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Abstract

This master thesis deals with the separable quotient problem for locally convex spaces
of the form Cp(X) which is still open. Its connection with another open problem
from topology, namely Efimov’s problem, will be addressed. Efimov asked whether
there are compact Hausdorff spaces with no convergent sequences and no copies of
βω inside. Nowadays such spaces are called Efimov spaces. A recent result of Kąkol
and Śliwa [19] will be presented. They showed that compact Hausdorff spaces X,
for which Cp(X) has no separable quotient, are Efimov spaces with few homeomor-
phisms. Based on de la Vega’s ideas in [6], such a space will be constructed using
the set-theoretic assumption ♦. Moreover, possible limitations of the construction
of such a space are studied. This is the area of research where set theory meets
topology and functional analysis.

Zusammenfassung

In der vorliegenden Masterarbeit wird das Problem des separablen Quotienten für
lokal-konvexe Räume der Form Cp(X), welches immer noch ungelöst ist, behan-
delt. Der Zusammenhang mit einem weiteren ungelösten Problem, nämlich dem
Efimov-Problem, wird aufgezeigt. Efimov brachte die Frage auf, ob es kompakte
Hausdorffräume gibt, die weder konvergente Folgen noch eine Kopie von βω beinhal-
ten. Heutzutage werden solche Räume Efimovräume genannt. Ein aktuelles Resultat
von Kąkol und Śliwa [19] wird präsentiert. Es zeigt, dass kompakte Hausdorffräume
X, für die Cp(X) keinen separablen Quotienten besitzt, Efimovräume mit weni-

i



gen Homöomorphismen sind. Gestützt auf die Ideen de la Vegas in [6] wird in
dieser Arbeit ein solcher Raum unter der mengentheoretischen Annahme ♦ kon-
struiert. Außerdem werden mögliche Einschränkungen für die Konstruktion eines
solchen Raumes untersucht. In diesem Forschungsbereich trifft die Mengenlehre auf
die Funktionalanalysis und die Topologie.
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Introduction

In 1932, Stanislaw Mazur asked a question, which remains one of the most famous
problems in functional analysis. It asks whether every Banach space has an infinite-
dimensional, separable quotient. This question is partially solved: there are classes
of Banach spaces for which we can find such separable quotients. One of the main ex-
amples is the class consisting of the Banach spaces of real-valued continuous functions
on an infinite compact space with the supremum-norm. A theorem of Rosenthal-
Lacey states that every Banach space of this form possesses a quotient isomorphic
to c (the space of all convergent sequences of real numbers) or to `2 (the space of
square-summable sequences of real numbers), which are both separable (cf. [19, pp.
104-105]).

Mazur’s question makes sense for arbitrary topological vector spaces, in particular
for locally convex spaces. One of the most studied examples of locally convex spaces
are those of the form Cp(X), the continuous real-valued functions on X with the
topology of pointwise convergence. The question, whether all locally convex spaces
of this form have an infinite-dimensional, separable quotient is also unsolved until
today. However, by a recent result of Kąkol and Śliwa [19, Theorem 4], if X is a
compact Hausdorff space such that the locally convex space Cp(X) has no separable
quotient, then X cannot contain a copy of βω, the Stone-Čech compactification of
the integers. Furthermore, it is not very difficult to show that in this case, X cannot
contain convergent sequences either. This means that X must be an Efimov space.
These topics will be treated the first chapter.

At that point we encounter another open problem, this time from topology: Are
there Efimov spaces? This question was posed by Efimov in 1969, but in fact its
origins go back to the time before Mazur formulated his famous question. Alexan-
droff and Urysohn already asked in 1929, whether there are compact Hausdorff spaces
with no convergent sequences (cf. [16, p. 171]). In the next decades, several counter-
examples arose. One of them was the space βω, which is a compact Hausdorff space
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without convergent sequences. This clearly motivates the addition of the supplemen-
tary condition (not containing βω) to Alexandroff’s and Urysohn’s question, in order
to obtain the formulation of Efimov’s problem. This problem is also partially solved,
meaning that under some set-theoretic assumptions (e.g. ♦, CH or s = ω1∧ c = 2ω1)
one can construct Efimov spaces (cf. [16, p. 173]). However, there is no known
construction without using additional set-theoretic assumptions, i.e. it is not known
whether ZFC proves the existence of an Efimov space.

As the first chapter will also show, Kąkol and Śliwa’s theorem implies that, if X is
a completely regular space with many homeomorphisms between compact subspaces,
then Cp(X) has a separable quotient. From this it follows for a compact Hausdorff
space X, that if Cp(X) has no separable quotient, then X is not only Efimov, but
in addition it cannot have compact disjoint homeomorphic subsets. It is therefore
interesting to ask, whether there are Efimov spaces with no infinite closed disjoint
homeomorphic subsets. Based on a result of de la Vega ([6, Theorem 5.1] or [7,
Theorem 1.5]), who showed under ♦ that there are rigid Efimov spaces, we will
construct in Chapter 2 – also under ♦ – an Efimov space with no closed infinite
disjoint homeomorphic subsets.

Therefore, it is consistent with ZFC that such Efimov spaces with few homeo-
morphisms exist, which in turn will mean that the existence of a locally convex space
of the form Cp(X) with no separable quotient cannot be excluded this way. At this
point it is natural to ask whether this could be achieved by using other set-theoretic
assumptions. Therefore, in the third chapter we will study sufficient conditions under
which a compact Hausdorff space contains a convergent sequence, and can thus not
be Efimov, i.e. we will address the limitations on the constructions of Efimov spaces.
This chapter contains two main theorems. One of them is a result of Szentmiklóssy
[24, Theorem 3], which implies that the construction from the second chapter cannot
be done under MAω1 . The other one is the Čech-Pospišil-Theorem, which provides
a limitation on the size of Efimov spaces. We will deduce that under ♦ there are
no Efimov spaces of size less or equal than c and can thus determine the size of the
space from Chapter 2. To complete the picture, this chapter will be closed with a
construction of an Efimov space of size c, which was done by Fedorčuk using the
assumption s = ω1 ∧ c = 2ω1 .
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Chapter 1

Separable quotients of function
spaces with the topology of
pointwise convergence

1.1 The topological vector space of real-valued continu-
ous functions

First we fix our notation and terminology. If V is a vector space over the field R,
we say that V is a topological vector space if it is endowed with a topology such
that the addition + : V × V → V and the scalar multiplication · : R × V → V are
continuous maps. If V is a topological vector space and M a linear subspace of V ,
we can define an equivalence relation on V by calling two points of V equivalent
if their difference lies in M . It is natural to define addition and multiplication on
the quotient V/M (the set of all equivalence classes induced by the above relation)
pointwise, which yields a vector space structure on it. Furthermore one can define
a topological structure on this quotient, by declaring a set U ⊆ V/M to be open
if and only if the set of all points in V whose equivalence class lies in U is open in
the topological space V . It is an exercise to show that this way, the quotient V/M
becomes also a topological vector space. The letter ρ will denote the quotient map
V → V/M , which maps each x to its equivalence class, which will be written as
x+M . The map ρ is continuous and open. Usually this construction is considered
for closed linear subspaces M , because V/M is Hausdorff if and only if M is closed.

A special class of topological vector spaces are locally convex spaces. Recall
that a subspace K of a vector space over R is called convex, if for any two points
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x, y ∈ K and for each t ∈ [0, 1] we have that tx + (1 − t)y ∈ K. A locally convex
space is a topological vector space such that each point has a neighborhood base
consising of convex sets, equivalently the point 0 has a neighborhood base consising
of convex sets. Such spaces can also be characterized by so-called semi-norms. For
more details, see [22, Definition 1.33, Theorems 1.36 and 1.37].

Recall also that a Banach space is a topological vector space, whose topology is
induced by a norm, such that every Cauchy sequence converges (i.e. the space is
complete). It is well-known that quotients of Banach spaces by closed subspaces are
again Banach spaces. This result can also be generalized for locally convex spaces
as follows. For proofs, we refer to [22, Theorem 1.41] and [8, (12.14.8)].

Theorem 1.1.1. The quotients of a Banach spaces by a closed linear subspace is
again a Banach space. The quotient of a locally convex space by any linear subspace
is again a locally convex space.

For a topological space X the set C(X) of all continuous functions from X to
R can be considered as a linear subspace of RX =

∏
x∈X R, the topological vector

space of all functions from X to R with pointwise addition and scalar multiplication,
endowed with the product topology. The set C(X) together with the linear and
topological structures inherited from RX forms a topological vector space. Because
the convergence of a sequence of functions in this space coincides with pointwise
convergence, its topology is called the topology of pointwise convergence. Therefore
we will denote the set C(X) with its topological vector space structure by Cp(X).
The topology on Cp(X) is clearly generated by the sets of the form {f ∈ C(X) :
f(xi) ∈ (ri − εi, ri + εi) for i ∈ n}, where x0, ..., xn−1 are distinct points of X,
r0, ..., rn−1 ∈ R and ε0, ..., εn−1 > 0. Sets of this form will be called basic open sets
in this context. Note also that Cp(X) is a locally convex space: it is not difficult to
check that the basic open neighborhoods of 0 are convex.

With all these notions in our pocket we can formulate the separable quotient
problem for topological vector spaces of the form Cp(X).

Question 1.1.2. Does every infinite-dimensional topological vector space of the
form Cp(X) have an infinite-dimensional separable quotient? In other words: is
there a closed linear subspace M of Cp(X) such that the topological vector space
Cp(X)/M is infinite-dimensional and separable?

This is a natural analog of the question asked by Mazur in 1932 for Banach
spaces, and it can also be considered for several other types of spaces. If for some
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infinite-dimensional Cp(X) the above question has a positive answer, we say that
Cp(X) has SQ. If not, we say that Cp(X) fails to have SQ.

Note that the question asks only for infinite-dimensional quotients, because one
can always find separable quotients of finite dimension. For example one can take
M to be the whole Cp(X) and therefore get the quotient to be a trivial vector space,
which is clearly separable. It is also not very hard to find one-dimensioinal quotients,
which then are isomorphic to the separable space R. This is a consequence of the
Hahn-Banach Theorem.

Now that we introduced the topic, we recall some useful facts about (topological)
vector spaces. The first fact is a classical isomorphism theorem, which in fact holds
generally for vector spaces.

Theorem 1.1.3 (Isomorphism Theorem for vector spaces). Let V be a topological
vector space over R, and M ⊆ W ⊆ V be subspaces of V and ϕ : V → R a linear
functional. Then the quotient V/ kerϕ is isomorphic to im(ϕ). Moreover, we have
that (V/M)/(W/M) is isomorphic to V/W . Also, if V is finite-dimensional, V/M
is too and we have the dimension formula dimV/M = dimV − dimM .

The next lemma will also be useful, its proof can be found in [4, Corollaire 1,
Section I.3] or in [22, Theorem 1.21] for complex vector spaces.

Lemma 1.1.4. Let M be a finite-dimensional linear subspace of a Hausdorff topo-
logical vector space V . Then M is closed.

We will also use the following result, which is a corollary from the Hahn-Banach
Theorem (see [22, Theorem 3.5]).

Theorem 1.1.5. Let M be a closed linear subspace of a locally convex space V and
x ∈ V \M . Then there there is a continuous linear functional ϕ : V → R such that
M ⊆ kerϕ and ϕ(x) = 1.

1.2 Separable algebra quotients

In this section, we will present for infinite completely regular spaces X a charac-
terisation of Cp(X) having a special kind of separable quotient, namely a separable
quotient algebra. The source for this is [18].

An algebra is a topological vector space V over R, which in addition has an
associative, commutative and bilinear vector multiplication, i.e. (λx)·(µy) = λµ(x·y)
for all λ, µ ∈ R and x, y ∈ V and the usual distributivity laws should hold, i.e.

5



x ·(y+z) = x ·y+x ·z for all x, y, z ∈ V . As in the previous section, one can consider
quotients of such algebras by closed linear subspaces. It turns out that these quotients
may lose their multiplicative algebra structure. However, this structure can be saved,
if we consider quotients by ideals. An ideal of an algebra V is a linear subspace I of
V such that for all x ∈ V and all y ∈ I, we have xy ∈ I. It is an exercise to check
the already mentioned result.

Lemma 1.2.1. If I is an ideal of an algebra V , then V/I is also an algebra.

It is clear that the topological vector space Cp(X) forms an algebra with the
pointwise multiplication of functions. It makes therefore sense to consider first the
special class of algebra quotients of Cp(X) among all quotients. Recall that we are
only interested in quotients by closed ideals, because then the quotient is Hausdorff.
Therefore, the separable quotient problem for algebras of the form Cp(X) can be
rephrased as follows.

Question 1.2.2. Does every infinite-dimensional topological vector space of the
form Cp(X) have an infinite-dimensional separable quotient, which is itself again an
algebra? In other words: is there a closed ideal I of Cp(X) such that the topological
vector space quotient Cp(X)/I is infinite-dimensional and separable?

To shorten our language, we will call such a quotient Cp(X)/I simply a separable
algebra quotient.

It is natural to ask how the closed ideals of Cp(X) look like. In fact, if X is
infinite and completely regular, they can be described very simply, as we will see in
Lemma 1.2.4.

In this context, Urysohn’s Lemma is very useful. This fact is known for permitting
to separate two disjoint closed subsets of a normal space by a continuous function. As
in this chapter we will work with completely regular spaces, we formulate a similar
fact for this class of topological spaces, see [21] for the proof.

Lemma 1.2.3 (Urysohn’s Lemma for completely regular spaces). Let X be a com-
pletely regular space, K ⊆ X compact and B ⊆ X closed such that K and B are
disjoint. Then for each g ∈ C(K) there is some f ∈ C(X) such that f � K = g and
f � B = 0.

Notice that using this lemma, one can see that Cp(X) is a dense subset of the
whole product RX .
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Lemma 1.2.4. Let X be an infinite, completely regular space. The closed ideals of
Cp(X) are exactly the sets of the form

IA := {f ∈ C(X) : f(x) = 0 for all x ∈ A},

where A is a closed subspace of X.

Proof. Obviously IA is a closed ideal of Cp(X). Now let I be a closed ideal of Cp(X)
and let A :=

⋂
f∈I f

−1(0), which is clearly closed by the continuity of all f ∈ I. We
show that I = IA. It is clear that I ⊆ IA, because if f ∈ I, then for each x ∈ A we
have f(x) = 0.

Conversely, if f ∈ IA then f � A = 0. Since I is closed, it is enough to show that
any basic open neighborhood of f contains a member if I. Let U be a basic open
neighborhood of f , i.e. it can be written as {g ∈ C(X) : g(x) ∈ (f(x) − εx, f(x) +
εx) for x ∈ F}, where F ⊆ X is finite and εx are positive real numbers for x ∈ F .
Decompose F = F0 ∪ F6=0, were F0 := {x ∈ F : f(x) = 0} and F6=0 := F \ F0.
For each x ∈ F6=0, we know that x 6∈ A, meaning that there is some gx ∈ I such
that gx(x) 6= 0. It is clear that the function g :=

∑
x∈F6=0

g2
x is a member of I

such that g(x) 6= 0 for all x ∈ F6=0. For each x ∈ F6=0 we may set h0(x) := f(x)
g(x)

and using Lemma 1.2.3 extend h0 to a continuous function h ∈ C(X) such that
h � (A ∪ F0) = 0. We may see that the set {x ∈ X : (g · h)(x) = f(x)} contains
F , because if x ∈ F0, f(x) = 0 = h(x) = (g · h)(x) and if x ∈ F6=0 we have that
(g · h)(x) = (g · h0)(x) = f(x). It follows that g · h, which is clearly a member of the
ideal I, lies in U . This ends the proof.

The following result is [18, Lemma 15].

Proposition 1.2.5. Let X be an infinite, completely regular space and A a closed
subset of X. Then Cp(X)/IA is isomorphic to a dense subset of Cp(A).

Proof. The map ι : Cp(X)/IA → Cp(A), f + IA 7→ f � A is a homomorphism. It is
well-defined and injective, because f + IA = g + IA is equivalent to f � A = g � A.
So ι is an isomorphism from Cp(X)/IA onto ran(ι) ⊆ Cp(A).

Moreover, ran(ι) is dense in Cp(A), because by Lemma 1.2.3 for all distinct
a0, ..., an−1 in A and r0, ..., rn−1 ∈ R we can find a continuous function f ∈ C(X)
such that f(ai) = ri for all i ∈ n. It is clear that f � A ∈ ran(ι). This way, ran(ι)
meets every non-empty basic open set, and therefore it is dense in Cp(A).

Recall that x is a limit point of a set A, if for every open neighborhood U of x,
we have U ∩A \ {x} 6= ∅. For a Hausdorff space X, this is equivalent to saying that
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for every open neighborhood U of x, we have U ∩A\{x} is infinite. There is a useful
characterisation of closed sets via limit points, namely a set A is closed if and only
if it contains all its limit points (see e.g.[10, Theorem 1.3.4(i)]). This will then be
used to prove the following lemma from [18].

Proposition 1.2.6. Let X be an infinite, completely regular space. If Cp(X) is
separable, X has a closed infinite countable subset.

Proof. Suppose thatX had no closed infinite countable subsets. We show that Cp(X)
is not separable, i.e. no countable set {f0, f1, ...} is dense in Cp(X).

Let f0, f1, ... ∈ C(X). If we can find y1 6= y2 in X such that |fn(y1)− fn(y2)| ≤ 1
for each natural number n, the set {f0, f1, ...} is not dense in Cp(X). Indeed, by
Lemma 1.2.3 we can find some h ∈ C(X) such that h(y1) = 5 and h(y2) = 9. Let U
be the open set {h+g : g ∈ C(X) with |g(yi)| < 1 for i ∈ {1, 2}}. If fn ∈ U for some
natural number n, then fn = h+ g for some g ∈ C(X) with |g(yi)| < 1 for i ∈ {1, 2}
and furthermore

|fn(y1)− fn(y2)| = |h(y1)− h(y2) + g(y1)− g(y2)|

≥ ||h(y1)− h(y2)| − |g(y1)− g(y2)||

= |4− |g(y1)− g(y2)||

≥ 2,

which is a contradiction. Hence the set {f0, f1, ...} does not intersect the open set
U , i.e. {f0, f1, ...} is not dense in Cp(X).

It remains to find distinct y1, y2 in X such that |fn(y1) − fn(y2)| ≤ 1 for each
natural number n. Note first that any countable infinite set S has more than one
(in fact uncountably many) limit points, because otherwise the union of S with the
set of all its limit points would be a closed countable infinite set, contradicting the
assumption. Fix any countable infinite set S and let y1 ∈ X be one of its limit
points. In particular, y1 is non-isolated in X. By continuity of f0 find some open
neighborhood U0 of y1 such that f0[U0] ⊆ (f0(y1) − 1/2, f0(y1) + 1/2). By setting
V0 := U0 and again using continuity of f0, we get f0[V0] ⊆ [f0(y1)−1/2, f0(y1)+1/2].

Furthermore by the continuity of f1 there is some open neighborhood N1 of y1

such that N1 ⊆ U0 and f1[N1] ⊆ (f0(y1) − 1/2, f0(y1) + 1/2). As y1 is not isolated,
N1 is not a singleton, so we can find a point in N1 distinct from y1. Separate these
two points by open subsets of N1, and denote by U1 the open subset containing y1.
By letting V1 := U1, it is clear that V1 is strictly contained in V0 and again using
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continuity of f1 we get f1[V1] ⊆ [f1(y1)− 1/2, f1(y1) + 1/2].
By proceeding this way, we get a strictly decreasing sequence 〈Vn : n ∈ ω〉 of

closed neighborhoods of y1 such that the diameter of fn[Vn] is at most 1. We may
thus pick xn ∈ Vn+1 \ Vn for all n ∈ ω. By the above remark, the countable infinite
set {xn : n ∈ ω} has more than one limit point. Therefore we can find some y2 6= y1,
which is a limit point of {xn : n ∈ ω}. For a fixed n, there are only finitely many xk’s
which lie outside of Vn and because for each open neighborhood U of y2 infinitely
many xk’s lie in U \ {y2}, there is some xk ∈ Vn ∩ U \ {y2}. This means that every
open neighborhood of y2 intersects Vn \ {y2}, i.e. y2 is also a limit point of Vn. We
chose Vn to be closed, hence y2 ∈ Vn. The desired inequality follows now from the
fact that for all n ∈ ω the diameter of fn[Vn] is at most 1. This ends the proof.

