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Abstract

In thesis we consider two-dimensional supersymmetric Landau-Ginzburg models
with defects in it. When we impose B-type gluing conditions, a defect is de-
scribed by a factorisation of the corresponding superpotential W. We represent
this factorisation in a module homomorphism framework of Zs-graded modules
over a polynomial ring R, they are called matrix factorisations. By considering
functors U : R-mod; — R'-mody, where R-mod; denotes a R-module category
with the morphisms given by the module homomorphisms, our aim is to con-
struct a category of these functors and to find relations between the morphisms
in the functor category and morphisms between matrix factorisations which are
induced by the functors between the module categories. For this purpose we
define a functor =. It turns out that this functor is surjective on the morphism
spaces in the case R = C[z] but fails to be injective. There are similar results
in the case R = Clz,y| but we can show surjectivity only in special cases. We
also managed to determine the kernel of = in one special case.



Zusammenfassung

In der vorliegenden Arbeit betrachten wir zweidimensionale supersymmetrische
Landau-Ginzburg Modelle mit Defekten darin. Diese Defekte konnen durch Fak-
torisierungen des zugehorigen Superpotentiales W beschrieben werden, wenn wir
sog. B-Typ Bedinguingen von den Defekten fordern. Wir beschreiben diese Fak-
torisierung des Superpotentiales in Termen von Modulhomomorphismen iber
einem Zsy graduierten Modul eines Polynomringes R, diese speziellen Homomor-
phismsen werden im Folgenden Matrixfaktorisierungen genannt. Betrachten wir
einen Funktor U : R-mods — R'-mody, wobei R-mod; eine R-Modulkategorie
bezeichnet in der die zugehorigen Morphismen durch die Modulhomomorphis-
men gegeben sind, ist es unser Ziel eine Kategorie aus diesen Funktoren zu
bilden. Genauer wollen wir Relationen zwischen den Morphismen der Funk-
toren und der Morphismen zwischen Matrixfaktorisierungen, welche durch diese
Funktoren induziert werden, untersuchen. Darum definieren wir einen Funktor
= zwischen der Kategorie der Fusionsfunktoren und der Kategorie Matrixfak-
torisierungen. Konkret stellen wir uns die Frage ist = surjektiv und oder injektiv
auf den Morphismen? Es stellt sich heraus dass ZE im Fall R = C[z] surjektiv
aber nicht injektiv ist. Fiir den Fall R = C[x,y] gibt es dhuliche Resultate,
wobei wir hier aber einschrinkende Bedingungen fordern miissen. Es gelang fiir
beide Fille die zugehorigen Kerne in einem wichtigen Spezialfall zu bestimmen.
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Chapter 1

Introduction

The physical model we use in this thesis is similar to the well known model in
solid state physics, the Landau-Ginzburg model. The only difference is that we
are supposing our model is supersymmetric. These models are often used in
quantum field theories and especially in String Theory.

Roughly speaking supersymmetry means that every bosonic particle has a
supersymmetric fermionic partner particle. The idea of this uncommon symme-
try in nature was born in the 1970’s. Supersymmetry is a "hot" candidate for
a grand unifying theory because it would extend the standard model in a way
that possibly all forces are of equal strength at high energies, as in the young
universe. The theory also provides an explanation for dark matter.

In particular supersymmetry says that physics has to be invariant under a
bigger class of symmetry operations than only translations, rotations and boosts.
We call these symmetries internal symmetries, where the symmetries which are
described by the Poincaré-group are called spatial symmetries. In particular
this means that we have to extend the Poincaré-algebra in a non trivial way.
When we try to do this using extensions of ordinary Lie-algebras there is a
very general result from Coleman and Mandula in 1967, which states that all
interactions in a field theory would vanish if the symmetry group of the theory
mixes spatial and internal symmetries.

But when we extend the Poincaré-algebra in the framework of graded Lie
algebras it turns out there are nontrivial possible extensions of the Poincaré-
algebra in 3 + 1 or higher dimensions. The super-Poincaré-algebras. A system
which is invariant under these transformations is called supersymmetric.

The supersymmetry transformation that changes fermionic particles into
their bosonic superpartners can be viewed as a translation in a generalized space
called superspace. The infinitesimal generators of these transformations we call
supercharges. Superspace consists of the ordinary spatial coordinates and anti-
commuting coordinates, so called Grassmann variables. This translation can be
represented by a differential operator involving a mixture of ordinary derivatives
and Grassmann derivatives. One important thing about supersymmetry trans-
formations is that one can have more than one supercharge which generates the



supersymmetry transformations. In this work we consider the case N = 2.

In the first part we follow the discourse of [I]. Suppose we have several N = (2, 2)
supersymmetric theories, each located at a special space-time region. If these
space-time regions have a common boundary or include defects, the natural
question that arises is: What happens at the boundary or at the defects? Our
aim is to construct a theory which takes care of the boundaries and defects and
is still supersymmetric (in a certain sense). Therefore we impose several condi-
tions to our supercharges, how they should behave at the boundaries or defects.
Common conditions are the so called A- and B -Type conditions. In general
the variation under supersymmetry, taking these conditions into account, does
not vanish. To achieve this one needs to introduce certain non-chiral super-
fields such that they compensate the supersymmetric variation of the full space
theory. We will formulate a condition when the introduced fields compensates
the variation. It turns out that these conditions include the factorisation of the
superpotential (or the difference of the superpotentials in the case of a shared
boundary) of the corresponding theory called matrix factorisation of the corre-
sponding superpotential. We consider the situation where a Landau-Ginzburg
model with superpotential W is separated by a defect from a Landau-Ginzburg
model with superpotential Ws. The B-type defects between the models are de-
scribed by matrix factorisation of the difference W7 — W5 of the superpotentials.
By modelling the superpotentials as polynomials we can understand these ma-
trix factorisations as homomorphisms between modules over a unital polynomial
ring R. The aim of this thesis is to work out a relation between the module
homomorphisms and a category of functors between R-module categories.

Next we introduce the theory of functors in a general framework following the
ideas in [2]. We consider C-linear functors on free R-modules. Qur aim here is
to construct a category of functors. To form such a category we first need to
define morphisms gbg]"%/ between two functors U and V. The defined morphisms
are graded in that sense that they act on a sequence of R-module homomor-
phisms of a certain length n. By defining a differential d we can consider the
cohomology classes of the graded morphisms and discuss the structure of mor-
phism spaces.

In the following we have a closer look at functor categories. The objects of
these categories are called fusion functors. These fusion functors satisfy a cer-
tain homogeneity condition for a specific polynomial R-module homomorphism
W, the superpotential. The morphisms QSEJ"%, between the fusion functors U and
V remain the same as in the section before.

One important thing about matrix factorisations is that they form a cate-
gory too, where the morphisms between the objects are realised by the zeroth
cohomology class of the differential §. By defining a suitable differential dg, ¢,
on the space of morphisms between matrix factorisations 1, ()2 we obtain a



graded structure there too. In fact we have a Zs-grading on this space where
morphisms of an odd degree are called fermionic and morphisms of an even de-
gree are called bosonic, e.g. if /"), with i odd, is a fermionic morphism, 001,00
maps it to a bosonic morphism 6Q1,Q2w(") between Q; and Q).

The authors of [2] defined a map = from the space of morphisms of degree n
to the morphism space of matrix factorisations, with 2¢ (¢() = ¢("(Q, ..., Q),
where () is a matrix factorisation. It turns out that = preserves the differential
structures of the morphism spaces, i.e. we map d-closed or exact morphisms
to d-closed or exact morphisms. In this thesis we analyse the properties of this
map ='W, where Iy is called the identity defect. Since matrix factorisations
are R module homomorphisms, they could be mapped to R’ module homomor-
phisms under a fusion functor U. One can show that for a fusion functor U, a
matrix factorisation @ and the identity defect Iy the following relation holds:
U(Iw) ® Q= U(Q).

The first question concerns the surjectivity of Z/" for modules over R. With
the relation above we consider a given closed morphism between matrix factori-
sations U(Iy) and V(Wy ), we want to construct the pre-image up to d exact
terms. The authors in [2] showed that this map is indeed surjective in the case

R = Clz].

By analysing the methods [2] we can construct a counter example which

shows that = fails to be injective. Here injectivity means that a morphism qbglz/
of degree n between the fusion functors U and V that is mapped to an exact
morphism 01 where (" is bosonic for i = 0 or fermionic for i = 1 is ex-
act itself. This means there is a morphism ng‘;l) of degree n — 1 such that

dxgb;l) = glz/, which we will see is not the case.

We then analyse the kernel of the map =/ and find that it is given by the
so-called Jacobi ideal (0;W).

We also analysed the surjectivity in the case R = Clz1,z2]. It turns out
that we were not able to proof that the map Z/ is surjective because of a
strange mixture of terms which are of order zero in the matrix factorisation and
quadratic terms of the corresponding induced morphism. This mixture occurs
because of the defining property of matrix factorisations. But it turns out that
for U = V = id the kernel is again given by the Jacobi ideal (9., W, 0,,W).



Chapter 2

Defects in Landau-Ginzburg
models

To analyse the fusion of defects in Landau-Ginzburg models we need to de-
scribe defects in such models. The defects which preserve the so-called B-type
supersymmetry can be represented by matrix factorisations of the difference
of the superpotentials. The composition or "fusion" of defects preserving the
B-type supersymmetry as well as their action on B-type boundary conditions
is described in this framework. Many concepts of the underlying ideas of this
chapther are rather involved, such that we will only focus on the most important
parts. For further details there is a lot of literature introducing the reader to
the theory of topological QFT. In the following we are presenting a summary
of the introduction part in [I], covering everything we need to understand the
physical background of this thesis.

2.1 Defects in N = 2 theories

In this thesis we consider only two-dimensional supersymmetric field theories
with N = (2,2) supersymmetries. This means there are four odd elements of
this super algebra which we denote by Q- and the conjugated operators by Q- .
They satisfy the following anti commutation relation

{Q+,Qe}=H+P (2.1)

where P is the momentum and H the Hamiltonian. All other combinations of
anti commutation relations between the odd elements are vanishing. By + we
distinguish between so-called left and right movers.

The first question that we have to ask ourselves is what happens if we con-
sider a physical model which involves two supersymmetric theories on not neces-
sarily disjoint regions of space. To be more precise suppose we have two theories



which are supersymmetric with N = (2, 2) defined on a certain region in R? = C
which share a common one-dimensional subset, called defect or interface. But
what happens with supersymmetry in these glued theories? In the current chap-
ter we want to give a answer to this question.

FT1

defect FT boundary

F12

Figure 2.1: Left: Two field theories separated by a defect. Right: A theory with
a boundary.

In the following we investigate two cases of possible bulk theories, therefore see
figure . The first case covers two such theories that are glued together at
a defect, which is a common region of space-time with codimension 1 in both
theories. The second case concerns a field theory which has a boundary. In the
case of N = 2 theories there are two possible ways to implement such defects or
boundaries. These are called A- and B-type defects or boundaries respectively.
These A- and B-type conditions do not preserve the whole supersymmetry of
the theories which is not possible in general, but they preserve supersymmetry
with a modified variation. In the case of two theories glued together one can
suppose that one preserves a kind of "diagonal supersymmetry" which will be
discussed in detail below.

Note that boundaries break symmetries in every case and defects in general
break some symmetries too, to see this consider the following counterexample.
Suppose two two-dimensional theories in the complex plane C are glued together
at the real line R C C. It is clear that this glued theory is not symmetric under
translations, even if the two originating theories are invariant under transla-
tions. When we consider a boundary instead, the translational invariance is
always broken.

For the following we need to understand the case of two theories glued to-
gether along a defect. Here we consider situations where two such theories have
a common one-dimensional interface. We investigate a setup of supersymmetry
preserving defects, i.e. those defects whose presence still allow the total theory
to be supersymmetric under a constraint supersymmetric variation. Modelling
the defect on the real line R C C separating two possibly different theories on
the upper and lower half plane we demand that:

e B-type defect: For B-type defects the following combinations of the



supercharges are conserved
Qe =0Q++Q-,
Qe=Q++Q-.
This immediately implies that along the defect line the supercharges have
to fullfill the following "gluing conditions":

(1) + Q(_l) _ Q(Q) Q(Q)
WV =P + Q%

The subscripts () and ) refer to the two theories on upper and lower half
plane respectively.

(2.2)

(2.3)

o A-type defects: On the other hand, the gluing conditions along the
defect can be twisted by an automorphism of the supersymmetry algebra
which exchanges @+ with Q4 :

Qg_l) JrQ(_l) _ Q(Q) Q(2)

_ _ (2.4)
QY +QY =P + Q2.
They ensure that the combinations
= +Q_,
@a=0Qy+0 (2.5)
Qa=Q4++Q-.

are conserved.

If we deal with theories which have a boundary instead of a defect, we replace the
phrase "defect" by "boundary" and apply the same conditions as above where
the superscript (?) now stands for the boundary. In situations where defects
as well as boundary conditions are present, A- or B-type supersymmetry can
be preserved, in case all defects and boundaries are of A- and B-type respectively.

