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Abstract 

The objective of this thesis was to develop a gesture recognition system that would 

transform dance to music using a machine learning algorithm. This thesis is divided into the six 

stages of the processing chain: Input, Feature Extraction, Segmentation, Classification, Post-

processing, Output.  

Video cameras with and without markers, wearable sensors and depth cameras were 

considered to provide input data; Microsoft Kinect v2 device was chosen as the best option. 

Body contour and body skeleton approaches were presented for feature extraction; Kinect SDK 

2.0 was chosen to extract relevant features from the depth image. Segmentation based on music 

metrics was chosen over body tracking, while bar measure was chosen as the most suitable 

approach to split data stream to distinct gestures. For classification, machine learning 

algorithms Dynamic Time Warping (DTW), Hidden Markov Models, Support Vector Machines 

and Artificial Neural Network were explored; DTW was chosen as the most suitable algorithm. 

EyesWeb environment was chosen for post-processing and to build an overall “gesture engine”. 

Ableton Live was selected to function as the output. 

The designed system coupled virtual instruments with body parts: the system had to 

learn gestures of each group of body parts and know how gestures were paired with music clips 

in a composition. A working prototype of such a system was implemented and tested. Results 

supported the hypothesis of this thesis that a machine learning algorithm could be used for 

flexible gesture recognition.  

Performance of the system under various conditions was evaluated in order to reveal its 

strengths and weaknesses. Measurements based on Signal Detection Theory were calculated in 

both fitting and cross-validation analysis. Results disclosed a very high prediction accuracy of 

the system: in most of the cases it was over 90%. Analysis showed that the system performed 

best when all predicted gestures were included in the training dataset and when each gesture 

had at least 16 training samples.  

The implementation process provided some ideas about how the dance recognition 

system could be expanded to provide more features in music creation. The experience of music 

creation using gestures also implied that further advancements in machine learning and human-

computer interfaces will not only enhance two-way interaction of dance and music but also 

build a closer relationship of body and mind. 
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1. Introduction 

The last few years have been witness to a ground-breaking evolution of recognition 

systems: smartphones can unlock by scanning our face or fingerprint, our photos get 

categorized by the objects in pictures, social networks suggest which friend to tag in images, 

home assistants can understand our questions and execute our orders, while cars can 

automatically avoid other cars, follow street signs and observe pedestrians (Hauert, 2017).  

Even though gesture recognition has been researched for decades, there has still been 

no mainstream examples of its application. Microsoft Kinect was introduced in 2010 and raised 

high hopes (as well as the development of other devices to track a body or a hand) that we 

would soon interact with computers as exemplified in the science fiction film “Minority Report” 

released back in 2002 (Springmann, 2010).  

Unfortunately, the original laser-infrared-visual camera for game consoles, designed to 

track body movements of a player, never crossed over “the chasm” between the stages of Early 

Adopters and Early Majority in the Technology Adoption Life Cycle (Figure 1.1): Microsoft 

discontinued production of Kinect for Windows in 2015 and for Xbox in 2017 (Gurwin, 2017), 

production companies abandoned development of new games for Kinect (Maiberg, 2016).  

 

 
Figure 1.1. “The chasm” in the Technology Adoption Life Cycle. 

Reprinted from Crossing the Chasm: Marketing and Selling High-Tech Products to Mainstream 
Customers, by G. A. Moore, 2014. Copyright by New York HarperBusiness. 

 

Consumers were dissatisfied with the high prices, low precision and limited games, 

while investors were disappointed about low sales, and as a result, industry had put the 

development of new products on hold and even scientists seem to have abandoned this research 

area (Thier, 2018). 
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Nevertheless, the author of this thesis believes that gesture recognition systems will 

soon have a more successful comeback. Three related trends lead us to expect this: (1) an 

overload of traditional user interfaces (UI), (2) demand for less effortful interaction with 

devices, and (3) growing computing power and development of artificial intelligence (AI).  

(1) Overload of traditional UI. People spend increasingly more time in everyday life 

interacting with various devices: they use apps on their laptops, tablets, smartphones and 

wearables to read news, shop, follow friends, use encyclopaedias, databases and dictionaries, 

watch movies, control home appliances, call for taxis, food delivery, and manage bank 

accounts. Most devices and applications still have traditional interaction interfaces: users have 

to click or tap on buttons, type text and, only recently, use voice dialog (Hollander, 2017). Users 

have to learn and remember how to use every app. Typing and tapping takes a lot of time and 

requires to focus on the device screen, leaving less attention to the rest of our surroundings.  

(2) Demand for less effortful interaction. If a new way of human-computer interaction 

works as expected and makes their life easier, mass market tends to adopt it eagerly. Now it is 

commonplace to use a fingerprint to unlock a phone even though typing in a PIN code was the 

default for 20 years (Bhagavatula et al., 2015). People place smart speakers in their homes to 

conveniently ask their voice assistants simple questions or to perform everyday tasks (Hoy, 

2018). Investors are so enthusiastic about the potential of self-driving cars that Tesla overtook 

General Motors as America’s most valuable automaker (Randewich, 2017).  

(3) Growing computing power and AI. Artificial intelligence has been evolving at “the 

speed of light” and applied in more and more areas. Big Data Analytics and Deep Learning 

made it possible to launch and land space rockets, fly drones and drive cars, understand human 

spoken and written language, fluently speak and translate to German, French or Mandarin, 

recognize objects in images and real environment (LeCun, Bengio, & Hinton, 2015). A symbol 

of AI sophistication is the victory of Google’s DeepMind program AlphaGo against a human 

professional Go player in 2016 (Reynolds, 2017). AI develops so rapidly not only because of 

invention of new algorithms, which often imitate biological neural networks, but also thanks to 

the growth of computing power. It has been constantly increasing, although no longer as fast as 

predicted by Moore’s law, which stated that circuit complexity in computing systems should 

double every year (Theis & Wong, 2017). Slow data processing, currently the main bottleneck 

in AI, will soon be no issue for consumer products of everyday use.  
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1.1. Significance of Gesture Recognition 

Assuming that public demand is high and technological issues are resolved, what 

problems could a gesture recognition system solve and how could it improve people’s lives? 

Applications can be grouped into the areas of (1) control, (2) monitoring and (3) analysis 

(Miranda et al., 2012). 

(1) Control. Human-computer interaction could be more efficient and intuitive 

(Eisenstein et al., 2003). Human gestures could control not only video games, but also “smart 

home” environments (Pu, Gupta, Gollakota, & Patel, 2013) and multimedia systems (Lee, 

Sohn, Kim, Kim, & Kim, 2013), manipulate objects in virtual reality (Rautaray, 2012), as well 

as navigate robots (Fahn & Chu, 2011). By naturally controlling with gestures, users can focus 

on the task instead of learning how to use and keep track of remote controls, controllers or 

keyboards (Song, Demirdjian, & Davis, 2015). 

(2) Monitoring. Automatic monitoring systems could potentially not only recognize 

people in the visual field but also determine what task they are doing (Gavrila, 1999). Public 

and domestic surveillance systems could recognize or even predict criminal activities or 

accidents, watch patients, children and elders (Miranda et al., 2012).  

(3) Analysis. Gestures could convey information, which cannot be delivered or extracted 

by other means. Sign language could be translated to sound and text (Hernandez-Rebollar, 

Kyriakopoulos, & Lindeman, 2004). Service robots could track gestures to recognize human 

emotions (Yang, Park, & Lee, 2006). Analysis of gestures could assist doctors in diagnosis of 

diseases, coaches in studying the performance of athletes (Miranda et al., 2012), and athletes in 

the learning and practicing of correct movements (Mitra & Acharya, 2007). 

This thesis explores the use of gesture recognition systems in dance performances and 

music creation, because this area has an exciting potential to fuse technology and art. 

Applications in music and dance domains can also be classified to (1) control, (2) monitoring 

and (3) analysis: 

(1) Control of music. Hands and the whole body can become musical instruments, 

artist’s gestures could trigger musical notes and loop tracks, adapt volume and tempo of virtual 

instruments; musical performance could interact with visualizations (Bettens & Todoroff, 

2009). By interacting with virtually animated avatars, people could learn and practice dancing 

not just for entertainment purposes, but also for professional training (Raptis, Kirovski, & 

Hoppe, 2011). Dancers could express themselves better and enrich their performance by 
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generating with their movements an audio-visual feedback (Castellano, Bresin, Camurri, & 

Volpe, 2007).  

Dance performance could become music creation, which is the main purpose of the 

gesture recognition system developed for this thesis.  

The dancer could play music with a virtual set of instruments, defining relationships 

between body movements and sound rendering (Bevilacqua, Schnell, & Alaoui, 2011). Dance 

and music interaction could benefit in Dance Music Therapy, which provides a non-

pharmacological treatment of anxiety, depression and aggression, aids recovery after physical 

traumas and diseases, as well as improves overall psychosocial and psychophysical 

characteristics of patients (Jeong et al., 2005). 

(2) Monitoring of dance. Gesture recognition could be used to observe and describe 

dance movements. Motiongrams – charts summarizing dancer’s movement to music in a video 

recording – would be useful in navigating large databases of video material in order to get a 

quick overview of long dance performance videos (Jensenius, 2006). Recognition systems 

could assist in choreography to create notations for dance, ballet, and theatre movements 

(Gavrila, 1999). Notations are dance descriptions that currently take a lot of time to prepare 

using very sophisticated vocabulary of symbols therefore technology that converts images of 

body gestures to notations automatically would make the preparation process much easier 

(Boukir & Chenevière, 2004).  

(3) Analysis of performance. Digital processing of movements expands the possibilities 

to research music and dance performances. It would help specialists to study musical intentions 

and expressions, analyse musicians’ ability to communicate emotional states and attitudes with 

body articulation and evaluate high-level cognitive skills needed for mental and physical 

control over a musical instrument (Desmet et al., 2012). Topological Gesture Analysis – looking 

for shared geometrical elements in music and dance – could be used to study dance forms of 

different cultures (Naveda & Leman, 2010). Automated recognition techniques could identify 

cues that convey emotional content to study natural emotional movement expression in modern 

dance (Camurri, Lagerlöf, & Volpe, 2003).  

 

1.2. Objective & Hypothesis 

The author of this thesis was particularly intrigued by the possibility to create music 

with dance among this huge variety of current and potential applications of gesture recognition. 
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For a course at Vienna University of Technology (TU Wien) he had created a video 

game Dance2Music, where a dancer could play various audio tracks depending on which body 

part was being moved: shaking hips up and down started a drum-beat track, swinging hips left 

and right switched to another drum-beat track; kicking legs or stepping to the front triggered 

one bass-line track, stepping to a side, another. Furthermore, hand movements could play 

melodies: jiggling arms to sides started one melody, stretching arms to the front started another, 

while raising a hand above the head played some sound effects and percussion (Figure 1.2).  

 

 
Figure 1.2. Screenshot of the promotional video for Dance2Music video game. 

 

The game was developed using Microsoft Kinect motion sensor, Unity3D game engine 

and Ableton Live digital audio workstation. The game algorithm processed coordinates of a 

player’s 15 “skeleton” points and outputted a signal when coordinates change beyond 

predefined time and space thresholds. The game worked well and was in the final shortlist at 

the worldwide contest “Xtion PRO Developer Challenge” by ASUS (Aigner, 2011).  

Nevertheless, the development of the game revealed significant limitations of hard-

coded definitions of gestures that have to be recognized. First, it was very difficult to adjust the 

thresholds to suit each person’s unique body height and length of limbs as well as to suit each 

person’s unique performance of even the simplest gestures. Another issue was that only simple 

gestures could be predefined (e.g. moving left-right, up-down) which stands in contrast to the 

sophistication of real-life aesthetic dance movements.  

The objective of this thesis was to solve these problems and develop a gesture 

recognition system that could serve users of any age, gender or body shape and could recognize 

any dance movements.  

The author hypothesized that exploitation of machine learning algorithms, used in AI to 

recognize human gestures, could provide a satisfying solution. This solution came with a 
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challenge though, because machine learning algorithms have more requirements than a simple 

threshold-based recognition system if the system were to be kept easy to use. 

 
1.3. Research Questions & Scope 

The project of this thesis was divided into the stages of the processing chain for a generic 

gesture recognition system (Gillian, 2011): (1) Input, (2) Feature Extraction, (3) Segmentation, 

(4) Classification, (5) Post-processing, (6) Output. Each stage raised specific research 

questions, needed to be answered in order to implement the system: 

(1) Input. What is the best way to track a dancer’s movements? Various tools from 2D 

video image processors to Wi-Fi signal change detectors are available to detect a human body 

in space, translate the signals into 3D coordinates (measurements of horizontal, vertical and 

depth position) in the timeline and send this data to pre-processing. Chapter 2.1 of this thesis 

discusses their strengths and weaknesses and explains the choice of Microsoft Kinect device. 

(2) Feature extraction. Should the dimensionality of the data or the number of samples 

be reduced? What kind of features should be extracted instead of the raw data? Different 

machine learning algorithms require different data formats to process. Chapter 2.2 argues that 

down-sampled coordinates of Body Skeleton joints could be used to feed the system. 

(3) Segmentation. How will the system identify the beginning and the end of a 

continuous gesture? The system could exploit the music rhythm (e.g., split gestures on every 

bar) or the repetition of dance movements (e.g., trim a gesture when it closes in the loop). 

Chapter 2.3 explores the possibilities and explains the choice of segmentation by rhythm. 

(4) Classification. How should the gestures be assigned, remembered and recognized? 

There are several machine learning algorithms that have been successfully used for gesture 

recognition. The algorithm has to be multi-class (recognize several gestures), real-time (for live 

performances), sparse (require short training) and adaptive (learn recent gestures). Algorithms 

are described and compared in the chapter 2.4. The chapter explains the use of Dynamic Time 

Warping algorithm in the system’s prototype. 

(5) Post-processing. Should the system assist the dancer to make better music? The 

system could observe the music being performed and start the right tracks at the right time. This 

is discussed in the chapter 2.5. 

(6) Output. How should audio tracks be played? There are music creation workstations 

that accept signals to start and stop audio tracks. Chapter 2.6 justifies the use of Ableton Live 

software. 
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The focus of this thesis was to design the system and choose the most promising tools 

based on literature review and theoretical analysis, as well as to build a working system’s 

prototype and to evaluate several aspects of the system’s strengths and weaknesses. 

Interpersonal testing, statistical data analysis and comparison with other systems developed by 

other researchers using representative experimental data is beyond the scope of this thesis. 

 

1.4. Innovative Aspects 

As already discussed, there are tools and methods already available to track and classify 

human gestures but they have not yet been applied to many promising areas. This thesis 

explores one of the possibilities hoping to stimulate this area of research and development. 

 Probably the most innovative aspect is the purpose of developed system. While existing 

gesture recognition systems either passively observe and assess a dance (Desmet et al., 2012; 

Naveda & Leman, 2010; Camurri et al., 2003) or actively create and conduct music (Bettens & 

Todoroff, 2009; Castellano et al., 2007), here, both tasks are combined in an unusual way: dance 

creates music, reversing the traditional music-dancer interaction. 

The system incorporates a unique combination of devices, frameworks and algorithms, 

defined in research questions and described in the processing chain. The thesis attempts to 

acknowledge the best practices of previous research and discover new solutions where 

improvements are possible.   

Another novel aspect is the adaptive feature of the gesture recognition model. Even 

though the model needs to adapt to changing body movements (as discussed earlier), such 

feature has been rarely implemented in related works. 

 

1.5. Interdisciplinary Aspects 

Dancing to music relates to the paradigm of embodied music cognition: it couples 

perception and action; physical environment and subjective experiences (Leman, 2012). Music 

created by dance is based on the same general framework: music’s properties like pulse (pattern 

of beats) and tempo (speed of the pulse) must occur in synchronization with repetitive body 

movements (Burger, Thompson, Luck, Saarikallio, & Toiviainen, 2013). The process here 

requires even higher cognitive abilities, because the body takes on both active and passive role 

– a dancer needs to initiate music rhythms and respond to it. 
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According to S. Mitra et al. (2007), “gesture recognition is an ideal example of 

multidisciplinary research. There are different tools for gesture recognition, based on the 

approaches ranging from statistical modelling, computer vision and pattern recognition, image 

processing, connectionist systems, etc.” (p. 213). 

Connectionist approaches like Neural Networks have been widely used in pattern 

recognition (Bishop, 1995). Artificial Neural Networks is a computational model for 

information processing inspired by biological nervous systems like human or animal brains 

(Kiran, Chan, Lai, Ali, & Khalifa, 1996). 

Artificial Neural Networks evolved to Deep Neural Networks and in recent years 

became the state-of-the-art solution to detect and recognize visual objects, dramatically 

improved other domains such as speech recognition, drug discovery and genomics (LeCun et 

al., 2015). Even though deep learning methods is another promising solution, it goes beyond 

the scope of this thesis which will focus on considering the classic Artificial Neural Network 

as a gesture recognition algorithm. 

In the next chapter, theoretical background is presented to understand which elements 

are necessary for a gesture recognition system and which options are available for every 

element. 
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2. Theoretical Background & Related Work 

The project of this thesis was divided into stages, which were adapted from the 

processing chain for a generic gesture recognition system (Gillian, 2011). Gillian’s processing 

chain has 5 stages: (1) Input, (2) Feature Extraction, (3) Classification, (4) Post-processing, (5) 

Output. Gillian admitted, that a real-time recognition system of temporal gestures requires one 

more stage – Segmentation (Figure 2.1). 

