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Abstract

During the last decade, natural variation of the genetic model plant Arabidopsis thaliana has been
intensively reviewed and discussed in context of many aspects of plant biological research. While
numerous studies have analyzed and improved significantly our understanding of genotypic diversity,
deriving explicit causal knowledge of molecular mechanisms leading to adaptation and phenotypic
plasticity in a natural environment is still challenging. Due to a high degree of variation in plasticity
patterns within and among populations as well as the high complexity of plant biochemical systems it
is demanding to unambiguously trace back molecular processes resulting in a certain phenotype.
Numerous studies have focused on the genetic background of natural variation in Arabidopsis thaliana
and could successfully identify sets of marker genes and correlate them to traits like flowering time,
climatic variables or stress tolerance. Additionally, the fast development of experimental high-
throughput techniques being capable of recording thousands of components of transcriptome,
proteome and metabolome simultaneously have unraveled an enormous complexity of metabolic
regulation and interaction which shape the physiological homeostasis. Yet, because of this intricacy of
molecular phenotypes, it is hardly possible to predict metabolism, development or natural variation
patterns from current models and data sets. In this context, systems biology research comprising
strategies of experimental high-throughput analysis, multivariate statistics and mathematical
modeling is a promising approach for comprehensive analysis and interpretation of the systemic
behavior of biochemical systems. Here, molecular analysis of metabolic networks was applied to
characterize the adaptation of plant metabolism to a changing environment. In a first study, changes
in metabolite concentrations, protein and phosphopeptide levels were analyzed to characterize the
cold acclimation process in a cold-tolerant and a cold-sensitive natural accession of Arabidopsis
thaliana. Accession-specific starch dynamics could be explained by a differential reprogramming of the
starch degradation pathway in both accessions. To facilitate the interpretation of metabolic time series
data with regard to the underlying biochemical network topology, a graph theoretical approach
comparing relevant second and first order derivatives with respect to time of interpolated splines on
the metabolite levels has been developed. In a third study, we applied metabolomic profiling on
primary and secondary metabolites to samples collected in their natural habitat. This and subsequent
mathematical modeling of regulatory instances suggests the suitability of molecular phenotyping to
classify in situ populations of Arabidopsis thaliana for generation of hypotheses concerning habitat

adaptations, which can be efficiently addressed in targeted follow-up experiments.



Zusammenfassung

Die Grundlagenforschung in biologischen Modellorganismen wie dem ephemeren Kreuzblitler
Arabidopsis thaliana hat durch die Anwendung moderner molekularbiologischer Techniken und dank
der Bereitstellung genetischer Ressourcen seit der Jahrtausendwende eine Vielzahl an Erkenntnissen
lber die Biologie von Organismen geliefert. Vor allem im Bereich der Genetik haben
Sequenziertechnologien der nachsten Generation Anzahl, Umfang und Verlasslichkeit genetischer
Studien auf eine neue Ebene gehoben. Dabei wurde unter anderem deutlich, dass die genetische
Vielfalt innerhalb einer Art als Erklarungsansatz einer umfangreichen Palette an phenologischen und
morphologischen Merkmalen dienen kann. Durch die Entwicklung und Verbesserung von
chromatographie- und massenspektrometriebasierter Analytik haben wissenschaftliche Studien in
letzter Zeit auch immer mehr den molekularen Phenotyp zu erfassen versucht. Speziell Metabolite und
Proteine sind dabei von groRem Interesse, da sie wichtige Teile von biochemischen Netzwerken sind.
Durch die immer bessere Skalierbarkeit der involvierten Analytik etwa beziglich der Anzahl an
erfassten Variablen und Probendurchsatz, sind Metabolomics und Proteomics ein wichtiger Teil im
Bereich der funktionellen Genomik geworden und liegen den modernen Anséatzen der Systembiologie
zu Grunde. Dabei wird versucht, durch die Beschreibung und Vernetzung moglichst vieler Aspekte
eines biologischen Systems das Verhalten des jeweiligen Systems mit Bezug auf bestimmte Reize wie
etwa Variation der Wachstumsbedingungen zu erfassen und im Idealfall vorauszusagen. In diesem
Zusammenhang habe ich zwei Arabidopsis thaliana Akzessionen mit variabler Frosttoleranz in ihrer
Kalteakklimatisierung verglichen. Dabei konnte ich Unterschiede zwischen der kaltetoleranten und der
kaltesensitiven Linie etwa in der Starkemobilisierung aufzeigen. Um die Interpretierbarkeit solcher
Studien zu erleichtern wurde ein graphentheoretischer Ansatz entwickelt, der die Anderung im
Verhdltnis der zweiten und ersten Ableitung nach der Zeit von interpolierten Splines der
Metabolitzeitserien als Indikator fiir eine Anderung der Stoffwechselregulation heranzieht. Das
Problem bei Studien, die in kontrollierten Wachstumsbedingungen durchgefiihrt werden, ist jedoch
die Tatsache, dass eine Uberlagerung von verschiedenen Stressfaktoren, wie sie im natiirlichen Habitat
regelmalRig vorkommen, oft zu einem unerwarteten Verhalten des untersuchten Systems fiihren kann.
Daher habe ich einen Ansatz entwickelt, der die molekulare Charakterisierung von Pflanzenproben aus

dem natiirlichen Habitat ermoéglicht um dann gezielte Folgeuntersuchungen anstellen zu kénnen.



Introduction

Changing climates are imposing selective pressure on organisms. Previous studies have gone beyond
merely acquiring meteorological data and found ways to quantify the impact of climate change on the
biosphere (Gottfried et al., 2012; Pauli et al., 2012). These studies provide impressive information on
how fluctuations in environmental parameters affect ecosystem composition. Because of rising
minimum temperatures that prolong the vegetation period at high altitudes, thermophilic plant
species (i.e. plant species adapted to warmer climates that usually are less frost tolerant but have
higher growth rates) are able to invade and colonize elevated habitats in European mountain ranges,
outcompeting native cold adapted alpine and nival species because of quicker biomass accumulation.
Without the protective low temperatures that have prevented growth of thermophilic species, these
more cold tolerant plant species have to shift their habitats to even higher elevations. When they reach
the mountain peak and cannot climb any further, they become extinct and biodiversity is reduced.
That process is not only visible in species confined to high altitudes but also in species growing in
Northern latitudes (Tchebakova et al., 2009). Consequently, it threatens the present species inventory
on a global scale. Unfortunately, these intriguing results do not elucidate underlying molecular

processes resulting in an adapted stable metabolic homeostasis in a new environmental setup.

To remedy this drawback, biological research seeks to combine ecological research with molecular
biological approaches to allow for an investigation of genotype-environment interactions (GEl).
Fundamentally, each genotypical response has to be considered in context of an environment in order
to produce a molecular phenotype (Weckwerth, 2003, 2011). Recent work has dealt with the impact
of selection on genetic covariance data, highlighting the importance of pleiotropy (Blows and
McGuigan, 2015). An approach to comprehensively analyze these molecular phenotypes was
demonstrated in Arabidopsis thaliana by measuring and integrating metabolomic and proteomic
phenotypes in dependence of different genotypes and different environmental conditions (Weckwerth
et al., 2004; Morgenthal et al., 2005; Wienkoop et al., 2008; Wienkoop et al., 2010; Kleessen et al.,
2012; Doerfler et al., 2013). Measuring the proteome (comprising as many proteins as possible) and
metabolome (comprising as many metabolites as possible) allows for the estimation of dynamic
reactions of genotypes to environments. These molecular levels are well suited for functional
molecular phenotyping as abundance and posttranslational modifications cannot be predicted from
genome or expression data (Weckwerth, 2011). Generally, proteome and metabolome together are
key players of metabolic networks. The general topology of these biochemical reaction networks can
be predicted from static genome information for model organisms (Poolman et al., 2009; Williams et
al., 2010) and the translated set of proteins can be identified by shotgun-proteomics (Wienkoop and

Weckwerth, 2006) and quantified in a targeted (Lehmann et al., 2008) as well as in an untargeted



approach (Hoehenwarter et al., 2011), trading off accuracy for comprehensiveness. These molecular
data provide information on how biochemical pathways are regulated in a specific environmental
setting. Additionally, dynamics of metabolite concentrations have to be recorded in order to estimate
flow through biochemical pathways, which also is considered a property of molecular plant
phenotypes (Weckwerth, 2008). Metabolomic covariance data can be fed to kinetic and structural
mathematical models of metabolism (Steuer et al., 2003; Weckwerth, 2003, 2011; Sun and Weckwerth,
2012) which enables the identification of differentially regulated pathways under varying experimental
conditions (Nagele et al., 2011; Doerfler et al., 2013), which is essential for the analysis and dissection

of complex physiological adaptive processes.

The Species Arabidopsis thaliana

Arabidopsis thaliana has been established as a model organism for flowering plants since the 1940s by
Friedrich Laibach, who collected plants in their natural habitats and analyzed phenological traits in
common environments. As the last common ancestor of flowering plants dates back approximately
150 million years, this taxon provides a meaningful resource for elucidating fundamental plant

biological processes in flowering plants (Somerville and Koornneef, 2002).

Phylogenetically, Arabidopsis thaliana is part of the Brassicaceae family. As such, it is closely related to
genus Arabis, but also to crops like Brassica napus (rape), Brassica oleracea (cabbage, varieties like
cauliflower and broccoli), Amoracia rusticana (horseradish) or Sinapis hirta (mustard). A compound
class specific for the whole order of Brassicales are glucosinolates. These compounds are related to
cyanogenic glycosides and the main aglycon groups (aliphatic, indolyl, aromatic) are derived from the
seven amino acids alanine, leucine, isoleucine, valine, tyrosine, phenylalanine and tryptophan (Rask et
al., 2000). They have a genotype-specific, age-specific and density-specific effect on plant fitness
(Burow et al., 2010). A pivotal role of glucosinolates is herbivore repulsion. Upon tissue damage,
myrosinases hydrolyze glucosinolates and cleave the glucose moiety, paving the way for conversion to
toxic compounds such as thiocyanates (Rask et al., 2000). Recently, researchers have also elucidated

regulatory effects of glucosinolates on root growth in multiple plant species (Malinovsky et al., 2017).

Arabidopsis thaliana is a ruderal plant and as such its habitats are often closely linked to human activity
because it needs disturbed open soil to avoid being outcompeted by bigger, perennial plants. As in
most winter annuals, flowering times of Arabidopsis thaliana is regulated by photoperiod and
vernalization (Michaels et al., 2005). It is native to Eurasia, and it recolonized Europe after the last
glaciation period from Northern Africa (The 1001 Genomes Consortium, 2016). Recent phylogenetic

research has suggested, that the taxon has primarily originated from Southern Africa (Durvasula et al.,



2017). Climatic modeling of the biogeographical range of Arabidopsis thaliana has shown the suitability
of most of the Northern hemisphere for supporting growth (Hoffmann, 2002). The success story of this
taxon as a model organism is rooted in the phenology suitable for lab cultivation because of the small
size of a maximum of 40 centimeters, unpretentious habitat demands and a short life cycle down to
eight weeks (Somerville and Koornneef, 2002). It has become one of the biggest genomic mapping
resources in a non-human species (Horton et al., 2012) because it is well applicable for genetic
experiments (Koornneef and Meinke, 2010). Advantageous are on the one hand the relatively small
genome size of approximately 135 million basepairs arranged in five chromosomes comprising around
27000 genes transcribed to some 33000 transcripts that are translated to some 35000 proteins

(https://www.arabidopsis.org/portals/genAnnotation/gene structural annotation/annotation data.

isp) and on the other hand the comparatively easy generation of mutants simply by spraying it with
plasmid-containing bacteria. Indeed, novel genome editing technology has already and will continue
to enhance these efforts (Doudna and Charpentier, 2014; Jia et al., 2016; Zhao et al., 2016). From an
evolutionary perspective, the high selfing rate of 97% in Arabidopsis thaliana (Platt et al., 2010) is

convenient as it ensures that natural populations are in fact mostly recombinant inbred lines.

Natural Variation in Arabidopsis thaliana

Natural variation in a species describes the differences in traits between a species’ individuals. It is the
basis for adaptive evolutionary change by natural selection. Natural variation can be observed both on
the genotypic and phenotypic level. Because all species are exposed to temporally and spatially varying
habitat parameters along their distribution range, natural selection acts in different ways upon the
species and leads to genotypic divergence. The set of genetic differences of a species’ individuals is

called natural genetic variation and harbors ecologically relevant adaptive information (Weigel, 2012).

Natural Genetic Variation in Arabidopsis thaliana

An individual genotype is defined by the genome sequence of an individual. Naturally occurring
variation of Arabidopsis thaliana genotypes has been studied for decades (Koornneef et al., 2004;
Alonso-Blanco et al., 2009). Based on the complete sequence information of the Columbia (Col-0)
accession (The Arabidopsis Genome Initiative, 2000) numerous studies on natural genetic variation in
Arabidopsis thaliana have been undertaken, elucidating, for example, a correlation between light
response of hypocotyl length and latitude of origin in 149 accessions (Maloof et al., 2001). It was also
shown that the occurrence of summer annual accessions relies on mutations in only two genes,
Flowering Locus C (FLC) and Frigida (FRI) (Michaels et al., 2003). Biogeographical analysis of the current
distribution range of Arabidopsis thaliana has proven its suitability for studying adaptations to a variety
of climatic conditions (Hoffmann, 2002). Population genetic studies have shown the genetic variation

among populations to be higher than within populations (Bergelson et al., 1998) and demonstrated
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the advantages of genome wide association mapping for analyzing Arabidopsis thaliana single
nucleotide polymorphism (SNP) data to find candidate genes putatively causing phenotypic differences
(Sharbel et al., 2000; Nordborg et al., 2002; Aranzana et al.,, 2005; Weigel and Nordborg, 2005;
Bergelson and Roux, 2010). Natural genetic variation data has been correlated with geographic origin
(Nordborg et al., 2005) and isolation by distance was found in Eurasia but not in more recently
colonized North America (Platt et al., 2010). However, it was also demonstrated that climate variation
among sites explained more genomic variation than mere geographic distance for 1003 accessions
(Lasky et al., 2012). Based on genome-wide linkage-disequilibrium studies (Nordborg et al., 2002) that
paved the way to a 250k SNP microarray (Kim et al., 2007), data provided evidence for a naturally
varying trade-off between biomass production and pathogen resistance (Todesco et al., 2010). An
Arabidopsis thaliana haplotype map was introduced (Clark et al., 2007) promoting the understanding
of genetic architecture and mechanisms of adaptation (Buckler and Gore, 2007). Additionally,
candidate genes for adaptations to climate could be identified (Hancock et al., 2011). Recently, high
quality genomes of 1135 natural accessions of Arabidopsis thaliana have been published and relict
populations where discovered in Southern Europe (The 1001 Genomes Consortium, 2016). This study
also revealed Northern latitude to have a higher impact on natural genetic variation of Arabidopsis
thaliana in Europe, most likely because of the orientation of European mountain ranges. Additionally,
it is a formidable resource for genome-wide association studies (GWAS). In GWAS, genotypes are
grouped by the nucleotide present at a specific locus and scored phenotypes are checked for
significance in a statistical model reflecting the genotypic groups, for instance an ANOVA. The result is
an estimated correlation of genomic regions with a given phenotype. For instance, GWAS identified
variation in disease resistance protein 1 (RPM1) to be highly significantly correlated with pathogen
resistance in a study scoring a total of 107 phenotypic variables and associating them with sequence
polymorphisms in 199 Arabidopsis thaliana lines (Atwell et al., 2010). However, this technique does
not test causality and is affected by linkage disequilibrium (Boyle et al., 2017), which decays in a
distance of about 250 kilobases in Arabidopsis thaliana (Nordborg et al., 2002). Advances in epigenetic
studies (Lister et al., 2008; Becker et al., 2011; Schmitz and Ecker, 2012; Schmitz et al., 2013) have
culminated in the publication of 1107 methylomes and 1203 transcriptomes (Kawakatsu et al., 2016).
This effort revealed geography and climate of origin to predict DNA methylation patterns, pointing

towards a role of the epigenetic level in adaptive processes (Kawakatsu et al., 2016).

These studies provide the basis for further molecular and environmental research efforts to track down
eco-physiological and subsequent morphological changes that in the long run are the results of
adaptive processes (Malosetti et al., 2013). The difficulty in predicting phenotypes from genotype-
phenotype correlations lies in the static nature of the genomic code (Weckwerth, 2011), as

downstream information processing regulating biochemical activity during transcription, translation
8



and post-translational modifications cannot be predicted from the genome sequence. Also Crick’s
initial central dogma of molecular biology (Crick, 1970), has been continuously expanded to account
for this reality, as prions (proteinaceous infectious particle) are able to mediate inheritance, especially

in combination with genetic variation (Koonin, 2012).

Several authors demonstrated that there generally are non-linear dependencies between different
levels of molecular information. For instance, freezing tolerance of nine Arabidopsis thaliana
accessions has been extensively discussed in the context of effects on transcriptome and metabolome
(Hannah et al., 2006). Two years later, it was demonstrated that the inter-experimental differences of
the detected cold inducible transcripts significantly depend on the time of day the experiment was
performed and moreover, that this effect cannot be cleared out by including a control group at normal
temperature (Bieniawska et al., 2008). Furthermore, it was shown that there is no consistent
transcriptional regulation which would allow the prediction of cold induced metabolite accumulation

(Espinoza et al., 2010).

Systems Biology and OMICS-Technologies for Phenomics

Following the central dogma of molecular biology, biological systems operate in a complex and
interdependently regulated network of multiple molecular levels. It is not possible to predict all traits
in the life cycle only from the genome sequence (Pigliucci, 2010). Because predicting the behavior of
the complex interconnected architecture of molecular levels is non-intuitive, we have to describe
biological systems on as many molecular levels as possible with regard to experimental parameters.
The acquired molecular phenotypes potentially elucidate the reactivity of the biochemical system to
external stimuli. Consequently, a systemic view on the complex interactions of molecular levels
provides interpretable insight in GEI (Kitano, 2002; Weckwerth, 2003). Phenomic research comprises

analysis of these molecular phenotypes intersected with morphology and ecology.

Metabolomic technologies have become core technologies for functional genomics and molecular
plant physiology (Trethewey et al., 1999; Fiehn, 2002; Weckwerth, 2003; Morgenthal et al., 2005;
Tohge et al., 2005; Weckwerth, 2008; Stitt et al., 2010; Weckwerth, 2011). Metabolic steady states and
transient dynamics of biological systems have been elucidated by quantification of metabolic
components in response to specific environmental perturbations indicating the relation to the
genotype (Weckwerth et al., 2004; Saito and Matsuda, 2010). To unravel the relation of different
molecular levels experimentally, protocols for the integrative extraction, identification and
guantification of metabolites, proteins, RNA and DNA from the same sample have been established

(Valledor et al., 2014). Recently, tremendous effort was undertaken to analyze the reception and



molecular regulation of energy deprivation in a systemic approach combining metabolomics,
proteomics and phosphoproteomics, which proved the pivotal role of SnRK1 in repressing energy
intensive cellular processes like protein synthesis and even elucidated formerly unknown links of
SnRK1 to the phosphorylation state of chloroplastic proteins (Nukarinen et al., 2016). Evidently,
tackling specific biological research hypotheses in experiments comprising the analysis of multiple
molecular levels potentially reveals multiple, previously unexpected systemic effects that broaden our

horizon and lead to completely new scientific challenges.

