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Abstract

The goal of this master thesis is to investigate global and local issues related to gauge
fixing. We address global issues associated with the Gribov ambiguity from the perspective
of physics as well as mathematics and discuss three different ways of resolving it. Considering
local issues, we discuss a modified Faddeev-Popov path integral density for the quantization
of Yang-Mills theory in the Feynman gauge. The modification consists of replacing the
contributions of Faddeev-Popov ghost fields by multi-point gauge field interactions. By
performing an explicit calculation up to the second order in the gauge coupling constant g,
we show the equivalence between the usual Faddeev-Popov scheme and its modified version.

Zusammenfassung

Ziel dieser Masterarbeit ist die Untersuchung globaler und lokaler Probleme bei Eichfixierung.
Bezüglich der globalen Aspekte behandeln wir die Gribov Ambiguität sowohl von physikalis-
cher als auch mathematischer Perspektive und beschreiben drei verschiedene Lösungsmethoden.
Bezüglich der lokalen Aspekte diskutieren wir eine modifizierte Faddeev-Popov-Pfadintegraldichte
für die Quantisierung der Yang-Mills-Theorie in der Feynman Eichung. Die Modifikation
besteht darin, die Beiträge von Faddeev-Popov Geisterfeldern durch Vielpunkt-Eichfeld-
Wechselwirkungen zu ersetzen. Indem wir eine explizite Rechnung bis zu zweiter Ord-
nung in der Eichkopplungskonstante g durchführen, zeigen wir Äquivalenz zwischen der
konventionellen Faddeev-Popov Methode und deren modifierten Version.
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Chapter 1

Quantization of Yang-Mills Theory

1.1 Introduction

Non-abelian gauge theories are the essential ingredient in the construction of unified inter-
action between electromagnetic, strong and weak forces. They were first proposed by Yang
and Mills [1] in 1954, as a failed attempt to construct the theory of strong interactions by
using the weakly broken isospin symmetry. Today, we know that the correct theory of strong
interactions is a non-abelian gauge theory but with a much more sophisticated gauge group.
In the 1950’s, quantum electrodynamics (QED) was a well-established theory that gave an
accurate description of electromagnetic fields and forces. It was a gauge theory with an
abelian gauge group U(1). A natural question, which was pursued by Yang, Mills, and oth-
ers, was whether the generalization of QED to non-abelian gauge theories could be used to
describe the weak and strong force. At that time, there was a significant phenomenological
obstacle to this idea. It seemed that the short-range nature of these forces completely ruled
out a gauge structure due to the massless nature of the Yang-Mills fields. For an interesting
tour through the long and twisted history of gauge theory, we refer to [2].

For the weak force, the problem was solved by introducing an additional scalar field into the
theory [3–5]. An explanation of the massive nature of Yang-Mills fields, while preserving the
gauge structure, was given by Higgs, Englert and Kibble [6–8]. Today, the scalar particle is
called the Higgs boson and the mechanism by which gauge fields obtain their mass is called
the Higgs mechanism 1.

For the strong force, the solution was not to add more fields to the theory but by dis-
covering that the theory itself has a unique property called asymptotic freedom [10, 11].
This property tells us that at short distances quarks and gluons behave as free particles.
At long distances, the interaction strength between gluons and quarks increases such that it
confines them within composite hadrons. The phenomenon that quarks and gluons cannot
be observed at long distances is called color confinement. Until today, there does not exist
an analytic proof of color confinement for any of the non-abelian gauge theories. We will
return to the problem of confinement in our discussion of the Gribov ambiguity.

There were also problems regarding the quantization of Yang-Mills theory [12]. Due to
the gauge symmetry, the Lagrangian of the Yang-Mills theory is singular. For abelian gauge
theories, one can circumvent this problem by using Fermi’s method of indefinite metric.
Unfortunately, as Feynman [13] observed, this method does not work for gravitational and
Yang-Mills theories. He discovered that there were diagrams with closed loops, which do

1Depending on the literature, the Higgs mechanism is also called Brout-Englert-Higgs mechanism or
Englert-Brout-Higgs-Guralnik-Hagen-Kibble mechanism or ABEGHHK’tH mechanism standing for Ander-
son, Brout, Englert, Guralnik, Hagen, Higgs, Kibble and ’t Hooft [9].
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affect unitarity and depended on the choice of the propagator. As a solution to this prob-
lem, he proposed modified Feynman rules for the computation of 1-loop diagrams. Faddeev
and Popov were the first who found a way of generalizing these rules to arbitrary diagrams
[14] thus developing a manifestly covariant quantization method for Yang-Mills theory. In
this chapter, we will analyze the problems associated with the quantization of Yang-Mills
theories and establish the Faddeev-Popov quantization method.

1.2 Yang-Mills Theory and Faddeev-Popov quantiza-

tion method

The Lagrange density of a SU(N) gauge theory reads

L =
1

2
Tr [FµνFµν ], (1.2.1)

where Fµν is the field strength tensor

Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] (1.2.2)

and Aµ are the gauge fields. Vanishing field strength tensor Fµν = 0 implies that the gauge
field Aµ is pure gauge Aµ = (∂µΩ)Ω−1 and vice versa. The elements of the group SU(N) are
unitary N ×N matrices Ω with a unit determinant. By using the exponential map, we can
write a group element of SU(N) as

Ω = eigΛ
aXa

, (1.2.3)

where Xa are the generators of the SU(N) gauge group and g is the coupling constant. The
generators Xa define a Lie algebra through the relation

[Xa, Xb] = ifabcXc (1.2.4)

where fabc are the structure constants. If the structure constants are zero, then the Lie group
is abelian. Gauge indices are labeled by small latin letters a, b, c, ... and they run from 1 up
to N2 − 1. In our convention, the generators are hermitian X† = X with the normalization
condition

Tr[XaXb] =
1

2
δab, (1.2.5)

which is the normalization condition for generators in the fundamental representation. An
important property of the Lie bracket is that it satisfies the Jacobi identity

[A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0, (1.2.6)

where A,B,C ∈ SU(N). In terms of the structure constants, Eq. (1.2.6) takes the form

fabdfdce + f bcdfdae + f cadfdbe = 0. (1.2.7)

With the adjoint map, we express the gauge fields Aµ and the field strength Fµν in terms of
the generators Xa as

Aµ = AaµX
a & Fµν = F a

µνX
a, (1.2.8)

where

F a
µν = ∂µA

a
ν − ∂νAbµ + gfabcAbµA

c
ν . (1.2.9)
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In our convention, the gauge fields Aaµ are anti-hermitian (Aaµ)† = −Aaµ. Under the SU(N)
gauge group, the gauge fields Aµ transform as

AΩ
µ = ΩAµΩ−1 − i

g
(∂µΩ)Ω−1, (1.2.10)

where Ω = Ω(x) is a local group element of SU(N). A straightforward calculation shows
that the field strength tensor Fµν transforms in the adjoint representation of the gauge group

FΩ
µν = ΩFµνΩ

−1. (1.2.11)

Although the field strength tensor itself is not invariant under a gauge transformation, the
Lagrangian of Yang-Mills theory is. The action functional S is defined as the space-time
integral over the Lagrangian density

Sinv[A] =

∫
M

d4xL =
1

2

∫
M

d4xTr [FµνFµν ] =
1

4

∫
M

d4xF a
µν(x)F a

µν(x), (1.2.12)

where M is a compact and oriented manifold with the trivial Euclidean metric δµν . It
represents space-time on which the gauge fields Aµ(x) are evaluated. Since the field strength
tensor Fµν is hermitian (F a

µν)
† = F a

µν , the action S is real. To compute transition functions,
we write the partition function Z [15] as

Z(J) =

∫
A
DAe−Sinv[A]+

∫
M dxJaµA

a
µ , (1.2.13)

where A is the functional configuration space of the gauge fields. This infinite-dimensional
affine space is, in fact, a Hilbert space [16–18]. In general, we are not interested in the gauge
fields as single objects but rather in sets of gauge fields that are related by a gauge transfor-
mation as these are the physically relevant objects. The set of all gauge fields Aµ that are
related by a gauge transformation is called the orbit and it is a subspace of the configuration
space A. The non-trivial Riemannian structure [19, 20] of the orbits is responsible for the
Gribov problem in non-Abelian gauge theories. For the time being, this should serve as
an interesting remark as we have not talked talked about the Gribov problem/ambiguity,
yet. On the orbit space, the action Sinv and the measure DA are constant, which makes the
integral in Eq. (1.2.13) proportional to the volume of the gauge group. The integration over
the volume of the group results in an infinite factor, which makes Eq. (1.2.13) ill-defined.
An explicit way of seeing this is by computing the gauge field propagator. Taking only the
quadratic form of the action, the partition function reduces to

Z0(J) =

∫
DAe−

1
4

∫
ddx(∂µAν−∂νAµ)2+

∫
ddxJaµA

a
µ

=

∫
DAe

1
2

∫
ddxddyAaν(x)Kab

µν(x−y)Aµ(y)b+
∫
ddxJaµA

a
µ , (1.2.14)

with Kab
µν(x− y) = δabδd(x− y)(∂2 − ∂µ∂ν). Eq.(1.2.14) is a Gaussian integral whose formal

solution is given by

Z0(J) = (detK)−1

∫
DAe−

1
2

∫
ddxddyJaµ(Kab

µν)−1Jaν . (1.2.15)

Unfortunately, the inverse of the operator Kµν does not exist. This problem is linked to the
existence of eigenvectors of Kµν with zero eigenvalues. Taking Yµ(x) = ∂µΛ(x), with Λ(x)
being an arbitrary function of space-time, we get∫

dy[δd(x− y)(ηµν∂
2 − ∂µ∂ν)]∂µΛ(y) = 0, (1.2.16)

6



where the derivatives ∂µ ≡ ∂
∂yµ

are performed with respect to the y coordinate. These
zero-modes are in fact gauge transformations of Aµ = 0

AΩ
µ = ΩAµΩ−1 − i

g
(∂µΩ)Ω−1 = − i

g
(∂µΩ)Ω−1 = ∂µΛ (1.2.17)

where we expanded Ω in a power series of the coupling constant g and kept only terms up
to the first order. We can avoid the zero modes by eliminating the freedom of performing a
gauge transformation. The mathematical procedure by which one accomplishes this is called
gauge fixing. After gauge fixing, we are left with the space of physically distinguishable
configurations known as the quotient space A/G. The gauge fixing constraint is implemented
by imposing that the function F [A] on A vanishes F [A] = 0 (Fig.1.1.)

Figure 1.1: Configuration space of the gauge fields. Dashed lines represent all field configu-
ration AΩ that are connected to A by a gauge transformation. Gauge fields that do not lie
on the same line are not connected by a gauge transformation. Functions F1[A] and F2[A]
represent different ”hypersurfaces” or gauge slices. Original figure from [21]

The gauge fixing constraint F [A] = {F a(Aµ, ∂µA, ...)(x) , x ∈ M} is the set of functions on
the configuration space A that depend on the gauge field and its derivatives. For the Lorenz
gauge condition, it is written as

F a(Aµ, ∂µA, ..)(x) = ∂µA
a
µ(x). (1.2.18)

To implement the gauge fixing constrained we separate the integral in Eq. (1.2.13) into the
integration over the hypersurface (the gauge slice) defined by F [A] and into the integration
over the gauge orbits. For every field A ∈ A, there is a gauge equivalent field AF that satisfies
F [AF ] = 0. This is equivalent to saying that there exists a group element Ω ∈ G such that
it sends the field Aµ to the gauge slice where F [AΩ] = 0. This Ω depends on the original A
and on the gauge slice F . We denote the group element Ω, that takes a given gauge field
onto the gauge slice, as ΩF [A]. Therefore, for every A ∈ A we associate ΩF [A] ∈ G such
that F [AΩF [A]] = 0. We will assume that the group element ΩF [A] is unique. In a nutshell,
the Faddeev-Popov method is a way of re-expresses the integral in Eq. (1.2.13) in terms of
ΩF [A]. The trick lies in the fact that we can write unity in a complicated way as

1 =

∫
G

D[Ω] δ(F [AΩF [A]]) |det[F
′
[AΩF [A]]]|, (1.2.19)
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where the measure D[Ω] is defined as

D[Ω] =
∏
x∈M

dµ(Ω(x)), (1.2.20)

with dµ being the Haar measure on the gauge group SU(N) [22, 23] and the delta function

δ(F [AΩF [A]]) =
∏
x∈M

n2−1∏
a

δ(F a[AΩF [A]](x)). (1.2.21)

A nice property of the Haar measure dµ is its invariance under a gauge transformations∫
dµ(Ω(x))f(Ω(x)) =

∫
dµ(Ω(x))f(Ω−1

0 Ω(x)) =

∫
dµ((Ω−1

0 Ω(x))f(Ω(x))

=

∫
dµ(Ω(x))f(Ω(x)), (1.2.22)

where we assumed that we have a left group action. A similar condition holds for the right
action. For compact, simple, semi-simple and finite Lie groups the left and right invariant
measures are equal [24]. The gauge invariance of dµ implies that an integral over the gauge
group is gauge invariant, independent of the fact whether the function f(Ω(x)) is gauge
invariant or not.

The quantity F
′
[AΩF [A]] is called the Faddeev-Popov operator and its matrix elements are

defined as

F
′
[AΩ]ab(x, y) ≡ δ(F a[AΩ](x))

δΛb(y)

∣∣∣
Λ=0

, (1.2.23)

where the functional derivation is formally defined as δF [ψ]/δψ(y) ≡ limε→0
1
ε
(F [ψ′]−F [ψ])

with ψ′ = ψ(x) + εδ(x− y). To lighten up the notation, we omitted the fact that the group
element depends on the gauge field Aµ and the function F . Inserting the unit element defined
in Eq. (1.2.19) in the partition function Z yields

Z =

∫
A
DAe−Sinv[A]

∫
G

D[Ω] δ(F [AΩF [A]]) |det[F
′
[AΩF [A]]],

=

∫
G

D[Ω]

∫
A
DAe−Sinv[A] δ(F [AΩF [A]]) |det[F

′
[AΩF [A]]]|. (1.2.24)

For a fixed ΩF [A], we get

Z =

∫
G

D[Ω]

(∫
A
D[AΩF [A]] e

−Sinv[AΩF [A]] δ(F [AΩF [A]]) |det[F
′
[AΩF [A]]]|

)
, (1.2.25)

where we used the fact that the action Sinv and the measure D[A] are gauge invariant. The
integral in bracket is independent of Ω. Hence,

Z =

∫
G

D[Ω]

(∫
A
D[A] e−Sinv[A] δ(F [A]) |det[F

′
[A]]|

)
, (1.2.26)

where we replaced AΩF [A] with A, since it was just a dummy variable. In the end, we were
able to factor out the infinite volume factor

∫
G
D[Ω], which made the integral in Eq. (1.2.13)

ill-defined. The importance of this becomes apparent when we try to compute expectation
values of physical observables f

〈f〉 =

∫
A DAf [A] e−Sinv∫
ADAe−Sinv

. (1.2.27)
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Using the Faddeev-Popov trick, we can rewrite it as

〈f〉 =

∫
A DAf [A] δ(F [A]) |det[F

′
[A]]| e−Sinv∫

A DAδ(F [A]) |det[F ′ [A]]| e−Sinv
, (1.2.28)

where we canceled the integration over the gauge group from the numerator and denomi-
nator. Thus, we are left with a well-defined partition function. The functional determinant
|det[F

′
[A]]| is called the Faddeev-Popov determinant and it is equal to the volume of the

gauge slice [19, 20]. To proceed, we need to compute the Faddeev-Popov determinant for
a specific choice of a gauge fixing function. The standard gauge fixing condition that one
chooses at this step is the Lorenz-Feynman-Landau gauge condition

∂µA
a
µ = εa(x), (1.2.29)

where ε :M→ Lie(G) is a function from the space-time manifold M to the Lie algebra of
the gauge group. For this gauge choice, the functions F a[A] are given by

F [A]a(x) = ∂µA
a
µ − εa(x), (1.2.30)

Under an infinitesimal gauge transformation, the gauge field Aµ transforms as

Aaµ(x)→ Aaµ(x)−Dab
µ Λb(x), (1.2.31)

where Dab
µ = δab∂µ − fabcAcµ is the covariant derivative in the adjoint representation. The

matrix elements of the Faddeev-Popov operator F ′[A] are given by

F ′[A]ab(x, y) =
δ(∂µ(Aaµ −Dac

µ Λc(x))− εa(x))

δΛb(y)

∣∣∣
Λ=0

,

= −[∂µDµ]ab(x, y),

= −[∂2δab − gfabc∂µAcµ(x)] δ4(x− y). (1.2.32)

The partition function defined in Eq. (1.2.26), under the assumption that the Faddeev-Popov
determinant does not change sign yields

Z =

∫
A
D[A] e−Sinv[A] δ(∂µA

a(x)− εa(x)) det[−[∂µDµ]ab(x, y)]. (1.2.33)

When expanded in a perturbation series, the Faddeev-Popov determinant leads to non-
local interactions between the gauge fields Aµ. This is due to the fact that a functional
determinant detN can be written as detN = exp(Tr[logN ]). A local form is obtained by
introducing anti-commuting, Grassmann variables c and c̄

det[−[∂µDµ]ab(x, y)] =

∫
D[c, c̄] e−Sghost[c,c̄,A] (1.2.34)

with

Sghost =

∫
d4x d4y c̄a(x) [∂µDµ]ab(x, y) cb(y)

=

∫
dx c̄a(x)[∂µ(∂µδ

ab − fabcAcµ(x))]cb(x)

=

∫
dx [c̄a(x)∂2cb(x)δab + fabc∂µc̄

a(x)cb(x)Acµ(x)]. (1.2.35)
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In the second line, using the delta function δ(4)(x − y), we were able to eliminate the inte-
gration over y. It was shown in [25], that the correct hermiticity assignment for the ghost
field is

(c(x)a)† = c(x)a (c̄(x)a)† = −c̄(x)a. (1.2.36)

With this hermiticity assignment, the full Lagrangian including the ghost part is hermitian
L† = L. This is easy to see since