 

 
Figure 2.1. The processing chain for a dance gesture recognition system. 

 

In this chapter, the author clarifies each stage’s purpose and requirements, as well as 

reviewed available tools and methods to execute each stage based on related work in the 

literature.  

 

2.1. Input 

The first stage in the gesture recognition processing chain is to obtain the dancer’s body 

tracking data from an input device. Available tools could be classified to (1) video cameras 

without markers, (2) video cameras with markers, (3) wearable sensors, and (4) depth cameras. 

 

2.1.1. Marker-less Video Cameras 

Video input without markers is the most natural way to track a body in space, because 

it uses optical sensors (just like humans do with their eyes) and is not intrusive as it does not 

require any special gear to be worn to be detected (Figure 2.2). Every frame in the video stream 

has to be processed to detect the body (i.e. to separate it from background) and to identify the 

location of specific body parts (Gavrila, 1999). Modern computer vision algorithms can extract 

3D coordinates of a moving object in a video, but it takes a lot of processing power and may 

lack information due to occlusion of body parts (Liu & Kavakli, 2010). To solve these issues, 
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3D camera setups are used to get more reliable depth (i.e., proximity to the camera) data 

(Malassiotis, Aifanti, & Strintzis, 2002). 

 

 
Figure 2.2. Processing of marker-less video input to detect the body. 

Adapted from 3-D posture and gesture recognition for interactivity in smart spaces,  
by C. Tran, & M. M. Trivedi, 2012. Copyright by IEEE Transactions on Industrial Informatics. 

 

Video camera sensors are precise, cost effective and convenient to use: high resolution 

and frame-rate video cameras are relatively inexpensive, easy to setup and calibrate. But this 

method is vulnerable due to the environment’s conditions: cluttered background, inconspicuous 

colour of clothes, poor lighting conditions make it difficult to track the body and its limbs (Ren, 

Yuan, & Zhang, 2011).  

 

2.1.2. Video Cameras with Markers  

The drawbacks of traditional video camera sensors can be drastically reduced using 

markers on the body. Video recordings with markers are widely used in cinema and game 

industries to track the bodies of actors, in virtual reality systems to track headset and controllers 

(Figure 2.3). A tracked object must have distinctly coloured spots or infrared light reflectors or 

emitters in relevant places. A human body can wear over 40 markers to mark all edges visible 

from all sides (Li & Prabhakaran, 2005). Multiple cameras are often used to make sure no 

marker of body movements is occluded at any time, so that the markers are easily detected by 
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computer vision algorithms in the video stream and their 3D coordinates can be calculated using 

triangulation (Bevilacqua et al., 2011). 

 

 
Figure 2.3. Placement of markers on the actor’s body.  

Reprinted from Biomechanical Validation of Upper-body and Lower-body Joint Movements of Kinect 
Motion Capture Data for Rehabilitation Treatments, by A. Fernández-Baena et al., 2012.  

Copyright by IEEE Computer Society. 
 

This method keeps the advantages of video camera sensors – high resolution and frame-

rate, relatively low cost – and avoids disadvantages:  image processing algorithms easily detect 

the markers in the image frames and it is much less prone to errors due to environmental 

conditions (Burger et al., 2013). Nevertheless, compared to marker-less video sensors, it is more 

intrusive (markers have to be worn) and less convenient (sophisticated setup and calibration are 

required).  

Image processing still requires a lot of computational power because every pixel in high-

definition video has to be analysed, therefore it is more often used for “offline” analysis of a 

recorded video (Desmet et al., 2012). 

 

2.1.3. Wearable Sensors 

Sensors like accelerometers and gyroscopes were proposed to reduce the need for high 

computational power (Figure 2.4). Just like markers, they have to be equipped on the tracked 

body, but do not require image processing to extract 3D coordinates (Junker, Amft, Lukowicz, 

& Tröster, 2008). Multiple sensors provide relative location of body parts based on distances 

between sensors, as well as change of sensor’s position and angle (Aylward & Paradiso, 2006).  
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Figure 2.4. Accelerometers attached to participant’s lower and upper arm.  

Adapted from Gesture spotting with body-worn inertial sensors to detect user activities,  
by H. Junker et al., 2008. Copyright by Elsevier Ltd. 

 

To receive not only relative but also absolute location of a tracked body part, 

accelerometers and gyroscopes are used in combination with other sensors like infrared 

cameras. Wii game console is a good example of such system: Wii controller has an 

accelerometer, a gyroscope and an infrared emitter, tracked by the console (Schlömer, 

Poppinga, Henze, & Boll, 2008). 

Wearable sensors do not need a powerful computer to process the data, but convenience 

is a trade-off (Ren et al., 2011). It is uncomfortable to wear the sensors, takes time to prepare 

the absolute position tracking system and requires frequent re-calibration (Patsadu, Nukoolkit, 

& Watanapa, 2012). 

 

2.1.4. Depth Cameras 

Depth-sensing systems have advantages of both wearable sensors and video cameras: 

they require less data processing to detect an object and are able to provide its position without 

markers (Fernández-Baena et al., 2012). Depth cameras are usually equipped with infrared 

lasers and sensors. There are two technologies to get the depth information: triangulation with 

structured light (TWSL) and time-of-flight (TOF) (Lun & Zhao, 2015).  

Based on the TWSL technology, the laser projects a constant speckled pattern of 

infrared light to the whole field of view, which looks like a sky of stars; the infrared sensor 

observes the disparity of this pattern caused by objects and uses trigonometry to calculate 

distance to every “star” of projected pattern (Zhang, 2012).  

Using the TOF technology, frequent pulses of infrared laser light up the whole field of 

view while the sensor detects reflections from all area and calculates distances between every 
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reflecting surface based on time the light travelled from the emitter to the sensor (Noonan, 

Howard, Hallett, & Gunn, 2015).  

The depth camera outputs 3D coordinates of every pixel in the field of view, which can 

be visualized as a grayscale image, where darker objects are closer to the camera. Depth 

information can be combined with video stream to increase the precision of object tracking and 

add colour information for every pixel (Figure 2.5). 

 

 
Figure 2.5. Hand detection based on colour and depth image captured by the Kinect sensor.  
Adapted from Depth camera based hand gesture recognition and its applications in Human-

Computer-Interaction, by R. Zhou et al., 2011. Copyright by IEEE. 
 

Just like video cameras, depth cameras suffer from the loss of tracking data due to 

occlusion of body parts. This problem can be solved using multiple depth cameras from 

different angles and merging the tracking data (Schönauer & Kaufmann, 2013). 

The depth-sensing technology relies on the reflection of infrared light from the surface 

of tracked object, therefore tracking is disturbed by other sources of infrared light (like the sun) 

or unevenly reflective surfaces (like glass) (Wasenmüller & Stricker, 2017).  

Depth cameras provide lower resolution and frame-rate than video cameras or wearable 

sensors. TOF technology enables higher resolution, but infrared sensors which have to detect 

light pulses are very expensive (Han, Shao, Xu, & Shotton, 2013). 

More technologies to track gestures are being researched, such as electric fields or Wi-

Fi signals. Human body absorbs and reflects radiation in spectrum of radio frequency, therefore 

movements could be detected measuring the strength of the electric field, when the user is 

between transmitting and receiving electrodes (Pun, 2006). Wi-Fi routers and mobile devices, 

common in home and work environments, could be exploited for a gesture recognition system, 

it would not require special sensors to wear or cameras to set up and could track movements 
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through walls without occlusion (Pu et al., 2013). The system could achieve it by detecting a 

distortion of Wi-Fi signal, caused by an in-air body movement (Abdelnasser, Youssef, & Harras, 

2015). However, these technologies are still in its infancy and need more exhaustive research 

and development to be widely applied. 

Depth-sensing technology seems to be a good trade-off between precision, convenience 

and need for computational power required for dance recognition. Dance gestures are executed 

by the whole body, which is a large object to track and therefore does not require a high-

resolution sensor (like hand gesture recognition systems do). Dance is a dynamic long-lasting 

rhythmical activity and wearing markers or sensors would be uncomfortable and disturbing – 

which depth cameras do not need it. Depth sensors provide 3D coordinates of every pixel in the 

field of view, eliminating the step of computationally expensive image pre-processing to extract 

this data and making a real-time recognition system more responsive. For the project of this 

thesis, the depth-sensing device Microsoft Kinect v2 was chosen as an input device.  

First generation Kinect v1 was introduced to mass market in 2010 and caused an 

explosion of research and experimentation thanks to its low price and simple setup (Biswas & 

Basu, 2011). It was based on TWSL technology, therefore had a speckled-pattern-laser-light 

emitter and an infrared sensor, as well as an RGB camera and a microphone (Zhang, 2012). 

Due to limitations of used technology, the device was making low fidelity depth measurements 

and was sensitive to lighting conditions (Lun & Zhao, 2015).  

In 2014 Microsoft switched to a more advanced TOF technology and launched the 

second-generation Kinect v2 (Wasenmüller & Stricker, 2017). It has higher specifications than 

v1 in many aspects and comes with an official Software Development Kit 2.0 (SDK 2.0), which 

can even accomplish feature extraction discussed in the next stage of processing chain (Wang, 

Kurillo, Ofli, & Bajcsy, 2015). 

 

2.2. Feature Extraction 

The depth sensor of Microsoft Kinect v2 has a resolution of 512 by 424 pixels and the 

RGB sensor resolves “full HD” with 1920 by 1080 pixels at a frequency of 30 frames per second 

(Lun & Zhao, 2015). It means that the device provides 3 position values (horizontal, vertical 

and proximity coordinates) of 307,200 pixels and 3 colour values (red, green and blue) of 

2,073,600 pixels at a rate of 30 cycles per second. It is not reasonable to feed this huge amount 

of data directly into classification algorithms, because it would take too much time to process 

(not suitable for real-time recognition systems), cause overfitting errors (some data is noise and 
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should be ignored) and some algorithms simply cannot handle high-dimensional data (Al-Ali, 

Milanova, Al-Rizzo, & Fox, 2015).  

The amount of input data should be reduced in the way that it keeps the key information 

needed to achieve the following tasks: (1) detect a human body and (2) label the body parts. 

The process of reduction of data amount retaining relevant information is called feature 

extraction (Chaaraoui, Padilla-López, & Flórez-Revuelta, 2013). 

(1) Detection of human body. Identifying a human body in the field of view is relatively 

easy when both depth and colour information is available. First step is to remove background 

pixels which have larger depth (proximity to the camera) values (Beyl et al., 2013). High-

resolution colour image, merged with depth map, can improve the accuracy of object and 

background separation, if their colour patterns are different (Han et al., 2013). 

Some interactive dance systems do not require further identification: they track the 

whole body and trigger audio-visual events based on its location and speed of movement in 

space (Camurri, Mazzarino, Ricchetti, Timmers, & Volpe, 2004).  

The system of this thesis has to identify and track individual body parts in order to 

connect every part to a specific audio track, therefore detection of human body is not sufficient. 

(2) Labelling of body parts. There are two approaches to segment body parts to 

meaningful labels, keeping relevant information on their position: body contour and body 

skeleton.  

 

2.2.1. Body Contour 

Body contour, also called “3D shape” or a “silhouette” (Figure 2.6), is a large set of 

dots/vectors with coordinates in 3D space, which represent the surface of the body (Han et al., 

2013). 

 

 
Figure 2.6. Body contour, recovered from colour and depth images captured by the Kinect sensor.  

Reprinted from Home 3D Body Scans from Noisy Image and Range Data,  
by A. Weiss et al., 2011. Copyright by IEEE. 

 



25 

For some gesture recognition systems, it is important to know the exact location of the 

body surface, for example: the position of finger tips is needed for a convincing “touch” 

interaction in virtual environments; accurate tracking of body surface is crucial in cinema and 

game production, where it is remodelled to an animated avatar (Licsár & Szirányi, 2005). 

 

2.2.2. Body Skeleton 

The body skeleton approach is a suitable choice for interactive dance systems, because 

it does not require the knowledge about the body’s surface. Body skeleton consists of a small 

number of dots/vectors in 3D space, which represent the main limbs and joints of a human 

body: head, neck, palms, elbows, shoulders, waist, hips, knees and feet (Patsadu et al., 2012).  

The task of further processing is greatly simplified, when only a handful of vectors 

(further called as “joints”) need to be analysed without losing essential information (Kurakin, 

Zhang, & Liu, 2012). For example, a hand movement can be represented by the change of the 

3D position and rotation of two joints – palm and elbow – in relation to the third joint – shoulder.  

This information would be insufficient for e.g. a sign language recognition system, but is 

satisfactory for interactive dance systems. 

Researchers have created many algorithms to cluster depth and colour pixels and 

classify to skeleton joints (Chiu, Blanke, & Fritz, 2011). Microsoft’s official Kinect SDK 

provides the skeleton information out-of-the-box (Figure 2.7).  

 

 
Figure 2.7. Body skeleton, provided by Kinect SDK 2.0.  
Adapted from Human Interface Guidelines for Kinect v2,  

by Microsoft Corporation, 2014. Copyright by Microsoft Corporation. 
 

According to the creators of Kinect v1, the training data was collected generating 

hundreds of thousands “realistic synthetic depth images of humans of any shapes and sizes in 
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highly varied poses sampled from a large motion-capture database” which was used to train “a 

deep randomized decision forest classifier” (Zhang, 2012). The proprietary algorithm analyses 

input from depth sensor, assigns every pixel to a body joint and every joint to a 3D skeleton. 

The classifier has low latency – processes every frame in few milliseconds – because it is able 

to exploit the computer’s graphical processing unit (Zhang, 2012). The method of skeleton 

tracking in Kinect SDK 2.0 which comes with the second-generation device Kinect v2 has not 

been disclosed, but it’s believed to be similar to the original (Wang et al., 2015).  

The body skeleton approach was chosen for the system of this thesis, exploiting 

Microsoft’s original Kinect SDK 2.0 to extract temporal 3D coordinates of the dancer’s body 

parts. 

Some gesture classification algorithms may require additional feature extraction to 

reduce the amount of data and/or transform it to a format which they are able to process. Feature 

extraction methods applicable to specific algorithms will be discussed in the chapter 2.4.  

 

2.3. Segmentation 

Dance is a continuous stream of motion, where gestures are not clearly separated – there 

is no idle time between gestures – which makes segmentation a challenging task. Gesture 

segmentation is a process where data stream is divided into chunks which are accepted by 

classification algorithms as discrete cases (Kahol, Tripathi, & Panchanathan, 2004). 

Segmentation can be done based on (1) “internal” data of body tracking or (2) “external” data 

of music metrics. 

 

2.3.1. Based on Body Tracking 

The first approach relies solely on the data received from a depth sensor. Movement has 

to be deconstructed to primitive elements, then the pattern of these elements is being compared 

to known sequences looking for similarities. This method is similar to a deconstruction of a 

sentence to words in speech recognition (Wang, Shum, Xu, & Zheng, 2001). The size of a 

pattern has to be defined either by the number of last frames, milliseconds or deconstructed 

elements (Naveda & Leman, 2008). Primitive elements can be defined explicitly (e.g. as key 

poses) or implicitly (e.g. as “periods” of higher activity) (Kahol et al., 2004). 

Popular dance has an advantageous characteristic: it consists of repetitive movements, 

differently from ballet or modern dance where movements are supposed to reflect emotion or 
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mood rather than rhythm (Naveda & Leman, 2008). If a gesture is repeated rhythmically, its 

trajectory must represent a closed loop. This feature allows distinction of a gesture without its 

prior knowledge: a segmentation algorithm must only find when the same sequence of the 

gesture’s primitive elements begins again (Figure 2.8). 

 

 
Figure 2.8. Gesture segmentation based on hand’s movement pattern.  

Adapted from A Cross-modal Heuristic for Periodic Pattern Analysis of Samba Music and Dance,  
by L. Naveda & M. Leman, 2009. Copyright by Journal of New Music Research. 

 

It is difficult to identify these elements by position and rotation of skeleton joints, 

because body movement is never exactly the same even though the performer’s intention is to 

repeat a gesture – it can be slower or quicker, joints can have slightly different path or 

amplitude. Derivative data could be used to ignore this deviation – speed, acceleration, direction 

– which could be further processed observing distribution, frequency (e.g. with Fourier 

transform) and sequence (e.g. with Dynamic Time Warping) of these values (Bettens & 

Todoroff, 2009). Motion cues are also used such as peaks of energy (speed multiplied by mass 

of a body part), fluency (change of movement direction), impulsiveness (change of state from 

idle to rapid movement) describing kinetic characteristics of a body (Camurri et al., 2004; e.g. 

Figure 2.9).  

Dance is movement synchronized with music, therefore music metrics could be 

exploited to reduce the amount of data needed for quick and precise segmentation: movement 

indicators could be overlaid with music metrics and peaks of energy ignored if they do not 

match with peaks of pitch (Naveda & Leman, 2009).  
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Figure 2.9. Extraction of motion cues using EyesWeb framework.  

Reprinted from Multimodal Analysis of Expressive Gesture in Music and Dance Performances,  
by A. Camurri et al., 2004. Copyright by Springer. 

