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Abstract

The recently introduced concept of (semi-stable) non-commutative curve counting is exam-
ined for the derived category of the acyclic triangular quiver. First, we carefully recall and
introduce all the notions necessary for the final results, these include the definition of stabil-
ity conditions on triangulated categories. After reminding the reader of the previously known
result that there are only two non-commutative curves of genus one in the derived category of
the acyclic triangular quiver, we construct stability conditions of this category such that all the
possible combinations of these non-commutative curves of genus one become semi-stable.
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1 Introduction

The notion of stability conditions on triangular categories as introduced by T. Bridgeland in [5] has
its roots in mirror symmetry. To understand these motivations we need to sum up some basic ideas.

A Calabi-Yau manifold X is a Kaehler manifold with a Ricci flat metric. This is equivalent to
the local existence of a holomorphic .n; 0/ form �n;0 such that its associated volume form is equal
up to a constant to the volume form on X . A special Lagrangian in X is a Lagrangian submanifold
with the pullback of �n;0 being equal to the volume form up to some phase ��. A �-model on
a Calabi-Yau manifold X specifies an N=2 super-conformal field theory (or SCFT) in the moduli
space M of SCFT. For every SCFT one associates two different topological twists, the topological
conformal field theories (TCFT) of model A and B. These are given by Calabi-Yau A1 categories,
where for the case of the A-model given for a CY manifold X the category is the derived category of
the Fukaya category for the simplectic form on X . The B-model is represented by an enhancement of
the derived category of coherent sheaves. The general structure of a Fukaya category consists of the
objects being the Lagrangians in X with some additional data and the morphisms constructed from
the Floer complexes with the Floer differential. In the moduli space M at the point corresponding
to the CY manifold X there are two foliations which originate from keeping the A-model or the
B-model of the TCFT constant while varying the SCFT.

The mirror map coming from the symmetry of the N=2 super-conformal algebra induces a map
on the moduli space M which has the effect of interchanging the A and B models of the TCFT.
This implies especially that the derived categories corresponding to these topological twists are
equivalent. Further, let X be CY and MC.X/ the leaf of the foliation in M for constant model B
(varying the symplectic form) and MK.X/ the leaf of the foliation for constant model A (varying
the complex structure). The mirror map tells us that for the mirror pairs X1 and X2 we should have
the relations:

MC.X1/ ŠMK.X2/ ; MC.X2/ ŠMK.X1/ :

This mirror symmetry has been generalized beyond just the applications to CY manifolds in [1]. An
example can be found in the work [2], where it is shown that the mirror to a weighted projective
space CP 2.a; b; c/ is the affine hypersurface X D f.x; y; z/ 2 .C�/3 W xaybzc D 1g with the superpo-
tential W D x C y C z.

The motivation to introduce the stability conditions as given in the Definition 18 comes from the
goal to describe the space MK.X/ and the parameters for varying the complex structure. Notice
that above we were able to assign a phase to every special Lagrangian in the Fukaya category of
the CY manifold. We could form a full subcategory of the Fukaya category P.�/ consisting of the
special Lagrangians with phase ��. Additionally, we can construct a map Z which acts on every
Lagrangian L by:

Z.L/ D

Z
L

�n;0 2 C :

Varying the complex structure, we end up changing the categories P.�/ and the values of Z while
keeping the Fukaya category fixed. This corresponds in our picture to moving in the space of sta-
bility conditions defined in subsection 4.4.

An especially interesting phenomenon resulting from varying the complex structure is that of
wall crossing. The following picture is a heuristic one and was discussed by M. Konsevich in his
talks. If fXtg is a family of CY manifolds with the corresponding holomorphic forms �n;0t , where
varying the parameter t corresponds to changing the complex structure, then a wall is formed by the
parameters t0 where two rigid special Lagrangians L1t0 and L2t0 have the same phase. The rigidness
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secures the existence of these special Lagrangians in the neighborhood of Xt0 in the moduli space
M, and these will be labeled L1t and L2t for the corresponding parameter t . If these two Lagrangians
intersect for the parameter t0 transversally and the sum of the angles is � (Maslov index is equal to
1), then one gets a following (simplified) geometric picture:

t = t0

Lneckt

L1
tL2

t L2
t L1

t

sum of angles < π sum of angles > π

As the parameter t passes across the wall t D t0 the sum of angles between the Lagrangians changes
from less than � to larger than � , and on the ”left” side of the wall there is an additional Lagrangian
Lneckt that is constructed by connecting the other two Lagrangians through a neck. As one passes
through the wall this Lagrangian vanishes. The notion of semistable non-commutative curve counting
presented rigorously later is motivated by this picture.

In the following work, we will at first sum up and prove some useful results about triangulated
categories and derived categories in Sections 2 and 3. These will be used in Section 4 to give
the definition of the spaces of stability conditions for triangulated categories introduced in [5] and
to allow us to compute the example of stability conditions on the derived category of the quiver
A1. Sections 5 and 6 are meant to prepare the reader for the methods used for the so called non-
commutative curve counting. The non-commutative curve counting will be presented in Section 7
the way it was given for the first time in [9]. We also develop some methods for finding the �-
semistable non-commutative curves for some given stability conditions on a triangulated category.
The last section will consider a specific example by addressing the derived category Db.Q/ of the
following quiver:

3

1 2

The non-commutative curve counting invariants for this category are computed in [10]. Here, we
recall the result for genus 1 non-commutative curves and study the following question about the
semi-stability of genus 1 non-commutative curves.

Question 1. Are there stability conditions in the space of stability conditions of Db.Q/ for each
one of the following cases?

1. Neither one of the genus 1 non-commutative curves is �-semistable.

2. Each one of the genus 1 non-commutative curves is �-semistable, while the other one isn’t.

3. Both non-commutative curves of genus 1 are �-semistable.

We construct the stability conditions for each of these cases and thus prove the Proposition 12.15
given in [9] with its proof left for future work.
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While it is beyond the scope of this work, one would also be interested to find all the walls in
the space of stability conditions similar to those described above for Lagrangians and the complex
structures, such that when we pass through them, the number of semistable non-commutative curves
changes.

2 Triangulated categories

In this work, we use the definition of triangulated categories found for example in [3, p. 239]. We give
here the form of the octahedral axiom that we will use later: If one has the following commutative
diagram in a triangulated category T

E F G

A B
Œ1� Œ1�

Œ1�

(1)

with the triangles E;F;A and F;B;G being distinguished and the others being commutative,
then there exists an object F 0 with a diagram

E G

F 0

A B

Œ1�

Œ1�

Œ1�

; (2)

such that the upper and lower triangle are again distinguished and the left and right triangle are
commutative. The arrows A! E, E ! G, G ! B and B ! A are the same in both diagrams.

Remark 1. Using the axioms of a triangulated category one can also show that if one has a diagram
(2), then one can construct a diagram of the form (1), where the arrows A ! E and G ! B will
be the same and the arrows E ! G and B ! A will get an additional minus sign in the newly
constructed diagram.

If k is a field, we say that T is a k-linear category when for any two objects X; Y 2 Ob.T /, the
set Hom.X; Y / has a structure of a vector space, such that the composition is a bilinear operation. A
k-linear functor between two k-linear categories acts as a linear map on the morphism spaces. The
translation functor on a k-linear triangular category T will be most commonly denoted by affixing
Œ1� to the object/morphism (resp. morphism) that is being acted on. From now on every category
and functor we will be working with will be assumed to be k-linear unless specified otherwise. If E
is a class of objects in a triangulated category T , then hEi will denote the triangulated subcategory
of T generated by E . Let us begin by stating a lemma that will be used in later sections.

Lemma 2. If the diagram of distinguished triangles of the form

E F G

A B

gŒ1� Œ1�

f (3)

satisfies gŒ1� ı f D 0, then there exists another diagram of distinguished triangles of the following
form:

E F 00 G

B A
Œ1� Œ1�
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Proof. The commutative diagram

E F G

A B

gŒ1� Œ1�

f

Œ1�

0

gives by the octahedral axiom explained above the commutative diagram of distinguished triangles
of the form

E G

F 0

A B

Œ1�

Œ1�

0

Œ1�

:

By the vanishing of B ! A the lower triangle is a biproduct diagram (to recall what a biproduct
diagram is, see the proof of Lemma 11). Thus we can interchange A and B in the last diagram and
apply Remark 1 to get the following diagram:

E F 00 G

B A

gŒ1� Œ1�

Œ1�

Let us recall now the definition and the properties of t-structures.

Definition 3. Let T be a triangulated category and T �0, T �0 its strictly full subcategories. .T �0; T �0/
is called a t-structure on T when the following conditions are satisfied:

1. T �0 � T �1 where T �n D T �0Œ�n� .

2. T �1 � T �0 where T �n D T �0Œ�n� .

3. For any X 2 Ob.T �0/ and any Y 2 Ob.T �1/ one has Hom.X; Y / D 0 .

4. Let A 2 Ob.T /, then there exists a distinguished triangle E�0 �! E �! E�1 �! E�0Œ1�

where E�0 2 Ob.T �0/ and E�1 2 Ob.T �1/ .

Remark 4. For the definition of a t-structure, one could start equivalently just from T �0 and define
T �1 D fY 2 Ob.T /jHom.X; Y / D 08X 2 Ob.T �0/g requiring that the 1. and 4. axiom holds. The
other two axioms would be an obvious consequence of this definition. Conversely, if the t-structure
is given by the Definition 3 and Y is such that Hom.X; Y / D 0 for all X 2 Ob.T �0/, then acting
with the functor Hom.Y �0;�/ on the distinguished triangle Y �0 �! Y �! Y �1 �! Y �0Œ1� and
using the axioms 2. and 3. of the above definition, shows that Y �0 D 0 and thusly Y Š Y �1 and
Y 2 Ob.T �1/ . As such, we will label any given t-structure just by its first subcategory.

For a given t-structure T �0, one can define the truncation functors ��n W T ! T �n and ��n W
T ! T �n as described in [3, p. 279] for any integer n. The defining property is that for any object
X and any n 2 Z there exists a distinguished triangle

��n.X/ �! X �! ��nC1.X/ �! ��n.X/Œ1� : (4)

The functors ��n are right adjoint to the embedding functors of T �n, while the functors ��n are left
adjoint to the embedding functors of T �n.
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Remark 5. As a direct result of the definition of the truncation functors, one sees that for any
object X in T �n the following hold:

��n.X/ Š X ; ��nC1
.X/ D 0 :

For X in T �nC1 we also get:

��n.X/ D 0 ; ��nC1.X/ Š X

.

Additionally, one defines the heart of the t-structure to be the full subcategory A D T �0 \ T �0.
It is well known (see e.g.[3, p. 279]) that A is an abelian category with A

˛
�! B

ˇ
�! C being an exact

triple in A exactly when there exists a distinguished triangle A
˛
�! B

ˇ
�! C ! AŒ1� in T , such that

A;B, and C are objects of A.
We will be interested in a special kind of t-structures. A t-structure T �0 is bounded if

T D
[
i;j2Z

T �i;�j (5)

where T �i;�j D T �i \ T �j . In what follows, the t-structures we consider will be bounded. The
following proposition will be used repeatedly in this section the proof of which can be found in [4,
Proposition 8.1.8].

Proposition 6. Let m; n 2 Z.

1. If m � n, then we have ��m ı ��n Š ��n ı ��m .

2. If m < n, then ��m ı ��n D 0 D ��n ı ��m :

3. If m � n, then ��m ı ��n Š ��n ı ��m Š ��n and ��m ı ��n Š ��n ı ��m Š ��m .

Remark 7. One can show that ��m.T �n/ � T �n, ��m.T �n/ � T �n, ��m.T �n/ � T �n, ��m.T �n/ �
T �n for all n;m 2 Z.