(c̄a(x)∂2cb(x))† = (∂2cb(x))†c̄a(x)† = −∂2cb(x)c̄a(x) = c̄a(x)∂2cb(x) (1.2.37)

and

(∂µc̄
a(x)cb(x)Acµ(x))† = Acµ(x)†cb(x)†(∂µc̄

a(x))† = −Acµ(x)cb(x)∂µc̄
a(x)

= ∂µc̄
a(x)cb(x)Acµ(x), (1.2.38)

where we used the fact that Grassmann fields anti-commute. Alternatively, we can express
the complex Grassmann fields in terms of two real independent real Euclidean Grassmann
fields va(x) and ua(x) as

c(x)a = va(x) c̄(x)a = iua(x). (1.2.39)

The Faddeev-Popov ghosts are fermionic scalar fields with values in the Lie algebra. They
have the same quantum numbers as the gauge fields Aµ, since they belong to the same
representation of the gauge group. The term ”ghost” is due to Feynman as he used it to
point out that these objects do not have a real physical meaning since they violate the
standard spin-statistics relation. Because they do not represent physical particles, they do
not appear as asymptotic states [26]. For abelian theories fabc = 0, the ghost action reduces
to

SAbelian
ghost =

∫
dx c̄a(x)∂2ca(x), (1.2.40)

which means that Faddeev-Popov ghosts completely decoupled from the theory. Inserting
Eq. (1.2.34) into the partition function yields

Z =

∫
A
D[A, c, c̄] δ(∂µA

a(x)− εa(x)) e−Sinv[A]−Sghost[c,c̄,A]. (1.2.41)

Since gauge invariant quantities do not depend on εa, we average over the auxiliary field by

multiplying the partition function with a Gaussian factor e
1
2ξ

∫
d4x εa(x)εa(x) to bring it into the

action

Z =

∫
D[A, c, c̄]D[ε]δ(∂µA

a(x)− εa(x)) e
1
2ξ

∫
d4x εa(x)εa(x) e−Sinv[A]−Sghost[c,c̄,A], (1.2.42)

where ξ is a constant parameter. Different values of the parameter ξ correspond to different
gauges. The Feynman-’t Hooft gauge ξ = 1 is well-suited for computational purposes since
in this gauge the Feynman rules have the simplest form. When dealing with bound state
problems, it is advantageous to work in the Fried-Yennie gauge ξ = 3 [27] because many
diagrams, which are infrared divergent in other gauges (Feynman or Landau), are infrared
finite in the Fried-Yennie gauge [28]. The limit ξ → 0 corresponds to the Landau (Lorenz)
gauge condition, which has the advantage of being Lorenz invariant. Evaluating the integral
over ε gives us the final result

Z =

∫
D[A, c, c̄]e−Sinv−Sghost−Sgf (1.2.43)
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with

Sgf = − 1

2ξ

∫
d4x ∂µA

a
µ∂νA

a
ν . (1.2.44)

The presence of the gauge fixing term Sgf eliminates the zero-modes from the gauge field
propagator and therefore creates a well-defined partition functional. The generalization of
the gauge fixing term for an arbitrary gauge fixing condition F a[A(x)] reads

Sgf = − 1

2ξ

∫
d4xF a[A(x)]F a[A(x)], (1.2.45)

which leads to the generalized ghost field action

Sghost =

∫
d4x d4y c̄a(x)

[
δF a(AΩ

µ (x))

δΛb(y)

] ∣∣∣∣∣
Λ=0

cb(y). (1.2.46)

1.3 BRST

Despite the fact that the local gauge invariance of the action is lost, it would be desirable
to maintain invariance in an infinitesimal form. It may seem impossible to have a symmetry
transformation whose infinitesimal form leaves the action invariant, but its finite version
does not. The problem lies in the fact that infinitesimal transformations can be extended to
finite ones by repeating the former many times. We call a gauge transformation infinitesimal
when expanding Ω = eigΛ

aXa
in a Taylor series and keeping only O(Λ) terms. Therefore,

to have a symmetry whose infinitesimal form mirrors the original local gauge invariance but
does not reproduce finite transformation, the relation (Λa(x))2 = 0 needs to be an exact
relation, not an approximate one [25]. We implement this nilpotency condition by regarding
Λa’s as differential forms, which constitute a finite-dimensional Grassmann algebra equipped
with an exterior product [23, 29]. This symmetry is called BRST symmetry, and it was
formulated by C. Becchi, A. Rouet, R. Stora [30] and I.V. Tyutin [31]. The idea is to use
the Faddeev-Popov ghost fields ca(x) to construct a nilpotent operator δ which characterizes
the BRST transformations. The BRST transformations of the fields are given by

δAaµ = −Dab
µ c

b (1.3.1)

δca =
g

2
fabccbcc (1.3.2)

δc̄a = εa (1.3.3)

δεa = 0. (1.3.4)

From the action of the operator δ on the fields we can conclude that BRST symmetry is ac-
tually a supersymmetry, since it transforms bosonic fields into fermionic ones and vice versa.
The gauge invariant part of the action Sinv is trivially invariant under BRST transformations
since the ghost field does not affect the original gauge invariance. In general, anything that
was gauge invariant will be automatically BRST invariant. The variation of the gauge fixing
term for the Landau gauge condition reads

δLgf =
1

ξ
(∂µA

a
µ)(∂ν(Dνc)

a). (1.3.5)

Under a BRST transformation, the ghost Lagrangian Lghost transforms as

δLghost = (δc̄a)∂µ(Dµc)
a − c̄a∂µδ(Dµc)

a, (1.3.6)

where the variation of the covariant derivative is given by
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δ(Dµc)
a =

[
g

2
fabc∂µ(cbcc) + gfabc(∂µc

c)cb − g2fabcf cdeAeµc
dcb − g2

2
fabcf bdeAcµc

dce
]
. (1.3.7)

The first two terms in Eq. (1.3.7) cancel by noting that we can rewrite the second term as

1

2
(∂µc

[c)cb] ≡ 1

2
(∂µc

c)cb − 1

2
(∂µc

b)cc

=
1

2
(∂µc

c)cb +
1

2
cc(∂µc

b)

=
1

2
∂µ(cccb) = −1

2
∂µ(cbcc). (1.3.8)

We can also anti-symmetrize the third term in Eq. (1.3.7) as

fabcf cde =
1

2

[
fabcf cde − fadcf cbe

]
= −1

2
f bdhfhae, (1.3.9)

where in the last step we used the fact that the structure constants satisfy the Jacobi identity.
Thus, we were able to show the cancellation of the last two terms in Eq. (1.3.7). The sum of
the remaining terms in Eq. (1.3.5) and Eq. (1.3.6) vanish as they can be written as a total
space-time derivative

δ(Lghost + Lgf) =

∫
M

∂µ

(
1

ξ
(∂µA

a
µ)(Dab

µ c
b)

)
, (1.3.10)

which completes the proof that the gauge fixed Lagrangian is invariant under BRST trans-
formations. The final property that we need to check is whether the BRST transformations
are nilpotent as required. Acting on the gauge field Aaµ twice we obtain

δ(δAaµ) = δ(−Dab
µ c

b) = −δ(∂µca − gfabcAcµcb)
= −(δab∂µ − gfabcAcµ)δ(cb) + gfabc(δAcµ)cb

= −Dab
µ δ(c

b)− gfabc(∂µcc)cb + g2fabcf cdeAeµc
dcb

= −Dab
µ δ(c

b)− g

2
fabc∂µ(cccb)− 1

2
f bdhfhaeAeµc

dcb

= −Dah
µ δ(c

h) + (δah∂µ − gfaheAeµ)
g

2
fhbccbcc

= −Dah
µ

(
δ(ch) +

g

2
fhbccbcc

)
, (1.3.11)

which vanishes due to the variation of the ghost field in Eq. (1.3.2). Applying twice the
BRST operator δ on the ghost field ca(x) yields

δ2ca =
g2

6
(f bcef eda + f cdef eba + fdbef eca)cbcccd = 0, (1.3.12)

due to the Jacobi identity. It is trivial to prove the nilpontency on c̄a and εa. The presence
of this new global symmetry is of the utmost importance since it allows us to prove two
crucial properties of the Yang-Mills action: renormalizability and unitarity [33–35]. From
the perspective of BRST symmetry, the Slavnov-Taylor-identities [36, 37] are interpreted as
a consequence of a charge conservation [30, 31], which follows from the invariance of the
quantum action Γ[J ] = −lnZ[J ] with respect to the BRST transformation. Imposing BRST
symmetry on Γ one can solve the Slavnov-Taylor identities in an algebraic way and prove the
renormalizability of the theory. With the use of the BRST charge QBRST, which is defined
as the space-time integral of the temporal component of the conserved current jBRST

µ ,

jBRST
µ = ba(Dµc)

a − ∂µbaca + i
g

2
fabc∂µc̄

acbcc, (1.3.13)
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we define physical states ψ as
QBRSTψ = 0, (1.3.14)

where ψ must be closed in the BRST cohomology; i.e., ψ 6= QBRST(something) and it has
to have vanishing ghost number. These conditions are known as the Kugo-Ojima conditions
[38, 39]. A theory is unitary if all the physical states ψ have a positive norm and states
belonging to the physical state space Hphys stay in Hphys after interacting with each other.
Both of these conditions are proven by using the BRST symmetry.
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Chapter 2

Global Issues in Gauge fixing

This chapter deals with global issues in gauge fixing, i.e., the Gribov ambiguity. We intend to
recall limitations of the Faddeev-Popov procedure and complications associated with the non-
perturbative regime of gauge theories. However, we would like to point out that this chapter
is mainly a summary of the work done by Gribov [40], Zwanziger [56? ] and Capri [68] and
no original contributions have been made. Original work of this thesis is presented in the
fourth and fifth chapter. Whenever it is possible, we will connect the ideas and methods from
this chapter with the work presented in the chapters four and five.

2.1 Gribov Ambiguity

In the derivation of Eq. (1.2.43), we assumed that:

• The Landau gauge condition ∂µA
a
µ = 0 is ideal.

• The Faddeev-Popov determinant does not change sign.

A gauge fixing condition is called ideal if the orbits intersect the gauge fixing hypersurface
only once. This implies that the gauge field, fulfilling dynamical equations for a given choice
of gauge fixing, is unique. The second condition was imposed to rewrite the Faddeev-Popov
(FP) determinant in terms of the ghost and anti-ghost fields. The negative sign of the FD
determinant would not pose any problems since we could always reabsorb the negative sign
in the normalization constant. Problems arise, however, when the FP determinant changes
sign as it has to vanish at some point during the transition. In his seminal paper, V. Gribov
[40] pointed out that for a given gauge field Aaµ satisfying the gauge condition ∂µAµ there
exist equivalent gauge fields AΩ

µ fulfilling the same condition. The criterion for the existence
of such copies reads

∂µAµ = 0 & ∂µA
Ω
µ = 0

=⇒ (∂µΩ)AµΩ−1 + ΩAµ∂µ((Ω−1)− i

g
(∂2Ω)Ω−1 − i

g
(∂µΩ)∂µ(Ω−1) = 0, (2.1.1)

which for an infinitesimal transformation reduces to

−∂µDµΛ = 0, (2.1.2)

where Dµ = ∂µ + ig[., Aµ]. Therefore, we conclude that the existence of infinitesimal copies
can be associated with the existence of the zero-modes of the Faddeev-Popov operator.

Generally, there will exist equivalent gauge potentials Aµ and AΩ
µ satisfying the same gauge
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fixing conditions. These copies are called Gribov copies named after V. Gribov who pointed
out their existence. We can study Eq. (2.1.2) in following form of an eigenvalue equation

−∂µ(∂µξ + ig[ξ, Aµ]) = λ(A)ξ, (2.1.3)

where we replaced the parameter Λ by the field ξ. In this form, we can interpret Eq. (??)
as a Schroedinger equation where the gauge field Aµ plays the role of the potential [? ]. For
vanishing gauge field Aµ = 0, the eigenvalue equation

−∂2ξ = λ(0)ξ, (2.1.4)

has only1 positive eigenvalues λ . For small perturbations around Aµ = 0, no Gribov copies
will be present. Due to this fact, we are able to get away with the assumptions about
uniqueness and positivity in the derivation of the partition function. As long as we stay
within the perturbative regime, our assumptions will remain true (Fig.2.1)

Figure 2.1: Left side: The gauge slice intersects gauge orbits more than once. Right side :
Locally, it is always possible to find an ideal gauge fixing around the point Aµ = 0. Original
figure from [21]

However, as we go to larger values of the gauge field, the negative contribution from the
second part of Eq. (2.1.3) will dominate. For large enough values of the gauge field, one of
the eigenvalues say λ1(A), will vanish and as Aµ continues increasing further, it will become
negative. For even bigger values of the gauge field, the second eigenvalues say λ2(A), will
vanish and become negative as Aµ continues increasing [40, 41]. This pattern continues
as the magnitude of the gauge field keeps increasing. With this in mind, we partition the
configuration space A into regions (Fig. 2.2) as Gribov suggested, where C0 labels the
region where the Faddeev-Popov operator has only positive eigenvalues, region C1 where the
Faddeev-Popov operator has one negative eigenvalue and so on.

1Apart from the trivial null space solutions when ξ is constant.
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Figure 2.2: Partition of the configuration space in Gribov regions.

The boundary of the region C0, which we labeled as l1, contains the first zero eigenvalues of
the Faddeev-Popov operator. It means that there exists a normalized 2 zero mode ξ which
satisfies

∂µ(∂µξ + ig[ξ, Aµ]) = 0. (2.1.5)

The region C0 is called the first Gribov region and is defined as the set of all transverse
gauge fields for which the Faddeev-Popov operator is positive definite

C0 = {Aµ, ∂µAµ = 0 | − ∂µDµ > 0 }. (2.1.6)

In the first Gribov region, the Landau gauge condition ∂µAµ is free of copies at least from
the infinitesimal ones. In the next region C1, the Faddeev-Popov operator has one negative
eigenvalue and at the boundary l2, a second zero eigenvalue reappears [40, 41]. The pattern
indicated here appears pretty obvious. In the region CN , the Faddeev-Popov operator pos-
sesses N − 1 negative eigenvalues, and at the boundary l + 1, the N − th zero eigenvalue
appears.

An alternative formulation of the first Gribov region was worked out in [42–44] by mini-
mizing the L2 norm of the gauge field along the gauge orbit

||AΩ
µ ||2 = Tr

∫
dxAΩ

µ (x)AΩ
µ (x) =

1

2

∫
dxAa,Ωµ Aa,Ωµ . (2.1.7)

A gauge field Aaµ will minimizes the functional in Eq.(2.1.7) if it is transverse ∂µA
a
µ = 0

δ||Aµ||2 = δ

(
1

2

∫
dx Aaµ(x)Aaµ(x)

)
=

∫
dx (δAaµ(x))Aaµ(x) = −

∫
dx (Dab

µ Λa(x))Aaµ(x)

= −
∫

dx
(
∂µδ

abΛa(x)− gfabcAcµ(x)Λa(x)
)
Aaµ(x) = −

∫
dx (∂µΛa(x))Aaµ(x)

=

∫
dxΛa(∂µAµ) = 0, (2.1.8)

and the Faddeev-Popov operator −∂µDµ is positive

2Only normalized solutions can be used to construct Gribov copies.
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δ2||Aµ||2 = δ

(
−
∫

dx(∂µΛa(x))Aaµ(x)

)
=

∫
dx ∂µΛ(x)aDab

µ Λb(x)

=

∫
dx Λa(x)(−∂µDab

µ )(A) Λb(x) > 0. (2.1.9)

Therefore, we conclude that the first Gribov region is the set of local minima of the functional
in Eq. (2.1.7). Zwanziger and Dell’Antonio proved that every gauge orbit crosses the first
Gribov region [45], which is an important result because it tells us that C0 contains all the
physical configurations. It was also proven in [45] that the first Gribov region is convex and
bounded in every direction. The former states that given two gauge fields Aµ and Bµ in
the first Gribov region then the field Cµ = c1Aµ + c2Bµ, where c1 + c2 = 1, is also inside
C0. This is easily proven by using the fact that the Faddeev-Popov operator is linear in the
gauge fields

Fab(c1Aµ + c2Bµ) = c1Fab(Aµ) + c2Fab(Bµ), (2.1.10)

where we labeled the Faddeev-Popov operator as Fab[Aµ] since the discussion is valid for an
arbitrary choice of the gauge fixing condition. To prove the fact that the first Gribov region
is bounded in every direction, we recall that

Fab(Aµ) = Fab0 + Fab1 (Aµ), Fab0 = −∂2δab & Fab1 (Aµ) = gfabc∂µA
c
µ, (2.1.11)

where Fab0 has only positive eigenvalues and Fab1 (Aµ) is an skew-symmetric matrix whose
trace is zero. Since Fab1 (Aµ) is traceless, the sum of all of its eigenvalues is zero. For
non-vanishing gauge field, there exists at least one eigenvector ξa with a negative eigenvalue∫

dx ξa(x)F2(Aµ)abξ(x)b = λ < 0. (2.1.12)

Due to the linearity of the Faddeev-Popov operator, any eigenvector of Fab1 (Aµ) is also an
eigenvector of Fab1 (cAµ) with the eigenvalue cλ. With this in mind, we have∫

dx ξa(x)
(
F(cAµ)ab

)
ξ(x)b = −

∫
dx ξa(x)(∂2)ξ(x)b + cλ. (2.1.13)

For large enough values of c the Faddeev-Popov operator will no longer be positive indicating
that we left the first Gribov region. Throughout this proof, we assumed that the eigenvector
ξa has a unit norm. From these arguments one concludes that C0 is bounded in every
direction.