 

2.3.2. Based on Music Metrics 

The second approach relies solely on music metrics. Popular music genres have a stable 

tempo and time signature (Bahn, Hahn, & Trueman, 2001). The tempo is the song’s speed 

described in beats (pulses) per minute, while the time sequence specifies the number of beats 

in each bar (measure) and the length of a beat (Burger et al., 2013). Bar (measure) is a musical 

notation that describes a time segment of one length with the same number of beats, perceived 

by a dancer as a rhythm (Burger et al., 2013). Rhythmical dance should match the song’s time 

signature, which provides an opportunity to split the dance into separate gestures by the time 

period of a bar (Raptis et al., 2011; e.g. Figure 2.10). 

 

 
Figure 2.10. Gesture segmentation based on the beat length.  

Reprinted from Representation of Samba dance gestures, using a multi-modal analysis approach,  
by L. Naveda & M. Leman, 2008. Copyright by Edizione ETS. 
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The second approach is robust, easy to implement and does not require data processing, 

it is therefore an attractive option, if dance gestures are repetitive and match the music’s rhythm. 

If both of these requirements cannot be met, the first approach should be used. 

In the project of this thesis a gesture segmentation by music bar was chosen because it 

was expected that a dancer would repeat gestures on every bar. 

 

2.4. Classification 

Classification is a crucial part in the system’s processing chain, because this is where 

the actual recognition happens. Recognition of a gesture is successful when the system labels 

it with the correct class.  

In the previous chapter “segmentation”, the gesture’s identification in the continuous 

movement (separating a discrete time-series of one gesture from the stream of continuous input 

data) is actually a classification task to one of two categories – “gesture” or “non-gesture” 

(a.k.a. “null gesture”). An algorithm, responsible for gesture segmentation, could also do the 

classification task if it recognizes the pattern of a discrete gesture within a continuous stream 

based on similarity to one of the known gestures (Bettens & Todoroff, 2009). 

Classification algorithms in interactive dance systems must accurately classify gestures 

meeting the following requirements: (1) it should suffice a small training dataset to learn 

gestures, (2) it should rapidly classify gestures, and (3) it should be able to integrate adaptive 

features. 

(1) Small training dataset. Some recognition systems (e.g. object recognition in images) 

use databases with thousands of samples of previously recorded and labelled gestures to train a 

classification model (Licsár & Szirányi, 2005). There are attempts to create such databases for 

recognition of standard gestures, e.g. sign language (Martínez, Wilbur, Shay, & Kak, 2002). 

Because there is no standard database of dance movements, dancers must to train the model 

with their own samples. For the convenience of use it should take a reasonable amount of time 

and number of gesture repetitions to prepare the system.  

(2) Rapid classification. Training a model requires some processing power and time and 

can be done offline, once the training dataset is acquired. But during real-time live performance 

a new gesture must be classified immediately, because it has to trigger an audio track at the 

right moment (Bettens & Todoroff, 2009). A sparse model (which does little computation to do 
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the classification) would give freedom to use the system on computers with a wider range of 

processing power. 

(3) Adaptive feature. When the initial training dataset is very small, an adaptive feature 

would be beneficial for a classification model (Licsár & Szirányi, 2005). An adaptive model is 

able to “learn by doing” and improve accuracy over time of use. It can be achieved by including 

correctly classified gestures as additional training examples and periodically retraining the 

model (Licsár & Szirányi, 2005). Adaptive feature requires not only classification but also for 

the model’s training to take a short period of time. 

This thesis discusses four machine learning algorithms often used to recognize gestures: 

(1) Dynamic Time Warping, (2) Hidden Markov Models, (3) Support Vector Machines, and (4) 

Artificial Neural Networks. 

 

2.4.1. Dynamic Time Warping  

The most straight-forward recognition of a gesture is comparing its trace with traces of 

known gestures and then selecting a label with the most similar trace. A gesture’s trace can be 

represented by a time-series (multidimensional data matrix where one dimension is time) with 

3D coordinates of relevant body parts changing over a period of time (Kratz & Rohs, 2010). 

Comparison of traces can be achieved with the Dynamic Time Warping (DTW) algorithm, 

which finds the shortest warping path (i.e., the minimum total distance of all data points) 

between two vectors (Akl, Feng, & Valaee, 2011; e.g. Figure 2.11).  

 

 
Figure 2.11. Mapping between two time-series based on the DTW algorithm.  

Adapted from Real-time DTW-based gesture recognition external object for Max/MSP and PureData, 
by F. Bettens & T. Todoroff, 2009. Copyright by F. Bettens & T. Todoroff. 
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Computationally, it would be very expensive to calculate distances of every data point 

of one vector to every data point of the second vector and find the smallest distances of all 

possible combinations. Instead the algorithm relies on the assumptions that vectors consist of 

sequential data (every data point leads to the next data point and cannot lead to the previous), 

that the warping path is continuous and one-directional (similar data segments can be shifted in 

time but are arranged in the same order) (Gillian, 2011). The algorithm exploits these 

assumptions of a dynamic programming approach: the minimum distance between data points 

of two vectors is a warping path (the sum of minimum distances) of up until this pair plus a 

smallest distance to the next pair (Bettens & Todoroff, 2009). Equations of DTW algorithm are 

presented and explained in the Appendix A. 

The algorithm is frequently used in data sequence recognition (e.g. speech or writing), 

because it can find similar segments of data points when their location is shifted, in-between 

data segments are not similar and vectors have different length (Boukir & Chenevière, 2004).  

If data points have more than one dimension (e.g. body part’s 3D coordinates changing 

in time), the Euclidean or similar metric should be applied to compute the sum of distances (Li, 

Zhai, Zheng, & Prabhakaran, 2004). If dimensions have different data ranges, they should be 

normalized before computing the Euclidean distance (Bettens & Todoroff, 2009). In order to 

reduce the amount of computation and overfitting, data should be down-sampled (Gillian, 

2011).  

Training of the DTW model is a process where a template is found for every gesture. 

That is, a time-series example which has the smallest warping path to all other examples in the 

training data (Gillian, 2011). 

The model classifies an unknown time-series by comparing its distances to each 

template and selecting the class with the smallest distance, if it is smaller than a threshold 

(Gillian, 2011). If all distances are larger than the threshold, the gesture is considered as 

unrecognized and classified as a non-gesture (“zero class”). 

Algorithm’s strength: as every gesture is represented by a separate independent 

template, it is convenient to remove or add a class without retraining the whole model (Gillian, 

2011). 

Algorithm’s weakness: the algorithm heavily depends on finding the “best” example in 

the training dataset as a template for every gesture, therefore it can perform poorly if all training 

examples are slightly different (Gillian, 2011).  
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2.4.2. Hidden Markov Models 

Another way to approach the gesture recognition problem is to look for a “hidden” 

pattern that groups examples of one gesture to one class. When a performer is repeating the 

same gesture, repetitions may vary, but the intended gesture is the same. Unfortunately, the 

intended gesture cannot be observed, it can only be inferred based on observable repetitions. 

Hidden Markov Model (HMM) is a set of interconnected unobservable “hidden” states 

which emit observations (Lee & Kim, 1999). Every hidden state can either remain or change to 

another state and can emit any of the observations from the set (Lee & Kim, 1999).  

The simplest way to model sequential data is a first-order left-right Markov chain in 

which every state can transition only into one next state and cannot transition back (Mitra & 

Acharya, 2007). The model relies on the assumption, that every state only depends on the 

previous state and every observation only depends on emitting states. Therefore, the structure 

of hidden states can be inferred based on known observations using computationally efficient 

dynamic programming (Kahol et al., 2004).  

A classic HMM can accept only one-dimensional values as observations, therefore pre-

processing of the time-series is needed. One of the methods is Vector Quantization, where all 

data points (3D coordinates of relevant body parts) are grouped to predefined number of 

clusters, then the IDs of these clusters are used as observation values. EM-based Gaussian 

Mixture Model (Yang et al., 2006), Symbolic Aggregate Approximation with K-Means and K-

Nearest Neighbour algorithms (Gillian, 2011) are used to cluster the data points of feature 

vectors. 

In classification problems, every gesture class is represented by a separate HMM, where 

the model’s observations are pre-processed time-series of a gesture (e.g. Figure 2.12). A number 

of hidden states and observations for a model must be predefined and the model trained – the 

model’s parameters computed using Baum-Welch algorithm (Schlömer et al., 2008).  Model’s 

parameters are initial distribution of the states, the transition probabilities between states and 

the emission probabilities of the state to observations (Fahn & Chu, 2011).  

Once HMMs for all gestures are trained, an unknown gesture is classified feeding its 

pre-processed time-series as observations to every model and comparing the probabilities that 

these observations could be emitted by every model using the Forward-Backward algorithm 

(Fahn & Chu, 2011). If the probability is larger than a threshold, the class with the highest 

probability is selected, otherwise the time-series is classified as a non-gesture (Gillian, 2011).  
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Figure 2.12. First-order left-right HMMs to recognize 10 gestures.  

Adapted from Human-robot interaction by whole body gesture spotting and recognition,  
by H. D. Yang et al., 2006. Copyright by IEEE. 

 

Algorithm’s strengths: thanks to the dynamic programming calculation of probability in 

HMM is not computationally expensive; every gesture is represented by a separate independent 

model; therefore, it is convenient to remove or add a class without retraining the whole model 

(Gillian, 2011). 

Algorithm’s weaknesses: the model needs to set up a lot of parameters – number of 

states, observations, state relationships, initial states, thresholds; HMMs are limited when 

multidimensional data has to be classified, because during Vector Quantization important 

features of the data may be lost (Gillian, 2011).  

 

2.4.3. Support Vector Machines 

Previous DTW and HMM algorithms have a separate independent model for every 

learned gesture and a new gesture is classified finding the best-fitting model. This approach is 

prone to errors when several models return a high probability of likelihood because differences 

between classes are not emphasized. 

Another approach is to consider all gestures in one model and find key elements which 

discern one class from another. The Support Vector Machines (SVM) algorithm does exactly 

that: in its simplest form, when the training data is 2-dimensional data points of two known 

classes, it draws the optimal line (called “hyperplane”) where the distance (called “margin”) 

between nearest data points of the opposite classes (called “support vectors”) is largest (Figure 

2.13).  
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Figure 2.13. Hyperplane, maximum margin and support vectors of the SVM algorithm.  

Adapted from Gesture Recognition for Musician Computer Interaction,  
by N. Gillian, 2011. Copyright by N. Gillian. 

 

Once the model is trained (i.e. the hyperplane and support vectors are found), a new 

data point can be assigned to one of the classes depending on which side of the hyperplane it is 

(Patsadu et al., 2012).  

If a straight line cannot separate the classes, data points can be mapped to a higher 

dimensional space using non-linear kernels (it’s called “kernel trick”), where the hyperplane is 

optimal (Gillian, 2011). The algorithm is also able to find a hyperplane when the original data 

is multidimensional (Kotha, Pinjala, Kasoju, & Pothineni, 2015).  

The classic SVM divides only two classes and returns only a discrete value indicating 

the likely class, but it can be extended to divide multiple classes and return a probability of 

classification of new data (Gillian, 2011). When the model is extended to provide probability 

along with the inferred class, a threshold can be applied: if the probability is lower than a 

threshold, the sample is classified as a non-gesture (Gillian, 2011).  

The SVM algorithm requires the input data to have a predefined and fixed length, 

therefore the time-series needs to be pre-processed by extracting its features (Gillian, 2011). 

One method of feature extraction is to divide time-series of every gesture trace to a number of 

equal segments, compute key distribution measures (e.g. mean, standard deviation, Euclidean 

norm, root-mean-square) for each dimension of a segment, then arrange the values of all 

measures to one vector (Gillian, 2011). For example, if the time-series with 3D coordinates is 

divided into 10 segments and 4 measures are computed, the input sample is a vector of 120 

values.  

Another method of feature extraction is to convert each dimension of the whole time-

series to its frequencies (e.g. using Fast Fourier Transform algorithm), find key frequency 



35 

measures (e.g. index, amplitude and phase value of maximum frequency, Euclidean norm of 

phase) for each dimension, then arrange the values to one list (Gillian, 2011). For example, if 6 

frequency measures for each of 3 dimensions of the time-series are extracted, the input vector 

has the length of 18.  

Both methods to extract features can be combined: distribution and frequency measures 

merged to one vector, maintaining the order of features for both the training and the prediction 

data.  

Algorithm’s strengths: it is able to classify high-dimensional vectors (i.e. long lists of 

feature values); a small number of examples are needed to train the model and a small amount 

of computations is needed to classify a new gesture (Gillian, 2011).  

Algorithm’s weaknesses: its ability to handle long vectors of data comes with the 

restriction to use a fixed number of features; sequential relationship of data points in the time-

series is lost during feature extraction; feature extraction relies on the ability to explicitly select 

relevant features: if irrelevant or insufficient number of features are chosen, the model will 

perform poorly; if a new gesture has to be added or an existing one removed, the whole model 

for all gestures has to be retrained (Gillian, 2011). 

 

2.4.4. Artificial Neural Network 

 The described SVM algorithm has one model to separate gestures based on differences 

between its features by distance or frequency measures. Direct differences of features may be 

insufficient to correctly recognize a gesture. 

The Artificial Neural Network (ANN) algorithm has not only just one model for all 

gestures, but also a “hidden” computation stage which captures higher-level dependencies 

between the input data and classes (Schmidhuber, 2014). The ANN model consists of an input 

layer, the hidden layers and an output layer, and each layer has a fixed number of nodes 

interconnected with adjustable weights (Dey, Mohanty, & Chugh, 2012). A simple model is 

static (all input data are fed to the network at once), feed-forward (data processing goes only to 

one direction from one layer to the next) and has one hidden layer (Bishop, 1995). 

In the classification problem, nodes in the input layer are input data points, nodes in a 

hidden layer can be viewed as clusters (or unlabelled sub-classes) and their weights as 

probabilities, that each input data point belongs to one of the clusters (Serrano, 2016). Nodes 

in the output layer are classes and their weights are probabilities that each cluster (a hidden 

node) belongs to one of the classes (Figure 2.14). 
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Figure 2.14. ANN layers, where the hidden layer divides data points to clusters.  

Screenshot of the video A friendly introduction to Deep Learning and Neural Networks,  
by L. Serrano, 2016. Copyright by L. Serrano. 

 

ANN model’s training is a process to find optimal weights – probabilities which, based 

on input data (input layer), correctly predict clusters (hidden layer) and eventually a class 

(output layer). Optimal weights can be found using Backpropagation algorithm with Stochastic 

Gradient Descent: the algorithm gradually updates weights starting from the output layer in 

order to minimize the classification error (LeCun et al., 2015). 

Finding the best weights for all nodes takes a huge number of iterations and is 

computationally very expensive, therefore the number of input nodes (amount of input values) 

should be limited (Gillian, 2011). Input data should also be pre-processed to eliminate noise 

and avoid overfitting (Gillian, 2011). In a similar fashion to the SVM algorithm, features like 

distribution and frequency measurements of time-series, velocity and/or acceleration of 

skeleton joints could be extracted from the raw data, arranged to a list of values matching the 

number of input nodes (called “feature vector”) and fed to the ANN model (Gillian, 2011). 

Once the model is trained, a new gesture is classified by extracting the same features 

from the time-series, applying the optimal weights on each layer, and selecting the class of an 

output node with the highest value (Gillian, 2011). If the highest value is smaller than a 

threshold, the time-series is classified as a non-gesture (Gillian, 2011).  

Static ANN model does not consider sequential nature of time-series. Time Delay 

Neural Networks (TDNN), in contrast, are used to take into account time in pattern-over-time 

recognition like speech, writing and movement (Peddinti, Povey, & Khudanpur, 2015). In 

TDNN, each node accepts values only from a subset of nodes (“sliding window”) instead of all 

nodes in the previous layer (Peddinti et al., 2015). This method not only encourages the model 

to cluster neighbour data points in each layer, but also reduces the amount of required 
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computations (Peddinti et al., 2015). Input for TDNN should be features which preserve time 

as one of the factors (i.e. frequency measures of the whole time-series are not suitable). 

Another type of ANN where time is viewed as an internal mechanism are Recurrent 

Neural Networks (RNN). In RNN, input data is processed in time-steps: a subset of input data 

(“sliding window”) is fed to a RNN model through input nodes and hidden nodes additionally 

receive weighted values of “context” nodes, which are hidden node values of the previous time-

step (Kouchi & Taguchi, 1991). RNNs are widely used in deep learning systems, but are 

computationally very expensive because of its recurrent mechanism and take too long to infer 

for real-time recognition systems (Schmidhuber, 2014). 

Algorithm’s ANN strengths: it is able to generalize and classify complicated data 

features thanks to hidden layers; classification of new data requires little computation, once the 

model is trained (Gillian, 2011). 

Algorithm’s ANN weaknesses: it requires a complex pre-processing to prepare feature 

vector for input; model training requires a lot of computational power and is not reliable because 

the learning algorithm can stop adjusting when locally optimal weights are found although 

globally better parameters are possible; the entire model has to be retrained when the number 

of gesture classes changes (Gillian, 2011).  