As mentioned above we cannot preserve the whole N = (2,2) supersymme-
try algebra in general when we glue two arbitrary theories together. But there
are two special classes of defects which preserve the whole N = (2, 2) supersym-
metry algebra. The first class is given by

Q(l) Q(Q) Qg:l) _ QEE) on R, (2.6)

which satisfies the conditions and (2.3). One particular defect of this
kind is the trivial defect, which implements the separation of one and the same
theory. Defects of the second kind are related to the one of the first kind by
mirror symmetry. They obey the following gluing conditions

Q(l) Q(2) Q(l) Q(z)

Q(l) Q(2) Q(l) Q(2) (2.7)



The supersymmetry algebra immediately implies that defects of these two classes
preserve translational invariance since they are defined on the same space-time
region and at most differ by a sign. From the gluing conditions of the super-
charges it directly follows

PO — p@ and HO — H® on R. (2.8)

But note that this is not possible for the two dimensional boundary conditions
which automatically break one half of the local translation symmetries and
therefore can at most preserve the half of the bulk symmetry.

In order to study defects in Landau-Ginzburg theories one can apply many
techniques obtained from the study of theories with boundaries, which were
developed in [3] and [4].

2.2 Defects in Landau-Ginzburg models

Now we investigate defects in supersymmetric Landau-Ginzburg models in two
dimensions. Therefore we repeat a few definitions of the basics of supersym-
metry. Then we show how boundary and defect conditions can be satisfied
in supersymmetric Landau-Ginzburg models by introducing new fields to our
theory which factorize the superpotential following the discourse [I]. Such a
factorisation of the superpotential leads to the definition of matrix factorisa-
tions. Whenever we can obtain such a matrix factorisation it is equivalent to
say that we can satisfy the supersymmetry conditions on boundaries or defects.
A fundamental property of matrix factorisations is that they form a category
with morphisms defined below. We are also going to discuss the case where one
and the same theory is separated by several defects and what happens when
these defects come closer and closer together.

2.2.1 Bulk action

Consider the two-dimensional N = (2,2) superspace, the space is spanned by
two spatial coordinates (bosonic coordinates) z* = o+, and four Grassmann
variables (fermionic coordinates) 8%, §*.The supercharges can be represented as
differential operators acting on this superspace, they are given by

+ iéiai , Qi = —i — 'Giai . (2.9)

@ 0=

=7 00F
Note that we can view supersymmetry transformations as translation in the
superspace. To derive the group of the supersymmetry algebra we use the
exponential map. We can choose right or left action of the group on fields
on this superspace. Supercharges are given by a left action and the operators
corresponding to the right action are called covariant derivatives. They are



given by

agi 00y, Di=— agi +i0%0y . (2.10)

Definition 2.2.1. Chiral superfields are fields on the N = (2,2) superspace,
X = X(z,0%,07,07,07) which satisfy

Dy =

DiX =0. (2.11)
In a similar way we define:

Definition 2.2.2. Antichiral superfields are fields on the N = (2,2) superspace,

X = X(z,0%,07,0%,07) which satisfy
DX =0. (2.12)

Remark 2.2.1 (Chiral superfields). When we perform a coordinate transfor-
mation y* = xT — i0T0F the covariant derivative D is represented by the
differential operator Dy = % such that a chiral superfield X can generally be
represented by

X = ¢ (y%) +0%Ya (y5) + 0707 F (y*), (2.13)
where o € {£} and ¢,v, F are arbitrary functions of y*.

The underlying model of this thesis has the following action
SZSD+SF, (2.14)

We demand that this theory have only a finite amount of superfields X;. The
D-term is given by

where K is to so called Kahler potential which we assume to be flat and diagonal,
ie. K=),X,X;. The F-term
Sp = /W gi 9+d9 d*r + / W |fi:0d9+d9*d2x (2.16)

is determined by the superpotential W, which is a holomorphic function of the
chiral superfields X;. At this point we make an very important definition for the
rest of thesis, which holds for the later chapters if nothing other is mentioned.

Definition 2.2.3. The superpotential W is a polynomial in the chiral superfields
X;.

Note that polynomials are holomorphic.

In a two-dimensional theory without boundaries and defects which is N = (2, 2)
supersymmetric, the variation of the action is given by

§=61Q- —e-Qt —&Q- +E-Qy, (2.17)

10



which vanishes for all ey, €é.. The corresponding conserved supercharges can
then be represented as

Qs = [ (00003502 7 607 ) da,
, (2.18)
Q+ = / (1&1(80 +01)¢; + w;aiw) dz’.

2.2.2 B-type boundary conditions and matrix factorisa-
tions

Let us now discuss the formulation of a Landau-Ginzburg model on the upper
half plane (UHP) with a boundary at the real line R. As mentioned above this
problem is very similar to that one with a theory with defects. So we begin our
discussion with the easier case of a boundary. The coordinates of our problem
are defined by

z=z=1t, 0T =0"=0, 0" =0 =0. (2.19)

The presence of the boundary at R C C then reduces the number of supersym-
metries

dp = eQ — &Q, (2.20)
due to the B-type conditions, only the supersymmetry generators
Q:Q++Q—a Q:Q++Q—a (221)

are compatible with the B-type boundary conditions because of the fact that
supersymmetry transformations of the form only preserve the boundary
ife, =—c_=teand &, = —€_ =:e.

A not very surprising result is that the restriction of the bulk Landau-
Ginzburg action defined on C with B-type boundary conditions is not invariant
under B-type supersymmetry , the variation produces in general non van-
ishing terms which can be split as

oS =dSp +IBSk. (2.22)

One can show by straightforward calculation that the variation of the F-term
is given by
SpSp =i / ewdfdt — i / eWddt. (2.23)
s s
To "repair" the B-type supersymmetry one has two possibilities to achieve
that the variation of the action dgS vanishes. Firstly one can introduce ad-
ditional boundary terms whose variation compensates the terms occurring in
dpS. Or second one can introduce boundary conditions on the fields which
ensure that the variation is trivial.
The authors in [5] and [6] showed that the introduction a suitable boundary
term to our action can always compensate the variation of the D-term.

11



The more interesting result is that the F-term can be cancelled out by
adding extra non-chiral fermionic boundary superfields 71, ..., 7, to the theory,
which obey

The new fields produce a variation term at the boundary which has the following
form

0BSx = z/ JiymdOdt + c.c, (2.25)
ox
this exactly cancels with the remaining non-zero term of our original action, if

S JE =W (2.26)

K2

is satisfied. So we have shown that we can preserve B-type supersymmetry
for Landau-Ginzburg theories with boundaries in it. The procedure explained
above is the underlying key idea of the concepts that will be developed in the
later chapters. We saw that we can achieve B-type supersymmetry by finding
a resolution of W into products. In this discussion we neglect the D-term since
it can always be compensated by introducing a boundary term which does not
change the action away from the boundary.

This suggests that to compensate the supersymmetric variation of the bulk
theory is equivalent to find a homomorphism @ (not the supercharge) of the

following form
0 FE
Q- (J 0>, (2.27)

which has to satisfy Q? = W-Id Mo Where Mg is a module of the polynomial ring
R = C[z]. This homomorphism is called matrix factorisation. Let us summarize
this in the following definition.

Definition 2.2.4. Let W be the superpotential, which is a polynomial in the
chiral superfields X; of the theory. We define a matrixz factorisation as a homo-
morphism Q : Mg — Mg, where Mg is a free Zo graded module over R = Clx]
of the form

MQ = MQJ D MQ,Q’ (2.28)

with Q satisfying Q> =W - T, -

A very important feature of these matrix factorisations is that they have a
certain algebraic structure. In fact they form a category (e.g , where the
objects of the category are given by the matrix factorisations themselves and
the morphism space between the matrix factorisations is realised as the zeroth
cohomology of Zs-graded module homomorphisms with respect to a certain
differential.

12



2.2.3 B-type defects and matrix factorisations

As mentioned above the situation of a theory with a boundary is very similar
to the problem of a theory with a defect in it. For this we will indeed follow
the same strategy used for the characterisation of B-type boundary conditions
in Landau-Ginzburg models reviewed in above. We follow the discourse in
[1] and consider two two-dimensional supersymmetric Landau-Ginzburg models
which are separated by a defect on the real line R C C. Let the theory on the
upper half plane (UHP) have a finite number of chiral superfields X; and a super-
potential W7 (X7, ..., X,,). Analogously the theory on the lower half plane (LHP)
have a finite number of corresponding chiral superfields Y; and a superpotential
Wy depending on them, too. Since we want to describe defects which preserve
the B-type supersymmetry, we therefore impose B-type conditions. Similar to
the case of a theory with a boundary, the B-type supersymmetric variation does
not vanish in general. The only slightly difference is that the non-vanishing
terms on the UHP and LHP differ by a sign which comes from the different
orientation of the boundary on the real line R. Therefore, the total B-type su-
persymmetry variation of the action of the first Landau-Ginzburg model on the
UHP and the second one on the LHP is given by

0SS =06Sp + Sk

) ~ _ - (2.29)
5BSF = :|:Z/ (6(W1 — WQ) — G(Wl — WQ)) .
Again §5Sp can be compensated by introducing an appropriate boundary term
and 0pSF can be cancelled by introducing additional fermionic fields 71, ..., 7,

which satisfy B

The same reasoning as outlined in [2:2.2]for the case of boundary conditions leads
to the conclusion that B-type defects between the two Landau-Ginzburg models
are characterised by matrix factorisations of the difference W = W7 — W, of the
respective superpotentials, which squares to W; — Wa, i.e.

> JiE; = (Wi = Wa) - 1. (2.31)

2.2.4 Fusion of B-type defects

The question we consider in this section is what happens when there are several
defects separating the theory one theory and what happens if the area of sep-
aration become infinitesimal small, this process is called fusion. This question
was answered by [7] in the case of two defects.
We consider C with two defects and corresponding matrix factorisations @J; and
Q2 which separate the complex plane into three theories, see figure [2.2]

The superpotentials for each theory depend on a set of variables {z1;}ier,
{z2,i}ier, and {x3;}icr, respectively. The matrix factorisations @1 and ()2 sat-
isfy the relations Q? = W1({331,i}ie]1 )_WQ({x27i}iejz) and Q% = WQ({$2,i}ieI2)—

13



: Fusion :
Wy W, Wy . W Wy

Q1 Q2 Q180Q;

Figure 2.2: Fusion of defects

W3 ({xs,}icr,), derived above. We introduce the shorthand notation z; =
{xj,i}ie I; for the variables corresponding to the theory of W;. There is a theo-
rem which states that we can always fuse the defects to a new defect with the
corresponding matrix factorisation @1 ® Q2. The only smack of this theorem
is that @1 ® )5 still depends on the variables x5. Another statement that is
a basic result, shows that one can find an equivalent matrix factorisation Q3
which only depends on z; and x3.

This is one possible motivation by investigating the morphisms between ma-
trix factorisations we hope to understand the process of fusing, i.e. a way to
express (3 without difficult calculations. For this purpose we will define so
called fusion functors (which form a category too) later on, which implement
such fusions. At this point it is not clear if one can model any fusion process
by such fusion functors but we hope to find the answer by understanding the
structure of the morphism space of matrix factorisations.

14



Chapter 3

Functors

In this chapter we will give an introduction to functor categories following the
ideas in [2] from where we also take over definitions and proofs of this section.
Therefore we require basic knowledge in category theory. The underlying def-
initions can be found in the appendix A. In this section we will define graded
morphisms between functors over R-module categories such that they form a
differential graded category and discuss the structure of the morphism spaces.

3.1 Linear functors on free modules

In the following we consider categories of free finite rank R-modules, where R is
a unital polynomial ring over C, which we denote with R-mod;. We are looking
for functors U : R-mod; — R’-mod; between two such module categories R-
mody and R'-mod; which are linear in the module-homomorphisms, i.e.

VM, N € R-modys,Yf,g € Hom(M,N),Ya, 8 € C: U(af+Bg) = aU(f)+BU(g).
(3.1)
In this thesis it is of major importance to investigate maps between those
functors, which fullfill certain properties like linearity or associativity. Therefore
our aim is to regard these functors themselves as objects of a category and define
morphisms between the functors U,V : R-mods — R’-mody, which can be done
in the following way.

Definition 3.1.1. Let n € N and M, 11 <£ M, @ M, _1... <£ M be any

sequence of n module-homomorphisms. We call (bgl‘), € Hom,,(U,V') a morphism
of degree n between the functors U and V, when it maps any sequence of n
module-homomorphisms to a morphism from U(My) to V(M,+1) which is C-
linear in each morphism entry f; with 1 < i < n. Here Hom,(U,V) denotes
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the set of all morphisms of degree n between U and V. Thus we can write:

o (M,LH LR VLSS VY <f—M1)
— o1 ( SUDELEY VPLLELRY VLS Ml) € Hom(U(My),V(Myi1)).

(3.2)

The next ingredient we need to build a category of functors of module cate-
gories is the composition of the above defined morphisms between these functors
to gain a notion of associativity.

Definition 3.1.2. The composition of two given morphisms qbgl‘), and qb&,n‘:‘), of
the degree n and n' respectively, is given by

Fntns f
(¢VW UV) (Mn+n/+1 (; (—1 Ml)

’I’L, f’ﬂ n f’”- n n
=0 (s 22 8222 00 Y 000 (s 2 2
(3.3)

which is a morphism of degree n +n'.

Note that the compositions on the left-hand side and on the right hand-side
are not in the same space. On the left-hand side we mean the composition of
a morphisms of degree n and n’ in the functor category and on the right-hand
side we have a composition of morphisms in the R’-mod; category. Also note
that by this definition the composition of morphisms in the functor category is
associative.

Finally we need to define an identity morphism in our functor category, this
can be done as below.