Using this, the functor ��m;�n W T ! T �m;�n can be defined as ��m;�n D ��m ı ��n Š ��n ı ��m
for all m � n in Z. A special case of this functor is when m D n and we call it the n’th homology
functor Hn D ��n;�n W T ! AŒ�n� . By the result from [3, p. 283], saying that X 2 Ob.T �n/ if and
only if H i .X/ D 0 whenever i > n (and similarly for T �n), we see that

Ob.T �m;�n/ D
˚
X 2 Ob.T / jH i .X/ D 0 8 i W i < n or i > m

	
: (6)

T. Bridgeland states the lemma [5, Lemma 3.2] without proving it. For completeness, we give
the proof here.

Lemma 8. Let A � T be a full additive subcategory of the triangulated category T , then A is a
heart of some bounded t-structure T �0 � T if and only if the following two conditions hold:

1. If A 2 Ob.AŒi �/ and B 2 Ob.AŒj �/ where i > j , then Hom.A;B/ D 0 .

2. For any non-zero E 2 Ob.T / there exists a sequence i1 > i2 > : : : > in and a filtration

0 E1 E2 : : : En�1 E

A1 A2 An

Œ1� Œ1� Œ1�
(7)

such that Al 2 Ob.AŒil �/ are non-zero for all l and the triangles are distinguished.
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Proof. If there is such a bounded t-structure T �0 with its truncation functor and homology functors,
such that A is its heart, then the first condition follows directly from the third axiom of the Definition
3. For any object E we can find such integers i1 and m with �i1 � m, such that E 2 Ob.T �m;��i1)
and such that m is the largest integer for which Hm.E/ is non-zero and �i1 is the least such integer.
Using the property (4) we construct

���i1.E/ �! E �! ���i1C1.E/ �! ���i1.E/Œ1� :

From Remark 5, we see that E Š ���i1.E/. Together with the definition of the homology functors,
we obtain a distinguished triangle:

H�i1.E/ �! E �! ���i1C1.E/ �! H�i1.E/Œ1� (8)

and set A1 D H
�i1.E/ 2 Ob.AŒi1�/ and E 02 D ���i1C1.E/. By Proposition 6 and Remark 7, we see

that E 02 2 Ob.T �m;��i1C1/ . Now we can do the same with E 02, finding the least integer �i2 for
which H�i2.E 02/ ¤ 0. Using the Proposition 6, we see that H k.��m.E// Š H k.E/ whenever k � m,
thus the largest integer with non-vanishing homology of E 02 is the same as for E. Combining the
distinguished triangle (8) with the corresponding one for E 02, we have:

A1 E

E 02

H�i2.E 02/ ��i2C1.E
0
2/

Œ1�

Œ1�

Œ1�

: (9)

Here we again label the new objects, such that A2 D H
�i2.E 02/ Š H

�i2.E/ and E 03 D ��i2C1.E
0
2/ Š

��i2C1.E/. Using Remark 1 on (9), we construct the following diagram with a new object E2 at the
center:

A1 E2 E

A2 E 03

Œ1� Œ1�

Œ1�

(10)

We can now repeat this step until E 0n lies in AŒ�m� and rename it to An D E
0
n to obtain the diagram

(7).
Conversely, if the two conditions hold, define T �0 to be the full subcategory with object being

all E, such that in � 0, and the objects of the full subcategory T �0 are such E with i1 � 0. If E
has factors of the filtration given by Ai as in (7) then EŒ�n� has factors Ai Œ�n�. This shows that
T �n consists of objects with in � �n and T �n of objects with i1 � �n. As such, the axioms 1 and
2 of the Definition 3 follow immediately.

For the axiom 4, consider any object E of the form (7). We now want to merge all the factors Al
where il � �1 into one single factor. The first step is to use the octahedral axiom on the diagram

En�2 En�1 E

An�1 An

Œ1� Œ1�

Œ1�
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to obtain
En�2 E

G1

An�1 An

Œ1�

Œ1�

Œ1�

:

Thus constructing the factor G1 with filtration consisting of factors An�1 and An. In the same way
we can apply to octahedral axiom to merge An�2 with G1 to get G2 which has a filtration with the
factors An�2, An�1 and An. Repeating this until G D Gk is the object with filtration with all factors
Al such that ik � �1, we get a distinguished triangle

Es �! E �! F �! EsŒ1� ;

where s is the largest integer such that is � 0. We see that Es is an object of T �0 and G lies in
T �1.

Finally, consider E 2 Ob.T �0/ and F 2 Ob.T �1/, where E has the form in 7 with in � 0 and
F has the filtration

0 F1 F2 : : : Fn�1 F

B1 B2 Bm

Œ1� Œ1� Œ1�

where Bl 2 Ob.AŒjl �/ and �1 � j1 > j2 > : : : > jm. We want to show now that Hom.E; F / Š
Hom.A1; F / Š Hom.A1; B1/ D 0. Acting with Hom.Ai ;�/ on the first distinguished triangle from
the right of the above diagram, we obtain an exact sequence:

Hom.Ai ; BmŒ�1�/ �! Hom.Ai ; Fn�1/ �! Hom.Ai ; F / �! Hom.Ai ; Bm/ : (11)

Ifm > 1 then both the left and right term of the above sequence vanish and we have Hom.Ai ; Fn�1/ Š
Hom.An; F /. Using this argument repeatedly, we obtain Hom.Ai ; F / Š Hom.Ai ; B1/ D 0. If m D 1
the statement is a tautology. Now act with the functor Hom.�; F / to get the exact sequences

0 D Hom.Ai ; F / �! Hom.E; F / �! Hom.En�1; F / (12)

showing that Hom.E; F / is a sub-object of Hom.En�1; F /. Applying this repeatedly we see that
Hom.E; F / � Hom.A1; F / D 0 and the axiom 3 then follows.

Remark 9. If the two conditions of the above lemma hold, then the filtration (7) of an object E is
unique up to an isomorphism of the diagrams. To see this, consider a morphism E ! E 0. Allowing
the factors Ai and A0i of E and E 0 respectively to be zero if necessary, so that E has a factor in Al
if and only if E 0 has one, we get filtration of E and E 0 of the same length with some steps being
extensions by 0. The diagram for E 0 is now the same as (7) with Ei replaced by E 0i and Ai by A0i .
From the proof of Lemma 8, we see that Hom.En�1; A

0
n/ D 0 D Hom.En�1; A

0
nŒ�1�/. And the exact

sequence

Hom.En�1; A
0
nŒ�1�/ �! Hom.En�1; E

0
n�1/ �! Hom.En�1; E

0/ �! Hom.En�1; A
0
n/

tells us that there is an isomorphism Hom.En�1; E
0
n�1/ Š Hom.En�1; E

0/ given by post-composing
with the morphism E 0n�1 ! E 0. Thus there is a unique morphism En�1 ! E 0n�1, such that the
compositions En�1 ! E ! E 0 and En�1 ! E 0n�1 ! E 0 are equal. The two morphisms E ! E 0 and
En�1 ! E 0n�1 can be completed to a morphism of the distinguished triangles by a unique morphism

8



An ! A0n: The existence of this morphism follows from the axiom of the triangulated category, while
the uniqueness follows because of the exact sequence

Hom.En�1; A
0
n/ �! Hom.An; A

0
n/ �! Hom.E;A0n/ ;

where the vanishing of the first term implies the injectivity of the second arrow. Repeating this
argument extends this to a unique morphism of the diagrams of E and E 0, thus if applied to the
identity E ! E, the result follows.

Remark 10. The previous remark together with Lemma 8 imply that there is a one to one corre-
spondence between bounded t-structures and their hearts.

3 Derived categories

In this work, we are interested in bounded derived categories as examples of triangulated categories.
Let A be an abelian category and Comb.A/ the category of its bounded complexes. The bounded
derived category Db.A/ of A is a category with a functor Q W Comb.A/! Db.A/ which maps every
quasi-isomorphism to an isomorphism, and every functor that has this property factorizes through
Db.A/ with respect to Q. It can be constructed as the localization Db.A/ D Kb.A/ŒS�1� of the
homotopy category of bounded complexes Kb.A/ by the localizing class S of quasi-isomorphisms.
The functor J W A! Db.A/ that maps every object A to a complex KA where K0A D A and KiA D 0
for all nonzero integers i and acts in an obvious way on morphisms, is a fully faithful functor. As
such, we will view A as a subcategory of Db.A/ and its objects as the corresponding 0-complexes.

Using the standard homology functors on Db.A/ which we will denote H i W Db.A/ ! A, one
can define the the standard t-structure:

D�0.A/ D
˚
X 2 Ob

�
Db.A/

�
jH i .X/ D 0 8 i > 0

	
;

D�0.A/ D
˚
X 2 Ob

�
Db.A/

�
jH i .X/ D 0 8 i < 0

	
:

(13)

The proof of it solving the axioms for a t-structure can be found in [3, p. 278, Proposition 3] . The
heart of this t-structure is equivalent to A as a category and contains it, so it is its closure under
isomorphisms. We can view the heart as the abelian category itself.

An abelian category is said to be semisimple when its short exact sequences split (all short exact
sequences can be completed into biproduct diagrams - we recall what this means in the proof of
Lemma 11). In a special case of A being semisimple, one can simplify its bounded derived category.

Lemma 11. Let A be a semisimple abelian category, then its bounded derived category Db.A/ is
equivalent to the full subcategory Comb0.A/ whose objects are the bounded complexes with 0 boundary
maps.

Proof. We construct an equivalence functor of the category Db.A/ and the full subcategory whose
objects are the bounded complexes with 0 boundary maps and denote this full subcategory by
Comb0.A/. Let the functor H � W Db.A/ ! Comb0.A/ be defined by connecting to every complex
.K�; d / the complex .H �.K/; 0/ of its cohomologies, and acting on morphisms in the obvious way.
The equivalence inverse is then the functor I W Comb0.A/ ! Db.A/ which maps every complex to
itself as viewed in the derived category. We now have that H � ı I D idComb

0
.A/, so we only need to

show that I ıH � is isomorphic to idDb.A/. For this, consider the short exact sequences

0 ker dn Kn im dn 0 ;
iKn qKn

(14)

0 im dn�1 ker dn Hn.K/ 0 ;
jKn pKn

(15)

given for any Kn where dn D iKnC1 ı jKnC1 ı qKn . As the category is semisimple, these can be
completed into the corresponding biproduct diagrams:
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ker dn Kn im dn
iKn

qKn

rKn

(16)

im dn�1 ker dn Hn.K/
jKn

tKn
pKn

sKn

(17)

Using these and dn ı iKn D 0, we can construct for every K� the morphisms:

iK� ı sK� W.H
�.K/; 0/! K�

.iK� ı sK�/
n
D iKn ı sKn WHn.K/! Kn :

To find Hn.iK� ı sK�/ W H
n.K/! Hn.K/, notice that the triple in (15) for H �.K/ becomes

0 Hn.K/ Hn.K/ :
id

The morphism .iK� ı sK�/
n W Hn.K/! Kn factorizes through ker dn by sKn W Hn.K/! ker dn,

so we are looking for a morphism represented by the right vertical arrow Hn.K/ ! Hn.K/ which
would make the diagram below commutative.

im dn�1 ker dn Hn.K/

0 Hn.K/ Hn.K/

jKn pKn

id

sKn

This morphism is the identity idHn.K/ W H
n.K/! Hn.K/ because sKn was the split monomor-

phism of the upper exact triple. Thus, we have constructed Hn.iK� ı sK�/ D idHn.K/, which shows
that iK� ı sK� is an isomorphism in the derived category.

Let us prove for any f W .K�; d /! .L�; c/ a morphism of complexes in Comb.A/ the commuta-
tivity of the following diagram in Db.A/.

H �.K/ H �.L/

K� L�

iK� ı sK�

H �.f /

f

iL� ı sL�

(18)

Using the diagram

ker dn Kn

ker cn Ln

iKn

f 0n fn

iLn

where f 0 is uniquely defined such that it is commutative, we get fn ı iKn ı sKn D iLn
ı f 0n ı sKn

Consider the commutative diagram used to define Hn.f /, where the first and second row can be
completed into biproducts.

im dn�1 ker dn Hn.K/

im cn�1 ker cn Hn.L/

jKn pKn

f 0n Hn.f /

jLn pLn

10



Notice that iLn ı

�
f 0n ı sKn � sLn ıHn.f /

�
D iLn ı jLn ı tLn ıf 0n ı sKn by using idker cn D jLn ı tLn C

sLn ı pLn . We can show that this difference is homotopic to 0. Consider the maps

un D rLn�1 ı tLn ı f 0n ı sKn W Hn.K/! Ln�1 :

It follows that cn�1 ı un D iLn ı jLn ı tLn ı f 0n ı sKn which ensures the commutativity of (18) in
Kb.A/.