For the system of this thesis, the DTW algorithm was chosen to classify gestures 

because it does not require a large dataset and many iterations to train the model, it rapidly 

classifies new gestures, it is able to handle multidimensional time-series data of varying length, 

it does not need feature extraction, and finally, adaptive feature can be implemented thanks to 

the model’s short retraining time.  

 

2.5. Post-processing 

Once a gesture is classified, it has to trigger the playback of an audio track, sample or 

note in order to transform dance movement to music.  

A convenient way to connect gestures to musical elements is through a standard 

communication protocol like Musical Instrument Digital Interface (MIDI) or Open Sound 

Control (OSC). MIDI and OSC are widely used to interconnect musical instruments, audio 

mixers, light and video installations (Jensenius, Godøy, & Wanderley, 2005). If a recognition 

system is able to emit the standard signal, any supporting audio platform can be chosen to 

implement the last processing stage “Output”, discussed in the next chapter.  
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There are several software environments which are not only able to emit MIDI or OSC 

signals, but also serve as a framework to build the whole gesture recognition system: accept 

data from input sensors, extract features, segment gestures and use machine learning algorithms 

to classify them (Gillian, 2011). These software environments usually have graphical user 

interfaces and visual programming languages which allow to build a system without coding in 

traditional programming languages. Environments include various libraries, plugins and 

toolboxes that meet different needs of various signal processing tasks and human-computer 

interfaces. 

Commercial (1) Matlab/Simulink and (2) Max/MSP as well as open-source (3) Pure 

Data and (4) EyesWeb software programs were considered to provide a framework for the 

recognition system of this thesis. 

 

2.5.1. Matlab/Simulink 

Matlab is a computation environment with its proprietary programming language for 

analysing and visualizing multi-dimensional data, developed and sold by the company 

MathWorks (MathWorks, 2018b). The environment is extendable by in-house modules called 

toolboxes – a set of Matlab functions developed for a specific purpose. For example, Image 

Acquisition Toolbox is able to receive image, depth and skeleton tracking data from Microsoft 

Kinect device; Computer Vision System Toolbox provides algorithms for object detection and 

feature extraction; Machine Learning Toolbox has implementations of SVM, HMM, k-Means, 

k-Nearest Neighbour algorithms; Neural Network Toolbox has implementations of various 

types of ANN; Audio System Toolbox enables to output MIDI signals (MathWorks, 2018a). 

Matlab’s additional package Simulink provides a graphical user interface, which allows 

to design and evaluate dynamic systems (Figure 2.15).  

In Simulink, computation steps are visualized as blocks, which are connected by arrows 

indicating data flow. Every block is a piece of Matlab code, function or toolbox with fields to 

enter necessary parameters.  
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Figure 2.15. Matlab/Simulink user interface, an example project which detects lane markings in a 
video stream. Screenshot of the video Computer Vision System Toolbox – MATLAB & Simulink,  

by MathWorks, 2018. Copyright by MathWorks. 
 

2.5.2. Max/MSP 

Max is a signal processing environment and visual programming language designed 

specifically for music and multimedia purposes, it is developed and sold by the company 

Cycling ’74 (Cycling ’74, 2018). Max has a graphical user interface, where signal processing 

steps are visualized by blocks (called objects) connected with lines indicating data flow. Blocks 

can be integrated Max functions, JavaScript code or external modules.  

 

 
Figure 2.16. Max/MSP user interface, an example project recognizes gestures using Kinect device.  

Screenshot of the video Pose and Gesture Recognition using Kinect 2 skeleton tracking and Machine 
Learning Techniques in Max MSP Jitter - Vimeo, by M. Akten, 2015. Copyright by M. Akten. 
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Max comes with add-on packages MSP and Jitter: MSP allows real-time manipulation 

of digital audio signals and Jitter adds real-time video processing ability (Figure 2.16).  

Environment’s functionality is extendable by third-party modules called external 

objects. For example, Jit.OpenNI object supports Microsoft Kinect RGB, depth and skeleton 

input (Phurrough, 2018); Musical Gesture Toolbox is a collection of modules made specifically 

for gesture analysis in video (Jensenius et al., 2005); Num.DTW object uses an extended “multi-

grid” DTW algorithm to recognize gestures without prior segmentation (Bettens & Todoroff, 

2009); NNLists object implements feed-forward back-propagation ANN (Robinson, 2018); 

HMMM is an implementation of HMM algorithm (Visell, 2018).  

Max/MSP environment has an integrated support of MIDI and OSC signals, which can 

be received as input or transferred as output. 

 

2.5.3. Pure Data 

Pure Data is another visual programming environment for audio processing, created by 

software engineer Miller Puckette and conceptually similar to his previously co-developed 

software Max (Puckette, 2018). It is free and open-source and is therefore being maintained 

and improved by a global community of enthusiasts and researchers.  

Pure Data focuses on real-time processing for live music and multimedia performances. 

Just like Max, the graphical user interface consists of blocks called objects where data 

processing takes place which are interconnected with lines (Figure 2.17).  

 

 
Figure 2.17. Pure Data user interface, an example project classifies gestures using DTW algorithm. 

Screenshot of the video Dynamic Time Warping in PureData (alpha) - Vimeo,  
by P. Lopes, 2010. Copyright by P. Lopes. 
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The environment is extendable by third-party modules called externals. As Pure Data is 

similar and to some degree interoperable with Max/MSP, the open-source community has 

developed unified externals suitable for both Pure Data and Max. For example, ML.Lib is a 

library of machine learning externals for both platforms, which has some functions for feature 

extraction and implementations of DTW, HMM, SVM and ANN algorithms (Bullock & 

Momeni, 2015).  

Pure Data natively supports MIDI and OSC protocols for input and output of audio 

signals. 

 

2.5.4. EyesWeb 

EyesWeb is a visual programming environment to develop real-time multimodal 

systems and interfaces, it is created and maintained by the international research centre Casa 

Paganini - InfoMus Lab, it is free and open-source (Infomus, 2018).  

Real-time systems are designed using a graphical user interface with blocks where data 

processing takes place interconnected with lines indicating data flow (Figure 2.18).  

 

 
Figure 2.18. EyesWeb user interface, an example project classifies gestures using HMM algorithm. 

Screenshot of the project HMM Predict Example, by N. Gillian, 2011. Copyright by N. Gillian. 
 

The environment natively supports wide number of motion capture devices including 

Microsoft Kinect, MIDI and OSC standards as input and output signals, includes in-house and 

third-party libraries for feature extraction and classification. For example, SARC EyesWeb 

Catalog (SEC) is a collection of blocks designed specifically for real-time gesture recognition 
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in musical-computer interfaces (Gillian, Knapp, & Modhrain, 2009). SEC has implementations 

of k-Means, k-Nearest Neighbour, Principal Component Analysis algorithms for feature 

extraction, of DTW, HMM, SVM, ANN algorithms for classification, mathematical functions 

for multi-dimensional data processing, as well as various blocks to structure and visualize data 

flow.  

Matlab/Simulink framework is slow and more suitable for off-line simulation and 

analysis. Max/MSP and Pure Data are made for audio signal manipulation rather than gesture 

recognition. 

EyesWeb environment with SEC catalogue was chosen for the project of this thesis as 

it perfectly fits all needs. EyesWeb is open-source and is in active development for the last 20 

years – last version 5.7 was released in January 2017 and the next regular workshop is scheduled 

in July 2018 (Infomus, 2018).  

 

2.6. Output 

In the last processing stage MIDI or OSC signals sent by the “gesture engine” have to 

be received by “music engine”. Receiver of the signal should facilitate a dancer to create 

harmonic music: it should have a prearranged set of audio tracks, loops or samples that sound 

well when combined. Also, it should assist the performer to play triggered tracks at the right 

time (i.e., in synchronization with song’s tempo and bar measure). 

There are many software packages known as Digital Audio Workstations (DAW) and 

MIDI sequencers that can function as the “music engine”. For the project of this thesis are 

considered commercial products (1) Ableton Live and (2) Bitwig Studio as well as free open-

source project (3) LMMS. 

 

2.6.1. Ableton Live 

Ableton Live is a DAW for music creation and live performances, developed and sold 

by the company Ableton AG (Ableton, 2018). Its graphical user interface has two views: in 

Arrangement View virtual music instruments are arranged in a timeline, in Session View 

multiple melodies or rhythms are selected for every instrument (Figure 2.19).  

Melodies and rhythms (called “clips”) are chosen from an internal sound library, 

imported from external sources, recorded or generated with a built-in MIDI controller. There is 
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a large list of built-in audio effects to modify sound clips and overall live set. Tempo and bar 

measurement are defined for the whole arrangement of music elements.  

 

 
Figure 2.19. Ableton Live user interface, Session View of an example project.  

Screenshot of the project Live 9 Demo, by Ableton, 2018. Copyright by Ableton. 
 

At a live performance using Session View, pre-arranged music elements are triggered 

by MIDI signals (OSC signals are supported only with a third-party plugin) mapped to melodies 

and rhythms. When a music clip in Session View is toggled, it starts playing only when a new 

bar begins and plays in loops until it is toggled again or another element of the same instrument 

is triggered. 

 

2.6.2. Bitwig Studio 

Bitwig Studio is a relatively new DAW developed by the company Bitwig GmbH, 

founded by ex-Ableton engineers (Bitwig, 2018). Just like Ableton, its graphical interface has 

Arrange view and Mix view: in Arrange view, music instruments (called “track”) are arranged 

in a timeline, in the Mix view, every track has a stack of music elements (called “clips”) like 

melodies and beats (Figure 2.20).  

Every clip can be mapped to a MIDI value and triggered by an external MIDI controller 

which sends this value. Clips are adjusted (stretched on shrank) to match tempo and bar measure 

selected for the whole composition. When a clip is triggered, it starts to play in the beginning 

of next bar and plays in a loop until it’s triggered again or another clip of the same track is 

triggered. 
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Figure 2.20. Bitwig Studio user interface, Mix view of an example project.  

Screenshot of a demo project, by Bitwig, 2018. Copyright by Bitwig. 
 

Clips can be generated with built-in and third-party plugins, selected from the internal 

library or imported from external sources. Various audio effects (like delay, reverb, chorus) can 

be applied to the whole composition, specific instruments or clips, effects and main controls 

(like volume, gain, pitch) can be controlled by MIDI signals received from an external 

controller. 

 

2.6.3. LMMS 

LMMS is a free and open-source DAW, created by Paul Giblock and Tobias Doerffel 

and has a large community of contributors to the project development (Giblock & Junghans, 

2018). Its user interface has a Song Editor window where instruments are arranged in the 

timeline and a Beat+Bassline Editor window where, as the name indicates, clips for 

Beat/Bassline instrument are stacked (Figure 2.21).  

Only Beat/Bassline instrument can have multiple clips stacked for looped playback and 

a composition can have only one list of Beat/Bassline clips. Every clip can be triggered by an 

external MIDI input, but it starts to play as soon as it is toggled and does not stop playback of 

another clip in the stack. Instruments in Song Editor can be toggled by MIDI signal too and 

they start to play when the next bar begins.  
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Figure 2.21. LMMS user interface, an example project.  

Screenshot of a demo project, by LMMS, 2018. Copyright by LMMS. 
 

LMMS is made for music composition and does not have an interface dedicated 

specifically for live performance, but a project can be tweaked to perform real-time. For 

example, part of the timeline in Song Edit window can be selected to loop and during its 

playback, instruments and clips toggled with an external MIDI controller. External controllers 

must communicate using MIDI signals as LMMS does not support OSC protocol.  

LMMS program is an attractive option because it is free and open-source, but is not 

designed for live performances and does not have features assisting a real-time manipulation of 

musical elements. Both Ableton Live and Bitwig Studio have required features, therefore can 

be conveniently used in interactive dance systems.  

Ableton Live was chosen for the project of this thesis, because it has very large 

community of users who have created a lot of online tutorials and Q&A discussions. 

 
2.7. Summary 

In order to design a real-time recognition system able to recognize temporal gestures, a 

developer has to make decisions on 6 stages of the data processing chain. Based on related work 

in the literature, a few viable options for each stage were discovered.  

In the first stage, “Input” could be received from Marker-less Video Cameras, Video 

Cameras with Markers, Wearable Sensors or Depth Cameras. For the second stage “Feature 

extraction”, two approaches Body Contour and Body Skeleton were discussed. In the third stage 

“Segmentation”, extraction of separate gestures from the data stream can be done based on 

Body Tracking or Music Metrics. The most important stage “Classification” requires the 

selection of a machine learning algorithm; strengths and weaknesses of four most popular and 

promising algorithms were presented: Dynamic Time Warping, Hidden Markov Models, 
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Support Vector Machines and Artificial Neural Networks. Tools for the fifth stage “Post-

processing” provide a framework to build the whole recognition system; commercial 

Matlab/Simulink, Max/MSP and open-source Pure Data, EyesWeb software packages were 

considered. For the last stage “Output”, a digital audio workstation like commercial Ableton 

Live, Bitwig Studio and open-source LMMS has to be selected.  

Next chapter presents a vision of the gesture recognition system, which would transform 

dance to music. Then, decisions are made and justified for each processing stage to design such 

a system.  
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3. System Design 

The system, envisioned for this thesis, has a music composition of three virtual 

instruments (in DAW called as “tracks”) which have to be controlled by different body parts: a 

beat controlled by the hips, a baseline by the legs, and a melody by the hands. Every track has 

a set of musical loops (in DAW called as “clip”) mapped to specific gestures of an appropriate 

body part. Dance gestures must begin and end along with the music composition’s bar measure.  

The system learns gestures before the main performance: for each clip in a track, the 

performer repeats the same gesture multiple times in synchronization with the clip played in a 

loop, positional data is recorded, pre-processed, labelled and used to train a classification 

model. Once the model is trained, the system is ready for a live performance. 

At a live performance, the dancer performs trained gestures to play specific clips. When 

a gesture is recognized, the mapped clip has to be played in a loop as long as the same gesture 

is repeated. If another gesture is recognized, playback of another clip should replace the first 

clip. If a performer does not repeat the gesture, playback of the clip should be stopped.  

In order to build this kind of gesture recognition system, the author made decisions for 

every stage of the processing chain: (1) Input, (2) Feature Extraction, (3) Segmentation, (4) 

Classification, (5) Post-processing, (6) Output. 

 

3.1. Input 

As discussed in the chapter 2.1, video cameras with and without markers, wearable 

sensors and depth cameras were considered to provide input data. 

Microsoft Kinect v2 device was chosen as the best option, because it is able to provide 

depth image, as well as detect human body and extract 3D coordinates of “skeleton joints” (i.e., 

locations of the main body parts). Kinect v2, released in 2014, uses state-of-the-art time-of-

flight technology to compute depth information, and streams 512x424 pixels resolution depth 

and infrared image at 30 fps as well as 1920x1080 pixels resolution RGB video at the same 

frame-rate (Lun & Zhao, 2015). It has 70 degrees horizontals and 43 degrees vertical field of 

view and can sense depth at the range from 0.5m to 8m, as well as detect a human body up to 

4.5m (Lun & Zhao, 2015).  

System requirements for Kinect v2 device are Windows 8 or later OS, 64-bit (x64) dual-

core 3.2 GHz or faster CPU processor, 2GB or more RAM memory and dedicated USB 3.0 bus 

(Microsoft Corporation, 2018).  
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3.2. Feature Extraction 

As discussed in the chapter 2.2, the amount of input data should be reduced in the way 

that it keeps the key information to detect a human body and segment it to labelled body parts. 

Body contour and body skeleton approaches were considered for feature extraction. 

Kinect SDK 2.0 was chosen to extract relevant features from the depth image. Version 

2.0 can track up to 6 people at the same time and provide coordinates of 25 joints per skeleton 

(Lun & Zhao, 2015). For each joint, SDK provides absolute (in relation to the camera) and 

hierarchical (in relation to its parent joint) position and orientation values in x, y and z axis. 

For an interactive dance system, only one person needs to be observed and selected 

joints tracked to trigger virtual instruments:  

• to trigger a beat: absolute position of left and right Hips (position in relation to the 

sensor); for sophisticated gestures, Torso and Head could be tracked additionally; 

• to trigger a baseline: hierarchical position of left and right Ankles (position in 

relation to Torso); for sophisticated gestures, Knees and Feet could be tracked 

additionally; 

• to trigger a melody: hierarchical position of left and right Hands (position in relation 

to Torso); for sophisticated gestures, Shoulders, Elbows and Hands could be tracked 

additionally. 

Orientation data is not necessary for recognition as this information overlaps with 

position data, it is more useful for visualization of the skeleton. 

 

3.3. Segmentation 

As discussed in the chapter 2.3, segmentation based on body tracking or music metrics 

was considered for the system.  

Music metrics was preferred and bar measure was chosen as the most suitable approach 

to split data stream to distinct gestures, because it is quick and robust (i.e., it does not require 

data processing and always divides data to the same time periods).  

Time-series of fixed length is beneficial for time-based classification algorithms like 

DTW and HMM because the data is less distorted by pre-processing. 

The method relies on the requirement that a performer has to match dance gestures with 

composition’s predefined bar measure. This restriction is beneficial for performers too, because 

it encourages them to repeat gestures with better precision.  
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3.4. Classification 

DTW, HMM, SVM and ANN algorithms, described in the chapter 2.4, were explored 

and considered for the system. 