2.2 Gribov pendulum

In this section, we are going to investigate the existence of Gribov copies for the simplest
possible case. We will be working in 3-dimensional space with the gauge group SU(2) and the
gauge fixing condition ∂iAi. Furthermore, we are going to restriction ourselves to spherically
symmetric gauge fields Ai, i = 1, 2, 3, i.e., fields depending only on the unit vector ni = xi/r,
with r =

√
xixi. In his paper [40], Gribov wrote down the most general expression for a

spherically symmetric gauge field to be

Ai(x) = f1(r)
∂n̂

∂xi
+ f2(r)n̂

∂n̂

∂xi
+ f3(r)n̂ni, (2.2.1)

where n̂ = inaσa. The σa are the Pauli matrices

17



σ1 =

 0 1

1 0

 , σ2 =

 0 i

−i 0

 , σ3 =

 1 0

0 −1

 , (2.2.2)

satisfying the following identity

n̂2 = −nanbσaσb = −nanb(δab − iεabcσc) = −nana = −1. (2.2.3)

We recall from the last section that a gauge field Ai will have Gribov Copies if the following
condition is satisfied

∂AΩ
i

∂xi
=
∂Ai
∂xi

. (2.2.4)

The right-hand side of Eq. (2.2.4) reads

∂Ai
∂xi

=
∂

∂xi

(
f1(r)

∂n̂

∂xi
+ f2(r)n̂

∂n̂

∂xi
+ f3(r)n̂ni

)
= f ′1(r)ni

∂n̂

∂xi
+ f1(r)

∂2n̂

∂x2
i

+ f ′2(r)nin̂
∂n̂

∂xi
+ f2(r)

∂

∂xi

(
n̂
∂n̂

∂xi

)
+ f ′3(r)n̂n2

i + f3(r)
∂

∂xi
(n̂ni)

= f1(r)
∂2n̂

∂x2
i

+ f2(r)
∂

∂xi

(
n̂
∂n̂

∂xi

)
+ f ′3(r)n̂+ f3(r)n̂

∂ni
∂xi

, (2.2.5)

where we used the relation ni
∂n̂
∂xi

= 0. Furthermore, we have that

∂2n̂

∂x2
i

=
∂

∂xi

(
i

r
(σi − (~σ · ~n)ni)

)
= −iσini

r2
− i((~σ · ~n)ni)

′r − (~σ · ~n)nir
′

r2
,

= − n̂
r2
− i

r2

((
∂

∂xi
(~σ · ~n)

)
ni r + (~σ · ~n)

∂ni
∂xi

r − (~σ · ~n)n2
i

)
= − n̂

r2
− i(~σ · ~n)

r2

= −2
n̂

r2
, (2.2.6)

and

(
∂n̂

∂xi

)2

= − 1

r2
(σi − (~σ · ~n)ni)(σi − (~σ · ~n)ni) = − 2

r2
, (2.2.7)

which is straightforward to obtain by multiplying terms out and using the identity

(~σ · ~n)σi = −σi(~σ · ~n) + 2ni. (2.2.8)

Inserting Eq. (2.2.6) and (2.2.7) into Eq.(2.2.5) leads to the following expression

∂Ai
∂xi

= n̂

[
∂f3(r)

∂r
+

2

r
f3(r)− 2

r2
f1(r)

]
. (2.2.9)

To evaluate the left-hand-side of Eq. (2.2.4), we recall that under a spherical symmetric
gauge transformation

Ω = e
1
2
α(r)n̂ = cos

(
α(r)

2

)
+ n̂ sin

(
α(r)

2

)
, (2.2.10)
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the gauge field transform as

AΩ
i = Ω−1AiΩ + Ω−1∂iΩ, (2.2.11)

where we rewrote the gauge transformation in a slightly different way to get rid of the extra
factors of i

g
. Inserting the SU(2) group element yields

AΩ
i =

(
cos

α

2
− n̂ sin

α

2

)(
f1(r)

∂n̂

∂xi
+ f2(r)n̂

∂n̂

∂xi
+ f3(r)n̂ni

)(
cos

α

2
+ n̂ sin

α

2

)
+
(

cos
α

2
− n̂ sin

α

2

)((
n̂ cos

α

2
− sin

α

2

) α′(r)ni
2

+ sin
α

2

∂n̂

∂xi

)
,

with ∂α(r)
∂xi

= ∂α(r)
∂r

∂r
∂xi

and ∂r
∂xi

= ni. Multiplying everything out we obtain

AΩ
i = f̃1(r)

∂n̂

∂xi
+ f̃2(r)n̂

∂n̂

∂xi
+ f̃3(r)n̂ni (2.2.12)

whereby

f̃1(r) = cosαf1(r) + sinα

(
f2(r) +

1

2

)
f̃2(r) =

(
f2(r) +

1

2

)
cosα− f1(r) sinα− 1

2

f̃3(r) = f3(r) +
1

2

∂α(r)

∂r
. (2.2.13)

Identities that have been used in the derivation of the above results are

n̂
∂n̂

∂xi
+
∂n̂

∂xi
n̂ = 0,

n̂
∂n̂

∂xi
n̂− ∂n̂

∂xi
= 0.

(2.2.14)

Now, for the left-hand side of Eq. (2.2.4), we insert f̃i(r). Thus,

∂AΩ
i

∂xi
= n̂

[
∂f̃3(r)

∂r
+

2

r
f̃3(r)− 2

r2
f̃1(r)

]

= n̂

[
∂f3(r)

∂r
+

1

2

∂2α

∂ r2
+

2

r
f3(r) +

1

r

∂α

∂ r
− 2

r2

(
cosαf1(r) + sinα

(
f2(r) +

1

2

))]
.

(2.2.15)

The condition for existence of Gribov copies is equivalent to the equation

α′′(r) +
2

r
α′ − 4

r2

(
sinα

(
f2(r) +

1

2

)
+ f1(r)(cosα− 1)

)
= 0, (2.2.16)

where α′ ≡ ∂α
∂ r

. It is useful to introduce a new variable τ = ln(r) such that Eq. (2.2.16) can
be rewritten as

α̈ + α̇− (2 + 4f2) sinα + 4f1(1− cosα) = 0. (2.2.17)
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Equation (2.2.17) is called the Gribov pendulum. Due to its non-linear nature, the Gribov
pendulum equation does not have any closed analytic solutions [47, 48]. Since there are
no solutions to the general problem one is forced to simplify the situation by considering
approximative cases with appropriate boundary conditions. One way of achieving this is by
restricting oneself to transverse gauge fields

Ai =
i

r2
εijkxjσkf(r), (2.2.18)

where f1(r) = f3(r) = 0 and f2(r) = f(r). The transformed gauge field AΩ
i is given by

Ãi =

(
f(r) +

1

2

)
sinα

∂n̂

∂xi
+

(
f(r) +

1

2
(cosα− 1)

)
n̂
∂n̂

∂xi
+

1

2
α′(r)n̂ni, (2.2.19)

and for this case, the Gribov pendulum equation reduces to

α̈ + α̇− (2 + 4f(τ)) sinα = 0, (2.2.20)

where f(τ) is a smooth function. At this point, one imposes so-called strong and weak
boundary conditions [49–52] on the gauge fields to find α’s that are compatible with the
boundary conditions and are solutions of Eq. (2.2.20). For an in depth discussion on this
topic and the various solutions one obtains we refer the reader to [41].

Consider the gauge parameter to be infinitesimal for all the values of τ , then Eq. (2.2.20)
reduces to

α̈(τ) + α̇(τ)− (2 + 4f(τ))α(τ) = 0. (2.2.21)

If we take ξ = α(r)n̂ and Ai to be transverse as defined in Eq. (2.3.17) then Gribov’s
pendulum in its infinitesimal form is equivalent to the following eigenvalue equation

∂iDiξ = 0, (2.2.22)

with Di = ∂i + Ai. From the previous chapter, we know that we can interpret Eq. (2.2.22)
as a zero eigenvalue Schroedinger equation with Ai playing the role of the potential. We also
know that for a particularly large value of Ai solution to Eq. (2.2.22) exist. In other words,
if the transverse field Ai is located ona the boundaries of the first Gribov region, then Eq.
(2.2.21) is satisfied. The importance of Eq. (2.2.21) lies in the fact that by solving it we not
only prove the existence of Gribov copies, but also find the location of the boundary of the
first Gribov region in configuration space.

2.3 Restriction to the first Gribov region

To avoid copies of the gauge field Aµ, Gribov proposed to restrict the domain of integration
to the first Gribov region by introducing a new factor V(C0) into the partition function

Z = N
∫
DADcDc̄ V(C0) δ(∂µAµ)e−Sinv−

∫
d4xc̄a∂µDabµ c

b

. (2.3.1)

Inside the first Gribov region C0, the Faddeev-Popov operator by definition is positive. The
ghost propagator, being expressed by the inverse of the Faddeev-Popov operator, thus is
expected to be non-singular inside the first Gribov region. An equivalent statement would
be that the region where the ghost propagator is non-singular is precisely the first Gribov
region C0. To find V(C0), we have to investigate the pole structure of the ghost propagator
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and try to find a region where it is non-singular. From the form of the renormalized connected
ghost propagator (V(C0) = 1),

〈c̄a(x)cb(y)〉c = δab
∫

d4q

(2π)4
G(q)eiq(x−y), (2.3.2)

with

G(q) =
1

q2︸︷︷︸
G1

1

(1− 11g2N
48π2 logΛ2

q2 )
9
44︸ ︷︷ ︸

G2

, (2.3.3)

we see that it has two poles

q2 = 0 =⇒ G1 →∞ & q2
p = Λ2e

− 1
g2

48π2

11N =⇒ G2 →∞, (2.3.4)

where Λ is the UV-cutoff and N is the Casimir of the adjoint representation of the group
SU(N)

facdf bcd = Nδab. (2.3.5)

Due to the presence of V(C0) in the partition function, the ghost propagator G(q) can only

have singularities at vanishing momenta, since below q2 < Λ2e
− 1
g2

48π2

11N , G2 becomes complex
which is an indicator that we left the region C0. Thus we are left with the singularity at
q2 = 0 which indicates that we are on the boundary l1 of the first Gribov region C0 [40].

To determine V(C0), we are going to compute the color singlet ghost propagator and demand
that no singularities for non-vanishing momenta exist. Demanding that the ghost propagator
has no poles for non-vanishing momenta is called Gribov’s no-pole condition. The starting
point for implementing Gribov’s no-pole condition is the connected, color singlet, ghost
two-point function

∑
ab

δab

N2 − 1
〈c̄a(x)cb(y)〉c = N

∫
DADcDc̄ c̄

a(x)ca(y)

N2 − 1
δ(∂µAµ) e−(Sinv+Sghost)

= N
∫
DAδ(∂µAµ) e−SinvG(x, y;A) (2.3.6)

with

G(x, y;A) =

∫
DcDc̄ c̄

a(x)ca(y)

N2 − 1
e−Sghost . (2.3.7)

The momentum space representation of Eq. (2.3.7) reads

G(p;A) =

∫
d4xd4yeip(x−y)G(x, y;A), (2.3.8)

where Aµ is treated as a external classical field. It is important to note that treating the gauge
fields as external fields is done up to the second order in perturbation theory. Expanding
Eq. (2.3.8) up to second order in perturbation theory yields

G(p;A) = G(0)(p;A) + G(1)(p;A) + G(2)(p;A), (2.3.9)

with G(0)(p;A) being just the free ghost propagator
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p
a a =

1

p2
. (2.3.10)

The first order expansion G(1)(p;A) is determined by the following Feynman diagram

p− k

p k

c

a a = g
1

p2

1

q2
facaikµA

c
µ(p− k) = 0, (2.3.11)

which implies that the first order expansion does not contribute to the diagonal element.
The second order expansion term G(2)(p;A) yields

−q q + p− r

p
p+ q

r

a

b

a

b

= −g2 N

N2 − 1

∫
d4q

(2π)4

1

p2

1

r2

(p+ q)µrν
(q + p)2

Abµ(−q)Abν(q − r + p),

(2.3.12)
which can be rewritten as

G(2)(p;A) = g2 N

N2 − 1

1

p4

∫
d4q

(2π)4

(p− q)µpν
(p− q)2

Abµ(−q)Abν(q), (2.3.13)

where we used the fact that the incoming momentum p should be equal to the outcoming
momentum r. Therefore, the ghost propagator up to the second order in perturbation theory
yields

G(p;A) =
1

p2

(
1 +

g2

V

N

N2 − 1

1

p2

∫
d4q

(2π)4

(p− q)µpν
(p− q)2

Abµ(−q)Abν(q)
)

=
1

p2
(1 + σ(p;A)) ≈︸︷︷︸

perturb.approx

1

p2

1

(1− σ(p;A))
(2.3.14)

with

σ(p;A) =
g2

V

N

N2 − 1

1

p2

∫
d4q

(2π)4

(p− q)µpν
(p− q)2

Abµ(−q)Abν(q). (2.3.15)

In the definition of σ(p;A), we introduced an infinite volume factor 1/V to preserve the right
dimensionality. If the inequality

σ(p;A) < 1 (2.3.16)

holds, then the ghost propagator is finite for non-vanishing momenta. By recalling that in
the Landau gauge condition, the gauge fields are transverse qµAµ(p) = 0, implies that
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Aaµ(−q)Aaν(q) = ω(A)

(
δµν −

qµqν
q2

)
, (2.3.17)

where we determine ω(A) by contracting both sides with δµν

ω(A) =
1

3
Aaρ(−q)Aaρ(q) (2.3.18)

Inserting Eq. (2.3.17) into Eq. (2.3.15) and using the transversality condition yields

σ(p;A) =
g2

3V

N

N2 − 1

pµpν
p2

∫
d4q

(2π)4

Aaρ(−q)Aaρ(q)
(p− q)2

(
δµν −

qµqν
q2

)
. (2.3.19)

Since σ(p;A) reaches its maximum value at p = 0, the no-pole condition reduces to

σ(0;A) < 1, (2.3.20)

with

σ(0;A) =
g2

3V

N

N2 − 1
limp2→0

pµpν
p2

(∫
d4q

(2π)4

Aaρ(−q)Aaρ(q)
q2

(
δµν −

qµqν
q2

))
. (2.3.21)

Due to Lorentz invariance3 the integral in Eq. (2.3.21) has to be of the form∫
d4q

(2π)4

Aaρ(−q)Aaρ(q)
q2

(
δµν −

qµqν
q2

)
= J δµν , (2.3.22)

where J is computed by contracting both sides by δµν

J =
3

4

∫
d4q

(2π)4

Aaρ(−q)Aaρ(q)
q2

. (2.3.23)

By inserting Eq. (2.3.22) in Eq. (2.3.21) gives us the expression for σ(0;A) in the Landau
gauge

σ(0;A) =
g2

3V

N

N2 − 1
limp2→0

pµpν
p2

δµνJ

=
g2

4V

N

N2 − 1

∫
d4q

(2π)4

Aaρ(−q)Aaρ(q)
q2

. (2.3.24)

We implement the condition σ(0;A) < 1 in the path integral by writing the factor V(C0) as

V(C0) = Θ(1− σ(0;A)), (2.3.25)

where Θ(x) is the Heaviside step-function. Rewriting the step-function in its integral form

V(C0) =

∫ i∞+ε

−i∞+ε

dβ

(2πiβ)
eβ(1−σ(0;A)) (2.3.26)

and inserting in the path integral yields

Z = N
∫
DADcDc̄

∫
dβ

(2πiβ)
eβ(1−σ(0;A))e−Sinv−Sgf . (2.3.27)

3Lorentz invariance imposes that the solution to the integral has to have the same Lorentz structure as
the integrand. Since the variable q is being integrated out the only possible object that we can write down
is the metric tensor itself times a factor that is Lorentz invariant.
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The presence of the new factor in the path integral leads to modification of the gauge
propagator as σ(0; p) is quadratic in the gauge fields. We also note that the term βσ(0;A)
is non-local as it depends on the momentum. Taking only the quadratic part in the gauge
fields Aµ gives us

Z0[J ] = N
∫

dβ

(2πiβ)

∫
DA exp

[
−1

2

∫
d4q

(2π)4
Aaµ(q)Kab

µν(q)A
b
ν(−q) +

∫
d4q

(2π)4
Aaµ(q)Jaµ(−q)

]
,

(2.3.28)
with

Kab
µν(q) = δab

(
qµqν

(
1

α
− 1

)
+ q2δµν +

βNg2

2V (N2 − 1)

1

q2
δµν

)
, (2.3.29)

where at the end of the calculation, we have to take the limit α→ 0 to recover the Landau
gauge condition [41, 56]. Formally, the solution to the gluon two-point function reads

〈Aaµ(q)Abν(p)〉 =
δ2

δJaµ(−q)δJ bµ(−p)
Z0[J ]

= N
∫

dβeβ

(2πiβ)

(
detKab

µν

)− 1
2 (Kab

µν)
−1(q)δ(p+ q). (2.3.30)

To compute the factor (detKab
µν)
− 1

2 , we write it as

(detKab
µν)
− 1

2 = e−
1
2

ln detKab
µν = e−

1
2

Tr lnKab
µν , (2.3.31)

where the trace is taken over the Lie algebra indices, Lorenz indices and all the momenta q.
Thus, the object that we need to compute is

Tr lnKab
µν = (N2 − 1)Tr ln

[
qµqν

(
1

α
− 1

)
+ q2δµν +

βNg2

2V (N2 − 1)

1

q2
δµν

]
, (2.3.32)

where we already used the fact that the trace over the Lie algebra indices is just N2 − 1. In
the next step, we are going to write the expression in the bracket as

[
qµqν

(
1

α
− 1

)
+

(
q2 +

t

q2

)
δµν

]
=

[
δµρ

(
q2 +

t

q2

)(
δρν +

1

q2 + t
q2

(
1

α
− 1

)
qρqν

)]
,

(2.3.33)
to make use of the property

ln[AB] = ln[A] + ln[B]. (2.3.34)

Thus,

Tr lnKab
µν = (N2 − 1)

(
Tr ln

[
δµν

(
q2 +

t

q2

)]
+ Tr ln

[(
δµν +

1

q2 + t
q2

(
1

α
− 1

)
qµqν

)])
,

(2.3.35)
where we defined

t =
βNg2

2V (N2 − 1)
. (2.3.36)

