

DIPLOMARBEIT / DIPLOMA THESIS

Titel der Diplomarbeit / Title of the Diploma Thesis

Hochgebirgsseen im Kanton Wallis

Verbreitung, Entwicklung und Gefahrenpotenzial

verfasst von / submitted by Judith Bartoloth

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of Magistra der Naturwissenschaften (Mag. rer. nat.)

Wien, 2018 / Vienna, 2018

Studienkennzahl lt. Studienblatt / degree programme code as it appears on the student record sheet:

Studienrichtung lt. Studienblatt / degree programme as it appears on the student record sheet:

Betreut von / Supervisor:

A 190 456 445

Lehramtsstudium UF Geographie und Wirtschaftskunde UF Biologie und Umweltkunde

Dr. Martin Mergili

Eidesstattliche Erklärung

Hiermit versichere ich,

- dass ich die vorliegende Diplomarbeit selbstständig verfasst, andere als die angegebenen Quellen und Hilfsmittel nicht benutzt und mich auch sonst keiner unerlaubter Hilfe bedient habe,
- dass ich dieses Masterarbeitsthema bisher weder im In- noch im Ausland in irgendeiner Form als Prüfungsarbeit vorgelegt habe
- und dass diese Arbeit mit der vom Begutachter beurteilten Arbeit vollständig übereinstimmt.

Wien, am 24.05.2018

Danksagung

Mit der Fertigstellung dieser Arbeit beende ich mein Lehramtsstudium für Geographie und Wirtschaftskunde sowie Biologie und Umweltkunde. An dieser Stelle möchte ich mich herzlich bei allen Personen bedanken, die mich bei der Entstehung dieser Arbeit unterstützt haben. Ein besonderer Dank gilt meinen Betreuer Martin Mergili, der mir stets mit Rat und Tat zur Seite stand.

Vor allem aber möchte ich mich bei meiner Familie bedanken, die mir während meiner Studienzeit immer einen starken Rückhalt bot und mich finanziell unterstützte. Größter Dank gilt auch meinem Freund Thomas, der meine Studienzeit in Wien wesentlich verschönerte.

Inhaltsverzeichnis

ABBILDUNGSVERZEICHNIS	III
TABELLENVERZEICHNIS	V
ZUSAMMENFASSUNG	VI
1. EINLEITUNG	1
1.1. Klimawandel & Gletscherrückzug im Alpenraum	1
1.2. Gletscherseen und deren Problematik	2
1.3. Forschungsfragen und Aufbau	3
2. GEFAHREN DER KRYOSPHÄRE	5
2.1. Glaziale und periglaziale Gefahren im Hochgebirge	5
2.1.1. Eislawinen und Stein-Eis-Lawinen	7
2.1.2. Vulkan-Eis Interaktion	7
2.1.3. Massenbewegungen durch Zerfall des Permafrosts	7
2.1.4. Gletscherseenausbrüche	8
2.1.4.1. Massenbewegungen	9
2.1.4.2. Dammzusammensetzung	11
2.2. Historische Gletscherseenausbrüche in der Schweiz	15
2.2.1. 1878 – Märjelensee am Aletschgletscher	15
2.2.2. 1968 – Grüebugletscher	16
2.2.3. 2008 - Grindelwald Gletschersee	18
3. UNTERSUCHUNGSGEBIET	20
3.1. Geographie und Klima	20
3.2. Gletscher	20
3.2.1. Längenänderung	21
3.2.2. Naturgefahren	22
4. DATEN UND METHODEN	24
4.1. Seeninventar	24
4.1.1. Datengrundlage	24
4.1.2. Datenverarbeitung	25
4.2. Detailuntersuchung ausgewählter Seen	35
4.2.1. Geomorphologische Kartierung ausgewählter Seen	36
4.2.2. Seenentwicklung	38
4.2.2.1. Datengrundlage und -verarbeitung	38
5. ERGEBNISSE	39
5.1. Seeninventar	39

5.1.1. Räumliche Verteilung	45
5.2. Detailuntersuchung ausgewählter Seen	47
5.2.1. Gabelhorngletscher-Seenkomplex	47
5.2.2. Furgggletscher-Seenkomplex	50
5.2.3. Cheilongletschersee	54
5.2.4. Oberferdengletscher-Seenkomplex	58
5.2.5. Chüebodengletschersee	62
5.2.6. Rhonegletschersee	66
5.2.7. Glacier de l'Aneuve See	69
5.2.8. Grüebugletscher-Seenkomplex	72
6. DISKUSSION	76
6.1. Daten und Methoden	76
6.1.1. Seeninventar	76
6.1.2. Detailuntersuchung ausgewählter Seen	76
6.1.2.1. Seenentwicklung	76
6.2. Ergebnisse	77
6.2.1. Seeninventar	77
6.3. Detailuntersuchung ausgewählter Seen	78
6.3.1. Furgggletscher-Seenkomplex	79
6.3.2. Oberferdengletscher-Seenkomplex	79
6.3.3. Chüebodengletschersee	80
6.3.4. Rhonegletschersee	81
6.3.5. Glacier de l' Aneuve See	81
6.3.6. Grüebugletscher-Seenkomplex	82
7. CONCLUSIO	83
QUELLENVERZEICHNIS	84
ANHANG	Ι

Abbildungsverzeichnis

Abbildung 1: Prozesskette eines GLOFs	3
Abbildung 2: typisches Hochgebirgssystem mit möglichen Eisgefahren	6
Abbildung 3: Massenbewegung im Stirnbereich eines Blockgletschers im Suldental	8
Abbildung 4: vorgeschaltete Prozesskette eines Seenausbruchs durch Impactereignisse	9
Abbildung 5: (A) aktuelle Ausdehnung des Gletschers und Permafrosts sowie modellierte	
Gletscherüberdeckung als Standort potenzieller zukünftiger Seen in der Region des Große	n
Aletschgletschers (B) Laguna Milhuacocha in der Cordillera Blanca, Peru, mit	
unterschiedlichen Gefahrenpotenzialen	10
Abbildung 6: durch Gletschereis abgeschlossene Seenstandorte	11
Abbildung 7: Phasen der Entwicklung eines felsgedämmten Hochgebirgssees	15
Abbildung 8: Märjelensee	16
Abbildung 9: Seenentwicklung am Unteren Grindelwaldgletscher	18
Abbildung 10: (A) Unterer Grindelwaldgletschersee April 2009 nach der Wiederbefüllung; (B) Hauptbe	cken
im September 2009 nach einer nicht spontanen und gutmütigen Entleerung	19
Abbildung 11: Gletscher-Längenänderungen im Jahr 2016 im Untersuchungsgebiet	21
Abbildung 12: Gefährliche Gletscher im Jahr 2016 im Untersuchungsgebiet	22
Abbildung 13: moränengedämmter Gornerseekomplex	27
Abbildung 14: (A) felsgedämmter See am Fuße des Rhonegletschers (B) fels- und moränengedämmter S	See
am Fuße des Bigergletschers	28
Abbildung 15: eisgedämmter Gletschersee auf der Gletscherzunge des Gornergletschers	28
Abbildung 16: durch Fels und Massenbewegungen gedämmter Mässersee	29
Abbildung 17: (A) Lac de Louvie mit verbauten Abfluss (B) größter inventarisierter See - Lac des Dix	30
Abbildung 18: durch Schwemmfläche gestauter Gabelhorngletschersee	30
Abbildung 19: Seenkomplex Pontimiaseen mit unklarem Dammtyp	31
Abbildung 20: (A) Chüebodengletschersee mit direktem Gletscherkontakt (B) Mattwaldsee unterhalb de	s
Mattwaldgletschers ohne Gletscherkontakt	31
Abbildung 21: (A) Seenkomplex am Fuße des Brunegggletschers (B) von Toteis gespeister See in der N	ähe
des Glacier des Ignes	32
Abbildung 22: (A) See Goli d'Aget mit geringfügiger Erosionsrinne (B) Seenkomplex Petit Lè mit	
deutlichen Erosionsrinnen	33
Abbildung 23: See seitlich des Seewjinengletschers	34
Abbildung 24: räumliche Verteilung der ausgewählten Seen im Kanton Wallis	36
Abbildung 25: Kartierschlüssel für die geomorphologische Kartierung der Seen	37
Abbildung 26: Gletschernähe der einzelnen Seetypen mit absoluter und relativer Verteilung	40
Abbildung 27: gletschernahe und gletscherferne Seen im Vergleich, klassifiziert nach Seetypen	40
Abbildung 28: Verteilung der Seetypen nach Einzugsgebiet	41
Abbildung 29: absolute Verteilung der Seetypen nach Größenklassen im Untersuchungsgebiet	42
Abbildung 30: relative Seetypenverteilung nach Höhenstufen im Untersuchungsgebiet	43
Abbildung 31: absolute Seetypenverteilung nach Höhenstufen im Untersuchungsgebiet	43
Abbildung 32: Seenevolution nach Dammtypen im Untersuchungsgebiet	44

Abbildung 33: Auswertung der Seenevolution im Untersuchungsgebiet	44
Abbildung 34: räumliche Verteilung der Seeflächen in Wallis	46
Abbildung 35: räumliche Verteilung der Seetypen klassifiziert nach Dammart in Wallis	46
Abbildung 36: Seenevolution des Gabelhorngletscher-Seenkomplexes	47
Abbildung 37: geomorphologische Kartierung des Gabelhorngletscher-Seenkomplex	48
Abbildung 38: Seeevolution des Furgggletscher-Seenkomplexes	50
Abbildung 39: geomorphologische Kartierung des Furgggletscher-Seenkomplexes	51
Abbildung 40: Theodulgletschersee des Furgggletscher-Seenkomplexes	52
Abbildung 41: (A) Stäbe zur Messung des Wasserstandes (B) Murgang beim Zufluss des	
Theodulgletschersees	53
Abbildung 42: Seeevolution des Cheilongletschersees	54
Abbildung 43: geomorphologische Kartierung des Cheilongletschersees	55
Abbildung 44: Cheilongletschersee nördlich des schuttbedeckten Gletschers	56
Abbildung 45: vorgelagerte Schwemmlandschaft des Cheilongletschersees & gut erkennbare Murkegel	57
Abbildung 46: Seeevolution des Oberferdengletscher-Seenkomplexes	58
Abbildung 47: geomorphologische Kartierung des Oberferdengletscher-Seenkomplexes	59
Abbildung 48: (A) Oberferdengletscher-Seenkomplex mit von Süd nach Nord verlaufender Felswand (B))
vermuteter Seenabfluss vor Eisdamm	61
Abbildung 49: Oberferdengletscher-Seenkomplex mit schuttbedecktem Gletscher	61
Abbildung 50: Seeevolution des Chüebodengletschersees	62
Abbildung 51: geomorphologische Kartierung des Chüebodengletschersees	63
Abbildung 53: Chüebodengletschersee am 7.8.2016	65
Abbildung 52: Chüebodengletschersee am 18.7.2010	65
Abbildung 54: Seeevolution des Rhonegletschersees	66
Abbildung 55: geomorphologische Kartierung des Rhonegletschersees	67
Abbildung 56: Rhonegletschersee am 23.6.2017	68
Abbildung 57: Seeevolution des Glacier de l'Aneuve Sees	69
Abbildung 58: geomorphologische Kartierung des Glacier de l'Aneuve Sees	70
Abbildung 59: (A) Seitenmoräne mit Sturzmaterial des Glacier de l' Aneuve Sees (B) Glacier de l' Aneuv	ve -
schuttbedeckter regenerierender Gletscher	71
Abbildung 60: Glacier de l' Aneuve See mit Sturzablagerungen	71
Abbildung 61: Seeevolution des Grüebugletscher-Seenkomplexes	72
Abbildung 62: geomorphologische Kartierung des Grüebugletscher-Seenkomplexes	73
Abbildung 63: (A) See 1 am Grüebugletscher mit verbautem Damm (B) verbauter Abfluss des Sees 1 am	
Grüebugletscher	75
Abbildung 64: See 3 am Grüebugletscher am 27.8.2017	75
Abbildung 65: Chüebodengletschersee mit Gefahrenherde	80

Tabellenverzeichnis

Tabelle 1: Von der Kryosphäre ausgehende Gefahren	5
Tabelle 2: Anzahl der Gletscher in Wallis, von denen bestimmte Gletschergefahren ausgehen	23
Tabelle 3: untersuchte Attribute, deren Subtypen und Wert (-ebereiche); * Ordinalskala, ** Nominalskala	25
Tabelle 4: Klassifizierung der Namensgebung nach Einzugsgebiet	26
Tabelle 5: Aufnahmejahr der Orthophotos als Grundlage der geomorphologischen Kartierung	37
Tabelle 6: relative und absolute Verteilung der Seetypen des Seeninventars	39
Tabelle 7: zeitliche Entwicklung der Seeflächen in m ² des Gabelhorngletscher-Seenkomplexes	47
Tabelle 8: zeitliche Entwicklung der Seeflächen in m ² des Furgggletscher-Seenkomplexes	50
Tabelle 9: zeitliche Entwicklung der Seefläche in m ² des Cheilongletschersees	54
Tabelle 10: zeitliche Entwicklung der Seefläche in m ² des Oberferdengletscher-Seenkomplexes	58
Tabelle 11: zeitliche Entwicklung der Seefläche in m ² des Chüebodengletschersees	62
Tabelle 12: zeitliche Entwicklung der Seefläche in m ² des Rhonegletschersees	66
Tabelle 13: zeitliche Entwicklung der Seefläche in m ² des Grüebugletscher-Seenkomplexes	72
Tabelle 14: Vergleich der Seeninventare der vorliegenden Arbeit mit Emmer et al. (2015)	78
Tabelle 15: Gefahrenbeurteilung der ausgewählten Seen	79

Zusammenfassung

Die Hochgebirgsregionen der Alpen unterliegen durch das Voranschreiten der Klimaerwärmung einer starken Veränderung. Vor allem die Kryosphäre ist hier einer hohen Dynamik unterworfen. Gletscher sind in den letzten Dekaden durch einen massiven Rückzug geprägt worden, welcher bis in jüngste Zeit andauert. Infolgedessen kommt es zu einer Neubildung von Gletscherseen bzw. zu einer Vergrößerung bereits vorhandener Seen im Vorfeld zurückweichender Gletscher, wie es unter anderem im Schweizer Kanton Wallis zu beobachten ist. Im Zusammenhang mit der globalen Erwärmung kann von solchen Seen zunehmend die Gefahr eines Ausbruchs ausgehen. Ziel der vorliegenden Arbeit war es, die Verbreitung von Hochgebirgsseen im Kanton Wallis aufzudecken und diese hinsichtlich möglicher Seeausbrüche zu analysieren und bewerten.

Es wurden im Untersuchungsgebiet insgesamt 733 Seen, welche auf über 2.000 m ü. M. liegen und eine Fläche über 250 m² aufweisen, erfasst. Diese wurden im Zuge einer Analyse von Orthophotos und Satellitenbildern nach bestimmten Einflussfaktoren eines Ausbruchs untersucht. Die statistische Auswertung ergab, dass felsgedämmte Seen mit einem relativen Anteil von 40,79 %, gefolgt von moränengedämmten Seen mit 32,47 %, am häufigsten vorzufinden waren. Hierbei ist anzuführen, dass für 10,50 % aller inventarisierten Seen keine eindeutige Bestimmung des Dammtyps möglich war. Der Großteil der Seen (80 %) präferierte die Ferne zum Gletscher, wobei kein Zusammenhang zwischen Dammtyp und Lage des Sees festgestellt werden konnte. Die Größenkategorie 2.000 m² – 5.000 m² beinhaltet die meisten Seen (21 %), wobei der Median bei 1.682 m² liegt. Drei der moränengedämmten Seen weisen eine Größe von über 40.000 m² auf. Des Weiteren liegt der Median der Seehöhe bei 2.690 m ü. M. Die gletschernahen Seentypen nehmen wie zu erwarten mit der Seehöhe zu. Über 3.000 m ü. M. ist schließlich eine abrupte Reduzierung der Seen, bedingt durch die glaziale Überprägung, zu vernehmen. Nahezu die Hälfte der Seen (45 %) ist durch eine stabile Entwicklung während des Zeitraums 2006 bis 2016 gekennzeichnet. Von den insgesamt 28 % der Seen, welche bis zurück ins Jahr 2006 durch Größenschwankungen geprägt worden sind, weisen die Hälfte (14 %) eine Vergrößerung auf. Lediglich 4% konnten sich während des genannten Zeitraums verkleinern. Demnach weisen Seen, welche durch Moränen und Fels gestaut werden, eine vergleichsweise höhere Wahrscheinlichkeit einer Seenvergrößerung auf als diejenigen mit den restlichen Dammtypen.

Im Rahmen der Detailuntersuchung acht ausgewählter Seen wurden eine geomorphologische Kartierung der Umgebung durchgeführt sowie die zeitliche Entwicklung der Seen analysiert. Auf deren Grundlage wurde schließlich eine Einschätzung des Gefahrenpotenzials vorgenommen. Der Oberferdengletscher-Seenkomplex wird als einziger kurzfristig als gefährlich eingestuft. Der durch Eis und Schutt aufgebaute Damm war diesbezüglich ein entscheidender Faktor. Mittelfristig als gefährlich beurteilt wurden vier der näher untersuchten Seen bzw. Seenkomplexe. Diese liegen allesamt in einem potenziell durch Massenbewegungen geprägten Gebiet. Durch eine voranschreitende Degradation des Permafrosts steigt die Wahrscheinlichkeit von beispielsweise Felsstürzen, welche den See tangieren, an. Der Furgggletscher-Seenkomplex befindet sich am Fuße des Matterhorns, dessen Oberflächentemperatur laut Prognosen in den nächsten 200 Jahren zunimmt. Dies führt in weiterer Folge zu einem langsamen Zerfall des Permafrosts. Die restlichen drei Seen werden langfristig als gefährlich beurteilt. Der Chüebodengletschersee und der Rhonegletschersee, welche beide eine Fläche von knapp über 90.000 m² aufweisen, sind in einer ähnlichen Landschaftsstruktur eingebettet und stehen unter ständiger Beobachtung. Beide Seen werden durch Fels gedämmt und sind augenscheinlich keinen größeren Massenbewegungen ausgesetzt. Der Cheilongletschersee wird insofern langfristig als gefährlich beurteilt, als seine Größe noch überschaubar ist und eine vorgelagerte Pufferfläche vorhanden ist.

1. Einleitung

1.1. Klimawandel & Gletscherrückzug im Alpenraum

Ab dem Ende der letzten Eiszeit wurden kontinuierlich sowohl Vorstöße als auch Rückzuge der Alpengletscher dokumentiert. Warmphasen, wie sie beispielweise während des Mittelalters (950 – 1350 n.Chr.) vorkamen, ließen die Gletscher noch weiter als heute zurückschmelzen. Zeugnisse aus der letzten Kaltphase, der kleinen Eiszeit (1350 – 1860 n. Chr.), bilden die heutigen Moränenlandschaften im Vorfeld von Gletscher (FURRER, 2001). Moderne Klimamessungen liefern seit dem Ende der Kleinen Eiszeit detaillierte Informationen über den Verlauf des Klimas. Auf deren Grundlage wird das Ausmaß der gegenwärtigen Klimaschwankungen noch als natürlich erklärbar eingestuft. Beobachtet man jedoch deren Geschwindigkeit, so wird festgestellt, dass die Klimaerwärmung schneller als früher abläuft. Ein Grund dafür dürfte der verstärkte anthropogene Einfluss sein, dessen Auswirkungen heute noch schwer abzuschätzen sind (BÄTZING, 2015).

Das Hochgebirge des Alpenraumes steht unter dem Einfluss abiotischer Naturkräfte, deren Wirkung sich maßgeblich von der in niedrigeren Höhenstufen unterscheidet. Im Hochgebirge dominieren nivale, glaziale sowie periglaziale Dynamiken (LEHMKUHL, 1989). Der saisonal bedingte Frost-Tau-Zyklus stellt das vorherrschende Charakteristikum in diesen Regionen dar. Der Prozess der Frostsprengung ist vor allem in der Nähe von Gletscherrändern ein landschaftsprägendes Element. Gletscher sorgen während des Sommers für eine dauerhafte Durchfeuchtung angrenzender Felswände. Das hierbei eindringende Wasser friert über Nacht wieder fest. Dieses immer wiederkehrende Wechselspiel führt vermehrt zu Schuttablagerungen, welche als stabil gelten, wenn es im Sommer nur zu einem oberflächlichen Auftauprozess kommt. Im Zuge des Klimawandels verschiebt sich allerdings die Dauerfrostgrenze in die höheren Bereiche. Dadurch wird ein vollständiges Schmelzen des Eises in Schutthalden induziert, wodurch gefährliche Dynamiken entstehen können (BÄTZING, 2015).

1.2. Gletscherseen und deren Problematik

Die voranschreitende Veränderung im Auftreten von Naturgefahren im Hochgebirge wird grundsätzlich durch den Gletscherrückzug und der Degradation des Permafrosts begründet (RITTER et al., 2011). Die Ausdünnung und der Rückzug der Gletscher im Laufe des letzten Jahrhunderts führte zur Bildung von Wasserkörpern in allen Hochgebirgsregionen der Welt. Diese formierten sich überwiegend an den Rändern von Gletschern sowie Moränen und weisen ein stetiges Wachstum auf (IPCC, 2012). Durch die Degradation des Permafrosts werden hochalpine Regionen anfällig für Erosionsprozesse und Massenbewegungen. In Kombination mit angrenzenden Siedlungen und Infrastruktureinrichtungen können derartige Prozesse erhebliche Schäden verursachen. Aufgrund dessen werden schnelle Massenbewegungen als potenzielle Naturgefahren im Hochgebirge wahrgenommen. Bergstürze, Murgänge oder Erdrutsche werden diesen Prozess zugeordnet (RITTER et al., 2011).

In den Alpen nahm die Erforschung der Gletscherschwankungen und deren Folgen aufgrund der räumlichen Nähe zum Siedlungsraum ihren Ausgang. *Seeausbrüche stimulieren die Gletscherforschung* " titeln ALEAN & HAMBREY (2013) in ihrem Buch "Gletscher der Welt". Anfang des frühen 18. Jahrhunderts reihten sich Gletscherkatastrophen in den Alpen. Der Ausbruch des durch Eis gestauten "Rofener Eissees" hinterließ im angrenzenden Ötztal besonders weitreichende Folgen. Der in einem Haupttal gelegene Gletschersee wurde im Zuge eines Gletschervorstoßes aus einem Seitental aufgestaut. Im Schweizer Kanton Wallis wurde im Verlauf der Kleinen Eiszeit ebenfalls ein folgenschwerer Gletschervorstoß dokumentiert. Der Allalingletscher bei Mattmark staute einen See auf, der in weiterer Folge mehrmals ausbrach (ALEAN & HAMBREY, 2013).

Die Bildung neuer Gletscherseen in einem sich erwärmenden Klima wird in vielen Regionen von Hanginstabilitäten begleitet (STOFFEL & HUGGEL, 2012). Infolgedessen erhöht sich die Wahrscheinlichkeit, dass Erdrutsche und Eislawinen die Seen erfassen und dadurch großräumige Fluten auslösen können. Viele Seenausbrüche in der jüngsten Vergangenheit sind das Ergebnis solch zusammenhängender Prozesse (KERSHAW et al., 2005). Plötzliche Seenentleerungen verursachten unter anderem auch verheerende Katastrophen in den Anden (HEGGLIN & HUGGEL, 2008), im Himalaya (XIN et al., 2008) und Nordamerika (KERSHAW et al., 2005). Der Begriff GLOF (glacial lake outburst flood) ist in der Literatur weit verbreitet. WORNI et al. (2014) bezeichnen GLOF als Event bestehend aus einer Reihe von verschiedenen, oft kaskadenartigen Prozessen, welche in Abbildung 1 veranschaulicht werden. In der Initiierungsphase kommt es durch eine eintretende Masse in den See zur Generierung einer Impulswelle. Selbst instabile Dämme aus Eis oder Moränenmaterial erfordern ein Auslöseereignis um einen teilweisen oder vollständigen Dammbruch und eine Seenentleerung einzuleiten. Unterschiedliche Auslösemechanismen und Prozesskaskaden können verheerende Folgen haben. Die Impulswelle wird in Richtung des Dammes weitergeleitet, wo sie schließlich den Damm überspült und ein Seenausbruch induziert wird. Durch die einsetzende Dammerosion wird dieser Prozess zusätzlich verstärkt. Dieses Ereignis resultiert in einer stromabwärts fließenden Flutwelle, welche möglicherweise auf Siedlungsräume oder Infrastruktureinrichtungen treffen könnte (WORNI et al., 2014).

Die durch den Ausbruch von moränen- und gletschergedämmten Seen erzeugten Flutwellen sind ein hochmobiles Gemisch aus Wasser und Sediment. Derartige Überflutungen sind eine ernste Bedrohung für den Menschen. Das plötzliche Auftreten, eine energiereiche Entleerung, die lange Auslaufstrecke sowie die tendenzielle Ausbreitung entlang von Fließgewässern bedingen die hohe Zerstörungskraft von GLOFs (CUI et al., 2013).

Abbildung 1: Prozesskette eines GLOFs (Quelle: WORNI et al. 2014)

1.3. Forschungsfragen und Aufbau

Folgende Forschungsfragen werden im Rahmen der vorliegenden Arbeit aufgegriffen:

- 1. Wie sind die Hochgebirgsseen im Schweizer Kanton Wallis verbreitet?
- 2. Welche Entwicklungstendenzen weisen die Hochgebirgsseen im Kanton Wallis auf?
- 3. Inwiefern geht von den Hochgebirgsseen im Kanton Wallis die Gefahr von GLOFs aus?

Die Arbeit gliedert sich in die sieben Kapitel Einleitung, Gefahren der Kryosphäre, Untersuchungsgebiet, Methoden und Daten, Ergebnisse, Diskussion sowie Conclusio. Im einleitenden Kapitel wurde bereits eine schrittweise Annäherung an das Thema durchgeführt sowie Gletscherseen und deren Problematik in groben Zügen aufgegriffen. Im Rahmen der theoretischen Einführung werden die von der Kryosphäre ausgehenden Gefahren näher beleuchtet, wobei schwerpunktmäßig auf glaziale und periglaziale Gefahren im Hochgebirgssystemen eingegangen wird. Hierbei werden insbesondere die mit Gletscherseen verbundenen Gefahren sowie deren Mechanismen hervorgehoben. Das darauffolgende Kapitel gibt eingangs einen kompakten Überblick über Geographie und Klima des Untersuchungsgebiets. Besonderes Augenmerk liegt hierbei auf der zeitlichen Entwicklung der Gletscher im Wallis sowie auf deren Gefahrenpotenziale. Das anschließende Kapitel widmet sich der Methodenauswahl, welche für die Erstellung des Seeninventars und der Detailuntersuchung herangezogen wird. Im Zuge dessen werden die Grundlagen und Verarbeitung der Daten dargelegt. Der nächste Arbeitsschritt umfasst die detaillierte Präsentation der Ergebnisse. Das Seeninventar wird nach bestimmten Kriterien klassifiziert und anhand von Diagrammen visualisiert und interpretiert. Dies soll einen Überblick über die räumliche Verteilung der Hochgebirgsseen im Kanton Wallis verschaffen und etwaige Zusammenhänge aufdecken. Die Resultate der Detailuntersuchung werden für jeden der acht Seen bzw. Seenkomplexe nach demselben Schema dargelegt. Zuerst wird eine zeitliche Analyse der Seeevolution mit genauen Angaben zur Flächenentwicklung durchgeführt. Im Anschluss daran wird die geomorphologische Umgebung der Seen thematisiert sowie mögliche Gefahren eines Seeausbruchs aufgedeckt. Die nachfolgende Diskussion verknüpft die Ergebnisse der vorliegenden Arbeit mit bereits veröffentlichen Forschungsbeiträgen über dieselbe Thematik. Zusätzlich werden Herausforderungen, welche sich im Zuge der Datenerhebung ergaben, angesprochen. Im Rahmen des Conclusios werden Schlüsse basierend auf den Ergebnissen der vorliegenden Arbeit und Literaturbeiträgen gezogen.

2. Gefahren der Kryosphäre

Im Vergleich zu zahlreichen Gesteinsformationen, welche ihren Ursprung vor einigen Milliarden Jahren haben, besteht Eis und Schnee – zusammengefasst als Kryosphäre – aus eher kurzlebigen Stoffen, welche rasanten Veränderungen unterworfen sind. Obgleich der Tatsache, dass in der Antarktis Eis mit einem Alter von einigen Millionen Jahren gefunden wurde (SUGDEN et al., 1995), ist das Schmelzen von Talgletschern gegenwärtig innerhalb weniger Wochen nachweisbar. Die Kryosphäre liefert den Menschen viele wichtige Dienste, wie unter anderem die Rolle als Wasserspeicher oder, in Zeiten der Klimaerwärmung, das Zurückhalten von Kohlenstoff durch den Permafrost. Es gibt jedoch auch zahlreiche Risiken für die Menschheit, welche auf Schnee und Eis zurückzuführen sind (MERGILI, 2016). Nach der Tragweite sowie der Geschwindigkeit des Ereignisses werden diese in vier Gruppen unterteilt (s. Tabelle 1)

Dimension	Geschwindigkeit	Beispiel
Kontinental - global	langsam	Verschwinden des arktischen Eis- schildes und der Gletscher
regional	schnell	Fels/Eislawine im Gebirge
regional - lokal	langsam	Formation von Hochgebirgsseen, Destabilisierung vereister Berggipfel
regional - lokal	schnell	Schneelawinen, Gletscher-Surge, Seenausbrüche

Tabelle 1: Von der Kryosphäre ausgehende Gefahren (Datengrundlage: HAEBERLI & WHITEMAN, 2014)

2.1. Glaziale und periglaziale Gefahren im Hochgebirge

Gemäß GLASER et al. (2010) werden Abläufe grundsätzlich als glazial bezeichnet, wenn diese vom Eis bestimmt sind. Zu den von Gletscher und Schmelzwasser induzierten Prozesse gehören Erosion, Transport sowie Akkumulation. Zudem werden die in der Vergangenheit immer wiederkehrenden Eiszeiten als Glaziale zusammengefasst. Der Periglazialbegriff wird laut AHNERT (2015) herangezogen, um die natürlichen Eigenschaften von unverglet-scherten und kaltklimatischen Gebieten, in denen der Unterboden ganzjährig gefroren ist, abzugrenzen.

Gefährdungsereignisse, welche an ein glaziales Umfeld gekoppelt sind, entstehen im Gegensatz zu Schneelawinen für gewöhnlich fernab des Siedlungsraumes während der Sommermonate. Lediglich seltene Ereignisse mit höherer Magnituden verzeichnen Schäden. Die Gletscher sind aufgrund des zur Verfügung stehenden Tauwassers während des Sommers aktiver und demzufolge potenziell instabiler (MERGILI, 2016). Hinzu kommt der weltweit zu beobachtende Rückzug der Gletscher, welcher überwiegend durch den Anstieg der Temperatur in der Atmosphäre begründet wird (IPCC, 2013). Viele noch existierende Gletscherund Permafrostlandschaften werde voraussichtlich innerhalb der nächsten Jahrzehnte neue Landschaftsformen annehmen. Freigelegte Felsen, lockeres Geröll, spärliche Vegetation, zahlreiche neue See sowie steile Hänge mit langsam fortschreitender Permafrostdegredation werden zu dominierenden Oberflächenerscheinungen. Es wird vermutet, dass diese neu gestalteten Landschaften über Jahrhunderte oder sogar über Jahrtausende hinweg bestehen werden (HAEBERLI et al., 2016). Lokal verursachen die Dynamiken der glazialen und periglazialen Umwelt eine Störung des Systemgleichgewichts, was in weiterer Folge ein Ansteigen des Gefährdungsniveaus induziert (DUSSAILLANT et al., 2010).

In Abbildung 2 werden Gefahren, welche von glazialen sowie periglazialen Wechselwirkungen in einem typischen Hochgebirgssystem ausgehen, aufgezeigt. Auffallend hierbei ist, dass sich alle Gefahrenherde im Bereich des degradierenden Permafrosts befinden. Somit stellt dieser ein Schlüsselelement in der Evolution von Risikofaktoren im Hochgebirgsbereich dar.

Abbildung 2: typisches Hochgebirgssystem mit möglichen Eisgefahren (Quelle: MERGILI, 2016)

Gefahren, welche von Eismassen ausgehen, beziehen hauptsächlich folgende Arten von Prozessen mit ein (CLAGUE & O'CONNOR, 2014):

2.1.1. Eislawinen und Stein-Eis-Lawinen

Eislawinen und Lawinen aus Eis und Stein werden vorwiegend durch das Auftreten von Hängegletschern oder steilen vergletscherten Felswänden begünstigt (NOETZLI et al., 2006). In seltenen Fällen besteht hierbei eine direkte Bedrohung für Menschen, die nicht in den Bergen unterwegs sind und für Infrastruktur (MAHBOOB et al., 2015). Des Weiteren können Eislawinen bzw. Stein-Eis-Lawinen eine zerstörerische Prozesskette in Gang setzen, wenn diese einen See erfassen (CLAGUE & O'CONNOR, 2014) oder große Mengen an Geröll, Eis und Schnee mitreißen (EVANS et al., 2009).

2.1.2. Vulkan-Eis Interaktion

Vulkanische Eruptionen oder geothermale Aktivitäten bewirken das Schmelzen von Schnee und Eis. Infolgedessen nimmt die Wahrscheinlichkeit von Überschwemmungen oder vulkanischen Muren drastisch zu (WILSON et al., 2013). In Island lassen sich solche Phänomene vermehrt beobachten (BJÖRNSSON, 2002). Die wohl bedeutendste Katastrophe in jüngster Geschichte, hervorgerufen durch das Zusammenspiel von vulkanischen Aktivität und Eismassen, geschah in Armero, Kolumbien (HERD, 1986).

2.1.3. Massenbewegungen durch Zerfall des Permafrosts

Aufgrund der Tatsache, dass sich die Temperatur des Permafrosts im Bereich von 0°C ansiedelt, ist dieser durch eine erhöhte Vulnerabilität gegenüber der fortschreitenden Klimaerwärmung gekennzeichnet. Laut Prognosen einiger Klimamodelle erfolgt bis 2100 eine Anhebung der Temperatur in den Alpen um bis zu 4°C, im Zuge dessen ein verstärktes Abschmelzen des Permafrosts zu erwarten ist. Intakte Blockgletscher, welche aktive und inaktive Blockgletscher umfassen, stellen im alpinen Raum sowohl die häufigste als auch aufgrund ihrer Morphologie auffallendste Form des Permafrosts im Hochgebirge dar. (MAIR et al., 2015). In den Hohen Breiten können Permafrostböden zudem eine Tiefe von mehreren 100 Metern erreichen. Viele Hochgebirgsgipfel in den europäischen Alpen sind zudem das ganze Jahr über vereist (HAEBERLI & WHITEMAN, 2014). Die Dynamik des Permafrosts ist gegenwärtig der Haupteinflussfaktor für das Auftreten von Massenbewegungen im Gebirge (s. Abbildung 3), wenngleich diese Tatsache bis etwa 1990 weitgehend nicht anerkannt wurde (HAEBERLI, 1992). Die Degradation des Permafrosts verursacht eine langfristige Verminderung der Stabilität steiler und vereister Gebirgshänge. Diese wird durch eine allmähliche und verzögerte Reaktion auf die Stressumverteilung und auf die veränderte mechanische Festigkeit und Wasserdurchlässigkeit. Die Stressumverteilung wird durch den Wegfall der Stützfunktion von Gletschern durch deren Schwinden generiert. Durch den Zerfall bzw. das Auftauen oder der Fluktuation des Permafrostbodens werden verschiedenste Formen von Massenbewegungen ausgelöst oder begünstigt (HAEBERLI et al., 2016). In Folge des Frost-Tau-Zyklus, welcher beispielsweise den Zerfall des Gesteins sowie die Verfügbarkeit von physikalisch aktiven Wasser vorantreibt, nimmt die Stabilität der Hänge kontinuierlich ab, was schließlich zu einer Umgestaltung der Topographie führt (GRUBER & HAEBERLI, 2007).