Dynamic Time Warping was chosen as the most suitable algorithm, because it accepts 

raw time-series as input data and requires relatively small amount of computation to train the 

model. Accepting raw time-series allows to skip data pre-processing like Down-sampling, 

Vector Quantization or Frequency Features Extraction, which makes classification of unknown 

gesture faster therefore more suitable for real-time recognition. Sparse computation means a 

short time needed to train the model, which not only makes the system more convenient to use 

(recording, training and prediction can take place at the same work session), but also enables 

extension of the system to be adaptive (model can be retrained with additional training 

examples during prediction session).   

In order to reduce noise and amount of computations, every time-series was pre-

processed before feeding it to the model for training: data was down-sampled by factor 6, which 

means 60 frames were down-sampled to 10 frames for every sample of a gesture. 

Thresholding using a gamma coefficient was used to classify unrecognized samples as 

non-gestures. Gamma greatly affects the accuracy of the model, coefficients 0-6 were tested, it 

is discussed in the chapter 5.3 “Results”. 

 

3.5. Post-Processing 

Matlab/Simulink, Max/MSP, Pure Data and EyesWeb environments, discussed in the 

chapter 2.5, were considered to transform a predicted class to a sound trigger and build overall 

“gesture engine”. 

EyesWeb framework was selected as the best choice because it is designed for building 

human-computer interaction systems and has a large library of tools made specifically for 

gesture analysis and music control. Visual programming language is used in this environment 

which greatly reduces the need for programming skills and the workload experimenting with 

different system designs.  

It is free, open-source and has been actively used and extended by the community of 

artists and researchers. One of the most remarkable extensions is SARC EyesWeb Catalog v2.0 

(SEC) – a collection of blocks designed to exploit machine learning algorithms for gesture 

recognition purposes. Many blocks of this catalogue were used to explore classification 
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algorithms and build the system. For example, in order to exploit DTW classifier, blocks “DTW 

Train” and “DTW Predict” were used in the data processing chain. 

SEC blocks were developed by Nicholas E. Gillian at Queen’s University Belfast 

(Gillian, Knapp, & Modhrain, 2009). Equations of DTW algorithm, implemented to SEV 

blocks by N.E. Gillian, are presented and explained in the Appendix A. During development of 

the system, the author of this thesis contacted N.E. Gillian personally and received valuable 

consultation regarding usage of his modules.  

 

3.6. Output 

As discussed in the chapter 2.6, commercial digital audio workstations Ableton Live, 

Bitwig Studio, and open-source LMMS were considered to function as a “music engine”. All 

options are able to accept a standard MIDI or OSC signal and trigger musical instruments based 

on a gesture-clip mapping, but only the commercial products have features needed for live 

performances.  

Ableton Live was chosen to be used as system’s output, because this software is widely 

used by musicians for many years, therefore a large knowledge base is available on the internet. 

Signal protocol OSC was chosen for communication between “gesture engine” and 

“music engine”. The system made use of Ableton Live’s Session View where audio clips for 

every gesture can be stacked and an assistance to play clips in synchronization with 

composition’s tempo and bar measure. 

 

3.7. Summary 

In the vision of the gesture recognition system, virtual instruments are coupled with 

body parts. The system has to learn gestures of each group of body parts and know which 

gesture plays which clip in a music composition. 

Three main components were selected in the design of the envisioned system: Kinect 

v2 device, EyesWeb framework and Ableton Live digital audio workstation (Figure 3.1). Data 

from one component to the next flows over OSC signal. 
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Figure 3.1. Main components chosen to implement the gesture recognition system. 

 

In the first stage “Input”, depth camera Kinect v2 was picked up to provide the stream 

of data. For the second stage “Feature extraction”, Body Skeleton approach was adopted 

exploiting Kinect SDK’s ability to provide 3D coordinates of 25 joints of dancer’s body. In the 

third stage “Segmentation”, data stream was split to separate gestures based on Music Metrics, 

specifically – the length of song’s bar measure. For the crucial stage “Classification”, Dynamic 

Time Warping algorithm was chosen to classify gestures. EyesWeb framework not only served 

as a tool for the fifth stage “Post-processing” but also provided an environment where the whole 

recognition system was built. The last stage “Output” employed the digital audio workstation 

Ableton Live, which is able to manage the playback of music clips to create a harmonic 

composition.  

The next chapter presents the implementation of system’s prototype which is able to 

recognize one group of body parts and play clips of one virtual instrument. Setup of the 

hardware and the software is described, and the system’s modules responsible for various tasks 

are presented. Finally, the procedure for a user and the workflow of the system is explained. 

There is also a description of how the system’s model is trained to recognize specific gestures 

and the prediction of new gestures is executed during a live performance. 
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4. System Implementation  

A proof-of-concept system was built to track one group of skeleton joints and play clips 

in one audio track based on recognized gestures: hands and elbows tracked to play melody 

clips. If this kind of system is able to provide sufficient results, it can be extended in future 

projects to track multiple body parts mapped with multiple virtual instruments. 

 

4.1. Sensor Setup 

Kinect v2 device was connected via USB 3.0 to a desktop computer with 64-bit 

Windows 10 operation system. The computer had Intel i5-6600 processor, Nvidia GTX1060 

graphical card and 8GB of RAM. A 1080p projector was connected to provide visual feedback 

on 72” screen.  

Kinect sensor was sending the stream of Skeleton data as well as RGB and depth image 

to Kinect SDK 2.0. Skeleton data from SDK was broadcasted via OSC protocol using the open-

source utility Kinect2share developed by Ryan Webber (Webber, 2018). Kinect2share utility’s 

parameters are described in the Appendix B.  

OSC signal could be observed using the open-source utility OSC Data Monitor 

developed by Kasper Kamperman (Kamperman, 2018; Figure 4.1).  

 

 
Figure 4.1. User interfaces of Kinect2share (left) and OSC Data Monitor (right). 

 

Broadcasted OSC was received in EyesWeb environment for further processing. 

“Gesture engine” was built using EyesWeb v5.2.1 visual programming language and divided to 

two projects, Training Patch and Prediction Patch.   
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4.2. Training Patch 

The first project in EyesWeb was created to train DTW model to classify gestures. It 

consists of several modules. All parameters of the Training Patch are described in the Appendix 

C. 

Module “Input from Kinect” receives OSC signal broadcasted from Kinect2share and 

separates it to 12 streams of data values: x, y, z coordinates of 4 skeleton joints (i.e., left and 

right hands and both elbows) (Figure 4.2).  

 

 
Figure 4.2. EyesWeb module “Input from Kinect” in the Training Patch. 

 

Module “Record Training Data” combines 12 streams of data values to a matrix, 

divides it to time-series and saves it with manually selected class ID (Figure 4.3). Status 

indicators provide visual feedback when data is recorded, visual metronome indicating every 

beat and bar, number of classes and recorded time-series. Visual metronome is controlled by 

periodic timers set to 0.5 second for every beat and 2 seconds for every bar. Recording session 

and saving of recorded time-series is controlled with Start, Stop, Save and Clear buttons. 

Module “Timer for Recording” is responsible for dividing the stream of data to time-

series of equal length to be used as training examples (Figure 4.4). Periodic timer set to 2 

seconds with 50ms delay sends a signal to start recording data, another timer of 2 seconds sends 

periodic signals to stop recording data, which results in 1 sec 950 ms time-series. 50 ms “break” 

is needed for the module “Record Training Data” to add last time-series to training examples.  

Module “Music Clip” sends OSC signal to Ableton Live to control, which audio track 

and music clip has to be played (Figure 4.5).  
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Figure 4.3. EyesWeb module “Record Training Data” in the Training Patch. 

 

 

 
Figure 4.4. EyesWeb module “Timer for Recording” in the Training Patch. 

 

 

 
Figure 4.5. EyesWeb module “Music Clip” in the Training Patch. 
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Here the audio track “melody” (track ID = 2) has to be manually selected. When 

recording is started in “Record Training Data”, the module automatically broadcasts class ID 

via OSC to start the playback of a music clip with the same clip ID in Ableton Live. 

Module “Ableton Control” automatically sends a OSC signal for Ableton Live to run 

the music composition, when the EyesWeb project starts running (Figure 4.6). When Ableton 

Live receives the signal, the audio track “Drums & Percussion” starts to play immediately 

indicating that Ableton Live is ready to receive further OSC signals. 

 

 
Figure 4.6. EyesWeb module “Ableton Control” in the Training Patch. 

 

Finally, module “Model Training” is responsible for training the model with DTW 

algorithm (Figure 4.7). Training is triggered with “Train” button and training status displayed 

with an indicator.  

 

 
Figure 4.7. EyesWeb module “Model Training” in the Training Patch. 

 

During training of the model, DTW algorithm finds the best template for each gesture. 

Once the model is trained, the model is saved in a file and 10-fold cross-validation accuracy 

value is displayed.   
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4.3. Prediction Patch 

The second EyesWeb project classifies gestures based on the trained model and adapts 

the model based on recognized gestures. It consists of several modules. All parameters of the 

Prediction Patch are described in the Appendix D. 

Just like in the first project, module “Input from Kinect” (Figure 4.2) receives OSC 

signal from Kinect2share and separates it to 12 streams of data values; module “Ableton 

Control” (Figure 4.6) automatically sends a OSC signal for Ableton Live to run the composition 

and indicate that “the music engine” is ready to receive further OSC commands. 

Module “Model Prediction” is the place where gesture classification takes place (Figure 

4.8). The module merges 12 data streams to one matrix and sends it to the block “DTW Predict,” 

which splits the stream to time-series of equal length. The block then uses previously saved 

DTW model to compare each time-series to model’s templates and select the class ID of a 

template with the smallest Euclidean distance. If the distance of the closest template is still 

larger than its threshold, the block predicts that time-series is a non-gesture (i.e. class ID = 0). 

 

 
Figure 4.8. EyesWeb module “Model Prediction” in the Prediction Patch. 

 

The module displays predicted class ID and additional information “Distances” and 

“Thresholds” indicating the confidence of prediction. Predicted class IDs, distances and 
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thresholds are saved to files for analysis. Visual feedback elements “Bang” and “Boolean” show 

the status of prediction. 

Module “Timer for Prediction” controls time periods, when exactly the data stream has 

to be split to time-series (Figure 4.9). It is similar to “Timer for Recording” module in the first 

project, but was extended to suppress periodical STOP signals. If these signals are not 

suppressed and “DTW Predict” block receives it, it continues to emit the last predicted class ID 

even when prediction process is paused (bug workaround). 

 

 
Figure 4.9. EyesWeb module “Timer for Prediction” in the Prediction Patch. 

 

Predicted class ID is sent to the module “Music Clip”, which is responsible for sending 

OSC signals to Ableton Live (Figure 4.10). Here the audio track “melody” (track ID = 2) has 

to be manually selected. Once the module receives class ID of a recognized gesture, it sends a 

OSC command along with track ID and clip ID to play it in Ableton Live. If the model 

recognizes a repeated gesture and sends the same as previous class ID, OSC command is 

suppressed and Ableton Live continues to play the same clip. If the algorithm does not 

recognize a gesture and sends the class ID = 0, the module sends OSC command to play clip 

ID = 0 (an empty slot in Ableton Live) which actually stops playback of any clips at the end of 

the bar. 

 

 
Figure 4.10. EyesWeb module “Music Clip” in the Prediction Patch. 
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Module “Record Prediction Data” runs in parallel with “Model Prediction” module and 

records time-series of last gestures (Figure 4.11). Differently than the module “Record Training 

Data” in the first project, class ID of recorded time-series is not set manually but received from 

the previous module “Model Prediction”. Number of recorded time-series is sent to the next 

module “Sequence for Adaptive Training”; when a command from this module is received, all 

data is deleted and recording is restarted. 

 

 
Figure 4.11. EyesWeb module “Record Prediction Data” in the Prediction Patch. 

 

Module “Sequence for Adaptive Training” watches the amount of recorded time series 

and, when the number reaches 4, a sequence of events is initiated (Figure 4.12): (1) the 

command to save the training data to a file is sent to the previous module “Record Prediction 

Data”; (2) Python script, which merges prediction data file with the original training data file, 

is executed; (3) the command to clear all data is sent to the module “Record Prediction Data”; 

(4) the command to retrain the model is sent to the next module “Model Training”.  

Module “Model Training” uses merged training dataset to retrain the model with DTW 

algorithm (Figure 4.13). It has the same structure and parameters as module “Model Training” 

in Training Patch. Once the model is trained, it is saved to the file and immediately used by the 
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module “Model Prediction” to classify next gestures. Parameter “Use K-Fold Cross Validation” 

was set to FALSE in order to minimize data processing time. 

 

 
Figure 4.12. EyesWeb module “Sequence for Adaptive Training” in the Prediction Patch. 

 
 

 
Figure 4.13. EyesWeb module “Model Training” in the Prediction Patch. 

 

4.4. Composition Setup  

A live-set project was created in Ableton Live v9.0.1 with two audio tracks: (1) drums 

& percussion, (2) melody (Figure 4.14). In Session View, the first track “Drums & Percussion” 

has one clip, it will play in a loop immediately when playback of the whole live set is initiated 

via OSC protocol. It indicates that Ableton is receiving OSC signals.  

The second track “Melody” (track ID = 2) has 6 clips of distinct melodies with clip IDs 

from 1 to 6. Clips are stopped by default and start to play only when OSC signal with clip ID 

is received. Clip ID with value 0 is an empty slot, which is triggered to stop the playback of 

any clip. 
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Figure 4.14. System’s music composition in Ableton Live, Session View. 

 

In order to enable OSC interface for Ableton Live, the open-source utility LiveOSC 

developed by Stu Fisher was used (Fisher, 2018). LiveOSC utility’s parameters are described 

in the Appendix B.  

Clips for audio tracks were downloaded from the website Looperman.com, where a 

community of musicians share their royalty free loops, samples and sounds (Looperman, 2018). 

Composition’s tempo was set to 120 beats per minute (BPM), time signature to 4/4. This 

means that a beat loops every 0.5 seconds, one bar consists of 4 beats and lasts 2 seconds. As a 

gesture must match the length of a bar, gesture’s time-series should not be longer than 2 

seconds. 

To be able to hear the playback of music composition, speakers have to be connected to 

the operating computer. The author used a Sony amplifier and a pair of Nubert stereo speakers. 

 

4.5. Workflow 

In order to use the gesture recognition system for a live performance, the user has to set 

it up first:  

1) Connect and power up Kinect device. 

2) Open Kinect2share utility, make sure that the utility is receiving the stream of Skeleton 

3D coordinates (it should display skeleton’s image in the user interface). 
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3) Open OSC Data Monitor, make sure that Kinect2share is sending the coordinates over 

OSC (the monitor should display the updating list of OSC data); close OSC Data 

Monitor to release the listening port. 

4) Open the music composition in Ableton Live with integrated utility LiveOSC. 

5) Open EyesWeb projects Training Patch and Prediction Patch. 

6) Arrange EyesWeb, Kinect2share and Ableton Live windows in the display so that 

relevant information is visible. Main user’s control interface is the EyesWeb projects, 

Kinect2share and Ableton Live windows are needed only to monitor that they are 

operating as expected. 

Once all programs and utilities are opened and arranged, the user has to record training 

data in EyesWeb’s Training Patch:  

1) Run the Training Patch, Ableton Live should automatically start playing the first track 

“Drums & Percussion”. 

2) Select class ID for recorded gesture, start with class ID = 1. 

3) Click the button START/STOP in the module “Record Training Data” to start recording 

the data. The best time to click the button is in the beginning of a new bar (which has a 

length of 2 sec), it gives some time to prepare for the first gesture. 

4) Execute a dance gesture when Ableton Live starts playing the clip with ID matching 

selected class ID, make sure it fits within one bar (2 sec). 

5) Repeat the gesture listening to the rhythm of the composition and observing the visual 

indicators of beats and bars, try to make gestures as temporally and spatially similar as 

possible. Observe the number of training samples displayed in the module. 

6) Once enough samples are recorded, click the button START/STOP again to stop 

recording. If needed, click the button CLEAR LAST to remove the last recorded sample.  

7) Repeat steps 2-6 until all samples for all gestures are recorded, incrementing the class 

ID value. If needed, click the button CLEAR CLASS to remove a faulty class or CLEAR 

ALL to remove all samples of all classes and restart recording. 

8) When all samples of all gestures with different class IDs are recorded, click SAVE to 

save recorded time-series to a file.  

9) Do not stop Training Patch, keep it running for the next procedure. 

Figure 4.15 visualises the data workflow of the described procedure and the result 

should be a DAT file with the training dataset saved to a predefined location.  
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Figure 4.15. Workflow of the system during recording of the training data. 

 

The next procedure is short and simple: to train the initial model based on recorded 

training data: 

1) While Training Patch still running, click the button START/STOP in the module 

“Model Training” to train the model. The module should be predefined to use the 

training dataset from the file, saved in the previous procedure.  

2) Stop the Training Patch.  

Figure 4.16 visualises the data workflow of the described procedure, which result should 

be a DAT file with the trained model, saved to a predefined location.  

 

 
Figure 4.16. Workflow of the system during training of the DTW model. 
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The last procedure should be followed in EyesWeb’s Prediction Patch during live 

performance to create music executing previously trained dance gestures:  

1) Run the Prediction Patch, Ableton Live should automatically start playing the first track 

“Drums & Percussion”. 