We can conclude with an elegant characterisation for Cp(X) having a separable
algebra quotient, proven by Kąkol and Saxon in [18, Theorem 18]. This characteri-
sation will provide an answer for the separable quotient problem for algebras of the
form Cp(X), which will be revealed in Example 1.4.3 at the end of the chapter.

Theorem 1.2.7 (Kąkol, Saxon). Let X be an infinite, completely regular space.
Then Cp(X) has a separable algebra quotient if and only if X contains a closed
infinite countable subset.

Proof. If Cp(X) has a separable algebra quotient, there is some closed A ⊆ X such
that Cp(X)/IA is infinite-dimensional and separable. By Proposition 1.2.5, a dense
subset of Cp(A) is also separable and therefore so is Cp(A). The set A is infinite,
because otherwise RA would have finite dimension and thereby also Cp(X)/IA, as it
is isomorphic to a subspace of Cp(A), which in turn is a subspace of RA. Therefore
we can use Proposition 1.2.6 to conclude that A contains some closed (in A) infinite
countable D. However, A is closed in X and so D is also a closed subset of X.

Conversely, if X contains a closed infinite countable subset D, then by Proposi-
tion 1.2.5 the quotient Cp(X)/ID is isomorphic to a dense subset S of Cp(D). The
space S can not be finite-dimensional, because otherwise Cp(D) = S = S, which
would mean that Cp(D) is finite-dimensional. In particular, Cp(D) would then be
a closed dense subspace of RD, which would mean that RD = Cp(D) was also of
finite dimension. This is a contradiction to the fact that D is infinite. Moreover,
also because Cp(D) is a dense subset of RD, we have that S is also dense in RD. The
latter being a separable and metrizable space, we can conclude that S and hence the
quotient algebra Cp(X)/ID is separable.
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In fact, in [18] it was shown more: the above equivalent conditions are also
equivalent to the statement that Cc(X) has a separable quotient, where the latter
denotes the set C(X) but this time with the so-called compact-open topology.

1.3 Characterisation of spaces X such that Cp(X) has
SQ

In the last section, we saw a characterisation for Cp(X) having a separable algebra
quotient for infinite completely regular spaces X. This is clearly a stronger statement
than having only an arbitrary separable quotient. Now we are going to focus on
general quotients and therefore prove a characterisation for Cp(X) having a separable
quotient, where X is again an infinite completely regular space. Unfortunately, this
characterisation is not as easy to handle as the one we have already treated. The
next statement is [19, Lemma 7], the proof is omitted there.

Proposition 1.3.1. If X is an infinite completely regular space, the following are
equivalent:

(i) Cp(X) has SQ.

(ii) There is a strictly increasing sequence 〈An : n ∈ ω〉 of closed vector subspaces
whose union is dense in Cp(X).

(iii) There is a sequence 〈ϕn : n ∈ ω〉 of non-zero continuous linear functionals on
Cp(X) such that E :=

⋃
m∈ω

⋂
n≥m kerϕn is dense in Cp(X).

(iv) There is a sequence 〈Fn : n ∈ ω〉 of finite subsets of X and non-zero functions
ξn : Fn → R such that for any finite G ⊆ X, g : G → R and ε > 0 there is a
continuous function f ∈ C(X) such that:

(A)
∑
x∈Fn ξn(x)f(x) = 0 for all but finitely many n ∈ ω,

(B) |g(x)− f(x)| < ε for all x ∈ G.

Proof. (i) ⇒ (ii): Let Cp(X)/M be a separable infinite-dimensional quotient and
fix a countable dense set D ⊆ Cp(X)/M . Notice that the subspace spanD is ℵ0-
dimensional. Indeed, it is clear that its dimension cannot be bigger than ℵ0, because
it is spanned by a countable set. Moreover if spanD was finite-dimensional and B
was a finite base for spanD, we would have that

Cp(X)/M = D = spanB = spanB,
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which implies that the quotient is finite-dimensional.
Hence, we can pick a base {xk : k ∈ ω} for spanD. We let An := ρ−1[span{xk :

k ≤ n}], where ρ denotes the quotient map Cp(X) → Cp(X)/M , which is clearly a
closed linear subspace of Cp(X). Because {xk : k ∈ ω} is a linearly independent set,
we have also that An is strictly contained in An+1. To see that

⋃
n∈ω An is dense in

Cp(X), we observe that

⋃
n∈ω

An = ρ−1[
⋃
n∈ω

span{xk : k ≤ n}]

= ρ−1[span{xk : k ∈ ω}] = ρ−1[spanD] ⊇ ρ−1[D].

Notice that the latter is dense, because every open U 6= ∅ in Cp(X) meets D. Indeed,
ρ[U ] 6= ∅ is open in Cp(X)/M and therefore one can find a point y ∈ ρ[U ] ∩D and
hence also some x ∈ U such that x+M = y ∈ D, which implies that x ∈ ρ−1[D].

(ii) ⇒ (iii): Fix a strictly increasing sequence 〈An : n ∈ ω〉 of closed linear
subspaces of Cp(X) such that

⋃
n∈ω An is dense and let xn ∈ An+1 \ An. Then

for each natural number n, we can find by Theorem 1.1.5 a continuous functional
ϕn : Cp(X) → R such that An ⊆ kerϕn and ϕn(xn) = 1. Clearly, each ϕn is non-
trivial and because 〈An : n ∈ ω〉 is increasing, we have An ⊆

⋂
m≥n kerϕm. Hence⋃

n∈ω
⋂
m≥n kerϕm ⊇

⋃
n∈ω An is dense in Cp(X).

(iii) ⇒ (i): Let M :=
⋂
n∈ω kerϕn. We show that Cp(X)/M is separable and

infinite-dimensional. Let Nn :=
⋂
m≥n kerϕm, which is clearly a closed linear sub-

space. The sequence 〈Nn : n ∈ ω〉 is clearly increasing but not necessarily strictly
increasing. By removing the recurring terms from the sequence, we get an infinite,
strictly increasing subsequence 〈Nnk : k ∈ ω〉.

Indeed, if by removing the recurring terms we end up with a finite sequence, then
there is some n ∈ ω such that for each m ≥ n we have Nm = Nn. Because Nn 6= X is
closed and E is dense in Cp(X), we can find some f ∈ E such that f 6∈ Nn. However,
f ∈ E implies that f ∈ Nk for some natural number k. No matter whether k ≥ n or
k < n, we obtain f ∈ Nn, a contradiction.

To simplify our notation, we let Mk := Nnk and ψk := ϕnk . It is a simple task
to check that Mk = kerψk ∩Mk+1 for each natural number k and hence kerψk does
not contain Mk+1. For each k we may pick some fk ∈ Mk+1 \Mk. Notice also the
kernel of the restriction ψk �Mk+1, is just kerψk∩Mk+1 = Mk. By the Isomorphism
Theorem for vector spaces (1.1.3), we get that the quotient Mk+1/Mk is isomorphic
to im(ψk � Mk+1). The latter, being a non-trivial subspace of the vector space R
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(as kerψk 6⊇ Mk+1), coincides with the vector space R. Consequently Mk+1/Mk is
one-dimensional and therefore generated by {fk +Mk}.

We claim that the countable set D := {
∑
j∈k αjfj +M : k ∈ ω, αj ∈ Q for j ∈ k}

is dense in Cp(X)/M . Let Ũ 6= ∅ be an open subset of the quotient space. Then
U := ρ−1[Ũ ] 6= ∅ is an open subset of Cp(X) and therefore we can find a function
g ∈ E ∩U . This means that there is a natural number k such that g ∈Mk. If k = 0,
g+M lies in D and we are done. If k > 0, we observe that g+Mk−1 lies in the one-
dimensional spaceMk/Mk−1, hence we can find some βk−1 ∈ R such that g+Mk−1 =
βk−1fk−1 +Mk−1. This implies that g− βk−1fk−1 ∈Mk−1. Proceeding this way, we
can find for each j ∈ k some real number βj ∈ R such that g−

∑
j∈k βjfj ∈M0 = M .

Hence g + M =
∑
j∈k βjfj + M ∈ Ũ . For each j ∈ k, let 〈αij : i ∈ ω〉 be a sequence

of rationals converging to βj . Then the sequence 〈
∑
j∈k α

i
jfj +M : i ∈ ω〉 converges

to
∑
j∈k βjfj + M = g + M in Cp(X)/M . Because Ũ is an open neighborhood of

g + M in Cp(X)/M , there is some index i ∈ ω such that
∑
j∈k α

i
jfj + M ∈ Ũ . It

is clear that
∑
j∈k α

i
jfj + M also lies in D. As Ũ was an arbitrary open subset of

the quotient, D hits every open subset of Cp(X)/M , i.e. D is dense in Cp(X)/M .
Therefore the quotient Cp(X)/M is separable.

We still need to check that the above quotient is also infinite dimensional. For
this, we show by induction that for k ∈ ω we have that Mk/M0 is a linear subspace
of Cp(X)/M of dimension k. For k = 0, this is trivial. Suppose that the statement
holds for some k and observe that (Mk+1/M0)/(Mk/M0) is isomorphic to Mk+1/Mk

and hence dimMk+1/M0 − dimMk/M0 = dimMk+1/Mk. This yields

dimMk+1/M0 = dimMk/M0 + dimMk+1/Mk = k + 1,

which ends our induction. If Cp(X)/M had finite dimension m, then Mm+1/M0

would be a subspace of Cp(X)/M of dimension m+ 1, a contradiction.

(iv) ⇒ (iii): Suppose that (iv) holds. We let ϕn(f) :=
∑
x∈Fn ξn(x)f(x), which

defines clearly a continuous linear functional. Each ϕn is non-zero, because for each
n ∈ ω we can find some xn ∈ Fn such that ξn(xn) 6= 0. By complete regularity ofX, it
is then possible to find some fn ∈ C(X) such that fn(xn) = 1 and fn � Fn\{xn} = 0.
This yields ϕn(fn) 6= 0, hence the given functional is non-zero.

We show that E as above is dense in Cp(X). Let U ⊆ Cp(X) be a basic open
set, i.e. U can be written as

∏
x∈X Ux ∩ C(X), where Ux = R for almost all x ∈ X,

and for remaining x’s, Ux is an open interval. Now apply (iv) to the finite set
G := {x ∈ X : Ux 6= R}, the function g : G→ R, where g(x) is the center of Ux, and
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to ε := min{diam(Ux)/2 : x ∈ G} to get a function f ∈ C(X) such that (A) and (B)
hold. Then (A) clearly implies that f ∈ E and (B) implies that f ∈ U . This means
that U hits E, and because U was an arbitrary basic open set, E is dense in Cp(X).

(iii)⇒ (iv): The converse can we proven similarly: Suppose that (iii) holds, then
by a very classical result (see [1, Proposition 0.5.8]) every ϕn(f) can be written as∑
x∈Fn ξn(x)f(x) for some finite set Fn ⊆ X and some function ξn : Fn → R. For

arbitrary G, g and ε as above, fix U :=
∏
x∈X Ux ∩ C(X), where Ux = R for x 6∈ G

and Ux := (g(x) − ε, g(x) + ε) for x ∈ G. The set U is clearly open in Cp(X), and
by density of E we have that U hits E. Any f ∈ E ∩U will satisfy (A) and (B).

This characterisation is a practical tool for proving the following fact.
A convergent sequence 〈xn : n ∈ ω〉 is called a non-trivial convergent sequence if

xn 6= xm for n 6= m and xn 6= x for all n, where x is the limit of this sequence.

Corollary 1.3.2. Let X be an infinite completely regular space. If Cp(X) fails to
have SQ, then X contains no non-trivial convergent sequence.

Proof. Suppose 〈xk : k ∈ ω〉 is a non-trivial convergent sequence with limit point xω.
We use (iv) of the last lemma and put Fn := {xn, xω} with the assigned coefficients
ξn(xω) = 1 and ξn(xn) = −1. Let ε > 0 be arbitrary and G any finite subset of X
with an assignment g : G→ R.

We define A := ({xk : k < ω} \G) ∪ {xω}, which is a closed set, and

` :=

g(xω) if xω ∈ G

0 otherwise.

Applying Lemma 1.2.3 to K := G \ {xω} and B := A we may find a function
f ∈ C(X) such that f(x) = g(x) for each x ∈ G \ {xω} and f(x) = ` for x ∈ A.
Notice that f(xω) = ` = g(xω) if xω ∈ G and so f(x) = g(x) for each x ∈ G.

It follows that (B) holds, because |g(x)−f(x)| = 0 < ε for x ∈ G, and furthermore
(A) holds by the computation

∑
x∈Fn ξn(x)f(x) = f(xn)− f(xω) = `− ` = 0 for all

n ∈ ω for which xn 6∈ G.

1.4 Sufficient conditions for Cp(X) having SQ

Let X be a completely regular and infinite space. Now that we saw a characterisation
for Cp(X) having a separable quotient, we will study a sufficient condition for this,
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which will in turn give us information about how a space X must look like, if Cp(X)
would fail to have a separable quotient. The whole section is based on arguments
occuring in [19].

The following result was published recently (in 2017, see [19, Theorem 4]). It
gives a very elegant sufficient condition for spaces Cp(X) to have SQ, assuming
that X is completely regular. We take over the idea of their proof and adapt the
notation as well as some technical details in order to simplify it and make it more
understandable.

Theorem 1.4.1 (Kąkol, Śliwa). Let X be a completely regular space with a sequence
〈Kn : n ∈ ω〉 of non-empty compact subsets such that for any n ∈ ω the set Kn

contains two disjoint subsets homeomorphic to Kn+1. Then Cp(X) has SQ.

Proof. By Proposition 1.3.1, it suffices to check that condition (iii) is satisfied. With-
out loss of generality, we assume that Kn+1 ⊆ Kn for each natural number n. Before
the proof really starts, we need to fix a bunch of notations.

Let F [] := K0, F [0] := K1 and F [1] be the disjoint copy of K1 contained in
K0. Inductively let F [0n+1] := Kn+1 and fix F [0n a 1] to be a homeomorphic
copy of Kn+1, disjoint from Kn+1 sitting inside Kn. For each n ∈ ω we denote
by M [0n a 1] the homeomorphism from F [0n+1] to F [0n a 1]. Moreover we let
M [0n] : F [0n]→ F [0n] be the identity map.

Inductively we define a map M [s] from F [0|s|] to X for each finite bit string
s ∈ 2<ω by the following formula:

M [sa i] := (M [s] � F [0|s| a i]) ◦M [0|s| a i] for i ∈ {0, 1}. (A)

We also define F [s] := ran(M [s]). Observe that F [sa i] ⊆ F [s], which by induction
yields F [s a t] ⊆ F [s] for any string t. For n ∈ ω we let Fn :=

⋃
|s|=n F [s]. Note

that Fn+1 ⊆ Fn, as well as F [s] and F [t] are disjoint if s 6= t have the same length.
Furthermore it is natural to define for |t| = |s| the obvious homeomorphism

M [t; s] : F [t]→ F [s], M [t; s] := M [s] ◦M [t]−1. (B)

We show the following equality:

M [s1 a t; s2 a t] = M [s1; s2] � F [s1 a t], for |s1| = |s2| (?)

by induction over the length of t. If t has length 0, i.e. t is the empty string, then
the above statement is trivial. Suppose that the equality holds for strings q of size
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F [0] F [1]
M [1]

F [00] F [01] F [10] F [11]
M [01]

M [10]

M [11]

F [000] F [001] F [010] F [011] F [100] F [101] F [110] F [111]

...

... ...

M [000]

M [00]

M [0]

M [001]

M [010]

M [011]

M [100]

M [101]

M [110]

M [111]

M [100; 111]

M [01; 10]

⊃ ⊃ ⊃ ⊃

⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃ ⊃

Figure 1.1: Many homeomorphisms in Theorem 1.4.1

k. If t of size k + 1, we may write t = ia q for some bit i and some string q. We let
n := |s1| = |s2| and compute:

M [s1 a t, s2 a t] = M [s1 a ia q, s2 a ia q]
IH= M [s1 a i, s2 a i] � F [s1 a ia q]
(B)=
(
M [s2 a i] ◦M [s2 a i]−1) � F [s1 a t].

We first focus on the expression M [s2 a i] ◦M [s2 a i]−1. By equation (A) we get

M [s2 a i] ◦M [s2 a i]−1

= (M [s2] � F [0n a i]) ◦M [0n a i] ◦
(
(M [s1] � F [0n a i]) ◦M [0n a i]

)−1

= (M [s2] � F [0n a i]) ◦M [0n a i] ◦ (M [0n a i])−1 ◦ (M [s1] � F [0n a i]
)−1

= (M [s2] � F [0n a i]) ◦ (M [s1] � F [0n a i])−1

Let us take a look on the map M [s1] � F [0na i] going from F [0na i] to its range,
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which by (A) is easily seen to be F [s1 a i]. We have thus (M [s1] � F [0|s1| a i])−1 =
M [s1]−1 � F [s1 a i], which is a map F [s1 a i]→ F [0n a i]. We have therefore

M [s2 a i] ◦M [s2 a i]−1 = (M [s2] � F [0n a i]) ◦ (M [s1]−1 � F [s1 a i])

= (M [s2] ◦M [s1]−1) � F [s1 a i]

= M [s1; s2] � F [s1 a i]

This must be restricted to F [s1a t] = F [s1a ia q], which is a subset of F [s1a i]
and hence we finally get M [s1 a t, s2 a t] = M [s1; s2] � F [s1 a t], as desired.

For every natural number n we pick x[0n] ∈ F [0n] and for each string s of
size n we put x[s] := M [s](x[0n]). Clearly, we have that x[s] ∈ F [s] ⊆ F|s| and
M [s; t](x[s]) = M [t](x[0n]) = x[t]. Notice that x[s1 a t] ∈ F [s1 a t], so by (?) can
obtain

M [s1; s2](x[s1 a t]) = M [s1 a t, s2 a t](x[s1 a t]) = x[s2 a t]. (??)

Now that we fixed all those notations and we checked the above equations, we
can go over to the meat of the proof and define the continuous linear functionals ϕn
such that item (iii) of Proposition 1.3.1 holds. For n ∈ ω we define ϕn : Cp(X)→ R
by the formula ϕn(g) :=

∑
|s|=n g(x[s]) and by the complete regularity of X we have

ϕn 6= 0 for all n. We need to check that the subspace E :=
⋃
n∈ω

⋂
m≥n kerϕm is

dense in Cp(X).

For this it suffices to show that for every distinct z1, ..., zn ∈ X there is a function
g ∈ E such that g(z1) = 1 and g(zi) = 0 for all i 6= 1. Indeed, if we have this, then for
each basic open set is of the form U = {f ∈ Cp(X) : f(zi) ∈ (ri − εi, ri + εi) for 1 ≤
i 6= n} for some distinct z1, ..., zn ∈ Xn, (r1, ..., rn) ∈ Rn and (ε1, ..., εn) ∈ Rn+. For
each 1 ≤ j ≤ n we can get a function gj such that gj(zj) = 1 and gj(zi) = 0 for all
i 6= j. Then we have that the linear combination f =

∑
i rigi lies in E and satisfies

f(zi) = ri for each i, so f ∈ U . Hence every basic open set U hits E, i.e. E is dense
in Cp(X)

Let us check that this sufficient condition for E being dense holds. There are
two cases. The first case is the one in which z1 lies outside of Fk for some k ∈ ω.
Because the space X is completely regular, there is a function g ∈ C(X) such that
g(z1) = 1, g(zi) = 0 for each i 6= 1 and g � Fk = 0. For m ≥ k and for each bit
string s of length m we obtain g(x[s]) = 0, because x[s] ∈ F [s] ⊆ Fm ⊆ Fk. Hence
ϕm(g) = 0 for each m ≥ k, i.e. g ∈ E.

We consider the second case, the one in which z1 ∈
⋂
k∈ω Fk. Then there is a
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bit string s1 of size n such that z1 ∈ F [s1]. As we have 2n bit strings of size n
and 2n > n there must be a bit string s2 of size n such that zi 6∈ F [s2] for all i.
We apply the complete regularity of X to get a function g1 ∈ C(F [s1]) such that
g1(z1) = 1 and g1(zi) = 0 for each i 6= 1 such that zi ∈ F [s1]. This function will be
extended onto a continuous function on Fn by defining g2 � F [s1] = g1, as well as
g2 � F [s2] = −g1 ◦M [s2; s1] and g2 � F [s] = 0 for each bit string s 6∈ {s1, s2} of size
n.

Moreover, by applying Lemma 1.2.3 to the compact sets Fn and {z1, ..., zn} \ Fn
it is possible to find a function g ∈ C(X) with the property that g � Fn = g2 and
g(zi) = 0 for all i such that zi 6∈ Fn. Note that, as z1 ∈ F [s1] ⊆ Fn, we have that
g(z1) = g2(z1) = g1(z1) = 1.