Definition 3.1.3. The identity morphism is of degree 0 and is denoted by idy €
Homo(U,U) and it is defined by

idy(My) = U (1) = Lu(any)- (3.4)

Now we are able to state the definition of the functor category between two
module categories:

Definition 3.1.4. The functor category Fung r' has C-linear functors as ob-
Jjects and the set of morphisms between two functors U,V € Fung r from R-
mody to R'-mody is given by

Hom(U,V) = é‘;flomn(U7 V). (3.5)
n=0
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3.2 Differential graded functor category

We want to equip our functor category Fung r/ with an additional structure
to obtain a differential graded category, therefore we need to define a suitable
differential d on the cochain complex (c.l. of the graded morphism spaces,
which maps a morphism ¢§Jn‘)/ of degree n to a morphism ¢§Jn‘j-1) of degree n+ 1.
The important thing about this differential below is that this differential is
exactly the same as in the Hochschild cohomolgy. We will make use of this fact
to state our result on the structure of morphism spaces in this category.

Definition 3.2.1. For two functors U,V € Fung g the differential maps a
morphism qS;J"‘), to a morphism of degree n + 1 which is defined by

(d¢(n)) ( n+2 <f"+1' Mn+1 éf” : M <_ Ml)

n n frn—
=V(fns1)o ¢§Jl)/ <Mn+1 fH M, +——

fn—l

M, ... &= Ml)

+ (D6 (Mo L8 agy 2t a2 )

+ ..

(3.6)

00 (Masz &2 Mo oL M L2000

n n fn
+(=1) Hfﬁ%n)/ <Mn+2 L Moy i M,. 2 M2) U(f1)

This indeed leads to a differential graded category (c.1. [A.2.2)). The fact
that d od = 0 will be proved in the following.

Lemma 3.2.1. The differential d satisfies d o d = 0 and the following Leibniz
property

a (o 0 ol)) = (a0l ) o o) + (—1"ay o (d6)) . (37)
Proof. See in Appendix B. "Proof of lemma [3.2.7]". O

Due to the lemma and the definition of d we can now have a closer look at
the cohomology groups, denoted by H"™(Hom(U,V)), of the morphism space in
Funpg g. This leads to the following definition:

Definition 3.2.2. IE'E”LR,R/ is a category with the same objects as Fung r and
with the morphisms between two functors U,V given by

H*(Hom(U,V)) = @ H"(Hom(U, V). (3.8)
n=0
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By the definition of d we immediately see that the degree 0_morphisms of
the category Fung g are natural transformations (c.l. definition|A.2.5) between

any two functors U,V € %Rﬁ/ since (i)g)‘)/ is closed (note that all morphisms
with representative in the corresponding cohomology group are closed), i.e

0= (o)) (Mz &= 21) = V(f1) 0 6% (M) = 6} (M) 0 U(f1).  (3.9)

To continue with the main part of the thesis we first have to show that
we can reduce the spaces of morphisms in Fung s without losing information
on the structure. It is enough for any two linear functors U,V € Fung g to
consider the subspace of morphisms of degree n that vanish when one of their
entries is the identity, i.e.

Hom!* (U, V) = {7, € Homn (U, V), 87, (fn, 1,y f1) =0} (3.10)

The space of the reduced morphisms is then given by

Hom™(U,V) = @ Hom;* (U, V). (3.11)
n=0

Our first important result is the following proposition.
Proposition 3.2.1. Let n € N then
H" (Homred(U, V)) = H"(Hom(U,V)), (3.12)
for all n.

The strategy of proving this result is to show that for an arbitrary closed
morphism qS(L?‘), € Hom,, (U, V) there is a morphism ¢§Jn‘), € Hom!*(U,V) such
that their difference is exact, i.e.

;Jn\)/ - UV = dwunv Y, (3.13)

where w(n RIS Hom,,_1(U,V). Indeed this follows by induction from the
following lemma.

Lemma 3.2.2. Let S € N and ¢s € Hom,(U,V) be a closed morphism of
degree n that vanishes if any of its last S arguments is the identity map. Then
there is a closed morphism ¢si1 € Hom, (U, V') that vanishes if any of its last
S+ 1 arguments is the identity, such that ¢s — ¢ps41 is exact.

Proof. This proof is taken over from [2]. The first step is to write out what does
it mean that ¢g is closed
dps = 0. (3.14)

With the definition of our differential, this in turn implies

V(fny1) 0 0s(frs s f1) = 0s(frs1 0 frs s f1) +

| o (3.15)
+ (=1)"¢s(fat1, - f3, fa o f1) + (=1)""ds(fnt1s s f2) oU(f1) =0
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Now set fgi+1 = fsy2 = 1, where 1 is the identity map for R-modules and insert
this into (3.15)) and make use of the property that ¢g is zero when one of its
last S entries is the identity,

V(fny1) 0 ds(fa, - 1,1, ., f1)

— 5 (frnr1 0 fry e fsaa, 1,1 oy f1) + ...
(—=1)"" 265 (fat1s - fora0 fopa 1,1, fs, o f1)
+ (=15 b5 (fat1s oo Fsrs 1, fsy oo f1) = 0.

Next define a morphism of degree n — 1 in the following way,
’(/}S(fnflv "'7f1) = ¢S(fn717 "'7fS+1a 17fSa "'7f1)~ (317)

Note that ¢g is a morphism of degree n and we are setting its S + 1 argument
to the identity map. In the final step we show that

Ps+1:= s + (—1)" " dyg, (3.18)

(3.16)

satisfies the claim of the lemma. First we compute the differential of g,

dYs(far1, - fst3, fst1s o J1) = V(fag1) © 0s(fn, o fs13, fs1, 1, fs, 00 f1)

— ¢5(fr+1 0 fuy oo fstas fs11, 1, fsy ooy f1) + oo

+ (=)™ 5 b5 (frgts oo fsra fs+3 0 fsr1 L, oo 1)

+ (=) %05 (frs1s - fsrs, 1, fs1 0 fs, fs—1, o f1) + e

+ (=D o5 (fagts s fs3, 1, fot1, s f3, f2 0 f1)

+ (=1)"¢s(fut1s s fs13, 1, fs15 s f2) 0 U(f1).

(3.19)

It is easy to see that diyg vanishes if any of its last S arguments is the identity

map, so that ¢g1 has this property too. We now evaluate dig in the case
where fs41 =1,

dps(frt1s s fstss fsa1, s [1) = V(fng1) 0 ds(fasoos fs43, 1,1, fso s 1)
— ¢s5(fnr10 fuy s fs13, 1,1, fsy oy f1) + o
+ (1" 5205 (fai1soons fo45, fsra © foga 1,1, fs, o f1)
+ (1) 55 (frs1s s fs13, 1, fs1 0 f5, fs1y oo f1) + o
= — (=15 s (fur1s s fsrs, 1, s, oo f1)-
(3.20)

In the last step we used . From our definition in we conclude that
¢s+1 vanishes if the entry at position s + 1 is the identity. In addition with
the property of ¢sy1 mentioned before ¢g.1 vanishes if any of its last S + 1
arguments is the identity. O
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3.3 Linearity

The question we are asking us now is what is the best way to deduce if two mor-
phism of degree n between the functors U andV are in the same cohomology
class? It would be great to find "special" sequences of module homomorphisms
which determine the behaviour of the morphisms for all other sequences.

Above we identified the degree zero morphism between the functors U and V
with the natural transformations (c.l. definition [A.2.5) in the categorical sense.
This directly implies that for R-modules M and N we have

NN =V(g)o b (M) o U(g™Y), (3.21)

provided g : N — M is invertible, in other words ¢ is an isomorphism. So
this means that we only have to check the behaviour of ¢§]0‘)/ on the class of
isomorphic modules.

What is about the higher degree morphisms? This consideration clearly carries
over for higher degree morphisms on sequences of isomorphisms. But the var-
ious possibilities of combinations make things complicated to work with in an
efficient way. One needs to define a system of representatives {R;} with i € 7
of isomorphic modules. Then one is able to show that when two morphisms
¢81‘)/ and 1/)[(]”‘), between the functors U and V coincide on every sequence of the
representative modules R;, they belong to the same cohomology class.

But we have not taken into account the linearity yet. It turns out that this
reduces the sequences where we have to check the equivalence of two morphisms
¢yyv and Yyy in an enormous way. Let us consider two modules M; and M,
and M7 @ M their direct sum. Denote with

7T11M1@M2*>M1 s 7T22M1@M24)M2, (322)
the projections of My @& Ms on M; and M, respectively. Also denote with
11 My — My & M, , L2 ZMQ—)Ml@M27 (323)

the inclusion of M7 and My into My & M, respectively. From the linearity of
the functor U one can conclude

U(m) @ U(ms) : UMy ® M) = U(M,) @ U(Ms,) (3.24)
is an isomorphism with inverse
U(t1) ® U(sa) : U(My) @ U(My) = U(My ® Ms,). (3.25)
For a closed morphism of degree zero ¢(®) linearity implies that

O (My @ M) =V (11) 0 9O (My) 0 U(my) + V(1) 0 90 (My) 0 U(ma). (3.26)
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In our case all objects of consideration are isomorphic to R"™, and the result
above implies that natural transformations are completely fixed as soon as we
have defined ¢(®)(R). Again the procedure takes over for higher degree mor-
phisms. Indeed the next result tells us when we are analysing higher degree

morphisms, we can reduce our considerations on sequences of endomorphisms

of Rie. R<™ Rt IR

To prove the claim above we need to introduce the following notation. For
a module R™ = R@® ... ® R we denote the projection on the k** summand by
71, and analogously the embedding of R as the k" summand in R™ as 1y, such
that

ZLkoﬂklem. (327)
k=1

To proceed we need to prove the following lemma, but this proof is very
technical and takes several pages, therefore we shift it to the appendix.

Lemma 3.3.1. Let qbgjn‘)/ € Homy,(U,V) be a closed morphism of degree n
between the functors U and V. Then there exists a morphism ngl‘;l) of degree

n—1 such that on sequences of homomorphisms R™n+1 <f— R™n Q <£ R!
between modules R™ we have

81‘)/(.]6717 teey fl) =
Mn41

Z Z V(Lkn+l) °© ¢§Jn\)/(7rkn+1 O [ O lhy sy Ty © f1 0 Lkl) ° U(ﬂ—kl)

ki=1  knpp1=1

+de Y (futy o 1)
(3.28)

Proof. See in Appendix B. "Proof of lemma [3.3.1]'. This proof is taken over
from [2]. O

The following result follows directly from the lemma above:

Proposition 3.3.1. Let ¢, € Hom,, (U, V') be two closed morphisms of degree

n between the functors U and V. Assume that ) and v coincide on all

sequences of endomorphisms of the rank one module R, R & R ﬁ <£ R.

Then gbgl‘)/ and 1/1(8"& are in the same cohomology class.

Since we can reduce our considerations on chain complexes of the form

RmMnt1 LN R™n @ LS R' to sequences R LN R @ o R,

the morphisms between U and V acting on them map them to an element
of Hom(U(R),V(R)) which is a bimodule over R, where the left and right ac-
tion is given by r- ¢ = V(r)¢ and ¢ - r = ¢U(r). When we have a closer
look at we recognize the structure of the cohomolgies. We may identify
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them with Hochschild cohomologies over a unital ring, note that the polynomial
ring R is an associative R algebra, i.e. H™(Hom(U,V)) is isomorphic to the
Hochschild cohomology of the polynomial ring R with values in the R-bimodule
Hom(U(R),V(R)) =: M. Note that everything discussed so far also holds for
the reduced morphisms H"(Hom"*4(U,V')) between the functors U and V.

3.4 Structure of the morphism spaces

Now we want to analyse the structure of the cohomology groups H*(Hom(U,V))
in detail. We have already seen that H°(Hom(U,V)) consists of all natural
transformations between U and V' in the categorical sense (c.1. deﬁnition.
Due to proposition [3.3.1] we can restrict our considerations to the case of the
elementary module R, where the closure condition reads

¢ O(R) o U(p) =V(p) o ¢'(R). (3.29)

Here p € R is any polynomial in R and is viewed as an endomorphism on R
itself. Since the functors U and V are C-linear it is enough to require the closure
condition above for monomials, p € {z1,...,z,}, thus the zeroth cohomology
group is given by

HY(Hom(U,V)) = {f € Hom(U(R),V(R)) : Vi € {1,...,n}, foU(z;) = Vg;?){}

What are about the higher cohomolgy groups? The first thing we should
ask us is, if there are only finitely many non trivial cohomology groups? To
answer this question for a polynomial ring in n variables our notation becomes
very cumbersome and such a proof would take a few pages of straightforward
calculation which is unreadable by the pedestrian approach. Instead of doing
that we use some nice results from homological algebra following the discourse
in [8]. The statements can be found in appendix A.

Therefore let U,V : R-mody — R'-mod; be functors of module categories,
where R = Clz1,...,2,) and R’ = C[y1, ..., Ym] with m and n not necessarily
equal. From section we know that the n-th cohomology group is isomorphic
to the Hochschild cohomology of bimodules over a unital polynomial ring R, i.e.

H"(Hom™(U,V)) = H"(R, Hom(U(R), V(R))). (3.31)

=M

Here M has a is a bimodule structure over R with the left multiplication
r-¢ = V(r)¢ and the corresponding right multiplication ¢ - r = ¢U(r). This
leads to the following theorem.

Theorem 3.4.1. Let R = Clzy,...,x,), then HP(R, M) =0 for any p > n and
for every bimodule M.
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Proof. First we need to express the enveloping algebra R¢ as a polynomial ring
over R. The enveloping algebra R® = R ®c¢ R is simply C[z1, ..., Zpn, Y1, -y Yn)
since R is commutative and therefore we have R = R°P.