Systems Biology in Cold Acclimation Research

Temperature and precipitation prominently shape the distribution range of Arabidopsis thaliana
(Hoffmann, 2002). As expected, freezing tolerance therefore shows significant natural variation
(Hannah et al., 2006). Most known Arabidopsis accessions are winter annuals (Michaels et al., 2005)
which germinate in autumn and have to survive as leaf rosettes until bolting in the next spring. In parts
of the distribution range, Arabidopsis thaliana plants have to sustain freezing temperatures during the
winter months. Biogeographic analysis of the species’ ecological amplitude revealed range limitation
by cold winter but also cold autumn and spring temperatures (Hoffmann, 2002). Accordingly, freezing
tolerance in Arabidopsis thaliana positively correlates with latitude of origin (Zhen and Ungerer, 2008).
Environmental stimuli lead to a reprogramming of metabolism that increases stress tolerance (Kosova
et al., 2011). Low but non-freezing temperatures increase the frost resistance in several temperate
plant species in a complex process called cold acclimation (Thomashow, 1999) for which light is
essential (Wanner and Junttila, 1999). Cold temperatures are presumably perceived via Ca* sighals
(Knight and Knight, 2012), changes in membrane fluidity (Los and Murata, 2004) and reorganization of
the cytoskeleton (Orvar et al., 2000). The stimulus is further conveyed by numerous signaling cascades

(Teige et al., 2004; Cramer et al., 2011).

Plant response on the transcript level is measurable after 15 minutes of cold treatment (Gilmour et al.,
1998). Effects on the transcript level are diverse and reach a maximum after around 24 hours of cold
exposure (Fowler and Thomashow, 2002). A prominently discussed set of transcription factors with
regard to cold acclimation are the C-repeat binding factors (CBFs: CBF1, CBF2, CBF3) that activate
transcription of the so-called CBF regulon, overexpression of which significantly increases cold
tolerance (Chinnusamy et al., 2010; Thomashow, 2010). All three Arabidopsis thaliana CBFs are located
on chromosome 4 and are in linkage disequilibrium (Zhao et al., 2016). CBFs bind to a cis-acting C-
repeat/dehydration responsive element (CRT/DRE) (Stockinger et al., 1997) present in cold-regulated
(COR) genes encoding proteins that regulate transcription, photosynthesis, protein metabolism,
primary metabolism and stress response (Maruyama et al., 2004; Hannah et al., 2005) and increase

freezing tolerance in non-acclimated as well as acclimated plants (Gilmour et al., 2000). This induction
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is modulated by the Circadian Clock (Mikkelsen and Thomashow, 2009), CBF transcripts show highest
levels after 4 hours of light and lowest levels after 16 hours of light (Fowler et al., 2005). Alternative
splicing of the clock component Circadian Clock-Associated 1 (CCA1) contributes to freezing tolerance
(Park et al., 2012; Seo et al., 2012). Generally, the circadian gating of cold response is thought to
efficiently maintain growth in low temperatures (Greenham and McClung, 2015). Further, CBF
transcription is positively regulated by Inducer of CBF Expression 1 (ICE1) (Chinnusamy et al., 2003)
and inhibited by Myeloblastosis 15 (MYB15) (Agarwal et al., 2006). The gene regulons of CBF1, CBF2
and CBF3 share an overlapping set of 133 upregulated loci enriched in CRT/DRE and 39 downregulated
genes that do not show this enrichment (Park et al., 2015). Together with targets of 11 other
transcription factors that are upregulated in the first wave of cold acclimation, the set of COR genes
comprises at least 248 upregulated and 155 downregulated genes (Park et al., 2015). Upregulated
genes encode enzymes of carbohydrate and lipid metabolism, cell wall modification, plastid related
proteins, transporters, kinases, Ca?* and hormone signaling components, transcriptional regulators,
proteins involved in cellular biogenesis and stress response (Gilmour et al., 2004; Zhao et al., 2016).
The advent of the CRISPR/Cas9 technology enabled the creation of cbf single, double and triple
mutants (Zhao and Zhu, 2016). Experiments have provided evidence for the importance of all CBFs in
freezing tolerance but CBF2 has a prominent role in cold acclimation (Jia et al., 2016; Zhao et al., 2016).
CBF2 expression is negatively regulated by CBF1 and CBF3 (Zhao and Zhu, 2016). In accordance with
these results, varying freezing tolerance between accessions from Sweden and Italy could be partly
explained by a non-functional CBF2 variant in the more sensitive Italian accession (Gehan et al., 2015).
Considerable natural genetic variation of freezing tolerance has been described in Arabidopsis thaliana

(Hannah et al., 2006).

The induction of COR gene transcription by CBF and other transcription factors upon cold exposure
induces a comprehensive and naturally varying shift in the cellular homeostasis of Arabidopsis thaliana
plants (Nagler et al., 2015). This shift is reflected by changes on the proteomic and metabolomic states
and also includes differential posttranslational modification of proteins (Nagler et al., 2015). Generally,
more proteins are upregulated than downregulated in stress conditions (Kosova et al., 2011). In the
case of cold response, the Arrhenius equation gives one possible direct explanation for this as enzyme
activity is negatively correlated to temperature and positively correlated to catalyst abundance. In
order to maintain a stable reaction rate, the amount of protein has to increase if temperature

decreases given all other parameters do not change.

A prominently discussed plant response during cold acclimation is the inhibition of photosynthesis and
repression of genes encoding photosynthetic light reaction proteins (Strand et al., 1997), probably to

diminish oxidative damage of the photosynthetic apparatus from reactive oxygen species (ROS) (Huner
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et al., 1998) for instance via Mehler’s reaction in the chloroplasts and thus prevent photoinhibition
and other potentially harmful effects as membrane damage and protein oxidation (Janmohammadi et
al., 2015). Accordingly, Calvin cycle protein activity is increased by upregulation of protein abundance

to further process photochemical energy into the metabolic system (Strand et al., 1999).

Still, to maintain a proper cellular redox homeostasis, the ROS scavenging machinery is induced
(Fanucchi et al., 2012). Electrons originating from the photosynthetic light reactions reduce O, to
superoxide which has to be detoxified via the water-water cycle (Asada, 1999). The first line of defense
against ROS are dismutases and catalases (Asada, 1999). The major form of superoxide dismutases
(SD) in chloroplasts are Cu-Zn-SDs (CSD) reducing superoxide radicals to hydrogen peroxide (Asada,
1999). Catalases (CAT) reduce hydrogen peroxide to water and oxygen, some of which need the
tetrapyrrole heme as cofactor. Peroxidases are another protein group that mitigates oxidative stress
by reducing hydrogen peroxide to water and O,. A prominent role of ascorbate in peroxidase activity
has been identified (Smirnoff, 2000). Electrons are transferred either to ascorbate, which is oxidized
to monodehydroascorbate (Asada, 1999), or thioredoxin, which in turn reduces oxidized glutathione
disulfide (Noctor et al.,, 2011; Noctor et al., 2012). Monodehydroascorbate can spontaneously
disproportionate to ascorbate and dehydroascorbate (Asada, 1999). Monodehydroascorbate is further
reduced to ascorbate by monodehydroascorbate reductases (MDAR) with electrons from NADPH and
dehydroascorbate is reduced to ascorbate by dehydroascorbate reductases (DHAR) while oxidizing
glutathione to glutathione disulfide (Foyer and Noctor, 2011). Glutathione is synthesized from
glutamate, cysteine and glycine in two steps catalyzed by the enzymes y-glutamylcysteine synthase
and glutathione synthase (Noctor et al., 2012). Ascorbate biosynthesis is more complex and part of
galactose metabolism (Linster and Clarke, 2008) and regulated at multiple steps (Linster and Clarke,
2008; Wang et al., 2013; Wang et al., 2013). Thioredoxins serve as reductants for multiple peroxidases
and peroxiredoxins (Noctor et al., 2012). Thioredoxins are known to regulate enzyme activities by
disulfide bond reduction and accompanying conformational changes (Meyer et al., 2008). This way,
four out of eight Calvin cycle enzymes (GAPDH, FBPASE, SBPASE, PRK) are regulated (Buchanan et al.,

2002) and even enzymes involved in starch synthesis (Geigenberger et al., 2005).

Further, methionine sulfoxide reductases (MSRs) are also regenerated by thioredoxin activity (Meyer
et al., 2008). Free and protein-bound methionine, levels of which are responsive to multiple stress
situations (Obata and Fernie, 2012), can be oxidized by ROS to methionine sulfoxide. Proteins reducing
methionine sulfoxide to methionine are called MSRs. MSRAs accept both free and protein-bound
Methionine sulfoxide as substrate whereas MSRBs have low affinity towards free methionine sulfoxide
(Le et al., 2013) but a good ability of repairing methionine containing proteins. MSRs are reponsive to

photooxidative stress (Vieira Dos Santos et al., 2005).
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Secondary metabolism is knowingly responding to environmental stimuli (Winkel-Shirley, 2002) and
especially flavonoids have been discussed for their role in cold acclimation (Doerfler et al., 2013; Schulz
et al., 2016) and UVb protection (Li et al., 1993; Agati and Tattini, 2010; Hectors et al., 2014). There
also exists significant natural variation of flavonoid biosynthesis during cold acclimation (Schulz et al.,
2015). Isoprenoid metabolism, especially tocopherol synthesis (Lange and Ghassemian, 2003), is also
involved in adaptation to low temperatures (Maeda et al., 2006). Tocopherol is a strong antioxidant
produced from tyrosine in the plastids which protects the photosynthetic apparatus, pigments and
thylakoid lipids from oxidative degradation by ROS (Kanwischer et al., 2005). A compound class closely
connected to isoprenoids are tetrapyrroles. Tetrapyrroles are classified in four groups: chlorophyll,
heme, siroheme and phytochromobilin (Tanaka et al., 2011). Besides the obvious importance of
chlorophyll synthesis for light harvesting in photoautotroph organisms, tetrapyrroles are also known
to be responsive to drought stress because of their reducing properties on ROS (Nagahatenna et al.,
2015). Consequently, transcription of many genes involved in tetrapyrrole synthesis is induced by ROS
signaling (Nagai et al., 2007). Interestingly, transcripts of genes involved in tetrapyrrole synthesis have
been identified to be negatively correlated to cold acclimation (Hannah et al., 2006). Glucosinolate
metabolism is receiving more and more attention for the role in environmental adaptation and field
fitness (Kerwin et al.,, 2015). In this context, epistatic effects have been shown to impact on

glucosinolate accumulation and fitness in the field (Kerwin et al., 2017).

As extracellular ice formation induces a drop in the osmotic potential in the apoplast which results in
cellular water loss, among other COR proteins like COR15a (Wang and Hua, 2009), dehydrins increase
in abundance during cold acclimation (Amme et al., 2006) as well as other compatible solutes like
proline (Cook et al., 2004; Kaplan et al., 2004) which also plays a role in redox buffering (Verslues and
Sharma, 2010). Interestingly, a CBF triple knockout mutant does not accumulate proline during cold
acclimation (Jia et al., 2016). The change in temperature and loss of water can also lead to protein
denaturation which explains the induction of chaperone abundance as for instance heat-shock

proteins (Rocco et al., 2013).

Carbohydrate metabolism is regulated during cold acclimation on the transcript (Hannah et al., 2006),
protein (Nagler et al., 2015) and metabolite level (Cook et al., 2004; Nagele et al., 2011; Doerfler et al.,
2013; Nagler et al., 2015). Fixed carbon is used for sucrose synthesis rather than starch accumulation
(Strand et al., 1999; Nagele et al., 2011). Sucrose, as well as its building blocks glucose and fructose,
have been discussed to increase during cold acclimation (Cook et al., 2004). Sucrose is the most
important transport sugar in plants (Winter and Huber, 2000), whereas starch is an important carbon
storage compound in plants (Strand et al., 2000) and both are hubs in plant carbohydrate metabolism.

Besides regulating developmental effects, sucrose is known to increase in heat and cold stress (Kaplan

13



et al.,, 2004). Particularly, transcript level of cystathionine y-synthase, a regulated enzyme in
methionine biosynthesis (Galili et al., 2016), is upregulated by sucrose (Hacham et al., 2013). Sucrose
cleavage is important for cellular hexose signals (Koch, 2004). In vivo, there are two of enzymatic
groups involved in sucrose degradation: invertases irreversibly release fructose and glucose whereas
sucrose synthases (SUS) reversibly release UDP-glucose and fructose (Koch, 2004). UDP-glucose is a
substrate for starch synthesis via granule-bound starch synthases releasing amylose. Together with
fructose-6-phosphate, UDP-glucose also participates in reversible sucrose synthesis via sucrose-
phosphate-synthase (SPS), activity of which was found to positively correlate with cold tolerance
(Nagele et al., 2011) and has been discussed as being involved in the natural variation of freezing
tolerance (Nagele et al., 2012). UDP-glucose-1-phosphate uridylyltransferases reversibly catalyze the
conversion of glucose-1-phosphate to UDP-glucose. Glucose-1-phosphate is reversibly convertible to
glucose-6-phosphate by phosphoglucomutase which can be processed to starch for storage and via

phosphoglucoisomerase also to fructose-6-phosphate (Zeeman et al., 2007).

Although starch anabolism is of less importance during cold acclimation, starch catabolism has been
identified as a crucial part of the cold acclimation process also underlying significant natural variation
(Espinoza et al., 2010; Nagler et al., 2015). The cold tolerant Arabidopsis thaliana accession Rschew
(Rsch; Origin: Russia) is able to mobilize starch more efficiently than cold sensitive Cvi (Origin: Cape
Verde) which results in the higher abundance of soluble sugars like sucrose, glucose, fructose and
raffinose and osmoprotectants like proline in the cold acclimated state (Nagler et al., 2015). In this
context, starch degradation has been linked to proline accumulation (Zanella et al., 2016). Sucrose also
is a substrate for the synthesis of many cryoprotective substances like raffinose and raffinose family
oligosaccharides (RFOs) (Peterbauer and Richter, 2001). Together with raffinose, which besides
galactinol also increases during cold acclimation (Kaplan et al., 2004), sucrose stabilizes membrane
integrity and fluidity which also contributes to temperature sensing (Hincha et al., 2003; Los and
Murata, 2004; Knight and Knight, 2012). Similar mechanisms have been proposed for COR genes like
COR15a and COR15b (Thalhammer et al., 2014). During cold acclimation, raffinose synthesized in the
cytosol is transported to the plastids to protect chloroplast membranes, a trait that also exhibits
natural variation (Nagele and Heyer, 2013). Raffinose and other RFOs have also been discussed to be
involved in abiotic stress response and sugar sensing (Valluru and Van den Ende, 2011) as well as
signaling compound in biotic stress response and priming (Kim et al., 2008). Raffinose, as sucrose, is

also responsive to many other environmental stimuli (EISayed et al., 2014).

The subcellular redistribution of metabolites and proteins has been recognized as crucial for cold
acclimation (Hurry, 2017). Besides an increase in plastidic raffinose abundance, many aspartate

derived amino acids increase in the cytosol during cold acclimation, for instance branched-chain amino
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acids (Hoermiller et al., 2016). This is an interesting property, as amino acid catabolism is an important
alternative energy source in plants, especially under stress conditions. Specifically the oxidation of
branched-chain amino acids vyields considerable amounts of ATP and reduction equivalents
(Hildebrandt et al., 2015). The degradation is connected to autophagy, deficiency of which restricts
alternative respiration in mitochondria (Barros et al., 2017). Different from the increase in proline,
which results from increased synthesis, branched-chain amino acid concentrations have been shown
to accumulate because of an upregulation of protein degradation under osmotic stress (Huang and

Jander, 2017).

Once temperatures rise again in spring, acclimated freezing tolerance is lost in a process called
deacclimation. This process is quicker than cold acclimation as transcripts and metabolome approach
non-acclimated patterns of Col-0 after 24 hours of higher temperature which revert the biomolecular

reprogramming during cold acclimation (Pagter et al., 2017).

Phenotypic Plasticity

Every genetic locus has to be considered in the context of an environment in order to give rise to a
phenotype (Weckwerth, 2003; Dawkins, 2004; Weckwerth, 2011). Hence, GEl are defined by a set of
genotypes which are mapped to a set of phenotypes by a specific environment. In Figure 1, this
relationship is schematically drawn. An individual’s genotype is called a genophene. Similar
genophenes are grouped to genotypes, which constitute the genospecies in genotypic space. A specific
environmental cue induces a corresponding phenotype, an individual ecophene. Similar ecophenes are
combined to ecotypes and similar ecotypes constitute an ecospecies. The set of all ecospecies is the
coenospecies comprising the species’ ecological amplitude. A specific genotype can interact with
different environments in variable ways, thus producing different (molecular) phenotypes depending
on the environment they were exposed to. This phenomenon is called phenotypic plasticity and has
puzzled biologists for decades (Turesson, 1922; Fusco and Minelli, 2010). Indeed, some genotypes do
not grow in specific environments, thus they are schematically shown here with only one outgoing
environmental arrow. Developing an explicit idea on how these mappings can be defined in a
molecular and ecophysiological way is one of the main goals in phenotypic plasticity research (Pigliucci,

2001).
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Coenospecies

Genospecies Ecospecies

Genotypic space ]T’I’Ténotypic space

LGenotype Genophene ~ Ecotype

Figure 1: Genotype-Environment Interactions (GEI) as a function
mapping from Genotypic to Phenotypic space. Different
environmental settings are indicated by differently colored arrows
— modified from (Turesson, 1922)

The analysis of a certain phenotype by a set of molecular profiles on different molecular levels, so
called molecular ecophenes, has been shown to be a promising approach to promote the
understanding of how a genotype shapes a molecular phenotype (Weckwerth et al., 2004; Morgenthal
et al., 2005; Wienkoop et al., 2008; Wienkoop et al., 2010; Kleessen et al., 2012; Doerfler et al., 2013).
Because proteins and metabolites are the prominent components of biochemical pathways, these
molecular levels include most of the processed information encoded by GEl and are well suited for the
definition of molecular phenotypes. In summary, research on phenotypic plasticity is key to
understand, predict and anticipate the effects of changing climates on plant performance (Nicotra et
al., 2010). Additionally, phenotypic plasticity has been discussed as a mechanism to preserve genetic

diversity under directed natural selection (Gillespie and Turelli, 1989).

Phenotypic Plasticity in Arabidopsis thaliana

Phenotypic plasticity has a long tradition in Arabidopsis thaliana research and has buried the genes-
as-blueprint metaphor (Alberch, 1991; Pigliucci, 2010). Basically, all environmental response
experiments belong to this category. In Arabidopsis thaliana, genetic variation of plasticity in light and
nutrient response but not in response to gradients of water availability has been detected (Pigliucci et
al., 1995). Stressful conditions significantly affect phenotypic plasticity of flowering time, life span,
number of leaves, leaf weight, height of first flower, total plant height, number of branches,
inflorescence weight and number of fruits (Pigliucci et al., 1995) and also a relationship between

phenotypic plasticity and fitness has been discussed (Pigliucci and Schlichting, 1996).

