

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Scalability and Fault Tolerance of ABFT Methods for
Dense Matrix Multiplication“

verfasst von / submitted by

Svetoslav Inkolov, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 940

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Scientific Computing UG2002

Betreut von / Supervisor:

Univ.-Prof. Dipl.-Ing. Dr. Wilfried Gansterer, MSc.

Abstract

The idea of algorithm-based fault tolerance (ABFT) is not new, it has its origins in the
early ’80s. This technique is used in computations with matrices which form the basis
of many computationally-intensive tasks. As supercomputers consist of more and more
components, their overall complexity increases, and many challenges arise that need to
be handled. Therefore, the need for comprehensive fault detection and error correction
algorithms became increasingly important over the last few years.

This precarious situation is mainly due to loss of stability when many hardware com-
ponents come together in one system. In a small system or an average supercomputer,
hardware parts are reliable enough even over a long period of time (months/years). On
the other hand, current supercomputers (petaflop range) have tens of thousands of com-
putational nodes with a mean time to interrupt (MTTI) of about one day. If we expand
the calculations to a system at exaflop scale (next-gen supercomputers), this will eventuate
in an MTTI of about 1 hour. Since in exascale platforms, there can be millions of nodes,
the possibilities and scenarios of failure should be thoroughly tested before launching such
systems in reality. The focus of this thesis is to examine how efficient and reliable ABFT
methods can be implemented to work on dense matrix operations and to estimate their be-
havior towards exascale systems. This investigation is done by concentrating on the Local
ABFT method where a general matrix multiplication (GEMM) is performed and where it
is tested against insertions of bit flips during and after the GEMM. As an essential basis
for the results DPLASMA, a highly optimized library for distributed hybrid systems was
used. As an outcome, we have that a Local ABFT algorithm should be used in future
supercomputers.

Another part of this thesis is concentrating on simulators. Nowadays exist simulators
which can represent >100,000 of computational nodes with several million processors on
a system which consists only of a few dozens of nodes. Of course, not all simulators are
capable of simulating all possible situations, so the study focuses on the summary of their
benefits and drawbacks in high-performance computing (HPC) context.

Zusammenfassung

Die Idee der „algorithm-based fault tolerance“ (ABFT) ist nicht neu, sie hat ihren Ursprung
in den frühen 80er Jahren. Diese Technik wird bei Berechnungen mit Matrizen angewendet,
welche die Grundlage für vieler rechenintensive Aufgaben bilden. Da Supercomputer aus im-
mer mehr Komponenten bestehen, nimmt ihre Komplexität insgesamt zu, und es entstehen
viele Herausforderungen die bewältigt werden müssen. Daher wurde in den letzten Jahren
die Notwendigkeit von umfassenden Fehlererkennungs- und Fehlerkorrekturalgorithmen im-
mer wichtiger.

Diese prekäre Situation ist hauptsächlich auf den Verlust der Stabilität, wenn viele Hard-
warekomponenten in einem System zusammenkommen, zurückzuführen. In einem kleinen
System oder einem durchschnittlichen Supercomputer sind Hardwareteile sogar über einen
langen Zeitraum (Monate / Jahre) zuverlässig genug. Auf der anderen Seite, besitzen ak-
tuelle Supercomputer (Petaflop-Bereich) Zehntausende von Rechenknoten, bei einer „mean
time to interrupt“ (MTTI) von etwa einem Tag. Wenn wir die Berechnungen auf ein Sys-
tem im Exaflop-Maßstab (Supercomputer der nächsten Generation) erweitern, würde das
in einer MTTI von etwa 1 Stunde resultieren. Da es in Exascale-Plattformen Millionen von
Knoten geben kann, sollten die Möglichkeiten und Szenarien eines Systemausfalls gründlich
getestet werden, bevor solche Systeme in der Realität gestartet werden. Der Fokus dieser
Arbeit liegt auf der Untersuchung, wie effizient und zuverlässig ABFT-Methoden für dicht
besetzte Matrizen implementiert werden können und ihr Verhalten gegenüber Exascale-
Systemen abzuschätzen. Diese Untersuchung wird durchgeführt indem man sich auf die
lokale ABFT-Methode konzentriert, bei der eine allgemeine Matrizenmultiplikation (MM)
durchgeführt wird und mit Einfügungen von Bitflips während und nach der MM überprüft
wird. Als wesentliche Grundlage für die Ergebnisse wurde DPLASMA, eine hochoptimierte
Bibliothek für verteilte Hybridsysteme verwendet. Als Ergebnis haben wir, dass ein lokaler
ABFT-Algorithmus in zukünftige Supercomputer verwendet werden sollte.

Ein weiterer Teil dieser Arbeit konzentriert sich auf Simulatoren. Heutzutage existieren
Simulatoren welche > 100.000 Rechenknoten mit mehreren Millionen Prozessoren, auf einem
System das nur aus ein paar Dutzend Knoten besteht, darstellen können. Natürlich sind
nicht alle Simulatoren in der Lage, alle möglichen Situationen zu simulieren, daher fokussiert
sich die Studie auf die Zusammenfassung ihrer Vor- und Nachteile im Zusammenhang mit
„High Performance Computing“ (HPC).

Contents

Abstract I

Zusammenfassung III

Table of Contents V

List of Figures IX

List of Tables XIII

List of Listings XV

1 Introduction 1

1.1 Objective . 1

1.2 Motivation . 1

1.3 Synopsis . 7

2 Related Work 11

2.1 The Beginnings of ABFT and the First Modifications 11

2.2 First Experiments on Systems with Multiple Processors 12

2.3 Different Detection and Correction . 12

2.3.1 Other Detection Methods . 12

2.3.2 Improved ABFT Detection and Correction 13

2.4 Outer Product Matrix Multiplication in combination with ABFT . . . 13

2.4.1 Experiments in ScaLAPACK . 13

2.4.2 Correction of Soft Errors On-The-Fly 14

2.5 Other ABFT Applications . 14
V

CONTENTS VI

2.5.1 ABFT in Cloud Computing . 14

2.5.2 ABFT in FPGAs and GPUs . 15

2.5.3 Blocked ABFT with Disk-Less Periodic Checkpointing 15

2.6 Comparison of Master Thesis to Other Works 16

3 Fault-Tolerant Methods 17

3.1 Errors, Faults, Fault Tolerance and Resilience 17

3.2 ABFT Technique . 21

3.3 ABFT Methods for Matrix Multiplication 24

3.3.1 Local ABFT . 26

3.3.2 Global ABFT . 27

3.3.3 Local vs Global ABFT . 29

3.4 Further Techniques used in HPC . 30

3.4.1 Checkpointing Techniques . 30

3.4.2 Composite Approach: ABFT & Checkpointing 35

3.4.3 Fault-Tolerant MPI Approaches 36

4 Simulators and other Tools in HPC 39

4.1 PDES Simulators . 39

4.1.1 X-Sim . 40

4.1.2 MuPI . 42

4.1.3 SST . 43

4.1.4 OMNeT++ . 44

4.2 Non-PDES Simulators . 45

4.2.1 Charm++ BigSim . 45

4.2.2 JCAS . 46

4.2.3 SimGrid . 47

4.2.4 GridSim . 47

4.2.5 DIMEMAS . 47

4.2.6 ns3 . 48

4.2.7 NetSim . 49

CONTENTS VII

4.3 Tools for Using in Combination with Simulators or as Assistance 49

4.3.1 PARAVER . 50

4.3.2 Vampir . 51

4.4 Summary of Simulators and Tools . 52

4.5 Towards Exascale Simulation . 54

4.5.1 Exaflop PDGEMM . 54

4.5.2 Simulators in Scientific Problems 57

4.6 Issues Using Simulators and HPC Libraries 59

5 Implementation 61

5.1 DPLASMA . 62

5.2 Local ABFT PDGEMM . 65

5.2.1 Structure . 66

5.2.2 Conditions . 67

5.2.3 Correction Algorithm . 68

5.2.4 Tolerance Value . 70

5.2.5 Local ABFT Space Analysis . 70

5.3 Fault Injector . 71

5.3.1 Spatial Data Distributions . 73

5.3.2 Temporal Data Distributions . 73

6 Experiments 75

6.1 Test Cases General . 77

6.1.1 Value Distributions . 77

6.1.2 No Errors Overhead . 81

6.1.3 Manual Sign Bit Flips . 83

6.2 Test Cases using Fault Injector . 85

6.2.1 Sign Bit Flips with Fault Injector 85

6.2.2 Bit Flips in Mantissa . 86

6.2.3 Bit Flips in Exponent . 88

6.2.4 Bit Flips Everywhere . 90

CONTENTS VIII

6.3 Conclusion to Bit Flips . 92

7 Conclusion 93

7.1 Future Work and Open Issues . 95

Appendices 99

A.1 Test Environment . 99

A.2 Extended Space Analysis Local ABFT 102

A.3 Project Files . 103

A.4 Software and Library Versions . 104

B.1 Glossary . 105

B.2 List of Acronyms . 109

Bibliography 111

List of Figures

1.1 Dennard scaling and evolution of processors [53] 4

1.2 Top 500 supercomputers performance development [100] 4

1.3 Error distribution for 3 processors with equally likely MTBF over a
period t [20] . 6

1.4 Error distribution of the platform for 3 processors over a period t [20] . 6

3.1 Tripartite graph and its decomposition to bipartite graphs for ABFT
systems . 23

3.2 Detection and correction in a Local ABFT approach on a (3×3)-process
grid in the final computed matrix Cf 27

3.3 Detection and correction using a Global ABFT variant on a (3 × 3)-
process grid in the final computed matrix Cf 28

3.4 Comparison of Local ABFT and Global ABFT for a (3× 3)-process grid 29

4.1 xSim architecture and design [64] . 41

4.2 SST algorithm scheme[141] . 43

4.3 Combination of the tools Paraver and Dimemas [27] 50

5.1 Evolution of Dense Linear Algebra legacy software libraries[50] 63

5.2 DPLASMA software stack [50] . 64

6.1 Different data distributions on various grids with fixed 200 sign flips
per node and relative 1-norm illustration 78

6.2 Different data distributions on various grids with fixed 200 sign flips
per node and verification of the correction time 79

6.3 Different data distributions on various grids with fixed 200 sign flips
per node and performance evaluation in GFlop/s 79

IX

LIST OF FIGURES X

6.4 Different data distributions on various grids with fixed 200 sign flips
per node total time comparison . 79

6.5 Different data distributions on various grids with fixed 200 sign flips
per node relative overhead compared to DPLASMA_dgemm 80

6.6 Comparing ABFT_PDGEMM to DPLASMA_dgemm when no faults
occurred during runtime measuring . 81

6.7 Comparing the ABFT matrix-matrix multiplication algorithm to the
DPLASMA_dgemm when no faults occurred with focus on relative
overhead . 82

6.8 ABFT_PDGEMM relevant time in seconds for various grids when no
faults are injected . 82

6.9 Relative 1-norm for various manual sign bit flips 83

6.10 Various number of sign flips per node for relative overhead in percent . 83

6.11 Time comparison with focus on the matrix size for various number of
sign flips per node . 84

6.12 Time comparison to the DPLASMA_dgemm routine for various num-
ber of sign flips per node with emphasis on the node size 84

6.13 Box plot for Fault Injector bit sign flips 85

6.14 Relative 1-norm of 5 independent test runs when using Fault Injector
for bit sign flips . 85

6.15 Comparing ABFT_PDGEMM to DPLASMA_dgemm when sign bit
flips are inserted on different grid sizes 86

6.16 Box plot for bit flips in the mantissa using the own-threaded Fault
Injector . 87

6.17 Relative 1-norm of 5 independent test runs when using Fault Injector
for bit flips in mantissa . 87

6.18 Relative overhead when bit flips are inserted in the mantissa for differ-
ent grid sizes . 87

6.19 IEEE 754 Double-precision floating-point format [143] 88

6.20 Example of a small matrix-matrix multiplication with fault injection
in the exponent on a (2× 2)-processor grid 88

6.21 Box plot for bit flips in the exponent using the Fault Injector 89

6.22 Relative 1-norm of 5 independent test runs when using Fault Injector
for bit flips in the exponent of a value 90

LIST OF FIGURES XI

6.23 Relative overhead when bit flips are inserted in the exponent for differ-
ent grid sizes . 90

6.24 Box plot for bit flips all over the bit mask using the Fault Injector . . . 91

6.25 Relative 1-norm of 5 independent test runs when using Fault Injector
for bit flips everywhere in the bit mask of a value 91

6.26 Relative overhead when bit flips are inserted truly randomly for differ-
ent grid sizes . 91

A.1 Repeal2 hardware topology from execution of lstopo from HWLOC
part 1 (NUMA-node 0-1) . 100

A.2 Repeal2 hardware topology from execution of lstopo from HWLOC
part 2 (NUMA-node 2-3) . 101

A.3 Local ABFT PDGEMM extended space analysis for # of elements and
of bytes plus regarding legend . 102

List of Tables

1.1 Towards Exascale Computing Roadmap [20, 53] 2

3.1 Errors, faults and failures in a system 17

3.2 Advantages and disadvantages of Local ABFT and Global ABFT . . . 30

3.3 Checkpointing techniques for HPC applications [74, 20, 21] 30

4.1 Summary of simulators and tools towards exascale 52

4.2 Summary of simulators and tools towards exascale continued 53

4.3 Minimum amount of RAM required for simulating an Exaflop machine
without communication and calculation overhead 55

4.4 Minimum amount of RAM required for simulating an Exaflop machine
(not fault-tolerant) . 56

4.5 Supercomputer and equipped physical RAM in terabyte [106] 56

4.6 Minimum amount of RAM required for simulating an Exaflop machine
(fault-tolerant version) . 57

5.1 Summary of DPLASMA’s capabilities [50] 62

5.2 Setting the Fault Injector with different MTBF 74

6.1 Verification of the tile size responsible for unusual behaviour 78

6.2 Summary of relevant values for matrix value data distribution [−1E4, 1E4] 80

6.3 Summary for overhead on a (10 × 10)-processor grid when no errors
occurred . 82

6.4 Correction time for various number of errors per node 84

A.1 Testing environment details . 99

A.2 Total system metrics . 99

XIII

LIST OF TABLES XIV

A.3 Summary and description of relevant project files 103

A.4 Summary and description of used libraries and packages 104

Listings

5.1 Matrix Matrix Multiplication using DPLASMA 65

5.2 Definition of Fault Injector . 72

6.1 Generator for uniformly distributed double precision values 75

6.2 How FLOPS for a DGEMM are defined and Gflop/s calculated 76

XV

Chapter 1

Introduction

1.1 Objective

This master thesis emphasise the problems occurring when trying to reach extreme-
scale computing platforms, especially in the high performance and scientific comput-
ing sector. The primary goal was to examine in this context algorithm-based fault
tolerance (ABFT-) methods deeply and provide additionally an overview of fault tol-
erance techniques and methods which can be used for High-Performance Computing
(HPC) purposes in supercomputers. Further, a proposal of which tools and methods
can act as a helping hand to the programmers and which are not so appropriate to
use towards exascale computing is shown. The results have been investigated using
the highly optimized library DPLASMA which stands for Distributed Parallel Lin-
ear Algebra Software for Multicore Architectures [18]. For producing plausible data,
a parallel double precision valued general matrix-matrix multiplication (PDGEMM)
with an embedded Local ABFT method was performed. Supplementary, different
types of errors were spatially and temporally inserted by two specific Fault Injectors
to inspect the fault tolerance of the algorithm. With this particular combination of
tools and methods, it was possible to investigate the advantages and the disadvantages
of ABFT methods for dense matrix operations thoroughly.

1.2 Motivation

When we look at supercomputing history, mainly when computational-intensive tasks
have to be performed, fault tolerance had always been playing an important role. The
first techniques used in this context were based on TMR (Triple Modular Redundancy)
[127, 3]. One of the first known fault-tolerant computer using TMR was SAPO (in
1950s), where its basic design was based on magnetic drums connected via relays, with

1

1.2. MOTIVATION 2

a voting method of memory error detection [3]. In general, the early efforts at fault-
tolerant designs were mainly focused on internal diagnosis by an operator/technician
doing monitoring and reacting to signals [114]. The actions which are usually taken
into account had mainly to do with replacing a module or a circuit card. Later efforts
showed that to be fully actual, the system had to be self-repairing and diagnosing
which leads to the N-modular redundancy technique [144].

On the other hand for the average home user, the components of a personal com-
puter are so resilient that there is usually no need for a data backup even over a long
period. This leads us to one of the crucial points in this master thesis which is how
long a PC component can remain without failures? Here especially pointing out to
the term MTBF (Mean Time Between Failure) of a single hardware component used
in such a way that no additional fault-tolerant technique is needed.

In a single PC, every hardware device has its term in where it is specified that no
failures should happen within this particular time window. An excellent and often
used example in this context is a hard disk. Let us assume that a hard drive has
an MTBF of around 100 years [126] so it might take up to 100 years before an error
occurs. It’s obvious that if such a situation is the case, the user of this PC with
this hard disk doesn’t have to bother or think neither of fault tolerance nor of some
error-tolerant techniques.

Systems 2009 2011 2016
(Sunway Tai-
huLight) [55]

2020
(may be 2023)

System peak 2 PFlop/s 20 PFlop/s 125.4
PFlop/s

1 EFlop/s

System memory 0.3 PB 1.6 PB 1.31 PB 32 - 64 PB
Node performance 125 GF/s 200 GF/s 3.06 TF/s 1.2 or 15 TF/s
Node memory BW 25 GB/s 40 GB/s 32 GB/s 200 - 400 GB/s
Node concurrency 12 cores 32 cores 260 cores O(1k)−O(10k)
Interconnect BW 1.5 GB/s 22 GB/s 16 GB/s 50 GB/s
System size(nodes) 18,700 100,000 40,960 O(100, 000) or

O(million)
Total concurrency 225,000 3,200,000 10,649,600 O(billion)
Storage 15 PB 30 PB 20 PB > 100 PB
IO 0.2 TB/s 2 TB/s ∼ 10 TB/s > 10 TB/s
MTTF 4 days 19 h 4 min. Few / day > 5 per / day
Power 6 MW ∼ 10 MW ∼ 15 MW ∼ 20 MW

Table 1.1: Towards Exascale Computing Roadmap [20, 53]

GB = Giga Bytes TB = Tera Bytes BW = Bandwidth PB = Peta Bytes
GF = Giga Flop/s TF = Tera Flop/s MW = Mega Watts

1.2. MOTIVATION 3

Supercomputers and other big servers usually have thousands or can even have millions
of components. In Table reftab:tow-exa-table, we can see the development of such
supercomputers over the last decade and what are the expectations from the next
generations’ system, the exascale machine (1018 Flop/s). First, when we take a look
at the system size row, we can see that in a current system we have a number of nodes
in the order of about 100k, whereas for an Exaflop machine O(million) is expected.
For the total concurrency row, we can see that for supercomputers in 2009 the total
number of components were about 200,000 and an exascale system will probably
have billions of parts. With this massive amount of devices in such a system, there
are also many other problems arising. Besides building of resilient hardware there are
among others software problems (redesigning of algorithms), machine design problems
(lightweight / hybrid machine) and optimizing the performance per watt which have
to be considered.

This whole situation has partly to do of course with work distribution and efficiency
but mainly with the fact that it is not possible just to make the programs faster, for
instance by raising the frequency of one component (speaking of CPUs). Although
Moore’s Law, that the number of transistors doubles approximately every two years
still holds, Dennard scaling with the assumption that voltage and current should be
commensurate to the linear dimensions of a semiconductor device was not the case
[53]. The crucial point was the power that has to be handled later on. As the power
is defined to be proportional to the frequency to the power of 3, so if we have a chip
of running at 3.0 GHz with 100 watts and want to double its hertz rate to 6.0 GHz
the power which has to be managed by the cooling will be of about 800 watts. Thus,
as a consequence, the power consumption will rise rapidly and secondly, the cooling
will fail. The power cost situation of frequency [53] nowadays looks like:

Power ∝ Voltage2 × Frequency (V 2F)

Frequency ∝ Voltage

Power ∝ Frequency3

(1.1)

Summarized we can say that we can gain 50 percent of performance by using a mul-
ticore architecture which consumes 20 % less power because the voltage and the
frequency is decreased.

For CPUs, the point where Dennard scaling could not meet its properties anymore
was in 2004 (Figure 1.1). From this moment on the current leakage depict more
significant challenges, and also causes the chip to heat up to a scale that can not
easily be handled with knowing cooling methods. The heat situation goes that far,
that if we take the last example of the 6.0 GHz from the point of Watts/cm2 the CPU

1.2. MOTIVATION 4

will create a heat dissipation compared to a rocket nozzle [93]. Thus today’s cooling
mechanisms have no chance to get rid of the overwhelming heat dissipation which will
occur when rising the clock of the processors even further. Therefore the multicore
era was introduced.

Dennard Scaling Over
Evolution of processors

1971 2003

Single-core Era

2004

2013

Multicore Era

Dennard scaling
broke

740 KHz
3.4 GHz 3.5 GHz

The primary reason cited for the breakdown is that at small sizes, current
leakage poses greater challenges, and also causes the chip to heat up,
which creates a threat of thermal runaway and therefore further increases
energy costs.

Figure 1.1: Dennard scaling and evolution of processors [53]

If we take a look at how supercomputers have developed over the past few decades,
we can observe that they are on the brink to reach the next ultimate level of computa-
tional power (Figure 1.2). For the exascale level, it is expected with high probability

Home (/) / Statistics (/statistics/) / Performance Development

PERFORMANCE DEVELOPMENT
Exponential growth of supercomputing power as recorded by the TOP500 list.

Note that you can zoom by holding the left mouse button over the charts. To reset to original chart, click

on the right mouse button.

Printable version

(

Printable version

(

Performance Development

Sum #1 #500

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
100 MFlop/s

1 GFlop/s

10 GFlop/s

100 GFlop/s

1 TFlop/s

10 TFlop/s

100 TFlop/s

1 PFlop/s

10 PFlop/s

100 PFlop/s

1 EFlop/s

10 EFlop/s

Lists

P
er
fo
rm
an
ce

Projected Performance Development

Sum #1 #500

1995 2000 2005 2010 2015 2020
100 MFlop/s

1 GFlop/s

10 GFlop/s

100 GFlop/s

1 TFlop/s

10 TFlop/s

100 TFlop/s

1 PFlop/s

10 PFlop/s

100 PFlop/s

1 EFlop/s

10 EFlop/s

Lists

P
er
fo
rm
an
ce

(/lists/2017/06)

(/resources/top-systems/)(/statistics/)

Figure 1.2: Top 500 supercomputers performance development [100]

1.2. MOTIVATION 5

that the built-in components which have to be controlled here are going in the range
of millions or billions. In Table 1.1 we can further see in which order the hardware
have to change and with which other challenges the future engineers will have to get
rid of, making the situation even more exhaustive and complicated. Figure 1.2 shows
the floating point operations performance of the slowest supercomputer (#500), the
fastest supercomputer (#1) and the summed up performance in the corresponding
year. From this view, we can also see that in 1998 the TFlop/s border and in 2009
the Petaflop border passed, whereas in the extended projection up until 2020 the
expected exascale should be reached.

This brings us to the essential point why fault tolerance is needed. Again in Table
1.1 we can find the term MTTF which stands for mean time to failure and gives us a
boundary of how stable the system is when significant errors occur [74, 53, 20]. MTTF
is defined as:

MTTF = Uptime
#Failures (1.2)

In 2009 the machine used in the table had an MTTF of about four days. This means
that one significant error, where the whole system/computation has to be interrupted
and data restored from the previous checkpoint or backup, happened every 4 days. In
2011 this occurs approximately every 19 hours and in 2016 every 4-6 h. The problem
which arises here is that for an exascale machine it is expected that more then 5 such
interruptions occur per day or that the associated MTTF value is even worse. The
MTBF value of a single component plays a significant role here. Let us assume we
have an MTBF of 100 years for a computing node, which of course is a neater value
but when we have to calculate the MTBFp[74] which means the MTBF for the whole
platform or system then it’s getting pretty exciting. The MTBF of a platform , where
µind is the MTBF of one individual processor or node and N is the number of identical
components, is then expected to be:

MTBFp = µind

N
= MTBF of 1 component or node

#components or nodes (1.3)

Further assume an exascale machine with 1 million nodes. From that, it follows that
if we have for all involved components the same MTBF we can calculate the MTBF
for the whole platform or system using this example calculation:

MTBFp = 100 years
1,000,000 nodes = 876,000 h

1,000,000 nodes = 0.876 h ≈ 53 min. (1.4)

This comes from the intuition that if we have 100 years for one component this could
happen 1 million times faster for 1 million nodes. The situation can be explained
by the following example where we have 3 processors with identical MTBF for each

1.2. MOTIVATION 6

processor and 20 faults within a time window t (see Figure 1.3 and 1.4). The decisive

Figure 1.3: Error distribution for 3 processors with equally likely MTBF over a period
t [20]

Figure 1.4: Error distribution of the platform for 3 processors over a period t [20]

point is that the 20 faults can happen arbitrarily over a period t and so when the error
occurings of the 3 processors are overlapped we see the result in Figure 1.4. It turns
out that seeing it arbitrarily the faults which can occur in a particular time window
are summing up to 60 and therefore the MTBFp is derived 1

3 of the MTBF of one
component (Equation 1.3). Hence we can see in the exascale example (from Equation
1.4) a sudden drop of the MTBF to 53 minutes which is dangerously low for current
checkpointing and backup mechanisms. Nowadays without optimization, we can say
that a checkpoint-restart needs about 1h. This value comes from the time for doing
a checkpoint (∼30 minutes) plus the time for doing the restart operation which also
lasts about 30 minutes [20].

That’s the point where additional fault tolerant techniques like ABFT can come
into action. Besides fault resilient algorithms and methods there are also further
critical issues [53, 54] which have to be taken into consideration for an exascale machine
to work correctly and to be maintainable. In this context the following ones are usually
mentioned:

• Communication-reducing algorithms: the idea here is to formulate algorithms in
other ways such that these methods achieve a lower bound on communication.
Further, it has to do with observation of the algorithms and defining what the
minimum communication for a particular algorithm can be.

• Synchronization-reducing algorithms: using a different kind of synchronization
instead of the Fork-Join model, e.g., apply directed acyclic graphs as manag-
ing instance in the setup and execution of parallel programs and so avoid the
majority of synchronous processing (like it is done in PaRSEC).

• Mixed precision methods: using a lower precision e.g., 16-bit instead of 32-bit or
32-bit instead of 64-bit for a particular part of the application and so speeding
up operations and data movement of this section.

1.3. SYNOPSIS 7

• Auto-tuning: the idea of putting an intelligent auto tuner into the software so
that the user do not have to worry about the complexity and the multiple levels
of a hardware environment. Further, the tuner should not be static (prede-
fine parameters and use for all future computations) but should run within an
application and adjust the required parameters dynamically.

• Reproducibility of results: nowadays it is difficult to guarantee that running
the same problem on the same machine in a successive order produce the same
results (e.g., because of round-off errors or bit flips etc.). Therefore there ex-
ists, on the one hand, some error bounds and other guide values which should
help to evaluate the correctness of an execution but on the other hand, there
are still applications which need to produce always the same result. In this
context, the demanded reproducibility can only be achieved by more computa-
tionally expensive operations. Furthermore, if someone wants to do debugging
this replicability also plays a major role [53, 54].

Another important part of this master thesis is dealing with simulators and other
tools in HPC (Chapter 4). The decision which leads to the investigation of such tools
was that there are many situations where the simulation of a specific problem can save
a lot of costs and further can reveal design issues. When we think of the hardware
design of next-gen supercomputers, it might be that another network topology is
needed to assure the best communication between the computational nodes. In this
case, a simulation tool (like presented in 4.2.6) can estimate such a situation and
calculate the needed facts for building the desired supercomputer. On the other hand,
it might be necessary that engineers want to know if their application can be adapted
to the upcoming generation of supercomputers. Such a situation can be simulated
on a tool using on-line simulation like in (4.1.1). Another application might be that
someone wants to analyze large or multiple tracing files. Here besides the simulators,
an additional tool (e.g., Paraver 4.3.1) can be used to achieve this goal. Therefore
such helping tools are of great interest, especially for the HPC sector.

1.3 Synopsis

Chapter 2 is dealing with the related work. The summary was primarily made by the
historical occurrence of ABFT methods in the literature. First, the early days of the
ABFT technique are discussed and supplemented by the different encoding schemes of
the ABFT methods (weighted or partitioned encoding). Then, the first investigation
on a multiple processors machine and other fault detection methods is given. After
that, a popular variant regarding ABFT and matrix operations, the outer product

1.3. SYNOPSIS 8

version of the matrix multiplication is discussed. Furthermore integrating ABFT
methods on different devices and a unique correction technique is mentioned. Then a
combination approach of ABFT and Checkpointing is stated. Last but not least an
outline of the differences to other research activities is given.

In Chapter 3 the emphasis lies on the fault-tolerant methods. Firstly an intro-
duction to errors, faults, fault tolerance, and resilience is given. Then it is continued
with the focus on the ABFT technique and ABFT methods for matrix multiplication.
Therefore the Local- and the Global ABFT method is presented and compared in
detail. Furthermore, the techniques which are commonly used in high-performance
computing are discussed. Therefore there exist a variety of checkpointing techniques
with their benefits and drawbacks which are used to achieve a resilient computation.
Finally, the two common fault-tolerant MPI approaches are stated.

In Chapter 4, it is continued with simulators and other tools for HPC purposes.
Here the focus was to find a simulator which can be used towards simulation of a
problem in exascale range. Further, it is investigated if one of the tools can directly
work with one of the two highly optimized libraries for linear algebra (DPLASMA or
ScaLAPACK). Unfortunately, the study revealed that there is no simulation tool yet
available which is capable of executing an application without extensive modification
of the source code. For instance in the case of xSim (subsection 4.1.1) the inner func-
tions of a main routine in an HPC library have to be extracted and executed without
nesting, whereas in the case of Charm++ (subsection 4.2.1) additionally handler func-
tions like BgSendPacket(int x, int y, int z, int threadID, int handlerID,
WorkType type, int numbytes, char* data) has to be used [89]. The handler
function BgSendPacket sends a portion of data to the Node[x,y,z] and also specifies
the responsible handler function for this message. Further, a threadID has to be
given (pointing on the desired thread to handle the message). Other simulation tools
have even other specific expectations and thus using simulators in combination with
applications is not straightforward. Further, in this chapter, an assessment of how
a Local ABFT PDGEMM simulation would look like in an exascale computation is
presented. The chapter is then concluded by the issues when using simulators and
HPC libraries together.

Chapter 5 is mainly about the implementation of the testing application. Here
the DPLASMA library, the Local ABFT method, and the fault injecting tool are
discussed. The structure and the conditions of this particular PDGEMM are given in
Section 5.2. In this section also the correction algorithm and the detection depending
on the tolerance value is stated. Further, a space analysis of the Local ABFT method
is given. The last part of this chapter deals with the value manipulations in space and
in time. Therefore a special Fault Injector which is capable of inserting bit flips in the

1.3. SYNOPSIS 9

bit mask of a matrix element was used. The insertion is based on a uniform discrete
distribution in the sub-matrix array and on an exponential time distribution with a
MTBF-value which can be specified. Furthermore, with this own-threaded tool, it is
possible to manipulate the bit-mask of a value regarding the mantissa, the exponent
or a random bit flip.

The next big part consists of the experiments and numerical results. They are
located in Chapter 6 and can be summarized as follows:

• The first part of the test cases is about different value distributions. Here values
of various uniform distributions are analyzed. There were two scientific finding.
One was that some particular tile-size can cause a numerical instability and
thus it might happen that not all bit flips are corrected in such a situation
(Table 6.1). Another recognition was that the unique distribution of values
between 0 and 1 had better correction results compared to the relative 1-norm
of other distributions.

• The second test case includes a comparison to the standard DPLASMA_dgemm
routine when no errors occur. Here it was shown that the ABFT specific part
remains relatively constant when the matrix size grows.

• The third point is about sign bit flips where two different fault injectors were
used. The scientific insights from this experiments is that sign bit flips can be
corrected in almost all of the cases and that they are having least impact on the
whole computation.

• Further, the fourth test case is analyzing bit flips in the mantissa, whereas the
fifth test case has to do with bit flips in the exponent. If we can envision a
ranking for the effects on a matrix multiplication, besides the sign bit flips, bit
flips in the mantissa are the ones that are the second most difficult to detect
and correct, and then the bit flips in the exponent are the most difficult.

• The last part of the test cases is investigating the random bit flips situation
(including the opportunity of producing errors in the mantissa, exponent or
sign bit flips in the values’ bit mask). Here the situation regarding detection
and correction is a kind of between the bit flips in the mantissa and in the
exponent.

Furthermore, in Chapter 6, there exist tables showing the GFlop/s performance, rel-
ative overhead and time comparison accompanied by figures. The results are showing
a clear trend, which is also emphasized in other works from the literature. As long as
the number of computational nodes is growing the total overhead against the standard

1.3. SYNOPSIS 10

DPLASMA_dgemm is shrinking. This situation is because of the structure of the Local
ABFT method which has the advantage that the correction can be done locally by
each node or processing unit. When a large matrix multiplication is calculated on
a few nodes, the sub-matrices are big, and the overhead for each node or processor
is significant. On the other hand, when there are more nodes available for the com-
putation, the sub-matrices are small, and the overhead for the recomputation of the
faulty values is decreasing. If the matrix problem size also increases, this profitable
situation is even more noticeable.

In the last chapter, the conclusion- and future work points are listed. Especially
in the future work section there exist several suggestions on how this work can be
extended and investigated afterward. The topics go from integrating a checkpointing
technique from Section 3.4 in the ABFT method, to extending one chosen simulation
tool by an ABFT technique or implementing a fully fault-tolerant version of the matrix
multiplication (where all involved matrices can tolerate errors).

Chapter 2

Related Work

Over the last three decades, there has been much research on ABFT for matrix op-
erations. Initially, in the first publication about ABFT [76] by Kuang and Hua, the
dimensions of the matrices, ergo the problem size was not playing such a prominent
role at that time. What they want to emphasize especially in the context of matrix
multiplication was the redundancy ratio, and of course the fault tolerance which was
provided when using this technique. The ABFT technique and its various scientific
applications is discussed in Section 3.2.

2.1 The Beginnings of ABFT and the First Modi-
fications

Kuang and Hua showed at the very beginning experiments with matrix sizes between
10 and 1000 and further stated that the redundant hardware needed in higher di-
mensions is very low. This is, of course, dependent on the desired resilience, if many
errors should be corrected more hardware components are necessary, and if the se-
curity should withstand only a few faults then only a small percentage of redundant
parts are needed. We are speaking here of about 10 percent of overhead, whereas
the most used techniques at that time TMR and quaded logic, require an additional
amount of hardware at least of factor 2 or 3. Shortly afterwards, the authors of [83]
developed a weighted encoding scheme, which extended the original ABFT encoding
by the possibility that many occurring errors can be corrected by using more than one
additional vector with checksums. This was another milestone, which also influences
the method used in this thesis and on many other research projects. At this point,
the partitioned encoding scheme by [123] has to be remarked too, which introduced
another great feature where each node or processor can have its sub-matrix with local

11

2.2. FIRST EXPERIMENTS ON SYSTEMS WITH MULTIPLE PROCESSORS 12

checksums, one of the primary advantages of Local ABFT 1.

2.2 First Experiments on Systems with Multiple
Processors

One of the first experimentation on a multiple processors machine was done by the
authors of [6]. The experiments were done a hypercube multiprocessor system, where
4, 8 and 16 processors were compared together. It was shown that even for relatively
small matrix sizes larger than (96 × 96) the overhead regarding the execution time
of ABFT with full checking is below 20 percent. The results were evaluated with
single precision and also double precision values in the matrices. Further different
types of errors like transient bit- and transient word errors, and permanent bit- and
permanent word errors were tested on their detection ability. A similar result was
published in [125] where a single fault location and including a recovery method was
observed. In their algorithm-based scheme, they achieve a 20 percent of time overhead
for a (192× 192)-matrix multiplication, where an error was successfully detected and
corrected.

2.3 Different Detection and Correction

2.3.1 Other Detection Methods

The authors in [71] try to measure the overhead by using different detection methods.
They present in their work a right-sided-, left-sided- and a two-sided error detection
method, where first a matrix D is computed by D = A×B. The right-sided detection
method has to fulfil the condition of the computed D̃ with w as a checksum vector
and where ||D̃w − A(Bw)||∞ < τ ||A||∞||B||∞. If this is valid then C = αD + βC

is performed, if not D is recomputed again. The left-sided detection method on
the contrary has the condition: ||vT D̃ − (vT A)B||∞ < τ ||A||∞||B||∞, where vT is a
checksum vector. Here again if this is true then C = αD+βC is performed, if not D is
recomputed. Finally, there is the two-sided error detection, which is a combination of
the two techniques before and and should help to find all undetected errors. With this
techniques, the authors performed matrix products up to a (512×512)-matrix, where
at the biggest dimension the right-sided variant has the highest correction overhead,
and the two-sided approach the highest detection overhead, but all methods achieve
below six percent overhead.

