Fuzzy logic controller 

The input data are non-fuzzy numbers. At the beginning, data need to be fuzzified. 

This means that a degree to which they belong to certain Fuzzy set needs to be 

determined. This part of procedure is performed using Fuzzy C-Mean clustering. 

Membership functions and a rule matrix are also derived from the results obtained 

using Fuzzy C-Mean clustering. In the end, a Fuzzy signal is transformed back to a 

non-fuzzy data. 

5.3.2.1. Fuzzy C-Mean clustering algorithm 

The Fuzzy C-Mean clustering [34], [7] is based on the minimization of the following 

objective function. The Matlab help and documentation website were used as a 

resource of algorithm explanation. [35] 

 

“D is the number of data points, N is the number of clusters, xi is i-th data point, cj is 

the center of j-th cluster. The Fuzzy partition matrix exponent m controls the degree 

of fuzzy overlap, the number of data points that have significant membership in more 

than one cluster. The value of the exponent, marked m, is grater than 1. The degree of 

membership of xi in j-th cluster is given by coefficient μij. The sum of μij values for a 

data point is one.” [35] 

The Fuzzy C-mean clustering is based on the following algorithm defined in [35]: 



29 

 

1. “Initialization of the cluster membership coefficient μij 

2. Calculation of cluster center 

 

3. Applying following formula to update coefficient μij 

 

4. Calculating objective function Jm  

5. Repeating steps 1-4 until solution converge or maximum number of iterations 

is reached” [35] 
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The prototype implementation process consists of the following components: 

selection of appropriate training data, selection of an appropriate environment for the 

code development and development of the testing system.   

6.1. TRAINING DATA 

The dataset from the KDD CUP 1999 contest is selected as the training data. This 

dataset was uploaded from the community for data mining, data science and analytics 

(SIGKDD) website. [36] The contest data represents a version of data prepared by 

Massachusetts Institute of Technology (MIT) Lincoln Labs for the 1998 DARPA 

Intrusion Detection Evaluation Program. The complete explanation of DARPA can be 

found at the website of MIT Lincoln Lab. [37] 

6.1.1. Data attributes 

The dataset consists of entries recorded during seven weeks of real network traffic. It 

has almost half a billion records. There are 41 attributes plus an attribute determining 

whether connection is normal or an attack. One row of data from the KDD CUP ‘99 

dataset is presented below 

Table 3:   0, tcp, http, SF, 181, 5450, 0, 0, 0, 

 

Table 4:   0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

Table 5:   8, 8, 0, 0, 0, 0, 1, 0, 0, 

Table 6:   9, 9, 1, 0, 0.11, 0, 0, 0, 0, 0, 

Connection:   normal 

The lists of the attributes of the KDD Cup ‘99 contest data, as well as the description 

and type, are presented in Tables 3, 4, 5 and 6. As data source [36] was used. 

CHAPTER 6  
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Table 3 Basic features of individual TCP connections  

 Attribute name  Description  Type 

1 duration length (number of seconds) of the connection continuous 

2 protocol_type type of the protocol, e.g. tcp, udp, etc. symbolic 

3 service network service on the destination, e.g., http, telnet, 

etc. 

symbolic 

4 flag normal or error status of the connection symbolic 

5 src_bytes number of data bytes from source to destination continuous 

6 dst_bytes number of data bytes from destination to source continuous 

7 land 1 if connection is from/to the same host/port 0 

otherwise 

symbolic 

8 wrong_fragment number of "wrong" fragments continuous 

9 urgent number of urgent packets continuous 

 

Table 4 Content features within a connection suggested by domain knowledge 

 Attribute name  Description  Type 

10 hot  number of "hot" indicators continuous 

11 num_failed_logins  number of failed login attempts continuous 

12 logged_in  1 if successfully logged in 0 otherwise symbolic 

13 num_compromised  number of "compromised" conditions continuous 

14 root_shell  1 if root shell is obtained 0 otherwise symbolic 

15 su_attempted  1 if "su root" command attempted 0 otherwise symbolic 

16 num_root  number of "root" accesses continuous 

17 num_file_creations  number of file creation operations continuous 

18 num_shells  number of shell prompts continuous 

19 num_access_files  number of operations on access control files continuous 

20 num_outbound_cmds  number of outbound commands in an ftp session continuous 

21 is_host_login  1 if the login belongs to the "host" list 0 

otherwise 

symbolic 

22 is_guest_login  1 if the login is “guest login” 0 otherwise symbolic 

 

Table 5 Traffic features computed using a two-second time window 

  Attribute name  Description  Type 

23 count number of connections to the same host as the 

current connection in the past two seconds 

continuous 
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24 serror_rate % of connections that have "SYN" errors continuous 

25 rerror_rate % of connections that have "REJ" errors continuous 

26 same_srv_rate % of connections to the same service continuous 

27 diff_srv_rate % of connections to different services continuous 

28 srv_count number of connections to the same service as the 

current connection in the past two seconds 

continuous 

29 srv_serror_rate % of connections that have "SYN" errors continuous 

30 srv_rerror_rate % of connections that have "REJ" errors continuous 

31 srv_diff_host_rate % of connections to different hosts continuous 

 

Table 6 Traffic features (Table 5) for destination host 

 Attribute name Desription Type 

32 dst_host_count count for destination host continuous 

33 dst_host_srv_count srv_count for destination host continuous 

34 dst_host_same_srv_rate same_srv_rate for destination host continuous 

35 dst_host_diff_srv_rate diff_srv_rate for destination host continuous 

36 dst_host_same_src_port_rate same_src_port_rate for destination host continuous 

37 dst_host_srv_diff_host_rate diff_host_rate for destination host continuous 

38 dst_host_serror_rate serror_rate for destination host continuous 

39 dst_host_srv_serror_rate srv_serror_rate for destination host continuous 

40 dst_host_rerror_rate rerror_rate for destination host continuous 

41 dst_host_srv_rerror_rate srv_serror_rate for destination host continuous 

 

6.1.2. Types of attacks 

The data set consists of 22 types of attacks. All 22 types of attacks are classified into 4 

major groups: Denial of service (DoS), Probing, Remote to local (R2L) and User to 

root (U2R). [37] Short definitions of the groups are given in Table 7. 