Plasticity genes are genes that mediate environmental changes to a phenotypic output (Pigliucci,
1998). A prominent example of plasticity genes in Arabidopsis thaliana are phytochrome genes

(Pigliucci, 1996) conveying shade-avoidance phenotypes in this annual weed. It was shown, that plants
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deficient in all functional phytochromes are less plastic in their response to changes in light
parameters, in fact they always show a shade-avoidance phenotype (Pigliucci and Schmitt, 1999). Light
response shows high inter-population variation but low variation for phenotypic plasticity (Pigliucci
and Kolodynska, 2002). In a reciprocal-transplant field trial, shading induced flowering at an earlier
developmental stage with fewer rosette leaves and also at an earlier time point but this effect
disappeared in a greenhouse environment, presumably because these two trends cancelled each other
(Callahan and Pigliucci, 2002). From this study it was also concluded that the greenhouse experiment
provided stronger evidence for variation between populations suggesting that in the field,
environmental parameters have a higher impact on the variance of fitness than genetic background,
as the correlation of date of bolting and number of leaves disappeared in the field (Callahan and
Pigliucci, 2002). In an experiment testing phenotypic plasticity in Arabidopsis thaliana with regard to
photoperiodic regimes in growth chambers reflecting a latitudinal light gradient, it turned out that leaf
number is directly and leaf size indirectly correlated to Northern latitude whereas the effects on bolting
time were not so much influenced by the light regime but by the genotype (Banta et al., 2007).
Strikingly, considering local adaptation, the reproductive fitness estimated by the number of fruits was
not highest in the populations originating from one of the three photoperiodic regimes (Banta et al.,
2007), contrasted by other studies proving the better performance of local populations in their native
habitats (Agren and Schemske, 2012; Wilczek et al., 2014). Other authors have determined the
influence of climatic variables on alleles linked to fitness variation and found that local selection acts
upon different genetic loci with diverse molecular functions (Fournier-Level et al., 2011). In this
context, necrotroph responsive laccase 1 (LAC1), drought responsive senescence-associated gene 21
(SAG21) and DNA repair related chromatin remodeling 8 (CHR8) were identified to impact on fitness
in multiple environments (Fournier-Level et al., 2011). It was also found that local adaptation is lagging
behind changing environments employing the product of silique length and silique number as fitness
proxy (Wilczek et al., 2014). In a common garden site in Finland, the native accession was not as fit as
an accession from Germany whereas in common garden sites in Spain, the United Kingdom and
Germany, the native accessions were outperforming or at least performing equally well (Wilczek et al.,

2014).

Another study investigating phenotypic plasticity of 47 Arabidopsis thaliana accessions in flooding
conditions highlighted a trade-off between root and stem biomass accumulation (Pigliucci and
Kolodynska, 2002). Wind as a proxy for mechanic stimulation was found to impact on the number of
basal branches and thus fecundity in many populations (Pigliucci, 2002). Besides genotypic variation,
epigenetic variation has also been shown to dramatically impact on plant fitness and phenotypic
plasticity (Bossdorf et al., 2010). However, the impact of epigenetic variation was only weakly

correlated to phylogeny (Bossdorf et al., 2010).
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Ecophenes

Compared to data on plant genomes, proteomes and metabolomes, environmental information is
sparse on the accessions available in seed banks. Although habitat metadata is available to some
extent, microclimatic conditions can vary on small spatial scales independent from latitudinal,
longitudinal and altitudinal gradients. In other words, Arabidopsis thaliana perceives environments at
the same degree of complexity at all spatial scales (Pigliucci, 1998). Therefore, data sets are not
detailed enough to allow in-depth molecular ecological research. Although there may be enough
information to justify studies of microevolution among populations, the available data is not suitable
for investigating microevolution within populations as variable environmental conditions during
development are long known to influence the plasticity of phenotypes (Gilbert, 1991). Additionally,
natural metabolic variation was shown to be only weakly correlated to genetic diversity (Houshyani et

al., 2012).

For example, consider two topographically and climatologically similar populations at a given
geographic distance, each one comprising a ridge situation and a lower slope situation. Although
genetic variability may be lower among populations than between them, because of phenotypic
plasticity there could of course be significant intrapopulation molecular phenotypic variation and,
because of interpopulation similarity of specific ecological niches (ridge and lower slope in this fictive
example, respectively), these phenotypes could show a similarity pattern not reflecting geographic or
genetic distance. Therefore, we have to employ techniques to characterize the microenvironments of
natural populations on a spatial and temporal scale in connection with molecular profiles of proteome
and metabolome and genotyping via microarrays or next-generation deep sequencing for a detailed
description of GEls to identify physiologically adaptive traits and patterns of molecular phenotypic
plasticity as well as their morphological and phenological outputs. Experiments in controlled

environments with collected seeds allow a check for heritability and plasticity of discovered traits.

In this context, Turesson’s ecotype concept (Turesson, 1922) seems to provide the theoretical basis to
define GEI outputs (Figure 1) in an ecological meaningful way. Investigating this frame work with
modern technologies potentially enables us to investigate the physiological and molecular basis for
environmentally induced natural phenotypic variation (Pigliucci, 1998; Alonso-Blanco and Koornneef,
2000). Consider one of Turesson’s examples in his monography on phenotypic plasticity in the plant
kingdom (Turesson, 1922), the species Polygonum amphibium. This member of the Polygonaceae
family can be modified into a land form, a water form and a dune form simply by exposition of plants
to specific environments. In context of the ecotype concept, we could assume the coenospecies
Polygonum amphibium to consist of three ecospecies (land, water and dune forms, respectively). Each

of these ecospecies can be divided in ecotypes, which show a similar phenotype but because of
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differing reasons. For instance, we could think of the land ecotype in the example to consist of different
drought responses of individuals exposed to different environments, which are nevertheless perceived
by the plant through one and the same stress signaling cascade and thus result in related ecophenes.
On the one hand, we could have drought because of soil grain size and as a consequence of substrate
chemistry on the other hand. Thirdly, there could be variation in precipitation or temperature data. It
is also known that drought response varies with development and stress severity (Skirycz et al., 2010).
Theoretically, it is even possible to unleash defined ecotypes from the genetic species concept, and
thus comprising ecophenes of multiple species. For example, if more than one species are under
scrutiny, those ecotypes would then represent ecological units which show similar reaction types to
specific environmental signals. This could facilitate the identification of functional niches in ecosystems
and thus keystone species and ecosystem engineers which are important in conservation and
restoration biology. Therefore, a given ecotype is closely related on the spatial scale to a given
(micro)ecosystem and on a chronological scale to a specific development of the same ecosystem
throughout a given time period. Among major questions arising is how to sufficiently characterize an
ecosystem to provide enough environmental resolution to successfully distinguish and associate
ecophenes. Investigating molecular ecophysiological properties of individuals in extensively monitored
natural habitats is the logical next step in the quest for the better understanding of the evolutionarily
shaped genetic architecture of the metabolome (Chan et al.,, 2010) as well as community and
ecosystem dynamics. As indicated classically in Ellenberg’s experiment on the performance of grass
species in monoculture and mixed cultures (Ellenberg, 1953), the realized ecological niche is depending
on many parameters that have to be considered in an in vitro growth setting to reflect in situ plant
performance, as for instance phytosociology. Additionally, choosing the ecologically relevant levels of
abiotic parameters is important to derive relevant conclusions for in situ performance. In drought
stress response, the investigation of lethal soil water deficits is explicitly not connected to increased
survival or yield gain in more realistic, milder drought conditions in Arabidopsis thaliana (Skirycz et al.,

2011).

Technological possibilities for continuously measuring abiotic habitat parameters, as for example soil
properties, such as temperature, absolute water matrix potential or electric conductivity, and
atmospheric parameters, such as air temperature, relative humidity and precipitation, exist and are
longing for application in molecular ecological research. Methods for inferring biotic habitat
parameters such as phytosociology are available since decades (Braun-Blanquet, 1964) and statistical
classification methods have been developed (Hill, 1979; Tichy, 2002). Additionally, ecosystem
properties such as land use classes, hemeroby maps and electronic soil classifications can potentially

bridge the gap from model to ecosystem research.
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Biochemical modeling

The parts of a (biological) system interact with each other in complex and sometimes non-intuitive
ways. In order to provide an idea of how a system reacts if it's constituents are partly altered, the
whole network of responses has to be considered. An established way for describing systemic behavior
is modeling the dependencies of a system’s variables in a set of coupled ordinary differential equations
(ODEs) that describe the temporal fluctuation of system variables that reflect the system’s state
(Nagele, 2014). For instance, in metabolomics data, these equations describe the concentration
changes of the modelled metabolites as the sum of anabolic and catabolic reactions, in more elaborate
models considering the subcellular compartmentation even transport processes. The ODE for a given
metabolite x; is:

d x;(t)
dt

%) = = anabolism — catabolism =+ transport = f;(xy, x5, ..., Xp, t)

Numerical integration of ODEs within biochemically and physiologically relevant boundaries yields an
explicit mathematical expression that allows the time-dependent estimation of systemic variables.
Metabolite data enable this approach as they provide the basis for solving this initial value problem.
Indeed, the major problem arising is to gain enough knowledge of relevant system parameters to allow
for the exact formulation of the ODE. For instance, the temporal change of fructose could be
considered to depend on the anabolic reaction catalyzed by invertase and the catabolic reaction
catalyzed by fructokinase, both depending on substrate and product concentrations. In order to exactly
define the differential equation, all enzyme kinetic parameters have to be known, an endeavor that is
further complicated by the existence of multiple isoforms with varying optimal conditions. In the last
decade, a work-around has been proposed with the introduction of the inverse calculation of the

biochemical Jacobian from metabolic covariance data (Steuer et al., 2003).

The Biochemical Jacobian
The concept of the Jacobian matrix is long known in systems theory as the matrix containing all first-
order partial derivatives of the functions of systemic variables and thus describing the reactivity of the

system to changes in those variables:

Oh . Oh
0x4q 0x,
J= : :
0x4q 0x,
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Systems biologists have incorporated this concept into their considerations and have connected it to

covariance data with the van Kampen equation (Steuer et al., 2003):
Jjc+cJjT =-2D

Here, Jis the n x n Jacobian matrix (each system variable is defined by one function) constituted by the
first order partial derivatives of the n functions with respect to all of the n variables. C is the n x n
covariance matrix of the n system variables and D is an n x n diagonal fluctuation matrix of white noise
modeled by a Langevin-type equation (Steuer et al., 2003). The solution of this inverse problem after
reformation yields the Jacobian of the biochemical system. The metabolite functions combine multiple

non-linear biochemical dependencies as for instance Michaelis-Menten enzyme kinetics and are

. . . . . L d x; .
linearized around a metabolic steady state in which the prerequisite x,(t,) = % = 0 is met,

assuming there is no net change in a metabolite’s concentration and the biochemical system is well
adapted and in homeostasis. This assumption is of course an idealization that might not always be
justified as it ignores for instance diurnal rhythms in metabolite pools. Consequently, the steady state
assumption can be alleviated to not require an exact equilibrium of reaction rates but rather do not
show a statistically significant change in metabolite concentrations. Additionally, the linearization is
only valid in a narrow temporal interval, i.e. at the specific steady state time point to. Analytically, the
metabolite functions, which are characterized by time-dependent metabolite concentrations and
time-dependent reaction parameters, can be described as the product of a n x m stoichiometric matrix
N containing the stoichiometries of n metabolites in m biochemical reactions and the non-linear flux
vector v of length m at the n metabolite concentrations X (Steuer et al., 2003):

d X(t)
dt

= f(X(0),p(t)) = Nv(X(t), p(t))

At the steady state S° another equivalency can be formulated and the above mentioned formulae equal
the product of the stoichiometric matrix, the partial derivatives of reaction rates with respect to all
metabolites at steady state time to and metabolite concentrations X:

d X(to)

0
0 = FX (1), P(t)) = Nv(X(t0),p(60) = Noo| X =JX =0

axl,,

This equation also implies, that the entries of the biochemical Jacobian can be interpreted as the
product of the stoichiometric matrix and the partial derivatives of reaction rates with respect to all

metabolites.

Hence, the entries quantify the varying reactivity of the biochemical system to changes in metabolite
concentrations at the steady state. For the first time this approach allows the inverse calculation of
the biochemical system directly from the metabolomics covariance matrix and this was proven in 2012
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(Sun and Weckwerth, 2012). As in general systems theory, the Jacobian eigenvalues’ real parts provide
information on the stability of the biochemical system (Nagele and Weckwerth, 2013). By considering
the medians of 1000s of inverse numerically estimated biochemical Jacobians from the van Kampen
equation, the role of pyruvate dehydrogenase in regulating the varying metabolic homeostasis in light
and extended darkness has been demonstrated without exact knowledge of all involved reactions’
parameters (Nagele et al., 2014). This proves that the inverse calculation of the biochemical Jacobian
is in principal a possibility to assess the dynamic behavior of a biochemical system without the
laborious experimental determination of kinetic parameters in all situations of interest (Doerfler et al.,
2013; Nagele and Weckwerth, 2013; Nukarinen et al., 2016; Wang et al., 2016). We have also applied
this approach for the first time to in situ metabolomics data from natural Arabidopsis thaliana
populations (Nagler et al., manuscript in preparation, see third manuscript of cumulative thesis). This
approach has also been complemented via structural kinetic modeling, which surpasses some
disadvantages of the discussed approach of deriving the biochemical Jacobian from a linear
approximation of metabolic functions at a steady state by considering local linear models at each point
in parameter space which allows for the exact estimation of the biochemical Jacobian at a given point

in parameter space (Steuer et al., 2006).

Dynamic responses of biochemical systems to experimental conditions can also be investigated in time
series experiments that provide a view on the evolution of corresponding molecular homeostases. A
possibility are regression approaches to determine the time-shifted correlation in variable
abundancies as in Granger causality (Granger, 1969). This was also recently applied to metabolomics

time series in Arabidopsis cold stress data (Doerfler et al., 2013).
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We examined the natural variation of cold acclimation on the metabolome, proteome and
phosphoproteome with regard to two geographically well separated Arabidopsis thaliana
accessions Rsch and Cvi. We presented evidence that starch degradation is differentially
regulated between these cold-tolerant and cold-sensitive genotypes. Further, an interaction
network of the cold acclimated accession revealed more comprehensive reprogramming of
the molecular plant system during cold acclimation resulting in a higher degree of connectivity
of the cold-induced protein-protein interaction network in the cold tolerant accession pointing

towards higher resilience of the cold reprogrammed metabolic homeostasis.

To this experiment, Ella Nukarinen and | contributed equally. | measured the proteomics

samples and analyzed the data. Together, we wrote the manuscript for the publication.
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during cold acclimation in two natural
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Abstract

Background: The variation of growth and cold tolerance of two natural Arabidopsis accessions, Cvi (cold sensitive)
and Rschew (cold tolerant), was analysed on a proteomic, phosphoproteomic and metabolomic level to derive
characteristic information about genotypically distinct strategies of metabolic reprogramming and growth
maintenance during cold acclimation.

Results: Growth regulation before and after a cold acclimation period was monitored by recording fresh weight of leaf
rosettes. Significant differences in the shoot fresh weight of Cvi and Rschew were detected both before and after
acclimation to low temperature. During cold acclimation, starch levels were found to accumulate to a significantly higher
level in Cvi compared to Rschew. Concomitantly, statistical analysis revealed a cold-induced decrease of beta-amylase 3
(BAM3; AT4G17090) in Cvi but not in Rschew. Further, only in Rschew we observed an increase of the protein level of the
debranching enzyme isoamylase 3 (ISA3; AT4G09020). Additionally, the cold response of both accessions was observed
to severely affect ribosomal complexes, but only Rschew showed a pronounced accumulation of carbon and nitrogen
compounds. The abundance of the Cold Regulated (COR) protein COR78 (AT5G52310) as well as its phosphorylation
was observed to be positively correlated with the acclimation state of both accessions. In addition, transcription factors
being involved in growth and developmental regulation were found to characteristically separate the cold sensitive
from the cold tolerant accession. Predicted protein-protein interaction networks (PPIN) of significantly changed proteins
during cold acclimation allowed for a differentiation between both accessions. The PPIN revealed the central
role of carbon/nitrogen allocation and ribosomal complex formation to establish a new cold-induced metabolic
homeostasis as also observed on the level of the metabolome and proteome.

Conclusion: Our results provide evidence for a comprehensive multi-functional molecular interaction network
orchestrating growth regulation and cold acclimation in two natural accessions of Arabidopsis thaliana. The
differential abundance of beta-amylase 3 and isoamylase 3 indicates a central role of transitory starch degradation in
the coordination of growth regulation and the development of stress tolerance. Finally, our study indicates naturally
occurring differential patterns of C/N balance and protein synthesis during cold acclimation.
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Background

Plant growth together with stress tolerance and flowering
traits are known to be orchestrated in a complex and inter-
dependent molecular manner. Water supply, temperature
and soil quality have been shown to be the most relevant
abiotic factors which significantly affect these traits [1].
During the last decade, naturally occurring genetic and
phenotypic variation of Arabidopsis thaliana has been
shown to be a promising tool for studying the molecular
architecture of such physiological traits. On the cellular
level, abiotic stress affects the integrity of membrane sys-
tems, transport proteins, metabolic enzymes and signalling
compounds, ultimately leading to disfunctions in cellular
metabolism which directly impair plant growth and devel-
opment. Previous studies have shown and discussed signifi-
cant differences in naturally occurring stress tolerance,
morphology, developmental programming and flowering
of Arabidopsis thaliana [2-9].

Low temperature belongs to one of the most important
abiotic factors limiting the geographic distribution of
plants. In many temperate species, the exposure of plants
to low but non-freezing temperatures initiates a process
termed cold acclimation resulting in increased freezing tol-
erance [10]. The process of cold acclimation is a multigenic
trait being characterized by a comprehensive reprogram-
ming of the transcriptome, proteome and the metabolome,
but also of enzyme activities and the composition of mem-
branes [3, 11-17]. Particularly, reprogramming of primary
metabolism plays a crucial role during cold acclimation
leading to a changed photosynthetic activity and the accu-
mulation of soluble sugars, amino acids and polyamines.
Concentrations of the di- and trisaccharide sucrose and
raffinose, respectively, have been shown to correlate well
with winter hardiness in several plant species [18, 19]. Fur-
ther, several roles for sugars in protecting cells from
freezing injury have been proposed [10]. Yet, soluble
carbohydrates have been shown to be insufficient to
fully describe the development of freezing tolerance
[20]. While sugar levels are often found to positively
correlate with freezing tolerance, the underlying regula-
tory mechanisms are poorly understood. On a whole
plant level, it remains elusive whether sugar accumulation
may result from reduced sink activity, because growth re-
tardation at low temperatures is stronger than the reduc-
tion of photosynthetic activity [21]. Additionally, it is not
clear whether sugars function as cryoprotective substances
or because they are substrates for the cryoprotectant syn-
thesis [19].