1For a detailed description of the encoding schemes see Section 3.3.

2.4. OUTER PRODUCT MATRIX MULTIPLICATION IN COMBINATION WITH ABFT 13

2.3.2 Improved ABFT Detection and Correction

In [110] an improvement of the standard ABFT correction capabilities was developed,
such that every possible bit flip can be restored. Usually, bit flips in the exponent of an
integer value or floating-point value can be fatal when they occur at a certain place in
the bit mask, where they cause a large numerical change. Since the used variable can
be defined with different precision, this decision determines the numerical boundary.
In a correction of an error or bit flip the limit is given by the corresponding machine
epsilon. A value may be changed by internal or external manipulation from 21 to
2100, and therefore it cannot be corrected by standard checksum comparison. Their
approach goes in the direction that the erroneous value 2100 is changed to 0 (zero).
Thus a correcting algorithm efficiently can recompute the value from 0 to the origin
21. Of course, this is also valid for randomized bit flips which are part of real-life
applications. Therefore with their optimized variant, it is ensured that even values
like NaN and infinity can be corrected with no remarkable overhead.

2.4 Outer Product Matrix Multiplication in com-
bination with ABFT

The outer product version of the matrix multiplication, on the contrary, is a popular
variant which has been used in several research activities for enabling the feature of
handling a failure at any time during the multiplication. This matrix multiplication
technique uses an iteration based update of the final full checksum matrix Cf .

2.4.1 Experiments in ScaLAPACK

One of the first experiments on a 2-D block-cyclic matrix data structure 2 with the
high-performance library ScaLAPACK were done by [36]. Here the authors included
a Global ABFT approach (subsection 3.3.2) in combination with the fault tolerant
MPI API (subsection 3.4.3) such that on the one hand single node failures can be
handled and on the other erroneous data caused by bit flips can be recalculated. The
ScaLAPACK library makes it possible to work with a big variety of parallel architec-
tures [9]. Thus their work refers also to square matrices of dimension (n × n) which
are distributed over a mesh of P times Q processes, like in this master thesis. The
difference is of course in the using of the Global ABFT method, where in their variant
a single process failure can be recovered at each matrix update iteration step, whereas
in the Local ABFT only bit flips are manageable. Further in their work, the overhead

2This is also the major data scheme in this thesis.

2.5. OTHER ABFT APPLICATIONS 14

for calculating, performing computations and recovery on the encoded matrices was
analysed. They have in all three analysing points a time overhead below 10 percent,
where the overhead decreases with rising matrix problem size (in the direction to
n = 32000). Last but not least a remarkable result was achieved on time to recover
the FT-MPI (single node failure). In all three matrix cases, it was below 1%.

A bit later [37] show that their approach can be effectively used for fail-stop failures
(stopped processes where all data to the corresponding failed process are lost). There
the experiments were extended up to a (10× 10)-process grid with similar results to
their previous research [36].

The outer dot product was also used in [22]. Bosilca et al. also show the slop-
ing curve when the number of processes rise. In their publication, the overhead of
the ABFT version of the matrix multiplication against the PBLAS PDGEMM from
ScaLAPACK falls below 10 percent at about 400 processes. Their further research
shows even a drop to about 5 percent at 1024 cores.

2.4.2 Correction of Soft Errors On-The-Fly

An approach to correct soft errors on-the-fly was presented by Wu et al. in their
research about an online fault-tolerant matrix-matrix multiplication [148]. The online
variant was achieved by using an extension of the outer dot product, where the part
of using rank one updates in the algorithm, was replaced by a changed version with
rank k updates. Further, a checking of the checksum relationship of the partial result
is done periodically (e.g. time interval of 10 seconds) to guarantee that it is online.
With their extension, they showed that the performance does not drop by more than
5% for up to 20 soft errors compared to an ATLAS DGEMM. This also helps with
error propagation and avoiding corrupted computations.

2.5 Other ABFT Applications

2.5.1 ABFT in Cloud Computing

The authors of [4] tested an ABFT matrix multiplication on cloud computing. As
a testing environment the Amazons EC2 was chosen, and they try to find out if it
is suitable for scientific computing purposes. Unfortunately, at that time the imple-
mented fault-tolerant method was at least an order-of-magnitude worse performance
than the same implementation which was executed on a dedicated scientific cluster.
This was mainly due to service offering constraints, and because the priority of EC2
was on web-based- and business applications. Further, the tuning of the application to

2.5. OTHER ABFT APPLICATIONS 15

run on virtualized resources can be challenging. In the meanwhile, Amazon is offering
so-called Spot Instances 3 which can be used for scientific needs.

2.5.2 ABFT in FPGAs and GPUs

Other research projects with ABFT methods are going in the direction of integrating
into FPGAs, GPUs or a combined version with checkpointing. In [15] a composite
ABFT & Periodic Checkpointing approach was analysed and it was shown that it
wastes much fewer hardware resources than using only Periodic Checkpointing or Bi-
Periodic Checkpointing for fault tolerance. This approach is discussed more detailed
in subsection 3.4.2.

A highly efficient blocked outer product matrix multiplication algorithm on GPG-
PUs was presented by [47]. This algorithm copes with memory soft errors on-line
as described in previous on-line variants. They achieve an average overhead of 20
percent, where the blocked ABFT update variant worked much better compared to
the traditional ABFT update like in [148] for CPUs. Their GPU blocked method
achieves significantly better results compared to the CPU variant because the algo-
rithm is differently parallelized (internal cache, shared memory) and the time for one
floating-point arithmetic operation is also different on the various devices.

An FPGA approach based on ABFT was shown in [150]. They provide a lightweight
concurrent AES (Advanced Encryption Standard) error detection scheme with ex-
ploiting the properties of ABFT. There again two versions of error detection were
considered. The first deals with the whole AES process and the detection occurs at
the end (after all rounds passed and, whereas in the second version in every round
an error detection is performed. Furthermore, the results have been done on a Xilinx
FPGA board.

2.5.3 Blocked ABFT with Disk-Less Periodic Checkpointing

At this point, it has to be remarked that a combination where a Local ABFT method
was used with DPLASMA (like in this thesis) has only a closer relation to the work
done in [32]. There has also been used a sub-matrix extended structure, where the
checksums are distributed over all processing nodes. They presented two application-
level mechanisms, including a sub-DAG (Directed Acyclic Graph), sub-DAG & check-
pointing approach and a task level mechanism (Local ABFT). Since the tasks in
DPLASMA or PaRSEC are executed in a DAG-based order, the sub-DAG mecha-
nisms are responsible that failures can be handled by re-executing a minimum of the

3For details see: https://aws.amazon.com/ec2/spot/spot-and-science/.

https://aws.amazon.com/ec2/spot/spot-and-science/

2.6. COMPARISON OF MASTER THESIS TO OTHER WORKS 16

required tasks again to restore the flow-based execution of the framework. Further-
more, the extension they also provided for this sub-DAG mechanism was a disk-less
periodic checkpoint strategy. With this extension and by using a constant interval,
it is possible to diminish the number of recomputed tasks further. Since a final task
may require up to 100 percent of the predecessor tasks (whole re-computation from
scratch), this additional checkpoints can help to avoid such a situation. Finally, their
task-based approach with Local ABFT PDGEMM and a silent data corruption detec-
tor achieve an overhead of 5 to 6 percent, which is also near to the presented theoretical
overhead. The difference to their publication with the results of this thesis are the
extensive bit flips experiments in Chapter 6, including different value distributions in
the matrix, various correction analyses, and the research in trying to integrate into a
simulator environment.

2.6 Comparison of Master Thesis to Other Works

In this master thesis, the successful fault correction plays a major role. Depending on
which types of bit flips have occurred, fault detection and the corresponding correction
may fail (see conclusion over bit flips in Section 6.3). Other publications in the
literature have mainly to do with node failures and designing of algorithms for on-
line fault correction, whereas in this publication one of the primary focuses was to
investigate a variable number of faults and estimate how many checksums should be
used for the blocked ABFT method. The empirical research showed that a d-value
(d-many additional rows or columns for checksums) of between 16 and 64 per sub-
matrix is not having a significant impact on the total time overhead for this particular
ABFT method (subsection 6.1.3). This further means that with such settings between
16 and 64 errors can be corrected locally per computational node. Furthermore,
in this scientific work, it is studied what effect the different types of bit flips have
on the detection- and correction procedure. Therefore bit flips in the mantissa, in
the exponent and everywhere in the bit mask of a value are analyzed and discussed
thoroughly in Section 6.2. What’s more, the challenges towards an exascale simulation
in combination with a fault-tolerant matrix multiplication are mentioned in Section
4.5. Therefore an assessment of how the Local ABFT method would look like in an
exascale computation is outlined.

Since the main topic of this thesis is fault tolerance, other fault-tolerant techniques
are presented and discussed in the next chapter, and respectively in Section 3.4.
Furthermore, arguments about scalability and simulators used in HPC are located in
Chapter 4.

Chapter 3

Fault-Tolerant Methods

In this chapter, there will be fault-tolerant methods and techniques considered. It
is starting with Section 3.1 where errors, failures, fault tolerance and resilience will
be introduced. Secondly in Section 3.2 the main emphasis of the master thesis will
be discussed. In Section 3.3 the theory of the practical part of this thesis will be
showed. And finally Section 3.4 further fault-tolerant techniques for High Performance
Computing (HPC) will be pointed out.

3.1 Errors, Faults, Fault Tolerance and Resilience

Basically we can distinguish between two main categories [74, 21]:

errors - faults failures
in software - software error fail-stop
in hardware - hardware malfunction partial

environmental - memory corruption single process or
influences simultaneous process

silent, transient or unrecoverable unrecoverable

Table 3.1: Errors, faults and failures in a system

When we speak of errors, we can say that they can be silent, transient or unre-
coverable, where this statement is also valid for faults. Begining with the explanation
of silent errors or silent data corruptions (SDC), which are more or less undetected
faults and are usually classified as bit flips [74]. These bit flips can occur in storage
(volatile memory or nonvolatile disk) or during computations in the processing units.
A Error-Correcting Code (ECC) memory, on the contrary, is only able to correct and
detect a single bit flip when such memory modules are used in a system. Since double
bit flips are roughly detected and cannot be handled by the ECC, such a situation

17

3.1. ERRORS, FAULTS, FAULT TOLERANCE AND RESILIENCE 18

forces unfortunately to an instant reboot of the process or node. By different studies
at the Cray XT5 system from Oak Ridge National Laboratory it was estimated that
this could happen about one time per day for 75,000+ DIMMs [66]. Extending this
situation to an exascale system (800,000 - 8 million DIMMs 1) would result in an
double bit flip rate of 10 - 100 times a day which is then remarkable when a longer
computation is executed.

Transient faults or errors are acting a bit different. Here power fluctuations and
alpha particle strikes are caused by the shrinking progress of the feature size of tran-
sistors [94]. The problem is that all kind of processors (GPUs, CPUs, SoCs, etc.) are
becoming vulnerable to transient faults with an increasing transistor policy. Therefore
such devices have to be augmented with fault-tolerant mechanisms that can guarantee
a correct computation. What should also be remarked at that point, are the results
of the authors in [118]. They investigate the effect of cosmic rays especially on the
soft error rate (SER) of a DRAM. The SER was measured at various locations and
altitudes, and the results showed that even at sea level there could be soft errors
caused by cosmic radiation. Therefore choosing the right location is not enough to
help with the problem of external influences.

On the other hand, we have the unrecoverable errors where a severe fault or excep-
tion is raised by a software error or a hardware component. The problem here is that
they can freeze the system and no attempts can correct or undo the error. Thus this
mostly ends in a situation where the system must be rebooted to work again. They
are usually caused by programs or applications that run in user-mode on a computer
[132]. User-mode executed processes use a virtual space assigned to them by the
system, and so they don’t have direct access to the memory. Since they are isolated,
such processes do not interfere with the resources and hence do not compromise of the
integrity of a system. They are at an enormous potential to cause an unrecoverable
error if they try to read or write anything from the system memory. The result is an
exception call which ends either by freezing the system or doing a reboot.

Fail-stop process failures are bad scenarios where the failed process stops working
at all and the correspoinding data associated with the event are lost [37]. This type
of failures is prevalent in today’s large computing systems including high-end clus-
ters where thousands of nodes are involved and computational grids with hybrid and
dynamic computing resources. In order to prevent against fail-stop failures, a glob-
ally consistent state of the application like it is achieved by a checkpoint technique is
common. By using a checkpoint, a recovery of the lost data can be extracted, or a
recomputation can be executed. The checkpoint/restart procedure contains a point in

1Assuming an exascale machine having between 100k and 1 million of nodes and 8 DIMMs per
node (like in Table 1.1).

3.1. ERRORS, FAULTS, FAULT TOLERANCE AND RESILIENCE 19

time of an execution where all process states of the fault tolerant application are saved
into resilient storage periodically. Thus it is able to withstand a failure of the compu-
tation or even of the whole system. However in a checkpoint/restart approach, if one
process fails, all surviving processes’ states are cancelled and the entire application is
recovered from the last available checkpoint.

Furthermore there exist partial failures which can be managed with reduced over-
head. In this case, they are usually handled by diskless checkpointing where saving to
a stable storage is avoided by using memory and processor redundancy [37]. This is
especially interesting for applications which modify small chunks of memory between
checkpoints. Therefore in such cases, even multiple simultaneous process failures can
be corrected without much overhead by using diskless checkpointing. However, the
problem in the context of this master thesis is, that during matrix operations like in
the matrix product a large amount of memory is modified between the checkpoints.
This leads to the conclusion that diskless checkpointing produces then a checkpoint
of a significant size which ends in an exceptional overhead, requiring of other fault-
tolerant mechanisms.

Then we have the term fault-tolerant. A HPC application can be made fault-
tolerant either by a forward recovery mechanism like ABFT or by a backward recovery
mechanism (checkpointing) [21]. The main difference is the point where the compu-
tation has to take place. In a forward recovery mechanism, the additional calculation
is initiated when a failure occurs, whereas in a backward recovery mechanism the last
checkpoint data is taken and states already reached are re-computed, and therefore
the backward term. Another interesting point in a checkpoint-restart approach is that
it takes a certain amount of time (about 30 min.) to re-execute the computations.
This overhead, on the other hand, makes a forward recovery mechanism attractive for
a massively parallel system towards exascale when we involve the predicted MTTF
rate in Table 1.1.

The last point which should be remarked here is about resilience and the definition
of the RAS model introduced by [130] which has to do with measuring the reliability,
availability, and serviceability of a supercomputer. The RAS terminology includes:

• Reliability - The probability that a system functions without failure under
stated conditions over a specified amount of time. It is often calculated using a
constant failure rate based on an exponential random variable model R(t) = e−λt

with λ = 1
MT BF

. Here some associated metrics are Mean Time Between Job
Interrupt (MTBIJ), Mean Time Between System Interrupt (MTBIS) and Mean

3.1. ERRORS, FAULTS, FAULT TOLERANCE AND RESILIENCE 20

Time Between System Failures (MTBFS).

MTBIJ = uptime
of job interrupts (3.1)

MTBIS = availability time
of system interrupts (3.2)

MTBFS = availability time
of system failures (3.3)

• Availability - The fraction of a time period that a system is in a condition
to perform its destined functionality (expressed as a probability). Important
metrics here are:

AvailabilityS(%) = uptime ∗ 100
operations time (3.4)

Production AvailabilityS(%) = production time ∗ 100
operations time (3.5)

Production UtilizationS(%) = productive node hours ∗ 100
production node hours (3.6)

• Serviceability - The probability that a system will be retained in, or restored
to, operable condition within a specified period of time. Relevant metrics here
are Mean Time To Repair (MTTR), Mean Nodehours To Repair (MNTR) and
Mean time to Boot System (MTTBS).

MTTR = unscheduled downtime
of failures (3.7)

MNTR = unscheduled downtime nodehours
of failures (3.8)

MTTBS = sum of wallclocktime to boot system
of boot cycles (3.9)

• Maintenance - The act of sustaining a system in or what is needed to restore it
to a condition where its planned functionality can be successfully performed.

There also exists a current extension presented by [77] where the RAS model is ex-
panded by the terms safety, performance and integrity to redefine the term resilience.
Among other things, it is also emphasized that the most commonly used platform
reliability metrics, including the MTTF (and its variants such as mean time to in-

3.2. ABFT TECHNIQUE 21

terrupt (MTTI) and MTTR), are not so suitable for evaluating and quantifying the
resilience of a whole system. Therefore [77] provide two new outcome-based metrics 2

for measuring HPC resilience like the resilience factor (RF) and resilience factor yield
(RY).

3.2 ABFT Technique

The idea of algorithm-based fault tolerance (ABFT) is not new, and it was first
proposed in 1984 by Huang and Abraham [76]. At that time the VLSI (very-large-scale
integration) technology has been advanced to the point where the costs for hardware
components, especially processors, could be decreased properly. It was possible to
acquire a large number of computational units for an acceptably low price. With this
progress, high-performance computations were made accessible for a broader range of
scientists, whom on the other hand needed a high-reliability technique for long lasting
calculations. That was the incentive to develop ABFT.

The main goal of the ABFT technique is to correct errors from permanent or
transient failures with possibly low overhead. At the beginning, it was developed to
detect and correct errors on a variety of matrix operations such as addition, scalar
product, multiplication, LU-decomposition, and transposition. Later on this tech-
nique has also been applied to FFT [82], matrix equation solvers [95], recursive least
squares [122], singular value decomposition [35], sorting algorithm [38], QR decompo-
sition [97], Cholesky factorization [73] and ZU factorization [24]. However back to the
approach by Huang and Abraham, where the fault masking (the idea of TMR) versus
the detection of errors by testing (ABFT) was a major topic. As the usually used
fault masking approach by TMR or quaded logic is expensive due to replicating the
hardware, therefore a new way with detection and correction schemes was proposed.

Algorithm-based fault tolerance [76] has three main characteristics:

1. Encoding of the data (obtained from the two-dimensional product code)
2. Redesign of the algorithm for processing the encoded data
3. Distribution of computation steps among processors / computation units

The encoded matrices are called checksum matrices and contain encoded data at the
word 3 level instead of at bit level. This is established in a higher level manner because
a faulty module could have an impact on all of the bits in a word. The redesign is

2The theory of this master thesis does not rely on the new proposed metrics because most of the
work was done before the publication of [77] and most research and publications rely on the older
model [130].

3Means here a variable that can take the form of integers or floating point numbers.

3.2. ABFT TECHNIQUE 22

needed because of the information part of the encoded data must be made simple in the
recovery procedure, and further the distribution of the computation should prevent
that a failure of a hardware component can affect the whole calculation or data.
Another substantial point which has to be remarked is the term algorithm-based, which
means that it’s applied directly to an algorithm and further to the source code (within
a program). This property further excludes additional (replication) of the hardware
and also the need of checkpointing technique with writing to an external media e.g., to
a hard disk drive (HDD). One limitation 4 is given by the total amount of additional
information (in this case the checksums) to provide the desired fault tolerance. As
this checksum values are written directly into the physical memory (RAM) it should
be pre-calculated of how much additional checksum vectors are willing to be used
not surpassing the available system memory. This concern is especially relevant when
targets with huge problem sizes are to be achieved and to prevent performance issues
coming from writing to slower memory (hard disks).

Diagnosability and Diagnosis of ABFT Systems

As ABFT becomes more and more popular since the first publication the need of
a diagnosability algorithm for ABFT systems has increasingly become of interest.
In [140] an algorithm to analyze an ABFT system for its fault diagnosability was
developed. Therefore in their publication properties of graphic-theoretic and matrix-
based models to investigate ABFT system were presented. From a theoretical point
of view, a tripartite graph can be decomposed into two bipartite graphs. Since the
numerical representation of a bipartite graph is usually a matrix, thus a tripartite
graph can be represented as two matrices. An example for such graphs is given in
Figure 3.1.

The idea of the graphic-theoretic model is based on a tripartite PDC graph [5].
Each letter in the PDC term stands for an individual set of vertices. The P denotes the
processors in the system, D the output data elements and C stands for the checksums
in the system. The concept in connection with the tripartite graph can be described
as follows: nodes C1, C2, C3 contains the row- or column checksums (C), these are
connected to the data values (D) sitting in nodes D6, D7, D8 and D9, and the nodes
P1 to P5 are the processors (P) which can affect the data in D6 to D9 (see also Figure
3.1). Therefore we have the PDC structure, and we can visually see which values can
be handled on which processors with which associated checksums. The final output
of the PDC graph shows only faulty data elements and the processors by which they
are covered.

4Additional info to this limitation in this thesis is discussed in Section 3.3.

3.2. ABFT TECHNIQUE 23

bipartite PD

D6

D7

D8

D9

C1

C2

C3

tripartite PDC

P1

P2

P3

P4

P5

D6

D7

D8

D9

P1

P2

P3

P4

P5

D6

D7

D8

D9

C1

C2

C3

bipartite DC

Figure 3.1: Tripartite graph and its decomposition to bipartite graphs for ABFT
systems

On the other hand, there is the matrix-based model which works with the PDC
graph [111]. The graph is split into two bipartite graphs (see example in Figure 3.1),
the processor data (PD) graph and the data-check (DC) graph with corresponding
matrices. By doing multiplication of the two matrices, a processor-check (PC) matrix
can be gained, which later represents a weighted bipartite graph 5 (PC -graph). If
we have an error in the system, then the element in the i-th row and j-th column in
the PD-matrix is set to one. This further means that if PD(i, j) = 1 then processor
i has a fault and data element j is erroneous. Whereas when there is a one in the
PC -matrix, the faulty processor has a supporting checksum. Besides, a comparison of
the row of the PC -matrix to the row of the PD-matrix can help to denote the faulty
processor.

From the two previously presented models, we can extend the analysis of t-fault
detectable and t-fault diagnosable. Generally, a set of faulty processors can be sum-
marized to a fault pattern and a set of erroneous data elements affected by this fault
pattern to an error pattern. This error pattern is then classified as detectable if in the
corresponding check-vector 6 (extracted from the PC -matrix) exists a value with one.
In the fault pattern manner, on the contrary, it is detectable iff for every error pattern
it produces is classified as detectable. To conclude the term diagnosable, we can say
that a system is diagnosable if a fault pattern can be located from its check-vector.
Further, if a system contains such characteristics, then an analysis of its diagnosability
can be done. Thus finally a t-fault detectable system contains fault patterns of size
≤ t, and is t-fault diagnosable if each such fault pattern can be located from the num-
ber of check-vector(s) it produces. A t-diagnosable system provides the features that,
if a particular check-value in the vector is zero this could have two reasons: firstly

5Graph where each edge has a weight associated with it.
6States of the checks represented as a q-bit binary vector where the q is # of checks in the system.

3.3. ABFT METHODS FOR MATRIX MULTIPLICATION 24

no data item in the error set of the check-value is erroneous or secondly the error
detectability of the check-values has been exceeded. The detailed diagnosis algorithm
can be found in [140] and should help to isolate a fault pattern from a given problem
in an ABFT system.

3.3 ABFT Methods for Matrix Multiplication

The classic variant of ABFT_PDGEMM fulfils a fault-tolerant matrix-matrix multi-
plication with the structure of Cf = Ar · Bc. This notation for the matrices is used
through the whole section, where Ar denotes matrix A with row-wise added check-
sums, Bc matrix B with column-wise added checksums, and Cf the resulting matrix
C with checksums in additional rows and columns (full checksums) [76]. In Section
5.2 the development of the variant used in this thesis is described. This section, on
the contrary, contains matrix encoding schemes and the corresponding computations.

Back to the original definition from [76] where the checksum matrices initially only
have one additional column summation vector and one additional row summation
vector. The matrices were of following dimensions:

Ar = (n + 1)×m

Bc = n× (m + 1)

Cf = (n + 1)× (m + 1)

The above-shown checksum matrix technique has a difference from the previous check-
sum codes commonly used up to that time. They were based on bit level correction,
whereas now we have floating point numbers or integer values to be detected and
corrected. The detection has been done by computing the sum of elements in each
row and column and compare the result to the corresponding checksum value. The
location, on the contrary, is achieved by finding inconsistent row or columns and then
pointing at their intersection. When an erroneous element was detected, the value
was adjusted by adding the difference of the sum to the affected value or by replacing
the wrong checksum.

An optimized approach, which is also more frequently used, is to have a variable
value of additional columns or row checksums. In this thesis an extended variant was
used, giving the possibility that more than one error (namely d errors) can be detected
and corrected per column or row. The new matrix dimensions resulting from this fact

3.3. ABFT METHODS FOR MATRIX MULTIPLICATION 25

are:
Ar = (n + d)×m

Bc = n× (m + d)

Cf = (n + d)× (m + d)

Ar = (n + (P ∗ d))× (n + (Q ∗ d))

Bc = (n + (P ∗ d))× (n + (Q ∗ d))

Cf = (n + (P ∗ d))× (n + (Q ∗ d))

The left group shows how the general dimensions changed due to this extended encod-
ing scheme, and on the right-hand side the dimensions like used in this thesis (section
5.2). Further, the additional P and the Q variables are important for the special par-
tition encoding scheme described in next subsection and denote the processor node
structure. To provide this capability, where even all values of the resulting matrix
can be locally restored, firstly a weighted checksum encoding scheme is needed as
presented in [83]. This scheme consists of a weight matrix W and a negative identity
matrix, which together build up the correction matrix H. The idea is that with this
matrix H the correction of a faulty matrix can be done by solving a least squares prob-
lem later on (see subsection 5.2.3). First, a weight matrix has to be built 7 with ones
in the first column, and e.g., uniformly distributed values (udv) in the range between
zero and one otherwise. It is usually a (n× d)-matrix, but for the illustration of the
weight matrix on the next page, the indices nb and d like in the Local ABFT variant
were used instead. The nb marks the block-size of the sub-matrices per computational
node, as each node or process has its checksums in its sub-matrix.

W T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
udv11 udv12 . . . udv1d

udv21 udv22 . . . udv2d

...
udvnb1 udvnb2 . . . udvnbd

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, −I =

⎛⎜⎜⎜⎜⎜⎜⎝
−1 0 . . . 0
0 −1 . . . 0
...
0 0 0 −1

⎞⎟⎟⎟⎟⎟⎟⎠
The resulting correction matrix where the contained d−1 encoding vectors have to be
linearly independent is then H = (W T − I). By using this variant of ABFT, usually
only the final computed matrix (matrix C) can be corrected. If it is necessary the
matrices A and B can also be made fault tolerant by calculating the full checksum
variants of them. This is done by multiplication with the weight matrix such that:

Af =
⎛⎝ A A ·W T

W T · A W T · A ·W T

⎞⎠ and Bf =
⎛⎝ B B ·W

W · B W · B ·W

⎞⎠.

There exist also a variant in [22] where the outer product version of the matrix-matrix
product is used. As in this approach the end matrix C is updated in a loop, a failure
at any time after the update procedure can be recovered.

Additionally, such an implementation can theoretically require up to 4-times 8 more
7This is only one proposal how the weight matrix can be built, in the literature there are also

other variants available.
8Extended matrix dimensions of (n + n)× (n + n) = 4n2 vs. origin matrix size (n)× (n) = n2.

3.3. ABFT METHODS FOR MATRIX MULTIPLICATION 26

RAM as of the original matrix size. Hence this has to be considered as a limitation
for a computational system when dealing with huge matrix problem sizes. It can be
explained with the additional rows- and columns checksums which are controlled by
the d-value. If it is required that all values of the end-matrix should be detected and
corrected, then the d-value has to be set to n the actual size of the matrix. This
results in (n + n)× (n + n)-matrices instead of (n)× (n) and would be visualized as:

C =
⎛⎝ C11 C12

C21 C22

⎞⎠ =⇒ Cf =

⎛⎜⎜⎜⎜⎜⎜⎝
C11 cksm112 C12 cksm122

cksm111 cksm113 cksm121 cksm123

C21 cksm212 C22 cksm222

cksm211 cksm213 cksm221 cksm223

⎞⎟⎟⎟⎟⎟⎟⎠
As an example explanation let C be a (16×16)-matrix and C11 be a (4×4)-sub-matrix,
then the corresponding checksums cksm111 , cksm112 , and cksm113 are also (4 × 4)-
matrices. Therefore the dimensions are doubled vertically and horizontally, resulting
in an 4-times larger matrix (Cf of dimension (32× 32)) compared to the original size
without any checksums.

In the next subsections, the emphasis lies on the two major variants used for
matrix multiplication Local ABFT and Global ABFT. They rely on different weight-
and correction matrices and therefore have their specific advantages and disadvantages
which will also be discussed and summarized. Nonetheless, the previously described
encoding technique with weighted checksums is used as the basis in both approaches.

3.3.1 Local ABFT

For a Local or Blocked ABFT approach it is recommended to use the partitioned
encoding scheme by [123]. This kind of encoding should help to reduce inaccuracy
issues in the computation and should simultaneously assist for a better comparison
of the checksums in the detection phase. After preparing the weight matrices as
described in the previous section, the next step is calculating the checksums. From
the definition of the partitioned encoding scheme it follows that the matrices Ar and
Bc for a (2× 2)-process grid are constructed as follows:

Ar =

⎛⎜⎜⎜⎜⎜⎜⎝
A11 A12

W T A11 W T A12

A21 A22

W T A21 W T A22

⎞⎟⎟⎟⎟⎟⎟⎠ Bc =
⎛⎝ B11 B11 ·W B12 B12 ·W

B21 B21 ·W B22 B22 ·W

⎞⎠

In Figure 3.2 the detection and correction process of Local ABFT is illustrated. We
can see that an error or bit flip (black block) is detected by two corresponding check-
sums (green blocks). As each computational node has its checksum values (orange
blocks) the detection and correction are done locally (by each processor itself).

3.3. ABFT METHODS FOR MATRIX MULTIPLICATION 27

 submatrices with data submatrices with checksums

Local or Blocked ABFT detection
 Node (0,0) Node (0,1) Node (0,2)

Node (2,0) Node (2,1) Node (2,2)

N
o

d
e

(1
,0

)

N
o

d
e

(1
,2

)

ERROR

DETECT
CKSM

 DETECT
CKSM

ERROR

 DETECT
CKSM

 DETECT
CKSM

ERROR

DETECT
CKSM

 DETECT
CKSM

 submatrices with data submatrices with checksums

Local or Blocked ABFT correction
 Node (0,0) Node (0,1) Node (0,2)

Node (2,0) Node (2,1) Node (2,2)

N
o

d
e

(1
,0

)

N
o

d
e

(1
,2

)

ERROR CKSM

CKSM

ERROR

CKSM

CKSM

ERROR CKSM

CKSM

Figure 3.2: Detection and correction in a Local ABFT approach on a (3× 3)-process
grid in the final computed matrix Cf

For one thing, this variant is attractive when we have large matrices with many
processors so during the restoring of the data only a small correction matrix is involved
and each process restore its faulty data. Further, from a numerical point of view using
such an encoding scheme results in a more stable maximum round-off error. On the
other hand, no node failures can be handled, because the checksums are only designed
to act locally and directly on the faulty process’ data. There is no information about
other processes generated, and therefore a failure of a process cannot be recomputed.

3.3.2 Global ABFT

The Global ABFT variant, on the contrary, is more widely used in research then Local
ABFT, because node failures can be handled effectively by using a fault tolerant MPI
implementation like Fault-Tolerant MPI or User Level Failure Mitigation (see also
subsection 3.4.3). In [12] an explanation of how ABFT and ULFM can be combined is
presented and further in [37] it is discussed how to use FT-MPI with ABFT. Firstly,
again a weight matrix W and a correction matrix H is computed and distributed
globally over all CPU ranks. Then the matrices can be equipped with checksums by:

Ar =
⎛⎝ A

W T A

⎞⎠ Bc =
(

B B ·W
)

Cf =
⎛⎝ A · B A · B ·W

W T A · B W T A · B ·W

⎞⎠
We can see from the first sight that the weight matrix, in this case can, be as large

as the original matrices A and B. The size shrinks of course with the number of nodes
because we only have to specify a weight matrix as large as one sub-matrix located
on one node if we want to guarantee that a node can be fully restored. It is on the
other hand also possible to specify only a few additional checksums to be calculated,
but this will result that only a partial data of a node failure can be reconstructed.
This situation can happen because of not enough checksums in the final matrix Cf .

3.3. ABFT METHODS FOR MATRIX MULTIPLICATION 28

Another difference to the Local ABFT approach is that the checksums have to be
calculated globally by multiplication with the transposed weight matrix W T . In a big
problem size, this can use much more computation time, whereas in the local variant
each node or processor calculates its part with the weight matrix. Furthermore, the
comparison of the faulty values with the checksums and the correction of Cf are global
operations. In the figure below, we have a (3 × 3)-node system where the checksum
parts are saved at nodes (2,0), (2,1), (0,2), (1,2) and respectively (2,2) and the origin
data at nodes (0,0), (0,1), (1,0) and (1,1).

Global ABFT detection + correction node failure

ND(0,0)
FAILURE

(MPI EXCEPTION)

ND(0,1)
ND(0,2)

CORRECT

ND(1,0) ND(1,1) ND(1,2)

ND(2,0)
CORRECT

ND(2,1) ND(2,2)

 nodes with data nodes with checksums

Global ABFT detection + correction bit flips

 ND(0,0)
(BIT FLIP ERROR)

ND(0,1)
(BIT FLIP ERROR)

ND(0,2)
CORRECT

ND(1,0) ND(1,1) ND(1,2)

ND(2,0)
CORRECT

ND(2,1)
CORRECT

ND(2,2)

 nodes with data nodes with checksums

Figure 3.3: Detection and correction using a Global ABFT variant on a (3×3)-process
grid in the final computed matrix Cf

The checksums, in this case, are 1/3 of the size of the whole matrix Cf but with
equal size of sub-matrices at each node. Figure 3.3 shows the situation which is gen-
erated when a Global ABFT approach is used. Here the recognition mechanism can
be activated by a raised MPI exception from the MPI error handler (FT-MPI) [37].
This message is then distributed globally such that the application knows which node
has been shut-down (failed). Another way is described in [12] where the failed pro-
cesses are dropped, and the calculation is continued (data which was on this node
may be lost, but computation completes). On the contrary, if complete fault toler-
ance is needed, the MPI communicator can be changed such that a new process is
reintegrated and the data can be restored on this new process from the checksums
(ULFM approach). Back to Figure 3.3, where on the left-hand side we have a node
failure of the process (0,0). The re-computation of the lost data can either be done
by node (0,2) or (2,0) because these processes comprise the weighted checksums data
for the restoration. Furthermore, we have on the right-hand side a different condition,
with an occurrence of faulty data (bit flips). In this case, the errors are detected by
comparing the checksums globally (over several nodes). For the correction on the con-
trary there exist several possibilities which can successfully recompute the corrupted
data:

3.3. ABFT METHODS FOR MATRIX MULTIPLICATION 29

1. Node (0,2) restores faulty data of node (0,1) and (0,0)
2. Node (0,2) restores faulty data of node (0,0) and ND(2,1) of node (0,1)
3. Node (0,2) restores faulty data of node (0,1) and ND(2,0) of node (0,0)
4. Node (2,0) restores faulty data of node (0,0) and ND(2,1) of node (0,1)

Concluding the Global ABFT method, if we want to have a fault tolerant system
which is also capable of dealing with node failures, then this variant is strongly rec-
ommended. Furthermore, there are also other possibilities like the composite ABFT
& Checkpoint approach described in subsection 3.4.2 which can also be used for such
situations.

3.3.3 Local vs Global ABFT

In this subsection, the most important features of the two previously discussed ABFT
methods for matrix multiplication are summarized. In Figure 3.4 the blue blocks
denotes data which has been generated during the computation of Ar × Bc, whereas
the orange blocks contain the corresponding calculated checksums. Further, we can
see on the left-hand side that each node in the final matrix Cf has its checksums
(locally), whereas on the right-hand side the checksums are distributed over several
nodes (globally).

 submatrices with data submatrices with checksums

Local or Blocked ABFT
 Node (0,0) Node (0,1) Node (0,2)

Node (2,0) Node (2,1) Node (2,2)

N
o

d
e

 (
1

,0
)

N
o

d
e

 (
1

,2
)

Global ABFT

 ND(0,0) ND(0,1) ND(0,2)

ND(1,0) ND(1,1) ND(1,2)

ND(2,0) ND(2,1) ND(2,2)

 nodes with data nodes with checksums

Figure 3.4: Comparison of Local ABFT and Global ABFT for a (3× 3)-process grid

3.4. FURTHER TECHNIQUES USED IN HPC 30

The following table shows a quick overview of the pros and cons of the two variants
discussed in the last two subsections:

Local ABFT Global ABFT
+ Bit flips can be corrected + Bit flips can be corrected
+ Smaller weight matrix and local

correction
+ Node failures can be restored and

data recalculated
+ Good numerical stability (regard-

ing max. round-off error)
− Checksums are calculated in a

global operation
− Node failures because of MTBF

not handled
− Bigger weight matrix and correc-

tion executed globally (communi-
cation of nodes)

Table 3.2: Advantages and disadvantages of Local ABFT and Global ABFT

3.4 Further Techniques used in HPC

Despite the mainly discussed fault-tolerant method in this thesis, the ABFT, there
are also checkpointing techniques, composite approaches, Fault-Tolerant MPI and user
level failure mitigation (ULFM). This section is dealing with the most important and
frequently used ones in context with HPC.