A general morphism K� ! L� in Db.A/ is represented by the roof K�
q
 � M �

f
�! L� where q is

a quasi-isomorphism. The previous results implies the commutativity of the right and left rectangle
of the following diagram:

H �.K/ H �.M/ H �.L/

K� M � L�

H�.q/�1

iK�ısK�

H�.�/

iM�ısM� iL�ısL�

q f

(19)

This completes the proof.

4 Stability conditions on triangulated categories

4.1 Slicings and stability conditions

In this section, we mainly remind of the definitions and results introduced by T. Bridgeland in [5].

Definition 12. Let T be a triangulated category. A slicing P is a collection of strictly full additive
subcategories P.�/ given for any � 2 R, such that the following conditions hold:

1. P.�/Œ1� D P.� C 1/ .

2. If X 2 Ob
�
P.�/

�
and Y 2 Ob

�
P. /

�
where � >  , then Hom.X; Y / D 0 .

3. For any non-zero E 2 Ob.T / there exists a sequence �1 > �2 > : : : > �n and a diagram of
distinguished triangles

0 E1 E2 : : : En�1 E

A1 A2 An

Œ1� Œ1� Œ1�
(20)

where Ai 2 Ob
�
P.�i /

�
are non-zero.

Remark 13. The uniqueness of the diagram (20) for any object E is demonstrated in the same way
we illustrated it in Remark 9 for the filtration with respect to a t-structure. We call this diagram the
Harder-Narasimhan filtration of E.

Every object X in P.�/ for some � is called semistable, and we write �P.X/ D �. The class of
all semistable objects is labeled Pss. Next, by the uniqueness remark above, one defines for any E
with the HN filtration given by (20) the quantities �CP .E/ D �1 and ��P.E/ D �n .

Proposition 14. Let P be a slicing of a triangulated category T , then P.�/ are closed under
extensions for all � 2 R.

Proof. Let A and A0 be in P.�/ and E their extension: A �! E �! A0 �! AŒ1� . Using the
arguments from the proof of Lemma 8, we see that for any two objects X and Y with ��.X/ > �C.Y /
the space Hom.X; Y / is trivial. Thus �C.E/ < � would imply that A! E vanishes and A0 D AŒ1�˚E

11



while simultaneously Hom.AŒ1�; A0/ D 0, which presents a contradiction. A similar argument applies
to the case ��.E/ > �, and we conclude for now that ��.E/ � � � �C.E/ .

Suppose, the filtration of E is given by (20) where we assume now that �.An/ < � holds. The
composition A ! E ! An equals the zero morphism and so the morphism E ! An factors via
A0 and is must itself be 0, which gives a contradiction: If the morphism E ! An is zero, then we
have En�1 D E˚AnŒ�1� which has the HN filtration with factors A1; : : : ; An�1; An; AnŒ�1� but also
one with factors A1; : : : ; An�1. From the uniqueness in the Remark 13, we get the contradiction.
Assuming that �.E1/ > � leads to the arrow E1 ! E being a zero morphism, too. Summarizing
our results, we see that �C.E/ D � D ��.E/, and E also lies in P.�/.

If I � R is an interval, then we will denote the extension closure containing all P.�/ with � 2 I
by P.I /.

Remark 15. The subcategory P.I / can be explicitly given as the full subcategory containing all
objects E, such that �C.E/; ��.E/ 2 I . Obviously, every such object lies in P.I /. Conversely, let
A and B be two objects with �˙.A/; �˙.B/ 2 I . Using the method from the proof of Proposition 14
yields for any extension A �! E �! B �! AŒ1� that the following inequalities must hold:

��.A/ � ��.E/ � �C.E/ � �C.B/ : (21)

Thus we can assert that this full subcategory is closed under extensions, and so it must coincide with
P.I /.

If I is the unbounded interval .�1; b�, .�1; b/, Œa;1/, or .a;1/ then the corresponding P.I / is
denoted by P.� b/, P.< b/, P.� a/, or P.> a/. They are of special interest as they give t-structures
on T . Indeed, let T �0 WD P.� a/ and T �1 WD P.< a/ (resp. T �0 WD P.> a/ and T �1 WD P.� a/),
then all four axioms can be seen to be true from the previous results. The heart of this t-structure
is P

�
Œa; aC 1/

�
(resp. P

�
.a; aC 1�

�
) and so it will be an abelian subcategory for any a 2 R. We will

call P
�
.0; 1�

�
the heart of a t-structure.

In addition to the concept of slicing, we require the definition of a Grothendieck group of a
triangulated category.

Definition 16. Let T be a triangulated category, its Grothendieck group is an abelian group K0.T /
with a map i W Ob.T /! K0.T /, such that i.B/ D i.A/C i.C /, whenever A �! B �! C �! AŒ1� is
a distinguished triangle. Further it has the universal property that if � W Ob.T /! H is a map into
an abelian group solving the same requirement as i , then there exists a unique group homomorphism
Q� W K0.T /! H , such that � D Q� ı i .

Remark 17. Notice that up to a group isomorphism, K0.T / is uniquely given by an abelian group
generated by the isomorphism classes of objects of T with the relations ŒB� D ŒA� C ŒC � for all
distinguished triangles. The map i acts by connecting the corresponding class i.A/ D ŒA�. We will
usually omit writing the brackets or i and simply denote the class by A.

Now the definition of stability conditions on T can be given.

Definition 18. Let T be a triangulated category. A pair � D .Z;P/, where P is a slicing on T and
Z W K0.T / ! C is a group homomorphism, is said to be a stability condition on T when for any
non-zero A 2 Pss there exists such m� .A/ 2 R>0, such that

Z.A/ D m� .A/exp
�
i��P.A/

�
: (22)

The homomorphism Z is then called the central charge of � .

For a stability condition � D .Z;P/ we will write � ss D Pss and every A 2 � ss will be called
�-semistable. Additionally, we denote �� .A/ D �P.A/ and �˙� .E/ D �

˙
P .E/ for any non-zero object

E. If E is a non-zero object with its HN filtration given by (20) with respect to the slicing P, then
we define

m� .E/ D

nX
iD1

m� .Ai / : (23)

12



One is usually interested in a special case of stability conditions called locally finite. For that, we
need to introduce quasi-abelian categories.

Definition 19. Let A be an additive category with kernels and cokernels (thus also with pullbacks
and pushouts). For any morphism f W A! B, consider the canonical factorization

ker.f / �! A �! coim.f / �! im.f / �! B �! coker.f / ;

then f is said to be strict when coim.f / ! im.f / is an isomorphism. We call A quasi-abelian
when every pullback of a strict epimorphism is a strict epimorphism and every pushout of a strict
monomorphism is a strict monomorphism.

For a quasi-abelian category A, one defines strict subobjects of an object B to be given by strict
monomorphisms A ! B and strict quotients by strict epimorphisms B ! C . One says that A is
noetherian (resp. artinian) when every ascending (resp. descending) sequence of strict subobjects
stabilizes. If A is both neotherian and artinian, then it is said to be of finite length. The following
result explains why we are interested in this concept.

Lemma 20. [5, Lemma 4.3] Let P be a slicing on a triangulated category T and I an interval of
length less than one, then the category P.I / is quasi-abelian.

Finally, we are able to specify the stability conditions that we are going to be interested in.

Definition 21. A stability condition � D .Z;P/ on a triangulated category T is locally finite when
there exists such 1=2 > " > 0, such that for all � 2 R the quasi-abelian categories P

�
.� � "; � C "/

�
are of finite length. The set of locally finite stability conditions on T will be denoted by Stab.T / .

4.2 Stability conditions on Db.A1/

Using just these definitions and simple results thus far, let us address an example of the simplest
derived category and its stability conditions. For a quiver Q its category of representations Repk.Q/
over the field k is an abelian category, and as such we may consider its derived category which we
will label Db.Q/ D Db

�
Repk.Q/

�
. The quiver A1 is the simplest quiver with a single vertex and no

arrows. We claim that we can replace the set Stab
�
Db.A1/

�
by a complex plain under a bijection. But

before we show this, let us remind the reader of the concept of exact functors between triangulated
categories.

If T1 and T2 are triangulated categories, an exact functor from T1 to T2 a pair consisting of an

additive functor F W T1 ! T2 and an isomorphism of functors � W F ı T1
�
�! T2 ı F where Ti is the

shift functor on Ti , and for any distinguished triangle

A B C AŒ1�
f

in T1, the triangle

F.A/ F.B/ F.C / F.A/Œ1�
�.A/ıF.f /

is distinguished in T2. Moreover, an equivalence is an exact functor .F; �/ whose underlying functor
F is an equivalence of categories. If G W T2 ! T1 is the inverse of F then it is a well known fact that
there exists a � such that .G; �/ is an exact equivalence (see [10, Section 3.2] for more details). The
following proposition is well known . For the sake of completeness, we give details of the proof here:

Proposition 22. Let F W T1 ! T2 be an exact equivalence and G its inverse, then it induces a
bijection between the sets of locally finite stability conditions Stab.T1/ and Stab.T2/.

Proof. First, notice that F induces an isomorphism of groups ŒF � W K0.T1/! K0.T2/ by ŒF �. ŒA� / D
ŒF .A/� with the inverse ŒG� defined in the same way. This follows directly from the definition of
the exact equivalence and the definition of the Grothendieck group. The bijection is then defined

13



by � D .Z;P/ 7! � 0 D .Z0;P 0/, where Z0 D Z ı ŒG� (or equivalently Z0 ı ŒF � D Z), and P 0.�/ D
F
�
P.�/

�
, where the over-line denotes the closure under isomorphisms.

We want to show that .Z0;P 0/ is indeed a locally finite stability condition. Let us start with the
axioms of the Definition 12.

1. P 0.�/Œ1� D F
�
P.�/

�
Œ1� D F

�
P.�/Œ1�

�
D P 0.� C 1/, where we have used for the second to last

equality that F ı T1 Š T2 ı F .

2. For any X 0i 2 Ob
�
P 0.�i /

�
there exist Xi 2 Ob

�
P.�i /

�
, such that X 0i Š F.Xi /. From F being

an equivalence, we get Hom.X 01; X
0
2/ D Hom.X1; X2/ and thus it vanishes if �1 > �2 .

3. For any E 0 2 Ob.T2/ there exists an E 2 Ob.T1/, such that E 0 Š F.E/. Let E have a filtration
with respect to P given by (7), then by exactness of F , E 0 has a filtration with the factors
F.Ai /.

Now, Z0 is obviously a group homomorphism, and for any A0 in P 0.�/ take an A in P.�/, such that
A0 Š F.A/. This gives us that Z0.A0/ D Z0

�
F.A/

�
D Z

�
G ı F.A/

�
D Z.A/. We conclude that � 0 is

a stability condition. To complete the proof, we only need to show that if P
�
.� � "; � C "/

�
are the

quasi-abelian finite length categories for some " > 0 and all �, then the isomorphism closure of their
image is again a quasi-abelian finite length category corresponding to P 0

�
.��"; �C"/

�
. It is obvious

that the isomorphism closure of the image coincides with this subcategory. Next, every distinguished
triangle which lies completely in P 0

�
.� � "; � C "/

�
corresponds to one in P

�
.� � "; � C "/

�
, and so

every strict subobject corresponds to a strict subobject in P
�
.��"; �C"/

�
. Thus both the ascending

and descending sequence of subobjects must stabilize as it does in P
�
.� � "; � C "/

�
.

We have shown that � 0 2 Stab.T2/, but acting with G on it in the same way, we will get back � .
This proves that the above described map is a bijection.