Together with sugars, also pools of organic and amino
acids are significantly affected during cold-induced meta-
bolic reprogramming. Aspartate, ornithine and citrulline
were found to increase during cold exposure of Arabidopsis
thaliana indicating the reprogramming of the urea cycle
[14]. Beyond, the authors observed a cold-induced increase
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in levels of alpha-ketoglutarate, fumarate, malate and citrate
which they suggested to result from an up-regulation of
the citric acid cycle. Although many observations re-
vealed an increase of metabolite levels to be characteristic
for cold acclimation, the magnitude of changes in the me-
tabolome does not necessarily indicate the capacity of
Arabidopsis to increase its freezing tolerance [12]. A
prominent example which shows the possible discrepancy
between metabolic reprogramming and gain of freezing
tolerance is the comparison of the freezing sensitive nat-
ural accessions Cvi, which originates from Cape Verde
Islands, and C24, originating from the Iberian Peninsula.
Both accessions similarly increase their freezing tolerance
during cold acclimation while concomitant metabolome
changes were found to differ dramatically [3]. It might not
be surprising that the coordination of a complex trait like
freezing tolerance cannot be directly related to one certain
metabolic output, but, simultaneously, this observation in-
dicates a high level of plasticity which is characteristic for
intraspecific molecular responses to environmental cues.
In this context, most of the naturally occurring biochem-
ical mechanisms and metabolic regulatory strategies to ac-
climate to low temperature still remain elusive.

Plant growth is significantly reduced due to cold ex-
posure. Although low temperature significantly affects
metabolic processes and resource allocation, growth is
not necessarily limited by photosynthetic activity. Fol-
lowing a period of 1 to 3 days after exposure to low
temperature, during which cold stress is sensed and ac-
climation is initiated, rates of photosynthetic carbon as-
similation can be almost fully recovered [22]. Together
with the finding that growth is affected more signifi-
cantly than photosynthesis during exposure to water
deficit [23], this indicates that growth during stress ex-
posure might rather be limited by sinks than sources.
Such a cold-induced sink limitation has been discussed
to be the reason for the characteristic accumulation of
sugars during cold exposure. Although high levels of
sugars have been shown to potentially repress the expres-
sion of photosynthetic genes [24, 25], cold acclimation and
development at low temperature was found to reduce or
even fully revert this effect [26—28]. Additionally, cold accli-
mation was found to have a significant effect on leaf respir-
ation of Arabidopsis thaliana [29]. Both respiration rates
in the light and in the dark were described to increase
significantly during cold acclimation, while the more
pronounced effect was found for respiration in dark-
ness. Moreover, although cytosolic hexose phosphate
concentrations increased dramatically, there was no sig-
nificant correlation observed with respiration in the
light indicating that respiration is not limited by sub-
strate availability under low temperature stress [29].

Although the above-mentioned findings only represent
an excerpt from current findings about growth regulation
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and cold acclimation strategies in Arabidopsis, it clearly in-
dicates a highly complex and interlaced relationship be-
tween metabolic and physiological consequences of low
temperature. Systems biology focuses on such complex
questions and has become a rapidly expanding and attract-
ive research area during the last decade [30]. In a systems
biology approach, elements of an interaction network, e.g.
a metabolic map, are rather analysed and discussed as
interacting components than isolated parts in order to im-
prove the understanding of how a complex biological sys-
tem is organized and regulated [31].

Research on plant freezing tolerance, growth regula-
tion and plant systems biology has largely been driven
by studies in Arabidopsis thaliana. The species is native
to Europe and central Asia, its biogeography was de-
scribed in detail, and it was shown that climate on a
global scale is sufficient for shaping the range boundar-
ies [32]. When compared to other Brassicaceae species,
Arabidopsis has a wide climatic amplitude and shows a
latitudinal range from 68 to 0°N, which makes it suit-
able for the analysis of variation in adaptive traits [33].
Arabidopsis represents a predominantly selfing species,
and, hence, most of the individual Arabidopsis plants
collected in nature represent homozygous inbred lines
[34]. These homozygous lines are commonly referred to
as accessions, representing genetically distinct natural
populations that are specialized to particular sets of envir-
onmental conditions. The variation of morphological and
physiological phenotypes enables the differentiation of
most of the collected Arabidopsis accessions from others.
In particular, considering the tolerance to abiotic factors,
e.g. low temperature, a large variation has been reported
(e.g. [33]), making Arabidopsis an attractive system to
study plant-environment interactions.

In the present study, two of these Arabidopsis acces-
sions were analysed with respect to naturally occurring
variation in the traits of growth regulation and freezing
tolerance. The selection of the two accessions, Cvi (ori-
gin: Cape Verde Islands) and Rschew (origin: Western
Russia), was based on findings of previous studies which
have shown that Cvi represents a freezing sensitive ac-
cession while Rsch is freezing tolerant (e.g. [35]). Based
on this finding and due to their large distance with re-
spect to geographical origin, cold acclimation capacity
and cold-induced gene regulation [3], the molecular and
biochemical study of both accessions can be expected to
provide a suitable approach to quantify strategies of
growth maintenance during environmental fluctuations.
As previous work has already indicated, a multi-layered
design of molecular physiological studies was necessary
in order to derive coherent conclusions on a genome-
wide level [11, 36]. Thus, the present study aimed at a
comprehensive characterization of metabolomic, prote-
omic and phosphoproteomic levels of both natural
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accessions to unravel differential strategies of growth regu-
lation in a changing environment.

Results

Differential growth of Cvi and Rsch during cold acclimation
Growth behaviour of both accessions was characterized
by recording the total fresh weight of leaf rosettes from
15 independently grown plants for each acclimation
state, i.e. the non-acclimated (na) and acclimated (acc)
state (Fig. 1a). Analysis of variance (ANOVA) revealed a
significantly higher fresh weight of Rsch plants before
(na) and after (acc) cold acclimation compared to Cvi
(Fig. 1b). Additionally, plants of the accession Rsch were
found to increase their fresh weight significantly (~1.6-
fold) during cold acclimation while this was not ob-
served for Cvi (Fig. 1b; Remark: when applying Student’s
t-test, the increase in fresh weight of Cvi was detected to
be significant; p = 0.018). Furthermore, cold acclimated
plants of Cvi did not differ in their fresh weight compared
to non-acclimated plants of Rsch. Most distinct differ-
ences in fresh weight, which we interpreted in terms of an
average growth rate [37], were observed between cold ac-
climated plants of Rsch and Cvi (Ratio >2).

Integrative profiling of metabolites, proteins and
phosphoproteins during cold acclimation

For a comprehensive molecular characterization of both
accessions, the metabolome, proteome and the phospho-
proteome, i.e. phosphopeptide abundance, was analysed
applying an integrative analytical GC-MS and LC-MS
platform [38—43]. Statistical dimensionality reduction by
Principal Component Analysis (PCA) revealed a clear
separation of both accessions and acclimation states on
all levels of molecular organization (Fig. 2). In the non-
acclimated state, the accessions were not separated by
metabolite profiling including the main components of
C/N leaf metabolism. (Fig. 2a). In contrast, after cold-
acclimation both accessions were significantly separated
(Fig. 2a). Levels of soluble sugars, threonic acid, citrate,
succinate, malate, fumarate, glutamate, proline and as-
partate were found to be significantly higher in Rsch,
while a high level of transitory starch was found to be
characteristic for Cvi (Fig. 3a, b; Additional file 1: Table
S1; Additional file 2: Figure S1).

On the proteome level, PCA revealed a clear separ-
ation of both accessions and conditions (Fig. 2b). Acces-
sions were separated on PCl while the acclimation
process became visible on PC2. Although the explana-
tory power of PC1 was only about 8 % higher than that
of PC2 (Additional file 3: Figure S2), this indicated that
the strongest observable effect in the proteome was due
to accession-specific differences followed by changes in-
duced by the cold acclimation process. The strongest
observed accession-specific separation in the proteome
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appeared due to differences in carbohydrate metabolism,
amino acid metabolism, abiotic stress-related proteins,
protein synthesis and degradation, sulphur assimilation
(ATP-sulfurylase, ATP-S), glucosinolate biosynthesis,
and redox regulation (Additional file 4: Table S2). Par-
ticularly, relative alpha- and beta-amylase enzyme levels,
ie. alpha-amylase-like 3 (AMY3; AT1G69830) and
chloroplast beta-amylase (BAM3; AT4G17090), showed
a differential pattern in both accessions (Fig. 4). While

AMY3-levels were found to be constitutively higher in
Rsch (Fig. 4a), levels of BAM3 showed an acclimation-
dependent decrease in Cvi (Fig. 4b). Levels of isoamylase 3
(ISA3; AT4G09020) were found to significantly increase
during cold acclimation in Rsch while no significant
change in ISA3-levels was observed for Cvi (Fig. 4c).

In addition to this accession-specific effect, the cold accli-
mation process most significantly affected proteins related
to processes involved in photosynthetic light reactions and
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Fig. 2 Principal component analysis (PCA) on levels of (a) the primary C/N-metabolome, (b) protein abundance, and (c) phosphopeptide abundance.
Accession samples are represented by filled circles (Cvi) and filled diamonds (Rsch). Blue colour indicates non-acclimated samples, black colour indicates
acclimated samples. Detailed information about loadings and explained variances of the PCA as well as absolute levels of metabolites, relative levels of

proteins and phosphopeptides are provided in the supplements

the Calvin cycle (Additional file 4: Table S2). PCA revealed
a very pronounced cold acclimation-induced effect for
levels of the ribosomal 40 and 60S subunit (see Additional
file 4: Table S2) indicating a systematic reprogramming of
the translational machinery in both accessions (Fig. 5). A
detailed list of ribosomal components is provided in the
supplements (Additional file 5: Table S3). In both acces-
sions, levels of several ribosomal protein components were
significantly increased after cold acclimation, and this effect
was found to be even more pronounced in Rsch than in
Cvi (see Additional file 5: Table S3).

A full and detailed list of all functional categories of the
proteome and their hierarchy concerning the accession-
and acclimation-specific separation is provided in the sup-
plements (Additional file 4: Table S2).

Changes in the phosphoproteome of Cvi and Rsch during
cold acclimation

Similar to the proteome, also the phosphoproteome, i.e.
the detected and quantified phosphopeptide abundances,
revealed a stronger separation of accessions compared to
acclimation states (Fig. 2c, Additional file 3: Figure S2).
Yet, also in this context the explained variances by PC1
(accession) and PC2 (acclimation) only differed by ~6 %
indicating a similar contribution to the separation. The
most dominating accession-specific effects in the phos-
phoproteome were found to comprise processes of
membrane transport and trafficking, modulation of tran-
scription factors and ubiquitination (Additional file 6:
Table S4). In particular, one of the most characteristic
and significant differences between Cvi and Rsch could
be observed for the phosphorylation levels of BASIC
PENTACYSTEINE 6 (BPC6; AT5G42520; Fig. 6a), a
member of a plant-specific transcription factor family.
The phosphorylation level was found to be constitutively
higher in Rsch compared to Cvi (p <0.01). In contrast,
phosphorylation levels of the plasma membrane intrinsic
protein PIP2;3 (AT2G37180) were found to be constitu-
tively higher in Cvi (Fig. 6b; p < 0.001).

Detected cold acclimation-induced changes in the phos-
phoproteome, which were displayed on PC2 (Fig. 2c),
revealed a complex pattern of in vivo phosphorylation af-
fecting various transcription factors, photosynthetic elec-
tron carriers, ribosomal subunits, processes of protein
assembly and the cytoskeleton (Additional file 6: Tables S4
and Additional file 7: Table S5). The most significant cold
acclimation-induced effect on phosphopeptide levels
was detected for the protein Cold Regulated 78, COR78

(AT5G52310). In both accessions, relative levels of phos-
phorylated COR78 peptides were found to be significantly
increased after cold acclimation (p < 0.001; Fig. 7a). Further,
a significantly higher phosphorylation level was detected in
cold acclimated samples of Rsch compared to acclimated
samples of Cvi (p <0.05). The same pattern was observed
for the relative protein abundance of COR78 which was
also significantly higher in non-acclimated samples of Rsch
(p < 0.05; Fig. 7b).

Integrative analysis of metabolism and predicted protein-
protein-interaction networks (PPIN) during cold acclimation
To derive a comprehensive overview of accession-specific
and cold acclimation-induced molecular processes, col-
lected experimental information about metabolite, protein
and phosphopeptide levels was clustered according to
their Euclidean distance after standardization (zero mean
& unit variance; Fig. 8a). While for both Cvi and Rsch
clusters could be identified which were not affected by the
cold acclimation process (Additional file 8: Table S8), cold
affected proteins were analysed in protein interaction net-
works predicted by the STRING database (see Methods)
(Fig. 8b, c). Both created interaction networks differed
clearly in their size. While the cold-response network of
the cold-tolerant accession Rsch comprised almost
4000 protein interactions (Additional file 9: Table S6),
the Cvi network only comprised about 500 interactions
(Additional file 10: Table S7). A predominant and com-
mon effect of cold acclimation in both accessions was the
reprogramming of protein synthesis, i.e. of ribosomal sub-
units (Table 1). About 65-80 % of all cold-affected protein
interactions were found to be related to this functional
category. In a more specific context, this finding is also
displayed in Fig. 5 showing the cold-induced reprogram-
ming of the ribosomal 40 and 60S subunit. A more con-
trasting picture between both accessions was observed for
proteins and phosphorylation levels associated with pro-
cesses of protein degradation, Calvin Cycle, photosyn-
thetic light reactions, TCA cycle, amino acid synthesis,
photorespiration, redox metabolism, protein folding, gly-
colysis, and lipid metabolism (Table 1). These processes
were found to be involved much stronger in the cold accli-
mation responsenetwork of Rsch compared to Cvi.

Discussion

Cold acclimation of plants represents a multifaceted and
multigenic process affecting various levels of molecular or-
ganisation, e.g. gene expression, RNA processing or post-
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Fig. 3 The primary metabolome in cold-acclimated leaf samples of accessions Rsch and Cvi. a Ratios of metabolite levels which were built by dividing
the absolute mean values of metabolite levels of Rsch by levels of Cvi which were assessed by a GC-TOF/MS measurement (see Methods - GC-MS
Metabolite Analysis; n = 3). Asterisks indicate significant differences as described in the figure. Grey-coloured metabolites were not experimentally
analysed. b Absolute starch levels in non cold-acclimated (blue bars) and cold acclimated (red bars) leaf samples of Cvi and Rsch (n = 3). Asterisks indicate

significant differences (* p < 0.05; ** p<001; ** p < 0.001)

translational regulation [44, 45]. Hence, although numer-
ous comprehensive studies have unravelled many crucial
processes being involved in the acclimation process (for an
overview see e.g. [46]), it is not surprising that many gaps
still exist in our understanding of how metabolism is re-
programmed, and how the metabolic output is linked to
the observed physiological output, e.g. changes in growth
and yield. In general, plant growth requires a sufficient
supply with energy, water and nutrients and is regulated in
response to environmental changes. These environmental
cues are sensed and integrated by a highly complex and
conserved signalling network [47].

An efficient balancing of photosynthesis and respir-
ation was shown to be a prerequisite for plant growth
[48] and cold acclimation [29]. With regard to these two
central processes, our findings revealed a more complex
cold-induced metabolic reprogramming in the cold tol-
erant Arabidopsis accession Rsch which also showed a
significantly higher shoot fresh weight than both non-
acclimated and acclimated plants of Cvi (see Fig. 1). In
addition, also glycolysis, TCA cycle and pathways of
amino acid biosynthesis were found to be differentially
affected by low temperature in both accessions. To-
gether with the observed levels of sugars, organic and
amino acids, which were, on an average, significantly
higher in acclimated plants of Rsch, this points to a dif-
ferential cold-induced redirection of carbon equivalents
in both accessions. While we cannot experimentally ex-
clude a limitation of CO, uptake as a reason for the
lower metabolite levels in cold-acclimated plants of Cvi,
there are several indications which rather suggest a dif-
ferential regulation of carbon allocation to be the reason
for the observed phenotype. First, on the level of the
total proteome, we could observe a separation of accli-
mation states but not of accessions by cold-induced pro-
tein dynamics related to photosynthetic dark and light
reactions (Additional file 11: Table S9). Second, in a
former study, the analysis of the photosynthetic carbon
uptake was found to be similar in cold-acclimated plants
of cold sensitive and tolerant accessions [49]. While
Nigele and colleagues did not analyse the Cape Verde
accession Cvi but the cold-sensitive accession C24 ori-
ginating from the Iberian Peninsula, further support of
this hypothesis is provided by another study in which
photosynthetic acclimation of Cvi was compared to the
Finnish accession Hel-1, originating from Helsinki [50].
There, the author found that both accessions, originating

from contrasting climates, showed a highly similar cap-
ability to acclimate to a broad regime of temperature
and irradiance. Another indication for a non-limited
CO,-uptake is provided by the starch levels which were
found to increase to a significantly higher level in Cvi
than in Rsch (see Fig. 3). This agrees with the findings of
Guy and co-workers who also described a significantly
higher starch level in Cvi compared to Rsch after cold
acclimation [12]. Based on this observation, Guy and co-
workers suggested that, following a sufficiently long ac-
climation period, even in poorly acclimating accessions
like Cvi energy constraints do not seem to limit the ac-
quisition of freezing tolerance. Although our growth
conditions (5 °C/7d of acclimation/125 pmol m™*s™") do
not exactly reflect the growth conditions applied in the
study of Guy and co-workers (4 °C/14d acclimation/
90 umol m™? s7'), we still observed a similar output of
starch metabolism.

To derive an explanation for the observed differences in
starch metabolism, which has previously been suggested
to be a major regulator of plant growth [51], the regula-
tion of both starch synthesis and degradation has to be
considered. While our study does not account for enzym-
atic activity, our proteomic results provide evidence for a
different regulation of starch metabolism in cold accli-
mated plants of Cvi and Rsch. While, independently from
cold exposure, levels of alpha-amylase AMY3 were found
to be constitutively higher in Rsch than in Cvi, a cold-
induced significant reduction in the level of beta-amylase
BAMS3 could only be observed for Cvi, while isoamylase 3,
ISA3, was significantly increased only in cold-acclimated
plants of Rsch. Alpha-, beta- and isoamylases play crucial
roles in starch degradation [52-54], and, hence, these
findings hint towards a distinct regulation of starch deg-
radation which was previously discussed to play a decisive
role in the process of cold acclimation [55, 56]. Starch
molecules consist of mostly unbranched amylose (alpha-
1,4-linked glucosyl moieties) and branched amylopectin
(alpha-1,6-linked moieties). While alpha-amylase, hydro-
lysing the alpha-1,4-glucosidic linkages of starch, plays a
central role in the degradation of storage starch in endo-
sperm of germinating cereal seeds [57], a disruption of
AtAMY3 by insertional mutagenesis did not affect starch
degradation in Arabidopsis leaves [58]. However, removal
of AMY3 in addition to the debranching, alpha-1,6-link-
age hydrolysing, enzyme ISA3 was shown to lead to a
strong starch excess phenotype [54]. A triple mutant with
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Fig. 4 Relative protein levels of amylase enzymes in non cold-acclimated (na) and cold-acclimated (acc) leaf samples. a Levels of alpha-amylase-like 3
(AMY3; AT1G69830), and (b) Levels of chloroplast beta-amylase (BAM3; AT4G17090), and (c) Levels of isoamylase 3 (ISA3; AT4G09020). Blue colour indicates
the accession Cvi, red colour indicates the accession Rsch (n= 3). Filled bars represent means + SD of na samples, hatched bars represent means + SD of
acc samples. Asterisks indicate significant differences between accessions (* p < 0.05; ** p < 0.01). Abundances were normalised to total protein content of
the sample

15 ¢

0

- -

-0.5

z-score of rel. protein abundance

-1

40S subunit 60S subunit

05 -

\

05 -

z-score of rel. protein abundance
o

-1.8 -
40S subunit 60S subunit
Fig. 5 Cold-induced increase of the ribosomal 405 and 60S subunit in the Arabidopsis accessions (a) Cvi and (b) Rsch. Colours indicate the different
accessions (blue: Cvi; red: Rsch), filled and hatched bars differentiate cold acclimation states (filled: na; hatched: acc). Bars and error bars represent the
mean =+ SD of relative protein abundance after standardization (zero mean & unit variance, z-score). Means + SD were built from those ribosomal
protein compounds which were identified to contribute strongest to the separation of na and acc samples (see PCA in Fig. 2b and Additional file 4:
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an additional removal of limit dextrinase, LDA, which rep-
resents another debranching enzyme, was finally shown to
result in an effective block of starch breakdown accumu-
lating even higher levels of starch than observed before in
the double mutant [54]. While our presented shotgun pro-
teomics approach could not resolve the cold-induced ef-
fect on LDA in either of both accessions, our findings
indicate that the combination of constantly lower AMY3-
levels in Cvi and a cold-induced increase in ISA3-levels in
Rsch might provide an explanation for the higher starch
levels observed in cold-acclimated plants of Cvi.

