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“In all disciplines in which there

is systematic knowledge of

things with principles, causes, or

elements, it arises from a grasp

of those: we think we have

knowledge of a thing when we

have found its primary causes

and principles, and followed it

back to its elements. Clearly,

then, systematic knowledge of

nature must start with an

attempt to settle questions

about principles. ”

Aristotle, Physics Book I



Abstract

In this work the implementation of a new type of symmetry functions as

input for a neural network potential (NNP) is studied. Instead of Cartesian

coordinates, symmetry functions are utilized since they fulfill certain invari-

ances. Two types of symmetry functions are used for the NNP: radial and

angular symmetry functions. In this work the angular symmetry functions are

replaced by Steinhardt bond order parameters (SBOP), which are widely ap-

plied descriptors of the local molecular environment in physics and chemistry.

To date, the used angular symmetry functions have the drawback that the

search for the best parameters is tedious and the their functional form varies

significantly. This changes when using SBOPs: A generic set of different or-

ders of SBOPs which have the same functional form, is enough to reproduce

the local angular distribution of neighbors. It is found that in 3d visualization

odd orders of SBOPs show rotational symmetries. This coincides with the fact

that the odd order SBOPs vanish in perfect cubic lattices. Nevertheless, it

was shown that SBOPs for the application in the NNP are not as effective

in the descriptive nature as the angular symmetry functions. The results are

consistently associated with larger deviations from the reference model, which

is in all cases mW-water. Although, SBOPs are extremely effective in finding

ordered structures, i.e. lattices, they lack the ability to efficiently describe

liquid phases. This is manifested in the results of molecular dynamics simu-

lations driven by a SBOP NNP where the radial distribution function shows

strong deviations from the reference simulation. Furthermore, the measured

diffusion coefficient is underestimated by a factor of 2.

1



Contents

1 Introduction 5

2 Molecular Dynamics 6

2.1 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Integration of Equations of Motion . . . . . . . . . . . . . . . . . . . 8

2.2.1 Verlet Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2.2 Leapfrog Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.3 Velocity Verlet Algorithm . . . . . . . . . . . . . . . . . . . . 10
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1 Introduction

Neural networks are becoming increasingly interesting for scientific purposes, which

includes molecular dynamics simulations (MD). Neural networks are utilized for the

calculation of potential energy surfaces and thus can be the driver of MD simula-

tions. This means that a neural network is capable of learning from a reference

model and able to calculate the forces on the particles in MD simulations as well

as calculating the energy of the configuration. A so-called neural network potential

(NNP) can learn from a reference model how the particles interact between each

other. Instead of the computationally expensive direct application of the reference

model, the neural network is applied for the calculation of the forces. The trained

NNP requires information about the atomic configuration, in order to calculate the

forces between the particle. It is not possible to use Cartesian coordinates as di-

rect input for the neural network, since special symmetries like rotational invariance,

translation invariance and particle permutation invariance have to be fulfilled by the

input quantities. For this reason so-called symmetry functions are utilized to de-

scribe the local molecular environment. There are two types of symmetry functions:

radial symmetry functions and angular symmetry functions. For a good descrip-

tion of the environment of each particle a set of symmetry functions with different

parametrization is used. The first type of symmetry functions contains information

about the radial distribution of particles around a center particle within a certain

cutoff radius. On the other hand, the angular symmetry functions describe the an-

gular distribution of neighboring particles.

The task of this master’s thesis is to test the applicability of a new type of sym-

metry functions, the so-called Steinhardt bond order parameters (SBOP) to replace

the angular symmetry functions. This work begins with an introduction to molec-

ular dynamics, which includes presenting algorithms used to solve the Newtonian

equations of motion. Additionally, quantities like the diffusion coefficient and the

radial distribution function (RDF) are introduced. They will be calculated from

MD simulations later in the thesis. In the following a short introduction to ab-initio

methods for the calculation of potential energy surfaces is given. A detailed discus-

sion of SBOPs and their application in computational science is portrayed in the

subsequent section. The usage of SBOPs in the determination of crystal structures

as well as driver of nucleation processes is presented. A detailed review on neural
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network potentials (NNP) for the calculation of potential energy surfaces in molecu-

lar dynamics provides insight into the methods necessary to understand the purpose

of this work. This section is followed by a review of commonly used optimization

algorithms in neural networks.

Finally the results of this work are presented which includes the 3d visualization of

the SBOPs, which was to the authors knowledge never done before. This visualiza-

tion indicates that there is a significant difference between SBOPs of even and odd

orders. A direct comparison of learning curves where both the angular symmetry

functions and SBOPs were applied to the NNP is conducted. Finally, molecular dy-

namics simulations for both these methods and the reference model are performed

The focus lies on the ability to reproduce the radial distribution function and the

diffusion coefficient of the reference model.

2 Molecular Dynamics

Molecular dynamics is the a numerical method to reproduce particle dynamic on

atomic scale to mimic real experiments by the laws of classical mechanics. Via

simplified models the forces of a configuration of N particles are computed and the

Newtonian equations of motion are solved.

The observables in experiments are not the positions of the single atoms but averaged

thermodynamical quantities. However, statistical mechanics provides us the means

to express the thermodynamical quantities as function of the microscopic quantities.

A fundamental macroscopic quantity is the temperature T of the particle system,

which is in relation to the average kinetic energy of the particles:〈
1

2
mv2

〉
=

1

2
kBT (1)

Here, m is the particles mass, v is the particles absolute velocity and kB is the

Boltzmann constant. This expression can be rearranged to express the temperature

of the system

T (t) =
N∑
i=1

miv
2
i (t)

kkN
(2)

This only holds under the assumption that the systems particle number N is high.

A model predicts the forces on the particles and the Newtonian equations of motion

have to be solved in order to progress the system in time.

6



2.1 Equations of Motion

The forces can be calculated for each particle by forming the negative gradient of the

potential (F = −∇U), which is determined by the used model. A typical potential

often encountered in physics is the Lennard-Jones potential ([13]):

U(r) = 4ε

[(
σ

r

)12

−
(
σ

r

)6]
(3)

Here, r is the distance between a particle pair, σ is the distance for which the

potential is zero and ε is the depth of the potential. Newton’s second law (equation

4) provides the link between the force on the particle and its acceleration a:

F(t) = ma(t) = mv̇(t) (4)

Hence, the set of equations, which has to be solved in order to progress the system

in time, is given by equations 5 and 6:

v̇i(t) =
Fi(t)

mi

(5)

ṙi(t) = vi(t) (6)

This equations have to be integrated in parallel to advance the system in time.