Let us examine the first part of Eq. (2.3.35). We notice the argument of the logarithm is
a diagonal matrix with q2 + t

q2 being the diagonal elements. Therefore, the logarithm of a
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diagonal matrix is also a diagonal matrix with the diagonal elements ln
(
q2 + t

q2

)
. Taking

the trace over the space-times indices and the momenta q yields

Tr ln

[
δµν

(
q2 +

t

q2

)]
= 4

∫
d4q

(2π)4
ln

(
q2 +

t

q2

)
. (2.3.37)

For the second term, we Taylor expand the logarithm ln(1 + x) = x− x2

2
+ x3

3
− ..., take the

trace and use the obtained series to reconstruct the logarithm x− x2

2
+ x3

3
− ... = ln(1 + x)

Tr ln

[(
δµν +

1

q2 + t
q2

(
1

α
− 1

)
qµqν

)]
=

∫
d4q

(2π)4
ln

(
1 +

1

q2 + t
q2

(
1

α
− 1

)
q2

)

=

∫
d4q

(2π)4
ln

((
q4 + t

q2

)−1(
t

q2
+
q2

α

))
. (2.3.38)

Hence,

Tr lnKab
µν = (N2 − 1)

(
4

∫
d4q

(2π)4
ln

(
q2 +

t

q2

)
+

∫
d4q

(2π)4
ln

((
q4 + t

q2

)−1(
t

q2
+
q2

α

)))

= (N2 − 1)

(
3

∫
d4q

(2π)4
ln

(
q2 +

t

q2

)
+

∫
d4q

(2π)4
ln

(
t

q2
+
q2

α

))
. (2.3.39)

We rewrite the second part of Eq. (2.3.39) as∫
d4q

(2π)4
ln

(
t

q2
+
q2

α

)
=

∫
d4q

(2π)4
ln

(
t+

q4

α

)
−
∫

d4q

(2π)4
ln (q2), (2.3.40)

where the last term vanishes in dimensional regularization due to the identity∫
dDq

(2π)D
(q2)a = 0, for a ≥ 0. (2.3.41)

By plugging the first term in mathematica one can easily convince itself that it is proportional
to the gauge fixing parameter α plus contributions that vanish in dimensional regularization
due to the above identity. In the Landau gauge α→ 0, the factor (detKab

µν)
− 1

2 reads

(detKab
µν)
− 1

2 = exp

[
−3(N2 − 1)

2
V

∫
d4q

(2π)4
ln

(
q2 +

1

q2

βNg2

2V (N2 − 1)

)]
. (2.3.42)

Inserting the obtained result for (detKab
µν)
− 1

2 into Eq. (2.3.30) yields

〈Aaµ(q)Abν(p)〉 = N
∫

dβ

2πi
ef(β)(Kab

µν)
−1(q)δ(p+ q), (2.3.43)

with

f(β) = β − ln(β)− 3(N2 − 1)

2
V

∫
d4q

(2π)4
ln

(
q2 +

1

q2

βNg2

2V (N2 − 1)

)
. (2.3.44)

To solve the integral of this type one uses the steepest-descent method [53–55]. This method
exploits the fact that such integrals are dominated by the contributions from neighborhoods
of saddle points. Near the saddle point β0, we approximate the function f(β) by its Taylor
series
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f(β) = f(β0) +
1

2
f ′′(β)(β − β0)2 and Kab

µν(β) ≈ Kab
µν(β0). (2.3.45)

Therefore,

∫
dβ

2πi
ef(β)(Kab

µν)
−1(q)δ(p+ q) ≈ ef(β0)(Kab

µν)
−1(β0)δ(p+ q)

∫
dβ

2πi
e

1
2
f ′′(β)(β−β0)2

= ef(β0)(Kab
µν)
−1(β0)δ(p+ q)

√
2π

f ′′(β0)
. (2.3.46)

The saddle point β0 is determined by the condition

f ′(β0) = 0 =⇒ 1 =
1

β0

+
3N

4

∫
d4q

(2π)4

1

(q4 + γ4)
(2.3.47)

with

γ4 =
β0Ng

2

2V (N2 − 1)
. (2.3.48)

The parameter γ is called the Gribov mass parameter and it acts as a infrared regulator.
For the Gribov mass parameter to be finite, β0 has to be proportional to the infinite volume
factor β0 ∼ V . In the infinite volume limit V → ∞, we neglect all the 1

β0
terms. As was

pointed out by Gribov [40], in this limit the Heaviside step function is equivalent the a delta
function. The reason for this is the integral representation of the delta function, and the
integral presentation of the Heaviside step function differ by the term ln(β). This term in
the saddle point approximation goes to 1/β0, as we saw in the above calculation, and it can
be neglected in the thermodynamical (infinite volume) limit β0 ∼ V →∞. From the saddle
point condition, we notice that γ is not a free parameter and it is determined by the so-called
gap equation

1 =
3N

4

∫
d4q

(2π)4

1

(q4 + γ4)
. (2.3.49)

We observe that the integral in Eq. (2.3.49) is divergent and renormalization is needed to
solve it. It is straightforward to show that the inverse of Kab

µν at β = β0 for the Landau
gauge condition α = 0 is given by

Kab
µν(q)

−1 = δab
(

q2

q4 + γ4

(
δµν −

qµqν
q2

))
. (2.3.50)

The final expression for the two-point gauge function reads

〈Aaµ(q)Abν(−q)〉 = δabg2 q2

q4 + γ4

(
δµν −

qµqν
q2

)
, (2.3.51)

where we chosen N such that it cancels the term ef(β0). We observe that due to the presence
of the Gribov mass parameter γ4, the gauge propagator is no longer divergent as q → 0. By
decomposing the gauge propagator as

〈Aaµ(q)Abν(−q)〉 = δab
1

2

(
1

q2 + iγ2
+

1

q2 − iγ2

)(
δµν −

qµqν
q2

)
, (2.3.52)

we see that it has two complex poles at q2
± = ±iγ2 implying that at low momentum the

gluon propagator has no physical interpretation since it does not possess a positive Kaellen-
Lehmann spectral representation. One may interpret this as a signature of confinement. It is
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remarkable that a possible solution to a technical problem implements such physical behavior.

After we obtained the gauge propagator, we turn our attention to the ghost propagator.
To compute the ghost propagator restricted to the first Gribov region, we need to contract
the external gauge fields in Eq. (2.3.24) and insert the previously obtained gauge propagator
in Eq. (2.3.51)

σ(p) = g2 N

N2 − 1

1

p2

∫
d4q

(2π)4

(p− q)µpν
(p− q)2

〈Abµ(−q)Abν(q)〉

= g2N
pµpν
p2

∫
d4q

(2π)4

q2

q4 + γ4

1

(p− q)2

(
δµν −

qµqν
q2

)
, (2.3.53)

where we used the fact that the gauge field is transverse. After we integrated out the gauge
fields, we can write the ghost propagator as

Gab =
1

p2
δab(1− σ(p))−1, (2.3.54)

with σ(p) defined in Eq. (2.3.53). Using the gap equation and Eq. (2.3.22), we find that

Ng2pµpν
p2

∫
d4q

(2π)4

1

q4 + γ4

(
δµν −

qµqν
q2

)
= 1, (2.3.55)

which we can use to rewrite (1− σ(p)) as

(1− σ(p)) = g2N
pµpν
p2

∫
d4q

(2π)4

1

q4 + γ4

(
1− q2

(p− q)2

)(
δµν −

qµqν
q2

)
= Ng2pµpν

p2
Σµν(p), (2.3.56)

with

Σµν(p) =

∫
d4q

(2π)4

1

q4 + γ4

(
1− q2

(p− q)2

)(
δµν −

qµqν
q2

)
. (2.3.57)

To analyze the infrared behavior of the ghost propagator we expand the integrand for low
momenta p2 ≈ 0

1− q2

(p− q)2
= 1− 1

p2

q2 − 2(p · q) + 1
≈ p2

q2
− ... (2.3.58)

from which it follows that

Σµν(p)p→0 ≈ p2

∫
d4q

(2π)4

1

q2

1

q4 + γ4

(
δµν −

qµqν
q2

)
=

3p2

4
δµν

∫
d4q

(2π)4

1

q2

1

q4 + γ4

=
3p2

4
δµν

2π2

(2π)4

∫
dq

q

q4 + γ4

= δµνp
2 3

128π

1

γ2
. (2.3.59)
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In the IR limit, the ghost propagator is given by the following expression

G(p)p→0 ≈
128πγ2

3Ng2

1

p4
, (2.3.60)

which indicates that the gluon propagator is enhanced in the IR regime as it diverges faster
than before [40, 41]. As a consequence of restricting the integration to the first Gribov region,
the ghost propagator acquires an additional pole, which indicates that the region close to
the boundary has a significant effect on the ghost propagator [56]. The IR enhancement of
the gluon propagator has been confirmed by lattice simulations [57–60] as well as Dyson-
Schwinger equations [61].

2.4 The Zwanziger action

An alternative method of implementing the restriction to the first Gribov region was found
by Zwanziger [63]. He proposed restricting the path integral by analyzing the eigenvalues
λ(A) of the Faddeev-Popov operator

Fab(A)ξa = λ(A)ξb, (2.4.1)

as a function of the gauge fields. He was able to restrict to path integral to the first Gribov
region by demanding that the smallest eigenvalue of the Faddeev-Popov operator is positive
λ(A)min > 0. In the infinite volume limit, the Zwanziger conditon can be approximated by
demanding the trace of all the eigenvalues should be positive [63]

Tr[λ(A)] > 0. (2.4.2)

The eigenvalues of the Faddeev-Popov operator are calculated using degenerate perturbation
theory, where Fab0 is treated as the unperturbed operator and Fab1 describing the perturba-
tion. In this section, we are following the work done in [56]. We are going to assume that
we are working in a finite periodic box with length L. We expand eigenvectors ξa and
eigenvalues λ(A) in perturbation theory as

ξa =
∞∑
n=0

gnξan & λ(A) =
∞∑
n=0

gnλ(A)n, (2.4.3)

where ξa0 are the eigenstates of the unperturbed operator Fab0 with the eigenvalue λ0 ≡ λ
(0)
~n =

(2π/L)2~n2; ~n are the finite momenta with ~n0 = (0, 0, ...± 1, ..., 0) being the lowest non-zero
momentum with ~n2

0 = 1. Inserting the perturbative expansions in Eq. (2.4.1) yields

Order g0 : =⇒ Fab0 (A)ξa0 = λ0(A)ξb0 (2.4.4)

Order g1 : =⇒ Fab0 (A)ξa1 + Fab1 (A)ξa0 = λ0(A)ξb1 + λ1(A)ξb0 (2.4.5)

Order g2 : =⇒ Fab0 (A)ξa2 + Fab1 (A)ξa1 = λ0(A)ξb2 + λ1(A)ξb1 + λ2(A)ξb0 (2.4.6)

.

.

.

where Eq.(2.4.4) is the eigenvalue equation of the unperturbed operator with λ0 ≡ λ~n0 =
(2π/L)2I. The higher order equations are solved by acting with projection operator P0 =∑N2−1

a ξa~n0
(ξa~n0

)† on the equations and using the fact that

P0 ξ
a
n = 0 for n ≥ 0, (2.4.7)
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which can be also written as

(ξa~n0
)†ξbn = 0. (2.4.8)

Therefore, to the first order in perturbation theory we find

λ1(A) = (ξa~n0
)†Fab1 (A)ξb~n0

. (2.4.9)

For λ2(A), we have

(ξa~n0
)†Fab0 (A)︸ ︷︷ ︸
λ0(ξa

~n0
)†

ξa2 + (ξa~n0
)†Fab1 (A)ξa1 = λ0(A)(ξa~n0

)†ξb2 + λ1(A)(ξa~n0
)† ξb1 + λ2(A)(ξa~n0

)† ξb~n0

(2.4.10)

=⇒ λ2(A) = (ξa~n0
)†Fab1 (A)ξb1, (2.4.11)

as all the other terms vanish due to Eq. (2.4.8). It comes as no surprise that λ3(A) is equal
to

λ3(A) = (ξa~n0
)†Fab1 (A)ξa2 , (2.4.12)

and so on. To determine ξa1 , we start from Eq. (2.4.5) and insert the obtained value for
λ1(A) which yields

ξa1 = (Fab0 − λ0I)−1(P0 − I)F bc1 ξ
c
~n0
. (2.4.13)

Inserting the above expression ξa1 into Eq. (2.4.10) gives us

λ2(A) = −(ξa~n0
)†Fab1 (A)(F bc0 − λ0I)−1(I − P0)F cd1 ξ

d
~n0
,

= −(ξa~n0
)†Fab1 (A)[(F bc0 )−1]F cd1 (A)ξd~n0

, (2.4.14)

where in the last line we used the fact that in the infinite volume limit (F bc0 −λ0I)−1(I−P0)
is replaced by (Fab0 )−1 [56]. For completeness λ3(A) is given by

λ3(A) = (ξa~n0
)†Fab1

[
(F bc0 )−1F cd1 (A)(Fde0 )−1

]
F ef1 (A)ξf~n0

, (2.4.15)

and λ4(A) by

λ4(A) = −(ξa~n0
)†Fab1

[
(F bc0 )−1F cd1 (A)(Fde0 )−1F ef1 (A)(Ffg0 )−1

]
Fgh1 (A)ξh~n0

. (2.4.16)

Following the same pattern we can generate all the higher order eigenvalues of the Faddeev-
Popov operator. Noticing that

F−1 =
1

1 + F−1
0 F1

F−1
0 = (F−1

0 −F−1
0 F1F−1

0 + F−1
0 F1F−1

0 F1F−1
0 ) (2.4.17)

enables us to write all the eigenvalues as the following sum

λm(A) =
∑
n≥2

λn(A) = −(ξa~n0
)†Fab1 (A)(F bc)−1F cd1 (A)ξd~n0

. (2.4.18)

To restrict the path integral to the first Gribov region, we have to demand that the trace of
all eigenvalues should be positive

Tr[λ(A)] = Tr[λ0(A)] + Tr[λ1(A)] + Tr[λm(A)] (2.4.19)
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with

Tr[λ0(A)] =

(
2π

L

)2

2d(N2 − 1),

Tr[λ1(A)] = in0,µ
2π

L

1

V

∫
ddxgfaabAbµ(x) = 0, (2.4.20)

where in the second line we expressed the eigenvectors in the position space basis and used
the fact that the perturbed part of the Faddeev-Popov operator expressed in the position
basis is just fabcAcµ∂µ. The last part of Eq. (2.4.19) reads

Tr[λm(A)] = −2

(
2π

L

)2

g2 1

V

∫
ddxddyfabcAbµ(x)(F−1)ad(x, y)fdecAeµ(y), (2.4.21)

where again we inserted two sets of complete position states 1 =
∫
d4x |x, a〉 〈x, a| and used

the fact that in the infinite volume limit L→∞,

〈x, a| F1

∣∣ξb0〉 = i
2π

L
gfabcnµA

c
µ(x)L−d/2, (2.4.22)

where we omitted the factor ei
2π
L
~n·~x. The condition Tr[λ] > 0, reduces to

Tr[λ] = 2

(
2π

L

)2(
d(N2 − 1)− 1

V

∫
ddxddyfabcAbµ(x)(F−1)ad(x, y)fdecAeµ(y)

)
> 0.

(2.4.23)
As it was for the case of Gribov’s no-pole condition, we implement Zwanziger’s condition by
inserting the Heaviside theta function in the path integral to ensure that the condition is
satisfied

Z = N
∫
DADcDc̄ Θ(d(N2 − 1)V −H(A)) δ(∂µAµ)e−Sinv−

∫
d4xc̄a∂µDabµ c

b

, (2.4.24)

where H(A) is the so-called horizon function

H(A) =

∫
ddxddyfabcAbµ(x)(F−1)ad(x, y)fdecAeµ(y). (2.4.25)

To lowest order in perturbation theory, the horizon function is given by

H0(A) =

∫
ddxddyfabcAbµ(x)

(
−δ

ad

∂2
δ(x− y)

)
fdecAeµ(y)

= N

∫
ddxAaµ(x)

(
− 1

∂2

)
Aaµ(x), (2.4.26)

which in momentum space reads

H0(A) = N

∫
ddp

(2π)d
Aaµ(p)

(
1

p2

)
Aaµ(−p). (2.4.27)

We see that the first Gribov region is contained within an infinite dimensional hypersurface∫
ddp

(2π)d
Aaµ(p)

(
1

p2

)
Aaµ(−p) < V d(N2 − 1). (2.4.28)
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An interesting property of higher dimensional spheres is that as the dimension of the sphere
increases, more and more of its volume gets concentrated at its surface [62]. For us it means
that as we go up in the dimension the Gribov gribov region gets more and more concentrated
near the first Gribov boundary l1. In this case, we can replace the theta function in Eq.
(2.4.24) with the delta function

Z = N
∫
DAδ(∂µAaµ) det(Fab) δ(d(N2 − 1)V −H(A)) δ(∂µAµ)e−Sinv . (2.4.29)

Although this reasoning is true for the lowest order case, it is expected to also hold for
all orders in perturbation theory. To bring Zwanziger’s horizon function into the action, we
write the delta function in its integral representation and perform Wick rotation to eliminate
the imaginary numbers

δ(x− y) =

∫ i∞+ε

−i∞+ε

dβ

2πi
eβ(x−y). (2.4.30)

It is also possible to implement Zwanziger’s condition by using the theta function and taking
the infinite volume V → 0 limit just as we did for the case of Gribov’s no-pole condition.
Inserting the Wick rotated integral representation of the delta function into the partition
function gives us

Z = N
∫
DAδ(∂µAaµ) det(Fab)

∫ i∞+ε

−i∞+ε

dβ

2πi
eβ(d(N2−1)V−H(A))e−Sinv , (2.4.31)

which can be rewritten in a more compact form as

Z = N
∫

dβ

2πi
e−f(β), (2.4.32)

with

f(β) = −ln

(∫
DAδ(∂µAaµ) det(Fab) eβ(d(N2−1)V−H(A)) e−Sinv

)
. (2.4.33)