Abbildung 3: Massenbewegung im Stirnbereich eines Blockgletschers im Suldental (Quelle: Mair et al., 2015)

2.1.4. Gletscherseenausbrüche

Seit Beginn des 21. Jahrhunderts gewinnen GLOFs (Glacier Lake Outburst Floods) in der Forschung zunehmend an Bedeutung. Die unter anderem durch Fels, Moränenmaterial oder durch den Gletscher selbst gestauten Seen entwickeln sich oft in Permafrost beeinflussten Gebieten (MERGILI, 2016). GLOFs können durch verschiedenste Prozesse verursacht werden. Schnelle Massenbewegungen, wie beispielsweise Stein- und Eislawinen oder kalbende Gletscherzungen, die in den See stürzen, sowie ein kontinuierliches Ansteigen des Wasserspiegels kann zum Überlaufen des Sees führen. Dammrisse, eine fortlaufende Erosion des Dammes und eine Degradation eines vereisten Dammes kann zudem die Wahrscheinlichkeit eines GLOFs maßgeblich erhöhen (RICHARDSON & REYNOLDS, 2000). Entladungen beim Höchststand der Druckbelastung, haben im Vergleich zu Überschwemmungen, welche durch Niederschläge oder Schneeschmelze induziert werden, eine höhere Magnitude zur Folge (CENDERELLI & WOHL, 2001). Im Laufe des Holozäns verzeichneten Überschwemmungen infolge eines Ausbruchs erhebliche Schäden, Verletzte und sogar Tote, obwohl sich die Reichweite der Überflutungen im Vergleich zu jenen im Pleistozän in Grenzen hielt (LLIBOUTRY et al., 1977). Der explosionsartige Bevölkerungszuwachs in jüngster Zeit, begleitet durch einen zunehmenden Tourismus, in den europäischen Alpen erhöht das Gefahrenpotential derartiger Überflutungen und anderer Naturgefahren in hohem Maße (CLAGUE & O'CONNOR, 2014).

2.1.4.1. Massenbewegungen

Abbildung 4: vorgeschaltete Prozesskette eines Seenausbruchs durch Impactereignisse (Datengrundlage: Haeberli et al., 2016)

Abbildung 4 zeigt die vorgeschaltete Prozesskette eines Seenausbruchs durch Impactereignisse. Hierbei sind zwei parallel verlaufende Entwicklungen ersichtlich, welche positiv miteinander korrelieren. Die Wahrscheinlichkeit eines GLOFs nimmt mit der Neubildung an Hochgebirgsseen zu. Hinzu kommt die Tatsache, dass viele dieser neu entstandenen Seen steilen Eisfelswänden vorgelagert sind. Durch den Zerfall von Permafrost verzeichnen diese einen fortschreitenden Stabilitätsverlust, infolgedessen sich die Wahrscheinlichkeit einer Eis- bzw. Felslawine, welche einen See erfasst, erhöht. Diese Impactereignisse werden immer häufiger und die dabei ausgelösten Flutwellen erreichen dabei immer größere Dimensionen. Die festgelegten Gefahrenzonen für Menschen und Infrastruktur vor der Seenbildung müssen daher an die neuen Bedingungen angepasst werden. Das Gefahrenniveau für Menschen und Infrastruktur in der Reichweite von Flutwellen eines Seenausbruchs erwartet demnach einen Anstieg (HAEBERLI et al., 2016).

Neueste Studien über die Entwicklung von Permafrost und Seenneubildungen wurden kürzlich in den Schweizer Alpen durchgeführt. Diese ergaben, dass ab der zweiten Hälfte des 21. Jahrhunderts mehr unterirdisches Eis in Form von Permafrost im Alpenraum vorzufinden sein wird als Gletschereis. Demnach treten paraglaziale und periglaziale Dynamiken an die Stelle glazialer und periglazialer Triebkräfte (HAEBERLI et al., 2016). Paraglaziale Systeme sind ehemals oder heute noch vergletscherte Hochgebirge, wie zum Beispiel die Alpen oder Anden (ZEPP, 2014). Unter der Voraussetzung eines Zerfalls von Permafrost werden zahlreiche neue Seen mehr oder weniger direkt am Fuße von sehr steilen Bergflanken entstehen sowie von der Abstoßung durch zurückweichende Gletscher betroffen sein. Ähnliche Szenarien werden sich voraussichtlich in vielen anderen kalten Bergregionen der Welt abspielen (HAEBERLI et al., 2016).

Abbildung 5: (A) aktuelle Ausdehnung des Gletschers (hellblau) und Permafrosts (violett bis hellgelb) sowie modellierte Gletscherüberdeckung als Standort potenzieller zukünftiger Seen in der Region des Großen Aletschgletschers. (Quelle: Permafrost – verändert nach BOECKLI et al., 2012; potenzielle zukünftige Seen verändert nach LINSBAUER et al., 2012); (B) Laguna Milhuacocha in der Cordillera Blanca, Peru, mit unterschiedlichen Gefahrenpotenzialen (rot eingekreist) (Quelle: HEGGLIN, 2015)

In Abbildung 5A wird die Ausdehnung des Gletschers sowie die Verbreitung des Permafrosts im Bereich des Großen Aletschgletschers in der Schweiz dargestellt. Zusätzlich wurden auf Grundlage verschiedenster Modellierungen die Standorte potenzieller zukünftiger Gletscherseen eruiert.

Abbildung 5B zeigt einen Hochgebirgssee in der Cordillera Blanca in Peru, deren Umgebung mehrere Gefahrenherde einer Massenbewegung aufweist. Übermäßig steile Innenseiten von Seitenmoränen am rechten Rand, sehr steile Felswände am linken Rand, stark mit Spalten durchzogener Gletscherhang sowie Permafrostdegradation in den rechten oberen Felswänden könnten mögliche Auslöser von Impactereignissen sein (HAEBERLI et al., 2016).

2.1.4.2. Dammzusammensetzung

Wasserkörper, welche durch Gletscher oder Moränenmaterial aufgestaut werden, sind potenziell in der Lage sich plötzlich zu entleeren, was desaströse Konsequenzen stromabwärts mit sich zieht. Die Abflussspitze, Dauer und das Volumen des Hochwassers hängt in erster Linie von der Geometrie und der Entwicklungsgeschwindigkeit der Moränen sowie der subglazialen Stollen im Gletscher ab. Des Weiteren beeinflussen die Größe und Geometrie des aufgestauten Wasserkörpers die Abflussspitze, Dauer und das Volumen des Hochwassers (CLAGUE & O'CONNOR, 2014).

Eisgedämmte Seen

Abbildung 6: durch Gletschereis abgeschlossene Seenstandorte: (A) supraglazial-auf dem Eis, (B) subglazialunterm Eis, (C) proglazial-vorm Eis, (D) in Hanglage am Gletscherrand, (E) im Verschmelzungsbereich zweier Gletscher, (F) im benachbarten Seitental eines Seiten- oder Stammgletschers, (G) wie F, nur beidseitig durch Eis gestaut, (H) im Haupttal an einem Seitengletscher angrenzend (Quelle: CLAGUE & EVANS, 1994).

Durch Gletscher gestaute Seen können sich am Rand von alpinen Gletschern bzw. Eiskappen, auf deren Oberfläche oder Grund formen (s. Abbildung 6). Kleinere Mengen an Wasser können sich zudem im Inneren des Gletschers ansammeln. Einige Seen am Rande von Gletschern enthalten mehr als 100 Millionen m³ Wasser, wobei die meisten kleiner sind. Diese Seen sind jedoch im Vergleich zu den etwa mit 5.400 km³ Wasser gefüllten Seen, welche am Grund des östlichen antarktischen Eisschildes liegen, klein (CLAGUE & O'CONNOR, 2014).

Die Wechselwirkungen zwischen Täler blockierenden Gletschern und der umgebenden Landschaft sind komplex und führen zu einer Vielzahl an instabilen Verhältnissen. Im Zuge einer Blockade von Seiten- oder Anschlusstäler durch Gletscher kommt es möglicherweise zur Bildung neuer Seen. Eine weitere Annahme zur Genese von Hochgebirgsseen stellt die Trennung von ehemaligen Quellgletschern dar, wodurch es zur Schaffung von potenziellen Seenlagen zwischen den einzelnen Gletscher kommt (COSTA & SCHUSTER, 1988).

Die Entladung von eisgedämmten Seen verläuft entweder über sich vergrößernde subglaziale Stollen, infolge eines Überlaufens oder eines mechanischen Zusammenbruchs des Eisdamms (CLAGUE & O'CONNOR, 2014). Entleerung durch den Abfluss über subglaziale Stollen ist der am häufigsten verbreitete Mechanismus. Die anfängliche Ausströmung über derartige Kanäle dürfte durch das Schwimmen von einem Teil des Eisdamms, welcher mit dem See in Kontakt steht, verursacht werden (FOWLER, 1999). Mit dem Einsetzen des Wasserabflusses über subglaziale Kanäle geht eine Erweiterung der Tunnelwände durch sowohl thermische als auch mechanische Erosion einher (BJÖRNSSON, 2010). Entladungen steigen während des Ausbruchs bis zum Zeitpunkt eines Zusammenbruchs der Stollendecke oder einer Versperrung durch plastisches Eis für gewöhnlich exponentiell an (CLAGUE & O'CONNOR, 2014).

Überschwemmungen, welche durch das schnelle Abschmelzen des Gletschereises bei vulkanischen Eruptionen verursacht werden, sind auch unter den isländischen Begriff Jökulhlaups bekannt (GUDMUNDSSON, 2015). Die Erkenntnisse über die Ausbrüche von glazial eingebetteten Seen stammen zum Großteil aus den Analysen der isländischen Jökulhlaups, mit welchen sich THORARINSSON (1939) als erster beschäftigte. Er erkannte, dass das Schwimmen von Gletscherdämmen durch hydrostatischen Stress eingeleitet wird. Sobald die Tiefe des aufgestauten Wasserkörpers einen bestimmten Schwellenwert erreicht kommt es zu solch einem hydrostatischen Ungleichgewicht.

HAEBERLI (1983) dokumentierte mehr als 26 Überschwemmungen in den Schweizer Alpen, welche durch eine abrupte Entwässerung von Wassertaschen im Inneren oder unterhalb von Gletschern ausgelöst wurden. Katastrophale Überflutungen und Murgänge nach einem Ausbruch treten in der Regel ohne eines Versagens des Gletscherdamms auf. Ein relativ aktuelles Beispiel spiegelt die Überschwemmung und der Murgang in der Cordillera Blanca im April 2010 wider, welche durch in den See stürzende Eis- und Felslawinen induziert wurden (CAREY et al., 2012).

Moränengedämmte Seen

Die Mehrzahl der durch Seiten- und Endmoränen gestauten Seen formte sich im 20. Jahrhundert im Zuge eines Rückzugs von Tal- und Kargletschern (CLAGUE & O'CONNOR, 2014). Die neu geformten Becken zwischen den zurückweichenden Gletschern und den Moränen erlaubten die Bildung von Seen mit einem Volumen von bis zu 100 Millionen m³ und einer Tiefe von nahezu 100 m (YAMADA & SHARMA, 1993).

Die Annahme eines Versagens von Moränendämmen ist aufgrund verschiedenster Faktoren naheliegend. Moränen sind steil und relativ schmal, enthalten lockeres schlecht sortiertes Sediment und könnten Eiskerne oder in Zwischenräumen gelagertes Eis besitzen. Diese Dämme versagen in der Regel infolge eines Überlaufens oder Bruchs, deren Auslöser möglicherweise schwere Regenfälle, starke Winde oder in den See stürzende Massenbewegungen sind. Dadurch werden Wellen erzeugt, die den Damm überspülen (CLAGUE & O'CONNOR, 2014). Als allgemeine Regel gilt, dass die Wahrscheinlichkeit eines Durchbruchs mit der Größe des Sees steigt und mit dem Rückzug der Gletscher wieder abnimmt, da die Gefahr einer Eislawine minimiert wird (CLAGUE & EVANS, 2000).

Das Versickern von Grundwasser auf der stromabwärts gelegenen Seite der Moräne stellt einen weiteren Risikofaktor dar. Dadurch nimmt die Wahrscheinlichkeit von Massenbewegungen zu und eine Destabilisierung des Dammes wird induziert (MASSEY et al., 2010). Weitere potenzielle Versagensmechanismen umfassen Erdbeben, langsames Schmelzen von Eiskernen in der Moräne (REYNOLDS, 1992) sowie Verlagerung von feinen Dammsedimenten durch das Grundwasser ("piping"). Ausbrüche aus derartigen Seen treten plötzlich und mit rasantem Tempo auf. Diese können für beträchtliche Überflutungen weit von ihrem Ausgangsort entfernt verantwortlich sein (O'CONNOR & BEEBEE, 2009). Während sich der Durchbruch vergrößert nimmt der Abfluss aus dem moränengestauten See zu. Mit dem Sinken des Seespiegels geht der Abfluss schließlich zurück (CLAGUE & O'CONNOR, 2014).

Einen weiteren geomorphologisch bedeutenden Standort von Moränendämmen stellen Schichtvulkane dar, welche durch steile Hänge sowie leicht erodierbaren vulkanischen Gesteinsschutt gekennzeichnet und somit besonders anfällig für Brüche sind (CLAGUE & O'CONNOR, 2014). In Oregon versagten beispielsweise über 60 % der moränengedämmten Seen auf Schichtvulkanen (O'CONNOR et al., 2001).

Dennoch gibt es auch Nachweise von moränengestauten Seen, welche in der Vergangenheit nicht versagten. Eine große Anzahl der Seen, welche von im Pleistozän gebildeten Moränen gestaut wird, zeigt eine langfristige Stabilität (CLAGUE & O'CONNOR, 2014). Durch die Verfestigung der Auslasskanäle mit Felsbrocken kann ein Moränendamm verstärkt werden. Einige Dämme sind zudem aufgrund ihrer größeren Breite und den relativ niedrig gelegenen Abflusskanälen weniger ausbruchgefährdet (CLAGUE & EVANS, 2000).

Die ersten umfassend dokumentierten GLOFs aus moränengestauten Seen stammen aus der Cordillera Blanca in Peru, wo das Phänomen unter der Bezeichnung "Aluviòn" bekannt wurde (LLIBOUTRY et al., 1977). Der mit Abstand tödlichste Aluviòn zerstörte 1941 den Großteil der Stadt Huaraz und kostete ungefähr 5.000 Menschen das Leben (CLAGUE & O'CONNOR, 2014).

Im Zuge einer Überflutung nach einem Ausbruch gletscher- und moränengedämmter Seen werden große Mengen an Sediment mitgerissen, transportiert und abgelagert. Wenn die Abflussrinne steiler ist als etwa 6-9° und reichlich Lockersediment mitgeführt wird, kommt es in der Regel zu einer Transformation in eine Mure. Diese besitzt im Gegensatz zu einer Überschwemmung mit geringerem Sedimentanteil, eine größere Reichweite und Zerstörungskraft.

Das Klima ist ein wesentlicher Einflussfaktor auf die langfristige Stabilität von Moränenund Gletscherdämmen. Eine kontinuierlich fortschreitende Erwärmung treibt den gegenwärtigen Rückzug der Gletscher voran, der wiederum die Bildung von im Moränenmaterial eingebetteten Seen begünstigt, welche eine erhöhte Wahrscheinlichkeit eines Ausbruchs aufweisen (CLAGUE & O'CONNOR, 2014).

Felsgedämmte Seen

EMMER et al. (2015) halten in ihren Untersuchungsergebnissen fest, dass der einzig mögliche Ausbruchsmechanismus eines durch stabilen Fels gedämmten Sees ein Überlaufen des Dammes darstellt, welcher durch folgende zwei Szenarien induziert werden kann: (1) eine schnell stürzende Massenbewegung in den See, (2) eine Flutwelle mit Ausgang in einem stromaufwärts gelegenen See.

EMMER et al. (2015) unterscheiden im Verlauf der Entwicklung felsgedämmter Seen drei Phasen (s. Abbildung 7). Jeder dieser Abschnitte ist durch typische Seen-Gletscherinteraktionen, spezifische Empfindlichkeiten gegenüber GLOFs ausgelöst durch Massenbewegungen sowie der vom See ausgehenden Gefahr charakterisiert. Phase I (proglazial) kennzeichnet die Initialphase der Seenevolution mit der kürzesten Dauer. Das Seenvolumen verzeichnet hier einen Anstieg und die Anfälligkeit gegenüber GLOFs ist konstant hoch, da der See noch direkten Kontakt mit dem Gletscher aufweist und daher kalbenden Prozessen sowie Eislawinen ausgesetzt ist. Phase II beinhaltet einen kontinuierlichen Rückgang der Gletscher, infolgedessen sich die Wahrscheinlichkeit einer Eislawine und somit die vom See ausgehende Gefahr reduziert. Das Seenvolumen unterliegt jahreszeitlich bedingten Schwankungen, bleibt dennoch grundsätzlich auf einem konstanten Niveau. Schlussendlich berücksichtigt Phase III ein vollständiges Fehlen des Gletschers in der Umgebung des Sees, gleichbleibendes oder lediglich jahreszeitlich bedingt schwankendes Seenvolumen und geringe Empfindlichkeit gegenüber GLOFs. Es bleibt jedoch ein gewisses Restrisiko einer Flutwelle aufgrund der mit degradierenden Permafrosts einhergehenden Felsstürze bestehen. Seen in Phase III der Entwicklung werden als sicher erachtet.

Abbildung 7: Phasen der Entwicklung eines felsgedämmten Hochgebirgssees (Quelle: EMMER et al., 2015)

2.2. Historische Gletscherseenausbrüche in der Schweiz

Über 100 Gletscherseenausbrüche wurden seit Beginn der Kleinen Eiszeit in den Schweizer Alpen, überwiegend im südlichen Teil des Kantons Wallis, dokumentiert. Diese gingen jedoch von lediglich 2-3 % aller Schweizer Gletscher aus. Ausbrüche werden zum Großteil durch die in den Sommermonaten auftretende Schneeschmelze hervorgerufen (HAEBERLI, 1983). Die Schweiz zählt zu den am dichtesten besiedelten Gebirgsregionen der Welt, aufgrund dessen Gletscherseenausbrüche erhebliche Schäden anrichten können (HUGGEL, 2000).

2.2.1. 1878 – Märjelensee am Aletschgletscher

Seit 1870 wird ein kontinuierliches Abschmelzen des Großen Aletschgletschers im Kanton Wallis verzeichnet (RIEDER, 2017). Im Zuge dessen bildete sich am Rand des Gletschers der Märjelensee (s. Abbildung 8A), welcher in der Vergangenheit durch zahlreiche Ausbrüche geprägt worden ist (HORSTMANN, 2004). Dabei entleerte sich der See innerhalb weniger Stunden über eine tiefe Furche entlang des südlichen Gletscherrandes und mündete bei der Gletscherzunge in die Massa. In der Rhoneebene verursachten damals derartige Gletscherhochwässer mehrfach katastrophale Schäden. Zudem wurde festgehalten, dass das Kalben in den See ein weiterer Auslöser von Überschwemmungen in den Seitentälern war. In Folge kalbender Prozesse am Aletschgletscher wurde ein Überschwappen des Sees eingeleitet, wodurch eine Flutwelle erzeugt wurde, die bis ins Fieschertal reichte. Zwischen den Jahren 1813 bis 1907 wurden hier insgesamt 35 spontane Seenausbrüche nachgewiesen (RIEDER,

2017). 1878 kam es infolge eines kräftigen Unwetters zu einem folgenschweren Ausbruch des Sees, welcher zu diesem Zeitpunkt ein Volumen von 11 Millionen m³ Wasser aufwies, in das naheliegende Fieschertal (HORSTMANN, 2004).

Der See durchlebte als Touristenmagnet auch etwas ruhigere Jahre und wurde zeitweise sogar mit Booten befahren. Heute ist dieser saisonal bedingten Schwankungen unterworfen und kann innerhalb weniger Tagen komplett austrocknen, sodass das Gletschertor sichtbar wird (s. Abbildung 8B) (RIEDER, 2017).

Abbildung 8: (A) Märjelensee einst; (B) Märjelensee heute mit freigelegtem Gletschertor (Quelle: RIEDER, 2017)

2.2.2. 1968 – Grüebugletscher

Der nachgewiesene Gletscherschwund sowie das Auftauen von Permafrost, welche die Seenbildung im Gebirge begünstigen, sind auf die Tatsache zurückzuführen, dass im Verlauf des 20. Jahrhunderts in der Schweiz die Tiefsttemperatur um 2°C (HAEBERLI & BENISTON, 1998) zunahm.

Am Grüebugletscher, welcher sich in einem südlich gelegenen Tal im Kanton Wallis befindet, kam es vermehrt zu derartigen Seenbildungen (HORSTMANN, 2004). Diese entstanden auf dichten Geröllablagerungen an den Gletscherrändern sowie im Inneren des umliegenden Permafrostbereichs (HAEBERLI et al., 2001). Nach KÄÄB et al. (1997) handelt es sich hierbei um einen der Gletscherzunge vorgelagerten Blockgletscher. Forschungen ergaben, dass für den Zeitraum 1970 bis 1995 eine allgemeine Tendenz zur Abnahme der Blockgletscheroberfläche von wenigen Zentimeter pro Jahr besteht. Dies ist vor allem auf die Erwärmung des 20. Jahrhunderts und die damit verbundene Auftauung von eisübersättigtem Schutt zurückzuführen (HAEBERLI et al., 2001). Etliche Seen bildeten sich innerhalb dieser komplexen Kombination aus Gletschereis, dicken Moränenablagerungen und diskontinuierlichen Permafrosts. In Anbetracht des historischen Werdegangs der Seen entwickelte sich zuerst ein proglazialer See gefolgt von drei Seen direkt am Rande des Eises und zuallerletzt zwei Thermokarst-Seen (KÄÄB et al., 1997). Thermokarst bezeichnet in diesem Zusammenhang den Auftau- bzw. Abbauprozess eines Permafrosts und die dadurch entstehenden Landschaftsformen, wie in diesem Fall die Ausformung eines Sees (ZEPP, 2014).

Während des 19. und 20. Jahrhunderts ereigneten sich insgesamt fünf bedeutende Gletscherüberschwemmungen und Murgänge, welche bis in das Dorf Saas Balen reichten, welches sich lediglich 1.400 Höhenmeter unterhalb des Gletschers befindet (HAEBERLI et al., 2001). 1968 ereignete sich an einem See ein Ausbruch mit verheerenden Folgen für die umliegende Bevölkerung in Saas Balen. Die dadurch entstandene Flutwelle riss in etwa 400.000 m³ Schutt mit sich. In Folge des zweiten Ausbruchs desselben Sees im Jahr 1970 (HORSTMANN, 2004) wurden bei zwei Seen Hochwasserschutzmaßnahmen eingeleitet, welche sich in Zeiten eines unregelmäßigen Gletscherwachstums von 1970 bis in die frühen 80-iger Jahre bewährten. In jüngsten Jahren zeigte sich jedoch aufgrund eines beschleunigten Gletscherrückzugs ein neuartiges Problem, welches weitere Präventionsmaßnahmen nötig machte (HAEBERLI et al., 2001). So wurde unter anderem ein potenziell ausbruchsgefährderter See komplett entleert sowie der Wasserstand der Seen durch den Bau von Kanälen und regulierbaren Schleusentoren herabgesetzt (HORSTMANN, 2004).

Die Seen am Grüebugletscher wurden unter anderem im Zuge der vorliegenden Arbeit in die Detailuntersuchungen aufgenommen. Im Ergebnisteil wird auf Basis einer vorangegangenen Geländebegehung sowie Untersuchung mittels Fernerkundungsmethoden näher auf deren aktuelle Lage sowie den geomorphologischen Gegebenheiten im Umfeld der Seen eingegangen um schlussendlich deren Ausbruchspotenzial zu bestimmen.

2.2.3. 2008 - Grindelwald Gletschersee

Am Unteren Grindelwaldgletscher in den Berner Alpen ist in jüngster Zeit ein rasanter Gletscherrückzug zu beobachten. Im Sommer 2005 wurde das erste Mal eine Seenbildung am Fuße des Gletschers nachgewiesen (Oberingeneurkreis I et al., o. J.).

Welche Prozesse unter anderem im Verlauf einer Seenbildung und –entleerung wirken, werden im Folgenden am Beispiel der Entwicklung des Grindelwald Gletschersees näher aufgegriffen.

Unteren Grindelwaldgletscher (Quelle: Oberingeneurkreis I et al., o.J.)

Als grundlegende Voraussetzung für die Entstehung des Grindelwald Gletschersees wird die Riegelbildung genannt, welche in Abbildung 9 veranschaulicht wird. Durch das Zurückweichen des Gletschers entfällt die Stütze an den beidseitig gelegenen Talflanken. Dies führt zu einer fortschreitenden Instabilität der Felswände, wodurch die Wahrscheinlichkeit von Massenbewegungen steigt (Oberingeneurkreis I et al., o. J.). Die unstabile Felswand der Schlossplatte seitlich des Sees zeigte von Juli 2006 bis August 2008 eine erhöhte Bewegungsaktivität. Die Felsbrocken kamen auf der Gletscheroberfläche vor dem See zu liegen, wodurch das Gletscherende zunehmend von einer wachsenden Schuttdecke überlagert wurde (WER-DER et al., 2010). In weiterer Folge kommt es zu einer Konservierung des unter der Schuttdecke liegenden Eises. Während sich nun der Gletscher hinter der Schuttdecke immer weiter zurückbildet, wird die Ausformung eines Beckens ohne oberirdischen Abfluss vorangetrieben. Das dem Gletscher vorgelagerte Becken füllt sich im Frühjahr mit Schmelzwasser, welches in einem unterirdischen Entwässerungskanal zwischen Untergrund und Eis abfließt. Plötzliche Seenausbrüche, wie es im Mai 2008 der Fall war, finden aufgrund mehrerer zusammenhängender Mechanismen statt. Durch die Zunahme des Seenvolumens steigt der Druck auf das darunterliegende Eis, wodurch eine vermehrte Öffnung von Kanälen in den Basiskanal induziert wird. Die durch das strömende Wasser ausgelöste Reibung und das Schmelzen des umliegenden Eises verursacht zunehmend eine Vergrößerung des Abflusskanals. Die Wiederauffüllung des Seebeckens erfolgt im Zuge zweier möglicher Mechanismen: (1) Durch das Zufrieren des Entwässerungssystems im Winter wird der Abfluss blockiert. (2) Geschiebe und Eis verstopfen im Sommer die Entwässerungskanäle (Oberingeneurkreis I et al., o. J.).

Abbildung 10: (A) Gletschersee April 2009 nach der Wiederbefüllung; (B) Hauptbecken im September 2009 nach einer nicht spontanen und gutmütigen Entleerung (Quelle: Oberingeneurkreis I et al., o. J.)

Am 30. Mai 2008 ereignete sich am Unteren Grindelwaldgletscher ein plötzlicher Seenausbruch, im Zuge dessen etwa 570.000 m³ von insgesamt 800.000 m³ Wasser innerhalb von drei Stunden aus dem See freigegeben wurden. Das Flutwasser entleerte sich in eine tiefe und enge Schlucht (Gletscherschlucht), wo beträchtliche Mengen an Sediment mitgerissen wurden, welche schließlich die Talauen im Ort Aspi überfluteten. Stromabwärts kam es vermehrt zu einer Erosion der anstehenden Flussufer (WORNI et al., 2014). Im April 2009 ereignete sich außerdem eine nicht spontane und gutmütige Entleerung des Gletschersees (s. Abbildung 10) (Oberingeneurkreis I et al., o. J.).

Um plötzlichen Seenausbrüchen entgegenzuwirken wurde von 2009 bis 2010 die Konstruktion eines 2,1 km langen Abflussstollens durchgeführt. Dieser soll in erster Linie dazu dienen, das Seenvolumen unter einem kritischen Wert zu halten. Für die Jahre nach 2010 wurde dennoch ein hohes Potenzial eines Seenausbruchs prognostiziert, insbesondere aufgrund eines kontinuierlich voranschreitenden Rückzugs des Gletschers (WERDER et al., 2010).

Letzten Angaben zufolge ereigneten sich 2012 zwei erwähnenswerte Massenbewegungen im Bereich des Gletschersees am Unteren Grindelwaldgletscher. Im Frühjahr 2012 erfasste eine große Rutschung das leere Seebecken, wodurch keine spezielle Gefahr ausging. Im Sommer 2012 kam es aufgrund in den See stürzenden Massenbewegungen zu einer Flutwelle im Bereich der Gletscherschlucht, wodurch der Pegel des Abflussstollens kurzzeitig anstieg, jedoch Überschwemmungen ausblieben (Oberingeneurkreis I et al., o. J.).

3. Untersuchungsgebiet

3.1. Geographie und Klima

Das Wallis zählt zu den 26 Kantonen der Schweiz (BFS, o. J.) und befindet sich im Südwesten des Landes inmitten der Alpen. Der Kanton erstreckt sich von der Rhonequelle im Osten über das Rhonetal bis zum Genfersee im Westen (s. Abbildung 11). Unterteilt wird dieser in die Regionen Oberwallis, Mittelwallis und Unterwallis (Kanton Wallis, o. J.). Der Hauptort des aus 13 Bezirken bestehenden Kantons bildet die Stadt Sitten (franz.: Sion). Wallis hat eine Fläche von insgesamt 5.224 km² mit einer Bevölkerungsanzahl von 339.176 Einwohner (31.12.2016). Den höchsten Berg stellt die Dufourspitze mit 4.643 m dar, gefolgt von Dom mit 4.545 m, Weisshorn mit 4.506 m und Matterhorn mit 4.478 m.

Das Klima in Wallis steht unter mediterranem Einfluss. Die Walliser Alpen im Süden und die Berner Alpen im Norden bilden natürliche Barrieren gegen ankommende Feuchtigkeitsmassen und sorgen je nach Region für über 2.000 Sonnenstunden pro Jahr. (Wallis Promotion, o. J.)

3.2. Gletscher

Die Walliser Alpen weisen den zweithöchsten Vergletscherungsgrad innerhalb des gesamten Alpenbogens auf. Hervorzuheben ist diesbezüglich der oberhalb von Zermatt gelegene Gornergletscher mit einer Länge von 12,6 km (2008). Das größte vergletscherte Gebiet der Alpen umfasst dennoch die benachbarten Berner Alpen, welche den größten Gletscher der Alpen, den Großen Aletschgletscher, beherbergen. Dieser wies zu Beginn des 21. Jahrhunderts eine Länge von 23 km (2008) und eine Fläche von 90 km² auf (ALEAN, 2010).

3.2.1. Längenänderung

Abbildung 11: Gletscher-Längenänderungen im Jahr 2016 im Untersuchungsgebiet (Quelle: VAW, o. J., a)

Das schweizerische Gletschermessnetz (GLAMOS) stellt jährlich Messresultate der Längenänderungen von einem Teil der Schweizer Gletscher zur Verfügung, welche bis ins Jahr 1880 zurück aufgerufen werden können. Abbildung 11 gibt einen Überblick über die räumliche Verteilung von 50 Gletscher im Kanton Wallis und deren Entwicklungstendenzen im Jahr 2016. Unübersehbar ist die deutliche Überlegenheit von insgesamt 35 Gletscher, welche ein Längendefizit im Jahr 2016 verzeichneten. Mit einer beträchtlichen Längenabnahme von 79,2 m steht der Glacier de Ferpècle im Bezirk Evolène an der Spitze der gemessenen Gletscheränderungen. Werden die Ergebnisse des gesamten Schweizer Staatsgebietes für das Jahr 2016 herangezogen, so zeigt sich auch hier derselbe Trend. 82 von 94 untersuchten Gletscherzungen in der Schweiz wiesen demnach 2016 eine Längenabnahme auf. Einzig der Langgletscher im Bezirk Blatten im Norden des Wallis konnte einen Vorstoß verbuchen (VAW, o. J., a).

3.2.2. Naturgefahren

Abbildung 12: Gefährliche Gletscher im Jahr 2016 im Untersuchungsgebiet (Quelle: VAW, o. J., b)

Die Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) der ETH Zürich stellt ein umfassendes Inventar gefährlicher Gletscher für das gesamte Schweizer Staatsgebiet zur Verfügung. Auf Basis vergangener Schäden oder einer potenziellen Gefährdung können 53 von insgesamt 84 inventarisierten Schweizer Gletscher in den nächsten 10 bis 20 Jahren Schäden verursachen. Mitinbegriffen sind hierbei sowohl Infrastrukturschäden als auch Gefährdungen für den Menschen.

Im Rahmen der Untersuchungen werden die Gletschergefahren folgendermaßen klassifiziert: Längen- und Geometrieänderung, Gletscherhochwasser sowie Eis- und Gletscherstürze. Eine Wechselwirkung dieser Faktoren kann in naher Zukunft zu verheerenden Katastrophen führen.

In Abbildung 12 wird das Inventar gefährlicher Gletscher im Speziellen für den Kanton Wallis eingegrenzt. Die Zusammenstellung umfasst insgesamt 56 Gletscher im Wallis, wovon 32 mittelfristig als gefährlich beurteilt werden. Von den restlichen 24 Gletschern geht mittelfristig keine Gefahr aus. (VAW, o. J., b). Tabelle 2: Anzahl der Gletscher in Wallis, von denen bestimmte Gletschergefahren ausgehen (Datengrundlage: VAW, o. J., b)

Gletschergefahren	Anzahl der Gletscher
Längen- und Geometrieänderung	11
Gletscherhochwasser	41
Eis- bzw. Gletscherstürze	23

Tabelle 2 zeigt die Verteilung der Gletscher nach der Art der ausgehenden Gefahr. Hierbei ist zu erwähnen, dass einige Gletscher mehrere Gefährdungsformen in sich bergen und auch Gletscher, von denen mittelfristig keine Gefahr ausgeht, mitberücksichtigt wurden. Hinsichtlich der Wahrscheinlichkeit eines GLOFs ist die beträchtliche Überlegenheit von 41 Gletschern mit Hochwasserrisiko von hoher Relevanz (VAW, o. J., b).