3.4.1 Checkpointing Techniques

Setting up checkpoints where data is written to a medium for providing a backup
and resilience of a system has been widely used in the last few decades. There exist
different types of checkpoint techniques and approaches which can be used to guar-
antee a fault-tolerant and robust system. For HPC applications we can distinguish
mainly between protocols for checkpointing and probabilistic models for checkpointing
(Table 3.3).

Checkpointing Protocols Probabilistic Models for Checkpointing
• Process checkpointing • Periodic checkpointing
• Coordinated checkpointing • Incremental checkpointing
• Uncoordinated checkpointing • Multi-level checkpointing
• Application-level checkpointing • Checkpointing with fault prediciton
• Hierarchical checkpointing • Checkpointing with replication

Table 3.3: Checkpointing techniques for HPC applications [74, 20, 21]

3.4. FURTHER TECHNIQUES USED IN HPC 31

Process Checkpointing

The first fault-tolerant protocol is process checkpointing. The primary goal is to
save the current state of a process by momentarily interrupting the execution of all
kind of corresponding threads before saving [74]. A process itself can be seen as a
parallel application because it contains many user-level or system-level threads. Hence
by process checkpointing the problem of saving the state is reduced to a sequential
problem. It can be characterized by the level of the software stack, how the checkpoint
is generated, and how it is stored.

Techniques used in combination with the characterization of process checkpoint-
ing are user-level checkpointing, system-level checkpointing, blocking call, and asyn-
chronous call [20]. In user-level checkpointing the main function has to do with
creating a serialized view of the application where an application-specific routine can,
later on, restore a meaningful state of the process. On the other hand system-level
checkpointing can have different possible implementations like OS syscall, dynamic
library or compiler assisted. Here the important thing is that a serial file is created in
such a way that it can be loaded in a process image. It has the advantage that it can
be restored on a machine which has the same architecture, same operating system,
and same software environment but the checkpoint size is consequently large because
of memory footprint. Furthermore, a checkpoint can be generated by a blocking call
that has a termination event once the serial file of the process checkpoint is com-
plete. Here synchronization of the threads is needed, or each thread for itself must
do a checkpoint. The limitation is that no process activity has to be done during
the whole checkpoint operation. Otherwise, an asynchronous call can be achieved
by duplicating the entire process, allowing the parent process to continue its execu-
tion. In [21] another approach was presented called staging checkpointing, where the
memory hierarchy is used to reduce the checkpoint time. It can be used as an alterna-
tive to the asynchronous call checkpointing. Last but not least the checkpoints have
also to be stored. This procedure is accepted to be successful once the saving to a
non-corruptible space is done, where the storage can be local or to a remote device.
Depending on how important or risky the data is, we can choose between libraries
which can save the data in-memory, in NVRAM, disk-less, or to a remote file system
[74]. This is then done asynchronously in the background.

Coordinated Checkpointing

In coordinated checkpointing, we can distinguish between a blocking and a non-
blocking variant of it [74]. The main idea is to create a consistent view of the ap-
plication. There are notifications with messages to evaluate if a checkpoint wave has

3.4. FURTHER TECHNIQUES USED IN HPC 32

completed and the checkpoint is consistent. For instance, in the blocking variant, the
spreading of application messages are delayed after entering the checkpointing wave,
so that the state of communication channels is saved. Whereas in the non-blocking
variant the communications after the beginning and before the end of a checkpoint are
added to its receiver. Further messages which are inside of a checkpoint are pushed
back at the beginning of the queues.

Uncoordinated Checkpointing and Message Logging

Whereas the processes have to rollback to the last valid checkpoint wave, when a fail-
ure is detected (coordinated checkpointing protocols), in uncoordinated checkpointing
the restart of a minimal set of processes is forced. In fact, only the processes which are
corresponding to the failure should be restarted. The disadvantage in a coordinated
checkpointing is that all checkpoint taken randomly may be invalidated by missing
messages, forcing the application to restart from scratch. Therefore in the uncoor-
dinated variant, the piecewise deterministic assumption (PWD) and the concept of
message logging are introduced to avoid such a situation.

In PWD the behaviour of a sequential process can be managed from a given state
to another deterministic state by constraining each non-deterministic choice between
them. The order of the messages and the required actions are captured by the MPI
library. The role of message logging is to provide a tool which can capture and
replicate message receptions or nondeterministic events. In this context, the right
order and a suitable content are playing a crucial role. Message logging prepares a
log of the event and a log of the message’s content. This can help in a case of failure
to restart the failed process from its last checkpoint and successfully to enter in the
replay mode. Once the history has been entirely restored, the distributed application
can continue its progress according to the valid PWD [74].

Application-Level Checkpointing

For application-level checkpointing the synchronization at a specific point takes the
major role [21]. A programmer has to specify when to execute a checkpoint within an
application. The limitation here is that the calls can happen only at a certain point
in the source code whereas system-level checkpoints can be executed anywhere. They
can be triggered by an automation tool (library) or by a function call specified by the
user.

Helping libraries are for instance the scalable checkpoint restart (SCR), which is
based on files written to the local storage. Advantages of this library are managing

3.4. FURTHER TECHNIQUES USED IN HPC 33

the reliability of storage and atomic commits. Another library is the fault tolerance
interface or FTI. It adds an additional option to the SCR features which includes han-
dling of transparent restarts. Here the storage hierarchy for checkpoints is beginning
with memory, then local file and finally distributed file system. Last but not least
another option to use is the global view resilience (GVR) library. The difference to
previous helping tools is that the data backup is done entirely in memory, in a reli-
able tuple-space. Therefore independent processes are involved which can be accessed
through the GVR API.

Hierarchical Checkpointing

There exist hierarchical protocols as well as probabilistic models for hierarchical check-
pointing [20, 74]. In the protocol variant, a group of processes is co-ordinating its
checkpoint. Therefore a combination of uncoordinated protocols and event logging is,
where the concept of message logging is used between the groups. On the other hand
for the probabilistic model approach, specific parameters are introduced to refine the
model. These parameters have firstly to do with the impact of message logging on
execution, secondly with re-execution, and finally with the checkpoint image size.

Periodic Checkpointing

In this approach, a blocking model is used [21]. This means while a checkpoint is
taken, there can not be an execution of any computations in the background. With
the provided framework the waste-value due to failures can be defined and calculated.
This value should help to find an optimal checkpointing interval, and this is also
the primary purpose of it. Expressed in words, we can say that a high waste-value,
denote that too many checkpoints are made, and we have a big loss of computation.
Otherwise, when the value is too low, this can be an indicator of using only a few
number of checkpoints. This setting, on the other hand, can result in a high risk of
losing data when a failure occurs. The exact definition and calculation can be found
in [74].

Incremental Checkpointing

A half a year later the same team from the ABFT & Periodic Checkpointing approach
[15] have developed another resilience technique, the incremental checkpointing which
should compete to the bi-periodic-, pure periodic-, and ABFT & Periodic Checkpoint
one [19]. In bi-periodic the checkpoint interval may change, whereas in the pure
periodic it remains constant. Hence there was an investigation of a novel dynamic

3.4. FURTHER TECHNIQUES USED IN HPC 34

programming approach with which checkpoints can be optimally placed. The results
have been researched on a QR factorization, and it was shown that the incremen-
tal checkpointing could easily beat the bi-periodic checkpoint- and the pure periodic
checkpoint approach, and further remains competitive with the ABFT & Periodic
Checkpointing for up to 100,000 nodes. Another benefit, which the new technique
brings along is the time gain and I/O gain when using it over the bi-periodic check-
pointing. The expected gain on completion time for one million nodes was in the
range of 10,000 seconds which are about 3 hours of saving time when executing a QR-
routine. This result is mainly because of the checkpoints are smaller which make them
less costly, and the dynamic programming reduces the risk of re-execution in case of
failure. Here again, the waste-value calculation is used for comparing the results.

Multi-Level Checkpointing

This probabilistic model can combine multiple technologies like local memory/solid
state drive (SSD), partner copy/XOR, Reed-Solomon coding or parallel file system
to get rid of different failure types [21]. Further help libraries including Scalable
Checkpoint/Restart (SCR) and Fault Tolerance Interface (FTI) may also be involved.
For k levels an optimal pattern length, number of checkpoints at level l, and pattern
overhead can be constructed. These equations can later be used to calculate what
scheme or combination of the different levels would achieve an optimal multi-level
checkpointing.

Checkpointing with Fault Prediciton

In a fault prediction model, all efforts are about trying to predict an error or fault
before they arise [20]. Therefore a fault predictor which should warn the user about
possible upcoming faults on the platform is used. The predictor is characterized by the
recall r (# of faults indeed predicted) and precision p (fraction of correct predictions).
The optimal approach depends on the time which is needed for executing a proactive
checkpoint and on the predictor’s precision. Bringing the waste-value from [74] in
combination with the predicted and unpredicted faults together, can lead to the result
that an optimal time interval for a checkpoint can be calculated. Furthermore, the
decision at what point in the period of the execution the prediction to be considered
can have a substantial impact on the optimal value. It can happen that if a fault is
predicted, there is no time left to take preemptive actions because there is already a
checkpointing in progress. In this case, such a prediction must be ignored and not
used for optimality calculations.

3.4. FURTHER TECHNIQUES USED IN HPC 35

Checkpointing with Replication

Another possible way to withstand system failures is to replicate all the computations.
In this model firstly the processors are grouped by pairs in a way that for example
two processors have identical work to do. It is obvious that if a failure happens on
one of the processors from the group, the other one still can do its correct compu-
tations. The idea, at first sight, seems to be expensive because the processors are
split up at least in groups of two, but a different checkpoint strategy can resolve this.
In a system where the computations are replicated only one half of the processors
need to have a checkpointing technique running. By introducing the term of MN-
FTI (mean number of faults to interruption) and comparing the standard approach
with checkpointing to the one using replication, a crossing point can be calculated.
Further, with considering the corresponding MTBF of both variants the checkpoint
time where the replication method is more efficient than a standard execution with
checkpointing can be calculated. In an example calculation, it has been shown that
for a parallel system with 220 (about one million processors) the replication variant
is more computationally effective, if the time needed for a checkpoint is greater then
6 minutes [74]. Conclusively with the output of this model it can be decided which
variant to prefer in which particular situation.

Another direction where current investigations are done is in partial replication.
The idea behind this approach is that to replicate only critical processes or a smaller
part of all processes. This can help to save computational resources and to optimize
the mean time between failure.

3.4.2 Composite Approach: ABFT & Checkpointing

On the road to exascale computing, the engineers are confronted with many chal-
lenges. One of them is the huge number of usually fault-tolerant hardware compo-
nents where the fault tolerance is fighting against the time to failure (meaning the
MTTF). The fault tolerance cannot be held constant when the number of components
rises (see Table 1.1). When there should be a long-lasting computation executed a
fault-tolerant technique like ABFT or checkpoint/restart is indispensable. In [15] a
solution was presented which has to do with a composite protocol, which alternates
between ABFT and checkpoint/restart. This should provide effective protection of
an iterative application where ABFT is involved.

So the composite approach of ABFT & Checkpointing combines ABFT in library
phases and periodic checkpointing in general phases. For the procedure, this means
that in sections that can be protected by an ABFT method, a partial checkpoint is

3.4. FURTHER TECHNIQUES USED IN HPC 36

taken and so the rest of the dataset is protected. The first advantage is that the library
dataset is not contained in that partial checkpoint because the ABFT algorithm will
reconstruct it. Every time a call returns, a partial checkpoint of the library’s mod-
ification is added to the partial checkpoint. The data is split but complete by the
coordinated checkpointing mechanism. Thus if a failure is detected the crashed pro-
cess within the library call can be recovered using the combination of the roll-back
recovery and ABFT. The distribution is as follows: the ABFT thread recovers the
library dataset and the partial checkpoint the rest of the data. The restoring happens
before quitting the library routine. An important issue is setting the right checkpoint
interval. Setting a more frequent checkpoint interval results in an overhead but re-
duces the amount of time lost, whereas a long period without checkpoint decreases the
overhead and increases the loss of already computed data in case of a system failure.

The results were shown in comparison to a bi-periodic checkpoint- and a pure
periodic checkpoint algorithm, at which in the bi-periodic the interval may change,
and in the pure variant the checkpoint interval remains constant. As an advantage
of the ABFT & Periodic Checkpointing approach it was observed that the ABFT
technique appears to stay at almost constant waste 9 rate when the number of nodes
increases. From the point of total waste, and especially when the computational nodes
exceed 100k, the new approach is highly efficient. Comparing bi-periodic- and a pure
periodic checkpoint to ABFT & Periodic Checkpointing there exists a factor five of
better efficiency (low wasting) by using the new provided approach at one million
nodes.

3.4.3 Fault-Tolerant MPI Approaches

As actually the current MPI Standard v3.1 from 2015 still does not provide mecha-
nisms for dealing with communication failures software engineers have to develop own
fault-tolerant techniques to support them. Since 1999 the Message Passing Interface
(MPI) community is trying to extend MPI by some interesting feature for HPC ap-
plications called Fault-Tolerant MPI (FT-MPI). Until then the first attempts were
including a checkpointing and rollback mechanisms. Later a master-slave model vari-
ant (MPI-FT) was presented, where extra spare processes were assigned to grids, and
utilized when there was a failure. An observer process was able to restore the lost
messages between the master and slaves [65]. FT-MPI is going more in the direction of
fine tuning of the application, as the level of correctness for individual communicators
can be changed to the own needs.

9Means here the fraction of time when on the platform resources no advancement of the compu-
tation is done by the application.

3.4. FURTHER TECHNIQUES USED IN HPC 37

FT-MPI has been developed in the scope of the HARNESS project [57]. The
main goal of FT-MPI is to provide a communication library with an MPI API for
the end-user. It was tightly coupled to the fault-tolerance in the HARNESS system.
The HARNESS (Heterogeneous Adaptive Reconfigurable Networked SyStem) project,
on the contrary, is on the first sight an experimental meta-computing system. The
main advantage is the highly dynamic plug-in modularity and the fault-tolerant com-
puting environment for HPC applications. The first extension of FT-MPI has to do
with new, additional MPI communication states. These are: {FT_OK | FT_DETECTED
| FT_RECOVER | FT_RECOVERED | FT_FAILED}. Further, additional attributes indi-
cating how many processes have failed are handled by FTMPI_NUM_FAILED_PROCS and
FTMPI_ERRCODE_FAILED.

Besides all the extensions Fault Tolerant MPI also has integrated four different
error modes which can be specified at the beginning of an application in the MPI
communicator. Depending on the chosen mode the API can react differently when
errors are detected. This is the list of the error modes:

1. ABORT : When error occurs simply abort
2. BLANK : Failed processes are not replaced, remaining processes have the same

rank, and MPI_COMM_WORLD remains the same size (communicator can contain
gaps to be filled later)

3. SHRINK : Failed processes are not replaced, and processes might have a changed
rank after recovery, communicator is reduced =⇒ contiguous data structure,
MPI_COMM_RANK recalled

4. REBUILD: Default mode, failed processes are respawned, other (surviving pro-
cesses) have the same rank as previously

The modes as mentioned earlier are accompanied by a message mode which can be
either NOP or CONT. In NOP(E) all ongoing messages are dropped (no operation
on error), while CONT denotes that all communications which are not affected by an
error can continue to work as normal until the communicator’s state is reset. All in
all, FT-MPI is an attempt to give different methods for dealing with system failures
in a MPI application.

User Level Failure Mitigation

Since 2012 a new optimistic approach called User Level Failure Mitigation (ULFM)
should help against failures in MPI applications [11]. The main goal is to resume
communication capability for MPI. Basically, if errors occur, they are exposed through
MPI exceptions to the application. In the case of MPI, we are speaking of middleware

3.4. FURTHER TECHNIQUES USED IN HPC 38

which should be made fault-tolerant. Back to the features of ULFM. Once a failure
condition has been reported by the MPI error handlers an exception is raised. In the
MPI Standard this exception is usually handled by aborting the whole application, so
the idea of ULFM is to avoid the cancellation by replacing the standard error handler
by a user specified one. For handling different failure conditions ULFM provides
several recovery functions [11, 74]:

1. MPI_Comm_failure_ack(comm): Helps the application to resume MPI_ANY_SOURCE
point-to-point operations between non-failed processes

2. MPI_Comm_failure_get_acked(comm, &group): To determine which commu-
nicator corresponding processes have failed

3. MPI_Comm_revoke(comm): Interrupts all operations on the communicator; Com-
municator becomes improper for further communications with other CPU ranks
and at every attempt the MPI_ERR_REVOKED is raised

4. MPI_Comm_shring(comm, &newcomm): All failed processes are excluded, and
a new communicator without them is created; Collective operation =⇒ all
participating processes must complete it

5. MPI_Comm_agree(comm, &mask): Collective operation which relies on a binary
mask; Failed processes are ignored such that computation can be continued e.g.,
reliable AllReduce

Another advantage of ULFM is the backward compatibility to previous MPI Stan-
dards. It can be applied to make an application fault-tolerant if needed. On the other
hand, there is still an open issue with shared-memory windows supported by MPI.
These are MPI objects or file objects with a similar revoke function, and in this case,
only failures of MPI processes are addressed. More precisely by ULFM, only issues
that may disrupt collective operations on a file are handled.

Irrespective of the interesting features of ULFM, the current version ULMF 2.0, is
even integrated into the Open MPI master branch [23]. This has the result that Open
MPI and ULFM from now on are developed together. There exist also a specification
of the current ULFM which should be by and by merged with the Open MPI Standard.

Chapter 4

Simulators and other Tools in HPC

There exist actually many different simulators for a variety of applications, but finding
the right one, especially for HPC purposes is not always trivial. Some simulators
are not capable of simulating real-time applications, and they may act as network
topology emulators or as supporting tools for the simulators, such that engineers
can effectively have a profound knowledge at how future supercomputers shall be
designed. In this master thesis, the emphasis lies on showing which PDES- and non-
PDES simulators are capable of simulating a system where the scale goes towards an
exaflop machine and also to look at their pros and cons. Further a summary of the
simulators’ capabilities and associated tools is given in Table 4.1 and continued in
Table 4.2.

4.1 PDES Simulators

First a brief journey into the world of parallel discrete event simulation. In PDES
primarily the execution of an individual discrete event simulation with simultane-
ous threads is the crucial point which should be highlighted [67, 64]. Typically each
thread simulates one logical process or in the oversubscription case multiple logical
processes. The situation with logical processes is that they are simulated all together
at different points in simulated time, and the simulation needs to guarantee the an-
cestry between logical processes such that the correctness of the simulated system
is sustained. There exist commonly two approaches for guaranteeing causality, the
conservative approaches, and the optimistic approaches. In conservative approaches,
the main task is to determine when it is not dangerous to process an event which
means where causality errors can be strictly avoided. Optimistic approaches on the
contrary work the other way round, they firstly detect causality errors and restore the
situation by using rollback mechanisms.

39

4.1. PDES SIMULATORS 40

Historically, the first distributed simulation mechanisms were based on conserva-
tive approaches, but they have the risk that a distributed deadlock can occur. In
such a case, one particular logical process is holding up all the progress of different
processes then it, while it is waiting for the progress of another. By doing so, a dis-
tributed deadlock can be resolved. That happens in a simulated point of time, where
it is safe for the other processes to execute an event. There also exists a situation
where frequently distributed deadlocks may result in a lock-step simulation. The posi-
tive point here is that this is not taking advantage of the concurrency. The occurrence
of distributed deadlocks can be decreased or exclusively avoided by transmitting null
messages with timestamps between logical processes [34]. These messages are then
used to communicate information about the progress and further supports, that each
logical process obtains an independent view of the global simulated time. From that
point, the logical process can determine if processing an event would end in a violation
of the causality. Moreover, in optimized PDES solutions it is common in a simulated
system to utilize the context of an event, such that it can be determined if it is safe
to process [64].

Optimistic approaches, on the other hand, require knowing periodically of the
state of each logical process, such that rollback mechanisms can be activated to the
right time. They do not need to determine when it is safe to proceed because as an
error occurs the procedure to recover is invoked. Because of this openness, it can also
happen that in a worst-case scenario, all logical processes are rolled back. Advantages
here are that a simulator with an optimistic approach can exploit parallelism in some
situations where a causality error is expected and that a dynamic creation of logical
processes can be easily adapted. Therefore in a PDES, an optimistic protocol is
chosen, which can identify causality violations by event time stamps. The authors of
[67] presented, for instance, the Time Warp protocol, which is based on the Virtual
Time [81] paradigm and which is commonly used for PDES solutions.

4.1.1 X-Sim

In this thesis one essential part was to find out if there exists a simulation tool which is
usable towards exascale simulation and if it can be used in combination with the two
highly optimized libraries for linear algebra (DPLASMA, ScaLAPACK). One major
tool which has been analyzed more in detail and with which we tried to achieve this
goal was xSim 1.

The xSim simulator [64, 63, 113, 62, 58, 13, 61] is a performance investigation
toolkit that allows running a HPC application in a monitored environment with MPI.

1http://www.christian-engelmann.info/?page_id=1804.

http://www.christian-engelmann.info/?page_id=1804

4.1. PDES SIMULATORS 41

Software developers can write applications, that can be executed on an HPC system
where millions of concurrently executing threads are simulated. In [59] it was shown
that with xSim it is possible to simulate up to 227 or about 134 million MPI processes
(each with its process context). During the simulation, xSim collects performance
information of the application, which is displayed summarized at the end of the run.
There exist many environment variables that can be preconfigured to the user’s needs.
The network topology can also be configured so that there can various networks be
simulated. Further, it uses a lightweight, conservative PDES algorithm, so that it can
execute a MPI application on a relatively small system by high oversubscription of the
processes. The architecture and design are shown in Figure 4.1. We have simulated
processes (SP) which are running under a PDES with MPI on native processors (P).
Further on the application is getting access and communicates over the simulated
MPI.

Figure 4.1: xSim architecture and design [64]

As the execution with xSim uses a virtual wall clock time, performance data can
be inferred based on a network- and a processor model. The design of xSim is imple-
mented to work as an interposition library located between MPI application and MPI
library. MPI calls are virtualized, by the MPI performance tool interface (PMPI). The
simulation tool xSim currently does not support [64] execution models with thread-
ing (OpenMP [45]), accelerators (GPGPUs) and task-based execution models (High
Performance ParalleX (HPX) [46, 85]). Besides it also has a fault injection feature
which makes an advantage when we want to analyze failures in a simulated environ-
ment. Furthermore, propagation, detection, notification, and handling capabilities
are integrated to allow more detailed investigations [62].

With all the mentioned features before, xSim is one of the most attractive tools
when we want to simulate real-case scenarios of an extreme-scale computation. Al-
though at the time it is not capable to fully work with DPLASMA or ScaLAPACK,

4.1. PDES SIMULATORS 42

which is mainly because the internal structure of their functions, xSim still could
be used to simulate a matrix-matrix multiplication in an exascale range when the
algorithm for the multiplication is written and optimized by hand. This procedure
includes that the subfunctions of the complex main routines need to be extracted and
the compilation has to be done without nesting routines.

Further there is a need of e certain space where the information of the additional
virtual MPI processes has to be stored. When xSim should be used as a preferred
simulator, the following additional MPI context 2 has to be considered:

• Virtual MPI process stack per native MPI process = 512 KB
• Virtual MPI process heap per native MPI process = 32 Bytes
• Virtual MPI process table per native MPI process = 184 Bytes

4.1.2 MuPI

MuPI (µπ) [119] has nearly the same architecture like xSim but instead the simulated
MPI and simulated processes (SP), the concept is based on virtual MPI and virtual
processes (VP). It is, therefore, a process-oriented simulator where each task or thread
is represented as a logical process. MuPI supports both PDES approaches (optimistic
and conservative execution) which are based on the µsik PDES engine. These ca-
pabilities imply that, e.g., null messages and Time Warp as features are supported.
MuPI can also distribute multiple virtual MPI ranks by multiplex onto each available
real processor. Furthermore, within a simulated environment, unmodified MPI codes
are supported [120].

Since a limited amount of processing resources are available, a strict hierarchical
structure is adapted to accommodate a significant amount of virtual MPI ranks across
them. Firstly, each node may consist of multiple processor sockets, and each processor
may have multiple cores integrated. Further, each physical core can handle a pre-
assigned number of virtual MPI ranks, which are time-multiplexed on their associated
processing core. In [120] there is shown a successful run of 16 million virtual ranks
in a discrete event fashion on as few as 16,128 real processors (scaling factor 1,024)
executed on the Cray XT5 supercomputer. With 216,000 compute cores on the same
machine a prototype of µπ even achieved 221 million simulated MPI processes, where
each has a separate thread context, and where all processes were synchronized by
simulated time [64]. Summarized we can say that the scalability in µπ has a per core
limitation because per CPU there cannot be scaled much more than 1,024 simulated
MPI processes. This leads to the result that if we want to simulate an extreme-scale

2A similar MPI context has to be taken into account when using other simulators too.

4.1. PDES SIMULATORS 43

system (exascale), we would need another extreme-scale supercomputer (petascale),
but it will be possible.

Unfortunately µπ is not developed any more and current works is going in direction
of PDES on cloud/virtual machine platforms [149] and simulations on GPGPUs [91]
including simulating cell biological systems.

4.1.3 SST

SST (Structural Simulation Toolkit)[124] offers an innovative simulation 3 for cur-
rent architectures, including latest processor, memory and network support. It is a
modular PDES framework using MPI and scales up to a few hundred simulated multi-
core nodes (512+ processors)[141]. The SST Core framework copes with independent
time-scale simulations including micro-, meso-, macro-scale simulations. Further, it
provides many interfaces and various utilities for simulation models and is beyond
compatible with external models like Gem5, DRAMSim2, and others. The simulator
supports checkpointing using Boost Serialization Library to convert the core’s state
and the state of each component into a binary format which is dumped to a file and
can be later used to restart the simulation. The SST algorithm works according to the

SST Component
Type: Core

SST Component
Type: Cache

SST Component
Type: Core

SST Component
Type: Cache

SST Component
Type: NoC Router

SST Component
Type: NoC Router

SST Link
Latency: 1ns

SST Link
Latency: 2ns

SST Link
Latency: 2ns

SST Link
Latency: 1ns

SS
T

Li
n

k
La

te
n

cy
: 4

n
s

Component Component

SST Core

Configuration

Parititioning

Link

Event

Instantiation
Time Coordination

Parallel
Communication

Figure 4.2: SST algorithm scheme[141]

two illustrations in Figure 4.2. Simulations are comprised of components connected
by links and components interact by sending events over links, where each link has a
minimum latency. Components can load subComponents and modules for additional
functionality and perform the simulation.

SST uses a Python configuration file to define global parameters for the simulation,
determine and configure components, and specify links and link latencies between
components.

3http://sst-simulator.org/SSTPages/SSTMainDownloads/.

http://sst-simulator.org/SSTPages/SSTMainDownloads/

4.1. PDES SIMULATORS 44

To summarize the compatibility to this master thesis main emphasis, the SST is
not very suitable for the application of exascale simulations. Here the requirements
of simulating millions of cores, support of C++11 and using it without much code
changing of the source code is not provided, just to mention some. Further, it is com-
plicated to use, and the developer using SST should well know the language Python.
SST does not support over-decomposition and relies on deterministic execution with-
out the possibility that distributed deadlocks can occur [64]. On the other hand, SST
provides a standard interface to various power estimation libraries including Orion,
McPAT, and Sim-Panalyzer and hooks are included in the interface to allow thermal
modeling tools (HotSpot) [124].

4.1.4 OMNeT++

OMNeT++ [109, 64] is an expandable, modular and component-based framework
with a combination of a C++ PDES library. Primarily it is used for building network
simulators and has a generic architecture. The features of OMNeT++ are compatible
with various problem domains, including modeling of wireless and wired communi-
cation networks, messaging-based hardware and software systems and queueing net-
works. Oversubscription is not offered on its own since OMNeT++ uses a conservative
PDES with null messages [34] to avoid distributed deadlocks.

The latest available version 4 has extended features in the data export tools,
toolchain and libraries on Windows including 64-bit Windows support, and to the
Eclipse [30] base for the IDE.

So actually OMNeT++ [138] is not an online simulator but provides infrastructure
and tools for writing simulations. Besides it can validate hardware architectures,
evaluate performance aspects of complex software systems, models multiprocessors
and other distributed hardware systems, and supplies also an accessibility to the
Eclipse IDE. Again this network simulation framework is not suitable for testing the
practical aspects of this master thesis. This assumption is made mainly due to the
several limitations mentioned in the OMNeT++ manual. There are inter alia the
constraints that no direct method call or member access can occur (unless they are
mapped to the same processor), no global variables can be defined, and sending to a
submodule of another module is not allowed. However, millions of cores/nodes can be
simulated as a mesh topology, but not in the manner of a fault-tolerant matrix-matrix
multiplication including testing of occurrence of soft errors. This is also because the
strengths of network simulators lie in simulating network communications in particular
scenarios or situations where no real machines or networks are configured.

4https://omnetpp.org/.

https://omnetpp.org/

4.2. NON-PDES SIMULATORS 45

4.2 Non-PDES Simulators

4.2.1 Charm++ BigSim

From the beginning on, the BigSim [151] project has to do with programming is-
sues in large-scale HPC systems [64]. The BigSim Emulator is developed for test-
ing applications (including debugging) at large scale machines and is based on the
Charm++/AMPI [87], which is a machine independent parallel programming sys-
tem. Charm++ has an intelligent runtime system, which applies the idea of over-
decomposition or more precisely processor virtualization based on migratable objects.
The AMPI stands for adaptive MPI, which is an implementation of MPI on top of
Charm++ 5.

With BigSim emulator we can run for example an MPI program with 100,000
simulated MPI processes and their context spread over 2,000 processor cores [64]. On
the other hand, the BigSim emulator does not provide time-accurate simulation and
no PDES. Here, oversubscription is achieved by using Charm++, where MPI pro-
cess contexts are encapsulated in objects. Although it has succeeded in improving
the performance of many scientific applications, the emulator has limited scalability
(it is designed for simulating PetaFLOPS supercomputers but not up to an exascale
range). One of the major research done with Charm++ is going in the direction of
NAMD (simulating a molecular dynamics code) [86]. It was also successfully used
in [80] to evaluate HPC networks (torus, fat-tree, and dragonfly) which are typi-
cally used in large supercomputers via simulation. If the emulator should be used
for computations, developers have to define additionally initialization details (e.g.,
BgSetNumWorkThread(int num) or BgSetNumCommThread(int num) for setting the
number of worker threads or communication threads per node) and handler func-
tions like BgSendPacket(int x, int y, int z, int threadID, int handlerID,
WorkType type, int numbytes, char* data) has to be used [89]. This particular
handler function sends, for instance, a portion of data to the Node[x,y,z] and also
specifies the responsible handler function for this message. Further, a threadID has
to be given (pointing on the desired thread to handle the message) or with which
the desired thread category can be specified. These are also arguments why this tool
cannot be directly used without modification of the source code.

The second tool (BigSim simulator), in contrast, was developed to identify perfor-
mance bottlenecks in various applications and uses a trace-driven PDES [64]. That
means that with its concept, architecture specific parameters of HPC systems can be
modeled. For instance, time-accurate simulations are done by a variable-resolution

5http://charm.cs.illinois.edu/.

http://charm.cs.illinois.edu/

4.2. NON-PDES SIMULATORS 46

processor model and an extensive network model. While it uses a restrained PDES to
maintain accuracy, the support range includes only post-mortem trace replay without
the possibility to run applications. Because a trace replay is completely determin-
istic, BigSim’s PDES solution does not mind of distributed deadlocks for example.
That is also a reason why the BigSim is classified as a non-PDES simulator. Finally,
the simulator allows a variable-resolution model in the range from simple scale fac-
tors to the more advanced interpolation factors based on performance counters (e.g.,
cycle-accurate simulators) [88]. Furthermore, it can be nicely used for analysing the
performance of communication networks. The analysis is done by plugging in either a
straightforward latency model or with a detailed model of the whole communication
fabric. Further, it is possible to evaluate huge networks with it.

4.2.2 JCAS

JCAS [60] or Java Cellular Architecture Simulator was a predecessor to xSim(4.1.1),
which was developed in 2001. The goals at that time were to research the scalability
and fault-tolerance of HPC algorithms for systems with about 100,000 processor cores
[64]. As a testing application, a fast Fourier transform (FFT) algorithm which has
the ability of self-healing and was based on peer-to-peer diskless checkpointing was
observed. The JCAS prototype was capable of running < 500, 000 virtualized pro-
cesses on a Linux cluster with only five processor cores (where one core was reserved
for visualization). Further, it was primarily used for solving standard mathematical
problems and has implemented several network topologies(nearest neighbor, torus,
mesh, random) for testing [60]. Furthermore, it has a GUI with the support of some
failure modes. It was possible to kill a selected node, percentage of nodes in a region
or a block of nodes directly in the GUI. JCAS can execute algorithms at scale but
has some weak points which are required when we want to simulate the next-gen
supercomputing systems. These disadvantages are a time-accurate simulation, high-
performance capabilities, running the simulator on an MPI basis, and a complete
functional virtualized MPI. Further JCAS does not implement a PDES capability
because it relies only on Java threads. The oversubscription feature is achieved in
this case by encapsulating simulated MPI process contexts, but only in JAVA ob-
jects, which also brings a certain drawback along. Therefore it is not suitable for a
computationally and spatially intensive matrix multiplication towards exascale based
on MPI. Although, the tool might be configured to simulate a small matrix product
problem.

4.2. NON-PDES SIMULATORS 47

4.2.3 SimGrid

SimGrid [33, 131, 64] does not use a PDES. Instead, it uses a central simulation
engine. This toolkit provides the necessary capabilities which are needed in hetero-
geneous distributed environments for simulating distributed applications. According
to this, the distributed systems that can be simulated are Grid computing infrastruc-
tures, HPC systems running MPI, peer-to-peer computing environments, and Clouds.
SimGrid 6 offers MPI and online simulation for running the applications. Oversub-
scription is done by UNIX98 contexts, which is provided by an OS support for co-
operative threading. On the other hand by the use of a central simulation engine, a
global synchronization and scalability problem is established. Since SimGrid partially
covers the MPI functionality [128] at the moment and as only non-multithreaded ap-
plications are supported (neither Pthreads 7 nor OpenMP 8) it can’t be directly used
with the HPC libraries (DPLASMA or ScaLAPACK).

4.2.4 GridSim

GridSim [39, 31] is a grid simulation toolkit for resource modeling and further for
application scheduling of parallel and distributed computing. Hence it investigates the
characteristics of computing resources with various network configurations. Instead of
an online approach like in xSim(4.1.1) that indeed executes an application, GridSim,
on the contrary, executes models of applications, interconnect networks and computing
resources [64]. GridSim 9 also uses a centralized simulation engine called Distributed
SimJava for providing a discrete event simulation, whereas MPI is not supported.
Moreover, the GridSim toolkit has extensive support for modeling and simulation
of several heterogeneous resources (single or multiprocessors, workstations, SMPs,
shared and distributed memory machines, and clusters with different capabilities and
configurations) [31]. As it is based on Java, it is also not suitable for the HPC libraries
mentioned in this thesis.

4.2.5 DIMEMAS

Dimemas [27, 70] is a trace-driven PDES solution for investigating application perfor-
mance with the specialization on predicting parallel performance using a single CPU
machine. In other words, it enables a developer to tune parallel applications (message-

6http://simgrid.gforge.inria.fr/.
7Execution model that works independent of a language; supporting also a parallel execution

model.
8API that supports multi-platform shared memory multiprocessing.
9http://www.cloudbus.org/gridsim/.

http://simgrid.gforge.inria.fr/
http://www.cloudbus.org/gridsim/

4.2. NON-PDES SIMULATORS 48

passing programs) on a workstation, while providing an objective prediction of their
performance on a desired parallel machine. From a predefined set of performance
parameters, the Dimemas simulator can reconstruct the time behavior of a parallel
application. Supported target architecture classes are networks of workstations, dis-
tributed memory parallel computers, single and clustered symmetric multiprocessors
(SMPs), and heterogeneous systems which gives a certain degree of freedom.