Just like in the case of Gribov’s no-pole condition, to solve the integral we use the saddle
point approximation

Z ≈ e−f(β0) =

∫
DAδ(∂µAaµ) det(Fab) e−(Sinv+β0H(A)−β0d(N2−1)V ), (2.4.34)

where β0 is determined by the condition f ′(β0) = 0, which implies that

d(N2 − 1)V =

∫
DAδ(∂µAaµ) det(Fab) H(A) e−β0H(A)) e−Sinv∫
DAδ(∂µAaµ) det(Fab) e−β0H(A)) e−Sinv

d(N2 − 1)V = 〈H(A)〉. (2.4.35)

It turns out that the saddle point approximation becomes exact, which was proven by
Zwanziger [63? , 64] using the equivalence between the canonical and micro-canonical en-
sembles in the termodynamical limit. Therefore, the path integral reads

Z =

∫
D[A]D[c]D[c̄]e−(SYM+SGZ), (2.4.36)

where SYM is the gauge invariant Yang-Mills action plus the gauge fixing term and SGZ is
the so-called Gribov-Zwanziger action
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SGZ = Sghost + γ4H(A)− γ4V d(N2 − 1)), (2.4.37)

where we set β0 = γ4. It may seem a bit confusing as in the derivation of the Gribov-
Zwanziger action we assumed that all configurations get concentrated on the boundary l1
whereas in perturbation theory only configurations around Aµ = 0 are important. At this
point, one could argue that γ is a non-perturbative parameter which is not accessible in
perturbation theory. Its presence becomes noticeable when considering regions where per-
turbation theory fails to give sensible results [56]. Another way one could argue is that in
perturbation theory the Faddeev-Popov operator is always positive and we do not have to
care about Gribov copies. The horizon function H(A) contains the inverse of the Faddeev-
Popov operator which makes it a non-local quantity. Here we are referring to a spatial non-
locality because the inverse Faddeev-Popov operator contains the inverse Laplacian which
is non-local with respect to the spatial variables. To make the action local, we write the
horizon function in the following way

e−γ
4H(A) = det(F)d(N2−1)

∫
D[ψ]D[ψ̄]e−

∫
ddx(ψ̄acµ Fabψbcµ −γ2fabcAaµ(ψ̄+ψ)bcµ ), (2.4.38)

where we introduced a pair of bosonic fields ψabµ and ψ̄abµ . Introducing a pair of fermionic
fields ωabµ and ω̄abµ allows us to rewrite the determinant as

det(F)d(N2−1) =

∫
D[ω]D[ω̄]e

∫
ddxω̄acµ Fabωbcµ . (2.4.39)

Hence,

e−γ
4H(A) =

∫
D[ψ]D[ψ̄]D[ω]D[ω̄]e−

∫
ddx(ψ̄acµ Fabψbcµ −ω̄acµ Fabωbcµ −γ2fabcAaµ(ψ̄+ψ)bcµ )). (2.4.40)

The two pairs of additional fields that we added to localize the horizon function form a
BRST doublet

δψabµ = ωabµ , δωabµ = 0,

δω̄abµ = ψ̄abµ , δψ̄abµ = 0. (2.4.41)

At this point, we perform a shift of the ω field as follows

ωabµ → ωabµ − g
∫
ddy(F−1)ac(x, y)f cde∂µ[(Ddf

ν c
f (y))ψebµ ], (2.4.42)

which leads to an additional term in the local form of the horizon function

e−γ
4H(A) =

∫
D[ψ]D[ψ̄]D[ω]D[ω̄]e−

∫
ddx(ψ̄acµ Fabψbcµ −ω̄acµ Fabωbcµ +gfabeω̄acµ ∂µ[(Dedν c

d)ψbcµ ]−γ2fabcAaµ(ψ̄+ψ)bcµ )).

(2.4.43)
The reason why we performed the shift is that now the first three terms are BRST exact

δ(ω̄acµ Fabψbcµ ) = ψ̄acµ Fabψbcµ − ω̄acµ Fabωbcµ + fabeωacµ ∂µ[(Ded
ν c

d)ψbcµ ]. (2.4.44)

However, the presence of the last in Eq. (2.4.43) breaks BRST and the breaking is propor-
tional to the Gribov parameter

δ(γ2fabcAaµ(ψ̄ + ψ)bcµ ))) = γ2gfabc((−Dad
µ c

d)(ψ̄ + ψ)bcµ + Aaµω
bc
µ ). (2.4.45)
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The fact that the Gribov-Zwanziger action breaks BRST symmetry comes as no surprise.
The Gribov-Zwanziger action was obtained by introducing a boundary in configuration space
to eliminate all field configurations that are located outside of it. However, it was proven
by Gribov [40], that to every gauge field infinitesimally close to the boundary there exists
an equivalent gauge field on the other side of the boundary. These fields are related by an
infinitesimal gauge transformation which is similar to a BRST transformation. Eliminating
however, all the gauge fields outside the boundary will break this symmetry. In this way,
one can intuitively understand why BRST is broken. In the perturbative regime, BRST
invariance is maintained, since in this case γ2 vanishes and with it the term that leads to the
breaking. A way of reconciling the BRST symmetry with the Gribov horizon was worked
out by M. A. L. Capri et al., in [65].

Summarizing, the Gribov-Zwanziger action in its local form reads

Z =

∫
D[A]D[c]D[c̄]D[ψ]D[ψ̄]D[ω]D[ω̄]e−(SYM+Slocal

GZ ), (2.4.46)

with

Slocal
GZ = Sghost +

∫
ddx(ψ̄acµ Fabψbcµ − ω̄acµ Fabωbcµ + gfabeω̄acµ ∂µ[(Ded

ν c
d)ψbcµ ])

−
∫
ddxγ2fabcAaµ(ψ̄ + ψ)bcµ − γ4V d(N2 − 1). (2.4.47)

So far we encountered two different ways of restricting the path integral to the first Gri-
bov region. Both of the conditions yield the same results at the lowest non-trivial order.
It was proven in [66, 67] that the gap equations arising from Gribov’s no pole condition
and Zwanziger’s horizon condition are equivalent up to two loops. These results are strong
indicators that both Gribov’s and Zwanziger’s approach could be equivalent. Calculating
the ghost propagator to all orders in perturbation theory M. A. L. Capri et al., [68] finally
were able to prove the full equivalence between Gribov’s no-pole and Zwanziger’s horizon
conditions. Analogously to Eq. (2.3.9) the momentum space representation of the ghost
propagator to all orders in perturbation theory reads

Gab(p,A) =
1

p2

[
δabδ(p− q) + gAabµ (p− q)iqµ

q2
+ g2

∫
ddr

(2π)d
Aacµ (p− r)irµ

r2
Acbν (r − q)iqν

q2
+ · · ·

]
+

1

p2

[∫
ddq1

(2π)d
· · ·
∫
ddqn−1

(2π)d
Aaa1
µ1

(p− q1)
iq1µ1

q2
1

Aa1a2
µ2

(q1 − q2)
iq2µ2

q2
2

· · ·Aan−1a
µn (qn−1 − q)

iqµn
q2

]
+

1

p2

[
· · ·
]

(2.4.48)

where we defined Aabµ ≡ fabcAcµ. In this case, the color-singlet ghost propagator is given by

G(p,A) =
1

V (N2 − 1)
Gab(p,A) =

1

p2
(1 + σ(p,A)), (2.4.49)

where δ(p− q)|p=q = V and

σ(p,A) =
1

V (N2 − 1)

[
g2

∫
ddr

(2π)d
Aacµ (p− r)irµ

r2
Acbν (r − p)ipν

p2
+ · · ·

]
+

1

V (N2 − 1)

[
gn
∫

ddq1

(2π)d
·
∫
ddqn−1

(2π)d
Aaa1
µ1

(p− q1)
iq1µ1

q2
1

Aa1a2
µ2

(q1 − q2)
iq2µ2

q2
2

· ·Aan−1a
µn (qn−1 − p)

ipµn
p2

]
+ · · · (2.4.50)
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Considering the n − th term of Eq. (2.4.50), shifting the momentum qi → qi + p, for
i = 1, ...n − 1 and using the property that in the Landau gauge condition the gauge fields
Aµ are transverse gives us

gn
∫

ddq1

(2π)d
· · ·
∫
ddqn−1

(2π)d
Aaa1
µ1

(−q1)
ipµ1

(p+ q1)2
Aa1a2
µ2

(q1 − q2)
i(p+ q2)µ2

(p+ q2)2
· · ·Aan−1a

µn (qn−1)
ipµn
p2

.

(2.4.51)
Recall that when we compute Gribov’s no-pole conditions, we took the limit p→ 0 because
σ(p,A) decreases with increasing p. Therefore, applying this limit to Eq. (2.4.51) yields

−g
n

d

∫
ddq1

(2π)d
· · ·
∫
ddqn−1

(2π)d
Aaa1
µ (−q1)

1

q2
1

Aa1a2
µ2

(q1 − q2)
iq2µ2

q2
2

· · ·Aan−1a
µ (qn−1). (2.4.52)

It is interesting that by introducing the following matrix notation

Aab
pq ≡ Aabµ (p− q)iqµ

q2
, (2.4.53)

with the matrix multiplication defined as

(A2)abpq =

∫
ddr

(2π)d
Aacµ (p− r)irµ

r2
Acbν (r − q)iqν

q2
, (2.4.54)

M. A. L. Capri et al., [68] were able to rewrite σ(0, A) in a closed form

σ(0, A) = − g2

V d(N2 − 1)

∫
ddp

(2π)d

∫
ddq

(2π)d
Aabµ (−p) 1

p2

(
∞∏
n=0

(gA)n

)bc

pq

Acaµ (q) (2.4.55)

The Faddeev-Popov operator expressed using the same notiation reads

Fab(p, q) = q2

(
δabδ(p− q)− gAabµ (p− q)iqµ

q2

)
= q2(I− A)abpq, (2.4.56)

where δabδ(p − q) = I. The beauty of this notation lies in the fact that inverse of the
Faddeev-Popov operator can be rewritten as

F−1(p, g) =
1

q2
[I− A]−1(p, q) =

1

q2

(
∞∏
n=0

(gA)n

)
(p, q). (2.4.57)

With this little notational trick, Capri et al. [68], were able to show that the exact expression
of σ(0, A) is equivalent to Zwanziger’s horizon function

σ(0, A) = − g2

V d(N2 − 1)

∫
ddp

(2π)d

∫
ddq

(2π)d
Aabµ (−p)(F−1)capqA

ca
µ (q) =

H(A)

dV (N2 − 1)
. (2.4.58)

From Eq. (2.4.58) we see that Zwanziger’s horizon function is exactly the ghost propagator
at zero momentum. Inserting the above-obtained result in Gribov’s no-pole condition yields

σ(0, A)− 1 < 0 =⇒︸ ︷︷ ︸
2.4.58

(N2 − 1)− 〈H(A)〉 > 0, (2.4.59)

which precisely represents Zwanziger’s horizon condition [68].
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Chapter 3

Geometrical Anatomy of Gauge
Theory

”In 1975, impressed with the fact that gauge fields are connections on fiber bundles, I drove
to the house of Shiing- Shen Chern in El Cerrito, near Berkeley.

[...] We had much to talk about: friends, relatives, China. When our conversation turned
to fiber bundles, I told him that I had finally learned from Jim Simons the beauty of fiber-
bundle theory and the profound Chern-Weil theorem. I said I found it amazing that gauge
fields are exactly connections on fiber bundles, which the mathematicians developed without
reference to the physical world. I added, ”this is both thrilling and puzzling, since you math-
ematicians dreamed up these concepts out of nowhere.” He immediately protested, ”No, no.
These concepts were not dreamed up. They were natural and real.”
Deep as the relationship is between mathematics and physics, it would be wrong, however, to
think that the two disciplines overlap that much. They do not. And they have their separate
aims and tastes. They have distinctly different value judgements, and they have different tra-
ditions. At the fundamental conceptual level they amazingly share some concepts, but even
there, the life force of each discipline runs along its own veins”. [69] Chen Ning Yang (1979) .

Another way of studying the Gribov ambiguity is from the perspective of differential ge-
ometry. There the problem is related to the absence of a global section on principal fiber
bundles. Before we can discuss the Gribov ambiguity and the possible solution proposed by
Hueffel and Kelnhofer, we have to introduce the concepts that are going to be relevant for
us and will be essential for our understanding.

3.1 Bundle Theory

In this section we will rely on the following literature [70–73].

A bundle of topological manifold is a triple (E, π,M), where E and M are topological
manifolds called the total and the base space, respectively. The surjective map π : E →M
that projects the total space E onto M is called the projection map. Since π is a map
between two topological spaces, we want it to be continuous. For every point p in the base
space, the preimage of the set {p} under the map π, preimπ({p}) ≡ Fp, is the fiber at the
point p [70–73] .

If (E, π,M) is bundle such that for all the points p ∈M

preimπ({p}) ≡ F, (3.1.1)

then (E, π,M) is called fiber bundle with typical fiber F [70–73]. For the case that the fibers
F have a structure of a vector space, we call that bundle a vector bundle. If the fibers F
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carry a Lie group structure then we talk about principal bundles, which are the ones that
will be the important one for us. We see that a fiber bundle is a less general object that a
bundle. Another essential object that we are going to need is that of a section.

A map σ : M → E is called a section of the bundle (E, π,M if

π ◦ σ = idM, (3.1.2)

where idM is the identity on the base space M [70–73]. Eq. (3.1.2) tells us that a map σ
is a section if it maps a point p ∈ M to the fiber at that point because only in this case π
takes the point back to the base point p. Set of all such sections is denoted by Γ(E). If the
bundle (E, π,M) is a vector bundle, then Γ(E) is a vector space. For a group bundle, Γ(E)
is a group. Consider a fiber bundle whose the total space is a product manifold E =M×F
with F being the fiber. Then the projection map π :M× F →M is defined as

π(p, f) = p, (3.1.3)

where p ∈ M and f ∈ F . Only, in this case, a section can be considered or instead con-
structed from a function s :M→ F .

For two bundles (E, π,M) and (E ′, π′,M′) and two maps (u, f) defined as

u : E → E ′ and f :M→M′, (3.1.4)

the pair of functions (u, f) is called a bundle morphism if the following diagram commutes
[70–73] i.e., π′ ◦ u = f ◦ π

E E ′

M M′

u

π π′

f

Two bundles (E, π,M) and (E ′, π′,M′) are called isomorphic as bundles if there exist bun-
dle morphisms (u, f) and (u−1, f−1). Such (u, f) are called bundle isomorphisms and they
are the relevant structure-preserving maps for bundles [70–73].

The definition of a bundle isomorphism is a strong condition and one usually weakens this
to local isomorphism of bundles.

A bundle (E, π,M) is called locally isomorphic to (E ′, π′,M′) if for every p ∈ M there
exist an open set U ⊂ M that contains that point p ∈ U such that the restricted bundle
(preimπ(U), π|preimπ(U),U) is isomorphic to (E ′, π′,M′) [70–73].

In the next couple of definition, we are going to introduce the terminology that is heav-
ily used in the literature.

A bundle (E, π,M) is called trivial if it is isomorphic as a bundle to a product bundle
[70–73].

A bundle (E, π,M) is locally trivial if it is locally isomorphic to some product bundle [70–73].

It is evident that every bundle that is trivial is also locally trivial but not the other way
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around. A cylinder with the total space E = I × S1, where I is some open interval, is an
example of a trivial fiber bundle. Whereas the Möbius strip is an example of a locally trivial
bundle. It is also important to note that for locally trivial bundles, locally any section can
be represented as a function from the base space to the fiber. For us, a special kind of
fiber bundles will be important the so-called principal fiber bundles. Before we can state the
definition of a principal fiber bundle, we need to define a Lie group action on a manifold.

If (G, •) is Lie group, and M a smooth manifold, then a smooth map

. : G×M→M,

satisfying

(i) e . m = m

(ii) g2 . (g1 . m) = (g2 • g1) . m,

is called a left G-action on the manifold M, where e is the identity element in G [70–73].

Similarly, we can also define the right action on the manifold which is the relevant one
for principal bundles.

The smooth map / is called a right G-action / :M×G →M such that

(i) m / e = m

(ii) (m / g1) / g2 = m / (g1 • g2).

Whenever we have a left action . on M, we can define the right action / as

m / g := g−1 . m (3.1.5)

To really see that defined the right action, we need check that m / e = m,

m / e =︸︷︷︸
by def.

e−1 . m = e . m = m, (3.1.6)

and

(m / g1) / g2 = (g−1
1 . m) / g2 = g−1

2 . (g−1
1 . m) = (g−1

2 • g−1
1 ) . m = (g1 • g2)−1 . m

= m / (g1 • g2). (3.1.7)

Therefore, we conclude that / is in fact a right G-action.

For any point p ∈ M, we define its orbit Om ⊂ M under the action of the group as
the set [70–73]

Om ≡ {q ∈M | ∃g ∈ G : g . m = q}. (3.1.8)

The orbit is set of all points q ∈ M that we can reach from m by acting with an element
g ∈ G [70–73]. We already encountered the notion of orbits in the context of configuration
space of the gauge fields. We say that two points p and q are equivalent p ∼ q if there exist
a group element g ∈ G such that q = g . p. In other words, two points are equivalent if they
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lie on the same orbit. We also saw that for gauge theories the physically important space
is the quotient space M/ ∼≡ M/G which we called the orbit space. Another important
notion that we are going to need is that of the stabilizer.

For any m ∈ M , we define the stabilizer Sm ⊂ G as the set of all points that leave the
point m invariant [70–73]

Sm ≡ {g ∈ G | g . m = m}. (3.1.9)

Whereas the orbits are a subspace of M , the stabilizer is a subgroup of G.

An action . is called free if separately ∀m ∈ M the stabilizer at the point is just the
identity element Sm = {e} [70–73].

A crucial property of an free action is that the orbits are isomorphic to the group G. Now,
that we are equipped with all the necessary tools, we are ready to state the definition of a
principal fiber bundle.

