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I.  Abstract 

Various environmental factors affect plant distribution, growth and yield. Hence, a central aim of 

biological research is to quantify plant-environment interactions. In higher plants, abiotic factors 

like temperature and light intensity are well described to induce a reprogramming of metabolism. 

Further, plants are able to efficiently adapt to a changing environment, comprising a 

reprogramming of the transcriptome, proteome and metabolome as well as communication and 

signalling between subcellular organelles. Since higher plants possess one of the most 

compartmentalized cells across all kingdoms of life, it is particularly challenging to elucidate 

regulatory strategies. Mathematical models, i.e. abstract representation of plant metabolism, have 

been shown to be suitable to overcome this limitation and to facilitate quantitative analysis of 

plant-environment interactions. 

The present work comprises different attempts to unravel reprogramming of metabolism in 

Arabidopsis thaliana upon abiotic stress factors. First, an experimental method for resolving and 

assigning metabolites to their subcellular compartment is described. Separation of cellular 

fractions via density gradients combined with marker enzyme assays and applied mathematical 

correlation strategies revealed metabolite distributions across compartments. The method is 

applicable to elucidate metabolome dynamics in a fast and statistically robust manner. Applied to 

a cold acclimation experiment different strategies of metabolic reprogramming in a cold sensitive 

(Cvi) and cold tolerant (Rschew) accession were observed. While the Rschew accession was 

characterized by a stable subcellular metabolic constitution resulting in an accumulation of 

primary metabolites, especially amino acid metabolism was strongly deregulated in the Cvi 

accession. To quantify the contribution of subcellular compartmentation to stabilization of a 

metabolic homeostasis, stability characteristics during environmental fluctuations were simulated 

by a mathematical model. Simulation of several millions of possible enzyme kinetic parameter 

constellations revealed diverse stabilizing contribution of different subcellular compartments. In 

summary, cytosolic and plastidial control of sucrose metabolism was found to stabilize metabolism 

more efficiently than under vacuolar control.  

To make mathematical analysis applicable to nonlinear time series experiments, a strategy for the 

connection of dynamic metabolic functions with biochemical network structure was developed 

and applied to a set of experimental time course data. Mathematical analysis of diurnal sucrose 

dynamics and stress-induced flavonoid biosynthesis revealed time points of metabolic regulation. 

Additionally, a combined cold and high light experiment of mutants being perturbed in the central 
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carbohydrate metabolism of sucrose and starch was performed. Stress induced dynamics of 

primary metabolites and proteins were recorded which were applied to generate a statistical model 

for pattern recognition in plant stress response. This approach revealed a molecular network with 

a highly significant stress reaction across all analyzed genotypes. The identified network 

comprised 23 proteins with diverse molecular functions connecting transcriptional regulation with 

primary and secondary metabolism.  

In conclusion, interconnected reprogramming of plant metabolism during abiotic stress affects 

diverse molecular levels. The combination of several experimental, methodological and 

mathematical strategies presented in this work provide new insights into complex plant-

environment interactions.  
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II.  Zusammenfassung 

Zahlreiche Umweltbedingungen beeinflussen die Verbreitung, das Wachstum und den Ertrag von 

Pflanzen. Daher ist die Untersuchung von Pflanze-Umweltinteraktionen von zentraler Bedeutung 

für die Grundlagenforschung als auch Biotechnologie. In höheren Pflanzen führen sowohl 

spontane als auch langfristige Änderungen abiotischer Faktoren, wie zum Beispiel Temperatur 

und Lichtintensität, zu einer Anpassung des Stoffwechsels. Diese Anpassung betrifft oftmals 

gleichzeitig die molekularen Ebenen des Transkriptoms, Proteoms und Metaboloms sowie der 

Kommunikation und Signalgebung zwischen Zellorganellen. Pflanzliche Zellen besitzen einen 

stark kompartimentierten Stoffwechsel, weshalb regulatorische Prinzipien oftmals nur mit sehr 

hohem Zeit- und Arbeitsaufwand erfassbar sind. Mathematische Modelle des pflanzlichen 

Stoffwechsels haben sich bei der Erfassung sowie der quantitativen Analyse komplexer Fragen zu 

Pflanze-Umwelt Interaktionen als sehr hilfreich erwiesen.  

Die vorliegende Arbeit befasst sich mit der stressinduzierten Stoffwechselanpassung in 

Arabidopsis thaliana. Zunächst wird eine experimentelle Methode zur Auflösung subzellulären 

Metabolitkonzentrationen vorgestellt. Die Trennung zellulärer Fraktionen aufgrund von 

Dichtegradienten in Kombination mit Aktivitätsbestimmung spezifischer Markerenzyme und 

mathematischen Korrelationsstrategien ermöglichte eine Aussage über Metabolitverteilungen in 

den unterschiedlichen Kompartimenten. Diese Methode ermöglichte zudem die Auflösung von 

Stoffwechseldynamiken in einer reproduzierbaren und statistisch robusten Art und Weise. In einer 

Kälteakklimatisierungsstudie konnten verschiedene regulatorische Prinzipien der 

Stoffwechselanpassung zwischen einer kältesensitiven (Cvi) und kältetoleranten (Rschew) 

natürlichen Akzession von Arabidopsis thaliana festgestellt werden. Während der subzelluläre 

Stoffwechsel der toleranten Akzession durch kälteinduzierte Akkumulation von Zuckern, 

organischen Säuren und Aminosäuren geprägt war, war vor allem der Aminosäurestoffwechsel 

der sensitiven Akzession durch eine signifikante subzelluläre Verschiebung gekennzeichnet. Für 

die Quantifizierung der Beiträge einzelner subzellulärer Kompartimente zur Stabilisierung einer 

metabolischen Homöostase während umweltbedingter Fluktuationen wurden verschiedene 

mathematische Modelle erstellt und simuliert. Zudem wurden Charakteristika bezüglich des 

Stabilitätsverhaltens nach Auslenkung untersucht. Modellsimulationen deuteten darauf hin, dass 

der Saccharosestoffwechsel im Blatt durch plastidäre als auch zytosolische Regulation effizienter 

stabilisiert wird als durch vakuoläre Regulation.  
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Um die Anwendbarkeit von mathematischen Analysen mit nicht-linearen Zeitserien-

Experimenten zu ermöglichen, wurde eine Strategie zur Verbindung von dynamischen 

metabolischen Funktionen mit biochemischen Netzwerkstrukturen entwickelt. Diese Methode 

wurde zur Analyse experimenteller Datensätze verwendet, wobei regulatorisch bedeutende 

Zeitpunkte in der täglichen Saccharose-Dynamik sowie der stressinduzierten Flavonoid-

Biosynthese identifiziert werden konnten. Zusätzlich wurden die Auswirkungen eines 

kombinierten Kälte- und Hochlichtstresses auf den Stoffwechsel des Arabidopsis-Wildtyps 

Columbia-0 analysiert und mit Stoffwechselmutanten des zentralen Kohlenhydratmetabolismus 

verglichen. Hierzu wurden Verfahren der statistischen Mustererkennung verwendet, welche eine 

Klassifizierung von Metabolit-, Protein- und physiologischen Chlorophyllfluoreszenzdaten 

ermöglichte. In Kombination mit multivariater Datenanalyse konnten Komponenten eines 

zentralen molekularen Netzwerks identifiziert werden, welches Teil der Stressreaktion aller 

analysierten Genotypen war. Dieses Netzwerk umfasste 23 Proteine und verknüpfte 

transkriptionelle Regulation mit Stoffwechselwegen des Primär- und Sekundärmetabolismus. 