Table 7 Attacks classified by four groups with definition from MIT Lincoln 

Laboratory  

Group Attacks Definitions 

DoS back, land, neptune, pod, smurf, teardrop “Attacker makes some computing or 

memory resource too busy or too full 

to handle legitimate requests, or denies 

legitimate users access to a machine” 
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[38] 

Probe ipsweep, nmap, portsweep, satan “Programs that can automatically scan 

a network of computers to gather 

information or find known 

vulnerabilities” [38] 

R2L ftp_write, guess_passwd, imap, multihop, 

phf, spy, warezclient, warezmaster 

“Attacker who has the ability to send 

packets to a machine over a network 

but who does not have an account on 

that machine and exploits some 

vulnerability to gain local access as a 

user of that machine” [38] 

U2R buffer_overflow, loadmodule, perl, 

rootkit 

“Attacker starts out with access to a 

normal user account on the system 

(perhaps gained by sniffing 

passwords, a dictionary attack, or 

social engineering) and is able to 

exploit some vulnerability to gain root 

access to the system” [38] 

 

Since the original KDD CUP ’99 dataset contains around 5 million samples, the 

operation with this amount of data is far beyond the capabilities of an average desktop 

computer. Instead of that, the KDD CUP ’99 10% dataset with 494021 samples is 

used in further calculations.  

There are also datasets derived from the KDD CUP ’99 in which it is attempted to 

eliminate problems identified in the original dataset like a great number of duplicates 

or incomplete data. The Dataset used in parallel to the KDD CUP ‘99 data is the NSL-

KDD dataset (25192 samples) [39] from the Canadian Institute for Cybersecurity, 

University of New Brunswick. 

6.2. CONSTRUCTION OF THE MODEL 

Intrusion detection system is developed in the Matlab using Fuzzy logic toolbox. The 

entire code is given in Appendix B. It is separated into two main parts. The first part 

represents the code for analysis and cleaning of data and selection of relevant 

attributes. This part also consists of a code used for the construction of the Fuzzy 
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Inference System (FIS) to which training data is pushed. The second part is a code 

used for testing, i.e. for the evaluation of FIS with different testing data. 

6.2.1. Data processing  

Data analysis is currently performed only for symbolic attributes. This type of 

analysis is introduced in the code to get familiarized with data trends. The 

distributions of values for all symbolic attributes, that is the number of normal and 

attack connections in the original uncleaned dataset, are illustrated in Figure 9. 

 

Figure 9 Number of normal connections and attacks in the original KDD CUP ’99 

10% dataset, very small values are enlarged in figure right 

This analysis is not applied to the final selection and data cleaning, but it provides 

some useful information. It could be noticed that only 22 connections have defined 

attribute “land” (value one) while other 493999 have value zero. Additionally, the 

attribute “is_host_login” has value equal to zero in every record, which means that 

none of the connections in 10% database is from the host, so this parameter can be 

ignored in further analysis. The results obtained while using the KDD CUP ’99 10% 

dataset for attributes “land” and “is_host_login” are presented in Figure 10. The other 

data printed by kddcup_analysis.m is given in Appendix A. 

land - 1 if connection is from/to the same host/port 0 otherwise 

0 493999 
1 22 

 
1 if the login belongs to the "host" list 0 otherwise 

0 494021 

Figure 10 Some results extracted from data printed by kddcup_analysis.m 
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The part of the model related to processing of data also includes a tool for the dataset 

cleaning. Importance of duplicates cleaning is obvious when comparing the output in 

Figure 9, where the number of normal/attack connections for the KDD CUP ’99 10% 

data is illustrated before cleaning of duplicates, and output in Figure 11, where the 

connections are presented after the cleaning is done.  

 

Figure 11 Number of normal connections and attacks in the cleaned KDD CUP ’99 

10% dataset, very small values are enlarged in figure right 

In the original KDD CUP ’99 10% dataset the number of “smurf” attack records is 

much larger than number of normal connections, “neptune” attack records, or any 

other attack group. After cleaning of duplicates, however, the normal connections are 

the most present group of data. This subject is discussed in detail in Chapter 7. 

The classification of data is also performed in this part of the code. Data is classified 

into the group of normal connections or four major attack groups (Figure 12). The 

classification is necessary for clustering that takes place in the Fuzzy logic controller. 
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Figure 12 Classification of the KDD CUP ’99 10% dataset (normal and four groups 

of attacks) 

Cleaned and classified data is forwarded to the FIS since the efficiency of the FIS 

depends on the form of the data.  

6.2.2. Fuzzy inference system 

6.2.2.1. Data normalization 

Data is normalized before applying clustering method. This process represents the 

fuzzification. Normalization is performed using Matlab function “mapstd”. Function 

“mapstd” processes matrices by mapping each row's means to 0 and deviations to 1. 

[7] Syntax of the function is as follows 

[Y,PS] = mapstd(X,ymean,ystd) 

“where X is the matrices, ymean and ystd are optional parameters, Y is resulting 

matrices and PS is carrying process settings that allow consistent processing of 

values. Function “mapstd” has option “reverse” which is used afterwards to convert 

output data back to original units, which is known as defuzzification.” [35] 

6.2.2.2. Generation of FIS - genfis 

Fuzzy C-Mean clustering is used as an option of Matlab Fuzzy Logic Toolbox 

function “genfis” – generate FIS. The function “genfis” generates Fuzzy Inference 

System from data. [7] 

Synatx of “genfis” function is as follows 

fis = genfis(inputData,outputData,options) 
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Training data is provided to “genfis” function as an input. Options field is used to 

select Fuzzy C-Mean (FCM) clustering (option “FCMClustering”) as a method to 

generate Fuzzy System. In case of FCM clustering, each input variable has one 

'gaussmf' input membership function for each Fuzzy cluster. One rule is generated for 

each fuzzy cluster. Finally, each output variable has one output membership function 

for each fuzzy cluster. Options field is also defined by selecting Mamdani over 

Sugeno system. These two systems are most commonly used Direct Fuzzy inference 

methods. The difference between them lies in a way how an output is acquired. The 

membership function type of output variable is 'gaussmf' for Mamdani system. To 

generate the output of FIS the following steps are applied: 

1.”determining a set of Fuzzy rules, 

2. fuzzifying the inputs using the input membership functions,  

3. combining the fuzzified inputs according to the Fuzzy rules to establish a 

rule strength,  

4. finding the consequence of the rule by combining the rule strength and the 

output membership function,  

5. combining the consequences to get an output distribution, and  

6. defuzzifying the output distribution”. [40]  

 

When defining options, it is possible to select a number of clusters for FCM 

clustering. If it is not defined, “genfis” estimates the number of clusters using 

subtractive clustering method. 

6.2.2.3. Fuzzy logic designer 

The Fuzzy logic designer can be used to design FIS. An example is given in Appendix 

B. Also, the designer can be used to see result of FIS generated by “genfis” and to 

make modifications, if necessary. In the model, the FIS is saved to a file that will be 

used afterwards for testing, but the inspection of FIS is enabled by starting the Fuzzy 

logic designer.  