Looking at the module homomorphism R® — R which acts via u ® v — uv we
see that the kernel consists of those polynomials f(z1,...,Zpn, 41, .., Yn) which
vanish if all z; = y;, 1 < i < n. In other words the kernel is generated by the
regular sequence (1 — Y1, ..., Zn — Yn). By the first isomorphism theorem we
obtain that

e

/(301 — Y1y ey Ty — Yn ) R =R (3.32)
This makes available the Koszul resolution (c.f. [A.3.2)) of R, i.e.

n e\n e\n € ¢
0— A"((R)") = ... = A2((RY)") = (R®)" - R —>R/(x1 st — g )RE O
(3.33)
is exact. By we have also that

Ext?, (R/(x1 . )R M) = HP(x, M) = H?(Hom(K (), M)).
(3.34)
Here x denotes our regular sequence (x1—y1, ..., Tn—Yn ), K () the corresponding
Koszul complex of the regular sequence z and I the ideal (21 —y1, ..., zp —yn)R®
spanned by z. Acting with the contravariant functor Hom(-, M) on the exact

sequence ((3.34) we obtain
0 < Hom (A"((R®)"), M) ¢ ... + Hom((R)" , M) < Hom(R®, M) < Hom(R, M) + 0.

ey Ty

(3.35)
When we look at the left hand side of the upper expression, we see that the
cohomology groups for p > n are trivial and this completes the proof. O

We already identified the zeroth cohomology group as the natural transfor-
mations betweem the functors U and V which is consistent with our analy-
sis above. To see this we have a closer look on the the contravariant functor
Hom(-, M), and we note that this functor is right exact, i.e. the sequence

Hom(A? (R®)" , M) + Hom((R®)" , M) + Hom(R®, M) <~ Hom(R, M) + 0,
(3.36)

is exact in the first two entries. Therefore we obtain
H®(x, M) = ker(Hom(Hom(R®, M) — Hom((R®)", M))

~ Hom(R,M) = Hom(R, Hom(U(R),V(R))). (3:37)

Unfortunately the functor Hom(-, M) does not map the whole exact sequence
to a exact sequence so that we have to investigate the higher cohomolgy groups
separately from the zeroth group. When we for example look at the first coho-
mology group

ker(Hom((R¢)" , M) — Hom(A? (R*)", M)
im(Hom(Re¢, M) — Hom((Re)" , M)

H(z, M) = (3.38)
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it becomes clear that we could not simplify this expression in general with-
out knowing M. One can show that in the case M = R = C[zy,...,z,] that
HY(xz,M) = R"™ and for the higher cohomologies one obtains HP?(z, M) =
AP(R™)

Let us have a closer look on degree one morphisms. The closure condition
of degree one morphisms reads

do™M (g, f) =V(g) o 6V (f) —¢WD(go f) + ¢ (g) o U(f) =0,  (3.39)

for all module homomorphisms f: M — N, g: N — O. Now let us consider
the case R = C[z]. If we consider an exact morphism, this implies

oW (f) = dp O (f) = V(f) 0 ¢ (M) + ¢ (N) o U(f), (3.40)

where f is again a module homomorphism f : M — N. Following the reasoning
in proposition [3.3.1] we can restrict our consideration to the case, where all mod-
ules involved are isomorphic to R, i.e. M =2 N =2 O = R. The homomorphisms
can be represented by polynomials p,q € R and therefore the closure condition
then reads

do™ (p,q) = V(p) o ™M (q) — ¢ (pg) + ¢V (p) 0 U(q) = 0. (3.41)

We now have that ¢(1)(f) is completely determined in terms of ¢(*) (), where
x € R, which is a homomorphism from U(R) to V(R). Evaluating the exact
homomorphisms ¢") on x € R one finds

oM (z) = V(z) 0 ¢ (R) — ¢ (R) 0 U(x), (3.42)

where ¢(9)(R) : U(R) — V(R) is an arbitrary homomorphism. So we conclude
that

Hom(U(R),V(R))

HY(Hom(U,V)) {V(2)f — fU(z), f € Hom(U(R),V(R))}’

(3.43)
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Chapter 4

Fusion functors

In this chapter we discuss a certain species of functor categories, the fusion
functor categories. The basic constuction is again taken over from [2]. We want
to analyse the structure of its morphism space and therefore we define a map
= which relates the morphisms between fusion functors with the morphisms
between matrix factorisations. To understand the structure of the morphisms
of matrix factorisations it is required to investigate the properties of the map
=. We do this by presenting an introduction into fusion functor categories and
proving the surjectivity of = in the one variable case following the results of [2].
We can show that the map = is not injective. Roughly speaking, this tells us
that the space of morphisms between fusion functors is larger then the space of
morphisms between matrix factorisations. So it would be nice if we can write
out the kernel of = explicitly to introduce a suitable equivalence relation on the
space of morphisms between fusion functors, such that = becomes injective. We
find that when we choose U = V = id and M = R, the kernel is given by the
Jacobi ideal.

We will also turn to the case of two variable module categories and try
to investigate the property of surjectivity in this case. Indeed one can show
that every odd morphism between matrix factorisations has a suitable preimage
but for even morphisms there is a strange occurrence of quadratic terms which
complicates the process of finding a preimage under Z. We also showed that the
kernel of E for U = V =id and M = R is the Jacobi ideal.

4.1 Fusion functors and matrix factorisations

Let R and R’ be polynomial rings over C, and W € R and W’ € R’ specific
polynomials. We define:

Definition 4.1.1. A (W, W’)-fusion functor U is a C-linear functor from R —
mody to R' —mody with the property

UW-f)=w"-U(f) (4.1)
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for any module homomorphism f.

In order to build a category out of these fusion functors we need to define
morphisms between the functors, therefore we use the definition of morphisms
from the previous chapter and additionally demand a certain homogeneity con-
dition.

Definition 4.1.2. A morphism of degree n between fusion functors U and V is
a morphism qﬁgb‘), € Hom!*}(U, V) with the property that

g\)/(fna aW : fi7 "'7f1) = W/ gj"n\}(fn7 -"7f1) (42)
forallie{l,..,n}.

In an analogous way as in the chapter before we define the fusion functor
category. Here we denote the reduced morphism spaces between fusion functors
in the same way as we did it before for general functors.

Definition 4.1.3. The fusion functor category FFuny w: has C-linear fu-
ston functors as objects and the set of morphisms between two functors U,V &€
Funw,w is given by

Hom(U,V) = @ Hom*(U, V). (4.3)
n=0
The differential d from (3.2.1) applies to the morphisms of the fusion func-
tor category too and we can consider the zeroth cohomology which defines a
category F'Funw w.

4.2 Action on matrix factorisation

Fusion functors have an important relation to matrix factorisations (). Let
M = My & M; be a Zs-graded free finite rank R-module, and @ a module
homomorphism which satisfies Q2 = W - 1.

Proposition 4.2.1. Let U be a (W, W')-fusion functor, and Q : M — M a ma-
triz factorisation of W. Then U(Q) : UM) — U(M) is a matriz factorisation
of W'.

Proof. This proof is taken over from [2]. The proof follows by straightforward
calculation.

U@ oU@) =U(Q)=UW 1y)=W"U@y) =W Lyar. (44)
O

To proceed note that a morphism between two fusion functor U,V evalu-
ated on a matrix factorisation ) induces a morphism between U(Q) and V(Q).
This motivates the following definition of the space of morphisms in a matrix
factorisation category.
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Definition 4.2.1. The space of morphisms between matriz factorisations Q1 :
My — My and Qo : Ms — Ms is defined as the zeroth cohomology of Zo-graded
module homomorphisms (™) € Hom(My, M) (n =0 describing even (bosonic)
homomorphisms, and n = 1 odd (fermionic) homomorphisms) with respect to
the differential

001,@:0™ = Qa0 0™ + (=)™ 0 Q1. (4.5)
Now we can define our map =.

Definition 4.2.2. Let U,V be (W, W')-fusion functors, and Q : M — M a
W -matriz factorisation. Then we define the map

B0y : Homisy, — Hom(U(M), V (M)), (4.6)
=5y (67) = 90 (@, Q). (47)

The most important property of the map Eg v is, that it is compatible with
the differentials d and 0y;(q),v(g). This leads us to our next proposition.

Proposition 4.2.2. We have

=8y (46) = bvav@=gy () (49

In particular closed morphisms are mapped to closed homomorphisms, and exact
morphisms are mapped to exact homomorphisms, so that Egv induces a map
on the cohomologies

Sy  HY (Hom™ (U, V) = HY, o) vio (Hom(U(M),V(M))).  (4.9)

Proof. This proof is taken over from [2]. Start with the left hand side of (4.8):

=2, (46) =ds((Q, . Q)
=V(Q) o o0 (Q. ... Q) (110)
— O(Q e Q,QY) + o+ (—D)"(Q% Q. Q)
+(—1)"IHQ, . Q) 0 U(Q).

Now we have a closer look on the second term of the left hand side of (4.8]). We
have

Qs R, Q%) = O (Q, s QW 1) = W' - 60(Q, ., Q,1) = 0, (4.11)

where in the last step we used the fact that qﬁgb‘), € Hom™(U,V), ie. it is a
morphism that vanishes when any of its entries is the identity map. The same
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argument applies for all other terms of (4.10) as well. The only remaining terms
are

=2y (46) =V(Q) 0 600(Q, -, Q) + (—1)" 4@, . Q) 0 U (Q)

0 (4.12)

—v@ @3ty (9)-
Thus ([.8) is proved. Also note that ¢(™) is mapped to an even (bosonic)
homomorphism for n even and to an odd (fermionic) homomorphism for n
odd. O

4.3 Fusion functors describe fusion: operator-like
interfaces

Fusion functors have a very useful property which we want to investigate now.
Let My, be a (R, R)-bimodule (c.l. [A.1.2). That means that My, is both
a left R-module and a right R-module. Then consider one specific bimodule
homomorphism Iy : My, — My, called the identity defect, it is a (W, W)
matrix bifactorisation which satisfies the relation

,=Wol-1W. (4.13)

By adapting the definition of U slightly, extending it to a functor of a (R, R)-
bimodule, acting trivial on the second factor, we see that U(My,, ) is a (R, R)-
bimodule and therefore U(Iy ) is a (W', W) matrix bifactorisation.

The key ingredient is to note that for our factorisation Iy, which separates
one and the same theory and therefore it is called the identity defect, there exist
closed homomorphisms

AQ: My, @ Mg — Mg , Ag': Mg — My, ® Mg, (4.14)

such that
)\Q)\él = 1p, + (0g,q-exact terms), (4.15)
)\51)\@ =1y, @Mq + (01 9Q,IweqQ-exact terms) . (4.16)

Thus Iy ® Cﬂ and @) are isomorphic matrix factorisationsﬂ ie.
U(lw)®Q=2U(Q). (4.17)

Recall the map E{]WV that maps any morphism between fusion functors U,V to
a morphism between the factorisations U (Iy) and V (Iy). The question we
are considering in this thesis is how these concepts are related. The relation

1Here one has to be careful using ®. This tensor product has to respect the Za-grading of
the modules.

2This construction can be easily generalised to (W, W'/ )-matrix bifactorisations Q for some
W// c R//
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(4.17) helps to simplify things when we are want to investigate the properties
of the maps Egv for an arbitrary matrix factorisation because it is enough to

consider it for EIUWV. In fact we only have to consider the properties of = on Iy .
From now on we will call matrix bifactorisations which are induced from fusion
functors operator-like interfaces.

4.4 The case of one variable

By the one variable case we mean that we restrict ourselves to a R-module
category where R = C[z]. Let W be our superpotential, the authors in [9]
showed that the identity defect for this case can be represented by

0 rT—T
Iy = <W(m)—W(§: 0 ) ; (4.18)

acting on a free rank two (R, R)-bimodule which we can decompose as
My, =My, 0 ®Mp, 1 =R®cR®R®c R, (4.19)

where we denote the variable of the second factor R by . We also can decompose
the modules Mr,, ®r Mg and Mg as

Mp,, ®r Mg = R®c Mgo® R®c Mg1® R®c Mgo®R®c Mg, (4.20)

where
Mg = Mgo® Mg,1. (4.21)

The isomorphism (4.17) can be implemented in the one variable case by the
following maps ([9])

0 0 O
Ao = (’g 0 0 M) . My, ®r Mg — Mo, (4.22)
LMQ,O 0
Q0 (@)~ (@) 0
)\C_Ql — xaz Q(l)(w)fgfl)(i) : MQ — M[W QR MQ. (423)
0 L]\/[Q,1

Here ¢ and p are defined in the following way:
Suppose Mg ; is a free R-module and isomorphic to R®¢ E, with some complex
vector space F (which is finite dimensional for finite-rank module). Therefore

R®cMg; = R®c R®c E. (424)
Then we define

L:RIcF - Rc RQc F

(4.25)
ree—-rle,
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and

p:RRIcRRcE — R@cE

4.26
resee— (rs)e. (4.26)

This means that we can view p as a kind of projection to the first factor. The
problem we want to consider in the following is if the map = is surjective ap-
plied to the identiy defect. Therefore let U and V' be two given fusion functors
and ¢ a given morphism between the matrix factorisations U(Iw) and V (Iy),
surjectivity would mean that there is a corresponding morphism ® between the
functors U and V which is mapped to ¢ under Z/w .

To prove this we will compute the induced morphism ¢g : U(Q) — V(Q) for
a given ¢ : U(Iw) — V(I ) where we make use of our isomorphism (4.17). Now
we try to guess the morphism ® by knowing how it has to act on ®(Q,...,Q) =

¢q-

4.4.1 Even morphisms

In the following chapters we construct morphisms between two fusion functors
U and V such that for a given ¢ € Hom(U(Iw ),V (Iw)) with d¢ = 0 there
exists a morphism @ such that EIUWV(<I>) = ¢ + dexact-terms.

