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Kühtreiber. My thank goes to Silvia Plöckinger and Simone Recchi for the helpful sug-

gestions about the project and its numerical realisation.

I’m very grateful for the generous support from my parents during my years at university,

without your help it would have been hardly possible to make it!

The software used in this work was in part developed by the DOE NNSA-ASC OASCR

Flash Center at the University of Chicago. The computational results presented have been

achieved [in part] using the Vienna Scientific Cluster (VSC).

iii



iv



Contents

1 Introduction 1

1.1 Kinematically Decoupled Cores . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Rate of occurrence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Formation scenarios of KDCs . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Implications on the formation of KDCs in Dwarf Galaxies . . . . . . 5

1.2 Tidal Dwarf Galaxies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Formation of Tidal Dwarf Galaxies . . . . . . . . . . . . . . . . . . . 6

1.2.2 Properties of TDGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.3 Contribution to the dwarf galaxy population . . . . . . . . . . . . . 8

1.3 The Hypothesis: Formation of KDCs in TDGs . . . . . . . . . . . . . . . . 9

2 Chemodynamical galaxy evolution models 11

2.1 FLASH code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Adaptive Mesh Refinement . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Solver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Hydrodynamic timestep . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Particle timestep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Self-Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Multigrid Poisson solver . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.2 Coupling hydrodynamics with gravity . . . . . . . . . . . . . . . . . 20

2.5 Cooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6.1 Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6.2 Initial Mass Function . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 3D Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.1 Tidal field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.7.2 Ram pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



3 Simulations 35

3.1 Initial data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Data extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.2 SPH-to-Grid mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Initial gas distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Initial stellar population . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.4 Simulation runs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Results 43

4.1 Structural evolution of TDGs . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Mass assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.2 Star formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.1.3 Cluster mass function . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1.4 Stellar distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Chemical evolution of TDGs . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Dynamical evolution of TDGs . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.1 Stellar rotation curve . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.2 Stellar kinematic maps . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3.3 Gas dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3.4 Kinemetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.5 The dynamics of TDGs . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.6 Counter rotating stars . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4 The influence of the IMF description . . . . . . . . . . . . . . . . . . . . . . 71

4.4.1 Star formation and stellar feedback . . . . . . . . . . . . . . . . . . . 72

4.5 Environmental influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.1 Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5.2 Tidal field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5.3 Ram pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.5.4 Tidal arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Discussion 85

5.1 Star Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2 IMF description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.3 Self-regulated star formation recipe . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Environmental influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Distinguishing primordial DGs from TDGs . . . . . . . . . . . . . . . . . . 89

5.5.1 Structural differences . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.5.2 Metallicity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.3 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



CONTENTS

5.6 Counter rotating stars and KDCs in TDGs . . . . . . . . . . . . . . . . . . 95

6 Outlook 97

A Summery of model properties 99

Abstract English 103

Abstract Deutsch 105

Bibliography 107

List of Figures 119

List of Tables 121

vii



viii



Chapter 1

Introduction

1.1 Kinematically Decoupled Cores

For a long period of time elliptical galaxies (E) were assumed to be featureless stellar sys-

tems with smooth light distributions. This picture has changed at the end of the 1970’s

when the first substructures like gas emission-lines (Malin and Carter, 1980), isophote

twists (Leach, 1981) or low rotation velocities and anisotropic velocity dispersions (Illing-

worth, 1977) where detected in Es. These substructures are indicative for a vibrant as-

sembly history, including events like galaxy-galaxy interactions, mergers or gas accretion.

Such interactions are most likely also imprinted in the kinematics of Es, especially in their

central regions (e.g. Kormendy, 1984; Jedrzejewski and Schechter, 1988; Hernquist and

Barnes, 1991). Among these peculiarities are fast rotating cores, misalignments of the ro-

tational axis of the core and main body or even counter rotating cores (CRC). All of these

kinematic substructures in the cores of galaxies, with typical sizes of 0.1 ≤ R/Re ≤ 1.5,

are commonly summarised by the term kinematically decoupled cores (KDC). Figure 1.1

illustrates a selection of three exemplary rotation curves of KDC harbouring galaxies de-

rived from long slit observations. In the top left panel the counter rotating core of NGC

3608 can be seen. NGC 4494 (top right) shows a strong bump in its rotation curve, in-

dicative for two aligned but distinct rotational components (Jedrzejewski and Schechter,

1988, Figures 1 & 2). The bottom panel shows the rotation curve of the Virgo cluster

dwarf elliptical (dE) VCC 1183, clearly visible is its counter rotating core (Toloba et al.,

2014, Figure 1).

Krajnović et al. (2006) derived a classification scheme of the dynamics of early type galax-

ies (ETG) based on 2D kinematic maps obtained by integral-field spectroscopy. This

scheme allows to distinguish between single and multiple rotational components (SC and

MC, respectively) and groups galaxies according to some basic properties of their kine-

matic maps. Following this method Emsellem et al. (2007) defined a KDC as MC with

either a sudden change in the kinematic position angle (> 20◦) or a low-level rotation in

the outer regions.

The first discoveries of KDCs in luminous early type galaxies (ETG) date back to the early
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Figure 1.1: Examples of observed rotation curves of KDC hosting ETGs; Top left: NGC 3608 shows a
counter rotating core; Top right: NGC 4494 harbours a strong bump in the rotation curve; The velocities
are heliocentric and given in km s−1 in the top figures, adopted from Jedrzejewski and Schechter (1988,
Figures 1 & 2). Bottom: The dE VCC 1183 hosts a counter rotating core (Toloba et al., 2014, Figure 1).

1980’s, when Efstathiou et al. (1982) discovered the first KDC in NGC 5813, showing a

rapid rotating core and low rotation velocity at larger radii. Another enigmatic E is IC

1459 for which Franx and Illingworth (1988) reported a fast counter-rotating stellar core

(vcore ≈ 170 km s−1) but also a gas disk co-rotating with the main body. Within the

last decade the number of detected KDCs in ETGs has dramatically increased, due to

improved observational techniques (i.e. larger telescopes and integral-field units) and the

availability of large surveys on ETGs like the ATLAS3D project (Cappellari et al., 2011).

In addition to the odd kinematic structures, some KDCs show a decoupling in the stellar

population, being younger and more metal-rich, with respect to the main body. This was

for example reported for NGC 2865 (Hau et al., 1999) or NGC 1700 (Kleineberg et al.,

2011).

NGC 770 a low-luminosity elliptical galaxy (MV = −18.9), residing in the borderlands

between luminous and dwarf ellipticals, hosts a CRC with a radius almost comparable to

the effective radius, ∼ 4 arcsec and 5.3 arcsec, respectively (Geha et al., 2005).

De Rijcke et al. (2004) presented, for the first time, observational prove of the existence of

KDCs in dwarf galaxies (DG), FS76 and FS373 in the NGC 5044 respectively NGC 3258

group. In both dEs the rotation directions of the KDC and the main body are aligned

but a pronounced bump is present in the central region. The dE VCC 510 displays a

small-scale CRC, which extends to roughly 2 arcsec - approximately 10% of the effective

radius (Thomas et al., 2006). Toloba et al. (2014) reported on the detection of CRCs in

two dEs in the Virgo cluster, namely, VCC 1183 and VCC 1453. Furthermore, an age and
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CHAPTER 1. INTRODUCTION

metallicity segregation, with younger and more metal-rich stars in the KDC compared to

the main body, was found in both galaxies, similar to the population decoupling reported

for several KDCs in luminous ETGs.

1.1.1 Rate of occurrence

First estimates on the frequency of KDCs in ETGs from Harsoula and Voglis (1998) pre-

dicted that 1/3 of luminous elliptical galaxies are hosts of KDCs, confirming Franx and

Illingworth (1988) who concluded that a significant fraction of ETGs might harbour unre-

solved kinematic peculiarities. Due to improved observational techniques, like integral-field

spectroscopy, which is in favour of detecting KDCs (Toloba et al., 2014), the rate of oc-

currence is nowadays estimated to about 50% in luminous ETGs. Within the SAURON

sample of 48 elliptical and S0 galaxies, 67% of the slow rotating and 25% of the fast rotat-

ing galaxies harbour a KDC (Emsellem et al., 2007). Krajnović et al. (2011) found that

47% out of 260 ETGs of the volume-limited ATLAS3D sample show kinimatically peculiar

structures. In the regime of DGs Toloba et al. (2014) estimated that approximately 6-8%

of dEs host a KDC. McDermid et al. (2006) argued that, due to the fading of a stellar

population, some KDCs might not be observable for more than 2− 5 Gyr after their for-

mation. Considering the fading effect and missing integral-field spectroscopy of dEs, the

numbers above are most likely only lower limits of the real fraction of galaxies with KDCs,

especially for dEs. Furthermore, if no KDC is detected does not exclude its existence, as

observations are always measuring both components at once, therefore a low luminosity

KDC could be hidden underneath a brighter co-rotating stellar component.

1.1.2 Formation scenarios of KDCs

During the last decades a variety of processes for the formation of KDCs in luminous

ETGs have been proposed. These processes usually involve some kind of strong interac-

tion with the host galaxies’ environment, either in the form of gravitational interaction

of close neighbouring galaxies or by the interplay of a galaxy with intergalactic gas. In

the case of gravitational interactions a large variety of configurations have been tested,

including both short and long term interactions between two or more galaxies.

Hau and Thomson (1994) simulated a close encounter between two elliptical galaxies with

a mass ratio of 2:1. Both galaxies initially follow a none-rotating Hernquist (1990) po-

tential, with a small exponential disk superimposed on the primary. The fly-by encounter

induced a slow rotation in the primary halo and the rotation direction only depends on

the orbit inclination of the secondary. Therefore, Hau and Thomson concluded that the

formation of any kind of kinematic misalignment, including counter rotation, is possible

by this scenario. Moore et al. (1996) defined the term galaxy harassment as multiple close

and fast encounters between galaxies, a process known to be able to transform the small

spiral galaxies into dEs. Considering the findings of Hau and Thomson (1994), harassment

3



could provide a mechanism to transform a spiral galaxy into a KDC harbouring dE.

The probably most extensively studied gravitational triggered formation process is the

merging of galaxies with its wide range of possible initial parameter and object combina-

tions. The merging of a dE with an E leads to a core-within-a-core structure in the merger

remnant, if the core radius of the dE is small enough compared to the E so that it can

survive the event (Kormendy, 1984). Balcells and Quinn (1990) performed N-body simu-

lations of dE-E mergers and found that the denser core of the dE can survive the merger

event, but only in the case of retrograde merger orbits KDCs can be formed. Using N-

body SPH simulations of a merger of two gas rich disk galaxies with equal masses and

initially anit-parallel spin direction Hernquist and Barnes (1991) found a counter rotating

gas disk in their merger remnant. If star formation would be enabled, Hernquist and

Barnes assumed that a counter rotation would also be produced in the stellar component.

In extension to the above, Balcells and González (1998) investigated major merger simula-

tion of spiral galaxies with unequal masses and found that their simulations produce lager

KDCs compared to the Hernquist and Barnes (1991) model. Furthermore, they concluded

that the Balcells and Quinn (1990) dE-E model easily produces the general properties

of Es but fails in the population decoupling as reported for some Es by e.g. Hau et al.

(1999), whereas the disk-disk merger scenario would naturally explain it. The probably

most extensive numerical study on the formation of kinematic properties (slow/fast rota-

tion) of ETGs was performed by Bois et al. (2011), who simulated a set of 70 binary disk

mergers with varying gas fraction and mass ratios from 1:1 to 6:1. Within this large set of

simulations KDCs are only formed in ETGs which are classified as slow rotators and are

therefore produced in mergers with mass ratios close to equal (1:1 - 3:1) and retrograde

merger orbits. These results agree well with the findings of Bendo and Barnes (2000) who

concluded that kinematic substructures, including CRCs, can only be formed by equal

mass mergers. Contrary to the previous studies Tsatsi et al. (2015) showed that a KDC

can also be formed as a result of an initially prograde merger of two disk galaxies. During

their simulation the orbital spin flips, resulting in a retrograde merger orbit, shortly before

the final coalescence. The outflow along the tidal arms produces an reactive thrust, caused

by reactive Mestschersky (1902) forces, resulting in the orbital spin flip. This additional

merger scenario might help to explain the high fraction of ETGs which harbour a KDC.

Accretion of intergalactic gas from intergalactic filaments provides a further mechanism to

form KDCs. To mimic the inflow along filaments onto a spiral galaxy, Thakar and Ryden

(1998) simulated the inflow of gas from a rectangular column with a retrograde angular

momentum with respect to the disk galaxy. Their experiments result in a galaxies with

two large but counter rotating disks, a rare but known phenomenon (e.g. NGC 4550,

Rubin et al., 1992). Furthermore, they found that the size of the counter rotating disk

mostly depends on the angular momentum of the accreted gas, therefore material with

small angular momentum could settle to the disks centre and form a KDC.

Ram pressure stripping (RPS) is one of the major drivers of the transformation from gas

rich dwarf irregular (dIrr) galaxies to gas poor dEs (e.g. Lin and Faber, 1983; Boselli et al.,
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CHAPTER 1. INTRODUCTION

2008). As purely hydrodynamic interaction of a galaxies interstellar medium (ISM) with

the surrounding medium (i.e. intergalactic medium, IGM), it is supposed to remove the

ISM rather than changing its spin direction or influencing the stellar component at all.

Therefore, Toloba et al. (2014) concluded that RPS does not provide a reasonable way to

form kinematically decoupled structures in galaxies.

But also alternative scenarios for the formation of KDCs, which do not require direct

environmental interactions, are discussed in the literature. As examples the formation

from a primordial collapse (e.g. Barnes and Efstathiou, 1987; Harsoula and Voglis, 1998)

or projection effects of non-circular orbits (e.g. Statler, 1991) shall be mentioned. In the

case of NGC 5982 Statler (1991) proposed the possibility that projection effects of non-

circular stellar orbits within a triaxial potential could cause the kinematic peculiarities.

A suggestion strengthened by observations of Oosterloo et al. (1994). Van den Bosch et

al. (2008) concluded that the KDC in NGC 4365 is also caused by projection effects.

1.1.3 Implications on the formation of KDCs in Dwarf Galaxies

De Rijcke et al. (2004) suggested that the merger scenario is unlikely for dwarf galaxies

as in groups and clusters of galaxies the relative velocities are too high and the galaxy

density in the field is too low. Alternatively de Rijcke et al. proposed harassment as the

key driver for the formation of KDCs in dwarfs, as both of their dwarfs are located in

groups of galaxies, where the distances between galaxies and the relative velocities are

small enough to provide enough time for the interaction to convert a sufficient amount of

angular momentum. With simulations of a fly-by interaction between a dE and a large

E, González-Garćıa et al. (2005) have shown that counter rotating features only appear

under rather restrictive conditions, i.e. only little too no dark matter (DM) is allowed

to be bound to the dE and near head on collision orbits are required. These counter

rotating features appear at too large radii compared to observed KDCs in dEs, therefore

they cannot be classified as KDCs. Following this argument Thomas et al. (2006) conclude

that in the case of VCC 510 harassment is not the formation mechanism. KDCs in cluster

dwarf galaxies are most likely not the result of galaxy harassment within the cluster or the

accretion of gas, due to the lack of cold gas within clusters (Toloba et al., 2014). Therefore,

Toloba et al. proposed that the KDCs in the Virgo-Cluster dwarfs were formed in lower

density environments like pairs or groups of galaxies, either through wet dwarf-dwarf

mergers or gas accretion. These KDC-harbouring dwarfs were then subsequently falling

into the Virgo cluster, although there is no evidence from the direct environment that

they were formed within a group. Although the dwarf-dwarf merge scenario is commonly

assumed to be unlikely it cannot be ruled out as close low luminosity companions have

been detected around blue compact dwarf galaxies (e.g. Rich et al., 2012).

As alternative to the above mentioned formation scenarios, the possibility of KDCs being

formed in tidal dwarf galaxies (TDG) is examined within this thesis.
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1.2 Tidal Dwarf Galaxies

1.2.1 Formation of Tidal Dwarf Galaxies

Within the standard model of cosmology, the Λ cold dark matter (ΛCDM) paradigm, the

halos of galaxies form hierarchically from bottom up. Therefore, small DM halos form

first, from the initial density fluctuations in the early universe, and subsequently build up

mass via accretion and merging. Within the DM halos baryonic matter is able to cool,

condense and form stars, resulting in the formation of galaxies with various morphologies

ranging from elliptical (E), lenticular (S0) to spiral (S) galaxies, as characterised by the

Hubble sequence. In this scenario dwarf galaxies (DG) are objects formed in the lowest

mass halos, which show a rather quiet merger history. Within this thesis the gas poor

dwarf elliptical and dwarf spheroidal galaxies are revered to as dEs, similar to the combi-

nation of gas poor (E & S0) galaxies into the class of early type galaxies (ETG). But not

all galaxies follow the morphological Hubble sequence.

In “The Atlas of Peculiar Galaxies” (Arp, 1966) 338 galaxies, which are morphologically

distinct from the sequence, are compiled. Some of these galaxies have close companions

which might be connected by gaseous bridges, show asymmetries, distortions and general

irregular shapes or exhibit long stretched arms emerging from the galaxies’ main body.

The formation process of these peculiarities, especially the expanded arms, was explained

by Toomre and Toomre (1972) who showed that the arms are formed due to tidal forces

during the gravitational interaction of galaxies. Due to the formation process these arms

are commonly called tidal tails or arms.

Zwicky (1956) was the first to speculated about DG-sized objects being associated with

long extensions emerging from larger galaxies. Detailed observation of interacting galaxies

and their tidal tails reviled that the arms do not only consist of old stars ejected from the

parent galaxies, areas with bluer colours, indicative for young stars, inhabit the redder

arms. Furthermore, Hα and FUV emission, as tracers of resent star formation as well as

molecular gas, the reservoir for star formation, have been detected (e.g. Mirabel et al.,

1991, 1992; Braine et al., 2000, 2001, 2004). These star forming knots, at least the most

massive once with masses above 108 M�, are called tidal dwarf galaxies (TDG) (e.g. Duc,

2012). Figure 1.2 shows composite images of three interacting respectively post-interacting

galaxy systems, the emission from Hi from VLA (blue) and FUV from GALEX (pink) is

superimposed onto optical images (image from Lelli et al., 2015). In the left panel the col-

lisional galaxy NGC 5291 with its extended Hi-ring is displayed, the disturbed lenticular

galaxy NGC 4694 is illustrated in the top right panel and the bottom right panel shows

the late stage merger NGC 7252, also know as the “Atoms for Peace”, with its extended

tidal arms. The pink FUV knots along the gaseous tidal debris are indicative of recent

star formation and mark the positions of TDGs.

The formation of TDGs during mergers of galaxies provides an alternative way of DG for-

mation compared to the hierarchical structure formation in the ΛCMD cosmology. With
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CHAPTER 1. INTRODUCTION

Figure 1.2: Composite images of post-/interacting systems, Hi emission form VLA (blue) and FUV
emission from GALEX (pink) are overlain onto optical images. The systems shown are the collisional
galaxy NGC 5291 (left), NGC 4694 (top right) is a remnant of an old merger and NGC 7252 (“Atoms for
Peace“, bottom right) is a late-stage merger. The TDGs are labelled in yellow and the red bar in the top
right corner of each panel corresponds to a distance of 10 kpc. Figure taken from Lelli et al. (2015).

two competing theories at hand, a single detailed scenario for the formation of TDGs

within the tidal arm has not been fully established, yet. The first of them is the formation

out of stellar concentrations which are massive enough to bind gas from the tidal arm, as

was found in the simulations of Barnes and Hernquist (1992). Whereas, Elmegreen et al.

(1993) suggest that TDGs form from massive gas clouds and therefore provide a scenario

in the completely different way compared to the first one.

Wetzstein et al. (2007) investigated numerical resolution effects on the formation of TDGs

in galaxy collision models. They found that TDGs are always formed at lowest resolutions,

due to particle noise, but never within high resolution pure N-body simulation. Further-

more just the inclusion of a dissipative component is not sufficient for the formation of

TDGs in high resolution simulation, although it is required but it also has to be extended

and massive enough. Therefore, the results from Wetzstein et al. (2007) favour a formation

scenario out of collapsing gas as proposed by Elmegreen et al. (1993).

1.2.2 Properties of TDGs

Due to their origin from tidally expelled material from the discs of their parent galaxies,

TDGs are supposed to contain only very little DM, if at all. TDGs are not able to capture

DM, as their escape velocity is much lower than the assumed velocity dispersion of the

parents DM halos (e.g. Bournaud, 2010; Lelli et al., 2015). As a consequence from the

expected absence of DM the mass-to-light (ML) ratio is expected to be close to one (e.g.
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Barnes and Hernquist, 1992; Wetzstein et al., 2007), in agreement with observations (e.g.

Duc and Mirabel, 1994). Despite their different formation mechanism, TDGs show similar

sizes and masses as normal primordial dEs, with effective radii in the order of 100 pc and

masses of the stellar content between 106 ≤ M?/M� ≤ 1010 and therefore follow the same

mass-radius (MR) relation (Dabringhausen and Kroupa, 2013, and references therein).

Duc et al. (2004) proposed a more restrictive lower mass cut of 108—9 M� for young tidal

objects to be classified as TDGs, as also other objects like super star clusters (SSC) are

able to from within the tidal debris of interacting galaxies. The luminosity range typical

for observed TDGs is −14 < MB < −18 (e.g. Mirabel et al., 1992; Duc and Mirabel, 1994;

Weilbacher et al., 2003), a luminosity range that is also comparable to the primordial

population of DGs (e.g. Mo et al., 2010).

TDGs show a bimodal distribution in the stellar ages, with no more than 50% of stars

originate from the parent galaxies and have ages of a few Gyr. Superimposed on this old

population is a young population of stars which formed in a starburst at the time the

TDG is formed, followed by a normal star formation rate (SFR) as expected for DGs with

comparable size (e.g. Elmegreen et al., 1993; Hunter et al., 2000). Observationally derived

SFRs of TDGs range from 10−4 M� yr−1 to 10−1 M� yr−1 (e.g Duc and Mirabel, 1998;

Lee-Waddell et al., 2014; Lisenfeld et al., 2016).

The confirmed TDGs show an offset from the mass-metallicity (MZ) relation of dwarf

galaxies. This effect is a result of the formation mechanism of TDGs, as they emerge from

pre-enriched material of their high mass parent galaxies, therefore the location of DGs

along the MZ relation is thought to be a reliable method to distinguish between TDGs and

primordial DGs (e.g. Duc and Mirabel, 1994, 1998; Croxall et al., 2009; Sweet et al., 2014).

However, chemical evolution models of TDGs (Recchi et al., 2015) show that the bimodal

distribution of DGs can be explained by different ages and therefore initial metallicities

of TDGs. Old TDGs, formed in the early universe, originate from less enriched material,

therefore the self enrichment within the TDGs becomes the dominant mode of enrichment,

these TDGs potentially form the observed MZ relation of DGs. Whereas, young TDGs,

with ages less than a few Gyr, form from substantially pre-enriched material and are those

DGs which significantly deviate from the MZ relation. Thus selecting TDGs based on their

metallicity is only valid for recently formed TDGs.

1.2.3 Contribution to the dwarf galaxy population

To quantify the fraction of TDGs among the population of DGs it is necessary to have

reliable estimates on the following parameters: (1) The number of TDG forming mergers,

i.e. wet mergers and therefore involve at least on spiral galaxy (Nwet). (2) The average

number of TDGs formed per merger event (NTDG). (3) The fraction of TDGs which

survive long enough to be discovered today (S). (4) The number of TDGs which disperse

from the parent galaxies, so that they can be found in the field.

Due to the absence of a supporting DM halo, TDGs are suspected to be very vulnerable to
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CHAPTER 1. INTRODUCTION

internal and external disruptive effects like stellar feedback, ram pressure and tidal forces

(e.g. Ploeckinger, 2014). But observations and simulation have shown that TDGs can

indeed be long lived objects and can survive for several billion years. Recchi et al. (2007)

performed 2D simulations of TDGs and found that these objects can survive an initial

starburst for several 100 Myr and might turn into long lived dwarf spheroidal galaxies.

Within a large set of galaxy merger simulation Bournaud (2010) found that half of the

formed TDGs with masses greater than 108 M� survive for a Hubble time. The oldest

confirmed TDGs have been found by Duc et al. (2014) with approximated ages of about

4 billion years. More recent detailed chemodynamical simulations on the survivability of

TDGs have shown that, despite their lack of DM, TDGs can survive disruptive events

like starbursts or the tidal field of the parent galaxies and reach ages of more than 3

Gyr (Ploeckinger et al., 2015). Kaviraj et al. (2012) estimated, for values of Nwet = 3,

NTDG = 0.22 and S = 0.5, that ∼ 6% of DGs in clusters have a tidal origin, requiring

that the present day production rate is comparable to the early universe. Most of the

observational predictions are derived from galaxy mergers in the local universe and the

theoretical estimates are based on simulation resembling the properties of these local

galaxies. In simulations of gas rich major mergers, comparable to mergers in the early

universe, a much higher number of TDGs can be produced (e.g Barnes and Hernquist,

1992; Fouquet et al., 2012). For the mass range 8.5 ≤ log(M/M�) ≤ 9.5 Wen et al.