A further way of finding the equations of motion is via the Hamilton equations. The

Hamiltonian of a N-body system is given by the system’s total energy:

H(rN ,pN) =
N∑
i=1

p2
i

2mi

+ U(rN). (7)

Here N is the number of particles in the system, rN are the positions of all particles,

pN are the momenta of all particles and U(rN) is the potential energy. The Hamil-

tonian equations of motion can be formed as partial derivatives of the coordinates

and canonical momenta:

ṙi =
∂H

∂pi
(8)

q̇i = −∂H
∂qi

(9)
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This leads to the exact same set of equations as the Newtonian equations of motion

(equations 5 and 6). The Hamiltonian is an integral of motion, which is equivalent

to energy conservation:

dH

dt
=

N∑
i=1

∂H

∂ri
ri +

∂H

∂pi
pi =

N∑
i=1

∂H

∂ri

∂H

∂pi
− ∂H

∂pi

∂H

∂ri
= 0 (10)

2.2 Integration of Equations of Motion

In general, it is not possible to solve the equations of motions for the N-body system

analytically. For this reason numerical finite difference methods can be utilized,

where successive integrations for a small time step ∆t are applied subsequently.

This only works, if the error of this approximations is reduced with a smaller time

step ∆t. The approaches of solving this problem are called integration algorithms.

2.2.1 Verlet Algorithm

The Verlet algorithm which is named after Loup Verlet ([35]) can be derived by a

Taylor expansion of the particles position at time t:

r(t+ ∆t) = r(t) + v(t)∆t+
F(t)

2m
∆t2 +

...
r

3!
∆t3 +O(∆t4) (11)

Analogically the reversed time step can be expressed via a Taylor series:

r(t−∆t) = r(t)− v(t)∆t+
F(t)

2m
∆t2 −

...
r

3!
∆t3 +O(∆t4) (12)

The sum of the equations 11 and 12 gives following expression:

r(t+ ∆t) + r(t−∆t) = 2r(t) +
F(t)

2m
∆t2 +O(∆t4) (13)

Rearranging to r(t+ ∆t) gives the Verlet algorithm:

r(t+ ∆t) ≈ 2r(t)− r(t−∆t) +
F(t)

2m
∆t2 (14)

The Verlet algorithm is accurate up to the order ∆t3. This means that the error is of

the order O(∆t4). Furthermore, the velocities are not needed for the computation of

the next positions. However, the velocities can be calculated by subtracting equation

12 from equation 11:
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r(t+ ∆t)− r(t−∆t) = 2v(t)∆t+O(∆t3) (15)

which can be rewritten in terms of the velocity:

v(t) =
r(t+ ∆t)− r(t−∆t)

2∆t
+O(∆t2) (16)

The velocitie’s accuracy is reduced by one order due to the division by ∆t.

The advantages of the Verlet algorithm are its simplicity, that only the forces and

positions are required for the calculation of the next time step and that there is no

long term energy drift. Also, time reversibility is provided by the Verlet algorithm.

On the other hand, the Verlet algorithm is not self starting since for the first time

step also the prior position of the particle are required.

2.2.2 Leapfrog Algorithm

A further popular integration scheme in molecular dynamics is the leapfrog algo-

rithm. The Verlet algorithm has the disadvantage that the velocities are only accu-

rate up to order ∆t. The accuracy can be improved by using the leapfrog algorithm,

witch calculates the velocities at half integer steps. The velocities at this half time

steps are given by equations 17 and 18.

v

(
t− ∆t

2

)
≈ r(t)− r(t−∆t)

∆t
(17)

v(t+
∆t

2
) ≈ r(t+ ∆t)− r(t)

∆t
(18)

The positions can now be expressed with the help of this half time step:

r

(
t+ ∆t

)
≈ r(t) + v

(
t+

∆t

2

)
∆t (19)

r(t−∆t) ≈ r(t) + v

(
t− ∆t

2

)
∆t (20)

Finally the Verlet algorithm (equation 14) is utilized and the position differences

are substituted with the newly derived equations:

r(t+ ∆t)− r(t) ≈ r(t)− r(t−∆t) +
F(t)

m
∆t2 (21)
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Applying equations 19 and 20 results in the expression for the velocities of the

leapfrog algorithm:

v

(
t+

∆t

2

)
≈ v

(
t− ∆t

2

)
+

F(t)

m
∆t2 (22)

2.2.3 Velocity Verlet Algorithm

Another important integration algorithm is the velocity Verlet algorithm. Again,

the next time step of the position r(t + ∆t) is expressed via a Taylor expansion at

the time t:

r(t+ ∆t) = r(t) + v(t)∆t+
F(t)

2m
∆t2 +O(∆t3) (23)

In addition r(t) can be written as follows:

r(t) = r(t+ ∆t)− v(t+ ∆t)∆t+
F(t+ ∆t)

2m
∆t2 +O(∆t3) (24)

When equation 23 is substituted by equation 24 one yields:

r(t) = r(t) + v(t) +
F(t)

2m
− v(t+ ∆t)∆t+

F(t+ ∆t)

2m
∆t2 (25)

The terms r(t) cancel out and the velocity can be written as follows:

v(t+ ∆t) = v(t) +
F(t) + F(t+ ∆t)

2m
∆t+O(∆t3) (26)

In the velocity Verlet algorithm the positions are accurate up to the order ∆t3 while

the velocities are accurate up to the order ∆t2.

2.3 Nosé-Hoover Thermostat

Typically, molecular dynamics simulations operate in the micro-canonical ensemble

where the energy is constant. So-called thermostats can be applied in order to

simulate a canonical ensemble with constant temperature. Popular methods are the

Anderson thermostat ([1]), Langevin dynamics ([31], p 480), isokinetic molecular

dynamics ([23]) and the Nosé thermostat ([27]) or its modification the Nosé-Hoover

thermostat ([27]).

Here the Nosé-Hoover thermostat is reviewed. The idea of Nosé was to modify the
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equations of motion is such a way, that the canonical ensemble is sampled. The

modified Hamiltonian has the following form:

HN(pN , rN , ps, s) =
N∑
i=1

p2
i

2mis2
+ U(rN) +

p2s
2Q

+ gkBT ln(s) (27)

Here, s is scaling factor treated as additional dynamical variable, ps is the corre-

sponding conjugate momentum, Q can be interpreted as reactivity parameter and

g is a free parameter chosen in such a way that the canonical ensemble is sampled.