Dimemas also generates trace files that are suitable for Paraver, since they are
both developed by the team at the Barcelona Supercomputing Center (BSC) [7].
This combination enables the user to examine any performance problems indicated
by a simulator run conveniently. Especially the analysis of application execution on
non-existing machines makes Dimemas interesting for the HPC community. With
this tool, good quality of prediction can be achieved and further the costs can be
kept low because of the high abstraction. Nonetheless, it gives useful results, but
for an extreme-scale application execution, Dimemas is not suitable. However, it
might be used as an additional tool to analyze the performance bottlenecks of an
application without actually running the whole context. A use case would be to run
the application on a smaller parallel machine (with an average problem size) and then
use the produced tracing files in the simulation engine to estimate how the application
will behave if it is done for instance on an exascale system. Therefore, for example,
the behavior of random bit-flips or node failures in a huge parallel system cannot be
observed with this tool. This performance analysis tool and also the tool Paraver
(4.3.1) can be obtained from the BSC main site 10.

4.2.6 ns3

The latest release of the ns-3 network simulator is at [117]. NS-3 is a discrete-event
network simulator for detailed network architecture, where the core of the simula-
tion and models are implemented in C++ [116]. It is built as a library which can
be statically or dynamically linked to an application written in the C++ language.
This program defines then the simulation topology and executes the simulation. NS-3
has a built-in pseudo-random number generator, which can easily be accessed by in-
stances of ns3::RandomVariableStream. Conceptually, the simulator keeps records
of many events that are scheduled to execute at a predefined simulation time and
further it can be seen as a real-time network emulator. It has a tracing API and a
data collection framework where the raw data can be transformed by the collector
and where the Aggregator marshals data into plots, files or databases. Furthermore,
a framework called common open research emulator (CORE) consisting of a Python-

10https://tools.bsc.es/downloads.

https://tools.bsc.es/downloads

4.3. TOOLS FOR USING IN COMBINATION WITH SIMULATORS OR AS ASSISTANCE 49

based framework using ns-3 Python bindings, a distributed computing library, and
an ns-3 TapBridge framework is also provided. For visualization and configuration
the Eclipse IDE [30] is used. Moreover, the ns-3 simulation CORE gives the oppor-
tunity that both IP and non-IP based networks can be investigated. Therefore the
vast majority of its users concentrates on wireless/IP simulations where models for
Wi-Fi, LTE, or WiMAX are involved. Furthermore, a mixture of dynamic or static
routing protocols such as AODV and OLSR for IP-based applications can be used in
combination with ns-3. On the other hand, it is not suitable for real-time simulations
of virtual MPI processes needed for simulating towards exascale HPC systems. How-
ever, for engineers, it can be interesting to simulate an exascale machine from the
number of nodes and different network topologies with the ns-3 simulator.

4.2.7 NetSim

NetSim [134, 135] is a detailed network architecture simulator and is primarily used
as software for protocol modeling and simulation, for network R&D purposes and
defense applications. It supports the analysis of computer networks and is flexible to
use. There exist three versions of NetSim 11, whereas the Pro version is suited for
commercial (enterprise/defense) customers while the standard and academic version
are for education customers.

Its features include data center simulation, simulation of LTE covering, cellular
networks, cognitive radio networks, military radio, and others. It also has an exhaus-
tive tracing capability for performance reporting, packet- and event trace and dynamic
metrics. For high-performance purposes especially the data center simulation is rele-
vant. Unfortunately, there is a limitation to about 100,000 nodes [133], and therefore
it is not suitable to be used in exascale range. As it is a non-PDES simulator, it does
not support live MPI-threads.

4.3 Tools for Using in Combination with Simula-
tors or as Assistance

In this section, there are tools presented which can be used in combination with the
previous simulators. These tools can act as a tuning support, as trace file analyzers
or managers and as visualization help for developers.

11http://tetcos.com/index.html.

http://tetcos.com/index.html

4.3. TOOLS FOR USING IN COMBINATION WITH SIMULATORS OR AS ASSISTANCE 50

4.3.1 PARAVER

Paraver [121, 29, 28] is a compelling performance visualization and analysis tool which
work with trace files. These files can be used to analyze any information from its input
trace format. The tool is developed by engineers at the BSC in Barcelona 12.

The main features of Paraver are opening the support for concurrent comparative
analysis of several traces, detailed quantitative analysis of program performance, the
customizable semantics of the visualized information, cooperative work, sharing views
of the trace-file and building of derived metrics [29]. Further Paraver accepts any
programming model as long as the used model can be mapped to the parallelism
expressed in the Paraver trace which consists of three levels. An example of two-level
parallelism in the meaning of Paraver would be hybrid MPI + OpenMP applications.
Among other things programming interfaces like MPI, OpenMP, Pthreads, OmpSs13

and CUDA 14 are supported by the runtime measurement system Extrae [26] that
also generates the Paraver traces. In the following figure we can see how the two
previously described tools (Dimemas and Paraver) can be used and tuned together
by pursuing the sequence paths:

Figure 4.3: Combination of the tools Paraver and Dimemas [27]
12https://tools.bsc.es/paraver.
13Programming model based on OpenMP to support asynchronous parallelism and heterogeneous

architectures (GPUs).
14API by Nvidia.

https://tools.bsc.es/paraver

4.3. TOOLS FOR USING IN COMBINATION WITH SIMULATORS OR AS ASSISTANCE 51

With the unique multiple traces feature of Paraver, it is possible to compare two
versions of code, the difference between two runs, behavior on two machines, the influ-
ence of problem size or application scalability. The multiple view options (graphical-,
textual- and analysis view), large trace file support and the universality makes the
tool attractive when somebody wants to analyze extreme-scale systems.

4.3.2 Vampir

The Vampir [90, 72] tool consists of the instrumentation and measurement compo-
nent VampirTrace and the visualization applications Vampir and VampirServer. It
is a trace-driven PDES performance analysis tool for parallel applications. Since
2014 it works strongly coupled together with the Scalable Performance Measurement
Infrastructure for Parallel Codes tool (SCORE-P) [139].

The current version can be found at Vampir’s home page 15. The feature list
consists of a comprehensive performance analysis framework, including a graphical
data representation for a detailed understanding of the dynamic processes on mas-
sively parallel machines, identification of performance problems and bottlenecks and
support for Linux-based PCs and clusters. The Score-P collaboration allows the tool
to works natively with Scalasca, TAU, and Periscope [139]. The whole support for
instrumentations and further details can be found in a table 16 from the developers’
web site.

From a high-performance point of view, this tool can be classified to be a good
performance bottleneck analyzing tool. It supports MPI, OpenMP, PAPI 17, Pthreads,
and can be used to analyze the tracing data of millions of cores.

15https://www.vampir.eu/.
16https://www.vampir.eu/support/comparematrix.
17Portable library to hardware performance counters.

https://www.vampir.eu/
https://www.vampir.eu/support/comparematrix

4.4.
SU

M
M

A
RY

O
F

SIM
U

LAT
O

R
S

A
N

D
T

O
O

LS
52

4.4 Summary of Simulators and Tools

We have here an overview of the advantages and disadvantages 18 of the different simulators and tools studied in this master thesis:

Simulator
or Tool

Based on Advantages / Support Disadvantages / Not supported

X-Sim (4.1.1) PDES + Real-time simulations, millions of simu-
lated MPI processes, distributed deadlocks,
fault injection feature

− Not directly working with DPLASMA,
ScaLAPACK, OpenMP, High Performance
ParalleX, GPGPUs

MuPI (4.1.2) PDES + Online PDES engine, optimistic and con-
servative execution supported

− Not developed any more, Scalability per
core ∼1,024

SST (4.1.3) modular PDES + MPI support, checkpointing, power estima-
tion libraries, time-scale independent simu-
lations (micro-, meso-, macro-scale) & ther-
mal modelling tools

− Can only simulate 512+ processors, Python
understanding is required, no distributed
deadlocks supported

OMNeT++ (4.1.4) Component-
based PDES
library

+ Tools for writing and building network sim-
ulators, Eclipse IDE, validate hardware ar-
chitectures, simulating wired and wireless
communication networks, deals with dis-
tributed deadlocks

− Oversubscription not offered

Charm++ Bigsim
(4.2.1)

Trace-driven
PDES

+ Evaluation of HPC networks, perfor-
mance investigation of scientific applica-
tions, simulating a molecular dynamics
code (NAMD)

− No time-accurate simulation, oversubscrip-
tion in objects, limited scalability, models
only architectural parameters of HPC sys-
tems

Table 4.1: Summary of simulators and tools towards exascale

18For details and further explanations see the corresponding subsections in the brackets and list of acronyms.

4.4.
SU

M
M

A
RY

O
F

SIM
U

LAT
O

R
S

A
N

D
T

O
O

LS
53

Simulator or
Tool

Based on Advantages / Support Disadvantages / Not supported

JCAS (4.2.2) Java threads + Simulation of ∼ 500, 000 processes − MPI, no time-accurate simulation
SimGrid (4.2.3) Central simu-

lation engine
(CSE)

+ Simulating grid computing infrastructure,
HPC systems and clouds

− global synchronization and scalability
problem, partially covers MPI, non-
multithreaded applications only

GridSim (4.2.4) Models of appli-
cations (CSE)

+ Toolkit for resource modeling, application
scheduling, for parallel and distributed
computing, grid computing

− No online execution, no MPI, based on Java
(scalability)

DIMEMAS (4.2.5) Trace-driven
PDES

+ Predicting parallel performance on a sin-
gle CPU machine, simulate several archi-
tecture classes

− No real-time execution, no full simulation
of all threads with contexts

ns3 (4.2.6) DES + DES for detailed network architecture, IP
and non-IP based networks, Wi-Fi, LTE

− Simulation core and models only C++, no
MPI

NetSim (4.2.7) DES + Network architecture simulator, protocol
modelling and simulation, LTE, cellular
networks, military radio

− No live MPI-threads, simulate < 100,000
nodes

Paraver (4.3.1) Tracing files + Comparative analysis of several traces,
many programming models accepted, mul-
tiple views

− Older GUI

Vampir (4.3.2) Trace-driven
PDES analysis
tool

+ Instrumentation, measurement com-
ponents and visualization applications
provided, Score-P tool

− A few compiler instrumentations and per-
formance counters not supported

Table 4.2: Summary of simulators and tools towards exascale continued

4.5. TOWARDS EXASCALE SIMULATION 54

4.5 Towards Exascale Simulation

To develop an optimal simulator for future systems is not trivial. One crucial point for
achieving the exascale goal is the scalability of the simulators. It should be possible
that per real core the simulated core capability (MPI process) is nearly infinite. With
infinite, we want to express that it should be only limited by the physical memory
(RAM) which is needed for the simulated process’ context. This feature is crucial
if we want to simulate next-gen supercomputers on small servers. As described in
subsection 4.5.1 we have to expect > 10 million cores for an exascale supercomputing
center. With a scaling ratio of 1:100, for example, we would need a simulating machine
with at least 100,000 cores. That is apparently not very efficient because simulations
usually take much time and running a supercomputer with 100k cores cannot be
occupied by a single user easily. Further, the financial aspect when running massively
parallel systems over a longer period should be considered.

Another point expected from engineers is that the simulator is providing accurate
results. As we are talking about a dozen million of cores the used tools and simulating
libraries should give precise results for the time, architecture, design and network
topologies. The budget for such systems is estimated to be > $200 million [20, 53]
and therefore these tools should give good evaluations because they also can help
to save probably millions of dollars regarding the hardware costs. Besides the main
challenges at exascale [52] which are power, extreme concurrency, limited memory,
data locality and resilience, the predicting tools should work accurate and give good
results. A proposal of using a good combination of the presented tools can be to use
xSim (4.1.1) for an online simulation of the desired application, then use ns3 (4.2.6)
for modeling and examining the network architecture and finally use Paraver (4.3.1)
to analyze the tracing files and to find performance bottlenecks. Thus actually a way
to exascale can be a combination of the available tools and simulations for the own
required application. However, in most cases, the developers have to reprogram the
source code to the specific requirements of the chosen simulator.

Simulators in scientific problems and difficulties and issues are discussed in (4.5.2)
and (4.6). In the coming subsection, an example is given of how a matrix-matrix mul-
tiplication would look like when using xSim (4.1.1) to simulate an exascale situation.

4.5.1 Exaflop PDGEMM

The following example was compiled based on the best theoretical computer perfor-
mance (Rpeak) from the current TOP500 supercomputer list [106]. Therefore the
Rpeak performance was divided by the total number of cores and then sorted in de-

4.5. TOWARDS EXASCALE SIMULATION 55

scending order. The number of cores needed for an Exaflop range was calculated by
using the highest GFlop/s per core rate from all systems without additional acceler-
ators (no GPUs, acceleration cards, . . .). From this it follows, that to simulate an
exascale machine with current CPU power capabilities we are in need of a system
with following setup (for instance):

1. TOP500 supercomputer with best FLOPS performance / core (called HPE SGI
8600) [103], equipped with Xeon Gold 6154 18C 3GHz and Intel Omni-Path.
Rpeak approx. 1 Petaflop, total cores 10,368, about 100 Gflop/s per core.

2. For 1 Exaflop performance approx. 10 million cores needed (10 M × 100 Gflop/s)

3. For simplicity and quadratic property of the local ABFT PDGEMM algorithm:
12.25 M cores assumed here (comes from a of 3500× 3500-grid of CPU cores)

4. Submatrix size of dimension: 200× 200 needed for good FLOP rate (on 1 core)

5. Overall matrix dimension: 700, 000× 700, 000 or (700K× 700K)

6. Simulator: xSim (capable of simulating millions of cores)

7. Calculation for 1 Exaflop peak performance:

Simulation of 12.25 M requires 6.2 TB (0.5 MB/virtual MPI process)

700 K × 700 K matrix A 3.5 TB
700 K × 700 K matrix B 3.5 TB
700 K × 700 K matrix C 3.5 TB

Total RAM required ∼16.7 TB RAM (as a lower bound)

Table 4.3: Minimum amount of RAM required for simulating an Exaflop machine
without communication and calculation overhead

The following conclusion from the example above is that it is not easy to simulate
an exascale computation which theoretically will reach a peak performance of 1 Ex-
aflop/s. Especially when using a matrix-matrix multiplication which is expensive on
space when the dimensions of the matrices are huge. However simulating a petascale
computation might be a way more simple to arrange. In such a case, for a system of
about one million cores with an estimated performance of about 100 Petaflops/s the
total RAM requirement will range from 1.5 to 2.5 TB.

Instead, back to the exascale example, when the calculations should be done with
DPLASMA and a non-fault-tolerant PDGEMM, approx. 25 TB RAM is needed.
This estimate is shown in Table 4.4 where a realistic scenario was calculated based on
empirical investigations. Further, it should be remarked, that these values were not

4.5. TOWARDS EXASCALE SIMULATION 56

Simulation of 12.25 M requires 6.2 TB (0.5 MB/virtual MPI process)

700 K × 700 K matrix A 3.5 TB
700 K × 700 K matrix B 3.5 TB
700 K × 700 K matrix C 3.5 TB

MPI communication and calculation 8.5 TB
overhead for DPLASMA (approx.)

Total RAM required ∼25.2 TB RAM

Table 4.4: Minimum amount of RAM required for simulating an Exaflop machine
(not fault-tolerant)

measured in a real test run, they should only give an approximation to an exascale
test case.

To get a good sense of supercomputer and the amount of RAM they are equipped,
in Table 4.5 there are some chosen machines presented from the current TOP500 list.

Supercomputer Rank Total Amount of RAM
No. 1 Supercomputer in the world -
Sunway TaihuLight (China)

1 ∼1300 TB RAM [105]

No. 1 Supercomputer of Austria -
Vienna Scientific Cluster 3 (VSC 3)

460 ∼150 TB RAM [142]

No. 1 Supercomputer of Germany -
Hazel Hen

19 ∼988 TB RAM [75]

No. 1 Supercomputer of Japan -
Gyoukou

4 ∼575 TB RAM [102]

No. 1 Supercomputer of Switzerland -
Piz Daint (CSCS)

3 ∼340 TB RAM [104]

Last supercomputer in the list -
Discover SCU11

500 ∼73 TB RAM [101]

Table 4.5: Supercomputer and equipped physical RAM in terabyte [106]

According to Table 4.6 (on the next page), where a fault-tolerant variant is pre-
sented 19, we can say that one of the current TOP 500 supercomputers is actually
needed to simulate an Exaflop system under such conditions. Further we can see that
for an Exaflop Local ABFT PDGEMM, the required system for simulation should
have at least 30 TB of RAM.

19A detailed description can be found in the implementation section under (5.2.1) and (5.2.3).

4.5. TOWARDS EXASCALE SIMULATION 57

Simulation of 12.25 M requires 6.2 TB (0.5 MB/virtual MPI process)

720 K × 720 K matrix A 3.8 TB (d = 5)
720 K × 720 K matrix B 3.8 TB (d = 5)
720 K × 720 K matrix C 3.8 TB (d = 5)

720 K × 720 K help matrix D 3.8 TB (d = 5)
Additional space for fault tolerance 0.3 TB (d = 5)

arrays H1,H2,S1,S2,I1,I2
MPI communication and calculation 8.6 TB

overhead for DPLASMA (approx.)
Total RAM required ∼30.3 TB RAM

Table 4.6: Minimum amount of RAM required for simulating an Exaflop machine
(fault-tolerant version)

4.5.2 Simulators in Scientific Problems

In the last section, we show that simulating a matrix-matrix multiplication towards
exascale will cost many resources as it is pretty heavy-weight from the number of
computations, but there exist problems in science which are not so heavy and can be
used to show the scalability of a simulator or tool.

Charm++ has several applications which are using it. NAMD is probably the most
important one. It is a program which can be used in parallel systems for simulating
biomolecular assemblies consisting of proteins, cell membranes, DNA molecules, water
molecules, and so forth [87]. Here, two chosen effective Charm++ features especially
useful for parallelizing NAMD are the adaptive overlap of communication and cal-
culation across modules and dynamic load balancing. It was used to scale NAMD
to petascale machines. Another application in combination with the Charm++ is
the Car-Parrinello ab initio molecular dynamics (CPAIMD) method which can model
complex systems with nontrivial bonding, chemical bond forming events and breaking
events. The idea behind is first to improve the methods and sampling algorithms to
allow greater scale simulations of higher accuracy, and second to employ the next-gen
software engineering tools to design and implement efficient algorithms for CPAIMD
which scale to more than thousands of processors. Another project is the ChaNGa
(Charm++ N-body Gravity solver), which is used for cosmological simulations of the
formation of galaxies and massive-scale structures. It has to do mainly with the N-
body problem where hierarchical methods for N-body simulations are investigated.
What’s more, there is the use in other applications like ParFUM and POSE, where
ParFUM provides a framework for the efficient parallelization of unstructured meshes
and POSE is a general-purpose optimistically synchronized PDES environment built
with Charm++. The POSE environment was explicitly designed to handle simulation
models which can be problematic (where fine computation granularity and a slight

4.5. TOWARDS EXASCALE SIMULATION 58

degree of parallelism is involved). POSE works with the BigSim simulator and sup-
ports virtual topologies like N-dimensional meshes, tori, and hypercubes and K-ary
N-trees and hybrid topologies.

In the literature of extreme-scale simulator xSim also several applications were
observed. In [13] the primary goal was to enable the execution of the complete NAS
Parallel Benchmark (NPB) suite by [112] in a simulated HPC environment. The
NPB suite is described as a set of MPI benchmarks (in C and Fortran) that utilize
some chosen, more complex MPI calls, which are common in today’s parallel ap-
plications. Therefore this is more about seeing if the simulator is competitive with
scaling and different weight categories of computations. Further, the NPB suite from
NASA Advanced Supercomputing Division (NAS) includes several benchmarks (mini-
applications) which have different classifications of how computationally intensive they
are. Here are some of them, which were investigated by xSim [64]:

• CG, a conjugate gradient solver including an irregular memory and communi-
cation patterns (class 20 C)
• EP, an embarrassingly parallel kernel (class D)
• MG, a multi-grid solver on an order of meshes, long- and short-distance com-

munication patterns, (mostly memory intensive operations (class D))
• FT, a discrete 3D fast Fourier transform introducing all-to-all communication

patterns (class C), and
• IS, an integer sort concentrating on random memory access patterns (class D)

In [58] conversely, a Monte Carlo solver was successfully executed up to 224 or about
16 million simulated MPI processes and also on different network topologies. This
example can be seen as a lightweight scientific computation which is used for com-
puting or estimating pi (π). There is not much context which has to be shared over
all simulated MPI processes and therefore simulators can easily cope with such situ-
ations. Such lightweight computations are also good for showing the scalability of a
simulator.

Another direction of investigations is showed in [80]. Here the evaluation of HPC
networks via simulation of parallel workloads was observed. The TraceR [1], which
is a trace replay tool working on the basis of the ROSS-based CODES simulation
framework was used. In this paper an evaluation and a comparison of the three
most used network topologies for building interconnection networks in great-scale
supercomputers: torus, fat-tree, and dragonfly were presented. The evaluation was
done by the scalable packet-level network simulator, TraceR and for a simulation of

20The classes here have mainly to do with the problem size (Class A smallest problem size to Class
D biggest problem size).

4.6. ISSUES USING SIMULATORS AND HPC LIBRARIES 59

a 46K node system. This research should mainly help to estimate operational costs
and performance efficiency for future systems.

Further scientific work is going in the direction of simulating a particular time of
a protocol like P2P or simulating a binomial broadcast, which is a specialization of
SimGrid [128] (presented in 4.2.3). NetSim (4.2.7) is also used for protocol modeling
and simulation, and further for network R&D and in the defense sector. NetSim can
be used moreover for investigations in wireless sensor networks, cognitive radio and
LTE networks [134].

4.6 Issues Using Simulators and HPC Libraries

One of the most significant issues is the time for simulation. Especially when the
simulated application is very computationally intensive, and the amount of simulated
MPI processes are exceeding the one million-boundary. We can see from xSim inves-
tigations [64] for matrix-matrix multiplication that the simulation time with 212 or
4096 virtual MPI processes goes in the range of 1E+04 seconds or about 3 hours of
execution time. When we project this results on an exascale case with 2 million or
221 MPI processes, the wall-clock time will result in about 1E+07 seconds or 2800
h or 117 days. Here it should be remarked that this is only an estimation and the
matrix-matrix multiplication is not a well-optimized version (not using one of the
HPC libraries). It should only visualize that applications which are computationally
intensive have an enormous impact on the execution time of the simulation.

Another point is the required physical memory for the simulation. As the simu-
lation needs space for the simulated MPI contexts or objects and also the problem
size pulls strongly on the available memory, this can also be a limitation issue for
simulating an individual problem. From the current point of view, we can say that
a supercomputer of current TOP 500 list [106] is needed 21 for simulating a next-
generation supercomputer as stated in subsection 4.5.1.

Last but not least there is the issue of subroutines of the libraries not knowing of
the actual network topology (also extensively described in Section 7.1). This situation
also comes from the fact that online simulators like xSim (4.1.1) are using own MPI
contexts and thread grid structures which overlap the provided grid information of
the HPC libraries. Hence DPLASMA and ScaLAPACK are working with own grid
information acquiring routines which give the available hardware topology to the
library. DPLASMA further uses HWLOC which gives extended information like in
(Figure A.1) and (Figure A.2). Based on this information the MPI context and further

21When matrix operations should be simulated.

4.6. ISSUES USING SIMULATORS AND HPC LIBRARIES 60

the application’s grid structure is set up to provide optimal performance for all library
functions. Therefore to achieve the execution of a simulator with one of the both HPC
libraries, we have to break the functions into the subroutines and extract the needed
code for a successful run. That also implies that no simulator was found in the study
of this thesis which can be directly executed without disassembling the computing
routines. This issue 22 has not been tried and tested in a real case scenario and is
therefore given as an open issue for future work (Section 7.1).

22The issue of application not knowing the execution environment has only been recognized, and
one possible solution was proposed as a theoretical thought, but no test cases or application has been
evaluated with reprogramming.

Chapter 5

Implementation

For the implementation DPLASMA, a highly optimized library for HPC was chosen.
The advantages of this library are that it can easily cope with various hybrid hardware
combinations, including CPU + GPU accelerators, CPU + Xeon Phi accelerators or
other combinations like it is the case in supercomputer machines. The tricky part of
the implementation was to get rid of the special 2-D block-cyclic storing of the matrix
values as the used ABFT algorithm does not support this special structure. Therefore
transpositions, in the sense of reordering the matrix values were used before and after
the correction of the erroneous data. To assure that there are no performance bot-
tlenecks these transpositions were measured and classified to have no impact on the
algorithms’ performance. Further space optimizations including, for instance, using
only one additional matrix for special purposes (transpositions, checking, validation)
were applied (see subsection 5.2.5). There are also special output functions for check-
ing the correctness against the numerical computing environment MATLAB (matrix
laboratory) and for writing values to disk. To make the application more flexible, be-
sides the DPLASMA-own command line arguments, several preprocessor possibilities
were implemented. This means by using -D name [129, 3.11 Options Controlling the
Preprocessor] during compilation functions for changing the output precision, output
extended details, writing values to disk, setting MTBF, tolerance value, activating/de-
activating Fault Injectors, number of faults or runs and other functionalities can be
set.

In the first part of this chapter the emphasis will lie on the HPC library, then the
algorithm used for the results in the master thesis will be analyzed thoroughly and
finally, the Fault Injector which is running as an own thread will be presented.

61

5.1. DPLASMA 62

5.1 DPLASMA

DPLASMA stands for Distributed Parallel Linear Algebra Software for Multicore Ar-
chitectures [50, 14, 16, 17, 18] and is a collection of functions for dense linear algebra
problems. It concentrates on providing a novel approach to address load balance by
using a DAG (direct acyclic graph) structure. This DAG representation has several
advantages which are: independence of the problem-size, overlapping of communica-
tion and computation, prioritized tasks, automatic extraction of the communication
info from the dependencies, and architecture-aware dynamic scheduling and manage-
ment of tasks [8]. In the following table we can see the two main scopes of DPLASMA:

Dense Linear Algebra Problems Dense Matrices
• linear systems of equations • real arithmetic | • complex arithmetic

• matrix inversion • single precision | • double precision
• least squares problems • mixed precision

• condition number estimation • general
• singular value problems • symmetric | • hermitian
• eigenvalue problems • symmetric positive defnite

• generalized eigenvalue problems • hermitian positive defnite

Table 5.1: Summary of DPLASMA’s capabilities [50]

For the linear systems, there is primarily a focus on the LU factorization (with
Gaussian elimination), LLT (Cholesky decomposition) and LDLT decomposition which
is mainly done by the operations factor the matrix, solve the system, iteratively refine,
solve in lower precision and refine in higher precision and compute matrix inverse [50].
In the least squares or minimum norm, there are the following problems supported:
QR decomposition, LQ factorization, QP3 (QR factorization with pivoting). Here
the procedure is again similar to factor the matrix, solve the system, iteratively refine,
solve with lower precision and refine in higher precision, apply Q and finally generate
Q. The scope for singular values is defined by reducing to condensed form where it
can be done either by reduction to band-bidiagonal or reduction to proper bidiagonal.
After the reduction phase, singular values are found and forwarded to the computa-
tion of the singular vectors (all | subset). For handling eigenvalues there are functions
provided for the symmetric- and non-symmetric matrices or eigenvalue problems. The
symmetric problems are handled by reduction to condensed form (band-tridiagonal |
proper tridiagonal), find eigenvalues and compute eigenvectors (all | subset). Whereas
the non-symmetric case is done by reduction to condensed form (by Hessenberg re-
duction), find eigenvalues and again find eigenvectors (all | subset supported).

On the next figure (5.1) we can see how legacy software libraries have developed

5.1. DPLASMA 63

over the years. First, we have LINPACK which was designed for supercomputers in
use in the 1970s and early 1980s [48]. LINPACK has mainly and only to do with vector
operations (Level 1 BLAS operations [92]) and been superseded mainly by LaPACK in
the 80’s. There also exists the LINPACK benchmarks which appeared initially as part
of the LINPACK user’s manual. The parallel LINPACK benchmark implementation
called HPL (High-Performance Linpack) is nowadays used to benchmark and rank
supercomputers for the TOP500 list [98, 100].

LaPACK, however, has been designed to run efficiently on shared-memory, vector
supercomputers and was the next step to support Level 3 BLAS operations including
block operations [2]. It consists of Fortran 77 subroutines with support for solving the
most general problems in numerical linear algebra. There are three main routines, the
driver routines, computational routines and auxiliary routines. The driver routines are
capable of solving standard types of problems, the computational routines to perform
a discrete computational task, and auxiliary routines are used to perform a particular
subtask or general low-level computation. Besides the high efficiency on vector proces-
sors, shared memory multiprocessors and high-performance workstations, LAPACK
further can also be used on all types of scalar machines (simple workstations, PC’s,
mainframes).

Figure 5.1: Evolution of Dense Linear Algebra legacy software libraries[50]

The next step in the history was to develop a distributed-memory version of LA-
PACK, which then was called ScaLAPACK [9]. It has been developed for other kinds
of parallel architectures (for instance, distributed memory machines or massively par-
allel SIMD machines) and also the new block cyclic (see Appendix B.1) data distri-
bution was introduced [2]. This library now extends the capabilities of the previous

5.1. DPLASMA 64

libraries by high-performance linear algebra routines which can be nicely used for
distributed-memory message-passing (MIMD) computers [9]. Furthermore, networks
of workstations with the support of Parallel Virtual Machines (PVM) and/or MPI
were added, and two exceptional libraries Basic Linear Algebra Communication Sub-
programs (BLACS) and Parallel Basic Linear Algebra Subprograms (PBLAS) were
included. The main idea behind the ScaLAPACK library and its building blocks is
that it uses distributed-memory versions of the Level 1, 2, 3 of BLAS called (PBLAS),
and a set of BLACS for communication tasks that usually arise in parallel linear
algebra computations. This behavior leads to that the majority of interprocessor
communication happens within the PBLAS environment.

In Figure 5.2 we can see an overview of the DPLASMA software stack. In order
to build an optimized DPLASMA library, there exist various ways of coming to a
result. For the BLAS building block, there can be used several versions of precon-
figured libraries including the fast commercial ones (MKL, ACML, ESSL, VecLib,
LibSci), the fast academic one (ATLAS) or the unoptimized, reference, implementa-
tion from Netlib to build this block [50]. Thus here a certain freedom of optimizing
the whole package from scratch is given. The next step is to setup the Netlib LaPACK
(FORTRAN implementation), Netlib CLAPACK – C source (FORTRAN API) and
the LAPACKE (C API) which all goes into the PLASMA component. The thread

BLAS CUDA hwloc pthread MPI

(geqrf, potrf, getrf, gesv, ...)

Tile Kernels GPU Kernels Parallel Runtime Scheduling and Execution Control

Algorithms

Figure 5.2: DPLASMA software stack [50]

affinity (sockets, cores) and the memory affinity (NUMA nodes) are acquired from
the hwloc block. Furthermore, we have the hybrid computing with accelerators which
is supported by the MAGMA component. Finally the generic framework PaRSEC is
taking care of architecture aware scheduling and administration of micro-tasks on the
heterogeneous architectures [18]. The PaRSEC runtime is further capable of porting
the highly efficient PLASMA algorithms to the distributed memory realm. There is
also a software hierarchy present which consists of the grey blocks and the other col-
ored blocks. The grey ones are acting locally whereas the other ones are responsible
for global communications and handling parallel routines.

5.2. LOCAL ABFT PDGEMM 65

The DPLASMA library used in this thesis was prepared and compiled with BLAS,
LaPACK 3.7.1, OpenBlas, PLASMA 2.8.0, HWLOC 1.11.4 and OpenMPI 2.1.1 (for
further details see Appendix A.3).

5.2 Local ABFT PDGEMM

Here we can see an extract of the local ABFT PDGEMM function using DPLASMA:
491 }
492 #ifdef FAULTINJECTOR
493 FaultInjector :: run ();
494 #endif
495 t[0] = std :: chrono :: steady_clock :: now ();
496 for(i=0; i<RUNS; i++){
497 /* Create DAGuE */
498 PASTE_CODE_ENQUEUE_KERNEL (parsec , dgemm ,
499 (tA , tB , alpha ,
500 (tiled_matrix_desc_t *)&ddescA ,
501 (tiled_matrix_desc_t *)&ddescB ,
502 beta ,
503 (tiled_matrix_desc_t *)& ddescC));
504

505 /* execute kernel ! */
506 PASTE_CODE_PROGRESS_KERNEL (parsec , dgemm);
507 elapsed_times [i] = elapsed_t = sync_time_elapsed ;
508 dplasma_dgemm_Destruct (PARSEC_dgemm);
509

510 MPI_Reduce (& elapsed_t , & elapsed_t_overall_maxes [i], 1,
MPI_DOUBLE , MPI_MAX , 0, MPI_COMM_WORLD);

511 MPI_Reduce (& elapsed_t , & elapsed_t_overall_mins [i], 1,
MPI_DOUBLE , MPI_MIN , 0, MPI_COMM_WORLD);

512 }
513 t[1] = std :: chrono :: steady_clock :: now ();
514 FaultInjector :: terminate ();

Listing 5.1: Matrix Matrix Multiplication using DPLASMA

In Listing 5.1, there can be seen several building blocks. The first one is a pre-
processor macro #ifdef FAULTINJECTOR which is responsible for activating the own-
threaded Fault Injector if defined during the compilation. Then for calculating the
time intervals for inserting the errors is set by t[0] and t[1]. The matrix-matrix
multiplication is done in a loop for getting accurate timing results. Within the loop,
there is a PASTE_CODE_ENQUEUE_KERNEL for creating the DAGuE/PaRSEC environ-
ment, PASTE_CODE_PROGRESS_KERNEL for executing the kernel, a destructor for the

5.2. LOCAL ABFT PDGEMM 66

PDGEMM and a reduce operation to get the minimum and maximum times of each
processor for the operation. Further, the number of errors for each processor rank
are gathered by FaultInjector::getNrInjected(). The corrections in this version
are done after the multiplication has been successfully executed and after some faults
were injected.

5.2.1 Structure

The implemented Local ABFT_PDGEMM algorithm [123] is build up to the following
key facts:

• Input matrices: A, B ∈ Rn×n, n ∈ N+ and n = real matrix dimension (space
considered without additional row/columns for the checksums)

• The default matrix values distribution is Aij, Bij ∈ [−(104), 104] which is uni-
formly distributed (this range is the default used in the experiments, other
possible ranges can also be specified)

• Weight matrix:

– W ∈ Rnb×d, d ≥ 1, nb = n
P
∨ n

Q

– P and Q ≡ # of nodes of a quadratic (P ×Q)-process grid

• Matrices Ar, Bc and Cf have extended dimension of (n + (P ∗d))× (n + (Q∗d))
or (N ×N), N = extended matrix dimension including the space for checksums

• The checksums in the matrices Ar and Bc are created by multiplying the weight
matrix with the corresponding sub-matrix part to the scheme below. This is a
sample notation for a (2× 2)-node grid:

– Ar =

⎛⎜⎜⎜⎜⎜⎜⎝
A11 A12

W T A11 W T A12

A21 A22

W T A21 W T A22

⎞⎟⎟⎟⎟⎟⎟⎠ Bc =
⎛⎝ B11 B11 ·W B12 B12 ·W

B21 B21 ·W B22 B22 ·W

⎞⎠

• Matrix-matrix multiplication is done by: Cf = Ar · Bc

node 1 (Cf
11) node 2 (Cf

12)

• Cf =

⎛⎜⎜⎜⎜⎜⎜⎝
C11 cksm112 C12 cksm122

cksm111 cksm113 cksm121 cksm123

C21 cksm212 C22 cksm222

cksm211 cksm213 cksm221 cksm223

⎞⎟⎟⎟⎟⎟⎟⎠ ,

node 3 (Cf
21) node 4 (Cf

22)

5.2. LOCAL ABFT PDGEMM 67

where cksm111 , cksm112 , and cksm113 are corresponding checksum arrays of C11

calculated by the sub-matrices of Ar and Bc etc.

• Correction matrix: H = (W T − I), where I ∈ Rd×d, H ∈ Rd×(nb+d)

• Correction of sub-matrix Cf
ij by:

1. S1 = H · Cf
ij and S2 = Cf

ij ·HT

2. H(:, I2) · C1 = S1(:, I1) or H(:, I1) · C2T = S2(I2, :)T

3. ⇒ Cf
ij(I2, I1)− = C1 or Cf

ij(I2, I1)− = C2

S1, S2 ≡ checksum sub-matrices which are gained by multiplication of the
correction matrix H with the appropriate sub-matrix Cf

ij. I1 contains faulty
columns in S1 and I2 contains faulty rows in S2. C1 and C2 are the calculated
correction values by solving the least squares problem in point (2) for C1 or
respectively C2.

5.2.2 Conditions

These are the special conditions which have to be fulfilled so that there can be a
successful pass of the application:

• The first condition is the execution which has to be strictly in this order:
mpirun -np <NP> [-hosts <HOSTS>] ./labft_pdgemm_opt -N <matrix_size>
-T <tile size> <d-value> <#faults> -x (for checking)...[further arguments]

• Only P = Q is supported (the node grid or processor grid has to be quadratic)

• T (tile size) has to be a divisor of N (extended matrix dimension)

• T has to be a divisor of the block size nb = N
P

• T has to be ≥
√

(N
P

) for optimal internal DPLASMA tiling performance

• d value has to be: ≤ N
(P ∗2)

• P and Q have to be a divisor of N

• Double precision values with a range of ±2.23×10−308 to ±1.80×10308 and with
a precision of approximately 16 decimal digits [78, 84] at least are to be preferred
so that there is a leeway for the matrix correction and the corresponding solving
of the least squares problem.