The syntax to start the designer is as follows 

fuzzyLogicDesigner(fuzzySys) 
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6.2.3. Evaluation of FIS 

Matlab function “evalfis” performs evaluation of the Fuzzy inference system and 

calculates the results by using input data that needs to be tested and the FIS 

constructed by “genfis”. The function is used in kddcup_fis.m code to evaluate 

training results and in kddcup_test.m code to calculate results for testing dataset. Two 

codes are given in Appendix B. 

The syntax for “evalfis” is as follows 

output= evalfis(input,fismat) 

where input is data that needs to be evaluated using Fuzzy inference system 

fismat.  
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The intrusion detection system is constructed using Fuzzy C-Mean clustering as a data 

mining technique. The clustering results are used by the Matlab to define membership 

functions and the rule matrix. The System is trained and tested with the KDD CUP 

’99 dataset and other datasets derived from it.  

7.1. SETUP AND VALIDATION OF FUZZY INFERENCE 

SYSTEM 

The original KDD Cup ’99 10% dataset is used. In the beginning, the dataset 

contained 494021 samples, 280790 “smurf” attacks, 107201 “neptune” attacks, and 

97278 normal connections. The number of other attacks is much lower. After normal 

connections, the most frequent type of data is “back” attack which appeared 2203 

times (Figure 9, Chapter 6). The most numerous attacks in original 10% dataset 

belong to DoS group.  

Having excluded symbolic attributes, the number of attributes reduces from 41 to 33. 

After cleaning of duplicates the dataset contains 145585 samples, which is around 

30% of the original 10% dataset. The most numerous are normal connection. 

“Neptune” is now the most numerous attack group. When classified into four major 

groups, normal connections still occurred more often than then DoS, Probe, R2L, and 

U2R (Figure 11, Chapter 6).  

For classification purpose, symbolic values of normal connections and names of four 

attack types are replaced by numbers from one to five. After cleaning and 

classification into normal and four major attack group, the data is used for 

construction of the FIS. There is a possibility in the written code to choose a number 

of clusters or to select a default value which will trigger a subclustering method to 

obtain the number of clusters. In the first series of calculations, the default value is 

selected. The first conclusion is that the subclustering method is very time and 

memory consuming, especially compared to the option when the number of clusters is 

CHAPTER 7  

TEST AND EVALUATION 
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manually defined. The time spent for automatic subclustering was around 90 minutes. 

The difference in results for two options is also checked and is presented below. 

The first notable results are recorded when 6 clusters are obtained by the subclastering 

method. The Resulting confusion matrix for cleaned and classified original 10% 

dataset is presented in Table 8. 

Table 8 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset 

when subclustering option is used 

 Truth 

P
re

d
ic

te
d

 

 normal dos probe r2l u2r total 

normal 80853 1330 314 949 44 83490 

dos 2351 52540 1500 10 6 56407 

probe 4628 702 316 40 2 5688 

r2l 0 0 0 0 0 0 

u2r 0 0 0 0 0 0 

total 87832 54572 2130 999 52 145585 

 

Overall accuracy, calculated by summing the number of correctly classified values 

and dividing the sum by the total number of values, is 91.84%. Two types of attack, 

R2L and U2R, are not detected at all. Problem is that most of these attacks are 

detected as normal connections. 95% of R2L and 84.61% of U2R are treated as 

normal packets. When it comes to Probe attack, 85.23% are detected as attacks but 

70.42% are detected as a wrong attack group (DoS). 

When the number of clusters is selected in advance, the time needed for calculation 

and output of results lasts less than a minute. It is noticed that the increase of cluster 

number has very little influence on precision rate and it does not influence at all the 

number of detected attacks. The only improvement that can be observed is in the 

number of correctly detected normal connections (Figure 13). 
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Figure 13 Number of detected normal connections with respect to number of clusters 

for the KDD CUP ’99 10% dataset 

To confirm the assertion above, 16 clusters are selected alongside the same 

preprocessing rules as in the previous case. The Confusion matrix for this case is 

presented in Table 9. The number of correctly detected normal connections increased, 

as well as the number of correctly detected DoS and Probe attacks. The other two 

types of attacks are still not detected. The overall accuracy is now 94.28%. Normal 

packets are treated correctly in 96.46% of cases. Similar performance is achieved in 

case of DoS records (95.74%). It is obvious that normal and DoS connections are the 

most numerous sample groups.  
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 Table 9 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset 

when 16 clusters are selected 

 Truth 

P
re

d
ic

te
d

 

 normal dos Probe r2l u2r total 

normal 84725 1316 360 986 47 87434 

dos 1564 52252 1489 5 3 55313 

probe 1543 1004 281 8 2 2838 

r2l 0 0 0 0 0 0 

u2r 0 0 0 0 0 0 

total 87832 54572 2130 999 52 145585 

 

When training data is classified into a normal connection group and an attack group 

(when only 2 groups are applied) and 4 clusters are selected, overall accuracy is 

93.82%. the Confusion matrix for this case is presented in Table 9. This way of 

system setup produces a more consistent result since both normal and attack groups 

have a solid classification rate. 81612 of total 87832 normal records are treated as 

regular traffic and 54981 of total 57753 attack records are treated as malicious data.  

The way of labeling data on a higher level, as normal or attack, provides more 

training data that belong to one single attack group. Like in previous cases, it is 

obvious that DoS are the most numerous attack group and thus mostly contribute to 

good overall accuracy related to the attack group. This could mean that the number of 

training data has a great influence on prediction rate. The same could be assumed for 

normal data since it is the most present in the dataset. Further on, additional analysis 

is performed. 
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Table 10 Confusion matrix for cleaned and classified the KDD CUP ‘99 10% dataset 

when 4 clusters are selected and only two groups normal and attack 

 Truth 

P
re

d
ic

te
d

  normal attack total 

normal 81612 2772 84384 

attack 6220 54981 61201 

total 87832 57753 145585 

 

7.2. NSL-KDD DATASET 

In the previous section the setup of the Fuzzy logic system based on Fuzzy C-Mean 

clustering and the first steps of training are presented. The training was conducted 

with the original KDD Cup ’99 10% dataset with symbolic attributes excluded and 

data cleaned from duplicates. With the mentioned operations, the dataset is reduced to 

30% of the previous number of samples but it is even smaller in size after symbolic 

attributes are deleted. 

The result looks quite satisfactory according to the accuracy achieved (more than 

90%). When attention is paid to details it is obvious that some types of attacks are not 

detected at all and attacks that are misclassified are mostly detected as normal 

connections.  