The complete process of (transitory) starch breakdown
from the insoluble granule to the soluble compounds mal-
tose and glucose comprises numerous additional steps and
classes of enzymes, finally resulting in a complex and
tightly (redox) regulated pathway [52, 59]. Beta-amylases
(BAMs) primarily hydrolyse glucan chains, which have
been previously released and linearized, liberating maltose
[52]. The multigene family of BAMs in Arabidopsis thali-
ana comprises nine genes, and BAM3 was shown to en-
code a catalytically active plastidial enzyme playing a
central role in leaf starch degradation at night in mesophyll

34



Nagler et al. BMC Plant Biology (2015) 15:284

Page 12 of 19

*X%

a *
- 30 | **K
3
8,
8§ 25
o
H
2
2 207
-
£ 15
£
[-%
]
£ 10 -
S
s
e 5
]
£ 5
Cvi
b ¥ X%
*%
1.4 I
3 1.2 1
&
©
g 14
3
e
2
s 0.8
c
2
°
5 06
H
s
£ 04
°
g
= 024
0 4
Cvi Rsch
Fig. 7 Relative phosphorylation and protein levels of COR78. a Bars represent mean values (+SD, n = 3) of relative COR78 (AT5G52310) phosphopeptide
abundance. b Bars represent mean values (+SD, n = 3) of relative COR78 (AT5G52310) protein abundance. Colours indicate the accessions (Cvi: blue; Rsch:
red). Filled bars indicate values of non-cold acclimated samples, hatched bars indicate values of cold acclimated samples. Asterisks indicate significant
differences (* p < 0.05, ** p <001, *** p < 0.001)
g

J

cells [60, 61]. Hence, our finding of a significant decrease
of BAM3 protein levels in cold acclimated plants of Cvi
provides a further explanation for the strong increase of
starch levels. The observation of a decrease in BAM3 pro-
tein levels contrasts the finding of a cold induced increase
of BAM3 expression [56]. However, in a recent publication
Monroe and co-workers derived a more complex picture
in which the authors observed a decline in BAM3 activity
after 2d and 4d of cold stress while BAM3 mRNA levels

clearly increased [62]. Although these results were derived
from studies within the genetic background of the Arabi-
dopsis accession Columbia-0, and, hence, might not directly
be comparable to the background of Cvi, they indicate the
complex interplay of molecular levels of organization dur-
ing exposure to a fluctuating environment. Such an adap-
tive and differential regulation of starch metabolism in
response to cold was also exemplified in a previous study
on the starchless Arabidopsis thaliana pgm mutant being
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Fig. 8 Hierarchical cluster analysis and functional protein interaction networks of cold acclimation-induced reprogramming. a Hierarchical clustering of
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Protein-protein interaction network of all proteins and phosphoproteins which were found to be involved in the cold acclimation-induced reprogramming
of Rsch. ¢ Protein-protein interaction network of all proteins and phosphoproteins which were found to be involved in the cold acclimation-induced
reprogramming of Cvi. Interaction networks were created using the STRING database for known and predicted protein-protein interactions (setting: highest
confidence (0.9); http//string-db.org/) [85). A detailed list of protein-protein interactions for both accessions is provided in the supplement (Additional file 9:

Table S6 and Additional file 10: Table S7)
S
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Table 1 Proteomic adjustment and functions in the cold Table 1 Proteomic adjustment and functions in the cold
acclimation of Rsch and Cvi acclimation of Rsch and Cvi (Continued)
Functional Category Arabidopsis  Relative contribution to accession- Cvi .
Accession specific cold response [%)]
- - Major CHO Rsch 0.26
Protein synthesis Rsch 65.59 metabolism & )
Cvi 7947
Tetl | Rsch 0.26
Protein degradation Rsch 5.81 Se e e
ynthesis Cvi 161
Cvi 1.83 ’
Calvin cycle Rsch 4.54 Tistpoit e @
Cvi 034 c )
Light reactions Rsch 401 Misc. fisch 020
Qi 034 - )
TCA Rsch 276 N-Metabolism Rsch 0.20
Qi 057 - )

) ) Co-factor and Rsch 0.13
Am;ao god Rsch 23 vitamin metabolism Cvi 069
synthesis Qi 172 X

ignalli Rsch Al
Not assigned Rsch 1.61 Signalling = s
Cvi 092 Cvi 034
& s Amino acid Rsch 0.12
Photorespiration Rsch 1.40 degradation '
) Cvi -
Cvi -
Minor CHO Rsch 0.12
Redox Rsch 1.23 metabolism . )
Qvi 046
Cell { Rsch 0.09
Protein folding Rsch 117 Sl =
Qi 057 v )
: Protein assembly/ ~ Rsch 009
Glycolysis Rsch 1.00 Cofactor ligation . i
Cvi 0.23 ’
Lipid metabolism Rsch 1.00 HAA el 0
i 023 Cvi 3.56
Protein PTM h 07
Nucleotide Rsch 0.95 oINPT e 0
metabolism ) Cvi -
CQvi -
Biodegradation of ~ Rsch 0.06
OpP Rsch 091 xenobiotics .
: Cvi -
Cvi -
Stress Rsch 072 Protein activation Rsch 0.06
i 550 Cvi 023
. Hormone Rsch 0.04
Gluconeogenesis Rsch 0.65 metabolism _
) Cvi -
Qvi -
Secardry Rsch 061 Cell organisation Rsch 003
metabolism Cvi 023 Cvi -
S-assimilation Rsch 040 Metal handling Rsch 003
i ) Cvi -
Protein targeting Rsch 0.33 Ceilaivisian Hech ol
Qi 046 o -
All listed categories represent protein functions and their relative portion to all
mETC Rsch 032 interactions which were identified by the STRING database analysis and which
Cvi 046 were found to be affected after the cold acclimation process (see Fig. 8)
DNA synthesis Rsch 0.27
Cvi -
C1 metabolism Rsch 0.26
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deficient in a phosho-glucomutase activity [63]. In this
study, the cold/heat-stress-induced increase of raffinose-
family-oligosaccharide levels in the pgm mutant plants
revealed an unexpected flexibility to adjust central metab-
olism to temperature stress in the absence of transitory
starch.

Based on our investigation of the two natural accessions
Rsch and Cvi during cold-acclimation, we suggest that the
orchestration of growth and cold acclimation differs sig-
nificantly in the redirection of photoassimilates between
soluble metabolic compounds and the insoluble storage
compound starch. In addition, the observation described
in a previous study, that the biomass formation in the
starchless pgm mutant is restricted by high respiratory
losses in the root [48], allows us to hypothesise that the
differences we observed in the fresh weight of Cvi and
Rsch might also be due to a differential regulation of sink-
source interaction both before and after the cold acclima-
tion period. In future studies it would be interesting to
analyse whether the observed differences in starch degrad-
ation are somehow related to resource allocation and root
respiration in both accessions.

In context of Arabidopsis cold acclimation, the C-repeat
binding factor (CBF) pathway belongs to one of the most
intensively studied pathways which has a crucial role in
the development of freezing tolerance [64]. Within mi-
nutes after transfer to low temperature, the CBF1-3 [65],
i.e. DREBla-c [66], expression is induced. They encode
members of the AP2/ERF family of transcription factors
recognizing the C-repeat (CRT)/dehydration-responsive
element (DRE) being present in the promotors of CBF-
targeted genes [66]. The constitutive overexpression of ei-
ther CBF1, 2 or 3 alters the expression of cold-regulated
(COR) genes resulting in an increase of freezing tolerance
without exposure to low temperature [67, 68]. In the
present study, the level of COR78 (AT5G52310) and its
phosphorylation were observed to be positively correlated
with the acclimation state of both accessions. Further, in-
dependent from the acclimation state, protein levels were
found to be constitutively higher in Rsch than in Cvi.
Interestingly, COR78 transcript abundance was previously
discussed to be regulated by sucrose [69] which would ex-
plain our findings of higher protein abundance and su-
crose levels in Rsch (see Figs. 3 and 7). In addition, these
observations allow for the speculation about a link be-
tween sugar signalling networks and the cold respon-
sive gene regulation which could probably comprise
central conserved signalling compounds like the com-
plex and antagonistic interaction network spanned by
the kinases Sucrose-non-fermenting-1-Related Protein
Kinase 1(SnRK1) and Target Of Rapamycin (TOR) [70].

Finally, the observation of differentially phosphorylated
transcription factors, like the BASIC PENTACYSTEINE
(BPC), but also membrane proteins, e.g. PIP2;3 aquaporins
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which are involved in numerous developmental and
growth-regulatory processes [71, 72], clearly shows the
wide range of cellular processes which might contribute
to a systematic and differential stress acclimation out-
put in naturally occurring accessions of Arabidopsis.
Our results indicate that a comprehensive reprogram-
ming not only of the process of protein synthesis, but
also of metabolic pathways regulating the flux of photo-
assimilates to the TCA cycle and to pathways of amino
acid biosynthesis, contributes to the stabilization of a
metabolic homeostasis during cold acclimation. Together
with previous studies on the stress-induced dynamics of
protein phosphorylation patterns, which have, for ex-
ample, revealed the central role of protein phosphoryl-
ation in cold-induced subcellular sugar allocation [73],
and its applicability to crop science [74], this clearly indi-
cates the necessity for integrative molecular profiling ap-
proaches to unravel a comprehensive picture of complex
plant acclimation strategies.

Conclusions

The findings presented in this study provide evidence for
a central role of the starch degradation pathway in the
molecular orchestration of plant growth and abiotic plant-
environment interactions in different natural Arabidopsis
accessions. We conclude that manipulation of the starch
degradation pathway represents a promising target for im-
proving plant yield and stress tolerance. We hypothesise
that stress-induced reprogramming of starch degradation
plays a central role in the orchestration of photosynthetic
metabolism rather than being a pure consequence from
cold-induced metabolic changes. Together with repro-
gramming of translational regulation and protein synthesis
it seems to differentially affect the cold-induced metabolic
homeostasis which finally contributes to the observed ac-
climation output.

Methods

Plant cultivation and sampling strategy

Plants of Arabidopsis thaliana natural accessions Cvi-0
(NASC ID: N1097) and Rsch-0 (NASC ID: N1490; both
accessions donated by: Albert Kranz Institute for Molecu-
lar Biosciences, Department of Biological Sciences, Johann
Wolfgang Goethe-Universitit Frankfurt am Main) were
cultivated in a growth chamber under controlled condi-
tions. The substrate for plant growth was composed of
Einheitserde® ED63 and perlite. Plants were watered daily
and fertilized once with NPK fertilization solution (WUX-
AL’Super; MANNA’-Diinger, Ammerbuch). Light inten-
sity was 75 pumol m ™2 s in a 8/16 h day/night cycle with
a relative humidity of 70 % and a temperature of 22 °C/
16 °C. 28 days after sowing, light intensity was increased
to 125 pmol m ™2 s™! in a 16/8 h day/night cycle. At bolt-
ing stage, which was 43 days after sowing, samples of non-
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acclimated plants were collected from both accessions at
midday, i.e. 8 h after light on. One sample consisted of 3
leaf rosettes. Non-sampled plants were transferred to 5 °C
at 125 ymol m ™ s™! in a 16/8 h day/night cycle with 70 %
humidity. After 7 days at 5 °C, leaf rosettes were sampled
as described for non-acclimated plants, i.e. each sample
consisted of 3 leaf rosettes. At this growth stage, both ac-
cessions had induced inflorescence which was slightly
higher (<1 c¢m) in Cvi than in Rsch. All samples were im-
mediately quenched in liquid nitrogen. Sample material
was stored at —80 °C until use.

GC-MS metabolite analysis

Frozen sample rosettes were ground to a fine powder with
pestle and mortar under frequent cooling with liquid ni-
trogen. Polar metabolites were extracted and chemically
derivatized as described previously [75, 76]. Gas chroma-
tography coupled to mass spectrometry (GC-MS) analysis
was performed on an Agilent 6890 gas chromatograph
(Agilent Technologies®, Santa Clara, CA, USA) coupled to
a LECO Pegasus® 4D GCxGC-TOF mass spectrometer
(LECO Corporation, St. Joseph, MI, USA). Compounds
were separated on an Agilent HP5MS column (length:
30 m, diameter: 0.25 mm, film: 0.25 pm). Deconvolution
of the total ion chromatograms was performed using the
LECO Chromatof” software. For absolute quantification of
metabolites, peak areas were compared to calibration
curves within a linear range of detection. Compound
names, retention indices and mass-charge (m/z)-ratios
which were used for peak quantification are provided in
the supplements (Additional file 12: Table S10).

Protein extraction, phosphopeptide enrichment and LC-MS
analysis

Total protein was extracted from 1 g of ground plant ma-
terial as previously described [77]. Protein pellets were dis-
solved in 8 M urea/100 mM ammonium bicarbonate
(AmBic) and protein concentration was determined with
the Bio-Rad Bradford Assay using BSA as a standard.
1050 pg of total protein per sample were first reduced with
dithiothreitol (DTT) at concentration of 5 mM at 37 °C for
45 min. Cysteine residues were alkylated with 10 mM
iodoacetamide (IAA) in darkness at room temperature
(RT) for 60 min. Alkylation was stopped by increasing
DTT concentration to 10 mM and incubating in the dark
at RT for 15 min. Proteins were first pre-digested with
Lys-C (1:1000 w:w) at 30 °C for 5 h. Then the urea con-
centration was diluted to 2 M with 50 mM AmBic/10 %
acetonitrile (ACN).CaCl, was added to a final concentra-
tion of 2 mM. Trypsin digestion (Poroszyme immobilized
trypsin; 1:100 v:w) was performed at 37 °C overnight. Pro-
tein digests were desalted with C18 extraction materials
(Agilent Technologies, Santa Clara, USA) and carbon
graphite solid phase extraction (SPE) materials as described
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elsewhere [78]. After both SPEs, corresponding eluates
were pooled, split in two tubes (50 pg for total proteomics
and 1000 pg for phosphopeptide enrichment) and dried in
a vacuum concentrator. Phosphopeptide enrichment was
performed using 10 mg of TiO, (Glygen Corp.) as de-
scribed previously [40, 79].

One microgram of total protein was separated on a
PepMap RSLC 75 pm x 50 cm column (Thermo Fisher
Scientific Inc., Waltham, USA) using a 120 min linear
gradient from 2 to 40 % of mobile phase B (mobile phase
A: 0.1 % [v/v] formic acid (FA) in water; mobile phase B:
0.1 % [v/v] FA in 90 % [v/v] ACN) with 300 nL/min flow
rate. MS analysis was done with an Orbitrap Elite instru-
ment (Thermo Fisher Scientific Inc.,, Waltham, USA)
using a data-dependent acquisition method. Precursor
masses at range 350-1800 Th were measured in the
Orbitrap mass analyser with a resolution of 120 000, 1 x
10° ion population, and 200 ms injection time. MS/MS
analysis was done in the linear ion trap with CID frag-
mentation and rapid scan mode for the 20 most intense
ions. Prediction of ion injection time was enabled and
the trap was set to gather 5 x 10? ions for up to 50 ms.
Dynamic exclusion was enabled with repeat duration of
30 s, exclusion list size was set to 500 and exclusion dur-
ation to 60 s.

Phosphopeptides were dissolved in 10 pL of 5 % ACN/
0.5 % FA and 5 pL were loaded on the column. The LC-
MS analysis was done as the analysis of total protein di-
gest with a few modifications. The gradient was 150 min
from 2 to 40 % of mobile phase B and multistage activa-
tion was enabled with neural losses of 24.49, 32.66,
48.999, 97.97, 195.94, and 293.91 Da for the 10 most in-
tense precursor ions. Further information about LC-MS
analysis for reproducibility of experiments is provided in
the supplements (Additional file 13: Table S11).

Data analysis and statistics

Peptide identification, phosphosite mapping as well as pro-
tein and phosphopeptide quantification were performed
with MaxQuant 1.4 (http://www.maxquant.org ) [80] and
the Andromeda search algorithm [81] against the TAIR10
protein database. Total proteomics analysis was done with
the following settings: maximum 2 missed cleavages, me-
thionine oxidation, and protein N-terminal acetylation as
dynamic modifications were allowed. Mass tolerance for
precursors was set to 5 ppm and for fragment masses to
0.8 Da. The maximum FDR was set to 1 % for both peptide
and protein levels. Protein quantification was done with a
peptide ratio count of, at least, 2. Phosphopeptide identifi-
cation was performed applying similar settings as in the
total protein analysis. Phosphorylation of serine, threonine
and tyrosine residues were additionally allowed to occur as
dynamic modifications. Because the phosphorylation near
a tryptic site could hinder digestion, 3 missed cleavages
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were allowed. Quantification was done at peptide level.
Further data processing was done with the Perseus 1.5
software. Total proteomics data was log, transformed
and filtered so that at least in one of the four condi-
tions all values were present. Data was normalized to
median of each sample and missing values were re-
placed with random numbers drawn from normal dis-
tribution of each sample. Phosphoproteomics data was
handled similarly but additional filtering steps were ap-
plied: only phosphopeptides belonging to category I
(localization probability >0.75 and score difference >5)
[82] were considered for further analyses.

Data evaluation, normalisation and transformation was
performed in Microsoft Excel® (http://www.microsoft.com).
For Principal Component Analysis (PCA) and hierarchical
cluster analysis, z-scores (zero mean, unit variance) were
calculated for relative protein and phosphopeptide abun-
dance. Metabolite PCA was performed on absolute levels.
Analysis of variance (ANOVA) and Student’s t-test were
performed with the R software (The R Project for Statistical
Computing; http://www.r-project.org/) (R Core [83]). PCA
and hierarchical cluster analysis was performed within the
numerical software environment Matlab® (V8.4.0 R2014b;
www.mathworks.com) and the toolbox COVAIN [84].
Protein-protein interaction networks were created using
the STRING database for Known and Predicted Protein-
Protein Interactions (setting: highest confidence, 0.900;
http://string-db.org/) (von Mering et al. [85]).
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The functional connection of experimental metabolic time series data with biochemical
network information is an important, yet complex, issue in systems biology. Frequently,
experimental analysis of diurnal, circadian, or developmental dynamics of metabolism
results in a comprehensive and multidimensional data matrix comprising information
about metabolite concentrations, protein levels, and/or enzyme activities. While,
irrespective of the type of organism, the experimental high-throughput analysis of
the transcriptome, proteome, and metabolome has become a common part of
many systems biological studies, functional data integration in a biochemical and
physiological context is still challenging. Here, an approach is presented which
addresses the functional connection of experimental time series data with biochemical
network information which can be inferred, for example, from a metabolic network
reconstruction. Based on a time-continuous and variance-weighted regression analysis
of experimental data, metabolic functions, i.e., first-order derivatives of metabolite
concentrations, were related to time-dependent changes in other biochemically relevant
metabolic functions, i.e., second-order derivatives of metabolite concentrations. This
finally revealed time points of perturbed dependencies in metabolic functions indicating a
modified biochemical interaction. The approach was validated using previously published
experimental data on a diurnal time course of metabolite levels, enzyme activities, and
metabolic flux simulations. To support and ease the presented approach of functional
time series analysis, a graphical user interface including a test data set and a manual is
provided which can be run within the numerical software environment Matlab®.