All these conditions are considered in the program and caught during the execution
with appropriate exceptions.

5.2. LOCAL ABFT PDGEMM 68

5.2.3 Correction Algorithm

The correction algorithm [110] has the following detailed structure:

Algorithm 1: Correction algorithm of the ABFT_PDGEMM
Initialization:

Numrows ← 0, Numcols ← 0, init W , // W = weight matrix
set Tval // Tval = tolerance value for correction
Arrays: S1[d ∗ (N + d)], S2[(N + d) ∗ d], H1[d ∗ d]
| H2[d ∗ d], I1[d], I2[d];

1: for All submatrices Cf
ij do

2: S1← Cf
ij // copy corresponding row checksums from Cf

ij

3: S2← Cf
ij // copy corresponding column checksums from Cf

ij

4: S1 = (W T × Cf
ij)− Cf

ij ; S2 = (Cf
ij ×W)− Cf

ij

5: for All checksums in S1 do
6: if S1 ̸= 0 then
7: if !(|S1/ max{checksum1,checksum2}| < Tval) then
8: if Numcols == d then
9: return -1 // correction with column checksums not possible

10: end if
11: I1[Numcols] = i // set to current index i

12: Numcols + + // increment number of corrected columns
13: end if
14: end if
15: end for
16: for All checksums in S2 do
17: if S2 ̸= 0 then
18: if !(|S2/ max{checksum1,checksum2}| < Tval) then
19: if Numrows == d then
20: return -2 // correction with rows checksums not possible
21: end if
22: I2[Numrows] = i // set to current index i

23: Numrows + + // increment number of corrected rows
24: end if
25: end if
26: end for
27: Solve least squares problem: minimize ||S2−H2∗∗T ∗X||.
28: Cf

ij[I2, I1]− = S2
29: return Numrows ∗ 10000 + Numcols

30: end for

5.2. LOCAL ABFT PDGEMM 69

Before the errors are corrected, it is verified if any of the processors have registered
some fault injection. The first part of the correction algorithms contains setting up
the required arrays and matrices. After that is ready and verified for all sub-matrices
from the calculated matrix C, the values which are needed for correction are calculated
locally. This part is done efficiently because the sub-matrices are usually small enough
and can be processed pretty fast on each node or processor. Compared to the Global
ABFT variant the communication is kept pretty low because no other processors or
nodes have to communicate together for restoring the data of a whole node.

The inner part of the algorithm deals with finding the indices (for the column and
the row) of the faulty value. The first loop goes column-wise and looks if there are
errors in the column when by doing a division (in line 7) and comparing the given
tolerance value(the Tval is described in the next section). If this is passed successfully
and the number of columns is not exceeding the value of d then an error has been
detected, and the index in I1 is set to the current index of the column, and the number
for the corrected columns is increased by 1. When this number exceeds the value of
d then "-1" is returned because it is not possible to correct more faulty values than
the set checksums. For instance, 4 faulty values cannot be corrected with only three
corresponding checksums. The same procedure is done row-wise for all checksums in
S2. Here only the return value is different. It is "-2" if there are too many errors
present.

After this two inner loops, the faulty rows and columns are aggregated and the
remaining part is to solve the least squares problem according to S2. The notation
minimize ||S2 − H2∗∗T ∗ X|| was taken from the documentation of the LaPACK
function LAPACK_dgels [2, 56]. The last step is correcting the error in the sub-matrix
by subtracting the correction value from the erroneous value and replace it by the
result. What’s more, the returning value in line 29 gives the verification of how many
values have been detected and corrected in the column-wise and row-wise loop. An
example value of "70003" will mean that seven errors were detected in the row section
and three errors in the column section and further that they were also corrected.
Nevertheless, this standard ABFT approach of correcting the value by computing the
difference is not stable for large numerical differences like in the case of bit flips in
the exponent. In [110] an improved approach called dABFT is developed, where the
faulty values are replaced by 0 (zeroes) for minimizing the large numerical differences
and so here nearly all bit flips can be corrected.

5.2. LOCAL ABFT PDGEMM 70

5.2.4 Tolerance Value

Here the tolerance value Tval which is an essential part of deciding whether a value
will be corrected or not is described. The location where it is used can be looked up in
line 7 or 18 of Algorithm 1 and it has the following meaning: For instance if absolute
value of S1 divided by the maximum of the 2 checksum values is not smaller then the
tolerance value then there is an error. Let Tval be (10−3), S1 = 12 and checksum1 = 12
and checksum2 be 0. This will result in a division of 12/12 = 1 and 1 < 0.001 is not
true so in this column there must be an error and the algorithm will correct this value.
The index of I1 is set to the current column and the Numcols value is incremented.
Let us assume an example to show the opposite: Let Tval be (10−3), S1 = 12 and
checksum1 = 12 and checksum2 be 24000. This will give 12/24000 = 0.0005, and
0.0005 < 0.001 becomes true, and the algorithm will not correct the error because
the tolerance boundary has been set too high. As a consequence setting the right
tolerance value can become a tricky part. From the above example we can also see
that if there are bit flips which brings major changes in the values (like bit flips in the
exponent) the algorithm has no chance to repair the values from numerical point of
view. The corresponding result can be seen in subsection 6.2.3.

There are some additional notes: Usually, the tolerance value Tval varies between
(10−14) for common problems and (10−7) if the sub-matrices are big. However, this
cannot fully close the machine-epsilon problem, because we only have a limited nu-
merical representation of the chosen precision. This limitation means in the case of
double precision that it is valid only up to 16 digits. Therefore this variant of correc-
tion recognition is not convenient for large numerical differences and so for correcting
bit flips in the exponent. In the last subsection, a modified variant by [110] was dis-
cussed. Further, the checksum2 value is calculated by the checksum in the sub-matrix
Cf

ij + the value at the same index at S1 and the same is valid for setting checksum2

of S2.

5.2.5 Local ABFT Space Analysis

In the appendices under Figure A.3, we can see the detailed space analysis of the
Local ABFT algorithm used in this thesis. Compared to a standard matrix-matrix
multiplication this will look like:

Total elements std. GEMM = 3 matrices× (n× n) elements = 3n2 elements

Total elements labft PDGEMM = dnP + 2(d2 + dNP + dP 2 + 2dP + 2N2 + P2)

When we remember the exascale example where we have 12.25 million of cores

5.3. FAULT INJECTOR 71

(example approximated from the best GFlops/core performance over all current su-
percomputer in Section 4.5), this will lead to the following problem size with key
parameters:

N = 717, 500; P = 3, 500; Q = 3, 500; n = 700, 000 and d = 5

Using this values, we will get 2.1× 1012 elements with using the fault tolerant variant
versus 1.5 × 1012 elements for a standard matrix-matrix multiplication which results
in a 42.7% overhead of space (RAM) for the Local ABFT method used in this the-
sis. If we subtract the extra matrix which is needed for value transformations and
correctness verification, the overhead shrinks to ∼18%. On the other hand, with
this configuration, the algorithm can correct five errors per processor or node locally.
This also means that over the whole matrix with 12.25 M cores there can be at most
61.25 million of fault injections corrected over the whole end-matrix Cf before the
correction algorithm refuses. In another case where d = 1 and this is the minimum
possible d−value for the algorithm, the overhead is leveling off at about 10%.

5.3 Fault Injector

For the results of this thesis, two fault injectors were used. This section will mainly
deal with the own-threaded Fault Injector [110] which runs in the background and
can be activated at different times in the execution process.

The results in Section 6.1 comes from the more straightforward and manual injec-
tor, whereas for the figures in Section 6.2 the own-threaded Fault Injector was used.
The simple injector method is activated by the preprocessor macro #if INJECTION
and also accepts an additional injectionvalue and a macro #if INJECTRANK. With
this three predefined values (during the compilation) we can test a particular value
to be inserted at a particular CPU-rank at the main diagonal of a sub-matrix. The
other option is that at every sub-matrix of each CPU the sign of the value along the
main diagonal is changed. Here the preprocessor macro FAULTS plays a role, where
according to the setting of this value the sub-matrices are manipulated along the main
diagonal. A setup with FAULTS=5 means that the first five values along the main diag-
onal of every sub-matrix are getting their signs flipped (an example is shown below).

5.3. FAULT INJECTOR 72

Cf
ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 · · · · · · · · ·
· 1 · · · · · · · ·
· · 1 · · · · · · ·
· · · 1 · · · · · ·
· · · · 1 · · · · ·
· · · · · 2 · · · ·
· · · · · · 2 · · ·
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

to Cf
ij =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 · · · · · · · · ·
· −1 · · · · · · · ·
· · −1 · · · · · · ·
· · · −1 · · · · · ·
· · · · −1 · · · · ·
· · · · · 2 · · · ·
· · · · · · 2 · · ·
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
In contrast stays the own-threaded Fault Injector which is far more complex and pro-
vides many functionalities for testing or approximating real-life scenarios. Further
worst-case scenarios and little-affected scenarios can be examined by setting the ap-
propriate MTBF. It supports randomized manipulation of the values by flipping a
sign, flipping bits in the exponent, in the mantissa or a combination of all. The Fault
Injector depends on the spatial and temporal data distributions which are playing a
role during the error insertion. First, we start with the definition of the Fault Injector
which is showed in Listing 5.2.
58 FaultInjector :: setDefaultFlipRange (fliprange :: FLRANGE);
59 // FaultInjector :: setDefaultFlipRange (fliprange :: SIGN);
60 // FaultInjector :: setDefaultFlipRange (fliprange :: EXPONENT);
61 // FaultInjector :: setDefaultFlipRange (fliprange :: MANTISSA);
62 // FaultInjector :: setDefaultFlipRange (fliprange :: ALL);
63

64 UniformDataDistribution * dataDistribution = new
UniformDataDistribution ();

65 FaultInjector :: setDataDistribution (dataDistribution);
66 ExponentialTimeDistribution * timeDistribution = new

ExponentialTimeDistribution (mtbf);
67 FaultInjector :: setTimeDistribution (timeDistribution);

Listing 5.2: Definition of Fault Injector

Here again, the FLRANGE acts as preprocessor macro which is set during the compila-
tion and can accept the names SIGN, EXPONENT, MANTISSA or ALL. Furthermore, it is
set up with uniform data distribution and an exponential time distribution explained
in subsection (5.3.1) and (5.3.2).

5.3. FAULT INJECTOR 73

5.3.1 Spatial Data Distributions

In [42] we have the explanation for the uniform discrete distribution which follows
the probability mass function in Equation 6.2. Basically, this gives a random integer
number between the first and the last index of a sub-matrix. This index is then used
for manipulating this specific value. The random number generator is set by srand
[41], and produces random numbers in a range of [a, b] where a is the first index of the
sub-matrix and b the last one minus one (because indices of arrays start at 0) [42].
Further, in the composed range each possible value has an equal likelihood of being
produced.

5.3.2 Temporal Data Distributions

According to [74] in section faults and failures, the frequency at which unrecoverable
failures that interrupt the execution of the application occurs are in a manner which
is similar to exponential probability distributions. Moreover, in a fault-prone envi-
ronment, the time-steps at which faults are happening are non-deterministic, and so
they vary between each execution. Therefore as temporal data distribution in this
thesis, the exponential time distribution was used, which is defined in [44]. Further,
it uses the default_random_engine [40] for generating pseudo-random numbers and
the following probability density function:

p(x|λ) = λe−λx, x > 0 (5.1)

The important part here is that the returned value is the time/distance until the next
random event. If random events occur, they are independent but statistically defined
at a constant rate λ per unit of time/distance. Additionally also all requirements of
the C++ RandomNumberDistribution concept [43] are satisfied. The random number
generator is here again set by srand [41].

Mainly the Fault Injector produces errors according to a timing value which can
be set at execution time. This value is the mean time between failure (MTBF) which
can be given to the application as a value of days. The MTBF as given argument of
1 equals to the value of 1× 86400 seconds (the time of seconds for 1 day). Therefore
the minimum value at which can be examined is an MTBF of 1 second by using the
value 0.00001 as an argument. Moreover, the Fault Injector algorithm is processing
according to the scheme:

MTBF = 7 =⇒ 7 seconds per failure per bit

5.3. FAULT INJECTOR 74

This situation is achieved by calculating the data in bits which is also needed when the
data is malformed at a particular bit. Therefore to accomplish a particular fault rate
we also need to consider the matrix-values as a number of bits. Assume an example
where we want to achieve a value manipulation of every 7 seconds in a (64×64)-matrix
then the following setup will be required:

1. Main matrix dimension = (64 × 64) = 4096 elements = 32768 bytes = 262144
bits

2. Sub-matrix = 8× 8 = 64 elements = 512 bytes = 4096 bits

3. Processor grid P ×Q = 8× 8

4. Data calculated in 7 seconds not exceeds 262144 bits

5. MTBF set to the value of 1,835,008 seconds or 21.24 days

That means concretely that if there are 262144 bits processed over a time window
of 7 seconds the average fault injection rate will result in one value manipulation
every 7-th second. This value comes from the fact that the set MTBF value for the
Fault Injector is also dependent on how many bits the data have and therefore we can
determine the MTBF argument which is needed as (7×262144 = 1, 835, 008) or 21.24
days. On the other hand, we can see that the situation of every 7 seconds one value
manipulation is not realistic because with this setting many more bits then 262144
will be processed within such a long time of computation for current processors. In a
real case the multiplication for a (64× 64)-matrix would last only about 0.01 seconds
and the MTBF value has to be only (0.01 × 262144 = 2621.44) about 2600 seconds.
Therefore it is difficult to achieve a certain fault rate. The execution time has to be
estimated with several runs and after that the MTBF value can be calculated. Below,
in Table 5.2 some investigations with real values, where the MTBF in days for one
value manipulation per execution time was calculated can be found.

M N # of
Elements

of Bits Exec.
Time
(sec)

MTBF
(sec)

MTBF
days

Grid
P × Q

640 640 409600 26214400 0.6 15.73 M 182.05 4× 4
1280 1280 13107200 104857600 0.8 83.89 M 970.91 4× 4
3200 3200 81920000 655360000 3 1.97 B 22756 4× 4
6400 6400 327680000 2621440000 13 34.08 B 394430 4× 4

Table 5.2: Setting the Fault Injector with different MTBF

Concluding on the fault injection algorithm, we can say that it is useful to test
and simulate a specific failure rate regarding the MTBF of a hardware component or
for instance of a node.

Chapter 6

Experiments

To verify that ABFT methods make sense when hardware components, especially
number of cores and nodes are growing there were several test cases chosen. The test
cases are described in the next section. For the verification of the error between the
calculated data and the manipulated data besides the norms provided by DPLASMA
the relative 1-norm was mainly used:

rel 1-norm = ||C − C ′||1
||C||1

(6.1)

where C argues as the correct matrix-matrix multiplication without bit flips and C ′

as the calculated matrix with bit flips. Actually, two separated matrix products are
made to verify the correctness. For generating the values of matrices A and B the
function initDP_local shown below in detail (description is continued on the next
page) was used.
925 void initDP_local (int m, int n, double a, double b, double * A,

unsigned long seed , int rank)
926 {
927 int i = 0, j = 0;
928 std :: uniform_real_distribution <double > distribution (a,b);
929 std :: default_random_engine generator ;
930 generator .seed(seed+rank);
931 for (i=0; i<m; i++)
932 {
933 for (j=0; j<n; j++)
934 {
935 A[i+j*m] = distribution (generator);
936 }
937 }
938 }

Listing 6.1: Generator for uniformly distributed double precision values

75

76

This generator has an impact on the values for each processor because it produces
different values depending on the seed of each rank which is set by seed + the rank
ID which is a number between 0 and max number of processors in the system. Fur-
ther, there exists an impact on the value generation performance as the values are
generated for the sub-matrices of a given problem by each appropriate processor. The
std::uniform_int_distribution [42] produces random integer values i, uniformly
distributed on the interval [a, b], with the probability function:

P (i|a, b) = 1
b− a + 1 , a ≤ i ≤ b (6.2)

and satisfies all requirements of the C++ RandomNumberDistribution concept [43].

The runtime was measured for each major part of the algorithm separately. There
is a measurement for the DPLASMA_dgemm (the DPLASMA own double precision
matrix-matrix multiplication) which is done 5-times and the minimum over all max-
imal values is logged, for the correction time and for the ABFT relevant parts. The
correction time and the ABFT relevant parts are measured only once but here also
the maximum time over all MPI-processes is taken. The total ABFT runtime is then
calculated by summing up all three values. This total ABFT overhead time value 1 is
then compared to a DPLASMA_dgemm standard execution with the same problem- and
matrix block size to get the relative time comparison and relative ABFT overhead.

GFlop/s information is gathered and calculated by the own build in DPLASMA
function FLOPS_DGEMM(M, N, K) and then later rescaled to GFlop/s by the calcu-
lation in Listing 6.2. The elapsed_t_overall_min value is the measured runtime
for the extended DPLASMA matrix multiplication, M, N, and K are the dimensions
of the matrices, whereas the flops value comes from the steps showed in the listing
below.

define FMULS_GEMM (__m , __n , __k) ((double)(__m) * (double)(__n) *
(double)(__k))

define FADDS_GEMM (__m , __n , __k) ((double)(__m) * (double)(__n) *
(double)(__k))

define FLOPS_DGEMM (__m , __n , __k) (FMULS_GEMM ((__m), (__n),
(__k)) + FADDS_GEMM ((__m), (__n), (__k)))

flops = FLOPS_DGEMM (M, N, K);
gflops = (flops /1e9)/ elapsed_t_overall_min ;

Listing 6.2: How FLOPS for a DGEMM are defined and Gflop/s calculated

Detailed and more exhausted information about the project files and test environ-
ment can be found under (section A.1).

1The total overhead includes the time for preparing the checksums, doing necessary computations
on them, communication and transposition, error detection and correction.

6.1. TEST CASES GENERAL 77

6.1 Test Cases General

This thesis concentrates on the following test cases to witness the fault tolerance and
efficiency of ABFT methods for dense matrix operations:

1. Different value distributions - Values of various uniform distributions
2. No errors overhead - For comparison when no errors occur
3. Sign bit flips - Using two different fault injectors
4. Bit flips in mantissa - Using an own thread for producing errors in the mantissa
5. Bit flips in exponent - Same as before but producing errors in the exponent
6. Bit flips everywhere - Same as before, but including the opportunity of producing

errors in the mantissa, exponent or sign bit flips in the values’ bit mask.

The bit flips were initiated by using two different fault injectors, a special sign flip
injector and an own threaded Fault Injector capable of feeding in bit flips in mantissa,
exponent, everywhere and random sign flips. The first fault injector is manually set up
and can only perform sign flips at a certain time in the execution and along the main
diagonal. This injection can be initiated before the calculation of matrix C has started
or instantly after the calculation of the matrix-matrix multiplication. Otherwise, the
second fault injector uses an own thread and can be executed at any time during the
computation of the application and everywhere in the bit mask of a matrix value (for
details see Section 5.3).

The range for the examined matrix dimensions was N = [1000, 12560] where N

stands for the extended matrix dimension (matrix dimension plus extended rows/-
columns for the checksums). The dimensions were in some cases matched to the pro-
cessor grids, e.g. (3000× 3000)-matrix on a (3× 3)-process grid or (10000 × 10000)-
matrix on a (10 × 10)-process grid like in the experiments for no errors overhead
(subsection 6.1.2).

6.1.1 Value Distributions

Here the aim was to test various uniform distributions and how this matrix value
initialization affects the relative 1-norm described at the beginning of Chapter 6. The
first figure on the next page shows how the ABFT correction algorithm performs when
there are different initial values.

In Figure 6.1 we can see that there is indeed a difference between the various
distributions. To point out on the distribution with values between 0 and 1, we
can see that the correction of the injected sign flips has been evaluated with a very
low overall error, this is also applicable over all possible matrix sizes. The other four

6.1. TEST CASES GENERAL 78

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0r

e
l
a
t
i
v
e

1
-
n
o
r
m

|
|
C
-
C
’
|
|
1

/

|
|
C
|
|
1

matrix size N

Distribution [0,1]
Distribution [-1,1]

Distribution [-10,10]
Distribution [-100,100]
Distribution [-1E4,1E4]

Figure 6.1: Different data distributions on various grids with fixed 200 sign flips per
node and relative 1-norm illustration

distributions are acting nearly identical. There exists one outlier at the (4000×4000)-
matrix dimension which further belongs to a (4 × 4)-node grid. Here the simulated
(4 × 4)-process grid produces a much higher relative error as in all other processor
grid variants. The other grids including (2 × 2), (6 × 6), (8 × 8) and (10 × 10) are
having a relative 1-norm of about 10−16, whereas the (4 × 4)-grid results in 10−12.
This outlier has been analyzed, and it came out that it has something to do with the
tile size value T of the given matrix. When setting the tile size to 200, the 200 sign
flips per node are producing some unusual value constellation for the whole matrix,
whereas if the tile size was different, e.g., 100, 250, 500 or 1000 the behavior was
normal and as expected (Table 6.1). Furthermore, this particular configuration leads
to the situation that the matrix correction algorithm does not succeed in repairing all
erroneous values. As the tile size also have an impact on how the matrix is partitioned
into 2-D block-cyclic sub-matrices this further modifies the results of the correction
algorithm, and the relative 1-norm varies for the different configurations.

NODES M N Tile relative Faults Faults
Size 1-norm Injected Corrected

16 4000 4000 100 1.79E-16 3200 3200
16 4000 4000 200 2.89E-12 3200 3199
16 4000 4000 250 2.23E-16 3200 3200
16 4000 4000 500 1.84E-16 3200 3200
16 4000 4000 1000 2.15E-16 3200 3200

Table 6.1: Verification of the tile size responsible for unusual behaviour

6.1. TEST CASES GENERAL 79

 0.1

 1

 10

 100

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

c
o
r
r
e
c
t
i
o
n

t
i
m
e

(
s
e
c
)

matrix size N

Distribution [0,1]

Distribution [-1,1]

Distribution [-10,10]

Distribution [-100,100]

Distribution [-1E4,1E4]

Figure 6.2: Different data distributions
on various grids with fixed 200 sign flips
per node and verification of the correction
time

 10.00

 20.00

 40.00

 60.00

 80.00

 100.00

 150.00

 200.00

 2
00
0

 3
00
0

 4
00
0

 5
00
0

 6
00
0

 7
00
0

 8
00
0

 9
00
0

 1
00
00

G
F
l
o
p
/
s

matrix size N

Distribution [0,1]
Distribution [-1,1]

Distribution [-10,10]
Distribution [-100,100]
Distribution [-1E4,1E4]

Figure 6.3: Different data distributions
on various grids with fixed 200 sign flips
per node and performance evaluation in
GFlop/s

In Figure 6.2 the time which is needed to correct the inserted sign flips is visualized.
We can see of course a time increase as the matrix dimensions are rising, but this trend
seems to flatten out when the problem size becomes large enough. The only outlying
event which can be found is at (6000 × 6000)-matrix on a (6 × 6)-grid where the
correction time varies between 8 and 10 seconds, but this has no considerable leverage
on the whole runtime.

 0.01

 0.10

 1.00

 10.00

 100.00

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

r
u
n
t
i
m
e

(
s
e
c
)

matrix size N

Distribution [0,1]

Distribution [-1,1]

Distribution [-10,10]

Distribution [-100,100]

Distribution [-1E4,1E4]

DPLASMA

Figure 6.4: Different data distributions on various grids with fixed 200 sign flips per
node total time comparison

What’s more (Figure 6.3) is dealing with the performance of the ABFT_PDGEMM
algorithm. As according to the appendix in Section (A.1) the system environment con-
sist of a real (2×2)-NUMA-node grid the full performance can be found on the plot in
the (2000×2000)-matrix size section which equivalently stands for a (2×2)-node grid.

6.1. TEST CASES GENERAL 80

The GFlop/s performance is dropping as the grid size, and consequently, the problem
size is growing. The explanation for these heavy losses of efficiency is that the other
simulated node-grids do not overlap with the real hardware structure and therefore
there is an increasing amount of communication overhead which can be clearly verified
by the produced curves in the plot. There is a continuous drop from 150 GFlop/s (on
a (2 × 2)-grid) to about 20 GFlop/s (on a (10 × 10)-grid). More information on the
system’s peak performance can also be found in Appendix A.1.

Figure 6.4 concentrates on showing that the runtime gap is getting smaller and
smaller as the matrix size and ergo the node-size is growing. We have on a (10000×
10000)-matrix, with corresponding (10 × 10)-process grid a time difference of about
30 seconds in comparison to 78.92 sec for the (8000× 8000)-matrix. Furthermore, the
distribution of the matrix values does not give any reasonable discrepancy. The more
precise data can be obtained from Table 6.2 located below.

NODES M N GFlop/s ABFT tot DPLASMA Time
Time (sec) Time (sec) difference

4 2000 2000 144.32 1.39 0.07 1.33
16 4000 4000 125.49 15.37 0.92 14.46
36 6000 6000 61.62 42.37 6.82 35.55
64 8000 8000 41.31 102.63 23.71 78.92

100 10000 10000 21.85 123.15 90.83 32.32

Table 6.2: Summary of relevant values for matrix value data distribution [−1E4, 1E4]

20%

30%

50%

100%

200%

500%

1000%

1500%

2000%

3000%

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0A

B
F
T

o
v
e
r
h
e
a
d

r
e
l
a
t
i
v
e

t
o

D
P
L
A
S
M
A

matrix size N

Distribution [0,1]

Distribution [-1,1]

Distribution [-10,10]

Distribution [-100,100]

Distribution [-1E4,1E4]

Figure 6.5: Different data distributions on various grids with fixed 200 sign flips per
node relative overhead compared to DPLASMA_dgemm

The described situation before can also be verified with the results in Figure 6.5.
It shows that the overhead is shrinking as the matrix size N is growing. Further, the

6.1. TEST CASES GENERAL 81

condition with different matrix value distributions remains the same as before (no
significant differences).

6.1.2 No Errors Overhead

The interesting part in this subsection focuses on how much the ABFT_PDGEMM
algorithm overhead usually is when there are no faults injected at all. Thus for
analysis, several runs have been prepared to measure and visualize it. As there are
no faults present, a plot for the relative 1-norm like in Figure 6.1 was not prepared
because it is apparently 0 everywhere. Therefore we are jumping straight to the total
runtime reflected in Figure 6.6. Paying attention to the upper two curves in the graph,
we can see that the DPLASMA variant and the ABFT variant of the matrix-matrix
multiplication are nearly overlapping. Sometimes the DPLASMA_dgemm is in the
lead, sometimes the ABFT_PDGEMM, although there are logged several runs of
both, the difference in the execution time varies. There is also the explanation that
the block size in this experiments is fixed and there exists for every matrix dimension a
specific optimal block size so that it can be adapted to reach optimal performance and
therefore an optimal curve progression. As there was executed an automatic script
with increasing dimensions in a loop, unfortunately in this particular case only one
measurement was successful for the (8×8)-grid. This situation has mainly to do with
the conditions mentioned in subsection 5.2.2 which all have to be fulfilled to achieve a
successful run. There is a specific matrix size, sub-matrix block size, node processor
grid, additional rows/columns for the checksums and other conditions which have to
be satisfied. We can see of course that again the (2× 2)-process grid versions are the
fastest with DPLASMA_dgemm as a leader.

 0.01

 0.10

 1.00

 10.00

 100.00

1000.00

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

r
u
n
t
i
m
e

(
s
e
c
)

matrix size N

2x2 Grid

4x4 Grid

6x6 Grid

8x8 Grid

10x10 Grid

DPLASMA 2x2 Grid

DPLASMA 10x10 Grid

Figure 6.6: Comparing ABFT_PDGEMM to DPLASMA_dgemm when no faults
occurred during runtime measuring

6.1. TEST CASES GENERAL 82

In Table 6.3 the relative overhead comparing to the standard DPLASMA_dgemm
routine for a (10× 10)-processor grid is emphasized. Since the matrix size increases,
the relative overhead drops to a rate of about 10%. This progression can also be
observed in Figure 6.7 and there is a clear trend that the overhead declines when the
matrix size and likewise the processor grid size are growing.

NODES M N GFlop/s ABFT
Overhead DPLASMA Relative

Time (sec) Time (sec) Overhead
100 1000 1000 10.28 1.27 0.41 312.10%
100 2000 2000 13.36 1.05 0.84 125.01%
100 3000 3000 16.39 1.12 6.30 17.74%
100 4000 4000 20.64 2.19 5.62 39.05%
100 5000 5000 17.75 2.83 25.05 11.30%
100 6000 6000 17.91 4.21 18.80 22.42%
100 7000 7000 18.23 5.49 58.73 9.34%
100 8000 8000 17.49 9.69 45.30 21.39%
100 9000 9000 17.47 10.32 108.62 9.50%
100 10000 10000 17.35 9.72 90.83 10.70%

Table 6.3: Summary for overhead on a (10×10)-processor grid when no errors occurred

1%

10%

100%

1000%

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

A
B
F
T

o
v
e
r
h
e
a
d

r
e
l
a
t
i
v
e

t
o

D
P
L
A
S
M
A

matrix size N

2x2 Grid

4x4 Grid

6x6 Grid

8x8 Grid

10x10 Grid

Figure 6.7: Comparing the ABFT matrix-
matrix multiplication algorithm to the
DPLASMA_dgemm when no faults oc-
curred with focus on relative overhead

 0.1

 1

 10

 100

1
0
0
0

2
0
0
0

3
0
0
0

4
0
0
0

5
0
0
0

6
0
0
0

7
0
0
0

8
0
0
0

9
0
0
0

1
0
0
0
0

A
B
F
T

r
e
l
e
v
a
n
t

t
i
m
e

(
s
e
c
)

matrix size N

2x2 Grid

4x4 Grid

6x6 Grid

8x8 Grid

10x10 Grid

Figure 6.8: ABFT_PDGEMM relevant
time in seconds for various grids when no
faults are injected

An interesting observation can be seen in Figure 6.8. The time for the ABFT
specific part remains relatively constant when the matrix size is big enough, and
so the algorithm shows stability independently from the processor grid size and the
matrix dimension.

6.1. TEST CASES GENERAL 83

6.1.3 Manual Sign Bit Flips

In the first series of testing, there was developed a manual fault injector. This fault
injector was used to determine if the detection and correction algorithm is working
correct when sign bit flips are inserted at a particular point of the execution. The
following plots show the results of this examination. We have at the beginning the
analysis of the relative 1-norm (Figure 6.9). The behavior is like it is expected when a
single bit flip is involved the error is very low (at about 10−18) while the first curve in
the plot represents the case where 256 bit flips were initiated per node. It is obvious
that the correction of 256 bit flips has a more significant effect on the whole matrix
error than if there was only a single sign bit flip per node, and this is also clearly
represented in this figure.

10
-18

10
-17

10
-16

10
-15

10
-14

 2
00
0

 4
00
0

 6
00
0

 8
00
0

 1
00
00

 1
20
00

 1
40
00

 1
60
00

r
e
l
a
t
i
v
e

1
-
n
o
r
m

|
|
C
-
C
’
|
|
1

/

|
|
C
|
|
1

matrix size N

1 sign flip
4 sign flips
16 sign flips
64 sign flips
256 sign flips

Figure 6.9: Relative 1-norm for various
manual sign bit flips

1%

10%

100%

1000%

10000%

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0A

B
F
T

o
v
e
r
h
e
a
d

r
e
l
a
t
i
v
e

t
o

D
P
L
A
S
M
A

matrix size N

1 sign flip
4 sign flips

16 sign flips
64 sign flips
256 sign flips

Figure 6.10: Various number of sign flips
per node for relative overhead in percent

Next to the relative 1-norm chart in Figure 6.10 the relative overhead in relation to
the DPLASMA_dgemm is exemplified. The higher matrix dimensions come from the
additional rows/columns which are needed to repair the errors in matrix C successfully.
For the case with 256 bit flips per node on a (10× 10)-nodes machine hence it implies
that the extended matrix dimension has to be set to N = 12560 because 10 nodes
×256 = 2560 additional rows/columns and further equals a 10000 + 2560 = 12560 of
matrix size. This size is needed if we want to guarantee that there can be (10000 ×
10000) elements stored in the matrix and additionally up to 256 bit flips can be
corrected per computing node. What’s more, as the matrix size keeps growing, the
overhead is subsiding which is one of the nice features of parallel ABFT methods.

So in Figure 6.11 and 6.12 the runtime is again the relevant point. We can see
that the runtime for DPLASMA is leading anew, but that is clear because there is no
overhead for correction and no ABFT specific quota measured. The interesting part
of this charts is that the gap and consequently the overhead between the DPLASMA

6.1. TEST CASES GENERAL 84

variant and the ABFT variant is getting smaller and smaller. Besides the only differ-
ence here is in the x-axis, where on the left the matrix size and on the right, the node
size is considered. When we take a closer look at the standard deviation we can see
that up to 64 bit flips can be corrected per node without rising the time overhead for
the correction too much. This is verified in Table 6.4.

 0.01

 0.10

 1.00

 10.00

 100.00

1000.00

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0

1
4
0
0
0

r
u
n
t
i
m
e

(
s
e
c
)

matrix size N

1 sign flip
4 sign flips

16 sign flips
64 sign flips
256 sign flips

DPLASMA

Figure 6.11: Time comparison with focus
on the matrix size for various number of
sign flips per node

 0.01

 0.10

 1.00

 10.00

 100.00

1000.00

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

r
u
n
t
i
m
e

(
s
e
c
)

nodes

1 sign flip
4 sign flips
16 sign flips
64 sign flips
256 sign flips

DPLASMA

Figure 6.12: Time comparison to the
DPLASMA_dgemm routine for various
number of sign flips per node with em-
phasis on the node size

The formula for the used standard deviation [107] in Table 6.4 is defined by the
following equation:

s =

√ 1
(N − 1)

N∑
i=1

(xi − x)2

where x = mean value of the observed values{x1, x2, . . . , xN}

(6.3)

If no more than 64 faults occurred, the standard deviation is pretty low, and so

Correction time for x faults in (sec)
1 4 16 64 256 Standard Standard

NODES fault faults faults faults faults Deviation
till 64

Deviation
incl. 256

4 0.04 0.03 0.09 0.17 0.35 0.06 0.13
16 0.13 0.16 0.28 0.39 2.89 0.12 1.19
36 0.31 0.38 0.55 1.00 8.01 0.31 3.34
64 0.53 0.56 0.86 1.55 16.40 0.47 6.96

100 0.60 0.70 1.42 2.28 25.04 0.78 10.66

Table 6.4: Correction time for various number of errors per node

this configuration can be used without loosing of significant performance. Instead, if

6.2. TEST CASES USING FAULT INJECTOR 85

we want to assure that 256 bit flips can be corrected, this might end in an essential
overhead for correcting them all.

In real life, we can assume that this 64 faults per node value should be enough
at least for a supercomputing system going towards exascale. As it is expected that
such supercomputers will consist of million of nodes [20], each node then would get
the capability to repair up to 64 bit flips without having that much effect on the total
runtime of the ABFT algorithm.

6.2 Test Cases using Fault Injector

In this section the testing cases using the own-threaded Fault Injector [110] described
in Section 5.3 are visualized. Beginning with the simplest case of a sign bit flipping
and evolving to the general case where everywhere in the bit mask of a matrix value a
modification can occur. The emphasis will lie on showing which bit flips are the most
dangerous for the correcting algorithm and which can affect the result of the whole
matrix-matrix multiplication.

6.2.1 Sign Bit Flips with Fault Injector

The attendant results here should show how frantically the own-threaded Fault Injec-
tor acts during the insertion of sign bit flips.

0

1E-20

2E-20

3E-20

4E-20

5E-20

6E-20

7E-20

8E-20

9E-20

1E-19

re
la

tiv
e

1-
no

rm
 ||C

-C
'||_

1
/ |

|C
||_

1

node grid

Figure 6.13: Box plot for Fault Injector
bit sign flips

10
-21

10
-20

10
-19

 0

 2
00
0

 4
00
0

 6
00
0

 8
00
0

 1
00
00

 1
20
00

r
e
l
a
t
i
v
e

1
-
n
o
r
m

|
|
C
-
C
’
|
|
1

/

|
|
C
|
|
1

matrix size N (5 independent test runs per size)

2x2 Grid
4x4 Grid
6x6 Grid
8x8 Grid

10x10 Grid

Figure 6.14: Relative 1-norm of 5 inde-
pendent test runs when using Fault Injec-
tor for bit sign flips

From Figure 6.13 and 6.14 we can identify the relative 1-norm. They show clearly
that the norm is below 9E−20 which leads to the conclusion that all sign bit flips
were detected and corrected successfully. The explanation for the first empty result

6.2. TEST CASES USING FAULT INJECTOR 86

at (2000 × 2000) is that there was produced such a little error or no error at all.
Although there were five independent measurements each, there were cases where
no bit flips occur. On the other hand, we can see from Figure 6.14 that for the
(10000 × 10000)-case there are five data points on the vertical line. This illustration
means that in every test run sign bit flips were done and further as the norm stays
below 10−19 all of them were successfully corrected.