The next dataset used for training of the system is one of the NSL-KDD datasets [38] 

with 125974 samples. The same type of cleaning and classification is applied. After 

processing, a few samples are discarded. The resulting number is 125941. Overall 

accuracy is 87.84%. The confusion matrix for this case is presented in Table 11. 
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Table 11 Confusion matrix for the cleaned and classified NSL-KDD datasets (16 

clusters) 

 

The same problem appears as in case of usage of the original dataset. Good prediction 

accuracy is achieved for normal connections, DoS and probe. R2L and U2R are again 

not detected. R2L and U2R attacks, that are misclassified, are mostly detected as 

normal connections. 

In the next iteration, symbolic values of attributes in the NSL-KDD database are 

replaced by numbers so that all attributes can be used in Fuzzy calculations. Resulting 

accuracy for the above dataset with all 41 attributes included is 86.36%. It is almost 

equivalent to the one achieved previously. The Confusion matrix for this case is 

illustrated in Table 12. 

Table 12 Confusion matrix for the cleaned and classified NSL-KDD datasets (16 

clusters) – symbolic attributes included in calculations 

Truth 

P
re

d
ic

te
d

 

 normal dos probe r2l u2r Total 

normal 59458 1402 537 863 44 62304 

dos 4386 44064 5864 86 6 54406 

probe 3499 443 5241 46 2 9231 

r2l 0 0 0 0 0 0 

u2r 0 0 0 0 0 0 

total 67343 45909 11642 995 52 125941 

 

The advantage of this approach is that less misclassified attacks are detected as 

normal connections. When the NSL-KDD database is classified only into normal and 

 Truth 
P

re
d

ic
te

d
 

 normal dos probe r2l u2r Total 

normal 61746 2173 951 916 44 65830 

dos 2242 41924 3729 39 3 47937 

probe 3355 1812 6962 40 5 12174 

r2l 0 0 0 0 0 0 

u2r 0 0 0 0 0 0 

total 67343 45909 11642 995 52 125941 
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attack, the accuracy is increased to 92.05%. It turns out that the behavior of this 

database is the same as in the case of the original KDD CUP ’99 10% database. 

7.3. ANALYSIS OF TWO SPECIFIC GROUPS OF ATTACKS 

Normal connections and two major groups of attacks with large number of samples, 

DoS and Probe, are successfully detected in the previously presented calculations. 

Because of the large number of data, these groups raise the percentage of the accuracy 

of the result. The problem arises in two major attack groups, R2L and U2R, that have 

disproportional number of samples compared to the other groups. The problem arises 

for both datasets. 

In order to process more training data related to these two attack groups, the original 

KDD CUP ’99 dataset is analyzed. The idea is to isolate all corresponding records and 

add them to the original KDD CUP ’99 10% dataset. It turns out that the original 

dataset has only 52 U2R records which are already presented in 10% dataset. The 

same is found out regarding R2L records. The original dataset contains 2183 records, 

but after cleaning of duplicates and incomplete data, the number is lowered to 999 

records which are present in 10% dataset. An overview is presented in Table 13. This 

situation represents a limitation of input data since it is not possible to process 

additional data and try to increase prediction accuracy of the two specific types of 

attacks. 

Table 13 Comparison of specific types of attack between the original KDD Cup ’99 

and the 10% KDD Cup ’99 datasets 

 Before preprocessing After preprocessing 

KDD Cup ’99  10% KDD Cup ’99  KDD Cup ’99  10% KDD Cup ’99  

r2l 2183 1231 999 999 

u2l 52 52 52 52 

 

The solution for the problem of attacks’ detection coming from groups with small 

number of samples may be in the selection of appropriate continuous attributes. The 

analysis is carried out in such a way that the attributes belonging to a particular group 

are ejected from the calculation and the solution is tested. The goal is to obtain 

knowledge by each iteration. “Trial and error” learning method is repeated until 

improvement is reached. The confusion matrix from one of these tests is presented in 

Table 14. 
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Table 14 Confusion matrix for the cleaned and classified KDD CUP ‘99 10% dataset 

with 24 attributes are included in the calculation (attributes from  

Table 4 excluded) 

Truth 
P

re
d

ic
te

d
 

 normal dos probe r2l u2r total 

normal 75432 13 50 96 9 75600 

dos 9227 52895 840 534 18 63514 

probe 3034 1664 1240 63 24 6025 

r2l 139 0 0 306 1 446 

u2r 0 0 0 0 0 0 

total 87832 54572 2130 999 52 145585 

 

The attributes presented in  

Table 4 are excluded from calculations. The reason for this lies in data analysis before 

it is pushed to the FIS but after all preprocessing is done. 75956 of total 125941 

records have none of these attributes defined, which represents 60.31%. 46011 of total 

125941 records have one of these attributes defined, which represents 36.53%. 

According to this information, it is assumed that this attribute group could be 

excluded in further steps. Table 15 shows the frequency of occurrence for each of 13 

parameters of the group. 
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Table 15 Frequency of occurrence for attributes belonging to the group in Table 5 

Number of defined attributes Number of records Share (%) 

none 75956 60.311 

1 46011 36.534 

2 1572 1,248 

3 2236 1.775 

4 55 0.044 

5 40 0.032 

6 61 0.048 

7 7 0.006 

8 3 0.002 

9 0 0.000 

10 0 0.000 

11 0 0.000 

12 0 0.000 

13 0 0.000 

 

The overall accuracy of the test presented in Table 14 is 90.52%. The accuracy 

increases with the increase of cluster number. Once again, an increase in accuracy is 

achieved due to an increase of correctly detected groups with a large number of 

samples but, as illustrated in Table 14, approximately 30% of attacks belonging to the 

R2L group are correctly detected. Approximately 60% is detected as other groups of 

attacks and only 10% is detected as normal connections. The U2R group is not 

detected with this selection of attributes. This leads to the conclusion that more 

detailed attribute analysis may lead to an increase of classification rate of R2L and 

even U2R. 
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Network intrusion detection systems become important because the number of 

intrusion incidents has been increasing. Although current systems can offer a certain 

level of protection, they do show vulnerabilities in process of detecting novel attacks, 

which leads to an unacceptable level of false alarms rate. Therefore, the proposed 

framework based on Fuzzy decision-making module and Fuzzy C-Means algorithm 

represents an additional approach for detection of various types of network intrusions.  

The records from the KDD Cup ‘99 dataset are used as a main source of data for 

training and testing. Additionally, in a phase of testing the NSL-KDD dataset is used.  