The microcanonical distribution of the Nosé Hamiltonian HN(pN , rN , ps, s) is corre-

sponding to the canonical distribution with the modified variables pN/s and rN for

the Hamiltonian H(pN/s, rN). The corresponding equations of motion are:

ṙi =
∂HN

∂pi
=

pi
mis2

(28)

ṗi = −∂HN

∂ri
= Fi (29)

ṡ =
∂HN

∂ps
=
ps
Q

(30)

ṗs = −∂HN

∂s
=

N∑
i=1

p2
i

mis3
− gkBT

s
=

1

s

[ N∑
i=1

p2
i

mis2
− gkBT

]
(31)

The only difference in the equation of motion is the factor s2 in the positions. The

variables pN , rN , ps and s are corresponding to canonical variables for transformed

momenta:

p′i =
pi
s
, (32)

p′s =
ps
s
. (33)

Applying the transformations leads to the new equations of motion:

ṙi =
pi
s

1

mis
=

p′i
mis

(34)

ṗi =
d

dt

p′i
s

=
1

s

dpi
dt

+ pi
d

dt

1

s
=

Fi

s
− pi
s2
ṡ

=
Fi

s
− pi
s2
ps
Q

=
Fi

s
− p′i

p′s
Q

(35)

ṡ =
ps
Q

=
sp′s
Q

(36)
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ṗ′s =
d

dt

ps
s

=
1

s

dps
dt
− ps

ṡ

s2

=
1

s2

[ N∑
i=1

p2
i

mis2
− gkBT

s

]
− ps

s

sp′s
Q

=
1

s2

[ N∑
i=1

p′2i
2mi

− gkBT
]
− p′2s
Q

(37)

These are the Nosé equations of motion. However, they can be simplified by in-

troducing a friction variable ζ = sp′s
Q

which leads to the Nosé-Hoover equations of

motion:

ṙi =
pi
mi

(38)

ṗi = Fi − ζpi (39)

ζ̇ =
1

Q

[∑
i

p2
i

mi

− 3NkBT

]
(40)

˙ln s = ζ (41)

The associated Hamiltonian is given by:

HNH(rN , pN , ζ, s) =
∑
i

p2
i

2mi

+ U(rN) +
ζ2Q

2
+ 3NkBT ln s (42)

Since the Hamiltonian is a conserved quantity it can be used to test the correct

implementation of the thermostat.

2.4 Radial Distribution Function

The radial distribution function (RDF) or pair correlation function g(r) describes

the distribution of distances between particles in an atomic system. It can be defined

via the number of particles dn(r) found in an infinitesimally small spherical shell

centered around a particle witch thickness dr at the radius r.

dn(r) =
N

V
g(r)4πr2dr (43)

The term N/V represents the average density of the system. Figure 1 shows the

typical form of the RDFs for three different phases of matter:

� Solid phase: The main characteristics of the RDF of solid matter are strong

peaks and valleys. This is due to the ordered structure of solids. The positions

of the atoms in crystals are fixed and only small fluctuations around their

average position occur.
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� Liquid phase: The RDF of liquids shows typically only several peaks quickly

decaying with distance. The first peak occurs at R ≈ σ and further ones

approximately at multiples of σ. The RDF quickly reaches the mean density

with the value g(r) = 1.

� Gas phase: Typical for a gas RDF is that only a single peak can be found

which decays to the value g(r) = 1 without deceeding it again. No further

peaks occur since no regular structure exists in the gas phase.

Figure 1: The form of the radial distribution function g(r) is depending on the phase

of the system. The depicted system is Argon. Typically, the solid phase shows very

distinctive peaks, whereas for liquids only several unremarkable peaks are found,

which are quickly decaying with larger radii. The RDF of a gas shows only a single

peak. Figure taken from: https://bit.ly/2zitV1e, last time accessed on 28-07-

2018.

2.5 Diffusion Coefficient

The process of equalization of concentration differences is called diffusion. The

process is described by Fick’s first law (equation 44), which states that the diffusion

constant D is the proportionality factor between the flux j and the concentration

gradient ∇c. The following derivation is based on [9].

13
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j = −D∇c (44)

Fick’s law and additional utilization of the continuity equation (45) leads to the

diffusion equation (46).

∂c

∂t
+∇ · j = 0 (45)

∂c

∂t
−D∇2c = 0 (46)

It holds that the squared displacement can be expressed via the following equation

if the concentration is normalized (equation 48):

〈
r2(t)

〉
=

∫
drcr2 (47)

∫
drc = 1 (48)

The multiplication of the diffusion equation with r2 and an integration over dr yields:

∂

∂t

∫
drc(r, t)r2 = D

∫
drr2∇2c(r, t) (49)

The left-hand side of the equation 49 can be rewritten with equation 47 and the

right-hand side can be solved directly.

∂ 〈r2(t)〉
∂t

= D

∫
drr2∇2c(r, t)

= D

∫
dr∇ · (r2∇c(r, t)−D

∫
dr∇r2 · ∇c(r, t)

= D

∫
dS(r2∇c(r, t))− 2D

∫
dr∇c(r, t)

= 0− 2D

∫
dr(∇ · rc(r, t)) + 2D

∫
dr(∇ · r)c(r, t)

= 0 + 6D

∫
drc(r, t)

= 6D

(50)

The expression 〈∆r(t)2〉 can be interpreted as the mean squared distance that the

molecules move for a time interval of length t. Microscopically this quantity is
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expressed by following equation:

〈
∆r(t)2

〉
=

1

N

N∑
i=1

∆r(t)2 (51)

The displacement can be written as integral of the particles velocity over the simu-

lation time:

∆r(t) =

∫ t

0

v(t′)dt′ (52)

Let consider only one dimension which implies that
∂〈x2(t)〉

∂t
= 2D holds. We can now

express the position x as integrals of the velocity vx and obtain following equation:

〈
x2(t)

〉
=

〈(∫ t

0

vx(t
′)dt′

)2
〉

=

∫ t

0

∫ t

0

〈vx(dt′)vx(dt′′)〉 dt′dt′′

= 2

∫ t

0

∫ t′

0

〈vx(dt′)vx(dt′′)〉 dt′dt′′

(53)

Hence, the mean squared displacement can be written as integral of the velocity

auto correlation function. The autocorrelation function is depending only on the

time differences:

〈vx(t′)vx(t′′)〉 = 〈vx(t′ − t′′)vx(0)〉 , (54)

which means that the diffusion coefficient takes following form:

D = lim
t→inf

∫ t

0

〈vx(t− t′′)vx(0)〉 . (55)

The expression t′ − t′′ can be substituted by τ :

D =

∫ inf

0

dτ 〈vx(τ)vx(0)〉 (56)

Equation 56 is a so-called Green-Kubo relation ([11], [17]) which connects a transport

coefficient with the correlation functions of microscopic quantities of the system.
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3 Ab-initio Methods

Molecular dynamics is utilizing simplified models for the calculation of the forces.

These approximative classical models give good estimates for many phenomena in

the classical domain. However, quantum effects play a great role in N-body particle

interaction. Thus, electronic structure calculations have great importance since they

are capable of accurately describing non-classical phenomena like chemical bonding

processes. This section follows the review article of Kühne [18].

In ab-initio molecular dynamics the forces (see equation 57) are calculated by finding

the ground state eigen-fuctions |ψ0〉 of the N-body Hamiltonian for the electrons.