Lemma 23. For the triangulated category Db.A1/ one has a bijection

Stab
�
Db.A1/

�
 ! C : (24)

Let k be the object in Db.A1/ which is the simple representation of A1 connecting to the vertex the
field k itself, then k is semistable for any stability condition � . A bijection from the left side to the
right side is then given by

� D .Z;P/ 7! log
�ˇ̌
Z.k/

ˇ̌�
C i��� .k/ : (25)

Proof. We notice that Db.A1/ D D
b.Vectk/ is a derived category of a semisimple abelian category

Vectk of k vector spaces. In the view of Lemma 11 one concludes that Comb
0.Vectk/ is an equivalent

full subcategory of Db.A1/. It inherits the translation functor and the distinguished triangles from
the derived category and with this structure becomes an equivalent triangulated category to Db.A1/.
We may replace Db.A1/ by Comb

0.Vectk/ when trying to find the stability conditions on Db.A1/,
since the set of stability conditions does not change under equivalence of triangulated categories.
From now on, we write T D Comb

0.Vectk/.

Using that every direct sum gives a distinguished triangle

A! A˚ B ! B ! AŒ1� ;

we see that the classes represented by these complexes in the Grothendieck group of T solve ŒA˚B� D
ŒA�C ŒB�. Any complex in T can be written as a direct sum of kŒ i �. Especially, we get that

ŒK�� D
X
i

.�1/i dim.Ki /Œ k�:

Thus Œ k� is the generator of K0.T / and any Z W K0.T /! C is uniquely given by Z.k/.
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Now we want to show that only complexes which have zero terms everywhere but at i ’th position
for some i 2 Z (or i -complexes) can form the subcategories P.�/ of any slicing P on T . Assume
that there is a � 2 R, such that P.�/ contains a complex K� with Ka ¤ 0 and KaCn ¤ 0 for some
n > 0 and a 2 Z. By the definition of a slicing K�Œn� lies in P.�C n/, but also Hom.K�Œn�;K�/ ¤ 0,
which is a contradiction. Additionally, using the same arguments one can show that

(i) only the i -complexes for a given i 2 Z can be in P.�/ for a given � 2 R

(ii) if P.�/ ¤ f0g then P.�0/ ¤ f0g if and only if .�0 � �/ 2 Z.

A final step in finding all possible slicings is to show that the complex k is semi-stable with
respect to any slicing P. To do so, assume the opposite. Then k has a Harder-Narasimhan filtration
of length larger than or equal to 2. Any 0-complex is a direct sum

K� D

dimK0M
iD1

k :

The direct sum of two distinguished triangles is again a distinguished triangle. That is, if A1 !
B1 ! C1 ! A1Œ1� and A2 ! B2 ! C2 ! A2Œ1� are distinguished then so is

A1 ˚ A2 ! B1 ˚ B2 ! C1 ˚ C2 ! A1Œ1�˚ A2Œ1� :

Thus we can take the corresponding direct sum of the HN sequence of k to be the HN filtration of
length larger than or equal to two of the 0-complex K�. As a result, any 0-complex is not semi-stable,
and especially any i -complex is not semi-stable. This tells us then that P.�/ D f0g for all � 2 R,
but this would not yield a HN sequence for any non-zero complex.

Combining the previous results, we can say that any stability condition � D .Z;P/ on D is given
uniquely by jZ.k/j ¤ 0 and �P.k/, since then Z.k/ D jZ.k/jei��P .k/ and P has the form:

P. / D
�
fi -complexesg if  D �P.k/C i
f0g otherwise

:

These are indeed stability conditions by construction for any given jZ.k/j 2 R>0 and �P.k/ 2 R.
Take now the subcategories P.� � 1=2; �C 1=2/ for all �. They are either trivial or correspond to a
single P.�0/ for some �0 2 .� � 1=2; �C 1=2/. But then it is either f0g or Vectk and as such is finite
length. Thus the map .Z;P/ 7! log

�
jZ.k/j/C i��P.k/ is indeed a bijection from Stab.T / to C.

Remark 24. One should note that the equivalence of Db.A1/ and Comb
0.Vectk/ is not necessary

for the proof and the same goes for the statement that exact equivalences give same sets of stability
conditions. It would’ve been enough to work out that every object of Db.A1/ is isomorphic to a direct
sum of kŒi �.

4.3 Stability conditions in terms of hearts of bounded t-structures

In this subsection, we discuss a method for finding stability conditions which relies on working with
hearts of bounded t-structures. For this, we first need to introduce stability functions on abelian
categories and their Harder-Narasimhan property.

The Grothendieck group K0.A/ of an abelian category A is defined by replacing the distinguished
triangles in Definition 16 by short exact sequences. Let us also denote by H the upper half-plane of
C : H D frei�� j r > 0; 0 < � � 1g . If z 2 H, then arg.0;1�.z/ is the unique real number � 2 .0; 1�

such that z D jzjei�� .

Definition 25. A stability function on an abelian category A is a group homomorphism Z W

K0.A/ ! C, such that for any non-zero object A of A its image Z.A/ lies in H. For a given
stability function Z on A and a non-zero A 2 Ob.A/ , we will write �Z.A/ WD arg.0;1�

�
Z.A/

�
. Such

an object A is called semistable with respect to Z when for any non-zero subobject A0 ! A we have
the inequality �Z.A

0/ � �Z.A/ .
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Notice that the definition of a semistable object is equivalent to saying that for any non-zero
quotient A! A00 one has �Z.A

00/ � �Z.A/. This implies that if A and B are semistable, then there
exists a non-zero morphism A! B if and only if �Z.B/ � �Z.A/, which follows from writing out the
factorization of the morphism in the abelian category. A Harder-Narasimhan filtration of a nonzero
object E is a finite sequence of subobjects

0 D E0 � E1 � E2 � : : : � En�1 � E ; (26)

such that every factor Aj D Ej =Ej�1 is semistable and �Z.A1/ > �Z.A2/ > : : : > �Z.An/ . This
filtration is again unique up to isomorphisms, if it exists.

Definition 26. A stability function Z on an abelian category A is said to have the Harder-
Narasimhan property, when for every non-zero object, there exists a Harder-Narasimhan filtration.

The following condition describes cases for which a stability function has the Harder-Narasimhan
property.

Proposition 27. [5, Proposition 2.4] Let A be an abelian category with a stability function Z, then
Z has the Harder-Narasimhan property if the following two conditions hold:

1. There is no infinite sequence of subobjects

: : : � EiC1 � Ei � : : : � E1 � E0

with �Z.EiC1/ > �Z.Ei / .

2. There is no infinite sequence of quotients

F0 � F1 � : : :� Fj � FjC1 � : : :

with �Z.FjC1/ < �Z.Fj / .

Remark 28. Notice that this particularly implies that for a finite length abelian category every
stability function has the HN-property.

An important result proven in [5, Proposition 5.3] states that if T is a triangulated category,
then there is the following bijection:�

Stability
conditions on T

�
 !

8<: Pairs consisting of
a heart of a bounded t-structure and

a stability function on it with the HN property

9=; (27)

The central charges of stability conditions and the stability functions are related in this bijection by
using that K0.A/ can be identified with K0.T / when A is the heart of a bounded t-structure on T
(this can be seen from Lemma 8). The bijection assigns to every stability condition � D .Z;P/ its
heart P

�
.0; 1�

�
and the corresponding stability function with the HN property on it. In the reversed

direction, it assigns to every heart of a bounded t-structure A a slicing P, such that P.�/ is the
full additive subcategory of semistable objects in A with respect to its stability function with the
argument � for all � 2 .0; 1�.

4.4 Spaces of stability conditions

Here we want to summarize the results from [5] stating that Stab.T / can be endowed with a topology
and a complex structure. We show that then Stab

�
Db.A1/

�
is biholomorphic to C.

Firsly, one needs to define for any .Z;P/ D � 2 Stab.T / the generalized norm

jj � jj� W Hom
�
K0.T /;C

�
! Œ0;1� ;
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such that for any U 2 Hom
�
K0.T ;C/

�
jjU jj� D sup

�
jU.E/j

jZ.E/j
W E 2 � ss

�
: (28)

Additionally, one defines a generalized metric d on the set of locally finite slicings. Let P and Q be
such two slicings of T , then:

d.P;Q/ D sup
˚
j��P.E/ � �

�
Q.E/j; j�

C
P .E/ � �

C
Q.E/j W E nonzero object in T

	
: (29)

The sets
B".�/ D

˚
.W;Q/ D � 2 Stab.T / W jjW �Zjj� < sin.�"/ and d.P;Q/ < "

	
(30)

when taken for all � 2 Stab.T / and 1=8 > " > 0, form a basis of a topology on Stab.T / (see [5,
p. 335]. If † is a connected component of Stab.T / with the above topology, then the generalized
norms jj � jj� are related for all � 2 †, and so the subspace V† of all the U 2 Hom.K0.T ;C/ with a
finite norm jjU jj� for some � 2 † is uniquely given for †. The main result now states:

Theorem 29. [5, Theorem 1.2] Let T be a triangulated category, † a connected component of
Stab.T / with its associated complex subspace V† � Hom

�
K0.T /;Z

�
, then the projection of a stability

condition onto its central charge † ! V†; .Z;P/ 7! Z is a local homeomorphism and thus induces
a unique complex structure on † .

Now that we see that the connected components of the space of stability conditions are complex
manifolds, we want to apply this to the example Db.A1/. For this, we will rely on the following
result.

Proposition 30. [5, Proposition 8.1] Let T be a triangulated category. The topology on the space
of stability conditions Stab.T / is induced by the generalized metric qT , where for all � D .Z;P/; � D
.W;Q/ 2 Stab.T / one defines

qT .�; �/ D sup
˚
j�C� .E/ � �

C
� .E/j; j�

�
� .E/ � �

�
� .E/j;

ˇ̌̌
log

m� .E/

m� .E/

ˇ̌̌
W 0 ¤ E 2 Ob.T /

	
: (31)

Remark 31. Proposition 22 can be extended to state that any exact equivalence F W T1 ! T2
with its inverse G induces a biholomorphism between Stab.T1/ and Stab.T2/. Using the bijection
� 7! � 0 constructed in its proof, one sees immediately that qT2

.� 0; � 0/ D qT1
.�; �/ . Thus this map is

a homeomorphism. Restrict it to be a homeomorphism between the connected component † and the
connected component †0 which is its image. In the local charts induced by the local biholomorphism
from Theorem 29 this map takes the form Z 7! Z ı ŒG�. So, it is simply a restriction of an
isomorphism of vector spaces and thus a biholomorphism to its image.

Using this we obtain the main result of this subsection.

Theorem 32. The space of stability conditions Stab
�
Db.A1/

�
is connected and biholomorphic to C.

Proof. Let us first find the topology on C induced by the bijection (25). If � and � are stability
conditions mapped to x1C iy1 and x2C iy2 in C under the map, the metric distance between them
is given by

qT .�; �/ D sup
0¤K�2D

n
jy1 � y2j;

ˇ̌̌
log

m� .K
�/

m� .K�/

ˇ̌̌ o
:

But we can simplify the second term using that

m� .K
�/ D

X
i

dimKi jZ.k/j D ex1

X
i

dimKi :
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Thus, we get the following induced metric on C:

q.x1 C iy1; x2 C iy2/ D qT .�; �/ D max
˚
jy1 � y2j; jx1 � x2j

	
:

This metric is equivalent to the standard one and gives the standard topology on C, therefore (25)
is a homeomorphism. We now have the commutative diagram

Stab.T / .C; g/

C

�

p exp

where � is the map (25), .C; g/ is the complex plane with standard topology and complex structure
g induced by �, and p is the composition of .Z;P/ 7! Z and Z 7! Z.k/. The arrow labeled exp is
the standard exponential map on C which we see is a local biholomorphism with respect to g by the
commutativity. There is a unique complex structure on C with the standard topology that makes
exp into a local biholomorphism which is the standard complex structure. These results tell us that

Stab
�
Db.A1/

�
Š Stab.T / Š C :

5 Exceptional objects and mutations

5.1 Exceptional objects in derived categories of quiver representations

Let T be a triangulated category and X; Y its two objects, then we will write Homi .X; Y / D

Hom.X; Y Œi �/ and homi .X; Y / D dimk

�
Homi .X; Y /

�
. An object E is said to be exceptional when

homi .E;E/ D 0 except when i D 0, and hom0.E;E/ D 1. An exceptional collection of length nC 1
is a collection of exceptional objects E D .E0; E1; : : : ; En/, such that homl .Ei ; Ej / D 0 whenever
i > j and l 2 Z. Additionally, one calls it full when it generates T as a triangulated subcategory,
and strong when homl .Ei ; Ej / D 0 for all 0 � i; j � n and l ¤ 0.