(2012) suggest that ∼ 3% of the local DGs are old TDGs and no more than ∼ 10%, if

higher production and merger rates in the early universe are taken into account. The most

extreme estimates on the fraction of TDGs predict that all DGs have a tidal origin. If

1-2 TDGs are formed per merger, with a typical lifetime of 10 Gyr, then the number of

TDGs can account for the whole DG population in the universe (Okazaki and Taniguchi,

2000). A similar result was obtained by Dabringhausen and Kroupa (2013) based on the

MR relation along which TDGs and primordial DGs are indistinguishable.

1.3 The Hypothesis: Formation of KDCs in TDGs

Within this thesis a novel theory (Hensler, private communication) on the formation of

KDCs in dEs is investigated, which does not only describe the formation of the KDC but

simultaneously also explains the population decoupling, i.e. the age respectively metallic-

ity segregation, as found by Toloba et al. (2014) in two Virgo cluster dEs.

In this hypothesis KDC harbouring dEs are old TDGs, which have decoupled form their

parent galaxies and lost their gas during their further evolution.

During gravitational interactions, i.e. fly-by or mergers, of gas rich galaxies material is

expelled to form the typical extended tidal arms. The ejected gas and stars stream along

the bent arm, with higher velocities at the front side compared to the back side. The

gas within these arms can form overdens regions which eventually collapse to form TDGs.

Assuming a constant mass during the collapse, then conservation of angular momentum

leads to a spin up of the TDG, which is proportional to the ratio of the initial and fi-
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Figure 1.3: The formation of KDCs in TDGs. Left: Stream velocity along the tidal arm, the doted
circle indicates the location of the proto-TDG. Middle: Gravity triggers the collapse of the TDG and
conservation of angular momentum results in a retrograde rotation of the TDG. Right: The tidal torque
exerted on the TDG causes a change in the rotation direction of the TDG, thereby the gaseous component
feels a stronger torque due to its viscosity. See text for details.

nal radii. Therefore, already a relative velocity difference of 2.0 km s−1 at a distance of

10.0 kpc from the centre of the forming TDG yields a rotational velocity of 10.0 km s−1

at rTDG = 2.0 kpc after the collapse. The collapse out of the streaming gas of the tidal

arm leads to a retrograde rotation of the TDG with respect to the sense of rotation of the

tidal arm.

As TDGs are born in close proximity to their parent galaxies they feel their gravitational

potential and are thus exposed to the resulting tidal field, which exerts the so-called tidal

torque on the TDGs. Due to the viscosity of gas the tidal torque has a stronger impact

on the gaseous component than the stellar component and causes the inversion of its ro-

tational direction. The basic principles of the theory are sketched in Figure 1.3.

The old stellar component, expelled from the interacting galaxies, and captured to the

TDG by gravity, constitute the main body of the KDC harbouring TDG. On the other

hand the subsequently formed and therefore younger and metal-enriched stars build the

core of the TDG with an inverted rotation direction and thus the KDC. This scenario

naturally explains the observed population decoupling, with younger and metal-enriched

stars at the centre of the TDG. This formation scenario is in agreement with the findings

of Ploeckinger et al. (2015), who showed that an initially retrograde rotating TDG can

form a counter rotating gaseous component.

Here, numerical simulations of young TDGs, embedded in the tidal arm, are carried out in

order to study their dynamical evolution. The initial data for these simulations are taken

from a galaxy collisions simulation from Yang et al. (2014). In Chapter 2 an overview of

the applied simulation code and its methods as well as some of the additional modules

which deal with the main physical processes that drive galaxy evolution are described.

Chapter 3 deals with the initial data and the setup of the numerical simulations. The

results are presented in Chapter 4 and a final discussion is provided in Chapter 5.
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Chapter 2

Chemodynamical galaxy evolution

models

In order to investigate the possible formation of KDCs in TDGs, fully three-dimensional

chemodynamical simulations of TDGs, embedded in the tidal arms of the interacting

galaxies, are carried out. These simulations include the dynamics of self-gravitating gas,

radiative cooling of gas in dependency of the chemical composition, the formation of stars

and feedback from stars. Stars influence the interstellar gas in several ways, during star

formation gas is converted into star what reduces the amount of gas within a galaxy.

But on the other hand, during feedback events from stars the ISM gets heated and metal

enriched material is returned back to the gas reservoir. The included feedback processes

are ionising UV-radiation, stellar winds, AGB-stars as well as Type Ia and Type II su-

pernovae. As TDGs are born in the vicinity of interacting galaxies they get disturbed

by the gravitational potential of the parent galaxies, therefore the effects of an external

gravitational potential are included in the presented simulations.

In the following sections the used hydrodynamic simulation code flash and its adaptive

mesh infrastructure is described, furthermore, the key ingredients for galaxy evolution

simulations and their numerical treatment are presented. These ingredients cover gas dy-

namics, self gravity, cooling of gas, star formation and stellar feedback as well as the effects

of an external gravitational potential, which is particularly important for the evolution of

TDGs.

2.1 FLASH code

The flash code was developed by Fryxell et al. (2000), at the Center for Thermonuclear

Flashes (FLASH Center1). It was founded in 1997 at the University of Chicago under

contract to the US Department of Energy as part of its Accelerated Strategic Computing

Initiative (ASCI). The aim of the Center is to advance the knowledge about astrophysi-

cal phenomena involving thermonuclear flashes, related to compact stars. These include

1http://flash.uchicago.edu
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X-ray bursts, classical novae and Type Ia supernovae. The flash code is highly paral-

lelized, using the Massage-Passing Interface (MPI) for inter process communication and

adaptive mesh refinement (AMR) to improve the resolution of the domain where needed.

Furthermore, it is equipped with several modules dealing with physical processes such as

hydrodynamics or self gravity and additionally it is possible to include particles. Through

its modular structure flash can be extended to a large variety of astrophysical problems,

which makes it also a powerful tool for simulations of galaxies. The simulations presented

within this thesis made use of an advanced version of flash3, which was extended for

the treatment of stellar particles, gas cooling and an external gravitational potential by

Ploeckinger (2014); Ploeckinger et al. (2014, 2015).

2.1.1 Adaptive Mesh Refinement

Simulations of a large variety of astrophysical problems, ranging from the internal processes

of stars to the evolution of galaxies, require a high spatial resolution while covering a large

domain. Running this kind of simulations on an uniform grid (UG) would require a lot

of computational resources. To overcome this issue and to make the computations more

efficient a technique called adaptive mesh refinement (AMR) can be used.

Within this method the simulation grid is not static at a fixed spatial resolution, instead

it increases the resolution of the simulation domain where it is required. Thus it provides

the necessary resolution and at the same time it keeps the computational costs low.

In order to provide this functionality flash uses the paramesh-package from MacNeice

et al. (2000), a block-structured adaptive mesh. Within this kind of AMR-method the

computational domain is split into blocks, each containing a fixed number of cells along

each spatial direction. If one of the existing blocks is getting refined, the newly created

child blocks have to fulfill certain criteria. A child block must have half the side length

of its parent. By this the child blocks completely fill the parent block and cannot overlap

each other or neighboring blocks. In ndim-dimensions the parent block is thus divided

into 2ndim child blocks, of which each consists of the same number of grid cells as their

parent block. Therefore, the resolution is improved by a factor of two form one level of

refinement to the next. Furthermore, only jumps of one level of refinement between two

neighboring blocks are allowed.

The different blocks form a tree data-structure, where the leafs are the active child blocks.

This tree-structure tracks the position of the blocks within the simulation domain. The

upper panel of Figure 2.1 illustrates the AMR-principles, based on a two-dimensional

example grid, with its resulting tree data-structure (lower panel).

The refinement criteria used by flash is based on the description of Löhner (1987). The

computed error estimate is a dimensionless value and can thus be applied to any grid

variable. Furthermore, it provides the advantage of being a completely local indicator,

hence no communication between different processes is needed to decide whether or not a

block has to be refined. The estimator proposed by Löhner is a modified second derivative,
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CHAPTER 2. CHEMODYNAMICAL GALAXY EVOLUTION MODELS

Figure 2.1: The upper panel shows an example of a simple 2D block structure (outlined in bold) covering
a fixed domain. The interior 8× 8 cells are shown within each block. The size of a cell varies between two
refinement levels by a factor of two. The lower panel shows the resulting tree structure, where different
symbols indicate the processor on which a block would be located on a four processor machine. Figure 2
from Fryxell et al. (2000)

normalized to the average of the gradient over the with of one cell. The criterion actually

used by flash in one dimension can be calculated by

Ei =
|ui+2 − 2ui + ui−2|

|ui+2 − ui|+ |ui − ui−2|+ ε [|ui+2|+ 2 |ui| − |ui−2|]
, (2.1)

where ui is the value of the refinement test variable in the ith cell. When this criterion is

extended to multiple dimension, all cross derivatives have to be computed and it becomes

EiX iY iZ =


∑
pq

(
∂2u

∂xp∂xq

)2

∑
pq

[
1

2∆xp

(∣∣∣ ∂u∂xp ∣∣∣ip+1
+
∣∣∣ ∂u∂xp ∣∣∣ip−1

)
+ ε

|upq |
∆xp∆xq

]2


1
2

, (2.2)

where the sums are carried out over the coordinate directions and |upq| is the average

of the values of |u| over several neighboring cells in the p and q direction. The partial

derivatives in Eq. 2.2 are actually finite-difference approximations calculated at the centre

of the iX , iY , iZ-th cell. The ε-term of the denominator, with ε = 10−2 as default value,

acts as a filter to prevent refinement in regions of small ripples.
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In order to mark a block for refinement, the refinement criteria has to be fulfilled for only

one cell within that block (EiX iY iZ > CTORE). On the other hand, to mark a block for

derefinement all cells within a block and its siblings from the same parent block have to

fulfill the derefinement criteria (EiX iY iZ < CTODE). In principle paramesh would allow

to advance the solution with different timesteps for different levels of refinement, within

flash this feature is not used. Taking the above mentioned restrictions into account

and assuming the computational domain is covered by a single block on the first level of

refinement, the resolution at any given level of refinement can then be calculated by

∆x =
D

ncells 2(lref−1)
, (2.3)

where D is the size of the computational domain, ncells the number of cells in one direction

of a block and lref the level of refinement of interest.

In terms of parallelization, paramesh follows the single program multiple data (SPMD)

approach. Meaning that the same code is performed on all processors but the program

flow is modified by the local data of each processor. Each block is surrounded by a given

number to of guard cells, which get filled from the neighboring blocks or, in case the block

boundary coincides with the boarder of the simulation domain, from the user-provided

boundary conditions. The blocks are redistributed after every refinement/derefinement

step according to a Morton space-filling curve, to keep the workload of the different pro-

cessors balanced and reduce the required amount of inter-processor communication.

2.2 Hydrodynamics

Hydrodynamic, also known as fluid dynamic, describes the motion and properties of a

fluid (liquid or gas). In order to determine this motions, flash uses the Euler equations

for compressible and inviscid fluids (Equations 2.4 - 2.6). These equations correspond to

the Navier-Stokes equations for a fluid with zero viscosity and without head conduction.

∂ρ

∂t
+∇ · (ρv) = 0 (2.4)

∂ρv

∂t
+∇ · (ρvv) +∇P = ρg (2.5)

∂ρE

∂t
+∇ · [(ρE + P )v] = ρv · g (2.6)

Equation 2.4, the first Euler equation, is the equation of mass conservation, it is based

on the condition that the temporal change in density ρ has to be equal to the flux ρv of

mass through a given surface, where v is the velocity. The second Euler equation (2.5)

expresses the conservation of momentum, similar to Equation 2.4. It also takes the gradient

in pressure P and external forces i.e. gravity, caused by the gravitational acceleration g
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into account. The third equation (2.6) is the equation of energy conservation, where

E = ε+
1

2
|v|2 , (2.7)

is the total energy per unit mass, the sum of the specific internal energy ε and the kinetic

energy per unit mass. If the internal energy is dominating the kinetic energy, then the

calculation of the internal energy via Equation 2.7 can lead to unphysical results caused

by truncation errors. In order to avoid this unwanted behaviour, flash is able to evolve

the internal energy (Equation 2.8) independently.

∂ρε

∂t
+∇ · [(ρε+ P )v]− v · ∇P = 0 (2.8)

This is controlled by the parameter eintSwitch, which is defined such that Equation 2.8 is

used if ε < eintSwitch · 1
2 |v|

2. Through out this work eintSwitch = 1 is used for stability

reasons. To solve the Euler equations an additional equation linking pressure, density

and temperature respectively internal energy is needed. This kind of equation is called

equation of state (EOS) and describes the physical state of the fluid. Equation 2.9 shows

the used gamma-law EOS for an ideal gas, where γ is the adiabatic index.

P = (γ − 1) ρε (2.9)

flash is capable of solving the Euler equations in one, two and three dimensions and

provides different EOSs.

2.2.1 Solver

In Cartesian coordinates the Euler equation in conserved form can be written in vector

notation as:

∂U

∂t
+∇ · F = 0, (2.10)

with

U =

 ρ

ρv

ρE

 , F(U) =

 ρv

ρvv + P

(ρE + P )v

 , (2.11)

where v = (u, v, w) is the three dimensional velocity vector, U and F are the state and

flux vector, respectively. By splitting the velocity vector into its components Equations

2.11 can be written as:

U =


ρ

ρu

ρv

ρw

ρE

 , F(U)x =


ρu

ρu2 + P

ρuv

ρuw

(ρE + P )u

 , G(U)y =


ρv

ρuv

ρv2 + P

ρvw

(ρE + P )v

 , H(U)z =


ρw

ρuw

ρvw

ρw2 + P

(ρE + P )w

 . (2.12)
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Substituting Equations 2.12 into Equation 2.10 gives

∂U

∂t
+
∂F(U)x
∂x

+
∂G(U)y
∂y

+
∂H(U)z
∂z

= 0 (2.13)

(e.g. Toro, 2009). Within the finite volume approach, two adjacent cells, which are sharing

a common interface, can be interpreted as Riemann problem. A Riemann problem is an

initial-value problem where two initially constant states of a fluid are separated by an

interface, i.e.

Ul =

 ρl

ρlvl

ρEl

 , Ur =

 ρr

ρrvr

ρEr

 (2.14)

at the left and right side of the interface. Therefore, Riemann problems are set up and

solved at each cell interface. The solution of the Riemann problem URP is then used to

calculate the flux through an interface Fi+1/2 = F(URP ), where the subscript i + 1/2

denotes the interface between cell i and i+ 1.

flash provides two different hydrodynamic solvers, which are extended versions of the

general Riemann problem, namely the piecewise-parabolic method (PPM) and the Mono-

tone Upstream-centred Scheme for Conservation Laws (MUSCL) Hancock solver. The

directionally split third-order PPM uses second-order Strange time splitting, whereas the

MUSCL Hancock scheme is directionally unsplit and provides second-order accuracy both

in time and space. Furthermore, different Riemann solver, such as the Roe, HLL or HLLC

solver, as well as various slope limiters are provided.

For the simulations presented within this thesis the unsplit MUSCL Hancock scheme in

combination with the HLLC Riemann solver and van Leer slope limiter is used.

2.3 Timestep

A large variety of physical processes influence the evolution of galaxies, such as the motion

of gas or stars, cooling of the interstellar medium or the formation of stars. Each of these

processes occurs on its own typical timescale, for example cooling is a much faster process

than the advection of gas. Choosing the minimal timestep of all relevant processes would

lead to a very small timestep and thus to very long computation times. To avoid this

problem only the minimum between the hydrodynamic and particle timestep is considered

as simulation timestep. Details on the computation of the hydrodynamic and particle

timestep can be found below. Processes acting on shorter timescales are treated as sub-

grid models, with their own timestep, e.g. the energy loss due to radiative cooling is

calculated by an iterative Newton-Raphson scheme (see Section 2.5).
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2.3.1 Hydrodynamic timestep

For stability reasons the timestep of hyperbolic differential equations, such as the Euler

equations, cannot be arbitrary large. In order to assure stability the Courant-Friedrichs-

Lewy (CFL) condition is used to calculate the timestep:

∆thyd = ccfl
∆x

Snmax
, (2.15)

where ∆x is the size of a grid cell and

Snmax = max {|uni |+ ani } (2.16)

is the maximum wave speed (flow (uni ) + sound (ani ) speed) at the nth timestep within

all cells of the computational domain, including boundary cells. The CFL-factor ccfl is a

constant between zero and one, where values closer to one result in a more efficient scheme.

This condition ensures that no wave can propagate further than ∆x (e.g. Toro, 2009). The

minimal timestep of all cells, independent of the refinement level, according to the CFL

condition, is used as hydrodynamic timestep ∆thyd. For the simulations presented here

ccfl is set to 0.1, this results in typical hydrodynamic timesteps in the range of 103 to

3× 104 yr.

2.3.2 Particle timestep

Within flash particle calculations are performed on a block-base, therefore all calcu-

lations related to particles are performed for all particles within a block rather than a

single grid cell. If a particle leaves a block it might need to be mapped to a different

processor, during this off-processor mapping flash only allows particles to be moved to

the direct neighbour block. Therefore, the timestep needs to be limited in a way such that

a particle cannot travel further than ∆xb, the size of an AMR-block. In addition to that

the accuracy of the results decreases with increasing timestep. The particle timestep is

calculated by:

∆tpart = cpart
∆xb
vmax

, (2.17)

where vmax is the maximal velocity of all particles and cpart = 0.5, as standard value, is a

safety factor to ensure that a particle cannot over shoot a neighbouring block of a lower

refinement level.

2.4 Self-Gravity

Astrophysical problems typically deal with self gravitating objects, like stars and galaxies

or the formation of the large scale structure of the universe due to gravity. In either case
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Poisson’s equation for the gravitational potential,

∇2φ (x) = 4πGρ (x) , (2.18)

for a density distribution ρ (x) has to be solved. flash provides different gravity solvers

depending on the grid geometry and external boundary conditions. In the following sec-

tions the multigrid Poisson solver in general and the additional steps required for the

applied isolated boundary condition are outlined.

2.4.1 Multigrid Poisson solver

The direct multigrid Poisson solver for oct-tree adaptive meshes (Ricker, 2008) was de-

veloped to be incorporated into the framework of flash. It is based on the method

described by Huang and Greengard (2000), modified to operate on finite volume meshes.

This scheme allows the treatment of individual AMR blocks as independent uniform grids

on which Poisson’s equation is solved. As such any Poisson solver that can handle homo-

geneous Dirichlet boundary conditions can be used, within flash a fast sine transform is

implemented. If inhomogeneous Dirichlet boundary conditions, i. e. given value bound-

aries, are present a boundary value elimination is applied. The algorithm needs three basic

operations, taking residuals, restricting from the fine to coarse level and prolongation from

the coarse level to the faces of fine level blocks. The residual R(x) at a certain grid cell

at position x is defined as:

R(x) ≡ 4πGρ(x)−∇2φ̃(x), (2.19)

where ∇2φ̃(x) is the finite difference Laplacian applied to the numerical approximation

of the gravitational potential. The restriction operator is applied when quantities are

mapped from a higher level of refinement (l + 1) to a coarser level (l) and is therefore

calculated as: (
Rlφ̃

)
≡ 1

2d

2d∑
c=1

φ̃l+1, (2.20)

where the sum is carried out over all grid cells of level (l + 1) which are located within

one cell at level (l). It is applied to the interior grid cells of a block. The prolongation

operator Il is only used to define boundary values for the single block Poisson solver and

therefore is only applied to the edges of a block. To prolong values from a lower level (l)

to the next higher level (l + 1) quartic interpolation is used:

(
Il+1φ̃

)
≡

2∑
p,q,r=−2

αpqrφ̃
l
i+p,j+q,k+r, (2.21)

where the coefficients αpqr are given through the interpolation scheme and the sum is

carried out over the adjacent cells at lref = l.
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With these three operators the algorithm can be described by the following six steps:

1. Restrict the source function 4πGρ to all levels of refinement by using Equation 2.20,

starting at the highest refinement level lmax. And compute the discrete L2 norm for

each block.

2. Interpolation step: Loop over all refinement levels from l = 1 to lmax.

2.1. Solve ∇2φ̃ = 4πGρ for all blocks on level l using the single block Poisson solver,

with homogeneous Dirichlet boundary conditions.

2.2. Compute the residuals according to Equation 2.19.

2.3. For every block that has child blocks, prolong the face values for φ̃ onto them

(Equation 2.21).

3. Restrict the residuals to all levels, from l = lmax to 1, using R instead of φ̃ in

Equation 2.20. And calculate the discrete L2 norm of the residuals for each block.

4. Check if the ratio of the residuals norm (step 3) and the source norm (step 1) is

smaller than the desired accuracy, if not proceed with the correction step.

5. Correction step: Loop over all refinement levels from l = 1 to lmax.

5.1. Solve ∇2C = R, where C is the correction of the gravitational potential and is

calculated by the single block Poisson solver.

5.2. Update the residuals with R = R−∇2C for all blocks.

5.3. Correct the solution on all leave blocks of level l so that φ̃→ φ̃+ C

5.4. For every block that has child blocks, prolong the face values for C onto them

(Equation 2.21).

6. If a correction was applied return to step 3.

In order to account for the isolated boundary conditions of the physical simulation box,

a correction on φ̃ has to be applied. Therefore, a multipole Poisson solver is used to

define the gravitational potential on the physical boundaries of the simulation box for

the multigrid solver. Typically 5-6 V-cycles iterations are needed to achieve the required

accuracy for the first call of the multigrid solver and an additional 3 iterations for the

correction due to the isolated boundary conditions.

The parallelization of the gravity solver is achieved through the distribution of blocks

on different processors by the AMR-package. On a coarse level of refinement the blocks

are only distributed to a few processors, this results in the main scaling bottleneck, as

processors allocated to higher refined blocks have to wait until the coarse level calculations

are completed (Ricker, 2008).
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2.4.2 Coupling hydrodynamics with gravity

The Euler equations of hydrodynamics couple with gravity through the momentum and the

energy equation, where the gravitational source terms are ρg and ρv · g, respectively (see

right hand sides of Equations 2.5 and 2.6). As different hydrodynamic schemes incorporate

the gravitational source term in different manners, only the gravitational potential φ is

provided by the gravity solver. From which the gravitational acceleration can be calculated

by:

gx,ijk =
(φi−1,j,k − φi+1,j,k)

2 ∆x
, (2.22)

where gx,ijk is the gravitational acceleration in the x-direction of a grid cell and ∆x is

the grid spacing, and analogue for the other coordinate-directions. The incorporation

of the gravitational accelerations for the unsplit MUSCLE Hancock scheme follows the

description of Truelove et al. (1998). Where the velocities at the left and right sides

(S = L or R) of the interface i+ 1/2, separating cells i and i+ 1, are modified according

to:

vS,i+1/2 → vS,i+1/2 +
∆t

2

(
g+
S,i+1/2 + g−S,i+1/2

)
2

, (2.23)

where
(
g+
S,i+1/2 + g−S,i+1/2

)
/2 is the characteristic-averaged value of gS,i+1/2, the super-

scrips denotes the v + a and v − a characteristic respectively.

2.5 Cooling

Cooling of gas is, besides gravity, one of the major drivers of structure formation, from the

formation of larger scale structures in the universe down to molecular clouds which even-

tually form stars. Depending on the temperature, chemical composition and ionisation

fraction the cooling rate and the associated processes are strongly varying. The dominant

cooling mode, for a hot plasma in collisional ionisation equilibrium, is radiative cooling

due to metal line transitions. At temperatures greater then a few time 107 K cooling

occurs mainly by bremsstrahlung (Boehringer and Hensler, 1989; Dalgarno and McCray,

1972). For lower temperatures the cooling rate is determined by collisional excitation of

fine structure levels of neutral and ionised atoms. By the inclusion of molecular gas, the

cooling rate at low temperature would be increased (e.g. Dalgarno and McCray, 1972).