The third plot (Figure 6.15) shows that the overhead is relatively high when the
matrix size and accordingly the processor grid size is small. It also shows that with
growing size the relative overhead to the DPLASMA execution drops. At the (10000×
10000)-test cases we have an average overhead of about 15%. All bars are showing
the mean over the five independent test runs for each size.

0.01%

0.1%

1%

10%

100%

1000%

10000%

0

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0

1
2
0
0
0A

B
F
T

o
v
e
r
h
e
a
d

m
e
a
n

r
e
l
.

t
o

D
P
L
A
S
M
A

matrix size N

2x2 Grid

4x4 Grid

6x6 Grid

8x8 Grid

10x10 Grid

Figure 6.15: Comparing ABFT_PDGEMM to DPLASMA_dgemm when sign bit
flips are inserted on different grid sizes

6.2.2 Bit Flips in Mantissa

In the previous subsection we saw the situation with sign bit flips, and when the
ABFT algorithm has to correct them, now the emphasis lies on how severe bit flips
are when the injection is in the mantissa of some matrix values. A good overview can
be shown again with a box plot (Figure 6.16). The conclusion from the graph is that
there were injected errors in all grid sizes and later corrected. The worst case can be
found on the (10 × 10)-grid where the relative 1-norm (Equation 6.1) reaches below
10−11. Despite the fact that all errors were corrected the impact on the whole matrix
was fairly measurable. Further the (2× 2)-grid hows the most stable results from the
five measurements.

6.2. TEST CASES USING FAULT INJECTOR 87

1.00E-20

1.00E-19

1.00E-18

1.00E-17

1.00E-16

1.00E-15

1.00E-14

1.00E-13

1.00E-12

1.00E-11

1.00E-10

re
la

tiv
e

1-
no

rm
 ||C

-C
'||_

1
/ |

|C
||_

1

node grid

Figure 6.16: Box plot for bit flips in the mantissa using the own-threaded Fault
Injector

Figure 6.17 show the results with lines and data points. From this plot addition-
ally, we can determine how many of the five independent test runs were passed. To
summarize from left to right we have on the 2000s matrix dimension 4 out of 5, then
5 out of 5, 2 out of 5, 4 out of 5 and finally the (10000 × 10000)-test cases 5 out
of 5. The 4 out of 5 in the (2000 × 2000) and the 2 out of 5 in the (6000 × 6000)-
matrix dimension means that there can also be cases that no faults were injected at
all. In Figure 6.18 we can see again a scenario of an overhead that can be compared
to the previous subsection. The crucial point is the greater the grid size, the lower
the overhead.

10
-20

10
-19

10
-18

10
-17

10
-16

10
-15

10
-14

10
-13

10
-12

10
-11

10
-10

 2
00
0

 4
00
0

 6
00
0

 8
00
0

 1
00
00

r
e
l
a
t
i
v
e

1
-
n
o
r
m

|
|
C
-
C
’
|
|
1

/

|
|
C
|
|
1

matrix size N (5 independent test runs per size)

2x2 Grid
4x4 Grid
6x6 Grid
8x8 Grid

10x10 Grid

Figure 6.17: Relative 1-norm of 5 inde-
pendent test runs when using Fault Injec-
tor for bit flips in mantissa

0.01%

0.1%

1%

10%

100%

1000%

10000%

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0A

B
F
T

o
v
e
r
h
e
a
d

m
e
a
n

r
e
l
.

t
o

D
P
L
A
S
M
A

matrix size N

2x2 Grid

4x4 Grid

6x6 Grid

8x8 Grid

10x10 Grid

Figure 6.18: Relative overhead when bit
flips are inserted in the mantissa for dif-
ferent grid sizes

6.2. TEST CASES USING FAULT INJECTOR 88

6.2.3 Bit Flips in Exponent

The situation when injecting bit flips in the exponent of a matrix element can evolve in
the most severe direction. This has actually to do with the properties of the exponent
of a value. In Figure 6.19 we can see how the Double-precision floating-point format
(DPFPF) looks like in the IEEE 754 standard [84, 143]. A number example for the
decimal representation as binary and exponent representation can be the number
0.1562510 = 0.001012 = 1.012 × 2−3. The first is the decimal representation, the
second the binary and then the shifted binary and exponent representation. Now we
can analyze the fraction and the exponent where .012 is the fraction part and -3 the
exponent [145]. For the DPFPF we have an exponent range of [−1022, +1023].

Figure 6.19: IEEE 754 Double-precision floating-point format [143]

In the following real case example, it’s shown why bit flips in the exponent are so
dangerous. The essential point is the massive difference in the values which can be
easily created by changing the exponent arbitrary. We can see the green marked values
in the left-most box and how they are changed in the middle box. The right-most
box shows the difference between original values and changed values by exponent bit
flipping.

matrix_C

without_injections
on rank 0

matrix_C_with

exponent_injection
on rank 0 difference_C on rank 0

0.327535 0.258814 0.586349 0.247416 0.020471 0.258814 0.586349 0.247416 0.307064 0 0 0

0.643272 0.792656 1.435928 0.678956 0.643272 0.792656 1.435928 0.678956 0 0 0 0

0.970807 1.05147 2.022277 0.926373 0.970807 1.051470 0.000000 0.926373 0 0 2.02228 0

0.508411 0.594776 1.103187 0.515094 0.508411 0.000009 1.103187 0.002012 0 0.594767 0 0.513082

matrix_C

without_injections
on rank 1

matrix_C_with

exponent_injection
on rank 1 difference_C on rank 1

0.251349 0.421653 0.673002 0.341281 0.251349 0.421653 0.673002 0.341281 0 0 0 0

0.378770 0.577783 0.956553 0.475172 0.378770 0.577783 0.956553 0.475172 0 0 0 0

0.630120 0.999436 1.629556 0.816452 0.630120 0.999436 1.629556 0.816452 0 0 0 0

0.312169 0.484561 0.796730 0.397304 0.312169 0.484561 0.796730 0.397304 0 0 0 0

matrix_C

without_injections
on rank 2

matrix_C_with

exponent_injection
on rank 2 difference_C on rank 2

1.049830 1.406764 2.456594 1.184872 1.049830 1.406764 2.456594 1.184872 0 0 0 0

0.529480 0.704400 1.233880 0.594127 0.529480 0.704400 1.233880 0.594127 0 0 0 0

1.579310 2.111164 3.690474 1.778999 1.579310 2.111164 3.690474 1.778999 0 0 0 0

0.589315 0.786216 1.375531 0.662770 0.589315 0.786216 1.375531 0.662770 0 0 0 0

matrix_C

without_injections
on rank 3

matrix_C_with

exponent_injection
on rank 3 difference_C on rank 3

0.725272 1.064052 1.789323 0.881152 0.725272 1.064052 1.789323 0.881152 0 0 0 0

0.356160 0.501837 0.857996 0.418664 0.000000 0.501837 0.857996 0.418664 0.35616 0 0 0

1.081431 1.565889 2.647320 1.299816 1.081431 1.565889 3.06539E+77 0.081238 0 0 -3.065E+77 1.218578

0.400589 0.573663 0.974252 0.477152 0.000000 0.573663 0.974252 0.477152 0.400589 0 0 0

Figure 6.20: Example of a small matrix-matrix multiplication with fault injection in
the exponent on a (2× 2)-processor grid

6.2. TEST CASES USING FAULT INJECTOR 89

A severe problem in Figure 6.20 is the huge difference on rank 3 where the values
is changed from 2.647320 to 3.06539E+77. This modification is the point where
the correction algorithm refuses and reaches its limits. The difference in the two
values is so extreme that the corresponding checksums do not have enough numerical
capability to correct this value to its origin, mainly because of numerical possibilities
and the machine epsilon. As the machine epsilon gives an upper bound on the relative
error due to rounding in floating point arithmetic thus, this limitation also applies
to the correction algorithm. Moreover, the exponent range of [−1022, +1023] make
the things worse. Therefore it is possible that a value changes e.g., from 10 to 10100

simply by an exponent bit flip which makes a correction of the matrix value impossible
with standard checksum algorithms on a machine limited by double precision machine
epsilon.

The following figures represent the results which have been examined on the Re-
peal2 server machine. First again the box plot (Figure 6.21) with showing completely
different results compared to the previous types of bit flips. There is the situation that
as long as small value changes are caused by exponent bit flips nothing spectacular
happens with the relative 1-norm results, like for the (2×2)-grid. On the other hand,
if there is a big value change, the correction algorithm just don’t manage to keep the
overall error low which can also be due to tolerance boundary (subsection 5.2.4) for
correcting a value. Besides, it can also be that the error inserting interval is set to
high (too many bit flips occur). How to determine a suitable spacing for bit flips is
discussed in subsection 5.3.2. The significant differences for the maximum and mini-

1E-20

1

1E+20

1E+40

1E+60

1E+80

1E+100

1E+120

1E+140

re
la

tiv
e

1-
no

rm
 ||C

-C
'||_

1
/ |

|C
||_

1

node grid

Figure 6.21: Box plot for bit flips in the exponent using the Fault Injector

mum of each bar come from the fact that the algorithm is not correcting the erroneous
values and after the elements of the matrices are multiplied the error is adding up in

6.2. TEST CASES USING FAULT INJECTOR 90

total by each multiplication. Additional info for each test case can be found in Figure
6.22. Because most of the data points for the (10 × 10)-grid are between 10120 and
10140, the box plot shows this bad range for this grid size.

In Figure 6.23 nothing regarding the overhead has changed to previous bit flip
variants but just for comparison and emphasizing on the trend when grid size grows.

10
-40

10
-20

10
0

10
20

10
40

10
60

10
80

10
100

10
120

10
140

 2
00
0

 4
00
0

 6
00
0

 8
00
0

 1
00
00

r
e
l
a
t
i
v
e

1
-
n
o
r
m

|
|
C
-
C
’
|
|
1

/

|
|
C
|
|
1

matrix size N (5 independent test runs per size)

2x2 Grid
4x4 Grid
6x6 Grid
8x8 Grid

10x10 Grid

Figure 6.22: Relative 1-norm of 5 inde-
pendent test runs when using Fault Injec-
tor for bit flips in the exponent of a value

0.01%

0.1%

1%

10%

100%

1000%

10000%

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0A

B
F
T

o
v
e
r
h
e
a
d

m
e
a
n

r
e
l
.

t
o

D
P
L
A
S
M
A

matrix size N

2x2 Grid

4x4 Grid

6x6 Grid

8x8 Grid

10x10 Grid

Figure 6.23: Relative overhead when bit
flips are inserted in the exponent for dif-
ferent grid sizes

6.2.4 Bit Flips Everywhere

Last but not least the utterly arbitrary bit flips are investigated. Thus all possible
value distortions including sign bit flips, mantissa bit flips, or exponent bit flips can
be existent. The type of bit flips and how many of them are injected is the attention
of this subsection.

The results from Figure 6.24 can be summarized as follows. As long as the own-
threaded Fault Injector is active and do many different bit flips the results become
worse and worse with the duration of its active status. On the other hand, when the
matrix multiplication is fast enough like in the (2 × 2)-grid or (4 × 4)-grid, there is
not much time for the injector to mess up with the matrix elements, so the norm
results remain stable. For the (10× 10)-grid actually the multiplication costs enough
time so that there can be even exponent bit flips injected. Thus this enormously
affects the results for this particular case of matrix-matrix multiplications. When the
multiplication lasts long enough, there exists a high probability that it is not going
to be corrected successfully. This complication also comes from the adjustment of
the Fault Injector, which is difficult to set up with the appropriate MTBF-value (see
subsection 5.3.2).

6.2. TEST CASES USING FAULT INJECTOR 91

1.00E-20

1.00E+00

1.00E+20

1.00E+40

1.00E+60

1.00E+80

1.00E+100

1.00E+120

1.00E+140

re
la

tiv
e

1-
no

rm
 ||C

-C
'||_

1
/ |

|C
||_

1

node grid

Figure 6.24: Box plot for bit flips all over the bit mask using the Fault Injector

10
-20

10
0

10
20

10
40

10
60

10
80

10
100

10
120

10
140

 2
00
0

 4
00
0

 6
00
0

 8
00
0

 1
00
00

r
e
l
a
t
i
v
e

1
-
n
o
r
m

|
|
C
-
C
’
|
|
1

/

|
|
C
|
|
1

matrix size N (5 independent test runs per size)

2x2 Grid
4x4 Grid
6x6 Grid
8x8 Grid

10x10 Grid

Figure 6.25: Relative 1-norm of 5 inde-
pendent test runs when using Fault Injec-
tor for bit flips everywhere in the bit mask
of a value

0.01%

0.1%

1%

10%

100%

1000%

10000%

2
0
0
0

4
0
0
0

6
0
0
0

8
0
0
0

1
0
0
0
0A

B
F
T

o
v
e
r
h
e
a
d

m
e
a
n

r
e
l
.

t
o

D
P
L
A
S
M
A

matrix size N

2x2 Grid

4x4 Grid

6x6 Grid

8x8 Grid

10x10 Grid

Figure 6.26: Relative overhead when bit
flips are inserted truly randomly for dif-
ferent grid sizes

Again Figure 6.25 is showing the details for each of the five independent test runs
regarding the relative 1-norm and Figure 6.26 the attendant overhead. The results in
the left figure are a bit more distributed than they were in the previous bit flip variants,
but that is also the expectation when we have randomly and uniformly distributed
errors. Besides the manipulations are following an exponential time distribution. On
the right side, we have a pretty similar overhead scheme as we have in the other bit
flip variants (bigger grid sizes =⇒ less overhead).

6.3. CONCLUSION TO BIT FLIPS 92

6.3 Conclusion to Bit Flips

First of all sign bit flips are not so severe. As long as they are not more frequent
then the available checksums, the algorithm can correct with high probability. The
only fail which can happen in this case is when a particular tile size in a combination
of as many bit flips as defined checksums are used. There it can take place that the
algorithm does not correct all sign bit flips due to the described problem in subsection
6.1.1 coming from the 2-D block-cyclic structure of the sub-matrices.

Bit flips in mantissa can have a greater impact like shown in subsection 6.2.2.
There it is time to take care of the number of mantissa bit flips injected. The correction
of the erroneous values has still a reasonable probability to be done successfully, but
if there are many of them, the algorithm reaches its limits fast. It can also be that the
limitations given by the numerical issues in subsection 6.2.3 can cause the correction
algorithm to fail.

Then we have the most dangerous ones. Bit flips in exponent can lead to a de-
plorable situation for the whole matrix-matrix computation. To emphasize the exam-
ple where the value is changed from 10 to 10100 by an exponent bit flip, in such a case
there is no chance that the correction can be prosperous. The detection algorithm
records merely a severe numerical error and the correction is discarded and further
logged as a failure. It can be of course that the exponent bit flip is not so severe
(1.0 → 10, 10 → 100, 0.001 → 0.000001) or other similar, but when a lot of them
occur, later the total error is added up during every matrix element multiplication,
resulting in a substantial relative 1-norm.

The bit flips everywhere observations are something in between. It can happen,
that a few small bit flips from the type of sign bit flips, or mantissa bit flips occur,
and which are easy to detect and further to correct but it can also happen that some
bit flips in exponent continuously appear. When the latter one is the case, then the
algorithm will fail with high probability. At this type of errors, every before men-
tioned weakness play a role, including the structure of the sub-matrices, numerical
limitations, big value differences and the frequency setup of injecting errors. In sum-
mary, we can say that as long as not too many exponent bit flips in combination
with mantissa bit flips are injected during the matrix multiplication, the implemented
ABFT_PDGEMM algorithm will be capable of managing the error situation.

It should be noted that the ABFT algorithm used in this thesis is based on the
classic ABFT approach (where values are compared) and cannot handle bit flips with
large numerical differences. In [110] an advanced version called dABFT was presented,
which is more stable to numerical changes and capable of withstanding any bit flips
(including NaN and infinity).

Chapter 7

Conclusion

As the title of this master thesis says, the scalability of ABFT methods for dense ma-
trix operations should be well examined, therefore we decided to use a relatively new
method to do that, as by using the help of simulating tools. By studying the simula-
tors thoroughly in their documentation materials and manuals and further by trying
to implement a working parallel ABFT general matrix-matrix multiplication in combi-
nation with them, one major thing has been observed. The highly optimized libraries
DPLASMA and ScaLAPACK which are commonly used in Scientific Computing, are
not capable of directly working together with any of the mentioned simulators in
Chapter 4 (for detailed explanation see the associated subsections). The main prob-
lem is that the libs are strongly coupled to hardware topology or hardware locality
(e.g., using the information for their routines and sub-routines from the HWLOC
software package). This means restricted virtual MPI processes freedom for simula-
tors and the different MPI contexts of the application’s library and the simulator’s
library are blocking or rather rivaling each other. Moreover, there is probably not a
real blocking of the different contexts but a kind of unknowing of the real hardware
topology for the subroutines of DPLASMA or ScaLAPACK, besides it can come from
the unsupported MPI functions of the various simulators. Since there exists a deep
structure of the high-performance libraries’ routines, there is a need of other ways to
implement that successfully, described in Section 7.1.

From the experiments in Chapter 6 it is apparent that ABFT though can be used
to optimize, stabilize and make scientific routines like GEMM more tolerant against
faults, bit flips, and even failures, especially node failures. In the results there can be
found a definite trend pointing that as the components of a system, in particular cores
and nodes, in this case, are growing, the overhead which is given by the additional
effort for an ABFT PDGEMM is shrinking. That would be strongly recognized as
we are going towards Exascale Computing where millions of cores or computational

93

94

nodes are involved. In such a situation one of the leading advantages of an ABFT
method can come into action by splitting the work to each node or in other respects
to each core so that they can do their correction of the values locally, and in one of
the most efficient ways for an extreme-scale well parallelized system. Further, this
can be expanded by the combination of Checkpointing & ABFT which then would
lead to another point reported in the future work section.

What’s more the tolerance value for the correction of uniformly and randomly dis-
tributed values is not easy to set. There exists a research at the University of Vienna,
from the Faculty of Computer Science where this topic is analyzed mathematically
[110]. However, their findings have not been used in this master thesis, instead, values
based on empirical research and other factors have been used for getting the appro-
priate results. The main problem here is that setting a tolerance value that is too
high can lead to unsuccessful detection or correction of the elements that were already
manipulated and should be corrected. The other way round, working with a low value
can also advance into a miscarried recovery. This situation also depends and varies
with the chosen value distribution and precision which has further an impact on the
matrix values. Therefore the range of the matrix values and the limits coming from
the numerical precision can lead to a better or a worse detection and correction.

Simulating an exascale situation with current simulating tools is not easy, even if
some of the simulators are capable of reproducing an environment with millions of
cores or nodes. From the results and examples given in subsection 4.5.1, it follows the
conclusion that there is a minimum amount of about 17 TB (terabytes) of RAM needed
to simulate an exascale system doing a matrix multiplication. The calculation is based
on executing such a simulation with the xSim simulating tool, using DPLASMA but
without considering of any MPI communication and computation overhead. Therefore
reproducing the situation of an exascale system, including all overheads and address
spaces, will require at least a supercomputing machine from the top500.org list or for
instance using one-fifth of the computational power of Austria’s fastest supercomputer
VSC-3 [99, 142] which provides about 130 TB of RAM.

About the question, if ECC devices should be used or can be replaced partly or
entirely by falt-tolerant algorithms, the answer is that ECC correction is indispensable
and will still be used as it was also further emphasized in [69]. In short, because the
measured amount of ECC errors at their Cray XT5 system Jaguar exceeded over
100+ per minute and it’s expected that this value will rise in future supercomputer
systems, the need of ECC devices (in particular ECC memory modules) will still be
substantial. Here the exciting part where ABFT algorithms can operate very well
is that ECC can’t detect and correct a double bit-flip error in one word of memory
(typically 64 bits). If two bits are flipped in a word, ECC can recognize that the word

top500.org

7.1. FUTURE WORK AND OPEN ISSUES 95

is corrupted, but cannot fix it because it’s used only designed for single-bit errors.
ABFT instead can manage the situation even if there is an occurrence of many or
multiple bit flips.

Concluding the thesis from the study about this topic I can say that an ABFT
algorithm in combination with a checkpointing mechanism can be truly considered
for future supercomputing systems. Since the time for writing checkpoints to external
devices and the mean time between failure (MTBF) of a supercomputing system is
getting closer and closer, soon, there will be a need of such fault tolerant approaches
like presented in [15]. When the time gap for recalculation and resuming the com-
putation is not enough an ABFT algorithm has to be integrated. It can handle
problems arising from that huge amount of components in large-scale supercomput-
ers, especially when double- or more bit flips and node failures are involved. What’s
more ABFT can be easily adapted to the needs of a specific problem. The main idea
behind combining approach is to use ABFT when we know about the application be-
havior (e.g., in functions, sub-functions, data which can be recomputed) and for the
general system consistency, save the state into a checkpoint. With this combination,
it is possible that if a severe error occurs, the global state can be reconstructed from
the checkpoint, and if there are bit flips or node failures, the ABFT algorithm can
recompute the lost data based on the additional checksums.

7.1 Future Work and Open Issues

Like mentioned in the conclusion section, there can be intended for implementation
of various ABFT & Checkpointing approaches. This thesis goes only in the depth for
a Local ABFT PDGEMM approach. Thus it will be interesting to see, how a Local
ABFT & Checkpointing approach or a Global ABFT & Checkpointing approach will
be working together, especially when the bit flips are getting more and more intensive.
Also, an ascending number of node failures could be investigated. Further GPUs can
be included in the computations when using DPLASMA library. Examining results
will show which approach for which particular system will perform best. Since the
two ABFT variants have their specific strengths it has to be decided, whether there
is a need of being capable of restoring data of whole MPI nodes (accomplished with
the Global approach), or if the communication overhead between the nodes should be
kept as low as possible like it is common in Local ABFT methods.

Further, an ABFT PDGEMM can be specially programmed for different simula-
tors. This would imply to choose one particular simulator and implement the ABFT
algorithm based on the requirements, pros and contras of the chosen simulator. As
there are many simulators which use simulator-based directives, the degree of which a

7.1. FUTURE WORK AND OPEN ISSUES 96

program has to be reimplemented can vary from adding a few lines of code to a whole
restructuring of the application. Depending on the problem which has to be solved
there can be made a decision between:

1. If a programming project should be simulated like it’s running on a real super-
computing machine (with online simulation),

2. Only the network topology and the contained advantages of a specific topology
of an exascale platform should be simulated,

3. If there should be an approximated emulation of the routines’ behaviour.

All these options can be reached by different types of simulators which are available
over the internet.

Another important point is solving the problem of the libraries’ routines and sub-
routines not knowing the current hardware topology when additionally using a simu-
lator. One way which can be tried is the extraction of the related DGEMM routines
of DPLASMA or ScaLAPACK. To be more specific the subroutines of the dgemm-
routine from the high optimized libraries should be extracted and executed with a
particular simulator. There exists a suspicion that as the simulator is executing the
dgemm-routine on a high level, moreover on an over-layered virtual MPI process, the
subroutines do not really know or get the information on which MPI-grid-structure
the execution is done actually. This behavior was tested and verified with both high-
performance libraries.

In ScaLAPACK the verification was done by the subroutine Cblacs_gridinit and
further by Cblacs_gridinfo. They both change the values required for the ScaLA-
PACK grid-structure to a negative value "-1", where instead of in a normal run there
have to be positive values containing the grid-info. Assuming there are eight proces-
sors in a (4× 2)-processor grid present, then the correct values which have to be set
up by the internal routines will be:

ictxt: 0, nprow: 4, npcol: 2, myrow: 0, mycol: 0, for rank 0
ictxt: 0, nprow: 4, npcol: 2, myrow: 1, mycol: 0, for rank 1
ictxt: 0, nprow: 4, npcol: 2, myrow: 2, mycol: 0, for rank 2
...

Instead the look of the erroneous output:
ictxt: 0, nprow: -1, npcol: -1, myrow: -1, mycol: -1, for rank 0
ictxt: 0, nprow: -1, npcol: -1, myrow: -1, mycol: -1, for rank 1
ictxt: 0, nprow: -1, npcol: -1, myrow: -1, mycol: -1, for rank 2
....

Further there is an error that in the subroutine Cblacs_gridmap pointing to that the

7.1. FUTURE WORK AND OPEN ISSUES 97

MPI_Attr_get function is not supported by xSim. Thus it has to be considered that
some simulators did not support every MPI function.

In DPLASMA the situation is similar where the responsible routine setup_dague or
respectively setup_parsec (in the newer version of DPLASMA) is not setting up
the processor’s grid structure and in another respect the MPI context correctly. The
setup of the internal routines in DPLASMA is strongly managed by the provided
information from the hardware locality software package, and so pointing on the real
physical hardware. Apart from this fact, there exists an option where the hardware
locality library (HWLOC) can be explicitly excluded during the compilation phase of
DPLASMA, but this was not examined so far and would have with high probability
to do with a loss of performance. Perhaps this could solve a part of the problem where
the virtual number of processes is passed to the setup routine of DPLASMA instead
of the real hardware data of the supercomputing system.

Another open issue is the implementation of a full and advanced ABFT PDGEMM.
First on each node the weight matrix W and the correction matrix H according to
the scheme in Section 3.3 is created, and matrix A and B distributed blockwise. The
advanced variant includes that there are additional columns and rows with checksums
(full-weighted) in matrix A (Af) and B (Bf), and a matrix D (Df) [83, 110]. The full
weighted variants can also be computed to the presented structure in Section 3.3. The
matrix D should be, on the contrary, computed by the row-wise checksums variant of
A (Ar) and the column-wise checksums containing matrix B (Bc) such that:

Df = Ar · Bc. (7.1)

With this extension it’s possible to do failure detection and correction in matrices
Af , Bf and Df . Furthermore, bit-flips and fault injections are allowed in all full
weighted matrices. If a correction of Df has failed the corrupt block or sub-matrix
Df can be recomputed again. The final matrix Cf which is also full-weighted will be
computed by

Cf (bi, bj) = Cf (bi, bj) + Df . (7.2)

If there is an occurrence of some manipulation during the computation of Cf , after
all calculations are complete, there can be done a failure detection and correction in
Cf . All of the previously described steps would result in a thoroughly fault-tolerant
matrix multiplication, where all values of all matrices can be recomputed.

7.1. FUTURE WORK AND OPEN ISSUES 98

Appendices

A.1 Test Environment

The machine, called Repeal2, on which the experiments in Chapter 6 was executed
has the following key figures:

� 4× Intel Xeon E7-8867 v3 [79] (4-NUMA-nodes) each with:

of Cores # of Threads Processor Base Frequency
16 32 2.5 GHz

Max Memory Size Max Memory Bandwidth RAM per NUMA-node
1.54 TB 85 GB/s 252 GB

L1 Cache L2 Cache L3 Cache
32 KB per Core 256 KB per Core 45 MB per Numa-node

(according to HWLOC, for hardware topology details
see Figure A.1 and A.2 on pages 100 and 101)

Table A.1: Testing environment details

of Cores # of Threads Processor Frequency RAM
64 128 2.5 GHz 1008 GB

Table A.2: Total system metrics

� Rpeak Performance in (GFlop/s) of whole System calculated by definition in
[115, 68]:

Node performance in GFlop/s =(CPU speed in GHz)× (# of CPU cores)×

(CPU instructions per cycle)×

(# of CPUs per node)

(A.1)

Rpeak Performance = (Node performance in GFlop/s)× (# of Nodes)

Rpeak GFlop/s = (2.5 GHz)× 16× 16× 1× (4 NUMA-nodes) (A.2)

= 2560 GFlop/s

99

A
.1.

T
EST

EN
V

IR
O

N
M

EN
T

100

The CPU instruction per cycle for the Xeon E7-8867 v3 is assumed to be 16 because of the successor generation presented in [68],
the Xeon E7-8867 v4 and with subject to [108, 115] describing that the Intel Xeon E5-4600 v3 and E5-2690 v3 which also belonging
to the Haswell-EP processor family, already running with 16 DP FLOPS per cycle. Therefore the system’s Rpeak of 2560 GFlop/s.

Machine (1008GB total)

NUMANode P#0 (252GB)

Package P#0

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#64

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#65

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#66

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#67

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#68

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#5

PU P#69

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#6

PU P#70

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#7

PU P#71

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#8

PU P#72

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#9

PU P#73

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#10

PU P#74

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#11

PU P#75

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#12

PU P#76

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#13

PU P#77

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#14

PU P#78

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#15

PU P#79

PCI 8086:1521

eno1

PCI 8086:1521

eno2

PCI 1a03:2000

card0

controlD64

PCI 8086:1d02

sda sdd sdb

sde sdc

NUMANode P#1 (252GB)

Package P#1

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#16

PU P#80

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#17

PU P#81

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#18

PU P#82

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#19

PU P#83

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#20

PU P#84

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#21

PU P#85

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#22

PU P#86

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#23

PU P#87

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#24

PU P#88

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#25

PU P#89

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#26

PU P#90

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#27

PU P#91

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#28

PU P#92

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#29

PU P#93

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#30

PU P#94

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#31

PU P#95

NUMANode P#2 (252GB)

Package P#2

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#32

PU P#96

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#33

PU P#97

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#34

PU P#98

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#35

PU P#99

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#36

PU P#100

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#37

PU P#101

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#38

PU P#102

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#39

PU P#103

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#40

PU P#104

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#41

PU P#105

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#42

PU P#106

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#43

PU P#107

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#44

PU P#108

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#45

PU P#109

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#46

PU P#110

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#47

PU P#111

NUMANode P#3 (252GB)

Package P#3

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#48

PU P#112

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#49

PU P#113

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#50

PU P#114

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#51

PU P#115

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#52

PU P#116

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#53

PU P#117

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#54

PU P#118

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#55

PU P#119

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#56

PU P#120

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#57

PU P#121

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#58

PU P#122

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#59

PU P#123

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#60

PU P#124

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#61

PU P#125

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#62

PU P#126

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#63

PU P#127

Host: repeal2

Indexes: physical

Date: Wed 28 Jun 2017 08:10:14 PM CEST

Machine (1008GB total)

NUMANode P#0 (252GB)

Package P#0

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#64

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#65

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#66

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#67

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#68

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#5

PU P#69

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#6

PU P#70

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#7

PU P#71

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#8

PU P#72

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#9

PU P#73

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#10

PU P#74

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#11

PU P#75

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#12

PU P#76

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#13

PU P#77

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#14

PU P#78

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#15

PU P#79

PCI 8086:1521

eno1

PCI 8086:1521

eno2

PCI 1a03:2000

card0

controlD64

PCI 8086:1d02

sda sdd sdb

sde sdc

NUMANode P#1 (252GB)

Package P#1

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#16

PU P#80

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#17

PU P#81

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#18

PU P#82

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#19

PU P#83

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#20

PU P#84

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#21

PU P#85

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#22

PU P#86

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#23

PU P#87

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#24

PU P#88

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#25

PU P#89

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#26

PU P#90

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#27

PU P#91

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#28

PU P#92

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#29

PU P#93

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#30

PU P#94

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#31

PU P#95

NUMANode P#2 (252GB)

Package P#2

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#32

PU P#96

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#33

PU P#97

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#34

PU P#98

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#35

PU P#99

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#36

PU P#100

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#37

PU P#101

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#38

PU P#102

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#39

PU P#103

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#40

PU P#104

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#41

PU P#105

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#42

PU P#106

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#43

PU P#107

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#44

PU P#108

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#45

PU P#109

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#46

PU P#110

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#47

PU P#111

NUMANode P#3 (252GB)

Package P#3

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#48

PU P#112

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#49

PU P#113

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#50

PU P#114

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#51

PU P#115

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#52

PU P#116

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#53

PU P#117

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#54

PU P#118

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#55

PU P#119

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#56

PU P#120

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#57

PU P#121

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#58

PU P#122

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#59

PU P#123

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#60

PU P#124

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#61

PU P#125

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#62

PU P#126

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#63

PU P#127

Host: repeal2

Indexes: physical

Date: Wed 28 Jun 2017 08:10:14 PM CEST

Figure A.1: Repeal2 hardware topology from execution of lstopo from HWLOC part 1 (NUMA-node 0-1)

A
.1.

T
EST

EN
V

IR
O

N
M

EN
T

101

Machine (1008GB total)

NUMANode P#0 (252GB)

Package P#0

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#64

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#65

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#66

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#67

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#68

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#5

PU P#69

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#6

PU P#70

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#7

PU P#71

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#8

PU P#72

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#9

PU P#73

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#10

PU P#74

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#11

PU P#75

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#12

PU P#76

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#13

PU P#77

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#14

PU P#78

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#15

PU P#79

PCI 8086:1521

eno1

PCI 8086:1521

eno2

PCI 1a03:2000

card0

controlD64

PCI 8086:1d02

sda sdd sdb

sde sdc

NUMANode P#1 (252GB)

Package P#1

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#16

PU P#80

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#17

PU P#81

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#18

PU P#82

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#19

PU P#83

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#20

PU P#84

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#21

PU P#85

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#22

PU P#86

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#23

PU P#87

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#24

PU P#88

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#25

PU P#89

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#26

PU P#90

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#27

PU P#91

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#28

PU P#92

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#29

PU P#93

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#30

PU P#94

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#31

PU P#95

NUMANode P#2 (252GB)

Package P#2

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#32

PU P#96

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#33

PU P#97

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#34

PU P#98

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#35

PU P#99

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#36

PU P#100

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#37

PU P#101

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#38

PU P#102

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#39

PU P#103

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#40

PU P#104

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#41

PU P#105

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#42

PU P#106

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#43

PU P#107

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#44

PU P#108

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#45

PU P#109

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#46

PU P#110

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#47

PU P#111

NUMANode P#3 (252GB)

Package P#3

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#48

PU P#112

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#49

PU P#113

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#50

PU P#114

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#51

PU P#115

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#52

PU P#116

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#53

PU P#117

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#54

PU P#118

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#55

PU P#119

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#56

PU P#120

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#57

PU P#121

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#58

PU P#122

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#59

PU P#123

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#60

PU P#124

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#61

PU P#125

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#62

PU P#126

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#63

PU P#127

Host: repeal2

Indexes: physical

Date: Wed 28 Jun 2017 08:10:14 PM CEST

Machine (1008GB total)

NUMANode P#0 (252GB)

Package P#0

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#0

PU P#64

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#1

PU P#65

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#2

PU P#66

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#3

PU P#67

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#4

PU P#68

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#5

PU P#69

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#6

PU P#70

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#7

PU P#71

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#8

PU P#72

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#9

PU P#73

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#10

PU P#74

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#11

PU P#75

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#12

PU P#76

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#13

PU P#77

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#14

PU P#78

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#15

PU P#79

PCI 8086:1521

eno1

PCI 8086:1521

eno2

PCI 1a03:2000

card0

controlD64

PCI 8086:1d02

sda sdd sdb

sde sdc

NUMANode P#1 (252GB)

Package P#1

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#16

PU P#80

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#17

PU P#81

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#18

PU P#82

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#19

PU P#83

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#20

PU P#84

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#21

PU P#85

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#22

PU P#86

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#23

PU P#87

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#24

PU P#88

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#25

PU P#89

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#26

PU P#90

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#27

PU P#91

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#28

PU P#92

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#29

PU P#93

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#30

PU P#94

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#31

PU P#95

NUMANode P#2 (252GB)

Package P#2

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#32

PU P#96

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#33

PU P#97

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#34

PU P#98

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#35

PU P#99

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#36

PU P#100

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#37

PU P#101

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#38

PU P#102

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#39

PU P#103

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#40

PU P#104

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#41

PU P#105

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#42

PU P#106

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#43

PU P#107

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#44

PU P#108

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#45

PU P#109

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#46

PU P#110

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#47

PU P#111

NUMANode P#3 (252GB)

Package P#3

L3 (45MB)

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#0

PU P#48

PU P#112

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#1

PU P#49

PU P#113

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#2

PU P#50

PU P#114

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#3

PU P#51

PU P#115

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#4

PU P#52

PU P#116

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#8

PU P#53

PU P#117

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#9

PU P#54

PU P#118

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#10

PU P#55

PU P#119

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#11

PU P#56

PU P#120

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#16

PU P#57

PU P#121

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#17

PU P#58

PU P#122

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#18

PU P#59

PU P#123

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#20

PU P#60

PU P#124

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#24

PU P#61

PU P#125

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#25

PU P#62

PU P#126

L2 (256KB)

L1d (32KB)

L1i (32KB)

Core P#27

PU P#63

PU P#127

Host: repeal2

Indexes: physical

Date: Wed 28 Jun 2017 08:10:14 PM CEST

Host: repeal2

Indexes: physical

Date: Wed 28 Jun 2017 08:10:14 PM CEST

Figure A.2: Repeal2 hardware topology from execution of lstopo from HWLOC part 2 (NUMA-node 2-3)

A.2. EXTENDED SPACE ANALYSIS LOCAL ABFT 102

A.2 Extended Space Analysis Local ABFT

This overview below contains analysis for all matrices and arrays used in the Local
ABFT implementation.

 weight matrix w:

 matrix A:

 matrix B:

 matrix C:

 correction matrix H1:

 correction matrix H2:

 correction ind matrix S1:

 correction ind matrix S2:

 indices values I1:

 indices values I2:

 matrix ddescH:

Total elements:

Total space for DP: bytes

 … extended dimension

 … CPU ranks in P direction

 … CPU ranks in Q direction

 …
additional rows / columns for

checksums

 real size = …
extended dimension ‐

additional rows / columns

Elements for all CPU ranks

(simplified)
Matrices / Arrays

Elements per submatix/ CPU

rank
Elements for all CPU ranks

݊
ܲ

൅ ݀ ൈ	ሺ	ሺ
݊
ܳ
ሻ ൅ ݀ሻ ݊ ൅ ܲ ∗ ݀ ൈ	ሺ	݊ ൅ ሺܳ ∗ ݀ሻሻ

݊
ܲ

ൈ 	݀ሻ	

݊
ܲ

൅ ݀ ൈ	ሺ	ሺ
݊
ܳ
ሻ ൅ ݀ሻ

݊
ܲ

൅ ݀ ൈ	ሺ	ሺ
݊
ܳ
ሻ ൅ ݀ሻ

݊ ൅ ܲ ∗ ݀ ൈ	ሺ	݊ ൅ ሺܳ ∗ ݀ሻሻ

݊ ൅ ܲ ∗ ݀ ൈ	ሺ	݊ ൅ ሺܳ ∗ ݀ሻሻ

݀ ൈ ݀

݀ ൈ ݀

݀ ൈ	ሺ	ሺ
݊
ܲ
ሻ ൅ ݀ሻሻ

݀ ൈ	ሺ	ሺ
݊
ܳ
ሻ ൅ ݀ሻሻ

݀

݀

(݀ ∗ ܲሻ ൈ ሺ݀ ∗ ܳሻ

(݀ ∗ ܲሻ ൈ ሺ݀ ∗ ܳሻ

݀ ∗ ܲ ൈ	ሺ	݊ ൅ ሺܲ ∗ ݀ሻሻ

݀ ∗ ܳ ൈ	ሺ	݊ ൅ ሺܳ ∗ ݀ሻሻ

݀ ൈ ሺܲ ∗ ܳሻ

݀ ൈ ሺܲ ∗ ܳሻ

݊
ܲ

൅ ݀ ൈ	ሺ	ሺ
݊
ܳ
ሻ ൅ ݀ሻ ݊ ൅ ܲ ∗ ݀ ൈ	ሺ	݊ ൅ ሺܳ ∗ ݀ሻሻ

݊ ൈ ሺ݀ ∗ ܳሻሻ	

ܰ

ܲ

ܳ

݊

݀

ܰ ൌ ݊ ൅ ሺܲ ∗ ݀ሻ

ܲ ൌ ܳ

݊ ൌ ܰ െ ሺܲ ∗ ݀ሻ

ܰ ൈ ܰ

(݀ ∗ ܲሻ ൈ ሺ݀ ∗ ܳሻ

(݀ ∗ ܲሻ ൈ ሺ݀ ∗ ܳሻ

݀ ∗ ܲ ൈ ܰ

݀ ∗ ܳ ൈ ܰ

݀ ൈ ሺܲ ∗ ܳሻ

݀ ൈ ሺܲ ∗ ܳሻ

݊ ൈ ሺ݀ ∗ ܳሻሻ	

ܰ ൈ ܰ

ܰ ൈ ܰ

ܰ ൈ ܰ

݀݊ܲ ൅ 2ሺ݀ଶ ൅ ݀ܰܲ ൅ ݀ܲଶ ൅ 2݀ܲ ൅ 2ܰଶ ൅ ܲଶሻ

8݀݊ܲ ൅ 16ሺ݀ଶ ൅ ݀ܰܲ ൅ ݀ܲଶ ൅ 2݀ܲ ൅ 2ܰଶ ൅ ܲଶሻ

Figure A.3: Local ABFT PDGEMM extended space analysis for # of elements and
of bytes plus regarding legend

A.3. PROJECT FILES 103

A.3 Project Files

The following table provides an overview of various files created and used in the project
and provides a short description of their functions. Further down, the DPLASMA
specific files are listed.