Keywords: metabolic network, data integration, metabolomics, time series analysis, systems biology, network
dynamics

INTRODUCTION

The functional interpretation of experimental data in context of biochemical network information
represents one of the central challenges in current biological research. While genome sequencing
projects have enabled the reconstruction of genome-scale metabolic networks, their high
dimensionality precludes a direct and intuitive application to interpret experimental data. Hence,
although genome sequence information and metabolic networks have become available for
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numerous organisms, tissues, or cell types (Herrgard et al., 2008;
Chang et al., 2011; De Oliveira Dal’'Molin and Nielsen, 2013;
Thiele et al., 2013), functional metabolic data interpretation
still represents a major obstacle in systems biology. Various
mathematical and computational strategies from the fields
of multivariate statistics, ordinary, and partial differential
equations (ODEs/PDEs), optimization or statistical time
series analysis have been developed and applied to reveal
a biologically meaningful interpretation of comprehensive
and multidimensional experimental data sets. For example, a
computational model of starch metabolism in plants enabled
the analysis of starch kinetics through diurnal metabolic and
circadian sensors (Pokhilko et al., 2014). The authors developed
a model of 28 ODEs which were numerically simulated in order
to analyze diurnal kinetics of carbon metabolism in silico. In
another study, the response of Escherichia coli to varying oxygen
concentrations was analyzed applying a mathematical model of
the central metabolism (Ederer et al., 2014). Here, the authors
derived a prediction about the impact of product formation on
biomass concentration using steady state simulations at varying
environmental conditions.

Both examples for mathematical modeling differ in organism
and application. Besides, the dynamic approach can be
distinguished from the steady state approach. However, in
both approaches, dynamics of metabolic systems can be
described by sets of ODEs. If sufficient kinetic information is
available, such ODEs can be numerically integrated revealing
simulated metabolic concentrations depending on time, enzyme
parameters, thermodynamic constraints, etc. Yet, statistically
robust experimental enzyme kinetic information often limits
the applicability of such modeling approaches. Particularly, the
resolution of enzyme activities, substrate affinities, or inhibitory
constants is very laborious and only possible if well-established
experimental assays and sufficient biochemical knowledge are
available. Additionally, uncertainties about model structures and
reaction kinetics complicate the interpretation of a numerically
simulated output (Schaber et al., 2009). Such limitations have
been addressed by different theoretical approaches, for example
by structural kinetic modeling, SKM (Steuer et al., 2006). In the
SKM approach, local linear models are applied to explore and
statistically analyze a given parameter space without the need for
explicit information about functional forms of enzyme kinetics
and rate equations. Finally, a Jacobian matrix is derived which
characterizes the dynamic capabilities of a metabolic system
at a certain steady state. In previous publications, we have
developed a procedure to determine Jacobian matrices directly
from experimental metabolomics data (Nigele, 2014; Nigele
et al, 2014). Based on experimental metabolic (co)variance
information a metabolic regulator was identified indicating a
strategy how plant metabolism is reprogrammed during exposure
to energy limiting conditions. In a different context, other studies
have also shown that it is possible to infer regulatory information
about metabolic steady states from experimental data with such
approaches (see e.g., Steuer et al., 2003; Sun and Weckwerth,
2012; Kiigler and Yang, 2014).

Beyond these approaches of dynamic and steady state
modeling, time series analysis and related regression models
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offer another mathematical strategy to reveal information about
molecular system dynamics (Schelter, 2006). For example, Dutta
and co-workers developed an algorithm for identification of
differentially expressed genes in a time series experiment (Dutta
et al., 2007), which they also applied to integrate transcriptome
and metabolome data (Dutta et al., 2009). In another study,
statistical modeling and regression analysis revealed a nitrogen-
dependent modulation of root system architecture in the genetic
model plant Arabidopsis thaliana (Araya et al., 2015). While
these exemplarily mentioned studies present only a very small
fraction of possible statistical applications, it already becomes
evident that these are promising and necessary mathematical
approaches to reveal biologically meaningful information from
comprehensive experimental data sets being preliminary for
hypothesis generation and experimental validation. However, a
common problem of regression and correlation approaches in
a biochemical context is a missing functional linkage of the
results to causal biochemical interrelations, i.e., enzymatically
driven reactions. To overcome this limitation and to facilitate the
biochemical interpretation of the statistical results, the present
study derives a theoretical connection between mathematical
approaches of ODE-based dynamic modeling and statistical time
series analysis. Based on the stoichiometric matrix information
of a metabolic network, ratios of time-dependent derivative
functions were built providing an estimate for the strength
and probability of a metabolic interaction during the time
course. The suggested strategy was tested using previously
published experimental data sets on diurnal and stress-induced
dynamics of metabolite concentrations and related enzyme
kinetic information. Finally, a graphical user interface for Matlab
is provided which intends to facilitate the application of the
presented strategy.

RESULTS

Deriving Metabolic Functions by Inverse
Variance-Weighted Regression Analysis

Time-dependent dynamics of metabolite concentrations in a
biochemical network can be described by a set of ODEs:

d

Here, M represents an n-dimensional vector of mean metabolite
concentrations (c,), N is the n x k stoichiometric matrix
and v describes the k-dimensional vector of reaction rates
which depend on metabolite concentrations M, enzyme kinetic
parameters p and time t. The right side of the ODE system
can be summarized by metabolic functions, f(M,p,t). Hence,
these metabolic functions define the time-dependent changes in
metabolite concentration as a sum of all biochemical reactions
either consuming or producing a metabolite. A metabolic steady
state is described by ODEs which equal zero:

d
ZM® =0 )
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Linearization enables the investigation of the system behavior
close to a steady state. The linearization process results in the
so-called Jacobian matrix J which characterizes the dynamic
properties of the system at a steady state:

. 3
Bcl aC,,

J=|: - (3)
dcy dcy

Hence, in a biochemical context, the Jacobian matrix J describes
the behavior of metabolic functions f; (for i = 1,..,n) of a
metabolic network with regard to small changes of variables
¢;i (for i = 1,.,n), i.e., metabolite concentrations at the
considered steady state. The information if a metabolic function f;
biochemically depends on the concentration of a metabolite ¢; is
provided by the stoichiometric matrix N of a metabolic network
(see Equation 1).

To derive, ie., predict, time continuous information from
time discrete experimental observations, interpolation methods
can be applied. To prevent unrealistic oscillations of high-
degree polynomial interpolation, intervals of approximation can
be partitioned in subintervals which can be approximated, for
example, by cubic polynomials which form a cubic spline S (f)
(see e.g., Bronstein et al., 2008):

Sa () = e+ B (£ — ) + vis(t — )" + 85t — 1)’ @)

Here, it is t € [t tj1] with (j = 1, 2,.., z—1), where z
represents the number of interpolation nodes (¢, g;j), and it is
Se; (t) = gij. Interpolation coefficients are represented by «,
B, ¥, and 8. Due to the occurrence of experimental errors, the
requirement of S, (j) = g;j is not fulfilled which prevents the
suitability of such a type of interpolation. Instead, a smoothing
element can be introduced accounting for those experimental
errors:

z tz
min | > wijlgi — Se.(t)1* + A / [S;(t)]zdt (5)

j=1 t=t

Here, wj; represents a weighting factor, S;(t) is the second
derivative of S, (¢) , and A (with 1 > 0) represents a smoothing
factor. For A = 0, one obtains the cubic spline interpolation,
while the degree of smoothing increases with the value of A.
To connect the smoothing spline generation to experimentally
observed errors we defined the weighting factor w;; to equal the
inverse variance information, i.e., the inverse squared standard
deviation:

-1
- 1 ¢ _
le:alj 2 = (r_ IZ(CU[(—C,])Z) (6)
k=1

Here, r represents the number of experimental and independent
replicates.

Merging Equations (1), (5) and (6) and replacing g;; by the
mean concentration of metabolite i at time point j, ¢;; , reveals a
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description of metabolic functions by inverse variance-weighted
regression analysis:

d
T Mi (0 = fi(Mp.1)

z

r -1
d . 1 =
= E min E (: E (Cij.k - Cij)z)
j=1 k=1

t,

[65 — S, ()12 | +A f 5.1 | | @)

t=t

Hence, building the first derivative of the smoothed interpolation
of experimental time-course data reveals information about
the connected metabolic function. In the present study, this
approach was applied to evaluate a diurnal time course of
previously published metabolite concentrations (Nigele et al.,
2012) belonging to the central carbohydrate metabolism in leaves
of the genetic model plant A. thaliana. Diurnal dynamics of
metabolic functions are shown exemplarily (Figure 1) for the
metabolite pools of sucrose (Suc) and sugar phosphates (SP) in a
control experiment (non-cold acclimated, na) and after exposure
to low temperature (acc).

To characterize time-dependent changes in metabolic
functions, the second time-dependent derivative was built
from the approximated diurnal time course of metabolite
concentrations:

d? d
FMi(t) = d_tfi (M,p, t)
d? z 1 r o, -1
=2z | min | 2 | (=72 o =)
j=1 k=1
tz
= )
(&5 — S ()1 +A/ [S,,(t)] dt (8)
t=t|

As described for Figure 1, diurnal dynamics of those time-
dependent changes of metabolic functions are also shown
exemplarily for Suc and SP (Figure 2).

Connecting Metabolic Functions Based on

Biochemical Network Information

While the metabolic time-course information derived before
characterizes time-dependent rates of changes in each considered
metabolite concentration separately (see Equations 7 and
8), information of biochemical interdependencies, i.e., the
information about a substrate - product relationship between two
or more metabolites, is only contained implicitly. To explicitly
analyze and visualize these biochemical interdependencies with
regard to the time-dependent rates of concentrations changes,
a metabolic n x #» interaction matrix, Y, was derived where
n represents the number of metabolites comprised by the
model. In Y, each entry indicates whether two metabolites
are biochemically connected (entry: 1) or not (entry: 0). The
interaction is characterized analogous to entries of the Jacobian
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FIGURE 1 | Metabolic functions derived from inverse
variance-weighted regression analysis for (A) non-cold acclimated and
(B) cold acclimated plants. Metabolic functions f;(M,p,t) were derived for
sugar phosphates (SP) and sucrose (Suc) as described in the text (see
Equation 7). Experimental data were derived from a previous study comprising
metabolite levels of non-cold acclimated (na) and cold acclimated (acc) leaf
material of Arabidopsis thaliana, accession Col-0 (Nagele et al., 2012). White
and black bars on the top indicate light and dark phase of a diurnal cycle.

matrix (Equation 3): if the metabolic function of metabolite
A is biochemically connected to changes in concentrations of
metabolite B, the corresponding entry in Y is 1. Information
about metabolic functions is given row-wise, while biochemically
connected metabolites are indicated column-wise for each
function. In a simple example, containing three reactions
(r;-r3) and four metabolites (A-D), the construction and
content of Y is exemplified (Figure 3). The diagonal entries
indicate the biochemical dependencies of metabolic functions on
substrate concentrations. For example, Y;; = 1 indicates that
metabolic function f(A,t) depends on the concentration of A(t).
The non-diagonal entries describe interdependencies between
different metabolite pools. For example, Y,; = 1 indicates
that metabolic function f(B,t) depends on the concentration
of A(t).

Based on a previously published metabolic model (Nigele
et al., 2012), an interaction matrix Y was derived for the central
carbohydrate metabolism in leaves of A. thaliana. The metabolic
functions (Equation 7) and their time-dependent derivatives
(Equation 8) were related to each other according to the entries
of Y. This finally resulted in functions w(a — b, t) indicating
changes in metabolic functions of b in context of concentration
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FIGURE 2 | Time-dependent dynamics of metabolic functions derived
from inverse variance-weighted regression analysis for (A) non-cold
acclimated and (B) cold acclimated plants. Function dynamics were
derived for sugar phosphates (SP) and sucrose (Suc) as described in the text
(see Equation 8). Experimental data were derived from a previous study
comprising metabolite levels of non-cold acclimated (na) and cold acclimated
(acc) leaf material of A. thaliana, accession Col-0 (Nagele et al., 2012). White
and black bars on the top indicate light and dark phase of a diurnal cycle.

changes of a which might represent substrates, inhibitors or
activators:

2f,(Mp, 1)
Ja(M,p, 1)

With regard to the analyzed time-course of sugar phosphate
(SP) and sucrose (Suc) concentrations (see Figures1, 2),
w(SP—Suc, t) revealed information about the reaction of
sucrose biosynthesis, catalyzed by the enzyme sucrose phosphate
synthase (SPS):

w(a—bt)= , D={R\fa (M,p,t) =0} (9)

SugarPhosphates (SP) SES Sucrose (10)

In detail, w(SP—Suc, t) described changes in the metabolic
function of sucrose in context of concentration changes of its
biochemical substrate sugar phosphates:

4 foic(M,p, t)
fsp(M,p, t)

Comparing w(SP—Suc, t) for na and acc plants revealed a
noticeable difference between both conditions within the first

o (SP — Suc, t) = (11)
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4 h of the day (Figure4). Interestingly, in the same time
period, simulations of sucrose biosynthesis, based on a system of
ordinary differential equations (ODEs), revealed a similar picture
in which rates of sucrose biosynthesis were decreased only in acc
plants (Nigele et al., 2012).

Characterization of w(t)
o(t) represents a ratio of metabolic functions and related
derivatives. Hence, the unit of w(t) is derived from the flux unit
of a metabolic function, [mM s~ !]:

[460p.0]  [mms] 1
[@(a—b.t)] = Top. )] = [t 1] = [—] (12)

Here, concentrations are given in mM (mmol 171 and the time
unit is seconds (s).

This results in the unit of a rate or frequency. Hence,
|w(a— b,t)| was interpreted as oscillations of a metabolic function
per time-period with reference to a biochemical effector.

In the case of |w(a — b, t)| — oo fort — T, the influence of
the biochemical effector on a metabolic function was defined to
be strong, while |w(a — b, t)| — 0 for t — 1 indicated a weak
effect. In detail, |w(a — b, t)| — oo for t — T indicates that it is
|d/dt (fp(M,p,t))| >> |fa(M,p,t)|. Vice versa, |w(a — b, t)] — 0
for t — tindicates that |d/dt (f, (M,p,1))| << |fo(M,p,1)].

Application Example: Stress-Induced
Metabolic Reprogramming in Arabidopsis

thaliana

While in the above mentioned example, the calculation and
interpretation of w(t) was demonstrated in context of a
previously published kinetic ODE model, another published
data set was analyzed by this strategy comprising metabolite
levels of the primary and secondary metabolism in A. thaliana
(Doerfler et al., 2013). In the experiment performed by Doerfler
and co-workers, a combined strategy of gas chromatography
and liquid chromatography coupled to mass spectrometry was
applied in order to reveal a comprehensive picture of metabolic
reprogramming during exposure to low temperature and high
light intensity. The time period of stress exposure comprised
more than 2 weeks which allowed for the analysis of a short-
and long-term acclimation response in the metabolome of A.
thaliana, accession Col-0. A central output of the study was the
characterization of metabolomic and regulatory dynamics at the
interface of primary and secondary metabolism. The authors
observed a fast increase of stress-responsive compounds, e.g.,
sucrose, which became significant already after 2 days of stress
exposure, while the interaction with the secondary metabolism,
resulting in biosynthesis of flavonoids, became most significant
after 8 days of stress exposure.

To prove the suitability of deriving the absolute value
function |w(a—b, t)| in order to reveal steps of metabolic
regulation within a considered time interval, regression analysis
and metabolic functions were calculated for the dataset of
Doerfler et al. (2013) and compared to their observations. The
metabolic interaction matrix Y was derived from the metabolic
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and 1, indicate if two metabolites interact (entry 1) or not (entry 0).
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FIGURE 4 | Functions (t) indicating changes in metabolic functions in
context of concentration changes of biochemical interaction partners.
w(t) was calculated as described in the main text (see Equation 9). Results of
w(t) are shown for the reaction of sucrose biosynthesis for non-cold acclimated
(na) and cold acclimated (acc) leaf material of A. thaliana, accession Col-0
(Nagele et al., 2012). White and black bars on the top indicate light and dark
phase of a diurnal cycle.

network model which was previously suggested and applied for
inverse approximations of the Jacobian matrix (Doerfler et al.,
2013). For regression analysis and for integration of metabolic
network information we developed and applied a graphical
user interface (FEMTO, Functional Evaluation of Metabolic
Time series Observations) which is based on the numerical
software environment Matlab'® (http://www.mathworks.com),
and which is provided in the supplements together with a user
manual (Supplementary Files S1, S2).

To characterize sucrose metabolism, changes of the metabolic
function of sucrose were related to changes in sucrose
concentrations:

4 fouc(Myp, )

FoncMip, ) (13}

| (Suc — Suc, t)| =
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For time-dependent characterization of flavonoid dynamics,
changes in the flavonoid (Flav) metabolic function were related
to substrate concentration changes, i.e., phenylalanine (Phe)
dynamics:

| (Phe — Flav, t)| = (14)

%fFIav(M,P, t)
fPhe (M’P s t)

Results of metabolic function analysis and the resulting time
course of |w(t)| revealed an early de-regulation of sucrose
metabolism during the first 2 days of stress exposure (Figure 5A),
while the peak value of |w(t)| for flavonoid biosynthesis occurred
delayed after 8 days (Figure 5B).

These findings coincide with the previous findings described
by Doerfler and colleagues who applied the method of Granger
causality time-series correlation and a covariance-based inverse
approximation of Jacobian matrices to reveal strategies of
metabolic regulation (Doerfler et al., 2013). Conclusions which
have been drawn from the |w(t)| calculation were found to be
highly similar to the output of other statistical methods, finally
substantiating the validity of the suggested workflow and the
derived method to unravel time points of regulatory perturbation
in a biochemical system.

DISCUSSION

Mathematical analysis of biochemical system dynamics
represents a central focus of current biomathematical,
biochemical and biotechnological research due to the need
for methods and algorithms enabling a functional interpretation
of experimental data in context of a biochemical network.
Particularly, system dynamics which arise due to circadian
regulation (Harmer, 2009; Kumar Jha et al, 2015), diurnal
metabolic adjustment (Geiger and Servaites, 1994; Pokhilko
et al, 2014) or stress-induced metabolic reprogramming
(Jozefczuk et al., 2010; Kanshin et al., 2015) are hardly
traceable by intuition. Hence, this indicates a strong need for
suitable theoretical approaches being capable of resolving and
functionally connecting molecular moieties with underlying
biochemical regulation.