Daran anknüpfend werden im Kapitel 6 im speziellen Gletscher, welche im Umkreis der ausgewählten Seen liegen sowie die von ihnen ausgehenden Gefahren näher beleuchtet.
4. Daten und Methoden

4.1. Seeninventar

In einem ersten Schritt wurde ein Seeninventar für den gesamten Kanton Wallis erstellt. Sämtliche Seen, welche sich über 2.000 m ü. M. befinden und eine Fläche von über 250 m² aufweisen, wurden zur Analyse herangezogen. Diese Abgrenzung wurde in Anlehnung an MERKL (2015) festgelegt, welche sich sowohl in einer guten Sichtbarkeit als auch einer erhöhten Wahrscheinlichkeit des Auftretens begründet. Da sich die natürliche Waldgrenze in den Alpen auf durchschnittlich etwa 2.000 m ü. M. befindet, konnten die Seen gut eingesehen werden. Im Zuge einer optischen Inventarisierung wurden insgesamt 733 Bergseen nach ihren quantitativen und qualitativen Charakteristika klassifiziert.

4.1.1. Datengrundlage

Das Farborthophotomosaik SWISSIMAGE (Auflösung: 25 cm) der Schweiz, bereitgestellt durch das Bundesamt für Landestopographie swisstopo, sowie Satellitenaufnahmen der Software Google Earth bilden die Datengrundlage der Inventarisierung. Die Orthophotos, welche für die Analyse auf Quantum GIS herangezogen wurden, stammen aus den Jahren 2014, 2015 und 2016. Orthophotos stellen entzerrte Luftbilder dar, welche die Geometrie betreffend Eigenschaften einer Karte besitzen. Dadurch können wahrheitsgetreue Messungen geometrischer Größen am Orthophoto durchgeführt werden (ALBERTZ, 2007).

Die Auswertung von etwa 9 % der verorteten Seen wurde auf Basis von Google Earth -Satellitenbilder vorgenommen, deren Aufnahmen am 9.7.2016 sowie 7.8.2016 erfolgte.

Aufgrund der aktuelleren Aufnahmen der Satellitenbilder wurden diese vereinzelt zur Erhebung herangezogen. Auf den Satellitenbildern, welche zudem eine niedrigere Auflösung haben, sind jedoch die Seen des Öfteren mit Schnee bedeckt oder aufgrund einer Wolkendecke nicht zu erkennen, was wiederum deren Verortung erschwerte. Als Koordinatenbezugssystem sämtlicher Daten wurde WGS 84 / Pseudo Mercator festgelegt. Die Ermittlung der Höhenmeter wurde auf Grundlage des globalen Höhenmodells SRTM-38-03 durchgeführt. Die Datengrundlage zur Erhebung der Entwicklung der Seengröße bilden Satellitenbilder des Zeitraums 2006 – 2016 auf Google Earth, wobei die Jahre der Aufnahmen je nach See variieren. Der überwiegende Teil der Daten zur Evolution wird jedoch auf Basis von Satellitenbildern aus den Jahren 2016, 2012 und 2009 gewonnen.

4.1.2. Datenverarbeitung

In Tabelle 3 werden die untersuchten Attribute sowie deren Unterteilung dargestellt und in weiterer Folge anhand von Beispielen näher erläutert.

Attribut	Subtyp	Wert (-ebereich)
See ID		
Name		
Fläche		in m ²
x-Koordinate (Zentrum)		
y-Koordinate (Zentrum)		
Seehöhe		in m ü. M.
Dammtyp	Moräne	0-3*
	Fels	0-3*
	Eis	0-3*
	Massenbewegungen	0-3*
	anthropogener Einfluss	0-3*
	Schwemmmaterial	0-3*
	Dammtyp unklar	0-1*
Gletscherkontakt	kein Gletscherkontakt	0**
	mit Gletscherkontakt	1**
Schmelzwasserzufluss	kein Zufluss	0**
	mit Zufluss	1**
	Zufluss unklar	2**
Oberflächenabfluss	kein Abfluss	0*
	geringfügige Erosionsrinnen	1*
	deutliche Erosionsrinnen	2*
	Abflusswasser erkennbar	3*
	Abfluss unklar	4**
Position	supraglazial	1**
	gletschergedämmt	2**
	proglazial	3**
	vom Gletscher abgetrennt	4**
	nicht-glazial	5**
	gletscherfreies Einzugsgebiet	6**
Kalben	Kalben nicht möglich	0**
	Kalben möglich	1**
Evolution	stabil	0**
	interannuelle Schwankungen	1**

Tabelle 3: untersuchte Attribute, deren Subtypen und Wert (-ebereiche); * Ordinalskala, ** Nominalskala (Datengrundlage: SCHUG, 2017)

schrumpfend	2**
wachsend	3**
späte Evolution	4**
Evolution unklar	5**

See ID

Die Nummerierung der Seen erfolgt automatisch durch Quantum GIS nach der Reihenfolge der Kartierungen.

Name

Die Namensgebung bezieht sich auf das Einzugsgebiet der größten Flüsse im Wallis. Es wurden insgesamt sieben Einzugsgebiete ermittelt, welche durch die folgenden Abkürzungen mit fortlaufender Nummerierung dargestellt werden (s. Tabelle 4).

Tabelle 4: Klassifizierung der Namensgebung nach Einzugsgebiet

Einzugsgebiet	Name
Matter Vispa	MV_001
Saaser Vispa	SV_001
Ро	PO_001
Rhone	RH_001
Borgne	BO_001
Dranse de Bagnes	DB_001
Dranse d'Entremont	DE_001

Fläche, x-Koordinate, y-Koordinate und Seehöhe

Die dazugehörigen Daten werden mittels Quantum GIS automatisch für jeden See einzeln generiert.

Dammtyp

Die Bestimmung dieses Attributs erfolgt ausschließlich im Zuge einer optischen Erhebung relevanter Einflussfaktoren. Hierbei muss im Besonderen die Lage der Seen bzw. deren Ausrichtung sowie geomorphologische Gegebenheiten in der näheren Umgebung der Seen berücksichtigt werden.

Die Ermittlung basiert auf der Art des Materials bzw. deren Entstehungsprozess und Beteiligungsgrad. Material, welches nach einem Steinschlag oder Blockschlag abgelagert wurde und Moränenmaterial, sind beispielsweise durch unterschiedliche Prozesse an ihren Ablagerungsort transportiert worden. Diese werden demnach verschiedenartigen Dammtypen zugeordnet. Wie Tabelle 3 entnommen werden kann, wurden fünf Materialien, welche zur Dämmung der Seen beitragen, eruiert. Im Zuge der optischen Erhebung wurden zudem anthropogene Einflüsse, wie bauliche Maßnahmen verortet, welche die Wahrscheinlichkeit eines Seeausbruchs vermindern.

Des Weiteren lässt sich der Grad der Beteiligung wie folgt bewerten:

- 0: keine Beteiligung des Materials
- 1: geringfügige Beteiligung des Materials
- 2: deutliche Beteiligung des Materials
- 3: vollständige Beteiligung des Materials.

Eine Bestimmung des Dammtyps konnte in einigen Fällen aus unterschiedlichen Gründen nicht durchgeführt werden, was wiederum in einer eigenen Subklasse gesondert angeführt wird. Im Falle einer unmöglichen Bestimmung wird dieser Subklasse der Wert 1 zugeordnet. Folglich erhält dieser Subtyp bei einer durchführbaren Bestimmung des Dammtyps den Wert 0. Die Klassifizierung des Dammtyps in sieben Subtypen sowie das Prinzip der Punktevergabe werden nun anhand aussagekräftiger Beispiele näher beleuchtet. Die roten Pfeile in den Abbildungen geben die Fließrichtung an.

Abbildung 13 zeigt den Gornerseekomplex, welcher ausschließlich durch Moränenmaterial gedämmt wird. Die Punktevergabe kann der Abbildungsbeschriftung entnommen werden.

Abbildung 13: moränengedämmter Gornerseekomplex – Moräne (3), Fels (0), Eis (0), Massenbewegungen (0), anthropogen (0) Schwemmmaterial (0) unklar (0); (Orthophoto: 2015)

Eine eindeutige Identifikation des Dammaterials konnte beim Rhonegletschersee durchgeführt werden, welcher zudem vor Ort besichtigt sowie in die näheren Untersuchungen aufgenommen wurde. Hier zeigt sich ein ausschließlich durch Fels gedämmter Gletschersee (s. Abbildung 14A).

Ein kombinierter Dammtyp wurde am Fuße des Bigergletschers vorgefunden. In Abbildung 14B erkennt man gut, dass dieser Dammtyp neben einen vorherrschenden Anteil an Moränenmaterial auch einen felsigen Untergrund aufweist.

Abbildung 14: (A) felsgedämmter See am Fuße des Rhonegletschers – Moräne (0), Fels (3), Eis (0), Massenbewegungen (0), anthropogen (0) Schwemmmaterial (0) unklar (0); (Orthophoto: 2012-2014) (Orthophoto: 2016); (B) fels- und moränengedämmter See am Fuße des Bigergletschers - Moräne (2), Fels (1), Eis (0), Massenbewegungen (0), anthropogen (0) Schwemmmaterial (0) unklar (0); (Orthophoto: 2014)

Eis als Dammaterial wurde im Zuge der Inventarisierung vergleichsweise selten angetroffen. Abbildung 15 zeigt einen ausschließlich durch Eis gedämmten Gletschersee, welcher sich auf der Gletscherzunge des Gornergletschers befindet. Hierbei handelt es sich um ein Kryokonitloch. Dieses entsteht, wenn kleinste Gesteinsbrocken oder auch etwas gröberer Hangschutt auf der Gletscheroberfläche zum Liegen kommt. Infolge der Erwärmung dieser dunklen Ablagerungen kommt es zum Abschmelzen der darunterliegenden Eisfläche, woraufhin Vertiefungen im Eis sichtbar werden (SATTLER et al. 2010).

Abbildung 15: eisgedämmter Gletschersee auf der Gletscherzunge des Gornergletschers – Moräne (0), Fels (0), Eis (3), Massenbewegungen (0), anthropogen (0), Schwemmmaterial (0), unklar (0); Position (1); (Orthophoto: 2015)

Ablagerungsmaterial durch Massenbewegungen kam fast zur Gänze in Kombination mit anderen Dammtypen vor. Beim Mässersee tragen sowohl Massenbewegungen, die vom südlich gelegenen Steilhang stammen, als auch Felsmaterial nördlich des Sees zur Stauung des Sees bei (s. Abbildung 16). Dass es sich hierbei vermutlich um rezente Massenbewegungen handelt, wird durch die ockerfarbene Färbung des Abbruchmaterials im Transit- und Ablagerungsgebiet begründet.

Abbildung 16: durch Fels und Massenbewegungen gedämmter Mässersee - Moräne (0), Fels (1), Eis (0), Massenbewegungen (2), anthropogen (0), Schwemmmaterial (0), unklar (0); (Orthophoto: 2015)

Eine weitere identifizierte Subklasse des Dammtyps spiegeln anthropogene Einflüsse wider, welche zur Gänze oder teilweise die Stauung des Sees bewirken. Das Ausmaß der Verbauung im Abflussbereich wird im Zuge der optischen Erhebung in der Punktewertung miteinbezogen. Als Beispiel kann der Lac de Louvie genannt werden, welcher sich im Einzugsgebiet des Dranse de Bagnes im Südwesten des Wallis befindet. Während im Abflussbereich eine Verbauung gut erkennbar ist, wird der See westlich des Abflusses zusätzlich durch partiell vegetationsbedecktes Felsmaterial gedämmt (s. Abbildung 17A).

Der Stausee Lac des Dix repräsentiert mit einer erfassten Fläche von rund 3,9 km² den größten aller inventarisierten Seen (s. Abbildung 17B). Dieser wird ausschließlich durch die Staumauer im Norden gedämmt.

Abbildung 17: (A) Lac de Louvie mit verbauten Abfluss - Moräne (0), Fels (2), Eis (0), Massenbewegungen (0), anthropogen (1), Schwemmmaterial (0), unklar (0); (Orthophoto: 2016); (B) größter inventarisierter See - Lac des Dix (Stausee) - Moräne (0), Fels (0), Eis (0), Massenbewegungen (0), anthropogen (3), Schwemmmaterial (0), unklar (0); (Orthophoto: 2016)

Schwemmaterial, wie beispielsweise Tone oder Schluff, trägt vereinzelt zur Stauung eines Sees bei, wie am Beispiel des Gabelhorngletschersees erkannt wird (s. Abbildung 18). Dieser befindet sich im Einzugsgebiet der Matter Vispa oberhalb von Zermatt und wurde zudem in die Detailuntersuchung aufgenommen. Östlich des Sees wird dieser durch einen Schwemmkegel und Seeablagerungen gestaut.

Abbildung 18: durch Schwemmfläche gestauter Gabelhorngletschersee - Moräne (0), Fels (0), Eis (0), Massenbewegungen (0), anthropogen (0), Schwemmmaterial (3), unklar (0); (Google Earth: 07.08.2016)

Eine eindeutige Identifizierung des Dammtyps konnte aufgrund eines vegetationsbedeckten Dammaterials mehrmals nicht durchgeführt werden. Abbildung 19 zeigt den Seenkomplex Pontimiaseen im Einzugsgebiet des Pos an der östlichen Grenze des Wallis. Die unterschiedlich gefärbte Vegetationsdecke verwehrt die Sicht auf das umliegende Material, wodurch nur eine vage Vermutung des Dammaterials möglich wäre.

Abbildung 19: Seenkomplex Pontimiaseen mit unklarem Dammtyp -Moräne (0), Fels (0), Eis (0), Massenbewegungen (0), anthropogen (0), Schwemmmaterial (0), unklar (1); (Orthophoto: 2015)

Gletscherkontakt

Als ein weiteres wesentliches Attribut wurde der Gletscherkontakt in die Erhebungen aufgenommen, dessen Bestimmung mittels Fernerkundungsmethoden problemlos verlief und eindeutige Ergebnisse lieferte. Die Zuteilung der Punkte wurde einleitend bereits dargelegt. Der Chüebodengletschersee im Einzugsgebiet der Rhone, welcher ebenfalls näher untersucht wurde, repräsentiert einen See mit direktem Gletscherkontakt (s. Abbildung 20A).

Abbildung 20: (A) Chüebodengletschersee mit direktem Gletscherkontakt – Gletscherkontakt (1); (Orthophoto: 2015); (B) Mattwaldsee unterhalb des Mattwaldgletschers ohne Gletscherkontakt – Gletscherkontakt (0); (Orthophoto: 2014)

In Abbildung 20B wird der Mattwaldsee dargestellt, welcher zu dem östlich gelegenen Mattwaldgletscher keinen direkten Kontakt aufweist und somit den Kennwert 0 zugewiesen bekommt. Grenzt der See an eine Toteisfläche, wird von keinem Gletscherkontakt ausgegangen (s. Abbildung 21B).

Schmelzwasserzufluss

Im Zuge der Inventarisierung wurde als weiteres Attribut der Schmelzwasserzufluss des Gletschers herangezogen. Die Wertzuteilung erfolgt annähernd wie beim vorangegangenen Attribut. Neben dem Wert 0 für das Fehlen eines Zuflusses sowie dem Wert 1 für das Vorkommen eines Zuflusses wurde zusätzlich der Kennwert 2 im Falle einer nicht eindeutigen Identifizierung des Zuflusses vergeben.

Der Seenkomplex am Fuße des Brunegggletschers (s. Abbildung 21A) im Einzugsgebiet der Rhone zeigt einen etwas größeren See (1), welcher in direktem Kontakt mit der Gletscherzunge des Brunegggletschers steht und somit von Schmelzwasser gespeist wird. Ein deutlicher Zufluss wurde beim nördlich gelegenen kleineren See (2) nicht festgestellt. Es sind zwar schmale Gerinne in der Nähe des Sees erkennbar, jedoch verlieren sich diese Rinnen in Gletschernähe. Die milchig hellblaue Farbe des Sees ist wiederum charakteristisch für Seen, welche von Gletscherschmelze gespeist werden. Diese Faktoren könnten auf einen periodischen Schmelzwasserzufluss zurückzuführen sein.

Abbildung 21: (A) Seenkomplex am Fuße des Brunegggletschers – See 1: Schmelzwasserzufluss (1); See 2: Schmelzwasserzufluss (2); (Google Earth: 07.08.2016); (B) von Toteis gespeister See in der Nähe des Glacier des Ignes – Schmelzwasserzufluss (1), Gletscherkontakt (0), Oberflächenabfluss (0); (Orthophoto: 2016)

In Abbildung 21 B ist ein See dargestellt, welcher vom Schmelzwasser einer Toteisfläche gespeist wird, jedoch unter den Seen, welche keinen Gletscherkontakt aufweisen, angeführt wird.

Im Zuge der optischen Erhebung wird einige Male eine unterirdische Versorgung mit Schmelzwasser vermutet, was unter den unklaren Bestimmungen gereiht wird. In der Detailkartierung des Seenkomplexes am Oberferdengletscher (s. Kapitel 5.2.4.) wird diese Thematik näher aufgegriffen.

Oberflächenabfluss

Beim vorangegangenen See in der Nähe des Glacier des Ignes (s. Abbildung 21B) wurde beispielsweise kein Abfluss verortet, da keine Erosionsrinnen erkennbar sind.

Abbildung 22: (A) See Goli d'Aget mit geringfügiger Erosionsrinne – Oberflächenabfluss (1); (Orthophoto 2016);(B) Seenkomplex Petit Lè mit deutlichen Erosionsrinnen – Oberflächenabfluss (2); (Orthophoto 2016)

Der moränengedämmte See Goli d'Aget (s. Abbildung 22A) im Einzugsgebiet des Dranse de Bagnes repräsentiert einen See mit einer geringfügigen Erosionsrinne Richtung Nordwest verlaufend. Es wird angenommen, dass sich der Seeabfluss durch das angrenzende Moränenmaterial zum Großteil unterirdisch erstreckt und erst am felsigen Untergrund an die Oberfläche tritt. In Abbildung 22B erkennt man die durch das abfließende Wasser des Seenkomplexes Petit Lè entstandenen Erosionsrinnen, welche durch teils felsiges Material verlaufen. Eine weitere Klassifizierung des Oberflächenabflusses betrifft Seen, bei denen das abfließende Wasser auf den Orthophotos und Satellitenbildern erkennbar ist. Ein Beispiel dafür wären die deutlich sichtbaren Wassermengen, die aus dem Gabelhorngletschersee fließen (s. Abbildung 18). Im Zuge der Untersuchung ist jedoch eine eindeutige Verortung des Abflusses nicht immer gegeben. Gründe dafür sind unter anderem ausgedehnte Schneedecken in der Umgebung der Seen oder unterirdische Abflüsse, welche eine eingeschränkte Sicht auf den Abfluss zur Folge haben.

Position

Seen, welche eine supraglaziale Lage aufweisen, wurden vergleichsweise selten vorgefunden. Abbildung 15 zeigt einen solchen See, welcher sich am Gletscher befindet und demzufolge ausschließlich durch Eismassen gestaut wird. Seen, welche direkt vom Gletscher gedämmt werden, jedoch nicht am Gletscher liegen, erhalten den Wert 2. An der südöstlichen Grenze des Wallis erstreckt sich der Seewjinengletscher, an dessen nördlichen Flanke ein in felsigen Untergrund eingebetteter See vorgefunden wurde (s. Abbildung 23).

Abbildung 23: See seitlich des Seewjinengletschers – Position (2); (Orthophoto 2015)

Unter einer proglazialen Position werden jene Seen angeführt, welche sich unmittelbar bzw. bis max. 5 m vor dem Gletscher befinden. Vom Gletscher abgetrennte Seen liegen im Umkreis von bis zu max. 250 m. Unter der Lagebezeichnung "nicht-glazial" werden Seen zusammengefasst, deren Entfernung zum Gletscher über 250 m beträgt, sich jedoch noch im Einzugsgebiet des Gletschers befinden. Schließlich erhalten Seen den Wert 6, welche in einem gletscherfreien Einzugsgebiet positioniert sind.

Kalben

Die Gefahr eines Abbruchs größerer Eismassen in den See ist gegeben, wenn dieser direkt mit dem Gletscher verbunden ist, wobei angrenzende Toteismassen miteinbezogen werden. Folgendermaßen weisen die beiden Attribute Kalben und Gletscherkontakt eine positive Korrelation auf. Im Zuge der Auswertung der Orthophotos bzw. Satellitenbildern wurden mehrmals treibende Eisblöcke im See festgestellt.

Evolution

Folgende Punktezuteilung wurde hierfür durchgeführt:

- 0 Die Seefläche blieb innerhalb dieses Zeitraums unverändert.
- 1 Die Seefläche zeigt innerhalb dieses Zeitraums Schwankungen.
- 2 Die Seefläche dezimierte sich innerhalb dieses Zeitraums.
- 3 Die Seefläche vergrößerte sich innerhalb dieses Zeitraums.
- 4 Der See hat seinen Ursprung innerhalb dieses Zeitraums.
- 5 Eine klare Bestimmung der Evolution konnte nicht durchgeführt werden.

Im Falle einer eingeschränkten Sicht auf den See aufgrund flächendeckender Eis- bzw. Schneemassen oder einer schwachen Auflösung der Satellitenbilder wurde der Kennwert 5 vergeben. Des Öfteren wurde eine durch Farbkontrast erkennbare Umrandung des Sees verortet, welche eine periodische Überflutungsfläche repräsentieren könnte und somit auf einen interannuell schwankenden Wasserstand zurückzuführen sei.

4.2. Detailuntersuchung ausgewählter Seen

Im nächsten Arbeitsschritt werden acht der insgesamt 733 inventarisierten Seen ausgewählt, welche in erster Linie auf Grundlage der Analyse der Orthophotos ein erhöhtes Ausbruchspotenzial aufweisen. Folgende Einflussfaktoren eines Seeausbruchs wurden im Rahmen der Analyse der Orthophotos näher untersucht:

- Dammtyp
- Gletscherkontakt
- Schmelzwasserzufluss
- Oberflächenabfluss
- Position
- Kalbung
- Evolution während der letzten 10 Jahre

Im Zuge der anschließenden Detailuntersuchung wurden diese auf ihre Richtigkeit überprüft und um weitere wichtige Faktoren ergänzt. Die Untersuchung der geomorphologischen Gegebenheiten in der näheren Umgebung der Seen vor Ort erlaubt es, Aussagen über potenzielle Massenbewegungen, welche den See tangieren könnten, zu tätigen. Eine detaillierte Analyse der Evolution der Seen bis zurück in die Mitte des 20. Jahrhunderts lassen Prognosen über zukünftige Entwicklungen der Seen zu. Die Eruierung von sehr schmalen Abflüssen bzw. Zuflüssen kann beispielsweise anhand von Orthophotos nicht immer mit hundertprozentiger Sicherheit durchgeführt werden. Wird der See von unterschiedlichen Materialien gestaut, ist es oft schwer diese eindeutig zu identifizieren. Bei derartigen Problemen schaffen Geländebegehungen Abhilfe. Abbildung 24 zeigt das Untersuchungsgebiet und die Lage der acht ausgewerteten Seen, welche sich über das gesamte Kantonsgebiet verteilen. Es handelt sich hierbei vorwiegend um Seenkomplexe, die sich in der Vergangenheit vor oder auf Gletschern bildeten. Bei vier der acht näher untersuchten Seenkomplexe weisen nur ein Teil der Seen gegenwärtig Gletscherkontakt auf. Der Großteil der Seen wurde zudem vor Ort erkundet. Die Herangehensweise der Kartierung wird im Folgenden genauer aufgegriffen.

Abbildung 24: räumliche Verteilung der ausgewählten Seen im Kanton Wallis (Datengrundlage: swisstopo)

4.2.1. Geomorphologische Kartierung ausgewählter Seen

"Die Beobachtung und das geomorphologische Arbeiten im Gelände sind fundamentale Voraussetzungen für das Verständnis von Landformen und Erdoberflächenprozesse. (...) Das Erkennen von Form- und Prozesssystemen setzt eine geomorphologische Kartierung voraus" (SCHROTT 2015: 396).

Die geomorphologische Kartierung stellt einen thematischen Schwerpunkt der vorliegenden Arbeit dar. Diese dient grundsätzlich dazu, einen Einblick in die Ausprägung der Erdoberfläche in der näheren Umgebung der Seen zu erlangen sowie etwaige Schwachstellen in Bezug auf Seenausbrüche zu identifizieren. Um im Zuge der geomorphologischen Kartierung flächen- und linienhafte Prozesse sowie Geländeformen anschaulich darzustellen, wird folgende Legendenzusammensetzung (s. Abbildung 25) gewählt.

Abbildung 25: Kartierschlüssel für die geomorphologische Kartierung der Seen (Datengrundlage: KIENHOLZ & KRUMMENACHER 1995)

Die geomorphologische Kartierung wird im Sommer 2017 aufgrund günstigerer Witterungsverhältnisse während eines Aufenthalts im Untersuchungsgebiet durchgeführt. Vor Ort wird auf Basis von Orthophotos (s. Tabelle 5) und aktuellen topographischen Karten, bereitgestellt durch das Bundesamt für Landestopographie swisstopo, ein erster Entwurf einer Kartierung erstellt. Hinterher wird mithilfe von Aufnahmen vor Ort sowie eines digitalen Höhenmodells (swissALTI3DReliefschattierung) eine präzisere Kartierung geomorphologischer Gegebenheiten auf Quantum GIS generiert.

Tabelle 5: Aufnahmejahr der	Orthophotos au	uf swisstopo als	Grundlage der	geomorpholo	gischen Kartierung
5	•	•	Ų	÷ ·	

untersuchter See bzw. Seenkomplex	Aufnahmejahr des Orthophotos
Cheilongletschersee	2016
Chüebodengletschersee	2015
Furgggletscher-Seenkomplex	2015
Gabelhorngletscher-Seenkomplex	2015
Glacier de L'Aneuve-Seenkomplex	2016
Grüebugletscher-Seenkomplex	2014
Oberferdengletscher-Seenkomplex	2016
Rhonegletschersee	2016

Im Rahmen der Kartierung wird die vorab durchgeführte Auswertung mittels Orthophotos mit der tatsächlichen Situation vor Ort verglichen und wenn nötig abgeändert. Dies erlaubt eine noch genauere Bestimmung der für einen Seenausbruch relevanten Faktoren.

4.2.2. Seenentwicklung

Die weitere methodische Herangehensweise sieht eine detaillierte Analyse der Seenentwicklung vor. Anhand der Evolution der Seen lassen sich sowohl Rückschlüsse auf deren Entstehungsprozesse ziehen als auch Voraussagen über deren zukünftige Entwicklung treffen. MERGILI (2016: 19) argumentiert die Wichtigkeit einer kontinuierlichen Analyse der Seenentwicklung folgendermaßen: "Glacial lakes, however, do not always evolve at constant rates. Lakes may remain stable or grow slowly for decades and then experience a sudden increase in area and volume within a few years, strongly coupled to the dynamics of the related glacier".

4.2.2.1. Datengrundlage und -verarbeitung

Die Erhebung der Seenevolution erfolgt auf Basis von älteren Luftbildern, welche vom Bundesamt für Landestopographie swisstopo online zur Verfügung gestellt werden. Die Intervalle der Flugjahre variieren jedoch je nach Lage der Seen. Die älteste Luftbildaufnahme, welche für die Detailuntersuchung herangezogen wurde, stammt aus dem Jahr 1958. Zuerst wird ein Screenshot eines Luftbildes auf swisstopo erstellt. Die Seengröße wird anschließend mithilfe Quantum GIS generiert. Die tatsächliche Seengröße am verzerrten Luftbild wird in Excel errechnet.

5. Ergebnisse

5.1. Seeninventar

Im Rahmen der Fernerkundungsanalyse wurden im Kanton Wallis insgesamt 733 Hochgebirgsseen auf über 2.000 m ü. M. und mit einer Fläche von über 250 m² erfasst. Die folgende statistische Auswertung dient der Visualisierung kausaler Zusammenhänge. Dabei wird überwiegend der Seetyp bzw. die Art des Dammes mit anderen Komponenten in Verbindung gesetzt. Da im Zuge der Bestimmung des Dammmaterials auch dessen Beteiligungsgrad mitberücksichtigt wurde, kommt es vereinzelt vor, dass Dämme aus drei unterschiedlichen Komponenten mit jeweils gleicher Beteiligung aufgebaut sind. Diese werden unter den Seetyp "Kombiniert" angeführt.

Beginnend mit der absoluten und relativen Verteilung der Dammart (s. Tabelle 6) lässt sich grundsätzlich festhalten, dass Fels mit einem relativen Anteil von 40,79 % gefolgt von Moräne mit 32,47 % das dominierende Dammaterial darstellt. Die ausstehenden rund 27 % verteilen sich auf die restlichen sechs Seetypen.

Dammart	Absolut	Relativ [%]
Moräne	238	32,47
Fels	299	40,79
Eis	24	3,27
Massenbewegung	12	1,64
Schwemmfläche	6	0,82
Anthropogen	46	6,28
Kombiniert	31	4,23
unklar	77	10,50

Tabelle 6: relative und absolute Verteilung der Seetypen des Seeninventars

In einem weiteren Schritt wird die Lage der Seen, klassifiziert nach der Nähe zum Gletscher, mit den einzelnen Seentypen in Verbindung gesetzt. Gletschernahe Seen liegen im Umkreis von bis zu 250 m. Gletscherferne Seen befinden sich demzufolge mit einer Entfernung von über 250 m außerhalb dieses Verbreitungsgebiets.

Abbildung 26: Gletschernähe der einzelnen Seetypen mit absoluter und relativer Verteilung

Abbildung 26 gibt einen Einblick in die Verteilung der Gletschernähe der einzelnen Seetypen. Auffallend ist hierbei die Überlegenheit der gletscherfernen Seen, welche in etwa 80 % des gesamten Seeninventars einnehmen. Der relative Anteil der moränengedämmten gletschernahen Seen an allen moränengedämmten Seen ist ident mit dem Anteil der felsgedämmten gletschernahen Seen an allen felsgedämmten Seen. Daraus kann geschlossen werden, dass keiner der beiden Seetypen die Nähe bzw. die Ferne zum Gletscher präferiert.

Abbildung 27: gletschernahe und gletscherferne Seen im Vergleich, klassifiziert nach Seetypen

Werden nun gletschernahe und gletscherferne Seen getrennt voneinander betrachtet, so ergibt sich für moränen- und felsgedämmte Seen eine annähernd idente Verteilung (s. Abbildung 27). Dammtypen, welche nicht bestimmt werden konnten, sind ausschließlich im nicht-glazialen Bereich vorgefunden worden, wo Vegetationsdecken die Sicht auf das darunterliegende Material erschwerten. Die insgesamt 24 eisgestauten Seen sind ausnahmslos an ein glaziales Umfeld gekoppelt. Dämme, welche durch anthropogene Eingriffe gekennzeichnet sind, werden mit Ausnahme von drei Seen vorwiegend in gletscherfernen Bereichen lokalisiert.

Die statistische Auswertung erfolgt auch auf Grundlage der Verteilung der einzelnen Seetypen nach dem Einzugsgebiet. Wie in Abbildung 28 zu sehen ist, beinhaltet das Einzugsgebiet der Rhone 383 von insgesamt 733 untersuchten Seen. Hierbei ist erwähnenswert, dass das Einzugsgebiet der Rhone das mit Abstand größte Gebiet in Wallis darstellt. Das Einzugsgebiet der Matter Vispa mit 88 Hochgebirgsseen belegt mit großem Rückstand die zweite Stelle. In Bezug auf die Datentabelle (s. Abbildung 28), welche die absolute Verteilung der Seetypen numerisch erfasst, sind leichte Schwankungen des Moräne-Fels Verhältnisses zu erkennen. Die benachbarten Einzugsgebiete der Matter Vispa und der Borgne weisen im Gegensatz zu den restlichen Gebieten mehr moränengedämmte als felsgedämmte Seen auf.

Abbildung 28: Verteilung der Seetypen nach Einzugsgebiet (Abkürzungen s. Tabelle 4)

Abbildung 29: absolute Verteilung der Seetypen nach Größenklassen im Untersuchungsgebiet

Als ein weiterer Referenzwert wird die Fläche der Seen herangezogen, die in acht unterschiedliche Klassen differenziert wird. Werden diese nun mit dem Dammtyp in Beziehung gesetzt, ergeben sich die in der Abbildung 29 dargestellten Ergebnisse. Grundsätzlich lässt sich festhalten, dass die vier Kategorien, welche die niedrigeren Flächen beinhalten, den Großteil der Seen für sich beanspruchen. Rund 21 % des gesamten Seeninventars werden demnach der Größenkategorie 2.000 m² – 5.000 m² zugeordnet. Einzig in dieser Klasse dominieren zudem die moränengedämmten Seen, die in den restlichen Klassen nach den von Fels gestauten Seen den zweiten Platz einnehmen. Unter den flächenmäßig größten Seen sind die von Menschen beeinflussten Dammkonstruktionen in der Überzahl. Der Stausee Lac des Dix repräsentiert mit einer Fläche von 3.9 km² den größten erfassten See und stellt einen von drei Ausreißern nach oben dar. Darüber hinaus werden Seen mit einer Fläche von über 40.000 m² auch häufig durch Felsmaterial gedämmt. Immerhin werden drei durch Moränenmaterial gestaute Seen mit über 40.000 m² gezählt, was tendenziell zu einer Erhöhung der Ausbruchsgefahr führt. Eis bzw. Gletscher als Dammaterial nimmt mit der Seegröße ab. Ein ähnliches Bild zeigt sich bei durch Schwemmflächen gedämmten Seen. Der Median, welcher robust gegen Ausreißer ist, liegt hier bei 1.682 m².

Abbildung 30: relative Seetypenverteilung nach Höhenstufen im Untersuchungsgebiet

Abbildung 31: absolute Seetypenverteilung nach Höhenstufen im Untersuchungsgebiet

In Abbildung 30 und 31 wird die relative und absolute Seetypenverbreitung klassifiziert nach fünf unterschiedlichen Höhenstufen dargestellt. Der Median der Seehöhe liegt bei 2.609 m ü. M. Wie zu erwarten war, nehmen die gletschernahen Seentypen tendenziell mit der Höhe zu. Dabei fällt die Zunahme bei den felsgedämmten Seen deutlicher aus als bei den moränengedämmten Seen (s. Abbildung 30). Die Anzahl der Seen nimmt von 2.000

Höhenmeter bis 2.750 Höhenmeter kontinuierlich zu, wobei innerhalb 2.500 und 2.750 Höhenmeter die meisten Seen vorzufinden sind. Die Höhenstufe 2.750 - 3.000 m ü. M. verzeichnet hingegen wieder eine leichte Abnahme von ca. 50 Seen. Über einer Seehöhe von 3.000 m ist schließlich eine abrupte Reduzierung der Seen zu vernehmen (s. Abbildung 31). Dieser Umstand dürfte auf die überwiegend glaziale Überprägung der Oberfläche ab 3.000 Höhenmeter zurückzuführen sein. Die Verteilung der durch Eis bzw. Gletscher gestauten Seen ist interessant, da die eisgedämmten Seen nicht wie zuvor angenommen mit der Höhe zunehmen. Die relativ hohe Anzahl von acht Seen auf einer Seehöhe von 2.250 – 2.500 m könnte durch Toteisvorkommen bereits in niedrigeren Lagen begründet werden. In Abbildung 31 wird zudem gut ersichtlich, dass anthropogen beeinflusste Dämme zunehmend bis auf 2.500 Höhenmeter angetroffen werden und weiter oberhalb fast gänzlich fehlen.