In order to accurately describe the radiative cooling for all temperatures, Ploeckinger

(2014) divided the cooling function into two different temperature regimes. For the tem-

perature range 104 < T [K] < 108 the cooling tables from Boehringer and Hensler (1989)

for H, He, C, N, O, Ne, Mg, Si, S and Fe are used. For temperatures below 104 K the

cooling functions from Dalgarno and McCray (1972) and Schure et al. (2009) are eval-

uated, taking into account the cooling due to C, N, O, Si, S and Fe. To account for

the composition depended ionisation the ion fractions for ionisation equilibrium are taken

from Arnaud and Rothenflug (1985) and Arnaud and Raymond (1992, for iron).
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Figure 2.2: Top: Combined radiative cooling rate coefficient Λ(T ) for Z = 0.3 Z� with the contribution
of the 10 different species considered for cooling. Bottom: Combined radiative cooling rate coefficient for
Z = 1.0, 0.3, 0.1, 0.01 & 0.001 Z�

Figure 2.2 illustrates the combined cooling coefficient Λ(T ) and the contributions of the

considered elements for a metallicity of Z = 0.3 Z� in the temperature range 102 ≤
T [K] ≤ 108 in the top panel and the combined cooling coefficient for several values of Z

in the bottom panel. The loss of energy due to the effect of radiative cooling is given by

∂ε

∂t
= −n2Λ(T ), (2.24)

where ε is the internal energy density and n the particle number density.
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2.5.1 Implementation

To calculate the energy loss due to radiative cooling, an implicit Newton-Raphson solver

is used, in case it does not converge fast enough a bisection routine is used. One Newton-

Raphson iteration step is calculated by

εnewn+1 = εoldn+1 −
f(ε)

f ′(ε)
, (2.25)

with

f(ε) = εn+1 − εn + ∆tcool

n2
H

ρ
Λ(T, fi) (2.26)

and

f ′(ε) = 1 + ∆tcool

n2
H

ρ

∂Λ(T, fi)

∂T

T

εn
, (2.27)

where ∆tcool is the cooling timestep, nH the number density of hydrogen atoms, εn the

internal energy before cooling, ρ the density within a grid cell, T the temperature and

fi the ionisation fraction. Supernovae and in general the feedback of stars increase the

temperature within a grid cell as well as the density, as material is released back to the

grid. These high temperatures and densities can lead to an unphysical high cooling rate,

resulting in the so-called overcooling problem. To avoid this problem, without completely

shutting down the cooling in affected grid cells, the mass fraction of heated gas fSN is

traced and excluded from the general cooling process. Therefore, the specific internal

energy after cooling becomes

εn+1 = εn + (1− fSN) ∆εcool, (2.28)

where ∆εcool ≤ 0 is the energy loss due to radiative cooling. In addition to the dilution of

fSN as it is advected with the gas, it cools by a reduction of the mass fraction according to

fn+1
SN = 1− ∆t

τSN

× fnSN, (2.29)

where ∆t is the hydrodynamic timestep, τSN = 3 Myr is the typical cooling time, fnSN and

fn+1
SN are the fractions of feedback heated gas before and after cooling, respectively. For

details on the calculation of fSN see Section 2.6.3.

2.6 Stars

Stars are an important impact factor of galaxy evolution and influence it in several different

ways. The formation of stars reduces the galactic gas content and therefore reduce the

available amount of gas for star formation. On the other hand, during the evolution of

stars and particularly at the end of their life, stars return metal-enriched material back

to the ISM. These so-called stellar feedback events can be highly energetic and therefore

heat the ISM, this heating decreases the production rate of stars as they are formed out of
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cold molecular gas. After a sufficient cooling time this enriched material will be available

for further star formation.

Within the scope of the presented simulations, stars are treated as particles. Where one

stellar particle represents a whole star cluster containing a single stellar population. The

stellar population within on star cluster is described by the stellar initial mass function,

which allows to derive the number of stars per mass interval. This treatment allows to

determine how many stars in which mass interval end their life within one timestep and

therefore provides information about the number and types of stellar feedback events.

The star clusters are represented by three major parameters, the current mass, needed

for the gravitational force calculation, the initial mass at the time of formation and the

age of the cluster, which are both needed for the determination of the number of dying

stars. The stellar particles routines developed by Ploeckinger (2014) incorporate star

formation and feedback, as described below. To advance the particles positions in time,

within the potential of the TDG, a LeapFrog algorithm for adaptive timesteps is used.

The additional effects of the external gravitational potential (i.e. tidal accelerations) are

taken into account, see Section 2.7 for details on the calculation.

2.6.1 Star Formation

The used star formation recipe is fully self-regulated, in a way that feedback from stars

influence and regulate the formation of new stars. Stellar particles are created according

to the stellar birth function (SBF, ψ), which is only depending on the local gas density

and temperature. This kind of recipe has the advantage that no threshold in density or

temperature for star formation is needed, resulting in a smooth transition from regions

with and without star formation. Following the prescription of Koeppen et al. (1995,

hereafter KTH95) the SBF is given by

ψ (ρ, T ) = Cnρ
nf (T ) , (2.30)

where ρ and T are the gas density and temperature, respectively, n = 2, C2 = 2.575 ×
108 cm3 g−1 s−1 and f(T ) is an efficiency parameter depending only on the local gas

temperature. In principle any function which tends to zero for T & 104 K and to one for

T . 100 K could be used for f(T ). This condition is attributed to the fact that stars form

within cold molecular clouds. In the KTH95 description a simple exponential function

f (T ) = e−T/Ts (2.31)

with a constant Ts = 103 K, is used. This results in an efficiency of more than 90% for

temperatures below 100 K and less then 5% above 3000 K.

In order to mimic the multiple phases of the ISM, within the single phase description

of the used code, only the fraction of cold gas (fcold = 1 − fSN) is considered for star

formation. Where fSN is the mass fraction of gas, heated by the feedback of other stellar

23



particles, within a grid cell (calculated by the stellar feedback routines, see Section 2.6.3).

Therefore, the actual used SBF is given by

ψ (ρ, T ) = C2 (1− fSN) ρ2 e−T/Ts , (2.32)

with the parameters as defined above. As this kind of SF prescription also allows stars to

form in regions with high temperatures and low densities, what would results in unphysi-

cally low cluster masses, a threshold on the SBF is introduced in the form of

ψthres = θsf ×
Mcl,min

τsf VGMC

, (2.33)

where Mcl,min is the minimum cluster mass. τsf is the cluster formation time, i.e. the time

span in which a stellar particle is allowed to accumulate material from the cells within

the typical volume of a giant molecular cloud (VGMC). θsf is a dimensionless factor,

controlling the number of stellar particles with masses below Mcl,min. For θsf = 1 and

assuming a constant density and temperature during the formation time within VGMC, the

SBF-threshold translates into a minimal cut-off mass, i.e. after the formation time one

stellar particle has to have at least a mass of Mcl,min. As the density and temperature are

in general not constant over time, this threshold is acting as a filter on low initial particle

masses, but does not necessarily prohibit particles with final masses below Mcl,min.

If the SBF within a cell is larger than ψthres and no other star forming particle lies within

a radius of rGMC as well as a convergent gas flow is present, then a new particle is created.

Starting from the time of creation a stellar particle has τsf time to accumulate further

material from its surrounding cells according to the SBF. After τsf or the maximum

cluster mass Mcl,max is reached the particle is closed for further star formation and the

feedback processes start. Additionally to these general shut off parameters a condition

based on the description of the initial mass function (IMF, Section 2.6.2) was introduced.

As soon as massive stars are born they influence their environment by feedback processes

and reduce the available amount of gas for star formation in their surroundings, therefore

the accretion of material onto an existing stellar particle is stopped when the last IMF

mass bin is populated by at least one star. If the star formation criteria are still fulfilled,

then a new stellar particle is created within the distance of rGMC from the fully populated

particle. Table 2.1 summarises the used standard star formation parameters within this

thesis, deviations from these values are listed in Table 3.2.

In order to conserve the momentum during the accretion phase, the new velocity of a

stellar particle after accretion (vn+1
sp ) is calculated by

vn+1
sp =

Mn
spv

n
sp + ∆mvgas

Mn
sp + ∆m

, (2.34)

where Mn
sp is the mass of the stellar particles before the accretion of gas, ∆m is the accreted

gas mass, vnsp and vgas are the velocities of the stellar particle before accretion and of the
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Table 2.1: List of used standard star formation parameters.

Parameter Value used in
Equation(s)

C2 2.575× 108 cm3 g−1 s−1 2.30, 2.32
Ts 1000 K 2.31, 2.32
θsf 1 — 2.33
τsf 1 Myr 2.33
rGMC 160 pc —
VGMC 1.72× 107 pc3 2.33
Mcl,min 100 M� 2.33
ψthres 5.83× 10−6 M� Myr−1 pc−3 2.33
Mcl,max 106 M� —

accreted gas, respectively. The initial metallicity of a stellar particle is mapped from the

grids chemical composition to the particle. As it may vary over time, it is calculated after

every accretion step as mass weighted average between the metallicity of the particle and

the grid cell.

2.6.2 Initial Mass Function

In order to accurately calculate the feedback from the stellar particles, it is necessary

to know the distribution of stellar masses within one star cluster particle. This can be

calculated via the so-called initial mass function (IMF, ξ(m)), one of the most fundamental

distribution functions in astrophysics. It is commonly described as a power-law function

ξ (m) = k m−α, (2.35)

with k being a normalisation constant and the power-law index α = 2.35 (Salpeter, 1955),

or as a multi-part power-law (Kroupa, 2001) with α depending on the stellar mass range:

α =

1.3 . . . 0.1 ≤ m/M� < 0.5

2.3 . . . 0.5 ≤ m/M�
(2.36)

For the presented simulations two different IMF implementations were realised, within the

standard settings a filled IMF is used, whereas comparison runs made use of the integrated

galactic initial mass function (IGIMF). In both cases the IMF is discretised into nbin = 64

equally spaced logarithmic mass bins in the mass range 0.1 ≤ M?/M� ≤ 120. Figure 2.3

shows the applied two part Kroupa (2001) IMF for 64 equally spaced logarithmic mass

bins normalised to the total cluster mass.

Filled IMF

As the name suggests, for the filled IMF all mass bins are always populated, regardless if

the stellar particle has enough mass to fill the IMF or not. Therefore, fractions of high
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Figure 2.3: Number of stars per mass bin, for a Kroupa (2001) IMF, discretised with 64 logarithmic mass
bins and normalised to the total cluster mass. The red lines indicate the slopes of the IMF according to
Equation 2.36.

mass stars, which result in fractions of Type II supernovae, will occur. A star cluster

has to have a mass of Mcl ≥ 19055 M�, in order to populate the highest mass bin, for

nbin = 64 mass bins, with at least one star. The number of stars within a star cluster and

the corresponding mass can be calculated by:

N(m) =

mmax∫
mmin

ξ(m) dm, (2.37)

Mcl =

mmax∫
mmin

mξ(m) dm, (2.38)

where the limits of integration are the minimal and maximal stellar masses. The IMF is

precalculated for a 1 M� star cluster. This allows to calculate the number of stars for a

certain mass bin and an arbitrary cluster mass by scaling the precalculated values with

the cluster mass.

Integrated galactic initial mass function

By comparing observationally derived SFRs based on integrated Hα- and FUV-luminosities,

Lee et al. (2009) found large discrepancies between the different estimates for low mass

galaxies with SFRs below 0.1 M� yr−1. Their conclusion requires a bottom heavy IMF,

i.e. a relative overabundance of low mass stars, as the Hα-FUV flux ratio is lower by up

to one order of magnitude from expectations. Where SFRs derived from the Hα flux trace

massive O-stars (M? ≥ 17 M�) and the FUV-flux traces stars with M? ≥ 3 M�.

This discrepancy can be overcome by the IGIMF-theory (integrated galactic initial mass

function, ξIGIMF ), a galaxy wide IMF which is obtained by integrating over all star cluster

IMFs (Kroupa and Weidner, 2003). Thereby it is assumed that all stars form in clusters
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with a stellar mass distribution described by an universal IMF (e.g. Equation 2.35). The

mass distribution of star clusters is generally assumed to follow a power law ξecl ∝M−βecl ,

with β ≈ 2 (e.g. Lada and Lada, 2003). Therefore, clusters with low masses are more

frequent and contribute the majority of stellar mass but do not contain massive stars, as

their mass is too low to completely fill the IMF. This implies a steepening of the galaxy

wide IMF at the high mass end. Additionally to the shape of the IMF and ξecl the maxi-

mal mass of a star is constrained to mmax ≤ 150 M� and is depending on the mass of the

embedded cluster Mecl (Weidner and Kroupa, 2004). Furthermore, Mecl is depending on

the global SFR of a galaxy, where higher SFRs lead to higher cluster masses or vice versa

during phases of low star formation Mecl,max will be smaller and therefore the slope of the

IGIMF will be steeper at the high mass end (Weidner and Kroupa, 2005). The IGIMF

can be calculated by:

ξIGIMF(m) =

Mecl,max∫
Mecl,min

ξ(m ≤ mmax(Mecl))ξecl(Mecl)dMecl, (2.39)

where ξ(m ≤ mmax(Mecl)) is the stellar IMF of a star cluster, ξecl(Mecl) ∝ M−βecl is the

embedded cluster mass function with β ≈ 2, Mecl,min and Mecl,max are the minimal and

maximal embedded cluster masses, respectively.

In order to mimic the IGIMF-theory ξIGIMF(m) is not calculated at every timestep but

each stellar particles population is truncated above the uppermost mass bin which holds

at least one star (truncated IMF). By this the IMF steepens automatically at the high

mass end, as the total number of massive stars within a galaxy is reduced. In contrast

to the IGIMF the truncated IMF only depends on the local SFR, rather than the global

SFR. Furthermore, this truncation does not allow for fractions of high mass stars, which

would cause fractional Type II supernovae. In the following the term IGIMF refers to the

truncated IMF, for simplicity.

2.6.3 Feedback

Stellar feedback is one of the main internal drivers of galaxy evolution, especially in the

context of chemical enrichment but also as regulating factor of star formation. As stars

heat their environment, they reduce the amount of cold molecular gas, which is the reser-

voir of star formation, and therefore damp the formation of new stars. On the other

hand, there are also several processes, during the evolution or at the end of the lifetime

of a star, which return chemically enriched material back to the ISM. This material can,

after a sufficient cooling time, be again used to form new stars. The mass and metallicity

dependent lifetimes of stars, are taken from Portinari et al. (1998). This dependency is

used to define the mass range of stars which will end their life during a timestep. Through

the IMF description the number of stars in this mass range within a stellar particle is
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calculated. If the average mass of an IMF mass bin lies in that mass range, all stars of

that bin will end their life and return energy and chemically enriched material back to the

ISM. The feedback of Type II supernovae (SN II), stellar radiation and winds are taken

into account for stars with M? ≥ 8 M�. For stars in the mass range 1.4 ≤ M?/M� < 8

Type Ia supernovae (SN Ia) are considered as well as the effects of mass loss during the

asymptotic giant branch (AGB) phase.

Stellar Radiation

Massive stars with M? ≥ 8 M� emit large amounts of Lyman continuum photons (ephot ≥
13.6 eV) during their lifetime. This UV radiation ionises the surrounding ISM, producing

an HII region. Its extent can be approximated by a Strömgren sphere, which requires

that all recombining H-atoms are immediately ionised again. Although the temperature

of an HII region is not constant with time, the applied sub-grid model assumes a constant

temperature of THII = 2 × 104 K. The Strömgren radius RS is defined as the maximal

distance at which ionisation and recombination are balanced. It is calculated by

RS =

(
3S?

4πn2
Hβ2

)1/3

, (2.40)

where β2 is the recombination coefficient, calculated by

β2 = 2.6× 10−13

(
104 K

T

)0.85

cm3s−1, (2.41)

nH the hydrogen number density and S? the ionising photon flux. The ionising photon

flux S? of a massive star with mass m can be estimated by

S? = 3.6× 1042

(
m

M�

)4

(2.42)

(Ploeckinger et al., 2015). The mass of ionised hydrogen within a Strömgren sphere around

a massive star is given by

MHII(M?) =
S?(M?)µ

2m2
H

β2ρf2
H

, (2.43)

where ρ and µ are the density and mean molecular weight of the ambient gas, respectively,

mH the mass of a hydrogen atom, and fH the hydrogen mass fraction in the ISM. The

total mass of hydrogen ionised by a single star-cluster particle (MHII,tot), can be calculated

by summing over all IMF mass bins which contain stars with masses greater than 8 M�

(corresponding to bmin) until the last still populated mass bin (bmax):

MHII,tot =

bmax∑
i=bmin

N?(i)MHII(M?), (2.44)
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where N?(i) is the number of stars in the ith mass bin. The total mass of ionised gas is

mapped back onto the grid variable DHII, it provides the fraction of ionised gas (fion =

DHII / DENS). Which is needed to calculate the temperature of a grid cell as mass

weighted average between the cells temperature and THII.

Stellar Wind

During their evolution, OB stars suffer a strong mass loss, which enriches and heats the

ISM. The metallicity (Z) dependent mass-loss rate due to stellar winds is calculated by

(Hensler, 1987; Theis et al., 1992)

ṁ = 10−15

(
Z

Z�

)1/2( L

L�

)1.6

M� yr−1, (2.45)

where L is the luminosity, derived from the mass-luminosity relation of Maeder (1996).

The heating by an OB star is determined by the kinetic power of its wind,

Ėkin =
1

2
ṁv2
∞, (2.46)

with

v∞ = 3× 103

(
m̄

M�

)0.15( Z

Z�

)0.08

km s−1, (2.47)

where v∞ is the winds final velocity and m̄ is the average mass of a star in the considered

IMF mass bin. The mass fraction of material released by the stellar wind, within one IMF

mass bin, is calculated by

fwind(bin) =
ṁτcl∑
mEL

, (2.48)

where τcl is the age of a star cluster particle and
∑
mEL is the sum of the produced

elements, which will be returned to the grid. The energy released by the lost material is

than given by

Ewind,SP = εwindĖkinτcl
∑
bin

fwind(bin)N?(bin), (2.49)

where εwind, set to 5%, is the wind efficiency and N?(bin) the number of stars within an

IMF mass bin.

Type II Supernova

Stars more massive than about 8 M� end their life as core-collapse supernova, also called

Type II supernova (SN II) (e.g. Maeder, 2009). If an IMF mass bin, represented by its

average mass which has a mass greater than 8 M�, reaches the end of its lifetime, then all

stars within that mass bin end their life. The energy released by a stellar particle due to
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SN II is calculated by

ESNII,SP = εSNIIESNII
∑
bin

(1− fm,wind(bin))N?(bin), (2.50)

where the sum is carried out over all mass bins in which the stars reached the end of their

lifetime at a certain timestep, εSNII = 5% is the efficiency at which the energy is injected

into the ISM, ESNII = 1051 erg is the energy released by one supernova, fm,wind(bin) is

the mass fraction of material which is released through stellar winds and N?(bin) is the

number of stars in a certain mass bin. The total SN II feedback energy is mapped back to

the grid as thermal energy. The mass of the remaining neutron star or black hole is kept

locked in the stellar particle and therefore is excluded from further star formation.

Asymptotic Giant Branch Stars

Stars of low to intermediate mass, below approximately 8 M�, pass through a phase of

helium shell burning, the so-called asymptotic giant branch (AGB) phase. During this

phase the energy input from stars to the ISM is negligible, but they do transfer material

back to their surroundings, enriching it mainly by C and N. The effect of the AGB-phase

feedback is only considered for stars in the mass range form 1.4 ≤ M?/M� < 8 at the

end of their lifetime. After the AGB-phase stars will evolve into white dwarfs of which a

fraction will eventually end their life as Type Ia supernova.

Type Ia Supernova

Although the details of the explosion mechanism and the progenitor stars of SN Ia remain

uncertain, it is commonly assumed that a carbon-oxygen white dwarf (CO-WD) in a binary

system is involved. This CO-WD grows in mass by accretion from its companion until it

approaches the Chandrasekhar mass limit of about 1.44 M� (e.g. Iben and Tutukov, 1984;

Hillebrandt and Niemeyer, 2000; Matteucci and Recchi, 2001). According to Renzini and

Voli (1981) a star has to have a mass of at least 1.4 M� on the main sequence in order to

evolve into a CO-WD. Therefore, feedback by SNe Ia is only considered for stars in the

main sequence mass range of 1.4 ≤ M?/M� < 8. The rate of the occurrence of SNe Ia is

dependent on the fraction of WDs in a binary system. Following the SN Ia rate equations

from Matteucci and Recchi (2001) and Recchi et al. (2009) the probability for a star to

be the secondary in a binary system can be calculate by

P (m2) = 21+γ(1 + γ)A

nimf∑
i=i(m2)

ξ(mi, nimf)

ξ(m2, nimf)
µγi ∆µ , (2.51)

where A = 0.09 is a normalisation constant, µi is the mass ratio between m2, the mass of

the secondary star, and the total mass of the binary system, ξ(mi, nimf) is the IMF. If

a filled IMF is used nimf is the last IMF mass bin, in cases where the IGIMF is used, it
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refers to the mass bin at which the IMF is truncated. The parameter γ is related to the

distribution function of mass ratios in binary systems, where γ = 2 favours systems with

equal masses. The number of SNe Ia in one mass bin can then be calculated by

NSNIa(bin) = P (m2)N?(bin), (2.52)

where N?(bin) is the number of stars in one mass bin. The total energy released by a

single stellar particle (ESNIa,SP ), assuming a SN Ia efficiency εSNIa = 5% and an energy

of ESNIa = 1051 erg is then given by

ESNIa,SP = εSNIa ESNIa
∑
bin

NSNIa(bin), (2.53)

where the sum is carried out over all mass bins in the mass range from 1.4 to 8 M� in

which the stars reached the end of their lifetime. The released energy is purely injected

as thermal energy onto the grid.

Material feedback & Chemical Enrichment

During the lifetime of a star, it processes the material which it is made of through nucle-

osynthesis, by this stars are producing heavy elements. This processed material is released

into the interstellar space and thus enriches the ISM. Depending on the mass of a star,

its evolution and therefore the produced amount of the various elements is very different.

Stars with masses greater than 8 M� end their life as SN II and enrich the ISM mostly by

α-elements. Stars with masses below 8 M� mostly enrich their environment with N and

C, during the AGB phase of their evolution. Some of these stars will eventually end their

life as SN Ia, which enriches the surroundings mostly by Fe. The produced amount of the

traced elements H, He, C, N, O, Ne, Mg, Ca, Si, S, Fe and X, where X is the sum of all

other elements, are mapped to the gird at the end of a stars lifetime. The mass fraction of

material which is released by feedback processes fSN, within a grid cell is tracked during

the simulations and advected with the flow of the gas. It is used in Equation 2.32 to re-

duce the available amount of gas for star formation and to avoid the so-called overcooling

problem (see Section 2.5). fn+1
SN after the feedback processes is calculated by

fn+1
SN = 1 +

ρold
ρenriched

× (fnSN − 1) , (2.54)

where ρenriched is the gas density within a grid cell after enrichment by the feedback

processes, fnSN and ρold are the mass fraction of feedback heated gas and the gas density

within a grid cell before the feedback occurred, respectively.

The stellar yields for Type II SNe, stellar winds and AGB stars are taken from Marigo

et al. (1996) for 1 ≤ M?/M� ≤ 4 and from Portinari et al. (1998) for M? ≥ 6 M�, with

linear interpolation between 4− 6 M�. For the enrichment by Type Ia SNe the yields are

taken from the W7 model of Travaglio et al. (2004).
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2.7 3D Orbit

In order to account for the tidal forces, caused by the gravitational potential of the inter-

acting galaxies, acting on the TDG candidates, this module was introduced. It is based

on the Orbit module described by Ploeckinger (2014) but allows a fully 3 dimensional

treatment of the orbit. In the current implementation of the module Orbit3D a central

point mass, constant in time, is assumed. This can easily be adjusted to any other kind of

central potential simply by changing the way how the gravitational acceleration is calcu-

lated. When TDGs move through the potential of the interacting galaxies they do not only

experience the tidal field but also ram pressure induced by the hot halo gas. Therefore,

the treatment of ram pressure is also included within this module. In order to control the

activity of the different phenomena, related to the motion through the external potential,

three runtime parameters where introduced, useOrbit which controls if the orbit module

should be used or not, useTidal and useRam which control the activity of the tidal field

and ram pressure, respectively. The module requires the position (X,Y, Z), the distance

R of the TDG, both with respect to the centre of the external potential, the orbital veloc-

ities (vX , vY , vZ) and the central mass Mext as input parameters. In order to distinguish

between the different coordinate systems capital letters (X,Y, Z) are used for the coordi-

nates of the simulation box with respect to the mass centre of the interacting galaxies and

lower case letters (x, y, z) for the coordinates of grid cells within the simulation box.

2.7.1 Tidal field

If the effects of the tidal field should be taken into account, the runtime parameter useTidal

has to be set to TRUE. In this case the tidal accelerations are added to the accelerations

within each cell as well as to the accelerations of the stellar particles. At every time t

the position (X,Y, Z) and orbital velocities (vX , vY , vZ) of the TDG are know as it has

been calculated at the previous time-step (or from the initial data). From this position

the distance R is calculated by

R =
√
X(t)2 + Y (t)2 + Z(t)2. (2.55)

The external gravitational acceleration gext = (gext,X , gext,Y , gext,Z) at a given distance R

between the merging galaxies, with a combined total mass Mext, and the TDG is given

by:

gext = −G Mext

R2
R̂, (2.56)

where G is the gravitational constant and R̂ the 3 dimensional unit vector pointing towards

the centre of the simulation box.

The velocity and position the simulation box at the next time-step (t + ∆t) can then be
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calculated by:

vX(t+ ∆t) = vX(t) + ∆t gext,X(t)

vY (t+ ∆t) = vY (t) + ∆t gext,Y (t)

vZ(t+ ∆t) = vZ(t) + ∆t gext,Z(t)

(2.57)

X(t+ ∆t) = X(t) + ∆t vX(t)

Y (t+ ∆t) = Y (t) + ∆t vY (t)

Z(t+ ∆t) = Z(t) + ∆t vZ(t)

(2.58)

To calculate the additional tidal acceleration and the resulting velocities within every

grid cell the coordinates (x, y, z) of the cells have to be transformed to global coordinates

(x′, y′, z′) with respect to the external potential.

x′ = x+X(t)

y′ = y + Y (t)

z′ = z + Y (t)

(2.59)

These global coordinates are used to calculate the distance r′cell, according to Equation

2.55, from the centre of the external potential to a grid cell. The external gravitational

acceleration acting within this grid cell g′cell can then be calculated from Equation 2.56

replacing R with r′cell and R̂ with r̂′cell, the unit vector pointing towards a specific cell.