Diese Befunde belegen die Komplexität pflanzlicher Anpassung an sich ändernde 

Umweltbedingungen. Gleichzeitig beschreibt diese Arbeit experimentelle und theoretische 

Ansätze, welche zu neuen Erkenntnissen im Gebiet pflanzlicher Stressreaktionen führen.  
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III.  Introduction  

Plant-environment interactions  

As sessile organisms, plants must cope with various environmental conditions and have to adapt 

fast for surviving unfavourable conditions. Abiotic stress is defined as environmental conditions 

affecting growth and yield. The response of plants to abiotic stress is highly dynamic and complex 

(Cramer et al., 2011). The ability to adapt to environmental conditions limits the dispersion of 

plants in different geographical regions, and low temperature is a major factor to account for 

significant losses in agricultural plant productivity. Naturally occurring inbred lines of the model 

plant Arabidopsis thaliana constitute locally adapted populations (Provart et al., 2016), called 

accessions. Therefore, Arabidopsis represents a suitable system to analyse adaptation to changing 

environmental conditions. Freezing tolerance in Arabidopsis is important as some of the rosettes 

overwinter before flowering (Nordborg & Bergelson, 1999) and freezing temperatures can occur 

at the beginning of their vegetative growth phase. Supplementary, the analysis of over 70 naturally 

occurring Arabidopsis accessions has shown a positive correlation between freezing tolerance and 

latitude of origin (Zhen & Ungerer, 2008), and additionally, a correlation between the latitude with 

the longitude and freezing tolerance was observed (Zuther et al., 2012). Environmental factors 

seem to differ across the species range, but besides temperature especially the combination with 

precipitation might play a crucial role in freezing tolerance (Horton et al., 2016). Cold slows down 

various processes like enzyme activities, metabolite mobility, energy metabolism and membrane 

fluidity. Additionally, the structure of biomolecules, membrane channel conductivity and plant 

anatomy can be affected (Thomashow, 1999; van Buer et al., 2016).  

Physically, in most plant tissues, freezing injury occurs upon ice formation which leads to cellular 

dehydration affecting cellular membrane systems (Thomashow, 2001). Cold acclimation is defined 

as the ability to enhance freezing tolerance upon exposure to chilling/non-freezing temperature 

(Thomashow, 1999). Acclimation is induced by environmental changes, is initiated with a stress 

response and can be characterized by transient, physiological, biochemical and molecular 

perturbations. Finally, a stable long-term adjustment of metabolism is gained (Huner et al., 1998). 

The process of cold acclimation requires light (Wanner & Junttila, 1999) and is initiated already 

after a relatively short-time period of exposure to low but non-freezing temperature (Ristic & 

Ashworth, 1993) in the presence of (required) light. The high mortality at -8°C of non-acclimated 

plants compared to acclimated plants was already described for over 70 Arabidopsis accessions 

grown in growth chambers (Zhen & Ungerer, 2008). In cold stress field studies it was shown that 



   Introduction  
 

 

6 

accessions with lowest cold acclimation potential benefited most from a cold pre-treatment 

regarding seed yield (Cvetkovic et al., 2017). After cold acclimation, especially younger leaves 

were observed to develop freezing tolerance more rapidly than mature leaves. Interestingly, as fast 

as freezing tolerance increases, it can be lost again within 1 or 2 days (Wanner & Junttila, 1999) 

though other studies showed that the timeframe of deacclimation might differ between natural 

Arabidopsis accessions (Zuther et al., 2015). Moreover, this suggests that Arabidopsis can 

memorize an earlier (priming) cold stress for several days over a stress-free period. It was 

suggested, that especially the plastid antioxidant system transmits information on a previous cold 

stress over time (van Buer et al., 2016). 

 

Regulation of metabolism during exposure to cold 

Primary effects of cold sensing are changes in calcium fluxes, mobilization of transcription factors 

and photosynthetic signals. Those processes activate signal transduction processes, modify gene 

expression and might improve plant performance under low temperature ((van Buer et al., 2016) 

and references therein). Plasma membrane fluidity is handled as one primary signal for cold 

perception in plants (Örvar et al., 2000) as well as plasma membrane localized kinases which 

transduce the signal from the plasma membrane into the nucleus (Liu et al., 2017). On the level of 

transcription, one of the best characterized pathways being involved in cold acclimation and 

freezing tolerance is the C-repeat binding factor (CBF) pathway of Arabidopsis (Thomashow, 

1999; Knight & Knight, 2012). The CBF locus (also known as DREB; drought-responsive element 

binding protein) includes three genes CBF1, CBF2 and CBF3, transcription factors which are 

induced within minutes of exposure to low non-freezing temperatures (Gilmour et al., 1998). After 

induction, CBF-targeted cold-regulated genes (COR genes) are altered in their expression. Those 

more than hundred COR genes are also known as the CBF regulon (Thomashow, 2010). 

Overexpression of the CBF loci results in increased freezing tolerance without cold acclimation 

(Jaglo-Ottosen et al., 1998; Gilmour et al., 2004). There is additional evidence for a particular role 

of CBF2 which might contribute to local adaptation in natural populations of Arabidopsis and, 

therefore, the CBF pathway might be an evolutionary factor of those populations (Gehan et al., 

2015). However, other studies do find just weak or no evidence for a correlation of natural 

variation of freezing tolerance and expression of CBF genes (McKhann et al., 2008; Zuther et al., 

2012). The CBF pathway itself is regulated by phytohormones, other transcription factors, Ca2+ 

binding receptor kinases and key components of the circadian clock and light as well as light 

quality via the phytochrome system (Kurepin et al., 2013; Shi et al., 2015). Nevertheless, cold 
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acclimation seems to modulate gene expression up to one third of the total Arabidopsis genome 

(Hannah et al., 2005) and transcriptome analysis has shown that only ~12% of the cold-responsive 

genes are controlled by CBFs indicating an interaction of diverse low-temperature regulons in cold 

signalling (Fowler & Thomashow, 2002). Subsequently, the contribution of genes to freezing 

tolerance variation within Arabidopsis remains largely unknown (Horton et al., 2016).  

The adaptation of plants to a fluctuating environment is not only visible in different expression 

pattern of genes, but also in their protein products. As proteins are one of the major players in most 

cellular events, they are directly involved in plant low temperature response. Proteome analysis is 

recommended as an appropriate strategy for complementing transcriptome level changes 

(Janmohammadi et al., 2015). Additionally, post-transcriptional mechanisms (e.g. alternative 

splicing, RNA silencing, mRNA export) and post-translational modifications (e.g. 

phosphorylation, ubiquitination, sumoylation) and protein isoforms do play a crucial role during 

cold response in plants (Kosová et al., 2011; Miura & Furumoto, 2013; Kosová et al., 2018). 

Subsequently, it has been proven that modification of gene expression at the transcript level 

frequently does not correlate with the protein level (Maier et al., 2009). Low temperature stress 

affects proteins involved in carbohydrate metabolism, photosynthesis, polyamine synthesis, ROS 

scavenging, protein folding, stabilizing cell structure and cell membrane integrity (Janmohammadi 

et al., 2015) and those proteins are often coded by COR genes (Hannah et al., 2005). Well 

characterized low temperature responsive proteins are late embryogenesis abundant (LEA) 

proteins, heat shock proteins (HSP), pathogen related (PR) proteins (Janská et al., 2010; Kosová 

et al., 2011; Miura & Furumoto, 2013; Janmohammadi et al., 2015; Kosová et al., 2018). Shortly, 

LEA proteins (e.g. COR15a, KIN1) might participate in the stabilization of membranes against 

freeze induced injury and protect proteins from denaturation when cytoplasm becomes dehydrated. 