Abbildung 32: Seenevolution nach Dammtypen im Untersuchungsgebiet

Abbildung 33: Auswertung der Seenevolution im Untersuchungsgebiet

Die Darlegung der Evolution (2006 bis 2016) aller inventarisierten Seen bildet den abschließenden Punkt der statistischen Auswertung. Mit Verweis auf Abbildung 33 sind nahezu die Hälfte der Seen durch eine stabile Entwicklung gekennzeichnet. Wird diesbezüglich Abbildung 32 herangezogen, so ergibt sich für den Großteil der gletscherfernen felsgedämmten Seen eine stabile Entwicklung. Zu 24 % der Seen im Untersuchungsgebiet konnten keine Aussagen zur Evolution aufgrund ungünstigerer Umstände (s. Kapitel 6.1.1.) getätigt werden. Von den insgesamt 28 % der Seen, welche bis zurück ins Jahr 2006 durch Größenschwankungen geprägt waren, weist die Hälfte (14 %) eine Vergrößerung auf. Lediglich 4 % konnten sich während des genannten Zeitraums verkleinern.

Da eine Seevergrößerung hinsichtlich der Bewertung eines Seeausbruchs von hoher Relevanz ist, wird insbesondere auf diese ein Hauptaugenmerk gelegt. Der überschaubare Anteil von lediglich drei anthropogenen, gletschernahen Seetypen verzeichnet eine stabile Entwicklung, wohingegen 24 anthropogene, gletscherferne Seetypen unterschiedliche Entwicklungstendenzen aufzeigen. Hierbei ist die relativ große Anzahl von insgesamt 11 gletscherfernen, anthropogen beeinflussten Seen zu nennen, welche sich in den besagten Zeitraum vergrößerten. Demnach weisen Seen, welche durch Moränen und Fels gestaut werden, eine vergleichsweise höhere Wahrscheinlichkeit einer Seenvergrößerung auf als die restlichen Dammtypen.

5.1.1. Räumliche Verteilung

In Abbildung 34 und 35 wird die räumliche Verteilung des Seeninventars im Untersuchungsgebiet nach unterschiedlichen Kriterien dargestellt. Während Abbildung 34 die Verteilung acht definierter Größenklassen der Seenflächen repräsentiert, zeigt Abbildung 35 die räumliche Verbreitung der Seentypen, klassifiziert nach der Art des Dammes.

Abbildung 34: räumliche Verteilung der Seeflächen in Wallis (Datengrundlage: swisstopo)

Abbildung 35: räumliche Verteilung der Seetypen klassifiziert nach Dammart in Wallis (Datengrundlage: swisstopo)

5.2. Detailuntersuchung ausgewählter Seen

5.2.1. Gabelhorngletscher-Seenkomplex

Seeevolution

Abbildung 36: Seenevolution des Gabelhorngletscher-Seenkomplexes (Datengrundlage: swisstopo)

See	2015	2005	1999	1982	1977
See 1	16.320	353			
See 2	3.935	6.007	7.451	6.812	11.160
See 3	537	3.137	1.627	1.587	4.143

Tabelle 7: zeitliche Entwicklung der Seeflächen in m² des Gabelhorngletscher-Seenkomplexes

Die Seen am Fuße des Gabelhorngletschers (s. Abbildung 36) befinden sich im Einzugsgebiet der Matter Vispa oberhalb von Zermatt auf einer Seehöhe von 2.661 m (1), 2.569 m (2) sowie 2.628 m (3). See 2 und 3 sind das erste Mal auf dem Luftbild von 1977 zu sehen. Aufgrund der dennoch beträchtlichen Größe von etwa 11.160 m² (s. Tabelle 7) des Sees 2 ist anzunehmen, dass dieser bereits weit vor 1977 gebildet worden ist. Die Existenz der Seen im Jahr 1946 lässt sich angesichts der Schneedecke nicht belegen. Aufgrund der vermuteten Reichweite der Gletscherzunge anhand erkennbaren Rändern könnte zu diesem Zeitpunkt See 2 möglicherweise bereits unmittelbar vor dieser liegen. See 3 weist im Laufe der Entwicklung mehrere Größenschwankungen auf. Die Größenabnahme von ungefähr 2.555 m² zwischen 1977 und 1982 ist vermutlich auf einen Gletschervorstoß zurückzuführen. Laut dem Schweizerischen Gletschermessnetz verzeichneten 38 von insgesamt 100 analysierten Gletscherzungen in der Schweiz im Jahr 1982 einen Vorstoß. Im Vergleich dazu wurden im Jahr 2016 lediglich fünf vorstoßende Gletscherzungen von insgesamt 94 untersuchten Gletscher gezählt (VAW, o. J., a).

Die beträchtliche Verkleinerung des Sees 3 zwischen 2005 (3.137 m²) und 2015 (537 m²) wurde mit ziemlicher Sicherheit durch einen Seeausbruch ausgelöst, deren Nachweis ein Murgang unterhalb des Sees darstellt (s. Abbildung 37). See 1 ist von einer sehr jungen Entstehungsgeschichte und einem rasanten Wachstum gekennzeichnet. Demnach entstand dieser zwischen 1999 und 2005, wobei aufgrund seiner geringfügigen Größe von 353 m² im Jahr 2005 anzunehmen ist, dass dieser unmittelbar vor 2005 in Erscheinung tritt. 2015 umfasst See 1 bereits eine Fläche von 16.320 m². Im Falle eines anhaltenden rasanten Abschmelzens des Gletschers könnte See 1 in Zukunft erheblich an Größe zunehmen, was die Gefahr einer Überflutung maßgeblich erhöht. Parallel zum Wachstum des Sees 1 zeigte sich bei See 2 zwischen 2005 und 2015 eine Größenabnahme von etwa 2.072 m².

Abbildung 37: geomorphologische Kartierung des Gabelhorngletscher-Seenkomplex

Die geomorphologische Kartierung (s. Abbildung 37) wurde nicht vor Ort durchgeführt, sondern lediglich auf Grundlage des Orthophotos 2015 angefertigt.

Die Umgebung der Seen zeichnet sich durch eine große Vielfalt an geomorphologischen Prozessen aus. Die Seen werden von einem regenerierenden Gletscher gespeist, welcher kein eigenes Akkumulationsgebiet mehr aufweist. Der Eis bzw. Schneenachschub erfolgt hier infolge Windverlagerungen und Lawinenabgängen (BAUMHAUER & WINKLER 2014). Der regenerierende Abschnitt des Gabelhorngletschers bezieht Schnee und Eis hauptsächlich durch Eis- bzw. Schneelawinen des überhängenden Gletschers. Die abgebrochene Gletscherzunge wird von Schutt bedeckt, welcher vermutlich unter anderem von der westlich gelegenen Felswand stammt. See 1 steht im direkten Kontakt mit der abgebrochenen Gletscherzunge. Aufgrund der Verortung von Eisblöcken im See kann mit Sicherheit vom Kalben des Gletschers in den See 1 ausgegangen werden, was einen potenziellen Auslöser für Überschwemmungen darstellt. Lakristine Ablagerungen im unmittelbaren Umkreis von See 2 und See 3 lassen auf eine ehemals größere Ausdehnung der Seen schließen, was mithilfe der älteren Luftbilder bestätigt wird. Infolgedessen geht von See 2 und See 3 keine Gefahr eines Ausbruchs aus. Des Weiteren befindet sich nördlich der Seen eine Seitenmoräne mit gut erkennbaren Erosionsrinnen und darunterliegenden Hangschutt nahe dem Abfluss von See 1.

Werden nun die möglichen Einflussfaktoren eines Ausbruchs des Sees 1

- Massenbewegungen an der westlichen Felswand verursacht durch den kontinuierlichen Zerfall des Permafrosts,
- Stauung des Sees durch Hangschutt und Moränenmaterial,
- Kalben des Gletschers,
- rasantes Größenwachstum des Sees, in Beziehung zueinander gebracht,

ergibt sich für die Zukunft ein nicht zu unterschätzendes Gefahrenpotenzial eines Seenausbruchs.

5.2.2. Furgggletscher-Seenkomplex

Seeevolution

Abbildung 38: Seeevolution des Furgggletscher-Seenkomplexes (Datengrundlage: Swisstopo)

See	2015	2005	1999	1988	1977
See1	79.835	77.110	82.875	67.624	32.916
See2	5.622	956			
See3	1.063				

Tabelle 8: zeitliche Entwicklung der Seeflächen in m² des Furgggletscher-Seenkomplexes

Der Seenkomplex befindet sich an der Grenze zu Italien oberhalb von Zermatt unweit des Gabelhorngletschers. Am Fuße des Oberen Theodulgletschers und des Furgggletschers kam es während der letzten Jahrzehnte zur Bildung zahlreicher kleinerer und etwas größerer Seen. Für die Analyse der zeitlichen Entwicklung wurden drei der Seen ausgewählt (s. Abbildung 38), welche augenscheinlich als ausbruchsgefährdet gelten.

Der Theodulgletschersee (See 1) befindet sich auf einer Seehöhe von 2.848 m und stellt den mit Abstand größten See des untersuchten Seenkomplexes dar. Wie in Abbildung 38 ersichtlich ist wurde dieser innerhalb des Zeitraums 1956 bis 1977 im Zuge eines Gletscherrückzuges gebildet. Aufgrund der beachtlichen Größe von 32.916 m² im Jahr 1977 wird angenommen, dass der See bereits weit vor 1977 in Erscheinung trat. Die mit einer Fläche von 82.875 m² größte Ausdehnung erreichte der Theodulgletschersee 1999 in Folge eines deutlichen Zurückweichens der Gletscherzunge. Die anschließende geringe Verkleinerung des Sees 1 könnte auf die Neuformung kleinerer Seen entlang des Gletscherabflusses zurückzuführen sein, welche in der geomorphologischen Kartierung (s. Abbildung 39) mitberücksichtigt wurden.

See 2 und 3 bildeten sich erst zu Beginn des 21. Jahrhunderts, wobei See 2 zuerst nachgewiesen wurde. Im Zuge des Gletscherrückzugs ist See 2 von anfänglichen 956 m² im Jahr 2005 auf 5.622 m² 2015 angewachsen.

Geomorphologische Kartierung

Abbildung 39: geomorphologische Kartierung des Furgggletscher-Seenkomplexes (Datengrundlage: swisstopo)

Die geomorphologische Kartierung (s. Abbildung 39) wurde am 5.9.2017 vor Ort durchgeführt. Dabei wurde die Umgebung des gesamten Seenkomplexes am Fuße der beiden Gletscher untersucht.

Laut mündlicher Auskunft eines einheimischen Mitarbeiters der Bergbahnen kommt es tendenziell zur Bildung neuer Seen anstatt zur Vergrößerung bereits Bestehender. Diese Tatsache resultiert aus der Beschaffenheit des Untergrunds. Kleinräumige Geländevertiefungen im felsigen Untergrund wirken einer Vergrößerung der Seen entgegen. Der Theodulgletschersee (1) befindet sich direkt vor einer meterhohen, steilen Felswand (s. Abbildung 40, welche in der Vergangenheit durch den Gletscher abgeschliffen wurde. Im Falle eines Erdbebenereignisses oder eines voranschreitenden Zerfalls des Permafrosts könnte diese zunehmend instabil werden, wodurch in weiterer Folge die Wahrscheinlichkeit von in den See fallenden Massenbewegungen zunimmt.

See 2 und 3 konnten im Rahmen der Kartierung vor Ort nicht eingesehen werden. Anhand der Analyse des Orthophotos wurde jedoch festgestellt, dass diese Seen ausschließlich durch Fels gestaut werden. Am Fuße des Felsen konnte Hangschutt identifiziert werden, welcher mit ziemlicher Sicherheit von dieser stammt. In der linken oberen Hälfte der Abbildung 40 ist dieser erkennbar. Die beiden Seen sind direkt an den Gletscher gekoppelt. Dadurch besteht die Möglichkeit des Kalbens in die Seen. Ein Abfluss konnte nur bei See 3 verortet werden, welcher in den darunterliegenden Theodulgletschersee mündet.

Abbildung 40: Theodulgletschersee (See 1) des Furgggletscher-Seenkomplexes; Aufnahme von Westen (2015)

Des Weiteren wurde im Zuge der Geländebegehung ein Murgang und deren Ablagerungsbereich am Rand des See 1 vorgefunden (s. Abbildung 41 B). Die Mure ist das erste Mal am Luftbild von 1999 zu sehen nachdem sich der Gletscher zurückzog. Zudem wurden vereinzelt lakristine Ablagerungen festgestellt, aufgrund dessen auf ehemalige Wasserkörper geschlossen wird.

Hinsichtlich des Risikomanagements wurden im Bereich des Theodulgletschersees Maßnahmen zur Überwachung des Wasserstandes errichtet. Am westlichen Zufluss des Sees wurden rote Stäbe erkannt, wie in Abbildung 41 A dargestellt ist. Vor Ort konnte außerdem ein Verbau des Abflusses festgestellt werden, welcher in erster Linie der Steuerung der Abflussmenge dient.

Abbildung 41: (A) Stäbe zur Messung des Wasserstandes (B) Murgang beim Zufluss des Theodulgletschersees (2017)

5.2.3. Cheilongletschersee

Seeevolution

Abbildung 42: Seeevolution des Cheilongletschersees (Datengrundlage: swisstopo)

Tabelle 9: zeitliche Entwicklung der Seefläche in m² des Cheilongletschersees

See	2016	2005	1988	1977	1964	1959
See	37.834	28.296	1.994	2.693	4.262	2.323

Der untersuchte See befindet sich im Einzugsgebiet der Borgne auf etwa 2.684 m ü. M. Er steht in direktem Kontakt mit dem Cheilongletscher, im Verlauf dessen Rückzugs er sich bildete. Der Abfluss des Sees mündet in den rund 300 Höhenmeter tiefer gelegenen Stausee Lac des Dix. Die Entwicklung des Sees geht bis zur Mitte des 20. Jahrhunderts zurück (s. Abbildung 42). Am Luftbild von 1959 tritt er das erste Mal in Erscheinung, wobei aufgrund der eingeschränkten Sicht im Jahr 1946 über die Ausdehnung keine Aussagen getätigt werden können. Im Zuge des Zurückweichens der Gletscherzunge Richtung Süden verzeichnete der See über die Jahrzehnte einen Flächenzuwachs. Hierbei ist es wichtig zu erwähnen, dass der heutige See in der Vergangenheit vielmehr einer Schwemmlandschaft gleichsah. So ist am Luftbild von 1999 außer einer auffallend großen Schwemmfläche keine größere zusammenhängende Wasserfläche ersichtlich. Im Jahr 2005 erwies sich die Abgrenzung zwischen

Schwemmfläche und Seefläche als schwierig. Im Zuge einer vergleichenden Analyse der Luftbilder 1999 und 2005 konnte jedoch 2005 merkbar mehr Wasser wahrgenommen werden. 2016 hat sich erstmals ein Teil der ehemaligen Schwemmfläche zu einem größeren See umgewandelt. Mit Verweis auf Abbildung 11 wird der Cheilongletscher zudem vom Schweizerischen Gletschermessnetz (GLAMOS) unter den schwindenden Gletschern angeführt. Von 2015 bis 2016 wies dieser ein Längendefizit von 7,4 m auf (VAW, o. J., a). Aus diesem Grund kann angenommen werden, dass der See in Zukunft bei gleichbleibenden Gletscherschwund an Größe zunimmt.

Abbildung 43: geomorphologische Kartierung des Cheilongletschersees (Datengrundlage: swisstopo)

Die formenreiche Gestaltung der Erdoberfläche in der näheren Umgebung des Sees geht auf verschiedenste geomorphologische Prozesse zurück, welche in der Vergangenheit wirkten bzw. noch gegenwärtig aktiv sind. Der See steht in direktem Kontakt mit dem Gletscher, welcher zum Großteil mit Ablagerungsmaterial überdeckt wurde. Auf Grundlage der Abbildung 44 wird angenommen, dass sich ein Teil des Sees auch unterhalb des Gletschers erstreckt. Während der Geländebegehung am 4.9.2017 konnte visuell wahrgenommen werden, wie Ablagerungsmaterial vom Gletscher in den See stürzte. Aufgrund der besonders starken Neigung des Gletschers im Seebereich, könnte es zukünftig zu weiteren Sturzereignissen in den See kommen (s. Abbildung 44).

Abbildung 44: Cheilongletschersee nördlich des schuttbedeckten Gletschers; Aufnahme von Nordwest (2017)

Im Bereich des derzeitigen fluvioglazialen Schotters bzw. Moränenmaterials (s. Abbildung 43) befand sich im Laufe des letzten Jahrhunderts die mit dem Gletscher zurückgewichene Schwemmlandschaft. Zu dieser Zeit lag der Abfluss weiter nördlich, wie aktuell eine Erosionsrinne belegt. Während der Kartierung vor Ort konnten zudem südöstlich des Sees oberhalb des Gletschers Steinschläge akustisch wahrgenommen werden. Unterhalb der Abrisskante der Steinschläge wurden zwei Murkegel verortet, welche in Abbildung 45 hervorgehoben wurden.

Auf Grundlage der vorgefundenen Umgebung des Sees sowie der zeitlichen Analyse weist dieser augenscheinlich ein geringes Ausbruchspotenzial auf. Im Falle einer Kalbung oder eines Sturzereignisses in den See spielt die vorgelagerte große Schwemmlandschaft eine wesentliche Rolle als Puffer. Diese könnte die Flutwelle abfangen und gleichmäßig auf der mit zahlreichen Einsenkungen behafteten Oberfläche verteilen. Schreitet jedoch das Abschmelzen des Gletschers zukünftig rasant voran, wird infolgedessen immer mehr Wasser im Bereich der Gletscherzunge freigegeben. Dieses sammelt sich daraufhin überwiegend im vorgelagerten See an. Voraussetzung für eine Erhöhung der Ausbruchsgefahr ist zudem die Beschaffung des Gletscheruntergrunds. Ist dieser stark eingesenkt worden, begünstigt dies das Anwachsen des Sees. Der See wird ausschließlich durch Moränenmaterial sowie fluvioglazialem Schotter gestaut, was wiederum die Ausbruchsgefahr erhöht.

Abbildung 45: vorgelagerte Schwemmlandschaft des Cheilongletschersees & gut erkennbare Murkegel; Aufnahme von Nordwest (2017)

5.2.4. Oberferdengletscher-Seenkomplex

Seeevolution

Abbildung 46: Seeevolution des Oberferdengletscher-Seenkomplexes (Datengrundlage: swisstopo)

Taballa 10. zaitlicha Entwicklung dar Saaflächa in m² das Oberfordengletscher Saankompleyes

Tabelle It	J. Zennene	Entwicklung der	Seemache in m-	des Oberreiden	gletschei-Seenko	inplexes

See	2016	2005	2000	1992	1986	1973	1969
See 1	3.687	6.409	4.661	2.462	1.089	1.519	122
See 2	6.243						

Der Oberferdengletscher-Seenkomplex liegt im Einzugsgebiet der Rhone nahe der nördlichen Kantonsgrenze auf etwa 2.749 m ü. M. (See 1). Er besteht gegenwärtig aus zwei Seen mit einer Fläche von 3.687 m² (See 1) und 6.243 m² (See 2).

Am Luftbild von 1969 ist der am Oberferdengletscher gelegene See 1 das erste Mal zu sehen. Aufgrund einer ausgeprägten Schneedecke im Sommer 1946 können keine Aussagen über das Bestehen des Sees getätigt werden. Es ist jedoch anzunehmen, dass dieser erst kurz vor 1969 gebildet worden ist. Das wird durch die geringe Fläche von 122 m² im Jahr 1969 begründet. Ab diesem Zeitpunkt gewann See 1 bis 2016 kontinuierlich an Fläche dazu. Eine Ausnahme spiegelt die kurzfristige Größenabnahme um etwa 430 m² von 1973 bis 1986 wider. Wie bereits bei der Entwicklung anderer Seen festgestellt, ist diese Abnahme vermutlich auf den Gletschervorstoß während der Mitte der zweiten Hälfte des 20. Jahrhunderts zurückzuführen. 2005 erreichte See 1 mit einer Fläche von 6.409 m² seine bis heute größte Ausdehnung. Im Zeitraum zwischen 2005 und 2016 kam es schließlich zur Abkoppelung des Sees 2 vom See 1. Dieser Prozess kann aus dem dokumentierten nationalen Gletscherrückzug innerhalb dieses Zeitraums abgeleitet werden (VAW, o. J., a). Eine weitere Voraussetzung für die Bildung des Sees 2 stellt ein leicht eingesenkter Gletscheruntergrund dar.

Geomorphologische Kartierung

Abbildung 47: geomorphologische Kartierung des Oberferdengletscher-Seenkomplexes (Datengrundlage: swisstopo)
Die geomorphologische Kartierung der Seen am Oberferdengletscher stellte sich als schwierig heraus. Offensichtliche Oberflächenerscheinungen erforderten eine nähere Auseinandersetzung mit Blick auf das Detail. So wurde die Ablagerung nördlich der Seen anfangs fälschlicherweise als Seitenmoräne identifiziert. Nach Absprache mit Herrn WINKLER (2018) dürfte es sich hierbei jedoch um einen schuttbedeckten Gletscher ("debris covered glacier") handeln, welcher mithilfe des Höhenmodells (swissALTI3DReliefschattierung) auf Swisstopo erkannt wurde. Außerhalb des kartierten Bereichs dürfte der schuttbedeckte Gletscher weiter östlich schließlich in einen Blockgletscher ("glacially derived rock glacier") übergehen.

Die Seen befinden sich auf schuttbedecktem Gletscher und weisen keine oberflächliche Verbindung über ein Wassergerinne auf. Es kann trotzdem davon ausgegangen werden, dass See 1 über ein unterirdisches Gerinne von See 2 gespeist wird, zumal sie in der Vergangenheit vereint waren. Dadurch kommt es zu einer Filterung des Wassers, was wiederum auch die dunkelblaue Farbe des Sees 1 erklärt (s. Abbildung 49). See 2 weist hingegen eine grünlich milchige Farbe auf, welche ein charakteristisches Merkmal eines durch Gletscher gespeisten Sees darstellt. Bezüglich der Entstehung der Seen lassen sich Parallelen zum eingangs angeführten Grindelwaldgletschersee ausmachen (s. Kapitel 2.2.3). Beim Oberferdengletscher-Seenkomplex dürfte es sich auch um eine Riegelbildung am durch Schutt konservierten Gletscher handeln. Aufgrund des direkten Kontaktes des Sees 2 zum Gletscher besteht die Möglichkeit einer Kalbung in den See, was durch die im See treibenden kleinen Eisblöcke bestätigt wird (s. Abbildung 49).

Im Zuge der Geländebegehung konnten die Seen bedauerlicherweise nur aus nördlicher Richtung untersucht werden. Aufgrund eines weiter östlich erkennbaren Gerinnes (s. Abbildung 48B) wird angenommen, dass See 2 einen Abfluss aufweist, der nicht vollständig eingesehen werden konnte. Des Weiteren befindet sich entlang der Westseite des Seenkomplexes eine hohe Felswand, welche sehr anfällig für Massenbewegungen ist (s. Abbildung 48A). Während der Geländebegehung konnten hier Steinschläge akustisch wahrgenommen werden, was durch Sturzablagerungen am Gletscher dokumentiert wird. Zusätzlich befindet sich westlich der Seen ein Murkegel am Gletscher, dessen Murgang in der Felswand identifiziert werden konnte. Durch die voranschreitende Ausaperung des Gletschers kommen darunterliegende Felsblöcke zum Vorschein, wie nordöstlich der Seen in Abbildung 49 zu sehen ist. Eine Ausaperung gibt zudem das durch den Gletscher zusammengehaltene Geröll frei, wodurch zusätzlich Steinschläge ausgelöst werden können.

Hinsichtlich einer Beurteilung des Ausbruchspotenzials der Seen lässt sich zusammenfassend sagen, dass deren Umgebung eine erhöhte Wahrscheinlichkeit einer Massenbewegung jeglicher Art aufweist, welche die Seen direkt tangieren könnten. Hinzu kommt die Kalbung des Gletschers in den See, welche durch eine fortlaufende Erwärmung zukünftig vermehrt hervorgerufen wird. Die Stauung des Sees durch Ablagerungsmaterial sowie darunterliegendem Eis lässt zudem auf ein erhöhtes Ausbruchspotenzial der Seen schließen.

Abbildung 48: (A) Oberferdengletscher-Seenkomplex mit von Süd nach Nord verlaufender Felswand; (B) vermuteter Seenabfluss (Pfeil) vor Eisdamm; Aufnahmen von Norden (2017)

Abbildung 49: Oberferdengletscher-Seenkomplex mit schuttbedecktem Gletscher im unteren Abschnitt des Bildes; Aufnahme von Norden (2017)

5.2.5. Chüebodengletschersee

Seeevolution

Abbildung 50: Seeevolution des Chüebodengletschersees (Datengrundlage: swisstopo)

Tabelle 11: zeitliche Entwicklung der Seefläche in m² des Chüebodengletschersees

See	2015	2008	2006	2005	1999
See	95.521	67.260	64.442	39.481	12.083

Der Chüebodengletschersee liegt im Einzugsgebiet der Rhone auf ca. 2.695 m ü. M. Die östliche Kantonsgrenze verläuft direkt durch die Mitte des Chüebodengletschers. Der See gehörte im Jahr 2015 mit Ausnahme eines kleinen Teiles zum Kanton Wallis. Als der See die Jahre zuvor noch kleiner war, erstreckte sich der gesamte See noch auf Walliser Kantonsgebiet.

Am Luftbild von 1999 (s. Abbildung 50) wird der See das erste Mal erfasst. Es ist jedoch anzunehmen, dass dieser zu jenem Zeitpunkt überwiegend noch unter dem Eis existiert. Am Luftbild des Jahres 1999 konnten lediglich Brüche im Eis festgestellt werden, in denen sich bereits Wasser ansammelte. In den darauffolgenden sechs Jahren vollzog sich ein rasantes Wachstum des Sees. In Tabelle 11 ist zu sehen, dass die Fläche von den vermuteten 12.083 m² auf bis zu 39.481 m² im Jahr 2005 anstieg. Eine beträchtliche Zunahme von insgesamt 24.962 m² konnte zwischen 2005 und 2006 festgestellt werden. Diese rapide Zunahme lässt sich dadurch begründen, dass ein Großteil des Sees bereits 2005 unter der Eisoberfläche vorhanden war. Im folgendem Jahr 2006 kam der See schließlich durch das Ab-

brechen der Eismassen vom Gletscher am Luftbild zum Vorschein. Im Zuge der vergleichenden Analyse der Luftbilder fällt weiters auf, dass bis zum Jahr 2005 der Gletscher im Juli-August noch mit Schnee bedeckt war, was auf den Luftbildern ab dem Jahr 2006 nicht mehr ersichtlich ist. Abbildung 52 und 53 visualisiert die Seenentwicklung von 2010 bis 2016. Im Jahr 2015, wovon die letzte Luftaufnahme zur Verfügung steht, beträgt die Seenfläche letztendlich 95.521 m². Somit stellt der Chüebodengletschersee den flächenmäßig größten See im Rahmen der Detailkartierungen dar.

Geomorphologische Kartierung

Abbildung 51: geomorphologische Kartierung des Chüebodengletschersees (Datengrundlage: swisstopo)

Die geomorphologische Kartierung, dargestellt in Abbildung 51, erfolgte ausschließlich auf Grundlage des Orthophotos von 2015, da eine Geländebegehung aufgrund einer schwierigen Besteigung nicht möglich war. Das Orthophoto, die topographische Karte auf Swisstopo sowie Abbildung 52 und 53 lieferten jedoch zahlreiche wertvolle Informationen zur geomorphologischen Umgebung des Sees.

Wie in Abbildung 51 gut zu sehen ist, wird der See ausschließlich durch Fels gedämmt, welcher den Seespiegel nicht bedeutend überragt. Drei Abflüsse sorgen für die Entwässerung des direkt mit dem Gletscher in Kontakt stehenden Sees. Südwestlich des Wasserkörpers wurden vereinzelt Toteisflächen verortet, wovon eine über deren Abfluss mit dem Gletscher verbunden ist. Im Süden des Sees wurde am Gletscher sowie oberhalb des Gletschers Sturzmaterial in Form von Großblöcken, Blöcken sowie Steinen abgelagert, welche von der südlichen Felswand stammen. Weitere Sturzereignisse dürften sich in der Vergangenheit nordöstlich des Sees ereignet haben, welche für die ausgeprägten Sturzablagerungen verantwortlich sind. Aufgrund dieser Tatsache ist anzunehmen, dass unbekannte Mengen an Schutt den See tangierten. Eine weitere geomorphologische Besonderheit in der Umgebung des Sees stellt ein Murgang unterhalb des Felsdammes dar. Ein Abfluss des Sees verläuft direkt durch diesen Murgang. Aufgrund dessen könnte erstens davon ausgegangen werden, dass dieser durch einen früheren Seenausbruch gebildet worden ist. Zweitens besteht die Möglichkeit, dass sich durch erhöhte Niederschläge in der Felswand Lockermaterial entlang des Gerinnes löste und infolgedessen eine Mure in Gang gesetzt wurde.

Werden nun die geomorphologischen Gegebenheiten hinsichtlich eines Seenausbruchs beleuchtet, so sind folgende zukünftige Prozesse von sehr hoher Bedeutung. Ein voranschreitender rasanter Rückzug des Gletschers und die damit verbundene erhöhte Freisetzung von Wasser führt aufgrund der vorhandenen Abflüsse nicht zwingend zu einem Ansteigen des Seespiegels. Im Falle eines Sturzereignisses, im Zuge dessen es zur Blockade eines oder mehrerer Abflüsse kommen könnte, wird ein Überlaufen des ohnehin niedrigen Felsdammes begünstig. Des Weiteren weisen Sturzereignisse in den See ebenso ein hohes Auslösepotenzial für eine Überflutung aus. Eine mögliche Kalbung in den See dürfte mit einem geringeren Auslösepotenzial einhergehen aufgrund der auffällig dünnen Gletscherschicht am Rande des Sees (s. Abbildung 52 & 53). Das mit Abstand geringste Auslösepotenzial stellt ein Versagen des Felsdammes dar, dessen Gründe im Kapitel (2.1.4.2.) näher erläutert wurden.

Abbildung 53: Chüebodengletschersee am 18.7.2010; Aufnahme von Osten (Quelle: www.GletscherVergleiche.ch (o. J.))

Abbildung 52: Chüebodengletschersee am 7.8.2016; Aufnahme von Osten (Quelle: www.GletscherVergleiche.ch (o. J.))

5.2.6. Rhonegletschersee

Seeevolution

Abbildung 54: Seeevolution des Rhonegletschersees (Datengrundlage: swisstopo)

Taballa 12.	zaitlicha	Entwicklung	dor Se	aflächa	in m ²	dae	Phoneale	techarcoas
Tabelle 12.	zennene	Entwicklung	uer se	enache	III III	ues	KIIOIIEgie	ischersees

See	2016	2010	2008	2007	2005	2003	2000	1988
See	92.138	39.256	19.642	18.241	7.405	6.444	11.076	394

Der proglaziale Gletschersee befindet sich im äußersten Nordosten des Kantons Wallis im Quellgebiet der Rhone auf etwa 2.244 m ü. M. Abbildung 54 veranschaulicht die zeitliche und räumliche Entwicklung des Sees anhand älterer Orthophotos und Luftbildaufnahmen. Die erste Aufzeichnung stammt aus dem Jahr 1976 als sich der Rhonegletscher noch über den gesamten heutigen Seenbereich erstreckt. 1988 wird bereits der ursprüngliche Wasserkörper mit einer verhältnismäßig kleinen Fläche von 394 m² seitlich der Gletscherzunge verortet. Zwölf Jahr später im Jahr 2000 ist der See bereits auf insgesamt 11.076 m² angewachsen. Von 2000 bis 2003 verliert der See jedoch nahezu die Hälfte der Fläche und kann in den darauffolgenden Jahren nur mäßig an Größe zurückgewinnen.

Im Jahr 2007 entstand ein zweiter schmaler Wasserkörper am vorderen Ende der Gletscherzunge. Es dürfte dennoch davon ausgegangen werden, dass die beiden Seen bereits unter der Eisoberfläche miteinander verbunden waren. Des Weiteren sind etliche Eisblöcke im Jahr 2008 sowie 2010 auf den Luftbildaufnahmen zu sehen, was einen beträchtlichen Flächenzuwachs des Sees bewirkte.

Im Jahr 2016 umfasst der See schließlich mit einer Fläche von 92.138 m² bereits die gesamte ehemalige West-Ost Erstreckung der Gletscherzunge. Die Vergrößerung der Seenfläche korreliert mit den Messdaten der Schweizerischen Gletschermessnetzes (s. Abbildung 11). Von 2015 bis 2016 zog sich demnach der Rhonegletscher um insgesamt 18 m zurück (VAW, o. J., a).

Geomorphologische Kartierung

Abbildung 55: geomorphologische Kartierung des Rhonegletschersees (Datengrundlage: swisstopo)

Im Zuge der geomorphologischen Kartierung (s. Abbildung 55) wurde festgestellt, dass die nähere Umgebung des Sees primär aus Felsmaterial aufgebaut ist. Der See wird südlich vollständig durch Fels gestaut, worauf der Gletscherschliff deutlich erkennbar ist (s. Abbildung 56). Der See wird über einen breiten Abfluss auf der eher östlichen Seite des Dammes entwässert. Gespeist wird der Wasserkörper sowohl auf direktem Wege durch Kontakt mit dem Gletscher als auch auf indirektem Wege über ein Gerinne des Gletschers. Nördlich des Sees wurde zudem Ablagerungsmaterial auf felsigen Untergrund vorgefunden. Durch Massenbewegungen mit Ausgang an der Seitenmoräne sowie an der nördlich gelegenen Bergflanke, welche außerhalb des kartierten Bereichs liegt, wurde das Material seitlich des Sees abgelagert. Zusätzlich ist hierbei das Tangieren des Sees nicht auszuschließen. Mit fortlaufender Entfernung zum See nimmt der Moränenanteil an der östlichen Seitenmoräne zu. Westlich des Sees konnte anhand der Orthophotos sowie der Geländebegehung eine Abgrenzung zwischen Grund- und Seitenmoräne vorgenommen werden. Der Übergang zur Grundmoräne ist durch eine geringere Neigung gekennzeichnet und wird mit einer dünnen Schicht Hangschutt überlagert. Dieser stammt von der angrenzenden Seitenmoräne, wo teilweise bereits der felsige Untergrund sichtbar ist.