The simulations are carried out in the rest frame of the simulation box and the external

gravitational acceleration of the simulation box is therefore accounted by the translation

of the box itself, thus it has to be subtracted from the acceleration within each grid cell.

The resulting tidal acceleration atidal within a cell is then given by

atidal = g′cell − gext. (2.60)

This acceleration is used to update the velocities within a grid cell analogous to Equation

2.57 using atidal instead of gext. For stellar particles the effect of the tidal field is calculated

the same way as for grid cells. Only the grid coordinates and accelerations are replaced

by those of the stellar particles.

2.7.2 Ram pressure

When galaxies move through an ambient medium they feel a pressure force on their gaseous

component. For example the intra-cluster medium when a galaxy falls into a cluster of

galaxies or the hot halo gas of a galaxy that a satellite galaxy feels while it is orbiting

around its central galaxy. This pressure force is called ram pressure Pram and can be

expressed by

Pram = ρav
2, (2.61)
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where ρa is the density of the ambient medium and v is the velocity at which the galaxy

moves through this medium. A first approximation on the possibility for the loss of matter

due to ram pressure can be obtained by comparing Pram to the restoring gravitational force.

If the ram pressure is acting perpendicular to the disk of a galaxy, material is stripped

away form it if

Pram ≥ 2πGΣsΣg, (2.62)

where Σs and Σg are the surface density of stars and gas, respectively (Gunn and Gott,

1972, for disk galaxies). Combining these two equations shows that the effect of RPS is

stronger in high density environments and for large velocities.

Just as for the tidal field the ram pressure is controlled by the runtime parameter useRam,

which has to be set to TRUE, if the effects of the relative motion between the TDG respec-

tively the tidal arm and the ambient medium should be accounted for. As the simulations

presented here are carried out in the rest frame of the simulation box, therefore the TDG

candidates reside at the centre of the box, a wind tunnel like configuration is present. In

such a configuration the object of interest stays at its initial position while the ambient

medium is flowing around it. The initial velocity (vbox) of the simulation box causes the

ambient medium to travel with a velocity of vwind = −vbox through the box. As the veloc-

ity (absolute value and direction) of the simulation box along its orbit around the external

potential changes, so does the velocity of the ambient medium. To account for this effect

the wind velocity is updated at every time-step. The changing velocity of the simulation

box only concerns the ambient medium, and does not affect the gas of the TDG and tidal

arm or the stellar component directly. It is possible to differentiate between the tidal arm

and the surrounding gas via the mass tracer TDG MSCALAR. The ambient medium is

initialized with TDG MSCALAR = 0 and the tidal arm with TDG MSCALAR = 1, this

tracer is advected with the flow of the gas. If the two components are getting mixed, the

mass scalar is calculated accordingly, this allows to trace the amount of mass within a

cell which originates from the tidal arm. The velocity is only modified, to account for the

motion of the box, if the value of TDG MSCALAR is below 10−4.
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Simulations

3.1 Initial data

The initial data for the presented simulations within this thesis are the result of a series of

galaxy merger simulations from Prof. Hammer (Observatoire de Paris) and collaborators.

These simulations made use of the smoothed-particle hydrodynamic (SPH) code gadget2

(Springel, 2005). In Hammer et al. (2010), they tried to explain many of the odd structural

properties of the Andromeda Galaxy (M31), such as the ring structure, the northern

loop or the giant stream, as a consequence of one single gas-rich merger. Their results

indicate that M31 experienced a gas-rich merger, approximately 8 to 9 Gyr ago, with

a gas fraction of ∼65% gas, a mass ratio of approximately 3:1 and a polar orbit with

rpericenter ≈ 25 kpc. During this simulations it turned out that the vast polar structure

(VPOS), a disk of satellite galaxies almost perpendicular to the disk of the Milky Way

(MW), might be a consequence of the Andromeda merger hypothesis. Both the geometry

and angular momentum properties of the VPOS population can be reproduced by this

model, as reported in Fouquet et al. (2012). After the discovery of a vast thin disk of

satellites (VTDS) around M31 by Ibata et al. (2013), the merger scenario was further

examined in Hammer et al. (2013) to verify if it is possible to explain this structure by

the same merger. Finally the possibility of the MW dSph satellite galaxies being DM-free

ancient TDGs was examined in Yang et al. (2014). All these results question the standard

assumption that the local group has evolved quietly, without a significant major merger

for most of its lifetime.

In the initial simulations from Hammer et al. (2010) a total number of particles ranging

form 150.000 to 800.000 particles were used. This number was subsequently increased

until 8 million particles (4 million DM and baryonic matter each) were reached for the

Yang et al. (2014) simulations. The actual data were extracted from the 8 million particle

simulation at a time of 1.5 Gyr after the first pericentre passage. Already at this early

stage of the merger numerous tidal dwarf candidates can be identified embedded in the

tidal arms of the progenitor galaxies.

Four of these TDG candidates, in three different simulation setups, have been further
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Figure 3.1: Initial distribution of stellar particles from Yang et al. (2014) (grey dots), 1.5 Gyr after the
first pericentre passage. The colored boxes indicate the different simulation setups of the tested TDG
candidates and are scaled to size.

investigated within this thesis. These candidates have been selected based on the following

criteria: (1) The presents of an over-density in the initial distribution of the gaseous and

stellar component. (2) A minimal gas mass within a radius of 2.5 kpc form the centre of

the proto-TDGs of Mmin & 108 M�. (3) No companion close to the edges of the later

simulation box, as it would most likely influence the flow along the tidal arm, especially

across the boundaries of the simulation box. (4) TDG candidates originating from both

tidal arms should be included. Figure 3.1 shows the initial distribution of stellar SPH-

particles from the Yang et al. simulation, with boxes highlighting the selected TDG

candidates and their corresponding simulation domain.

3.1.1 Data extraction

It is of high importance to carefully select and extract the data for the simulations of

TDGs, as the provided initial data cover a large volume of about 300 × 550 × 200 kpc3,

neglecting the low density halo gas and the distribution of DM. To simulate this whole

volume on a grid with an adequate resolution would be computationally way to expensive,

if one is only interested in the evolution of structures with a typical radius of only a few

kpc. Therefore, only the SPH-particles within a box with a typical length scale of 22

respectively 44 kpc, depending on TDG candidate, are selected for the mapping process.

This corresponds to 110% of the side of the later simulation box and is required for an
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accurate determination of the gas properties at the edges of the simulation box.

The centre of the TDG is found iteratively, starting from their approximated position.

The mass centre of stellar and gas SPH-particles within a sphere of radius rTDG = 4 kpc

is calculated by

RM =
1∑

i
mi

∑
i

miri , (3.1)

where mi and ri are the mass and position of an SPH-particle, respectively. RM is used

in the next step as the centre of a new 4 kpc sphere and is recalculated, this process is

repeated until convergence is reached.

The mass centre of the TDG candidate is used as initial position for the orbit module

(see Section 2.7). The orbital velocity is calculated as mass-weighted mean velocity of all

gas and stellar particles within rTDG around the mass centre of the TDG. The position

of the mass centre and its velocity are subtracted from the particles original position and

velocity, in order to get the TDG candidate at rest in the centre of the simulation box.

Note that the choice of the radius is crucial, as for larger radii the orbital velocity is

likely to be contaminated by the flow velocity of the gas along the tidal arm. This can

cause a significantly stronger drift of the TDG within the simulation box, than in the

data presented here. For the central mass the mass of all DM, gas and star particles is

summed up from the centre of the merger to the position of the TDG. These parameters

fully describe the orbit of the TDG.

3.1.2 SPH-to-Grid mapping

As the provided initial data are the results from an SPH-simulation, special care is needed

when the SPH-particle properties are mapped to the grid of flash. In order to map the

particle masses to the grids density, the mass of one particle is folded with the so-called

kernel function W (r, h), as defined in Equation 3.3. It depends on the smoothing length h

and the distance r between the particle and the cell centre. Therefore, the density within

a grid cell is given by:

ρcell =
N∑
i=1

miW (ri, h), (3.2)

with mi being the mass of the ith particle and N the number of gas-particles of the

SPH-simulation.

W (r, h) =
8

π h3
×


1− 6

(
r
h

)2
+ 6

(
r
h

)3
if 0 ≤ r

h ≤ 0.5

2
(
1− r

h

)3
if 0.5 ≤ r

h ≤ 1

0 if r
h > 1

(3.3)

Equations 3.2 and 3.3 follow the standard recipe of gadget2, except for the definition

of the smoothing length. Throughout this work the smoothing length h is the distance

to the 50th closest neighbour. Except in cases when more then 50 SPH-particles would
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Table 3.1: Initial properties of the three different simulation setups. Column 1: Simulation setup as
indicated in Figure 3.1; Columns 2-3: Number of stellar and gas SPH-particles within the simulation box;
Columns 4-6: Initial orbital parameters (orbital velocity |v|, distance from the interacting galaxies R and
the total mass of the interacting galaxies Mext from their mass centre to R); Columns 7-11: Size of the
simulation box along one coordinate direction, minimal and maximum level of refinement (lref ), effective
resolution ∆xeff at lref,max, the initial gas (Mg) and stellar mass (M?) within the simulation box after the
mapping process.

# SPH-particles Orbit Simulation box
Setup stars gas |v| R Mext size lref ∆xeff Mg M?

[km s−1] [kpc] [1011 M�] [kpc] [pc] [108 M�] [106 M�]

TDG s1 76 48 789 127 184 4.9 40 3 - 6 78 10.8 2.1
TDG s2 338 33 832 109 162 4.8 20 3 - 5 78 9.2 9.3
TDG s3 117 22 091 187 313 5.4 20 3 - 5 78 2.6 2.2

fall within a grid cell, then h is adapted such that at least all particles within a cell are

mapped into the cell. This additional requirement is needed as, on low refinement levels, it

can happen that more then 50 SPH-particles lie within one grid cell. If, in this case, only

the closest 50 particles would be considered, the density distribution on the grid might

become to smooth, what could cause flash to stop the initial refinement process during

the simulation setup, although it would be necessary. By the definition of h as being the

distance to the nth nearest neighbour, Equation 3.2 does not need to be evaluated for all

particles within the original simulation. This is because, according to Equation 3.3, all

particles that are further away do not contribute to the density of the considered cell.

For the other gas properties (temperature and velocity) an inverse distance weighted av-

erage was used. By this method the closest particle to the cell centre got the largest

influence on the cells properties and is calculated by:

Qcell =
1
n∑
i=1

1
ri

n∑
i=1

Qi
1

ri
, (3.4)

where ri is again the distance form the cell centre to the ith particle, n is the number of

considered particles (as used for the definition of h), Qcell and Qi are the quantities of

interest for a certain cell and the ith SPH-particle respectively.

3.2 Simulation Setup

A series of numerical chemodynamical simulations of forming TDGs have been carried

out, based on the 3 different simulation setups as indicated in Figure 3.1 and with some

of their basic initial properties listed in Table 3.1.

3.2.1 Initial gas distribution

The initial gas distribution for the presented simulations are mapped from the SPH-data

to the grid of the flash code according to the description of Section 3.1.2. In order to
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prevent the simulation box from being fully refined at the beginning of the simulation run,

the mapped density distribution is cut at the density ρcut. If the density in a cell lies below

this threshold value, it is set to the constant density ρIGM, with temperature TIGM, which

define the state of the ambient medium. X-ray observations of the circum-galactic medium

(CGM) of the Milky Way indicate TCGM ≈ 106 K and nCGM ≈ 10−4 cm−3 (e.g. Gupta et al.,

2012). The IGM parameters are chosen in a way such that they are close to the above

mentioned values and that the tidal arm is in an approximated pressure equilibrium, with

a slightly higher internal than external pressure at the interface between the arm and the

ambient medium. This setup design prevents strong external pressure forces onto the tidal

arm, which could lead to an externally triggered collapse of the arm. Furthermore, the

mass fraction TDG MSCALAR is set to zero in cases where the density would lie below

ρcut, otherwise it is set to one. Therefore, it also defines the initial region where the cell

velocities are modified in order to account for the motion of the simulation box around

the merging galaxies, i.e. to account for ram pressure. As the original simulations did not

track the chemical evolution, the initial metallicity of the tidal tail was set to Z = 0.3 Z�,

with solar abundance ratios, in order to account for the preenrichment of the stripped gas

within the merging galaxies. This metallicity is in agreement with observations of dwarf

galaxies formed out of preenrichment material (e.g. Duc and Mirabel, 1998).

3.2.2 Initial stellar population

As in this simulations stellar particles are numerically treated as particles, the initial posi-

tions, velocities and masses of the SPH-star-particles of the Yang et al. (2014) simulation

are used as initial values of the underlying old stellar population in the tidal arm. The

age of these preexisting particles was set to 7 Gyr with a metallicity of Z = 0.3 Z� and

solar abundance ratios.

3.2.3 Boundary conditions

For the presented simulations flashs standard outflow boundary conditions (BC) are

used, i.e. zero gradient BC. For this BC all boundary cells get filled with the properties of

the neighbouring cell within the computational domain. As the name suggest, outflow BC

allow material to leave the simulation box, but they are not sensitive to the flow direction,

therefore they also allow for inflow. A behaviour that may not be desirable for a large

variety of hydrodynamic simulations. Contrary to that, in the context of young TDGs,

which are still embedded in their host tidal arm, the inflow can be used to mimic a flow

along the tidal arm which extends out of the simulation box.

3.2.4 Simulation runs

In order to distinguish between the simulation setups, which are defined by the initial data

(see Figure 3.1) and the different simulation runs, upper respectively lower case notation

is used. Where the upper case notation followed by the setup identifier (e.g. TDG s1)
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Table 3.2: Initial properties of the different simulation runs. Column 1: Simulation run identifier;
Columns 2-4: Orbit control parameters, as defined in Section 2.7; Columns 5-7: Star formation parameters
(IMF-description, star formation factor θsf and cluster formation time τsf ); Columns 8-10: Density ρIGM

and temperature TIGM of the intergalactic medium and the cutoff density ρcut of the tidal arm.

Simulation Orbit Star formation Intergalactic medium
run useOrbit useTidal useRam IMF θsf τsf [Myr] ρIGM [g cm−3] TIGM [K] ρcut [g cm−3]

tdg1 orb X X X filled 1 1 1× 10−29 106 2× 10−27

tdg1 iso — — — filled 1 1 1× 10−29 106 2× 10−27

tdg2 orb X X X filled 1 1 1× 10−29 106 1× 10−27

tdg2 noRam X X — filled 1 1 1× 10−29 106 1× 10−27

tdg2 iso — — — filled 1 1 1× 10−29 106 1× 10−27

tdg2 noArm X X X filled 1 1 5× 10−28 106 5× 10−26

tdg2 noArm iso — — — filled 1 1 5× 10−28 106 5× 10−26

tdg2 igimf X X X truncated 1 1 1× 10−29 106 1× 10−27

tdg2 sf1 X X X filled 0.1 10 1× 10−29 106 1× 10−27

tdg2 sf2 X X X filled 100 10 1× 10−29 106 1× 10−27

tdg3 orb X X X filled 1 1 5× 10−29 106 1× 10−26

tdg3 noRam X X — filled 1 1 5× 10−29 106 1× 10−26

tdg3 iso — — — filled 1 1 5× 10−29 106 1× 10−26

refers to the simulation setup.

To examine the various environmental effects which influence the evolution of TDGs,

several simulation runs for each simulation setup were carried out with varying settings

for the orbit module. To tell apart these different simulation runs lower case notation

plus a descriptive suffix is used. The suffix orb corresponds to simulations using the full

capabilities of the orbit module, noRam does not include ram pressure, i.e. the IGM

is initialised with zero velocity and its velocity is not modified according to the motion

of the simulation box. iso marks comparison runs without the influence of the external

gravitational potential or ram pressure, but includes the tidal arms dynamics and density

distribution. Simulations testing different values of the star formation parameters are

labelled with sf or igimf to highlight simulation which use the IGIMF-theory instead

of the filled IMF. The suffix noArm is used for simulations which do not account for

the dynamics and density distribution of the tidal arm, but include the influence of the

tidal field as well as ram pressure. As the orb and igimf models make use of all the

included environmental effect, these models resemble the real environment of TDGs best

and should be used to compared against and make predictions for observations. The

noArm simulations further allow for a direct comparison to earlier works from Ploeckinger

et al. (2014, 2015), which do not include the tidal arm. A comprehensive view on the used

settings for the orbit module, star formation and IGM for the different simulation runs is

provided in Table 3.2.

If the results of different simulation runs for one setup are essentially indistinguishable, a

lower case notation followed by an integer is used. In cases with multiple objects within

the simulation box, each subcomponent is named with a character after the setup identifier

(e.g. tdg1a orb).

Figure 3.2 shows the initial (tsim = 0) gas surface density, integrated along the z-axis, of

the different simulation setups. The effect of varying the cutoff density can be seen in the

differences of the plots on the right hand side. The top panel shows the standard values
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Figure 3.2: Initial (tsim = 0 Myr) gas surface density, integrated along the z-axis, for the different
simulation setups. Top left: TDG s1, the labels correspond to the two subcompentents as used in the
later data analysis, note the different length scale of this setup; Bottom left: TDG s3; Top right: TDG s2,
with the standard IGM settings (ρcut = 1× 10−27 g cm−3 and ρIGM = 1× 10−29 g cm−3); Bottom right:
tdg2 noArm, which is based on TDG s2 with ρcut = 5× 10−27 g cm−3 and ρIGM = 5× 10−28 g cm−3.

for TDG s2 and the bottom panel the simulation run tdg2 noArm, which has a higher

cutoff and IGM density.
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Chapter 4

Results

Within this chapter the results of the various simulation runs and some of the applied

data analysis methods are presented. In Sections 4.1 to 4.3 the structural, chemical and

dynamical properties and evolution are investigated. A comparison between the two dif-

ferent IMF descriptions, the filled IMF and IGIMF, is provided in Section 4.4 and the

influence of the environmental effects is shown in Section 4.5. A comprehensive list of

properties of the different models at their final simulation time can be found in Tables A.1

- A.5 of Appendix A.

4.1 Structural evolution of TDGs

4.1.1 Mass assembly

Starting form a cloudy distribution of almost purely gas embedded in the tidal arm, the

different TDG candidates show a vibrant but similar assembly history. During the initial

formation phase of a few tens of Myr, the cloudy structure remains but starts forming a

high density core, resulting in a phase of low star formation. As the core accumulated

enough material, it forces the surrounding matter to collapse. During this phase spiral

arm-like structures are created which funnel the gas to the centre of the TDG within a

free-falling time (Table 4.1). This leads to very high central densities, a high SFR and a

very short gas consumption time. After the collapse-like mass assembly, with its duration

Table 4.1: Free-fall time τff for several simulation runs at tsim = 0 Myr for r50. Column 1: TDG
candidate; Column 2: Radius r0 of the TDG; Column 3: Mass M0 within r0; Column 4: Free-fall time
τff .

simulation run / r0 M0 τff
TDG candidate [kpc] 108 M� [Myr]

tdg1a 2.4 1.45 161.9
tdg1b 2.4 1.81 144.9
TDG s2 2.7 2.80 138.8
TDG s3 2.0 0.87 158.4
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Figure 4.1: Relative mass fractions normalised to the total initial mass within 1.0 kpc around the mass
centre of the different models, as indicated on each panel. The solid line is the gas fraction, the dashed
line the stellar mass fraction and the dot-dashed line the total mass.

of a few 100 Myr, the majority of gas is converted into stars. Further mass accumulation

during the rest of the simulation time is caused by accretion along the tidal arm. Figures

4.1 and 4.2 show the evolution of the relative mass fractions, normalised to the total initial

mass, within spheres of 1.0 and 2.5 kpc radius around the TDG. During the collapse the

total mass within 2.5 kpc increases to approximately 1.5− 2.5 times the initial mass (dot-

dashed line), depending on the model. The central regions (r ≤ 1.0 kpc) are growing by

factors of ∼ 5 for TDG s3 and ∼ 15 for TDG s2 in the initial collapse phase. Note that the

jump in mass of tdg1a (first row, first and second panel of Figure 4.2) at tsim = 500 Myr

is caused by a close approach of two subcomponents (also see Figure 4.9). The transition

from a gas to a stellar mass dominated system occurs at the intersection of the solid and

dashed line. The influence of the tidal arm for the mass assembly can clearly be seen by

comparing the models of tdg2 orb and tdg2 noArm (second row, first and last panel).

Due to the lack of surrounding material tdg2 noArm only grows by a factor of 1.8, whereas

tdg2 orb reaches 2.3 times of its initial mass within the 2.5 kpc sphere during the first 300

Myr of simulation time.

The mass growth rates in M� yr−1, averaged over 10 Myrs, through spherical surfaces
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Figure 4.2: Same as Figure 4.1, for a radius of 2.5 kpc.

with radii of 1, 2.5 and 5 kpc around the TDGs are shown in Figure 4.3. The different

panels correspond to the same models as in Figure 4.1. The growth rate through the

5 kpc sphere generally stays below 0.5 M� yr−1 and is smaller than the growth rate

through the other spheres. During the initial collapse the models of the setup TDG s2

are reaching accretion rates of ∼ 3 and ∼ 2 M� yr−1 at distances of 1 and 2.5 kpc,

respectively. Therefore, the majority of matter which build up the TDGs originates from

its close surrounding, within a distance of 5 kpc. The thin spikes in the growth rate are

the result of in-falling respectively ejected substructures, such as high density gas clumps

and clusters of stellar particles. The only TDG which initially loses mass throughout all

radii is tdg1a, but already after 30 Myr the outer sphere is accumulating matter again

and the core starts to grow after 80 Myr.

In Figure 4.4 the gas dynamics during the collapse phase (upper panel, tsim = 150 Myr)

and the inflow phase (lower panel, tsim = 300 Myr) is illustrated for the simulation run

tdg3 noRam. The density-weighted velocity field of the tidal arm is over-plotted onto

its surface density integrated along the z-axis. In the upper panel the signatures of the

velocity field of a spherical collapse can be seen. During this phase the gas mass fraction,

the accretion rate onto the core and the SFR are reaching their maximum values. Although

the spherical collapse is still present in the lower panel, it can be seen that the gas of the
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Figure 4.3: Mass growth rate through the surface of spheres with 1, 2.5 and 5 kpc radius, red dot-dashed,
black solid and blue dashed line, respectively. The mass growth rate in M� yr−1 is averaged over 10 Myrs
of simulation time. The extreme spikes in two models of tdg1a reach accretion rates of 15 M� yr−1

and −8 M� yr−1 for the 2.5 and 1.0 kpc spheres, respectively, and are caused by a close passage of two
subcomponents.

tidal arm has been forming streams with higher surface densities, along which the gas is

efficiently transported towards the centre of the TDG. At this phase the SFR is already

declining again.

4.1.2 Star formation

Just as for the mass assembly, the star formation histories (SFH) show remarkable simi-

larities between the different simulation setups and runs, regardless of the used settings of

the orbit module (Section 2.7), star formation parameters (Section 2.6.1) or IGM settings.

Figure 4.5 shows the SFR of the simulated TDGs. In the top panel the simulation runs of

the setup TDG s1 are compared. The second and third panel show the runs of TDG s2,

where the second one compares the different Orbit and IGM settings and the third panel

the different SF settings. In the fourth panel the SFR of the three different runs of TDG s3

are shown. The SFH of all TDG candidates can be described by three different stages,

first an initial low star formation, followed by a strong starburst triggered by the collapse

of the proto-TDG and a final inflow-regulated star formation episode. The different star
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Figure 4.4: Density weighted gas velocity field of the simulation run tdg3 noRam along the tidal arm,
over plotted onto its gas surface density. The snapshots are taken at tsim = 150 and 300 Myr for the
upper and lower panel, respectively. These snapshots are representative for the collapse and inflow phase,
respectively. For demonstrational purposes, velocities greater than 20 km s−1 are not displayed, the white
arrows at the lower right corners of each panel indicates a velocity of 20 km s−1. Colour-coded is the
logarithmic gas surface density in M�pc−2.

formation episodes correspond to the same evolutionary states as the mass assembly (Sec-

tion 4.1.1). The low initial SFR is initiated by the early built up of the TDGs core. During

this phase the SFR stays at low rates of a few times 10−2 M� yr−1, except for the star

formation test simulations of TDG s2 (third panel of Figure 4.5). This effect is attributed

to the self-regulated star formation recipe. As the feedback of stars influences the local

gas properties, in particular the temperature of the grid cells is increased, which is an im-

portant efficiency factor in the SBF (see Equation 2.30). For the simulation runs tdg2 sf1

and tdg2 sf2 the cluster formation time τsf = 10 Myr. This longer formation time allows

the stellar particles to accumulate more material leading to higher cluster masses. On the

other hand, it also delays the onset of stellar feedback, what keeps the cell temperatures

at a lower level. For these two simulation runs the initial SFR reaches values of about

5× 10−1 M� yr−1. Also differences caused by the IMF description (tdg2 igimf) can only

be seen in this star formation episode. Within the IGIMF implementation the IMF is

truncated at the highest mass bin which is still populated by at least one star. By this

truncation no fractions of massive stars and therefore no fractions of SN II can occur. As

the number of high-mass stars is reduced, the intensity of the stellar feedback, especially

from SN II is reduced and its onset is delayed as well. Again, through the reduced feedback

the temperature of the grid cells stays lower and enables initial SFRs of 0.9 M� yr−1.
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Figure 4.5: Star formation rates in 1 Myr-bins of the different simulation setups. The first panel compares
the simulation runs of the setup TDG s1. The second and third panel show the runs of TDG s2, where the
second one compares the different Orbit and IGM settings and the third panel the different SF settings.
In the fourth panel the different runs of TDG s3 are compared.