The only information provided are the positions and the charge of the atoms in the

configuration.

Fi = −∇rΦ(r) (57)

In the Born-Oppenheimer approximation the potential Φ(r) can be written as fol-

lows:

Φ(r) = 〈ψ0|He({Ri}; r)|ψ0〉+ EII(r) (58)

In this equation He({Ri}; r) is the electronic many body Hamiltonian, which is a

function of the configuration {Ri}, as well as the position r and EII is the nuclear

potential. The mass difference between the electrons and nuclei allows to assume

an instantaneous equilibrium of the electrons in respect to the nuclei.Therefore, it

possible to write an eigen-equation in the following form:

He({Ri}; r)ψ0({Ri}) = ε0(R)ψ0({Ri}) (59)

Here, ψ0({Ri}) are the eigen-functions and ε0(R) are the eigen-values. However, to

solve this eigenvalue-problem typically further simplifications are needed.

3.1 Density Functional Theory

The density functional theory provides the means to reduce the problems complexity

by using the Hohenberg-Kohn theorem (HW) which proves that the potential v(r)

and the wave functions are unambiguously related to the electronic density ρ(r).

The N-body Hamiltonian as seen in equation 60 consists of three contributions:

He =
1

2

Ne∑
i=1

∇2
i +

Ne∑
i<j

1

|ri − rj|
+

N,Ne∑
I,i

ZI
|rI − ri|

= T̂ + Û + V̂ (60)
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Ne is the number of electrons, T̂ is the kinetic energy operator of the electrons, Û is

the electron-electron interaction operator and V̂ is the electron-nucleus interaction

operator. ZI is the proton number of the I-th nucleus. To simplify the equations

atomic units are used. The energy can now be written as:

EDFT [ρ(r)] = 〈ψ|He|ψ〉 = T [ρ(r)] + U [ρ(r)] + V [ρ(r)]. (61)

In the next step the Thomas-Fermi approximation is applied, which estimated the

interaction energy between the electrons with the Hartree energy as seen in equation

62.

U [ρ(r)] ≈ UH [ρ(r)] =
1

2

∫
dr

∫
dr′

ρ(r)ρ(r)′

r− r′
(62)

To this point many body correlation effects are neglected. Nevertheless the correc-

tions can be expressed analytically as density functionals, EXC = EXC [ρ(r)].

4 Steinhardt Bond Order Parameter

One necessary mathematical function should be discussed- the spherical harmonics -

before introducing the main tool of this work, the Steinhardt bond order parameters.

4.1 Spherical Harmonics

Spherical harmonics are special functions which form a complete set of orthogonal

functions and can therefore be applied to describe functions on a sphere’s surface.

Spherical harmonics are the solutions of the angular part of the Laplace equation

(equation 63) in spherical coordinates.

∆f(r, θ, ϕ) = 0 (63)

The Laplace operator can be separated into a radial part and an angular part:

∆ =
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
= ∆r +

1

r2
∆θ,ϕ (64)

The eigenvalue equation of the Laplace equation’s angular part is solved by the

spherical harmonics:(
∂2

∂θ2
+

cos θ

sin θ

∂

∂θ
+

1

sin2 θ

∂2

∂ϕ2

)
Ylm(θ, ϕ) = −l(l + 1)Ylm(θ, ϕ) (65)
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The spherical harmonics are defined as follows:

Ylm(θ, ϕ) =
1√
2π
NlmPlm(cos θ)eimϕ, (66)

where

Nlm =

√
2l + 1

2

(l −m)!

(l +m)!
(67)

and Plm are the associated Legendre polynomials defined in equation 68.

Pml(x) =
(−1)m

2ll!
(1− x2)m/2 d

l+m

dxl+m
(x2 − 1)l (68)

4.1.1 Properties of the Spherical Harmonics

Spherical harmonics have unique properties, which make them very convenient to

handle:

� Completeness:

∞∑
l=0

l∑
m=−l

Y ∗lm(θ′, ϕ′)Y ∗lm(θ, ϕ) = δ(θ − θ′)δ(ϕ− ϕ′) (69)

� Orthogonality: ∫ 2π

0

∫ π

0

Y ∗lm(θ, ϕ)Y ∗l′m′(θ, ϕ) = δll′δmm′ (70)

� Parity:

Ylm(π − θ, π + ϕ) = (−1)lYlm(θ, ϕ) (71)

� Addition Theorem: Consider two unit vectors in spherical coordinates. The

direction of this vectors is given by the angles θ, ϕ and θ′, ϕ′. The angle

between the vectors is denoted by γ. There is trigonometric addition identity:

cos(γ) = cos θ′ cos θ + sin θ sin θ cos(ϕ− ϕ′). Analogically there is an addition

theorem for spherical harmonics:

Pl(cos(γ)) =
4π

2l + 1

l∑
m=−l

Ylm(θ, ϕ)Y ∗lm(θ′, ϕ′). (72)

Pl is the Legendre polynomial of order l. In the special case of γ = 0 this leads

to
l∑

m=−l

|Ylm(θ, ϕ)|2 =
2l + 1

4π
. (73)

For details see [2].
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4.2 Steinhardt Bond Order Parameter

Steinhardt et al. ([32]) developed a method for measuring the local and extended

orientational symmetries in computational simulations. The idea is to assign a set of

spherical harmonics to every bond of an atom to its neighbors. A bond is defined as

a line between an atom and its neighbor, not to be confused with the actual chemical

bond. The value qlm(ri) (equation 74) is formed via the spherical harmonics, where

the orientational angles θ and φ describe the orientation of aforementioned bond

with the i-th neighbor atom.

qlm(ri) = Ylm(θ(ri), φ(ri)) (74)

The order parameter qlm defined in equation 75 sums up the contribution of all

neighbors. Here, Nn denotes the number of neighbors and qlmi is the bond order

parameter for the i-th neighbor.

qlm =
1

Nn

Nn∑
i=1

qlm(ri) (75)

One major problem with qlm is that the value itself depends on the coordinate

system to which one the angles of the bond are measured to relatively. For this

reason, it is useful to form rotationally invariant linear combinations of the qlms.

One possible combination is seen in equation 76, which is the so-called Steinhardt

bond order parameter (SBOP).

ql =

(
4π

2l + 1

l∑
m=−l

|qlm|2
)1/2

(76)

For certain applications the averaged Steinhardt bond order parameter ql ([19]) can

be useful, which is defined in equation 77.

ql =
1

N

N∑
k=0

qlm(k) (77)

The averaged quantity ql holds not only information of the first shell of neighbors

like ql, but also takes the second shell into account. This property is advantageous

when long-range molecular structures are of interest.