The best achieved overall performance is 94.28%. The result is recorded when 16 

clusters and 5 groups (normal and 4 types of attack) are defined. The conclusion is 

that normal and DoS records contribute most to the achieved result since prediction 

rate for both groups is above 95%. Two types of attacks, R2L and U2R, are not 

detected at all. Nevertheless, the limited number of samples in the dataset related to 

R2L and U2R should be taken into account.  

The overall performance of 93.82% is achieved when 4 clusters and 2 groups (normal 

and attack) are defined. Similar to the previous case, normal and DoS records make 

the biggest contribution to the overall result.  

After detailed testing and analysis of different test scenarios and setups, it can be 

concluded that the number of training records has a great influence on prediction 

accuracy. In other words, the more data is used as input, the more precise is prediction 

accuracy. Based on the given analysis, it could be said that this system can achieve a 

solid performance when working on big data.  

It is important to emphasize that the attribute analysis process should be paid a great 

attention to because by filtering them, prediction accuracy can be drastically 

improved. This is proven when specific filtering of attributes is applied, which 

resulted in the improvement of prediction accuracy for R2L (approximately 30%).  

CONCLUSION 
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To conclude, this thesis contributes to the topic of intrusion detection, while at the 

same time it opens certain new questions for further research. First of all, additional 

samples related to R2L and U2R should be simulated and added to the existing 

datasets. Besides that, the process of analysis of all attributes and determination of 

their correlation should be treated in more detail. It can lead to determination of the 

most relevant attributes which may result in significant improvement of classification 

rate. Last but not least, the classification rate may also be improved by tuning 

membership function and Fuzzy rules which may enable capturing new types of 

network incidents more precisely.  
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Below presented documentation is for KDD CUP ’99 10% dataset. For other datasets 

changes were applied to kddcup_analysis.m before execution. 

 
Analysis of symbolic attributes of original data 

 
Normal - attacks 

back. 2203 
buffer_overflow. 30 
ftp_write. 8 
guess_passwd. 53 
imap. 12 
ipsweep. 1247 
land. 21 
loadmodule. 9 
multihop. 7 
neptune. 107201 
nmap. 231 
normal. 97278 
perl. 3 
phf. 4 
pod. 264 
portsweep. 1040 
rootkit. 10 
satan. 1589 
smurf. 280790 
spy. 2 
teardrop. 979 
warezclient. 1020 
warezmaster. 20 
 

Type of the protocol, e.g. tcp, udp, etc. 

icmp 283602 
tcp 190065 
udp 20354 
 

Network service on the destination, e.g., http, telnet, etc. 

IRC 43 
X11 11 
Z39_50 92 
auth 328 
bgp 106 
courier 108 
csnet_ns 126 
ctf 97 

APPENDIX A  

TESTING DOCUMENTATION 



54 

 

daytime 103 
discard 116 
domain 116 
domain_u 5863 
echo 112 
eco_i 1642 
ecr_i 281400 
efs 103 
exec 99 
finger 670 
ftp 798 
ftp_data 4721 
gopher 117 
hostnames 104 
http 64293 
http_443 99 
imap4 117 
iso_tsap 115 
klogin 106 
kshell 98 
ldap 101 
link 102 
login 104 
mtp 107 
name 98 
netbios_dgm 99 
netbios_ns 102 
netbios_ssn 107 
netstat 95 
nnsp 105 
nntp 108 
ntp_u 380 
other 7237 
pm_dump 1 
pop_2 101 
pop_3 202 
printer 109 
private 110893 
red_i 1 
remote_job 120 
rje 111 
shell 112 
smtp 9723 
sql_net 110 
ssh 105 
sunrpc 107 
supdup 105 
systat 115 
telnet 513 
tftp_u 1 
tim_i 7 
time 157 
urh_i 14 
urp_i 538 
uucp 106 
uucp_path 106 
vmnet 106 



55 

 

whois 110 
 

Normal or error status of the connection 

OTH 8 
REJ 26875 
RSTO 579 
RSTOS0 11 
RSTR 903 
S0 87007 
S1 57 
S2 24 
S3 10 
SF 378440 
SH 107 
 

land - 1 if connection is from/to the same host/port 0 otherwise 

0 493999 
1 22 

 
1 if successfully logged in 0 otherwise 

0 420784 
1 73237 

 
1 if root shell is obtained 0 otherwise 

0 493966 
1 55 

 
1 if "su root" command attempted 0 otherwise 

0 494009 
1 6 
2 6 

 
1 if the login belongs to the "host" list 0 otherwise 

0 494021 
 
1 if the login is guest login 0 otherwise 

0 493336 
1 685 

 
* Count how many times each group of attack appears in original data 
and plot graph (values in descendant order)... 
 
Analysis of symbolic attributes after duplicates were removed 

 
Normal - attacks 

back. 968 
buffer_overflow. 30 
ftp_write. 8 
guess_passwd. 53 
imap. 12 
ipsweep. 651 
land. 19 
loadmodule. 9 
multihop. 7 
neptune. 51820 
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nmap. 158 
normal. 87832 
perl. 3 
phf. 4 
pod. 206 
portsweep. 416 
rootkit. 10 
satan. 906 
smurf. 641 
spy. 2 
teardrop. 918 
warezclient. 893 
warezmaster. 20 
 

Type of the protocol, e.g. tcp, udp, etc. 

icmp 2406 
tcp 130913 
udp 12267 

 
Network service on the destination, e.g., http, telnet, etc. 

IRC 43 
X11 11 
Z39_50 91 
auth 328 
bgp 104 
courier 108 
csnet_ns 126 
ctf 97 
daytime 103 
discard 116 
domain 114 
domain_u 5425 
echo 112 
eco_i 916 
ecr_i 1027 
efs 101 
exec 98 
finger 668 
ftp 798 
ftp_data 4592 
gopher 117 
hostnames 103 
http 62054 
http_443 99 
imap4 117 
iso_tsap 115 
klogin 106 
kshell 98 
ldap 101 
link 102 
login 103 
mtp 107 
name 98 
netbios_dgm 98 
netbios_ns 102 
netbios_ssn 107 
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netstat 95 
nnsp 105 
nntp 108 
ntp_u 290 
other 4769 
pm_dump 1 
pop_2 101 
pop_3 200 
printer 108 
private 49057 
red_i 1 
remote_job 120 
rje 111 
shell 111 
smtp 9721 
sql_net 110 
ssh 105 
sunrpc 107 
supdup 105 
systat 115 
telnet 512 
tftp_u 1 
tim_i 5 
time 139 
urh_i 14 
urp_i 443 
uucp 105 
uucp_path 106 
vmnet 106 
whois 110 

 
Normal or error status of the connection 

OTH 7 
REJ 14712 
RSTO 569 
RSTOS0 11 
RSTR 425 
S0 42278 
S1 57 
S2 24 
S3 10 
SF 87459 
SH 34 

 
land - 1 if connection is from/to the same host/port 0 otherwise 

0 145566 
1 20 

 
1 if successfully logged in 0 otherwise 

0 74032 
1 71554 
 

1 if root shell is obtained 0 otherwise 

0 145531 
1 55 
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1 if "su root" command attempted 0 otherwise 

0 145574 
1 6 
2 6 
 

1 if the login belongs to the "host" list 0 otherwise 

0 145586 
 

1 if the login is guest login 0 otherwise 

0 144901 
1 685 
 

* Count how many times each group of attack appears in data after cleaning 
and plot graph (values in desendant order)... 
 