During the collapse of the TDGs, the SFR is pushed up, triggering a starburst with SFRs

of a few solar masses per year, as the density is strongly increased. This starburst occurs

within approximately one free-falling time, with lager deviations only for TDG s1 as this

setup contains two TDG candidates. In Figure 4.6 the SFR is plotted against the elapsed

time since the first star formation event in units of the free falling time of the TDG can-

didates. The solid black line indicates τff and the dotted lines (1± 0.3)× τff , the range

where the SFR of the different TDGs peaks. The SFH are indistinguishable for the dif-

ferent star formation settings (see the third panel of Figure 4.5). At these high densities

stellar particles reach masses higher than 19055 M�, i.e. the mass needed to fill the IMF,

within only a few timesteps. As one stellar particle is closed for further star formation, if

the IMF is fully populated, the feedback from these particles is equal, independent of the

IMF description or star formation parameters.

After the collapse-triggered star formation, at a simulation time between 300 to 500

Myr, the starburst subsides and the SFR declines to values between 5 × 10−2 and 5 ×
10−1 M� yr−1 for all simulation runs. Although relatively constant, the SFR is declining
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Figure 4.6: Comparison of the star formation rates, in 10 Myr-bins, of the simulation runs tdg1 orb,
tdg2 orb, tdg2 noArm and tdg3 orb. Different simulation runs for the same setup are only considered when
the cutoff density ρcut changes between these runs. The time-axis is normalised to the free-fall time τff
at the simulation time t = 0, see Table 4.1. The free-fall time is calculated within the half mass radius at
t = 0. The solid black line marks the free-fall time of the corresponding spheres, the doted lines represent
1± 0.3× τff .

during this phase as the fraction of gas is getting smaller over time. This relatively high

SFRs are maintained by the high central density and the additional accretion of gas from

the tidal arm. The influence of the density respectively the existence of a tidal arm can be

seen in the second panel of Figure 4.5 and in Figure 4.6. The SFR of the simulation run

tdg2 noArm stays below the values of tdg2 orb for one half to one order of magnitude.

4.1.3 Cluster mass function

The multi-phase behaviour of the SFR is also reflected in the embedded cluster mass

function (CMF, ξecl). It is commonly assumed to be a power-law function with a possible

exponential drop or truncation at higher masses, i.e. a Schechter function in the form of

ξecl(Mecl) ∝M−βecl e
Mecl/M? , (4.1)

where Mecl is the mass of the stellar content of the cluster, β is the power-law slope

at the low mass end and M? the mass at which the drop off occurs (e.g. Gieles, 2009).

Figure 4.7 shows the CMF, in the cluster mass range 10 ≤ Mecl/M� ≤ 106, for four

different simulation runs of the setup TDG s2, namely tdg2 orb, tdg2 noArm, tdg2 iso

and tdg2 igimf. The solid grey line is the CMF for all star clusters formed before tsim =

500 Myr. For the red long-dashed lines only clusters formed in the simulation time interval

0−50 Myr are considered, corresponding to the low initial SFR. Star clusters formed during

the starburst between tsim = 120 and 170 Myr are represented by the blue short-dashed

lines. The black dot-dashed lines correspond to star clusters formed at the transition from

the collapse to inflow-triggered star formation at the time interval 450 ≤ tsim/Myr ≤ 500.

The shape of the CMFs at cluster masses blow ∼ 500 M� is affected by the star formation
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Figure 4.7: Embedded cluster mass function for various simulation runs of TDG s2 (from left to right:
tdg2 orb, tdg2 noArm, tdg2 iso, tdg2 igimf), discretised with 128 equally spaced logarithmic mass bins.
The solid grey line is the CMF of all clusters formed before tsim = 500 Myr. For the different dashed lines
only the clusters formed in 50 Myr intervals are considered, where the time intervals correspond to the
different star formation episodes. The peak around 2 × 104 M� and the slopes of the high as well as the
low mass end (Mecl . 5× 102 M�) are affected by the star formation criteria.

criteria, i.e. the threshold on the SBF (Equation 2.33). As this criterion does not allow

to form clusters with very low initial masses, which might be able to accumulate enough

matter to fill the CMF at the lower mass end. Opposite to that, the peak at Mecl ≈
2×104 M� is caused by the ’closing’ of stellar particles when their mass is high enough to

fill the stellar IMF. This also leads to the steepening of the CMF, as stellar particles with

masses greater than 19055 M�, the mass at which the IMF is filled, have to be formed

essentially within a single timestep. As the high mass end of the CMF does not reflect

the expected exponential turn-over, only a power-law (ξecl ∝ M−βecl ) is fitted to the data

in order to derive the slope of the CMF.

During the initial star formation episode only the mass range 500 ≤ Mecl/M� ≤ 1100 is

considered, whereas for all others the mass range 500 ≤ Mecl/M� ≤ 18000 is used. As it

can be seen in Figure 4.7 the CMF for star clusters formed in the time interval 0−50 Myr

is steeper than at the other time intervals and no high mass clusters are formed, this is also

reflected by a large value of β = 4.5± 0.3, averaged over all simulation setups. During the

other time intervals the average values are β = 1.9± 0.5 (120− 170 Myr), 2± 0.3 (450−
500 Myr) and 1.8± 0.2 for all clusters formed during the first 500 Myr of the simulations.

The formation of high mass clusters only at times with high star formation agrees well

with the observational established Mecl,max − SFR relation (e.g. Weidner et al., 2004).

With the remark that it does not hold for the simulation run tdg2 igimf. For this run the

global SFR at the first and third time interval, as used in Figure 4.7, are comparable, but

no high mass clusters are formed during the initial star formation episode. A detail study

of the dependency of Mecl,max on the SFR was not performed as both, the high and low

mass end of CMF are affected by the star formation criteria.

Given that the CMF is not a condition on which the star formation prescription (Section

2.6) is based on, it is quite remarkable how well the resulting slope of β ≈ 2 agrees to
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various observational estimates. For example Zhang and Fall (1999) concluded that, for

young clusters (. 160 Myr) in the mass range 104 .Mecl/M� . 106 within the Antenna

galaxy, the CMF can be represented by a power-law with β = 2. Hunter et al. (2003) report

β = 2 − 2.4 for the Small and Larger Magellanic Clouds, whereas de Grijs and Anders

(2006) found β = 1.8±0.1 and β = 2±0.15 for the LMC and SMC, respectively. Lada and

Lada (2003) estimated β ≈ 2 for star clusters in the mass range 20 .Mecl/M� . 1100.

4.1.4 Stellar distribution

For the calculation of the luminosity of a stellar particle the luminosities of the underlying

stellar population, according to the IMF description, are summed up. Therefore, all

stars which have not yet reached the end of their lives get assigned a certain luminosity,

according to a mass-dependent M/L-relation (Salaris and Cassisi, 2005) of:

(
L?
L�

)
∝



(M?/M�)2.3 , (M?/M�) < 0.43

(M?/M�)4 , 0.43 ≤ (M?/M�) < 2

(M?/M�)3.5 , 2 ≤ (M?/M�) < 20

(M?/M�) , 20 ≤ (M?/M�).

(4.2)

The total luminosities of the stellar particles are summed up in circular annuli with

∆r = 50 pc in the plane perpendicular to the direction of the angular momentum vector,

resulting in the face-on view, of the TDGs. The resulting face-on surface brightness profiles

are shown in Figure 4.8 for the simulation snapshots at tsim = 300, 600 and tend = 1030

(tdg1 orb), 650 (tdg1 iso), 700 (tdg2 igimf) else 1500 Myr. Figure 4.9 shows mock images

with a resolution of ∆x = 50 pc of the stellar surface brightness of various simulation runs

at their final simulation time. The luminosity of a stellar particle is calculated according

to Equation 4.2, and the top and bottom panels of each row show the face-on and edge-

on view, respectively. Therefore, the coordinate system is rotated such that the angular

momentum vector of a TDG is aligned with the positive z-axis. The top panel shows the

two TDGs of the setup TDG s1, sorted by the object. Both tidal dwarf galaxies within

this setup, tdg1a and tdg1b, initial collapse in two massive star forming regions, these

components can still be seen clearly at the final simulation times.

The different models of the simulation setup TDG s2 show a large variety in their appear-

ance, despite their similarities in the SFR (Figure 4.5) and cluster mass function (Figure

4.7). The simulation run tdg2 orb only shows a minor disc component, whereas both

tdg2 noRam and tdg2 iso show a significant disk, especially visible in the edge-on view.

The second clump visible in the images of tdg2 noRam is formed within the tidal arm in all

runs of TDG s2. While the simulation runs tdg2 orb and tdg2 iso are able to capture this

component at its first encounter at a simulation time of tsim ≈ 600−800 Myr, tdg2 noRam

is not. During this simulation run the second clump reaches distances greater than 2.5 kpc

from the centre at a simulation time of roughly 1 Gyr. Shortly after the second approach
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Figure 4.8: Face-on surface brightness profiles for simulated TDGs, at tsim = 300, 600 Myr and tend,
where tend = 1030 Myr (tdg1 orb), 650 Myr (tdg1 iso), 700 Myr (tdg2 igimf) else 1500 Myr. The thin red
dashed line indicates the best fitting single component Sérsic profile at tend, with its index given in each
panel.

starts, it triggers the formation of a tidal arm and causes the spiral like structure. This

behaviour is also visible in the peaks of the mass fraction and mass growth rate (see

row 2, panels 1-3 of Figures 4.2 and 4.3). In contrast to TDG s2, the simulation runs of

TDG s1 and TDG s3 do not show a strong dependency of morphology on the presence of

the external tidal field or ram pressure.

4.2 Chemical evolution of TDGs

The chemical evolution of a galaxy is closely related to the release of metals by stellar

feedback processes. Where SN Ia enrich the ISM mostly with iron, SN II are the main

source of α-elements such as oxygen or magnesium. On the other hand, inflow of metal-

poor gas from the vicinity of a galaxy can reduce the metallicity and cause a rejuvenation

of the galaxy, if the metallicity is used as proxy of age.
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Figure 4.9: Stellar surface luminosity maps for various models, at their final simulation time, as indicated
on each panel. The upper and lower image of each panel show the face and edge on view, respectively. The
luminosity of a stellar particle is calculated according to Equation 4.2 and the resulting data are binned
to a physical resolution of 50× 50 pc2. The white bar in each plot indicates the length of 5 kpc.
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Figure 4.10: Element abundances evolution of different simulation runs. Shown are [O/H], [N/H] and
[Fe/H] for the gaseous component (solid lines) and for the stellar component (dashed lines) [O/H] and
[Fe/H]. Note that the initial metallicity was chosen to be 0.3 Z�, i.e. [X/H]= −0.5.

The abundance ratio between the elements Xi and Xj is defined as[
Xi

Xj

]
= log10

(
Xi

Xj

)
− log10

(
Xi

Xj

)
�
. (4.3)

Figure 4.10 shows the evolution of the [O/H], [Fe/H] and [N/H] abundance ratios for 9

different simulation runs. Where the gas phase abundance ratios are representative for

a certain simulation time and the stellar metallicities correspond to the mean metallici-

ties of all stellar populations of the TDG. During the early evolution the production of

α-elements, represented by oxygen, by SN II is the dominant enrichment process. The

enrichment with iron form SN Ia starts delayed, as lower mass stars have longer life-

times. Therefore, after the massive stars, formed during the initial starburst, ended their

life the ISM gets mostly enriched with iron from SN Ia. The oxygen abundance ratio

reaches an approximated equilibrium level, depending on the details of the TDGs accre-

tion history and SFH. For example, the strong peak in the abundance ratios of tdg2 orb

at tsim = 1300 Myr is caused by the slightly increased SFR around this simulation time.

Figure 4.11 shows the stellar [O/Fe] versus [Fe/H] abundance ratio for nine different sim-
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Figure 4.11: Stellar [O/Fe] versus [Fe/H] abundance ratio. The stellar age is colour coded in bins of
100 Myr, the first stars formed during the simulations are shown in dark red, except for tdg2 igimf where
the oldest stars are shown in turquoise due to different simulation runtimes. The initial metallicity was
chosen to be 0.3 Z� with solar abundance ratios, i.e. [Fe/H] = −0.5 and [O/Fe] = 0. Initially SNe II are
causing the strong increase of oxygen and thus [O/Fe] (red points). The mixing of the tidal arm and the
TDG with the IGM result in the stars with [Fe/H] < −0.5, an effect which is strongly dependent on the
density distribution of the tidal arm. After most of the massive stars ended their life, the enrichment of
iron by SN Ia becomes the dominant mode of enrichment, causing the increase of [Fe/H] and the decrease
of [O/Fe]. The three models in the right column are the most realistic models and allow for a comparison
with observations. See text for details.

ulation runs. The three models in the right column are the most realistic models as they

make use of the full capabilities of the orbit module (see Section 2.7). The initial gas

abundance ratios of the tidal arm are 0.0 for [O/Fe] and -0.5 for [Fe/H], which proved the

initial abundances for the first formed stars. These stars are shown as dark red points,

except for tdg2 igimf where the oldest stars are shown in turquoise due to the different

simulation runtimes. The stars formed during the collapse of the TDGs, and shortly after

it, experience a strong enrichment of oxygen by SNe II and thus an increase of the [O/Fe]

abundance ratio. After the majority of the massive stars, which are formed during the

collapse triggered SF episode, ended their life, the ISM becomes mostly enriched due to

SN Ia feedback. Therefore, the ISM and the newly formed stars show an increase in the

iron abundance (up to [Fe/H] ≈ 1.5) and a decrease of the [O/Fe] ratio.
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Stars with [Fe/H] < −0.5 are formed out of rejuvenated material, i.e. a mixture of gas from

the tidal arm and the IGM. The effect is particularly present in the two simulation runs

tdg2 noArm and tdg2 noArm iso, but at the earliest simulation times it is also stronger in

tdg3 orb compared to tdg2 orb. This shows the strong dependency of the mixing process

on the distribution of gas around the TDGs, as the noArm models do not consider the gas

distribution of the tidal arm and the section of the arm around TDG s3 is not as extended

as around TDG s2 (see Figure 3.2 for the initial gas distribution). The mixing of the ISM

with the IGM leads to the formation of stars with −2.0 ≤ [Fe/H] ≤ −0.5, already within

the first 200-300 Myr, where the oxygen enrichment is caused by SN II.

The [O/Fe] abundance ratio of tdg2 igimf stays generally lower in the first ∼ 300 Myr of

simulation time compared to the other models embedded in the tidal arm of TDG s2. This

is caused by the reduced number of high mass stars and consequently the lower number

of SNe II.

Table A.3 provides a comprehensive list of the stellar and gas-phase abundance ratios at

the final simulation time.

4.3 Dynamical evolution of TDGs

4.3.1 Stellar rotation curve

In order to study the stellar dynamics of the simulated TDGs, the luminosity-weighted

rotational velocity around the centre of luminosity, in the plane perpendicular to the

direction of the angular momentum, is calculated in radial bins of ∆r = 50 pc. The

luminosity-weighted rotation velocity vrot(r) is calculated by:

vrot(r) =

∑
i
±vrot(i)L(i)∑
i
L(i)

, (4.4)

where the sums are carried out over all stellar particles within a radial bin and the stellar

luminosity L(i) is calculated according to Equation 4.2. The rotational velocity vrot(i)

of a stellar particle is assumed to be positive in case of a counter clock wise rotation,

this corresponds to a prograde rotation with respect to the orbit of the TDG. Due to the

double component structure and the resulting contamination of the rotation curves of the

TDGs of the setup TDG s1 (see top panels of Figure 4.9), rotation curves for these four

objects are not presented here.

Figures 4.12 - 4.19 show the resulting stellar rotation curves for the different simulation

runs. The black solid line is the luminosity-weighted rotation velocity with its standard

deviation indicated by the grey error bars. The blue dashed and red dot-dashed lines

show the contribution of the co- and counter-rotating components, respectively. The

significance of the counter rotating component can be seen by the difference between

the rotational velocity of the co-rotating component and the total rotational velocity,
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Figure 4.12: Rotation curve of tdg2 iso at tsim = 100, 300, 600, 900 1200, and 1500 Myr. The black line
shows the total luminosity-weighted rotational velocity with its standard deviation as grey error bars. The
blue dashed and red dot-dashed lines indicate the contributions of the co- and counter-rotating components,
respectively.

especially at the centre of various candidates. All models, except for tdg2 igimf, show a

steeply increasing rotation curve with a strong peak followed by a Keplarian like decline.

The models tdg2 orb and tdg2 igimf share identical initial conditions and use the same

settings in the orbit module, only differing in the description of the underlying IMF. This

variation results in a milder increase of the rotational velocity within the inner few hundred

parsec, a smaller peak velocity (∆vmax ≈ 20 km s−1) followed by a much weaker declining

rotational velocity (compare Figures 4.14 and 4.16). Structural subcomponents such as

companions and arm like features are also present in the rotation curves as secondary peaks

or elevated rotation velocities in the outskirts. As example for tdg2 noRam an additional

peak in the rotation curve is present at r ≈ 1.5 kpc at tsim = 900 Myr and a second

rotating component at r ≈ 2.8 kpc with a systemic velocity differing by ∼ 30 km s−1

compared to the TDG at tsim = 1500 Myr (Figure 4.13). The different shape of the

rotation curve, including the lower peak value of vrot, of the simulation run tdg2 noRam

compared to tdg2 orb is a consequence of the different mass distribution and build up, as

already mentioned in Section 4.1.1.

4.3.2 Stellar kinematic maps

Additionally to the derived rotation curves, 2D velocity respectively velocity dispersion

maps were created, as kinematic substructures can be missed out by one dimensional

analysis methods due to possible misalignment with respect to the rotation field of the

main body (e.g. Toloba et al., 2014). These maps were created with a resolution of 50×50

pc, corresponding to a resolution of approximately 0.7 arcsec at a distance of 16.5 Mpc, i.e.
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Figure 4.13: Same as Figure 4.12 for tdg2 noRam

Figure 4.14: Same as Figure 4.12 for tdg2 orb

the distance of the Virgo-cluster (Mei et al., 2007). Velocity and velocity dispersion maps

for each of the three coordinate directions of the simulation box were created. Considering

the xy-plane, the line-of-sight velocity (vLOS) is equal to the velocity component along the

z-axis (vz). As more massive stars are brighter then less massive stars, a weighting based

on the mass respectively luminosity is needed in order to create kinematic maps which are

comparable to observations. The luminosity of a stellar particle is calculated as described

in Section 4.1.4. The luminosity-weighted line-of-sight velocity (v∗LOS) within one spatial
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Figure 4.15: Same as Figure 4.12 for tdg2 noArm

Figure 4.16: Same as Figure 4.12 for tdg2 igimf at tsim = 100, 300 and 600 Myr

bin is then calculated by:

v∗LOS =

∑
i
vLOS(i) L(i)∑
i
L(i)

, (4.5)

where the sums are carried out over all stellar particles within a bin along the line-of-sight,

vLOS(i) and L(i) are the line-of-sight velocity and luminosity of the ith star-cluster, respec-

tively. Analogue to the v∗LOS-maps, luminosity-weighted line-of-sight velocity dispersion

(σ∗LOS) maps are created, where σ∗LOS within one spatial bin is calculated via:

σ∗LOS =


∑
i

[
L(i) (vLOS(i)− v∗LOS)2

]
∑
i
L(i)


1
2

. (4.6)

In the case of the setup TDG s1, where two candidates lie within the simulation box, only

stellar particles in an cube with a side length of 8 kpc, centred at the mass centre of the
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Figure 4.17: Same as Figure 4.12 for tdg3 iso

Figure 4.18: Same as Figure 4.12 for tdg3 noRam

candidates, are considered for the determination of the luminosity centre and the creation

of the kinematic maps. The left panel of Figure 4.20 shows the exemplary luminosity-

weighted stellar line-of-sight velocity map of tdg3 iso at tsim = 1500 Myr. To further

analyse the kinematic maps the Kinemetry-package, as briefly described in Section 4.3.4,

was used.
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Figure 4.19: Same as Figure 4.12 for tdg3 orb

4.3.3 Gas dynamics

Similar to the luminosity-weighted velocity maps for stars, density-weighted line-of-sight

velocity maps were created for the gaseous component of the TDGs, including the tidal

arm. The line-of-sight velocities were calculated analogue to Equation 4.5, replacing L(i)

with the density ρ of the grid cells along the line-of-sight. The integration along the line-

of-sights were performed throughout the whole simulation box along the three coordinate

directions. As the simulations are performed in the frame of the TDGs, therefore the

surrounding medium is travelling with the velocity vwind relative to the TDGs, if ram

pressure is included. To avoid contamination from the surrounding medium, only grid

cells with more then 60% of their material originating from the tidal arm are considered

for the integration, this can be traced with the mass scalar TDG MSCALAR (see Section

2.7). In order to obtain smoother velocity maps the data were binned to twice the grid

spacing resulting in a resolution of 156× 156 pc2.

In order to demonstrate the principle differences between the stellar and gas line-of-sight

velocity maps, the corresponding maps of tdg3 iso at tsim = 1500 Myr, integrated along

the x-axis of the simulation box, are compared in Figure 4.20 (left: stars; right: gas).

The spatial extent of the stellar velocity map (2 × 2 kpc2) corresponds to black square

in the velocity map of the gaseous component. The extent of the stellar component

roughly corresponds to the highest gas-velocity regions in the centre of the TDG. The

total rotating gas component of the TDG itself has a radius about 2-3 times lager than

the stellar component. Depending on the model and line-of-sight, the velocity signature is

contaminated by the streaming velocity along the tidal arm. At distances above 3-4 kpc

the velocity signature purely traces the gas flow in the tidal arm. This contamination and

the additional matter in form of the tidal arm might lead to wrong determination of the
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Figure 4.20: Line-of-sight velocity maps of the model tdg3 iso at tsim = 1500 Myr, integrated along the
x-axis of the simulation box (vLOS = vx). Left: Luminosity-weighted stellar line-of-sight velocity map, the
data are binned to a resolution of 100 × 100 pc2. Right: Density-weighted gas line-of-sight velocity map
with a resolution of 156× 156 pc2. The black square indicates the extent of the stellar velocity map. The
minimal and maximal line-of-sight velocities are given in the top right corner of each panel.

TDGs actual size and rotation velocity.

For example in the case of tdg3 noRam no clear decoupling form the tidal arm is visible

in the k1-profile along the line-of-sight corresponding to the x-axis (see Figure 4.21, right

hand side, third row). As for the stellar kinematic maps the Kinemetry-package (Section

4.3.4) was applied for the analysis of the velocity maps and the results are outlined in

Section 4.3.5.

4.3.4 Kinemetry

In order to derive the kinematic properties of the stellar and gaseous component of the

TDGs the Kinemetry-package developed by Krajnović et al. (2006) was adapted for

simulation data. It is a generalization of surface photometry to the higher-order moments

of the line-of-sight velocity distribution (LOSVD), where the first moment is the mean

velocity and the second moment represents the velocity dispersion σ. In order to apply it,

velocity respectively velocity dispersion maps from integral-field spectroscopic observations

of galaxies are needed or in the case of simulations these maps have to be constructed (see

Sections 4.3.2 and 4.3.3). The basic underlying assumption is that, for a thin-disk, the

velocity profile along an ellipse can be described by a simple cosine-law in the form of

V (R,ψ) = V0 + Vc(R) sin(i) cos(ψ), (4.7)

where R is the radius of a circular ring in the plane of the galaxy (or the length of

the semi-major axis of the ellipse on the sky), ψ the azimuthal angle measured from

62



CHAPTER 4. RESULTS

the major axis, V0 the system velocity, Vc the circular velocity along the ring and i the

inclination. A velocity map K(a, ψ) can be divided into a number of elliptical rings. Using

Fourier analysis, the velocity profile of those rings can be represented by a finite number

of harmonic terms:

K(a, ψ) = A0(a) +

N∑
n=1

An(a) sin(nψ) +Bn(a)cos (nψ), (4.8)

where ψ is the eccentric anomaly (corresponds to the azimuthal angle of Equation 4.7 in

the case of a thin disk) and a is the length of the semi-major axis of the ellipse. Strictly

speaking the representation of the LOSVD according to Equation 4.7 is only valid for a

thin-disk approximation. In this case the B1-term in Equation 4.8 represents the circular

velocity. Although triaxial systems such as early type galaxies do not behave like rotating

disks, Krajnović et al. found that the velocity profiles of these systems are well described

by a cosine-law. Despite this finding the interpretation of the different coefficients of the

sin- and cos-terms is different to the thin-disk approximation. In order to describe the

global properties of the kinematic maps of triaxial systems the coefficients of the same

order are combined:
kn =

√
A2
n +B2

n ,

φn = arctan

(
An
Bn

)
.