A bundle (E, π,M) is called a principal G-bundle if

(a) E is a right G− space

(b) / is free

(c) (E, π,M) 'bundle (E, ρ, E/G),

where the map ρ : E → E/G is the map that takes an element of E and maps it to its
equivalence class [70–73].

An explanation is in order. The first condition states that the total space E has to be
a right G-space, which simply means that E is equipped with a right action /. The sec-
ond condition states that this right G-action has to be free, which means that every orbit
is the group itself or isomorphic to the group. The last condition states that the bundle
(E, π,M) is considered to be a principal G-bundle if it is as a bundle isomorphic to the
bundle (E, ρ, E/G), whose fibers ρ−1[ε]1 ' G are the Lie group G.

Let (P, π,M) and (P ′, π′,M′) be two principal G-bundles and (u, f) be two maps

u : P → P ′ and f :M→M′. (3.1.10)

Then (u, f) is called a principal bundle morphism if the following diagram commutes

P P ′

P P ′

M M′

u

u

/G

π π′

/′G

f

,

where / and /′ are two different right G- actions [70–73].

We observe that a principal bundle morphism must be first a bundle morphism i.e.,

π′ ◦ u = f ◦ π (3.1.11)

1With ε we labeled the equivalence classes.
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with the additional condition

u(m / g) = u(m) /′ g, ∀g ∈ G and ∀m ∈M. (3.1.12)

A principal G-bundle (P, π,M) is called trivial if it is isomorphic as a principal G-bundle
to the product bundle (M×G, π1,M) [70–73]. For completeness the map π1, just projects
to the first factor,i.e., π1(m, g) = m. Further, the right group action /′ is defined as

(m, g) /′ g1 ≡ (m, g • g1). (3.1.13)

Diagrammatically, a principal bundle G-bundle (P, π,M) is called trivial if there exist a
map u such that the following diagram commutes

P M×G

P M×G

M

u

/G

u

π π1

/′G

Finding a principal bundle map u to prove that a principal bundle is trivial is often
very tricky. Luckily, there is a necessary and sufficient criterium which we will state in the
following theorem.

Theorem 3.1 A principal G-bundle (P, π,M) is trivial if and only if there exists a smooth
section σ :M→ P [70–73].

Proof. (⇒) Suppose that (P, π,M) is a trivial bundle. Then there exist a principal bundle
map u from which we can constrict a section σ :M→ P as follows

σ(x) := u−1(x, idG), (3.1.14)

where idG is the identity in the group G. It is not hard to see that π ◦ u−1(x, idG) =
π1(x, idG) = idM, since u is a principal bundle map [70].

(⇐) Suppose that a section σ : M → P is given. We choose a point in the principal
bundle which lies on some fiber, then by applying the projection map we project the point
p down onto the base space, and with the section σ, we lifted it back up to the same fiber.
Since the points p and σ(π(p)) lie on the same fiber there exist a group element g̃σ(p) ∈ G,
which depends on the chosen section σ and the point p, such that σ(π(p)) / g̃σ(p) = p. The
uniqueness of g̃σ(p) follows from the property that / is a free action. Therefore, we have a
map g̃σ : P → G. We observe that ∀g ∈ G the following must hold

(σ(π(p)) / g̃σ(p)) / g = p / g, (3.1.15)

and since / is a right action we have

(σ(π(p)) / (g̃σ(p) • g) = p / g. (3.1.16)

We observe that we can rewrite the right hand-side of Eq. (3.1.16) as follows
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p / g = σ(π(p / g)) / g̃σ(p / g))

= σ(π(p))g̃σ(p / g)) (3.1.17)

where we used that π(p) = π(p / g). From Eq. (3.1.16) we observe that

(σ(π(p)) / (g̃σ(p) • g) = σ(π(p))g̃σ(p / g)), (3.1.18)

due to the fact that / is a free action we conclude that

(g̃σ(p) • g) = g̃σ(p / g). (3.1.19)

Now, we are in the position to define a map uσ : P →M×G as

uσ(p) := (π(p), g̃σ(p)). (3.1.20)

The last thing we need to show is that such constructed map uσ is, in fact, a principal bundle
map. First, we observe that uσ is a bundle map π1 ◦uσ = π since π1 will just project the first
factor of uσ out which by our definition is π(p). For uσ to be a principal map the following
relation must be true

uσ(p / g) = uσ(p) /′ g, (3.1.21)

where /′ is the right G-action on the product bundle (M× G, π1,M). By definition of uσ,
we have

uσ(p / g) = (π(p / g), g̃σ(p / g))

= (π(p), g̃σ(p) • g)), (3.1.22)

where we applied Eq. (3.1.19). Using the definition of the right G-action on the product
bundle Eq. (3.1.13) yields

(π(p), g̃σ(p) • g)) = (π(p), g̃σ(p)) /′ g, (3.1.23)

which completes the proof [70].

Therefore, we conclude that we can have a globally well-defined section if and only if the
principal G-bundle is trivial. To define the push-forward and pull-back map, we need the
definition of the tangent bundle (TM, π,M) and the cotangent bundle (T ∗M, π,M).

Given a smooth manifold M with a curve γ : R → M such that at parameter value zero,
γ(0) = p, where p ∈ M. Then the directional derivative operator at the point p along the
curve γ is the linear map Xγ,p :

Xγ,p : C∞(M)→ R
f → (f ◦ γ)′(0), (3.1.24)

where the prime denotes the derivative. In differential geometry, the direction derivative
operator Xγ,p is called the tangent vector to the curve γ at the point p ∈M [70–73].

The tangent vector space at p ∈ M is the set of all tangent vectors Xγ,p at the point p
equipped with the pointwise addition ⊕TpM and multiplication �TpM. [70–73]

The tangent bundle (TM, π,M) is a bundle over M, whose fiber over a point p ∈ M
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is the tangent space at that point. Total space TM is the disjoint union of the tangent
spaces ofM and the projection map π projects each tangent space TpM down to p [70–73].

The tangent bundle is an example of a vector bundle.

The vector space dual of the tangent space is called the cotangent space T ∗pM := (TpM)∗

[70–73].

The cotangent bundle (T ∗M, π,M) is the dual vector bundle to the tangent bundle (TM, π,M)
[70–73].

Let M and N be two smooth manifolds with a smooth map φ : M → N . Then the
push-forward map φ∗ : TM→ TN is defined by

φ∗(X)f := X(f ◦ φ), (3.1.25)

where f ∈ C∞(N ) and X ∈ TM [70–73]. Diagrammatically, we have

TM N

M N R

φ∗

πTM πTN

φ f

Given two smooth manifolds M and N with a smooth map φ : M → N . Then the
pull-back map φ∗ : T ∗N → T ∗M is defined by

φ∗(ω)X := ω(φ∗X), (3.1.26)

where ω ∈ T ∗N and X ∈ TM. The mnemonic: ”Vectors are pushed-forward and covectors
are pulled-back” can be useful to remember these two maps. [70–73]

Given a principal G-bundle P
π−→ M, we define a connection on P as a Lie-algebra val-

ued one-form ω : Γ(TP )→ TeG satisfying

(i) ω(XA) = A

(ii) (/ g)∗ω = Adg−1∗(ω),

where XA are the vector fields generated by a Lie algebra element A ∈ TeG and Adg∗ :
TeG→ TeG is induced by the adjoin map Adg : G→ G with h→ g • h • g−1. [70–73]

In practice we want to restrict our attention to a local patch Ui ⊆M on the base manifold,
which in physics represents space-time. Therefore, for calculational purposes we consider
the following bundle (P, π,U).

If (P, π,U) is a principal bundle with a local section σi : Ui → P . Then, we define the
Yang-Mills field Ai : Γ(TUi)→ TeG as [70–73]

Ai := σ∗i ω. (3.1.27)

Choosing a section σi by which we represent the connection 1-form on space-time corresponds
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to picking a particular gauge. It is important to note that ω lives in the principal bundle,
whereas the Yang-Mills in the local chart in the base manifold. We also know, that given a
local section we can define a local trivialisation of the principal bundle, called the canonical
local trivialisation hi : Ui ×G→ P by

hi(m, g) := σi(m) / g. (3.1.28)

Having a local trivialization enables us to define the local representation of the connection-1
form as h∗iω(m,g) : T(m,g)(Ui×G) ∼= TmUi⊕TgG→ TP . The Yang-Mills field Ai and the local
representation h∗iω(m,g) are related by the following equation

h∗iω(m,g)(X, γ) = Adg−1∗(Ai(X)) + Ξg(γ), (3.1.29)

where X ∈ TmUi, γ ∈ TgG and Ξg(γ) : TgG → TeG is the so-called Mauer-Cartan form,
which is a Lie algebra valued one-form on the group G [70–73]

The following diagrammatic representation could be useful to avoid any confusion.

Ui ×G P

h∗iω Ui ×G P ω

Ui Ui Ai = σ∗i ω

hi

lives on hi

/G

π1 π

/G

lives on

id

σi

lives on

,

Given two overlapping local patches Ui and Uj with two sections σi : Ui → P and
σj : Uj → P , which are related as σj = σi / g. The two Yang-Mills fields Ai = σ∗i ω and
Aj = σ∗jω are related by

Aj = g−1Ai g + g−1dg, (3.1.30)

where d is the exterior derivative. In components A = Aµdx
µ and d = ∂µdx

µ, we obtain the
familiar gauge transformation of the gauge field

Agµ = g−1Aµg + g−1∂µg. (3.1.31)

For completeness, we define the the curvature 2-form Ω : Γ(TP ) ⊗ Γ(TP ) → TeG on the
principal bundle P as the covariant derivative of the connection 1-form ω

Ω := Dω ∈ Λ2(P )⊗ TeG, (3.1.32)

where Λp(P ) is the set of all the p-forms in P and the covariant derivative of a q-form φ is
defined as

Dφ(X1, ..., Xr+1) := dPφ(hor(X1), ..., hor(Xr+1)), (3.1.33)

where hor(Xi) is the horizontal component of Xi with dpφ representing the exterior derivative
on P .Given a section σi Yang-Mills field strength is defined as the pull-back of the curvature
2-form Ω

Fi ≡ Riemi = σ∗i ω ∈ Λ2(Ui)⊗ TeG. (3.1.34)
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To recall: ”We started with a principal G-bundle over the local chart U ⊆ M: P
π−→ U

equipped with a local section σ : U → U × G. The first structure we defined was the con-
nection one-form ω on the principal bundle. Then restricting ourselves to a local patch we
introduce the Yang-Mills field A := σ∗ω ∈ Ω1(U) ⊗ TeG as the pull-back of the section σi.
The second structure we defined was the curvature Ω := Dω, which when restricted to a
local patch gave us the Yang-Mills field strength F := σ∗Ω ∈ Λ2(U)⊗ TeG”. All of this can
be represented by the following bundle diagram

P

Λ2(P )⊗ TeG 3 Dω := Ω P ω ∈ Λ1(P )⊗ TeG

Λ2(U)⊗ TeG 3 Riem/F = σ∗Ω U ⊆M σ∗ω =: Γ/A ∈ Λ1(U)⊗ TeG

lives on

/G

π

lives on

lives on

σ

lives on

43



3.2 The Gribov ambiguity from the differential geo-

metric perspective.

We already know that for non-trivial principal bundles there does not exist a global sec-
tion. As is turns out the set of all irreducible connection 1-forms on a principal G-bundle
(P, π,M) form themselves a principal G-bundle (A, π,A/G :=M), where A is the space of
all irreducible connections on P and the gauge group G is defined as all the vertical auto-
morphism on P reduced by the center of G. The fact that we cannot find a global section,
or in other words, that we cannot globally choose a gauge, is precisely the Gribov ambiguity.
However, it was shown by Mitter and Viallet in [74], that there exist a locally finite open
cover U = {Ui} of M together with a set of background gauge fields {Ai0} so that we can
define a family of local sections Γi of A →M with

Γi = {B ∈ π−1(Ui) | D∗Ai0(B − Ai0) = 0}. (3.2.1)

Here D∗
Ai0

is the adjoint operator of DAi0
, Ui ⊂ M and Ai0 ∈ A is a background gauge field.

Once we have a section we can define the canonical local trivialisation χi : Γi×G → π−1(Ui)
as

χi(B,Ω) := BΩ = Ω−1BΩ + Ω−1dΩ, (3.2.2)

where Ω ∈ G and B ∈ Γi. Now, on this product bundle we define the expectation value of
gauge invariant observables f ∈ C∞(A) on a local patch as

〈f〉 =

∫
Γi×G
√

detGie
Stot
i χ∗i f∫

Γi×G
√

detGieS
tot
i

, (3.2.3)

where Gi is the induced metric on the Γi ×G, whose determinant is given by

detGi = ν(detFi)2(det∆Ai0
)−1, (3.2.4)

where Fi = D∗
Ai0
DB is the Faddeev-Popov operator and ∆Ai0

= D∗
Ai0
DAi0

is the covariant

Laplacian. Furthermore, the action Stot
i reads

Stot
i = χiSinv + π∗GSG, (3.2.5)

where Sinv is the gauge invariant Yang-Mills action expressed in terms of the constrained
field B, SG ∈ C∞(G) is an arbitrary function on G such that∫

G
DΩ e−SG[Ω] <∞, (3.2.6)

with πG : Γi × G → G. The form of the action Stot
i , was derived in [75] by generalizing

the stochastic quantization method of Parisi and Wu [76]. By modifying the drift and the
diffusion term of the stochastic process, in such a way that the expectation values of gauge
invariant observables where unchanged, they were able to take the equilibrium limit of the
Fokker-Planck distribution which gave the modified Yang-Mills action. For all the details
we refer the reader to [75] and the references within. To obtain global expectation values,
Hueffel and Kelnhofer [77] proposed to take the sum of Eq. (3.2.3) over all the patches. The
resulting equation reads

〈f〉 =

∑
i

∫
Γi×G
√

detGi e
Stot
i χ∗i (fπ

∗γi)∑
i

∫
Γi×G
√

detGi eS
tot
i χ∗iπ

∗γi
, (3.2.7)

where γi is a partition of unity on the base space M. The global expectation value of f
given by (3.2.7) can be proven to be independent of the choice of the background gauge
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fields A
(i)
0 , of the choice of the partition of unity γi and of the choice of the locally finite

cover Ui. This approach is an alternative solution to the Gribov problem in the language
of differential geometry and one can, in principle, compute globally well-defined expectation
values of gauge invariant observables.

45



Chapter 4

Local Issues in Gauge Fixing

4.1 Yang-Mills theory without Faddeev-Popov ghost

fields

This part of the thesis addresses local issues associated with the gauge fixing. Aspects such
as Gribov copies, the first Gribov region and fiber bundle techniques, which were introduced
in the previous chapters, will be now of minor interest to us. Here we will be working in the
perturbative regime where the gauge fixing condition is ideal. However, some of the meth-
ods learned before might be of future use, as both the Zwanziger’s horizon function (see Eq.
2.4.25) and the action SG (see Eq. (4.1.25)) are sharing similar structures. The goal of this
section is to eliminate the Faddeev-Popov ghost fields from the theory by introducing specific
finite contributions of the pure gauge degrees of freedom.

When restricted to a local patch Eq.(3.2.7) takes the form

〈f〉 =

∫
DB detFB e−Sinv[B] f(B)∫
DB detFB e−Sinv[B]

∫
DΩ e−SG [Ω]∫
DΩ e−SG [Ω]

, (4.1.1)

where f(B) is the gauge invariant quantity that we are interested in computing, Bµ is the
constrained field satisfying the Lorentz gauge condition ∂µBµ = 0 and detFB = det ∂µDµ

is the determinant of the Faddeev-Popov operator in the Lorentz gauge. We recall that the
additional term SG[Ω] was characterized by the fact that the integral

∫
DΩ e−SG [Ω] is finite.

However, we can always cancel the contributions from the integral over the gauge group,
as gauge invariant quantities are independent of them. Canceling them leads to the usual
Faddeev-Popov formula, which when written in terms of the constrained gauge fields Bµ,
reads

〈f〉 =

∫
DB detFB e−Sinv[B] f(B)∫
DB detFB e−Sinv[B]

. (4.1.2)

On the other hand, we can perform a transformation from the fields (Bµ,Ω) to the un-
constrained fields Aµ. In terms of the unconstrained fields Aµ, the expectation value of f
reads

〈f〉 =

∫
DAe−Sinv[A]−SG [Ω(A)] f(A)∫
DAe−Sinv[A]−SG [Ω(A)]

. (4.1.3)

It is important to note that by converting to the original gauge fields Aµ the Faddeev-Popov
determinant has been eliminated by the Jacobian of the field transformation. Of course,
this transformation would not make sense in the standard Faddeev-Popov path integral
prescription as the resulting integration would be divergent and therefore ill-defined. The
roll of the action SG is twofold. First, it has to eliminate the gauge redundancy and second
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it has to reproduce the effects of the FP ghost fields. In our paper [78], we suggested to
specify SG as

SG[Ω(A)] =
1

g2

∫
d4xTr

(
(∂µθ(A)µ)(∂νθ(A)ν)

†
)
, (4.1.4)

where
θ(A)µ = (∂µΩ(A)−1) Ω(A) (4.1.5)

is defined in terms of the group element Ω(A) fulfilling

0 = ∂µ(Ω(A)−1Aµ Ω(A))− i

g
∂µ((∂µΩ(A)−1)Ω(A)). (4.1.6)

We are trying to find the group element Ω[A] that takes a gauge field Aµ to the gauge fixing
surface. Solutions to Eq. (4.1.6) can only be obtained by expanding Ω(A) in a power series
Ω = eiv = 1+ iv− v2

2
where v = v1g+v2g

2 +O(g3) and calculating the coefficients v1, v2, ...vn
order by order in the perturbation theory. Since we are going to compute gauge invariant
quantities up to O(g2) the only relevant coefficients are v1 and v2. To make the calculations
more transparent we rearrange the terms in Eq. (4.1.6) as

∂µ(Ω(A)−1Aµ Ω(A))︸ ︷︷ ︸
LHS

=
i

g
∂µ((∂µΩ(A)−1)Ω(A))︸ ︷︷ ︸

RHS

. (4.1.7)

The left-hand-side (LHS) can be computed with the use of the Baker-Campbell-Hausdorff
formula

eABe−A = B + [A,B] +
1

2!
[A, [A,B]] + ..., (4.1.8)

where setting A = −vi and B = Aµ leads to

LHS = ∂µ (Aµ − i[v, Aµ])

= ∂µAµ − ig∂µ([v1, Aµ]). (4.1.9)

To compute the right-hand-side (RHS) we expand the group element in a power series Ω =

1 + iv1g + g2(iv2 − g2

2
v2

1) and insert it in Eq. (4.1.7)

RHS = ∂2v1 + g

(
∂2v2 +

i

2
∂µ[∂µv1, v1]

)
, (4.1.10)

where we used the shorthand notation ∂2 := ∂µ∂µ. Therefore, we find that the coefficients
v1 and v2 are given by

∂2υ1 = ∂µAµ (4.1.11)

and

∂2υ2 = i∂µ

(
1

2
[υ1, ∂µυ1]− [υ1, Aµ]

)
. (4.1.12)

Here the inverse of the Laplacian is defined by its action on a test function f(x) as

1

∂2
f(x) :=

∫
d4y G0(x, y)f(y), (4.1.13)

where G0(x, y) represents the unique Green’s function.