For k ∈ ω we may compute ϕn+k(g) by writing each bit string r of length n+ k

as r = s a t for bit strings s and t of length n and k respectively and observe that
x[r] ∈ F [r] ⊆ F [s] ⊆ Fn. Note that for s 6∈ {s1, s2} we have that g2(x[s a t]) = 0.
Consequently,

ϕn+k(g) =
∑

|r|=n+k
g(x[r]) =

∑
|r|=n+k

g2(x[r])

=
∑
|t|=k

g2(x[s1 a t]) +
∑
|t|=k

g2(x[s2 a t])

=
∑
|t|=k

g1(x[s1 a t])−
∑
|t|=k

g1
(
M [s1; s2]−1(x[s2 a t])

)
(??)=

∑
|t|=k

g1(x[s1 a t])−
∑
|t|=k

g1(x[s1 a t])

= 0

and as k ∈ ω was arbitrary, it follows also that g ∈ E.

This theorem is very powerful and gives us interesting information about X for
which Cp(X) fails to have SQ, as we will see in the following corollaries.

For the first application of the above theorem, we shortly introduce the topologi-
cal space βω, the Stone-Čech compactification of the integers with the discrete topol-
ogy. One can show that this space is homeomorphic to the space of all ultrafilters on ω
endowed with the topology generated by the sets {p : p is an ultrafilter on ω and A ∈
p}, where A ⊆ ω. Furthermore, βω is a compact Hausdorff space and the given base
consists of clopen (hence also compact) sets. It contains the set of principal ultra-
filters (which is obviously homeomorphic to ω) as a dense set, but the remainder
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βω \ω (i.e. the set of free ultrafilters) is not separable, as we will see in the proof of
Lemma 2.4.2.

Corollary 1.4.2. Let X be an infinite completely regular space. If Cp(X) fails to
have SQ, then X contains no copy of βω.

Proof. For k, d ∈ ω we let k · N + d := {km + d : m ∈ ω} and k · N := k · N + 0.
Suppose βω is contained in X, then define Kn := {p ∈ βω : 2n · N ∈ p}. This set
is compact by the definition of the topology on βω. Furthermore, Kn+1 ⊆ Kn is
homeomorphic to and disjoint from {p ∈ βω : (2n+1 ·N + 2n) ∈ p} ⊆ Kn. The claim
follows from Theorem 1.4.1.

Example 1.4.3. The above corollary shows that Cp(βω) has a separable quotient.
However, βω has no closed infinite countable subset, otherwise it would be a metriz-
able subspace, thus it would contain a non-trivial convergent sequence, which is
impossible in βω. Hence by Theorem 1.2.7 we have that Cp(βω) has no separable
algebra quotient. In particular, this means that there can be separable quotients,
which are not algebra quotients and therefore the property of having a separable
algebra quotient is strictly stronger than having an arbitrary separable quotient.
By the way, we just gave a negative answer for the separable quotient problem for
algebras of the form Cp(X) (see Question 1.2.2), because Cp(βω) has no separable
algebra quotient.

Definition 1.4.4. An infinite compact space is called superrigid if it contains no
two compact disjoint infinite homeomorphic subsets.

Corollary 1.4.5. Let X be an infinite compact Hausdorff space. If Cp(X) fails to
have SQ, then X contains a superrigid subspace Y .

Proof. Suppose X contains no superrigid subspace. Then every compact subspace
contains two homeomorphic disjoint compact infinite sets. Build a sequence 〈Kn :
n ∈ ω〉 inductively. Let K0 := X and if Kn is given pick Kn+1 one of the two
homeomorphic disjoint compact infinite sets contained in Kn. As Theorem 1.4.1
implies that Cp(X) has SQ, we have a contradiction.

The above corollaries motivate the following definition.

Definition 1.4.6. An infinite compact space is called Efimov if it contains neither
a subspace homeomorphic to βω, nor a non-trivial convergent sequence.

With this definition, we can rephrase the corollaries as follows.
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Corollary 1.4.7. Let X be an infinite compact Hausdorff space such that Cp(X)
fails to have SQ. Then X is Efimov and contains a superrigid subspace. Moreover,
this subspace is a superrigid Efimov space.
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Chapter 2

Homeomorphisms of subspaces
of Efimov spaces

Let X be an infinite compact Hausdorff space. In the previous chapter, we saw that
if Cp(X) fails SQ, then X must be an Efimov space and X has a superrigid subspace,
i.e. a closed infinite subspace such that none of its two disjoint infinite subspaces
are homeomorphic. This motivates the question whether superrigid Efimov spaces
exist. If not, it would mean that the separable quotient problem for Cp(X) is solved,
because then all such spaces would have a separable quotient.

Unfortunately, as this section will show, the existence of such spaces is consistent
with ZFC. Using very deep results from functional analysis in [11], one can show
under ♦ that such spaces exist (see [19, Example 17]). Here we give an alternative
construction following the ideas of de la Vega [6], who proved under ♦ that there is
a rigid Efimov space. We use his techniques to improve his result and build (also
assuming ♦) a superrigid Efimov space.

2.1 The Cantor space

The foundation for our construction will be the Cantor space, which has very conve-
nient topological properties. Those will be recalled first, and then we will move on
to more elaborated and technical results, which will play an important role for the
construction of our space.

Definition 2.1.1. The Cantor space is the set of all bitstrings of length ω, commonly
denoted by 2ω, with the product topology, where 2 := {0, 1} is endowed with the
discrete topology. We will denote the Cantor space by C.
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Let us gather some nice properties of this space, which by the well-known Brouwer’s
Theorem, make the Cantor space unique. This statement is stated for example as a
corollary of a theorem in [5, Section 3].

Theorem 2.1.2 (Brouwer). The Cantor space is the unique (up to homeomorphism)
non-empty compact Hausdorff space without isolated points which possesses a count-
able base consisting of clopen sets. Moreover, the Cantor space is also metrizable.

The following definitions were introduced by de la Vega in [6, Definition 2.3 and
2.4] and [7, Section 3.1].

Definition 2.1.3. Let S be a countable sequence of closed subsets of C, i.e. S =
〈Si : i ∈ α〉 for some countable ordinal α ∈ ω1 and for each i ∈ α, Si is a closed
subset of the Cantor space C. Let also A0, A1 ⊆ C be closed.

We say that x ∈ X is a strong limit point of S if for all neighborhoods U of x
there is an i ∈ α such that Si ⊆ U and x 6∈ Si. We say that (A0, A1) preserves S if
whenever x ∈ A0 ∩A1 is a strong limit point of S and U is an open neighborhood of
x, there are i0, i1 ∈ α with Si0 ⊆ U \A1 and Si1 ⊆ U \A0.

Let S be a countable set of countable sequences of closed subsets of C and consider
a convergent sequence B = 〈bn : n ∈ ω〉 in C with limit point b. We say that B avoids
S, if whenever b is a strong limit point of S ∈ S and U is an open neighborhood of
b, there is an i ∈ α such that Si ⊆ U \ (B ∪ {b}).

A version of the following result was proven in [6, Lemma 2.2] (see also [7, Lemma
3.9]). We adjust the proof to our purpose.

Lemma 2.1.4 (Splitting Lemma). Suppose S is a countable set of countable se-
quences of closed subsets of C. Suppose also that B = 〈bn : n ∈ ω〉 ⊆ C is a
convergent sequence which avoids S and let b be its limit point. Suppose furthermore
that B is either constant or a non-trivial convergent sequence.

Then there are closed A0, A1 ⊆ C such that

(i) A0 ∪A1 = C,

(ii) A0 ∩A1 = {b},

(iii) {b2n : n ∈ ω} ⊆ A0 and {b2n+1 : n ∈ ω} ⊆ A1

(iv) (A0, A1) preserves every sequence in S.

Proof. We will only treat the case in which B is not constant, the proof of the case
where B is constant can be found in [9, Proof of Theorem 0.1]. So by assumption,
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B is a non-trivial convergent sequence. Without loss of generality we may assume
that each sequence in S has order type ω, because the notion of (A0, A1) preserving
a given sequence is not related to the order type of the sequence. Because S is
countable, we can therefore enumerate it by 〈〈Sin : n ∈ ω〉 : i ∈ ω〉. It is not difficult
to see that there is a decreasing sequence 〈Vm : m ∈ ω〉 consisting of clopen subsets
of the Cantor space C with V0 = C,

⋂
m∈ω Vm = B ∪ {b} and such that every open

superset of B∪{b} contains some Vm. The goal will be to build by induction another
decreasing sequence 〈Wm : m ∈ ω〉, which also consists of clopen subsets of C in order
to have W0 = C, Wm ⊆ Vm and bm ∈Wm \Wm+1 for each natural number m.

Thus we will get that
⋂
m∈ωWm = {b} and therefore A0 := {b} ∪

⋃
m∈ω

(
W2m \

W2m+1
)
and A1 := {b} ∪

⋃
m∈ω

(
W2m+1 \W2m+2

)
will be closed subsets of C, which

clearly satisfy the properties (i), (ii) and (iii). To see that A0 (and A1 analogously)
is closed, consider a sequence in A0, converging to some point in C. There are two
possibilities: if the sequence hits infinitely many W2m \W2m+1’s, this means that
each W2m contains infinitely many members of the sequence. Hence the limit point
of the sequence must lie in each W2m, which means that the sequence must converge
to b ∈ A0. If this does not happen, then the sequence is contained in a clopen subset
of A0, so its limit point lies in A0.

In remains to build the Wm’s such that (iv) holds too. We will guarantee in-
ductively that for all m ∈ ω the set {bk : k ≥ m} is contained in Wm. For the
construction, let {Oj : j ∈ ω} be a neighborhood base of the point b ∈ C and
(ψ, µ) : ω → ω × ω such that each (i, j) ∈ ω × ω is hit by some odd and some even
number, i.e. for each (i, j) there is an even number e and an odd number o such that
(ψ, µ)(e) = (ψ, µ)(o) = (i, j). We clearly need to put W0 = C and we are going to
build Wm+1 from a given Wm.

There are two cases: If b is a strong limit point of the sequence 〈Sψ(m)
n : n ∈ ω〉, we

can use the assumption that B avoids S to find some index n := n(m) ∈ ω such that
S
ψ(m)
n ⊆Wm ∩Oµ(m) and Sψ(m)

n ∩ (B ∪ {b}) = ∅ hold. Because B is convergent and
consists of different points, it is not hard to separate bm from the rest of the sequence
by an open set, and because Sψ(m)

n is closed, we can find some clopen neighborhood
U of bm such that U ∩B = {bm} and U is disjoint from S

ψ(m)
n . Furthermore, because

S
ψ(m)
n is closed, we can find some k ∈ ω such that Sψ(m)

n is disjoint from Vk and
as the sequence 〈Vk : k ∈ ω〉 is decreasing we can assume k ≥ m + 1. We define
Wm+1 := (Wm ∩ Vk) \ U in this case.

In case b is not a strong limit point of the sequence 〈Sψ(m)
n : n ∈ ω〉, we pick a

clopen neighborhood U of bm such that U ∩ B = {bm} and put Wm+1 := (Wm ∩
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Vm+1)\U . In both cases we clearly have that bm 6∈Wm+1 and, using the assumption
that all bn’s are distinct, {bk : k ≥ m+1} ⊆Wm+1 (hence bm+1 ∈Wm+1). Moreover,
it is also evident that Wm+1 is contained in Wm and in Vm+1 (that is why we chose
k ≥ m+ 1 in the first case).

We show that (iv) is satisfied: If b is a strong limit point of 〈Sin : n ∈ ω〉, and
Oj a basic neighborhood of b, then we can find m0 and m1 such that (ψ, µ)(2m0) =
(ψ, µ)(2m1 + 1) = (i, j). Let n0 := n(2m0) and n1 := n(2m1 + 1). We need to show
that Sin0 ⊆ Oj \ A1, or by using the above equalities Sψ(2m0)

n(2m0) ⊆ Oµ(2m0) \ A1. By
construction Sψ(2m0)

n0 ⊆ Oµ(2m0) and b 6∈ S
ψ(2m0)
n0 . So it suffices to show that Sψ(2m0)

n0

is contained in A0. The construction yields on one hand that Sψ(2m0)
n0 ⊆ W2m0 .

On the other hand if s ∈ S
ψ(2m0)
n0 , then s cannot lie in Vk, so s 6∈ W2m0+1. This

clearly implies that Sψ(2m0)
n0 is contained in A0. Of course one can show analogoulsy

Sin1 ⊆ Oj \A0.

The following lemma is a special case of [6, Lemma 3.4]. We identify 0 and 1
with the corresponding constant sequences in 2ω = {0, 1}ω.

Lemma 2.1.5. Let A0, A1 ⊆ C be closed subsets covering C, which intersect in a
single point p ∈ C. Let Y := A0×{0}∪A1×{1} ⊆ C×C and denote by π : Y → X

the projection. Suppose S = 〈Si : i ∈ I〉 is a sequence of closed subsets of C and
(A0, A1) preserves S. If x ∈ C is a strong limit point of S, then every point in π−1(x)
is a strong limit point of 〈π−1[Si] : i ∈ I〉.

Proof. Let (x, j) ∈ Y be any point in π−1(x) such that x is a strong limit point of
the sequence S. To show that (x, j) is a strong limit point of 〈π−1[Si] : i ∈ I〉, let
U ×{j} an open neighborhood of (x, j), where U is an open neighborhood of x. We
have to deal with two cases here.

If x 6= p, then x 6∈ A1−j , and there is an open neighborhood V such that x ∈ V ⊆
U and A1−j ∩ V = ∅. Because x is a strong limit point of S, we may find i ∈ I such
that Si ⊆ V \ {x}. In case x = p, we have that x ∈ A0 ∩ A1 is a strong limit point
of S and (A0, A1) preserves S, we can find some i ∈ I such that Si ⊆ U \A1−j .

If (c, d) lies in π−1[Si], then c ∈ Si, which in both cases implies that c ∈ U \ {x}
and c cannot lie in A1−j , hence d can only be j, i.e. (c, d) ∈

(
U ×{j}

)
\ {(x, j)}. We

showed in both cases that π−1[Si] is contained in
(
U × {j}

)
\ {(x, j)}.
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2.2 The Diamond Principle

The Diamond Principle is a set-theoretic principle first introduced by Jensen in 1972.
It was shown to be independent from ZFC by two results. The first one is that the
Diamond Principle holds in Gödel’s Constructible Universe L, so it is consistent with
ZFC. The second result is the fact that the Diamond Principle implies the Continuum
Hypothesis, which is known to be independent from ZFC by the method of forcing.
This means that in the model for ZFC where the Continuum Hypothesis fails, the
Diamond Principle does not hold either. In this section, we formulate the Diamond
Principle and mention some facts, which will be useful for this paper.

On ω1, the set of all countable ordinals, there is a canonical topology induced by
the order ∈ on ω1. It is called the order topology and is generated by the sets of the
form {x ∈ ω1 : α ∈ x}, {x ∈ ω1 : x ∈ β} and ]α, β[ := {x ∈ ω1 : α ∈ x and x ∈ β}
where α, β ∈ ω1. In this topology, a subset A ⊆ ω1 is closed if and only if for all limit
ordinals α ∈ ω1 such that A∩]ζ, α[ 6= ∅ for any ζ < α, we have that α ∈ A. Recall
also that a subset A ⊆ ω1 is called unbounded, if for each α ∈ ω1 we can find some
β ∈ A such that α ≤ β.

Definition 2.2.1. A set A ⊆ ω1 is called

B a club set, if it is closed (in the order topology of ω1) and unbounded.

B stationary, if for each club C ⊆ ω1 we have that A is not disjoint from C.

The Diamond Principle is the following statement:

♦ There is a sequence 〈Aα : α ∈ ω1〉 such that Aα ⊆ α for all α ∈ ω1 and for each
A ⊆ ω1 the set {α ∈ ω1 : A ∩ α = Aα} is stationary.

Such a sequence is often called a ♦-sequence.

The following lemma easily follows from the corresponding definitions.

Lemma 2.2.2.

(a) The set of all limit ordinals below ω1 is a club set.

(b) Every stationary set is unbounded.

(c) The intersection of two club sets is a club set.

(d) The intersection of a club set with a stationary set is stationary.
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Note that the statements (a), (c) and (d) imply that whenever a club or a sta-
tionary set is given, by passing to a smaller set if necessary, we can assume that this
set consists only of limit ordinals.

We formulate in Lemma 2.2.4 an alternative way to state the Diamond Principle
in a more practical way for the construction of our topological space. This formu-
lation can be found in [6, Section 4], in addition a similar approach is presented in
[9, §2]. The proof we give is based on an exercise in [20, Exercise III.7.9.], which is
partially solved in [14]. This yields the following lemma, which we prove in the same
fashion.

Lemma 2.2.3. Let f : ω1 → ω × ({−1} ∪ ω1) × ω1 be a bijection. Then the set
C = {α ∈ ω1 : f [α] = ω × ({−1} ∪ α)× α} is a club set.

Proof. By a simple calculation, it is quite easy to see that C is closed.
We show that C is unbounded in ω1. For this let α ∈ ω1. The aim is to find a

β ≥ α which is in C. In this proof, we shall denote by p1 : ω × ({−1} ∪ ω1)× ω1 →
({−1} ∪ ω1) and p2 : ω × ({−1} ∪ ω1)× ω1 → ω1 the obvious projections.

We define inductively sequences 〈αn : n ∈ ω〉 and 〈βn : n ∈ ω〉 as follows. Put
α0 := α and suppose that each αk for k ≤ n and all βk for k < n are defined. If
αn ∈ C we let βn := αn and if not, we let

βn := max{αn, sup p1[f [αn]], sup p2[f [αn]]}+ 1.

In addition, if βn ∈ C we define the next member of the first sequence to be αn+1 :=
βn and if not, we let αn+1 := max{βn, sup f−1[ω× ({−1} ∪ βn)× βn]}+ 1. By these
inductive definitions we can observe:

(a) αn ≤ βn < ω1.

(b) βn ≤ αn+1 < ω1

(c) If αn 6∈ C, then f [αn] ⊆ ω × ({−1} ∪ βn)× βn.

(d) If βn 6∈ C, then ω × ({−1} ∪ βn)× βn ⊆ f [αn+1].

Items (a) and (b) just follow by the definition and because the image of a count-
able set under any function is countable. To see (c), observe that if αn 6∈ C, then
y ∈ f [αn] implies pi[y] ≤ sup pi[f [αn]] < βn for i ∈ {0, 1}. To show (d), we assume
βn 6∈ C and show that f−1[ω× ({−1}∪βn)×βn] ⊆ αn+1 by seeing that if y is in the
first set, then y ≤ sup f−1[ω × ({−1} ∪ βn)× βn] < αn+1.
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We define β := sup{αn : n ∈ ω} ≥ α0, which by (a) and (b) coincides with
sup{βn : n ∈ ω}. We show that β lies inside C. There are two cases: if some αn lies
in C, then all αm = αn for m ≥ n and hence β = αn ∈ C. If no αn lies in C, then
in particular no βn can lie in C either. From our observations (c) and (d) we get
f [αn] ⊆ ω × ({−1} ∪ βn)× βn ⊆ f [αn+1] for each natural number n.

By taking unions on every side of this inclusions over all n ∈ ω, and noticing
that on one hand the union commutes with the image of the function and on the
other hand that the union of ordinals is just their supremum, we conclude that
f [β] ⊆ ω × ({−1} ∪ β) × β ⊆ f [β]. This implies the equality between these sets,
and hence it follows that β ∈ C, which finishes the proof of the fact that C is
unbounded.

For β ≤ α ≤ ω1 we denote by παβ : C × Cα → C × Cβ the canonical projection.
Moreover, we let πβ := πω1

β for β ≤ ω1, i.e. in case α = ω1 we will not write the
above index. We will label the very first coordinate of elements of C× Cα by −1.

Lemma 2.2.4. Assume ♦. Then there are sequences 〈zαγ : γ ∈ α〉 in C × Cα,
where α ∈ ω1, such that for every sequence 〈xγ : γ ∈ ω1〉 in C × Cω1 the set
{α ∈ ω1 : ∀γ ∈ α (πα(xγ) = zαγ )} is stationary.