Let ¢ be a closed bosonic morphism ¢ between the matrix factorisations
U(Iw) and V(Iw). We want to construct a degree zero d-closed morphism ®
between the functors U and V. To do this we look at the induced morphism
$¢q between U(Q) and V(Q), using the relation and the homomorphisms
Ag and /\E?1 we have

o=V (Ag)o (68 1)U (A5"). (4.27)

Here we implemented the morphism between U(Iy) ® @ and V (Iy) as we did
before by ¢ ® 1. We write the closed bosonic morphism ¢ as

(0)
o= (¢0 ¢?1)> , (4.28)
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where ¢() is a map ¢ : U(R) ®c R — V(R) ®c R. We obtain

o (r 0 00
¢Q_V<ooou>

o @ 1, 0 0 0
. 0 oM @ 1arg, 0 0
0 0 oM @ 1y, 0
0 0 0 o0 @1y, ,
LMQ,O 0
QO @)-Q (@) 0
°U . QW (@)-QW ()
0 x \T)7Ww T
r—x
0 L]wQ_’1
_ (v (1) 0 (6@ @ Larg,) 0 U (targ) 0 ) ,
0 V(i) o (6O @ Larg,) o U (targ )

(4.29)

In the above expression we note that ¢¢g only depends on Mg = Mg o @ Mg,1-
This suggests to define the degree zero morphism

d(M) =V (u) o (¢<0> ® 1M) o U (itar), (4.30)

between the functors U and V' which produces ¢ when we apply it to Mg. The
only thing which remains to show is that ® is a d-closed morphism. In order to
do that we consider the maps that enter in the above expression. First we have
the map V() which acts as

V() : V(R) @c R@c E = V(R)®c E

vere— (V(rv) Qe. (4.31)

Where R ®c E = Mg,;. The map ¢(¥) : U(R) ®c R — V(R) ®c R can be
decomposed as

¢ =>" ¢! @ ry, with ry,, € Rand ¢ : U(R) = V(R), (4.32)
where the sum is finite. For example one can choose the monomials r,,(z) = z™.

This in turn implies that a module homomorphism f : R ®@c F — R ®c F can
be written as

f=Y _ref, (4.33)
i
where f; : E — F are vector space homomorphisms, and the sum over ¢ is finite.

Since d® is a morphism of degree one, it acts on such a module homomor-
phism defined above. In other words we need to show that d®(f) =0, i.e.

dd(f) = V(f) o ®(R®¢ F) — ®(R ¢ E) o U(F) = 0. (4.34)
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d®(f) defines a map from U(R) ®c E to V(R) @c F. Evaluating it on u ® e €
U(R) ®c E we obtain

d0(f)(uce) =3 V(ri)oV(u) oo (ue1) @ fie)

; (4.35)
Y V)00 W ) 6 (fe).

When the morphism ¢(©) is arbitrary, d®(f) does not vanish, but since ¢©) is
part of an 0y (1), (1, )-closed morphism ¢ we have

V(Iw)od—¢oU(lw)=0. (4.36)
When we look at the upper right entry we obtain the following relation
PO oUx—7)=V(z—i) oW, (4.37)

As before we denote by x — Z a homomorphism from R ®¢ R to itself, and
x and Z denote the variables of the first and second factor of R respectively.

The functors U and V act trivially on the Z-variables, so we can write e.g.
Vir —2) = V() — - 1y(ryger- If we now apply from the left the map
V(p) : V(R)®c R — V(R), it acts trivially on the z-variable, but replaces Z by
V(z). So we obtain

V() oo oU(z — i) =0, (4.38)

— V() od D oU(z)=V()od® oz =V(z)o V() oo, (4.39)

Because of the functorial property and the linearity of U and V', one can replace
x in the above equation by an arbitrary polynomial p(z),

V(i) o ¢ o U(p(x)) = V(p(x)) o V(1) 0 6. (4.40)

It follows that d® in indeed vanishes on homomorphisms f : R — R,
i.e. when £ =2 F = C. By linearity this is also true for homomorphisms
f: R®c F — R®c F with arbitrary finite-dimensional vector spaces F and F'.
So we have shown that — for the case of one variable — any bosonic morphism ¢
between U(Iy) and V(Iy) is induced by a closed degree 0 morphism between
the functors U and V.

4.4.2 0Odd morphisms

Now we turn to closed fermionic morphisms between the matrix factorisations,
therefore let ¢ be a fermionic morphism between U(Iw ) and V(I ), i.e. it is a
homomorphism

Y
V= (w?o) wol > :U(R)®@c ROU(R)®cR — V(R)®c ROV (R)@c R, (4.41)
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satisfying
V({Iw)op+¢oU (Iw)=0. (4.42)

Analogously to the bosonic case above we calculate the induced morphism v :

U(Q) — V(Q) using again (4.17). We obtain

_(r 0 00
va<ooou>

0 0 oM @1y, 0
. 0 0 0 ¢ @ 1, ,
¢ & 1, 0 0 0
0 oM @1y, , 0 0
LMa.o 0 (4.43)
Q@)= () 0
oU e 1) )
0 QW (@)-Q™ ()
0 L]wQ_’1
0 Q(l)(r)_Q(l)(i)
=Viue (¢(1> @ IMQ) °U (Q(0><z>—cz<°><fc> 0 ) '

This suggests to guess the morphism ¥, which is a degree one morphism between
the fusion functors U and V acting on a sequence of length one as

U(f) =V (u)o (¢(1) ® 1MN) oU (M) CU(M) — V(N).  (4.44)

rT—T

It remains to check two things. First we need to show that W is closed under d,
which can be done by straightforward calculation

d¥(g, f) = V(g) o W(f) = U(go f) +¥(g) o U(S)

=V(g)oV(p)opM o U (f(x)—f(x)) — V() oM oU (9 ° f(x; —9° f(z)

=V(g)oV(p) oy oU <f(92 : g(i)
~ V(D oU (g@ o8- é(@>

(4.45)

The remaining second property to show is that ¥ respects the homogeneous
condition for the superpotential W.

TW - f) =W -T(f). (4.46)
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Note that we are do not need to show that on the degree zero morphism in
the bosonic case above, since a degree zero morphism only act on sequences of
length zero. To show this we need to take into account that the corresponding
fermionic morphism v between the matrix factorisations U(Iy ) and V(I ) is
closed with respect to 0y (sy,),v(1y)- Using this fact we obtain the following
relation

Vie—i)op® +9pMoU (WW) =0. (4.47)
-z
By applying V(u) from the left hand side, the first term vanishes so that we
end up with
1«@0¢”oU(”“2i2*“):a (4.48)

Using this result we can show (4.46]):

WMhﬁvmp¢moUCW@ﬂ2_?@ﬁ@)

W(z) - W(z)

r—x r—x

~Vimeu et (
=vwmovwww@oU(ﬂ2_§@)
=W - V(p)oyp®oU <w> ;

where we used in the last step that V(W) = W’ - 1. This shows that the sur-
jectivity holds in the fermionic case, too.

In addition we have seen that it is enough to consider only a morphism
of degree 0 (for the bosonic morphisms) and of degree 1 (for the fermionic
morphisms). This matches with Theorem that all cohomologies of degree
greater than one are trivial. In total we have shown that Z/V is a surjective map
on the morphism space of matrix factorisations, i.e. we can obtain any morphism
between matrix factorisation from a suitable morphism between fusion functors,
which motivates the physical relevance of the thesis.

4.4.3 Injectivity in the one variable case

Again set R = Clz]. In the following we analyse the injectivity of the map
E{]WV UMy, ) — V(Mg ). Let QS,(J"‘), be a morphism of degree n between the
fusion functors U and V that is mapped to an exact morphism 6¢(9) where 1)(*)
is bosonic for ¢ = 0 or fermionic for ¢ = 1.

The map Ei,WV is injective if we can show that the morphism ¢§]n) ‘)/ mapped
to an exact morphism 6¢() is exact itself. This means there is a morphism

ng‘_,l) of degree n — 1 such that dng;l) = gl%,

For n = 0 the condition of injectivity implies that ¢}, = 0 is the null-morphism.
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In the following we construct a counter example from which we see that the map
=1, fails to be injective.

Set U = V = id the identity functors and i = 1 such that () is a fermionic
morphism. Now consider the following equation:

—_ 0 0
=% (o)) = o0 (). (4.50)

What we have to show now is that we can represent this morphism by an exact

bosonic morphism 5@[1&271“/ : My, — Mr,,. Since ¢(¥) is an element of the

zeroth cohomology group it is closed, and as shown in [A:2.5] we obtain the
following commutative diagram for arbitrary R-modules N and M:

ML N

¢<°>(M>J/ J{W (N)
M ? ]\/v7

where f is a arbitrary module homomorphism. When we choose M = N = R
we obtain the following commutative diagram:

R—>R
¢<°><R)i lqs“”(R)

where we can represent the module homomorphism f by a polynomial 7.
This together with the fact that ¢)(!) is a fermionic morphism and therefore can

be represented as 3
0
p) = <1;2 1/61) 7 (4.51)

implies that
¢(0)(MIW) =M = Iyy o p™ + W o Iy,
0 0 T —7 0 x—Z 0
(- 2y + MW, 0o
0 (2 — &)y + WD, )7
(4.52)

is represented by an expression of the form

(g 2) , (4.53)
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whit r = ¢(0)(R) i.e. a polynomial. The polynomial r» depends only on the
variable x of the first factor of My, due to the action of functors on bimodules

¢ (Mp,):(R®R)® (R®R) - (R®R)® (R®R)

(4.54)
S1 ®52+t1 ®t2 = TSt ®82+7‘t1 ®t2.
In order to find a suitable 1(*) we demand that
1 = o. (4.55)
Choosing W (z) = 22 and plug this into (??) finally leads to
r(z) = (& = &) + (x + 7)) 1 (2, 7) = 2091 (2, ), (4.56)
where we choose v, (x, %) = v (). The choice
then implies
sp = (2 0 (4.58)
0 2z/)° '

This means that we constructed a nontrivial bosonic morphism §7)(") which
lies in the image of ¢(°) under the map Z/". In other words we have shown
that =/ fails to be injective.

4.5 The case of two variables

This chapter originates from handwritten notes of Prof. Stefan Fredenhagen,
my thesis supervisor, where he did several calculations and discussed the bosonic
case for two variables.

When we consider the case of two variable modules we have to modify our
identity defect in a non trivial way. To derive it formally would lie outside the
scope of this work. So we follow [9] and define the identity defect as

0 0 (2131 — fl) (1‘2 — 172)
0 0 _ W(#,x2)-W(1,82) W(z1,22)-W(21,22)
I = ~ wz—fz xl_x’l
w W(Ihﬂ;):g(ml7x2) (22 — ) 0 0
W(fl’wzzzig(ai,fg) (z1 — 41) 0 0
(4.59)

In the following we replace & by z’ for readability reasons and introduce the

shorthand notation I‘(,g) for the upper right block of Iy and I‘(/é) for the lower

left block. Because the identity defect has been changed, the maps Ag and )\81)

change too. Following again [9] the map Ag : My, ® Mg — Mg is given by

~(p 0000000
)‘Q_(OOOOO,uOO' (4.60)
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According to the work above the inverse map )‘(c;l) : Mg — My, ® Mg has the
following form

1 0
x* 0
* 0
n_|* 0
)\Q =10 « (4.61)
0 =
0 1
0 =

The entries * can be determined by the constraints (4.15) and (4.16]). One ends
up with the following

(-1}
G = (/\QO ) (}\(_?))(1) , (4.62)
Q

Where

QW (a1,22)—QW (2],a%) Q0 (x1,22)—QV (2] ,w2)
(-1) (0) 3:2—3:’% r1—T)
(/\Q ) - QO (1,22)-Q® (@} ) ; (4.63)
1 —x)
QY (z1,22) — Q" (2} ,ay)
To—xh

and

QW (w1,w2)— QW (2] ,x2)

1 —x)
W QW (z,w2)— QWM (] ,xh)
(AQ ) - el . (4.64)
QY (a],22)—QW (a1,74) QW (w1,22)—Q™M (2] ,w2)
xo—xh 1 —x)

4.5.1 Surjectivity in two variables in the fermionic case

In the fermionic case we consider an odd morphism

(1)
6= (¢?0) Y ) (4.65)

By analogous treatment as in the one variable case we can construct an
induced morphism ¢q : U(Q) = V(Q) by

dq=U(Ag)o (6@ 1a,) o VIAG™) (4.66)
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which translates to

~fw 0000 0 00
’/’Q_V(ooooouoo
0 0 PO @1, 0
0 0 0 PO @1y,
VO @1y, 0 0 0
0 v @1y, 0 0
(0)
(-1)
oU)\(_l) <)\Q )
Q (_1) (1)
0 A
(2¢”)

0
Q) (x1,22)— Q) (2] ,2)

V() 0ol (Q<o><x;,£3-8<o><xa,x;>)

xo—x

U Q™ (1,22)— QW (] ,w2)
(1) 1 —x)
(Viw) 0oy e | (Q(l)(w'l,acz)—@“)(xiwé))

xo—xh

0

This has an equivalent form as in the one variable case. Following the same
arguments as in the one variable case this induced morphism defines a morphism
between matrix factorisations.