In Anbetracht einer möglichen durch den See hervorgerufenen Überschwemmung nehmen die lokalisierten Massenbewegungen eine Schlüsselrolle ein. Diesbezüglich ist die Positionierung des Sees zwischen zwei Bergflanken ein wesentlicher Einflussfaktor. Wird in Folge eines Sturzereignisses der Abfluss blockiert, dürfte es zum Überlaufen des Sees führen. Eine Kalbung in den See weist demgegenüber ein geringeres Auslösepotenzial einer Flutwelle auf, da die Gletscherschicht am See eine spärliche Dicke aufweist. Ein Versagen des Felsdammes kann zudem fast zur Gänze ausgeschlossen werden.

Werden nun die erarbeiteten Einflussfaktoren eines Seenausbruchs sowie die zeitliche Entwicklung gegeneinander abgewogen, lassen sich Parallelen zum See am Chüebodengletscher feststellen. Rasantes Wachstum in den letzten 10 Jahren sowie eine durch Massenbewegungen und Fels geprägte Umgebung sind diesbezüglich anzuführen.

Abbildung 56: Rhonegletschersee am 23.6.2017; Aufnahme von Südost (Quelle: www.GletscherVergleiche.ch (o. J.))

5.2.7. Glacier de l'Aneuve See

Seeevolution

Abbildung 57: Seeevolution des Glacier de l'Aneuve Sees (Datengrundlage: swisstopo)

Im Einzugsgebiet der Dranse d'Entremont befindet sich nahe der Staatsgrenze zu Frankreich der Glacier de l'Aneuve. Am Fuße dessen entstand innerhalb der letzten sechs Jahre ein proglazialer See mit einer Fläche von 6.380 m² (2016). Das Orthophoto und die Luftbildaufnahmen in Abbildung 57 veranschaulichen den Rückzug des Gletschers sowie die jüngste Entwicklung des Sees. Im Jahr 1999 befindet sich auf den heutigen Seenbereich sowie darüber hinaus noch die schuttbedeckte Gletscherzunge. Anhand der gut sichtbaren Gletscherfront im oberen Abschnitt des Luftbildes von 1999 lassen sich Rückschlüsse auf die Dicke der Gletscherzunge ziehen. Im Jahr 2005 werden bereits Brüche an der Gletscherdecke im Bereich des Abflusses erkennbar. Die Brüche weiten sich bis 2007 südlich des Gletschers aus. Zwischen 2007 und 2010 kommt es schließlich zum Einbruch der Gletscherdecke. Hierbei ist anzumerken, dass dieser durch Ablagerungsmaterial in Form von Blöcken am Gletscher zusätzlich begünstigt wurde. Sowohl die zusätzliche Last als auch ein schnelleres Auftauen der darunterliegenden Eisfläche beeinflussen einen möglichen Einbruch. Ein weiterer Einflussfaktor diesbezüglich könnte das Vorhandensein von Entwässerungskanälen bereits unter der Gletscherfront darstellen.

Abbildung 58: geomorphologische Kartierung des Glacier de l'Aneuve Sees (Datengrundlage: swisstopo)

Der See befindet sich unmittelbar vor einem regenerierenden schuttbedeckten Gletscher (s. Abbildung 60). Westlich dieses Gletschers befindet sich eine Felswand mit gut erkennbaren Schmelzwasserabflüssen, welche zum Schmelzen des darunterliegenden regenerierenden Gletschers führen. Dieser entwässert schließlich über mehrere Abflüsse in den See. Die unmittelbare Umgebung des Sees ist durch auf der Grundmoräne abgelagertes Sturzmaterial gekennzeichnet, über welches der Seenabfluss verläuft. In diesen mündet ein weiterer von Norden kommender Gletscherabfluss. Sturzmaterial in Form von Großblöcken und Blöcken wurde zudem vereinzelt am schuttbedeckten Gletscher sowie im See vorgefunden. Diese dürften von der nördlichen und westlichen Felswand oberhalb des Gletschers stammen, was wiederum auf einen instabilen Zustand der Felswände schließen lässt. Durch den Einbruch des mit Großblöcken überlagerten Gletschers, wie bereits im Rahmen der zeitlichen Analyse eruiert, kamen die Großblöcke im See zu liegen.

Im Zuge der Geländebegehung wurde eine Seitenmoräne (s. Abbildung 59A) angetroffen, welche durch Ablagerungsprozesse nahezu komplett überdeckt bzw. erodiert wurde. Der oberste Abschnitt des Moränenwalls repräsentiert eine unterschiedlich breite Erosionsfläche mit angrenzender Hangschuttlinie. Diese geht weiter unterhalb in Sturzablagerungen über.

Auf Grundlage der geomorphologischen Gegebenheiten sowie der zeitlichen Analyse stellt der See augenscheinlich keine Ausbruchsgefahr dar. Im Falle veränderter Rahmenbedingungen kann sich die Ausgangslage jedoch kurzfristig umkehren. Im Gegensatz zu groben Sturzmaterial könnte feines Sturzmaterial den Abfluss blockieren, was in weiterer Folge ein Ansteigen des Seespiegels induziert.

Abbildung 59: (A) Seitenmoräne mit Sturzmaterial des Glacier de l'Aneuve Sees; Aufnahme von Osten (2017); (B) Glacier de l'Aneuve - schuttbedeckter regenerierender Gletscher; Aufnahme von Nordost (2017)

Abbildung 60: Glacier de l' Aneuve See mit Sturzablagerungen; Aufnahme von Nordost (2017)

5.2.8. Grüebugletscher-Seenkomplex

2014 20.9.2010 17.8.2005 19.1999 3 3 3 3 3 1 3 3 3 3 3 1 5 1 5 1 3 3 1 5 1978 5 5 1970 3</t

Seeevolution

Abbildung 61: Seeevolution des Grüebugletscher-Seenkomplexes (Datengrundlage: swisstopo)

See	2014	2010	2005	1999	1988	1978	1970	1958
See 1	25.059	25.187	28.523	23.839	18.995	29.737	21.868	13.100
See 2	15.702	16.515	22.072	11.347	14.146	22.410	22.758	11.045
See 3	12.933	15.760	8.999	183				
See 4					6.216	1.813		
See 5					2.031	775		

Tabelle 13: zeitliche Entwicklung der Seefläche in m2 des Grüebugletscher-Seenkomplexes

In Kapitel 2.2.2. wurde der Werdegang des Seenkomplexes hinsichtlich Seeausbrüchen bereits angesprochen. Im Folgenden werden die Ergebnisse der zeitlichen Analyse präsentiert. Im Einzugsgebiet der Saaser Vispa in etwa 1.300 Höhenmeter oberhalb des Dorfes Saas Balen liegt der Grüebugletscher. Im Zuge dessen Rückzugs hat sich während des 20. Jahrhunderts ein Komplex aus mehreren kleinen und größeren See geformt. Sowohl anthropogene als auch natürliche Prozesse nahmen vor allem während der zweiten Hälfte des 20. Jahrhunderts Einfluss auf deren Entwicklung (HAEBERLI et al., 2001).

Die älteste Aufnahme stammt aus dem Jahr 1958, wo bereits See 1 sowie See 2 (damals noch aus zwei Wasserkörpern bestehend), zu sehen sind. Aufgrund der Größe der Seen (s. Tabelle 13) ist anzunehmen, dass diese bereits einige Jahre vor 1958 gebildet worden sind. 1970 kam es schließlich zur Vereinigung zum See 2, was auf einen Gletscherrückzug zurückzuführen sein dürfte. Die rasante Flächenzunahme des Sees 1 innerhalb 1958 und 1978 bedarf einer umfassenden Untersuchung. Bei genauerer Betrachtung der Seenflächen von 1970 und 1978 fällt auf, dass der Seeuntergrund am Luftbild gut zu sehen ist. Vereinzelt konnte sogar Moränenmaterial im See 1 verortet werden. Aufgrund dieser Umstände kann darauf geschlossen werden, dass der See zwischen 1958 und 1978 beträchtliche Mengen an Wasser freisetzte und vielmehr einer größeren Vernässungsfläche gleichsah. Am Luftbild von 1978 sind nördlich 2 kleinere Seen (See 4 & 5) lokalisiert wurden. See 4 vergrößerte sich innerhalb von 10 Jahren um 4.403 m², woraufhin er weitere 10 Jahre später (1999) gänzlich von der Bildfläche verschwand. See 1 unterlag ab 1999 bis 2014 leichten Schwankungen ohne rasante Flächenzuwächse. Die Evolution von See 3 zeigt zudem einen ungewöhnlichen Verlauf. Einer anfänglichen schnellen Flächenzunahme von 1999 bis 2010 folgte 2014 eine Verkleinerung.

Geomorphologische Kartierung

Abbildung 62: geomorphologische Kartierung des Grüebugletscher-Seenkomplexes (Datengrundlage: swisstopo)

In Abbildung 62 ist die geomorphologische Kartierung des Grüebugletscher-Seenkomplexes zu sehen. Dieser beeinflusste maßgeblich die Ausformung der umliegenden Erdoberfläche, wie sie im Zuge der Geländebegehung vorgefunden wurde. See 1 befindet sich auf einer Seehöhe von 2.774 m und wird vom höher gelegenen See 3 über einen seitlich des schuttbedeckten Gletschers verlaufenden Abfluss gespeist. Der Damm des See 1 wurde durch das Anschütten zusätzlichen Schotters künstlich angehoben und verfestigt (s. Abbildung 63 A & B). Zudem wurde der Abfluss des See 1 tiefer gelegt und durch das Anbringen von Gesteinsblöcken nochmals verstärkt. Der breite Murgang entlang des Abflusses von See 1 dürfte auf einen ehemaligen Seenausbruch zurückzuführen sein, was wiederum die Verbauung des Dammes rechtfertigen würde. Südlich davon konnten vier weitere Murgänge mit geringerer Größe identifiziert werden, welchen augenfällige Murkegel vorgelagert sind. Direkt an den See 1 aus nördlicher Richtung anschließend konnte eine hohe Seitenmoräne angetroffen werden, welche noch gegenwärtig durch geomorphologische Prozesse geprägt wird. Im oberen Abschnitt sind deutlich Erosionsrinnen erkennbar, die hangabwärts in Hangschuttablagerung übergehen. Südöstlich des Sees 1 wurde weiters im Zuge der Geländebegehung auf der Grundmoräne abgelagertes Sturzmaterial gesichtet, welches von der angrenzenden Felswand stammen könnte. Der nicht so leicht zu entschlüsselnde Bereich nahe See 2 und See 3 sowie nördlich des gesamten Seenkomplexes wurde nicht vor Ort untersucht. Daher bildet das Orthophoto sowie das digitale Höhenmodell der Schweiz (swissALTI3DReliefschattierung) die Grundlage für die Kartierung. Nach Absprache mit Herrn WINKLER (2018) dürfte es sich bei dem Gebiet nördlich des Seenkomplexes um einen Blockgletscher handeln. Dieser könnte sich vermutlich auf den schuttbedeckten Gletscher gebildet haben und fließt zuerst über diesen und dann darüber hinaus.

See 2 und See 3 befinden sich auf Basis von Abbildungen sowie des Orthophotos auf schuttbedecktem Gletscher. Hierbei wird auf die Abbildung 64 verwiesen, welche den See 3 im Jahr 2017 zeigt. Der angrenzende schuttbedeckte Gletscher ist darauf gut zu erkennen, aufgrund dessen Dicke davon ausgegangen wurde, dass sich dieser noch weiter südwestlich erstreckt.

Abbildung 64: (A) See 1 am Grüebugletscher mit verbautem Damm; Aufnahme von Westen (2017); (B) verbauter Abfluss des Sees 1 am Grüebugletscher; Aufnahme von Südwest (2017);

Abbildung 63: See 3 am Grüebugletscher am 27.8.2017; Aufnahme von Westen (Quelle: www.GletscherVergleiche.ch (o. J.))

6. Diskussion

6.1. Daten und Methoden

6.1.1. Seeninventar

Die Erstellung des gesamten Seeninventars basiert ausschließlich auf Fernerkundungsmethoden, welche einen gewissen Grad an Ungenauigkeit sowie hypothetischen Annahmen mit sich ziehen. Aufgrund der relativ niedrigen Auflösung der Orthophotos konnte eine eindeutige Bestimmung der Attribute nicht immer durchgeführt werden. Das Lokalisieren von Massenbewegungen in der näheren Umgebung der Seen beruht größtenteils auf persönlichen Einschätzungen und Vermutungen geomorphologischer Prozesse. Des Weiteren verzögerte und erschwerte das vermehrte Auftreten von Schattenflächen die Verortung einzelner Seen. Als ein sehr häufiges Hindernis stellte sich die vegetationsbedeckte Umgebung der Seen heraus, welche keine Einschätzung des darunterliegenden Materials gestattete oder lediglich eine sehr vage Vermutung des Dammtyps zuließ.

Eine weitere Herausforderung insbesondere bei der zeitlichen Entwicklung der Seen waren die unterschiedlichen Aufnahmezeitpunkte der Orthophotos und die damit verbundenen jahreszeitlich bedingten Seespiegelschwankungen. Aufgrund ausgeprägter Schnee- bzw. Eisdecken am See sowie im Umkreis des Sees konnten keine Annahmen zur Evolution getätigt werden.

Im Zuge einer anschließenden Naherkundung könnten diese Annahmen auf ihre Genauigkeit überprüft und gegebenenfalls korrigiert werden.

6.1.2. Detailuntersuchung ausgewählter Seen

6.1.2.1. Seenentwicklung

Durch die unentgeltliche Bereitstellung von lediglich älteren Luftbildern anstelle von Orthophotos wird eine vergleichende quantitative Analyse der Seengröße nicht vollständig gewährleistet. Die errechnete Seengröße beinhaltet eine gewisse Schwankungsbreite. Eine exakte Überlagerung der älteren Luftbildaufnahmen mit den aktuellen Orthophotos ist aufgrund der Verzerrung der Luftbilder nicht möglich.

Eine weitere Problematik kam im Zuge der Darstellung der zeitlichen Entwicklung des Grüebugletscher-Seenkomplexes (s. Kapitel 5.2.8.) auf. Bei einem älteren Luftbild ist der Aufnahmebereich nicht ident mit denen der restlichen Luftbilder. Dadurch wird keine einheitliche Illustration gewährleistet.

6.2. Ergebnisse

6.2.1. Seeninventar

Die statistische Auswertung des Seeninventars ergab, dass 80 % der Hochgebirgsseen im Kanton Wallis gletscherfern sind. Hierbei ist jedoch anzuführen, dass dieses Ergebnis in hohem Maße durch die festgelegte Definition von gletscherfernen Seen (im Umkreis von über 250 m vom Gletscher) beeinflusst wird. Wird zum Beispiel 1 oder 2 km als Kriterium für die Lage zum Gletscher herangezogen, würden sich komplett unterschiedliche Zahlen ergeben. Eine andere Herangehensweise bei der Definition der Seenposition könnte die Lage innerhalb oder außerhalb der in der Kleinen Eiszeit gebildeten Moränen darstellen. Diese Abgrenzung wäre jedoch für die vorliegende Arbeit zu aufwändig.

Die relativ hohe Anzahl von anthropogen beeinflussten Seen, welche sich in den letzten 10 Jahren vergrößerten, lässt sich anhand unterschiedlicher Mechanismen begründen. Manche Seen dürften sich im Zuge einer anthropogenen Steuerung der einströmenden Wassermenge vergrößert haben. Bei anderen Seen könnte der Größenzuwachs wiederum durch saisonal bedingte Seespiegelschwankungen hervorgerufen worden sein. Hinzu kommt, dass oft lediglich ein älteres Satellitenbild zum Vergleich zur Verfügung stand, was wiederum etwaige Aussagen über die Evolution erschwerte. Des Weiteren dürfte ein zu beobachtendes Abschmelzen des Gletschers und die damit verbundene vermehrte Freigabe von Wasser zu einer Vergrößerung von vorgelagerten anthropogen gestauten Seen geführt haben.

Bezugnehmend auf die Untersuchungsergebnisse von EMMER et al. (2015) wird folgend eine vergleichende Analyse des Seeninventars zweier Alpenregionen aufgestellt. Hierbei wird jedoch kein Vergleich der Gletschernähe bzw. -ferne hergestellt, da die zugrundeliegende Definition von EMMER et al. (2015) nicht eruiert werden konnte.

Das für den Vergleich herangezogene Untersuchungsgebiet deckt einen Großteil der Zentralalpen Westösterreichs ab. Es verläuft über Süd- und Osttirol bis einschließlich in den Westen von Salzburg. Das Gebiet umfasst eine Fläche von insgesamt 6.139 km². Im Vergleich dazu ist das Untersuchungsgebiet der vorliegenden Arbeit mit 5.224 km² (Wallis Promotion, o. J.) etwas kleiner. Im Zuge beider Forschungstätigkeiten wurden Seen über einer Seehöhe von 2.000 m und einer Mindestfläche von über 250 m² in das Inventar aufgenommen. Zur Berechnung der Seendichte werden hierbei jedoch alle Höhenstufen, auch Flächen unterhalb 2.000 m ü. M., miteinbezogen. In Tabelle 14 werden grundlegende Erkenntnisse der Analysen des Seeninventars gegenübergestellt sowie anschließend etwaige Parallelen oder Gegensätze diskutiert.

	Westösterreich	Wallis
Seendichte	17 Seen / 100 km ²	14 Seen / 100 km ²
Seenanzahl	1.024	733
moränengedämmt	52,1 %	32,47 %
Felsgedämmt	47 %	40,79 %
Eisgedämmt	0,8 %	3,27 %
Massenbewegung	0,1 %	1,64 %
Seehöhe – Median	2.525 m ü. M.	2.609 m ü. M.

Tabelle 14: Vergleich der Seeninventare der vorliegenden Arbeit mit EMMER et al. (2015)

Die Summe der inventarisierten Seen beläuft sich in Westösterreich auf 1.024 und in Wallis auf 733. Werden diese Werte mit der Fläche des Untersuchungsgebiets in Verbindung gesetzt, so ergibt sich eine Seendichte von 17 Seen / 100 km² in Westösterreich und 14 Seen / 100 km² in Wallis. Ein Grund für die höhere Seendichte in Westösterreich dürfte der sehr hohe Vergletscherungsgrad der Alpen im Kanton Wallis darstellen. Hinsichtlich der Dammtypenverteilung ist anzuführen, dass in Tabelle 14 lediglich die häufigsten Dammarten des Kantons Wallis aufgelistet sind im Gegensatz zu Westösterreich, wo alle identifizierten Dammtypen aufgezeigt werden.

Des Weiteren konnte ein relativ hoher Anteil der moränengedämmten Seen von 52,1 % in Westösterreich im Gegensatz zu 32,47 % in Wallis festgestellt werden. Hierbei ist jedoch zu berücksichtigen, dass für ca. 10 % des gesamten Seeninventars in Wallis eine Bestimmung des Dammtyps nicht möglich war. Eine relativ hohe Unstimmigkeit der prozentualen Verteilung liegt bei den eisgedämmten Seen vor. In Wallis werden 3,27 % aller Seen durch Eis gestaut, während es in Westösterreich lediglich 0,8 % sind. Wird hierbei der ermittelte Median der Seehöhe miteinbezogen, so ergibt sich für Wallis ein höher gelegenes Verbreitungsgebiet der Seen im Vergleich zu Westösterreich. Diese Tatsache sowie der hohe Vergletscherungsgrad in Wallis dürften den größeren Anteil der eisgedämmten Seen begründen.

6.3. Detailuntersuchung ausgewählter Seen

Im Rahmen der Detailuntersuchung acht ausgewählter Seen wurden mögliche Einflussfaktoren eines Seenausbruchs eruiert. Auf deren Grundlage wird folgend eine Einschätzung des Gefahrenpotenzials (siehe Tabelle 15) vorgenommen. Im Anschluss darauf werden bereits veröffentlichte Forschungsergebnisse herangezogen, im Zuge dessen eine ausführliche Gefahrenanalyse möglicher Seenausbrüche gewährleistet wird. Tabelle 15: Gefahrenbeurteilung der ausgewählten Seen

untersuchte Seen bzw. Seenkomplexe	Gefahrenbeurteilung
Gabelhorngletscher-Seenkomplex	mittelfristig als gefährlich beurteilt
Furgggletscher-Seenkomplex	mittelfristig als gefährlich beurteilt
Cheilongletschersee	langfristig als gefährlich beurteilt
Oberferdengletscher-Seenkomplex	kurzfristig als gefährlich beurteilt
Chüebodengletschersee	langfristig als gefährlich beurteilt
Rhonegletschersee	langfristig als gefährlich beurteilt
Glacier de l' Aneuve See	mittelfristig als gefährlich beurteilt
Grüebugletscher-Seenkomplex	mittelfristig als gefährlich beurteilt

6.3.1. Furgggletscher-Seenkomplex

Der Furgggletscher-Seenkomplex schließt östlich an das Matterhorn an. Ein mögliches Auslöseereignis eines Seeausbruchs stellen auf Grundlage der Detailuntersuchung Felsstürze dar, welche den See tangieren. Diese Annahme wird folgend durch fundierte wissenschaftliche Untersuchungen bestätigt.

Gemäß NOETZLI & GRUBER (2009) können sich ganze Berggipfel in den europäischen Alpen, wie beispielweise das Matterhorn, in einem andauernden Permafrostzustand befinden. Im Zuge der globalen Erwärmung kommt es zu einer Änderung der Oberflächentemperatur, infolgedessen der Wärmefluss im Inneren der Berggipfel gestört wird. Am Beispiel des Matterhorns wird eine Verschiebung des Wärmeflusses während der nächsten 200 Jahren prognostiziert, ausgelöst durch einen Temperaturanstieg von insgesamt 6°C während der nächsten 200 Jahre. Daraus resultiert eine zunehmende Degradation des Permafrosts, wodurch Felswände instabil werden. Unter derartigen kritischen Bedingungen können kurzfristige Ereignisse wie Erdbeben, schwere Niederschläge oder Hitzewellen Fels- und Eislawinen auslösen (HUGGEL et al. 2012, 2010).

6.3.2. Oberferdengletscher-Seenkomplex

Der Oberferdengletscher-Seenkomplex wird durch einen mit Schutt bedeckten Gletscher gestaut (s. Abbildung 48B). Aus diesem Grund wird er kurzfristig als gefährlich eingestuft. Im Zuge der globalen Erwärmung dürfte es zunehmend zum Abschmelzen des Eisdammes führen. NICHOLSON (2015) zufolge schmelzen Gletscher mit einer darüber liegenden dünnen Schuttschicht schneller als gewöhnlich. Mit zunehmender Dicke der Schuttschicht nimmt jedoch die Schmelzrate ab, da die durch das Sonnenlicht absorbierte Energie nur zur Erwärmung des oberflächlichen Gesteins verwendet wird und nicht in tiefere Schichten eindringt. Um Aufschluss über die Tiefe des Eisdammes am Oberferdengletscher-Seenkomplex zu erlangen, bedarf es weiterführende Untersuchungen vor Ort.

6.3.3. Chüebodengletschersee

Der Chüebodengletschersee wird auf Basis der Detailuntersuchung langfristig als gefährlich eingestuft. Nachfolgend werden gemäß HAEBERLI et al. (2013) weitere Forschungsergebnisse hinsichtlich eines Ausbruchspotenzials des Chüebodengletschersees zusammengefasst (s. Abbildung 65).

Mittels Gummiboot wurden im Sommer 2010 Tiefenmessungen am See durchgeführt, im Zuge dessen eine Maximaltiefe von 29 m festgestellt wurde. Wie sich auch bereits im Rahmen der vorliegenden Arbeit herausstellte, besteht die Möglichkeit eines Sturzereignisses, welches den See erfassen könnte. Die Steilwand im Südosten stellt zunehmend vor allem bei voranschreitenden Seenwachstum, wodurch sich der See der Steilwand nähert, einen möglichen Auslöser eines Seenausbruchs dar. Die zahlreichen Eisberge im See (s. Abbildung 52) könnten ein Verstopfen des Seenabflusses im Westen induzieren. Dadurch dürfte es zur Bildung eines östlich gelegenen Abflusses aufgrund des geringen Freibords kommen. Die Steilheit und ausgeprägte Schuttdecke der Hänge unterhalb des neu gebildeten Abflusses bedingen eine erhöhte Vulnerabilität gegenüber Murgänge. Diese könnten Gebäude und Infrastruktur beschädigen. Beim westlich gelegenen Abfluss ist ebenfalls ein auftretender Murgang nicht auszuschließen (HAEBERLI et al., 2013).

Im Gegensatz zur geomorphologischen Kartierung auf Grundlage des Orthophotos von 2015 (s. Abbildung 51), wo bereits drei Abflüsse verortet wurden, befanden sich im August 2010 zwei Abflüsse auf westlicher Seite. Die prognostizierte Bildung eines östlichen Abflusses kann auf Grundlage des Orthophotos von 2015 noch nicht bestätigt werden.

Abbildung 65: Chüebodengletschersee mit zwei Abflüssen im Westen (W), möglichen zukünftigen Abfluss im Osten (E), künftige Stürze in den See (gestrichelter Pfeil), gegenwärtige Stürze (ausgezogener Pfeil) sowie die Lage des Gummiboots (B) (Quelle: FREY 2010, verändert nach HAEBERLI et al. 2013)

6.3.4. Rhonegletschersee

Der Rhonegletschersee wird basierend auf der Detailuntersuchung langfristig als gefährlich beurteilt. Der Rhonegletscher wird von der Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich zu den gefährlichen Gletschern innerhalb der Schweiz (s. Abbildung 12) gezählt, von welchem mittelfristig allerdings keine Gefahr ausgeht. Potenzielle Gefahren des Rhonegletschers stellen jedoch Eis- und Gletscherstürze sowie Gletscherhochwasser dar (VAW (o. J.) b). Im Laufe des 20. Jahrhunderts wurden mehrere Eisabstürze an der Steilfront registriert, bei denen Menschen ums Leben kamen (MERCANTON, 1942). Das ehemalige Eissturzrisiko verschwand mit dem Rückzug des Gletschers hinter die südlich gelegene felsige Steilstufe. Heute gehen aufgrund des vorgelagerten Gletschersees jedoch andersartige Gefahren vom Rhonegletscher aus. In Folge kleiner Kalbungen in den See könnten Eistrümmer den Abfluss in der Felsschlucht geringfügig anstauen. Ein zukünftiger Ausbruch des Sees ist demnach nicht anzuschließen. (VAW (o. J.) b)

Massenbewegungen werden in der vorliegenden Arbeit als Schlüsselrolle hinsichtlich eines Seenausbruchs angeführt. HAEBERLI et al. (2013) zufolge sind allerdings große, den See erfassende Stürze wenig wahrscheinlich, da die umliegenden Talflanken eine geringe Neigung aufweisen. Diese dürften allerdings nicht vernachlässigt werden.

6.3.5. Glacier de l' Aneuve See

Der dem Glacier de l' Aneuve vorgelagerte See wurde im Zuge der Detailuntersuchung mittelfristig als gefährlich eingestuft. Der Glacier de l' Aneuve wird zudem unter den gefährlichen Schweizer Gletschern geführt. Hier wird eine mittelfristig ausgehende Gefahr des Gletschers genannt. Eis- und Gletscherstürze sowie Hochwasser werden als mögliche Gefahren des Gletschers hervorgehoben (VAW (o. J.) b). Im Jahr 1898 kam es bereits zu einer Überschwemmung in Folge einer Entleerung einer Wassertasche (FOREL et al., 1899). Ein weiteres Gletscherhochwasser fand im Jahr 1997 statt, wodurch eine Mure ausgelöst wurde, jedoch etwaige Schäden ausblieben. Durch den Rückzug des Gletschers wurde eine Seitenmoräne freigelegt, welche große Mengen an Geschiebe enthält. Diese bildet eine Angriffsfläche für mögliche Erosionsprozesse (VAW (o. J.) b).

Zum Zeitpunkt der Untersuchungen war noch kein See vorhanden. Es wurde allerdings bereits die Seitenmoräne, welche sich südwestlich des Sees befindet, als möglicher Ausgangspunkt für Massenbewegungen registriert.

6.3.6. Grüebugletscher-Seenkomplex

Die Detailuntersuchung des Grüebugletscher-Seenkomplexes ergibt eine mittelfristige Gefahr. Der Grüebugletscher selbst wird nach VAW Klassifikation auch mittelfristig als gefährlich beurteilt. Mögliche Gletschergefahren werden hier auf Hochwasserereignisse eingegrenzt (VAW (o. J.) b). Der Seenkomplex hat bereits eine durch Ausbrüchen geprägte Vergangenheit hinter sich. Im Zeitraum der Untersuchungen der VAW, welcher sich möglicherweise auf das Jahr 2000 beschränkt, wird von einem geringen Murgangsrisiko bei den Seen ausgegangen. Bauliche Eingriffe in der Vergangenheit führten zu einer Abnahme des Gefährdungspotenzials. Das äußerst dynamische Landschaftssystem im Umkreis der Seen lässt jedoch weitere Entwicklungsprognosen unbedeutend erscheinen. Innerhalb weniger Jahren kann sich die Situation zuspitzen. Eine kritische Beobachtung der Entwicklung ist aufgrund dessen maßgebend (VAW (o. J.) b).

7. Conclusio

Hochgebirgsseen sind in höchst dynamische Landschaftssysteme eingebettet und unterliegen aufgrund dessen rasanten Veränderungen. Seeausbrüche stellen ein nicht zu unterschätzendes Gefahrenpotenzial dar, welches bei voranschreitender Klimaerwärmung noch zunehmen dürften.

Im Rahmen der vorliegenden Arbeit wurde mithilfe von Fernerkundungsmethoden in einem ersten Schritt ein Inventar aller Hochgebirgsseen im Schweizer Kanton Wallis erstellt. Der Schwerpunkt der Forschungstätigkeiten liegt allerdings in der anschließenden detaillierten Untersuchung acht ausgewählter Seen, welche augenscheinlich ein Ausbruchspotenzial aufweisen. Hauptaugenmerk wurde hierbei auf eine gewissenhafte und präzise geomorphologische Kartierung der Seenumgebung gelegt. Diese wurde zum Großteil mithilfe von Erkenntnissen aus Geländebegehungen realisiert. In Kombination mit einer Analyse der zeitlichen Entwicklung der Seen konnte schließlich eine vorläufige Gefahrenbeurteilung durchgeführt werden. In Anlehnung daran wird folgender Schluss gezogen: bei fünf der acht näher untersuchten Seen bzw. Seenkomplexe wurden in der Vergangenheit bereits einschlägige Forschungen hinsichtlich eines Ausbruchspotenzials oder einer ausgehenden Gefahr des angrenzenden Gletschers durchgeführt. Diese unterliegen allesamt permanenten Monitoringmaßnahmen. Die restlichen drei Seen bzw. Seenkomplexe (Oberferdengletscher-Seenkomplex, Cheilongletschersee und Gabelhorngletscher-Seenkomplex) dürften nach derzeitigem Stand noch nicht in Fachliteratur oder Ähnlichem behandelt worden sein. Insbesondere dem Oberferdengletscher-Seenkomplex sollte gegenwärtig höchste Aufmerksamkeit geschenkt werden. Dieser wird in der vorliegenden Arbeit kurzfristig als gefährlich beurteilt und weist somit das höchste Gefahrenpotenzial der näher untersuchten Seen auf. Grund für diese Bewertung ist hauptsächlich der aus Eis und Schutt bestehende Damm, ähnlich dem durch Ausbrüche geprägten Grindelwaldgletschersee.

Quellenverzeichnis

AHNERT F. (2015): Einführung in die Geomorphologie. – Stuttgart.

ALBERTZ J. (2007): Einführung in die Fernerkundung. Grundlagen der Interpretation von Luft- und Satellitenbildern. – Darmstadt.

ALEAN J. (2010): Gletscher der Alpen. – Bern.

ALEAN J. und HAMBREY M. (2013): Gletscher der Welt. – Bern.

BÄTZING W. (2015): Die Alpen. Geschichte und Zukunft einer europäischen Kulturlandschaft. – München.

BAUMHAUER R. und WINKLER S. (2014): Glazialgeomorphologie. Formung der Landoberfläche durch Gletscher. – Stuttgart.

BFS (Schweizer Bundesamt für Statistik) (Hrsg.) (o. J.): Statistischer Atlas der Schweiz – Die 26 Kantone der Schweiz, https://www.bfs.admin.ch/bfs/de/home.html (11.05.2018)

BJÖRNSSON H. (2002): Subglacial lakes and jökulhlaups in Iceland. – In: Global and Planetary Change, 35(3), 255–271.

CAREY M., HUGGEL C., BURY J., PORTOCARRERO C. und HAEBERLI W. (2012): An integrated socioenvironmental framework for climate change adaptation and glacier hazard management: lessons from Lake 513, Cordillera Blanca, Peru. – In: Climate Change 112(3-4), 733-767.

CENDERELLI D. A. und WOHL E. E. (2001): Peak discharge estimates of glacial lake outburst floods and "normal" climatic floods in Mount Everest region, Nepal. – In: Geomorphology, 40(1), 57–90.

CLAGUE J.J. und EVANS S.G. (2000): A review of catastrophic drainage of moraine-dammed lakes in British Columbia. – In: Quaternary Science Reviews 19(17-18), 1763-1783.

CLAGUE J. J. und O'CONNOR J.E. (2014): Glacier-Related Outburst Floods. – In: HAEBERLI W., WHITEMAN C. und SHRODER J. F. Jr. (Hrsg.): Snow and Ice-Related Hazards, Risks and Disasters, 487-519.

COSTA J.E. und SCHUSTER R.L. (1988): The formation and failure of natural dams. – In: Geological Society of America Bulletin 100(7), 1054-1068.

CUI P., ZHOU G. G. D., ZHU X. H. und ZHANG J. Q. (2013): Scale amplification of natural debris flows caused by cascading landslide dam failures. – In: Geomorphology 182, 173–189.

DUSSAILLANT A., BENITO G., BUYTAERT W., CARLING P., MEIER C. und ESPINOZA F. (2010): Repeated glacial-lake outburst floods in Patagonia: An increasing hazard?. – In: Natural Hazards, 54(2), 469–481.

EMMER A., MERKL S. und MERGILI M. (2015): Spatiotemporal patterns of high-mountain lakes and related hazards in western Austria. – In: Geomorpholgy 246, 602-616.

EVANS S. G., BISHOP N. F., FIDEL SMOLL L., VALDERRAMA MURILLO P., DELANEY K. B. und OLIVER-SMITH A. (2009): A re-examination of the mechanism and human impact of catastrophic mass flows originating on Nevado Huascarán, Cordillera Blanca, Peru in 1962 and 1970. – In: Engineering Geology, 108(1-2), 96–118.

FISCHER L., KÄÄB A., HUGGEL C. und NOETZLI J. (2006): Geology, glacier retreat and permafrost degradation as controlling factors of slope instabilities in a high-mountain rock wall: the Monte Rosa east face. – In: Natural Hazards and Earth System Sciences, 6(5), 761-772.

FOREL F. A., LUGEON M. und MURET E. (1899): Les variations périodiques des glaciers des Alpes. Jahrbuch des S.A.C. – Bern.

FOWLER A.C. (1999): Breaking the seal at Grímsvötn, Iceland. – In: Journal of Glaciology 45(151), 506-516.