Proof. The idea is to code sequences 〈sγ : γ ∈ α〉 in C × Cα for α ≤ ω1 by three-
dimensional matrices of size ω×({−1}∪α)×α with entries zero or one. Here, the size
does not refer to a cardinality but to an order type in each of the three dimensions
of the matrix. If we look at the entry indexed by (n, β, γ) of this matrix, the third
coordinate γ will indicate the member sγ of the sequence, the second coordinate β
will indicate the β-th coordinate of sγ , denoted by sγ(β). Notice that sγ(β) is itself
a 0-1-sequence, whose n-th entry is the entry of the matrix at (n, β, γ). This entry
will be denoted by sγ(β)n.

We fix a bijection f : ω1 → ω × ({−1} ∪ ω1) × ω1 such that for each ordinal
α ∈ ω1 one has f [α] ⊆ ω × ({−1} ∪ α)× α. Furthermore we let Bα := f [Aα], where
Aα is given by ♦. Each Bα is a subset of ω × ({−1} ∪ α) × α, so it can be seen
as a three-dimensional matrix, which codes a sequence 〈zαγ : γ ∈ α〉 in C × Cα as
described above. Formally, this sequence can be defined by putting zαγ (β)n := 1
whenever (n, β, γ) ∈ Bα and otherwise zαγ (β)n := 0.

Let 〈xγ : γ ∈ ω1〉 be a sequence in C×Cω1 and let B ⊆ ω×({−1}∪ω1)×ω1 be its
corresponding matrix defined by stipulating (n, β, γ) ∈ B if and only if xγ(β)n = 1.
Set A := f−1[B] and apply ♦ in its classical form to see that {α ∈ ω1 : A∩α = Aα}
is stationary. Let C := {α ∈ ω1 : f [α] = ω× ({−1}∪α)×α}, which by Lemma 2.2.3
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is a club set, and define also S := {α ∈ ω1 : B ∩
(
ω × ({−1} ∪ α) × α

)
= Bα}. By

Lemma 2.2.2 we get that in particular the set

{α ∈ ω1 : A ∩ α = Aα} ∩ C = {α ∈ ω1 : f(A) ∩ f(α) = f(Aα)} ∩ C

= S ∩ C

is stationary, hence S is also stationary. For α ∈ S, we have the following equivalences

xγ(β)n = 1 and n ∈ ω, β ∈ {−1} ∪ α, γ ∈ α

⇐⇒ (n, β, γ) ∈ B ∩
(
ω × ({−1} ∪ α)× α

)
⇐⇒ (n, β, γ) ∈ Bα
⇐⇒ zαγ (β)n = 1.

This implies that for each γ smaller than such an α, the first α coordinates of xγ
coincide with the ones from zαγ . In other words, we have the inclusion (even the
equality holds) S ⊆ {α ∈ ω1 : ∀γ ∈ α πα(xγ) = zαγ }, and therefore the latter is
stationary. This ends the proof.

The following lemma is known as Fodor’s Lemma, for a proof see [20, Lemma
III.6.14].

Lemma 2.2.5 (Fodor). Let S ⊆ ω1 be stationary and ξ : S → ω1 be a function such
that ξ(α) < α for each α ∈ S. Then there is a stationary set S′ ⊆ S and γ ∈ ω1

such that ξ(α) = γ for all α ∈ S′.

Lemma 2.2.6. Let β : ω1 → ω1 be a function. Then there is a club C ⊆ ω1 such
that for each α ∈ C and for each ξ < α we have that β(ξ) < α.

Proof. Let us define a function c : ω1 → ω1 as follows. For each µ ∈ ω1, we put µ(0) :=
µ and if µ(n) is already defined we set µ(n+ 1) := µ(n) + sup{β(ξ) : ξ < µ(n)} + 1.
Finally, let c(µ) := µ(ω) := sup{µ(n) : n ∈ ω}. This defines the function c as wanted,
because ω1 is regular (countable unions of countable ordinals are countable).

Define C to be the closure (with respect to the order topology of ω1) of the range
of the function c, i.e. C := {c(µ) : µ ∈ ω1}. We claim that C is the desired club
set. Let α ∈ C and ξ < α. Because α lies in the closure of the range of c, we can
find some µ ∈ ω1 such that ξ < c(µ) ≤ α (because the interval ]ξ, α] is an open
neighborhood of α in ω1). By the definition of the function c, there is some natural
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number n such that ξ < µ(n) < c(µ) ≤ α. Then it follows that

µ(n+1) = µ(n) + sup{β(ξ′) : ξ′ < µ(n)}+ 1

> µ(n) + β(ξ)

≥ β(ξ)

and so we have β(ξ) < µ(n+1) ≤ c(µ) ≤ α, as desired.
The set C is a club, because it is clearly closed by definition, and it is also

unbounded, as for µ ∈ ω1 we have c(µ) ≥ µ and c(µ) ∈ C.

2.3 Inverse limits

Inverse limits are very general objects, which are also considered in category theory.
Here, the definition of inverse limits will remain somewhat special, as it is adapted
to our needs. Our goal was namely to construct a superrigid Efimov space, there-
fore we want to get rid of homeomorphisms between compact disjoint subspaces of
the desired space. Inverse limits are very practical for this, because – as we will
show in Proposition 2.3.5 – such homeomorphisms reflect down to club many places,
where then these homeomorphisms can be eliminated in the induction step of the
construction of our space.

Definition 2.3.1. Let γ ≤ ω1 and 〈Xα : α ∈ γ〉 be a sequence such thatXα ⊆ C×Cα

is such that παβ [Xα] = Xβ for each β ≤ α < γ. Such a sequence will be called a
γ-inverse system. If γ is a limit ordinal, the γ-inverse limit of 〈Xα : α ∈ γ〉 is the
space X =

⋂
α∈γ(πγα)−1[Xα], which is a subspace of C× Cγ .

An inverse system is an ω1-inverse system and an inverse limit is an ω1-inverse
limit, for which we sometimes write Xω1 .

Note that in the classical literature, as e.g. in [10, Section 2.5], the inverse limit of
topological spaces is defined as a certain subspace of their product. Formally, this is
not what is done here. If we followed this classical definition, we would not say thatX
as above is an inverse limit of 〈Xα : α ∈ ω1〉, but the set {〈πα(x) : α ∈ ω1〉 : x ∈ X}.
We just drop away unnecessary (repetitive) information, so that the inverse limit,
as a formal object, gets simpler. However, we can still use the following facts, which
can be derived from [10, Theorem 3.2.13 and Corollary 3.2.15] also for the formal
definition used here.
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Lemma 2.3.2. Let γ ≤ ω1 and Xγ the γ-inverse limit of 〈Xα : α ∈ γ〉, where each
Xα is non-empty and compact. Then Xγ is non-empty, compact and furthermore for
every α ≤ ω1 the projection πγα is surjective from Xγ onto Xα, i.e. πγα[Xγ ] = Xα.

One could also prove the above lemma directly by an inductive argument using
the compactness at each limit stage. Notice that without compactness, inverse limits
may die out, i.e. it can happen that the inverse limit of non-empty spaces is empty.

Remark 2.3.3. The product topology on C × Cα is generated by the sets of the
form

∏
δ∈{−1}∪αOδ, where Oδ = C for almost all δ ∈ {−1} ∪ ω1 and for only finitely

many δ’s Oδ is any open set in C. Recall that C has a basis consisting of clopen sets,
therefore each Oδ contains a clopen set Uδ such that if Oδ = C, then Uδ = C.

Therefore every open set in C×Cα contains a clopen set of the form
∏
δ∈{−1}∪α Uδ,

where Uδ is a clopen set in C and Uδ 6= C for only finitely many δ. It is easy to
see that the sets of this form generate the topology of C × Cα, that is why we will
call those sets basic clopen sets in this context. These sets give also rise to the basic
clopen sets of any subspace of this space in the usual way. We may also refer to
these as basic clopen sets of a given subspace.

In the proof of the following lemma, we will use a fact about compact spaces.
A point is called a full accumulation point of some subset A, if for every open
neighborhood U of this point we have |A| = |A ∩ U |. In every compact space, every
infinite subset A has a full accumulation point (see [10, Problem 3.12.1]). This fact
also has an "indexed" version, namely if X is compact and 〈ai : i ∈ U〉 ∈ XI , where
I is infinite, then there exists some x ∈ X such that |{i ∈ I : ai ∈ U}| = |I| for any
open U containing x.

Lemma 2.3.4. Let X be an inverse limit of 〈Xα : α ∈ ω1〉. If Y and Z are
compact disjoint subsets of X, there is a β ∈ ω1 such that for all α ≥ β we have that
Yα := πα[Y ] is disjoint from Zα := πα[Z].

Proof. This statement is equivalent to the following: there is a α ∈ ω1 such that Yα
is disjoint from Zα. We show that if this fails, then Y cannot be disjoint from Z.

If for all α ∈ ω1 we have πα[Y ] ∩ πα[Z] 6= ∅, we may pick for each α an xα in
this intersection. This means that there are yα ∈ Y, zα ∈ Z such that πα(yα) =
πα(zα) = xα. Using the "indexed" version of the existence of a full accumulation
point find (y, z) ∈ Y × Z such that for each basic neighborhood U × V of (y, z) we
have |{α ∈ ω1 : (yα, zα) ∈ U × V }| = ω1.
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We show that y = z, which then implies that Y and Z are not disjoint. If not, find
some β ∈ ω1 such that πβ(y) 6= πβ(z): Moreover find a basic clopen subset U ⊆ Xβ

such that πβ(y) ∈ U , but πβ(z) 6∈ U . Then (πβ)−1[U ]×(X\(πβ)−1[U ]) is a basic open
neighborhood of (y, z), so |{α ∈ ω1 : (yα, zα) ∈ (πβ)−1[U ]× (X \ (πβ)−1[U ])}| = ω1.
Hence, we can pick α ≥ β such that (yα, zα) ∈ (πβ)−1[U ] × (X \ (πβ)−1[U ]). On
one hand this yields πβ(yα) ∈ U and πβ(zα) 6∈ U , but on the other hand we had
πα(yα) = πα(zα), which in particular yields πβ(yα) = πβ(zα), a contradiction. Hence
y = z ∈ Y ∩ Z, and thus Y cannot be disjoint from Z.

The following fact is mentioned in [6, Section 4] without a proof, we give a proof
for it.

Proposition 2.3.5. Let X be a compact inverse limit of 〈Xα : α ∈ ω1〉, Y and Z
compact subspaces of X and h : Y → Z a homeomorphism. Then there is a club
Qh ⊆ ω1 such that for each α ∈ Qh there is a homeomorphism hα : πα[Y ] → πα[Z]
such that for each x ∈ Y we have that πα(h(x)) = hα(πα(x)).

Proof. We need to show that there is a club Ph such that for any α ∈ Ph, the
following defines a function: For any y ∈ πα[Y ] pick an x ∈ Y with πα(x) = y and
define hα(y) = πα(h(x)). Once this is proved, we let Qh := Ph ∩ Ph−1 . Then it is
not hard to see that hα is a homeomorphism with inverse (h−1)α for all α ∈ Qh. So
we need to prove that for club many α ∈ Ph, this is a well-defined function.

By contradiction, suppose this is not the case and let S := {α ∈ ω1 : hα is
ill-defined}. Then there is no club which is disjoint from S, in other words: S must
be stationary. Without loss of generality we can assume that S consists of limit
ordinals. By the definition of S, we know that for each α ∈ S, there are yα ∈ πα[Y ]
and x0

α and x1
α in Y such that πα(x0

α) = πα(x1
α) = yα but πα(h(x0

α)) 6= πα(h(x1
α)).

Find a basic clopen Uα ⊆ C×Cα such that πα(h(x0
α)) ∈ Uα and πα(h(x1

α)) 6∈ Uα.
Because every α ∈ S is a limit ordinal, we can find some ξ(α) < α and a clopen
U ′α ⊆ C × Cξ(α) such that Uα = (παξ(α))

−1[U ′α]. We can see ξ as a function on the
stationary set S. By Fodor’s Lemma (2.2.5), there is a stationary set S′ ⊆ S and a
γ ∈ ω1 such that ξ(α) = γ for all α ∈ S′. As U ′α is a basic clopen subset of C × Cγ

for α ∈ S′, there are only countably many possibilities for choosing U ′α. But S′ is
uncountable, therefore by an uncountable version of the Pigeonhole Principle there is
an uncountable (hence unbounded) S′′ ⊆ S′ and a clopen U ⊆ Xγ such that U = U ′α

for each α ∈ S′′.
Now we set V := h−1[Z∩π−1

γ [U ]] andW := h−1[Z∩π−1
γ [Xγ \U ]] = Y \V . These

sets are compact, as they are closed in a compact set and so Lemma 2.3.4 implies that
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there is some ν such that for each α ≥ ν, we have that πα(V ) and πα(W ) are disjoint.
Now pick α ∈ S′′ such that α ≥ ν. Then yα = πα(x0

α) = πα(x1
α) ∈ πα(V ) ∩ πα(W ).

This is a contradiction, therefore the assumption that there is no club on which the
above construction defines a function is wrong.

2.4 Sufficient conditions for topological properties of in-
verse limits

Remember that our goal is to construct under ♦ a superrigid Efimov space, i.e. an
Efimov space containing no two infinite, compact, disjoint sets. This space will be
built as an inverse limit of a sequence 〈Xα : α ∈ ω1〉. Before we do this, we need
to study sufficient conditions on the sequence 〈Xα : α ∈ ω1〉 which imply that its
inverse limit has the properties we are interested in. These sufficient conditions will
afterwards be implemented in the construction, so that our inverse limit becomes a
superrigid Efimov space.

Definition 2.4.1. An infinite compact space is called

B hereditarily separable (HS) if every subspace is separable.

B Fedorčuk if it is HS and if it contains no non-trivial convergent sequence.

B rigid if its only autohomeomorphism is the identity map.

Lemma 2.4.2. Every zero-dimensional, compact superrigid space with no isolated
points is rigid. Every Fedorčuk space is Efimov.

Proof. Suppose there is an autohomeomorphism h of X which is not the identity
function. Then there is some x ∈ X such that h(x) 6= x. Separate x from h(x) by
clopen neighborhoods U and V such that V ⊆ h[U ]. Now consider the homeomorphic
clopen neighborhoods h−1[V ] and V of x and h(x) respectively. As x and h(x) are
not isolated, these neighborhoods must be infinite and because X is compact, they
are also compact. This contradicts the superrigidity of the space.

The second statement just follows from the fact that βω \ ω is not separable,
hence it can not be contained in an HS space. To see this fact, we let A ⊆ P(ω)
be an uncountable maximal almost disjoint family, i.e. A ∩ B is finite for each
A,B ∈ A and the family is maximal with respect to inclusion. The existence of such
a family is not hard to prove, see e.g. [15, Proposition 8.6]. Consider the open subset
UA := {p ∈ βω \ ω : A ∈ p} of the remainder βω \ ω, where A ∈ A. It is easy to
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see that for A 6= B in A, the set UA is disjoint from UB, because if there was a free
ultrafilter p ∈ UA ∩UB it would contain the finite set A∩B, which is impossible for
free ultrafilters. If D was a dense subset of βω\ω, then D contains at least one point
from each UA (A ∈ A). Since {UA : A ∈ A} is an uncountable family of pairwise
disjoint open subsets of βω \ ω, D must be uncountable too. Consequently βω \ ω
can not be separable.

From now on, we assume ♦, so in light of Lemma 2.2.4 we fix sequences 〈zαγ : γ ∈
α〉 in C × Cα, where α ∈ ω1, such that for every sequence 〈xγ : γ ∈ ω1〉 in C × Cω1

the set S = {α ∈ ω1 : ∀γ ∈ α πα(xγ) = zαγ } is stationary. We introduce sufficient
conditions for topological properties in the same fashion as in [6].

Definition 2.4.3. Let X be an inverse limit of 〈Xα : α ∈ ω1〉, where each Xα is
non-empty and compact. We abbreviate some statements as follows:

(C3) For all β ≤ α ≤ ω1, if the zβγ ’s are all distinct, where γ < β and lie in Xβ, then
for every x ∈ Xα for which παβ (x) is a limit point of 〈zβγ : γ ∈ β〉, we have that
x is a strong limit point of 〈Xα ∩ (παβ )−1(zβγ ) : γ ∈ β〉.

(C4) If {zαn : n ∈ ω} is a non-trivial convergent sequence in Xα with limit point
x ∈ Xα, then |Xα+1 ∩ (πα+1

α )−1(x)| > 1.

(C7) For all α ∈ ω1, if {zαn : n ∈ ω} is a dense subset of Xα, {zα2n : n ∈ ω}
and {zαω+2n : n ∈ ω} have disjoint closures, say Yα and Zα respectively, and
f : Yα → Zα is a homeomorphism such that f(zα2n) = zαω+2n, then there are
sequences 〈aαn : n ∈ ω〉 in Yα converging to aα and 〈bαn : n ∈ ω〉 in Zα converging
to bα such that, if by I7 ⊆ ω1 we denote the set of those α for which these
premises are fulfilled, we have

(R1) For each α ∈ I7 and each compact R ⊆ Xα+1 such that πα+1
α [R] = Zα

there is an x ∈ R ∩ (πα+1
α )−1(bα) which is not a strong limit point of the

sequence 〈R ∩ (πα+1
α )−1(bα2n) : n ∈ ω〉.

(R2) For all β < α ≤ ω1 such that β ∈ I7 and for all x ∈ Xα ∩ (παβ )−1(aβ), we
have that x is a strong limit point of 〈Xα ∩ (παβ )−1(aβ2n) : n ∈ ω〉.

(R3) f(aαn) = bαn for all n ∈ ω.

Let us shortly rephrase, what these conditions mean intuitively. The condition
(C3) means that under given conditions all limit points of the sequence given by
♦ are preserved by lifting it up. The condition (C4) says that whenever the initial
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segment of length ω of the sequence given by ♦ converges, its limit point is split
in the next space. The statement (C7) says that when the premises are satisfied,
then we can find a convergent sequence on each "side" of the homeomorphism, such
that the limit point of one sequence is preserved by lifting it up, while for the other
sequence it is not.

These statements will be shown to be sufficient conditions for some topological
properties as superrigidity, HS or containing no non-trivial convergent sequences.

Definition 2.4.4. Let Y = {yα : α ∈ ω1} ⊆ X. Then Y is called left-separated if
for each α ∈ ω1 the set {yγ : γ ≥ α} is open in Y .

Lemma 2.4.5. Every space X, which is not HS contains a left-separated subspace
Y = {yα : α ∈ ω1}.

Proof. Let Z ⊆ X be non-separable. By induction pick yα ∈ Z such that yα 6∈
{yβ : β < α}. It is easy to see that {yα : α ∈ ω1} is left separated.

The next result is mentioned without a proof in [6, Section 4] but with a reference
to a proof of a similar fact in [9, Lemma 2.2].

Proposition 2.4.6. Every inverse limit of HS-spaces which satisfies condition (C3)
is HS.

Proof. Suppose that X is not HS, so by Lemma 2.4.5 X contains a left-separated
Y = {yα : α ∈ ω1}.

Claim. There is a club C such that for all α ∈ C we have that {πα(yγ) : γ ∈ α} is
dense in πα(Y ).

Proof of Claim. For any α use that Xα is HS to pick β(α) such that {πα(yγ) : γ ∈
β(α)} is dense in {πα(yξ) : ξ ∈ ω1}. Let C be the club given by Lemma 2.2.6
applied to the function β, and without loss of generality C consists only of limit
ordinals. It suffices to show that every basic clopen subset U hitting πα[Y ] also hits
{πα(yγ) : γ ∈ α}.

There is some ξ ∈ α such that U = (παξ )−1[παξ [U ]]. By definition of β(ξ) we have
that {πξ(yγ) : γ < β(ξ)} and hence {πξ(yγ) : γ < α} (as β(ξ) < α) is dense in πξ[Y ].
As πξ[U ] is an open set, it follows that there is some γ < α such that πξ(yγ) ∈ παξ [U ].
The claim follows now by observing that

πα(yγ) ∈ (παξ )−1[πξ(yγ)] ⊆ (παξ )−1[παξ [U ]] = U. �Claim
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We know that S := {α ∈ ω1 : ∀γ ∈ α πα(yγ) = zαγ } is stationary, so it hits
the club C. Pick α ∈ S ∩ C. Then πα(yα) lies inside the closure of {zαγ : γ < α},
i.e. πα(yα) is a limit point of {zαγ : γ < α}. By (C3), we have that yα is a strong
limit point of 〈X ∩ (πα)−1(πα(yγ)) : γ ∈ α〉, which implies that yα is a limit point of
{yγ : γ < α}. This is a contradiction to the fact that {yγ : γ < α} is closed in Y .
Hence X must be HS. �

A rather sketchy proof of the next fact is given by de la Vega in [6, Section 4]. In
our proof, we will give some more details. The results following afterwards are also
inspired by the ideas of de la Vega.