2) Click the button START/STOP in the module “Model Prediction” to start prediction of 

new gestures. The best time to click the button is in the beginning of a new bar (which 

has a length of 2 sec), it gives some time to prepare for the first gesture. 

3) Execute any of the previously trained dance gestures, make sure it fits within one bar (2 

sec). At the end of the bar Ableton Live should start playing the clip with ID matching 

predicted class ID. 

4) Repeat the gesture as many times as preferred, listening to the rhythm of the composition 

and observing the visual indicators of beats and bars, try to make gestures as temporally 

and spatially similar as possible.  

5) When the live performance is over, click the button START/STOP again to stop the 

prediction.  

6) Stop Training Patch, if no more dance will be performed. 

Figure 4.17 visualises the data workflow of the described procedure, which result should 

be a music composition performed live.  

 

 
Figure 4.17. Workflow of the system during prediction of the new samples. 
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During live performance of the last procedure the gesture recognition system exploits 

adaptive feature in order to improve prediction, when the model is initially trained with a small 

number of training samples. Figure 4.18 visualises the data workflow of the adaptive feature, 

no additional actions are required from the user. If needed, click the button START/STOP in 

the module “Record Prediction Data” to manually turn off the adaptive feature. 

 

 
Figure 4.18. Workflow of the system during prediction with the adaptive feature. 

 

 

4.6. Summary 

This chapter has revealed the contents of created system’s prototype, able to recognize 

gestures of one group of body parts and play mapped music clips. The system requires a setup 

of Kinect v2 device with installed Kinect SDK and Kinect2share utility to extract Body 

Skeleton data and send it to EyesWeb over OSC signal. In order to record training data and train 

DTW model, the Training Patch project was created in EyesWeb environment, which consists 

of six modules made of blocks and interconnecting pins. The second EyesWeb project, the 

Prediction Patch, has seven modules, responsible for classification of new gestures, adaptation 

of the model and sending OSC commands to Ableton Live. The modules use initially trained 

DTW model to predict a class for new gestures and periodically retrain the model adding 
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predicted samples to the training dataset. OSC signal contains predicted class ID, which serves 

as clip ID in a music composition. Finally, the music composition was set up in Ableton Live, 

which was receiving OSC signals from the EyesWeb project and arranging the playback of 

music clips accordingly.  

Procedures for a user explained, how to use the system step-by-step. Workflow 

diagrams visualised the data flow between the main components and the modules within the 

framework of the system. 

The following chapter presents some results of system’s evaluation. Performance of 

system under various conditions is discussed in an attempt to reveal its strengths and 

weaknesses. 
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5. Evaluation 

The prototype of the designed recognition system was successfully created and tested 

in a live performance. The system was able to record training data, train a DTW model and then 

use this model to recognize dancing gestures. Recognition triggered the playback of audio clips, 

based on the value of recognized class. The system was also able to retrain the model using 

recognized gestures so as to exhibit its adaptive property. 

In order to evaluate the system’s ability to recognize gestures at various conditions, a 

collection of gestures had to be made available offline (i.e., without the real-time stream of data 

from Kinect device). Gestures were recorded as the data stream to a proprietary EyesWeb data 

file, using module “Input to File” (Figure 5.1). All parameters of the modules for recording and 

reproduction of the data stream are described in the Appendix E. 

 

 
Figure 5.1. EyesWeb module “Input to File”. 

 

Once data stream was saved to a file, it could be reproduced from the file multiple times 

imitating identical real-time live performances using the module “Input from File” (Figure 5.2). 

Module “Sequence for Input to & from File” was responsible for setting the class ID 

and sample ID for each gesture and feedback visualisation of recording session (Figure 5.3).  
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Figure 5.2. EyesWeb module “Input from File”. 

 

 
Figure 5.3. EyesWeb module “Sequence for Input to & from File”. 

 

5.1. Experimental Setup 

As the system is made for intrapersonal use (a user trains the model with his/her own 

gestures and then uses it for recognition during his/her live performance), evaluation of the 

system is based on the data from one participant. The author of this thesis performed hand 

gestures sitting on a couch in front of Kinect device.  

Distance between the couch and the device was 130 cm, the height of the couch was 50 

cm, and the height of the platform for Kinect device was 70 cm. Projector’s screen above the 
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device was displaying the interface of the system in EyesWeb environment and controlled by a 

wireless mouse from the couch.  

 

5.2. Methods 

A collection of generic hand gestures was recorded as data streams from Kinect device 

and saved to a file using a EyesWeb project. 12 data streams were recorded at ~30 fps: x, y and 

z coordinates of both hands and elbows, extracted from the signal of Kinect skeleton joints. 

6 gestures, each lasting 2 seconds and matching the bar of the music composition, were 

repeated 32 times. With 8 seconds breaks before every new gesture, the whole session took 7 

min 28 sec.  

Three relatively similar gestures and three distinct gestures were selected (Figure 5.4): 

1) drawing a circle, left hand in clockwise and right hand in counter clockwise, starting 

with the hands up; 

2) drawing a square, left hand in clockwise and right hand in counter clockwise, starting 

with the hands up; 

3) drawing a triangle, left hand in clockwise and right hand in counter clockwise, starting 

with the hands up; 

4) drawing two spirals, starting with both hands on the left, making a spiral down and 

moving to the right, making a spiral down and returning to the left; 

5) two “chicken dance” moves, holding arms horizontally and moving elbows up and 

down, starting with both elbows up; 

6) hands-up and three claps, starting with the hands up. 

 

 
Figure 5.4. A sample of each gesture, plotted only horizontal and vertical coordinates.  

Green arrows indicate the beginning of a gesture. 
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5.2.4. Datasets 

The session was recorded two times, first to use as a dataset for training the model, and 

second as a dataset for cross-validation. Each dataset had 6 classes in the same order with 32 

sequential samples for each class. Breaks of 8 seconds between classes were ignored in the 

analysis. 

For model’s training and prediction, recorded data stream was reproduced from a file. 

Modules “Record Training Data” and “Model Prediction” segmented the data stream to 

samples of ~60 frames (30 fps x 2 sec) each with 12 values (3D coordinates x 4 joints), module 

“Model Training” down-sampled it by factor 6 to 10 frames (60 frames / 6). 

 

5.2.5. Measurements 

The system was tested and predictions analysed in attempt to answer these questions: 

1) How does the threshold of classification (gamma coefficient in DTW model) influence 

the system’s performance? 

2) How does the number of training samples (used to train DTW model) influence the 

system’s performance? 

3) How does the number of learned gestures (known classes in DTW model) the influence 

system’s performance? 

4) How does the adaptive feature change the system’s performance? 

Measurements of Signal Detection Theory (Burgoon et al., 2005; Table 1) were used in 

both fitting and cross-validation analysis: 

• Hits = Number of samples correctly classified as the gesture X 

• Misses = Number of samples unrecognized as the gesture X 

• False Alarms (FA) = Number of samples incorrectly classified as the gesture X 

• Correct Rejections (CR) = Number of samples correctly unrecognized as the gesture X 

• Accuracy = (Hits + CR) / Total number of samples 

In order to reveal, what affects prediction’s accuracy, additional measurements were 

calculated (Stiehl & Breazeal, 2005):  

• Positive Predictive Value (PPV) = Hits / (Hits + FA) 

• Negative Predictive Value (NPV) = CR / (CR + Misses) 

• Sensitivity = Hits / (Hits + Misses) 

• Specificity = CR / (CR + FA) 
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Table 1.  
Contingency table of possible judgements based on Signal Detection Theory. 

  PREDICTION 

  Signal Noise 

FACT 
Signal Hit Miss 

Noise False Alarm Correct Rejection 

Note. Adapted from An Approach for Intent Identification by Building on Deception Detection,  
by J. Burgoon et al., 2005. Copyright by IEEE. 

 

Non-gestures (unrecognized samples which the model assigned to “zero class”) were 

analysed using the same measurements, e.g. Hits is number of samples correctly classified as 

non-gestures, Correct Rejections is the number of samples correctly recognized as one of 

known gestures. 

 

5.3. Results 

This chapter spotlights notable discoveries of the system evaluation, visualising some 

results using the charts. All results of the evaluation can be found in Appendix F.  

 

5.3.1. Threshold 

In order to give the possibility for DTW algorithm to reject unfamiliar gestures (classify 

unrecognized gestures to “zero class”), the model has to be trained with predefined threshold 

(i.e., the gamma coefficient). If the threshold is switched off, any gesture will be assigned to 

one of known classes, even if all known classes are very different. The smaller is the coefficient, 

the less deviation from known classes is “allowed” by the model (Figure 5.5). 

 

  
Figure 5.5. Threshold for each class in the trained model depending on the gamma coefficient (left) or 

the number of training samples (right). 
Sources: Table 3 (left) and Table 4 (right) in the Appendix F. 
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To answer the question about how the gamma coefficient influences system’s 

performance, models with gamma from 0 to 6 were trained with all 32 samples for each of 6 

classes in the first dataset. Fitting predictions using the same dataset revealed that accuracy gets 

better when gamma is increased until it reaches 3, further increments of gamma do not improve 

the measurements. The same pattern was observed when model was trained to recognize only 

the first 3 classes (drawing a circle, a square and a triangle); the remaining 3 classes were not 

included in the training dataset, but were present in the prediction dataset (Figure 5.6). 

 

  
Figure 5.6. Fitting prediction depending on the gamma coefficient when training dataset included only 

the first 3 classes (left) or all 6 classes (right).  
Note. Positive predictive values are nearly identical to Specificity (gamma 0-2) and Sensitivity 

(gamma 3-6). Sources: Table 5 (left) and Table 6 (right) in the Appendix F. 
 

0-6 gamma coefficient were tested with various numbers of samples – 4, 8 ,16 and 24 

samples for each class. While gamma coefficient did not have much influence when all 6 classes 

where known training the model, it was not the case with less known classes. When 2-4 classes 

are trained and the rest of the samples are unknown to the model, it’s fitting prediction peaks at 

gamma 2-3, then gets worse with larger gamma coefficients (Figure 5.7).  

 

  
Figure 5.7. Fitting prediction depending on the gamma coefficient, when training dataset included 

only 4 samples of the first 3 classes (left) or 4 classes (right).  
Sources: Table 9 (left) and Table 10 (right) in the Appendix F. 
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While trained with the smallest training dataset of 4 samples the model predicts best 

with gamma 2, it was discovered that in most other cases gamma 3 provides the highest 

accuracy. Gamma 3 was chosen to be used for the rest of analysis, in both model’s training and 

prediction. 

Cross-validation with the second dataset of samples, which were not used for model’s 

training, revealed that prediction accuracy remains very high with chosen gamma 3 (Table 2). 

 
Table 2.  
Cross-validation prediction with gamma 3 depending on the number of training samples, 6 classes. 

6 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 157 35 35 1117 1344 0.95 0.82 0.97 0.82 0.97 

8 samples 149 43 43 1109 1344 0.94 0.78 0.96 0.78 0.96 

16 samples 170 22 22 1130 1344 0.97 0.89 0.98 0.89 0.98 

24 samples 183 9 9 1143 1344 0.99 0.95 0.99 0.95 0.99 

32 samples 187 5 5 1147 1344 0.99 0.97 1.00 0.97 1.00 

 

5.3.2. Number of Samples 

When many time-series are available in the training dataset, it allows DTW model to 

learn gestures based on the most consistent samples, ignoring samples with higher variation, 

which improves model’s prediction. Too many samples can also cause worse prediction, 

because it can include more outliers which the algorithm has to consider. 

DTW models were trained with 4, 8, 16, 24 and 32 samples for each of 6 classes, 

comparing its fitting prediction. Based on previous analysis, gamma 3 coefficient was chosen 

as a threshold to reject unknown gestures. 

Fitting prediction measurements show, that DTW algorithm performs worst with the 

smallest training dataset - 4 samples for each class. When the dataset is increased, accuracy and 

especially sensitivity improves noticeably. With the largest available number of 32 samples, 

sensitivity drops again, probably due to the model’s overfitting (Figure 5.8). 

Cross-validation with the second dataset shows that accuracy is low when a small 

number of 4-8 samples was used to train the model to recognize 6 classes. Peculiar case of the 

8-training-samples model, which predicted worse than the 4-training-samples model in cross-

validation, alerts that 8 samples are not enough for the model to ignore outliers deteriorating its 

performance. Cross-validation of models, which were trained to recognize only 3 classes, 
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shows more consistent results with correct predictions increasing when more samples were used 

for training (Figure 5.9). 

  
Figure 5.8. Fitting prediction with gamma 3 depending on the number of training samples when 

training dataset included only the first 3 classes (left) or all 6 classes (right).  
Sources: Table 14 (left) and Table 15 (right) in the Appendix F. 

 

  
Figure 5.9. Cross-validation prediction with gamma 3 depending on the number of training samples 

when training dataset included only the first 3 classes (left) or all 6 classes (right).  
Note. Measurements with the same line colour have the same values. 

Sources: Table 16 (left) and Table 17 (right) in the Appendix F. 
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Measurements showed, that prediction improves with the number of known classes. 

Sensitivity is the most dependent on this variable, with its lowest when the model is train to 

recognize 2, 3 or 5 classes. 

Cross-validation with the second dataset mostly confirms the assumption that the 

number of learned classes correlates with accuracy of predictions, with the exception when the 

model “knows” 3 classes (Figure 5.10). 

 

  
Figure 5.10. Fitting (left) and Cross-validation (right) prediction with gamma 3  

depending on the number of classes in training dataset.  
Note. Measurements with the same line colour have the same values. 

Sources: Table 18 (left) and Table 19 (right) in the Appendix F. 
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Adaptive feature is supposed to benefit in cases, when the model was initially trained 

with very small number of samples. However, system’s adaptive feature may not necessarily 

improve model’s performance, because it is not able to validate if additional samples were 

classified correctly. 

To investigate, if adaptive feature improves system’s performance, it was tested on the 

models initially trained with 4, 8, 16, 24 and 32 samples.  

According to cross-validation of the models, which were trained to recognize all 6 

classes, adaptive feature was beneficial only for the model that was initially trained with the 

smallest number of 4 samples. Adaptive models initially trained with 8-24 samples performed 

worse, 32-training-samples model’s performance did not change. Overall adaptive feature did 

not have a large impact on the system’s performance, altering its prediction accuracy from -0.1 

to +0.3 percentage points (Figure 5.11). 

 

  
Figure 5.11. Difference of cross-validation with the adaptive feature compared to cross-validation 

without the adaptive feature depending on the number of training samples,  
when all 6 classes were included in the training dataset. 

Note. Measurements with the same line colour have the same values. 
Source: Table 21 in the Appendix F. 
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Figure 5.12. Difference of cross-validations with the adaptive feature compared to cross-validation 

without the adaptive feature depending on the number of training samples,  
when only 3 classes were included in the training dataset. 

Note. Measurements with the same line colour have the same values. 
Source: Table 23 in the Appendix F. 
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on which gestures were included to the training dataset and how similar are unknown gestures 

to the learned ones. 

The adaptive feature did not meet expectations: only with the smallest initial training 

dataset (4 samples for each gesture) did it slightly increase the prediction accuracy. In all other 

conditions, it did not have any effect or even lowered the performance.  

The last chapter discusses the results of system’s evaluation, comments the decisions 

made for the design of the system’s processing chain based on its practical implementation and 

some ideas for the system’s future development. 
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6. Conclusions & Implications 

The objective of this thesis was successfully achieved: a gesture recognition system, 

able to recognize dance movements and transform it to music, was designed and a working 

prototype was implemented and tested. Results showed that a machine learning algorithm could 

be used for a flexible gesture recognition. Evaluation results of the system’s prediction abilities 

revealed its strengths and weaknesses. Even trained with as small dataset as 4 samples it can 

achieve over 90% accuracy. The system performed especially well, when all 6 gestures were 

learned during training and only these 6 gestures were executed for prediction. It had trouble 

classifying new gestures as non-gestures if these gestures were not learned in training. 

However, this should not be a big issue for choreographed dance performances where all 

gestures are carefully planned and scheduled. 

Decision to choose the Kinect v2 device for input did not disappoint because it delivered 

an impressively high-precision depth image thanks to its TOF technology. The device was well 

integrated with Kinect SDK 2.0 which did a lot of pre-processing of the raw signal to remove 

noise, exclude the background, track the body, infer the position of occluded parts of the body 

and finally provide a stable stream of Body Skeleton data that was easy to handle in the 

workflow. The only drawback is an unclear future of the device’s support due to Microsoft’s 

discontinuation of its production. It is unclear whether Kinect SDK will be compatible with 

new Windows OS versions or other new software.  

Segmentation of the data stream exploiting music metrics was an easy-to-implement 

solution but it had the drawback of making the system prone to errors: it was difficult for an 

unexperienced user to fit every gesture within the bar measure of 2 sec. When a gesture was 

executed too slowly or too quickly, the sample was segmented incorrectly (e.g. with a chunk of 

previous gesture in the beginning and/or a chunk of next gesture at the end) leading to the 

system confusing it with other classes. Nevertheless, this should not be an issue for a highly-

skilled dancer who would be able to repeat gestures exactly as required. One solution to make 

a less penalizing system would be to split the data stream into several overlapping segments of 

various length and consider them all as possible gestures. 