One group of LEA proteins are dehydrins which possess a high number of charged amino acids, 

are heat-stable and might be crucial for plants freezing tolerance (Thomashow, 1999; Puhakainen 

et al., 2004; Hundertmark & Hincha, 2008; Janská et al., 2010). Low temperature increases the 

potential risk of protein misfolding, resulting in non-functional proteins. Therefore, it is not 

surprising that low temperature enhances the accumulation of proteins with chaperone functions 

(Kosová et al., 2011). Several heat shock proteins take part in the refolding of denatured proteins 

and in prevention of their aggregation. Additionally, they have cryoprotective effects, and 

participate in membrane protection, and for example HSP90 regulates CBF genes and members of 

the circadian clock (Thomashow, 1999; Yan et al., 2006; Timperio et al., 2008; Noren et al., 2016). 

Some PR proteins are known to have antifreeze activities, they inhibit the recrystallization of 
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intercellular ice in the apoplastic space and even prevent intracellular ice formation (Janská et al., 

2010).  

Low temperature and/or high light leads to a potential energy imbalance between photochemistry, 

electron transport and metabolism. This leads to increased PSII excitation pressure (Huner et al., 

1998). Plants transferred to low temperature showed an immediate loss of the effective 

photosynthetic capacity i.e. the maximum rate of photosynthesis is decreased (Strand et al., 1999). 

Correlated with this, a transcript suppression of genes coding for photosynthetic proteins was 

described (Strand et al., 1997). Hence, during cold acclimation photosynthetic capacity recovers 

and might reach similar levels again like under ambient temperature. Several Calvin cycle enzyme 

activities increase during acclimation to cold, with the most pronounced increase in ribulose-1,5-

bisphosphate-carboxylase/oxygenase (Rubisco) activity (Strand et al., 1999). Carbohydrates are 

primary photosynthetic products playing a crucial role in energy metabolism, developmental 

processes, stress signalling and many other processes in the subcellular and whole plant level (Graf 

et al., 2010; Pommerrenig et al., 2018). Confirmed by many studies, the central carbohydrate 

metabolism is a particularly prominent component of the reprogramming of the metabolome at 

low temperatures (summary in (Guy et al., 2008)). The response and acclimation to cold stress in 

various Arabidopsis accessions and primary metabolism has been focused by many studies 

(Kaplan et al., 2007; Guy et al., 2008; Nägele et al., 2011; Nägele et al., 2012). Sugars and starch 

play a crucial role in entrainment of the circadian clock (Haydon et al., 2013) and clock 

components are significantly affected by abiotic stress conditions (Miura & Furumoto, 2013). 

Thus, with respect to freezing tolerance, especially glucose, fructose and sucrose belong to the 

most strongly positive correlated metabolites from the central carbohydrate metabolism (Hannah 

et al., 2006) as well as raffinose and various amino acids, organic acids and sugar alcohols (Kaplan 

et al., 2004). Diverse saccharides are capable to directly stabilize biological membranes under 

stress conditions. Cell membranes are protected by, e.g. sucrose and raffinose family 

oligosaccharides (RFOs) members (Tarkowski & Van den Ende, 2015). The amount of transcripts 

and activity of enzymes from the cytosolic pathway of sugar biosynthesis show an upregulation at 

low temperatures. Especially the two enzymes involved in sucrose synthesis, sucrose phosphate 

synthase (SPS) and cytosolic fructose-1,6-bisphosphatase (cFBPase) activities increase during 

cold exposure (Strand et al., 1997; Strand et al., 1999) and SPS is known to be rate limiting (Stitt 

et al., 1988). Furthermore, SPS overexpressing plants were observed to have an improved 

photosynthetic performance and increased freezing tolerance after cold acclimation (Strand et al., 

2003). Sugars are well known to play pivotal roles as signalling cascades and a prominent and 
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conserved involved enzyme is Hexokinase1 (Moore et al., 2003; Rolland et al., 2006). In addition 

to accumulation of soluble carbohydrates, also the content of starch is known to significantly 

increase during cold acclimation (Guy et al., 2008; Nagler et al., 2015; Thalmann & Santelia, 

2017). Previously, starch degradation during initial cold response was suggested to augment the 

accumulation of carbohydrates (Sicher, 2011). Starch is a major storage compound in plants, and 

Arabidopsis partitions approximately 30-50% of its photoassimilates into transitory starch. During 

the night, starch is degraded to release maltose and glucose. A plastidial enzyme involved in the 

formation of starch in chloroplasts is phosphoglucomutase (PGM). The Calvin-Benson cycle is 

linked to starch biosynthesis by the enzymes phosphoglucoisomerase (PGI), PGM and ADP-

glucose pyrophosphorylase (AGPase) resulting in the formation of ADP-glucose. ADP-glucose is 

the substrate for biosynthesis of starch (Stitt & Zeeman, 2012). PGM catalyses the reversible 

interconversion of glucose-6-phosphate (G6P) to glucose-1-phosphate (G1P) and is present in the 

cytosol as well as in the plastid (Malinova et al., 2014). 

Besides carbohydrates, also other compounds of primary metabolism, e.g. amino acids, are a 

central part of plant stress response. Proline is well known to accumulate during various biotic and 

abiotic stress conditions. Protective functions of proline during stress exposure are diverse, and it 

has been suggested that proline protects membranes, enzymes, polyribosomes, serves as 

osmoticum, is a substrate for the TCA cycle upon relief from stress situations, regulates cellular 

pH and affects cellular redox potential (Hare & Cress, 1997; Szabados & Savoure, 2010). 

However, a cold acclimation study of over 50 natural accession showed that there are some 

exceptions regarding the content of proline and freezing tolerance (Zuther et al., 2012). These 

authors speculated that a functional connection of high sugar content rather than a high proline 

content is a prerequisite for an enhanced freezing tolerance in Arabidopsis.  

Gene expression related to secondary metabolism is well correlated with freezing tolerance 

(Hannah et al., 2006) and in Arabidopsis cold stress induces the biosynthesis of flavonoids and 

anthocyanins (Kaplan et al., 2007). Hence, several flavonoid biosynthesis mutants with reduced 

flavonoid content showed impaired freezing tolerance, though the contribution of flavonoids to 

freezing tolerance was shown to be genotype dependent (Schulz et al., 2016).  

Abiotic stress factors are often occurring at the same time, like drought and heat or cold and high-

light. Chilling temperatures combined with high light conditions occur for example in the morning 

hours in spring. Combined effects result in various molecular changes, and frequently photosystem 

II is strongly affected (Van Hasselt, 1990). In many cases, stress responses are antagonistic, and 

the predictability of a combined stress output from experiments with single stress application is 
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questionable (Mittler, 2006; Prasch & Sonnewald, 2015). Beyond, numerous other molecular 

compounds contribute to stress acclimation and increasing evidence is provided for a crucial role 

of subcellular metabolite concentrations in shaping acclimation output (Hurry, 2017; Pommerrenig 

et al., 2018).  