Individual attacks compared to normal data 

normal = 87832 
attack = 57753 

 
Generate fuzzy inference system (FIS)... 
Iteration count = 1, obj. fcn = 472618.048943 
Iteration count = 2, obj. fcn = 355638.303479 
Iteration count = 3, obj. fcn = 355607.243265 
Iteration count = 4, obj. fcn = 355398.905748 
Iteration count = 5, obj. fcn = 354007.783208 
Iteration count = 6, obj. fcn = 345187.694169 
Iteration count = 7, obj. fcn = 303310.645801 
Iteration count = 8, obj. fcn = 230586.177592 
Iteration count = 9, obj. fcn = 202604.601890 
Iteration count = 10, obj. fcn = 187861.145303 
Iteration count = 11, obj. fcn = 173084.885252 
Iteration count = 12, obj. fcn = 158127.450175 
Iteration count = 13, obj. fcn = 150796.932600 
Iteration count = 14, obj. fcn = 147799.246684 
Iteration count = 15, obj. fcn = 145815.380628 
Iteration count = 16, obj. fcn = 143599.500727 
Iteration count = 17, obj. fcn = 139406.425212 
Iteration count = 18, obj. fcn = 132455.630481 
Iteration count = 19, obj. fcn = 124493.216022 
Iteration count = 20, obj. fcn = 118235.245152 
Iteration count = 21, obj. fcn = 114411.124282 
Iteration count = 22, obj. fcn = 109075.032389 
Iteration count = 23, obj. fcn = 105648.342882 
Iteration count = 24, obj. fcn = 105366.125478 
Iteration count = 25, obj. fcn = 105353.532887 
Iteration count = 26, obj. fcn = 105351.090722 
Iteration count = 27, obj. fcn = 105349.963688 
Iteration count = 28, obj. fcn = 105349.321548 
Iteration count = 29, obj. fcn = 105348.929933 
Iteration count = 30, obj. fcn = 105348.684665 
Iteration count = 31, obj. fcn = 105348.529400 
Iteration count = 32, obj. fcn = 105348.430686 
Iteration count = 33, obj. fcn = 105348.367820 
Iteration count = 34, obj. fcn = 105348.327757 
Iteration count = 35, obj. fcn = 105348.302220 
Iteration count = 36, obj. fcn = 105348.285941 
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Iteration count = 37, obj. fcn = 105348.275565 
Iteration count = 38, obj. fcn = 105348.268950 
Iteration count = 39, obj. fcn = 105348.264734 
Iteration count = 40, obj. fcn = 105348.262047 
Iteration count = 41, obj. fcn = 105348.260334 
Iteration count = 42, obj. fcn = 105348.259242 
Iteration count = 43, obj. fcn = 105348.258547 
Iteration count = 44, obj. fcn = 105348.258103 
Iteration count = 45, obj. fcn = 105348.257821 
Iteration count = 46, obj. fcn = 105348.257640 
Iteration count = 47, obj. fcn = 105348.257526 
Iteration count = 48, obj. fcn = 105348.257452 
Iteration count = 49, obj. fcn = 105348.257406 
Iteration count = 50, obj. fcn = 105348.257376 
Iteration count = 51, obj. fcn = 105348.257357 
Iteration count = 52, obj. fcn = 105348.257345 
Iteration count = 53, obj. fcn = 105348.257337 
 
Saving fuzzy C-means clustering results 
 
Saving fuzzy inference system (FIS) to file 
>> 
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For kddcup_analysis.m dataset must be organized as original KDD CUP ’99 10% 

dataset. For other datasets changes must be applied to code or to dataset. 
 
close all; 
clear 
clc 
 
%% input/output 
% name of input and output files 
tableName = 'kddcup.data_10_percent_corrected.txt'; 
uniqueTableName = 'T_unique.dat'; 
fcmOut = 'out.dat'; 
fisOut = 'myfis.fis'; 
 
% number of clusters (0 if subclustering) 
numClast = 8; 
 
% if attacks are grouped in four groups group = 4 if in normal-attack group = 2 
group = 4; 
 
% selection of attributes - only continuous attributes 
attributesName = {... 

'dur', ... 
'src_bytes', ... 
'dst_bytes', ... 
'wrong_fragment', ... 
'urgent', ... 
'hot', ... 
'num_failed_logins', ... 
'num_compromised', ... 
'root_shell', ... 
'num_root', ... 
'num_file_creations', ... 
'num_shells', ... 
'num_access_files', ... 
'num_outbound_cmds', ... 
'count', ... 
'srv_count', ... 
'serror_rate', ... 
'srv_serror_rate', ... 
'rerror_rate', ... 
'srv_rerror_rate', ... 

APPENDIX B  

SOURCE CODE 
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'same_srv_rate', ... 
'diff_srv_rate', ... 
'srv_diff_host_rate', ... 
'dst_host_count', ... 
'dst_host_srv_count', ... 
'dst_host_same_srv_rate', ... 
'dst_host_diff_srv_rate', ... 
'dst_host_same_src_port_rate', ... 
'dst_host_srv_diff_host_rate', ... 
'dst_host_serror_rate', ... 
'dst_host_srv_serror_rate', ... 
'dst_host_rerror_rate', ... 
'dst_host_srv_rerror_rate'... 
'label'}; 

 
%% analysis KDD cup data and generate cleaned table 
kddcup_analysis(tableName, group, uniqueTableName); 
 
%% Generate fuzzy inference system (FIS) 
disp(' ') 
disp('Generate fuzzy inference system (FIS)...') 
[out, myfis] = kddcup_fis(uniqueTableName, attributesName, numClast); 
 
% display results 
disp(' ') 
disp('Saving fuzzy C-means clustering results') 
save(fcmOut,'out','-ascii'); 
disp(' ') 
disp('Saving fuzzy inference system (FIS) to file') 
writefis(myfis,fisOut); 

% calculate and print confusion matrix 
if group == 4 
    conf(5); 
else 
    conf(2); 
end 
 

function [] = kddcup_analysis(filename, group, uniqueTableName) 
% import data 
T = readtable(filename); 
 