A further invariant combination of bond order parameters is seen in equation 78.
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wl =

∑
m1+m2+m3=0

[
l l l

m1 m2 m3

]
qlm1qlm2qlm3(∑l

m=−l |qlm|2
)3/2

(78)

Also this quantity can be formed with the averaged values of qlm:

wl =

∑
m1+m2+m3=0

[
l l l

m1 m2 m3

]
qlm1

qlm2
qlm3(∑l

m=−l |qlm|2
)3/2

(79)

The values m1,m2 and m3 in the sum have a range from −l up to l and only terms

fulfilling m1 + m2 + m3 = 0 are considered. Furthermore, the denominator ensures

that the result is independent of the magnitude of qlm.

Via the Landau theory is even possible to express the structure factor S(q) with

the help of bond order parameters as seen in equation 80. Here, rT is a temperature

dependent parameter, γ describes the strength of the coupling and q describes the

lattice vector,

S(q) =
kBT

rT + 2γ
∑

m Y
∗
6m(|θq, φq) 〈Q6m〉

. (80)

4.3 Determination of Crystal Structure

A possible application of the Steinhardt bond order parameters is the determination

of crystal structures in molecular dynamical simulations. This method introduced

by Steinhardt et al. ([32]) has been improved by Lechner and Dellago ([19]). The

differentiation of solid or liquid phases in simulations can be achieved by introducing

the quantity Sij (equation 81) ([19]).

Sij =
6∑

m=−6

q6miq
∗
6mj (81)

One can define two bodies to be bound, if a certain condition for the value, e.g.

Sij > 0.5, is fulfilled. A particle is then considered to be solid if a certain number

of neighbors is connected, typically 6 or 8. If not enough neighbors fulfill the con-

nection criterion, the particle is considered liquid.
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This is a very effective method of identifying solid structures in molecular simula-

tions. Nevertheless, this method lacks the ability of identifying the specific crystal

structure.

Different crystal structures exhibit differently pronounced values of Steinhardt bond

order parameters depending on the order l, which can be seen in figure 2. The

probability densities of the Steinhardt bond order parameter changes drastically for

different orders l, in this case l = 4 and l = 6.

(a) Probability density of SBOP of order l =

4 for different crystal structures

(b) [Probability density of SBOP of order

l = 6 for different crystal structures

Figure 2: The SBOPs have a different sensitivity for distinct crystal structures

depending on the order l. The left chart shows the probability density of q4 (dashed

line) and q4 (solid line), whereas the right chart depicts the probability density of

q6 (dashed line) and q6 (solid line). In this case the molecular system used is the

Lennard-Jones system. Figure taken from: [19].

Generally, the peaks in the probability density for the averaged values ql are

more pronounced than for the single values ql. This indicates that the averaged

values ql are better applicable for the task of structure analysis. Furthermore, the

averaged values are of smaller magnitude.

Another observation is that the probability densities in figure 2 does overlap for

different crystal structures, which makes it hard to assign a structure without rea-

sonable doubt. In the case for the q4 it is almost impossible to distinguish between

BCC and the liquid phase of the system. The same is found for the averaged values

q4. On the other hand, having a look on the probability density of q6 shows that
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the liquid and the BCC phase are well separated and distinguishable.

This motivates the idea of using a plane of two bond order parameters in order

to characterize the system. Different combinations of bond order parameters are

depicted in figure 3. One observation is that the averaged values on the figures

right-hand side provide a better distinction between the different structures. The

most difficult structures to distinguish are the pairs BCC- HCP and again BCC-

liquid phase. The best results are provided by the usage of the q4− q6-plane, where

all structures are well separated.

Figure 3: This figure shows different combinations of bond order parameters in

order to make crystal structure distinguishable. 2000 particles from a Lenard-Jones

system were chosen randomly. The two left panels show the q4 − q6-plane as well

as the q4 −W4-plane, whereas the right panels show the averaged versions of the

planes. Figure taken from: [19].
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The conclusion is that the usage of two bond order parameters provides a reliable

way to characterize the crystal structure. It is advantageous to apply the averaged

values of the bond order parameters. The averaged values take not only into account

the first neighbor-shell but also include information about the second shell, thus

being more efficient in differentiating between liquid and solid sates.

4.4 SBOP Applied for Driving Homogeneous Ice Nucleation

A further application of the Steinhardt bond order parameters is both, the tracking

and driving of homogeneous ice nucleation in molecular dynamics simulations. Rein-

hardt et al. ([29]) demonstrated that bond order parameters can be utilized to force

the growth of ice nuclei in supercooled liquids. Nucleation is due to the formation

of an interface between the two phases a process with a free energy barrier, making

homogeneous nucleation events rare.

For the mono-atomic mW-water model, simulations have been able to reproduce

homogeneous nucleation ([25]). However, the mW-water model is overestimating

the dynamics drastically, hence it is not the best model for studying nucleation of

ice. On the other hand, water models with multiple atoms provide good estimates

on the dynamics of water but struggle with ice nucleation. A problem is how a local

structure measure can be utilized to drive a simulation.

Examples of quantities distinguishing the local structure are order parameters such

as the Steinhardt bond order parameter, as it is was shown in the previous section.

Reinhardt et. al ([29]) utilized the probability density for all pairs d3(i, j) , defined

in equation 82, to distinguish between liquid and solid states of water. The order

l = 3 is known to be the best tracer for tetrahedral structures. Figure 4a depicts

the probability density of d3(i, j) for the TIP4P-2005 water model. A distinction

between the liquid phase, cubic ice and hexagonal ice is made. A clear peak in

the probability density for cubic ice is observed around the value d3(i, j) = −1.0,

whereas hexagonal ice shows a peak at d3(i, j) = −1.0 as well as for d3(i, j) = −0.1.

The liquid phase does not show any extraordinary features in the probability den-

sity.

In Reinhardt et al. ([29]) a molecule is considered ice-like if nconnections ≥ 3 and else

liquid-like (see equation 83).
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d3(i, j) = q3i · q∗3j (82)

nconnections(i) =

Nn(i)∑
j=1

Γ(d3(i, j)) (83)

Γ(x) =

1 if [(x < −0.825) or (−0.23 < x < 0.01)],

0 else
(84)

Due to this pronounced peaks for the solid phases of water in the probability

density of d3(i, j), it is possible to use this value to classify molecules as solid or

liquid. A possible function to classify the results of figure 4a, is equation 84.

(a) Probability density of d3(i, j) (b) Averaged Steinhardt bond order param-

eter q6 as function of cluster size

Figure 4: (a): The probability density of the d3(i, j) correlation function shows

distinct features depending on the phase of water. Pronounced peaks are observed

for the ice phases, whereas the liquid phase has no comparable features. (b): The

averaged Steinhardt bond order parameter q6 (in figure denoted as Q6) shows a

clear correlation with the ice cluster size of the TIP4P-2005 water simulation. ζ is

a parametrization, here not further considered. Figures taken from: [32].