One defines an equivalence relation on exceptional objects by E � F if and only if there exists
an i 2 Z, such that E Š F Œi�. Similarly, two exceptional collections E D .E0; : : : ; En/ and F D
.F0; : : : ; Fn/ of length nC1 are equivalent and we write E � F if and only if Ei � Fi for all 0 � i � n.
An exceptional collection of length 2 is called an exceptional pair.

As we will be working with derived categories of representations on quivers, we will have the
following lemma at our disposal.

Lemma 33 ([6]). Let Q be an acyclic quiver with q vertices and Db.Q/ the derived category of its
representations, then every exceptional object lies in Repk.Q/Œi � for some i 2 Z. Moreover, every
full exceptional collection has length q.

For further discussion we need the Euler form of a finite quiver Q. Let Q1 be its set of vertices
which for us is going to be f1; 2; : : : ; qg for some q 2 N and Q2 its set of arrows. If ˛ 2 Q2, then
s.˛/ denotes the vertex where it starts and f .˛/ the one where it ends. One now has a bilinear map
h�;�i W Zq � Zq ! Z called the Euler form defined by

hx; yi D
X
i2Q1

xiyi �
X
˛2Q2

xs.˛/yf .˛/ : (32)

Additionally, for every representation X in Repk.Q/, we have the dimension vector

dim.X/ D
�

dim.X1/;dim.X2/; : : : ;dim.Xq/
�
: (33)

The following result will become important in the last section.

18



Lemma 34. [7, p. 8] Let Q be a finite acyclic quiver, then Repk.Q/ is a hereditary category, that
is, for any two of its objects X and Y , homi .X; Y / vanishes whenever i ¤ 0; 1. If X and Y are
representations, then

hdim.X/;dim.Y /i D hom.X; Y / � hom1.X; Y / : (34)

Thus especially for any exceptional representation E, we have hdim.E/; dim.E/i D 1.

Solutions of the equation h˛; ˛i D 1 are called real roots. When h˛; ˛i � 0, we say that the ˛ is
an imaginary root.

Lemma 35. [14] Let Q be a finite acyclic quiver, then the dimension vector of any indecomposable
representation of Q is a real or imaginary root of its Euler form.

Lemma 36. [7, p. 13] Let Q be a finite quiver with q vertices and no cycles. There exists at
most one representation X (up to isomorphisms) with a given dimension vector x 2 Zq, such that
hom1.X;X/ D 0.

5.2 Mutations of exceptional pairs

Left and right mutations of exceptional pairs allow us to construct new exceptional pairs and give
an action on the equivalence classes of exceptional pairs. From now on, we will assume that the
triangulated categories we are working with are proper. That is, the sum

L
i2Z Homi .X; Y / is finite

dimensional over k for any two objects X; Y 2 T .
Let .E; F / be an exceptional pair of objects in T , then one constructs

Hom�.E; F /˝k E D
M
i2Z

EŒ�i �hom
i .E;F / : (35)

The space of morphisms from this object into F can be expressed as:

Hom
�
Hom�.E; F /˝k E;F

�
Š

M
i2Z

Hom.EŒ�i �; F /hom
i .E;F /

Š

M
i2Z

Endk

�
Hom.E; F Œi �/

�
: (36)

We can now choose the respective identities in Endk

�
Hom.E; F Œi �/

�
for all i which determines an

element in Hom.Hom�.E; F / ˝k E;F / up to an isomorphism. This morphism will be called the
canonical morphism can-E;F . There exists a distinguished triangle induced by canE;F :

LEF Hom�.E; F /˝k E F LEF Œ1� :
canE;F

(37)

The resulting object LEF is called the left mutation of the exceptional pair .E; F /. The pair
.LEF;E/ can be shown to be exceptional again.

Lemma 37. Let .E; F / be an exceptional pair of objects and LEF its left mutation then .LEF;E/
is also an exceptional pair. Additionally, if .E; F / is full (resp. strong) then so is .LEF;E/.

Proof. The second part of the statement follows from the defining equation (37) which shows that
F is an extension of Hom�.E; F /˝k E and LEF Œ1�.

Next, consider the functor Homl .E;�/ acting on canE;F . Notice that when we defined canE;F
we have used the isomorphism Endk.V / Š V

dim.V / which is given with respect to a basis fvig of V ,
and to any A 2 Endk.V / it connects .Av1; Av2; : : :/. So, for the identity on Hom.E; F Œi �/ we get
.�1; �2; : : :/ where �j form a basis of Hom.E; F Œi �/. The map

Homl .E; canE;F / W Homl .E;Hom�.E; F /˝k E/! Homl .E; F /
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can now be shown to be an isomorphism. First, we notice that

Homl .E;Hom�.E; F /˝k E/ Š
M
i2Z

Homl�i .E;E/hom
i .E;F /

Š Hom.E;E/hom
l .E;F / :

Any element of this space of morphisms is then expressed as a vector of scalar multiples of the
identity on E: .�1idE ; �2idE ; : : :/. Composing this with canE;F Œl �, the result becomes the sumPhoml .E;F /
iD1 �i�i where f�ig is the basis of Homl .E; F /. So, the linear homomorphism induced by

the composition is an isomorphism. By the exactness of the sequence

0! Hom.E;LEF /! Hom.E;Hom�.E; F /˝k E/
�
�! Hom.E; F /! : : :

: : :! Homl .E;LEF /! Homl .E;Hom�.E; F /˝k E/
�
�! Homl .E; F /! : : :

we see that Homl .E;LEF / D 0 for all l 2 Z. We can use this result when applying the functor
Hom.�; LEF / to get an exact sequence

0! Homl .LEF;LEF /! HomlC1.F;LEF /! 0

for all l . Next, one uses Homl .F;E/ D 0 and the functor Hom.F;�/ to obtain for all l the exact
sequence

0! Homl .F; F /! HomlC1.F;LEF /! 0 :

Together these two sequences show that LEF is an exceptional object, because Homl .LEF;LEF / Š

Homl .F; F / for all l .
Finally if .E; F / is strong, then we apply the functor Hom.�; E/ to the triangle (37), giving us

that Homl .LEF;E/ Š Hom.E;E/hom
�l .E;F / which concludes the proof.

Similarly, one defines the right mutation RFE using the object

Hom�.E; F /� ˝k F D
M
i2Z

F Œi�hom
i .E;F /

and the distinguished triangle

E Hom�.E; F /� ˝k F RFE EŒ1� ;
can�

E;F
(38)

where one uses that Hom.E;Hom�.E; F /� ˝k F / is isomorphic to the right hand side of (36), and
can�E;F is again represented by the identities in Endk

�
Homi .E; F /

�
. Slightly altering the proof of the

Lemma 37, shows that .F;REF / is again an exceptional pair (full or strong if .E; F / is). Mutations
can be also generalized to exceptional collections of length n C 1. Let E D .E0; : : : ; En/ be an
exceptional collection, then we will denote

LiE D .E0; : : : ; LEi
EiC1; Ei ; : : : ; En/ ;

RiE D .E0; : : : ; EiC1; REiC1
Ei ; : : : ; En/ :

These are again exceptional collections of the same length. From [8, Corollary 1.6] one knows that Ri
and Li are inverse to each other, and that RiRiC1Ri D RiC1RiRiC1, and LiLiC1Li D LiC1LiLiC1.
Thus left and right mutations define an action of a braid group on exceptional collections of a given
length. Moreover one has the statement:

Theorem 38. [6] If Q is an acyclic quiver with n vertices, then any orbit of the action of the braid
group on full exceptional collections of its derived category Db.Q/ described above intersects every
equivalence class of the full exceptional collections of length n.

This result allows one to find all exceptional collections of the maximal length and all exceptional
objects in derived categories of quiver-representations.
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5.3 The helix in Db
�
K.l/

�
Firstly, let us give a general definition.

Definition 39. Let T be a triangulated proper category with an exceptional pair .E0; E1/ then the
helix of T generated by .E0; E1/ is a sequence of exceptional objects .Ei /i2Z, defined iteratively by:

EiC1 D REi
Ei�1 for i � 1 (39)

Ei�1 D LEi
EiC1 for i � 0 : (40)

Remark 40. From Lemma 37, we know that in the helix .Ei /i2Z every object is exceptional and
every two neighboring objects form an exceptional pair. Moreover if .E0; E1/ is a strong or full
exceptional pair, then so are .Ei ; EiC1/ with hom0.Ei ; EiC1/ D hom0.E0; E1/.

If the objects of two exceptional pairs are related by a common shift, then the helices they
generate behave in the same way:

Lemma 41. If F0 Š E0Œn� and F1 Š E1Œn� for some n 2 Z, .Fi /i2Z the helix generated by .F0; F1/
and .Ei /i2Z the helix generated by .E0; E1/, then Fi Š Ei Œn� for all i 2 Z.

Proof. We will be showing here that this holds for i � 1 by induction, because the ramaining
cases are treated similarly. Assume that for some i we have Fi Š Ei Œn� and FiC1 Š EiC1Œn�.
From the definition of canEi Œn�;EiC1Œn� it follows that one can choose it such that canEi Œn�;EiC1Œn� D

canEi ;EiC1
Œn�. This gives us the distinguished triangle

LFi
.FiC1/ Hom�.Ei ; EiC1/˝k Ei Œn� EiC1Œn� LFi

FiC1Œ1� :
canEi ;EiC1

Œn�

Which tells us that Fi�1 D LFi
.FiC1/ Š LEi

.EiC1/Œn� D Ei�1Œn�.

Lemma 42. Let F W T1 ! T2 be a fully faithful exact functor and .Ei /i2Z a helix in T1 generated
by the exceptional pair .E0; E1/, then

�
F.Ei /

�
i2Z is a helix in T2 generated by

�
F.E0/; F .E1/

�
.

Proof. An exceptional object is mapped to an exceptional object under F , as it is fully faithful and
exact. In fact, any exceptional collection is mapped to an exceptional collection. Let Fi be that i 0th
object of the helix generated by

�
F.E0/; F .E1/

�
, we will show by induction that for i � 1 we have

F.Ei / Š Fi .
Assume that for some i � 0 this holds for F.Ei / and F.EiC1/, then we have the following

distinguished triangle for Fi�1.

Fi�1 Hom�
�
F.Ei /; F .EiC1/

�
˝k F.Ei / F.EiC1/ Fi�1Œ1�

canF.Ei /;F.EiC1/

But because F is fully faithful and additive, the second term from the left is the image of Hom.Ei ; EiC1/˝k
Ei under it. Moreover, one can choose canF.Ei /;F .EiC1/ in such a way that it is given by F

�
canEi ;EiC1

�
.

We know then that there is a distinguished triangle with Fi�1 replace by F.Ei�1/ which completes
the induction. For i � 0 one uses the same arguments.

Let K.l/ denote the Kronecker quiver with l arrows: 1 2
:
:
: . By Lemma 33, we know that

full exceptional collections have length 2, and by [6, Lemma 1], one can complete any exceptional
object to an exceptional pair in Db

�
K.l/

�
. Combining this with Theorem 38, tells us that finding

any exceptional pair will allow us to construct all exceptional pairs and objects up to equivalences
by constructing the helix and then taking all the neighboring pairs.

One can take the pair .s0; s1/, where s0Œ1� is the irreducible representation with the dimension
vector .1; 0/ and s1 with dimension vector .0; 1/. Using Lemma 34, one immediately infers that
homj .s1; s0/ D 0 for all j , and homi .s0; s1/ D 0 whenever i ¤ 0 and otherwise hom0.s0; s1/ D l .
Starting from this, we construct the helix .si /i2Z of Db

�
K.l/

�
generated by .s0; s1/.