 

Subcellular metabolite dynamics 

All eukaryotic cells are characterized by compartmentalization. Compartmentalization within cells 

creates different biochemical reaction conditions. Particularly plant cells show a highly 

compartmentalized cell structure, and the analysis of metabolic pathways is challenging due to a 

high diversity of subcellular biochemical reactions (Lunn, 2007). Stress-induced changes of 

metabolite concentrations determined from crude extracts provide only limited information about 

the roles of specific metabolites and proteins (Tiessen & Padilla-Chacon, 2012; Hurry, 2017). In 

contrast, information about changes of subcellular metabolite concentrations may provide pivotal 

information about metabolic stress response (Lunn, 2007). This knowledge can contribute to 

development of crop plants which are tolerant and/or even are able to maintain productivity under 

chronic stress (Hurry, 2017). The interconnection by various transport systems of the subcellular 

compartments chloroplast, cytosol and vacuole enables a regulated exchange of metabolites across 

biological membrane systems (Linka & Weber, 2010). The activity and/or expression and 

regulation of soluble sugar transporters like plastidial triose-phosphate translocator (TPT) (Flügge, 

1999; Lundmark et al., 2006), tonoplast monosaccharide transporters (TMTs) (Wormit et al., 

2006) and “Sugars Will Eventually be Exported Transporters” (SWEETs) (Klemens et al., 2013) 

play a crucial role in metabolic stress response (Tarkowski & Van den Ende, 2015). Several 

previous studies have focused on the subcellular analysis of metabolite dynamics and underlying 

fluxes (see e.g. (Masakapalli et al., 2010; Klie et al., 2011; Krueger et al., 2011; Nägele & Heyer, 

2013; Szecowka et al., 2013; Arrivault et al., 2014; Hoermiller et al., 2017; Hossain et al., 2017)). 

A recent study has analyzed subcellular dynamics of primary metabolism during cold acclimation 

in two mutants impaired in plastidial phosphoglucomutase (pgm1) and sucrose phosphate synthase 

(spsa1) (Hoermiller et al., 2017). The authors highlighted the central role of plastid metabolism 

and the preparation for the continuation of growth under the new temperature regime (Hoermiller 

et al., 2017). Additionally there is evidence, that especially invertases, which control the 

compartment specific sucrose/hexoses ratios, are key controllers in response to abiotic and biotic 

stresses (Tarkowski & Van den Ende, 2015), besides they are located in several compartments e.g. 
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cytosol, vacuole, cell wall, mitochondria (Sturm, 1999; Xiang et al., 2011; Tiessen & Padilla-

Chacon, 2012). Subcellular analysis combined with kinetic modelling showed that there is a 

different contribution between vacuolar and cytosolic invertase in a sensitive and tolerant natural 

accession upon cold stress. For the inv4 mutants (impaired vacuolar invertase activity) it was 

shown that photosynthesis was lowered and whole (subcellular) energy metabolism was perturbed 

in stress conditions (Weiszmann et al., 2017). In addition to these examples, it is demanded that 

metabolome analysis has to consider subcellular localization, including modelling and simulation, 

for a full understanding of metabolism (Dietz, 2017).  

 

Mathematical modelling of plant metabolism  

Typically, experimental analysis of plant metabolism before, during and after stress exposure 

results in a multidimensional data set. Hence, dimensionality reduction and efficient variable 

extraction is pivotal for suitable hypothesis generation and testing. In addition to multivariate 

statistics, strategies of mathematical modelling have been shown to be essential for gaining new 

insights into complex metabolic networks (Rohwer, 2012). Representation and computational 

simulation of plant metabolic models potentially reveals detailed mechanistic insights (Heinig et 

al., 2013). Mathematical modelling is also frequently applied in biotechnological applications, e.g. 

for metabolic engineering (Mintz-Oron et al., 2012; Heinig et al., 2013). Frequently, modelling 

results reveal new hypotheses and/or provide hints which biochemical reaction or regulatory 

interaction might be a suitable candidate for further detailed experimental analysis.  

Dynamics of metabolism can be described mathematically using ordinary differential equations, 

ODEs. Metabolic reactions are based on various non-linear elements, e.g. substrate saturation of 

Michaelis-Menten kinetics or feedback-inhibition terms. Particularly with regard to experimental 

validation, solving and testing such nonlinear systems is challenging. Instead, linearization at a 

metabolic (quasi) steady state, at which (almost) no significant changes of metabolite 

concentrations can be observed, frequently helps to unravel complex regulatory principles which 

hardly accessible by intuition (Nägele, 2014). The steady state assumption is defined by no change 

in metabolite concentrations [M ] over a certain time period (Eq. 1): 

�[�]
�� = �  Eq. 1 

Steady state conditions imply that reaction rates of the system are constant, and consuming and 

synthetizing reactions are in equilibrium. Experimental analysis of metabolome dynamics, e.g. 

during a day/night cycle, hardly agrees with the assumption of a steady state. Yet, instead of a 
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steady state, a quasi steady state can frequently be assumed and no change might be replaced by 

no significant change of metabolite concentration, �[�]
�� ≈ �. In general, a system of ODEs can be 

described by the product of the stoichiometric matrix 
 (entries of 
 represent the participation of 

a metabolite in a reaction) and the vector � (contains reaction rates) (Eq. 2): 

�[�]
� = 
 ∗ � = ���, �, � = ���� = � Eq. 2 

Metabolic functions constitute the right side of the equation, ���, �, �, and depend on metabolite 

concentrations �, parameters � (e.g. kinetic parameters) and time . Linearization of the metabolic 

system at time point � of the quasi steady state and building partial derivatives of metabolic 

functions with respect to metabolite concentrations potentially characterize regulatory 

interactions, i.e. trajectories, within a metabolic network. Representation of all partial derivatives 

with respect to metabolite concentrations is summarized by the Jacobian matrix � (Eq. 3) 
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  Eq. 3 

Jacobian entries report on the response of metabolic functions to (slight) perturbations of the 

metabolic (steady) state, and high absolute values in Jacobian entries indicate a strong effect of 

concentration changes on metabolic functions. However, even within strongly simplified 

biochemical reaction networks, many kinetic parameters and enzymatic parameters have to be 

determined for numerical approximation of �, which limits the application of mathematical 

modelling to metabolomics data (Schaber et al., 2009). To circumvent this limitation, approaches 

like structural kinetic modelling approach (Steuer et al., 2006) or the inverse approximation of � 

from experimental metabolomics data (Nägele et al., 2014) have been developed. In addition, 

metabolic time series analysis combined with modelling strategies potentially supports the 

description of nonlinear system behavior and might predict concentration dynamics over large 

time intervals. For example, Dutta and coworkers developed an algorithm for identification of 

differentially expressed genes in time series experiments (Dutta et al., 2007). Dutta an co-workers 

have applied their algorithm to transcriptome and metabolome data which were determined within 

a time-series experiment growing liquid cultures of Arabidopsis under elevated CO2 (Dutta et al., 

2009). In addition to time-series analysis, approaches of pattern recognition and machine learning 

are increasingly applied in (plant) biology (Ma et al., 2014b). Machine learning (ML) techniques 
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extract characteristic pattern information from examples (training dataset) to enable a prediction 

or search for associations and/or patterns in, hitherto, uncharacterized data (Mjolsness & DeCoste, 

2001; Ma et al., 2014b). ML-driven analysis of Arabidopsis salt stress transcriptome data pointed 

towards two previously unreported genes, where mutants showed indeed as predicted salt-sensitive 

phenotypes (Ma et al., 2014a). Recently, Sperschneider and colleagues used ML techniques to 

predict apoplastic localization, whereas this might help to facilitate functional studies if plant 

pathogens localize to apoplast or (already) entered plant cells (Sperschneider et al., 2018). Thus, 

in summary, a combination of mathematical modelling, time series analysis and machine learning 

techniques promises to support hypothesis generation and experimental validation within complex 

metabolic systems. 