(4.9)

Using the combined coefficients, Equation 4.8 can be written in a more compact way

K(a, ψ) = A0(a) +
N∑
n=1

kn(a) cos[n(ψ − φn(a))]. (4.10)

Within this notation k1 represents the rotation velocity, and in the case of a purely ro-

tating disk it reduces to B1 as A1sin(ψ) = 0 for all ψ (compare Equations 4.7 and 4.8).

The coefficient k5 is the first higher-order term not related to the best-fitting ellipse and

describes the deviation from simple rotation. It is an indicator for complex structures

on the velocity map. Furthermore, the position angle Γ and flattening q = 1 − ε, with

ellipticity ε, for the best-fitting ellipse are extracted. Velocity maps with q close to 1 have

large opening angles and appear round, while maps with small opening angles appear flat

and have small values of q. Changes in these parameters give further insights to the kind

of kinematic substructures, as a change in Γ of 180° would be indicative for a counter

rotating core.

According to Krajnović et al., galaxies can be divided into four different kinemetric groups,

Disk-like rotation (DR), Multiple components (MC), Kinematic twists (KT) and Low-level

rotation (LR). A short summary of the properties of this groups can be found in Table

4.2. DRs are mostly consistent with rotating disk galaxies, with a significant amplitude of

the k1-term and only minor deviation from pure rotation, therefore the k5-term is almost

zero. The position angle Γ and the flattening q remain constant throughout the whole
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Table 4.2: Main features of the four different kinemetric groups as described by Krajnović et al. (2006)

parameters
kinemetric group PA Γ [deg] q = 1− ε k1

[
km/s−1

]
k5

Disk-like rotation DR const. const. substantial ≈ 0
Multiple components MC const. changea possible drop peaka

Kinematic twist KT changea changea possible drop > 0
Low-level rotation LR not definableb low high (> k1)

Notes: a the change in Γ, q or the peak in k5 occurs at the transition region between the subcomponents

b as Γ and q cannot be determined, it is better to perform the analysis along circles

galaxy. MCs are similar to DRs but show signs of kinematically different components

which are aligned at the same direction, having a constant Γ. This group can be traced

by a change in q at the transition region between two subcomponents. Furthermore, the

k5 coefficient rises at this region, accompanied by a possible but not necessary drop of k1.

A change in Γ, corresponding to a twist in the isovelocity contours, is a typical indication

for KTs. Also the odd features from the MC group can be found, as KTs are essentially

an extension of the MC-type with none constant Γ. The LR-class shows only minor to

no signs of rotation, which is seen in low k1-values but substantially large k5-values which

often exceeds the value of k1. As q and Γ cannot be determined for LRs, Krajnović et al.

conclude that in this cases it is better to perform the analysis along circles.

4.3.5 The dynamics of TDGs

In this section the results of the Kinemetry-analysis of the gaseous and stellar components

of the different simulation runs are presented. Figure 4.21 shows the k1-profiles of the

gaseous (solid lines) and stellar (dashed lines) component along three different line-of-

sights of several simulation runs. The stellar k1-profiles of all models show some general

similarities, like a strong peak at small radii followed by a rapid decline. Depending on the

model and line-of-sight, additional features are present, such as flat intervals and secondary

peaks. The k1-profiles of the gaseous component peaks at similar radii with comparable

amplitudes, but strong differences are present at radii lager than the peak radius. These

differences are in part attributed to the greater extend of the gas disk compared to the

stellar disk but also to the presence of the tidal arm, and are strongly depending on the

considered line-of-sight. For example tdg2 iso shows a strong second peak of the gas line-

of-sight velocity at a distance of ∼ 3.2 kpc along the y-axis of the simulation box. On

the other hand, tdg3 noRam does not show a dynamical decoupling form the tidal arm

along the x-axis, also seen in the right panel of Figure 4.20. On low resolution maps these

features might lead to a significant miss interpretation of the dynamics, sizes and masses

of TDGs, see Section 5.5.3 for a further discussion.

The dynamical properties at the final simulation time are listed in Table 4.3 and Tables

A.4 and A.5 of Appendix A. Note that the TDGs of TDG s1 are excluded from the analysis

presented here, due to their structural properties. The following analysis and classification
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Table 4.3: Stellar kinematic properties of the simulated TDGs at the final simulation time. Column 1:
Simulation run; Column 2: Maximal rotation velocity vmax at the final simulation time (see Section 4.3.1);
Column 3: Radius rvmax at which vmax is reached; Column 4: Maximum value of k1; Column 5: Radius
rk1,max at which k1,max is reached; Column 6: Average velocity dispersion σ̄ within rk1,max ; Column 7:
Ellipticity ε at rk1,max ; Column 8: Kinemetric class.

model vmax rvmax k1,max rk1,max σ̄ ε class
[km s−1] [pc] [km s−1] [pc] [km s−1]

tdg2 iso 80.1 250 56.1 330 29.9 0.41 DR - MC
tdg2 noRam 55.7 300 47.0 273 41.8 0.50 ?
tdg2 orb 71.8 200 62.1 273 43.1 0.30 MC (KT?)
tdg2 noArm 42.7 250 39.6 273 36.2 0.64 KT
tdg2 igimf 53.8 350 47.3 330 35.8 0.64 MC - KT
tdg3 iso 45.3 150 35.4 216 20.8 0.39 DR
tdg3 noRam 45.4 200 34.8 216 25.9 0.37 DR (MC?)
tdg3 orb 42.9 200 29.2 273 22.0 0.53 MC (DR?)

is solely based on the stellar dynamics of the simulated TDGs.

tdg2 iso shows some asymmetries and substructures in its stellar distribution, whereas

the kinematic position angle Γ stays fairly constant with variations smaller than 10◦ and

k5/k1 stays below 0.1 for more than 1.5 kpc. The k1 profile is almost linearly declining

beyond the peak radius of ∼ 330 pc until r ≈ 1.5 kpc, with only small variations at

positions where the flattening q changes. Considering the Γ and k5/k1 profiles, tdg2 iso is

classified as DR with an existing possibility of multiple kinematic components due to the

changing q-values.

tdg2 noRam shows the strongest substructures in the stellar distribution, with a close

companion on one side and a tidal arm like feature on the opposite side (Figure 4.9). The

strongest signatures of the second component of tdg2 noRam are present in the Kineme-

try-analysis at radial distances beyond ∼ 2.0 kpc, by unsteady values of Γ and the k5/k1

ratio. Furthermore, the method failed along two lines of sight, i.e. along the x- and y-axis,

for the stellar velocity maps at large distances from the centre of the TDG (r > 2.5 kpc).

Nevertheless, this method yields good results within the inner ∼ 1.5 kpc of the TDG,

with a k5/k1 ratio below 0.3 and only minor and smooth variations of Γ. The coefficient

k1 shows some secondary peaks at the positions of jumps in the flattening, indicating

multiple rotational components. The classification of this object is uncertain as it shows

signs of various kinemetric groups, ranging from pure DR to KT. This TDG shows a va-

riety of different morphological structures, which makes it unclear if the odd features in

the kinemetric parameters are caused by internal dynamics or by projection effects of the

substructures along the line-of-sight.

tdg2 orb has the smoothest appearance in its stellar light distribution among the models

of TDG s2 (see Figure 4.9). Despite this rather clean shape, it shows signs of multiple

kinematic components such as an increasing Γ with ∆Γ ≈ 20◦ and multiple humps in k1,
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Figure 4.21: k1-profile of simulated TDGs for the gaseous (solid line) and stellar (dashed line) component
along three different line-of-sights. For an explanation of k1 see Section 4.3.4.

both with varying intensity depending on the line-of-sight. The flattening shows strong

and sudden changes, especially at r ≈ 270 pc, the radius of the maximal k1 value but also

at the locations of secondary peaks of k1. The ratio between k5 and k1 stays below 0.1

until r = 700 pc and below 0.5 until r = 2.2 kpc. Due to its multiple peaks in k1 which

correspond to jumps in q, it is classified as MC, with a possible kinematic twist as Γ is

only smoothly varying.

tdg2 noArm is classified as KT, as Γ is changing by 10 − 50◦ within r < 1.2 kpc and

exhibits possible secondary low-amplitude humps in k1, both depending on the line-of-

sight. Also the substructures in the k1 profile are correlated to jumps in q. The ratio of
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k5/k1 stays below 0.1 for r < 600 pc and 0.3 until r = 1.2 kpc.

tdg2 igimf harbours a small central stellar disk encompassed by a spherical stellar en-

velope, most prominent in the edge-on view of Figure 4.9 and an arm like feature. The

kinematic position angle of tdg2 igimf remains roughly constant until r ≈ 1.3 kpc and has

a k1 profile similar to what is expected for Keplerian rotation. Also the k5/k1 ratio remains

below 0.2 until that radius. Only for the line-of-sight along the x-axis a higher deviation

from a constant Γ with ∆Γ ≤ 20◦ can be found. Along this direction the k1 profile shows

higher rotational velocities and a weaker decline, both effects are most likely attributed

to the arm feature of tdg2 igimf. Considering the k1 profile along the x-line-of-sight and

morphological features, tdg2 igimf is classified as MC with a high possibility of also being

a member of the KT class.

tdg3 iso is the apparently most disk like galaxy among all model TDGs, in both the

stellar distribution and the kinemetric parameters. The kinematic position angle stays

constant, with an increase by less than 10◦. Also the deviations from disk like rotation

are only marginal, i.e. the ratio k5/k1 is consistent with zero until r ≈ 600 pc and

< 0.15 within the inner 1 kpc. The asymmetries in the stellar distribution, and therefore

in the velocity maps, are reflected in discontinuities in the flattening and k1 between

r = 0.5 and 0.7 kpc, depending on the line-of-sight. As the odd kinemetric features are

attributed to the morphology of the TDG, it is still classified as disk-like rotator (DR).

tdg3 noRam shows the same principle morphological appearance as tdg3 iso but has

some minor substructures as well. Furthermore, the kinemetric parameters of these sim-

ulation runs are very similar until r . 600 pc. Beyond this radius the flattening becomes

unsteady, the k5-to-k1 ratio increases to values between 0.1 and 0.5, depending on the

line-of-sight. The k1 profiles show some indications of multiple kinematic components,

as additional peaks and flat spots appear in the interval ∼ 0.5 . r/kpc . 1.3, which

corresponds to jumps in q. As it does not only show disk like features, but deviations are

on a low level, it is classified as DR with possible multiple components.

tdg3 orb generally has a similar morphology and kinemetry to tdg3 iso and tdg3 noRam.

Among the three simulation runs of TDG s3 it is the one with the strongest signatures

of multiple components, such as additional peaks in k1 at the positions of discontinuities

in q. At radii greater than ∼ 500 pc the deviations from disk like rotation are still small

but the k5-to-k1 ratio reaches values of 0.2 until r = 1.0 kpc. Below 500 pc the ratio is

close to zero. Due to the secondary peaks in k1 it is classified as MC but the possibility

of being constituted by a single rotating component is not excluded.
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4.3.6 Counter rotating stars

Although no dominant KDC is formed during the simulations, a counter rotating stellar

component is always present, regardless if the TDG candidates are treated in isolation or

within the external gravitational potential of the merging galaxies. As it can be seen from

the stellar rotation curves (Figures 4.12 - 4.19), the influence of the counter rotating stars

on the rotational velocity is strongest at the centre of the TDGs.

In the top panels of Figures 4.22 and 4.23 the radial distribution of the different rotating

stellar components is investigated for the three models tdg2 orb, tdg2 iso and tdg2 igimf.

The upper left panel shows the radial distribution of stars normalised to the total number

of stars within a radius of r = 2.5 kpc at tsim = 100 Myr and the upper right panel

at tsim = 1500 Myr (tsim = 600 Myr for tdg2 igimf). The black line indicates the ra-

dial distribution of all stars within a distance of 2.5 kpc, whereas the blue and red lines

show the distribution of the mathematically positive and negative rotating components,

respectively. During the early star formation phase (tsim = 100 Myr) an almost equal

partition of rotation directions is present, where the negative rotating component shows

a greater radial extent than at later times, i.e. at tsim = 1500 Myr, respectively 600 Myr

for tdg2 igimf. This is particularly visible at radii greater than 400 pc, where the fraction

of negative rotating stars almost reaches zero, compared to 1.5− 2% at tsim = 100 Myr.

In the lower left panel the age distribution of star clusters is shown, again split into the

different rotating components and normalised to the total number of stars. Although the

counter rotating component is predominately formed at early simulation times, resulting

in an older stellar component, it can be seen that negative rotating stars are also formed

throughout the whole simulation. An age segregation as observed by Toloba et al. (2014)

with a much younger KDC than the main body, differing by several Gyr in stellar ages, is

not present. Therefore, the old stars, expelled from the disks of the interacting galaxies,

would have to show a preferred rotation direction. These stars are collected in the oldest

age-bin ranging form 1490-1500 Myr (610-620 Myr for tdg2 igimf) and contribute equally

to the positive and negative rotational direction. This equal distribution might be an

effect caused by the low number of preexisting stars, as listed in Table 3.1.

The lower right panel shows the distribution of the angles α between the stellar or-

bital planes with respect to the angular momentum direction of the TDG at tsim =

100 and 1500 Myr (100 and 600 Myr for tdg2 igimf). Stellar orbits with an angle α ≥ 90◦

are considered as counter rotating. At the early evolutionary stages stellar orbits close to

polar are preferred, which is also reflected in the rotation pattern, as at tsim = 100 Myr

only a minor rotation, if any, can be seen. During the further evolution co-rotating orbits

with α . 30◦ become dominant but still with a significant fraction of about 10 − 20% of

stars showing orbital angles lager than 90◦ at the final simulation time.

The general similarities of the distribution of co- and counter-rotating stars, of the differ-

ent simulation runs indicated that the formation of a KDC or a counter rotating stellar

component might not be a consequence of the tidal field but is rather related to initial gas
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Figure 4.22: Stellar distribution statistics within a radius r = 2.5 kpc around the centre of luminosity of
the model tdg2 orb. Top row: Radial distribution of stars at tsim = 100 & 1500 Myr for the left and right
panel, respectively. The number of stars per radial bin (∆r = 50 pc) is normalised to the total number
of stars at the considered timestep. The black line indicates the relative number of stars per radial bin,
whereas the blue and red lines correspond to the positive and negative rotating component, respectively.
The definition of the rotation directions is as in Section 4.3.1. Bottom left: Distribution of stellar ages in
stellar age bins of 10 Myr, the pre-existing stellar population is collected in the last bin (1490−1500 Myr).
The colour code is the same as in the top panels, the number of stars per bin is normalised to the total
number of stars formed until tsim = 1500 Myr. Bottom right: Distribution of angles between the direction
of the TDGs angular momentum and the orbit of a stellar particle at tsim = 100 & 1500 Myr, indicated
by the solid and dashed line, respectively. Stellar particles with orbital angles α ≥ 90◦ are considered
as counter rotating (labelled as negative) and show a retrograde rotation with respect to the orbit of the
TDG.

density and velocity distribution.

Within this thesis non-idealised initial conditions are used as they are resulting from a

merger simulation, therefore the initial gas distribution does not show symmetries or a

clear rotation pattern. In comparison Ploeckinger et al. (2015) used a spherical symmetric

gas distribution with an initial rotation velocity defined by:

v(r) =

√
G M(r)

r
. (4.11)

These irregularities of the initial conditions are reflected in the spatially extended distri-

bution of star forming regions within the early phases of the simulations. As the initial gas

cloud and the first formed stars collapse to form the TDG, it is possible for a stellar particle

to pass on either side of the centre of the TDG, and therefore get captured on orbits with

arbitrary angular momentum directions. Figure 4.24 shows the surface brightness map of
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Figure 4.23: Same as Figure 4.22 for tdg2 iso (top set) and tdg2 igimf (bottom set). Note the different
output times for tdg2 igimf (tsim = 100 & 600 Myr) and the collection of pre-existing stars in the age bin
610− 620 Myr.
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Figure 4.24: Stellar surface brightness map of the model tdg2 orb at tsim = 1500 Myr. The insert
enlarges the inner 1× 1 kpc2 and shows two exemplary orbits of stellar particles formed during the initial
star formation episode, the blue and red line represent the co- and counter rotating orbit, respectively. For
clarity the orbits are only shown for the simulation time interval tsim = 700− 900 Myr, with the position
at tsim = 700 Myr marked by a symbol.

tdg2 orb at tsim = 1500 Myr, with the central 1× 1 kpc2 enlarged in the insert. The blue

and red lines represent the orbits of one co- and one counter-rotating stellar particle in the

simulation time interval 700 ≤ tsim/Myr ≤ 900, respectively. Both particles are formed

during the first episode of low star formation, between tsim = 30 and 40 Myr.

4.4 The influence of the IMF description

The two simulation runs tdg2 orb and tdg2 igimf share identical initial conditions and

both use the full capabilities of the orbit module, i.e. include the effects of the tidal field

and ram pressure. The only difference lies in the IMF description, where tdg2 orb uses the

standard filled IMF and tdg2 igimf uses the IGIMF description instead. Therefore, these

two simulation runs can be directly compared and the influence of the IMF description

on the evolution of TDGs can be investigated. Within the filled IMF description the IMF

is, as the name suggests, always filled to the uppermost mass bin, even with fractions of

high-mass stars. These fractions of high mass stars result in an early onset of feedback

processes related to these stars, such as stellar winds and SN II. Whereas, the IGIMF

description does not allow for fractions of stars and thus fractional feedback, resulting in

a delayed or suppressed feedback from high-mass stars, depending on the mass of the star
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Figure 4.25: Comparison of the SFR, gas mass Mg and stellar mass Ms of the simulation runs tdg2 orb
(black) and tdg2 igimf (red). The solid and dashed lines correspond to the mass within spheres of r =
1.0 and 2.5 kpc, respectively.

cluster. This difference in the onset of stellar feedback consequently results in a higher

initial SFR and a faster built up of stellar mass with a directly related lower gas mass (see

Figure 4.25).

In Figure 4.26 density slices through the inner 10× 10 kpc of the simulation box centred

at the mass centres of the two simulation runs are presented for the simulation times

tsim = 50, 200 and 400 Myr. These simulation times correspond roughly to the three

different star formation phases as described in Section 4.1.2. During the first star formation

period the filamentary structure of the proto-cloud is slightly less confined in the case of

the filled IMF (i.e. tdg2 orb, top row). This is due to the mentioned early onset of

fractional feedback events from high mass stars and the resulting preheating of the ISM.

As the cloud collapse proceeds the SFR gets high enough to completely fill the IMF of

the individual stellar particles and therefore SN II and stellar winds also occur in the

IGIMF run (tdg2 igimf, bottom row). The apparently largest difference between these

two simulation run is the formation of the galactic wind in the IGIMF run. The wind

starts to build up around the simulation time tsim ≈ 170 Myr and forms a chimney like

cavity in the tidal arm which remains present for several hundreds of Myr until it gets

destroyed due to ram pressure. Whereas, only minor feedback driven bubbles emerge from

the galactic disk in the case of the filled IMF. The influence of the galactic wind on the

lower gas mass of tdg2 igimf is negligible, as it is almost exclusively attributed to the

faster conversion of gas into stars.

4.4.1 Star formation and stellar feedback

Not only the SFR is altered by the IMF description but also the distribution of star

forming regions, especially at early simulation times. In Figure 4.27 the star formation

rate surface density ΣSFR [M� Myr−1 pc−2] is shown for the two simulation runs using

either the filled IMF (top) or the IGIMF (bottom), at the same timesteps as the density

slices of Figure 4.26. Note that the scaling of these two images is different. The local SFR

is only depending on the density and temperature of the grid cells, according to the SBF

(Equation 2.30). As the feedback from fractions of high-mass stars, in the filled IMF run,

increase the temperature of the surrounding gas, the efficiency at which gas gets converted

into stars is reduced. This results in locally weaker and less confined star forming regions,
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Figure 4.26: Density slices (in atoms cm−3) of the simulation runs tdg2 orb (top) and tdg2 igimf (bot-
tom) at tsim = 50, 200 and 400 Myr.

compared to the IGIMF run (lower panels). Due to the locally weaker feedback at this

early simulation time more star clusters, with lower masses, can be formed when the

IGIMF is used. As the simulations advance, the extended gas cloud collapses, what leads

to high local gas densities and enables a rapid cooling of gas, providing conditions for

high SFRs. With a similar behaviour for both simulation runs, differing only in the outer

parts of the TDGs, where the local SFRs are higher in the IGIMF run (middle & right

panels). In the IGIMF run a higher number of star clusters with preferential lower masses

are formed (see also Figure 4.7), within these star clusters the IMF is not completely filled

to the uppermost mass bin, providing more intermediate mass stars which eventually end

their life as SN Ia.

Figure 4.28 compares the stellar feedback energy, number of feedback providing IMF

mass bins, i.e. the sum of mass bins which ended their life during the last Myr per star

cluster summed over all clusters and the actual number of feedback events. The lager

number of star clusters in the IGIMF run automatically provides a lager number of low

to intermediate mass IMF mass bins. Therefore, one would also assume that the number

of actual SN Ia has to be larger in this case, but except for the simulation time interval

80 < tsim/Myr < 200 the energy released by SN Ia and also their number is equal in both

cases. Within the filled IMF the probability of an intermediate mass star to end its life

as SN Ia is independent of the cluster mass. Whereas, the number of possible stars that

one star can pair with to form a binary system, which eventually ends as SN Ia, is lower

in the IGIMF case. Especially if the star cluster is truncated at a mass bin below 8 M�,

the applied upper mass limit for a star to be considered as possible SN Ia progenitor (see

Section 2.6.3). Therefore, the probability of a star to become a type Ia SN is smaller.
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Figure 4.27: Star formation rate surface density ΣSFR in M� Myr−1 pc−2, at three different simulation
times tsim = 50, 200, and 400 Myr (from left to right) for the models tdg2 orb (top) and tdg2 igimf
(bottom).

Within the presented simulations the higher number of star clusters with lower SN Ia

probability (IGIMF) cancel out against the lower number of star clusters with constant

SN Ia probability (filled IMF), for most of the simulation time.

The black and overlaying blue lines (middle and right panel) show the number of high

mass bins (M? > 8 M�) which ended their life in the previous Myr. The number of SN

II and stellar wind providing mass bins is initially lower in the IGIMF simulation, this is

due to the truncation of the IMF at the last mass bin that still holds at least one star. As

the SFR increases more and more star clusters are able to fill their IMF and the number

of SN II providing mass bins equals out between the two simulation runs. Interestingly,

the actual number of SN II behave quite different (see right panel), for the first 70 Myr of

simulation time the behaviour is as expected with a lower number of SN II in the IGIMF

simulation. As the mass of the star clusters exceeds 19050 M� the IMF gets completely

filled in both simulations and the influence of fractional SN becomes smaller, in the case of

the filled IMF. The number of SN II and stellar wind events of the IGIMF run exceeds the

number of the filled IMF simulation in the time interval 70 < tsim/Myr < 140, before it

becomes essentially indistinguishable. A similar behaviour is observed for the integrated

feedback energy of SN II (left panel).

The difference between the two IMF descriptions becomes clearly visible if the distribution

of released feedback energy (Figure 4.29) and the feedback events, especially of SN Ia

(Figure 4.30), is considered. As long as the elapsed simulation time since the first star

formation event is too short for SN Ia to occur (. 40 − 50 Myr), the released feedback

energy is only provided by stellar winds and SN II. In the IGIMF run the local SFR is too
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Figure 4.28: Comparison of feedback energies and number of events of the simulation runs tdg2 orb
(solid) and tdg2 igimf (dashed). Note that the term Wind refers to stellar winds driven by mass loss and
does not include ionising radiation. The number of SN II and stellar wind events are equal, therefore the
black and blue lines overlap in the middle and right panel.

Figure 4.29: Cumulative released feedback energy surface density ΣFB [erg pc−2], at three different
simulation times tsim = 50, 200, and 400 Myr (from left to right) for the models tdg2 orb (top) and
tdg2 igimf (bottom). The feedback events within a times span of 1 Myr are considered and spatially
binned to the effective grid resolution (∆x = 78 pc).

small to fill the IMF of individual star clusters to produce stellar masses greater than 8 M�,

therefore the feedback is very localised around the most massive star clusters, whereas the

fractions of high-mass feedback in the filled IMF run nicely follow the extended distribution

of star forming regions (compare the left panels of Figure 4.29). As the simulations proceed

the local SFRs become high enough in order to fill the IMF of star clusters in the IGIMF

case, therefore the distribution of regions with high feedback energy release is matching

well in both runs. The most energy injected into the ISM is released by high-mass stars,

which trace the distribution of star forming regions, whereas the distribution of SN Ia form

intermediate mass stars is causing the apparent difference in the distribution of released

feedback energy. This is illustrated in Figure 4.30 for the number density of SN Ia at

tsim = 200 Myr, where, in the simulation using the filled IMF (left panel), SN Ia are

almost exclusively confined to distances below ∼ 0.5 kpc from the centre. In the case of
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Figure 4.30: Distribution of type Ia supernovae of the simulation runs tdg2 orb (left) and tdg2 igimf
(right) at the simulation time tsim = 200 Myr.

the IGIMF (right panel) their distribution is reaching larger distances up to 1 kpc and

beyond, as a consequence of the higher number of star clusters and their spatially extended

distribution.