Proposition 2.4.7. Let X be the inverse limit of 〈Xα : α ∈ ω1〉, where each Xα is
non-empty, compact and has no isolated points. If X satisfies conditions (C3) and
(C4), then X contains no non-trivial convergent sequence.

Proof. Suppose 〈xn : n ∈ ω〉 was a non-trivial convergent sequence in X. Then
because X has a basis of clopen sets, it is possible to find inductively mutually
different points xα (where ω ≤ α < ω1) such that {xn : n ∈ ω} is disjoint from
{xα : α ≥ ω}.

Indeed, the complement of the closure of the first set contains some non-empty
basic clopen set A, so we can pick the xα’s for α ≥ ω in A. Pick them such that they
are mutually different. Note that the set A cannot be countable, because otherwise
for any α ∈ ω1 we would have that Q := πα[A] was a countable clopen subspace of
Xα and the latter is homeomorphic to the metrizable space C, by Brouwer’s Theorem
(2.1.2). Because Q is open, it can have no isolated points and thus Q being countable,
metrizable and having no isolated points, it must be a copy of the rationals (see eg.
[5]). However, Q is closed, thus compact, and the rationals are not.

It is clear that then 〈xn : n ∈ ω〉 and 〈xα : α ≥ ω〉 have disjoint closures.
By Lemma 2.3.4 there is some β ∈ ω1 such that for all α ≥ β we also have that
〈πα(xn) : n ∈ ω〉 and 〈πα(xγ) : γ ≥ ω〉 have disjoint closures.

There is a club C such that for each α ∈ C all πα(xγ), where γ ∈ α, are mutually
different. Indeed, for each ξ ∈ ω1 we may pick some β(ξ) such that all πβ(ξ)(xγ),
where γ ∈ ξ, are mutually different. By Lemma 2.2.6 we find a club C such that
for each α ∈ C and for each ξ < α we have that β(ξ) < α, i.e. all πα(xγ), where
γ ∈ ξ, are mutually different. By assuming that C consists only of limit ordinals,
this implies that for each α ∈ C all πα(xγ), where γ ∈ α, are mutually different.

Let S := {α ∈ ω1 : ∀γ ∈ α (πα(xγ) = zαγ )} and pick α ∈ S ∩ C such that
α ≥ β. Then we have that zαγ = πα(xγ) for all γ ∈ α and 〈πα(xn) : n ∈ ω〉 = 〈zαn :
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n ∈ ω〉 is a non-trivial convergent sequence with limit point πα(x) =: y. Fix any
x̃ ∈ (πα)−1(y) ∩X, i.e. πα(x̃) = πα(x) =: y . Notice that y is also a limit point of
〈zαγ : γ ∈ α〉 and all zαγ are mutually different, so (C3) implies that x̃ is a strong limit
point of 〈X ∩ (πα)−1(zαγ ) : γ ∈ α〉.

We show that x̃ is a strong limit point of 〈X ∩ (πα)−1(zαn ) : n ∈ ω〉. For this let
U be a neighborhood of x̃. Notice that x̃ ∈ (πα)−1[πα[{xn : n ∈ ω}]

]
, and because

we chose α ≥ β the latter is disjoint from (πα)−1[πα[{xγ : γ ≥ ω}]
]
. Hence U \

(πα)−1[πα[{xγ : γ ≥ ω}]
]
is an open neighborhood of x and because x̃ is a strong

limit point of 〈X ∩ (πα)−1(zαγ ) : γ ∈ α〉 one can find some γ ∈ α such that

x̃ 6∈ X ∩ (πα)−1(zαγ ) ⊆ U \ {xξ : ξ ≥ ω}

⊆ U \ {xξ : ξ ≥ ω}.

It is clear that γ < ω, because xγ ∈ X ∩ (πα)−1(zαγ ) implies that xγ 6∈ {xξ : ξ ≥ ω}.
In conclusion, x̃ is a strong limit point of 〈X ∩ (πα)−1(zαn ) : n ∈ ω〉, and it follows
that x̃ is also a limit point of 〈xn : n ∈ ω〉.

Remember that we chose x̃ arbitrarily in X ∩ (πα)−1(y), hence any point in
this set is a limit point of our convergent sequence 〈xn : n ∈ ω〉. This means
that there can be at most one point in this set. However, by (C4) it follows that
|Xα+1 ∩ (πα+1

α )−1(x)| > 1. By choosing two different points in there and using the
fact that Xα+1 = πα+1(X) (see Lemma 2.3.2) to lift them to different points in
X ∩ (πα)−1(y), we see that |X ∩ (πα)−1(y)| > 1, which is a contradiction.

Lemma 2.4.8. Let X be the inverse limit of 〈Xα : α ∈ ω1〉 satisfying the property
(C7). Then we have:

(?) For all α ∈ ω1, if {zαn : n ∈ ω} is dense in Xα, {zα2n : n ∈ ω} and {zαω+2n : n ∈
ω} are subsets of Xα and have disjoint closures, say Yα and Zα respectively,
and f : Yα → Zα is a homeomorphism such that f(zα2n) = zαω+2n, then for all
compact, disjoint Y, Z ⊆ X such that πα[Y ] = Yα and πα[Z] = Zα there is no
homeomorphism h : Y → Z such that α ∈ Qh and hα = f .

Proof. Indeed, if there was such a homeomorphism h : Y → Z, the members of
the sequence 〈Y ∩ (πα)−1(aα2n) : n ∈ ω〉 would be mapped by h onto the members
of 〈Z ∩ (πα)−1(bα2n) : n ∈ ω〉 and the image of Y ∩ (πα)−1(aα) under h would be
Z∩(πα)−1(bα). Now the set πα+1[Z] is compact and satisfies πα+1

α [πα+1[Z]] = Zα, so
by condition (R1) we can find some x ∈ πα+1(Z)∩(πα+1

α )−1(bα) which is not a strong
limit point of 〈πα+1[Z] ∩ (πα+1

α )−1(bα2n) : n ∈ ω〉. Let z ∈ Z such that πα+1(z) = x.
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Then z ∈ Z∩(πα)−1(bα) is not a strong limit point of 〈Z∩(πα)−1(bα2n) : n ∈ ω〉. Hence
h−1(z) ∈ X ∩ (πα)−1(aα) is not a strong limit point of 〈Y ∩ (πα)−1(aα2n) : n ∈ ω〉 and
in particular not of 〈X ∩ (πα)−1(aα2n) : n ∈ ω〉, which clearly contradicts (R2).

Proposition 2.4.9. Let X be the inverse limit of 〈Xα : α ∈ ω1〉 and assume that
all Xα are non-empty and compact. If X is HS and satisfies condition (C7), then X
is also superrigid.

Proof. The space X is compact and infinite by Lemma 2.3.2. We show that X has
no infinite compact disjoint homeomorphic sets. By contradiction suppose that we
have two infinite compact disjoint Y,Z ⊆ X and a homeomorphism h : Y → Z,
then by Proposition 2.3.5 there is a club Qh, such that for each α ∈ Qh there is a
homeomorphism hα : πα[Y ]→ πα[Z] satisfying πα(h(x)) = hα(πα(x)) for all x ∈ Y .

Now let {x2n : n ∈ ω} be dense in Y (we know that X is HS) and let {x2n+1 :
n ∈ ω} be dense in X (hence {xn : n ∈ ω} is also dense in X). Let xω+2n := h(x2n),
and let all other xγ be arbitrary points in X. Then the set S = {α ≥ ω + ω : ∀γ ∈
α : (πα(xγ) = zαγ )} is stationary, and its intersection with Qh is unbounded in ω1. It
is not too hard to see that Yα := {zα2n : n ∈ ω} = πα[Y ] and Zα := {zαω+2n : n ∈ ω} =
πα[Z] for all α ∈ S. (For this just notice that πα : X → Xα is a closed and continuous
map, which implies that πα[{x2n : n ∈ ω}] = {πα(x2n) : n ∈ ω}.)

Because Y and Z are disjoint, by Lemma 2.3.4 there is a β ∈ ω1 such that for all
α ≥ β we have that Yα is disjoint from Zα. Furthermore for each α ≥ β in Qh ∩ S
we get that hα(zα2n) = hα(πα(x2n)) = πα(h(x2n)) = πα(xω+2n) = zαω+2n. Therefore
(?) from the above lemma does not hold. This contradicts (C7), so there are no two
infinite compact disjoint homeomorphic subsets of X.

To sum up the results from this section we formulate the following corollary:

Corollary 2.4.10. Suppose X is the inverse limit of 〈Xα : α ∈ ω1〉, where all Xα are
infinite and compact. If X has satisfies (C3), (C4) and (C7), then X is a superrigid
Fedorčuk space.

Proof. By Lemma 2.3.2 X is compact and infinite. To see that X is HS, apply
Proposition 2.4.6. Note that each subspace of Xα has a countable base, so each
Xα must be HS. Furthermore, X contains no non-trivial convergent sequence by
Proposition 2.4.7. So X is Fedorčuk. Finally, by Proposition 2.4.9 we can also
conclude that X is superrigid.
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2.5 A superrigid Fedorčuk space

The goal of this section is to prove the following result:

Theorem 2.5.1. (♦) There is a superrigid Fedorčuk space.

Proof. The construction of this space follows the idea of [6, Section 4], but with slight
changes and simplification. As mentioned, the desired space X will be constructed
as an inverse limit of an inverse system 〈Xα : α ∈ ω1〉. This system will be built by
induction over α, such that

(C1) Xα is closed in C× Cα, infinite and has no isolated points,

(C2) παβ [Xα] = Xβ for every β ≤ α,

and conditions (C3), (C4) and (C7) from Definition 2.4.3 hold. By Corollary 2.4.10,
the space X will be a superrigid Fedorčuk space.

Note that the statements (C4) and (C7) are basically statements about the next
step of our construction, that is why we will satisfy them whenever we build the
space Xα+1 from Xα. By setting X0 := C × {∅}, these conditions hold at step 0 of
the construction.

If α is a limit ordinal and for all γ < α the space Xγ is already constructed
and satisfies the above conditions, then we just let Xα :=

⋂
γ∈α(παγ )−1[Xγ ], which

is the α-inverse limit of 〈Xγ : γ ∈ α〉. Then Xα is clearly closed in C × Cα and
by Lemma 2.3.2 we have παβ [Xα] = Xβ for every β ≤ α, which implies that Xα is
infinite.

We also need to check that Xα has no isolated points. Suppose by contradiction
it had an isolated point x, then we can find a basic open set U ⊆ C × Cα which
contains only one point from Xα, namely x. Note that there is a γ ∈ α such
that U = (παγ )−1[παγ [U ]]. We check that παγ (x) is an isolated point of Xγ , which is a
contradiction. Let y ∈ Xγ∩παγ [U ], then we can find some v ∈ U such that παγ (v) = y.
Because παγ (v) ∈ Xγ = παγ [Xα], there is a u ∈ Xα such that παγ (u) = παγ (v). This
implies that u is not only in Xα, but also in U , and therefore u = x. Hence y = παγ (x)
is an isolated point in Xγ , contradicting the induction hypothesis.

To preserve the properties (C3) and (R2) in the limit case, it is important to
notice that limit points are preserved in the following sense: Suppose that x ∈ Xα

and for some β < α, S is a sequence of points in Xβ such that for all γ ∈ α\β, παγ (x)
is a strong limit point of 〈Xγ ∩ (πγβ)−1(s) : s ∈ S〉, then x is a strong limit point of
〈Xα ∩ (παβ )−1(s) : s ∈ S〉. Indeed if β < α, let U be a basic open neighborhood of x.
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Then there is some γ ∈ α \ β such that U = (παγ )−1[παγ [U ]]. As παβ (x) = πγβ(παγ (x)),
by induction hypothesis παγ (x) is a strong limit point of 〈Xγ ∩ (πγβ)−1(s) : s ∈ S〉.
Therefore there is some s ∈ S such that παγ (x) 6∈ Xγ ∩ (πγβ)−1(s) ⊆ παγ [U ], which
then implies that

x 6∈ Xα ∩ (παβ )−1(s) ⊆ (παγ )−1[Xγ
]
∩ (παγ )−1[(πγβ)−1(s)

]
= (παγ )−1[Xγ ∩ (πγβ)−1(s)

)
] ⊆ (παγ )−1[παγ [U ]] = U.

The interesting case is the successor case. Suppose that Xα with the above
properties was built and let us build Xα+1. First note that the hypotheses of (C7)
and (C4) cannot hold at the same time, because a convergent sequence in Xα (in
this case 〈zαn : n ∈ ω〉) cannot be dense. So we will care about three cases.

The first case is the one in which the hypothesis of (C7) is fulfilled, i.e. α ∈ I7.
The construction of the required sequences is also similar to de la Vega’s construction
in [6, Section 4]. We gather inside a set S ′′ all sequences 〈Xα ∩ (παβ )−1(zβγ ) : γ ∈ β〉
where β ≤ α is such that the zβγ are mutually distinct and lie inside Xβ, and also all
the sequences 〈Xα ∩ (παβ )−1(aβ2n) : n ∈ ω〉, where β ∈ α ∩ I7 satisfies the conditions
of (C7).

Fix any non-isolated aα ∈ Yα and let bα := f(aα). Note that any compact infinite
set contains a non-isolated point. Furthermore fix a sequence 〈On : n ∈ ω〉 of non-
empty closed pairwise disjoint subsets of Yα converging to aα, such that aα 6∈ On.
This can be done as follows: Fix a countable clopen neighborhood basis {B0, B1, ...}
of aα. This point is not isolated, so there is some yn ∈ ((Bn \ (O0 ∪ ... ∪ On−1)) \
{aα}) ∩ Yα. Then there is a clopen neighborhood Cn ⊆ Bn \ (O0 ∪ ... ∪On−1) of yn,
which does not contain aα. Then On := Cn ∩ Yα is as desired.

Now we define S ′ := S ′′ ∪ {〈f [On] : n ∈ ω〉}. Note that by Brouwer’s Theorem
(2.1.2), Xα is homeomorphic to C and therefore we can apply the Splitting Lemma
(2.1.4) to the constant sequence bα to find closed A′0, A′1 ⊆ Xα covering Xα such that
(A′0, A′1) preserves each sequence from S ′.

Find infinitely many natural numbers ni, i ∈ ω, such that for all i we have
f [Oni ] ⊆ A′0. This can be done as follows. If n0, ..., nk were already found, let
U be the complement of

⋃k
i=0 f [Oni ], hence U is open. Because (A′0, A′1) preserves

〈f [On] : n ∈ ω〉, we can find some nk+1 such that f [Onk+1 ] ⊆ U \A′1 ⊆ A′0. It is also
clear that nk+1 must be different from all n0, ..., nk.

We may now choose bαi ∈ f [Oni ] and aαi = f−1(bαi ). Then the sequence 〈bαi : i ∈
ω〉 avoids S ′, because if S = 〈Si : i ∈ I〉 ∈ S ′, then (A′0, A′1) preserves S. It follows
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that whenever bα is a strong limit point of S and U an open neighborhood of bα,
there is some i ∈ I such that Si ⊆ U \ A′0 ⊆ U \

(
{bαi : i ∈ ω} ∪ {bα}

)
. Furthermore

the sequence 〈bαi : i ∈ ω〉 also avoids {〈aα2n : n ∈ ω〉}, as bα 6= aα implies that bα

cannot be a strong limit point of {〈aα2n : n ∈ ω〉}.
We can hence apply the Splitting Lemma (2.1.4) to the sequence of distinct points

〈bαi : i ∈ ω〉 and to S := S ′ ∪ {〈aα2n : n ∈ ω〉}, by which we get closed A0, A1 ⊆ Xα

such that

(i) A0 ∪A1 = Xα,

(ii) A0 ∩A1 = {bα},

(iii) {bα2i : i ∈ ω} ⊆ A0 and {bα2i+1 : i ∈ ω} ⊆ A1

(iv) (A0, A1) preserves each sequence in S.

Yα

f

...

aαi

aα

Oni

Xα A′1
A′0

A0

A1

Zα

...

bαi

bα

f(Oni )

Figure 2.1: Splitting the space Xα and the sequence 〈bi : i ∈ ω〉 into A0 and A1

We then let Xα+1 := A0×{0}∪A1×{1} where by 0 resp. 1 we mean the constant
sequence of zeroes resp. ones. We check that (R1), (R2) and (R3) hold:

(R1) Let R ⊆ Xα+1 be compact such that πα+1
α [R] = Zα. The sequence 〈(bα2n+1, 1) :

n ∈ ω〉, whose members all lie in R, converges to the point x := (bα, 1) and
because R is closed this point must lie in R. It is not a strong limit point of
the sequence 〈R ∩ (πα+1

α )−1(bα2n) : n ∈ ω〉 = 〈{(bα2n, 0)} : n ∈ ω〉, because this
sequence can only have one limit point, which is clearly (bα, 0). That is why
(bα, 1) can not be a limit point of this sequence.
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(R2) Suppose β < α+ 1 and x ∈ Xα+1 ∩ (πα+1
β )−1(aβ). By Lemma 2.1.5, it suffices

to show that πα+1
α (x) is a strong limit point of 〈Xα ∩ (παβ )−1(aβn) : n ∈ ω〉. If

β = α, this is trivial. If β < α, this just follows from the induction hypothesis
and the observation that πα+1

α (x) ∈ Xα ∩ (παβ )−1(aβ).

(R3) holds trivially.

The conditions (C1) and (C2) are trivially satisfied, and the condition (C3) is pre-
served by the same argument as for (R2).

Let us consider the second case, in which the premise of (C4) holds, i.e. 〈zαn : n ∈
ω〉 converges to some point x. Apply the Splitting Lemma (2.1.4) to the constant
sequence x and the collection of sequences S ′′ from above. This gives us closed A0, A1

such that A0 ∩ A1 = {x} and as before, we can again define Xα+1 := A0 × {0} ∪
A1 × {1}, which clearly implies the statement (C4). For the same reasons as in the
previous case, the conditions (C1), (C2) and (C3) are also preserved here.

In the third case, where the premises of (C7) and (C4) both fail to hold, the same
is done with any point x ∈ Xα.
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Chapter 3

Limitations on the construction
of Efimov spaces

After we have presented in the previous chapter our modification of de la Vega’s
streamlined construction of an Efimov space allowing to control its autohomeomor-
phisms, it is natural to try to weaken the set-theoretic assumption ♦ used there.
This way one gets a hereditarily separable Efimov space of weight ω1.

In this chapter we present a number of set-theoretic assumptions which imply
that no Efimov space can be hereditarily separable or have weight ω1, respectively.
These assumptions are complemented nicely by the classical Čech-Pospišil theorem
which demonstrates that often one cannot get Efimov spaces of size c. To complete
the picture we also present Fedorčuk’s construction of an Efimov space of size c under
assumptions which hold, e.g., after adding at least ω2 many Cohen reals to a model
of GCH.

3.1 Limitations on the weight of the space

Definition 3.1.1. For a topological space X, the weight of X is the least size of a
base for the topology of X. It is denoted by w(X), i.e.

w(X) := min{|B| : B is a base for the topology of X}.

It is clearly well-defined, as the collection of all open sets is trivially a base for the
topology of X.

We will show that there are sufficient conditions on the weight of a compact
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Hausdorff space, which imply that the space contains a non-trivial convergent se-
quence.

Let us state two facts related to this definition. The first fact is obvious, while
the second one is more tedious. Its proof can be found in [10, Theorem 3.2.2].

Lemma 3.1.2.

(a) The weight of an infinite Hausdorff space is infinite.

(b) Let X be a compact Hausdorff space such that w(X) is infinite. Then X is the
continuous image of a closed subspace of 2w(X).

The splitting number is one of so-called cardinal characteristics. These are usually
critical cardinalities of subsets or families of subsets of the real line with certain
properties. These properties could be combinatorial, topological, measure-theoretic
or have some other nature.

Definition 3.1.3. Let x and y be infinite subsets of ω. We say that x splits y, if
both y∩x and y \x are infinite. A family S of infinite subsets of ω is called splitting,
if for each infinite y ⊆ ω there is some x ∈ S such that x splits y. The splitting
number s is defined as the least size of a splitting family, i.e.

s := min{|S| : S is splitting.}.

This is well defined because the collection of all infinite subsets of ω is splitting.

For infinite spaces, the following notion implies the existence of a non-trivial
convergent sequence.