 

Objective of the present work 

This thesis aimed to quantitatively analyse metabolic reprogramming during abiotic stress 

exposure in the model organism Arabidopsis thaliana. To elucidate regulatory instances of plant 

stress response and acclimation, subcellular metabolite analysis, protein analysis and chlorophyll 

fluorescence measurements were combined with mathematical modelling strategies, regression 

analysis and pattern recognition. Finally, all applied methods and techniques could elucidate a 

central molecular network of (sub)cellular abiotic stress response in plants.   
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IV.  Results and Discussion 

Publication 

A Benchtop Fractionation Procedure for Subcellular Analysis of the Plant Metabolome 

Lisa Fürtauer, Wolfram Weckwerth and Thomas Nägele  

Published in Frontiers in Plant Science (2016) DOI: 10.3389/fpls.2016.01912 

While crude whole cell extracts of metabolites and proteins are suitable to record the overall stress 

response of metabolism, its information content about organelle-specific subcellular processes, 

e.g. biosynthetic pathways, is strongly limited. Further, the role of specific metabolites and 

proteins might be overseen or, even worse, might be misleading (Hurry, 2017). To overcome this 

limitation, the method of non-aqueous fractionation (NAF) was developed to separate vacuolar, 

plastidial and cytosolic marker enzymes and metabolites in spinach leaves (Gerhardt & Heldt, 

1984). This method was successfully applied for decades (e.g. (Gerhardt & Heldt, 1984; Stitt et 

al., 1989; Farré et al., 2001; Klie et al., 2011; Nägele & Heyer, 2013; Arrivault et al., 2014; 

Hoermiller et al., 2017; Hossain et al., 2017; Medeiros et al., 2017)). Combining NAF with 

experimental high-throughput analyses methods, e.g. mass spectrometry coupled to 

chromatography, is deemed to be important for biological research (Geigenberger et al., 2011; 

Kueger et al., 2012; Tiessen & Padilla-Chacon, 2012) and metabolic engineering (Heinig et al., 

2013). Hence, technical challenges have frequently limited data reproducibility and sample 

throughput by significantly affecting statistical robustness of subcellular data. In the presented 

study, a new fractionation method was developed being adapted to a benchtop standard equipment 

enhancing the applicability of the NAF technique. This method needs only a fraction of plant 

material compared to the original methods (~10 % from (Gerhardt & Heldt, 1984)). This makes it 

suitable for studies which are strongly limited by the amount of material, e.g. seedling or field 

experiments. Additionally, the developed method replaces gradient pumps by pipetting of solvents 

with a pre-defined density facilitating the reliable generation of linear, and also non-linear, density 

gradients. Ultracentrifugation steps of the original protocol were replaced by benchtop 

centrifugation due to reduction of the liquid column height which every particle has to pass 

through. The protocol developments enabled the simultaneous handling of more than 20 samples 

at once. Furthermore, sonication steps of each single density fraction helped to raise the efficiency 

of compartment separation. By downscaling of compartment-specific marker enzyme assays to 

microtiter plate volume, sample throughput was additionally increased and made it applicable for 

automatized high throughput pipetting platforms. 
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Based on marker enzyme fractionation across the density gradient, subcellular metabolite 

distribution can be calculated applying correlation strategies. This step is crucial to reveal the in 

vivo situation in subcellular compartments, yet finding criteria for selection of suitable correlation 

strategies is critical (Dietz, 2017). Frequently, minimization of summed squared errors between a 

theoretical (optimum) and experimentally observed marker enzyme distribution is applied to 

resolve subcellular metabolite distribution between two or three compartments ((Stitt et al., 1989; 

Riens et al., 1991; Nägele & Heyer, 2013; Hoermiller et al., 2017). However, it was also shown 

that repetition of marker enzyme measurements might lead to distinct results due to technical errors 

(Geigenberger et al., 2011). To account for such technical standard deviation, an algorithm was 

developed comparing dynamics of metabolites and marker enzyme activities across the density 

gradient within predefined technical errors, e.g. within a 5% or 10% margin. While this might lead 

to higher standard deviations of calculated mean metabolite distributions, it reduces the probability 

of over-interpreting technical artefacts.  

The method was developed, tested and validated in a cold acclimation experiment comprising the 

Arabidopsis accessions Col-0 (Columbia), Cvi (Cap Verde Island) and Rsch (Rschew) with 

differential cold acclimation capacity (Cvi<Col<Rsch, see e.g. (Hannah et al., 2006)). At bolting 

stage, non-cold acclimated plants were harvested at ambient temperature (22°C) at midday while 

cold acclimated plants were harvested after 7 days at 5°C. In non-cold acclimated plants, all 

analyzed accessions showed similar relative distributions of sugars and TCA cycle intermediates 

across plastids, cytosol and the vacuole. In contrast, cold exposure induced a decrease of the 

relative proportion of amino acids in the plastids of Cvi and an increase in the vacuole. In Col-0, 

a decrease of the relative proportion of amino acids was observed in the cytosol accompanied by 

an increase in the vacuole. The most freezing tolerant accession Rsch showed nearly the same 

relative distribution of primary metabolites before and after cold acclimation. These data suggested 

the vacuole to serve as a buffer compartment for subcellular reprogramming of primary 

metabolism during environmental fluctuations which might contribute to the stabilization of 

plastidial amino acid metabolism. Furthermore, observations indicated a negative correlation 

between subcellular re-arrangement of primary metabolites and cold acclimation capacity. 

Absolute metabolite concentrations significantly increased due to cold exposure irrespective of the 

genotype. Compared to previous studies, similar subcellular patterns of, potentially cold 

protective, substances were observed, e.g. a significant increase of plastidial raffinose 

concentration during cold acclimation (Schneider & Keller, 2009; Knaupp et al., 2011). Raffinose 

has previously been reported to be involved in photosystem II protection against damage during 
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freeze-thaw cycles (Knaupp et al., 2011). As expected, a more pronounced increase of plastidial 

raffinose was observed in cold tolerant Rsch (~88-fold) than in in Cvi (~1.5-fold). In the cold, 

proline, which is prominently involved in plant cold response, accumulated in different 

compartments to a different extent like presented earlier (Hoermiller et al., 2017) providing 

evidence for the applicability of the whole fractionation procedure. In detail, after cold acclimation 

a stronger accumulation of proline was observed in plastids and cytosol of Rsch than in Cvi. Thus, 

due to a potential role of proline in protecting membrane systems against freezing damage, it is 

hypothesised that membranes of subcellular compartments in Rsch are better protected against 

membrane fusion than in Cvi.  

Irrespective of the genotype, the percentage of significantly changing metabolite concentrations 

due to cold exposure was ~70 % per compartment and this indicates strong environmentally 

induced reprogramming of subcellular pathways. This metabolic adaptation results from a 

multigenic and highly coordinated reprogramming comprising changes in gene expression, 

translational processes and enzymatic reactions. Conclusively, the presented findings highlight the 

importance of subcellular analysis of metabolic reprogramming to reveal acclimation strategies of 

plants to a changing environment. 