The Dynamic Time Warping algorithm was impressively robust and sparse: it was able 

to handle almost raw time-series (only down-sampling was applied to reduce the number of 

data points in time-series) and train a model in the blink of an eye. It was particularly useful in 

implementing the adaptive feature where the model had to be regularly retrained during the 

process of prediction. DTW algorithm’s weakness showed up when the model was not trained 
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to recognize all gestures presented during prediction, as already discussed in the beginning of 

this chapter. The author believes that it is the Achilles heel of all algorithms under such 

conditions. To avoid this problem at a live performance, if there are gestures choreographed 

which the system should ignore, they should be included in the training dataset as separate 

classes, which would then be recognized during prediction but would not trigger any music 

clips.  

The EyesWeb framework greatly facilitated prototyping of the system and the exploring 

of various classification algorithms and workflow solutions. Graphical user interface with drag-

and-drop blocks and click-and-click pins made the development quick and easy while at the 

same time serving as a visualisation of the data flow which greatly supported the creative 

process. However, convenience of the blocks came at a price: because blocks were “black 

boxes” with restricted inputs, outputs and limited parameters, it was sometimes difficult to find 

the right blocks for a specific task and to integrate them to the system or understand why they 

function differently than expected. As the framework is open-source, it is possible to create, 

modify or extend the blocks, or to include custom-made Python scripts to serve specific 

purposes (as it was done to implement adaptive feature in the system), but this requires 

advanced programming skills. 

Ableton Live served well an output of the system. It made a crucial job to play the right 

clips at a right time to create a harmonic music composition. The only issue was its lack of 

official support of OSC protocol: third-party utility LiveOSC had to be used, which required a 

specific version of Python, which was not supported by the most recent versions of Ableton 

Live, therefore an older version had to be used. For a more reliable and future-proof system, 

MIDI protocol should be used for communication between EyesWeb and Ableton Live. 

The Adaptive feature, although successfully implemented and integrated to the system, 

did not meet expectations: it only made small improvements in prediction when the model was 

initially trained with very small number of samples and had no effect even slightly decreased 

the accuracy when trained with a larger initial training dataset. The feature negatively affected 

the model’s performance because both correctly and incorrectly classified samples were added 

to the training dataset. A simple fix would be to have a separate, higher threshold for the new 

samples: it would reject the samples which were on the borderline and add only those samples 

that were classified with a high confidence. This solution would probably prevent the model 

from outliers but also slow down the improvement of the model during prediction session. More 

sophisticated options should be explored. 
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The implementation process provided some ideas for future development about how the 

dance recognition system could be expanded to deliver more possibilities in music creation. For 

example, a classifier could emit not only a class ID of an unknown gesture, but also a 

"confidence coefficient” (probability of the class vs other classes or vs threshold), which could 

be used as audio-visual feedback together with the musical output, e.g. the higher is 

classification confidence, the louder is a certain audio and/or the brighter is a visualization. 

Audio-visual feedback could indicate during the learning stage, how similar are observed 

repeating gestures, which would be fed to the model as training examples. The system could 

send some “context” data along with classification predictions, which would be used to enhance 

overall music creation and control. For example, continuous streamed performer’s absolute 

position in the stage could control the main volume, overall speed of performer’s movements 

could change track’s tempo. 

For the author of this thesis, music creation using gestures was an exciting and 

empowering experience. Even the long and tiring process of recording of the training data felt 

as a form of meditation, because repetition of gestures in synchronization with music rhythm 

required a high level of embodied cognition: a sustained awareness of his own body, a constant 

focus on audio-visual feedback. This experience implied that further advancements in machine 

learning and human-computer interfaces will not only enhance two-way interaction of dance 

and music, but also build closer relationship of body and mind. 
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Appendix A.  

Equations of the DTW Algorithm 

The equations and explanations are based on the work by Nicholas Gillian, who has 

implemented the DTW algorithm as blocks in EyesWeb environment (Gillian, 2011). 

Training the model is finding a template for each gesture in the training dataset – one 

sample in the class that gives the minimum normalized total warping distance when matched 

against the other training samples in that class: 

 
where: 

G – the number of gestures in the training dataset. 
φg – the N-dimensional template for the gth gesture. 
N – the number of data points in a sample or template (N-dimensional vector). 
Mg – the number of training samples for the gth gesture. 
1{…} – the indicator bracket, giving 1 when i ¹ j or 0 otherwise. 
Xi and Yj – ith and jth training samples for the gth gesture  
ND-DTW (Xi, Yj) – the extension of the standard DTW algorithm to N-dimensions 

 

ND-DTW function finds the warping path that minimizes the total normalised warping 

cost: 

 
where: 

X and Y – training samples in the form of X = {x1, x2, ..., xN} and Y = {y1, y2, ..., yN}. 
wk – warping path of kth pair of xi and yj . 
|w| – length of constructed warping path which has to be: 

 
!
|#|

 – normalisation factor to allow comparison of warping paths of varying lengths 
DIST(wki ,wkj) –distance function of the warping path wk. 
DIST(i, j) – Euclidean distance between data point i in sample X and data point j in sample Y. 
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The minimum total warping path is found filling a cost matrix C of |x| by |y| dimensions, 

where the value of each matrix cell is given by: 

 
where: 

C(i,j) – cell value that represents the accumulated minimum warping cost so far of data point i 
in sample X and data point j in sample Y. 

min{…} – minimum accumulated distance from the three previous cells that neighbour the cell 
i,j (the cell above it, to its left and at its diagonal). 
 

Once the cost matrix C is filled, the minimum possible warping path is calculated by 

navigating through it in reverse order from the cell C (|x|,|y|) to the cell C(1,1). At each step, the 

neighbour cell (to the left, above or diagonally) with the minimum value is selected and the 

previous three-cell search is repeated.  

 

 

A classification threshold is calculated for each template in the trained model, it is 

controlled by the user with gamma coefficient: 

 

 
where: 

µg - mean of total normalised warping distances between gth template and Xi training sample. 
σg – standard deviation of the normalised total warping distance. 
γ – gamma coefficient that controls the number of standard deviations, manually defined by the 

user. 
1{…} – indicator bracket, giving 1 when i ¹ the index of the training sample that gave the 

minimum normalised total warping distance when matched against the other Mg-1 
training samples in that class (i.e. the template) or 0 otherwise. 
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In the prediction phase, classification of a new sample X is finding the template in the 

model, which has the smallest total normalized warping distance: 

 
where: 

c – classification index representing gth gesture with the minimum total warping distance. 

 

 

Classification threshold is used to classify a new gesture as non-gesture (c = 0), if it is 

not similar to any learned gesture:  

 
where: 

d – total normalised warping distance between the gth template and a new gesture X. 
τg – classification threshold for the gth template. 
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Appendix B.  

Parameters of the Sensor Setup and the Composition Setup 

Kinect2share utility (Figure 4.1), responsible for broadcasting sensor’s data from Kinect 

SDK to EyesWeb environment, had these parameters: 

• OSC host IP: 125.0.0.1 
• OSC port: 8000 

Ableton Live program with LiveOSC plugin (Figure 4.14), responsible for receiving 

OSC commands from EyesWeb environment, had these parameters: 

• Control Surface: LiveOSC 
• Input: none 
• Output: Microsoft GS Wavetable Synth 

LiveOSC accepts packets on port 9000. 
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Appendix C.  

Parameters of the Training Patch 

Module “Input from Kinect” (Figure 4.2) had these parameters: 

Blocks “OSC Server”: 
• Port: 8000 
• Number of outputs: 4 
• Type of output 1: Double 
• Type of output 2: Double 
• Type of output 3: Double 
• Type of output 4: String 

Block “OSC Server” for “Left Hand” additionally had: 
• Address Pattern: /0/HandL 

Block “OSC Server” for “Right Hand” additionally had: 
• Address Pattern: /0/HandR 

Block “OSC Server” for “Left Elbow” additionally had: 
• Address Pattern: /0/ElbowL 

Block “OSC Server” for “Right Elbow” additionally had: 
• Address Pattern: /0/ElbowR 

 

 

Module “Record Training Data” (Figure 4.3) had these parameters: 

Block “Scalar to Matrix”: 
• Number of Inputs: 12 
• Output Mode: Row Vector [1 x N] 

Block “Labelled Time Series Training Data Tool”: 
• þ* Record: FALSE 
• þ* Class Label: 100 
• þ* Save 
• þ* Clear Last 
• þ* Clear All 
• þ* Clear Class 
• þ* Clear Class Value ID: 100 
• File Name: C:\!KINECT\Data\TimeSeries.dat 
• Recording Mode: Overwrite Mode 

* Selected checkbox means that parameter’s value can be received or changed by 

another block, connected to a pin on top of the block. 
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Block “Clock Generator” for “Beat every 0.5 sec”: 
• Periodic: TRUE 
• Period: 00:00:00:500 
• Phase: 00:00:00:000 

Block “Clock Generator” for “Bar every 2 sec”: 
• Periodic: TRUE 
• Period: 00:00:02:000 
• Phase: 00:00:00:000 

 

 

Module “Timer for Recording” (Figure 4.4) had these parameters: 

Block “Clock Generator” for “Start Recording”: 
• Periodic: TRUE 
• Period: 00:00:02:000 
• Phase: 00:00:00:050 

Block “Bang” for “Start Recording”: 
• Active: FALSE 
• þ Activate 

Block “Clock Generator” for “Stop Recording”: 
• Periodic: TRUE 
• Period: 00:00:02:000 
• Phase: 00:00:00:000 

 

 

Module “Music Clip” (Figure 4.5) had these parameters: 

Block “Int Generator” for “Audio Track ID”: 
• Value: 2 
• Continuous output: FALSE 

Blocks “Int Selector”: 
• Num Inputs: 1 
• þ Value Pin for Input: 0 

Blocks “OSC Client”: 
• Host/IP: 127.0.0.1 
• Port: 9000 
• Number of Inputs: 2 
• Type of Input 1: Integer 
• Type of Input 2: Integer 

Block “OSC Client” for “Play Clip with Class ID” additionally had: 
• Address Pattern: /live/play/clip 

Block “OSC Client” for “Stop Clip” additionally had: 
• Address Pattern: /live/stop/clip 
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Module “Ableton Control” (Figure 4.6) had these parameters: 

Block “Clock Generator”: 
• Periodic: FALSE 
• Absolute Time: TRUE 
• Absolute Time: 00:00:02:000 

Blocks “Int Selector”: 
• Num Inputs: 1 
• Value Pin for Input: 1 

Blocks “OSC Client”: 
• Host/IP: 127.0.0.1 
• Port: 9000 
• Number of Inputs: 1 
• Type of Input: Integer 

Block “OSC Client” for “Play” additionally had: 
• Address Pattern: /live/play 

Block “OSC Client” for “Stop” additionally had: 
• Address Pattern: /live/stop 

 

 

Module “Model Training” (Figure 4.7) had these parameters:  

Block “DTW Train”: 
• þ Train 
• File Format: Labelled Time Series Training Data 
• Distance Method: Euclidean 
• Pre-processing Method: None 
• þ Gamma: 3 
• þ Downsample Factor: 6 
• þ Cross-Validation: TRUE 
• þ K-Fold Value: 10 
• Training Data File Name: C:\!KINECT\Data\TimeSeries.dat 
• Model File Name: C:\!KINECT\Data\DTWmodel.dat 
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Appendix D.  

Parameters of the Prediction Patch 

Module “Model Prediction” (Figure 4.8) had these parameters:  

Block “Scalar to Matrix” for data input: 
• Number of Inputs: 12 
• Output Mode: Row Vector [1 x N] 

Block “DTW Predict”: 
• Input Mode: Trigger Mode 
• þ Recording Status: FALSE 
• þ Use Thresholding: TRUE 
• Fle Name: C:\!KINECT\Data\DTWmodel.dat 
• þ Gamma: 2 

Block “Counter” for “Sample Counter”: 
• Type: Integer 
• Step: 1 
• Begin: 1000 
• End: 1000000 
• Custom reset value: 1 
• þ Start 
• þ Stop 
• þ Reset 
• Start Mode: Manual 
• Reset Mode: Begin 

Block “Scalar to Matrix” for “Predicted Class ID”: 
• Number of Inputs: 2 
• Output Mode: Row Vector [1 x N] 

Blocks “Matrix Display”: 
• Double buffering: FALSE 
• Min Char: 3 
• Max Char: 9 
• Decimal Digits: 2 
• Window Rect X: 1200 
• Window Rect Width: 400 
• Window Rect Height: 100 
• Docked: FALSE 
• Fullscreen: FALSE 

Block “Matrix Display” for “Distances”: 
• Window Title: Distances 
• Window Rect Y: 800 

Block “Matrix Display” for “Thresholds”: 
• Window Title: Thresholds 
• Window Rect Y: 900 



98 

Blocks “Cyclical Buffer”: 
• IO Type: Double Matrix 
• Buffer Size: 100 
• Hop Size: 1 
• Wait for Fill: FALSE 

Block “Write Matrix to File - Int” for “Prediced Class ID”: 
• File Name: C:\!KINECT\Data\PredictedClassIDs.txt 

Block “Write Matrix to File - Double” for “Distances”: 
• File Name: C:\!KINECT\Data\PredictionDistances.txt 

Block “Write Matrix to File - Double” for “Thresholds”: 
• File Name: C:\!KINECT\Data\PredictionThresholds.txt 

 

 

Module “Timer for Prediction” (Figure 4.9) had these parameters:  

Block “Clock Generator” for “Start”: 
• Periodic: TRUE 
• Period: 00:00:02:000 
• Phase: 00:00:00:050 

Block “Bang” for “Start”: 
• Active: FALSE 
• þ Activate 

Block “Clock Generator” for “Stop”: 
• Periodic: TRUE 
• Period: 00:00:02:000 
• Phase: 00:00:00:000 

Block “If And”: 
• Num Inputs: 2 
• Percentage: 100 
• Status Pin For Input 1: FALSE 
• Status Pin For Input 2: TRUE 

 

 

Module “Music Clip” (Figure 4.10) had these parameters:  

Block “Int Generator” for “Audio Track ID”: 
• Value: 2 
• Continuous output: FALSE 

Blocks “Int Selector”: 
• Num Inputs: 1 
• þ Value Pin for Input: 0 

Blocks “OSC Client”: 
• Host/IP: 127.0.0.1 
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• Port: 9000 
• Number of Inputs: 2 
• Type of Input 1: Integer 
• Type of Input 2: Integer 

Block “OSC Client” for “Play Clip with Class ID” additionally had: 
• Address Pattern: /live/play/clip 

Block “OSC Client” for “Stop Clip” additionally had: 
• Address Pattern: /live/stop/clip 

 

 

Module “Record Prediction Data” (Figure 4.11) had these parameters: 

Block “Scalar to Matrix”: 
• Number of Inputs: 12 
• Output Mode: Row Vector [1 x N] 

Block “Labelled Time Series Training Data Tool”: 
• þ Record: FALSE 
• þ Class Label: 100 
• þ Save 
• þ Clear Last 
• þ Clear All 
• þ Clear Class 
• þ Clear Class Value ID: 100 
• File Name: C:\!KINECT\Data\PredictedTimeSeries.dat 
• Recording Mode: Overwrite Mode 

Block “Clock Generator” for “Beat every 0.5 sec”: 
• Periodic: TRUE 
• Period: 00:00:00:500 
• Phase: 00:00:00:000 

Block “Clock Generator” for “Bar every 2 sec”: 
• Periodic: TRUE 
• Period: 00:00:02:000 
• Phase: 00:00:00:000 

 

 

Module “Sequence for Adaptive Training” (Figure 4.12) had these parameters:  

Block “Compare With Value - Int”: 
• Operation Type: Equal To (=) 
• Value: 4 

Block “Delay” gets the signal from the patch pin “AddSamples”: 
• Delay: 00:00:00:050 
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Block “Delay” gets the signal from the first “Delay” and sends it to the patch pin “StopScript”: 
• Delay: 00:00:00:100 

Block “Delay” gets the signal from the first “Delay” and sends it to the patch pin “TrainModel”: 
• Delay: 00:00:00:500 

Block “Clock Generator”: 
• Patch Start: TRUE 
• Periodic: FALSE 
• Absolute Time: FALSE 

Block “String Generator”: 
• Value: C:\Python27\python.exe C:\!KINECT\Python\addPredictedSamples.py 
• Continuous Output: TRUE 

Block “Spawn Command”: 
• þ Active: FALSE 
• þ Activate 
• Allow Duplicates: TRUE 

 

 

Module “Model Training” (Figure 4.13) had these parameters:  

Block “DTW Train”: 
• þ Train 
• File Format: Labelled Time Series Training Data 
• Distance Method: Euclidean 
• Pre-processing Method: None 
• þ Gamma: 3 
• þ Downsample Factor: 6 
• þ Cross-Validation: FALSE 
• Training Data File Name: C:\!KINECT\Data\TimeSeries.dat 
• Model File Name: C:\!KINECT\Data\DTWmodel.dat 
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Appendix E.  