Definition 3.1.4. A topological space is called sequentially compact if every se-
quence of its elements has a convergent subsequence.

We first observe the following fact, whose proof is not difficult and thus omitted.

Lemma 3.1.5. The continuous image of a sequentially compact space is also se-
quentially compact.

The next result is due to Booth [3, Theorem 2], whose ideas we will follow here.

Theorem 3.1.6 (Booth). If X is an infinite compact Hausdorff space such that
w(X) < s, then X is sequentially compact. In particular X contains a non-trivial
convergent sequence, and can therefore not be Efimov.
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Proof. Let X be an infinite compact Hausdorff space such that w(X) < s. We first
show that the space 2w(X) is sequentially compact. For this let 〈xn : n ∈ ω〉 be
a sequence in 2w(X). Define aα := {n ∈ ω : xn(α) = 1} for α < w(X). Because
w(X) < s, the family {aα : α < w(X) ∧ |aα| = ω} is not splitting, hence there is an
infinite b ⊆ ω such that for each α < w(X) with |aα| = ω we have that either b ∩ aα
or b \ aα is finite. We define x ∈ 2w(X) by the stipulation x(α) = 1 if and only if
xn(α) = 1 for almost all n ∈ b.

We show that the subsequence 〈xn : n ∈ b〉 converges to the point x. By the
definition of the topology on 2w(X) it suffices to show that for each α < w(X) we have
xn(α) = x(α) for almost all n ∈ b. If aα is finite, it is clear that xn(α) = 0 = x(α)
for almost all n ∈ ω, so also for almost all n ∈ b. If aα is infinite, there are two cases.
If x(α) = 1, then by definition xn(α) = 1 = x(α) for almost all n ∈ b. If x(α) = 0,
we have xn(α) = 0 for infinitely many n ∈ b, which can be equivalently expressed
by |b \ aα| = ω. In this case we must have that b ∩ aα is finite, which means that
xn(α) = 0 = x(α) for almost all n ∈ b. Consequently, the sequence 〈xn : n ∈ ω〉
has a convergent subsequence and as the sequence was arbitrary, the space 2w(X) is
sequentially compact.

From this, we can deduce that X is sequentially compact. By Lemma 3.1.2, X
is the continuous image of a closed subset of 2w(X). This closed subset is clearly
sequentially compact. By Lemma 3.1.5 we conclude that X is sequentially compact.

Let us go on to the second limitation related to the weight of a space. For this,
a definition and a related lemma will be needed.

Definition 3.1.7. A topological space is called scattered if every non-empty closed
subspace A contains an isolated point in A.

In his PhD thesis [23, Lemma 2.3.4 and Proposition 2.3.5], Sobota presents the
following two results, which are due to Geschke, see [13, Theorem 2.1]. Here we
present the proofs in a more detailed way, based on these two sources.

Lemma 3.1.8. If X is a scattered infinite compact Hausdorff space, then X contains
a non-trivial convergent sequence.

Proof. We construct a countable A ⊆ X by defining inductively An for natural
numbers n, which will be guaranteed to be finite and open. Let A0 = ∅ and whenever
An is a given finite open set, put An+1 := An ∪ {p}, where p is an isolated point
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of X \ An (such a point exists, because X is infinite and scattered). The set A :=⋃
n∈ω An is clearly a countable open set.
The boundary ∂A of A is a non-empty closed set, because if it was empty, then

A must be closed. The compactness of X would imply that A is compact. However
A consists of isolated points, therefore it must be finite, which is a contradiction.

Hence the closed set ∂A contains an isolated point x in ∂A. Separate x from the
closed set ∂A \ {x} by open subsets V and W respectively. Note that x cannot lie
in A, because A is open, so X \A is closed and thus ∂A = ∂(X \A) ⊆ X \A

Let 〈xn : n ∈ ω〉 be an enumeration of the countable set V ∩ A. We will show
that 〈xn : n ∈ ω〉 converges to the point x. For this, we first observe that V ∩A =
(V ∩A) ∪ {x}. We show that the latter is the smallest closed set containing V ∩A,
more precisely that V ∩A is not closed, while (V ∩A) ∪ {x} is.

The set V ∩A cannot be closed, because x 6∈ V ∩A while x ∈ ∂(V ∩A): If U is
an open neighborhood of x, we have that U ∩V ∩A and (U ∩V ) \A are non-empty,
in particular U \A and hence U \ (V ∩A) are non-empty, which means that x lies in
∂(V ∩ A), as required. We check that (V ∩ A) ∪ {x} is a closed set. It is clear that
(V ∩A)∪{x} is contained in V ∩A, because x ∈ ∂(V ∩A). Now suppose that y lies
in V ∩A but not inside V ∩ A. This implies that for each open neighborhood U of
y we have that U ∩ V ∩A is non-empty, and clearly also U \ (V ∩A). We can apply
this to the open neighborhood U ∩ V of y to obtain that for each such U , U ∩ V ∩A
and (U ∩ V ) \ (V ∩A) = (U ∩ V ) \A are non-empty. This implies in particular the
non-emptiness of U ∩ A and U \ A for every open neighborhood U of y, in other
words y ∈ ∂A. Observe also that V ∩A ⊆ X \W and as the latter is closed, we also
have V ∩A ⊆ X \W . This means that y does not lie in W , but since it is in ∂A,
it follows that y = x. We have thus shown that V ∩A ⊆ (V ∩ A) ∪ {x} and hence
V ∩A = (V ∩A) ∪ {x}.

It follows that K := (V ∩A) ∪ {x} is a one-point-compactification of V ∩A. We
show that 〈xn : n ∈ ω〉 converges to the point x. If U is an open neighborhood of
x in X, then U ∩K is open in K and so K \ U must be compact. However, every
point in there is isolated and by compactness we obtain that K \ U is finite. This
means that only finitely many xn’s lie outside of U , which yields the claim.

As we will see, the statement which was just proven is in fact true also for a
non-scattered space if its weight satisfies some condition. To prove this, we will need
some terminology which we are going to introduce now.

Martin’s Axiom is a statement which is (as ♦ and the Continuum Hypothesis)
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independent from ZFC, i.e. it can be neither proven nor disproven by these axioms.
The definition of this statement requires several other definitions, which we will
recall. Let (P,≤) be a partially ordered set (shortly, a poset) and A ⊆ P be non-
empty. We say that A is dense if for each p ∈ P there is some a ∈ A such that a ≤ p.
We say that A is a filter on P if for each a, b ∈ A there is some c ∈ A such that
c ≤ a and c ≤ b and if for each a ∈ A and b ∈ P such that a ≤ b we have b ∈ A. Two
members p, q of P are said to be incompatible if there is no r ∈ P such that r ≤ p

and r ≤ q. A subset A ⊆ P is called an antichain, if for each a, b ∈ A we have that
a and b are incompatible. The poset P is said to have the countable chain condition
(ccc for short), if every antichain is countable.

Definition 3.1.9. First, we formulate Martin’s Axiom for κ-many dense sets (MAκ)
as follows:

For each ccc poset (P,≤), and for each family D of dense sets in (P,≤) with
|D| ≤ κ, there is some filter F ⊆ P which meets every member of D.

Martin’s Axiom (MA) is the statement ∀κ < c : MAκ. Furthermore, we also define
Martin’ Axiom for κ-many dense sets and countable posets (MAκ(ℵ0)) as follows:

For each countable, ccc poset (P,≤), and for each family D of dense sets in
(P,≤) with |D| ≤ κ, there is some filter F ⊆ P which meets every member of
D.

Of course, ccc may be dropped in MAκ(ℵ0), because every countable poset is
trivially ccc.

Another cardinal characteristic (as the splitting number s) is the covering number
of the meager ideal. Recall that a subset of the real line is called nowhere dense, if
the interior of its closure is empty. A countable union of nowhere dense sets is called
meager . The collectionM of all meager subsets of the real line forms obviously an
ideal, meaning that the collection is closed under finite unions, subsets and that the
empty set is meager. (Of course, the word ideal has not the same meaning as in
Section 1.3).

Definition 3.1.10. The covering number of the meager idealM is the least number
of meager sets needed to cover the real line, or more precisely

cov(M) := min{|A| : A ⊆M∧
⋃
A = R}.

47



The following proposition will be very practical. Among other things, it gives a
characterisation of a cardinal being less than cov(M) in terms of a version of Martin’s
Axiom.

Proposition 3.1.11.

(a) MAω is always true.

(b) MAc is always false.

(c) Let κ be a cardinal. Then κ < cov(M) if and only if MAκ(ℵ0) holds.

Proof. The first two statements can be found in [20, Lemmas III.3.13 and III.3.14]
and for the proof of (c) we refer the reader to [2, Theorem 7.13].

With all these terminologies and characterisations in our pockets, we are now
able to prove a theorem by Geschke. As already mentioned, the idea of the proof
can be found in [23, Proposition 2.3.5] and [13, Theorem 2.1].

Recall that a family of sets A has the finite intersection property if for each finite
B ⊆ A we have

⋂
B 6= ∅. A space is compact if and only if every family of closed

sets with the finite intersection property has non-empty intersection.

Definition 3.1.12. Let X be a topological space and P be a collection of open
subset of X. We say that P forms a π-base for X, if for each non-empty open set
U ⊆ X there is some B ∈ P such that B ⊆ U .

Theorem 3.1.13 (Geschke). If X is an infinite compact Hausdorff space such that
w(X) < cov(M), then X contains a non-trivial convergent sequence.

Proof. The case in which X is scattered was proven in Lemma 3.1.8 (without using
any condition on the weight of X).

If X is not scattered, then without loss of generality we can assume that X has
no isolated points, otherwise we just work inside a non-empty closed subspace of X
which has no isolated points (such a space exists, as X is not scattered).

We first construct a closed L0 ⊆ X and a surjection f0 : L0 → C as follows. Let
〈Os : s ∈ 2<ω〉 be a sequence of open subsets of X such that O

sa0
is disjoint from

O
sa1

and O
sai
⊆ Os for each s ∈ 2<ω and i ∈ {0, 1}. Such a sequence can be built

inductively over the length of s: O∅ := X and whenever Os is given, it cannot be
a singleton and thus we can pick two different points inside Os, separate them by
disjoint open neighborhoods V0 and V1. Because our compact Hausdorff space is also
T3, we may find O

sai
⊆ Vi such that O

sai
⊆ Vi. It is clear that the requirements

are fulfilled by this construction.
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We let L0 :=
⋂
n∈ω

⋃
s∈2n Os and f0 is defined by putting f−1

0 (y) =
⋂
n∈ω Oy�n

for y ∈ C. This function is well-defined, because for different y, y′ ∈ C we have
clearly that

⋂
n∈ω Oy�n and

⋂
n∈ω Oy′�n are disjoint, so there is no x ∈ L0 which

belongs to f−1
0 (y) and f−1

0 (y′) for different y, y′ ∈ C. The domain of f0 is clearly⋃
y∈C

⋂
n∈ω Oy�n = L0. The function f0 is surjective, because the family {Oy�n :

n ∈ ω} has the finite intersection property and compactness yields that f−1
0 (y) =⋂

n∈ω Oy�n 6= ∅ for each y ∈ C. Note that f−1
0 (y) is closed for each y ∈ C.

Using Zorn’s Lemma, we show that there is some closed L ⊆ L0 such that
f := f0 � L is irreducible in the sense that for each closed proper subset F of L
we have that the restriction f � F is not onto C. For this, let

W := {L ⊆ L0 : L is closed and f0 � L is onto C}

be a poset, ordered by inclusion. We show that every decreasing chain has a lower
bound inW, so that by Zorn’s LemmaW has a minimal element L, which is obviously
as desired. Let 〈Lγ : γ ∈ α〉 be a decreasing chain in W and define B :=

⋂
γ∈α L

γ .
It suffices to show that B ∈ W. Because Lγ ∈ W, we have for each y ∈ C that
Lγ ∩ f−1

0 (y) 6= ∅. Using compactness of X, it follows that B ∩ f−1
0 (y) =

⋂
γ∈α(Lγ ∩

f−1
0 (y)) 6= ∅ for each y ∈ C, because the family {Lγ ∩ f−1

0 (y) : γ ∈ α} consists of
closed sets and has the finite intersection property. Hence the given decreasing chain
has a lower bound B ∈ W, as required.

We claim that L contains no isolated points. If L contained an isolated point
x, then L′ := L \ {x} is a closed proper subspace of L, so f � L′ is not onto C,
which means that y := f(x) is not hit by any member of L′. However, the family
{L∩Oy�n\{x} : n ∈ ω} consists of closed sets and has the finite intersection property,
so by compactness we get f−1(y) \ {x} = (L∩

⋂
n∈ω Oy�n) \ {x} 6= ∅, a contradiction.

Moreover, we also get that L has a countable π-base consisting of clopen sets.
Let B be a countable base for the Cantor space C, consisting of clopen subsets of
C. We show that the countable collection P := {f−1[B] : B ∈ B} forms a π-base
for L. For this, let U be a non-empty open subset of L. We want to show that
there is some B ∈ B such that f−1[B] ⊆ U . For this we define O := {y ∈ C : ∃n ∈
ω L∩Oy�n ⊆ U}. This is an open set because O =

⋃
n∈ω

⋃
s∈Zn{y ∈ C : s ⊆ y}, where

Zn := {s ∈ 2n : L∩Os ⊆ U}. Furthermore, we observe that O is non-empty, because
L \ U is a closed proper subset of L, which implies that f � (L \ U) is not onto C.
This means that L ∩

⋂
n∈ω Oy�n = f−1(y) ⊆ U for some y ∈ C. Using compactness,

we obtain that there is some y ∈ C and some n ∈ ω such that L ∩ Oy�n ⊆ U , i.e.
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O is non-empty. Therefore we can find some B ∈ B with B ⊆ O. This implies that
for each y ∈ B there is some natural number n such that Oy�n ⊆ U , which yields
f−1[B] =

⋃
y∈B f

−1(y) =
⋃
y∈B

(
L ∩

⋂
n∈ω Oy�n

)
⊆ U , as required.

Now that we observed all these things, we can go to the meat of the proof. Fix
a base B′ of size w(L) ≤ w(X) < cov(M) and consider P with the partial order ⊆.
For each U ∈ B′, we let DU := {P ∈ P : P ⊆ U or P ⊆ L \ U}. This set is clearly
dense in P.

By Proposition 3.1.11(c) we have that MAw(L)(ℵ0) holds and so we can find
a filter F ⊆ P, which hits every DU . Moreover, we can find some x ∈ L with⋂
F = {x}, because by compactness

⋂
F 6= ∅ and if two distinct points x0, x1 lie in all

F ∈ F , we could separate them by disjoint basic open sets U0 and U1 in B′. We know
that there are Pi ∈ F such that Pi ∈ DUi . However, we would then have Pi ⊆ Ui,
because xi ∈ Pi, but this contradicts the fact that xi ∈ P1−i. By enumerating F and
making it decreasing, one can obtain by compactness a countable neighborhood base
for x (For more details, we refer to Lemma 3.2.4 where an analogous argument is
done). Because x is non-isolated this implies the existence of a non-trivial convergent
sequence 〈xn : n ∈ ω〉 with limit x. This ends the proof.

It is well-known that under MA, we have that cov(M) = s = c (cf. [15, Theorem
13.6 together with Theorems 8.11, 8.13, 8.16 and 21.5]), therefore we get the following
corollary under MA.

Corollary 3.1.14. Under MA, each infinite compact Hausdorff space X with w(X) <
c contains a non-trivial convergent sequence.

3.2 The Szentmiklóssy Theorem

In this section we present the proof of a theorem of Szentmiklóssy asserting that under
Martin’s Axiom for ω1 many dense subsets, each HS compact has plenty of convergent
sequences. More precisely, MAω1 implies that HS compacts are hereditarily Lindelöf
and hence first-countable. As a conclusion, we will get that the construction under
♦ from the previous chapter cannot be made under the assumption MAω1 , since the
constructed space was an infinite HS compact Hausdorff space with no convergent
sequences, which by the above is impossible whenever we assume MAω1 .

This result of Szentmiklóssy was published in [24, Theorem 3], on which this
section will be mainly based. First we introduce a topological notion.
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Definition 3.2.1. A space X is called hereditarily Lindelöf (HL) if every subspace
Y of X is Lindelöf, i.e. every open cover of Y has a countable subcover.

Definition 3.2.2. Let Y = {yα : α ∈ ω1} ⊆ X. Then Y is called right-separated if
for each α ∈ ω1 the set {yγ : γ < α} is open in Y .

Lemma 3.2.3. Every space X, which is not HL contains a right-separated subspace
Y = {yα : α ∈ ω1}.

Proof. Fix a non-Lindelöf Z ⊆ X and an open cover {Uγ : γ ∈ κ} of Z with no
countable subcovers. By replacing for γ < ω1 the set Uγ by

⋃
δ≤γ Uγ and deleting

recurring members of the cover if needed, we may assume that the first ω1-many
Uγ ’s are strictly increasing, i.e. for δ < γ < ω1 we have Uδ ⊂ Uγ . For each α ∈ ω1,
we may therefore pick yα ∈ Uα+1 \ Uα, which implies that Y = {yα : α ∈ ω1} is
right-separated.

The following lemma will be very interesting when it comes to finding convergent
sequences.

Lemma 3.2.4. If X is a compact Hausdorff space which in addition is HL, then
every point in X has a countable neighborhood base.

Proof. Let x ∈ X and let K be the collection of all closed neighborhoods of x. Recall
that any compact Hausdorff space is T3 and thus the closed neighborhoods of x form
a neighborhood basis for x. The collection {X \ K : K ∈ K} is an open cover of
X \ {x}, because for every y 6= x we can find some basic K ∈ K which does not
contain y, i.e. X \K contains y. By assumption, the subspace X \ {x} is Lindelöf
and therefore there is a countable subset {Un : n ∈ ω} of {X \K : K ∈ K} which
covers X \ {x}.

By replacing Un by U0 ∪ ... ∪ Un if needed, we can assume that the Un’s are
increasing. Notice that since

⋃
n∈ω Un = X \ {x}, we have also

⋂
n∈ωX \ Un =

{x}. We show that the decreasing collection {X \ Un : n ∈ ω} is a countable
neighborhood basis at x. If K ∈ K we have

⋂
n∈ωX \ Un = {x} ⊆ K. This implies

that
⋂
n∈ωX \ (K ∪Un) = ∅ and because each X \ (K ∪Un) is closed in X it follows

that
⋂
n∈aX \ (K ∪ Un) = ∅ for some finite a ∈ ω. This implies

⋂
n∈aX \ Un ⊆ K

and since the X \ Un’s are decreasing we get X \ Umax a ⊆ K. Moreover we clearly
have x 6∈ Umax a, and it was thus shown that {X \ Un : n ∈ ω} forms a countable
neighborhood basis at x.

51



The following definition and the corresponding technical lemma below are due
to Szentmiklóssy [24, Section 3] and are a crucial ingredient for the proof of Theo-
rem 3.2.13.

Definition 3.2.5. A family B of subsets of ω1 has property P if it is closed under
finite unions and there exists a sequence 〈(aξ, Bξ) : ξ ∈ ω1〉 and a natural number n
such that:

(P1) aξ is a subset of ω1 of size n for all ξ ∈ ω1,

(P2) Bξ is countable and lies in B for all ξ ∈ ω1,

(P3) max aξ < min aη for all ξ < η < ω1,

(P4) aξ ∩Bη 6= ∅ for all ξ < η < ω1.

Lemma 3.2.6 (Szentmiklóssy). If B satisfies property P, then there is an uncount-
able A ⊆ ω1 and for all ξ ∈ ω1 there is some countable Bξ ∈ B such that for each
uncountable C ⊆ A there is an ordinal α ∈ ω1 such that {Bξ ∩ C : ξ ∈ ω1, ξ ≥ α}
has the finite intersection property.

Proof. Let n be the minimal natural number such that there is a sequence 〈(aξ, Bξ) :
ξ ∈ ω1〉 with |aξ| = n for each ξ ∈ ω1, satisfying the properties (P1)-(P4). This
minimal number is clearly well-defined, because B satisfies the property P. By (P2)
each Bξ is countable and lies in B. Furthermore we define A := {min aξ : ξ ∈ ω1},
which by condition (P3) is clearly uncountable.

By contradiction, suppose that there is an uncountable C ′ ⊆ A such that for
each ordinal α ∈ ω1 the family {Bξ ∩ C ′ : ξ ∈ ω1, ξ ≥ α} does not have the finite
intersection property, i.e. there is some finite collection b′α of countable ordinals
ξ ≥ α such that

⋂
ξ∈b′α Bξ ∩ C

′ = ∅. The goal will be to construct a sequence
〈(a′ξ, B′ξ) : ξ ∈ ω1〉 with |a′ξ| = n − 1 for each ξ ∈ ω1 and satisfying properties
(P1)-(P4). This would contradict the minimality of n with this property.