Monte Carlo simulations in an isobaric-isothermal ensemble were conducted in

combination with umbrella sampling. The idea is to use the order parameter as a

parametrization of a bias function. This means that the bias b is a function of the

order parameter b = b(q6). The bias modifies the acceptance probability in such a

way, that certain nucleus sized are preferred. After the simulation the bias can then
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be analytically removed from the results.

A clear correlation between the cluster size and the q6 Steinhardt bond order pa-

rameter, seen in figure 4b, is observed.

The Steinhardt bond order parameter provides a powerful tool for simulations con-

cerning homogeneous nucleation of ice. The first task that can be accomplished by

the order parameter is the tracking of the nucleation. A clear correlation of Stein-

hardt bond order parameter of order l = 6 and the cluster size is found. The second

task is driving the simulation by providing a parameter for the umbrella sampling .

4.5 Shortcomings of SBOP

Steinhardt bond order parameters are a well established method for characteriz-

ing the local structures in glasses and crystals as well as descriptors for nucleation

processes. Nevertheless, Steinhardt bond order parameters suffer from some crucial

weaknesses. Mickel et al. ([22]) are discussing two major flaws in the definition of

the order parameter as explained in detail below.

For a perfect crystal structure a specific value for the Steinhardt bond order pa-

rameter is obtained. For the identification of the crystal system this knowledge

has been applied. Nevertheless, Kapfer et al. ([16]) showed that non-crystalline

local structures can exist with similar order-parameter values. However, this argu-

ment speaking against Steinhardt bond order parameters is weakened by statistics

in larger configurations.

4.5.1 Ambiguity of the Neighborhood Definition

There are several possible ways to define the nearest neighbors of an atom in molec-

ular dynamics.

� Nearest neighbors via cutoff radius rc: Every particle which ones center is

closer than aσ to the center of particle A is considered as nearest neighbor of

particle A. σ is here the particles diameter. Values of a = 1.2 and a = 1.4 are

used commonly.

� Nearest neighbors via Delaunay graph: The Delaunlay triangulation is applied,

connecting the centers of the particles in such a manner that the circumcircle

of the formed triangles does not include other centers.
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� Nearest neighbors via fixed number of neighbors: To every particle a fixed

number of the closest particles number is assigned and considered as nearest

neighbors.

Figure 5 shows the implications of the definition of the nearest neighbors on a sample

configuration. A general problem is that small changes in the particle’s position can

change the values of the order parameter drastically.

Figure 5: Different definitions for the determination of the nearest neighbors result

in distinct designations of the nearest neighbors for the same configuration. (a)

Voronoi diagram, (b) nearest neighbors via Delaunay graph, (c) via cutoff radius,

(d) via fixed number of neighbors. Figure taken from [22].

The nearest neighbor definition has impact on the Steinhardt bond order param-

eter, which is depicted in figure 6. For a supercooled liquid four different nearest

neighbors definitions are applied as a function of the packing fraction φ for the calcu-

lation of the averaged order parameter q6. It can be seen, that the obtained results

q6 span over a large range of values where the highest values are achieved when

utilizing the cutoff radius definition and the lowest when utilizing the Delaunay def-

inition. The deviations make the calculation of Steinhardt bond order parameters

for different definitions difficult to compare. A further observation is that q6 is not
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constant for changes in the packing fraction φ.

Figure 6: Depicted are the values for the averaged Steinhardt bond order parameter

of order l = 6 q6 as function of the packing fraction φ for different nearest neighbors

definitions. The red squares represent the cutoff radius definition for rc = 1.2σ, the

black stars represent the fixed number of neighbors definition with n = 12. The

green dots show the cutoff radius definition for rc = 1.4σ, the blue crosses represent

the Delaunay definition. Figure taken from [22].

4.5.2 Minkowski Structure Metrics

Mickel et al. ([22]) introduced a modified order parameter in order to remove the

problem of discontinuities in the neighbor assignment. Infinitesimal small changes

of the configuration can lead to drastically deviating results for ql. To address this

problem a weight in respect to the relative area of the Voronoi cell facet A(f)/A is

added to the definition of the Steinhardt bond order parameter, seen in equation

85.

For crystal structures where the Voronoi faces all have equal areas - SC,FCC, HCP

- the value of q′l is equal to the value of ql. However, this is not the case for BCC

since the facet area for the second shell neighbors is smaller than the facet area of

neighbors in the first shell.
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q′l(a) =

(
4π

2l + 1

l∑
m=−l

∣∣∣∣∑
f

A(f)

A
Ylm(θf , φf

∣∣∣∣2)1/2

(85)

Most works only consider orders l = 4, l = 6 of the Steinhardt bond order

parameters. However, Mickel et al. ([22]) are emphasizing that q′3 and q′5 can be

used for the identification of centro-symmetric structures since the values of the

order-parameters vanish for inversion-invariant configurations.

The neighbor definition always has to be considered when comparing qls of different

studies. In order to eliminate discontinuities in the ql-values, a new parameter the

Minkowsky structure metric q′l, is introduced, where the contribution of a neighbor

is weighted according to its Voronoi-facet area.

5 Machine learning

There are many attempts to elegantly define machine learning. I find the following

subsumption into one single sentence quite precise:

”Machine learning is based on algorithms that can learn from data with-

out relying on rules-based programming.” 1

The term ”machine learning” was the first time used by the pioneer of artificial

intelligence Arthur Samuel and today describes a very broad field of computational

sciences, which is focused on algorithms capable of improving its performance from

previous inputs (”learning from experience”). Machine learning approaches are com-

monly utilizes for following tasks:

� Regression: A typical task in machine learning is finding an analytical model

to describe the relations between quantities. The idea is to find unknown

parameters represented by the vector p to describe the relation between the

independent variables x and the dependent variable y, which is mathematically

expressed by equation 86.

y = f(x,p) (86)

A constraint is that p is chosen is such a way that a certain error function is

minimized.

1https://mck.co/2BGeAVh, last time accessed on 28-07-2018.
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� Classification: A dataset has to be classified into classes which are defined by

the applicant.

� Clustering: A similar task to the classification. The main difference is that no

predefined classes exist and the algorithm autonomously creates classes which

are called clusters.

� Dimensionality Reduction: It is sometimes useful to reduce the dimension of

the problem in order to simplify future processing. Lets consider a data set

with multiple variables which can be best illustrated by thinking of a three

dimensional data cube. Furthermore, the data is tightly connected to a plane

within the cube. In this case a projection of the data on the plane eliminates

one dimension and reduces the complexity of the problem.

A distinction of two machine learning types is useful. The first learning type is

the so-called supervised learning. Here, the data used for the training includes the

solution of the problem. In the case of optical character recognition (OCR), this

means that in addition to the image itself also the character (solution or label) is

provided. Both, the regression task and the classification task require supervised

learning. Figure 7 shows the results of a classification as well as regression task.