FURRER G. (2001): Alpine Vergletscherung vom letzten Hochglazial bis heute. – Stuttgart.

GLASER R., HAUTER Ch., FAUST D., GLAWION R., SAURER H., SCHULTE A. und SUDHAUS D. (Hrsg.) (2010): Physische Geographie kompakt. – Heidelberg.

GRUBER S. und HAEBERLI W. (2007): Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. – In: Journal of Geophysical Research: Earth Surface, 112, F02S18.

GUDMUNDSSON M. T. (2015): Hazards from Lahars and Jökulhlaups. – In: SIGURDSSON H., HOUGHTON B., MCNUTT S., RYMER H. und STIX J. (Hrsg.): The Encyclopedia of Volcanoes, 971-984.

HAEBERLI W. (1983): Frequency and characteristics of glacier floods in the Swiss Alps. – In: Annals of Glaciology 4, 85-90.

HAEBERLI W. (1992): Construction, environmental problems and natural hazards in periglacial mountain belts. – In: Permafrost and Periglacial Processes, 3(2), 111–124.

HAEBERLI W., BÜTLER M., HUGGEL C., MÜLLER H. und SCHLEISS A. (Hrsg.) (2013): Projekt NELAK. Neue Seen als Folge des Gletscherschwundes im Hochgebirge – Chancen und Risiken. – Zürich.

HAEBERLI W., KÄÄB A., VONDER MÜHLI D. und TEYSSEIRE P. (2001): Prevention of outburst floods from periglacial lakes at gr, Valais, Swiss Alps. – In: Journal of Glaciology, 47(156), 111-122.

HAEBERLI W., SCHAUB Y. und HUGGEL C. (2016): Increasing risks related to landslides from degrading permafrost into new lakes in de-glaciating mountain ranges. – In: SCHROTT L. und HUMLUM O. (Hrsg.): Geomorphology. Permafrost and periglacial research from coasts to mountains 293, 405-417.

HAEBERLI W. und WHITEMAN C. (2014): Snow and Ice-related Hazards, Risks and Disasters: A General Framework. – In: HAEBERLI W., WHITEMAN C. und SHRODER J. F. Jr. (Hrsg.): Snow and Ice-Related Hazards, Risks and Disasters, 1-34.

HEGGLIN E. und HUGGEL C. (2008): An integrated assessment of vulnerability to glacial hazards. – In: Mountain Research and Development 28(3-4), 299-309.

HERD D. G. (1986): The 1985 Ruiz Volcano disaster. -In: Eos, Transactions American Geophysical Union, 67, 457–460.

HORSTMANN B. (2004): Gletschersee-Ausbrüche in Nepal und der Schweiz. Neue Gefahren durch den Klimawandel. Germanwatch. – Köln.

HUGGEL C., CLAGUE J. J. und KORUP O. (2012): Is climate change responsible for changing landslide activity in high mountains? – In: Earth Surface Processes and Landforms 37, 77-91.

HUGGEL C., HAEBERLI W. und KÄÄB A. (2000): Compilation of historical data as a basis for analyses of glacier floods and ice avalanches in the Swiss Alps. – In: Proceedings of the European Geophysical Society (EGS) 25th General Assembly, 24-29.

HUGGEL C., SALZMANN N., ALLEN S., CAPLAN-AUERBACH J., FISCHER L., HAEBERLI W., LARSEN C., SCHNEIDER D. und WESSELS R. (2010): Recent and future warm extreme events and high mountain slope stability. – In: Philosophical Transactions of the Royal society A. Mathematical, physical and engineering sciences 368, 2435-2459.

IPCC (Intergovernmental Panel on Climate Change) (Hrsg.) (2013): Climate change 2013. The physical science basis. – Cambridge und New York.

IPCC (Intergovernmental Panel on Climate Change) (2012): Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. – In: FIELD C.B., BARROS V., STOCKER T. F., QIN D., DOKKEN D.J., EBI K.L., MASTRANDREA M.D., MACH K.J., PLATTNER G.-K., ALLEN S.K., TIGNOR M. und MIDGLEY P.M. (Hrsg.): A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. – Cambridge und New York.

KÄÄB A., HAEBERLI W. und GUDMUNDSSON G.H. (1997): Analysing the creep of mountain permafrost using high precision aerial photogrammetry: 25 years of monitoring Gruben rock glacier, Swiss Alps. – In: Permafrost and Periglacial Processes 8(4), 409-426.

Kanton Wallis (o. J.): Homepage des Kantons Wallis, https://www.vs.ch/de/home (11.05.2018)

KERSHAW J. A., CLAGUE J. J. und EVANS S. G. (2005): Geomorphic and sedimentological signature of a two-phase outburst flood from moraine-dammed Queen Bess Lake, British Columbia, Canada. – In: Earth Surface Processes and Landforms 30(1), 1-25.

KIENHOLZ und KRUMMENACHER (1995): Symbolbaukasten zur Kartierung der Phänomene. – o.O.

LEHMKUHL F. (1989): Geomorphologische Höhenstufen in den Alpen unter besonderer Berücksichtigung des nivalen Formenschatzes. In: Göttinger Geographischer Abhandlungen 88. LLIBOUTRY L., ARNAO V.M., PAUTRE A. und SCHNEIDTER B. (1977): Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru: 1. Historical failures of morainic dams, their causes and prevention. – In: Journal of Glaciology 18(79), 239-254.

MAHBOOB M. A., IQBAL J. und ATIF I. (2015): Modeling and simulation of glacier avalanche: A case study of gayari sector glaciers hazards assessment. – In: IEEE Transactions on Geoscience and Remote Sensing, 53(11), 5824–5834.

MERCANTON P. L. (1942): Les variations périodiques des glaciers des Alpes Suisses. - Bern.

MAIR V., LANG K., TONIDANDEL D., THALER B., ALBER R., LÖSCH B., TAIT D., NICKUS U., KRAINER K., THIES H., HIRNSPERGER M., SAPELZA A. und TOLOTTI M. (2015): Projekt Permaqua. Permafrost und seine Auswirkungen auf Wasserhaushalt und Gewässerökologie im Hochgebirge. – Bozen.

MASSEY C., MANVILLE V., HANCOX G., KEYS H., LAWRENCE C. und MCSAVENEY M. (2010): Outburst flood (lahar) triggered by retrogressive landsliding, 18 March 2007 at Mt Ruapehu, New Zealand – a successful early warning. – In: Landslides 7(3), 303-315.

MERGILI M. (2016): Observation and Spatial Modeling of Snow- and Ice-Related Mass Movement Hazards. – In: Oxford Research Encyclopedia of Natural Hazard Science, 1-61.

MERKL S. (2015): Gefahrenpotentiale von Gletscherseen in Tirol unter Betrachtnahme deren räumlicher und zeitlicher Entwicklung. Masterarbeit, Universität für Bodenkultur. – Wien.

NICHOLSON L. (2015): Introducing debris-covered glaciers, http://lindseynicholson.org/2015/06/introducing-debris-covered-glaciers/ (11.05.2018)

NOETZLI J. und GRUBER S.(2009): Transient thermal effects in Alpine permafrost. – In: Cryosphere 3, 85-99.

NOETZLI J., HUGGEL C., HOELZLE M. und HAEBERLI W. (2006): GIS-based modeling of rock-ice avalanches from Alpine permafrost areas. – In: Computational Geosciences, 10(2), 161–178.

Oberingeneurkreis I, Regierungsstatthalteramt Interlaken, Einwohnergemeinde Grindelwald und Schwellenkorporation Grindelwald (Hrsg.) (o.J.): Gletschersee Grindelwald; http://www.gletschersee.ch (15.5.2018).

O'CONNOR J.E. und BEEBEE R.A. (2009): Floods from natural rock-material dams. -In: BURR D.M., CARLING P.A. und BAKER V.R. (Hrsg.): Megafloods on Earth and Mars. – Cambridge, 128-171.

O'CONNOR J. E., HARDISON II J. H. und COSTA J. E. (2001): Debris Flows from Failures of Neoglacial Moraine Dams in the Three Sisters and Mt. Jefferson Wilderness Areas, Oregon. U.S. Geological Survey Professional Paper 1606.

REYNOLDS J.M. (1992): The identification and mitigation of glacier-related hazards: examples from the Cordillera Blanca, Peru. – In: MCCALL G.J.H., LAMING D.J.C. und SCOTT S.C. (Hrsg.): Geohazards. Natural and Man-made 143-157.

RICHARDSON S. D. und REYNOLDS J. M. (2000): An overview of glacial hazards in the Himalayas. – In: Quaternary International, 65/66, 31–47.

RIEDER T. (2017): Als auf 2.300 m noch Boote um die Eisberge kurvten. – In: Walliser Bote, Montag, 24. Juli 2017, 6-7.

RITTER F., FIEBIG M. und MUHAR A. (2011): Impacts of Global Warming in Mountaineering: A Classification of Phenomena Affecting the Alpine Trail Network. – In: Mountain Research and Development, 32(1), 4-15.

SATTLER B., REMIAS D., LÜTZ C., DASTYCH H. und PSENNER R. (2010): Leben auf Schnee und Eis. – In: KOCH E. und ERSCHBAMER B. (Hrsg.): Glaziale und periglaziale Lebensräume im Raum Obergurgl. – Innsbruck, 229-250.

SCHROTT L. (2015): Gelände-Arbeitsmethoden in der Geomorphologie. – In: AHNERT F.: Einführung in die Geomorphologie. – Stuttgart, 396-413.

SCHUG M.-C. (2015): Hochgebirgsseen in Südtirol. Verbreitung, Entwicklung und Gefahrenpotenzial. Masterarbeit, Universität Wien. – Wien.

SUGDEN D. E., MARCHANT D. R., POTTER JR. N., SOUCHEZ R. A., DENTON G. H., SWISHER III C. C., et al. (1995): Preservation of Miocene glacier in East Antarctica. – In: Nature, 376(6539), 412-414.

THÓRARINSSON S. (1939): The ice dammed lakes of Iceland with particular reference to their values as indicators of glacier oscillations. – In: Geografiska Annaler 21(3-4), 216-242.

VAW (Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich) (Hrsg.) (o. J.)a: Gletscherberichte (1881-2017). Die Gletscher der Schweizer Alpen, Jahrbücher der Expertenkommission für Kryosphärenmessnetze der Akademie der Naturwissenschaften Schweiz (SCNAT), 1-136; http://www.glamos.ch (8.5.2018)

VAW (Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie der ETH Zürich) (Hrsg.) (o. J.)b: Naturgefahren Gletscher, http://glacier-hazards.glaciology.ethz.ch/index.html (9.5.2018)

Wallis Promotion (Hrsg.) (o. J.): Über das Wallis – Zahlen und Fakten, https://www.valais.ch/de/ueber-das-wallis/zahlen-und-fakten (11.05.2018)

WERDER M.A., BAUDER A., FUNK M. und KEUSEN H.-R. (2010): Hazard assessment investigations in connection with the formation of a lake on the tongue of Unterer Grindelwaldgletscher, Bernese Alps, Switzerland. – In: Natural Hazard and Earth System Sciences 10, 227-237.

WILSON L., SMELLIE J. L. und HEAD J. W. (2013): Volcano-ice interactions. – In: FAGENTS S. A., GREGG T. K. P. und LOPES R. M. C. (Hrsg.): Modeling volcanic processes: The physics and mathematics of volcanism. – Cambridge, 275–299.

WINKLER G. (2018): mündliche Information vom 18.4.2018. – Universität Graz.

WORNI R., HUGGEL C., CLAGUE J. J., SCHAUB Y. und STOFFEL M. (2014): Coupling glacial lake impact, dam breach, and flood processes: A modeling perspective. – In: Geomorphology 224, 161-176.

WORNIR., HUGGEL C. und STOFFEL M. (2013): Glacial lakes in the Indian Himalayas – from an area-wide glacial lake inventory to on-site and modeling based risk assessment of critical glacial lakes. – In: MOORS E. J. und STOFFEL M. (Hrsg.): Science of the Total Environment 468-469, 71-84.

XIN W., SHIYIN L., WANQIN G. und JUNLI X. (2008): Assessment and simulation of glacier lake outburst floods for Longbasaba and Pida lakes, China. – In: Mountain Research and Development 28(3-4), 310-317.

YAMADA T. und SHARMA C.K. (1993): Glacier lakes and outburst floods in the Nepal Himalaya. – In: YOUNG G.J. (Hrsg.): Snow and Glacier Hydrology. International Association of Hydrological Sciences 218, 319-330.

ZEPP H. (2014): Geomorphologie. – Paderborn.

Anhang

Lakefile

п	ame	aeche	-coord.	-coord.	löhe	ake_mora	ake_bedro	ake_iceda	ake_lands	ake_anthr	ake_flood	ake_veget	eetyp*	[_contact	d_wats up	urf_runof	osition	alving	volution	osition *
	MV 001	16320	×	5785682	2661	2						_	<u>ა</u> 1		- 	<u>х</u>	3	1	3	1
2	MV 002	3522	858330	5786236	2569	0	0	0	0	0	3	0	6	0	1	3	5	0	2	0
3	MV 003	731	858135	5785599	2628	3	0	0	0	0	0	0	1	0	1	2	4	0	3	1
4	MV 004	16795	854182	5781408	2204	0	0	0	0	3	0	0	- 5	0	1	0	5	0	3	0
5	MV 005	1244	852189	5780656	2270	1	0	1	0	0	1	0	7	1	1	3	1	1	3	1
6	MV 006	1088	852721	5780395	2246	2	0	0	0	0	1	0	1	0	1	3	4	0	3	1
7	MV_007	258	849870	5780108	2465	0	0	3	0	0	0	0	3	1	1	1	1	1	3	1
8	MV_008	460	850925	5780333	2388	1	0	2	0	0	0	0	3	1	1	0	1	1	3	1
9	MV_009	2533	851091	5781005	2432	3	0	0	0	0	0	0	1	0	0	0	4	0	1	1
10	MV_010	881	853553	5784995	3029	1	0	2	0	0	0	0	3	0	0	1	5	0	1	0
11	RH_001	453	849044	5791457	2435	2	0	1	0	0	0	0	1	1	1	0	1	1	3	1
12	RH_002	487	849882	5792056	2266	1	0	2	0	0	0	0	3	1	1	1	1	1	3	1
13	RH_003	6433	856130	5795316	2875	1	0	2	0	0	0	0	3	0	1	2	4	1	5	1
14	RH_004	416	855848	5795429	2851	1	1	0	0	0	1	0	7	0	1	3	4	1	5	1
15	RH_005	617	855905	5795772	2860	1	0	2	0	0	0	0	3	1	1	3	3	1	5	1
16	RH_006	2365	856088	5796164	2907	3	0	0	0	0	0	0	1	1	1	3	3	1	5	1
17	RH_007	1598	854146	5795328	2594	1	2	0	0	0	0	0	2	0	1	3	3	0	5	1
18	RH_008	18617	857549	5804060	2759	1	2	0	0	0	0	0	2	1	1	1	3	1	5	1
19	RH_009	1524	857714	5804653	2634	1	1	0	0	0	1	0	7	0	2	2	4	0	5	1
20	RH_010	18453	856361	5806902	2189	0	0	0	0	3	0	0	5	0	1	3	5	0	1	0
21	RH_011	57729	856378	5807450	2180	0	0	0	0	3	0	0	5	0	1	3	5	0	1	0
22	MV_011	37844	869947	5774319	2598	3	0	0	0	0	0	0	1	0	1	2	5	0	0	0
23	MV_012	2383	869720	5774566	2585	3	0	0	0	0	0	0	1	0	1	2	5	0	0	0
24	MV_013	8992	866968	5773534	2778	3	0	0	0	0	0	0	1	0	1	0	5	0	0	0
25	MV_014	5699	861904	5774666	2600	1	2	0	0	0	0	0	2	0	1	3	4	0	3	1
26	MV_015	676	861526	5774161	2662	0	3	0	0	0	0	0	2	0	0	0	4	0	0	1
27	MV_016	5237	858753	5775042	2983	0	3	0	0	0	0	0	2	1	1	1	3	1	3	1
28	MV_017	869	858871	5775021	2990	0	3	0	0	0	0	0	2	1	1	1	3	1	3	1
29	MV_018	828	859436	5774931	2964	3	0	0	0	0	0	0	1	0	2	0	4	0	3	1
30	MV_019	1462	859723	5775900	2955	0	3	0	0	0	0	0	2	0	1	0	5	0	0	1
22	MV_020	10470	858842	5775609	2040	2	1	0	0	3	0	0	2	0	1	3	4	0	1	1
32	MV_022	14/9	057707	5775619	2911	2	1	0	0	0	0	0	1	0	1	2	4	0	2	1
24	MV 022	1445	057645	5775445	2910	1	1	1	0	0	0	0	1	1	1	2	4	1	3	1
34	MV 024	1407	857532	5775397	2945	0	2	1	0	0	1	0	2	1	2	2	3	0	-4	1
36	MV 025	927	857805	5775957	2907	1	1	1	0	0	0	0	- 2	0	0	2	5	0	1	0
37	MV 026	1286	857923	5775989	2906	1	2	0	0	0	0	0	2	0	2	0	5	0	0	0
38	MV 027	2338	858148	5776272	2868	3	0	0	0	0	0	0	1	0	1	1	5	0	0	0
39	MV 028	2921	858027	5776475	2876	1	2	0	0	0	0	0	2	0	2	0	5	0	0	0
40	MV 029	5930	857589	5776353	2888	2	1	0	0	0	0	0	1	0	1	2	5	1	1	0
41	MV 030	21923	856963	5776190	2875	2	1	0	0	0	0	0	1	0	1	3	5	0	0	0
42	MV 031	1658	857361	5775836	2889	2	0	0	0	0	1	0	1	0	1	3	5	0	2	0
43	MV_032	1774	858748	5776158	2852	1	2	0	0	0	0	0	2	0	1	1	5	0	0	0
44	MV_033	623	858656	5776290	2850	1	2	0	0	0	0	0	2	0	2	1	5	0	0	0
45	MV_034	2736	858205	5776778	2833	3	0	0	0	0	0	0	1	0	0	2	5	0	0	0
46	MV_035	1210	858407	5775543	2914	1	2	0	0	0	0	0	2	1	1	3	3	1	3	1
47	MV_036	296	858348	5775548	2915	0	3	0	0	0	0	0	2	0	1	1	3	0	3	1
48	MV_037	940	858227	5775712	2908	1	2	0	0	0	0	0	2	0	1	1	4	0	0	1
49	MV_038	597	857150	5776612	2882	1	2	0	0	0	0	0	2	0	0	0	5	0	0	0
50	MV_039	760	856673	5776889	2815	0	3	0	0	0	0	0	2	0	2	0	5	0	0	0

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
51	MV 040	539	855791	5777156	2732	3	0	0	0	0	0	0	1	1	1	1	3	0	4	1
52	MV_041	5268	857922	5778875	2559	0	0	0	0	0	0	3	8	0	0	4	6	0	0	0
53	MV_042	1595	857743	5779262	2530	1	1	0	1	0	0	0	7	0	0	2	5	0	0	0
54	MV_043	2229	854948	5778357	2786	1	3	0	0	0	0	0	2	0	1	0	5	1	0	0
55	MV_044	3680	854855	5778605	2766	2	1	0	0	0	0	0	1	0	1	1	5	0	1	0
56	MV_045	1623	854217	5778983	2739	3	0	0	0	0	0	0	1	0	2	4	5	0	3	0
57	MV_046	4487	864458	5776298	2441	0	0	3	0	0	0	0	3	1	1	2	1	1	1	1
58	MV_047	3639	864078	5777685	2764	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
59	MV_048	1957	863605	5777666	2738	1	1	0	1	0	0	0	7	0	1	1	5	0	0	0
60	MV_049	1097	864198	5777486	2776	0	3	0	0	0	0	0	2	0	2	2	5	0	1	0
61	MV_050	14653	866009	5778199	2913	0	0	0	0	3	0	0	5	0	2	0	5	0	0	0
62	MV_051	3126	865584	5778534	2865	0	3	0	0	0	0	0	2	0	0	0	5	0	1	0
63	MV_052	756	865785	5778103	2921	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
64	MV_053	1564	865793	5778993	2800	0	1	0	0	0	2	0	6	0	0	1	5	0	4	0
65	MV_054	2534	869261	5779512	2873	2	1	0	0	0	0	0	1	0	1	3	5	0	0	0
66	MV_055	5233	870180	5779567	2918	2	1	0	0	0	0	0	1	0	1	1	5	0	0	0
67	MV_056	8760	871399	5780051	2790	3	0	0	0	0	0	0	1	0	1	1	5	0	2	0
68	MV_057	30999	872482	5780032	2864	2	1	0	0	0	0	0	1	0	1	2	3	0	0	1
69	MV_058	10293	872756	5780434	2883	3	0	0	0	0	0	0	1	0	1	1	5	0	0	0
70	MV_059	037	871201	5782549	2/10	1	1	0	1	0	0	0	7	0	2	1	5	0	0	0
72	MV_061	637	870904	5782573	20//	1	1	0	1	0	0	0	2	0	1	1	2	0	5	1
72	MV_062	755	874955	5782000	3345	0	2	1	0	0	0	0	2	0	2	1	-4 A	0	5	1
74	MV_063	2699	875978	5781328	3136	2	1	- 1	0	0	0	0	1	0	1	2	-4 4	0	0	1
75	MV 064	1719	876171	5781225	3150	3	0	0	0	0	0	0	1	0	1	1	4	0	1	1
76	MV 065	14014	868325	5782499	2537	3	0	0	0	0	0	1	1	0	0	3		0	0	0
77	MV 066	2358	867315	5782199	2345	0	0	0	0	0	0	3	8	0	0	4	6	0	0	0
78	MV 067	4820	866020	5782012	2129	0	0	0	0	3	0	0	5	0	1	4	6	0	0	0
79	MV_068	4011	866701	5781244	2302	0	0	0	0	0	0	3	8	0	0	0	6	0	1	0
80	MV_069	4478	865227	5782761	2234	0	0	0	0	0	0	3	8	0	0	0	6	0	1	0
81	SV_001	4254	882471	5784034	2949	3	0	0	0	0	0	0	1	0	1	2	5	1	5	0
82	SV_002	7312	884060	5783977	2743	3	0	0	0	0	0	0	1	1	1	2	3	1	3	1
83	SV_003	800	883961	5784061	2737	3	0	0	0	0	0	0	1	0	1	2	3	0	4	1
84	SV_004	1701622	886181	5786409	2143	0	0	0	0	3	0	0	5	0	1	3	5	0	0	0
85	SV_005	420	884893	5781465	2908	0	1	2	0	0	0	0	3	1	1	0	2	1	3	1
86	SV_006	1948	885245	5782042	2780	2	1	0	0	0	0	0	1	0	2	2	4	0	0	1
87	SV_007	453	884964	5782339	2867	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
88	SV_008	3436	885000	5782654	2883	0	3	0	0	0	0	0	2	0	0	1	5	0	0	0
89	SV_009	1278	885009	5783084	2872	0	3	0	0	0	0	0	2	0	0	4	5	0	0	0
90	SV_010	2450	885733	5783086	2573	1	2	0	0	0	0	0	2	0	0	2	5	0	0	0
91	SV_011	1157	885520	5783719	2714	0	3	0	0	0	0	0	2	0	0	4	5	0	0	0
92	SV_012	1450	886123	5780924	2790	1	2	0	0	0	0	0	2	1	1	1	3	1	5	1
93	SV_013	2/10	9971/0	5790563	2000	0	3	0	0	0	0	0	2	0	1	0	3	0	5	1
94	SV_014	24255	880047	5781182	2970	0	1	2	0	0	0	0	2	0	1	0	5	0	5	- 1
96	SV_016	3574	889677	5781467	2831	1	2	0	0	0	0	0	2	0	0	0	5	0	1	0
97	SV 017	417	889294	5781606	2760	0	- 3	0	0	0	0	0	2	0	0	0	5	0	5	0
98	SV 018	1891	888637	5781815	2696	1	2	0	0	0	0	0	2	0	0	1	5	0	1	0
99	SV 019	2915	890889	5783538	2645	1	0	0	0	0	2	0	6	0	1	2	3	0	1	1
100	SV_020	713	891702	5783548	2830	1	2	0	0	0	0	0	2	0	1	1	5	1	5	0
101	SV_021	593	882796	5789030	2913	0	3	0	0	0	0	0	2	0	1	3	3	0	5	1
102	SV_022	450	882644	5789020	2935	1	2	0	0	0	0	0	2	1	1	3	3	1	5	1
103	SV_023	1506	891869	5787473	2644	3	0	0	0	0	0	0	1	0	1	0	5	0	0	0
104	SV_024	433	893018	5786888	2874	0	3	0	0	0	0	0	2	0	0	4	5	0	5	0
105	SV_025	7684	891714	5794464	2743	3	0	0	0	0	0	0	1	1	1	3	3	1	5	1

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
106	SV 026	1302	892411	5796115	2927	0	0	3	0	0	0	0	3	0	1	2	5	0	5	0
107	SV_027	3411	890595	5798437	2974	1	0	0	0	0	2	0	6	0	1	2	5	0	5	0
108	SV_028	3349	889548	5799400	3278	0	2	0	1	0	0	0	2	0	0	0	5	0	5	0
109	SV_029	939	891216	5798964	3057	2	0	0	1	0	0	0	1	0	1	0	5	0	5	0
110	PO_001	873	901079	5798962	2254	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
111	PO_002	531	901225	5798965	2257	0	0	0	0	0	0	3	8	0	0	1	6	0	5	0
112	PO_003	260	901163	5798810	2272	0	0	0	0	0	0	3	8	0	0	1	6	0	5	0
113	PO_004	736	901827	5799087	2304	0	0	0	0	0	0	3	8	0	0	0	6	0	0	0
114	PO_005	15303	902557	5800256	2246	0	0	0	0	0	0	3	8	0	0	2	6	0	5	0
115	PO_006	2516	902815	5800087	2258	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
116	PO_007	3313	902669	5800028	2250	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
117	PO_008	956	902508	5800452	2249	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
118	PO_009	3409	899145	5802037	2733	1	2	0	0	0	0	0	2	0	0	2	5	0	5	0
119	PO_010	8363	898282	5802356	2640	1	2	0	0	0	0	0	2	0	0	2	5	0	0	0
120	PO_011	9765	906666	5802823	2278	3	0	0	0	0	0	0	1	0	0	1	6	0	5	0
121	PO_012	1622	906855	5802897	2297	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
122	PO_013	63826	905870	5803893	2175	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
123	PO_014	6907	907028	5803723	2214	0	2	0	1	0	0	0	2	0	0	1	6	0	0	0
124	PO_015	1652	906815	5803826	2229	0	3	0	0	0	0	0	2	0	0	0	6	0	5	0
125	PO_016	1550	906099	5804159	2174	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
126	PO_017	627	906239	5803946	2224	0	3	0	0	0	0	0	2	0	0	1	6	0	5	0
127	PO_018	560	905511	5804211	2212	2	1	0	0	0	0	0	1	0	0	2	6	0	5	0
128	PO_019	1923	906548	5804391	2056	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
129	PO_020	2225	907407	5804729	2165	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
130	PO_021	269	907228	5804793	2135	0	0	0	0	0	0	3	8	0	0	1	6	0	5	0
131	PO_022	2511	905619	5804793	2063	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
132	PO_023	447	899939	5803178	2512	0	3	0	0	0	0	0	2	0	0	0	5	0	5	0
133	PO_024	6172	899049	5804577	2033	0	0	0	0	0	0	3	8	0	0	0	6	0	0	0
134	PO_025	34427	901188	5817078	2609	1	2	0	0	0	0	0	2	0	1	3	5	0	0	0
135	PO_026	33400	901403	5817663	2/30	0	3	0	0	0	0	0	2	0	1	3	5	0	0	0
136	PO_027	4207	901572	5817072	2622	0	3	0	0	0	0	0	2	0	0	2	5	0	0	0
137	PO_028	12041	901006	5816/41	2009	1	2	0	0	0	0	0	2	0	1	1	5	0	0	0
120	PO_029	22290	903067	5810922	2481	0	2	0	0	0	0	0	2	0	0	2	2	0	2	0
140	PO_030	12/19	903420	501/354	2550	1	1	0	1	0	0	0	- 2	0	0	2	5	0	2	0
140	PO_031	5142	903685	5817838	2681	0	2	0	1	0	0	0	2	0	0	2	5	1	5	0
142	PO_033	13729	894056	5819622	2023	1	0	0	0	2	0	0	5	0	0	2	6	0	0	0
142	RH 012	12305	893147	5820903	2017	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
144	PO 034	2252	889670	5819623	2428	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
145	PO 035	2237	889532	5821365	2475	3	0	0	0	0	0	0	1	0	0	4	6	0	3	0
146	PO 036	373	888976	5821010	2507	3	0	0	0	0	0	0	1	0	0	4	6	0	4	0
147	PO 037	1020	889114	5821467	2517	3	0	0	0	0	0	0	1	0	0	2	6	0	4	0
148	RH 013	5060	889166	5822411	2584	1	2	0	0	0	0	0	2	0	0	1	6	0	4	0
149	RH_014	41822	899238	5821863	2748	3	0	0	0	0	0	0	1	0	2	0	4	0	0	1
150	RH_015	579	899043	5821548	2762	2	1	0	0	0	0	0	1	0	0	0	4	0	5	1
151	RH_016	1682	899373	5821303	2765	0	3	0	0	0	0	0	2	1	1	1	3	1	4	1
152	RH_017	304	898454	5821219	2639	1	1	0	1	0	0	0	7	0	0	1	5	0	0	0
153	RH_018	1047	897185	5822734	2450	0	0	0	0	0	0	3	8	0	0	1	5	0	3	0
154	RH_019	1220	897381	5824704	2137	0	0	0	0	0	0	3	8	0	0	2	5	0	0	0
155	RH_020	442	901269	5824646	2530	0	0	3	0	0	0	0	3	0	0	2	5	0	0	0
156	RH_021	134788	902561	5826561	2439	0	0	0	0	3	0	0	5	0	1	2	5	0	0	0
157	RH_022	36534	904037	5831167	2464	0	3	0	0	0	0	0	2	0	0	3	5	0	0	0
158	RH_023	261	902225	5831688	2554	0	1	2	0	0	0	0	3	0	0	4	6	0	0	0
159	RH_024	7028	897613	5830441	2319	0	0	0	0	3	0	0	5	0	0	4	6	0	0	0
160	RH_025	46358	909053	5832301	2094	0	0	0	0	3	0	0	5	0	0	2	5	0	0	0

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
161	RH 026	2758	906800	5831327	2298	3	0	0	0	0	0	0	1		1	2	- 5	0	0	0
162	RH 027	2344	906448	5832800	2291	0	3	0	0	0	0	0	2	0	0	2	5	0	0	0
163	RH 028	4619	912717	5830661	2417	2	1	0	0	0	0	0	1	0	0	2	6	1	1	0
164	RH 029	1013	913374	5829904	2491	3	0	0	0	0	0	0	1	0	0	0	6	0	1	0
165	RH 030	3284	913798	5832574	2601	2	1	0	0	0	0	0	1	0	0	2	6	0	1	0
166	RH 031	665	913850	5832729	2617	3	0	0	0	0	0	0	1	0	0	2	5	0	1	0
167	RH 032	6648	913446	5834077	2416	2	1	0	0	0	0	0	1	0	0	0	5	0	1	0
168	RH 033	15164	916828	5835818	2360	0	1	0	2	0	0	0	4	0	0	0	6	0	0	0
169	RH 034	28209	917866	5836090	2423	0	3	0	0	0	0	0	2	0	0	3	6	0	0	0
170	RH 035	111739	918698	5836363	2415	0	3	0	0	0	0	0	2	0	0	3	6	0	0	0
171	RH_036	1398	919483	5836301	2551	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
172	RH_037	4904	915808	5837407	2117	0	0	0	0	0	0	3	8	0	0	4	6	0	5	0
173	RH 038	2460	913034	5836736	2227	2	0	0	1	0	0	0	1	0	0	0	6	0	0	0
174	RH_039	12774	918719	5837980	2713	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
175	RH_040	2878	919893	5840913	2001	0	0	0	0	0	0	3	8	0	0	0	6	0	0	0
176	RH_041	1667	924293	5843884	2698	2	1	0	0	0	0	0	1	0	2	2	5	0	3	0
177	RH_042	3197	920968	5845260	2793	3	0	0	0	0	0	0	1	0	0	0	5	0	1	0
178	RH 043	21902	918734	5845741	2864	3	0	0	0	0	0	0	1	0	1	0	5	0	5	0
179	RH_044	1116	919110	5845822	2882	3	0	0	0	0	0	0	1	0	1	1	5	0	5	0
180	RH 045	605	918838	5845495	2885	3	0	0	0	0	0	0	1	0	2	0	5	0	5	0
181	RH 046	8081	916340	5848498	2367	0	0	0	0	0	0	3	8	0	0	2	5	0	2	0
182	RH 047	3910	916185	5847982	2416	0	3	0	0	0	0	0	2	0	0	2	5	0	0	0
183	RH 048	2232	915457	5848839	2228	0	0	0	0	0	0	3	8	0	0	1	6	0	2	0
184	RH 049	3897	915132	5847165	2387	0	0	0	0	0	0	3	8	0	0	2	6	0	2	0
185	RH 050	302	913306	5845534	2401	0	0	0	0	0	0	3	8	0	0	0	6	0	3	0
186	RH 051	2387	912363	5845596	2311	0	0	0	0	0	0	3	8	0	0	0	6	0	3	0
187	RH 052	1345	917923	5849028	2433	0	0	0	0	0	0	3	8	0	0	2	5	0	2	0
188	RH 053	8884	922394	5852905	2455	0	0	0	0	0	0	3	8	0	0	2	5	0	0	0
189	RH 054	10690	923182	5852888	2411	0	0	0	0	0	0	3	8	0	0	2	5	0	0	0
190	RH 055	47636	926514	5854895	2585	0	3	0	0	0	0	0	2	0	0	2	5	0	0	0
191	RH_056	1353	925702	5855611	2646	1	2	0	0	0	0	0	2	0	0	1	5	0	0	0
192	RH_057	2504	925836	5855665	2659	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
193	RH_058	1076	926676	5855998	2592	2	0	0	1	0	0	0	1	0	0	2	5	0	0	0
194	RH_059	721	926836	5855621	2535	0	0	0	0	0	0	3	8	0	0	2	5	0	0	0
195	RH_060	577737	931750	5854008	2359	0	0	0	0	3	0	0	5	1	1	2	3	1	0	1
196	RH_061	3207	931060	5853219	2413	1	0	2	0	0	0	0	3	1	2	0	3	1	3	1
197	RH_062	3629	933697	5857197	2480	0	0	0	0	3	0	0	5	0	0	0	6	0	0	0
198	RH_063	570	933799	5856700	2470	0	3	0	0	0	0	0	2	0		1	6	0	0	0
199	RH_064	94800	940257	5861322	2695	0	3	0	0	0	0	0	2	1	1	3	3	1	3	1
200	RH_065	25083	941146	5863293	2665	2	1	0	0	0	0	0	1	0	1	2	4	0	0	1
201	RH_066	11067	941564	5863012	2721	2	0	1	0	0	0	0	1	1	1	0	3	1	3	1
202	RH_067	1317	941085	5863085	2700	1	2	0	0	0	0	0	2	0	2	0	4	0	0	1
203	RH_068	2662	940569	5866087	2767	1	2	0	0	0	0	0	2	0	0	1	5	0	0	0
204	RH_069	275	935855	5866632	2672	2	1	0	0	0	0	0	1	0	0	1	5	0	0	0
205	RH_070	826	935745	5868569	2673	1	2	0	0	0	0	0	2	0	0	1	5	0	0	0
206	RH_071	1688	936988	5869381	2690	2	1	0	0	0	0	0	1	0	1	1	4	0	3	1
207	RH_072	2452	935956	5869828	2592	3	0	0	0	0	0	0	1	0	0	2	5	0	0	0
208	RH_073	191225	928432	5870639	2143	0	0	0	0	3	0	0	5	0	0	2	6	0	0	0
209	RH_074	3104	926952	5869847	2347	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
210	RH_075	2118	928983	5869363	2144	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
211	RH_076	1403	928517	5869830	2206	0	0	0	0	0	0	3	8	0	0	0	6	0	0	0
212	RH_077	673	928937	5869550	2157	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
213	RH_078	804	929046	5869617	2155	0	0	0	0	0	0	3	8	0	0	1	6	0	0	0
214	RH_079	9810	925596	5868036	2425	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
215	RH_080	779	924408	5867016	2414	0	0	0	0	0	0	3	8	0	0	2	6	0	3	0