Various theoretical strategies have addressed this complex
issue, providing a comprehensive methodological platform for
time-series analysis, dynamic flux balance analysis, kinetic and
Boolean modeling (see e.g., Mahadevan et al., 2002; Schelter,
2006; Rohwer, 2012; Steinway et al., 2015). In a recent approach,
Willemsen and colleagues have modified the approach of
dynamic flux balance analysis by incorporating time-resolved
metabolomics measurements (Willemsen et al., 2015). With their
extended method, the authors derived an estimate of dynamic
flux profiles which allowed them to generate and test hypotheses
related to environmentally induced molecular dynamics. In
another recent study, a computational approach was suggested
to translate metabolomics data into flux information (Cortassa
et al,, 2015). One main methodological difference between the
studies of Willemsen et al. and Cortassa et al. was the extent
of kinetic information which was needed to estimate cellular
behavior and metabolic fluxes. While Willemsen et al. focused
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on minimalistic kinetic information, the study of Cortassa and
co-workers used a detailed kinetic model of glucose catabolic
pathways to derive flux information.

In our presented approach, flux information, which was
implicitly derived from spline interpolation, was interpreted only
indirectly by comparing time-dependent changes in metabolic
functions to concentration changes of biochemical reaction
partners. This procedure revealed information about a rate
which was interpreted in terms of metabolic functions related to
concentration changes in a substrate or co-substrate. Comparing
derived results to other methods, it was shown that changes in
ratios of second- to first-order derivatives between functionally
connected variables potentially reveal time points of regulatory
perturbation within a biochemical interaction. Hence, these
observed perturbations might indicate a change in enzymatic
activity, protein abundance, or allosteric regulation ultimately
leading to a change in the metabolic functions.

The information content of the introduced time-dependent
functions w(t) is related to entries of the Jacobian matrix J (see
Equation 3) indicating the dynamics of metabolic functions with
respect to (small) concentration changes at a certain steady state.
This theoretical connection of J and w(t) at a considered time
point ty might be illustrated in a simple first-order reaction
scheme.

k
A— B (15)
Here, substance A is interconverted into substance B, and the
reaction velocity is characterized by the rate constant k. The time-
dependent change in concentration of A equals dA/dt = —k-A.
Hence, a general solution of this ODE is given by A(t) = Age ™
which finally yields J11(tg) = w(A—A, ty) = —k.

With this, the information of w(t) becomes comparable to
entries of the Jacobian matrix J. Yet, in contrast to entries
of J, characterizing dynamic properties of a metabolic steady
state (d/dt M(t) = 0), functions w(t) were derived from a
time series of experimental data and might rather be valid
for a non-infinitesimal than for an infinitesimal time frame.
While for lim;_., |@(f)| , |@(t)| might be assumed to approach
entries of J, this was not tested in the present study and
would need experimental validation. In addition, while a
connection, and probable correlation, to other molecular levels,
such as the proteome or transcriptome, was not experimentally
analyzed, this might be a promising target for analysis in future
studies. However, the incorporation of an interaction matrix,
which, in the present study, was derived from a previously
published reaction network, and which might be derived from
genome-scale metabolic reconstruction works in future studies
(Weckwerth, 2011; King et al., 2015), provides direct evidence
for the biochemical and physiological relevance of the performed
theoretical analysis.

While our results indicate a realistic and biochemically
interpretable output of the presented method, limitations
of application might occur due to several reasons. First, the
presented method significantly depends on the knowledge about
the biochemical network structure and involved regulatory
interactions, e.g., feedback inhibition or feedforward activation.
Although regression analysis of time series data might be
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FIGURE 5 | Absolute value functions of w(t) for (A) sucrose metabolism and (B) flavonoid biosynthesis in leaves of Arabidopsis thaliana. Abscissae
indicate days of exposure to low temperature and high-light stress conditions. Detailed information about the calculation is provided in the main text (see Equations 13
and 14). Experimental data were derived from a previous study (Doerfler et al., 2013).
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performed for all network components independently, deriving
a reliable biochemical interaction matrix Y is essential to
reveal realistic information about time-dependent changes
in metabolic interactions. A second central prerequisite for a
meaningful regression analysis is the design of an adequate
experimental setup. This comprises the number of biological
(independent) replicates as well as the number and interval of
sampling points. It is hardly possible to generalize a number of
replicates or sampling points due to heterogeneous technical or
environmental fluctuations which are introduced by different
analytical techniques, growth conditions or sample types. Yet,
spanning various experimental scenarios, it might be generalized
that the interval of sampling points is crucial to be able to
discriminate between metabolic fast or short-term responses
and slow or long-term responses. Particularly to resolve fast
metabolic regulation, a narrow sampling interval is needed in
order to prevent any over-interpretation of regression analysis
and related derivatives. Comparing the presented approach to
methods of metabolic modeling, a third major limitation is the
missing predictive output by model simulations. For example,
enzyme kinetic models of metabolism aim at going beyond
the time interval of measured rate constants or metabolite
concentrations to predict changes in system dynamics under
changing environmental conditions or due to a mutated
gene. However, although our presented method cannot afford
this simulation output, time-dependent changes within the
considered time interval might indicate regulatory bottlenecks
and kinetic information supporting the numerical solution and
simulation of metabolic ODE models.

In summary, the suggested approach intends to promote
the functional interpretability of metabolic time series data
in context of metabolic network information. Particularly
with regard to multidimensional metabolomics data sets, this
might unravel strategies of complex biochemical regulation
and might overcome some limitations in the generation of
testable hypotheses as we have discussed previously (Nigele and
Weckwerth, 2012). Finally, the direct integration of biochemical
network information with experimental data promises to enable
the functional interpretation and the causal connection of various
levels of molecular organization.
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MATERIALS AND METHODS

The described procedure of data analysis, spline interpolation
and graphical representation was performed within the
numerical software environment Matlab®. A Matlab-based
graphical user interface (FEMTO, Functional Evaluation of
Metabolic Time series Observations) was developed and is
provided, together with a user manual, in the supplements
(Supplementary Files S1, S2).
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Experimental high-throughput analysis of molecular networks is a central approach to characterize the
adaptation of plant metabolism to the environment. However, recent studies have demonstrated that
it is hardly possible to predict in situ metabolic phenotypes from experiments under controlled
conditions, such as growth chambers or greenhouses. This is particularly due to the high molecular
variance of in situ samples induced by environmental fluctuations. An approach of functional
metabolome interpretation of in field samples would be desirable in order to be able to identify and
trace back the impact of environmental changes on plant metabolism. To test the applicability of
metabolomics studies for a characterization of plant populations in the field, we have identified and
analyzed in situ samples of nearby grown natural populations of Arabidopsis thaliana in Austria.
Arabidopsis thaliana is the primary molecular biological model system in plant biology with one of the
best functionally annotated genomes representing a reference system for all other plant genome
projects. The genomes of these natural populations were sequenced exemplarily and phylogenetically
compared to a comprehensive genome database. Experimental results on the primary and secondary
metabolomic constitution were functionally integrated by a data mining strategy which combines
statistical output of metabolomics data with genome-derived biochemical pathway information. This
approach indicated different strategies of metabolic regulation on a population level which enabled
the direct comparison, differentiation and prediction of metabolic phenotypes. Finally, hyphenated
LC/MS-driven analysis of secondary metabolism allowed for the direct classification of Arabidopsis

populations within geographically contiguous sampling sites.

Keywords: metabolic phenotype, in situ analysis, metabolomics, Arabidopsis thaliana, metabolic

modeling, natural variation, Jacobian matrix, Green Systems Biology
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Introduction

Natural variation, as first described by Darwin (Darwin 1859), is the ultimate point of attack for natural
selection and still the only known process that is able to produce adaptive evolutionary change.
Arabidopsis thaliana has become a powerful model organism for studying many aspects of plant
biology (Somerville & Koornneef 2002). After the publication of a first complete reference genome
sequence (AGIl, 2000), it was discovered that it is inappropriate to think about ‘the’ genome of a species
(Weigel & Mott 2009). In fact, all species are exposed to specific environmental clines differently
affecting individual plants’ phenotypic performance (Ellenberg 1953; Hoffmann 2002; Lasky et al. 2012;
Turesson 1922; Weigel 2012). Therefore, they comprise different populations colonizing different
habitats. These habitats may impose differing directions of natural selection upon the coenospecies,
and thus - together with genetic drift - lead to diverging allele frequencies and to an inhomogeneous
genetic structure. This inhomogeneity is called natural genetic variation and potentially provides
insights in genome evolution, population structure and selective mechanisms (Mitchell-Olds & Schmitt
2006). However, the genetic side represents only one level in the complex molecular architecture
which builds up the basis for physiological and morphological responses of plants to environmental
stimuli (Pigliucci 2010). The experimental analysis and interpretation of these molecular architectures
is non-intuitive, particularly because of the highly complex organization of plant molecular networks.
Numerous studies have shown that a multitude of genes, proteins, metabolites and underlying
regulatory processes are involved in plant-environment interactions (Chan et al. 2010; Keurentjes
2009; Koornneef et al. 2004; Lasky et al. 2012; Macel et al. 2010; Wienkoop et al. 2008). However,
interpreting these findings in the context of environmental conditions and, particularly, in an ecological
context is highly challenging. This is particularly due to a missing stringent definition of the genotype-
phenotype relationship which can hardly be expected to be derivable from a single methodology but
rather from a comprehensive platform of experimental and theoretical strategies (Diz et al. 2012;
Weckwerth 2011). Recording environmentally induced fluctuations in a metabolic homeostasis has
been shown to be a promising approach to unravel complex patterns of metabolic regulation and
adaptation. For example, the metabolism of floral anthocyanins, which is a central group of secondary
metabolites, was found to represent a suitable metabolic system to characterize the process of
environmental regulation (Lu et al. 2009). The authors suggested that environmental regulation of the
anthocyanin pathway is mainly affected by daily average temperature and UV light intensity
modulating anthocyanin transcript levels at floral developmental stages. In another study, a
metabolomics approach has been applied to elucidate in situ allelopathic relationships of individual
species to phytosociological gradients (Scherling et al. 2010). The authors could show that metabolic
signatures of five different plant species correlate with a biodiversity gradient. In a more general,
metabolomics approaches can be expected to provide a detailed information about metabolic
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processes in context of genomic signatures (Chae et al. 2014). Particularly in model systems with
functionally annotated genomes this makes it the method of choice to unravel and interpret molecular

ecological properties.

For the genetic and molecular biological model plant Arabidopsis thaliana, one of the best functionally
annotated genomes (Baerenfaller et al. 2012; Lavagi et al. 2012) and a comprehensive catalogue of
genetic variation is available (The 1001 Genomes Consortium 2016). Recently, an in vitro study of the
physiological homeostasis of 92 Arabidopsis thaliana accessions in multiple growth settings has
demonstrated the devastating impact of varying environmental conditions on the correlation of in vitro
metabolism to geographic origin (Kleessen et al. 2012). Yet, as microhabitats may vary significantly on
relatively small spatial scales and are not necessarily corresponding to geographic distance, the
investigation of the molecular performance of plants in situ seems inevitable to get a realistic picture
of plant-environment interactions and their ecophysiological consequences. A well-known example
indicating the need of such in situ studies is Ellenberg’s Hohenheimer groundwater table experiment
(Ellenberg 1953; Hector et al. 2012). Here, it was shown that the phenotypic performance of plants in
vitro significantly differ from their in situ physiological homeostasis, as important microhabitat
parameters may not be included in the in vitro growth setting (Shulaev et al. 2008). Both plant
communities and plant populations seem to be an appropriate target for the development and tuning
of in situ methodologies due to their sessile nature and the availability of a large set of in vitro reference
data for some species. This enables the intersection of individual molecular with environmental data,
and even ecosystem properties can be accounted for via geographic information systems. Genotyping
approaches in Arabidopsis thaliana have already been established (Atwell et al. 2010; Hancock et al.
2011; Horton et al. 2012; Long et al. 2013; Platt et al. 2010; Todesco et al. 2010) and are easily
transferable to in situ samples (Hunter et al. 2013). Metabolomics and proteomics technologies
provide the means for generating upstream molecular phenotypes (Doerfler et al. 2013; Hoehenwarter
et al. 2008; Wienkoop et al. 2010). Thus, these techniques are suitable for experimental high-
throughput analysis at the molecular level, representing the basis for strategies of multivariate
statistics and mathematical modeling to identify biochemical perturbation sites and gain predictive
power (Nagele 2014; Nagele & Weckwerth 2013). In this context, particularly metabolomic analysis
has proven to be a suitable approach for the comprehensive and representative investigation of
complex metabolic networks with respect to the underlying phenotypic diversity (Keurentjes 2009;

Scherling et al. 2010).

In the present study, the genomes and metabolomes of in situ samples from three Austrian
natural populations of Arabidopsis thaliana were experimentally characterized. Applying a

combination of multivariate statistics and mathematical modeling based on genome-derived

56



116
117
118
119
120

121

122
123
124
125
126
127
128
129
130
131
132
133
134
135

136
137
138
139
140
141
142
143
144

145
146
147

biochemical pathway information, metabolomic signatures of in situ Arabidopsis populations could be
identified. Different metabolic steady states on a population level and general patterns common to all
populations were distinguished by this novel metabolic modeling which finally allowed the prediction
of the secondary metabolite constitution, and, with this, characteristic processes of environmental

regulation.

Materials & Methods

Plant material and sampling strategy

In situ sampling of Arabidopsis thaliana leaf rosettes in three Austrian locations (see Figure 1) was
performed during one day in a rotatory way, thus accounting for diurnal changes in the physiological
performance of sampling plants. The first location (OOE1) was a hay meadow, the second (OOE2) was
a rocky spot with variable substrate thickness, and the third sampling site (OOE3) was an unused
meadow with steep slope and a nearby well. All populations were located in close proximity to
intensively used grassland. Each sample consisted of one whole leaf rosette. Samples for LC-MS
analysis consisted of mature leaves of individual leaf rosettes. Global Positioning System (GPS)
coordinates of the sampling sites were recorded using a Garmin Oregon300 handheld GPS receiver
(Garmin®, Schaffhausen, Switzerland) with an accuracy of approximately 3 meters. Rosettes were cut
and immediately frozen in liquid nitrogen. Samples were stored at -80°C until further processing. The
waypoints were imported into Garmin Mapsource Version 6.15.6 (Garmin®, Schaffhausen,

Switzerland) and projected on the OpenStreetMap (http://www.freizeitkarte-

osm.de/de/oesterreich.html).

DNA Sequencing and SNP calling

Sequencing was performed on 1 plant from the OOE1, 3 plants from the OOE2 and 2 plants from the
OOE3 population. Genomic DNA preparation, and SNP calling was performed as described previously
in Long et al. (Long et al. 2013). The samples were sequenced using 100bp paired-end reads on an
Illumina HiSeq platform. Pairwise genetic differences (6,) between these 6 accessions and a set of
additional 24 accessions for which DNA sequence is publically available (The 1001 Genomes
Consortium 2016) has been calculated by dividing the number of polymorphic sites by the number of
informative sites. These values have been used to create a hierarchical clustering using the McQuitty

method within the function hclust in R.

Gas chromatography coupled to time-of-flight mass spectrometry
Frozen sample rosettes were homogenized in a ball mill (Retsch®, Haan, Germany) under frequent

cooling with liquid nitrogen for 3 minutes. Polar metabolites were extracted and derivatized as
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described previously (Doerfler et al. 2013; Weckwerth et al. 2004). Gas chromatography coupled to
mass spectrometry (GC-MS) analysis was performed on an Agilent 6890 gas chromatograph (Agilent
Technologies®, Santa Clara, CA, USA) coupled to a LECO Pegasus® 4D GCxGC-TOF mass spectrometer
(LECO Corporation, St. Joseph, MI, USA). Compounds were separated on an Agilent HP5MS column
(length: 30m length, diameter: 0.25mm, film: 0.25 um). Deconvolution of the total ion chromatograms
was performed using the LECO Chromatof® software. A calibration curve was recorded for absolute

guantification of central primary metabolites.
LC-MS analysis of polar compounds

The frozen plant leaf material was homogenized as the samples for the GC-MS analysis. The polar
metabolites were extracted as described elsewhere (Doerfler et al. 2013). Extracts were weighed and
dissolved in 5% Acetonitrile 0.5% Formic acid to an extract concentration of 0.5g/L. From these
solutions, 3uL where injected to an Agilent Ultimate 3000 LC-system and separated on a reversed-
phase column on a 60min effective gradient prior to data-dependent mass spectrometric analysis of

+1 - charged ions.

GC-MS data analysis and inverse approximation of Jacobian matrix entries

ANOVA and computation of p-values adjusted for sample size by Tukey Honest Significant Differences
was performed on the GC-MS data using R (R Core Team 2013). For multivariate analysis, outliers (all
values that were lower/higher than 1.5*interquartile range from the 25%/75% quantile) were removed
from the dataset. Missing values of variables, which were missing in more than half of all
measurements in a population were filled with half of the matrix minimum. The remaining missing
values were imputed by random forest computation (Gromski et al. 2014; Stekhoven & Buhlmann
2012). This dataset was centered and scaled to unit variance prior to sPLS regression. Sparse partial
least squares (sPLS) regression analysis was performed using the mixOmics package (Gonzalez et al.
2012; Gonzalez et al. 2011; Le Cao et al. 2009) for the statistical software environment R (R Core Team

2013).

The functional integration of GC-MS metabolomics data into a metabolic network was performed, as
previously described (Nagele et al. 2014), by the approximation of the biochemical Jacobian matrix.
This approximation directly connects the covariance matrix C, which was built from the experimental
metabolomics data, with a metabolic network structure derived from Arabidopsis genome
information. Linkage of covariance data with the network structure follows equation 1 (Steuer et al.

2003):
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JC+CJT ==2D (1)

Here, J represents the Jacobian matrix and D is a fluctuation matrix which integrates a Gaussian noise
function simulating metabolic fluctuations around a steady state condition. In context of a metabolic
network, entries of the Jacobian matrix J represent the elasticity of reaction rates to any change of

metabolite concentrations which are characterized by equation 2:

d
]=N# (2)

N is the stoichiometric matrix or a metabolic interaction matrix if reactions and reactants have been
modified in the original network. r represents the rates for each reaction and M represents metabolite
concentrations. As stated before, the Jacobian approximation comprises the stochastic term D.
Therefore, we performed 10 x 10° inverse approximations for each population, finally resulting in 10
technical replicates of the Jacobian matrices.

All calculations of Jacobian matrices were performed based on a modified version of the toolbox
COVAIN (Sun & Weckwerth 2012) within the numerical software environment Matlab® (V8.4.0
R2014b).

Data mining of LC-MS ions

Acquired LC-MS runs were converted to the open mzXML data format using the MassMatrix File
Conversion Tools. Subsequently, MS1 intensities of all mass traces, that were fragmented at least once
in a sample were summed over the whole runs with ProtMAX2012 (Egelhofer et al. 2013;
Hoehenwarter et al. 2011), thus losing the chromatographic information but accounting for chemically
closely related stereoisomers that exhibit deviating retention times. The data set was filtered for
features that were measured in at least half of the replicates of one population and remaining variables
were normalized to the sum of all variables of the respective sample. The resulting values were used
to fit ANOVA models and Tukey Honest Significant Difference were used to estimate sample-size
adjusted p-values in R (R Core Team 2013). VENNY was used to visualize the number of detected

significant differences (Oliveros 2007).