Any two neighboring objects form a full strong exceptional pair, such that hom0.si ; siC1/ D l .
Additionally, every exceptional object in Db

�
K.l/

�
is equivalent to si for some i 2 Z, and every

exceptional pair is equivalent to .sj ; sjC1/ for some j 2 Z. Some further properties can be shown:
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Lemma 43. [9, Lemma 7.5] Let l � 2 and .si /i2Z the helix of Db
�
K.l/

�
generated by .s0; s1/, then

the following statements hold:

1. No two objects of the helix are isomorphic.

2. For all i � 0, si lies in Repk
�
K.l/

�
Œ�1�.

3. For all i � 1, si lies in Repk
�
K.l/

�
.

4. If i � j , then homl .si ; sj / D 0 for all l ¤ 0 and hom0.si ; sj / ¤ 0.

5. If i > j C 1, then homl .si ; sj / D 0 for all l ¤ 1 and hom1.si ; sj / ¤ 0.

This immediately gives the following corollary.

Corollary 44. If everything is given as in the above lemma, then no two exceptional objects of the
helix are equivalent with respect to �. Further, the only exceptional pairs one can construct from the
objects in the helix are the ordered pairs .si ; siC1/.

Proof. Let the objects si and sj be equivalent for some i; j 2 Z, then si Š sj Œr� for some r 2 Z. We
can assume that i � j (otherwise sj Š si Œ�r�). We see now that hom0.si ; sj Œr�/ ¤ 0 implies i D j

and r D 0 by the above lemma.

6 Left and right orthogonals, semiorthogonal decomposition

Let E be a class of objects in a triangulated category T , its right orthogonal E? and left orthogonal
?E are defined by:

E? D fX 2 T W Homi .E;X/ D 08E 2 E ; i 2 Zg ;
?E D fX 2 T W Homi .X;E/ D 08E 2 E ; i 2 Zg : (41)

Both of these classes are easily seen to be closed under the shift functor and extensions so they form
triangulated subcategories of T .

Definition 45. Let T be a triangulated category and Ti for i D 1; : : : ; n be its triangulated subcat-
egories, such that T D hT1; : : : ; T2i. One says that T D hT1; : : : ; Tni is a semi-orthogonal decompo-
sition of T when for any Xi 2 Ob.Ti / and Xj 2 Ob.Tj / the space of morphisms Homl .Xi ; Xj / is
trivial for all l whenever i > j .

One can equivalently says that Tj lie in the right orthogonal T ?i whenever i < j . Using the
following proposition, one can state much more.

Proposition 46. Let T D hT1; : : : ; Tni be a semiorthogonal decomposition of T , then every object
E in T has a unique up to isomorphisms diagram of distinguished triangles

0 En En�1 : : : E2 E

An An�1 A1

Œ1� Œ1� Œ1�
(42)

where Ai lie in Ti .

Proof. Every object E can be written as a finite number of extensions by objects in the categories
Ti . It is enough to show that these extensions can be reordered correctly and merged into one step
if necessary. So consider the diagram (3) where A is an object of Ti and B of TiCj . If j > 0 then by
Lemma 2 we can interchange the order of A and B. If j D 0, one can merge them into one factor
in T in a single distinguished triangle using the octahedral axiom.

The uniqueness of this diagram follows by the same arguments as used in the Remark 9.
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Corollary 47. Let T D hT1; : : : ; Tni be a semiorthogonal decomposition of the triangulated category
T , then the following hold for any 1 � l < n:

hT1; : : : ; Tli D hTlC1; : : : ; Tni? ;
hTlC1; : : : ; Tni D ?

hT1; : : : ; Tli :

This also extends to full exceptional collections.

Corollary 48. Let .E1; : : : ; En/ be a full exceptional collection of T , then the following hold for any
1 � l < n:

hE1; : : : ; Eli D hElC1; : : : Eni
? ;

hElC1; : : : Eni D
?
hE1; : : : ; Eli :

Proof. Because it is a full exceptional collection, we have that T D
˝
hE1i; : : : ; hEni

˛
is a semiorthog-

onal decomposition of T . Additionally, one can replace Ei by hEi i in the equation without changing
the generated triangulated subcategories. Now we apply the previous corollary to conclude the
result.

In the last section we will need some additional results connected to the Grothendieck group.

Lemma 49. Let T D hT1; : : : ; Tni be a semiorthogonal decomposition of the triangulated category T
with Ti being its full triangulated subcategories. The Grothendieck group of T is a direct sum

K0.T / D
nM
iD1

K0.Ti / :

Sketch of Proof. One can define functors �i W T ! Ti for all i D 1; : : : ; n in the following way: If
E is an object with the unique form (42) then we define �i .E/ D Ai and for any morphism E ! E 0,
we can construct unique morphisms Ai ! A0i as it was done in the Remark 9. One chooses �i ,
such that �i .EŒ1�/ D Ai Œ1�. The exactness of this functor then follows easily. These functors induce
homomorphisms Œ�i � W K0.T /! K0.Ti /.

Next we have the inclusions inci W Ti ! T which are obviously exact. We notice that Œ�i � and
Œinci � give together a biproduct diagram for K0.T / with factors K0.Ti /.

Corollary 50. If E D .E0; : : : ; En/ is a full exceptional collection in the triangulated category T ,
then K0.T / is a free abelian group generated by ŒEi � and thus of degree nC 1.

Proof. This follows from T D
˝
hE0i; : : : ; hEni

˛
being a semiorthogonal decomposition and the previ-

ous lemma. In hEi i every object corresponds to a finite number of extensions by shifts of Ei , so its
Grothendieck group is the free abelian group generated by ŒEi � (see Remark 69).

7 Non-commutative curve counting

In the subsection 4.2, we have recalled the definition of exact functors between triangulated cate-
gories. Here we will remind the reader of some general facts about exact functors.

Let Fi be two exact functors Fi W T1 ! T2 with their isomorphisms �i W Fi ı T1
�
�! T2 ı Fi , then

a graded natural transformation ˛ W F1 ! F2 is a morphism of functors, such that the following
diagram is commutative:

F1.AŒ1�/ F2.AŒ1�/

F1.A/Œ1� F2.A/Œ1�

˛.AŒ1�/

�1.A/ �2.A/

˛.A/Œ1�

(43)
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If there exists such a natural graded transformation between F1 and F2 which is an isomorphism
between the underlying functors, we write F1 ' F2 which defines an equivalence relation on the
exact functors from T1 to T2. Further, one can define composition F ı G of two exact functors F
and G in such a way, such that the underlying functor of this composition is the composition of the
underlying functors (see [10, Section 3.2]).

The equivalence relation ' behaves nicely under the composition of exact functors: Let Fi W T1 !
T2 and Gi W T2 ! T3 be exact functors, such that F1 ' F2 and G1 ' G2, then G1 ı F1 ' G2 ı F2.
Especially, for any two exact functors F and G which can be composed, we have the well defined
composition of their equivalence classes ŒG�' ı ŒF �' WD ŒG ıF �' (for further details see [10, Section
3.2]).

The group of exact auto-equivalences on a triangulated category T denoted by Aut.T / corre-
sponds to the set of classes of exact auto-equivalence functors on T with the group structure given
by composition. We can now recall the concept of non-commutative curve counting introduced in
[9]. This is a special case of the more general non-commutative counting in [9, Definition 12.7] and
in [10, Section 4].

Recall that all categories and all functors are k-linear.

Definition 51. From now on, we will denote Db
�
K.lC1/

�
by NPl . Let T be a triangulated category

and � � Aut.T / a subgroup of the group of exact auto-equivalences on T . The set of fully faithful
exact functors NPl ! T solving some property P is labeled by C 0

l;P
.T / for all l � 0. Consider the

following equivalence relation on C 0
l;P
.T /:

F1 � F2 ” F1 ı ˛ ' ˇ ı F2 (44)

for some Œ˛� 2 Aut
�
NPl

�
and Œˇ� 2 �. Then one writes C �

l;P
.T / D C 0

l;P
.T /= � . An element of

C �
l;P
.T / is called a non-commutative curve of genus l with property P and modulo � in T .

If P is an empty property then we will write C 0
l
.T / D C 0

l;P
.T /, and C �

l
.T / D C �

l;P
.T / . Fur-

thermore, in the special case when � D
˚
ŒidT �

	
we will also neglect writing � in the superscript.

For such �, one has an equivalent way of describing the non-commutative curves. The following
proposition is a particular case of [10, Lemma 4.5].

Proposition 52. Let T be a triangulated category, then there is a bijection

Cl .T /!

8<: D full triangulated subcategory of T
D � T W s.t. there exists an exact equivalence

F W NP l ! D

9=; (45)

given by ŒF � 7! F.NPl / DW Im.F /.

Proof. In the proof of [10, Lemma 4.5] it is stated without proof that Im.F / is a triangulated
subcategory, which we will show here. It is closed under the translation functor, because there is an
A in NPl for its every object X , such that X Š F.A/. Thus XŒ1� Š F.AŒ1�/. Let

X Y Z XŒ1�
u

be a distinguished triangle in T for which X and Y lie in Im.F /. The cone Z will also be its object:
Take A and B, such that F.A/ Š X and F.B/ Š Y and the distinguished triangle isomorphic to the
first one

F.A/ F.B/ Z0 F.A/Œ1�
v

:

There is now a distinguished triangle A B C AŒ1�
F�1.v/

where F.C/ will be again a

cone of the arrow v and so isomorphic to Z0 and Z.
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Sometimes we will mean by Cl .T / the codomain of this bijection. Recall that NPl is generated
by the full strong exceptional pair .s0; s1/ where hom0.s0; s1/ D l C 1. This motivates the following
result.

Proposition 53. [10, Proposition 5.5] Let T be a derived category of quiver-represenations for some
acyclic quiver Q. It’s full triangulated subcategory D has an exact equivalence F W NPl ! D if and
only if it is generated by some strong exceptional pair .E0; E1/ with hom0.E0; E1/ D l C 1.

Remark 54. The bijection (45) can be equivalently given by ŒF � 7! hF.s0/; F .s1/i, because hF.s0/; F .s1/i D
Im.F /.

Following Definition 51, the concept of �-semistability on non-commutative curves was introduced
in [9]. We present the definition given there.

Definition 55. Let everything be given as in Definition 51, � 2 Stab.T /, and .si /i2Z the helix of
NPl described in section 5.3, then one defines the set

C 0l;P;� .T / D
˚
F 2 C 0l;P jF.si / �-semistable for infinitely many i 2 Z

	
: (46)

Using the equivalence relation from the Definition 51 we write C �
l;P;�

D C 0
l;P;�

= �. The elements of

C �
l;P;�

are called the �-semistable non-commutative curves of genus l with property P and modulo
� in T .

Again, we will leave out the subscript P when P is an empty property and the superscript �
when � contains only the identity. We want to classify now which functors give semistable non-
commutative curves.

Proposition 56. Let T be a triangulated category, F 2 C 0
l
.T / for some l � 1 and .E0; E1/ a full

strong exceptional pair generating Im.F /, such that hom0.E0; E1/ D l (such a pair exists, because it
can be given by

�
F.s0/; F .s1/

�
), then construct the helix .Ei /i2Z generated by .E0; E1/. The functor

F is an element of C 0
l;�
.T / if and only if the there are infinitely many objects of the helix .Ei /i2Z

which are �-semistable.

Proof. By Lemma 42, F takes takes the helix generated by .s0; s1/ to the helix generated by�
F.s0/; F .s1/

�
. Also, an object X in Im.F / is exceptional if and only if it is isomorphic to some F.A/

where A is exceptional and a pair .E0; E1/ has the assumed properties if and only if it is isomorphic
to an image of some pair .A0; A1/ with these properties in NPl . We know from Section 5.3 that
every such pair must be given by .si Œp�; siC1Œp�/ for some i; p 2 Z. Thus from Lemma 41, the helix
generated by .E0; E1/ is the shift by Œp� of the helix generated by .F.si /; F .siC1// which is simply
the image of the standard helix under F . The statement then follows directly from the definition of
C 0
l;�
.T /.

Combining Proposition 53 with Proposition 56 we get:

Corollary 57. Let T be given as in Proposition 53, then one has a bijection for l � 1:

Cl;� .T /!