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
216	RH 081	21046	923425	5867181	2493	0	0	0	0	0	0	3	8	0	0	0	6	0	0	0
217	RH 082	1077	923750	5867429	2548	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
218	RH 083	28299	923325	5866562	2476	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
219	RH_084	1589	923577	5866866	2491	1	1	0	1	0	0	0	7	0	0	2	6	0	0	0
220	RH 085	11963	922407	5866167	2572	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
221	RH_086	9496	920286	5865782	2666	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
222	RH_087	13892	920634	5865493	2612	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
223	RH_088	12495	920996	5864830	2419	0	3	0	0	0	0	0	2	0	0	3	6	0	0	0
224	RH_089	43826	918495	5864366	2574	0	3	0	0	0	0	0	2	0	0	3	5	0	0	0
225	RH_090	7909	918387	5865218	2742	0	2	0	1	0	0	0	2	0	0	0	5	0	0	0
226	RH_091	92128	933130	5873840	2244	0	3	0	0	0	0	0	2	1	1	3	3	1	3	1
227	RH_092	3137	931330	5874380	2672	0	3	0	0	0	0	0	2	0	0	2	5	0	0	0
228	RH_093	333	931795	5874840	2651	1	2	0	0	0	0	0	2	0	0	0	5	0	0	0
229	RH_094	276	933445	5879309	2675	0	3	0	0	0	0	0	2	0	1	1	4	0	5	1
230	RH_095	939	931187	5874264	2692	0	3	0	0	0	0	0	2	0	0	2	5	0	0	0
231	RH_096	765	927728	5868612	2181	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
232	RH_097	762	927736	5868865	2234	0	0	0	0	0	0	3	8	0	0	1	6	0	0	0
233	RH_098	324	927638	5868115	2114	0	0	0	0	0	0	3	8	0	0	1	6	0	3	0
234	RH_099	450	925937	5868197	2423	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
235	RH_100	3437	915097	5864538	2783	1	2	0	0	0	0	0	2	0	0	2	5	0	0	0
236	RH_101	463	914967	5864382	2777	1	2	0	0	0	0	0	2	0	0	3	5	0	0	0
237	RH_102	3407	914249	5863948	2727	2	0	0	1	0	0	0	1	0	0	2	5	0	2	0
238	RH_103	1273	914045	5863846	2731	2	1	0	0	0	0	0	1	0	0	1	5	0	1	0
239	RH_104	1185	914575	5864345	2856	1	2	0	0	0	0	0	2	0	0	2	5	0	0	0
240	RH_105	649	913240	5864018	2950	2	1	0	0	0	0	0	1	0	1	4	4	0	1	1
241	RH_106	4110	914994	5860971	2702	1	1	0	1	0	0	0	7	0	0	2	6	0	0	0
242	RH_107	1502	910456	5859608	2677	2	0	0	1	0	0	0	1	0	0	1	5	0	0	0
243	RH_108	7550	909777	5856549	2685	1	2	0	0	0	0	0	2	0	0	1	6	0	0	0
244	RH_109	10546	908801	5855384	2721	2	1	0	0	0	0	0	1	0	0	2	6	0	0	0
245	RH_110	695	910394	5856177	2621	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
246	RH_111	690	909281	5855019	2635	1	1	0	1	0	0	0	7	0	0	0	6	0	0	0
247	RH_112	8866	908467	5854898	2656	1	1	0	0	1	0	0	7	0	0	2	6	0	0	0
248	RH_113	6576	908950	5854496	2559	1	0	0	0	2	0	0	5	0	0	3	6	0	0	0
249	RH_114	14198	909320	5853948	2402	1	0	0	0	2	0	0	5	0	0	2	6	0	3	0
250	RH_115	7601	909090	5852773	2462	0	0	0	0	3	0	0	5	0	0	0	6	0	2	0
251	RH_116	1436	909290	5851305	2053	0	0	0	0	3	0	0	5	0	0	4	6	0	0	0
252	RH_117	61483	902314	5851361	2360	0	0	0	0	3	0	0	5	0	0	3	6	0	0	0
253	RH_118	2079	901860	5851047	2348	3	0	0	0	0	0	0	1	0	0	4	6	0	0	0
254	RH_119	884	901610	5851119	2343	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
255	RH_120	990	901307	5851054	2332	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
256	RH_121	4410	900805	5851271	2302	1	1	0	1	0	0	0	7	0	0	2	6	0	0	0
257	RH_122	2422	901942	5852459	2602	2	1	0	0	0	0	0	1	0	0	2	6	0	0	0
258	RH_123	9845	900747	5847745	2520	0	0	0	0	3	0	0	5	0	0	1	6	0	0	0
259	RH_124	964	901647	5855352	3086	0	2	1	0	0	0	0	2	0	2	1	5	1	5	0
260	RH_125	627	901754	5855404	3068	0	1	2	0	0	0	0	3	0	2	0	4	0	5	1
261	RH_126	493	901530	5855196	3030	2	1	0	0	0	0	0	1	0	2	1	5	0	5	0
262	RH_127	2670	903810	5864671	3175	1	2	0	0	0	0	0	2	1	1	3	3	1	3	1
263	RH_128	894	890469	5861052	2959	1	2	0	0	0	0	0	2	0	2	0	4	0	5	1
264	RH_129	71895	897313	5843698	2007	0	0	0	0	3	0	0	5	0	0	2	6	0	3	0
265	RH_130	1132	897021	5843553	2015	0	0	0	0	0	0	3	8	0	0	0	6	0	0	0
266	RH_131	6162	895505	5843155	2214	1	2	0	0	0	0	0	2	0	0	0	6	0	0	0
267	RH_132	13478	888333	5844186	2635	0	0	0	0	3	0	0	5	0	0	2	5	0	4	0
268	RH_133	3311	888506	5841421	2185	1	1	0	0	0	1	0	7	0	0	2	6	0	0	0
269	RH_134	1375	888112	5841210	2167	2	1	0	0	0	0	0	1	0	0	0	6	0	0	0
270	RH_135	382	886708	5847871	2434	0	0	3	0	0	0	0	3	1	1	0	1	1	4	1

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
271	RH 136	662	888415	5847027	2334	0	0	3	0	0	0	0	3	1	1	0	1	1	5	1
272	RH_137	3434	879377	5843860	2671	2	0	0	0	0	1	0	1	1	1	0	3	1	3	1
273	RH_138	1173	874635	5855495	2738	0	3	0	0	0	0	0	2	0	1	1	4	0	2	1
274	RH_139	1102	874718	5855256	2665	0	3	0	0	0	0	0	2	0	1	1	4	0	2	1
275	RH_140	1489	871895	5853969	2592	0	2	0	1	0	0	0	2	0	1	3	5	0	0	0
276	RH_141	1390	872010	5853728	2559	0	3	0	0	0	0	0	2	0	1	3	5	0	0	0
277	RH_142	438	880870	5853697	2371	1	1	0	1	0	0	0	7	0	0	2	5	0	0	0
278	RH_143	1958	877335	5851876	2025	2	1	0	0	0	0	0	1	0	0	0	6	0	0	0
279	RH_144	510	869761	5852950	2757	0	3	0	0	0	0	0	2	0	1	2	4	0	0	1
280	RH_145	597	866374	5850409	2721	3	0	0	0	0	0	0	1	0	1	1	5	0	2	0
281	RH_146	697	865735	5850314	2756	1	2	0	0	0	0	0	2	0	0	0	5	0	0	0
282	RH_147	361	864823	5850065	2782	3	0	0	0	0	0	0	1	0	1	1	5	0	5	0
283	RH_148	15966	859321	5846436	2592	2	1	0	0	0	0	0	1	0	0	1	6	0	1	0
284	RH_149	721	859129	5846166	2602	3	0	0	0	0	0	0	1	0	0	0	6	0	1	0
285	RH_150	1005	860074	5847658	2714	0	3	0	0	0	0	0	2	0	0	0	6	1	5	0
286	RH_151	2524	859393	5846974	2659	1	2	0	0	0	0	0	2	0	0	3	6	1	2	0
287	RH_152	3696	856767	5843133	2749	0	0	3	0	0	0	0	3	0	0	0	4	0	2	1
288	RH_153	6387	856722	5842958	2771	0	0	3	0	0	0	0	3	1	1	0	3	1	3	1
289	RH_154	5956	856539	5841344	2609	1	1	0	1	0	0	0	7	0	0	0	6	0	3	0
290	RH_155	299	855220	5841551	2824	1	2	0	0	0	0	0	2	1	1	1	3	1	4	1
291	RH_156	8387	855166	5839651	2342	0	0	0	0	3	0	0	5	0	0	1	6	0	3	0
292	SV_030	1211	878713	5793396	2911	1	2	0	0	0	0	0	2	0	1	1	4	0	5	1
293	SV_031	581	878569	5793281	2924	1	2	0	0	0	0	0	2	0	1	1	4	0	5	1
294	SV_032	286	878797	5793228	2896	1	2	0	0	0	0	0	2	0	1	1	4	0	5	1
295	SV_033	1369	880504	5792174	2840	0	2	0	0	0	1	0	2	1	1	3	3	1	5	1
296	SV_034	6504	883107	5790804	2880	2	1	0	0	0	0	0	1	0	1	2	4	0	5	1
297	SV_035	1015	883310	5790653	2901	2	1	0	0	0	0	0	1	1	1	3	3	1	5	1
298	SV_036	407	882485	5790911	2994	0	3	0	0	0	0	0	2	0	1	1	4	0	5	1
299	SV_037	686	882453	5791003	2983	0	3	0	0	0	0	0	2	0	1	3	4	0	5	1
300	SV_038	278	882279	5790961	3036	0	2	1	0	0	0	0	2	0	1	2	4	0	5	1
301	SV_039	1800	882770	5791205	2906	2	0	0	0	0	1	0	1	0	1	2	5	0	5	0
302	SV_040	2340	883226	5791170	2863	3	0	0	0	0	0	0	1	0	1	3	5	0	5	0
303	MV_070	731	874011	5785346	2914	1	2	0	0	0	0	0	2	0	1	3	5	0	5	0
304	MV_071	259	872276	5783966	2961	1	2	0	0	0	0	0	2	0	0	1	5	0	5	0
305	MV_072	1645	873017	5783600	3049	1	2	0	0	0	0	0	2	0	1	4	5	0	5	0
306	MV_073	1524	875847	5/8/6//	3355	2	1	0	0	0	0	0	1	0	1	1	4	1	5	1
307	MV_074	1222	874695	5788528	3318	2	1	0	0	0	0	0	1	0	1	4	5	0	5	- 1
308	MV_076	1332	874032	5788694	31//	2	3	0	0	0	0	0	1	0	2	4	5	0	5	
210	MV_077	4420	872373	5790489	2147	1	0	0	2	0	0	0	1	0	1	2	2 5	0	5	0
311	MV_079	/1/24	970939	5797210	3154	- 1	1	0	2	0	0	0	-4	0	0	1	5	0	5	_0
312	MV 079	6880	87/030	5804253	2035	2	1	0	2	0	0	0	-4	1	1	1	3	1	5	1
313	SV 041	1777	877302	5805669	2631	- 2	3	0	0	0	0	0	2	1	2	1	4	1	5	1
314	SV_042	602	876935	5805484	2723	1	2	0	0	0	0	0	2	0	1	1	4	0	5	1
315	SV_043	842	876815	5805583	2710	1	2	0	0	0	0	0	2	0	1	2	4	0	5	1
316	SV_044	2795	875189	5807809	2908	1	0	0	2	0	0	0	4	0	1	0	6	1	5	0
317	SV_045	1443	878997	5802426	2877	2	1	0	0	0	0	0	1	0	1	3	5	0	5	0
318	RH 157	200348	849580	5821681	2336	0	0	0	0	3	0	0	5	0	0	4	6	0	3	0
319	RH 158	4098	849477	5821143	2388	2	0	0	1	0	0	0	1	0	0	0	6	0	3	0
320	RH 159	14818	849552	5820488	2430	2	1	0	0	0	0	0	1	0	0	0	6	0	1	0
321	RH 160	1038	847828	5820438	2498	0	0	0	0	0	0	3	8	0	0	1	6	0	0	0
322	RH 161	862	847889	5820532	2370	0	0	0	0	0	0	3	8	0	0	1	6	0	0	0
323	RH 162	29412	851637	5821361	2377	0	0	0	0	3	0	0	5	0	0	3	6	0	1	0
324	RH_163	29378	852088	5821784	2358	0	0	0	0	3	0	0	5	0	0	2	6	0	1	0
325	RH_164	3489	852260	5822209	2303	0	0	0	0	3	0	0	5	0	0	2	6	0	0	0
p	Nam e	flaeche	k-coord.	y-coord.	Hähe	ake_mora	ake_bedro	ake_iceda	ake_lands	ake_anthr	ake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
------	--------	---------	----------	----------	------	----------	-----------	-----------	-----------	-----------	-----------	------------	---------	------------	------------	------------	----------	---------	-----------	------------
326	RH 165	2853	848503	5821816	2276	3	0	0	0	0	0	0	1			0	-6	0	2	0
327	RH 166	496	852131	5822339	2282	3	0	0	0	0	0	0	1	0	0	1	6	0	1	0
328	RH 167	5515	853179	5819053	2627	0	2	0	1	0	0	0	2	0	0	0	6	0	0	0
329	RH_168	14285	853414	5819349	2616	2	1	0	0	0	0	0	1	0	0	0	6	0	1	0
330	RH 169	8070	854880	5819198	2416	0	3	0	0	0	0	0	2	0	0	3	6	0	0	0
331	RH_170	1065	854497	5819382	2495	1	2	0	0	0	0	0	2	0	0	1	6	0	1	0
332	RH_171	1966	852699	5817852	2767	0	2	0	1	0	0	0	2	0	0	1	6	0	1	0
333	RH_172	3951	850986	5817814	2580	1	1	0	0	1	0	0	7	0	0	3	6	0	1	0
334	RH_173	1292	850025	5818099	2487	1	2	0	0	0	0	0	2	0	0	3	6	0	0	0
335	RH_174	583	849923	5818383	2520	1	2	0	0	0	0	0	2	0	0	3	6	0	0	0
336	RH_175	9392	851402	5816433	2568	1	2	0	0	0	0	0	2	0	0	2	6	0	0	0
337	RH_176	11183	850478	5815342	2436	0	0	0	0	3	0	0	5	0	0	3	6	0	0	0
338	RH_177	9446	851127	5814602	2453	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
339	RH_178	38079	854209	5816250	2663	1	2	0	0	0	0	0	2	0	0	2	6	0	3	0
340	RH_179	820	853912	5815757	2643	3	0	0	0	0	0	0	1	0	0	3	6	0	1	0
341	RH_180	3819	853813	5814778	2530	1	2	0	0	0	0	0	2	0	0	0	6	0	0	0
342	RH_181	5554	854136	5813007	2567	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
343	RH_182	1719	855175	5815481	2634	1	1	0	1	0	0	0	7	0	0	0	6	0	0	0
344	RH_183	3479	851348	5814763	2424	2	0	0	1	0	0	0	1	0	0	1	6	0	0	0
345	KH_184	11689	851878	5812396	2661	2	1	0	0	0	0	0	1	0	1	2	6	1	0	0
340	KH_185	2500	852210	5813557	2//3	3	0	0	0	0	0	0	1	0	1	0	6	1	5	0
2/10	DU 197	2305	950760	5900227	2401	2	0	0	0	0	0	0	1	0	0	1	6	0	5	0
340	RH 188	296	853219	5806014	2766	3	0	0	0	0	0	0	1	0	0	1	6	0	5	0
350	MV_080	961	863017	5807213	2898	3	0	0	0	0	0	0	1	0	1	0	5	0	2	0
351	MV_081	801	862672	5809559	2806	3	0	0	0	0	0	0	1	0	2	0	4	0	0	1
352	MV 082	2425	863096	5809805	2774	3	0	0	0	0	0	0	1	0	2	0	5	0	0	0
353	MV 083	392	861720	5809181	2912	2	1	0	0	0	0	0	1	0	1	0	4	1	5	1
354	RH 189	1432	860234	5810000	2864	1	2	0	0	0	0	0	2	0	1	1	4	1	5	1
355	RH 190	654	860016	5809112	2879	3	0	0	0	0	0	0	1	0	0	1	5	0	0	0
356	MV_084	1347	862037	5811338	2750	2	1	0	0	0	0	0	1	0	0	2	6	0	0	0
357	MV_085	1405	861494	5810931	2892	1	0	2	0	0	0	0	3	0	1	0	6	1	3	0
358	RH_191	641	862666	5813841	2799	0	1	0	2	0	0	0	4	0	1	0	6	1	0	0
359	RH_192	13819	865722	5817220	2549	3	0	0	0	0	0	0	1	0	0	2	6	0	1	0
360	RH_193	261	865903	5817074	2570	3	0	0	0	0	0	0	1	0	0	3	6	0	5	0
361	RH_194	3616	865209	5816688	2605	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
362	RH_195	3284	862932	5819106	2657	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
363	RH_196	1977	863529	5818512	2580	3	0	0	0	0	0	0	1	0	0	3	6	0	0	0
364	RH_197	1026	865022	5818465	2419	3	0	0	0	0	0	0	1	0	0	0	6	0	1	0
365	RH_198	265	865126	5817709	2487	3	0	0	0	0	0	0	1	0	0	3	6	0	0	0
366	RH_199	281	865274	5817622	2494	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
367	MV_086	2870	868537	5818992	2598	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
368	MV_087	2419	868617	5818767	2581	3	0	0	0	0	0	0	1	0	0	0	6	0	1	0
369	MV_088	947	869016	5818640	2568	3	0	0	0	0	0	0	1	0	0	1	6	0	2	0
370	KH_200	3593	801094	2813320	2554	1	2	0	3	0	0	0	4	0	1	1	0	0	1	1
3/1	SV_040	295	890095	5802580	2170	1	2	0	0	0	0	0	1	0	1	1	4	0	С 5	1
372	PO 039	370	896167	5802071	2400	2	1	0	0	0	0	0	1	0	1	2	5	0	5	0
374	PO 039	820	896450	5803346	2383	1	2	0	0	0	0	0	2	0	0	2	5	0	5	0
375	PO 040	544	896480	5803366	2383	1	2	0	0	0	0	0	2	0	0	- 0	5	0	5	0
376	PO 041	1036	896564	5803323	2379	1	2	0	0	0	0	0	2	0	0	2	5	0	5	0
377	PO 042	4327	894592	5804118	2391	3	0	0	0	0	0	0	1	0	1	3	5	0	5	0
378	PO 043	420	894287	5804408	2393	3	0	0	0	0	0	0	1	0	1	1	5	0	5	0
379	SV_048	1248	886371	5802761	2416	2	0	0	0	1	0	0	1	0	0	1	5	0	5	0
380	SV_049	16439	887695	5808384	2850	3	0	0	0	0	0	0	1	0	1	3	4	0	5	1

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
381	SV_050	13794	887337	5807990	2849	2	0	1	0	0	0	0	1	1	1	3	2	1	5	1
382	SV_051	24895	886629	5807288	2774	0	0	0	0	3	0	0	5	0	1	2	5	0	5	0
383	SV_052	6984	887685	5810026	2947	3	0	0	0	0	0	0	1	0	1	2	5	0	5	0
384	SV_053	353	887584	5809751	2947	2	0	0	0	0	1	0	1	0	1	2	5	0	5	0
385	SV_054	620	888396	5810257	3063	0	1	2	0	0	0	0	3	0	1	1	4	0	5	1
386	SV_055	804	888460	5810566	3083	0	2	1	0	0	0	0	2	1	1	1	3	1	5	1
387	SV_056	2342	886534	5810961	2821	3	0	0	0	0	0	0	1	0	0	1	5	0	5	0
388	PO_044	3523	894452	5808964	2514	3	0	0	0	0	0	0	1	0	1	0	5	0	5	0
389	PO_045	289	894927	5806545	2495	3	0	0	0	0	0	0	1	0	0	0	5	0	5	0
390	PO_046	1510	895206	5809381	2324	2	1	0	0	0	0	0	1	0	1	2	5	0	5	0
391	PO_047	5902	890607	5814270	2421	3	0	0	0	0	0	0	1	0	1	1	6	0	5	0
392	PO_048	5761	890259	5814165	2427	2	0	0	0	0	1	0	1	0	1	3	6	1	5	0
393	PO_049	32158	889841	5814385	2431	1	2	0	0	0	0	0	2	0	1	2	6	1	5	0
394	PO_050	3150	889070	5815194	2584	2	1	0	0	0	0	0	1	0	0	2	6	0	5	0
395	PO_051	500	888939	5815077	2597	2	1	0	0	0	0	0	1	0	0	2	6	0	3	0
396	PO_052	995	888768	5814963	2604	1	0	0	2	0	0	0	4	0	0	0	6	0	5	0
397	RH_201	28357	883937	5821894	2194	2	0	0	0	1	0	0	1	0	0	2	6	0	0	0
398	BO_001	3924240	823757	5789448	2283	0	0	0	0	3	0	0	5	0	1	0	4	0	0	1
399	BO_002	37834	826394	5783688	2684	3	0	0	0	0	0	0	1	1	1	3	3	1	5	1
400	DB_001	9092	828650	5774212	3100	2	1	0	0	0	0	0	1	1	1	3	3	1	5	1
401	DB_002	1027	828530	5774249	3119	0	2	1	0	0	0	0	2	0	1	0	4	0	5	1
402	DB_003	934	828249	5774188	3141	2	1	0	0	0	0	0	1	1	1	2	3	1	5	1
403	RH_202	26780	816828	5792656	2755	2	1	0	0	0	0	0	1	0	1	3	5	0	3	0
404	RH_203	59330	816580	5794640	2647	1	2	0	0	0	0	0	2	0	1	3	5	0	0	0
405	RH_204	19448	813521	5794771	2798	1	1	0	1	0	0	0	7	1	1	3	3	1	3	1
406	RH_205	13462	812347	5795106	2747	0	2	0	1	0	0	0	2	0	0	2	6	0	0	0
407	DB_004	11796	808284	5780308	2666	3	0	0	0	0	0	0	1	0	1	3	5	1	0	0
408	RH_206	28289	832224	5840246	2571	0	2	0	1	0	0	0	2	0	1	0	5	0	3	0
409	DE_001	6380	786865	5770305	2091	0	0	1	2	0	0	0	4	1	1	0	5	1	3	0
410	DE_002	5124	786091	5780634	2815	0	1	0	2	0	0	0	4	0	0	0	6	0	3	0
411	DE_003	29074	794922	5761599	2504	0	3	0	0	0	0	0	2	0	0	4	6	0	0	0
412	DB_005	16000	815034	5792032	2766	0	0	0	3	0	0	0	4	0	0	0	6	0	3	0
413	DB_006	330	822563	5773054	2596	1	0	1	0	0	1	0	7	1	1	4	1	0	3	1
414	DB_007	1240	822960	5773328	2611	1	0	1	0	0	1	0	7	1	1	3	1	1	4	1
415	DB_008	401	822654	5772813	2572	0	0	1	0	0	2	0	6	1	1	2	1	0	2	1
416	DB_009	1944	822159	5775310	2981	1	0	0	0	0	2	0	6	0	0	3	6	0	0	0
417	DB_010	1110	822170	5774984	2984	3	0	0	0	0	0	0	1	0	0	0	6	0	1	0
418	DB_011	13699	821572	5773010	2579	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
419	DB_012	1390	821257	5773189	2572	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
420	DB_013	1021	821322	5772850	2583	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
421	DB_014	2087	821711	5770747	2466	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
422	DB_015	12936	821357	5770031	2394	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
423	DB_016	2139	824120	5770793	2925	3	0	0	0	0	0	0	1	0	0	4	6	0	0	0
424	DB_017	3277	825329	5771785	3061	2	1	0	0	0	0	0	1	0	0	1	6	0	0	0
425	DB_018	2705	822641	5767877	2447	3	0	0	0	0	0	0	1	0	0	0	5	0	0	0
426	DB_019	851	818527	5768171	2754	1	2	0	0	0	0	0	2	0	0	0	4	0	3	1
427	DB_020	2233	818255	5769503	2592	3	0	0	0	0	0	0	1	0	1	0	5	0	3	0
428	DB_021	264	818407	5769571	2584	1	2	0	0	0	0	0	2	0	2	0	5	0	4	0
429	DB_022	613	814729	5768707	3022	0	0	3	0	0	0	0	3	1	1	0	1	1	5	1
430	DB_023	1891	817594	5771056	2747	3	0	0	0	0	0	0	1	0	0	0	5	0	0	0
431	DB_024	2320	817588	5772178	2530	3	0	0	0	0	0	0	1	1	1	3	3	1	3	1
432	DB_025	933	811249	5781319	2390	0	3	0	0	0	0	0	2	1	1	0	3	1	3	1
433	DB_026	1051	811697	5781568	2326	0	3	0	0	0	0	0	2	0	2	1	4	0	2	1
434	DB_027	5587	807159	5779585	2803	3	0	0	0	0	0	0	1	0	0	0	6	0	0	0
435	DB_028	6668	807304	5779613	2806	3	0	0	0	0	0	0	1	0	0	0	6	0	3	0

id	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
436	DB_029	8574	807376	5780384	2718	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
437	DB_030	1303	807583	5780583	2721	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
438	DB_031	546	807383	5780612	2738	0	3	0	0	0	0	0	2	0	0	0	6	0	3	0
439	DB_032	1759	806600	5780386	2857	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
440	DB_033	1715	806386	5780258	2882	3	0	0	0	0	0	0	1	0	0	2	6	0	3	0
441	DB_034	904	806038	5780437	2933	2	1	0	0	0	0	0	1	0	0	1	6	0	0	0
442	DB_035	7747	806615	5781964	2761	3	0	0	0	0	0	0	1	0	0	1	6	0	0	0
443	DB_036	12011	807276	5783358	2551	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
444	DB_037	8546	806416	5783532	2596	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
445	DB_038	1418	805883	5785373	2059	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
446	BO_003	2986	844141	5785512	2763	0	2	1	0	0	0	0	2	0	1	3	3	0	0	1
447	BO_004	385	844311	5786786	2815	0	3	0	0	0	0	0	2	0	1	3	5	0	0	0
448	BO_005	471	844333	5787018	2850	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
449	BO_006	3418	844527	5788819	2945	0	3	0	0	0	0	0	2	1	1	3	3	1	4	1
450	BO_007	4539	839790	5795594	2497	1	0	0	0	2	0	0	5	0	0	3	6	0	5	0
451	BO_008	4160	840352	5796614	2692	0	2	0	0	1	0	0	2	0	0	3	6	0	5	0
452	BO_009	1325	836965	5800815	2527	0	0	0	0	0	0	3	8	0	0	0	6	0	3	0
453	BO_010	1026	842492	5/801/1	2280	0	2	3	0	0	0	0	3	1	1	4	1	1	4	1
454	BU_011	25004	9442201	5706201	2422	2	0	1	0	0	0	0	2	1	1	3	3	1	4	1
455	RH 208	21166	843901	5796926	2425	2	0	1	0	3	0	0	- 1	1	1	3	5	0	3	- 1
450	RH 209	40801	843854	5797151	2355	0	0	0	0	3	0	0	5	0	1	3	5	0	3	0
458	RH 210	3964	842998	5796766	2548	0	0	0	0	0	0	3	8	0	0	2	6	0	5	0
459	RH 211	1478	843437	5797528	2334	0	0	0	0	3	0	0	5	0	1	3	5	0	5	0
460	RH 212	1246193	842765	5800990	2200	0	0	0	0	3	0	0	5	0	1	0	5	0	0	0
461	RH 213	6393	841618	5800484	2402	0	0	0	0	0	0	3	8	0	0	2	6	0	5	0
462	RH 214	2035	839509	5800769	2763	0	3	0	0	0	0	0	2	0	0	0	6	0	5	0
463	RH_215	444	839513	5800860	2753	0	3	0	0	0	0	0	2	0	0	0	6	0	5	0
464	RH_216	1238	839675	5800570	2760	0	3	0	0	0	0	0	2	0	0	2	6	0	5	0
465	RH_217	37612	839492	5801502	2677	0	0	0	0	3	0	0	5	0	0	2	6	0	5	0
466	RH_218	301	838978	5802276	2787	0	0	0	0	0	0	3	8	0	0	0	6	0	5	0
467	RH_219	8185	839118	5803531	2770	0	3	0	0	0	0	0	2	0	0	1	6	0	5	0
468	RH_220	5873	838882	5803248	2765	0	3	0	0	0	0	0	2	0	0	0	6	0	5	0
469	RH_221	2262	838053	5803416	2792	1	2	0	0	0	0	0	2	0	0	0	6	0	5	0
470	RH_222	651	838016	5803748	2741	3	0	0	0	0	0	0	1	0	0	0	6	0	5	0
471	RH_223	8273	838664	5803849	2734	0	3	0	0	0	0	0	2	0	0	0	6	0	5	0
472	RH_224	702	838591	5804465	2671	3	0	0	0	0	0	0	1	0	0	0	6	0	5	0
473	RH_225	1852	838830	5804324	2677	3	0	0	0	0	0	0	1	0	0	0	6	0	5	0
474	RH_226	50512	838085	5804756	2624	1	2	0	0	0	0	0	2	0	0	2	6	0	1	0
475	RH_227	1678	839289	5804651	2645	0	3	0	0	0	0	0	2	0	0	2	6	0	5	0
476	RH_228	1854	839338	5804535	2645	1	1	0	0	0	1	0	7	0	0	0	6	0	5	0
4//	KH_229	5255	839336	5805517	2618	1	2	0	0	0	0	0	2	0	0	0	6	0	5	0
4/0	RH_230	2251	8377369	5805082	2/01	0	2	0	0	0	0	0	2	0	0	2	6	0	5	0
4/9	RH_231	2246	03/300	5806344	2050	0	2	0	0	0	0	0	2	0	0	2	6	0	5	0
480	RH 233	1269	837990	5806314	2790	0	0	0	0	0	0	3	2	0	0	2	6	0	5	0
482	BO 012	7203	836890	5806216	2832	0	3	0	0	0	0	0	2	0	0	- 1	6	0	5	0
483	RH 234	493	838407	5806104	2722	0	0	0	0	0	0	3	8	0	0	2	6	0	5	0
484	RH 235	50120	834992	5808562	2561	0	3	0	0	0	0	0	2	0	0	- 3	6	0	0	0
485	RH_236	426	838283	5808804	2667	1	2	0	0	0	0	0	2	0	0	2	6	0	5	0
486	RH_237	768	838134	5809261	2627	0	3	0	0	0	0	0	2	0	0	2	6	0	5	0
487	RH_238	928	838445	5809902	2590	0	0	0	0	3	0	0	5	0	0	0	6	0	5	0
488	RH_239	2337	838584	5810419	2633	3	0	0	0	0	0	0	1	0	0	1	6	0	5	0
489	RH_240	399	838762	5811036	2689	1	2	0	0	0	0	0	2	0	0	0	6	0	5	0
490	RH_241	2110	839776	5814648	2389	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0

q	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	ake_bedro	ake_iceda	ake_lands	ake_anthr	ake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
491	RH 242	2117	837219	5813988	2328	0	0	0	0	0	0	3	8			0	6	0	3	0
492	RH 243	2418	834759	5810443	2272	3	0	0	0	0	0	0	1	0	0	2	6	0	5	0
493	BO 013	1739	836201	5788403	2472	3	0	0	0	0	0	0	1	0	1	1	5	0	3	0
494	BO_014	1295	831083	5782443	2701	2	0	0	1	0	0	0	1	0	1	2	5	0	1	0
495	BO_015	413	827109	5783055	2401	3	0	0	0	0	0	0	1	0	0	1	6	0	4	0
496	RH_244	913	839273	5813036	2776	3	0	0	0	0	0	0	1	0	0	0	6	0	5	0
497	BO_016	6308	828503	5785464	2907	1	2	0	0	0	0	0	2	0	0	3	6	0	0	0
498	BO_017	463	829005	5784662	2796	2	1	0	0	0	0	0	1	0	0	1	6	0	0	0
499	BO_018	3829	827452	5787187	3104	2	1	0	0	0	0	0	1	0	1	0	6	1	3	0
500	BO_019	2221	826240	5788592	2964	3	0	0	0	0	0	0	1	0	1	0	4	0	0	1
501	BO_020	1424	826758	5789588	3126	2	1	0	0	0	0	0	1	0	0	0	5	0	5	0
502	BO_021	1102	826805	5789753	3123	1	2	0	0	0	0	0	2	0	0	0	4	0	5	1
503	BO_022	5188	826537	5789918	3096	2	1	0	0	0	0	0	1	0	1	3	5	0	5	0
504	BO_023	2314	826706	5789917	3106	0	3	0	0	0	0	0	2	0	1	0	4	0	5	1
505	BO_024	1363	826838	5789969	3106	0	3	0	0	0	0	0	2	0	1	4	4	0	5	1
506	BO_025	3148	829648	5789127	2886	3	0	0	0	0	0	0	1	0	0	1	5	0	5	0
507	BO_026	10913	829680	5789756	2817	2	1	0	0	0	0	0	1	0	1	1	5	0	5	0
508	BO_027	2547	832686	5788461	2105	0	0	0	0	3	0	0	5	0	0	3	6	0	0	0
509	BO_028	992	828828	5790872	3067	3	0	0	0	0	0	0	1	0	1	0	5	0	5	0
510	BO_029	3084	829627	5791647	3118	2	1	0	0	0	0	0	1	0	0	0	6	0	5	0
511	BO_030	491	827289	5796852	2645	0	3	0	0	0	0	0	2	0	0	0	6	0	3	0
512	RH_245	6287	817622	5793795	2690	2	1	0	0	0	0	0	1	0	0	2	5	0	0	0
513	RH_246	3379	817880	5793625	2698	1	2	0	0	0	0	0	2	0	0	2	5	0	0	0
514	RH_247	4231	818853	5793534	2884	1	2	0	0	0	0	0	2	0	1	3	4	0	0	1
515	RH_248	2773	818727	5793480	2880	1	2	0	0	0	0	0	2	0	1	3	4	0	3	1
516	RH_249	2015	818625	5793480	2902	1	2	0	0	0	0	0	2	0	1	0	4	0	0	1
517	RH_250	1608	818518	5793107	2950	0	3	0	0	0	0	0	2	0	0	1	4	0	0	1
518	RH_251	1114	818420	5793226	2941	0	3	0	0	0	0	0	2	0	0	0	4	0	0	1
519	RH_252	1928	818218	5793118	2921	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
520	RH_253	17792	817763	5792227	2894	0	3	0	0	0	0	0	2	1	1	3	3	1	0	1
521	RH_254	974	817509	5792590	2825	3	0	0	0	0	0	0	1	0	1	3	5	0	0	0
522	RH_255	3445	817089	5792549	2762	3	0	0	0	0	0	0	1	0	1	3	5	0	0	0
523	RH_256	2944	817327	5792937	2784	3	0	0	0	0	0	0	1	0	0	2	5	0	3	0
524	RH_257	482	817050	5793070	2764	3	0	0	0	0	0	0	1	0	0	0	5	0	3	0
525	RH_258	410	816852	5793067	2746	1	2	0	0	0	0	0	2	0	0	1	5	0	3	0
526	RH_259	9964	816141	5793565	2833	1	2	0	0	0	0	0	2	1	1	3	3	1	3	1
527	BO_031	10598	820814	5793213	2786	0	3	0	0	0	0	0	2	0	1	3	5	0	0	0
528	BO_032	4100	821203	5793296	2//4	0	3	0	0	0	0	0	2	0	0	1	5	0	0	0
529	BO_033	1045	820787	5/9361/	2817	0	3	0	0	0	0	0	2	0	0	1	6	0	3	0
530	BO_034	481	010007	5793000	2908	1	2	0	0	0	0	0	1	0	0	1	2	0		0
531	BO_035	399	819897	5794191	2000	1	2	0	0	0	0	0	2	0	0	0	6	0	2	0
532	BO_030	322	0196/1	5794401	2030	1	2	0	0	0	0	0	2	0	0	1	6	0	0	0
533	BU_037	1564	919254	5709277	2957	1	2	0	0	0	0	0	2	0	0	1	6	0	2	0
534	RO_038	1924	819207	5803746	2506	0	0	0	0	0	0	3	2	0	0	1	6	0	0	0
536	BO_039	857	819026	5804439	2500	0	0	0	0	0	0	3	8	0	0	2	6	0	5	0
537	BO_040	3451	819560	5804975	2304	0	0	0	0	3	0	0	5	0	0	2	6	0	3	0
538	BO_040	4764	819634	5805582	2355	2	0	0	0	1	0	0	1	0	0	2	6	0	3	0
530	BO 042	4631	819862	5805724	2337	0	0	0	0		0	3	2	0	0	- 1	6	0	3	0
540	RH 261	2072	817290	5805553	2201	0	0	0	0	0	0	3	8	0	0	0	6	0	0	0
541	RH 262	436306	815257	5797654	2160	0	0	0	0	3	0	0	5	0	1	0	5	0	0	0
542	RH 263	1854	813078	5793639	2883	3	0	0	0	0	0	0	1	1	- 1	0	3	1	5	1
543	RH 264	3513	813292	5794555	2829	3	0	0	0	0	0	0	- 1	-	-	0	3	- 1	3	1
544	RH 265	495	813229	5794734	2794	2	1	0	0	0	0	0	1	0	- 1	3	4	0	3	1
545	RH_266	1057	813139	5794431	2811	3	0	0	0	0	0	0	1	1	1	3	3	1	5	1