The second learning type is unsupervised learning which is characterized by unla-

beled training data. The clustering task, as well as the dimensionality reduction

task are both unsupervised learning methods.

In this work supervised learning via an artificial neural network is conducted.
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Figure 7: Two typical task of machine learning are the classification in previously

defined classes and the fitting of the best model parameters, called a regression. Both

task are part of the so-called supervised machine learning method, which requires

labeled data. Figure taken from https://bit.ly/2MYXmaR, last time accessed on

28-07-2018.

5.1 Neural Network

Artificial neural networks (or only neural networks, NN) are machine learning based

computational systems, the design of which is inspired by biological neurons ([34]

chapter 3).

NNs have a huge range of applications like optical character recognition (OCR)

([28]), pattern recognition ([20]), speech recognition ([12]), general classification

tasks and in the case of this work the calculation of energies and forces for a molec-

ular dynamics simulation ([6]).

The comparison of a biological neuron and an artificial neuron, the so-called percep-

tron, can be seen in figure 8. Every biological neuron consist of a nucleus and two

types of appendices, the dendrites and the axons. Both appendices transmit electri-

cal signal in one direction. The dendrites receive impulses from other neurons and

conduct them towards the neuron’s nucleus, whereas the axons transmit impulses

from the nucleus towards other neurons. Typically, neurons emit signals only when

a certain threshold of the input signals is exceeded.

The idea of artificial neural networks is similar. From different artificial neurons in-

dividually weighted signals are transmitted towards another artificial neuron, which

30

https://bit.ly/2MYXmaR


only emits a signal itself, when the sum of the input signals exceeds a threshold.

Figure 8: Artificial neural networks are inspired by biological neural networks. In

both cases the information flow is unidirectional and thresholds have to be exceeded

in order to further pass a signal. Figure taken from https://bit.ly/2zlkKgt, last

time accessed on 28-07-2018.

Neuronal networks consist of many neurons which are connected, for instance

the human brain is estimated to contain 86 ± 8 · 109 neurons (see [3]). Depending

on the task artificial neural networks typically are consisting of hundreds to thou-

sands of neurons, which is significantly smaller and demonstrating the complexity

of biological systems.

6 Representing Potential Energy Surfaces by Neu-

ral Network Potentials

This section is based on a detailed review article by Behler [6]. Molecular dynamics

simulations provide an outstanding tool for studying the properties of molecular

systems. For systems of smaller size electronic structure methods, like density-

functional theory (DFT), for the calculation of energies and forces can be utilized.

Nevertheless, the computational effort for ab-initio methods restricts the simulation
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time and the system size. Typical ab-initio molecular dynamics simulations have

simulation times in the range of tenths of picoseconds ([30]). To address this lim-

itations the ab-initio methods are replaced by efficient proximate potentials. This

allows to determine the potential energy surface (PES) several orders of magnitude

faster than ab-initio methods. Unfortunately, the atomistic models fail to repro-

duce the PES correctly in all facets and many models specializing only on particular

problems exist.

Behler divides potentials into two categories: ”physical” and ”mathematical” po-

tentials. ”physical” potentials are including as much information of the system as

possible in order to approximate the real behavior. Often a relatively small num-

ber of parameters is enough to sufficiently describe the system. An example of a

”physical” potential is the Lennard-Jones potential, which depends on of only two

free parameter. On the other hand ”mathematical” potentials make use of a large

number of free parameters, which ones values are determined by ”machine learning”

algorithms.

The ”machine learning” method for the determination of the potential energy sur-

face reviewed here is based on artificial neural networks (NNs), which are receiving

a lot of attention recently, although they were already introduced several decades

ago ([21]). Originally, neural networks had the disadvantage that not all functions

could be reproduced. This problem was solved by the introduction of a hidden layer

and the replacement of step functions with arbitrary activation functions ([6]).

6.1 Feed-Forward Neural Networks

The most commonly used type of neural network is the so-called feed-forward NN.

A NN network consists of interconnected nodes which are arranged in layers. Due

to their similarity to biological neurons, the nodes are also called artificial neurons.

The feed-forward NN is characterized by its unidirectional information flow. Figure

9 depicts the principle structure of a feed-forward NN, in this case with two hidden

layers. The goal of the NN is to calculate the energy E from the input vector G

(also called input layer). In the case of molecular dynamics G, holds information of

the particle configuration and E represent the energy of the configuration. A larger

number of hidden layers increases the complexity of the functions that the NN can

reproduce. The arrows represent the flow of information and to each arrow a weight
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is assigned.

Figure 9: The schematic structure of a feed-forward NN. Via two hidden layers the

input vector G is transformed to a corresponding energy E. The arrows represent

the information flow. Figure taken from [6].

The value of the i-th neuron in the j-th layer is yji and is calculated via linear a

combination of values from the previous layer, as seen in equation 87.

yji = f ji

(
bji +

Nj−1∑
k=1

aj−1,jk,i yj−1k

)
(87)

Here, bji is a shift of the input value, the so-called bias, aj−1,jk,i represent the weight

of the k-th node from the previous layer (j − 1) on neuron i in layer j. Finally,

an activation function on the linear combination is applied. Following forms of

activation functions are used commonly:

� Linear activation function

� Sigmoid activation function

� Hyperbolic tangent activation function

� Gaussian activation function
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The explicit function for the calculation of the energies (E) for the NN in figure

9, is given by equation 88. Here, Gi represents the symmetry functions. Commonly,

the last activation function is linear to ensure that a big range of values can be

accessed.

E = f 3
l

(
b3l +

4∑
k=1

a23kl f
2
k

(
b2k +

3∑
j=1

a12jkf
1
j

(
b1j +

2∑
i=1

a01ijGi

)))
(88)

NNs tend to have a huge number of free parameters depending on the number of

hidden layers and nodes. Equation 89 gives the total number of parameters NW ,

where MHL is the number of hidden layer and Nk the number of neurons in layer k.

NW =

MHL+1∑
k=1

(Nk−1Nk +Nk) (89)

In many cases several thousand free parameters have to be determined, which re-

quires a big dataset for the training procedure.

6.1.1 Neural Network Potential

An neural network potential (NNP) is an atomic potential fulfilling following con-

ditions:

� The multidimensional potential energy function is calculated via a NN with

help of the atomic coordinates and charges. This means that the system is fully

characterized by the positions and charges of the particles, which is basically

the same input required for an ab-initio method.

� Typically, the NNP is generated by utilizing ab-initio method values as ref-

erences. Nevertheless, this is not necessary and also in this work a physical

potential is used.

� No physical approximations for the NNP are used. The values from the refer-

ence calculations are strictly defining what a successful NNP is.