Parameters of Recording and Reproduction of the Data Stream 

Module “Input to File” (Figure 5.1) had these parameters: 

Blocks “OSC Server”: 
• Port: 8000 
• Number of outputs: 4 
• Type of output 1: Double 
• Type of output 2: Double 
• Type of output 3: Double 
• Type of output 4: String 

Block “OSC Server” for “Left Hand” additionally had: 
• Address Pattern: /0/HandL 

Block “OSC Server” for “Right Hand” additionally had: 
• Address Pattern: /0/HandR 

Block “OSC Server” for “Left Elbow” additionally had: 
• Address Pattern: /0/ElbowL 

Block “OSC Server” for “Right Elbow” additionally had: 
• Address Pattern: /0/ElbowR 

Block “Write to File”: 
• Name File: C:\!KINECT\Data\Kinect_toFile.ebf 
• File Mode: OVERWRITE 
• N Input: 19 
• þ Record 
• þ Stop 

 

 

Module “Input from File” (Figure 5.2) had these parameters: 

Block “Read from File”: 
• Name File: C:\!KINECT\Data\Kinect_toFile.ebf 
• þ Play 
• þ Stop 

Block “Scalar to Matrix”: 
• Number of Inputs: 2 
• Output Mode: Row Vector [1 x N] 

Block “Cyclical Buffer”: 
• IO Type: Double Matrix 
• Buffer Size: 300 
• Hop Size: 1 
• Wait for Fill: FALSE 
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Block “Write Matrix To File - Int”: 
• File Name: C:\!KINECT\Data\RecordedClassIDs_fromFile.txt 

 

 

Module “Sequence for Input to & from File” (Figure 5.3) had these parameters: 

Block “Delay” in the column Play Clip: 
• Delay: 00:00:07:500 

Block “Delay” in the column Start Rec Samples: 
• Delay: 00:00:00:500 

Block “Delay” in the column Stop Rec Samples: 
• Delay: 00:01:03:900 

Block “Int Selector”: 
• NumInputs: 3 
• þ Value Pin for Input 1: 2 
• Value Pin for Input 2: 0 
• Value Pin for Input 3: 0 

Block “Clock Generator” for the Count Classes: 
• Periodic: TRUE 
• Period: 00:01:12:000 
• Phase: 00:00:00:000 
• Absolute time: TRUE 
• Absolute time: 00:00:02:000 

Blocks “Counter”: 
• Type: Integer 
• Step: 1 
• Begin: 0 
• End: 1000 

Block “Clock Generator” for the Count Samples: 
• Periodic: TRUE 
• Period: 00:00:02:000 
• Phase: 00:00:00:000 
• Absolute time: FALSE 

Block “If And”: 
• NumInputs: 2 
• Percentage: 100 
• Status Pin for Input 1: TRUE 
• Status Pin for Input 2: TRUE 
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Appendix F.  

Results of Evaluation 

 
Table 3.  
Thresholds of the classes depending on gamma coefficient, 32 training samples for each class. 

32 samples Class 1 
Threshold 

Class 2 
Threshold 

Class 3 
Threshold 

Class 4 
Threshold 

Class 5 
Threshold 

Class 6 
Threshold 

Gamma 0 0.621257 0.604583 0.800298 0.872311 0.603913 0.588843 

Gamma 1 0.776884 0.758091 1.047386 1.193046 0.812408 0.854391 

Gamma 2 0.932511 0.911599 1.294474 1.513781 1.020903 1.119939 

Gamma 3 1.088138 1.065107 1.541562 1.834516 1.229398 1.385487 

Gamma 4 1.243765 1.218615 1.78865 2.155251 1.437893 1.651035 

Gamma 5 1.399392 1.372123 2.035738 2.475986 1.646388 1.916583 

Gamma 6 1.555019 1.525631 2.282826 2.796721 1.854883 2.182131 

 
 
Table 4.  
Thresholds of the classes depending on the number of training samples, gamma 3. 

Gamma 3 Class 1 
Threshold 

Class 2 
Threshold 

Class 3 
Threshold 

Class 4 
Threshold 

Class 5 
Threshold 

Class 6 
Threshold 

4 samples 0.8437115 1.091806 2.432071 1.947599 1.280601 1.520592 

8 samples 0.941805 1.038489 1.790802 2.453806 0.853342 1.38806 

16 samples 1.071221 1.011873 1.676632 1.931758 1.044471 1.447276 

24 samples 1.108665 1.021059 1.564581 1.916805 1.054769 1.519906 

32 samples 1.088138 1.065107 1.541562 1.834516 1.229398 1.385487 

 
 
 
 
Table 5.  
Fitting prediction depending on gamma coefficient, 3 classes, 32 training samples for each class. 

3 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

Gamma 0 50 46 0 480 576 0.9201 1.0000 0.9125 0.5208 1.0000 

Gamma 1 80 16 0 480 576 0.9722 1.0000 0.9677 0.8333 1.0000 

Gamma 2 91 5 1 479 576 0.9896 0.9891 0.9897 0.9479 0.9979 

Gamma 3 93 3 2 478 576 0.9913 0.9789 0.9938 0.9688 0.9958 

Gamma 4 93 3 3 477 576 0.9896 0.9688 0.9938 0.9688 0.9938 

Gamma 5 93 3 3 477 576 0.9896 0.9688 0.9938 0.9688 0.9938 

Gamma 6 93 3 3 477 576 0.9896 0.9688 0.9938 0.9688 0.9938 
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Table 6.  
Fitting prediction depending on gamma coefficient, 6 classes, 32 training samples for each class. 

6 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

Gamma 0 97 95 0 960 1152 0.9175 1.0000 0.9100 0.5052 1.0000 

Gamma 1 156 36 0 960 1152 0.9688 1.0000 0.9639 0.8125 1.0000 

Gamma 2 184 8 1 959 1152 0.9922 0.9946 0.9917 0.9583 0.9990 

Gamma 3 189 3 2 958 1152 0.9957 0.9895 0.9969 0.9844 0.9979 

Gamma 4 189 3 3 957 1152 0.9948 0.9844 0.9969 0.9844 0.9969 

Gamma 5 189 3 3 957 1152 0.9948 0.9844 0.9969 0.9844 0.9969 

Gamma 6 189 3 3 957 1152 0.9948 0.9844 0.9969 0.9844 0.9969 
 
 
 
 
Table 7.  
Fitting prediction depending on gamma coefficient, 1 class, 4 training samples for this class. 

1 class Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

Gamma 2 3 1 0 20 24 0.9583 1.0000 0.9524 0.7500 1.0000 

Gamma 3 3 1 0 20 24 0.9583 1.0000 0.9524 0.7500 1.0000 

Gamma 4 4 0 0 20 24 1.0000 1.0000 1.0000 1.0000 1.0000 

Gamma 5 4 0 0 20 24 1.0000 1.0000 1.0000 1.0000 1.0000 

Gamma 6 4 0 0 20 24 1.0000 1.0000 1.0000 1.0000 1.0000 
 
 
Table 8.  
Fitting prediction depending on gamma coefficient, 2 classes, 4 training samples for each class. 

2 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

Gamma 1 7 1 0 40 48 0.9792 1.0000 0.9756 0.8750 1.0000 

Gamma 2 7 1 0 40 48 0.9792 1.0000 0.9756 0.8750 1.0000 

Gamma 3 8 0 2 38 48 0.9583 0.8000 1.0000 1.0000 0.9500 

Gamma 4 8 0 2 38 48 0.9583 0.8000 1.0000 1.0000 0.9500 

Gamma 5 8 0 3 37 48 0.9375 0.7273 1.0000 1.0000 0.9250 
 
 
Table 9.  
Fitting prediction depending on gamma coefficient, 3 classes, 4 training samples for each class. 

3 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

Gamma 0 6 6 0 60 72 0.9167 1.0000 0.9091 0.5000 1.0000 

Gamma 1 9 3 0 60 72 0.9583 1.0000 0.9524 0.7500 1.0000 

Gamma 2 11 1 0 60 72 0.9861 1.0000 0.9836 0.9167 1.0000 

Gamma 3 10 2 1 59 72 0.9583 0.9091 0.9672 0.8333 0.9833 

Gamma 4 11 1 6 54 72 0.9028 0.6471 0.9818 0.9167 0.9000 

Gamma 5 11 1 9 51 72 0.8611 0.5500 0.9808 0.9167 0.8500 

Gamma 6 11 1 9 51 72 0.8611 0.5500 0.9808 0.9167 0.8500 
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Table 10.  
Fitting prediction depending on gamma coefficient, 4 classes, 4 training samples for each class. 

4 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

Gamma 1 13 3 0 80 96 0.9688 1.0000 0.9639 0.8125 1.0000 

Gamma 2 14 2 0 80 96 0.9792 1.0000 0.9756 0.8750 1.0000 

Gamma 3 15 1 1 79 96 0.9792 0.9375 0.9875 0.9375 0.9875 

Gamma 4 15 1 5 75 96 0.9375 0.7500 0.9868 0.9375 0.9375 

Gamma 5 15 1 6 74 96 0.9271 0.7143 0.9867 0.9375 0.9250 
 
 
Table 11.  
Fitting prediction depending on gamma coefficient, 5 classes, 4 training samples for each class. 

5 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

Gamma 1 18 2 0 100 120 0.9833 1.0000 0.9804 0.9000 1.0000 

Gamma 2 19 1 0 100 120 0.9917 1.0000 0.9901 0.9500 1.0000 

Gamma 3 18 2 1 99 120 0.9750 0.9474 0.9802 0.9000 0.9900 

Gamma 4 19 1 3 97 120 0.9667 0.8636 0.9898 0.9500 0.9700 

Gamma 5 19 1 5 95 120 0.9500 0.7917 0.9896 0.9500 0.9500 
 
 
Table 12.  
Fitting prediction depending on gamma coefficient, 6 classes, 4 training samples for each class. 

6 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

Gamma 2 22 2 0 120 144 0.9861 1.0000 0.9836 0.9167 1.0000 

Gamma 3 23 1 1 119 144 0.9861 0.9583 0.9917 0.9583 0.9917 

Gamma 4 23 1 1 119 144 0.9861 0.9583 0.9917 0.9583 0.9917 

Gamma 5 23 1 1 119 144 0.9861 0.9583 0.9917 0.9583 0.9917 

Gamma 6 23 1 1 119 144 0.9861 0.9583 0.9917 0.9583 0.9917 
 
 
Table 13.  
Cross-validation prediction with gamma 3 depending on the number of training samples. 

Gamma 3 Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 157 35 35 1117 1344 0.95 0.82 0.97 0.82 0.97 

8 samples 149 43 43 1109 1344 0.94 0.78 0.96 0.78 0.96 

16 samples 170 22 22 1130 1344 0.97 0.89 0.98 0.89 0.98 

24 samples 183 9 9 1143 1344 0.99 0.95 0.99 0.95 0.99 

32 samples 187 5 5 1147 1344 0.99 0.97 1.00 0.97 1.00 
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Table 14.  
Fitting prediction depending on the number of training samples, 3 classes, gamma 3. 

3 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 10 2 1 59 72 0.9583 0.9091 0.9672 0.8333 0.9833 

8 samples 23 1 0 120 144 0.9931 1.0000 0.9917 0.9583 1.0000 

16 samples 46 2 0 240 288 0.9931 1.0000 0.9917 0.9583 1.0000 

24 samples 70 2 1 359 432 0.9931 0.9859 0.9945 0.9722 0.9972 

32 samples 93 3 2 478 576 0.9913 0.9789 0.9938 0.9688 0.9958 

 
 
Table 15.  
Fitting prediction depending on the number of training samples, 6 classes, gamma 3. 

6 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 23 1 1 119 144 0.9861 0.9583 0.9917 0.9583 0.9917 

8 samples 47 1 0 240 288 0.9965 1.0000 0.9959 0.9792 1.0000 

16 samples 94 2 0 480 576 0.9965 1.0000 0.9959 0.9792 1.0000 

24 samples 143 1 0 720 864 0.9988 1.0000 0.9986 0.9931 1.0000 

32 samples 189 3 2 958 1152 0.9957 0.9895 0.9969 0.9844 0.9979 

 
 
Table 16.  
Cross-validation prediction depending on the number of training samples, 3 classes, gamma 3. 

3 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 144 48 48 528 768 0.8750 0.7500 0.9167 0.7500 0.9167 

8 samples 158 34 34 542 768 0.9115 0.8229 0.9410 0.8229 0.9410 

16 samples 172 20 20 556 768 0.9479 0.8958 0.9653 0.8958 0.9653 

24 samples 184 8 8 568 768 0.9792 0.9583 0.9861 0.9583 0.9861 

32 samples 188 4 4 572 768 0.9896 0.9792 0.9931 0.9792 0.9931 

 
 
Table 17.  
Cross-validation prediction depending on the number of training samples, 6 classes, gamma 3. 

6 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 157 35 35 1117 1344 0.9479 0.8177 0.9696 0.8177 0.9696 

8 samples 149 43 43 1109 1344 0.9360 0.7760 0.9627 0.7760 0.9627 

16 samples 170 22 22 1130 1344 0.9673 0.8854 0.9809 0.8854 0.9809 

24 samples 183 9 9 1143 1344 0.9866 0.9531 0.9922 0.9531 0.9922 

32 samples 187 5 5 1147 1344 0.9926 0.9740 0.9957 0.9740 0.9957 

 
 
 



107 

Table 18.  
Fitting prediction depending on the number of classes, 4 training samples for each class, gamma 3. 

4 samples Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

1 class 3 1 0 20 24 0.9583 1.0000 0.9524 0.7500 1.0000 

2 classes 8 0 2 38 48 0.9583 0.8000 1.0000 1.0000 0.9500 

3 classes 10 2 1 59 72 0.9583 0.9091 0.9672 0.8333 0.9833 

4 classes 15 1 1 79 96 0.9792 0.9375 0.9875 0.9375 0.9875 

5 classes 18 2 1 99 120 0.9750 0.9474 0.9802 0.9000 0.9900 

6 classes 23 1 1 119 144 0.9861 0.9583 0.9917 0.9583 0.9917 

 
 
Table 19.  
Cross-validation prediction depending on the number of classes, 4 training samples for each class, 
gamma 3. 

4 samples Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

1 class 170 22 22 170 384 0.8854 0.8854 0.8854 0.8854 0.8854 

2 classes 162 30 30 354 576 0.8958 0.8438 0.9219 0.8438 0.9219 

3 classes 144 48 48 528 768 0.8750 0.7500 0.9167 0.7500 0.9167 

4 classes 142 50 50 718 960 0.8958 0.7396 0.9349 0.7396 0.9349 

5 classes 142 50 50 910 1152 0.9132 0.7396 0.9479 0.7396 0.9479 

6 classes 157 35 35 1117 1344 0.9479 0.8177 0.9696 0.8177 0.9696 

 
 
 
 
Table 20.  
Cross-validation prediction with adaptive feature depending on the number of training samples, 6 
classes, gamma 3. 

6 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 159 33 33 1119 1344 0.9509 0.8281 0.9714 0.8281 0.9714 

8 samples 148 44 44 1108 1344 0.9345 0.7708 0.9618 0.7708 0.9618 

16 samples 169 23 23 1129 1344 0.9658 0.8802 0.9800 0.8802 0.9800 

24 samples 182 10 10 1142 1344 0.9851 0.9479 0.9913 0.9479 0.9913 

32 samples 187 5 5 1147 1344 0.9926 0.9740 0.9957 0.9740 0.9957 

 
 
Table 21.  
Difference of cross-validation with adaptive feature compared to cross-validation without adaptive 
feature, depending on the number of training samples, 6 classes, gamma 3. 

6 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 2 -2 -2 2 0 0.0030 0.0104 0.0017 0.0104 0.0017 

8 samples -1 1 1 -1 0 -0.0010 -0.0052 -0.0009 -0.0052 -0.0009 

16 samples -1 1 1 -1 0 -0.0010 -0.0052 -0.0009 -0.0052 -0.0009 

24 samples -1 1 1 -1 0 -0.0010 -0.0052 -0.0009 -0.0052 -0.0009 

32 samples 0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 
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Table 22.  
Cross-validation prediction with adaptive feature depending on the number of training samples, 3 
classes, gamma 3. 

3 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 144 48 48 528 768 0.8750 0.7500 0.9167 0.7500 0.9167 

8 samples 164 28 28 548 768 0.9271 0.8542 0.9514 0.8542 0.9514 

16 samples 171 21 21 555 768 0.9453 0.8906 0.9635 0.8906 0.9635 

24 samples 182 10 10 566 768 0.9740 0.9479 0.9826 0.9479 0.9826 

32 samples 186 6 6 570 768 0.9844 0.9688 0.9896 0.9688 0.9896 

 
 
Table 23.  
Difference of cross-validation with adaptive feature compared to cross-validation without adaptive 
feature, depending on the number of training samples, 3 classes, gamma 3. 

3 classes Hits Misses FA CR Total Accur. PPV NPV Sens. Spec. 

4 samples 0 0 0 0 0 0.0000 0.0000 0.0000 0.0000 0.0000 

8 samples 6 -6 -6 6 0 0.0156 0.0313 0.0104 0.0313 0.0104 

16 samples -1 1 1 -1 0 -0.0026 -0.0052 -0.0017 -0.0052 -0.0017 

24 samples -2 2 2 -2 0 -0.0052 -0.0104 -0.0035 -0.0104 -0.0035 

32 samples -2 2 2 -2 0 -0.0052 -0.0104 -0.0035 -0.0104 -0.0035 

 
 
 