We recall that restricting the path integral to the first Gribov region led to the break-
ing of BRST symmetry. Due to this fact, one is forced to consider non-local gauge invariant
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transverse field ∂µA
Ω
µ = 0, which are determined by minimizing the functional Tr

∫
dxAΩ

µA
Ω
µ

along the gauge orbit (see Eq. (2.1.7)). The reader should be familiar with this expression as
it is the functional that was used in determining the first Gribov region. The group element
Ω(A) that ensures the condition ∂µA

Ω
µ = 0, is determined from Eq. (4.1.6) following the

same steps as we did above. The obtained transverse gauge field AΩ
µ , can be written in the

following nice form

AΩ
µ =

(
δµν −

∂µ∂ν
∂2

)(
Aν − ig[v1, Aν ] +

ig

2
[v1, ∂νv1]

)
+O(A3). (4.1.14)

This was the starting point for M. A. L. Capri et al., [65] in deriving an exact nilpotent
non-perturbative BRST transformation. It is our intention however to use Ω(A) in order to
determine SG[Ω] and not AΩ

µ .

Once we obtained the coefficients v1 and v2, we can insert them into Eq. (4.1.4) and start
calculating the contributions the gauge fixing action SG = S0

G+S1
G+S2

G+ . . . order by order
in perturbation theory. However, we observe that the action in Eq.(4.1.4) has in front of
the integral a factor of 1

g2 and as we are interested in computing SG up to the second order,
we would have to expand the integrand up to the fourth order in perturbation theory. But
fortunately for us, we can use Eq. (4.1.7) to rewrite SG as

SG[Ω(A)] =

∫
d4xTr[(∂µ(Ω(A)−1Aµ Ω(A)))(∂ν(Ω(A)−1Aν Ω(A)))]. (4.1.15)

It is easy to see that at the zeroth order expansion, we obtain the standard gauge fixing
term of Yang-Mills theory in the Feynman gauge

S0
G =

∫
d4xTr

[
(∂µAµ)2

]
=

∫
d4x (∂µA

a
µ)(∂νA

b
ν)Tr [XaXb] =

1

2

∫
ddx (∂µA

a
µ)2 (4.1.16)

The first order expansion in the coupling constant g leads to a new triplic gauge field inter-
action term

S1
G = −ig

∫
d4xTr

[
(∂µAµ) ∂ν [v1, Aν ]

]
+ h.c.

= −ig
∫
d4xTr

[
(∂µAµ) ∂ν

[∂ρAρ
∂2

, Aν

]]
+ h.c.

= −ig
∫
d4x

[
(∂µA

a
µ) ∂ν

(∂ρAbρ
∂2

Acν

)]
Tr
(
Xa[Xb, Xc]

)
+ h.c

= −ig
∫
d4x

[
(∂µA

a
µ) ∂ν

(∂ρAbρ
∂2

Acν

)]
(if bcd) Tr[XaXd] + h.c.

= −gfabc
∫
d4x

[
(∂ρ∂µA

a
µ)
(∂νAbν
∂2

Acρ

)]
. (4.1.17)

The second order expansion in g provides us with new quartic gauge field interaction terms

S2
G =− ig2

∫
d4xTr

(
(∂µAµ) ∂ν [v2, Aν ]

)
− 1

2
g2

∫
d4xTr

(
(∂µ[v1, Aµ]) (∂ν [v1, Aν ])

)
− 1

2
g2

∫
d4xTr

(
(∂µAµ) ∂ν [v1, [v1, Aν ]]

)
+ h.c.. (4.1.18)

Like in the previous equation, we need to evaluate the trace over the Lie algebra indices to
derive the appropriate Feynman rules. For the first term in Eq. (4.1.18), we have
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−ig2

∫
d4xTr

(
(∂µAµ) ∂ν [v2, Aν ]

)
= ig2

∫
d4xTr

(
(∂µAµ) ∂ν [Aν , v2]

)
= ig2

∫
d4xTr

(
(∂µAµ) ∂ν

[
Aν , i

∂τ
∂2

(
1

2
[v1, ∂τv1]− [v1, Aτ ]

)])
,

(4.1.19)

where in the last line we inserted Eq. (4.1.12). The first part of Eq. (4.1.19) reads

−g
2

2

∫
d4x (∂µA

a
µ)∂ν

(
Abν

∂τ
∂2

(
∂ρA

c
ρ

∂2
∂τ

(
∂σA

d
σ

∂2

)))
Tr
(
Xa[Xb, [Xc, Xd]

)
, (4.1.20)

whereas for the second part we obtain

g2

∫
d4x (∂µA

a
µ)∂ν

(
Abν
∂σ
∂2

(
∂ρA

c
ρ

∂2
Adσ

))
Tr
(
Xa[Xb, [Xc, Xd]

)
. (4.1.21)

Evaluating the traces reads

g2fabef cde
∫
d4x(∂ν∂µA

a
µ)Abν

(
∂σ
∂2

(
∂ρA

c
ρ

∂2
Adσ

)
− 1

2

∂τ
∂2

(
∂ρA

c
ρ

∂2
∂τ

(
∂σA

d
σ

∂2

)))
, (4.1.22)

where we multiplied the result by 2 to account for contributions coming from the hermitian
conjugate part. For the second of Eq. (4.1.18), we have

−g
2

2

∫
d4xTr

(
(∂µ[v1, Aµ]) (∂ν [v1, Aν ])

)
= −g

2

2

∫
d4x ∂ν

(
∂µA

a
µ

∂2
Abν

)
∂σ

(
∂ρA

c
ρ

∂2
Adσ

)
× Tr

(
[Xa, Xb][Xc, Xd]

)
=
g2

2
fabef cde

∫
d4x ∂ν

(
∂µA

a
µ

∂2
Abν

)
∂σ

(
∂ρA

c
ρ

∂2
Adσ

)
,

(4.1.23)

where again the factor 1/2 coming from Tr[XaXb] = δab/2 was canceled by the hermitian
conjugate part. The final part of Eq. (4.1.18) reads

−g
2

2

∫
d4xTr

(
(∂µAµ) ∂ν [v1, [v1, Aν ]]

)
= −g

2

2

∫
d4x (∂µA

a
µ)∂σ

(
∂νA

b
ν

∂2

∂ρA
c
ρ

∂2
Adσ

)
Tr
(
Xa[Xb, [Xc, Xd]]

)
= −g

2

2
fabef cde

∫
d4x(∂σ∂µA

a
µ)

(
∂νA

b
ν

∂2

∂ρA
c
ρ

∂2
Adσ

)
.

(4.1.24)

In principle, one could compute SG up to any order in g which will lead to higher and higher
multi-point gauge field interaction terms.

We recall that in the first two chapters the inverse Faddeev-Popov operator played a signifi-
cant role. It was the critical part of Zwanziger’s horizon function as well as Gribov’s no-pole
condition. It is indeed possible to rewrite the infinitesimal form of SG in terms of the inverse
of the Faddeev-Popov operator as

SG[Ω(A)] =
1

g2

∫
d4xTr

(
(∂2(F−1

A ∂µAµ))(∂2(F−1
A ∂νAν))

†
)
, (4.1.25)
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where we used the fact that the infinitesimal form of Eq. (4.1.7) is given by

0 = ∂µAµ + FAv =⇒ v = −F−1
A ∂µAµ. (4.1.26)

The infinitesimal form of SG shares a similar structure as Zwanziger’s horizon function. Both
Eq. (4.1.25) as well as Zwanziger’s horizon function are non-local due to the presence of the
inverse Faddeev-Popov operator. We hope that with the introduction of auxiliary fields also
in our case it will be possible to eliminate the inverse Faddeev-Popov operator and to bring
Eq. (4.1.25) into a local form. However, the task of localizing Eq. (4.1.25) might not be
straightforward as it was for the horizon function. A difference between Eq. (4.1.25) and
Eq. (2.4.25) is that the former is quadratic in F−1 whereas the latter is only linear.

4.2 Feynman Rules

Before we calculate gauge invariant observables in perturbation theory, we have to derive the
Feynman rules corresponding to the new multi-point gauge interaction vertices. We start by
separating the full action into the free-particle and interaction component, compute Z0[J ]
and introduce interactions via the perturbative expansion. For the rest of this theses, we
will be working in four-dimensional space-time. The free part of the generating functional
Z0[J ], reads

Z0[J ] = e−
1
2

∫
d4xd4yJµ(x)Dabµν(x−y)Jν(y), (4.2.1)

where Dab
µν(x− y) is the gauge propagator in the Feynman gauge

Dab
µν(x− y) = δab

∫
d4k

(2π)4
e−ik·(x−y) δµν

k2
. (4.2.2)

The new three-point gauge interaction vertex was given by

Snew-3
I [A] = −gfabc

∫
d4x

[
(∂ρ∂µA

a
µ)
(∂νAbν
∂2

Acρ

)]
. (4.2.3)

To derive the corresponding Feynman rule we have to compute the following contribution to
the partition function Z[J ]

−Snew-3
I

(
δ

δJ

)
Z0[J ] =

[
gfdef

∫
d4x

(
∂xρ∂

x
µ

δ

δJdµ(x)

)(
∂xν
∂2

δ

δJeν (x)

)(
δ

δJfρ (x)

)]
× exp

[
−1

2

∫
d4y1d

4y2J
s
σ(y1)Dst

σλ(y1 − y2)J tλ(y2)

]
. (4.2.4)

It is important to emphasize that not all terms from Eq. (4.2.4) are relevant for us. To
understand why this is the case we have to look at the quantity we want to compute. As we
said, our goal is to calculate the Feynman rule for the new 3-point gauge interaction vertex
and to do so we have to compute the vertex part of

〈0|T{Aaα(y)Abβ(z)Acγ(w)}|0〉 =

[(
δ

δJaα(y)

)(
δ

δJ bβ(z)

)(
δ

δJ cγ(w)

)
(−Snew-3

I Z0[J ])

]
J=0

.

(4.2.5)
This implies that in the end when we set J = 0, all terms that have a multiplicative J
dependence, apart from the one in Z0[J ], drop out. It is easy to convince ourselves that the
only term that gives a non-vanishing contribution to Eq. (4.2.5) is
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−Snew-3
I Z0[J ] =− gfdef

∫
d4x

(∫
d4y2∂

x
ρ∂

x
µD

dt
µλ(x− y2)J tλ(y2)

)(∫
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∂xν
∂2
Det′

νλ′(x− y′2)J t
′

λ′(y
′
2)

)
×
(∫

d4y′′2D
ft′′

ρλ′′(x− y
′′
2)J t

′′

λ′′(y
′′
2)

)
Z0[J ]. (4.2.6)

The six different possibilities of performing the derivations in Eq.(4.2.5) read

〈0|T{Aaα(y)Abβ(z)Acγ(w)}|0〉 = −gfabc
∫
d4x(∂xρ∂

x
µDµα(x− y))

(
∂xν
∂2
Dνβ(x− z)

)
Dργ(x− w)

− gf bac
∫
d4x(∂xρ∂

x
µDµβ(x− z))

(
∂xν
∂2
Dνα(x− y)

)
Dργ(x− w)

− gf cba
∫
d4x(∂xρ∂

x
µDµγ(x− w))

(
∂xν
∂2
Dνβ(x− z)

)
Dρα(x− y)

− gfacb
∫
d4x(∂xρ∂

x
µDµα(x− y))

(
∂xν
∂2
Dνγ(x− w)

)
Dρβ(x− z)
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∫
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(
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∂2
Dνα(x− y)
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Dρβ(x− z)
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∫
d4x(∂xρ∂

x
µDµβ(x− z))

(
∂xν
∂2
Dνγ(x− w)

)
Dρα(x− y).

(4.2.7)

Inserting the momentum space representation of the gauge propagators

Dµα(x− y) =

∫
d4p

(2π)4
e−ip(x−y)Dµα(p),

Dνβ(x− z) =

∫
d4q

(2π)4
e−iq(x−z)Dµα(q),

Dργ(x− w) =

∫
d4r

(2π)4
e−ir(x−w)Dµα(r), (4.2.8)

yields the following result

〈0|T{Aaα(y)Abβ(z)Acγ(w)}|0〉 =

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
e−ip·ye−iq·ze−ir·wDad

αµ(p)Dbe
βν(q)D

cf
γρ(r)

×(2π)4δ4(p+ q + r)V def
µ,ν,ρ(p, q, r),

(4.2.9)

with

V def,new
µνρ (p, q, r) = igfdef

[
(pµpρ − rµrρ)

qν
q2

+ (rρrν − qνqρ)
pµ
p2

+ (qνqµ − pνpµ)
rρ
r2

]
. (4.2.10)

The delta function (2π)4δ4(p+q+r) came from
∫
d4xe−ix·(p+q+r). Now, we turn our attention

to the new 4-point gauge interaction vertices. It will turn out to be advantagues to split
the new 4-point gauge interaction terms into terms where only two 2 of gauge fields are
transverse and the rest. Why this is useful will be evident in the next chapter. The first
4-point gauge interaction term where only two of the gauge fields are transverse comes from
Eq. (4.1.23)
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∂ρA
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σ

)
(4.2.11)

where for now, we are going to be interested only in the first term. Therefore, the first
4-point gauge interaction vertex reads

Snew-4.1
I [A] =

g2

2
fabef cde

∫
d4x

(
∂ν∂µA

a
µ

∂2

)
Abν

(
∂σ∂ρA

c
ρ

∂2

)
Adσ. (4.2.12)

We are going to follow the same steps as we did in the case of the new 3-point gauge
interaction vertex. The contribution to the partition function Z(J) is given by

−Snew-4.1
I

(
δ

δJ

)
Z0[J ] =

[
−1

2
g2fabef cde

∫
d4x

(
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∂2

δ

δJaµ
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]
× exp
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2

∫
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4y2J
s
σ(y1)Dst

σλ(y1 − y2)J tλ(y2)

]
. (4.2.13)

As we are interested only in connected 4-point functions

〈0|T{Aaα(y)Abβ(z)Acγ(w)Adδ(v)}|0〉 =

[(
δ

δJaα(y)

)(
δ

δJ bβ(z)

)(
δ

δJ cγ(q)

)(
δ

δJdδ (v)

)
(−Snew-4.1

I Z0[J ])

]
J=0

,

(4.2.14)
the only relevant term from Eq. (4.2.13) is

−Snew-4.1
I

(
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)
Z0[J ] = −g

2

2
fabef cde

∫
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(∫
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(∫
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2 )
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exp[...].

(4.2.15)

There will be 24 different ways that the four derivatives δ
δJ

in Eq. (4.2.14) can act on
−Snew-4.1

I Z0[J ]. As it would be redundant to write them all out here, we are going to state
the result only. Therefore, the solution to the connected 4-point function reads

〈0|T{Aa′α (y)Ab
′

β (z)Ac
′

γ (w)Ad
′

δ (v)}|0〉 =

∫
d4p

(2π)4
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e−ip·ye−iq·ze−ir·we−is·v
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c′cDδσ(s)d

′d(2π)4δ4(p+ q + r + s)

× V abcd, (1)
µνρσ (p, q, r, s) (4.2.16)
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with

V abcd, (1)
µνρσ (p, q, r, s) =− g2

[
fabef cde

(
pµpν
p2
− qµqν

q2

)(rρrσ
r2
− sρsσ

s2

)]
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pµpρ
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)(
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r2

)]
. (4.2.17)

The last term for which only two of the gauge fields are transverse comes from the first part
of Eq. (4.1.22)
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)
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(4.2.18)

The second 4-point gauge interaction vertex with only two transverse gauge fields is

Snew-4.2
I = g2fabef cde
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a
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, (4.2.19)

which leads to
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with the following vertex factor
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(4.2.21)

These were the only 4-point gauge interaction vertices where two of the gauge fields are
transverse. The reason why we separated them from the others is that these will be the only
ones that will lead to non-vanishing contributions for the gauge invariant quantity that we
are going to calculate in the next chapter.