Inductively we first construct an uncountable subset C ⊆ C ′ and {bα : α ∈ ω1} ⊆
{b′α : α ∈ ω1} such that for each α < β < ω1 we have

max a∗α < min bβ ≤ max bβ ≤ cβ,

where C = {cα : α ∈ ω1} is the strictly increasing enumeration of C and a∗α is defined
as follows. Because C ⊆ A, for each α ∈ ω1 there is a unique η(α) ∈ ω1 such that
cα = min aη(α) and we define a∗α := aη(α). It is then clear that max a∗α < min a∗β for
each α < β < ω1 as well as

⋂
ξ∈bα Bξ ∩ C = ∅.
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The proof is by induction on β. If β = 0, we just need to define b0 := b′0 and
c0 := min{c ∈ C : c ≥ max b0} to satisfy the required statement. If β > 0 and
bα, cα were already defined for α < β such that the above inequality holds, we can
define bβ and cβ as follows. Fix an ordinal µ ∈ ω1 such that

⋃
α<β a

∗
α ⊆ µ, which is

possible because the left hand side is a countable union of finite subsets of ω1, hence
countable. We define bβ := b′µ and cβ := min{c ∈ C : c ≥ max bβ}. For each α < β

we have that
max a∗α < µ ≤ min b′µ = min bβ ≤ cβ,

as required.
We now put a′α := a∗α \ {cα} and B′α :=

⋃
ξ∈bα Bξ. As cα ∈ a∗α and each a∗α has

size n, it is obvious that a′α is of size n− 1 for each α ∈ ω1. We show that (P1)-(P4)
are fulfilled, towards a contradiction. The item (P1) was already shown, for (P2)
we just observe that B′α is countable, because it is a finite union of countable Bξ’s.
Moreover B′α ∈ B, because the Bξ’s lie all in B, which is closed under finite unions.
To see (P3), just observe max a′α = max a∗α < min a∗β = cβ < min a′β for α < β < ω1.
Note that as we will show (P4), we will also have a′α 6= ∅, which implies that all these
maxima and minima are well-defined.

Finally, to check (P4) let α < β and let us show that a′α∩B′β 6= ∅. Because cα ∈ C
and

⋂
ξ∈bβ Bξ∩C = ∅, there is at least one ξ ∈ bβ such that cα 6∈ Bξ. We ensured that

min bβ > max a∗α, and as ξ ∈ bβ we also have ξ > max a∗α = max aη(α). Moreover we
clearly have max aη(α) ≥ η(α), so ξ > η(α). Using that 〈(aξ, Bξ) : ξ ∈ ω1〉 satisfies
(P4) we get that aη(α) ∩Bξ 6= ∅. However

aη(α) ∩Bξ = a∗α ∩Bξ = a′α ∩Bξ,

because cα 6∈ Bξ, and moreover we also have Bξ ⊆ B′β, because ξ ∈ bβ, and hence
a′α ∩ Bξ ⊆ a′α ∩ B′β. We conclude that a′α ∩ Bξ and therefore a′α ∩ B′β is not empty,
as required.

Before we prove the theorem of Szentmiklóssy, we need to introduce (a special
case of) the notion of the precaliber of a poset.

Definition 3.2.7. Let P be a poset and A ⊆ P . Then A is called centered if for
each natural number n and for each p1, ..., pn ∈ A there is some p ∈ P such that
p ≤ pi for each 1 ≤ i ≤ n.

We say that P has precaliber ω1 if each subset of P of size ω1 contains a centered
subset of size ω1.
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Lemma 3.2.8. Assume MAω1. Then every ccc poset has precaliber ω1.

Proof. We follow [17, Lemma 23.13]. Let P be a ccc poset and W = {wα : α ∈
ω1} ⊆ P uncountable. We first show that there exists a q ∈ W such that for each
p ≤ q there are uncountably many wα’s which are compatible with p, i.e.

∃α ∈ ω1∀vα ≤ wα∃A ⊆ ω1 :
(
|A| = ω1 ∧ ∀β ∈ A :

(
vα is compatible with wβ

))
.

If not, then by negating the sentence we get

∀α ∈ ω1∃vα ≤ wα∀A ⊆ ω1 :
(
|A| = ω1 → ∃β ∈ A :

(
vα is incompatible with wβ

))
,

or equivalently

∀α ∈ ω1∃vα ≤ wα∃βα∀µ ≥ βα
(
vα is incompatible with wµ

)
,

This allows us to inductively choose for each δ ∈ ω1 an αδ such that the vαδ ’s are
pairwise incompatible, which is clearly a contradiction to P being ccc.

More precisely, fix α0 := 0 and suppose that the αγ ’s are given for all γ which
are smaller than some δ such that the vαγ ’s are pairwise incompatible. For each αγ ,
by the above observation we may find some βγ ≥ αγ such that for each µ ≥ βγ we
have vαγ is incompatible with wµ. Let αδ := sup{βγ : γ < δ}. Since αδ ≥ βγ for each
γ < δ we have vαγ is incompatible with wαδ , for each γ < δ. Since vαδ ≤ wαδ , this
implies also that vαγ is incompatible with vαδ for all γ < δ. This ends our inductive
construction of an uncountable set of pairwise incompatible elements and thus leads
to the contradiction.

Consider the poset Q := {p ∈ P : p ≤ q} with the induced order and set
Dα := {p ∈ Q : p ≤ wγ for some γ ≥ α} for each α ∈ ω1. This set is dense in Q,
because for each p ∈ Q we can find uncountably many wα’s which are compatible
with p, which means that there is some γ ≥ α such that p and wγ have a common
lower bound r. So r ≤ p and r ∈ Dα, thus showing the density of Dα. Note that
Q is clearly ccc, and so using MAω1 we can find some filter F ⊆ Q which intersects
each Dα. For each α, we may fix xα ∈ F ∩Dα, which implies that xα ≤ wγ for some
γ ≥ α. It follows that this wγ must lie in F ∩W . Because for each α ∈ ω1 there is
some γ ≥ α such that wγ ∈ F ∩W , it follows that F ∩W is uncountable. Moreover,
F ∩W is clearly centered, because it is a subset of a filter.

An additional topological notion will be needed.
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Definition 3.2.9. A topological space is said to be countably tight, if for each
A ⊆ X we have A =

⋃
{B : B is a countable subset of A}.

Lemma 3.2.10.

(a) If X is countably tight and A ⊆ X is such that for each countable B ⊆ A we
have B ⊆ A, then A is closed.

(b) If X is HS, then X is countably tight.

Proof.

(a) follows directly from the definition of countably tightness.

(b) If A ⊆ X, we may pick a countable set D, which is dense in A, and get that
A = D ⊆

⋃
{B : B is a countable subset of A}. Furthermore, the inclusion

A ⊇
⋃
{B : B is a countable subset of A} always holds and thus we showed that

X is countably tight.

The proof of Szentmiklóssy’s theorem (3.2.13) will also use the well-known ∆-
system Lemma.

Definition 3.2.11. A family A of finite sets is called a ∆-system, if there is some r
such that a ∩ b = r for each a 6= b ∈ A. The set r is called the root of the ∆-system
A.

Lemma 3.2.12 (∆-system Lemma). Let A be a family of finite sets such that |A| =
ω1. Then there is a family B ⊆ A of size ω1, which forms a ∆-system, and a natural
number m such that |b| = m for each b ∈ B.

Proof. See Kunen’s book [20, Lemma III.2.6].

Finally, we have all ingredients to prove Szentmiklóssy’s theorem. We provide
more details as compared to [24, Theorem 2].

Theorem 3.2.13 (Szentmiklóssy). Assume MAω1. Then every HS compact Haus-
dorff space is HL.

Proof. Because X is HS, it is also countably tight by Lemma 3.2.10(b). If X was
non-HL, then we could find by Lemma 3.2.3 a right-separated Y ⊆ X. We will
identify the underlying set of Y with ω1 so that α is open for all α. Note that here
the topology of Y (which is identified with the set ω1) is different from the order
topology of ω1, because the latter is not separable.
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Let Fξ := ω1 \ ξ for all ξ < ω1 and define F :=
⋂
ξ∈ω1 Fξ as well as

B := {K ∩ ω1 : K is compact and disjoint from F}.

Claim. The collection B has property P.

Proof of Claim. It is clear that B is closed under finite unions. For each ξ ∈ ω1 we
have ξ 6∈ Fξ+1 and therefore we can find a closed (hence compact) neighborhood Kξ

of the point ξ which is disjoint from Fξ+1. Notice that, because also ω1 ∩ Kξ+1 is
disjoint from Fξ+1 ⊇ ω1 \ (ξ + 1), which means that Kξ ∩ ω1 ⊆ ξ + 1, we have that
Kξ ∩ ω1 is countable for each ξ ∈ ω1. Moreover, each Kξ ∩ ω1 lies in B, because Kξ

is a compact set disjoint from Fξ+1 ⊇ F .
We define a poset

P := {a ⊆ ω1 : a is finite and ∀ξ, η ∈ a : ξ < η → ξ 6∈ Kη},

where for a, b ∈ P we define a ≤ b if and only if a ⊇ b.
This poset is not ccc. If it was ccc, it would have precaliber ω1 by Lemma 3.2.8

(here MAω1 is used). Note that A := {{ξ} : ξ ∈ ω1} ⊆ P so there is some uncountable
centered D′ ⊆ A. Let D := {ξ ∈ ω1 : {ξ} ∈ D′}. The goal will be to show that
this is a discrete subspace of the HS space X. This will then lead to a contradiction,
because D has a countable dense set Q, i.e. Q meets every open set. However if D
is discrete, each singleton is open and therefore the countable Q must contain every
point of D, which is impossible as D is uncountable.

So let us show that every singleton in D is open. Because for each ξ, η ∈ D we
have some a ∈ P such that a ≤ {ξ} and a ≤ {η} we have that a ⊇ {ξ, η}. It is easy
to see that a ∈ P implies that {ξ, η} ∈ P. It follows that whenever ξ, η ∈ D are such
that η < ξ, then η 6∈ Kξ. On the other hand, if ξ < η, we have that η ∈ Fξ+1 and
as the latter is disjoint from Kξ we have that η 6∈ Kξ. We can now conclude that
for each ξ ∈ D the singleton {ξ} is open: Because Kξ is a compact neighborhood
of ξ, there is some open U ⊆ X such that ξ ∈ U ⊆ Kξ. The set U ∩D is an open
neighborhood of ξ in D. However, we just showed that for η 6= ξ in D (i.e. whenever
η < ξ or ξ < η) we have η 6∈ Kξ, hence η 6∈ U ∩D and therefore U ∩D = {ξ}. Thus
we have shown that every singleton {ξ} in D is open, i.e. D is discrete, which leads
to the contradiction described above. We conclude that the poset P cannot be ccc.

So it follows that there is a sequence 〈aα : α ∈ ω1〉 of pairwise incompatible
elements of P. Using the ∆-system Lemma, we show that the aα’s can be chosen such
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that they are all of size n for some natural number n and such that max aα < min aβ
for all α < β, which implies (P1) and (P3). If we put A := {aα : α ∈ ω1}, by
the ∆-system Lemma, there is some B ⊆ A which forms a ∆-system of size ω1 and
some natural number m such that |b| = m for each b ∈ B. Let r be the root of the
∆-system B and put B̃ := {b \ r : b ∈ B}, which we enumerate by B̃ = {bα : α ∈ ω1}.
Note that by eliminating the root r, we ensured that the bα’s are pairwise disjoint,
and also the members of B̃ still have all the same size, say n.

Inductively, we may find an uncountable subset C̃ = {cγ : γ ∈ ω1} = {bαγ : γ ∈
ω1} of B̃ such that max cδ < min cγ for all δ < γ < ω1. Indeed, whenever cδ is
defined for each δ < γ such that max cδ1 < min cδ2 holds for all δ1 < δ2 < γ, put
s := sup{max cδ : δ < γ} + 1 < ω1. Because the bα’s are pairwise disjoint, there
can only be countably many bα’s containing an element smaller than s. Therefore
there must be some bα, which has no elements below s. Pick cγ to be exactly this
bα, which implies max cδ < min cγ for all δ < γ.

It remains to show that the members of C̃ are still pairwise incompatible. For
this, pick two different elements b1 \ r and b2 \ r of C̃, where b1, b2 ∈ B. As b1 and
b2 are incompatible we have b1 ∪ b2 6∈ P, which means that there are ξ < η both in
b1 ∪ b2 such that ξ ∈ Kη. However b1 and b2 both lie in P and so neither ξ not η
can lie in the root r. It follows that (b1 ∪ b2) \ r = (b1 \ r) ∪ (b2 \ r) 6∈ P and hence
b1 \ r and b2 \ r are incompatible. If necessary, replace A by C̃ to obtain a sequence
of pairwise incompatible elements of the same size such that max aα < min aβ for all
α < β so that (P1) and (P3) become true.

For each α ∈ ω1 we define Bα := ω1∩
⋃
η∈aα Kη. To see that the item (P2) holds,

we check that each Bα is countable by recalling that each Kξ ∩ ω1 is countable and
realising that each Bα is the union of finitely many such countable sets. Furthermore
each Bα lies in B because each Kξ ∩ ω1 does and B is closed under finite unions.

It remains to show that (P4) is true. If α < β < ω1, then because aα and aβ are
incompatible, it must be the case that aα ∪ aβ 6∈ P. Therefore there must be some
ξ, η ∈ aα ∪ aβ such that ξ < η and ξ ∈ Kη. However, because aα, aβ both lie in P, it
can neither happen that ξ and η lie both in aα, nor that both lie in aβ. Since α < β,
we have max aα < min aβ and as ξ < η we have that ξ ∈ aα and η ∈ aβ. Because
ξ ∈ Kη, we have in particular

ξ ∈ aα ∩ ω1 ∩
⋃
η∈aβ

Kη = aα ∩Bβ 6= ∅,

and thus item (P4) is proven. �Claim
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Then using Lemma 3.2.6, we can get an uncountable A ⊆ ω1 and for each ξ ∈ ω1

some countable Bξ ∈ B with the property that for each uncountable C ⊆ A there
is an ordinal α ∈ ω1 such that {Bξ ∩ C : ξ ∈ ω1, ξ ≥ α} has the finite intersection
property.

Because each Bξ lies in B, it can be written as Lξ ∩ ω1 for some compact Lξ,
which is disjoint from F . Define Hξ :=

⋂
ξ≤η<ω1 Lη and H :=

⋃
ξ∈ω1 Hξ. It is clear

that the Hξ’s are closed and increasing, i.e. Hξ ⊆ Hζ for each ξ ≤ ζ. Moreover Hξ is
contained in Lξ and hence, each Hξ is also disjoint from F , thus H ∩F = ∅. Because
X is countably tight, it follows that H is also closed by using Lemma 3.2.10(a): If
B is a countable subset of H, then because the Hξ’s are increasing, there must be
some ξ ∈ ω1 such that B ⊆ Hξ. As Hξ is closed we also have B ⊆ Hξ ⊆ H, and thus
Lemma 3.2.10(a) implies that H is closed.

Note that
⋂
ξ∈ω1 H ∩ Fξ = H ∩ F = ∅ and because each H ∩ Fξ is closed, by

compactness and because 〈H ∩ Fξ : ξ ∈ ω1〉 is decreasing, we can find some ξ0 ∈ ω1

such that H ∩ Fξ0 = ∅.
Define

C := Fξ0 ∩A = ω1 \ ξ0 ∩A = ω1 \ ξ0
A = ω1 \ ξ0

ω1 ∩A = (ω1 \ ξ0) ∩A = A \ ξ0,

which is an uncountable subset of A. Here, we use that ω1 is right-separated. There
is some ordinal α ∈ ω1 such that {Bξ ∩ C : α ≤ ξ < ω1} has the finite intersection
property, and since Bξ ∩ C ⊆ Lξ ∩ C ⊆ Lξ ∩ Fξ0 , also {Lξ ∩ Fξ0 : α ≤ ξ < ω1}
has the finite intersection property. Moreover each Lξ ∩Fξ0 is closed and thus using
compactness we know that

⋂
α≤ξ<ω1 Lξ ∩ Fξ0 6= ∅. However⋂

α≤ξ<ω1

Lξ ∩ Fξ0 = Fξ0 ∩Hα ⊆ Fξ0 ∩H

implies that Fξ0 ∩H is non-empty, a contradiction.
Therefore X cannot have a right-separated subspace and thus it must be HL. �

As promised, we get from this theorem as a corollary a sufficient condition for
compact spaces containing non-trivial convergent sequences.

Corollary 3.2.14. Assume MAω1. Let X be a HS compact Hausdorff space and
x ∈ X non-isolated. Then there is a non-trivial convergent sequence with limit point
x.

Proof. By Szentmiklóssy’s Theorem (3.2.13) we get that X is HL and because X is
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a compact Hausdorff space too, Lemma 3.2.4 implies that x has a countable base.
Since x is also non-isolated there is a non-trivial convergent sequence with limit
x.

As already mentioned, we thus showed under MAω1 that infinite compact HS
Hausdorff spaces contain plenty of non-trivial convergent sequences (for each non-
isolated point at least one). In particular, the construction under ♦ from Chapter 2
is impossible under MAω1 , since it yielded an infinite compact HS Hausdorff space
with no non-trivial convergent sequences. It is important to notice that there is no
contradiction here, as ♦ implies CH and thus under ♦ the statement MAω1 would
be equivalent to MAc, which is always wrong, see Proposition 3.1.11(b). In other
words ♦ implies the negation of MAω1 .

3.3 The Čech-Pospišil Theorem

In 1938, Čech and Pospišil showed a theorem relating the least size of a neighborhood
base at each point of a compact Hausdorff space to the size of the space. From this
result, we can get a sufficient condition for a compact Hausdorff space to contain a
convergent sequence. This condition is related to the size of the space, namely it
suffices that its size is less than 2ω1 . Therefore, there can be no Efimov spaces of
size less than 2ω1 , and so the size of the space from Chapter 2 can be determined.

Definition 3.3.1. For a topological space X and a point x ∈ X, the character of x
is the least size of a neighborhood base at x. It is denoted by χ(x,X), i.e.

χ(x,X) := min{|B| : B is a neighborhood base at x}.

It is clearly well-defined, as the collection of all open neighborhoods of x is trivially
a neighborhood base of this point.

Theorem 3.3.2 (Čech-Pospišil). Let X be a compact Hausdorff space and suppose
that for each x ∈ X, we have χ(x,X) ≥ κ ≥ ℵ0. Then the size of X is at least 2κ.

Proof. We follow the hint in Exercise 3.12.11 in [10]. For each s ∈ 2<κ we define
inductively over the length of s an open set V (s) such that:

(i) V (sa i) ⊆ V (s) for each s ∈ 2<κ, i ∈ {0, 1},

(ii) V (sa 0) ∩ V (sa 1) = ∅ for each s ∈ 2<κ,
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(iii)
⋂
β≤α V (s � β) 6= ∅ for each s ∈ 2<κ with length α,

(iv) V (s) = X whenever the length of s ∈ 2<κ is a limit ordinal.

If the length of s is 0 or a limit ordinal, we put V (s) := X. In this case we
only need to check that (iii) is preserved. If

⋂
β≤α V (s � β) was empty, then so was⋂

β<α V (s � β). Using the induction hypothesis (i), we also see that
⋂
β<α V (s � (β + 1))

is empty and hence also
⋂
β<α V (s � β). By compactness

⋂
β≤γ V (s � β) = ∅ for some

γ < α and therefore also
⋂
β≤γ V (s � β) = ∅, which is a contradiction to the induction

hypothesis.
Suppose V (s) was defined such that the above properties hold and let us define

V (s a i) for i ∈ {0, 1}. We know that
⋂
β≤α V (s � β) 6= ∅, so we can fix some point

p0 inside this intersection. The set
⋂
β≤α V (s � β) cannot be a singleton, because

otherwise we would have χ(p0, X) ≤ |α| < κ, a contradiction. So we can pick some
p1 6= p0 in

⋂
β≤α V (s � β). Note that

⋂
β≤α V (s � β) ⊆ V (s) and thus p0 and p1 lie in

V (s). Because X is a compact Hausdorff space, we may separate these two points by
open neighborhoods V (sa 0), V (sa 1) ⊆ V (s) such that V (sa 0), V (sa 1) ⊆ V (s)
and V (sa 0) ∩ V (sa 1) = ∅. Then (i) and (ii) are clearly satisfied, and (iii) can be
checked by computing

⋂
β≤α+1

V ((sa i) � β) =
⋂
β≤α

V (s � β) ∩ V (sa i),

which contains pi and hence is non-empty.
By compactness we get that

⋂
β<κ V (f � β) 6= ∅ for each f ∈ 2κ. For each such f

let xf be some point in this intersection. By (ii), we get that if f, g ∈ 2κ such that
f(α) 6= g(α) for some successor ordinal α ∈ κ, then

⋂
β<κ V (f � β) is disjoint from⋂

β<κ V (g � β) 6= ∅ and thus xf 6= xg.
Observe that the set S of all successor ordinals smaller than κ has size κ, because

α 7→ α + 1 is a bijection from κ to S. For each g ∈ 2S we let fg ∈ 2κ such that
fg � S = g. We showed that then the map g 7→ xfg is an injection from 2S to X. It
follows that |X| ≥ |2S | = 2|S| = 2κ, as required.