File Description
Makefile A makefile for compiling, running and testing the ABFT_PDGEMM. Fur-

ther containing help of using the built-in functionalities.

abft_pdgemm_opt.cpp Space and runtime optimized version of the ABFT matrix-matrix mul-
tiplication. This is the main file, containing the whole fault tolerant
procedure.

routines.cpp Containing all the extended functions, e.g., for print out matrix values
and for debugging.

routines.hpp Contains the headers for the routines.cpp and all special declarations
and useful preprocessor macros.

abft.cpp Functions for testing and correcting faulty matrices.

abft.hpp Definitions of the function in abft.cpp and some preprocessor macros.

abft_matrix.cpp Auxiliary functions for initialization and printing.

abft_matrix.hpp Containing the default settings for the functions in abft_matrix.cpp.
Defining the ABFT matrix class for C++.

matrix.h This file is for the C definitions of the ABFT matrix class.

abft_pdgemm.cpp The original and first version of the ABFT_PDGEMM (without special
optimizations for a certain platform).

faultinjector.cpp Contains the default settings for the own-threaded fault injector.

faultinjector.hpp Contains the implementation of the own-threaded fault injector to be
capable of injecting sign bit flips, bit flips in the mantissa and in the
exponent of a matrix element.

convert.sh This script is for producing plots and converting *.eps files to *.png
and *.pdf.

repeal2_labft.plt Contains all the information for Gnuplot to produce the scientific
plots, with labeling and with or without title labels.

checking_results.out To this file, all the measuring- and timing results are logged.

faultcorrection.log This file logs the correction status of each processor.

faultinjection.log This file logs the error initiation of the own-threaded fault injector
with timestamps and further information.

labft_times_logfile.out This file logs the runtimes for the multiple executions of the
ABFT_PDGEMM.

dplasma_times_logfile.out This file logs the runtimes for the multiple executions of the
DPLASMA_dgemm.

DPLASMA Related File Description
common.c This is the common file for the DPLASMA interface. Including user

interface and functions for the execution of DPLASMA routines.

common.h There are all the definitions for the DPLASMA interface and extended
preprocessor macros.

testing_dgemm.c For measuring the runtime of executing the DPLASMA_dgemm routine.

butterfly.c For special internal matrix tiling and splitting.

common_timing.h For DPLASMA-own timing with integration for GFlop/s.

flops.h This file contains multiple formulae of all possible FLOPS calculations
as a preprocessor macro for Level 3 BLAS and some LaPACK routines.

Table A.3: Summary and description of relevant project files

A.4. SOFTWARE AND LIBRARY VERSIONS 104

A.4 Software and Library Versions

Names Description
LaPACK 3.7.1 Linear Algebra PACKage library, needed for com-

piling DPLASMA. (can be found under http://
www.netlib.org/lapack/#_lapack_version_3_7_1)

DPLASMA 2.0.0-rc2 /
PARSEC 2.0.0-rc2

The official DPLASMA and PaRSEC site is located
at http://icl.cs.utk.edu/parsec/news/index.html.
The newest versions can also be found in the git repos-
itory with the direct cloning link: "git clone https:
//bitbucket.org/icldistcomp/parsec.git".

PLASMA 2.8.0 Parallel Linear Algebra Software for Multicore Architec-
tures library, needed for compiling DPLASMA. (https:
//bitbucket.org/icl/plasma/overview)

HWLOC 1.11.4 Portable Hardware Locality library for hardware topol-
ogy and processor details used in DPLASMA. (https:
//www.open-mpi.org/projects/hwloc/)

OpenMPI 2.1.1 OpenMPI is in the first place a High-Performance Mes-
sage Passing Library. Besides, it is a Message Pass-
ing Interface implementation which is distributed as
open source. OpenMPI is developed and maintained
by a consortium of research, academic, and industry
partners and it belongs to one of the required MPI
libraries for DPLASMA. (https://www.open-mpi.org/
software/ompi/v2.1/) [136]

OpenBLAS OpenBLAS is an optimized BLAS(Basic Linear Algebra
Subprograms) library based on GotoBLAS2 1.13 BSD
version. It is the root linear algebra library needed
by PLASMA, LaPACK, and DPLASMA.(https://
github.com/xianyi/OpenBLAS/wiki)

Debian 8 with Debian
Testing

The operating system used on the Repeal2 server ma-
chine. (https://wiki.debian.org/DebianJessie)

Table A.4: Summary and description of used libraries and packages

http://www.netlib.org/lapack/#_lapack_version_3_7_1
http://www.netlib.org/lapack/#_lapack_version_3_7_1
http://icl.cs.utk.edu/parsec/news/index.html
https://bitbucket.org/icldistcomp/parsec.git
https://bitbucket.org/icldistcomp/parsec.git
https://bitbucket.org/icl/plasma/overview
https://bitbucket.org/icl/plasma/overview
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/projects/hwloc/
https://www.open-mpi.org/software/ompi/v2.1/
https://www.open-mpi.org/software/ompi/v2.1/
https://github.com/xianyi/OpenBLAS/wiki
https://github.com/xianyi/OpenBLAS/wiki
https://wiki.debian.org/DebianJessie

B.1 Glossary 105

B.1 Glossary

Here a more comprehensive explanation of some relevant terms used in this thesis can
be found:

2-D block-cyclic The 2-D block-cyclic structure is a unique matrix value decompo-
sition where the matrix values are distributed in rectangle- or quadratic blocks
such that an optimal load balancing can be achieved over the consecutive pro-
cessors [49, 51, 10]. These conditions lead to the situation that on the tiles/sub-
matrices BLAS-operations can be executed in a much better way than other
matrix layouts. There are two main issues in choosing a 2-D block-cyclic data
layout for dense matrix computations. The first one is load balance which
gives the opportunity to split the work reasonably equally among the processors
throughout the algorithm. The second one is, to make use of the Level 3 BLAS
while computations are running on a single processor such that the memory hi-
erarchy on each processor can be utilized. This particular structure is illustrated
in the figure below .

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4

1 3 5

0 2 4 0 2 4 0 2 4

0 2 4

3 5

0 2 4

1

3

5

0

2

4

1

3

5

0

2

4

1 3

5

0

2 4

1

4

5

4

5

4

5

4

5

4

4

5

4

5

4

5

4

5

4

2

3

2

3

2

3

2

3

2

2

3

2

3

2

3

2

3

2

0

0

1

0

1

0

1

0

1

0

0

1

0

1

0

1

0

1

Matrix point of view Processor point of view

{one tile

DPLASMA Stands for (Distributed) Parallel Linear Algebra Software for Multicore
Architectures and is a highly optimized library containing mainly linear algebra
software for High-Performance Computing purposes [18]. The included functions
are based on PLASMA with adding the possibility of also using GPU Kernels
as accelerators. The MAGMA library provides this hybrid architecture option.
For further details see (section 5.1).

GNUPLOT Gnuplot is a portable command-line using graphing utility for various
operating systems including Linux, OS/2, MS Windows, VMS, OSX, and many

B.1 Glossary 106

others. The source code has a copyright on it, but it is freely distributed. In the
beginning, its goal was to allow scientists, students, and other users to visualize
mathematical functions and data interactively. Meanwhile, it also supports
many non-interactive applications such as web scripting and is also used in third-
party applications (for instance Octave). Gnuplot has been supported and is
under active development since 1986. Furthermore, it supports many types of
plots (2D or 3D), and it can draw images by using lines, points, contours, boxes,
surfaces, vector fields, and various associated text. It also supports several
specialized plot types. Further direct output to pen plotters or current printers,
and output to various file formats (e.g., emf, eps, fig, jpeg, pdf, LaTeX, png,
postscript, and others) are supported [147, 146].

HWLOC The portable software package Portable Hardware Locality (hwloc) pro-
vides an abstraction (across OS, architectures, versions, . . .) of the hierarchical
topology of modern architectures. The support includes NUMA memory nodes,
shared caches, sockets, cores and simultaneous multithreading. Furthermore, it
has a collection feature where various system attributes like cache and memory
information can be gathered. Further, the locality of input/output devices such
as InfiniBand HCAs, network interfaces, or GPUs can be extracted. It primarily
aims at helping applications with collecting information about increasingly com-
plex parallel computing platforms and also acts as a portable CPU and memory
binding API [137, 25].

NUMA Non-uniform memory access (NUMA) is a computer memory design which
can be used in machines with multiple processors. Compared to a shared mem-
ory architecture where all processors share the same memory and handle it as a
global address space, in a NUMA architecture we have processors with identical
architecture connected to a scalable network, and each of them with a part of
memory attached directly to it. Further, the memory access time in a NUMA
architecture depends on the memory location which is relative to the processor.
The main difference between a NUMA architecture and a distributed memory
architecture is that no one of the processors can have mappings to the memory
assigned to other processors. There also exists a classification of local memory
and remote memory which is calculated according to the access latency of the
different memory regions of each processor [96].

PaRSEC PaRSEC stands for Parallel Runtime Scheduling and Execution Controller
and is a universal framework for architecture aware scheduling and administra-
tion of micro-tasks on many-core heterogeneous architectures. Applications,
however, can be represented as a special graph, a so-called Directed Acyclic

B.1 Glossary 107

Graph (DAG) of tasks where labeled edges designate data dependencies. These
so-called DAGs have a compact problem-size independent format where data
dependencies in a distributed fashion can be discovered if required. PaRSEC
further has the ability to assign computation threads to the cores to arrange com-
munications and computations and to use a dynamic, fully-distributed sched-
uler. This specific scheduler is working depending on architectural features like
NUMA nodes and on algorithmic features such as data reuse. The framework
brings libraries, a runtime system, and development tools with it. They should
help application developers to get rid of the porting problems of applications
especially when programs should be ported to highly heterogeneous- and diverse
environment [18].

B.1 Glossary 108

B.2 List of Acronyms 109

B.2 List of Acronyms

2DBC 2-D block-cyclic. 61, 78, 92, Glossary: 2-D block-cyclic

ABFT Algorithm-Based Fault Tolerance. 1, 6, 8–11, 13–16, 19, 21, 22, 24–30, 33,
35, 36, 55, 56, 61, 66, 69, 70, 75–77, 79, 81–86, 92–95, 97, 102, 103

AODV Ad hoc On-Demand Distance Vector Routing. 49

API Application Programming Interface. 13, 33, 37, 48

BLAS Basic Linear Algebra Subprograms. 63–65, 103–105

CUDA Compute Unified Device Architecture. 50

DES Discrete Event Simulation. 53

DP Double Precision (floating-point format). 100

DPLASMA Distributed Parallel Linear Algebra Software for Multicore Architec-
tures. 8, 15, 40, 41, 47, 55, 59, 61, 62, 64, 65, 67, 75, 76, 81–83, 86, 93–97, 103,
104, Glossary: DPLASMA

ECC Error Checking and Correction. 94

FLOPS Floating Point Operations Per Second. 45, 55, 100, 103

GEMM General Matrix Matrix multiplication. 14, 70, 93, 96

GFlop/s Giga Floating Point Operations Per Second. 9, 55, 76, 80, 99, 103

Gnuplot Portable command-line driven graphing utility for Linux. 103, Glossary:
GNUPLOT

GPGPUs General-Purpose Graphics Processing Unit. 15, 41, 43

HPC High Performance Computing. 7, 8, 16, 17, 19, 21, 30, 36, 39, 40, 45–49, 58,
59, 61

HWLOC Portable Hardware Locality. 59, 65, 93, 99, Glossary: HWLOC

IDE Integrated Development Environment. 44, 49

LaPACK Linear Algebra PACKage. 63, 65, 69, 103, 104

B.2 List of Acronyms 110

LINPACK LINear equations software PACKage. 63

LTE Long-Term Evolution. 49, 59

MAGMA Matrix Algebra on GPU and Multicore Architectures. 64, 105

MPI Message Passing Interface. 8, 13, 14, 27, 28, 30, 32, 36–38, 40–42, 45–47, 49–51,
54, 58, 59, 64, 76, 93–97

MTBF Mean Time Between Failure. 2, 5, 6, 9, 35, 61, 72–74, 90, 95

MTTF Mean Time To Failure. 5, 19, 20, 35

NUMA Non-Uniform Memory Access. 79, 99, 106, Glossary: NUMA

OLSR Optimized Link State Routing Protocol. 49

OpenMP Open Multi-Processing. 47, 50, 51

PAPI Performance Application Programming Interface. 51

PaRSEC Parallel Runtime Scheduling and Execution Controller. 6, 15, 65, 104,
Glossary: PaRSEC

PDES Parallel Discrete Event Simulation. 39–42, 44, 45, 47, 51, 57

PDGEMM Parallel Double precision valued General Matrix Matrix multiplication.
8, 14, 16, 24, 55, 56, 66, 70, 79, 81, 92, 93, 95, 97

PLASMA Parallel Linear Algebra Software for Multicore Architectures. 64, 65, 104,
105

Pthreads POSIX Threads. 47, 50, 51

Rpeak Theoretical Peak Performance in (GFlop/s). 99, 100

ScaLAPACK Scalable Linear Algebra PACKage. 8, 13, 14, 40, 41, 47, 59, 63, 64,
93, 96

SST Structural Simulation Toolkit. 43

TMR Triple Modular Redundancy. 11, 21

WiMAX Worldwide Interoperability for Microwave Access. 49

xSim Extreme-Scale Simulator. 8, 40, 94, 97

Bibliography

[1] Acun, B., Jain, N., Bhatele, A., Mubarak, M., Carothers, C.D., Kalé, L.V.:
“Preliminary Evaluation of a Parallel Trace Replay Tool for HPC Network Sim-
ulations”. In: Euro-Par Workshops (2015)

[2] Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel, J., Dongarra, J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.:
“LAPACK Users’ Guide”. Society for Industrial and Applied Mathematics,
Philadelphia, PA, third edn. (1999)

[3] Avizienis, A.: “Fault-tolerance: The survival attribute of digital systems”. Pro-
ceedings of the IEEE 66(10), 1109–1125 (Oct 1978)

[4] Ballard, G., Carson, E., Knight, N.: “Algorithmic-Based Fault Toler-
ance for Matrix Multiplication on Amazon EC2” (Dec 2009), http://
www.cs.berkeley.edu/~knight/ballardcarsonknight_paper.pdf

[5] Banerjee, P., Abraham, J.A.: “Bounds on Algorithm-Based Fault Tolerance in
Multiple Processor Systems”. IEEE Transactions on Computers C-35(4), 296–
306 (April 1986)

[6] Banerjee, P., Rahmeh, J.T., Stunkel, C., Nair, V.S., Roy, K., Balasubramanian,
V., Abraham, J.A.: “Algorithm-based fault tolerance on a hypercube multipro-
cessor”. IEEE Transactions on Computers 39(9), 1132–1145 (Sep 1990)

[7] Barcelona-Supercomputing-Center: “Dimemas: predict parallel performance
using a single cpu machine” (2017), https://tools.bsc.es/dimemas, [Online;
accessed 10-May-2017]

[8] Berry, M.W., Gallivan, K.A., Gallopoulos, E., Grama, A., Philippe, B., Saad,
Y., Saied, F.: “High-Performance Scientific Computing: Algorithms and Appli-
cations”. Springer Publishing Company, Incorporated (2012)

[9] Blackford, L.S., Choi, J., Cleary, A., D’Azeuedo, E., Demmel, J., Dhillon, I.,
Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., Whaley, R.C.:

111

http://www.cs.berkeley.edu/~knight/ballardcarsonknight_paper.pdf
http://www.cs.berkeley.edu/~knight/ballardcarsonknight_paper.pdf
https://tools.bsc.es/dimemas

BIBLIOGRAPHY 112

“ScaLAPACK User’s Guide”. Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA (1997)

[10] Blackford, S.: “The Two-dimensional Block-Cyclic Distribution” (last visited:
February 2017), http://www.netlib.org/scalapack/slug/node75.html

[11] Bland, W.: “User Level Failure Mitigation in MPI”. In: Caragiannis, I., Alexan-
der, M., Badia, R.M., Cannataro, M., Costan, A., Danelutto, M., Desprez, F.,
Krammer, B., Sahuquillo, J., Scott, S.L., Weidendorfer, J. (eds.) Euro-Par 2012:
Parallel Processing Workshops. pp. 499–504. Springer Berlin Heidelberg, Berlin,
Heidelberg (2013)

[12] Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.: “Post-failure
Recovery of MPI Communication Capability: Design and Rationale”. Int. J.
High Perform. Comput. Appl. 27(3), 244–254 (Aug 2013), http://dx.doi.org/
10.1177/1094342013488238

[13] Böhm, S., Engelmann, C.: “xSim: The Extreme-Scale Simulator”. In: Pro-
ceedings of the International Conference on High Performance Computing and
Simulation (HPCS) 2011. pp. 280–286. IEEE Computer Society, Los Alami-
tos, CA, USA, Istanbul, Turkey (Jul 4-8, 2011), http://www.christian-
engelmann.info/publications/boehm11xsim.pdf

[14] Bosilca, G., Bouteiller, A., Danalis, A., Faverge, M., Haidar, A., Herault, T.,
Kurzak, J., Langou, J., Lemarinier, P., Ltaief, H., Luszczek, P., YarKhan, A.,
Dongarra, J.: “Flexible Development of Dense Linear Algebra Algorithms on
Massively Parallel Architectures with DPLASMA”. In: 2011 IEEE International
Symposium on Parallel and Distributed Processing Workshops and Phd Forum.
pp. 1432–1441 (May 2011)

[15] Bosilca, G., Bouteiller, A., Herault, T., Robert, Y., Dongarra, J.: “Assessing
the Impact of ABFT and Checkpoint Composite Strategies”. In: 2014 IEEE
International Parallel Distributed Processing Symposium Workshops. pp. 679–
688 (May 2014)

[16] Bosilca, G., Bouteiller, A., Danalis, A., Herault, T., Lemarinier, P., Don-
garra, J.: “DAGuE: A generic distributed DAG engine for High Perfor-
mance Computing”. Parallel Computing 38(1), 37 – 51 (2012), http://
www.sciencedirect.com/science/article/pii/S0167819111001347, exten-
sions for Next-Generation Parallel Programming Models

[17] Bosilca, G., Bouteiller, A., Danalis, A., Hérault, T., Luszczek, P., Don-
garra, J.J.: “Dense Linear Algebra on Distributed Heterogeneous Hard-

http://www.netlib.org/scalapack/slug/node75.html
http://dx.doi.org/10.1177/1094342013488238
http://dx.doi.org/10.1177/1094342013488238
http://hpcs11.cisedu.info
http://hpcs11.cisedu.info
http://www.computer.org
http://www.computer.org
http://www.christian-engelmann.info/publications/boehm11xsim.pdf
http://www.christian-engelmann.info/publications/boehm11xsim.pdf
http://www.sciencedirect.com/science/article/pii/S0167819111001347
http://www.sciencedirect.com/science/article/pii/S0167819111001347

BIBLIOGRAPHY 113

ware with a Symbolic DAG Approach”. In: Scalable Computing and Com-
munications: Theory and Practice (2012), http://www.netlib.org/lapack/
lawnspdf/lawn264.pdf

[18] Bosilca, G., Bouteiller, A., Dongarra, J., et al.: “Parallel Runtime Scheduling
and Execution Controller” (last visited: May 2017), http://icl.cs.utk.edu/
parsec/index.html

[19] Bosilca, G., Bouteiller, A., Herault, T., Robert, Y., Dongarra, J.: “Composing
resilience techniques: ABFT, periodic and incremental checkpointing”. Interna-
tional Journal of Networking and Computing 5, 2–25 (Mar 2015)

[20] Bosilca, G., Bouteiller, A., Herault, T., Yves, R.: “Fault-tolerant Techniques
for HPC: Theory and Practice 2016” (November 14 2016), http://fault-
tolerance.org/downloads/sc16-tutorial.pdf, tutorial at The International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC’16)

[21] Bosilca, G., Bouteiller, A., Herault, T., Yves, R.: “Fault-tolerant Techniques
for HPC: Theory and Practice 2017” (November 12-17 2017), http://fault-
tolerance.org/downloads/sc17-tutorial.pdf, tutorial at The International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC’17)

[22] Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: “Algorithm-based Fault Tol-
erance Applied to High Performance Computing”. J. Parallel Distrib. Comput.
69(4), 410–416 (Apr 2009), http://dx.doi.org/10.1016/j.jpdc.2008.12.002

[23] Bosilca, G., et al.: “ULFM 2.0” (last visited: November 2017), http://fault-
tolerance.org/2017/11/03/ulfm-2-0/

[24] Bouteiller, A., Herault, T., Bosilca, G., Du, P., Dongarra, J.: “Algorithm-
Based Fault Tolerance for Dense Matrix Factorizations, Multiple Failures and
Accuracy”. ACM Trans. Parallel Comput. 1(2), 10:1–10:28 (Feb 2015), http:
//doi.acm.org/10.1145/2686892

[25] Broquedis, F., Clet Ortega, J., Moreaud, S., Furmento, N., Goglin, B., Mercier,
G., Thibault, S., Namyst, R.: “hwloc: a Generic Framework for Managing Hard-
ware Affinities in HPC Applications”. In: IEEE (ed.) PDP 2010 - The 18th Eu-
romicro International Conference on Parallel, Distributed and Network-Based
Computing. Pisa Italie (Feb 2010), http://hal.inria.fr/inria-00429889/
en/

http://www.netlib.org/lapack/lawnspdf/lawn264.pdf
http://www.netlib.org/lapack/lawnspdf/lawn264.pdf
http://icl.cs.utk.edu/parsec/index.html
http://icl.cs.utk.edu/parsec/index.html
http://fault-tolerance.org/downloads/sc16-tutorial.pdf
http://fault-tolerance.org/downloads/sc16-tutorial.pdf
http://fault-tolerance.org/downloads/sc17-tutorial.pdf
http://fault-tolerance.org/downloads/sc17-tutorial.pdf
http://dx.doi.org/10.1016/j.jpdc.2008.12.002
http://fault-tolerance.org/2017/11/03/ulfm-2-0/
http://fault-tolerance.org/2017/11/03/ulfm-2-0/
http://doi.acm.org/10.1145/2686892
http://doi.acm.org/10.1145/2686892
http://hal.inria.fr/inria-00429889/en/
http://hal.inria.fr/inria-00429889/en/

BIBLIOGRAPHY 114

[26] BSC: “Extrae Documentation - Release 3.5.2” (last visited: Novem-
ber 2017), https://tools.bsc.es/sites/default/files/documentation/
pdf/extrae-3.5.2-user-guide.pdf, developed at Barcelona Supercomputing
Center

[27] BSC: “Introduction to Dimemas - Performance Analysis Tool for Parallel Pro-
grams and Platforms” (last visited: November 2017), https://tools.bsc.es/
sites/default/files/documentation/introduction_dimemas.pdf, devel-
oped at Barcelona Supercomputing Center

[28] BSC: “Parallel Program Visualization and Analysis Tool - Reference Manual”
(last visited: November 2017), https://tools.bsc.es/sites/default/files/
documentation/1364.pdf, devoloped at Barcelona Supercomputing Center

[29] BSC: “Paraver: a flexible performance analysis tool” (last visited: November
2017), https://tools.bsc.es/paraver, developed at Barcelona Supercomput-
ing Center

[30] Burnette, E.: “Eclipse IDE Pocket Guide: Using the Full-Featured
IDE”. O’Reilly Media (2005), https://www.amazon.com/Eclipse-
IDE-Pocket-Guide-Full-Featured/dp/0596100655?SubscriptionId=
0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=
2025&creative=165953&creativeASIN=0596100655

[31] Buyya, R., Murshed, M.: “GridSim: A Toolkit for the Modeling and Simula-
tion of Distributed Resource Management and Scheduling for Grid Computing”.
Concurrency and Computation: Practice and Experience (CCPE 14(13)), 1175–
1220 (2002)

[32] Cao, C., Herault, T., Bosilca, G., Dongarra, J.: “Design for a Soft Error Re-
silient Dynamic Task-Based Runtime”. In: 2015 IEEE International Parallel
and Distributed Processing Symposium. pp. 765–774 (May 2015)

[33] Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: “Versatile,
Scalable, and Accurate Simulation of Distributed Applications and Platforms”.
Journal of Parallel and Distributed Computing 74(10), 2899–2917 (Jun 2014),
https://hal.inria.fr/hal-01017319

[34] Chandy, K.M., Misra, J.: “Distributed Simulation: A Case Study in Design and
Verification of Distributed Programs”. IEEE Transactions on Software Engineer-
ing SE-5(5), 440–452 (Sept 1979), https://doi.org/10.1109/TSE.1979.230182

https://tools.bsc.es/sites/default/files/documentation/pdf/extrae-3.5.2-user-guide.pdf
https://tools.bsc.es/sites/default/files/documentation/pdf/extrae-3.5.2-user-guide.pdf
https://tools.bsc.es/sites/default/files/documentation/introduction_dimemas.pdf
https://tools.bsc.es/sites/default/files/documentation/introduction_dimemas.pdf
https://tools.bsc.es/sites/default/files/documentation/1364.pdf
https://tools.bsc.es/sites/default/files/documentation/1364.pdf
https://tools.bsc.es/paraver
https://www.amazon.com/Eclipse-IDE-Pocket-Guide-Full-Featured/dp/0596100655?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0596100655
https://www.amazon.com/Eclipse-IDE-Pocket-Guide-Full-Featured/dp/0596100655?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0596100655
https://www.amazon.com/Eclipse-IDE-Pocket-Guide-Full-Featured/dp/0596100655?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0596100655
https://www.amazon.com/Eclipse-IDE-Pocket-Guide-Full-Featured/dp/0596100655?SubscriptionId=0JYN1NVW651KCA56C102&tag=techkie-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=0596100655
https://hal.inria.fr/hal-01017319
https://doi.org/10.1109/TSE.1979.230182

BIBLIOGRAPHY 115

[35] Chen, C.Y., Abraham, J.A.: “Fault-Tolerant Systems For The Computation
Of Eigenvalues And Singular Values”. In: Proceedings Volume 0696, Advanced
Algorithms and Architectures for Signal Processing I. vol. 0696, pp. 0696 – 0696
– 10 (1986), http://dx.doi.org/10.1117/12.936897

[36] Chen, Z., Dongarra, J.: “Algorithm-based checkpoint-free fault tolerance for
parallel matrix computations on volatile resources”. In: Proceedings 20th IEEE
International Parallel Distributed Processing Symposium. pp. 10 pp.– (April
2006)

[37] Chen, Z., Dongarra, J.: “Algorithm-Based Fault Tolerance for Fail-Stop Fail-
ures”. IEEE Trans. Parallel Distrib. Syst. 19(12), 1628–1641 (Dec 2008), http:
//dx.doi.org/10.1109/TPDS.2008.58

[38] Choi, Y.H., Malek, M.: “A fault-tolerant systolic sorter”. IEEE Transactions on
Computers 37(5), 621–624 (May 1988)

[39] CLOUDS-Laboratory: “GridSim: A Grid Simulation Toolkit For Resource
Modelling And Application Scheduling For Parallel And Distributed Comput-
ing” (2017), http://www.cloudbus.org/gridsim/, [Online; accessed 14-May-
2017]

[40] cplusplus.com: “Default random engine” (last visited: May 2017), http://
www.cplusplus.com/reference/random/default_random_engine/

[41] cplusplus.com: “srand” (last visited: May 2017), http://www.cplusplus.com/
reference/cstdlib/srand/

[42] cplusplus.com: “Uniform discrete distribution” (last visited: May 2017), http:
//www.cplusplus.com/reference/random/uniform_int_distribution/

[43] cppreference.com: “C++ concepts: RandomNumberDistribution function ob-
ject” (last modified: 10 May 2017), http://en.cppreference.com/w/cpp/
concept/RandomNumberDistribution

[44] cppreference.com: “std::exponential_distribution numerics library” (last mod-
ified: 10 May 2017), http://en.cppreference.com/w/cpp/numeric/random/
exponential_distribution

[45] Dagum, L., Menon, R.: “OpenMP: An Industry Standard API for Shared-
Memory Programming”. Computational Science & Engineering, IEEE 5(1), 46–
55 (1998)

http://dx.doi.org/10.1117/12.936897
http://dx.doi.org/10.1109/TPDS.2008.58
http://dx.doi.org/10.1109/TPDS.2008.58
http://www.cloudbus.org/gridsim/
http://www.cplusplus.com/reference/random/default_random_engine/
http://www.cplusplus.com/reference/random/default_random_engine/
http://www.cplusplus.com/reference/cstdlib/srand/
http://www.cplusplus.com/reference/cstdlib/srand/
http://www.cplusplus.com/reference/random/uniform_int_distribution/
http://www.cplusplus.com/reference/random/uniform_int_distribution/
http://en.cppreference.com/w/cpp/concept/RandomNumberDistribution
http://en.cppreference.com/w/cpp/concept/RandomNumberDistribution
http://en.cppreference.com/w/cpp/numeric/random/exponential_distribution
http://en.cppreference.com/w/cpp/numeric/random/exponential_distribution

BIBLIOGRAPHY 116

[46] Dekate, C., Anderson, M., Brodowicz, M., Kaiser, H., Adelstein-Lelbach, B.,
Sterling, T.L.: “Improving the scalability of parallel N-body applications with
an event driven constraint based execution model”. IJHPCA 26, 319–332 (2012)

[47] Ding, C., Karlsson, C., Liu, H., Davies, T., Chen, Z.: “Matrix Multiplication
on GPUs with On-Line Fault Tolerance”. In: 2011 IEEE Ninth International
Symposium on Parallel and Distributed Processing with Applications. pp. 311–
317 (May 2011)

[48] Dongarra, J., Bunch, J., Moler, C., Stewart, G.: “LINPACK” (last visited:
February 2017), http://www.netlib.org/linpack/

[49] Dongarra, J., Demmel, J., Heroux, M., Kurzak, J.: “Linear Algebra Libraries for
High-Performance Computing: Scientific Computing with Multicore and Accel-
erators” (last visited: February 2017), http://www.netlib.org/utk/people/
JackDongarra/SLIDES/sc2011-tutorial.pdf, tutorial at ACM/IEEE Confer-
ence on Supercomputing, Seattle, WA (SC’11)

[50] Dongarra, J., Demmel, J., Heroux, M., Kurzak, J.: “Tutorial on Dis-
tributed Parallel Linear Algebra Software for Multicore Architectures” (last
visited: February 2017), http://www.icl.utk.edu/~kurzak/tutorials/SC13/
SC13PlasmaDplasmaMagma.pdf, by University of Tennessee - Innovative Com-
puting Laboratory Electrical Engineering and Computer Science Department

[51] Dongarra, J., van de Geijn, R., Walker, D.: “A look at scalable dense linear
algebra libraries”. In: Proceedings Scalable High Performance Computing Con-
ference SHPCC-92. pp. 372–379 (Apr 1992)

[52] Dongarra, J., et al.: “Applied Mathematics Research for Exascale Com-
puting”. Tech. Rep. LLNL-TR-651000, Lawrence Livermore National Labo-
ratory (2014), http://science.energy.gov/%7E/media/ascr/pdf/research/
am/docs/EMWGreport.pdf

[53] Dongarra, J.: “Algorithms for future emerging technologies” (July 29 2016),
http://dx.doi.org/10.24350/CIRM.V.19022503, at CEMRACS 2016 – Numer-
ical Challenges in Parallel Scientific Computing

[54] Dongarra, J.: “Current Trends in High Performance Computing and Challenges
for the Future” (Feb 7, 2017), https://learning.acm.org/webinars/hpc,
ACM Webinar, (Online; accessed 16-January-2018)

[55] Dongarra, J.: “Report on the Sunway TaihuLight System” (June
2016), http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-

http://www.netlib.org/linpack/
http://www.netlib.org/utk/people/JackDongarra/SLIDES/sc2011-tutorial.pdf
http://www.netlib.org/utk/people/JackDongarra/SLIDES/sc2011-tutorial.pdf
http://www.icl.utk.edu/~kurzak/tutorials/SC13/SC13PlasmaDplasmaMagma.pdf
http://www.icl.utk.edu/~kurzak/tutorials/SC13/SC13PlasmaDplasmaMagma.pdf
http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/EMWGreport.pdf
http://science.energy.gov/%7E/media/ascr/pdf/research/am/docs/EMWGreport.pdf
http://dx.doi.org/10.24350/CIRM.V.19022503
https://learning.acm.org/webinars/hpc
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf

BIBLIOGRAPHY 117

report-2016.pdf, tech report, University of Tennessee – Department of Elec-
trical Engineering and Computer Science

[56] Dongarra, J., Gay, D., Grosse, E.: “SUBROUTINE DGELS” (last
visited: February 2017), http://www.netlib.no/netlib/lapack/double/
dgels.f, computer Science Dept, Univ. Tennessee and Oak Ridge National Lab-
oratory