%% analysis of symbolic attributes 
disp(' '); 
disp(' Analysis of symbolic attributes of original data'); 
disp('------------------------------------------------------------------'); 
n_a = categorical(T.normal_attack); 
disp(' '); 
disp(' Normal - attacks'); 
disp('------------------------------------------------------------------'); 
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summary(n_a); 
T.protocol_type = categorical(T.protocol_type); 
disp(' '); 
disp(' Type of the protocol, e.g. tcp, udp, etc.'); 
disp('------------------------------------------------------------------'); 
summary(T.protocol_type); 
T.service = categorical(T.service); 
disp(' '); 
disp(' Network service on the destination, e.g., http, telnet, etc.'); 
disp('------------------------------------------------------------------'); 
summary(T.service); 
T.flag = categorical(T.flag); 
disp(' '); 
disp(' Normal or error status of the connection'); 
disp('------------------------------------------------------------------'); 
summary(T.flag); 
T.land = categorical(T.land); 
disp(' '); 
disp(' land - 1 if connection is from/to the same host/port 0 otherwise '); 
disp('------------------------------------------------------------------'); 
summary(T.land); 
T.logged_in = categorical(T.logged_in); 
disp(' '); 
disp(' 1 if successfully logged in 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T.logged_in); 
T.root_shell = categorical(T.root_shell); 
disp(' '); 
disp(' 1 if root shell is obtained 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T.root_shell); 
T.su_attempted = categorical(T.su_attempted); 
disp(' '); 
disp(' 1 if "su root" command attempted 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T.su_attempted); 
T.is_host_login = categorical(T.is_host_login); 
disp(' '); 
disp(' 1 if the login belongs to the "host" list 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T.is_host_login); 
T.is_guest_login = categorical(T.is_guest_login); 
disp(' '); 
disp(' 1 if the login is guest login 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T.is_guest_login); 
 
%% Count how many times each group of attack appears in original data and plot graph 
figure 
subplot(1,2,1) 
disp(' ') 
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disp('* Count how many times each group of attack appears in original data'); 
disp(' and plot graph (values in desendant order)...'); 
tmp(:,1) = unique(T.normal_attack,'stable'); 
tmp(:,2) = cellfun(@(x) sum(ismember(T.normal_attack,x)),tmp(:,1),'un',0); 
tmp = sortrows(tmp, 2,'descend'); 
bar(1:23,cell2mat(tmp(:,2))); 
set(gca,'TickLabelInterpreter', 'none'); 
set(gca,'yscale','linear') 
ax = gca; 
ax.XTick = 1:23; 
ax.XTickLabels = {string(tmp(:,1))}; 
ax.XTickLabelRotation = 45; 
ylabel('number'); 
axis tight; 
grid; 
subplot(1,2,2) 
bar(4:23,cell2mat(tmp(4:23,2))); 
set(gca,'TickLabelInterpreter', 'none'); 
set(gca,'yscale','linear') 
ax = gca; 
ax.XTick = 4:23; 
ax.XTickLabels = {string(tmp(4:23,1))}; 
ax.XTickLabelRotation = 45; 
ylabel('number'); 
axis tight; 
grid; 
 
%% cleaning duplicates I 
T_unique = unique(T); 
 
% analysis of symbolic attributes 
disp(' '); 
disp(' Analysis of symbolic attributes after duplicates were removed'); 
disp('------------------------------------------------------------------'); 
n_a = categorical(T_unique.normal_attack); 
disp(' '); 
disp(' Normal - attacks'); 
disp('------------------------------------------------------------------'); 
summary(n_a); 
T_unique.protocol_type = categorical(T_unique.protocol_type); 
disp(' '); 
disp(' Type of the protocol, e.g. tcp, udp, etc.'); 
disp('------------------------------------------------------------------'); 
summary(T_unique.protocol_type); 
T_unique.service = categorical(T_unique.service); 
disp(' '); 
disp(' Network service on the destination, e.g., http, telnet, etc.'); 
disp('------------------------------------------------------------------'); 
summary(T_unique.service); 
T_unique.flag = categorical(T_unique.flag); 
disp(' '); 
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disp(' Normal or error status of the connection'); 
disp('------------------------------------------------------------------'); 
summary(T_unique.flag); 
T_unique.land = categorical(T_unique.land); 
disp(' '); 
disp(' land - 1 if connection is from/to the same host/port 0 otherwise '); 
disp('------------------------------------------------------------------'); 
summary(T_unique.land); 
T_unique.logged_in = categorical(T_unique.logged_in); 
disp(' '); 
disp(' 1 if successfully logged in 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T_unique.logged_in); 
T_unique.root_shell = categorical(T_unique.root_shell); 
disp(' '); 
disp(' 1 if root shell is obtained 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T_unique.root_shell); 
T_unique.su_attempted = categorical(T_unique.su_attempted); 
disp(' '); 
disp(' 1 if "su root" command attempted 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T_unique.su_attempted); 
T_unique.is_host_login = categorical(T_unique.is_host_login); 
disp(' '); 
disp(' 1 if the login belongs to the "host" list 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T_unique.is_host_login); 
T_unique.is_guest_login = categorical(T_unique.is_guest_login); 
disp(' '); 
disp(' 1 if the login is guest login 0 otherwise'); 
disp('------------------------------------------------------------------'); 
summary(T_unique.is_guest_login); 
 
%% Count how many times each group of attack appears in data after cleaning and plot 
graph 
figure 
subplot(1,2,1) 
disp(' ') 
disp('* Count how many times each group of attack appears in data after cleaning'); 
disp(' and plot graph (values in desendant order)...'); 
tmp(:,1) = unique(T_unique.normal_attack,'stable'); 
tmp(:,2) = cellfun(@(x) sum(ismember(T_unique.normal_attack,x)),tmp(:,1),'un',0); 
tmp = sortrows(tmp, 2,'descend'); 
bar(1:23,cell2mat(tmp(:,2))); 
set(gca,'TickLabelInterpreter', 'none'); 
set(gca,'yscale','linear') 
ax = gca; 
ax.XTick = 1:23; 
ax.XTickLabels = {string(tmp(:,1))}; 
ax.XTickLabelRotation = 45; 
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ylabel('number'); 
axis tight; 
grid; 
subplot(1,2,2) 
bar(3:23,cell2mat(tmp(3:23,2))); 
set(gca,'TickLabelInterpreter', 'none'); 
set(gca,'yscale','linear') 
ax = gca; 
ax.XTick = 3:23; 
ax.XTickLabels = {string(tmp(3:23,1))}; 
ax.XTickLabelRotation = 45; 
ylabel('number'); 
axis tight; 
grid; 
%% 
label = zeros(height(T_unique),1); 
if (group == 4) 

for i = 1:height(T_unique) 
if(isequal(T_unique.normal_attack{i},'normal.')) 