4.5.2 Surjectivity in two variables in the bosonic case

The situation is completely different in the bosonic case. This is due to the
quadratic expressions in Ag and )\(Q_l) which come into effect since we now
consider an even morphism

»© 0
¢= ( 0 ¢(1)> ; (4.67)
satisfying
V(Iw)o¢+¢oU(lw) = 0. (4.68)

Again we can determine the induced morphism between U(Q) and V(Q) as

o=V (Ag)o (62 1)U (A5"). (4.60)

38



One obtains

~f{p 00000 00
wQV(ooooouoo
¢ @1, 0 0 0
o 0 ¢()®1MQ1 0 0
0 0 oM @ L, 0
1\ ©)
(e7) o
oU
NS
0 (")

where

" U (1)
¥ = (V) 0)od™o U(Q(l)(I'pxz)*Q(l)(wivw'z) Q<°><w1,zz>—cz<°><x1,xz>) :
(4

xo—xh x1—x)
71)
and
U (1)
#1= (V(p) 0)0 0o (U (Qm)(zi,zz)—czm)(z;,w;) Q“Mml,mz)—cz“)(w;,wz)) :
xy—xh 1 —x)
(4.72)
Now we have a closer look on the upper left entry *o. We write the components
of ¢ as
(0) ¢(0)
6@ =" o (4.73)
Pe d

The upper left entry becomes

© U (1
xo =V () o p' o U(Q(l)(x/l,xz)—Q(l)(z’pwg) Q(U)(w1,$2)—Q<O)(I/1,:E2))

ro—x -]

1
= (V(u)rbfzo) V(u)sﬁff”) u <Q<1><x;,xz)—cz“><xa,x;> Q<°>(x1,x2>—Q<°><x;,x2)>

=V () o ¢ o1+ V()0 6"
oU (Q%a, 1) — QU (af,74) Q) (1, 25) Q<0><xa,x2>)

To — xh r1 — T}
(4.74)

Due to the defining property of matrix factorisations ), we see that in the
above expression the terms of order two and the terms of order zero in @ start
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to "communicate". Since we demand that the the morphisms are closed, we
obtain a constraint on the induced morphism. The equation

PQ1 — Q20 =0, (4.75)
with ¢ : Q1 — @2, reads

6@Q1" — QM = 0. (4.76)

Thus we calculate

O o Ty — T vy — Th
© 40 Ul _weie)-Wetal)  Wiw)-W(alzs) | —

! e / 1(117)11 (1) (477)
xp — ) XTo — Th o
14 <_W(I/1,m2)—W(w/1,m'2) W(wl,zz)—W(Ii,w2)> <¢(1) QSI()I)) =0
ro—x 11— c d

When we consider again the upper left entry we obtain the following relation

W(xlla x2) — W(zlla 1/2))

To — xh

¢§Mvunxo+¢ﬂv<

= (V(@1) —a}) o) + (V(22) — ah) ¢V

(4.78)

When we apply V(u) to the equation above, we obtain the following expression

W (4, 2) — W(x’wf’z)> ) — 0. (4.79)

r1 — )

Ve (00— af)+ o (
Analogously we find

V) o (60 (Uan) — a3) + o0 (IR ) o aso)

r1 — T

From this point it is not clear if we can separate this into a (b,(lo) and a ¢£0) part.
One thing that has to be satisfied is that the induced morphism is closed with
respect t0 0y, (Q),U,(Q), but in general the separation of the induced morphism
into a degree zero and a degree two morphism is not possible so that there are
two remaining options. First there are morphisms which do not lead to func-
torial morphism on the matrix factorisations, i.e. Z/" fails to be surjective. If
this is not true one could ingestive if every morphism with ¢)z(70) = 0 induces a

degree zero morphism and a morphism with ¢((10) = 0 induces a morphism of
degree two. For now let us assume this and perform a plausibility check. The
hope is to gain some more constraints for the morphism ¢.

It we know that the induced morphism has to be oy, (@),v,(@)-closed. One

can calculate this explicitly but we will omit to write this fact down here in
detail since the calculation would take several pages.
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Now we "guess" such a separated morphism and check if it is closed under the
differential d. Note that the main ingredient to show that the guessed morphism
in the one variable case is closed was the relation (4.39). Without doing the
calculation here one can show a similar equation for the two variable case

V(p) o pf” o p(ah,ah) = V(p) 0 ¢ o U(p(a1,72))
YV (i)o 1(70) ol (_W(mi,xz) — Wz, zb) p(ay, z2) — p(x'l,xQ))

T2 7‘T/2 X1 733/1
+V(p)o MON W (z1,22) — W(ah, z2) p(a), z2) — p(z], 24)
' Ty — Ty To — ’

(4.81)

This could help us to construct a suitable morphism ¢ and just to check whether
it is closed. For a degree zero morphism we make the following choice

O =V () 0 60 + V() 0 6 0 U(g(ar, w0, 2, 2h)). (4.82)

Here g is a suitable R-module homomorphism. Now let us check if this morphism
is closed, by acting on an arbitrary module homomorphism f:

V(N —OU(f) = V(i) o o™ o f(x}, ah) + V() 0 ¢y o (], 24) 0 U(g)
— V(i) 0 ¢ 0 U(f(wr,22) = V(i) 0 & 0 U(g)U(f(w1,22))
— Vi) o6 0 U(1(at a3)g - af(or, )
Wy, a) = W(at,a) fah,20) = f(af,29)

T — ) T — Th
_ W, o) = Wah, 23) f(z1,22) — f(), 29)
To — xh x1 — T

=vnno¢”ov(fmax@g—gﬂxhu>

o xll)l(m —7 (W (1, xo) (2, x2) — W (], 22) f (], 22)

- W(l‘ly a',‘g)f<.’1711,$/2) + W(.’L‘/l’m2)f(x/1,$/2> - W(xll’x2)f($17x2)

HW%%H%@J”W%@V%J&4W%%ﬁ%wm>
(4.83)
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Which simplifies to

vuw@%—¢®Uu>=vuoOémoU{ﬂAﬁéw—gfmhu>

(21 — 15,1)( w2 — 2 <f(:r1,x2)( — W(xy,22) + W(ml,xz))
— o ma) (W (25, 22) — W (at, )

+ f(a, z2) (W (1, 22) W(x/l,:c;)))}
(4.84)

but here we are again not able to formulate suitable conditions for ¢l(}0) that ¢
become closed.

In this section we tried to analyse the surjectivity of Z/" in the two variable
case which turned to be extremely difficult because of the mixture of terms of
even order in @@ and the terms of zeroth order in ). It is not obvious that there
are suitable morphisms satisfying our derived constraints. In the next chapter
we will see that a consequence by computing the kernel of 2/ is that this
already shows that all morphisms between the corresponding matrix factorisa-
tions are induced by a degree-0 morphism in the case U = V = id. Maybe one
can use this result for further considerations.

4.6 The kernel of =/ and the Jacobi ring

As announced in the earlier chapters our aim is to to describe the kernel of
=Iw unfortunately this cannot be done in general in a trivial way. But when
we restrict ourselves to bosonic morphisms one knows from [9] that the following
holds for the n-variable case

Clz1, -, Tn]

Hy (I, Tw) = (W, ..., 0 W)

(4.85)

As mentioned in section (3.4 we can identify H°(x, M) with R when U =V = id
and M = R. We will use this restriction in the following section to give a
compact expression of the kernel of Z/" in this special case.

The one variable case

Now set R = C[z], then we have Hom(R, R) = R, and since we know that =/w
is surjective in the one variable case, this give us a strong hint that the kernel
is spanned by the ideal (0, W).
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To perform a plausibility check of this relation set W = z2. Let ¢(® ¢
Hom(R,R) & R, i.e. we can identify the closed degree zero morphisms with
polynomials in R. When we let act this morphism to the module M7, we obtain

O (Mp,) =1ar,,, - ¢'(R). (4.86)

It remains to check which degree zero morphisms are mapped to an exact mor-
phism between matrix factorisations. Therefore we consider fermionic mor-
phisms which satisfy

Ot Vi) = Ty 0 1) + 9l o Iy = 6. (4.87)

The fermionic morphism 1/)513 is of the form

1)

and the identity defect is given by
0 x—2
w={ww-wa |- (4.89)

Considering the upper left entry (the lower right entry yields a similar con-
straint) we obtain the following constraint

6O = (@ — F)p® + w(l)W € R, (4.90)
which simplifies to
¢ = (2 — )@ + V(2 + F) € R, (4.91)

since we set W = 2. The condition that the above expression lies in R s that
PO =M 44, (4.92)

To proceed note that we can write every polynomial + in two variables in the
following form

O(x, &) = (2o + (@ + T)y (, &), (4.93)

for suitable 1;0 and 1@1. We can absorb the second term of 1; into the term
multiplied (z — Z) which means that we finally end up with a constraint of the
form

¢(0) _ (JC _ 5:)11}(0) + 1/)(0) (:l: + j) c R. (4.94)

What one can obverse from the relation above is that the entries of ¢§g) has to
be at least polynomials of degree one in x. In particular this means that the
relation above spans an ideal in C[xz, Z] whose elements lie in the kernel, we have

I={(z—37),(z+7)) = ((z + 7)) C Clz, . (4.95)
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Intersecting the ideal I with C[z] gives
INClx,z] = (). (4.96)

Therefore the kernel of Z/" is given by (z) which is equal (2z) = (9, W), the
Jacobi ideal.

General case: Now our aim is to state this result for arbitrary W. Our
first observation is that we can assume that deg(WW) > 1 without loss of gener-
ality since constant factors cancel out in (4.90). The next step is to calculate
w, therefore let W = a,, 2" +...+ayx. We state the obtained expression
in the following lemma.

Lemma 4.6.1. The expression

d (4.97)
A
with W = apx™ + ... + a1x + ag s given by
(2" P BT LB+ (e E) Fay (4.98)

Proof. The proof follows from the polynomial division algorithm. Let us look
at the first step

an(z™ — ") + ...+ a1(x — T) apr"t
™ — a2 27 | ap (2T + 2" 727)
(2™ — 2" 2%) + ... +ay(z — T)

anx" 1% — a,x" 2%

an (3"2F — 2" 1) + . 4 ay(z — )

We see that at each step of the division algorithm a term of the form
a7 for i € {1,...,n — k} occur, where k is the power of the variable x,
which can be compensated by a factor of the form 2"~ *~1#%. It easy to see that
this process terminates when k = 1, since the remaining factor is a1 (z —y). O

The next key ingredient is to note that the constraint (4.90) can be equally
written as the following intersection

W(@) = W)

r—x

{6 € HY(id,id), Z" () = 0} = ((z — &), )NClz]. (4.99)

=:1

Here we view the ideal I as a subset of Clx, Z]. To show that INC[z] = (0, W) C
C[z] we need to write the ideal I in another form. First observe that

I = {q(z—2)+p(an(z" 22" 2 4. 43" )+ 4as(x+3)+a1) | p,q € Clx, 7]}
(4.100)

44



By writing y as  — (x —y) we see that we can split the second polynomial which
is multiplied with p as

a4 ¥ 2002+ ay F(x — E)(—an (2" 4+ (2 —D)2" P 4 .) — . —ag).
=0, W
(4.101)
We can neglect the terms with a (z — Z) in front by redefining ¢ with ¢ —
G+ p(—an(2" 2+ (x —3)2" 2+ ...) — ... — a) which leads to

Without loss of generality we can write an arbitray polynomial in two variables
p(z,T) as
p(2,7) = p1(2) + (x — B)pa(, 7). (4.103)

This implies
I'={q(z = ), p1(x)(0:W)) (4.104)

Intersecting this ideal with C[z] we see that only the term which only contain
2 remain and therefore we finally obtain

1N Cla] = (9, W). (4.105)

This result then immediately implies that the kernel of Z/W is given by (9, W)
which is exactly the Jacobi ideal.

The two variable case

Let us switch to the two variable case R = C[z1, x2]:

0 0 (z1 — 1) (zg — @)
0 0 _ W(#,x0) W (d1,82) W(z1,22)—W(£1,22)
Ty — _ Ty —T2 T1—21
W W(xl’x;):zz(xl’m) — (29 — 23) 0 0
W(fl’wjz:g(fhfz) (x1 —27) 0 0
(4.106)

and the fermionic morphism is given by

0 0 W gV
0 0 @ Y

o = 4.107
Ul O wl()o) 0 0 ( )
s 9 o
Calculating the differential
Oty ot W) = Iy 0 ) + 04 o Iy, (4.108)
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leads to a block diagonal matrix of the form

01y I wﬁi =

O O * *
O O *x *
* ¥ O O
* ¥ O O

When we take into account (4.86) that the induced morphism is represented

by a diagonal matrix. We find that four constraints has to be equal zero and
the other constraints force that the expression has to lie R. Note that the
expressions on the diagonal has to be equal in R. Straightforward calculation

yields the following constraints

1.