 

 

 

Publications  

Approximating the stabilization of cellular metabolism by compartmentalization  

Lisa Fürtauer and Thomas Nägele  

Published in Theory in Biosciences (2016), Vol. 135, Issue 1-2, pp 73-87. DOI: 10.1007/s12064-016-0225-y 

and 

Mathematical modelling approaches in plant metabolomics. 

Lisa Fürtauer*, Jakob Weiszmann*, Wolfram Weckwerth and Thomas Nägele. In: Plant Metabolomics.  

In press (2018): Plant Metabolomics: Methods and Protocols, Methods in Molecular Biology, vol. 1778, © Springer 

Science+Business Media, DOI: https://doi.org/10.1007/978-1-4939-7819-9_24 

Fluctuation of environmental factors, e.g. light intensity or temperature, induce reprogramming of 

plant metabolism to establish a new and adjusted metabolic homeostasis. This homeostasis is the 

results of an interplay of numerous enzymatic reactions and transport processes on a subcellular 

level. Due to the diversity of involved regulatory processes, the quantitative characterization of 

environmentally induced metabolic reprogramming relies on theoretical, i.e. mathematical, 
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approaches which enable the abstract representation of biochemical reaction networks. Such 

abstract representations enable the computationally assisted analysis of complex networks and, 

thus, promise to unravel strategies of metabolic reprogramming which can hardly be traced back 

by intuition. The two presented publications of this paragraph summarize the procedure of model 

generation, mathematical description by ordinary differential equations (ODEs) and the 

computational analysis stability characteristics after simulated environmental perturbation. Due to 

its central role in whole plant biochemistry, central leaf carbohydrate metabolism (Fig. 1) was 

translated into a mathematical model. The model comprised three intracellular compartments 

plastid, cytosol, vacuole and an extracellular environment.  

 

Figure 1 Subcellular biological model including reactions (') of enzymatic interconversion and transport reactions 
for a leaf mesophyll cell. (�,) – steady state concentrations with respective number * of metabolite, Pla – Plastid, Cyt 

– Cytosol, Vac – Vacuole, Ext – Extracellular, P-Sug – Phosphorylated Sugars, Sta – Starch, Suc – Sucrose, Hex – 
Hexoses. Cylinder represent transport processes.  

Photosynthetic carbon fixation results in plastidial sugar phosphates (P-Sugpla, reaction '+). 

Environmental fluctuations were simulated to directly affect the flux into sugar phosphates. 

Plastidial sugar phosphates were substrate for two reactions, the export into the cytosol (P-

SugCyt, ',) and intraplastidial conversion to starch (StaPla, '+�). Cytosolic sucrose (SucCyt) was 

either exported to extracellular space ('-, SucExt leading via '+, to SinkExt), imported into the 

vacuole ('.) or remained in the cytosol. Sucrose cleavage was catalysed by invertase enzymes 

either in the cytosol or the vacuole ('/, '0, HexVac, HexCyt). The cytosolic hexose pool was 

additionally supplemented by the export of vacuolar hexoses ('1) and the degradation of starch 
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('++). Phosphorylation ('2), catalysed by hexokinase, interconverted HexCyt into P-SugCyt and 

finalized the metabolic cycle of sucrose metabolism. This biological model was translated into a 

system of ODEs, where within each reaction (') several enzymatic steps and/or membrane 

transports were included. Experimentally determined metabolite concentrations were derived from 

previous non-aqueous fractionation studies (Nägele et al., 2012; Nägele & Heyer, 2013). To 

evaluate the impact of extracellular sucrose (SucExt) on intracellular sugar metabolism, the effect 

of different extracellular sucrose concentrations (low, medium and high compared to cytosolic 

sucrose concentrations) was computationally evaluated by model simulations. 

The approach of structural kinetic modelling (SKM) (Steuer et al., 2006) was applied to analyze 

the re-stabilization of the metabolic system after a simulated perturbation. In the SKM procedure, 

kinetic parameters were normalized to a steady-state condition enabling a fast simulation of 

millions of normalized enzyme kinetic parameter constellations. This method has already been 

applied before in several studies (e.g. (Steuer et al., 2006; Reznik & Segre, 2010; Henkel et al., 

2011; Carbonaro & Thorpe, 2017)). The assumed steady state is defined as no change in metabolite 

concentrations [�] over a change of time thus consuming and synthesizing reactions of each 

metabolite are in equilibrium (compare Eq. 1). In the model 12 reactions ('3;  5 = 1, … , 7 ℎ979 7 =
12), 8 steady state metabolite concentrations ((�,)  * = 1, … , ; ℎ979 ; = 8) and their fluxes 

'3�(�,)� were defined. To simulate a steady state equilibrium, the input flux ('+) and output flux 

('-) were set to an equal value. The flux = �= = 1� into the system was perturbed by multiplication 

with a term >, which simulated environmental fluctuations. Two proportion characters were used 

to quantify the relative proportion of carbon flux from chloroplast to cytosol (?, proportionated 

reaction ', and '+�) as well as the carbon flux from cytosol to vacuole (@, proportionated reaction 

'. and '0). Based on the SKM approach, the Jacobian matrix was defined as the product of 

matrices  A and B (Eq. 4) 

� ≔ AB  Eq. 4 

Here, A is the stoichiometric matrix (D) normalized to steady-state fluxes '�(�� and steady state 

metabolite concentrations ((�) (Eq. 5) 

A),3 ≔ D),3 EFGHI,JK
HI,J   Eq. 5 
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Thus, in a metabolic context, rows of A indicated the participation of metabolites (�,) in 

reactions '3 which are described column-wise:  
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Further, normalized elasticities were defined as the entries of matrix B, where every L3,)   consisted 

of M (normalized reaction rates) normalized to N (normalized metabolite concentrations) (Eq. 6) 

B: = �P
�Q = � R�S�

R�SI�
�S�T�

SI
  Eq. 6 

Finally, Eq. 6 represents the degree of saturation of the normalized flux μ with regard to the 

normalized substrate concentration N. Non-zero elements L3,)  in matrix B indicate the participation 

of a metabolite in a reaction, e.g. as a substrate, as an activating or inhibiting compound. 

Conclusively, variation of entries in the matrix B resulted in a simulated deflection of the Jacobian 

matrix which was characterized by its eigenvalues. 

Eigenvalues of Jacobian matrices characterize the stability of a metabolic steady state (Steuer et 

al., 2006; Reznik & Segre, 2010). The time dependent concentration of a metabolite (()��) can 

be described as the sum of steady state concentration and a fluctuation term V (Eq. 7) 

()�� = (�,) + V)��  Eq. 7 

After linearization (Taylor expansion) and integration at the considered steady state the general 

solution of V)�� is given by (Eq. 8): 

V)�� =  ∑ Y),Z9[\�]Z ^+   Eq. 8 

Here, _ represents constants which depend on the initial condition and ̀ ) represents the 

eigenvalues of the Jacobian matrix �. Thus, the solution of the fluctuation term (Eq. 8) is 

characterized by the eigenvalue `) which generally represents a complex number consisting of a 

real and an imaginary part. If the real part is negative (79�`)� < 0) the fluctuation term decays 
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exponentially and leads to a stable solution, while for 79�`)� > 0 the fluctuation term increases 

exponentially resulting in instability. Therefore, analysing eigenvalue real part distributions for 

simulated Jacobian matrices is sufficient to analyse whether a metabolic steady state remains stable 

or not (Steuer, 2007). To evaluate the contribution of feedback-inhibition or activation steps to 

stability characteristics of subcellular carbohydrate metabolism, eigenvalue distributions of 

Jacobian matrices were calculated for a diverse set of model variants with different combinations 

of enzymatic activation and inhibition. For each model,  10/ parameter sets, i.e. variations of B, 

were calculated to reduce the probability of mathematical coincidences. Based on the resulting 

eigenvalue real part distribution, models were classified as stable or unstable. In every iteration 

step, the environmental fluctuation term (>), the proportion characters �?, @� and normalized 

elasticities L3,) were randomly chosen within a pre-defined interval while activation and inhibition 

terms remained constant.  