S46 R1 C O O O O	id	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
SAT BAT BAT <td>546</td> <td>RH_267</td> <td>10631</td> <td>812495</td> <td>5795934</td> <td>2841</td> <td>1</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>3</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td>	546	RH_267	10631	812495	5795934	2841	1	2	0	0	0	0	0	2	0	0	3	5	0	0	0
SH8 RH_269 11560 809492 S79818 2551 0 3 0 0 0 0	547	RH_268	108864	809575	5797581	2501	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
S49 R4 Z70 7800 8000000000000000000000000000000000000	548	RH_269	11560	809131	5797244	2544	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
Sob RH_271 1041 810290 S794600 261 0 <td>549</td> <td>RH_270</td> <td>7800</td> <td>809492</td> <td>5798158</td> <td>2551</td> <td>0</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>3</td> <td>6</td> <td>0</td> <td>0</td> <td>0</td>	549	RH_270	7800	809492	5798158	2551	0	3	0	0	0	0	0	2	0	0	3	6	0	0	0
S11 RH_272 444 81324 S796602 2475 1 1 0 0 0 0 1 0 0 0 0	550	RH_271	1041	810290	5799150	2499	0	3	0	0	0	0	0	2	0	0	1	6	0	2	0
522 RH_273 2008 810088 5799673 2475 1 0 0 1 0 0 0 0	551	RH_272	444	813234	5794660	2618	2	1	0	0	0	0	0	1	0	1	2	4	0	3	1
S33 RH_274 2215 812065 S799479 2391 0 <td>552</td> <td>RH_273</td> <td>2008</td> <td>810088</td> <td>5799673</td> <td>2475</td> <td>1</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>7</td> <td>0</td> <td>0</td> <td>2</td> <td>6</td> <td>0</td> <td>0</td> <td>0</td>	552	RH_273	2008	810088	5799673	2475	1	1	0	0	1	0	0	7	0	0	2	6	0	0	0
SAA R.H.275 20539 R.H.275 2010 R.H.275 R.H.276 2010 S R.H.276 2010 S R.H.276 2010 S R.H.276 2010 S S R.H.276 2010 S <ths< th=""> S S</ths<>	553	RH_274	2215	812065	5799679	2391	0	3	0	0	0	0	0	2	0	0	0	6	0	1	0
S55 RH-276 319 805300 7163 0	554	RH_275	20539	810823	5806007	2172	0	0	0	0	0	0	3	8	0	0	0	6	0	1	0
556 HL 277 754 80376 5796664 2625 0	555	RH_276	319	805340	5800067	2163	0	0	0	0	0	0	3	8	0	0	1	6	0	1	0
557 RH 278 265 266 3 0 0 0 0 </td <td>556</td> <td>RH_277</td> <td>754</td> <td>809376</td> <td>5796664</td> <td>2624</td> <td>0</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>1</td> <td>6</td> <td>0</td> <td>0</td> <td>0</td>	556	RH_277	754	809376	5796664	2624	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
5x8 B08 0451 812466 5792881 2711 3 0	557	RH_278	544	809322	5796593	2655	0	3	0	0	0	0	0	2	0	0	1	6	0	3	0
559 08 04 0 <td>558</td> <td>DB_039</td> <td>4671</td> <td>812646</td> <td>5792881</td> <td>2711</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td>	558	DB_039	4671	812646	5792881	2711	3	0	0	0	0	0	0	1	0	1	0	5	0	0	0
560 B0 O1 O O O O	559	DB_040	513	812406	5792861	2680	3	0	0	0	0	0	0	1	0	0	0	5	0	3	0
511 DB 042 0 <td>560</td> <td>DB_041</td> <td>300</td> <td>809630</td> <td>5794101</td> <td>2389</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>3</td> <td>8</td> <td>0</td> <td>0</td> <td>1</td> <td>6</td> <td>0</td> <td>1</td> <td>0</td>	560	DB_041	300	809630	5794101	2389	0	0	0	0	0	0	3	8	0	0	1	6	0	1	0
562 RH_279 1964 817368 5790948 2983 1 2 0<	561	DB_042	115380	813558	5788290	2220	0	2	0	0	1	0	0	2	0	0	3	6	0	0	0
563 RH280 2281 817422 5790981 284 0<	562	RH_279	1964	817368	5790948	2992	0	1	2	0	0	0	0	3	0	1	0	2	0	2	1
544 DB_0A3 3281 816069 5789999 284 0 2 0 </td <td>563</td> <td>RH_280</td> <td>281</td> <td>817432</td> <td>5790981</td> <td>2983</td> <td>1</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>1</td> <td>1</td> <td>4</td> <td>0</td> <td>2</td> <td>1</td>	563	RH_280	281	817432	5790981	2983	1	2	0	0	0	0	0	2	0	1	1	4	0	2	1
565 DB_044 442 816133 5790167 283 1 2 0 0 0 1 2 0	564	DB_043	3281	816069	5789999	2846	0	2	0	1	0	0	0	2	0	0	0	6	0	3	0
566 DB046 31061 817797 578733 2871 3 0 0 0 1 0 1 2 5 0 0 0 0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 2 0 0 0 1 0 1 2 0 0 0 0 1 1 0 2 0 </td <td>565</td> <td>DB_044</td> <td>492</td> <td>816133</td> <td>5790167</td> <td>2835</td> <td>1</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>6</td> <td>0</td> <td>3</td> <td>0</td>	565	DB_044	492	816133	5790167	2835	1	2	0	0	0	0	0	2	0	0	0	6	0	3	0
567 BB046 3028 817049 578806 2709 1 2 0 <td>566</td> <td>DB_045</td> <td>1061</td> <td>817577</td> <td>5789733</td> <td>2871</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>2</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td>	566	DB_045	1061	817577	5789733	2871	3	0	0	0	0	0	0	1	0	1	2	5	0	0	0
568 08_047 81507 5789040 2709 1 2 0	567	DB_046	3028	817049	5788885	2868	1	1	0	0	0	1	0	7	0	1	3	5	0	2	0
569 DB_048 3747 817650 5798647 2725 3 0 0 0 0 0 1 1 0 1 2 5 0 0 570 RH_281 7799 818549 5708823 2981 3 0	568	DB_047	857	816097	5789040	2709	1	2	0	0	0	0	0	2	0	0	2	6	0	0	0
570 RH_281 799 818549 5790837 31.6 0 </td <td>569</td> <td>DB_048</td> <td>3747</td> <td>817650</td> <td>5789647</td> <td>2725</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>2</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td>	569	DB_048	3747	817650	5789647	2725	3	0	0	0	0	0	0	1	0	1	2	5	0	0	0
571 DB_049 343 817931 5782838 2981 3 0 0 0 0 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 4 0 3 1 1 573 DB_052 3088 816576 5788387 2683 2 1 0	570	RH_281	799	818549	5790837	3136	0	1	2	0	0	0	0	3	1	1	0	2	1	4	1
572 DB_050 477 81620 5783888 2913 1 2 0 0 0 0 0 2 0 0 4 5 0 0 0 1 573 DB_051 1989 816576 5788897 2784 2 1 0	571	DB_049	343	817931	5788283	2981	3	0	0	0	0	0	0	1	0	2	0	4	0	3	1
573 DB_051 1989 816576 5788091 2603 1 2 0<	572	DB_050	477	817620	5788388	2913	1	2	0	0	0	0	0	2	0	2	0	4	0	3	1
574 DB_052 3088 816949 5787457 2848 2 1 0 0 0 1 0<	573	DB_051	1989	816576	5788091	2603	1	2	0	0	0	0	0	2	0	0	4	5	0	0	0
575 BO_043 887 820894 5788897 2763 3 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 1 0 0 0 1 0 </td <td>574</td> <td>DB_052</td> <td>3088</td> <td>816949</td> <td>5787457</td> <td>2848</td> <td>2</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>6</td> <td>0</td> <td>1</td> <td>0</td>	574	DB_052	3088	816949	5787457	2848	2	1	0	0	0	0	0	1	0	0	0	6	0	1	0
576 BO_044 1956 820553 5790888 2782 2 1 0 0 0 0 1 0<	575	BO_043	887	820894	5788897	2763	3	0	0	0	0	0	0	1	0	0	0	5	0	1	0
577 BO_045 1448 820295 5792385 2795 2 1 0 0 0 0 1 0 1 2 5 0 3 0 578 BO_046 4466 820943 5792323 2640 3 0	576	BO_044	1956	820553	5790888	2782	2	1	0	0	0	0	0	1	0	1	0	5	0	3	0
578 BO_046 466 820943 5792408 2640 3 0 0 0 0 0 1 1 4 5 0 5 0 579 BO_047 1266 820935 5792332 2640 3 0 0 0 0 0 1 0 1 3 5 0 0 0 580 DB_053 3666 817519 578577 2572 3 0 0 0 0 0 1 0 1 5 0 0 0 581 DB_054 746 810616 5780581 2679 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0	577	BO_045	1448	820295	5792385	2795	2	1	0	0	0	0	0	1	0	1	2	5	0	3	0
579 BO_047 1266 820935 5792332 2640 3 0 0 0 0 1 0 1 3 5 0 0 580 DB_053 366 817519 5785777 2572 3 0 0 0 0 0 1 0 1 5 0 0 0 581 DB_054 746 819616 5780581 2679 0 3 0	578	BO_046	466	820943	5792408	2640	3	0	0	0	0	0	0	1	0	1	4	5	0	5	0
580 DB_053 366 817519 5785777 2572 3 0 0 0 0 1 0 0 1 5 0 0 0 581 DB_054 746 819616 5780581 2679 0 3 0	579	BO_047	1266	820935	5792332	2640	3	0	0	0	0	0	0	1	0	1	3	5	0	0	0
581 DB_054 746 819616 5780581 2679 0 3 0 </td <td>580</td> <td>DB_053</td> <td>366</td> <td>817519</td> <td>5785777</td> <td>2572</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>1</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td>	580	DB_053	366	817519	5785777	2572	3	0	0	0	0	0	0	1	0	0	1	5	0	0	0
582 DB_055 547 820142 5779977 2684 1 2 0 0 0 2 0 0 4 5 0 0 583 BO_048 1568 824697 5781961 3010 3 0 0 0 0 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 1 1 1 3 2 1 4 1 580 DE_004 4644 809507 5767688 2629 3 0 0 0 0 0 1 1 1 3 4 0 4 1 580 DE_005 356 808089 5766988 2471 3 0 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0	581	DB_054	746	819616	5780581	2679	0	3	0	0	0	0	0	2	0	0	0	5	0	3	0
583 BO_048 1568 824697 5781961 3010 3 0 0 0 0 1 0 1 0 5 0 0 0 584 DB_056 408 821486 5776476 3111 2 1 0 0 0 0 1 1 1 3 2 1 4 1 586 DB_057 871 821530 5765415 2785 2 0 1 0 0 0 1 1 1 3 2 1 4 1 586 DE_004 464 809507 5767888 2629 3 0 0 0 0 1 1 1 3 4 0 4 1 587 DE_005 356 808089 576698 2471 3 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 </td <td>582</td> <td>DB_055</td> <td>547</td> <td>820142</td> <td>5779977</td> <td>2684</td> <td>1</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>4</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td>	582	DB_055	547	820142	5779977	2684	1	2	0	0	0	0	0	2	0	0	4	5	0	0	0
584 DB_056 408 821486 5776476 3111 2 1 0 <td>583</td> <td>BO_048</td> <td>1568</td> <td>824697</td> <td>5781961</td> <td>3010</td> <td>3</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>1</td> <td>0</td> <td>5</td> <td>0</td> <td>0</td> <td>0</td>	583	BO_048	1568	824697	5781961	3010	3	0	0	0	0	0	0	1	0	1	0	5	0	0	0
585 DB_057 871 821530 5765415 2785 2 0 1 0 0 0 1 1 1 1 3 2 1 4 1 586 DE_004 464 809507 5767688 2629 3 0 0 0 0 0 1 1 1 3 4 0 4 1 587 DE_005 356 808089 5766908 2471 3 0 0 0 0 0 1 0 0 0 6 0 1 0 <td>584</td> <td>DB_056</td> <td>408</td> <td>821486</td> <td>5776476</td> <td>3111</td> <td>2</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>6</td> <td>0</td> <td>2</td> <td>0</td>	584	DB_056	408	821486	5776476	3111	2	1	0	0	0	0	0	1	0	0	0	6	0	2	0
S88 DE_004 444 809507 5767888 2629 3 0 0 0 0 0 1 1 1 1 3 4 0 4 1 587 DE_005 356 808089 5766908 2471 3 0 0 0 0 0 1 0 0 6 0 1 0 588 DE_006 458 804563 5767443 2578 3 0 <td>585</td> <td>DB_057</td> <td>8/1</td> <td>821530</td> <td>5765415</td> <td>2/85</td> <td>2</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>1</td> <td>1</td> <td>3</td> <td>2</td> <td>1</td> <td>4</td> <td>1</td>	585	DB_057	8/1	821530	5765415	2/85	2	0	1	0	0	0	0	1	1	1	3	2	1	4	1
387 DE_005 336 308089 576908 2471 3 0	580	DE_004	464	809507	5/6/688	2629	3	0	0	0	0	0	0	1	1	1	3	4	0	4	1
388 DE_006 438 304363 5767443 2578 3 0	587	DE_005	350	808089	5766908	24/1	3	0	0	0	0	0	0	1	0	0	0	6	0	1	0
339 DE_007 2808 300005 5763531 237 1 2 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0 2 0 </td <td>200</td> <td>DE_000</td> <td>400</td> <td>804505</td> <td>5/0/445</td> <td>22/8</td> <td>3</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>2</td> <td>6</td> <td>0</td> <td>1</td> <td>0</td>	200	DE_000	400	804505	5/0/445	22/8	3	2	0	0	0	0	0	1	0	0	2	6	0	1	0
350 DE_003 6074 20035 5760478 2424 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 </td <td>509</td> <td>DE_007</td> <td>2000</td> <td>800005</td> <td>5760479</td> <td>2337</td> <td>1</td> <td>2</td> <td>0</td> <td>0</td> <td>1</td> <td>0</td> <td>0</td> <td>- 2</td> <td>0</td> <td>0</td> <td>2</td> <td>6</td> <td>0</td> <td>5</td> <td>0</td>	509	DE_007	2000	800005	5760479	2337	1	2	0	0	1	0	0	- 2	0	0	2	6	0	5	0
591 DE_003 44063 797807 5739308 2446 0	590	DE_000	41060	707967	5750209	2424	- 1	- 1	0	0	2	0	0	5	0	0	2	6	0	2	0
532 DE_010 1633 738243 573333 2663 0 5 0 </td <td>502</td> <td>DE_009</td> <td>41005</td> <td>7092/12</td> <td>5750009</td> <td>2440</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>- 0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>1</td> <td>6</td> <td>0</td> <td>1</td> <td>0</td>	502	DE_009	41005	7092/12	5750009	2440	0	2	0	0	- 0	0	0	2	0	0	1	6	0	1	0
593 DE_011 730 798390 5761027 2554 0 2 0 0 0 2 0 0 2 0 0 2 0 0 0 2 0 </td <td>592</td> <td>DE_010</td> <td>707</td> <td>798106</td> <td>5750945</td> <td>2604</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>2</td> <td>0</td> <td>0</td> <td>1</td> <td>6</td> <td>0</td> <td>1</td> <td>0</td>	592	DE_010	707	798106	5750945	2604	0	2	0	0	0	0	0	2	0	0	1	6	0	1	0
595 DE_012 40500 796961 5763211 2552 0 2 0 1 0 0 2 0 0 3 6 0 0 0 0 0 2 0 0 1 0 0 2 0 0 3 6 0	504	DE_012	730	798200	5761027	2554	0	2	0	1	0	0	0	2	0	0	2	6	0	0	0
595 DE_013 40300 796301 5762780 2583 1 1 0 0 1 0 0 7 0 0 2 6 0	505	DE_012	40500	796961	5763211	2554	0	2	0	1	1	0	0	2	0	0	2	6	0	0	0
593 DE_015 1542 795918 5762926 2648 0 3 0 0 0 0 2 0<	596	DE_013	6309	796230	5762780	2592	1	1	0	0	1	0	0		0	0	2	6	0	0	0
598 DE_016 2105 795750 5763589 2723 1 2 0 0 0 0 2 0 0 2 6 0<	597	DE 015	1542	795918	5762926	2648	0	3	0	0	- 0	0	0	2	0	0	2	6	0	0	0
599 DE_017 494 796497 5763887 2689 0 3 0 0 0 0 2 0 0 6 0 3 0 600 DE_017 494 796497 5763887 2689 0 3 0 0 0 0 2 0 0 6 0 3 0 600 DE_018 13270 795405 5765866 2628 1 2 0 0 0 2 0 0 3 6 0 0	598	DE 016	2105	795750	5763589	2723	1	2	0	0	0	0	0	2	0	0	2	6	0	0	0
600 DE 018 13270 795405 5765866 2628 1 2 0 0 0 0 0 2 0 0 3 6 0 0	599	DE 017	494	796497	5763887	2689	0	2	0	0	0	0	0	2	0	0	0	6	0	3	0
	600	DE 018	13270	795405	5765866	2628	1	2	0	0	0	0	0	2	0	0	3	6	0	0	0

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
601	DE 019	2916	795267	5766303	2699	0	3	0	0	0	0	0	2	0	0	2	6	0	3	0
602	DE_020	1124	795865	5766126	2606	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
603	DE_021	2892	795901	5766454	2580	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
604	DE_022	1145	796089	5766640	2577	1	2	0	0	0	0	0	2	0	0	2	6	0	0	0
605	DE_023	505	796352	5766768	2545	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
606	DE_024	280	796116	5766490	2574	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
607	DE_025	276	796570	5766779	2539	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
608	DE_026	319	796605	5767667	2651	0	3	0	0	0	0	0	2	0	0	2	6	0	2	0
609	DE_027	2085	797964	5767882	2485	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
610	DE_028	1826	797408	5769847	2549	1	2	0	0	0	0	0	2	0	0	2	6	0	0	0
611	DE_029	3676	800519	5769911	2221	0	0	0	0	0	0	3	8	0	0	2	6	0	1	0
612	DE_030	1737	800616	5770085	2218	0	0	0	0	0	0	3	8	0	0	2	6	0	1	0
613	DE_031	622	800425	5769821	2224	0	0	0	0	0	0	3	8	0	0	2	6	0	0	0
614	DE_032	2261	793794	5768466	2562	3	0	0	0	0	0	3	1	0	0	2	6	0	1	0
615	DE_033	540	793645	5769000	2609	1	2	0	0	0	0	0	2	0	0	1	6	0	1	0
616	DE_034	1207	794897	5768537	2453	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
617	DE_035	477	794159	5770590	2740	2	0	0	1	0	0	0	1	0	0	1	6	0	0	0
618	DE_036	251	794656	5772091	2481	3	0	0	0	0	0	0	1	0	0	0	6	0	1	0
619	DE_037	39208	794961	5762493	2461	0	2	0	0	1	0	0	2	0	0	1	6	0	0	0
620	DE_038	10266	795350	5761755	2514	1	2	0	0	0	0	0	2	0	0	3	6	0	0	0
621	DE_039	659	792259	5758926	2501	3	0	0	0	0	0	0	1	0	0	0	5	0	5	0
622	DE_040	492	788170	5761989	2543	0	3	0	0	0	0	0	2	0	0	2	6	0	1	0
623	DE_041	294	790482	5764113	2465	0	0	0	0	0	0	3	8	0	0	0	6	0	0	0
624	DE_042	4569	784820	5777281	2977	1	2	0	0	0	0	0	2	0	0	0	5	0	3	0
625	DE_043	2063	785087	5776847	2869	1	2	0	0	0	0	0	2	0	0	0	5	0	0	0
626	DE_044	2837	784861	5780483	2907	1	2	0	0	0	0	0	2	0	2	1	4	0	2	1
627	DE_045	4809	786912	5780874	2709	1	2	0	0	0	0	0	2	0	0	0	6	0	0	0
628	RH_282	1496	777564	5782651	2634	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
629	RH_283	688	778457	5783562	2434	1	2	0	0	0	0	0	2	0	0	1	6	0	1	0
630	RH_284	356	778446	5783483	2434	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
631	RH_285	2405	782880	5787235	2470	1	2	0	0	0	0	0	2	0	0	1	6	0	1	0
632	RH_286	4245	775468	5785680	2434	0	0	0	0	0	0	3	8	0	0	3	6	0	0	0
633	RH_287	12953	766824	5787568	2208	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
634	RH_288	1294	783890	5785807	2612	0	2	0	1	0	0	0	2	0	0	0	6	0	0	0
635	RH_289	1655	766988	5787897	2600	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
636	RH_290	444	766912	5787855	2597	0	3	0	0	0	0	0	2	0	0	0	6	0	5	0
637	RH_291	924	766585	5787693	2596	0	3	0	0	0	0	0	2	0	0	0	6	0	5	0
638	KH_292	1647	765661	5/8/822	2580	0	3	0	0	0	0	0	2	0	0	3	6	0	5	0
639	KH_293	2/1	767031	5/8808/	2576	0	3	0	0	0	0	0	2	0	0	0	6	0	5	0
640	RH_294	4952	772504	5795734	2394	2	3	0	0	0	0	0	2	0	0	2	6	0	0	0
641	RH_295	3/92	772716	5790983	2415	2	0	0	0	0	0	0	1	0	0	2	6	0	5	0
642	RH_290	2646	774402	5901127	2105	0	0	0	0	0	0	2	0	0	0	2	6	0	5	0
644	RH_237	2040	772052	5901137	2104	0	3	0	0	0	0	0	2	0	0	1	6	0	0	
645	RH 200	200	766730	5797910	2107	0	3	0	0	0	0	0	2	0	0	2	6	0	5	0
646	RH 300	295	774101	5801024	2101	0	0	0	0	0	0	3	2	0	0		6	0	0	0
647	RH 301	4144	770722	5808232	2235	0	2	0	0	1	0	0	2	0	2	3	5	0	5	0
648	RH 302	3714	768534	5806805	2028	0	2	0	0	- 0	0	3	2	0	2	3	6	0	0	0
649	RH 303	483	768559	5806636	2046	3	0	0	0	0	0	0	1	0	0	3	6	0	5	0
650	RH 304	5735	767948	5806206	2056	2	0	0	1	0	0	0	1	0	1	2	6	0	5	0
651	BH 305	1370	757687	5812220	2019	0	0	0	0	0	0	3	- 8	0	0	0	6	0	0	0
652	RH 306	489	859064	5837682	2487	3	0	0	0	0	0	0	1	0	0	3	6	0	1	0
653	RH 307	427	859754	5836423	2225	3	0	0	0	0	0	0	- 1	0	0	0	6	0	1	0
654	RH 308	658	855601	5842194	2843	1	2	0	0	0	0	0	2	0	0	0	6	0	0	0
655	RH 309	418	855638	5842607	2848	2	1	0	0	0	0	0	1	0	0	0	6	0	3	0

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	lake_mora	lake_bedro	lake_iceda	lake_lands	lake_anthr	lake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
656	RH 310	613753	848131	5846581	2194	0	3	0	0	0	0	0	2	0	1	0	5	0	0	0
657	RH 311	68328	844583	5844931	2302	0	1	0	0	1	1	0	7	0	2	4	5	0	3	0
658	RH 312	2880	843079	5844800	2504	0	3	0	0	0	0	0	2	0	2	0	5	0	3	0
659	RH 313	1001	842566	5845851	2775	0	3	0	0	0	0	0	2	0	0	0	4	0	0	1
660	RH 314	728	842761	5846115	2794	0	3	0	0	0	0	0	2	0	1	4	4	0	3	1
661	RH 315	1377	843039	5843218	2626	2	1	0	0	0	0	0	1	0	1	0	5	0	3	0
662	RH 316	12797	843295	5841435	2841	2	1	0	0	0	0	0	1	0	0	3	6	0	0	0
663	RH 317	636	843105	5841417	2852	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
664	RH 318	1843	842298	5837615	2364	1	2	0	0	0	0	0	2	0	0	0	6	0	0	0
665	RH 319	2565	842149	5838044	2474	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0
666	RH 320	182590	839204	5841502	2756	2	1	0	0	0	0	0	1	1	1	2	2	1	3	1
667	RH 321	555	840222	5841387	2762	2	1	0	0	0	0	0	1	0	1	2	5	0	2	0
668	RH 322	7366	834238	5839674	2774	1	2	0	0	0	0	0	2	0	0	1	6	0	3	0
669	RH 323	928	832518	5841181	2721	0	3	0	0	0	0	0	2	0	0	0	5	0	3	0
670	RH 324	2688	826553	5839952	2363	0	2	0	0	1	0	0	2	0	0	1	6	0	0	0
671	RH 325	13739	823644	5838726	2438	0	3	0	0	0	0	0	2	0	0	0	6	0	3	0
672	RH 326	75413	822416	5835681	2449	0	3	0	0	0	0	0	2	0	1	0	5	0	3	0
673	RH 327	2057	820435	5834935	2671	0	1	0	2	0	0	0	4	0	0	0	6	0	3	0
674	RH 328	1057	823008	5834990	2463	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
675	RH 329	2096	822678	5830957	2263	1	2	0	0	0	0	0	2	0	0	0	6	0	0	0
676	RH 330	26679	817365	5834970	2466	1	1	0	0	0	1	0	7	0	2	3	5	0	0	0
677	RH 331	43115	816106	5834071	2465	2	1	0	0	0	0	0	1	0	0	3	6	0	1	0
678	RH 332	270219	811973	5837578	2024	0	0	0	0	3	0	0	5	0	0	2	6	0	0	0
679	RH 333	914	813476	5838840	2372	1	2	0	0	0	0	0	2	0	0	1	6	0	0	0
680	RH 334	3113	809951	5833255	2294	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
681	RH 335	850	809317	5832864	2295	3	0	0	0	0	0	0	1	0	0	1	5	0	0	0
682	RH 336	1641	807024	5832616	2442	1	2	0	0	0	0	0	2	0	1	2	5	0	0	0
683	RH 337	476	807500	5832066	2484	0	3	0	0	0	0	0	2	0	0	1	5	0	0	0
684	RH 338	875	806131	5831923	2566	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
685	RH 339	1431	806167	5831457	2556	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
686	RH 340	1156	806072	5831742	2566	0	3	0	0	0	0	0	2	0	0	1	5	0	0	0
687	RH_341	476	805238	5831294	2671	0	3	0	0	0	0	0	2	0	2	0	4	0	4	1
688	RH_342	331	805245	5831222	2671	0	3	0	0	0	0	0	2	0	2	0	4	0	4	1
689	RH_343	1125	806388	5831167	2548	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
690	RH_344	623	806248	5831168	2550	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
691	RH_345	981	806591	5831228	2534	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
692	RH_346	470	806676	5831290	2534	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
693	RH_347	464	806719	5831354	2533	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
694	RH_348	452	806418	5831844	2541	0	3	0	0	0	0	0	2	0	0	1	5	0	0	0
695	RH_349	382	806486	5831936	2539	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
696	RH_350	270	807052	5831336	2516	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
697	RH_351	536	806165	5830860	2565	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
698	RH_352	291	806552	5830710	2559	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
699	RH_353	287	805802	5831643	2603	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
700	RH_354	717	808198	5831806	2438	1	2	0	0	0	0	0	2	0	0	1	5	0	1	0
701	RH_355	294	808084	5831859	2439	1	2	0	0	0	0	0	2	0	0	1	5	0	1	0
702	RH_356	318	807576	5832280	2473	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
703	RH_357	312	808554	5833909	2522	2	0	0	1	0	0	0	1	0	0	0	6	0	0	0
704	RH_358	424	808916	5833038	2335	3	0	0	0	0	0	0	1	0	0	0	5	0	0	0
705	RH_359	665	809268	5832795	2286	3	0	0	0	0	0	0	1	0	2	0	5	0	0	0
706	RH_360	567	809463	5832738	2288	3	0	0	0	0	0	0	1	0	0	1	5	0	0	0
707	RH_361	340	811042	5833782	2250	3	0	0	0	0	0	0	1	0	0	0	5	0	0	0
708	RH_362	331	811015	5833716	2247	3	0	0	0	0	0	0	1	0	0	0	5	0	0	0
709	RH_363	1161	810077	5830698	2293	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
710	RH_364	311	810173	5830617	2293	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0

p	Nam e	flaeche	x-coord.	y-coord.	Höhe	ake_mora	ake_bedro	ake_iceda	ake_lands	ake_anthr	ake_flood	Lake_veget	Seetyp*	gl_contact	gl_wats up	surf_runof	position	calving	evolution	Position *
711	RH 365	1371	811008	5828168	2273	2	0	0	1	0	0	0	1	0	0	2	6	0	0	0
712	RH_366	429	810828	5828204	2276	1	0	0	2	0	0	0	4	0	0	1	6	0	0	0
713	RH_367	5810	810470	5826657	2192	0	1	0	0	2	0	0	5	0	0	3	6	0	1	0
714	RH_368	19304	796691	5818903	2449	1	0	0	0	2	0	0	5	0	0	3	6	0	3	0
715	RH_369	6465	796364	5818780	2451	2	1	0	0	0	0	0	1	0	0	1	6	0	0	0
716	RH_370	2342	796249	5818877	2451	3	0	0	0	0	0	0	1	0	0	2	6	0	0	0
717	RH_371	612	793384	5813813	2076	1	0	0	0	2	0	0	5	0	0	0	6	0	0	0
718	RH_372	523	790695	5809741	2387	1	2	0	0	0	0	0	2	0	0	1	6	0	0	0
719	RH_373	176622	789686	5809028	2112	0	0	0	0	3	0	0	5	0	0	1	6	0	3	0
720	RH_374	712	789239	5808204	2192	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
721	RH_375	674	789229	5807977	2187	0	3	0	0	0	0	0	2	0	0	1	6	0	0	0
722	RH_376	479	789858	5806330	2091	2	1	0	0	0	0	0	1	0	0	0	6	0	0	0
723	RH_377	936	806995	5831439	2516	0	3	0	0	0	0	0	2	0	0	0	5	0	0	0
724	DE_046	1335	804088	5780481	2496	3	0	0	0	0	0	0	1	0	0	0	6	0	0	0
725	RH_378	6503	884319	5813613	2719	2	1	0	0	0	0	0	1	0	0	2	6	0	5	0
726	RH_379	754	884460	5813763	2711	1	2	0	0	0	0	0	2	0	0	2	6	0	5	0
727	RH_380	657	884874	5813763	2690	3	0	0	0	0	0	0	1	0	0	1	6	0	1	0
728	RH_381	5914	885044	5814906	2590	1	2	0	0	0	0	0	2	0	0	3	6	0	5	0
729	PO_053	859	893167	5817439	2130	0	3	0	0	0	0	0	2	0	0	0	6	0	0	0
730	PO_054	321	893118	5817510	2132	0	3	0	0	0	0	0	2	0	0	2	6	0	4	0
731	PO_055	255	893231	5817504	2143	0	3	0	0	0	0	0	2	0	0	1	6	0	4	0
732	RH_382	406	888362	5819558	2424	0	2	0	0	0	1	0	2	0	0	0	6	0	1	0
733	RH_383	1149	892083	5821236	2198	0	3	0	0	0	0	0	2	0	0	2	6	0	0	0