8̂̂̂̂
<̂
ˆ̂̂:

D full triangulated subcategory of T
generated by a strong exceptional pair

D � T W .E0; E1/ where hom0.E0; E1/ D l C 1

and the helix generated by it has
infinitely many �-semistable objects

9>>>>=>>>>; (47)

given by F 7! Im.F /.

Let us give another result that is useful whenever one knows all exceptional objects in T and
thus in Im.F /.
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Definition 58. Let T be a triangulated category and � 2 Stab.T /. We call an equivalence class with
respect to � of exceptional objects �-semistable when one and thus all of its exceptional objects are
�-semistable. A full triangulated subcategory D � T with infinitely many classes of exceptional ob-
jects is �-semistable when it contains infinitely many �-semistable equivalence classes of exceptional
objects.

Proposition 59. Let T be a triangulated category. For l � 1, there is a bijection

Cl;� .T /!

8<: D �-semistable full triangulated
D � T W subcategory of T with an exact

equivalence F W NP l ! D

9=; (48)

given by ŒF � 7! Im.F / for all l � 1.

Proof. A functor F 2 C 0
l

lies in C 0
l;�

if and only if im.F / is � -semitable: Any two exceptional
objects X Š F.A/ and Y Š F.B/ are equivalent in im.F / if any only if A and B are equivalent
exceptional objects. Thus F maps every class of exceptional objects in NPl bijectively to the classes
of exceptional objects in im.F /. From Corollary 44 we conclude the statement.

8 Non-commutative curve counting for the acyclic triangular
quiver

In this section we will be working with the derived category T D Db.Q/ of the following quiver:

3

1 2

(49)

It was proven in [10] that C1.T / D 2. We will additionally show that there exist such stability
conditions in Stab.T / such that every of the following cases happens:

1. No non-commutative curve is semistable.

2. Each of the non-commutative curves is semistable while the other isn’t.

3. Both curves are semistable.

8.1 Exceptional objects in Db.Q/

Let dim.E/ D .x; y; z/ be the dimension vector of an exceptional representation in Repk.Q/, then
we know from Lemma 34 that it is a real root, and so it must solve the equation

x2 C y2 C z2 � xy � xz � yz D 1 : (50)

To solve this equation for non-negative integers, we can assume x to be the smallest integer. Then
y D x C a and z D x C b for some non-negative integers a; b. Plugging this into (50) one gets
a2 � ab C b2 D 1 and thus .a � b/2 C ab D 1. Both terms on the left hand side of the last equation
are positive, so the only possible solutions are when a D b D 1 or a D 1; b D 0 or a D 0; b D 1.
Thus the only allowed dimension vectors become:

.mC 1;m;m/ .m;mC 1;mC 1/ .m;m;mC 1/

.mC 1;mC 1;m/ .m;mC 1;m/ .mC 1;m;mC 1/ (51)

From this, one also sees that the imaginary roots of this Euler form are .m;m;m/ for m 2 Z.
One has the following additional restriction on the dimension vectors of an exceptional represen-

tation.
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Lemma 60. [11, Lemma 2.1] Let m � 1, then there is no exceptional representation with the
dimension vectors .m;mC 1;m/ and .mC 1;m;mC 1/.

For the remaining dimension vectors the corresponding unique exceptional representations can
be found: Let �m

˙
W kmC1 ! km and jm

˙
W km ! kmC1 be linear maps such that

�mC .x1; : : : ; xmC1/ D .x1; : : : ; xm/ �m� .x1; : : : ; xmC1/ D .x2; : : : ; xmC1/

jmC .x1; : : : ; xm/ D .x1; : : : ; xm; 0/ jm� .x1; : : : ; xm/ D .0; x1; : : : ; xm/ :

Proposition 61. [11, Proposition 2.2] The exceptional objects of T up to equivalence are:

Em1 D

km

kmC1 km
�m
�

�m
C id Em2 D

kmC1

km kmC1
jm
�

jm
C id Em3 D

kmC1

km km
id

jm
C jm

�

Em4 D

km

kmC1 kmC1
id

�m
C �m

� M D

0

0 k

M 0 D

k

k 0

where m goes over all non-negative integers.

We construct some embeddings that we will use in the proofs in 8.2.

Lemma 62. In T , the following maps are embeddings:

1. Em3 ! Em2 given by .idkm ; jm� ; idkmC1/ for all m � 0.

2. M 0 ! Em1 given by .imC1; 0; im/ where im W k ! km maps x to .x; 0; : : : ; 0/.

3. Em�12 ! Em3 given by .jm�1� ; idkm ; jm� / for all m � 1.

4. M ! Em4 given by .0; imC1; 0/ for all m � 0.

Following [12], we denote

am D

(
E�m1 m � 0

Em�12 Œ1� m � 1
; bm D

(
E�m4 m � 0

Em�13 Œ1� m � 1
: (52)

From the table in [11, Proposition 2.4], one gets a statement about the exceptional collections formed
by these objects.

Proposition 63. [12, Corollary 3.12 and Remark 3.14] The exceptional pairs of T up to equivalence
are

.am; amC1/ ; .bm; bmC1/ ; .am; bmC1/ ; .bm; am/

.am;M/ ; .M; bm/ ; .M 0; am/ ; .bm;M 0/ :

The full exceptional collections (triples) of T up to equivalences are

.am; amC1;M/ : .M 0; am; amC1/ ; .bm; bmC1;M 0/ ; .M; bm; bmC1/ ;

.am;M; bmC1/ ; .bm;M 0; am/ ; .am; bmC1; amC1/ ; .bm; am; bmC1/ :

Here m goes over all integers. If .E1; E2/ is one of these exceptional pairs then homp.E1; E2/ is
non-vanishing for a unique p 2 Z. The pairs for which it takes the value homp.E1; E2/ D 2 are only
.am; amC1/ and .bm; bmC1/ for all m 2 Z.
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In [10, Proposition 6.1], one determined all the non-commutative curves in T . We recall here
what the non-commutative curves of genus one are.

Proposition 64. There are two non-commutative curves of genus 1 as the elements of C1.T /. In
terms of the bijection (45) one of the curves is given by the triangulated subcategory ham; amC1i and
the other by hbm; bmC1i for any m 2 Z.

Proof. Applying Proposition 52 and Proposition 53 to T and using Proposition 63, we conclude
that ham; amC1i and hbm; bmC1i are the only possible elements of C1.T /. From Corollary 48 and
Proposition 63, we see moreover that

ham; amC1i D hM i? and hbm; bmC1i D hM 0i? for all m 2 Z :

Because .am; bm; amC1/ is a full exceptional collection, it can’t hold that hbm; bmC1i D ham; amC1i,
because then we would get ham; amC1i D T contradicting Lemma 33.

Remark 65. Notice that the only exceptional objects in ham; amC1i are the ai for all i 2 Z. If
it contained any other exceptional objects then it would be T itself: Assume that it contains M or
M 0, then we can obtain the exceptional triples .am; amC1;M/ or .M; am; amC1/ in this subcategory.
Similarly as in the above proof we conclude that ham; amC1i D T which by Lemma 33 gives us a
contradiction. In the proof of the previous proposition we have shown that no bk lies in ham; amC1i.
A similar statement holds for the second non-commutative curve hbm; bmC1i.

8.2 Semistable non-commutative curves of genus 1 in Db.Q/

Firstly, we will need to develop some tools that will be used to construct stability conditions.

Definition 66. An exceptional collection E D .E0; : : : ; En/ is Ext-exceptional when homl .Ei ; Ej / D

0 for all integers l � 0 and i ¤ j .

For a class of objects E in a triangulated category T we denote by OE the extension closure in T
of E .

Lemma 67. [13, Lemma 3.14] Let E D .E0; : : : ; En/ be a full Ext-exceptional collection in a trian-

gulated category T , then OE is a heart of some bounded t-structure of T .

Remark 68. With the notation taken from the previous lemma, every exceptional object Ei becomes
simple in OE. Assume the contrary and let A be a proper nonzero subobject of Ei , then some Ej is a
subobject of A and the morphisms Ej ! A! Ei vanishes unless i D j where it is an isomorphism.
Thus we get the contradiction A Š Ei . This also shows that every simple object is isomorphic to
some Ei .

Remark 69. If we apply this result to the case where E D .E/ is a single exceptional object, we see
that OE is a heart of a bounded t-structure. And due to homi .E;E/ D 0 whenever i ¤ 0, it follows
that any object X in OE is a direct product of copies of E. Using Lemma 8, one concludes that every
object X in hEi is a direct product of finitely many objects from the class fEŒi�gi2Z.

One can combine previous results to give a method for constructing stability conditions on a
triangulated category T . If E D hE0; : : : ; Eni is a full Ext-exceptional collection, then using the
bijection (27) one can construct from stability functions with HN-property on OE (which by 67 is a

heart of a bounded t-structure) new stability conditions. Moreover, if OE is finite length, then by
Proposition 27 every stability function has the HN-property. By Remark 68 there are only finitely
many simple objects in OE and so the induced stability condition is locally finite. For any such E
one denotes the set of stability conditions attained by this method by HE.T / � Stab.T /. With the
Corollary 50, choosing different stability conditions in HE becomes equivalent to assigning different
values Z.Ei / in H � C that the stability function takes on the exceptional objects Ei .
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We consider now a simple general example of stability conditions constructed in such a way. We
will call a stability condition constructed by the above method non-entangled if �Z.EiC1/ > �Z.Ei /
for all 0 � i < n for given E . Note that due to these conditions, it follows that :

�Z.Ei2 Œj2�/ > �Z.Ei1 Œj1�/ ” j2 > j1 or j2 D j1; i2 > i1 : (53)

Proposition 70. Let T be a triangulated category and E D .E0; : : : ; En/ its full Ext-exceptional
collection, where OE is a finite length abelian category. Let � D .P; Z/ be a non-entangled stability
condition for E, then the slicing P is given in the following way.

P.�/ D
(
OEi Œj � when � D �Z.Ei /C j

f0g otherwise
(54)

Proof. Let us show that � D .P; Z/ indeed gives a stability condition when P is given by the
equation (54). For that, we only need to show that P is a slicing on T . The first two axioms of
the Definition 12 follow immediately. For any object F there is a filtration similar to the one in
Proposition 46 with factors Ai that are objects of hEi i and as such are the direct sums of shifts of Ei
by Remark 69. So T is the extension closure of fEi Œj �g0�i�n;j2Z. However, when there is a diagram
of the form

A B C

Ei1 Œj1� Ei2 Œj2�

Œ1� Œ1�

where �Z.Ei2 Œj2�/ > �Z.Ei1 Œj1�/, then the composition Ei2 Œj2�! B ! Ei1 Œj1C1� is a zero morphism
(by E being Ext-exceptional), so we see from Lemma 2 that we can interchange the order of the fac-
tors. Doing so until any two neighboring factors Ei1 Œj1� and Ei2 Œj2� have �Z.Ei1 Œj1�/ > �Z.Ei2 Œj2�/,
gives us a HN-filtration of F with respect to P. As � is a stability condition and its corresponding
heart is the abelian category OE with the restriction of Z being still given by the values Z.Ei /, it
follows that � is indeed the non-entangled stability conditions specified by Z.Ei / for E .

Using this general discussion we return to the case T D Db.Q/. From [11, Proposition 2.4] and
Proposition 63 we see that E D .a0;M; b1Œ�1�/ D .E01 ;M;E03 / is a full Ext-exceptional collection. Its
closure under extensions is the abelian subcategory Repk.Q/ � T which is the heart of the standard
t-structure.

Corollary 71. Let � be a non-entangled stability condition on T for E D .E01 ;M;E
0
3 /, then

#C1;� .T / D 0.

Proof. By Proposition 70 the objects in � ss are isomorphic to .E01 Œi �/
p, .MŒj �/q , or .E03 Œk�/

r for
some integers i; j; k; p; q; r . By Remark 65, we know that the only exceptional objects of the curve
ham; amC1i for some m 2 Z are the shifts of ai for all i 2 Z. By Proposition 59, we only need to
show that there are only finitely many ai which are �-semistable. But we see that the only ai that
belongs to � ss is a0 D E01 , as no other element of famgm2Z is isomorphic to the direct sums above
(follows for example by looking at the dimensions). Thus the curve ham; amC1i is not �-semistable.
In an identical way we get the same statement for the second curve hbm; bmC1i.