Wz, x2) — W(21,22)

(-'171 . fl)wgo) + (‘,L,2 _ f2)¢£0)+ — '(/)511)
T — I
+W(x17x2) - I{V(xlaxQ)wél) — f c R’
Ty — T2

(1 — @)y + (w2 = )0 + (a1 — @)y — (w2 — )0 =0,

W(Jfl,JZQ) — W(fl,ﬂfg) W(fh 332) — W(fl,fg)

P — o)
xl - .’L'~1 ¢ x2 _ xNQ a
n W(x1,29) — W(951,$2)1/J(1) i W (71, 22) — W(;fl,fg)w(l) 0
T — 21 ¢ To — To d ’
= - W(xy,xs) — W(a1,x
(x1 — x1)¢él) — (29— z2)¢£1)+ (71, 22) i (77 Q)w((i())
Tr1 — 1
W(f17x2) - W(fl,.i(}b) 0
- «IQ_.'LTQ ’(/}l()):fER7
(vq — fl)¢(0) — (z9 — fQ)wu)JrW(xl,xz) - W(fl’x2)w(1)
a c P .
W (&1, 20) — W (&1, 4
~W(zy,22) ~(1 2)¢£0)=f€R,
To — To

W ) - W 3 )
—(z2 — f2)¢gl) + (29 — fQ)’l/h(lO)—F (21, 22) (21, 22) ,(,1)

l‘l—fl

w — Wiz

N (x1, x2) N(JU171'2) 150)207
r1 — I1
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W(fl, 1‘2) — W(.’fl, l‘~2)

(w1 = 21)p + (21 — F)p D+ - gV
T2 — T2
7W(517~1; ‘T2) - ‘/I/(fth)w((iO) =0,
T2 — T2
8.
- - W(xy,z2) — W(x1, 2
(01— G0 + (25 — )@+ L0 Z WL 2) 0
X1 — I
W (& — Wz, 2
N (21, z2) A (:61,962)%51) _fenr
Xro — X9

First we analyse the equality constraints 2,6 and 7. From them we can read of

the general from of wgo), wéo), C(LO) and 1/1510). For each equation we obtain two

relations, for 2 we have

b= @ d)a 0 =+ (@, (4110)

with g and ps are polynomials in x1, 21, 2 and 5. From 6 ant 7 we obtain in
a analogous way

W((El,.’EQ) - W(fl, (EQ)

Z‘l—fl

g, %SO) =- é” + (z2 — 22)ps,
(4.111)

PO =y +

W(fl,l'g) — W(fl,fg)

To — T2

qr, 1/16(50) =W 4 (2, — 41)pr,
(4.112)

¥l = -y +

By directly comparing the relations containing the same constellations of terms
we immediately see that several relations are equivalent. We have that g2 = pg

and ps = py. When we plug in the relation for wéo) (4.110) and the relation for
9 in (@I10) into 6., we obtain

Wz, xe) — W (21, 22) Wz, z2) — W (27, 22)

- (z2 — @2)g2 + (22 — 22) . q3 =0,
xr1 — I xr1 — I
(4.113)
which implies g2 = —q3. The same procedure, plugging in the relation for wﬁo)

(0)
d

and the relation for ;" into 7 leads to

_ W(Z’l,l'g) — W(fl,xg)

T — 1

W(Q?l, LUQ) — W(fl, 56‘2)

~ QGZO;
T — I

(4.114)

(x1 —21)pr + (1 — 21)
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which is equivalent to p; = ¢¢. Finally when we plug in the relation for ¢£°) and

,(10) into 3. we obtain

W(xhl’g) — W((fl,xg) W(fl,fEQ) — W(fl, fQ)q7

1 — 21 Ty — T2
- I - 4.115
_W(J}l,xg) - W(Il, 1‘2) W(.’El,xg) — W($1,.’172) -0 ( )
Xo — ZZJ~2 Tr1 — fl %6 ’
which leads to g = g7. In total we end up with the following relations
Pe =42 = —qe = —P7 = —P2 = —(qr. (4.116)
This reduces the relations to
Wi(xy,x2) — W(x1,x
o =y Wt Wza)
r1 — 1
(0) (1) =
= - + (2 — T )
by by (2 2)G2 (4.117)

W(fl, .1‘2) - W(fl, fg)
To — (E~2

P8 = o + (21 — 71)(—ga)-

Our aim is it to use these relations to reduce 1.,4.,5. and 8. to a single constraint,
i.e. we show they are equivalent. To do so we consider the differences of the
constraints. Begin with 4 and 5. When we use the relations one can
easily compute that the difference is identical zero which means that 4 and 5 are
equal constraints. We can do the same for the constraints 1 and 8 and finally we
obtain that 4 and 8 are equal. So indeed the number of non equal constraints
reduces to one. In the following we consider the constraint 1., following the
reasoning outlined in the one variable case we have that the ideal I is given by

uO = o0 +

(—q2),

1) W(.’El,.’EQ) — W(fl,xg)
xr1 — fl

= {1/’((10)(551 — @1) + ¥ (22 — a2) +

W(fl,l’g) W(Ihl‘g)
T2 — .1‘2

(4.118)

+w£1) W)a a¢ 1?(21),%/151) € C[l‘l,fhl’g,fg]}-

Let us write the superpotential W (z1,x2) as

W(x1,29) = ag + b1y + 129 + di13129 + box? + coa + diox1 23 + dyy23ws + ...,

(4.119)
where the coefficients b are in front of the pure terms in x1, the coefficients c are
in front of the pure terms in x5 and the coefficients d indicate the mixed terms.
Without loss of generality we can assume that ag = 0 since it would cancel out
anyway. When we consider the term W(zl’“) W(xl 22) we can apply our lemma
from above to the polynomial with factors b and factors d separately (note that
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the ¢ terms cancel out) and obtain

W(l‘l, .Z‘Q) — W(fl, 1‘2)

T1 — T

= bn<.’lﬁ?71 + $?72f1 + ...+ flnil) + ...+ bg(.’l?l — .f1> + by

F dpn (" 2R LY
+ dnn_ll‘g_Q(l‘?_l + 33711_2.171 —+ ...+ flnil) + ...+ dig.
(4.120)

Again we can rewrite this expression in the way we did in the one variable case

W(,Th 1‘2) — W({fl, CEQ)

131—Zf1

= 811W(:E1, $2) + (331 — :fl)() (4.121)

W1 ,0) =W (21,72) which
To—I2

By the same argument we find a similar expression for
is given by

W(fl,fﬂg) — W(fl, £C~2)
To — T2

= 0, W (1, 12) + (w2 — 42)(...). (4.122)

As we did it before we can express this as

W(fl, 562) — W(fl, INQ)

P = 8x2W(I1,$2) + (1‘2 —fg)() + (1‘1 —fl)() (4.123)

Thus our Ideal I now has the form

I= {¢éo)($1 — 31) + VO (22 — 22) + PV (21, 22) 05, W (21, 22)
(4.124)
+¢£1)($17$2)312W(9017$2)|¢go)’¢£0),¢él)a¢z(,l) c (C[l‘h fl,l'z,.’fg]}7

where we absorbed the terms which are proportional to (z1 — #1) and (ze — 2)

in the first two terms respectively. To avoid cancellations in the mixed terms
510) (x1 —271) + wgo)(acg — @) to pure terms in z; and x5 we can use the same

argument again and write ¢£0) as

0 0 =\ (0 - ~ =\ (0 - ~
o0 = ¢ (w1, 32) + (21 — 41) (21, 41, @2, 02) + (w2 — 82) (w1, 41, 72, 42),
(4.125)
and absorb without loss of generality the component proportional to (z1 — 1)

of 1/)5;0) in the first term 1/)((10)(:01 — #1). Hence we find that the ideal I is given
by

= {T/’f(zo) (z1 — 21) + OO (@1, 2, 02) (22 — 22) + DV (w1, 22) 0, W (21, 22)

-HZJIED (1‘1, 332)89:2W($17 582)\%(10)7 ’(/}zEO)a 1/)((7,1)7 %(,1) S (C[xla flv x2, :f2]}7
(4.126)
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and therefore the intersection of I with C[z1, 2] is indeed the Jacobi ideal
In (C[fﬂl, LUQ] = <811W($1, 1’2), 8z2W(x1, 1'2)> (4127)

Note that this result also shows that we achieve surjectivity when we only
consider a morphism of degree zero. In fact any morphism between matrix
factorisations is induced by a bosonic degree zero morphism between U and V/,
where U = V' = id. This show that there is at least one suitable choice of ¢Z()O) in
(4.84), maybe this gives us some hinst how we can argue in the case of general
U and V.

4.7 Outlook

We have shown that our functor =W is indeed surjective on the morphism
spaces in the one variable case and also for the two variable case where we set
U =V = id. By knowing the kernel one can introduce an equivalence relation on
the morphism space of functors such that Z/W becomes an isomorphism, which
would mean that one has a one-to-one correspondence between morphisms of
fusion functors and morphisms between matrix factorisations. Maybe one can
calculate the kernel of =" in other situations too, to obtain hints how to prove
or disprove the surjectivity of Z/W in the general two variable case.

The content of the thesis can help us understanding the process of fusing
defects. Since finding factorisations of defects obtained by fusion is equiva-
lent finding morphisms between the corresponding fusion functors. The first
question one has to investigate is if every defect can be obtained from fusion
functors. In further consequence this can maybe used to formulate a correspon-
dence between two-dimensional conformal field theories with defects in it and
our two-dimensional Landau-Ginzburg models.

A surprising fact is that the the cohomologies of morphisms between matrix
factorisations also appear in the context of invariants of knots. So maybe this
is a hint that there is a connection between defects in two-dimensional Landau
Ginzburg theories and knot theory. Finding such connections often helps to
generalize things in physics as we have more room to interpret our observations.
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Appendix A

Formal definitions

A.1 Modules

Definition A.1.1 (Module). Let R be a unital ring and 1 its multiplicative
identity. A left R-module M consists of an abelian group (M,+) and a map
-t Rx M — M such that for all ;s € R and x,y € M, we have:

Lr(z+y)=r-x+r-y
2. (r+s)x=r-xz+s-x
3. (rs)-x=r-(s-x)

4. lp-z==x.

The map is called the scalar multiplication and we denote it by rz instead
of r - x when the context is clear.

A right R-module is defined in a similar way, except that the ring acts on the
right i.e. the scalar multiplication takes the form - : M x R — M with the above
axioms are written with scalars r, s € R on the right side of z,y € M.

Definition A.1.2 (Bimodule). Let R and S be two rings, then an sMp bimod-
ule s an abelian group such that:

1. sMpg is a left-S-module and a right R-module.

2. Forallr € R, s € S and m €g Mg we have

(rm)-s=r-(ms).

A.2 Category Theory

Definition A.2.1 (Category). A category € consists of the following data:
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1.
2.

A class Ob(€ ), which elements we call objects.

For all A, B €O0b(¥ ) there is a set Homg (A, B) with elements f : A — B.
We call them morphisms from A to B.

For all A, B,C €0Ob(€) there is a map
Homg (A, B) x Homg(B,C) = Homg (A, C),

which we denote with (f,g) — go f and call this map composition of
morphisms. This composition of morphisms is associative i.e. for all
fiA—=B,g:B—Candh:C — D we have ho(go f) = (hog)o f.

For every A €0b(€) there is a unique morphism ida € Homg(A, A)
which we call identity. Such that we have for all f € Home (A, B), 1o

f=f=fola.

In this thesis we work with so called differential graded categories. They are

defined in the following way:

Definition A.2.2 (Differential graded category). A category € is called dif-
ferential graded when for any two objects A,B € € we have Hom(A,B) =

@D,", Hom, (A, B) and there exists a map d : Hom,,(A, B) — Hom,41(A, B),

called differential, which satisfies dod = 0.

When we work with categories we also need to introduce functors between

1.

two categories. This leads us to the next definition.

Definition A.2.3 (Functor). Let € and 2 be two categories. A functor

F:¢—9

from € to @ consists of the following data:

For all objects A € € there is an object F(A) € 9.

2. For all morphisms f: A — B in € there is a morphism

1.

F(f): F(A) — F(B)

n 9.

Such that

For all objects A € € is F(ida) = idp(a).

2. For each pair of morphisms f: A— B, g: B — C in € holds that

F(go f)=F(g)o F(f)

in 9.
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We also need an exact definition of composing functors.

Definition A.2.4 (Composition of functors). Letbe F : € — P and G : 9 — &
two functors. The composition GoF : € — & is given by (GoF)(A) = G(F(A))
for all objects A € € and (Go F)(f) = G(F(f)) for all morphisms f : A — B.

Next we want to define what a natural transformation between two categories
means. This is one of the most important concepts in category theory.

Definition A.2.5 (Natural Transformation). Let be F,G : € — 2 two func-
tors bewteen the categories € and 2. A natural transformation t from Fto G
associates to every object X € € a morphism tx : F(X) — G(X) in Z such
that for every morphism f : X =Y in €, we have ty o F(f) = G(f) otx ; this
means that the following diagram is commutative:

Fx) 2% Py

G(X) 55 GOV,

A.3 Homological Algebra

Let R be a unital ring and A;, with ¢ € Z modules over this ring.

Definition A.3.1 (Chain complexes). A chain complex (A;,d) is a sequence
of modules A; connected by homomorphisms, called boundary operators or dif-
ferentials, d,, : A, — A,_1, such that the composition of any two consecutive
maps is the zero map, i.e. d,od,_1 for all n € Z, they chain complez is written
as

dn " dy
o A L A A, AL (A1)

In an analogous way we define cochain complexes:

Definition A.3.2 (Cochain complexes). A cochain complex (A;,d) is a se-
quence of modules A; connected by homomorphisms, called boundary operators
or differentials, d,, : A, — A,_1, such that the composition of any two consec-
utive maps is the zero map, i.e. d, o dn41 for all n € Z, the cochain complex is
written as

dn— dn dn
e A 1 A T A S Ay g — (A.2)

Definition A.3.3 (Homology). The kernel Z,, = ker(d,) C An—_1 is a submod-
ule of Ay,—1 and By, = im(dn4+1) C A, is a submodule of A,,. Since d,, 0od,11=0
we have B, C Z,,. The n-th Homology group of A is then defined as

H, =Z,/B,. (A.3)

Again in the same way we can define cohomologies
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Definition A.3.4 (Cohomology). The kernel Z, = ker(d,) C Apt1 is a
submodule of An1 and B, = im(d,—1) C A, is a submodule of A,. Since
dpod,_1=0 we have B, C Z,. The n-th Cohomology group of A is then defined

as
H, = Zy/Bh. (A.4)

In the thesis we recognize that the structure of the morphism spaces are
isomorphic to the Hochschild cohomology which is defined in the following way.