label(i,1) = 1; 
elseif(isequal(T_unique.normal_attack{i},'back.') || ... 

isequal(T_unique.normal_attack{i},'land.') || ... 
isequal(T_unique.normal_attack{i},'neptune.') || ... 
isequal(T_unique.normal_attack{i},'pod.') || ... 
isequal(T_unique.normal_attack{i},'smurf.') || ... 
isequal(T_unique.normal_attack{i},'teardrop.')) 
label(i,1) = 2; 

elseif(isequal(T_unique.normal_attack{i},'ipsweep.') || ... 
isequal(T_unique.normal_attack{i},'nmap.') || ... 
isequal(T_unique.normal_attack{i},'portsweep.') || ... 
isequal(T_unique.normal_attack{i},'satan.')) 
label(i,1) = 3; 

elseif(isequal(T_unique.normal_attack{i},'buffer_overflow.') || ... 
isequal(T_unique.normal_attack{i},'loadmodule.') || ... 
isequal(T_unique.normal_attack{i},'perl.') || ... 
isequal(T_unique.normal_attack{i},'rootkit.')) 
label(i,1) = 5; 

else 
label(i,1) = 4; 

end 
end 
T1 = table(label); 
T_unique.normal_attack = []; 
T_unique = [T_unique T1]; 

 
%% cleaning duplicates II 
T_unique2 = unique(T_unique); 

 
%% histogram normal - attacks 
figure 
C = categorical(T_unique2.label,[1 2 3 4 5],{'normal','dos','probe','r2l','u2r'}); 
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h = histogram(C,'BarWidth',0.7); 
ylabel('number'); 
grid 
disp(' '); 
disp('Individual attacks compared to normal data'); 
disp('------------------------------------------------------------------'); 
disp(['normal = ', num2str(h.Values(1))]); 
disp(['dos = ', num2str(h.Values(2))]); 
disp(['probe = ', num2str(h.Values(3))]); 
disp(['r2l = ', num2str(h.Values(4))]); 
disp(['u2r = ', num2str(h.Values(5))]); 

else 
for i = 1:height(T_unique) 

if(isequal(T_unique.normal_attack{i},'normal.')) 
label(i,1) = 1; 

else 
label(i,1) = 2; 

end 
end 
T1 = table(label); 
T_unique.normal_attack = []; 
T_unique = [T_unique T1]; 

 
%% cleaning duplicates II 
T_unique2 = unique(T_unique); 

 
%% histogram normal - attacks 
figure 
C = categorical(T_unique2.label,[1 2],{'normal','attack'}); 
h = histogram(C,'BarWidth',0.7); 
ylabel('number'); 
grid 
disp(' '); 
disp('Individual attacks compared to normal data'); 
disp('------------------------------------------------------------------'); 
disp(['normal = ', num2str(h.Values(1))]); 
disp(['attack = ', num2str(h.Values(2))]); 

end 
 
writetable(T_unique2,uniqueTableName); 
end 

 

function [out, correl, myfis] = kddcup_fis(tablename, attribute_name, numClast) 
% training data input 
T = readtable(tablename); 
train = T{:, attribute_name}; 
trainRes = train(:,end); 
trainData = train(:,1:end-1); 
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% training data normalization 
[trainDataMap, ~] = mapstd(trainData); 
[trainResMap, trainRes_ps] = mapstd(trainRes); 
 
%% generate fuzzy inference system structure from data with genfis 
 
% FCM clastering - clastering type Mamdani 
if (numClast ~= 0) 

opt = genfisOptions('FCMClustering','FISType','mamdani','NumClusters',numClast); 
else 

opt = genfisOptions('FCMClustering','FISType','mamdani'); 
end 
myfis = genfis(trainDataMap,trainResMap,opt); 
 
% starting fuzzy logic designer 
fuzzyLogicDesigner(myfis); 
 
%% evaluation of fis 
trainOut = evalfis(trainDataMap,myfis); 
 
% convert training data output back into the original units 
out11 = mapstd('reverse',trainOut,trainRes_ps); 
out12 = mapstd('reverse',trainResMap,trainRes_ps); 
tmp1 = 0; tmp2 = 0; tmp3 = 0; 
for i = 1:length(out11) 

tmp1 = tmp1 + (out11(i,1) - mean(out11))*(out12(i,1) - mean(out12)); 
tmp2 = tmp2 + (out11(i,1)-mean(out11))^2; 
tmp3 = tmp3 + (out12(i,1)-mean(out12))^2; 

end 
correl = tmp1 / sqrt(tmp2 * tmp3); 
 
% training result and original data (out11 and out12) 
out = [out11 out12]; 
end 

 

 
function [out] = kddcup_test(tablename, attribute_name, myfisName) 
% training data input 
T = readtable(tablename); 
test = T{:, attribute_name}; 
myfis = readfis(myfisName); 
testRes = test(:,end); 
testData = test(:,1:end-1); 
 
% test data normalization 
[testDataMap, ~] = mapstd(testData); 
[testResMap, testRes_ps] = mapstd(testRes); 
 
%% evaluation of fis with genfis results 
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testOut = evalfis(testDataMap,myfis); 
 
% convert testing data output back into the original units 
out11 = mapstd('reverse',testOut,testRes_ps); 
out12 = mapstd('reverse',testResMap,testRes_ps); 
 
% testing result and original data (out11 and out12) 
out = [out11 out12]; 

end 

 

function [] = conf(n) 
load('out.dat'); 
outputs = round(out(:,1)); 
target = out(:,2); 
  
% calculate confusion matrix 
m = n + 1; 
confm = zeros(m,m); 
for i = 1:length(outputs) 
    confm(outputs(i),target(i)) = confm(outputs(i),target(i)) + 1; 
    confm(m,target(i)) = confm(m,target(i)) + 1; 
end 
  
% calculate totals and accuracy 
accu = 0; 
for i = 1:n 
    for j = 1:n 
        confm(i,m) = confm(i,m) + confm(i,j); 
    end 
    confm(m,m) = confm(m,m) + confm(i,m); 
    accu = accu + confm(i,i); 
end 
accu = 100*accu/confm(m,m); 
  
% display result for accuracy and confusion matrix 
disp(' ') 
disp(['overall accuracy = ' num2str(accu) '%']) 
disp(' ') 
disp('confusion matrix') 
disp(' ') 
disp(confm) 

 