To get stability conditions � in Stab.T / such that the non-commutative curves become �-
semistable we need to ”entangle” the order slightly. The simplest case is choosing � WD �Z.E

1
0 / D

�Z.M/ D �Z.E
0
3 /. The corresponding stability condition � D .P; Z/ then has the slicing

P.�/ D
(

Repk.Q/Œj � when � D � C j

f0g otherwise :
(55)

As such all exceptional objects am and bm are � -semistable and #C1;� .T / D 2. We will now
construct more interesting examples.
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Firstly, if X is an object in Repk.Q/ with the dimension vector .m1; m2; m3/, then for any Z W

K0.T /! C the following holds:

Z.X/ D m1Z.E
0
1 /Cm2Z.M/Cm3Z.E

0
3 / : (56)

This follows because every object is a finite extension with the factors being E01 , M , and E03 , and the
dimension vectors of these are .1; 0; 0/, .0; 1; 0/, and .0; 0; 1/. Thus especially if we use the notation
ıZ D Z.E

0
1 /CZ.M/CZ.E03 / we have:

Z.Em1 / D Z.E
0
1 /CmıZ ; Z.Em2 / D Z.M/CZ.E03 /CmıZ ; Z.Em3 / D Z.E

0
3 /CmıZ

Z.Em4 / D Z.E
0
1 /CZ.M/CmıZ ; Z.M 0/ D Z.E01 /CZ.E

0
3 / :

The values of Z on the remaining indecomposable representations are:

mıZ ; Z.M/CmıZ ; Z.M 0/CmıZ :

Proposition 72. Let � D .P; Z/ 2 HE be a stability condition on T where E D .E01 ;M;E
0
3 /, such

that the values of Z take the following form in the complex plane:

Z(E0
1)

Z(E0
4)

δZ

Z(M)

Z(E0
2)

Z(E0
3)

Then #C1;� .T / D 1, and hbm; bmC1i is �-semistable.

Proof. It was shown in the proof of [11, Lemma 3.15] that Em4 are �-semistable for all m � 0. This
tells us that the curve hbm; bmC1i is �-semistable.

Notice that there exists such N > 0, such that the argument of Z.Em3 / is larger than the argument
of Z.Em2 / for all m � N : Choose an N > 0, such that �Z.E

m
3 / > �Z.M/ whenever m � N . From

Z.Em2 / D Z.Em3 /CM , we obtain for every m � N that �Z.E
m
3 / > �Z.E

m
2 /. By Lemma 62, there

is an injective morphism Em3 ! Em2 . This shows that Em2 is not �-semistable for all m � N , as it
has a non-zero subobject with greater phase . For the objects Em1 , one also sees by drawing that
the argument of Z.M 0/ is larger than the arguments of Z.Em1 / for all m � 1. Moreover, we see from
Lemma 62 that there is an injective morphism M 0 ! Em1 . We conclude that only finitely many
objects am can be �-semistable and so the non-commutative curve ham; amC1i is not semi-stable.

Similarly, we now construct a stability condition that makes the other non-commutative curve
semistable.

Proposition 73. Let � D .P; Z/ 2 HE be a stability condition on T , such that the values of Z take
the following form in the complex plane:
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Z(E0
1)

Z(E0
4)

Z(M)

δZ

Z(M ′)

Z(E0
2)

Z(E0
3)

Then #C1;� .T / D 1, and ham; amC1i is �-semistable.

Proof. Firstly, let us show that Em1 are �-semistable for all m � 0. From the bijection (27), we
know that X 2 Repk.Q/ is �-semistable if and only if it is semistable with respect to the stability
function on Repk.Q/. Similarly as it was done in [11, Lemma 3.15], it suffices to show that for
any indecomposable subobject A � X the argument arg.0;1�

�
Z.A/

�
is less than arg.0;1�

�
Z.X/

�
to

conclude that X is semistable. From the figure, we know that the indecomposable objects with the
value of Z on them from the set

˚
lıZ ; Z.M

0/C lıZ ; Z.M/CZ.E03 /C lıZ W l � 0
	

will have a smaller
phase than Em1 . Next, for the indecomposable object A with the dimension vectors .l; l C 1; l/ and
the value of Z given by lıZ CZ.M/, we can show that there is no embedding A! Em1 : If such an

embedding existed, it would require that the compositions klC1 ! km
id
�! km D klC1 ! kl ! km

are equal, where the left side of the equation is monic. This gives a contradiction. Same argument
shows that no El4 can be embedded in Em1 . Finally, looking at the [11, Proposition 2.4], we use that
hom.El1; E

m
1 / D 0 whenever 0 � l < m to infer that Em1 are � -semistable for all m � 0. As a result

this implies that ham; amC1i is a �-semistable non-commutative curve of genus 1.
To show that hbm; bmC1i is not � -semistable, we notice from the figure, that there exists such

an N > 0, such that �Z.E
m�1
2 / is larger than �Z.E

m
3 / whenever m � N : Choose an N > 0, such

that �Z.E
m�1
2 / > �Z.M

0/ for all m � N . From Z.Em3 / D Z.Em�12 / C Z.M 0/, we see that for
all m � N one has �Z.E

m�1
2 / > �Z.E

m
3 /. However, we also see from Lemma 62 that there is an

embedding Em�12 ! Em3 . Thus Em3 is not semistable whenever m � N as it has a non-zero subobject
with greater phase. Lastly, for any m large enough we observe that the argument of Z.Em4 / is less
than that of Z.M/ and there is an embedding M ! Em4 . Only finitely many objects bm can be
�-semi-stable, and so the curve hbm; bmC1i is not semi-stable.

We would like to show that there exist non-trivial stability conditions (in the sense that the
slicing is non-trivial) with two semi-stable curves of genus 1. Looking at the stability conditions
discussed in [12, Lemma 7.5(e)], we see that they satisfy this requirement. In the next proposition,
we demonstrate a special case.

Proposition 74. Let � D .P; Z/ 2 HE be a stability condition on T , such that the values of Z take
the following form in the complex plane (notice especially that �Z.M/ D �Z.M

0/):

Z(E0
1)

Z(E0
4)

δZ

Z(M ′)

Z(M)

Z(E0
2)

Z(E0
3)
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Then #C1;� .T / D 2, that is, ham; amC1i and hbm; bmC1i are �-semistable.

Proof. To show that Em1 are all � -semistable, we only need to show that no En4 can be embedded
in them, but we already know that from the proof of Proposition 73. Similarly, we know from the
proof of [11, Lemma 3.15] that no En1 can be embedded in Em4 . Thus all the objects Em1 and Em4
are �-semistable and the curves ham; amC1i and hbm; bmC1i are semistable.

Consequently, we have proved what we have set out to show at the beginning of this section.

Theorem 75. There exists a stability condition � 2 Stab.T / for each of the following cases:

1. #C1;� .T / D 0.

2. #C1;� .T / D 1 and ham; amC1i is �-semistable.

3. #C1;� .T / D 1 and hbm; bmC1i is �-semistable.

4. #C1;� .T / D 2.

Appendices

A Summary

In this work we addressed the topic of (semistable) non-commutative curve counting, that was
introduced for the first time by G. Dimitrov and L. Katzarkov in [9]. The non-commutative curves
correspond to certain equivalence classes of exact fully faithful functors on triangulated categories.
The semistable non-commutative curves depend on stability conditions of the triangulated category
considered. First, we repeated the definition of stability conditions on triangulated categories and
reminded the reader that locally finite stability conditions of a triangulated category T form a
complex manifold that is denoted by Stab.T /. The first result of the thesis states that this manifold
for the derived category of representation of the quiver A1 is biholomorphic to C.

After recalling some properties of triangulated categories, derived categories and t-structure in
2 and 3 and using the results about exceptional objects and quivers from 5 and 6, we give the
definition of (semistable) non-commutative curves in triangulated categories in Section 7. At the
end of this section and in the subsection 8.2, we discuss a method to construct stability conditions
and to determine the corresponding semistable noncommutative curves. This method relies on the
bijection (27). As such, we view the stability conditions as stability functions on hearts of bounded
t-structures generated as extension closures by full Ext-exceptional collections. Under the bijection
48 one also associates corresponding full triangulated subcategories to the semistable NC curves.
Applying this method we were able to examine the semistable NC curves with genus 1 of the following
quiver:

3

1 2

;

where we have used the statements about exceptional objects from the Subsection 8.1. After re-
minding the reader that there are exactly two NC curves with genus 1 in the derived category of
this quiver which we labeled ham; amC1i and hbm; bmC1i, we have proved the Theorem 75 which is
the main result of the thesis and states that all possible combinations of the NC curves become �-
semistable for the right choice of a locally finite stability condition � . Conclusively, we have proven
the Proposition 12.15 from [9].
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B Zusammenfassung

Diese Arbeit hat das neu eingeführte Thema von (semistabilen) nicht-kommutativen Kurven, das
zum ersten Mal in der Arbeit von G. Dimitrov und L. Katzarkov [9] besprochen wurde, behandelt.
Die nichtkommutativen Kurven ensprechen bestimmten Äquivalenzklassen von exakten volltreuen
Funktoren in triangulierten Kategorien. Die semistabilen nicht-kommutativen Kurven hängen von
den Stabilitätkondizionen der triangulierten Kategorie ab. Zuerst wiederholen wir die Definition von
Stabilitätkondizionen von einer triangulierten Kategorie. Lokal endliche Stabilitätkondizionen der
Kategorie T bilden eine komplexe Manigfaltigkeit, die wir mit Stab.T / bezeichnen. Einer unserer
erster Resultate sagt, dass diese Manigfaltigkeit für die derivierte Kategorie der Repräsentationen
des Köchers A1 biholomorph zu C ist.

Mit den Ergebnissen aus den Kapiteln 2 und 3, wo die Eigenschaften von triangulierten Kate-
gorien, derivierten Kategorien und t-Strukturen hergeleitet und wiederholt werden, und den Resul-
taten über ausgezeichnete Objekte und Köcher in 5 und 6 geben wir die Definition der (semistabilen)
nicht-kommutativen Kurven in triangulierten Kategorien in Kapitel 7. Am Ende dieses Kapitels
und im Unterkapitel 8.2 geben wir eine Methode um Stabilitätkondizionen zu konstruieren und die
dazugehörige semistabilen nichtkommutativen Kurven zu bestimmen. Diese Methode basiert auf
der Bijektion (27). Wir betrachten die Stabilitätkondizionen als Stabilitätfunktionen auf Herzen
von beschränkten t-Strukturen, die durch volle Ext-ausgezeichnete Sammlungen erzeugt werden.
Den semistabilen NK Kurven werden die dazugehörige volle triangulierte Unterkategorien unter der
Bijektion (48) zugeordnet. Mithilfe von dieser Methode untersuchen wir die semistabilen nicht-
kommutativen Kurven mit Genus 1 des folgenden Köchers:

3

1 2

;

wobei wir die Aussagen über ausgezeichnete Objekte, die in dem Unterkapitel 8.1 angegeben wer-
den, verwenden. Zuerst erinnern wir den Leser daran, dass es in der derivierten Kategorie dieses
Köchers genau 2 nicht-kommutative Kurven mit Genus 1 gibt, die wir mit ham; amC1i und hbm; bmC1i
bezeichnen. Dann beweisen wir den Hauptresultat dieser Arbeit:

Theorem 76. Es gibt solche lokal endliche Stabilitätkondizionen � des oben angegeben Köchers,
sodass alle unten angegebenen Fälle vorkommen:

1. #C1;� .T / D 0.

2. #C1;� .T / D 1 und die NK Kurve ham; amC1i ist �-semistabil.

3. #C1;� .T / D 1 und die NK Kurve hbm; bmC1i ist �-semistabil.

4. #C1;� .T / D 2.

Wobei #C1;� .T / hier die Anzahl der �-semistabilen NK Kurven mit Genus 1 bezeichnet.

Wir haben also die Proposition 12.15 in [9] bewiesen.
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