As mentioned, we get two corollaries relating the existence of non-trivial conver-
gent sequences to the size of the space.

Corollary 3.3.3. Every compact Haudorff space X with ω ≤ |X| < 2ω1 contains
a non-trivial convergent sequence. In particular, if c < 2ω1, then every compact
Haudorff space X with ω ≤ |X| ≤ c contains a non-trivial convergent sequence.
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Proof. The space X is either scattered or has a closed subspace without isolated
points. The case of scattered spaces has been treated in Lemma 3.1.8. Now suppose
that X is not scattered and let A ⊆ X be a closed subspace without isolated points.

We claim that there is some point x ∈ A, such that χ(x,A) ≤ ω. If for each point
x in A we had χ(x,A) > ω, i.e. χ(x,A) ≥ ω1, then by the Čech-Pospišil-Theorem
(3.3.2), A and thus X would have size at least 2ω1 , which contradicts our hypothesis.
Note that the Čech-Pospišil-Theorem can be applied because A is compact.

The point x ∈ A is not isolated and satisfies χ(x,A) ≤ ω, so there must be a
non-trivial convergent sequence of points in A with limit x. In particular, X contains
also such a sequence.

The second statement follows obviously from the first one.

We showed therefore that there can be no Efimov space of size less than 2ω1 and
in particular under the assumption c < 2ω1 , there are no Efimov spaces of size less or
equal than c. However, Fedorčuk showed that under the assumption c = 2ω1 ∧s = ω1

there is an Efimov space of size c. Before we show his construction, let us add one
more remark on the size of the Efimov space from Chapter 2.

Corollary 3.3.4. (CH) There are no Efimov spaces of size less or equal than c.
Moreover the size of the space X from Theorem 2.5.1 is 2ω1 > ω1 = c.

Proof. Note that CH implies 2ω1 > ω1 = c, and by Corollary 3.3.3 the first statement
holds.

It remains to show the second assertion. The space X is a compact Hausdorff
space with no non-trivial convergent sequences and so |X| ≥ 2ω1 . Moreover X is
a subset of C × Cω1 , which has size c · cω1 = c · (2ω)ω1 = c · 2ω·ω1 = 2ω1 (here ·
obviously denotes cardinal multiplication), so |X| ≤ 2ω1 . All in all, we conclude
|X| = 2ω1 > ω1 = c.

3.4 An Efimov space of size c

In this last section, we will show that under the assumption s = ω1 ∧ c = 2ω1 it is
possible to construct an Efimonv space of size c. This assumption is consistent with
ZFC, for a proof we refer to [12, Theorem 1]. The construction presented here is
due to Fedorčuk and can be found in [12], on which this whole section relies. We
improve his notation slightly, as for example at his time the splitting number was
not yet used. We also present some more details in the proofs.
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The space Fedorčuk constructs is in fact an inverse limit of some inverse system.
We already encountered this concept in Chapter 2. However, a more general notion of
inverse limits will be needed here. For this section, we use the following terminology.

Definition 3.4.1. Let α ≤ ω1. An inverse system is a sequence Σ = 〈Xγ : γ ∈ α〉
of topological spaces, together with so-called bonding mappings πδγ : Xδ → Xγ ,
γ ≤ δ < α, which are continuous and satisfy πγβ ◦ πδγ = πδβ for β ≤ γ ≤ δ < α. If
not mentioned otherwise, the bonding mappings will always be denoted as in this
definition.

If Σ is an inverse system of length α ≤ ω1, let πγ :
∏
δ<αXδ → Xγ be the obvious

projection. If α is a limit ordinal, we say that the space

lim Σ := {z ∈
∏
δ<α

Xδ : πγ(z) = πδγ ◦ πδ(z) for γ ≤ δ < α}

is the inverse limit of Σ. Note that in this case, 〈Xγ : γ ≤ α〉 is also an inverse
system, where the bonding mappings πδγ , γ ≤ δ < α, come from the system Σ and
παγ = πγ is the projection mentioned above.

As in the previous chapter an inverse system will be built inductively. In the
successor step of the construction, the following definition introduced by Fedorčuk
will play an important role.

Definition 3.4.2. Let X be a topological space. If t = (F, f) is a pair, where F ⊆ X
is closed and f : X \ F → 2 is continuous, we let

K(X, t) := (F × 2) ∪ f ⊆ X × 2,

where we identify the function f with its graph. Furthermore we will write τt :
K(X, t)→ X for the projection to the first coordinate.

If A is a set of pairs as just described, we denote by pt :
∏
b∈AK(X, b)→ K(X, t)

the obvious projection and we let

XA := {z ∈
∏
t∈A

K(X, t) : τt ◦ pt(z) = τs ◦ ps(z) for all t, s ∈ A}.

By this definition, it makes sense to define πA : XA → X by putting πA := τt ◦ pt
where t is any element of A, whose choice is clearly not influencing the definition of
πA.
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Definition 3.4.3. Let A be a collection of pairs as described above. The collection
A is called point-countable, if for each point x ∈ X, the set B of all pairs (F, f) ∈ A

such that x ∈ F is countable. (Notice that in the classical literature, one would
rather call the collection {F : (F, f) ∈ A for some function f} point-countable.)

Lemma 3.4.4. Let A be a point-countable collection of pairs as described above.

(a) If X is compact, then so is XA.

(b) If X is first-countable, then so is XA.

(c) If X is zero-dimensional, then so is XA.

Proof. To see the first assertion, just notice thatXA is a closed subspace of a compact
space, because XA =

⋂
s,t∈A{z ∈

∏
t∈AK(X, t) : τt ◦ pt(z) = τs ◦ ps(z)} and the

complement of {z ∈
∏
t∈AK(X, t) : τt ◦ pt(z) = τs ◦ ps(z)} is easily seen to be open

in the product topology, for all s, t ∈ A. It follows that XA is compact.
Let us show the second statement. Fix z ∈ XA and let x := πA(x). Since

X is first-countable, we may fix a countable neighborhood base {B̃n : n ∈ ω} of
x ∈ X. Because A is point-countable, the set B of all pairs (F, f) ∈ A such that
x ∈ F is countable. For each finite C ⊆ B, q ∈ 2C and n ∈ ω we define BC,q

n :=
XA ∩

∏
t∈A(B̃n ×Rt), where

R(F,f) :=


{f(z)}, for z 6∈ F,

{q(F, f)}, for z ∈ F and (F, f) ∈ C,

{0, 1}, for z ∈ F and (F, f) 6∈ C

for each t = (F, f) ∈ A. The collection {BC,q
n : C ⊆ B finite, q ∈ 2C, n ∈ ω} is clearly

countable. It is not difficult to check that this collection forms a neighborhood base
of z in XA.

The last statement just follows from the fact that subspaces and products of
zero-dimensional spaces are zero-dimensional.

The following notions and the related results were discovered by Fedorčuk (see
again [12]) in order to construct the inverse system in such a way that its limit does
not contain any convergent sequence.

Definition 3.4.5. Let Y and X be topological spaces, f : Y → X a function and
〈xn : n ∈ ω〉 a non-trivial convergent sequence in X. We say that f kills 〈xn : n ∈ ω〉
if there is no convergent sequence 〈yn : n ∈ ω〉 in Y such that f(yn) = xn for each
natural number n.
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Lemma 3.4.6. Let X, Y and Z be topological spaces, f : Y → X continuous,
g : Z → Y any function and 〈xn : n ∈ ω〉 a non-trivial convergent sequence in X. If
f kills 〈xn : n ∈ ω〉, then f ◦ g kills 〈xn : n ∈ ω〉 too.

Proof. Suppose that f ◦ g does not kill 〈xn : n ∈ ω〉, then there is a convergent
sequence 〈zn : n ∈ ω〉 in Z such that f(g(zn)) = xn. However, then 〈yn : n ∈ ω〉 :=
〈g(zn) : n ∈ ω〉 is a convergent sequence in Y such that f(yn) = xn.

Definition 3.4.7. Let Σ = 〈Xα : α ∈ ω1〉 be an inverse system. We say that Σ kills
all convergent sequences if for each α ∈ ω1 and every non-trivial convergent sequence
〈xn : n ∈ ω〉 there is some β ≥ α such that πβα kills 〈xn : n ∈ ω〉.

Lemma 3.4.8. Let Σ be an inverse system which kills all convergent sequences.
Then the inverse limit X of Σ contains no non-trivial convergent sequences.

Proof. If there was a non-trivial convergent sequence 〈xn : n ∈ ω〉 with limit point
x = xω in X, we can find a countable ordinal α such that all πα(xn) are mutually
different for n ≤ ω. More precisely, if for each n ≤ ω we write xn as 〈xγn : γ ∈ ω1〉,
where xγn = πγ(xn), we can find α such that all 〈xγn : γ ∈ α〉 differ for n ≤ ω. This
means that for indices n,m ≤ ω there is some γ < α such that xγn 6= xγm. Since each
xn lies in X = lim Σ, we get that in fact

παγ (xαn) = παγ (πα(xn)) = πγ(xn) 6= πγ(xm) = παγ (πα(xm)) = παγ (xαm),

which implies that πα(xn) = xαn 6= xαm = πα(xm).
This means that 〈πα(xn) : n ∈ ω〉 is a non-trivial convergent sequence, so πα

cannot kill the sequence 〈πα(xn) : n ∈ ω〉. On the other hand we can find some β ≥ α
such that πβα kills 〈πα(xn) : n ∈ ω〉. By Lemma 3.4.6, it follows that πβα ◦ πβ = πα

kills the sequence 〈πα(xn) : n ∈ ω〉, a contradiction.

To shorten the notation, we introduce the following definition.

Definition 3.4.9. A topological space is called suitable if it is first-countable, zero-
dimensional, compact and Hausdorff.

From now on, we use the assumption that s = ω1. Therefore we may fix a
splitting family S = {sα : α ∈ ω1} of size ω1. Note that the whole construction,
which is done from now on, depends on the choice of this splitting family of size ω1.
In fact, the order in which this family is enumerated also influences the construction.
The ideas presented are due to Fedorčuk, cf. [12].
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Definition 3.4.10. If X is any suitable space and x ∈ X, we may fix a decreasing
countable neighborhood base {Om(x) : m ∈ ω} consisting of clopen subsets of X
such that O0(x) = X. If α ∈ ω1, one can define fα(x,X) : X \ {x} → {0, 1} by
stipulating

fα(x,X)(y) = 0 :⇐⇒ y ∈
⋃

m∈sα
Om(x) \Om+1(x).

Note that {Om(x) \ Om+1(x) : m ∈ ω} forms a partition of X \ {x}, for each
x ∈ X.

Definition 3.4.11. Let X be a suitable space and 〈xn : n ∈ ω〉 be a non-trivial
convergent sequence with limit x ∈ X. Moreover, we let N be the infinite set of all
natural numbers m such that Om(x)\Om+1(x) contains at least one xn. The ordinal

α = min{β ∈ ω1 : N ∩ sβ and N \ sβ are both infinite.}

is called the index of the sequence 〈xn : n ∈ ω〉.

Under s = ω1, it is clear that this notion is well-defined and that the index of
each non-trivial convergent sequence is a countable ordinal. Note that this definition
depends of course not only on the choice of the splitting family S of size ω1, but also
on its enumeration {sα : α ∈ ω1}.

Lemma 3.4.12. (s = ω1) Let X be a compact Hausdorff space and Y a suitable
space. Moreover, let 〈yn : n ∈ ω〉 be a non-trivial convergent sequence of index γ < ω1

in Y with limit point y and g : X → Y be continuous. If t = (g−1(y), fγ(y,Y ) ◦g), then
g ◦ τt : K(X, t)→ Y kills 〈yn : n ∈ ω〉.

Proof. Suppose that there was a convergent sequence 〈zn : n ∈ ω〉 with limit point z
in K(X, t) such that g ◦ τt(zn) = yn for each natural number n. Let again N be the
infinite set of all natural numbers m such that Om(y) \Om+1(y) contains a member
of the sequence 〈yn : n ∈ ω〉. Note that because the index of 〈yn : n ∈ ω〉 is γ, we
have that sγ ∩N and N \ sγ are both infinite.

Let a0 := {n ∈ ω : yn ∈
⋃
m∈sγ Om(y)\Om+1(y)}. Note that for each m ∈ N ∩sγ

there is some member of the sequence which lies in Om(y) \Om+1(y), and as N ∩ sγ
is infinite, and the Om(y)\Om+1(y)’s are pairwise disjoint, there are infinitely many
members of the sequence lying inside

⋃
m∈sγ Om(y)\Om+1(y). So 〈yn : n ∈ a0〉 forms

an infinite subsequence.
If we let a1 := ω \ a0, we can again note that for each m ∈ N \ sγ there is some

member of the sequence which lies in Om(y)\Om+1(y), and the same argument yields
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that there are infinitely many members of the sequence lying inside
⋃
m∈ω\sγ Om(y)\

Om+1(y). This implies that infinitely many members of the sequence do not lie in⋃
m∈sγ Om(x) \ Om+1(x), where m ∈ sγ . In other words, 〈yn : n ∈ a1〉 forms an

infinite subsequence too.
It follows that 〈zn : n ∈ a0〉 and 〈zn : n ∈ a1〉 are infinite subsequences of

〈zn : n ∈ ω〉, which therefore converge both towards z. We show that for each n ∈ ai
(where i ∈ {0, 1} we have that zn = (τt(zn), i). First note that τt(zn) 6∈ g−1(y),
because otherwise yn = g(τt(zn)) = y. Thus τt(zn) ∈ dom fγ(y,Y ) ◦ g and by the
definition of K(X, t), it suffices to check that fγ(y,Y ) ◦g◦τt(zn) = i, i.e. fγ(y,Y )(yn) = i.
This just follows by the definition of fγ(y,Y ): If i = 0 (so n ∈ a0) we have yn ∈⋃
m∈sγ Om(y) \ Om+1(y) and thus fγ(y,Y )(yn) = 0 and if i = 1 (so n ∈ a1) we have

yn 6∈
⋃
m∈sγ Om(y) \Om+1(y) and thus fγ(y,Y )(yn) = 1, as required.

From this we get a contradiction, namely that 〈zn : n ∈ a0〉 converges to (τt(z), 0),
whereas 〈zn : n ∈ a1〉 converges to (τt(z), 1), which is impossible as these subse-
quences must have the same limit.

With all these auxiliary results in our pockets, we may start the inductive con-
struction of an inverse system Σ = 〈Xα : α < ω1〉, whose limit is going to be the
desired Efimov space. Put X0 := C and suppose that for α < ω1 we already defined
an inverse system Σα := 〈Xβ : β < α〉. We need to define define Xα.

If α is a limit ordinal, we just let Xα be the inverse limit of Σα and for each β < α

the bonding mapping παβ is given by the projection Xα → Xβ. If α is a successor
ordinal, say α = δ + 1, we define

Aα = Aδ+1 := {
(
(πδβ)−1(x), fγ(x,Xβ) ◦ π

δ
β

)
: β, γ ∈ α, x ∈ Xβ}

and we put Xα = Xδ+1 := X
Aδ+1
δ . We also need to define the bonding mappings

παδ := πAα and παβ := πδβ ◦ παδ for β ≤ δ. The sequence Σα+1 := 〈Xβ : β ≤ α〉 is also
an inverse system.

From this we get an inverse system Σ = 〈Xα : α < ω1〉, whose inverse limit will
be denoted by D. Let us note that by Lemma 3.4.4 we have that each Xα is suitable.
The next fact will provide an upper bound for the size of D.

Theorem 3.4.13 (Arkhangel’skii). If X is a first-countable compact Hausdorff
space, then |X| ≤ c.

Proof. See Engelking’s book [10, Corollary 3.1.30].
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We are now able to show that under the assumption s = ω1 ∧ c = 2ω1 the above
construction defines a space with the desired properties.

Theorem 3.4.14 (Fedorčuk). Assume s = ω1 and c = 2ω1. The space D is a
compact Hausdorff space of size c with no non-trivial convergent sequences and no
isolated points. In particular, D is an Efimov space.

Proof. Throughout the proof, · will denote cardinal multiplication. The size of D can
be determined as follows: Because X0 = C has size c and by Lemma 2.3.2 the map
π0 is surjective from D onto C we must have that |D| ≥ c. (Note that this lemma
was stated for the more specific terminology of Chapter 2, but it holds also for the
notion of inverse limits used here.)

On the other hand, eachXα is first-countable and compact, thus by Arkhangel’skii’s
Theorem (3.4.13) |Xα| ≤ c for each α. The space D is a subspace of the product of
all Xα, where α ∈ ω1. Therefore we have

|D| ≤ cω1 = (2ω)ω1 = 2ω·ω1 = 2ω1 = c.

We conclude that the space D has size c.
To show that D has no isolated points, we first note that for each α ∈ ω1 and

x ∈ Xα we have |(πα+1
α )−1(x)| ≥ 2. Put

t :=
(
{x}, fα(x,Xα)

)
=
(
(παα)−1(x), fα(x,Xα) ◦ π

α
α

)
∈ Aα+1.

We clearly have that x 6∈ dom fα(x,Xα) and therefore both (x, 0) and (x, 1) lie in
K(X, t). For all other s = (Fs, fs) ∈ Aα+1, s 6= t, it is not difficult to find some
k ∈ K(X, s) such that ps(k) = x, just because either x lies in the domain of fs then
k = (x, fs(x)) or x does not lie in the domain of fs, then k = (x, 0). We obtain
therefore two members y0, y1 of XAα+1

α = Xα+1 such that for i ∈ {0, 1} we have

πα+1
α (yi) = πAα+1(yi) = τt ◦ pt(yi) = τt(x, i) = x.

The above observation yields that D has no isolated points. If there was an
isolated point x ∈ D, we could find a basic open U such that U = {x}. Because
U is basic there is some α such that for each β ≥ α we have πβ[U ] = Xβ. The
point πα(x) ∈ Xα is split into at least two different points y0, y1 lying both in
Xα+1 = πα+1[U ]. It follows that U contains at least two points, a contradiction.

It remains to show that the space D contains no non-trivial convergent sequences.
We first observe that the inverse system Σ kills all convergent sequences. If for some
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β ∈ ω1 there is a non-trivial convergent sequence 〈yn : α ∈ ω〉 in Xβ of index γ < ω1

with limit point y, then take α := max{β, γ}. All Xβ’s are suitable (β < ω1), and
thus Lemma 3.4.12 can be applied to X = Xα, Y = Xβ; g := παβ : Xα → Xβ and
t :=

(
(παβ )−1(y), fγ(y,Y ) ◦ π

α
β

)
, so that the map παβ ◦ τt : K(Xα, t) → Xβ kills the

sequence 〈yn : n ∈ ω〉. Hence, by Lemma 3.4.6, also παβ ◦ τt ◦ pt kills this sequence.
However, because β, γ < α+ 1 we have t ∈ Aα+1 and hence

παβ ◦ τt ◦ pt = παβ ◦ πAα+1 = παβ ◦ πα+1
α = πα+1

β ,

which means that πα+1
β kills the sequence 〈yn : n ∈ ω〉. Thus for each β ∈ ω1 and

each convergent sequence in Xβ we have found α + 1 > β such that πα+1
β kills this

sequence, i.e. Σ kills all convergent sequences. By Lemma 3.4.8, this implies that its
inverse limit D contains no non-trivial convergent sequences.

The space D is Efimov because it also cannot contain a copy of βω: |βω| = 2c >
c = |D| as there are 2c-many ultrafilters on ω (see [17, Theorem 56]).
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