4.5 Environmental influences

In this section the influence of the different effects of the environment, i.e. ram pressure,

the tidal field and the tidal arm, on the evolution of TDGs is examined. To illustrate the

environmental effects on the evolution of TDGs, comprehensive time sequences of close up

(10× 10 kpc2), particle number density slices through the simulation boxes centred at the

mass centre of the TDGs, are provided in the Figures 4.35 to 4.37, based on the models of

the setup TDG s3. Within these models the tidal arm is roughly aligned with the x-axis,

therefore the presented slices cut almost perpendicular through the tidal arm.

4.5.1 Orbit

Environmental effects on the evolution of TDGs are strongly related to their orbits around

the host galaxy, as the ram pressure is caused by the relative motion of the TDG through

the IGM and the strength of the tidal field is dependent on the distance form the host. The

top panel of Figure 4.31 shows the orbits of the different simulation setups in the coordinate

frame of the merging galaxies projected to the xy-plane. The thin black lines follow the

predicted orbits for 5 Gyrs, whereas the thick coloured lines represent the actual distance

covered during the simulations. The lower panels show the distance from the TDGs to

the merger remnant normalised to its initial distance at a simulation time of tsim = 0 Myr

(left), as listed in Table 3.1 and the absolute three dimensional orbital velocity (right).

Assuming a time constant central point mass as representation of the merger remnant, as it

has been used for the orbit module (see Section 2.7), the absolute escape velocities |vesc| =
151, 160 and 122 km s−1 for the simulation setups TDG s1, s2 and s3, respectively. By

comparing the initial velocities (see Table 3.1) with the escape velocities it turned out
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Figure 4.31: Orbits of the TDGs around the merging galaxies, projected to the xy-plane in the coordinate
frame of the merger. Top: The thick coloured line correspond to the distance made by the simulation boxes
until the final simulation time, whereas the thin black lines trace the predicted orbits for 5 Gyrs. The colour
code and final simulation times are indicated in this panel. Note that the coordinate axis are switched,
therefore the horizontal axis represents the Y-axis. The stellar distribution of the initial merger simulation
1.5 Gyr after the first pericentre passage is shown for illustrative purposes. Bottom left: Distance of the
TDG to the centre of mass of the merger remnant, normalised to their distance at tsim = 0. Bottom right:
Absolute orbital velocity.

that TDG s3 is on an unbound orbit being ejected into the intergalactic space. The orbits

of the other two setups remain bound to the merger remnant with orbital periods of 10.6

and 8.9 Gyr for TDG s1 and s2, respectively. Starting from the initial position along the

orbits, these setups are increasing their distance from the merger remnant with declining

velocities (see bottom panels of Figure 4.31), as they are on their way towards their orbits

apocentres.

4.5.2 Tidal field

In order to investigate the influence of the tidal field on the evolution of TDGs, the

simulation runs tdg2 noRam - tdg2 iso and tdg3 noRam - tdg3 iso are compared. The iso

models do not feel any tidal accelerations or ram pressure whereas the noRam models are
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Figure 4.32: Comparison of simulation runs without ( iso, black) and with ( noRam, red) the influence
of the tidal field of the setups TDG s2 (top) and TDG s3 (bottom). Left: Star formation rate; Middle:
Total gas mass; Right: Total stellar mass. The line styles are equal in all panels and a legend is provided in
the right panel. The solid and dashed lines in the middle and right panels correspond to the mass within
spheres of 1.0 and 2.5 kpc around the mass centre, respectively.

exposed only to the tidal field, therefore the pure effect of the tidal field can be studied.

The compressive effect of a tidal field decreases with increasing distance form the host

galaxy (e.g. Ploeckinger, 2015). As the distances from the merger remnant are large with

D > 160 kpc and increasing with time, the influence of the tidal field on the TDG is

expected to be small within the presented simulations. Figure 4.32 compares, from left

to right, the SFR, gas mass Mg and stellar mass Ms of the two models mentioned above

of TDG s2 (top) and TDG s3 (bottom). For both setups no difference can be seen in

the evolution of the SFR, Mg or Ms which could be attributed to the tidal field. The

deviations in the models of TDG s2, starting at tsim ≈ 600 Myr, result from different

accretion histories of substructures formed in the outskirts of the TDG respectively the

tidal arm at distance greater 2.5 kpc (see also Figures 4.2 and 4.3). Also within the

density slices of the models tdg3 iso and tdg3 noRam (compare Figure 4.35 and 4.36)

no significant differences can be seen, with the only deviations in regions with particle

densities below ∼ 0.01 atoms cm−3.

4.5.3 Ram pressure

The effect of ram pressure on the evolution of TDGs can be investigated by comparing

models which are either embedded in a static IGM or placed in a wind tunnel like con-

figuration. In both cases the TDGs are exposed to the tidal field. In Figure 4.33 the

models orb (black) and noRam (red) of the setups TDG s2 (top) and TDG s3 (bottom)

are compared. As for the influence of the tidal field, the difference in SFR and gas mass

of the setup TDG s2 are attributed to substructures formed in the close vicinity of the

TDG and cannot be directly linked to an environmental effect on the TDG itself.
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Figure 4.33: Same as Figure 4.32 for the simulation runs exposed to the tidal field with ( orb, black)
and without ( noRam, red) ram pressure, of the setups TDG s2 (top) and TDG s3 (bottom).

Both models of TDG s3 show identical SFR and stellar masses throughout the whole simu-

lation time, differing only in the gas mass starting at tsim ≈ 500 Myr. At this time, the low

density gas from the tidal tail gets pushed away further than 2.5 kpc from the centre and

the higher density disk starts feeling the ram pressure, visible in the drop of gas mass within

the inner kpc. As the tidal arm itself is also exposed to the ram pressure it gets compressed

as well, leading to slightly increased accretion rates, therefore the ram pressure model re-

gains an equal gas mass within 1 kpc of radius until tsim = 1000 Myr. The effect of ram

pressure on the low density gas surrounding TDG s3 can be seen in Figure 4.37. The wind

caused by the motion of the TDG through the intergalactic medium, pushes the gas from

the upwind side around the TDG and strips it away on the lee side (tsim = 150 and 300 Myr

panels). During this early phase the higher density (n > 0.1 atoms cm−3) regions of the

TDG are not effected by the ram pressure until tsim ≈ 450 Myr. At this time, the lowest

density gas has already been removed and the ram pressure starts acting onto to disk

of the TDG, resulting in a stronger confined and shorter gas disk compared to the case

without ram pressure (compare to Figure 4.36). Note that the density peak at z ≈ 4 kpc

in the tsim > 1050 Myr panels is caused by the compression of the tidal arm and does not

belong to the TDG it self. The lopsided appearance of the different models of TDG s3,

as seen in Figure 4.9, is rather an effect of internal dynamics than of ram pressure or the

tidal field, as it is present in all three models.

Smith et al. (2013) performed a parametric study of the influence of ram pressure on

DM-free TDGs, with wind velocities in the range of 100 < vwind/km s−1 < 800 and an in-

tergalactic gas density nIGM = 10−4 H cm−3. Reasonably, they found a strong dependency

of gas stripping on the wind velocity, where a velocity of 100 km s−1 causes ∼ 10% of the

gas to be lost and for vwind = 200 km s−1 typically 10−30% at most 50%, for models with

low central surface densities, of the gas is striped. Above ∼ 600 km s−1 the gas is almost
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Figure 4.34: Same as Figure 4.32 for simulation runs embedded in the tidal arm (black) and without the
density distribution of the arm (red), which are either exposed to the tidal field and ram pressure (top) or
none of them (bottom).

instantaneously removed. At vwind ≥ 200 km s−1 they also found a strong effect on the

stellar component which forms a stream in the opposite direction of the striped gas. Con-

sidering that young TDGs are actually embedded in a tidal arm, which shields the TDGs

against the IGM and that the orbital velocities are below 200 km s−1 (see bottom right

panel of Figure 4.31), it is not surprising that the effect of ram pressure on the evolution of

TDGs within the presented simulations is rather small. Another effect which might help

to protect the TDGs is the fact that the ram pressure is not acting perpendicular to the

disk of the TDGs. Furthermore, an influence of ram pressure on the stellar components

is not observed in the presented simulations.

4.5.4 Tidal arm

The strongest environmental impact factor within the presented simulations is the pres-

ence respectively absence of the tidal arm, which has not been taken into account in

previous numerical studies of TDGs, like those by Smith et al. (2013); Yang et al. (2014);

Ploeckinger et al. (2014, 2015). Figure 4.34 compares the SFR, gas mass Mg and stel-

lar mass Ms of the models tdg2 orb with tdg2 noArm and tdg2 iso with tdg2 noArm iso

in the top respectively bottom row. Initially the models start with the same gas dis-

tribution within more than 2.5 kpc from the centre of the TDG and retain equal gas

masses for the first ∼ 250 Myr of the simulations. After the collapse of the proto-cloud,

around tsim ≈ 300 Myr, the gas mass of the models without tidal arm declines significantly

stronger compared to the models embedded in the tidal arm. This behaviour is caused

by the lack of surrounding material which could be accreted by the TDGs. At the final

simulation time (tsim = 1500 Myr) the models with tidal arm retained twice as much gas

than those without, within the inner kpc. Going to larger distances the deviations can be
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as large as a factor of 3 or 5 for 2.5 and 5 kpc, respectively.

The star formation histories of these models nicely follow the available amount of gas,

therefore showing a strong starburst during the cloud collapse followed by a decrease in

the SFR as the available gas reservoir gets reduced. The SFR of the models without the

tidal arm declines stronger after tsim ≈ 300 Myr, compared to the embedded models, as

their reservoir does not get refilled. This results in a three times higher SFR at the end of

the simulations if the tidal arm is included, where the models without arm have final SFRs

of about 6 × 10−2 M� yr−1 and 2 × 10−1 M� yr−1 if the tidal arm is included. The two

models embedded in the tidal arm increase their stellar mass after a simulation time of

tsim ≈ 300 Myr by a factor of roughly 2 until the end of the simulations. Starting from this

time the stellar masses of the models without tidal arm are approaching an equilibrium

level with only a marginal increase of the stellar mass until the final simulation time.

These characteristics show the importance of the tidal arm during the evolution of TDGs,

as the tidal arm provides a rich reservoir of gas available for accretion and subsequent con-

version into stars. The accumulation of additional material allows the simulated TDGs to

increase their total mass within a radius of 2.5 kpc substantially. The model tdg2 noRam

grows its mass by a factor of ∼ 2.9, as the maximum value among the simulation runs

of TDG s2, whereas tdg2 noArm, a model without tidal arm, increases its mass only by

60%. The models of TDG s3 grow by a factor of ∼ 1.7 (also see Figure 4.2).
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Figure 4.35: Slice through the centre of mass of the simulation run tdg3 iso at different simulation times
as indicated on each panel. Colour coded is the particle number density [atoms cm−3].
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Figure 4.36: Same as Figure 4.35 for the model tdg3 noRam.
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Figure 4.37: Same as Figure 4.35 for the model tdg3 orb.
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Chapter 5

Discussion

Within this thesis chemodynamical simulations of tidal dwarf galaxies exposed to different

combinations of environmental effects are presented. Furthermore, the effect of the tidal

arm, in which the TDGs are embedded, is explored, a component previously ignored in

detailed numerical studies of TDGs. Studying the impact of these effects on the evolution

of TDGs provides new hints to observationally distinguish dwarf galaxies embedded in DM

halos and those without. Additionally these simulations help to put further constrains on

the survivabilitiy of TDGs against a strong initial starburst, the disrupting effects of the

tidal field and the removal of gas through ram pressure.

5.1 Star Formation

At first sight the peak SFRs of the simulated TDGs might seem unusually high for low-mass

galaxies in general and in particular for TDGs. Which show observationally derived SFRs

orders of magnitudes lower than those of the presented simulations, especially within the

first ∼ 500 Myr of simulation time. For example Duc and Mirabel (1998) derived SFRs,

for TDGs around NGC 5291, in the range of 10−3 to ∼ 6× 10−2 M� yr−1, based on the

Hα luminosity, whereas the SFR of the simulated TDGs peak around ∼ 2 M� yr−1 and

decline to values in the range 10−2 to 5× 10−1 M� yr−1 until the end of the simulations.

On the other hand, the star formation histories and distribution of stellar ages appear

rather normal for TDGs, considering the formation scenario described by Elmegreen et al.

(1993). Within this scenario most of the stars of a TDG are formed during a starburst

at the time when itself is formed, followed by a low SFR. Only a minor fraction, no more

than 50%, of the stars originate form the parent galaxies.

Considering the short duration of the starburst of the simulated TDGs, it is not surprising

that observed TDGs are in general not caught in this phase of massive star formation. The

validity of a linear relation between Hα luminosity and SFR, as found by e.g. Kennicutt

(1998), is uncertain for galaxies with SFRs below 0.1 M� yr−1, as the Hα luminosity is

expected to flatten for such low SFRs (e.g. Pflamm-Altenburg et al., 2007). Taking this

break of the LHα-SFR relation into account, would indicate that observationally derived

85



Figure 5.1: Left: Location of TDGs along the Kennicutt-Schmidt law at 3 different simulation times,
corresponding to the different SF episodes (initial SF - triangles, peak SF - circles, final Sf at tend - filled
circles). Right: Location of TDGs along the main sequence of star forming galaxies. The coloured points
show the temporal evolution of the different simulation runs along the main sequence and the black circles
indicate their locations at the final simulation time. The dot dashed lines in both plots represent a deviation
of 1 dex from the relations.

SFR are at most only lower limits on the true SFR of TDGs.

To further investigate how well behaved the SFRs of the simulated TDGs are, the simu-

lations are compared to well known SF related scaling relations. The Kennicutt-Schmidt

(KS) law links the SFR per unit surface area to the gas surface density:

ΣSFR = A ΣN
gas, (5.1)

with A = 2.5 × 10−4 and N = 1.4 (Kennicutt, 1998). In the left panel of Figure 5.1 the

location of the simulated TDGs along the Kennicutt-Schmidt law for the three different

SF episodes is shown. During the initial SF episode all TDGs, except for tdg2 igimf, lie

below the KS relation. As the collapse of the proto-TDGs proceeds the gas surface density

grows, also ΣSFR increases, shifting the data points to the top right, towards the region of

the ΣSFR − Σgas-diagram which is typically inhabited by starbursting DGs. At the final

simulation time tend the gas surface density declined to roughly its initial value but the

SFR stays about a factor 10 higher, compared to the initial SFR. For all the considered

times the TDGs remain close, within approximately one order of magnitude, to the KS

relation.

The right panel of Figure 5.1 shows the main sequence of star forming galaxies, it relates

the SFR per unit stellar mass (sSFR = SFR/M?) to the stellar mass of a galaxy. Based

on a large sample of star forming galaxies, Peng et al. (2010) derived the functional form

of the main sequence as:

sSFR = 2.5× 10−9

(
M?

1010 M�

)β ( t

3.5 Gyr

)−2.2

yr−1, (5.2)
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where M? is the mass of the stellar content of a galaxy, β = −0.24 (Renzini and Peng,

2015) and t is the considered age of the universe (solid black line, t = 13.7 Gyr). The grey

dashed lines indicate a scatter of one order of magnitude from the relation, roughly the

width of the observationally derived distribution from Peng et al. (2010). The coloured

dots show the temporal evolution of the TDGs along the main sequence. During the early

evolutionary phases, while the stellar mass is low and the mass of the TDGs is dominated

by their gas content, strong deviations can be seen. After most of the stellar mass has

been built up the TDGs approach towards the main sequence. Especially the models of

TDG s3, which have formed most of their stellar mass around 500 Myr of simulation time

and experience only a minor growth in stellar mass since then, lie particularly close to the

observed relation. The models of TDG s2 show a larger scatter around the sequence, due

to their varying accretion history. The models embedded in the tidal arm, which allows

them to accrete gas for an extended period of time, are located above it. Opposite to that,

the models without the tidal arm lie slightly below the main sequence. This indicates that

the main sequence of star forming galaxies is a natural consequence of self regulated star

formation, even in the extreme case of young DM-free TDGs. The observed scatter is

then related to different evolutionary stages and different accretion histories of individual

galaxies.

5.2 IMF description

The comparison of tdg2 orb and tdg2 igimf highlights the difference and the need for a

proper treatment of the IMF, as it influences the evolution of galaxies in several ways. As

long as the IMF of single star clusters cannot be filled, and therefore the feedback from

high-mass stars (SN II and stellar winds) is suppressed for the IGIMF, its SFR is higher.

This higher SFR is caused by the missing preheating from fractional feedback events. This

has direct influence on the conversion of gas into stars, especially at the lower density out-

skirts, where the ISM and the local SF properties are stronger effected by the heating from

feedback events. So not only the rate at which gas is converted into stars but also the

distribution of SF regions is altered (see Figure 4.27). As soon as the local SFR is high

enough to fill the IMF of star clusters, the number of SN II and thus the energy released

equals for both descriptions and follows roughly the same spatial distribution. But this is

not true for SN Ia, which show a much wider distribution in the IGIMF run (see Figure

4.30), which is caused by the higher SFR in the low density ISM. The galactic outflow

of tdg2 igimf is therefore not only attributed to the differences of SNe II but also to the

distribution of SNe Ia. Despite these differences also the IGIMF run (tdg2 igimf) nicely

follows the SF related scaling relations, with differences only in the CMF, as more low

mass clusters are formed.

Furthermore, the IGIMF description shows indications to also influence the stellar dynam-

ics. Where tdg2 igimf shows a lower peak rotation velocity, at a larger distance from the

centre. Also the decline of the rotation curve is weaker, with higher rotation velocities at
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lager radii compared to tdg2 orb (see Figures 4.14 and 4.16).

5.3 Self-regulated star formation recipe

The self-regulated star formation recipe according to KTH95 has proven to be a good

approximation for star formation in single-phase ISM simulations. It well reproduces

scaling relations of galaxies with stellar context, such as the Kennicutt-Schmidt law and the

main sequence of star forming galaxies (left and right panel of Figure 5.1). Furthermore,

the slope of the cluster mass function (β ≈ 2) can be derived over a wide range of cluster

masses, with some limitations due to additional star formation criteria at the low- and

high-mass end (see Figure 4.7). The ability of the recipe to reconstruct these relations

is even more remarkable, considering that it is not built upon any relation like those but

only depends on the local properties of the ISM. The limiting factor of the CMF at the

low-mass end is the threshold on the SBF (Equation 2.33) which might act too aggressive

in preventing low mass star clusters in the mass range 100 . Mcl/M� . 500, as the

flattening of the CMF indicates. On the other side of the mass spectrum, the unrealistic

peak in the CMF above ∼ 1.9× 104 M� is caused by the closing of a star cluster for star

formation after it completely filled all IMF mass bins with at least one star. Therefore,

more massive star cluster have to build their mass essentially within one or two timesteps,

what is much shorter than the allowed cluster formation time τcl = 1 Myr. This criterion

was introduced by Ploeckinger et al. (2014) to ensure an early onset of stellar feedback,

in order to test the survivability of TDGs against stellar feedback.

5.4 Environmental influences

TDGs are not isolated systems and therefore the influence of their surroundings has to

be taken into account. For example Ploeckinger et al. (2015) found a strong increase

of the SFR of TDGs after the apocentre passage and an additional but weaker peak

close to the pericentre. Both enhancements cannot be seen in the presented simulations,

as during the covered simulation time spans neither the apo- nor the pericentre of the

different setups is passed. A clear influence of the tidal field and ram pressure on the

simulated TDGs is not present. This is mostly attributed to the location of the TDGs

along their orbits, approaching their apocentres, but still remaining far from it, with

declining velocities. As the velocities get smaller the ram pressure, which is proportional

to the square of the velocity, decreases. By comparing the gas mass of tdg2 noRam and

tdg2 orb (1.04 and 0.94 × 108 M�, respectively) one might conclude that ∼ 10% of gas

from tdg2 orb is striped away by ram pressure, but this difference is caused by the detailed

mass assembly history of these TDGs rather than by ram pressure. Also the tidal field

weakens with increasing distance from the host galaxy of the TDGs.

The apparently largest environmental impact factor on the evolution of TDGs is the

presence of the huge gas reservoir provided in the form of the tidal arm. This is, for the
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first time, included in the detailed numerical study of TDGs presented within this thesis.

During the initial collapse the tidal arm does not show a direct influence on the initial mass

build up or the starburst. But as time proceeds and the starburst subsides, the presence of

the tidal arm becomes significant, as it provides an additional reservoir of gas from which

the TDGs are fed. Therefore, the embedded models are able to build up roughly twice the

stellar mass and at the same time they are able to retain a higher gas mass. Furthermore,

their SFRs are about three to four times higher at the final simulation time compared

to the models without tidal arm. The shielding of TDGs against RPS provides another

possible way how the tidal arm can influence the evolution of TDGs. This shielding might

help the TDGs to retain higher gas masses, as the ram pressure needs to remove the

arm first before it can act on the TDG itself. Therefore, the TDGs have more time to

accumulate and bind mass to them, what in turn deepens their gravitational potential

and helps them to withstand the tidal field of their host galaxy. Further investigations are

needed in order to quantify the relevance and strength of the different effects.

5.5 Distinguishing primordial DGs from TDGs

TDGs are by nature DM-free and are therefore supposed to have a shallower gravita-

tional potential well. The absence of DM should in principle be reflected in some of their

structural and dynamical properties. Also the metallicities of TDGs, at least of those

formed from significantly pre-enriched material, is subject of deviations form the standard

MZ-relation of dwarf galaxies.

5.5.1 Structural differences

According to Dabringhausen and Kroupa (2013) TDGs are indistinguishable from primor-

dial DGs based on their location along the MR-relation. Whereas, Duc et al. (2014) found

effective radii of 1.8 and 2.3 kpc for the oldest confirmed TDGs around the ETG NGC

5557. These values are roughly one order of magnitude larger than the derived half-light

radii of the simulated TDGs studied within this thesis. Figure 5.2 compares the locations

of the simulated TDGs along the MR-relation to the observationally derived relations

for Es and dEs. Giant Es lie along a common MR-relation with globular clusters (GC)

and ultra-compact dwarfs (UCD), dEs constitute a separated relation (both indicated by

dashed lines). The simulated TDGs presented within this thesis follow the relation of Es

and UCD, with half-light radii between 80 and 500 pc. For comparison the half-light radii

of UCDs are typically below 100 pc (e.g. Mieske et al., 2012), thus the most compact

objects presented (the models of TDG s3) fall in the regime of the largest UCDs. But

they still contain about 20% gas, assuming a slow removal of gas the half-light radii would

further increase. According to Kroupa (2008) this expansion can be estimated by

rf = ri ×
Mi

Mf
, (5.3)
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Figure 5.2: Mass-radius relation of simulated TDGs (coloured points). The dashed lines indicate the
mass-radius relations for dEs and giant Es, which share the same relation as globular clusters (GC) and
ultra compact dwarf galaxies (UDC). The grey squares indicate the locations of observed TDGs and the
black triangles previous simulations of TDGs. Both data sets were compiled by Dabringhausen and Kroupa
(2013).

where rf and ri are the half-light radii after and before the removal of gas and Mi and

Mf are the corresponding masses. Assuming ri is the half-light radius, Mi is the total

mass and Mf = M?, all at the final simulation time, then for fg ≈ 20% the final radius

is approximately 25% larger than ri. This increase of the half-light radius would result

in a small shift from the MR-relation of Es towards the relation of dEs, but still remain

smaller than the Duc et al. (2014) values for NGC 5557-E1 and E2.

5.5.2 Metallicity

The gas phase metallicity is assumed to be the most reliable way to distinguish between

primordial DGs and TDGs. TDGs show an offset along the MZ-relation, as a result of the

formation out of already pre-processed material, which was already enriched with metals

prior to the TDG forming interaction. This is true for young TDGs where the host galaxies

had sufficient time to enrich their ISM. Old TDGs, i.e. those formed in the early universe,

form out of less enriched material and therefore the self-enrichment during their evolution

becomes more important. These TDGs are expected to lie along the MZ-relation of DGs

(e.g. Recchi et al., 2015). Figure 5.3 shows the gas phase MZ-relation of primordial DGs

(squares), TDGs in general and particularly the simulated TDGs show a significant offset

from this relation. Simplified chemodynamical evolution model of TDGs (Recchi et al.,

2015) predict 8.2 . 12 + log(O/H) . 8.8 for 7 < log(M?/M�) < 9 and initial metallicities

of Z = 0.1 − 0.5 Z� after three billion years of evolution. Compared to the observed
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Figure 5.3: Mass-metallicity relation of simulated TDGs (coloured points). For comparison local DGs
are shown as black squares (Lee et al., 2006) and observed TDGs from Boquien et al. (2010) as plus and
Duc et al. (2014) as asterisk.