For the rest of this section, for completeness, we are going to write out the other 4-point
gauge interactions and their corresponding Feynman rules. Combining the second part of
Eq. (4.1.22) where we act with the partial derivative ∂τ on the second term in the bracket

−g
2

2
fabef cde

∫
ddx(∂ν∂µA

a
µ)Abν
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d
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)
, (4.2.22)

and the second term of Eq. (4.2.18)
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leads to the following Feynman rule
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(4.2.24)

The action in Eq. (4.1.24),
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gives us the following Feynman rule
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(4.2.26)

The Feynman rule for the second last term of Eq. (4.2.11)
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is
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(4.2.28)

The last term of Eq. (4.2.11)

Snew-4.6
I =

g2

2
fabef cde

∫
d4x

(
∂µA

a
µ

∂2
∂νA

b
ν

)(
∂ρA

c
ρ

∂2
∂σA

d
σ

)
, (4.2.29)
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leads to the following Feynman rule
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. (4.2.30)

For completeness, the standard Yang-Mills 3-point gauge interaction vertex is given by

V abc
µνρ(p, q, r) = ifabc[(q − r)µδνρ + (r − p)νδµρ + (p− q)ρδµν ]. (4.2.31)
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Chapter 5

Proof of the equivalence between the
Faddeev-Popov method and its
modified version

5.1 Calculation of F a
µνF

a
µν

In the previous chapter, we saw that the expansion of SG leads to new interaction terms
between the gauge bosons with complicated Feynman rules. The goal of this chapter is
to implement the newly obtained Feynman rules and show that they reproduce the same
contributions as the standard Faddeev-Popov ghost fields. Expanding F a

µνF
a
µν up to second

order in the coupling constant g yields

limy→x〈F a
µν(x)F a

µν(y)〉new =
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µν(p)F
a
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(5.1.1)

with
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a
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1

p4
δab

3∑
i=1

Πab,(i)
µν (p)− igfabcpµIabcνµν(p)

]
.

(5.1.2)
The subscript ”new” refers to the contributions arising from the new three- and four-point
gauge field interaction vertices1. The Π

ab,(i)
µν (p)’s are the one particle irreducible Feynman

diagrams contributing to the two-point function and Iabcνµν(p) is defined as

Iabcνµν(p) =

∫
d4q

(2π)4

d4r

(2π)4
(2π)4δ4(p+ q + r)

1

q2

1

p2

1

r2
V abc
νµν(p, q, r), (5.1.3)

The first diagram contributing to Πab
µν which we are considering is

p p
a, µ b, ν = Πab,(1)

µν (p) =
1

2

∫
d4q

(2π)4

d4r

(2π)4

1

q2

1

r2
V adc,(new)
µσρ (p, q, r)V bcd

νρσ(−p,−r,−q)

× (2π)4δ4(p+ q + r). (5.1.4)
1The quantity F 2 has been rescaled by a factor of 1/2.
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Here the new three-point gauge field interaction vertex is represented by a solid dot whereas
the vertex without an unique label corresponds to the standard three-point Yang-Mills ver-
tex. Inserting the corresponding Feynman rules in Eq. (5.1.4) gives us

Πab,(1)
µν (p) = g2facdf bcd

1

2

∫
d4q

(2π)4

d4r

(2π)4

1

q2

1

r2
Nµν(2π)4δ4(p+ q + r), (5.1.5)

with

Nµν =pµpν

[
r · q − p · q

q2
− r · p− r · q

r2

]
+ pµqν

[
r2 − q · r

p2
− p · r

r2
+
p2

q2

]
+ pµrν

[
q2

p2
− p · q

q2
+
p2

r2
− q · r

p2

]
+ qµqν

[r · p
r2

]
− qµrν

[
r · p
q2

+
p · r
r2

]
+ rµrν

[
p · q
q2

]
. (5.1.6)

In principle, we would have to compute the same diagram with the solid dot on the second
vertex instead on the first one. As both diagrams lead to the same contribution, we just mul-
tiply Eq. (5.1.6) with a factor of 2. Thus, the first contribution to the limy→x〈F a

µν(x)F a
µν(y)〉

is

∫
d4p

(2π)4

1

p4
(p2δµν − pµpν)δabΠab,(1)

µν (p) = (gfabc)2

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ(4)(p+ q + r)

× p2q2 − (p · q)2

p2q2r2

[
− 2

p2

]
. (5.1.7)

The only other possible combination that can arise is the one where both interaction vertices
are the new three-point gauge field vertices,

p p
a, µ b, ν = Πab,(2)

µν (p) =
1

2

∫
d4q

(2π)4

d4r

(2π)4

1

q2

1

r2
V adc,(new)
µσρ (p, q, r)V bcd,(new)

νρσ (−p,−r,−q)

× (2π)4δ(4)(p+ q + r). (5.1.8)

Inserting the appropriate Feynman rules gives us the following contribution

Πab,(2)
µν (p) = g2facdf bcd

1

2

∫
d4q

(2π)4

d4r

(2π)4

1

q2

1

r2
Mµν(2π)4δ(4)(p+ q + r), (5.1.9)

with

Mµν = pµpν

[
(p · r)(q · r)

q2p2
− 2

(q · p)(r · p)
q2r2

+ 2
(r · q)(p · q)

p2r2
− p · q

p2
+
p2

q2
− 2

p · r
p2

+
p2

r2

]
+ pµpν

[
r4 − 2(r · q)2 + q4

p4

]
+ pµqν

[
(p · r)(q · r)

p2q2
+
r2(q · r)− (r · q)q2

p2r2
− p · q

r2

]
+ pµrν

[
p · q
q2
− p · r

q2
− (r · q)r2 − q2(q · r)

q2p2

]
+ qµpν

[
p · r
r2
− p · q

r2
+
r2(q · r)− q2(r · q)

p2r2

]
+ rµpν

[
q · r
p2
− p · r

q2
− r2(q · r)

q2p2
+
p · q
q2

]
− qµrν + rµrν

[
r2

q2

]
− rµqν + qµqν

[
q2

r2

]
.

(5.1.10)
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Thus, the second contribution to limy→x〈F a
µν(x)F a

µν(y)〉 from the combination new-new is∫
d4p

(2π)4

1

p4
(p2δµν − pµpν)δabΠab,(2)

µν (p) = (gfabc)2

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ(4)(p+ q + r)

× p2q2 − (p · q)2

p2q2r2

[
q2 + r2

p2r2

]
. (5.1.11)

Equations (5.1.7) and (5.1.11) are the only contributions to limy→x〈F a
µν(x)F a

µν(y)〉 at O(g2)
coming from the new 3-point gauge field interactions. The story does not end here since we
also have contributions from the new 4-point gauge field interactions to limy→x〈F a

µν(x)F a
µν(y)〉

which are provided by the following diagram

p p
a, µ b, ν

= Πab,(3)
µν (p) =

1

2

∫
d4q

(2π)4

d4r

(2π)4

1

q2
V abcd
µνσρ(p,−p, q,−q)δρσδcd(2π)4δ4(p+ q + r).

(5.1.12)

Here V abcd
µνσρ is the new 4-point gauge interaction vertices derived in the previous chapter.

Inserting the Feynman rules from equations (4.2.17) and (4.2.21) in Π
ab,(3)
µν leads to

Πab,(3)
µν (p) = g2facdf bcd

∫
d4q

(2π)4

d4r

(2π)4

1

q2

1

r2

(
O(1)
µν +O(2)

µν

)
(2π)4δ4(p+ q + r), (5.1.13)

whereby

O(1)
µν = −pµpν

[
r2

p2

]
+ qµpν

[
r2(p · q)
q2p2

]
+ pµqν

[
r2(p · q)
p2q2

]
− qµqν

[
r2

q2

]
. (5.1.14)

and

O(2)
µν = −2pµpν − 2qµqν + 2pµqν

[
p · q
p2

]
+ qµpν

[
q · p
p2

+
p · q
q2

]
. (5.1.15)

Throughout the calculation, we used several symmetry arguments one of which was the
invariance of the integrand under p→ −p, or any of the other momenta. Equation (5.1.13)

is the only non-zero contribution to the limy→x〈F a
µν(x)F a

µν(y)〉 stemming from S
(2)
G . All

the other contributions from S
(2)
G are annihilated by the action of (p2δµν − pµpν) on Πµν ’s.

Therefore, the full contribution from the new 4-point interactions to limy→x〈F a
µν(x)F a

µν(y)〉
at O(g2) reads

∫
d4p

(2π)4

1

p4
(p2δµν − pµpν)δabΠab,(3)

µν (p) = (gfabc)2

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ(4)(p+ q + r)

×p
2q2 − (p · q)2

p2q2r2

[
−2r2 − q2

p2r2

]
.

(5.1.16)
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The final Feynman diagram contributing to Iabcνµν gives

p

q

r

= Iabcνµν(p) =

∫
d4q

(2π)4

d4r

(2π)4

1

p2

1

q2

1

r2
V abc
νµν(p, q, r)(2π)4δ4(p+ q + r).

(5.1.17)
Multiplying the vertex factor V abc

νµν(p, q, r) with pµ reads

pµV
abc
νµν(p, q, r) = igfabcpµ

[
(p2 − r2)

qµ
q2

+ ((r · p)rµ − (q · p)qµ)
1

p2
+ ((q · r)qµ − (r · p)pµ)

1

r2

]
= igfabc

[
(p2 − r2)

(q · p)
q2

+
(r · p)2 − (q · p)2

p2
+

(q · r)(q · p)− (r · p)p2

r2

]
.

(5.1.18)

The second term in Eq. (5.1.18) as well as terms p2(p · q)/q2 − p2(p · r)/r2 vanish since they
are anti-symmetric in r and q. Hence, we are left with

pµV
abc
νµν(p, q, r) = igfabc

[
−r

2(q · p)
q2

+
(q · r)(q · p)

r2

]
= igfabc

[
r2q2 + r2(r · q)

q2
− (r · q)2 + (r · q)q2

r2

]
, (5.1.19)

where we used momentum conservation. We notice that also the terms (r · q)(r2/q2− q2/r2)
vanish as they are anti-symmetric in r and q whereas the integral is symmetric. Therefore,

pµV
abc
νµν(p, q, r) = igfabc

[
r2 − (r · q)2

r2

]
= igfabc

[
q2 − (p · q)2

p2

]
, (5.1.20)

where in the first term, we interchanged the momentum r with the momentum q and in the
second term the momentum r with p. Thus, the final contribution to limy→x〈F a

µν(x)F a
µν(y)〉

at O(g2) turns out to be

−2igfabc
∫

d4p

(2π)4
pνI

abc
νµν(p) = (gfabc)2

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ(4)(p+q+r)

p2q2 − (p · q)2

p2q2r2

[
2

p2

]
.

(5.1.21)

5.2 Faddeev-Popov ghost field contributions in F a
µνF

a
µν

In the first chapter, we spent some time talking about the origin of the ghost fields and
the essential role they play in the BRST symmetry. The goal of the fifth chapter is to
show that for the gauge invariant quantity limy→x〈F a

µν(x)F a
µν(y)〉 the gauge field interactions

arising from SG lead to the same outcome as the ghost fields in the standard Yang-Mills
theory. In this section, we are going to take a little detour to the standard Yang-Mills
theory where the ghost fields are still present and calculate their contributions to the quantity
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limy→x〈F a
µν(x)F a

µν(y)〉 up to the second order in the coupling constant g. Feynman rules for
the ghost fields are

〈c̄a(p)cb(q)〉 = i
δab

p2
(2π)4δ(p+ q) (5.2.1)

with the ghost-gauge field vertex given as

〈c̄a(p)cb(q)Acµ(r)〉 = fabcpµ(2π)4δ4(p+ q + r). (5.2.2)

A point that we already mentioned about the ghost fields is that they represent fictitious
particles, meaning that in Feynman diagrams they can only appear as internal lines. This
observation together with the fact that they only interact with gauge bosons via a ghost-
antighost-gauge interaction implies that the only contribution to limy→x〈F a

µν(x)F a
µν(y)〉 from

the ghost fields comes from the following diagram

a, µ b, ν = Πab,(gh)
µν (p) = −g2

∫
d4q

(2π)4

d4r

(2π)4

i

q2

i

r2
(facdqµ)(−f bdcrν)(2π)4δ4(p+q+r),

(5.2.3)
where we added the minus sign in front of the integral since ghosts are anti-commuting fields.
The one-particle irreducible ghost diagram in Eq. (5.2.3) reads

Πab,(gh)
µν (p) = g2facdf bcd

∫
d4q

(2π)4

d4r

(2π)4

1

q2

1

r2
qµrν(2π)4δ4(p+ q + r)

= −g2facdf bcd
∫

d4q

(2π)4

d4r

(2π)4

1

q2

1

r2

(
qµqν + qµpν

)
(2π)4δ4(p+ q + r), (5.2.4)

where we used the fact that rν = −(p + q)ν . Applying p2Pµν = (p2δµν − pµpν) gives us the
ghost contribution to limy→x〈F a

µν(x)F a
µν(y)〉 up to the second order in perturbation theory

limy→x〈F a
µν(x)F a

µν(y)〉gh = (gfabc)2

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ(4)(p+ q + r)

p2q2 − (p · q)2

p2q2r2

[
− 1

p2

]
.

(5.2.5)
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5.3 Final Result

To obtain the final result, we need to add all the contributions to limy→x〈F a
µν(x)F a

µν(y)〉
arising from SG at O(g2). Thus,

limy→x〈F a
µν(x)F a

µν(y)〉new =

∫
d4p

(2π)4

1

p4
(p2δµν − pµpν)δab

3∑
i=1

Πab,(i)
µν (p)− igfabc

∫
d4p

(2π)4
pνI

abc
νµν(p)

= (gfabc)2

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ(4)(p+ q + r)

p2q2 − (p · q)2

p2q2r2
B(p, q, r),

(5.3.1)

where the function B(p, q, r)2 encodes the different contributions from the various diagrams,
see Table I.

− 2
p2

q2+r2

p2r2

−
(

2r2+q2

p2r2

)
2
p2

∑
− 1
p2

− 1
p2

Table 5.1: Various contributions to B(p, q, r). The solid dot represents the new three-point
gauge field interaction vertex and the solid square the new four-point gauge field interaction
vertex. Vertices without any special labeling correspond to the standard Yang-Mills ones.
In the second last line of the table is the sum of the four diagrams displayed in the first
four lines. The bottom line of the table displays the standard Faddeev-Popov ghost field
contribution [78].

2We want to mention that all the prefactors in front of the two-point function and three-point function
in F aµνF

a
µν have been accounted for.
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Inserting the various contributions from Table 1 into Eq. (5.3.1) yields

limy→x〈F a
µν(x)F a

µν(y)〉new =(gfabc)2

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ(4)(p+ q + r)

p2q2 − (p · q)2

p2q2r2

×
(
− 2

p2
+

q2

p2r2
+

1

p2
− 2

p2
− q2

p2r2
+

2

p2

)
=(gfabc)2

∫
d4p

(2π)4

d4q

(2π)4

d4r

(2π)4
(2π)4δ(4)(p+ q + r)

p2q2 − (p · q)2

p2q2r2

[
− 1

p2

]
(5.3.2)

Hence,

limy→x〈F a
µν(x)F a

µν(y)〉new − limy→x〈F a
µν(x)F a

µν(y)〉gh = 0, (5.3.3)

which proves that, up to second order in the coupling constant g, the modified Yang-Mills
action without the Faddeev-Popov ghost fields yields the same result as one would obtain
by using the standard Yang-Mills action.

5.4 Outlook

The efficiency of our method improves dramatically by employing software like Mathemat-
ica. Notice that within our approach only bosonic variables appear which reduces the com-
putational complexity significantly. This cost reduction could be of importance also for
computations in lattice QCD. One of our future projects will be to develop a Mathemat-
ica package that implements our approach and makes it accessible to the physics community.

We plan to test our method on various other gauge invariant quantities and for different
gauge fixing conditions in order to compare its efficiency and performance with the usual
Faddev-Popov procedure. We also intend to use our approach in order to address the issue
of Gribov ambiguities because we expect that it will shed new light on this problem.

As P. W. Anderson said: ” Physics is the study of symmetries.” Therefore, an exciting
line of work will be to investigate the new symmetries of the modified Yang-Mills action
since the elimination of the ghost fields led to the loss of the BRST symmetry which was
a crucial part of proving the renormalizability and unitarity of the theory. With the help
of this new symmetry, we plan to develop generalized Slavnov-Tayler identities in order to
set up a renormalization program. We hope that this new symmetry could be helpful in
explaining some of the problems that we are facing within theoretical and mathematical
physics, today.
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Chapter 6

Summary

In the first chapter, we reviewed non-abelian gauge theories and their singular structure due
to the gauge redundancy of the Lagrangian. A manifestly covariant way of eliminating the
gauge degrees of freedom was developed by Faddeev and Popov [14]. As a consequence of
fixing the gauge, fictitious particles called Faddeev-Popov ghosts emerge.

In the second chapter, we discussed issues associated with the extension of the gauge fixing
procedure beyond the perturbative level. We saw that in the presence of Gribov copies
the Faddeev-Popov determinant vanishes, calling for modifications of the Faddeev-Popov
method. To avoid the Gribov copies, we had to restrict the path integral to the first Gribov
region C0. By using Gribov’s no-pole condition and Zwanziger’s horizon function, we were
able to implement the restriction, which led to the modification of the IR behavior of the
gauge and gluon propagators. In both of the approaches, the gluon propagator gets excluded
from the physical spectrum which can be taken as a sign of confinement.

In the third chapter, we looked at the Gribov ambiguity from a more mathematical per-
spective. In the language of differential geometry, the absence of a global section on a
principal bundle is equivalent to the Gribov problem. We looked at Huffel’s and Kelnhofer’s
[77] proposal for dealing with the issue of the Gribov ambiguity in the differential geometric
setting. Their idea was to partition the configuration space into local patches, where it is al-
ways possible to choose a gauge, and by summing over all patches to obtain the global result.

In the fourth chapter, we saw that by restricting Hüffel’s and Kelnhofer’s equation for com-
puting global expectation values of gauge invariant observables to a local patch leads to a
modification of the Faddeev-Popov path integral density by introducing specific finite con-
tributions of the pure gauge degrees of freedom. The presence of the new degrees of freedom
does not affect gauge invariant quantities, and in principle, they can be eliminated. However,
Hüffel and Kelnhofer proved in [75] that by keeping the contributions from SG, it is pos-
sible to eliminate the Faddeev-Popov determinant by a field transformation which leads to
the quantization of Yang-Mills theory without Faddeev-Popov ghost fields. As a byproduct
of eliminating the ghost fields new multi-point gauge interactions appear with complicated
Feynman rules.

In the fifth chapter, we were able to show in a specific example that up to the second order
in perturbation theory the newly obtained Feynman rules reproduce the same contributions
as the Faddeev-Popov ghost fields.
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