In a first scenario, terms of metabolic activation and feedback-inhibition of cytosolic carbohydrate 

metabolism were defined as described earlier (Henkel et al., 2011). In detail, hexoses feedforward-

activated the biosynthesis of sucrose and feedback-inhibited the cleavage of sucrose. In addition, 

hexose phosphorylation was feedback-inhibited by reaction products, i.e. phosphorylated sugars. 

In comparison to the small metabolic network analyzed by Henkel and colleagues which did not 

account for subcellular compartmentation (Henkel et al., 2011), the subcellular model confirmed 

a strong stabilizing effect of feedback inhibition of hexose phosphorylation. Variation of 

subcellular localization of metabolic feedback inhibition finally indicated most efficient 

stabilization of carbohydrate metabolism to arise from plastidial and cytosolic parts. Vacuolar 

feedback inhibition was observed to less efficiently stabilize the metabolic steady state after 

perturbation of the photosynthetic input function. Based on these observations it was hypothesized 

that metabolic regulation in the vacuolar compartment induces oscillation in metabolic trajectories, 

i.e. entries of Jacobian matrices, which might connect metabolic information in the vacuole with 

cytosol and plastids. Supporting this hypothesis, oscillations have earlier been described to encode 

and transfer information in time and space (Cheong & Levchenko, 2010).  

Although normalization of concentrations and/or parameters to steady state conditions supports 

the analysis of complex metabolic networks, extrapolation and interpretation of derived solutions 

is strongly limited by the steady state assumption which rarely corresponds to observed system 

dynamics, e.g. due to developmental or diurnal metabolic changes. Therefore, the development 

and application of dynamic, time continuous and non-linear mathematical strategies is essential to 

support the analysis of metabolic regulation in plants.  
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Publication 

A Strategy for Functional Interpretation of Metabolomic Time Series Data in Context of 

Metabolic Network Information 

Thomas Nägele*, Lisa Fürtauer*, Matthias Nagler*, Jakob Weiszmann* and Wolfram Weckwerth  

(*these authors contributed equally) 

Published in Frontiers in Molecular Biosciences (2016) DOI: 10.3389/fmolb.2016.00006 

Experimental analysis of diurnal or developmental dynamics of metabolism results in a 

comprehensive and multidimensional data matrix including metabolite concentrations, enzyme 

activities and/or protein levels. Regression and correlation analysis is widely used to statistically 

characterize complex system dynamics. However, the interpretation of regression and/or 

correlation output in context of metabolic networks is frequently limited by a missing link to 

enzymatic reactions. In this study, a method was developed to link regression analysis of 

experimental data to metabolic network information. Method development was based on a system 

of ODEs describing time-dependent dynamics of metabolite concentrations in a biochemical 

network (Eq. 9):  

�
� ��� = D���, �, � = ���, �, � Eq. 9 

� represents an n-dimensional vector of metabolite concentrations, D �d × f� the stoichiometric 

matrix of the metabolic network, � is a f-dimensional vector of reaction rates which depend on 

metabolite concentrations �, p comprises (enzyme) parameters, and  represents the time. Thus, 

metabolic functions (�)) are first-order derivatives of metabolite concentrations with respect to 

time. To (implicitly) derive metabolic functions from dynamics of metabolite concentrations, 

experimental data were interpolated using time continuous spline interpolations with a weight 

function based on the inverse variance information. Thus, time points with a low variance of a 

variable (here: metabolite concentrations) had a strong impact on regression analysis while high 

variance decreased the impact. Finally, the first derivative of the spline interpolation of metabolite 

concentrations represented a metabolic function, i.e. the right side of Eq. 9. Based on the 

stoichiometric matrix of a reaction network, an interaction matrix h was derived which indicated 

if a metabolic function depended on a metabolite concentration. For example, substrate molecule 

a affects its own metabolic function and is consumed by the reaction. In this case the interaction 

matrix indicates that a affects its metabolic function, fa. After variance weighed regression analysis 

and differentiation the i equation was derived, in which reaction substrates (here: a) and products 
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(here: b) were combined. Hence, metabolic functions �j and the time-dependent derivative of �k 

were related to each other (Eq. 10): 

i�l → n, � =
�� �k��, �, �
�j��, �, � , o = pℝ  \�j��, �, � = 0r Eq. 10 

Eq. 10 implies that changes in metabolic functions of a reaction product (
�
�� �k) are related to 

dynamics in substrate concentration, fa. Based on the metabolic network information, i ratios were 

only determined if a corresponding entry was present in the interaction matrix h. The numerator 

showed high absolute entries as soon as point of inflection occurred in the corresponding metabolic 

function. In a biochemical context this was interpreted as a change in flux and/or enzymatic 

activity. Hence, i functions potentially reveal time points of changing reaction dynamics, e.g. due 

to enzymatic reprogramming. Subsequently, validation of predicted biochemical changes e.g. by 

enzyme activity assays, transcriptional approaches, proteomics or phosphorylation analyses are 

needed at the considered time points. Additionally, there might be a connection of i�� with 

entries of the Jacobian matrix � for infinitesimal time points. The entries of � characterize dynamic 

properties at a steady state while i�� refers to non-infinitesimal time frames. To ease steps of 

variance weighed regression analysis, differentiation and division, a MATLAB®-based graphical 

user interface was programmed (FEMTO, Functional Evaluation of Metabolic Time-series 

Observations; http://mosys.univie.ac.at/resources/software/).  

For validation of the mathematical assumptions, a previously published diurnal time-course of 

carbohydrate concentrations and enzyme activities in Arabidopsis thaliana was analyzed before 

and after cold acclimation (Nägele et al., 2012). Regression analysis and building of i�� 

functions indicated a strong cold-induced deregulation of SPS-driven sucrose biosynthesis during 

the initial day phase (Sucrose Phosphate Synthase, i�st → su(, �). This observation coincided 

with kinetic simulations which had previously shown that during the initial day phase, i.e. 3-4 

hours in the light, rates of sucrose biosynthesis differed most significantly between control and 

cold acclimated plants (Nägele et al., 2012). Conclusively, the approach of building i�� functions 

to reveal time points of enzymatic regulation in a metabolic network was supported by enzyme 

kinetic measurements. Additionally, a second published data set on stress-induced dynamics of 

primary and secondary metabolism was analyzed by building i�� functions (Doerfler et al., 

2013). The analysis revealed a fast stress-induced response of sucrose metabolism to combined 

cold/high light stress (i�su( → su(, �). In contrast, at the interface to secondary metabolism, a 

late response was detected between phenylalanine (substrate) and flavonoid (product) dynamics 
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(i�tℎ9 → =vl', �). While, in this study, no enzyme kinetic data were available to validate the 

prediction of i�� functions, findings still agreed with the output of a previous modelling approach 

(see (Doerfler et al., 2013)) indicating the suitability of the developed method to analyse 

reprogramming of metabolic networks.  