[57] Dongarra, J., et al.: “FT-MPI” (last visited: May 2017), http://
icl.cs.utk.edu/ftmpi/overview/index.html

[58] Engelmann, C.: “Scaling To A Million Cores And Beyond: Using Light-Weight
Simulation to Understand The Challenges Ahead On The Road To Exascale”.
Future Generation Computer Systems (FGCS) 30(0), 59–65 (Jan 2014), http:
//www.christian-engelmann.info/publications/engelmann13scaling.pdf

[59] Engelmann, C.: “Scaling to a Million Cores and Beyond: Using Light-weight
Simulation to Understand the Challenges Ahead on the Road to Exascale”. Fu-
ture Gener. Comput. Syst. 30, 59–65 (Jan 2014), http://dx.doi.org/10.1016/
j.future.2013.04.014

[60] Engelmann, C., Geist, G.A.A.: “Super-Scalable Algorithms for Computing on
100,000 Processors”. In: Lecture Notes in Computer Science: Proceedings of
the 5th International Conference on Computational Science (ICCS) 2005, Part
I. vol. 3514, pp. 313–320. Springer Verlag, Berlin, Germany, Atlanta, GA, USA
(May 22-25, 2005), http://www.christian-engelmann.info/publications/
engelmann05superscalable.pdf

[61] Engelmann, C., Lauer, F.: “Facilitating Co-Design for Extreme-Scale Systems
Through Lightweight Simulation”. In: Proceedings of the 12th IEEE Interna-
tional Conference on Cluster Computing (Cluster) 2010: 1st Workshop on Appli-
cation/Architecture Co-design for Extreme-scale Computing (AACEC). pp. 1–8.
IEEE Computer Society, Los Alamitos, CA, USA, Hersonissos, Crete, Greece
(Sep 20-24, 2010), http://www.christian-engelmann.info/publications/
engelmann10facilitating.pdf

[62] Engelmann, C., Naughton, T.: “Toward a Performance/Resilience Tool for
Hardware/Software Co-Design of High-Performance Computing Systems”. In:
Proceedings of the 42nd International Conference on Parallel Processing (ICPP)
2013: 4th International Workshop on Parallel Software Tools and Tool Infras-
tructures (PSTI). pp. 962–971. IEEE Computer Society, Los Alamitos, CA,
USA, Lyon, France (Oct 2, 2013), http://www.christian-engelmann.info/
publications/engelmann13toward.pdf

http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/sunway-report-2016.pdf
http://www.netlib.no/netlib/lapack/double/dgels.f
http://www.netlib.no/netlib/lapack/double/dgels.f
http://icl.cs.utk.edu/ftmpi/overview/index.html
http://icl.cs.utk.edu/ftmpi/overview/index.html
http://www.elsevier.com/locate/fgcs
http://www.christian-engelmann.info/publications/engelmann13scaling.pdf
http://www.christian-engelmann.info/publications/engelmann13scaling.pdf
http://dx.doi.org/10.1016/j.future.2013.04.014
http://dx.doi.org/10.1016/j.future.2013.04.014
http://www.iccs-meeting.org/iccs2005
http://www.springer.com
http://www.christian-engelmann.info/publications/engelmann05superscalable.pdf
http://www.christian-engelmann.info/publications/engelmann05superscalable.pdf
http://www.cluster2010.org
http://www.cluster2010.org
http://www2.wmin.ac.uk/getovv/aacec10.html
http://www2.wmin.ac.uk/getovv/aacec10.html
http://www.computer.org
http://www.christian-engelmann.info/publications/engelmann10facilitating.pdf
http://www.christian-engelmann.info/publications/engelmann10facilitating.pdf
http://icpp2013.ens-lyon.fr
http://icpp2013.ens-lyon.fr
http://www.psti-workshop.org
http://www.psti-workshop.org
http://www.computer.org
http://www.computer.org
http://www.christian-engelmann.info/publications/engelmann13toward.pdf
http://www.christian-engelmann.info/publications/engelmann13toward.pdf

BIBLIOGRAPHY 118

[63] Engelmann, C., Naughton, T.: “Improving the Performance of the Extreme-
scale Simulator”. In: Proceedings of the 18th IEEE/ACM International
Symposium on Distributed Simulation and Real Time Applications (DS-
RT) 2014. pp. 198–207. IEEE Computer Society, Los Alamitos, CA, USA,
Toulouse, France (Oct 1-3, 2014), http://www.christian-engelmann.info/
publications/engelmann14improving.pdf, best paper candidate

[64] Engelmann, C., Naughton, T.: “A New Deadlock Resolution Protocol and Mes-
sage Matching Algorithm for the Extreme-scale Simulator”. Concurrency and
Computation: Practice and Experience 28(12), 3369–3389 (Aug 2016), http:
//www.christian-engelmann.info/publications/engelmann16new.pdf

[65] Fagg, G.E., Bukovsky, A., Dongarra, J.J.: “HARNESS and fault tol-
erant MPI”. Parallel Computing 27(11), 1479 – 1495 (2001), http://
www.sciencedirect.com/science/article/pii/S0167819101001004, clusters
and computational grids for scientific computing

[66] Fiala, D., Mueller, F., Engelmann, C., Riesen, R., Ferreira, K., Brightwell,
R.: “Detection and correction of silent data corruption for large-scale high-
performance computing”. In: High Performance Computing, Networking, Stor-
age and Analysis (SC), 2012 International Conference for. pp. 1–12 (Nov 2012)

[67] Fujimoto, R.M.: “Parallel Discrete Event Simulation”. Commun. ACM 33(10),
30–53 (Oct 1990), http://doi.acm.org/10.1145/84537.84545

[68] Fujitsu Technology Solutions: “FUJITSU Server PRIMERGY Performance
Report PRIMERGY RX4770 M3”. Tech. rep., FUJITSU (Sep 2016),
https://sp.ts.fujitsu.com/dmsp/Publications/public/wp-performance-
report-primergy-rx4770-m3-ww-en.pdf

[69] Geist, A.: “How To Kill A Supercomputer: Dirty Power, Cosmic Rays, and Bad
Solder” (last visited: March 2017), http://spectrum.ieee.org/computing/
hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-
and-bad-solder

[70] Girona, S., Labarta, J., Badia, R.M.: “Validation of Dimemas Communication
Model for MPI Collective Operations”. In: Proceedings of the 7th European
PVM/MPI Users’ Group Meeting on Recent Advances in Parallel Virtual Ma-
chine and Message Passing Interface. pp. 39–46. Springer-Verlag, London, UK,
UK (2000), http://dl.acm.org/citation.cfm?id=648137.746640

[71] Gunnels, J., Katz, D., Quintana-Orti, E., Van de Gejin, R.: “Fault-tolerant
high-performance matrix multiplication: theory and practice”. In: Dependable

http://ds-rt.com/2014
http://ds-rt.com/2014
http://ds-rt.com/2014
http://www.computer.org
http://www.christian-engelmann.info/publications/engelmann14improving.pdf
http://www.christian-engelmann.info/publications/engelmann14improving.pdf
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1532-0634
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1532-0634
http://www.christian-engelmann.info/publications/engelmann16new.pdf
http://www.christian-engelmann.info/publications/engelmann16new.pdf
http://www.sciencedirect.com/science/article/pii/S0167819101001004
http://www.sciencedirect.com/science/article/pii/S0167819101001004
http://doi.acm.org/10.1145/84537.84545
https://sp.ts.fujitsu.com/dmsp/Publications/public/wp-performance-report-primergy-rx4770-m3-ww-en.pdf
https://sp.ts.fujitsu.com/dmsp/Publications/public/wp-performance-report-primergy-rx4770-m3-ww-en.pdf
http://spectrum.ieee.org/computing/hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder
http://spectrum.ieee.org/computing/hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder
http://spectrum.ieee.org/computing/hardware/how-to-kill-a-supercomputer-dirty-power-cosmic-rays-and-bad-solder
http://dl.acm.org/citation.cfm?id=648137.746640

BIBLIOGRAPHY 119

Systems and Networks, 2001. DSN 2001. International Conference on. pp. 47–56
(July 2001)

[72] GWT-TUD GmbH: “Vampir - Performance Optimization” (last visited: Novem-
ber 2017), https://www.vampir.eu/

[73] Hakkarinen, D., Chen, Z.: “Algorithmic Cholesky factorization fault recovery”.
In: 2010 IEEE International Symposium on Parallel Distributed Processing
(IPDPS). pp. 1–10 (April 2010)

[74] Herault, T., Robert, Y.: “Fault-Tolerance Techniques for High-Performance
Computing”. Springer Publishing Company, Incorporated, 1st edn. (2015)

[75] HLRS University of Stuttgart: “CRAY XC40 (HAZEL HEN)” (last visited:
November 2017), https://www.hlrs.de/systems/cray-xc40-hazel-hen/

[76] Huang, K.H., Abraham, J.: “Algorithm-Based Fault Tolerance for Matrix Op-
erations”. Computers, IEEE Transactions on C-33(6), 518–528 (June 1984)

[77] Hukerikar, S., Ashraf, R.A., Engelmann, C.: “Towards New Metrics for High-
Performance Computing Resilience”. In: Proceedings of the 2017 Workshop on
Fault-Tolerance for HPC at Extreme Scale. pp. 23–30. FTXS ’17, ACM, New
York, NY, USA (2017), http://doi.acm.org/10.1145/3086157.3086163

[78] IEEE: “IEEE Standard for Floating-Point Arithmetic”. IEEE Std 754-2008 pp.
1–70 (Aug 2008)

[79] Intel Corporation: “INTEL R⃝ XEON R⃝ PROCESSOR E7-8867 V3 - Techni-
cal Specifications” (last visited: June 2017), https://www.intel.com/content/
www/us/en/products/processors/xeon/e7-processors/e7-8867-v3.html

[80] Jain, N., Bhatele, A., White, S., Gamblin, T., Kale, L.V.: “Evaluating HPC
Networks via Simulation of Parallel Workloads”. In: Proceedings of the Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis. SC ’16 (to appear) (2016)

[81] Jefferson, D.R.: “Virtual Time”. ACM Trans. Program. Lang. Syst. 7(3), 404–
425 (Jul 1985), http://doi.acm.org/10.1145/3916.3988

[82] Jou, J.Y., Abraham, J.A.: “Fault-tolerant FFT networks”. IEEE Transactions
on Computers 37(5), 548–561 (May 1988)

[83] Jou, J.Y., Abraham, J.A.: “Fault-Tolerant Matrix Arithmetic and Signal Pro-
cessing on Highly Concurrent Computing Structures”. Proceedings of the IEEE
74(5), 732–741 (May 1986)

https://www.vampir.eu/
https://www.hlrs.de/systems/cray-xc40-hazel-hen/
http://doi.acm.org/10.1145/3086157.3086163
https://www.intel.com/content/www/us/en/products/processors/xeon/e7-processors/e7-8867-v3.html
https://www.intel.com/content/www/us/en/products/processors/xeon/e7-processors/e7-8867-v3.html
http://doi.acm.org/10.1145/3916.3988

BIBLIOGRAPHY 120

[84] Kahan, W.: “Lecture Notes on the Status of IEEE Standard 754
for Binary Floating-Point Arithmetic”. World-Wide Web document (Oct
1997), http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF,
manuscript, University of California, Berkeley

[85] Kaiser, H., aka wash, B.A.L., Heller, T., Bergé, A., Biddiscombe, J., Biki-
neev, A., Mercer, G., Schäfer, A., atrantan, Serio, A., Habraken, J., Ander-
son, M., Brandt, S.R., Stumpf, M., Bourgeois, D., Copik, M., Huck, K., Am-
atya, V., Viklund, L., Khatami, Z., Bacharwar, D., Yang, S., Schnetter, E.,
Bcorde5, Brodowicz, M., Troska, L., Wagle, B., Upadhyay, S., Byerly, Z.,
Brakmić, H.: “STEllAR-GROUP/hpx: HPX V1.0: The C++ Standards Li-
brary for Parallelism and Concurrency” (Apr 2017), https://doi.org/10.5281/
zenodo.556772

[86] Kale, L.V., Bhatele, A.: “Parallel Science and Engineering Applications: The
Charm++ Approach”. CRC Press, Inc., Boca Raton, FL, USA, 1st edn. (2013)

[87] Kale, L.V., Bohm, E., Mendes, C.L., Wilmarth, T., Zheng, G.: “Programming
Petascale Applications with Charm++ and AMPI”. In: Bader, D. (ed.) Petas-
cale Computing: Algorithms and Applications, pp. 421–441. Chapman & Hall
/ CRC Press (2008)

[88] Kale, L.V., et al.: “BigSim - Simulating PetaFLOPS Supercomputers” (last
visited: November 2017), http://charm.cs.uiuc.edu/research/bigsim

[89] Kale, L.V., et al.: “BigSim Parallel Simulator for Extremely Large Paral-
lel Machines” (last visited: November 2017), http://charm.cs.illinois.edu/
manuals/pdf/bigsim.pdf, Parallel Programming Laboratory, University of Illi-
nois at Urbana-Champaign

[90] Knüpfer, A., Brunst, H., Doleschal, J., Jurenz, M., Lieber, M., Mickler, H.,
Müller, M.S., Nagel, W.E.: “The Vampir Performance Analysis Tool-Set”,
pp. 139–155. Springer Berlin Heidelberg, Berlin, Heidelberg (2008), https:
//doi.org/10.1007/978-3-540-68564-7_9

[91] Köster, T., Perumalla, K., Uhrmacher, A.: “Efficient Simulation of Nested Hol-
low Sphere Intersections: For Dynamically Nested Compartmental Models in
Cell Biology”. In: Proceedings of the 2017 ACM SIGSIM Conference on Princi-
ples of Advanced Discrete Simulation. pp. 173–183. SIGSIM-PADS ’17, ACM,
New York, NY, USA (2017), http://doi.acm.org/10.1145/3064911.3064920

http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF
https://doi.org/10.5281/zenodo.556772
https://doi.org/10.5281/zenodo.556772
http://charm.cs.uiuc.edu/research/bigsim
http://charm.cs.illinois.edu/manuals/pdf/bigsim.pdf
http://charm.cs.illinois.edu/manuals/pdf/bigsim.pdf
https://doi.org/10.1007/978-3-540-68564-7_9
https://doi.org/10.1007/978-3-540-68564-7_9
http://doi.acm.org/10.1145/3064911.3064920

BIBLIOGRAPHY 121

[92] Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: “Basic Linear Algebra
Subprograms for Fortran Usage”. ACM Trans. Math. Softw. 5(3), 308–323 (Sep
1979), http://doi.acm.org/10.1145/355841.355847

[93] Lee, H.H.S.: “Lecture 13 Multithreading and Multicore Processors”
(Aug 2015), https://de.slideshare.net/HsienHsinLee/lec13-computer-
architecture-by-hsienhsin-sean-lee-georgia-tech-multicore, Course:
ECE 4100/6100 Advanced Computer Architecture, Georgia Institute of Tech-
nology

[94] Loh, F., Ramanathan, P., Saluja, K.K.: “Transient Fault Resilient QR Factor-
ization on GPUs”. In: Proceedings of the 5th Workshop on Fault Tolerance
for HPC at eXtreme Scale. pp. 63–70. FTXS ’15, ACM, New York, NY, USA
(2015), http://doi.acm.org/10.1145/2751504.2751505

[95] Luk, F.: “Algorithm-Based Fault Tolerance for Parallel Matrix Equation
Solvers”. Tech. Rep. EE-CEG-85-2, Cornell University (1985), to appear in Proc.
SPIE, vol. 564; Real Time Signal Processing VIII

[96] Manchanda, N., Anand, K.: “Non-Uniform Memory Access (NUMA)”.
New York University 1 (May 2010), http://cs.nyu.edu/~lerner/spring10/
projects/NUMA.pdf

[97] Maslennikow, O., Kaniewski, J., Wyrzykowski, R.: “Fault tolerant QR-
decomposition algorithm and its parallel implementation”. In: Pritchard, D.,
Reeve, J. (eds.) Euro-Par’98 Parallel Processing. pp. 798–803. Springer Berlin
Heidelberg, Berlin, Heidelberg (1998)

[98] Matlis, J.: “Sidebar: The Linpack Benchmark” (last visited: June 2017),
https://www.computerworld.com/article/2556400/computer-hardware/
sidebar--the-linpack-benchmark.html, ComputerWorld

[99] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: “VSC-3 - Oil blade server”
(last visited: July 2017), https://www.top500.org/system/178471

[100] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: “TOP500.org -
Statistics Performance Development” (last visited: June 2017), https://
www.top500.org/statistics/perfdevel/

[101] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: “Discover SCU11” (last
visited: November 2017), https://www.top500.org/system/178529

[102] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: “Gyoukou - ZettaScaler”
(last visited: November 2017), https://www.top500.org/system/179102

http://doi.acm.org/10.1145/355841.355847
https://de.slideshare.net/HsienHsinLee/lec13-computer-architecture-by-hsienhsin-sean-lee-georgia-tech-multicore
https://de.slideshare.net/HsienHsinLee/lec13-computer-architecture-by-hsienhsin-sean-lee-georgia-tech-multicore
http://doi.acm.org/10.1145/2751504.2751505
http://cs.nyu.edu/~lerner/spring10/projects/NUMA.pdf
http://cs.nyu.edu/~lerner/spring10/projects/NUMA.pdf
https://www.computerworld.com/article/2556400/computer-hardware/sidebar--the-linpack-benchmark.html
https://www.computerworld.com/article/2556400/computer-hardware/sidebar--the-linpack-benchmark.html
https://www.top500.org/system/178471
https://www.top500.org/statistics/perfdevel/
https://www.top500.org/statistics/perfdevel/
https://www.top500.org/system/178529
https://www.top500.org/system/179102

BIBLIOGRAPHY 122

[103] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: “HPE SGI 8600 System”
(last visited: November 2017), https://www.top500.org/system/179176

[104] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: “Piz Daint (CSCS)” (last
visited: November 2017), https://www.top500.org/system/177824

[105] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: “Sunway TaihuLight Sys-
tem” (last visited: November 2017), https://www.top500.org/system/178764

[106] Meuer, H., Strohmaier, E., Dongarra, J., Simon, H.: “TOP 500 Super-
computers List - November 2017” (last visited: November 2017), https:
//www.top500.org/lists/2017/11/

[107] Microsoft Corporation: “STDEV function, Microsoft Office” (2017),
https://support.office.com/en-us/article/STDEV-function-51fecaaa-
231e-4bbb-9230-33650a72c9b0, (Online; accessed on 25 July 2017)

[108] Microway R⃝ Incorporated: “Detailed Specifications of the Intel Xeon
E5-4600 v3 Haswell-EP Processors” (last visited: August 2017),
https://www.microway.com/knowledge-center-articles/detailed-
specifications-intel-xeon-e5-4600-v3-haswell-ep-processors/

[109] Minkenberg, C., Rodriguez, G.: “Trace-driven Co-simulation of High-
performance Computing Systems Using OMNeT++”. In: Proceedings of the
2nd International Conference on Simulation Tools and Techniques. pp. 65:1–
65:8. Simutools ’09, ICST (Institute for Computer Sciences, Social-Informatics
and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium
(2009), http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5521

[110] Moldaschl, M., Prikopa, K.E., Gansterer, W.N.: “Fault Tolerant
Communication-Optimal 2.5D Matrix Multiplication”. Journal of Par-
allel and Distributed Computing 104, 179 – 190 (2017), http://
www.sciencedirect.com/science/article/pii/S0743731517300412

[111] Nair, V.S.S., Abraham, J.A.: “A Model For The Analysis Of Fault-Tolerant
Signal Processing Architectures”. In: Proceedings Volume 0975, Advanced Al-
gorithms and Architectures for Signal Processing III. vol. 0975, pp. 0975 – 0975
– 12 (1988), http://dx.doi.org/10.1117/12.948508

[112] National Aeronautics and Space Administration (NASA): “NAS Parallel
Benchmarks” (last visited: November 2017), https://www.nas.nasa.gov/
publications/npb.html

https://www.top500.org/system/179176
https://www.top500.org/system/177824
https://www.top500.org/system/178764
https://www.top500.org/lists/2017/11/
https://www.top500.org/lists/2017/11/
https://support.office.com/en-us/article/STDEV-function-51fecaaa-231e-4bbb-9230-33650a72c9b0
https://support.office.com/en-us/article/STDEV-function-51fecaaa-231e-4bbb-9230-33650a72c9b0
https://www.microway.com/knowledge-center-articles/detailed-specifications-intel-xeon-e5-4600-v3-haswell-ep-processors/
https://www.microway.com/knowledge-center-articles/detailed-specifications-intel-xeon-e5-4600-v3-haswell-ep-processors/
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5521
http://www.sciencedirect.com/science/article/pii/S0743731517300412
http://www.sciencedirect.com/science/article/pii/S0743731517300412
http://dx.doi.org/10.1117/12.948508
https://www.nas.nasa.gov/publications/npb.html
https://www.nas.nasa.gov/publications/npb.html

BIBLIOGRAPHY 123

[113] Naughton, T., Engelmann, C., Vallée, G., Böhm, S.: “Supporting the De-
velopment of Resilient Message Passing Applications using Simulation”. In:
Proceedings of the 22nd Euromicro International Conference on Parallel, Dis-
tributed, and network-based Processing (PDP) 2014. pp. 271–278. IEEE Com-
puter Society, Los Alamitos, CA, USA, Turin, Italy (Feb 12-14, 2014), http://
www.christian-engelmann.info/publications/naughton14supporting.pdf

[114] Neilforoshan, M.R.: “Fault Tolerant Computing in Computer Design”.
J. Comput. Sci. Coll. 18(4), 213–220 (Apr 2003), http://dl.acm.org/
citation.cfm?id=767598.767635

[115] NOVATTE: “How to calculate peak theoretical performance of a CPU-
based HPC system” (last visited: August 2017), http://www.novatte.com/
our-blog/197-how-to-calculate-peak-theoretical-performance-of-a-
\cpu-based-hpc-system

[116] ns-3 project: “ns-3 Manual - Release ns-3.26” (last visited: May 2017), https:
//www.nsnam.org/docs/release/3.26/manual/ns-3-manual.pdf

[117] ns-3 project: “Releases” (last visited: May 2017), https://www.nsnam.org/
releases/

[118] O’Gorman, T.J.: “The effect of cosmic rays on the soft error rate of a DRAM
at ground level”. IEEE Transactions on Electron Devices 41(4), 553–557 (Apr
1994)

[119] Perumalla, K.S., Park, A.J.: “Improving Multi-million Virtual Rank MPI Ex-
ecution in [MUPI]”. In: 2011 IEEE 19th Annual International Symposium on
Modelling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems. pp. 454–457 (July 2011), https://doi.org/10.1109/MASCOTS.2011.45

[120] Perumalla, K.S.: “µπ: A Scalable and Transparent System for Simulating MPI
Programs”. In: Proceedings of the 3rd International ICST Conference on Sim-
ulation Tools and Techniques. pp. 62:1–62:6. SIMUTools ’10, ICST (Institute
for Computer Sciences, Social-Informatics and Telecommunications Engineer-
ing), ICST, Brussels, Belgium, Belgium (2010), https://doi.org/10.4108/
ICST.SIMUTOOLS2010.8692

[121] Pillet, V., Labarta, J., Cortes, T., Cortes, T., Girona, S., Girona, S., Computa-
dors, D.D.D.: “PARAVER: A Tool to Visualize and Analyze Parallel Code”.
Tech. rep., In WoTUG-18: Transputer and occam Developments (1995)

http://www.pdp2014.org
http://www.pdp2014.org
http://www.computer.org
http://www.computer.org
http://www.christian-engelmann.info/publications/naughton14supporting.pdf
http://www.christian-engelmann.info/publications/naughton14supporting.pdf
http://dl.acm.org/citation.cfm?id=767598.767635
http://dl.acm.org/citation.cfm?id=767598.767635
http://www.novatte.com/our-blog/197-how-to-calculate-peak-theoretical-performance-of-a- \ cpu-based-hpc-system
http://www.novatte.com/our-blog/197-how-to-calculate-peak-theoretical-performance-of-a- \ cpu-based-hpc-system
http://www.novatte.com/our-blog/197-how-to-calculate-peak-theoretical-performance-of-a- \ cpu-based-hpc-system
https://www.nsnam.org/docs/release/3.26/manual/ns-3-manual.pdf
https://www.nsnam.org/docs/release/3.26/manual/ns-3-manual.pdf
https://www.nsnam.org/releases/
https://www.nsnam.org/releases/
https://doi.org/10.1109/MASCOTS.2011.45
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8692
https://doi.org/10.4108/ICST.SIMUTOOLS2010.8692

BIBLIOGRAPHY 124

[122] Reddy, A.L.N., Banerjee, P.: “Algorithm-based fault detection for signal pro-
cessing applications”. IEEE Transactions on Computers 39(10), 1304–1308 (Oct
1990)

[123] Rexford, J., Jha, N.: “Algorithm-based fault tolerance for floating-point oper-
ations in massively parallel systems”. In: Circuits and Systems, 1992. ISCAS
’92. Proceedings., 1992 IEEE International Symposium on. vol. 2, pp. 649–652
vol.2 (May 1992)

[124] Rodrigues, A.F., Hemmert, K.S., Barrett, B.W., Kersey, C., Oldfield, R., We-
ston, M., Risen, R., Cook, J., Rosenfeld, P., CooperBalls, E., Jacob, B.: “The
Structural Simulation Toolkit”. SIGMETRICS Perform. Eval. Rev. 38(4), 37–42
(Mar 2011), http://doi.acm.org/10.1145/1964218.1964225

[125] Roy-Chowdhury, A., Banerjee, P.: “Algorithm-based fault location and recovery
for matrix computations”. In: Proceedings of IEEE 24th International Sympo-
sium on Fault- Tolerant Computing. pp. 38–47 (June 1994)

[126] Seagate Technology LLC: “Hard disk drive reliability and MTBF / AFR” (last
visited: February 2017), http://knowledge.seagate.com/articles/en_US/
FAQ/174791en?language=en_US

[127] Siewiorek, D., Bell, C., Newell, A.: “Computer structures: principles and ex-
amples”. McGraw-Hill computer science series, McGraw-Hill (1982), https:
//books.google.at/books?id=CdlQAAAAMAAJ

[128] SimGrid Team: “SimGrid SMPI 101 - Getting Started with SimGrid SMPI”
(last visited: May 2017), http://simgrid.gforge.inria.fr/tutorials/
simgrid-smpi-101.pdf

[129] Stallman, R.M., DeveloperCommunity, G.: “Using The Gnu Compiler Collec-
tion: A Gnu Manual For Gcc Version 4.3.3”. CreateSpace, Paramount, CA
(2009)

[130] Stearley, J.: “Defining and Measuring Supercomputer Reliability, Availability,
and Serviceability RAS”. In: In Proceedings of the Linux Clusters Institute
Conference (2005)

[131] Suter, F.: “Bridging a Gap Between Research and Production: Contributions to
Scheduling and Simulation”. Habilitation à diriger des recherches, Ecole normale
supérieure de Lyon (Dec 2014), https://hal.inria.fr/tel-01199185

[132] Techopedia Inc.: “Unrecoverable Error” (last visited: November 2017), https:
//www.techopedia.com/definition/13453/unrecoverable-error

http://doi.acm.org/10.1145/1964218.1964225
http://knowledge.seagate.com/articles/en_US/FAQ/174791en?language=en_US
http://knowledge.seagate.com/articles/en_US/FAQ/174791en?language=en_US
https://books.google.at/books?id=CdlQAAAAMAAJ
https://books.google.at/books?id=CdlQAAAAMAAJ
http://simgrid.gforge.inria.fr/tutorials/simgrid-smpi-101.pdf
http://simgrid.gforge.inria.fr/tutorials/simgrid-smpi-101.pdf
https://hal.inria.fr/tel-01199185
https://www.techopedia.com/definition/13453/unrecoverable-error
https://www.techopedia.com/definition/13453/unrecoverable-error

BIBLIOGRAPHY 125

[133] Tetcos: “How do the different versions of NetSim compare” (last visited: May
2017), http://tetcos.com/version-comparison.html

[134] Tetcos: “NetSim professional” (last visited: May 2017), http://tetcos.com/
netsim-pro.html

[135] Tetcos: “NetSim experiment manual” (last visited: November 2017), http:
//tetcos.com/downloads/v10/NetSim_Experiment_Manual.pdf

[136] The Open MPI Project: “Open MPI: Open Source High Performance Comput-
ing” (last visited: August 2017), https://www.open-mpi.org/

[137] The Open MPI Project: “Portable Hardware Locality (hwloc)” (last visited:
August 2017), https://www.open-mpi.org/projects/hwloc/

[138] Varga, A., OpenSim, Ltd.: “OMNeT++ Simulation Manual – Introduction”
(last visited: May 2017), https://omnetpp.org/doc/omnetpp/manual/

[139] VI-HPS: “SCORE-P” (last visited: November 2017), http://www.vi-hps.org/
projects/score-p/

[140] Vinnakota, B., Jha, N.K.: “Diagnosability and diagnosis of algorithm-based
fault-tolerant systems”. IEEE Transactions on Computers 42(8), 924–937 (Aug
1993), http://doi.acm.org/10.1109/12.238483

[141] Voskuilen, G., Rodrigues, A., Hammond, S., Moore, B.: “Structural Simula-
tion Toolkit (SST)” (June 13 2015), http://sst-simulator.org/SSTPages/
SSTTutorialIscaTutorial/, structural Simulation Toolkit ISCA 2015 Tuto-
rial (13th June 2015, Portland, OR)

[142] VSC - Vienna Scientific Cluster: “VSC-3” (last visited: July 2017), http://
www.vsc.ac.at/systems/vsc-3/

[143] Wikipedia contributors: “Double-precision floating-point format — Wikipedia,
The Free Encyclopedia” (2017), https://en.wikipedia.org/wiki/Double-
precision_floating-point_format, (Online; accessed 22-June-2017)

[144] Wikipedia contributors: “Fault-tolerant computer system — Wikipedia, The
Free Encyclopedia” (2017), https://en.wikipedia.org/w/index.php?title=
Fault-tolerant_computer_system&oldid=802849427, (Online; accessed 19-
December-2017)

[145] Wikipedia contributors: “IEEE 754-1985 — Wikipedia, The Free Encyclopedia”
(2017), https://en.wikipedia.org/wiki/IEEE_754-1985, (Online; accessed
22-June-2017)

http://tetcos.com/version-comparison.html
http://tetcos.com/netsim-pro.html
http://tetcos.com/netsim-pro.html
http://tetcos.com/downloads/v10/NetSim_Experiment_Manual.pdf
http://tetcos.com/downloads/v10/NetSim_Experiment_Manual.pdf
https://www.open-mpi.org/
https://www.open-mpi.org/projects/hwloc/
https://omnetpp.org/doc/omnetpp/manual/
http://www.vi-hps.org/projects/score-p/
http://www.vi-hps.org/projects/score-p/
http://doi.acm.org/10.1109/12.238483
http://sst-simulator.org/SSTPages/SSTTutorialIscaTutorial/
http://sst-simulator.org/SSTPages/SSTTutorialIscaTutorial/
http://www.vsc.ac.at/systems/vsc-3/
http://www.vsc.ac.at/systems/vsc-3/
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/wiki/Double-precision_floating-point_format
https://en.wikipedia.org/w/index.php?title=Fault-tolerant_computer_system&oldid=802849427
https://en.wikipedia.org/w/index.php?title=Fault-tolerant_computer_system&oldid=802849427
https://en.wikipedia.org/wiki/IEEE_754-1985

BIBLIOGRAPHY 126

[146] Williams, T., Kelley, C., et al.: “gnuplot 5.0” (last visited: August 2017), http:
//www.gnuplot.info/docs_5.0/gnuplot.pdf

[147] Williams, T., Kelley, C., et al.: “gnuplot homepage” (last visited: August 2017),
http://www.gnuplot.info/

[148] Wu, P., Ding, C., Chen, L., Gao, F., Davies, T., Karlsson, C., Chen, Z.: “Fault
Tolerant Matrix-Matrix Multiplication: Correcting Soft Errors On-line”. In:
Proceedings of the Second Workshop on Scalable Algorithms for Large-scale
Systems. pp. 25–28. ScalA ’11, ACM, New York, NY, USA (2011), http://
doi.acm.org/10.1145/2133173.2133185

[149] Yoginath, S.B., Perumalla, K.S.: “Efficient Parallel Discrete Event Simulation
on Cloud/Virtual Machine Platforms”. ACM Trans. Model. Comput. Simul.
26(1), 5:1–5:26 (2015), http://doi.acm.org/10.1145/2746232

[150] Zhang, C.N., Yu, Q., Liu, X.W., et al.: “An Algorithm Based Concurrent Er-
ror Detection Scheme for AES”, pp. 31–42. Springer Berlin Heidelberg, Berlin,
Heidelberg (2010), http://dx.doi.org/10.1007/978-3-642-17619-7_3

[151] Zheng, G., Kakulapati, G., Kale, L.V.: “BigSim: a parallel simulator for perfor-
mance prediction of extremely large parallel machines”. In: 18th International
Parallel and Distributed Processing Symposium, 2004. Proceedings. p. 78 (April
2004)

http://www.gnuplot.info/docs_5.0/gnuplot.pdf
http://www.gnuplot.info/docs_5.0/gnuplot.pdf
http://www.gnuplot.info/
http://doi.acm.org/10.1145/2133173.2133185
http://doi.acm.org/10.1145/2133173.2133185
http://doi.acm.org/10.1145/2746232
http://dx.doi.org/10.1007/978-3-642-17619-7_3

	Abstract
	Zusammenfassung
	Table of Contents
	List of Figures
	List of Tables
	List of Listings
	1 Introduction
	1.1 Objective
	1.2 Motivation
	1.3 Synopsis

	2 Related Work
	2.1 The Beginnings of ABFT and the First Modifications
	2.2 First Experiments on Systems with Multiple Processors
	2.3 Different Detection and Correction
	2.3.1 Other Detection Methods
	2.3.2 Improved ABFT Detection and Correction

	2.4 Outer Product Matrix Multiplication in combination with ABFT
	2.4.1 Experiments in ScaLAPACK
	2.4.2 Correction of Soft Errors On-The-Fly

	2.5 Other ABFT Applications
	2.5.1 ABFT in Cloud Computing
	2.5.2 ABFT in FPGAs and GPUs
	2.5.3 Blocked ABFT with Disk-Less Periodic Checkpointing

	2.6 Comparison of Master Thesis to Other Works

	3 Fault-Tolerant Methods
	3.1 Errors, Faults, Fault Tolerance and Resilience
	3.2 ABFT Technique
	3.3 ABFT Methods for Matrix Multiplication
	3.3.1 Local ABFT
	3.3.2 Global ABFT
	3.3.3 Local vs Global ABFT

	3.4 Further Techniques used in HPC
	3.4.1 Checkpointing Techniques
	3.4.2 Composite Approach: ABFT & Checkpointing
	3.4.3 Fault-Tolerant MPI Approaches

	4 Simulators and other Tools in HPC
	4.1 PDES Simulators
	4.1.1 X-Sim
	4.1.2 MuPI
	4.1.3 SST
	4.1.4 OMNeT++

	4.2 Non-PDES Simulators
	4.2.1 Charm++ BigSim
	4.2.2 JCAS
	4.2.3 SimGrid
	4.2.4 GridSim
	4.2.5 DIMEMAS
	4.2.6 ns3
	4.2.7 NetSim

	4.3 Tools for Using in Combination with Simulators or as Assistance
	4.3.1 PARAVER
	4.3.2 Vampir

	4.4 Summary of Simulators and Tools
	4.5 Towards Exascale Simulation
	4.5.1 Exaflop PDGEMM
	4.5.2 Simulators in Scientific Problems

	4.6 Issues Using Simulators and HPC Libraries

	5 Implementation
	5.1 DPLASMA
	5.2 Local ABFT PDGEMM
	5.2.1 Structure
	5.2.2 Conditions
	5.2.3 Correction Algorithm
	5.2.4 Tolerance Value
	5.2.5 Local ABFT Space Analysis

	5.3 Fault Injector
	5.3.1 Spatial Data Distributions
	5.3.2 Temporal Data Distributions

	6 Experiments
	6.1 Test Cases General
	6.1.1 Value Distributions
	6.1.2 No Errors Overhead
	6.1.3 Manual Sign Bit Flips

	6.2 Test Cases using Fault Injector
	6.2.1 Sign Bit Flips with Fault Injector
	6.2.2 Bit Flips in Mantissa
	6.2.3 Bit Flips in Exponent
	6.2.4 Bit Flips Everywhere

	6.3 Conclusion to Bit Flips

	7 Conclusion
	7.1 Future Work and Open Issues

	Appendices
	A.1 Test Environment
	A.2 Extended Space Analysis Local ABFT
	A.3 Project Files
	A.4 Software and Library Versions
	B.1 Glossary
	B.2 List of Acronyms

	Bibliography