Definition A.3.5 (Hochschild). Let R be a commutative ring, A be an asso-
ciative R-algebra and M a R-bimodule. The chain complex of the Hochschild
homology is given by

Cn(A, M) := M @ A®". (A.5)

With the differential defined by
do(m®@a1 @ ... @ ay) =ma; @ as @ ... ® ay,

di(m®a1 ®...Q0a,) =m®a; ® ... ® a4;ai41 Q... ® Ap, (A.6)
dy(m® a1 ®...Qan) =a,mM®a1 Q...  Ap—1.

The Hochschild cohomology is then defined in an analogous way where we
replace C,, (A, M) = Hom(A®™, M).

For our considerations we need a few result from involved homological alge-
bra which we want to state here without the proofs for the sake of completeness.

Lemma A.3.1. The Hochschild homology and cohomology are isomorphic to
relative Tor and Ext for the ring map k — R® = R ®¢ R°P:

e
H.(R,M) = Tor, "*(M,R):; and H*(R,M) = Eatye (R,M), (A7)
k

where k is any field.

The scond theorem is the so called Koszul resolution which is very helpful
for investigating the structure of the cohomology.

Theorem A.3.2 (Koszul resolution). If z is a regular sequence in a ring R,
then K(x) is a free solution of R/I with I = (x1,...,z,)R. Then the following
sequence is exact

0= A"((R)") = ... = A2(R)") = (R)" = R— 7 0. (A.8)
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Appendix B

Proofs

B.1 Proof of lemma

Proof. First note that we can rewrite the action of the differential in a more
compact form. We have

n n n fﬂ-—
(a0 ) = V) 0 00 (Muga = My 22 M,y 0y
n i (n 1 fit10fi 1
+ D0 60 (Musa 55 Moy Migs S5 My £ 01) - (B1)
=1

nt1 (0 £ .
+(—1)m gl (M,,,+2 I My M, MQ) o U(f1).
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When we apply d twice on ¢§Jn‘)/ we obtain

(dod)piry =

K n n fn—
= V(fn+2) © V(fn+1) o ¢§]n\)/ %]\)/ (Mn+1 A Mn <—1

n+1
n nt1
+ Z V(fny2) o ¢§J\)/ (Mn+2 Lt Myy1...Miq2
i=1

M, _y.. d- Ml)

L8 vy )

n fn n
+ (71) +2Vv(fn+2) o gl‘} (Mn+2 (i Mn+1 (f— Mn (ﬁ Mg) o] U(fl)

n+1 n
+ 3 (=17 Y (~1)iey (...Mj+2 JLERSSEER VY V AApEAcE LN Mi...)
j=1

i=1
n n fn n
(1) IV (far2) 0 6 (Masa 5 Mgy L My 2 M) 0 U(f1)

n nt1 fit10fi
+5" o) (Mn+2 PRy VNN V ANNPE LS LN VS Y APELE MQ) o U(f1)

4 (—1)nrina2gln) (Mn+2 JELLENY VANPELEY VAt Y Mg) o U(f2) o U(f1)

=0
(B.2)

where the term with summation over ¢ and j vanishes. To see this take the pair
(j,7) with 1 <i<mand 1<j<n-+1. If we first compose the maps "around"
M; and then "around" M; will produce an opposite sign as to when we first
compose the maps "around" M; and then "around" M;. Note that the sum
decays into an even number of terms since the product of n with n + 1 has to
be even.

The Leibniz-rule identity follows easily by direct calculation. O

B.2 Proof of lemma [3.3.1]

Proof. Let ¢\™) € Hom,, (U, V) be a closed morphism of degree n between func-
tors U and V. Define a morphism ¢"~1) € Hom,,_1(U,V) on a sequence of

R-module homomorphisms M, & M, _1 M M, _»... <£ M, as argued

above it is equivalent to consider homomorphisms between R-modules R™ in-
stead of the modules M;. Let the morphism ¢("~1 e Hom,,_1(U,V) given
by

n

¢(n71) _ Z(*l)n7j+1¢8"j_l)a (B3)

j=1
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with
¢81]71)(fn—1, s 1) = V(1) 0 "™ (D1 ey D2, Ty © f1, 1y ) © U(hy)

¢g§_1)(fn—la sy fl) V(Lkn) S ¢(n)(pn—17 ceeyP3, kg © an Loy Ty © fl)

(b(: 21])(fn 1""af1) V( )O(b(n)(pn—l’ﬂ-kna O frn—2,thy 5 Thp_s

Ofn 3afn—47"'a,f1)
) = V(k,) 0 0" (M, © futy oy sy © frzy fusy ooy J1)
f1) =

O™ (1 s Thy, © Fruty 2y ooy 1)

(:: i-])(fn 1, "'afl

(bf,:] U(fnfla
(B.4)

where p; 1= 7y, , o fjou, : R — R, and it is understood that on the right hand
side a summation over all appearing labels k; = 1, ..., m; is performed. We want
to show that

O (Fryvoes [1) = V(th sy 00" Dy ooy p1)0U (711, ) +dd ™D (frr—1,y ooy f1). (B.5)

For the readability reasons replace ¢y, by gj_1 and 7; by g; and the summation
is meant over the k;.

Where ¢,, := ga,, and pp, = gmi1 © fm © g}, using the notation of
ion 3.3l Our aim is to show that

O (fry oo 1) = V(g ) © 6™ (s ooy p1) 0 U(g1) + dp™ D (fry ey 1) (B.6)
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Therefore we first calculate dqbfs]fl).

Ao (Fusees 1) =V (f2) 0 00 (Fats oo 1)
— (0 (fu o facts fumns e f1) +
ot ()G (fas s f, a0 )
+ (=1 @[ (Fs s F2) 0 U(f1)
=V(fn) o™ (g, 9n 0 fuets fa—2, s f1)
— " (grt1,9nr1 0 fa © frmt, frm2yoons f1)
+ ¢(n)(9;+11a9n+1 O frs fn—10 fn—2s fn—zses J1) + -
et (1) (g1 Gng1 © frs Faetseees s f35 f2 0 f1)
+ (—1)n¢(n)(gﬁi1,9n+1 © frs fae1s-e f3, f2) o U(f1)
=V (fn) 08" (g5 " gn © fr1, fr2s - J1)

+ [V(g;il) 0 0™ (Gni1 © fur ooty eees f1)

- ¢><”><fm...,f1>].
(B.7)

In the last step we used that

A ™ gty Gnt1 © frs 1y -os f1) = 0, (B.8)
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since ¢(™ is closed. Now we consider qbfﬁfl) for 1 < j < n. We obtain

—1 _
do( ™ (s 1) = Vg )o
<[V(pn) o Qs(n)(pn—la ceyPj+1,9541 © f]?g‘j_lag] o fj—17 fj—?a (X3} fl)
— ") (Dn © Pre1, Pr—2, s P15 Gj4+1 © £i2 95 15 95 © Fim1, Fi—2s-oes f1)
+ ...
(=1)" 71 (pry, ., P8, Pj+2 © Pig1s Gj1 © firgitgio i1, fimay o f1)
(=1)" "™ (P, .., pjr2. gir2 © fi10 £5.95 1 95 © Fim1s fi—2s s f1) ]
[(—1)n_j+1¢(n)(]9m ey D12, Gj42 © fj+1,gf+11»gj+1 o fjo fi—1, fi—2,- f1)
(=1)" 26 (pry, o pigas gie © fiv1s 95 Gia © fis fim1 0 fimas fimss o f1)

(=1)" "™ (D, oo Djg2: w2 © Fis1: G4 Gie1 © £ fimts s f3, f2 0 f1)

(=1)"0") (Dpy ey Dj42s Gja2 © fj+1ag]+117gj+1 o fis fi—1,.s [3, f2) © U(f1)])

+ 4+ + + + + o+

=V(guy1) o |A(n5) + B(n,5) |,
(B.9)

where A(n, j) combines the first n — j + 1 summands and B(n, j) the remaining
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4 summands. Since ¢(™ is closed we know that for 1 < j < n — 1 we obtain

0 =d¢!"™ (pn, ..., Diy2, Gi+2 © Fi115 9541, 941 © fis Fimts oo f1)
=V(pn) 0 8™ (Pn—1, .- Djs2: Gj+2 © Fi1: 9731 Gi+1 0 Fi: Fi=1, s 1)
— ") (Pr © Pre1s Pr—2, s Pjt2: Gj42 © Fi41s G1is Gj1 © Fis fimts o f1)
+ ...
+ (=) 2" (D, .y Pjgas Pirs © Pit2s Gt
o fit1:9541: gi+1 0 fis fim1s s f1)

+ (1) (o pitss Gias © w2 © Fit1s G i1 © £ fimts s f1)

+ (=)™ (pr, ooy pj1, 91 © fis fimts s f1)

+ (=1 (Do, s piya, gt © fitas fis e f1)

+ (=1)" 20 (py,, o, pys2, gy O fj+179;+11’9j+1 o fjofi—1, fi—2,.- f1)
+ (D)"Y (Do, s D2y G2 © fir 051 g5

o fj, fi—10 fi—2, fj—3,..s f1)
+ ...

(=)™ (D, oo Djs2: 42 © Fi1: 9741 G410 £ Fi—1s s f3, f2 0 f1)
(=1 S (pr, ooy pjsa, giaa © Fi1, 95300 Gie1 © i fim1s s f2) o U (f1).

(B.10)
With the definition from above we have
0 =dg"™ (pp, -, P42, Gi+2 © fit1: 9541, 941 © Fjs Fim1, o 1)
=A(n,j+1)— B(n,j
( o (l) (n.5) (B.11)
+(_1) ](b (pn7”'apj+17gj+lij7fj717"‘7f1)
+ (_1)n7]+1¢(n)(pna <y Pj+2,9542 © ,fj-l—lv f]a teey fl)
This holds also for j =1 and j =n — 1 if we set
B(n,1) = (=1)"¢" (pn, ... p3, g3 0 fa, 95 ) 0 U(gs o
(n,1) = (=1)"¢'" (p P3,93° f2,95 ) oU(g2 0 f1) (B.12)

A(n,n) =V (gnt1 0 fn) 0 0™ (9,1 gn © fret, fa—2s s f1)-
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Therefore the contribution of the ¢8§71) for 1 < j <n to dp(»=1) is

n—1
S () IS (fs e 1) =
=2
n—1
=D (1" V(g ly) o [A(n, §) + B(n, j)]
=2
= V(g;il) o [A(n,n) —(-1)"B(n,1)
n—1
+ [¢(n)(pn,m,]3j+2,gj+2 o fix1, [isees f1) (B.13)
j=1
- (b(n)(p’ru <y Pj+1,95+41 © f]a fj—17 23} fl)]
(fn)0¢ (gn 7gnofn lafn 27"'7fl)
—V(gnt1) 0 8™ (Pns D3, 930 f2,95 1) 0 Ulga o 1)
+ (gn—il-l) )(gn-‘rl ° fns fn-1, "'7f1)
V(gnil) )(pnv 7p27920f1)'
Combing this result with our result of (B.7) we obtain
n—1
S (=) AT (fy s fr) =
=2
=" (fn,-os f1) (B.14)
- V(g'r:—',l-l) © d)(n) (pn7 -y P3,93 © f2792_1) © U(QQ o fl)
- V(gfr:il) o ¢(n)(pn7 3 P2,92 © fl)
Now we calaculate the contribution of qbfﬁ)
=V (fnognis)o ¢ (pn-t1,...;p2,920 fr, 91 ") o Ulgn)
—~V(gnit1) 0 0™ (D © Pue1, P2, s P2, g2 © f1, 97 ") 0 Ug1)
+ ... (B.15)

+ (=1)""2V(g511) © 6™ (s ooy s p3 0 P2, g2 0 f1,97 ) 0 Ulgn)
+ (=)W (gpt1) © 6™ (P, p3: 930 f20 f1,97") 0 Ulgn)
+ (_1)nv(g;41-1) © (vb(n)(pna -y P3,93© f2ag2_1) © U(92 o fl)
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Since ¢ is closed we conclude that

0= d¢)(n)(pn7 -y P2,92 © f1792_1)
= V(pn) o ¢(n)(pn717 ey P2,92 © flvggl)
- ¢(n)(p7l O Pn—1,Pn—2,---,P2,92 © f17g2_1)

i( —— » (B.16)
Dny P4, D3 ©P2,92 0 f1,95 )
+ (=1)" ¢ (pn, ..., ps, g3 0 f20 f1,97 ")
+(=1)"¢" (s s 1)
+ (=11 (py, o pa, g2 o f1) 0 Ulgy ).
Hence that
0= dg™ (fu,.... f1)
= —(=1)"V(gpt1) 0 6"™ (pps - p1) 0 U(g1) (B.17)
— (=1 (ga11) 0 6" (P P2, 920 f1)
+ (D)™ (g41) " 00" (B, s 3950 fo, 05 0 Ulgz 0 fr).
Thus we finally obtain the desired result
0= d¢"™ (fn, s f1) = 3 (=1)" T dG D (fr, o 1)
j=1
= ¢ (fus e f1) B
—V(gt1) © () (Pns -, p1) 0 Ulgn).
O
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