 

 

 

Publication (under review) 

Combined multivariate analysis and machine learning reveals a predictive module of metabolic 

stress response in Arabidopsis thaliana  

Lisa Fürtauer*, Alice Pschenitschnigg*, Helene Scharkosi1*, Wolfram Weckwerth and Thomas Nägele 

(*these authors contributed equally) 

Under Review (20.04.2018): Molecular Omics  

Stress-induced metabolic reprogramming is necessary to maintain growth and developmental 

processes of plants. Carbohydrates, as primary products of photosynthesis, play a crucial role in 

energy metabolism, developmental processes, signalling and many other processes (Pommerrenig 

et al., 2018). Particularly, regulation of starch and sucrose metabolism affects carbon and energy 

metabolism on a whole plant level, and mutations in both biosynthetic pathways are known to 

affect photosynthesis, other metabolite concentrations and stress tolerance (Sicher, 2011). Here, 

Arabidopsis Col-0 wildtype plants and mutant lines with enzymatic deficiency either in the sucrose 

(spsa1) or starch (pgm1) biosynthetic pathway were exposed to a combined low temperature/high 

light stress in order to induce a broad and multi-stress responsive metabolic reprogramming. To 

reveal a central molecular network of combined abiotic stress response across different metabolic 

constitutions, i.e. metabolic mutants, primary metabolites and proteins were quantified before and 

after three days of combined cold (5 °C) and high light (6-fold increase, 300 µmol m-2 s-1) 

application. Control and stress plants were harvested in the early day phase (3h in light) in order 

to quantify the effect before a daily metabolic equilibrium was reached. Subsequently, stress 

induced dynamics in photosynthetic performance, primary metabolites, SPS activity, starch levels 

and proteins were determined. To evaluate whether quantified metabolic patterns were predictable 

across all genotypes, wildtype data was used to train a machine learning algorithm which was then 

applied to data of mutant lines in order to differentiate control and stress samples.  

All genotypes showed similar significantly changed chlorophyll fluorescence parameters upon 

stress exposure. In detail, no significant difference between quantum yield of photosystem II, 
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photochemical quenching and non-photochemical quenching was detected between Col-0, pgm1 

and spsa1. Starchless pgm1 plants showed an increased ']jQ of SPS already under control 

conditions, and a significantly positive correlation with sucrose concentrations was revealed across 

all genotypes. Under combined stress, SPS activity decreased in pgm1 while SPS protein levels 

increased. The reason for this discrepancy remains elusive, yet it is hypothesized that SPS activity 

was reduced by phosphorylation (Huber & Huber, 1992; Kaiser & Huber, 2001).  

A goal of pattern recognition in experimental plant data sets is to classify and predict 

developmental stages, stress tolerance or growth conditions based on molecular markers. Such 

predictive patterns potentially comprise conserved molecular mechanisms in molecular interaction 

networks. Here, experimental metabolomics and proteomics data sets were classified by support 

vector machines with linear, quadratic and cubic kernel functions. Molecular wildtype data was 

used as a training data set and applied to classify molecular data of pgm1 and spsa1. Interestingly, 

predictability of metabolite data of pgm1 was weak (~67% accuracy), whereas the metabolome of 

spsa1 was accurately classified into control and stress samples (100% accuracy). While also the 

full experimentally quantified protein data set, comprising 1644 proteins, was not sufficient to 

accurately classify pgm1 samples across all SVM kernel functions, a stress responsive core set of 

23 proteins, which was identified by an ANOVA, enabled the high accuracy classification of all 

samples across all genotypes. Analysis of protein-protein interactions, using the String database 

(https://string-db.org, (Szklarczyk et al., 2014)), revealed a potential interaction network 

comprising 18 out 23 proteins (Fig. 2). Within this core set, protein functions ranged from stress 

responsive proteins, molecular chaperones, transcription factors, proteins involved in biosynthesis 

of proline, primary/secondary and cell wall metabolism. Proteins with most interactions were 

COR78 (cold regulated 78), P5CS2 (delta 1-pyrroline5-carboxylate synthase 2), F3H (flavanone 

3-hydroxylase), TT4 (chalcone and stilbene synthase family protein), ADH1 (alcohol 

dehydrogenase 1) and PAL1 (phenylalanine ammonia-lyase 1). COR78 is a well described stress 

responsive protein (Horvath et al., 1993) and a member of the CBF regulon (Thomashow, 1999). 

P5CS2 is involved in biosynthesis of proline, which is known to accumulate during stress response 

in many plants for redox balance, cryoprotection, signalling and many more (Szabados & Savoure, 

2010). 
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Figure 2 A stress-induced molecular network with potential protein-protein interaction. CP – Chloroplast, CW+PM 
– Cell Wall + Plasma Membrane, MIT – Mitochondrion, VAC – Vacuole, NUC – Nucleus, ER – Endoplasmic 
Reticulum, CYT – Cytosol, P – Peroxisome, EX – Extracellular Region. COR78 (cold regulated 78), KIN1 (cold 
inducible protein kin1), COR15b (Cold regulated 15b), P5CS2 (delta 1- pyrroline-5-carboxylate synthase 2), 
mtHsc70-1 (mitochondrial heat shock protein 70-1), CLPB3 (casein lytic proteinase B3), PAL1/2 (phenylalanine 
ammonia lyase 1/2), F3H (flavanone 3-hydroxylase), TT4 (chalcone and stilbene synthase family protein), TT5 
(chalcone-flavanone isomerase family protein), ADH1 (alcohol dehydrogenase 1), SUS1 (sucrose synthase 1), MIPS1 
(myo-inositol-1/3-phosphate synthase 1), RHM1 (rhamnose biosynthesis 1), CP29 (chloroplast RNA binding protein 
29), GRP4 (glycine-rich RNA binding protein 4), FIB1A (fibrillin precursor protein), FER1 (ferritin 1), SVR3 
(elongation factor family protein), CCR2 (cold, circadian rhythm RNA binding 2). 

In the interaction network, P5CS2 connects heat-shock proteins with amino acid metabolism and 

is linked to the interface between primary and secondary metabolism via PAL1/PAL2 

(phenylalanine ammonia-lyase 1/2). Regarding secondary metabolism, TT4 is a key enzyme 

involved in the biosynthesis of flavonoids, and F3H is deemed to regulate flavonoid biosynthesis 

(Winkel-Shirley, 2001; Jiang et al., 2015). RHM1 (rhamnose biosynthesis 1) is known to play a 

major role in supplying UDP-rhamnose for flavonol modifications (Yonekura-Sakakibara et al., 

2008), and cell wall synthesis. Additionally, SUS1 (sucrose synthase 1) and MIPS1 (myo-Inositol-

1-phosphate synthase), belonged to the identified stress-responsive network. The specific role of 

SUS in context of cellulose and starch biosynthesis is still under discussion (Baroja-Fernández et 

al., 2012; Sweetlove & Fernie, 2013) and MIPS1, which plays a central role in inositol 

biosynthesis, has been found to be directly activated by far red light signalling proteins due to 

oxidative stress (Ma et al., 2016).   
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