TDGs and the simplified model, the simulations presented within this thesis show a much

stronger offset from the relation, with 12 + log(O/H) reaching values up to ∼ 9.3. This

deviation might be explained by the used filled IMF description as standard model. Within

this description the IMF of a single stellar particles is always completely filled, even with

fractions of stars (see Section 2.6.2), therefore also fractions of SN II occur, which provide

an additional source of oxygen compared to the IGIMF description. Also the gas phase

metallicity of tdg2 igimf (12 + log(O/H) = 8.7) lies in the expected range, this further

indicates that the discrepancy between the observations and simulations is in part related

to the IMF description.

Peeples et al. (2008) reported about 41 outliers from the MZ-relation in the mass range

7.4 < log (M/M�) < 10.0, i.e. in the mass range of DGs, which are fairly isolated. These

galaxies, with 8.6 < 12+log(O/H) < 9.3, have similar abundances as the simulated TDGs

presented within this thesis, making them potential TDG candidates which have dissolved

from their parent galaxies.

5.5.3 Dynamics

Three TDGs in NGC 5291 have been widely studied in the literature with varying results

concerning their mass content and dynamical state. For example Bournaud et al. (2007)

found raising rotation curves, similar to those of primordial DGs, and concluded that

these TDGs are virialized. To explain the rotation velocities and shapes of the rotation

curves, they proposed that these TDGs contain an additional but unseen baryonic mass

component. The amount of this baryonic DM would be twice as much as the visible matter

of the TDGs and is most likely composed out of cold molecular gas. Whereas, Gentile

et al. (2007) showed that their dynamics can be described without the need of any dark
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Figure 5.4: Baryonic and dynamic masses of simulated TDGs within the radius where the rotational
velocity peaks. The different symbols correspond to different methods to derive the rotational velocity
or galaxy components. Open symbols correspond to k1,max, according to Section 4.3.4, where triangles
and circles represent the stellar and gaseous component, respectively. The filled triangles correspond to
the maximal rotational velocity of stars vmax (Section 4.3.1). The error bars are based on the standard
deviation of the rotational velocity and the black lines indicates the equality of the baryonic and dynamical
mass.

component by applying modified Newtonian dynamics (MOND). Resent observations from

Flores et al. (2016) argue against the need of unseen baryonic matter or MOND. Their

high resolution 3D spectroscopic data indicate lower rotation velocities than the previous

data. Also Flores et al. argue that these TDGs cannot be considered as virialized rotating

disks as they significantly deviate from the baryonic Tully-Fischer relation.

Figure 5.4 compares the baryonic to the dynamical mass of the simulated TDGs. The

dynamical mass for a spherical mass distribution and circular orbits can be estimated by

Mdyn =
r(v2 + σ2)

G
, (5.4)

where G is the gravitation constant, r is the radius where the velocity v reaches its maxi-

mum and σ is the velocity dispersion (e.g. Bournaud et al., 2007). For comparison Mdyn

is once calculated for the maximal rotation velocity of stars vmax with the velocity disper-

sion perpendicular to the galactic plane σz and twice using the dynamical results from the

Kinemetry-analysis k1 and σ̄ from the line-of-sight velocity maps, once for the gaseous

and once for the stellar component. The error bars on the dynamical mass related to

vmax are based on the standard deviation of the rotational velocity. Although the large-

scale mass distribution of the simulated TDGs is not spherical the estimate according to

Equation 5.4 is used without corrections for the shape, as within the small peak radii the
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Figure 5.5: The black lines indicate the baryonic Tully-Fischer relation of local galaxies (solid line) and
its 1σ deviation (dotted line) as derived from McGaugh et al. (2000) with the data points from McGaugh
(2005) as grey dots. The dark grey triangles mark the position of 3 TDGs in the NGC 5291 system with
their associated measurement errors (Flores et al., 2016). The coloured points show the locations of the
simulated TDGs at their final simulation time. Filled symbols correspond to the maximal rotation velocity
and the open symbols to the maximal value of k1. The black asterisks and squares show the locations
at tsim = 100 and 300 Myr, respectively. For comparison the results of a simulation of an isolated dwarf
galaxy from Steyrleithner (2015, isoHM3 model) are shown as purple diamonds. The coloured lines indicate
the locations of the TDGs in case the maximal velocity cannot be resolved, for illustration the values of
vrot and Mbar at r = 2.0 kpc are used.

difference is considered to be only marginal. The corresponding values for the velocity,

velocity dispersion, peak radii and masses can be found in Tables A.4 and A.5. Almost

all TDGs lie below the equal-mass line, with the models of TDG s3 being particularly

close to it. These TDGs have a rather quiet evolution, with gas accretion only within the

first 500 Myr of the simulations, and are therefore the most relaxed systems. The other

extreme tdg2 noRam, which is interacting with a close companion that has not yet been

accretet, shows a strong miss match between the dynamical and the systems baryonic

mass.

The central peak velocity of the gaseous component might not be resolved on kinematic

maps with lower resolution, this possibly leads to a misinterpretation of its extent and

subsequently a wrong estimate of Mdyn. For example tdg3 orb has Mdyn ≈ 108 M� based

on the central peak velocity, but for k1,max along the x-line-of-sight at r = 4.4 kpc (see

Figure 4.21) the dynamical mass becomes ∼ 16 times higher. This would imply that

tdg3 orb is suggested to be highly DM dominated. In general the Mdyn estimates for the

central peak velocities and the worst combination of k1,max and r vary by factors of 3 to

6. This wrong dynamical mass estimate would place all the simulated TDGs, which are

intrinsically free from DM, in the regime of DM dominated dwarf galaxies.
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The Tully-Fischer (TF) relation links a galaxies luminosity to its rotational velocity and

as such the luminous to the total mass (Mgas + M? + MDM ). It is commonly used as

distance indicator for disk galaxies based on their apparent luminosity and rotation ve-

locity (Tully and Fisher, 1977). For low mass galaxies the classical TF relation breaks,

but the simple relation can be restored by considering the total baryonic mass instead of

the luminous mass, i.e. the sum of the stellar and gas mass instead of just the stellar

mass. The resulting relation is called baryonic Tully-Fischer (bTF) relation. Its existence

and small scatter require a considerable strong fine tuning of the amount of DM and its

distribution within all disk galaxies (e.g. McGaugh et al., 2000). Figure 5.5 shows the

location of the simulated TDGs (filled coloured circles for tsim = tend) along the bTF

relation of local galaxies. The grey triangles show the three TDGs in the NGC 5291 sys-

tem, based on which Flores et al. (2016) concluded that TDGs cannot be used to probe

DM in galaxies. The filled and open circles correspond to the different analysis methods,

i.e. the maximal rotational velocity vmax according to Section 4.3.1 and the maximum

of k1, described in Section 4.3.4, respectively. For comparison the results of a simulated

isolated dwarf galaxy, embedded in a DM halo, from Steyrleithner (2015, isoHM3 model)

are shown as dark purple diamonds. At early simulation times, when the TDGs evolution

is dominated by the collapse of the gas cloud, only little, if any, signs of rotation can

be seen in their rotation curves (see Figures 4.12 - 4.19). At this evolutionary stage the

TDGs significantly deviate from the bTF relation towards lower velocities, indicated by

black asterisks for tsim = 100 Myr. Depending on the details of their further evolution, i.e.

gas accretion or disturbance by super star cluster, the TDGs can either rapidly transform

into virialized systems or continue to lie off the relation (black squares, tsim = 300 Myr).

The simulation runs of TDG s3 are quickly reaching an equilibrium and follow the bTF

relation already after 300 Myr. Opposite to that the models of TDG s2, which show a

more violent evolution, remain off the relation. Despite their lack of DM all the simulated

TDGs lie close (within 3σ) to the bTF relation at their final simulation time, except for

the disturbed TDG - tdg2 noRam.

The interaction of tdg2 noRam with its companion causes a redistribution of mass from

the central region to form the tidal arm like feature, whereas the stellar velocities are

only weakly altered. Therefore, the dynamical mass is over estimated and tdg2 noRam is

shifted above the equality line in the Mbar −Mdyn plot. This relocation of mass, due to

the interaction, also explains the location along the bTF relation, where this TDG seems

to fall off the relation. Neither very young TDGs, which are in an evolutionary state that

is dominated by the collapse of the proto-cloud, nor young TDGs with ages of 300 Myr,

roughly the age of the TDGs around NGC 5291 (360 Myr, Bournaud et al., 2007) can

unambiguously be used to probe DM or modified gravitational laws.

The location close to the bTF relation at the end of the simulations generally questions

the need or importance of DM on the dynamics of disk galaxies. Especially if the strong

restrictions on the amount and distribution of DM are taken into consideration, as they

are required by the bTF relation.
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CHAPTER 5. DISCUSSION

5.6 Counter rotating stars and KDCs in TDGs

In contrast to earlier studies, like those of Ploeckinger et al. (2014, 2015), the presented

simulations do not start form idealised initial conditions. Therefore, the distributions of

the hydrodynamic quantities, such as density or temperature, are not forced to follow a

predefined mathematical distribution, also a rotation law is not enforced. This results

in a collapse of the proto-TDGs at early simulation times, with high SFRs. During the

collapse phase the formed star clusters can be captured on arbitrary orbits around the

mass centre, as the gas distribution was not forced to rotate in a predefined manner. As

a result star clusters are captured with angular momentum directions differing by more

than 90◦ from the total angular momentum direction of the TDGs, these star clusters are

taken into account as counter rotating. Considering the number of star clusters within

2.5 kpc a significant fraction of 10 − 20% are on counter rotating orbits. If only the star

clusters within rvmax , the radius at which the rotation curve peaks, is considered, the

fraction of counter rotating stars is rising to 25− 45%. In the exceptional case of tdg2 iso

the contribution of the different rotating populations is almost equal, with 50.4% of the

star clusters having angular momentum directions inclined by more than 90◦ with respect

to the total angular momentum. But still the positive rotation direction appears to be

the more luminous one, as in the luminosity weighted rotation curve (Figure 4.12) a CRC

can not be seen.

A KDC similar to those observed by Toloba et al. (2014) in the dEs VCC 1183 and VCC

1453, where the KDC is several Gyrs younger and more metal-rich than the main body of

the galaxy, cannot be seen in the simulations. For this kind of KDC a much lager number

of initial star clusters, formed in the merging galaxies, before the interaction started, is

required. Also these old clusters have to be numerous enough to be able to outshine the

newly formed clusters, which contain bright O and B stars, in the outskirts of the TDGs.

Within the presented simulations the preexisting clusters are equally contributing to both

rotation directions, an issue that might also be attributed to their low number.

Although no dominant KDC was formed in the presented simulations, the theory at test

cannot be ruled out, as only three of the nearly infinite possible initial conditions have been

examined. Furthermore, an additional possibility arises from the performed simulations,

where KDCs might result from inhomogeneous gas distributions in collapsing entities. A

larger set of simulations, with a wider range of initial conditions, preferably from differ-

ent merger geometries, would be required to put further constrains on the theory and to

answer the question:

Are Tidal Dwarf Galaxies the birth sites of

kinematically decoupled cores in Dwarf Galaxies?
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Chapter 6

Outlook

One of the selection criteria for the TDG models was motivated by the definition of

TDGs proposed by Duc et al. (2004), i.e. an object formed within a tidal arm has to

have a minimal mass of 108 M�, in order to be classified as TDG. Therefore, the models

presented within the thesis have initial gas masses between 9× 107 and 3× 108 M�. Due

to the strong accretion of material along the tidal arm, these models increase their total

mass by a factor of roughly two to three during their evolution.

But both observations and simulations of interacting galaxies and their extended arms

show that also objects less massive are commonly formed within the tidal arms, such as

super star clusters with typical masses above 106 M�.

In order to extend the variety of the models and the range of validity of the results, the

restriction on the lower mass limit should be loosened for future studies on embedded

TDGs. Assuming an increase of mass during the evolution of TDGs of up to an order

of magnitude, then the lower mass limit should not be higher than 107 M�. This strong

increase of mass appears realistic for TDG candidates located close to the base of the tidal

arm, where the width of the arm is lager and the densities are higher.
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Appendix A

Summery of model properties

Tables A.1 - A.5 summarises the model properties presented in Chapter 4 and discussed

in Chapter 5 at their final simulation time tend. A list of the initial properties and run

time parameters of the different models can be found in Tables 3.1 and 3.2.

Table A.1: Mass budget - Column 1: Simulation run identifier; Column 2: Final simulation time; Columns
3-4: Gas and stellar mass (Mgas & M?) within r = 2.5 kpc around the centre of the TDG; Column 5:
Gas fraction fgas = Mgas/(Mgas + M?); Columns 6-7: Star formation rate at the final simulation time
(SFR(tend)) and its maximum value (SFRpeak); Column 8: Slope of the CMF βCMF .

Simulation tend Mgas M? fgas SFR(tend) SFRpeak βCMF

run [Myr] [108 M�] [108 M�] [M� yr−1] [M� yr−1]

tdg1a iso 650 0.76 2.11 0.26 0.269 1.32 1.79± 0.07
tdg1b iso 650 1.10 2.81 0.28 0.544 2.09 2.14± 0.07
tdg1a orb 1030 0.27 2.38 0.10 0.047 1.13 2.20± 0.12
tdg1b orb 1030 0.66 3.41 0.16 0.240 2.00 1.66± 0.13
tdg2 iso 1500 0.98 7.32 0.12 0.180 3.46 1.93± 0.09
tdg2 noRam 1500 1.04 6.60 0.14 0.350 3.55 1.91± 0.08
tdg2 orb 1500 0.39 7.00 0.05 0.212 3.57 1.75± 0.08
tdg2 noArm 1500 0.23 4.01 0.05 0.062 2.96 1.86± 0.08
tdg2 noArm iso 1500 0.34 4.07 0.08 0.065 2.95 1.88± 0.10
tdg2 igimf 700 0.95 5.53 0.15 0.411 3.25 2.26± 0.03
tdg2 sf1 500 — — — 0.435 4.33 —
tdg2 sf2 500 — — — 0.431 4.58 —
tdg3 iso 1500 0.41 1.56 0.21 0.051 1.22 1.91± 0.14
tdg3 noRam 1500 0.42 1.54 0.21 0.052 1.23 2.04± 0.11
tdg3 orb 1500 0.42 1.45 0.22 0.036 1.27 1.98± 0.25
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Table A.2: Stellar luminosity - Column 1: Simulation run identifier; Column 2: Effective radius re;
Column 3: Central surface luminosity Σ0; Column 4: Total luminosity Ltot; Column 5: Sérsic index n;
Column 6: Ellipticity ε. All values are derived at the final simulation time as listed in Table A.1

Simulation re Σ0 Ltot Sérsic ε
run [pc] [L� pc−2] [104 L�] index

tdg1a iso 1080.0 0.011 2.15 1.70 —
tdg1b iso 388.3 0.142 5.69 0.30 —
tdg1a orb 649.0 0.009 1.57 0.96 —
tdg1b orb 235.3 0.306 4.87 0.95 —
tdg2 iso 477.5 0.341 9.13 1.99 0.41
tdg2 noRam 269.5 0.423 10.96 1.89 0.50
tdg2 orb 269.5 0.433 6.68 1.36 0.30
tdg2 noArm 128.2 1.731 6.10 2.11 0.64
tdg2 igimf 128.2 13.320 46.06 3.99 0.64
tdg3 iso 84.1 2.877 6.49 2.24 0.39
tdg3 noRam 141.5 1.510 5.38 2.60 0.37
tdg3 orb 118.1 1.215 4.25 1.71 0.53

Table A.3: Metallicity - Column 1: Simulation run identifier; Column 2-4: Stellar [O/H], [Fe/H]
and [O/Fe] abundance ratio; Column 5-8: Gas phase abundance ratios ([N/H], [O/H], [Fe/H]) and
12+log(O/H). All values are derived at the final simulation time as listed in Table A.1.

Simulation Stars Gas
run [O/H] [Fe/H] [O/Fe] [N/H] [O/H] [Fe/H] 12+log(O/H)

tdg2 iso 0.382 0.481 -0.099 0.854 0.632 3.698 9.326
tdg2 noRam 0.388 0.501 -0.112 0.624 0.477 3.754 9.170
tdg2 orb 0.195 0.138 0.058 -0.489 -0.439 3.800 8.255
tdg2 noArm 0.477 0.443 0.034 0.313 0.177 3.767 8.871
tdg2 noArm iso 0.527 0.518 0.009 0.703 0.500 3.840 9.193
tdg2 igimf 0.333 0.225 0.108 -0.223 0.010 3.463 8.703
tdg3 iso 0.125 0.370 -0.245 0.479 0.424 3.593 9.118
tdg3 noRam 0.145 0.369 -0.224 0.067 -0.051 3.821 8.643
tdg3 orb 0.186 0.390 -0.204 0.475 0.260 3.942 8.954

Table A.4: Stellar dynamical properties - Column 1: Simulation run identifier; Column 2: Maximal
rotation velocity vmax; Column 3: Velocity dispersion σz perpendicular to the plane of rotation at rvmax ;
Column 4: Radius where vmax is reached; Column 5: Baryonic mass within rvmax ; Column 6: Dynamical
mass within rvmax ; Column 7: Maximum value of k1,max; Column 8: Average line-of-sight velocity dis-
persion σ̄ within rk1,max ; Column 9: Radius where k1,max is reached; Column 10: Baryonic mass within
rk1,max ; Column 11: Dynamical mass within rk1,max ; All values are derived at the final simulation time as
listed in Table A.1

Simulation vmax σz rvmax Mbar,vmax Mdyn,vmax k1,max σ̄ rk1,max Mbar,k1 Mdyn,k1

run [km s−1] [km s−1] [pc] [108 M�] [108 M�] [km s−1] [km s−1] [pc] [108 M�] [108 M�]

tdg2 iso 71.8 45.8 200 5.59 3.37 62.1 43.1 273 6.25 3.63
tdg2 noRam 55.7 24.8 300 0.73 2.59 47.0 41.8 273 0.44 2.51
tdg2 orb 80.1 23.3 250 4.68 4.04 56.1 29.9 330 5.30 3.10
tdg2 noArm 42.7 20.4 250 3.43 1.30 39.6 36.2 273 3.54 1.66
tdg2 igimf 53.8 22.2 350 4.09 2.76 47.3 35.8 330 3.96 1.97
tdg3 iso 42.9 12.8 200 1.23 0.93 29.2 22.0 273 1.37 0.61
tdg3 noRam 45.4 14.1 200 1.21 1.05 34.8 25.9 216 1.28 0.67
tdg3 orb 45.3 16.5 150 0.94 0.81 35.4 20.8 216 1.31 0.43
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APPENDIX A. SUMMERY OF MODEL PROPERTIES

Table A.5: Gas dynamical properties - Column 1: Simulation run identifier; Column 2: Maximal rotation
velocity k1,max; Column 3: Radius where k1,max is reached; Column 4: Baryonic mass within rk1,max ;
Column 5: Dynamical mass within rk1,max . All values are derived at the final simulation time as listed in
Table A.1

Simulation k1,max rk1,max Mbar,k1 Mdyn,k1

run [km s−1] [pc] [108 M�] [108 M�]

tdg2 iso 58.6 328 5.30 2.92
tdg2 noRam 42.9 501 0.46 2.61
tdg2 orb 57.1 328 6.49 2.79
tdg2 noArm 38.6 328 3.72 1.44
tdg2 igimf 44.8 328 3.97 1.83
tdg3 iso 23.3 328 1.50 0.72
tdg3 noRam 23.6 501 1.57 1.11
tdg3 orb 21.6 501 1.46 1.01
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Abstract English

The term kinematically decoupled cores (KDC) refers to dynamical substructures at the

centres of galaxies, which can be present in various different forms like counter rotat-

ing cores or kinematic twists. The most commonly discussed formation scenarios involve

gravitational interaction between galaxies, like repeated close encounters or the merging

of two galaxies. These scenarios have been found to describe the properties of luminous

early type galaxies with KDCs reasonably well. It is far from obvious that the same pro-

cesses cause the formation of KDCs in dwarf elliptical galaxies (dEs), especially in galaxy

clusters, where the majority of dEs can be found. As due to the high velocity dispersion

within galaxy clusters, the time span for gravitational interactions is too short in order

to transfer a sufficient amount of angular momentum and significantly change their dy-

namics. It would be possible that KDCs in dEs are formed in groups of galaxies where

the relative velocities are smaller and thus the gravitational interaction got more time to

act on the dwarf galaxies. These KDC hosting dwarfs, as well as the whole galaxy group,

could subsequently fall into the gravitational potential of a cluster.

In this thesis a novel theory for the formation of KDCs in the framework of tidal dwarf

galaxies (TDGs) is investigated. Within this hypothesis the main body of the KDC har-

bouring TDG is constituted of old stars expelled of the parent galaxies. Whereas, the in

situ formed stars, which receive their dynamics from the collapsing gas, form the counter

rotating core.

For the first time numerical zoom-in simulations of TDGs, including the density and ve-

locity distribution of the tidally disrupted arms of their parent galaxies, are carried out.

Furthermore, the influence of different combinations of environmental effects, such as the

tidal field and ram pressure, on the evolution of TDGs are investigated. It turned out

that, within the presented simulations, these effects are only marginal. It has been shown

that young TDGs, which are just forming, can survive star formation rates of more then

1 M� yr−1, without being disrupted by stellar feedback processes. Although no dominant

KDC was formed a significant fraction of 10− 20% of the in situ formed stars show an in-

verted rotation direction. Moreover, the results of the numerical simulations are compared

to observed dwarf galaxies and TDGs.
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Abstract Deutsch

Der Ausdruck kinematisch entkoppelte Kerne (Eng.: kinematically decoupled cores, KDCs)

bezieht sich auf dynamische Substrukturen in den Zentralbereichen von Galaxien und

kann in den verschiedensten Formen präsent sein. Dazu zählen unter anderen Kerne

mit invertierter Rotationsrichtung oder eine sich im radialen Verlauf ändernde Rotation-

sachse. Die am meisten diskutierten Formationsszenarien basieren auf gravitativen Wech-

selwirkungen zwischen Galaxien, wie Beinahe-Kollisionen und Verschmelzungen. Mit Hilfe

dieser Ereignisse ist es möglich die Eigenschaften von leuchtstarken elliptischen Galaxien

mit KDCs gut zu beschreiben. Es ist jedoch nicht geklärt ob diese Prozesse auch für die

Entstehung von KDCs in elliptischen Zwerggalaxien (Eng.: dwarf ellipticals, dEs) ver-

antwortlich sind. Speziell in Galaxienhaufen, wo sich die meisten dEs befinden sind die

Relativgeschwindigkeiten zu hoch und die Zeitspanne ist für gravitative Wechselwirkungen

zu kurz um ausreichend Drehimpuls zu übertragen und ihre Dynamik zu ändern. Es wäre

denkbar, dass sich die KDCs in dEs in Galaxiengruppen gebildet haben, da in diesen,

aufgrund der geringeren Relativgeschwindigkeiten, die Zeitskalen für gravitative Wechsel-

wirkungen länger sind. Die so entstandenen dEs mit KDC könnten anschließend in das

Gravitationspotential eines Galaxienhaufens eingefallen sein.

In dieser Masterarbeit wird eine neue Theorie zur Entstehung von KDCs in dEs, im Rah-

men von Gezeitenzwerggalaxien (Eng.: tidal dwarf galaxies, TDGs), untersucht. Bei dieser

Hypothese wird der äußere Bereich der TDGs von den alten Sternen der verschmelzenden

Galaxien gebildet. Wohingegen die vorort entstehenden Sterne, welche ihre Bewegung

durch die Eigenbewegung des interstellaren Mediums vorgegeben bekommen, den Kern

bilden. Um dies zu untersuchen wurden, zum ersten Mal, numerische Simulationen, von

jungen und noch in den Gezeitenarm eingebettete TDGs durchgeführt.

Des Weiteren wurde der Einfluss verschiedener Umgebungseffekte, wie des Gezeitenfeldes

der verschmeltzenden Galaxien oder Staudruck, auf die Evolution von TDGs untersucht.

Es zeigte sich, dass diese Effekte, in den präsentierten Simulationen, nur eine unterge-

ordnete Rolle spielen. Es konnte gezeigt werden, dass junge, sich gerade bildende TDGs

Sternentstehungsraten von mehr als 1 M� yr−1 überleben können, ohne von stellaren Feed-

backprozessen zerstört zu werden. Obwohl kein dominanter KDC gebilded wurde weist

ein signifikanter Anteil von 10 − 20% der in den TDGs geborenen Sterne eine invertierte

Rotationsrichtung auf. Außerdem wurden die numerischen Ergebnisse mit Beobachtungen

von Zwerggalaxien und TDGs verglichen.
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R. F., and Sarzi, M. (2006). The SAURON project - VIII. OASIS/CFHT integral-field

spectroscopy of elliptical and lenticular galaxy centres. MNRAS, 373:906–958.

McGaugh, S. S. (2005). Balance of Dark and Luminous Mass in Rotating Galaxies. Phys-

ical Review Letters, 95:171302.

McGaugh, S. S., Schombert, J. M., Bothun, G. D., and de Blok, W. J. G. (2000). The

Baryonic Tully-Fisher Relation. ApJ, 533:L99–L102.
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