For multivariate analysis, outliers (all values that were lower/higher than 1.5*interquartile range from
the 25%/75% quantile) were removed from the dataset. Missing values of variables, which were

missing in more than half of all measurements in a population were filled with half of the matrix
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minimum. The remaining missing values were imputed by random forest computation (Gromski et al.
2014; Stekhoven & Buhlmann 2012). This dataset was centered and scaled to unit variance prior to

sPLS regression.

Results

GC-MS analysis of in situ samples

In situ sampling of Arabidopsis thaliana leaf rosettes was performed on three nearby locations in Upper
Austria (Oberoesterreich; OOE; see Figure 1 and Materials and Methods). All Arabidopsis rosettes were
sampled at a developmental stage in which inflorescence and mature leaf rosettes had been
established (example pictures are provided in Appendix S1). Metabolomic analysis of in situ samples
comprised absolute levels of 39 central compounds of the C/N metabolism comprising sugars and
sugar alcohols, organic acids, amino acids, and polyamines (Figure 2). Results of an ANOVA indicated
that only levels of fumaric acid discriminated all three populations significantly (Fig. 2 b). Populations
OOE1 and OOE3 could be discriminated significantly by the concentrations of galactose, melibiose,
threitol, ascorbic acid, fumaric acid, gluconic acid, malic acid, threonic acid, alanine and proline
(p<0.05; Figure 2). For populations OOE2 and OOES3, significant differences were found to exist for
absolute levels of galactinol, raffinose, threitol, myo-inositol, ascorbic acid, fumaric acid, succinic and
threonic acid as well as for the amino acids alanine, glutamic acid, lysine, methionine, and ornithine
(p<0.05; Figure 2). Populations OOE1 and OOE2 could be discriminated by levels of citric acid, fumaric
acid, gluconic acid and malic acid. To summarize these findings, most significant differences between
absolute metabolite levels of populations OOE1, 2 and 3 were determined for the class of organic acids

(13 out of 27, i.e. ~ 50%).

Multivariate analysis indicates a discrimination of in situ populations by metabolic phenotypes

Sparse partial least squares (sPLS) regression analysis of primary metabolites versus a response matrix
comprising geographical coordinates and altitude above sea level indicated a separation of population
OOE3 from populations OOE1 and OOE2 across latent variable 1 (Figure 3). The metabolite levels of
fumaric acid, melibiose, alanine, putrescine, gluconic acid, threonic acid, myo-inositol, galactinol and
succinic acid were identified to contribute most to this separation with elevated levels in OOE3
whereas mainly ascorbic acid and threitol were elevated in OOE1 and OOE2. Discrimination of
populations OOE1 and OOE2 was indicated on latent variable 2 (Fig. 3). Here, a higher abundance of
2-oxoglutaric acid, glutamic acid, raffinose, glycine, succinic acid, serine and threonic acid in OOE1 and
malic acid, gluconic acid and citric acid in OOE2 (see Appendix S2 for a complete list of loadings, and

Appendix S3 for PCA of the primary metabolome).
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Approximating entries of Jacobian matrices indicates a differential interplay between primary and
secondary metabolism in natural populations

While absolute metabolite levels can provide a representative view on a metabolic homeostasis, it can
hardly be directly interpreted in terms of biochemical regulation. Instead, strategies of multivariate
statistics and modeling were shown to be essential to provide a comprehensive view on the
biochemical regulation of a metabolic homeostasis. Based on a biomathematical strategy we have
developed and applied in former studies, entries of Jacobian matrices were directly inferred from
experimental metabolomic covariance data (Nagele et al. 2014). As described in our previous work,
we derived a metabolic network model according to our experimental GC-MS data comprising
reactants and reactions indicated in the supplement (Appendix S4). The metabolic covariance
information was linked to a genome-information derived biochemical network structure, finally
satisfying a Lyapunov equation (for more details about the method and the metabolic network model
we refer to the section Material and Methods as well as to our previous work (Nagele et al. 2014)).
The calculation procedure, i.e. solving the equation after stochastic perturbation, was performed 10 x
10° times and median values of all entries of the Jacobian matrices were determined. Principal
Component Analysis (PCA) of the entries revealed a clear separation of the population-specific
Jacobian information in which the technical variance was found to be significantly lower than the
biological variance (Fig. 4). Loadings of the PCA revealed that the strong separation of population OOE1
from OOE2 and 3 on component 1 (PC1) was predominantly due to differences in amino acid,
polyamine and raffinose metabolism (see also Appendix S4,55). OOE2 was separated from OOE1 and
OOE3 on PC2 which was found to be predominantly due to Jacobian entries being related to the
biosynthesis of aromatic amino acids (Appendix S4,S5). This output indicated a potential difference in
the regulation of secondary metabolism, or, at least, of the interface between primary and secondary
metabolism. Hence, secondary metabolite abundance of the three Austrian Arabidopsis populations
was recorded applying LC-MS analysis. The quantitative analysis of specific mass traces in the
chromatograms showed that there was no feature separating all of the populations significantly
(ANOVA, p<0.05). Yet, we were able to identify 70 features that discriminated at least two of the
populations (Figure 3).

To statistically evaluate the separation of populations by secondary metabolites, LC-MS data were
analyzed by sPLS regression analysis. The first latent variable was found to separate OOE1 from OOE2
and OOE3 (Figure 6; Loadings are provided in Appendix S2). The second latent variable indicated a
separating effect of several putative anthocyanins attached to sinapoyl moieties (A6, A7/A17, A8, A10,
Al11 and 1329, respectively) in the OOE2 population by which it was discriminated from OOE1 and
OOE3.
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Austrian in situ population sequencing

A SNP-based genotyping approach was performed to unravel the genomic relationship of the three
populations. Genotyping showed clear differences between the three populations (Figure 7). Plants of
population OOE2 were found to be nearly identical (12, 23 and 13 SNPs, respectively). The population
OOE2 was found to differ by approximately 300,000 SNPs from both populations OOE1 and OOE3,
which were likewise separated by more than 300,000 SNPs. Interestingly, plants that have been
sequenced from the OOE3 population were genetically different as well but to a minor extent
(~260,000 SNPs).The comparison with genomic data from other ecotypes show the expected genetic
differences not only between these populations but also with respect to global samples, in which

accessions from Austria, Italy and the Czech Republic are most similar.

Discussion

The importance and central role of metabolomics in an ecological context has extensively been
outlined in previous studies and overview articles (see e.g. (Jones et al. 2013; Sardans et al. 2011)).
One of the central issues of eco-metabolomic approaches is the detection and characterization of
environmentally induced phenotypic mechanisms in context of key metabolic processes and
ecologically relevant parameters, i.e. all kinds of environmental cues. Yet, due to the non-linear
relationship between single levels of molecular organization, the reliable interpretation of
metabolomics results is highly challenging. The metabolic output or homeostasis of a biochemical
system depends on numerous molecular parameters and variables, and, finally, a metabolic network

sums up to a highly branched, interlaced and non-linearly behaving molecular system (Nagele 2014).

While under controlled conditions such plasticity of molecular systems already significantly limits our
ability to intuitively draw conclusions about regulatory mechanismes, in situ data interpretation has to
cope even more with a potential ambiguousness introduced by environmental dynamics and
fluctuations (Macel et al. 2010). In the present study, such fluctuations were taken into account by
considering (co)variance information of metabolite pools, and by a modeling approach which focuses
on the characterization of dynamical behavior of metabolic systems around a metabolic homeostasis
(Nagele et al. 2014; Steuer et al. 2003). In detail, data dimensionality reduction via PCA indicated a
clear separation of all populations by Jacobian entries being related to the biochemistry at interface of
primary and secondary metabolism as well as the metabolism of metabolic stress-markers, such as

polyamines or raffinose, which have been discussed to be involved in the protection of the
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photosynthetic apparatus against various stress types (Alcazar et al. 2011; Alcdzar et al. 2006;

Bouchereau et al. 1999; Knaupp et al. 2011).

Predictions about the differentiation via signatures in secondary metabolism could be validated by LC-
MS metabolomics focusing a central set of secondary metabolite backbones with close similarity to
previously identified anthocyanins attached to sinapoyl moieties (Tohge et al. 2005). Such metabolic
differences are in line with previous findings reporting on metabolic signatures which are due to
characteristic differences in specialized or secondary metabolism (Chae et al. 2014; Lu et al. 2009;
Moore et al. 2014; Wink 2003). The accumulation of anthocyanin pigments in vegetative tissue of
plants represents an approved metabolic stress and acclimation output (Winkel-Shirley 2002). Hence,
while a characteristic differentiation of the three in situ populations by their anthocyanin-related leaf
color was hardly possible (Appendix 1), the molecular analysis provided a more detailed view on the
metabolic constitution of secondary metabolites. With this, evidence is provided for the suitability of
metabolic phenotyping of in situ samples by a combined GC- MS and LC-MS platform. While, at this
point, we can only speculate on the environmental cues which initiated the observed differences in
secondary stress-associated metabolism, flavonoid metabolites in general are heavily discussed in
context of their UV absorption and reactive oxygen species (ROS) scavenging properties (Agati & Tattini
2010; Hectors et al. 2014; Winkel-Shirley 2002). Together with the finding of a differentially regulated
polyamine metabolism, which became visible rather by covariance information than by mean values,
our results point towards a differential macro- or microclimatic environment at the three Austrian in
situ sampling sites. To elucidate the possible roles and contributions of environmental factors to the
establishment of the observed metabolic homeostases, future studies will have to correlate these
metabolic markers to micro- and macroclimatic data which are derived from long lasting

environmental data logging approaches.

In the context of ecological and ecophysiological research, the approach of a metabolomic in situ
classification promotes the detection and subsequent understanding of plant-environment
interactions by revealing metabolic markers being characteristic for intraspecific variation and/or
environmental adaptation. While we cannot directly relate the metabolic signatures to explicit
environmental data, e.g. light intensity or humidity, compared population samples were collected
during consistent meteorological conditions. In addition, results of SNP-based genotyping revealed
three genetically different populations, which are, however, closer related to each other than to other
European accessions (Fig. 7). In terms of temperature regimes and low temperature tolerance, which
can be expected to have major influence on the geographic range of Arabidopsis thaliana (Hoffmann
2002), the genetic distance between the Austrian populations can be regarded as relatively small when

compared to sensitive (Cvi,Co-1) and tolerant accessions (Rsch-4) (Hannah et al. 2006). Based on this
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observation, we hypothesize that the variance in observed metabolic phenotypes are rather plasticity
effects than conceptual differences in the acquisition of (abiotic) stress tolerance. This again might
indicate a high intraspecific metabolic variation which would affect the evolutionary capacity of
Arabidopsis in context of adaptation to macro- and micro-environmental fluctuation (Moore et al.
2014). Yet, the resilience and interpretability of the presented findings in such a context remains
limited and indicates the need for long lasting experiments to characterize environmental fluctuations.
Nevertheless, due to the fact that characteristic metabolomic signatures could be identified for the
genetically closely related - but still different - populations, the presented approach can be summarized
as a suitable molecular monitoring strategy. The findings contribute to the comprehensive
understanding of ecological processes and may contribute to the design of future studies focusing the

estimation of the impact of climate change on plant societies and evolution (Ward & Kelly 2004).

Statistics on absolute primary metabolite levels revealed major differences between natural in situ
Austrian Arabidopsis thaliana populations. Almost all classes of analyzed substances, comprising
sugars, carboxylic and amino acids displayed significant differences indicating different homeostases
in primary metabolism of all three populations. Only levels of metabolite, the TCA intermediate
fumaric acid, were found to significantly differ between all in situ samples indicating suitability to
classify these populations. While it has been shown that fumaric acid metabolism plays a central role
in diurnal carbon allocation (Pracharoenwattana et al. 2010), and, hence, indirectly affects the
orchestration of photosynthesis in Arabidopsis leaves, it remains elusive if it can directly report on
changes in plant-environment interactions. In addition, due to the complex regulation of plant primary
metabolism it can hardly be assumed that one metabolite level provides representative information
for robust metabolic in situ classification. Yet, together with the finding of a significant difference in
potential photosystem-protective substances, e.g. polyamines and flavonoids, it can be hypothesized
that differential metabolic homeostases evolved due to differences in the microenvironment of the
three populations being characteristic enough to separate them according to the resulting metabolic

signatures.

In summary, it was demonstrated that intraspecific metabolic phenotypes of geographically nearby-
grown Arabidopsis plants can be characterized and differentiated by their primary-secondary
metabolic signature. In future studies, monitoring of (micro)climatic properties will enable the
characterization of sampling sites by continuous quantitative environmental data and thus improve
the understanding of the ecological context of in situ molecular profiles. Additionally, biotic and abiotic
habitat parameters, such as soil properties and phytosociological association, might even promote our
current understanding of individual plants’ physiology. Finally, our study points to the importance of

considering variance and covariance information in biological data sets (Violle et al. 2012) which,
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together with genome-derived pathway information, potentially provide information about

environmental fluctuations and associated biochemical system properties.
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541  Figure Legends

542

543  Figure 1: Projection of sample coordinates within OpenStreetMap®
544  (http://www.openstreetmap.org). The air-line distance between populations is given in meters.
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546  Figure 2: Absolute levels of primary metabolites. Metabolites are grouped according to the substance
547  classes of (a) sugars, sugar alcohols and polyamines, (b) organic acids, (c) amino acids. Significant

548  differences evaluated by ANOVA are indicated by asterisks (* p<0.05; ** p<0.01; *** p<0.001).

549  Metabolite levels from samples of OOE1 are indicated by blue bars, OOE2 by orange bars, and OOE3
550 by grey bars.
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552 Figure 3: Projection of samples on latent variables of the primary metabolite matrix (GC-MS data)
553 after sPLS regression. Detailed information on the loadings are provided in the supplement
554  (Appendix S2).
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556  Figure 4: Principal component analysis (PCA) of Jacobian matrix entries for populations OOE1, OOE2
557  and OOE3. PC1 strongly separates OOE1 (black filled circles) from OOE2 (black filled crosses) and
558  OOE3 (grey filled diamonds). PC2 separates OOE2 from OOE1 and 3 most signficantly.
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560  Figure 5: Venn diagram showing the number of LC-MS features which significantly discriminated the
561  three Arabidopsis populations OOE1, 2 and 3.
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Figure 6: Projection of samples on latent variables of the secondary metabolite matric (LC-MS data)
after sPLS regression. Detailed information on the loadings are provided in the supplement
(Appendix S2).
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Figure 7: SNP genotyping of three Austrian Arabidopsis populations. All three plants that have been
sequenced from the population OOE2 are nearly genetically identical. OOE2 differs by nearly 300,000
SNPs from both the OOE1 and OOE3 population, which are likewise separated by more than 300,000
SNPs. The Comparison with genomic data from other ecotypes show the expected genetic
differences not only within these populations but also to global samples, in which accessions from
Austria, Italy and the Czech Republic are most related. The genome information of the additional 24
accessions is publically available (The 1001 Genomes Consortium 2016)
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Conclusive Comments and Future Perspectives

In the last decade, molecular phenotyping by measuring metabolite and protein profiles has been
established as primary approaches in functional genomics. It promotes the understanding of the
biochemical implications of genetic variants. As metabolites and proteins are central parts of any
biochemical systems, knowledge of these molecular variables is crucial for understanding and
subsequently predicting systemic behavior in context of key cellular processes. These reactions cannot
be forecasted by only considering the genomic sequence of a particular organism because of the
phenotypically plastic characteristics of morphologic and molecular phenotypes. In my thesis, | have
been able to identify core components of Arabidopsis thaliana’s metabolism in context of acclimation
and adaptive potential to cold environments that underlie phenotypic plasticity with regard to cold-
tolerant and cold-sensitive accessions. | have produced evidence that the mobilization of starch
connected to the accumulation of sucrose is of particular interest. Concerning agronomical

importance, it will be interesting to determine the impact of my results in crop plants.

With the manuscript in preparation, | have been able to suggest the suitability of metabolic profiling
to characterize geographically contiguous Arabidopsis populations. Modeling of metabolic regulations
is even more powerful when it comes to defining potentially important adaptive markers because it
does not only consider mean values but finds regulatory differences based on metabolic covariance
information. For instance, if there are no significant differences in a metabolite pool, because of the
varying covariance of that pool with other metabolites, we can estimate regulatory sites in the
biochemical system that can be efficiently addressed in follow up experiments, for instance on the
proteomic level or with enzyme activities. Novel genome editing techniques enable the targeted
creation of specific knock-out mutants, even if the alleles of interest are in linkage disequilibrium. This
approach will emerge with increasing importance in the quest for finding adaptively important

genomic variants.

As the interpretation of metabolite data is often not straightforward due to the complexity of
metabolic systems, tools that facilitate understanding the interrelations of molecular variables are
needed. With the established graph theoretical approach to analyze metabolic time series data in
context of a specific biochemical network, | have contributed to the endeavor of understanding the
reaction of metabolism to user-defined stimuli. As the topology of metabolic systems can be predicted
from static genome information, it is readily transferable also to studies in organisms other than

Arabidopsis thaliana.

Future studies should address the question how genotypic diversity is related to biogeographical clines

and phenotypic plasticity (Pigliucci, 2009). For this purpose, Arabidopsis thaliana is an appropriate
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model system representing variable phenotypes and a complex biogeographical gradient (Hoffmann,
2005). In situ habitats should be described by time-continuous recording of environmental parameters
to allow for the identification of the most prominent environmental differences between populations

and subsequently targeted monitoring of plant performance with regard to those parameters.

Further, the concept should be extended to elucidate for instance life-form specific differences in
observed molecular adaptive patterns or divergence caused by ecological strategies. Arabidopsis
thaliana is an ephemeral ruderal plant so it is not straightforward to draw conclusions for K-strategists
like phanerophytes or perennial plants. Genetic analysis of phylogenetically close relatives has already
started (Koenig and Weigel, 2015) and will shed light on the variation of reaction types of different life-
forms classified in the Raunkizer system. A specifically powerful synergy will be the combination of
molecular profiling and GIS enabling the concatenation of biochemical properties with all kinds of
ecological information on all possible spatial scales like phytosociological associations, electronic soil
classifications, hemeroby maps and other landscape ecological datasets. Further, | suggest that
characterizing molecular ecophenes by metabolome and proteome profiling and functionally
integrating these profiles with genotypic and continuous environmental data by mathematical
modeling will significantly advance our understanding of phenotypic plasticity, adaptive processes as
well as their regulatory dynamics. Common garden and transplantation experiments will increase the
comparability of acquired in situ data to also identify genotypically variable features encoded in in situ
data. Finally, this will promote the molecular characterization of ecophysiological adaptation which is
central to the improvement of plant performance in changing environments by marker assisted plant

breeding.
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Other Publications

During my thesis, | had multiple opportunities to contribute my practical and theoretical proficiencies

in a diverse panel of scientific endeavors.
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R., O'Malley, R. C., Quarless, D. X., 1001 Genomes Consortium, Schork, N. J., Weigel, D.,
Nordborg, M., and Ecker, J. R. (2016) Epigenomic Diversity in a Global Collection of Arabidopsis
thaliana Accessions. Cell 166, 492-505
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