A NNP aims to reproduce the PES from a reference model (electronic structure) as

good as possible.
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6.1.2 High-dimensional Neural Network Potential

There are several problems arising when NNP are applied. The input layer nodes

contain the symmetry functions which store the information about the local atomic

environment. Each atom of the same element has the same set of symmetry functions

with distinct values depending on the atoms vicinity. An increase of the particle

number in the configurations leads to an increase of the input layer nodes. Subse-

quently also the hidden layer has to be adapted for the new configuration to cover

the new degreed of freedom. Furthermore, a conventional NNP is only applicable to

the system size, which has been used for the calculation of the weights. This makes

sense, when considering that the number of input nodes is the number of atoms in

the system.

A further difficulty of NNPs is that several invariances of the energy E concerning

the position of the atoms have to be fulfilled. Rotations and translations of the

configuration as well as a permutation of equivalent particles should result in an

equivalent PES. This has been the biggest challenge for NNP since the common

Cartesian coordinates do not provide these invariances. Every atom is linked to

an input layer neuron with a specific weight. It is easily understandable why in

exchange of two particles for a NNP with Cartesian coordinates leads to different

energies.

The general idea of a high dimensional NNP is that for every single atom the con-

tribution to the total energy is calculated in a separate neural network as seen in

equation 90. The single atom’s energy is a function of the atom’s local environment

within a certain cutoff radius Rc which is typically in the range of 6− 10Å.

Es =
Natom∑
i=1

Ei (90)

The input value is calculated via several symmetry functions describing the local

environment of the atom. This corresponds to a transformation of the Cartesian

coordinates Ri into a symmetry function vector Gi. The energies of the individ-

ual atom Ei have no real physical meaning, only the sum of all atomic energies

corresponds to the physical potential energy of the configuration. This method of

splitting the total energy Es into contributions of single atoms solves the problem

atom number variations in the configurations.
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Figure 10 represent the schematic structure of a high dimensional NNP for a system

of three atoms. For every singe atom from the Cartesian coordinates Ri the sym-

metry functions vector Gi are calculated. The symmetry function vector is then the

input layer for an atomic NN, which calculates the contribution of the atoms energy

Ei to the total potential energy. In this example not only short range interactions

are considerer, but also electrostatic contributions are calculated via a separate high

dimensional NN.

Since the summation order of the single atomic contributions Ei is arbitrary, it is

guaranteed that permutations of atoms result in the same total energy E.

Figure 10: This figure represents the schematic structure of a high dimensional NNP.

The system consists of three atoms and electrostatics is considered by including an

additional contribution calculated in a separate NN. Figure taken from [6].

6.2 Symmetry Functions

It is of great importance to be able to characterize the local atomic environment

and providing suitable input for the NN. In general, Cartesian coordinates do not

provide the invariances desired for the input quantity. For this reason symmetry

functions are used to describe the local atomic environment. Following criteria have

to be fulfilled by by symmetry functions:
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� Symmetry functions and their derivatives need to be continuous, which is a

general requirement on a PES in order to be able to calculate forces in MD

simulations.

� Symmetry function need to be invariant towards rotation and translation of

the configuration. For example Cartesian coordinates change their values when

a rotation is applied to the system which results in different outputs values.

� The symmetry functions have to be invariant to permutations between same

species atoms. Again, this is not fulfilled by Cartesian coordinates. When two

atoms are interchanged their Cartesian coordinates change and this results in

a distinct output.

� Every atom of the same species must have the same number of symmetry

functions.

The first step towards symmetry functions is to define a cutoff radius in order to

only include information of the local atomic environment. A possible choice for a

cutoff function is seen in equation 91. This represents a monotonous decreasing

function until the cutoff radius Rc is reached where the function attains the value

zero.

fc,1(Rij) =


0.5

[
cos

(
πRij

Rc

)
+ 1

]
if Rij ≤ Rc

0 if Rij > Rc

(91)

Furthermore, a cutoff function of the form as seen in equation 92 can be applied. This

cutoff function has the advantage that it avoids discontinuities at the calculation of

forces. The choice of the value of Rc itself is important since it defines the region

around an atom which is considered in the characterization of the local environment

via symmetry function. Every atom outside the cutoff radius is neglected. Hence, it

is of great importance to ensure that all energetically relevant particles are included

within the cutoff radius. Generally, cutoff radii in the range between 6− 10Å suffice

in fulfilling this condition.

fc,2(Rij) =


tanh3

[
1− Rij

Rc

]
if Rij ≤ Rc

0 if Rij > Rc

(92)
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A distinction between two types of symmetry functions can be made: Radial sym-

metry functions and angular symmetry functions. Radial symmetry functions have

the purpose to describe the radial distribution of atoms, whereas angular symmetry

functions describe the angular distribution. A very basic radial symmetry function

is the sum of all cutoff functions of the atom’s neighbors G1
i seen in equation 93.

It is important to note that for each chemical element in the simulation a separate

symmetry function is calculated.

G1
i =

Natom∑
j=1

fc(Rij) (93)

An improved version for a radial symmetry function is given by equation 94. Due

to the Gaussian factor, neighbor atoms farther away have a smaller contribution

to the symmetry function, which is a good property when considering, that the

interactions are weaker for increasing distances between the atoms. The radial

symmetry function G3
i defined via equation 95 includes a damped cosine term with

the parameter κ which is adjusting the period.

G2
i =

Natom∑
j=1

e−ν(Rij−Rs)2fc(Rij) (94)

G3
i =

Natom∑
j=1

cos(κRij)fc(Rij) (95)

The parameter ν controls how fast the function is decaying, whereas Rs sets the

radius for which the symmetry function is specifically sensitive to. Hence, a combi-

nation of several radial symmetry functions with different values for ν and Rs can be

utilized to describe the radial distribution of atoms efficiently. The radial symmetry

functions G1
i , G

2
i and G3

i are shown in figure 11, where the cutoff radii Rc for G1
i

and G2
i are varied, η is varied for G2

i and κ is varied for G3
i .
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Figure 11: The radial symmetry functions G1
i , G

2
i and G3

i for different parameters

are depicted in this figure. Figure taken from [5].

This radial symmetry function cannot reflect the angular distribution of atoms

within the cutoff radius. For this reason additional angular symmetry functions

depending on the angle θijk =
RijRik

|Rij||Rik|
are introduced. Here, cos θijk describes the

angle between atom j and k in respect to atom i. Two possible angular symmetry

functions are G4
i and G5

i as seen in equations 96 and 97 respectively.

G4
i = 21−ζ

∑
j 6=i

∑
k 6=i,j

[
(1 + λ cos θijk)

ζe−η(R
2
ij+R

2
ik+R

2
jk)fc(Rij)fc(Rik)fc(Rjk)

]
(96)

G5
i = 21−ζ

∑
j 6=i

∑
k 6=i,j

[
(1 + λ cos θijk)

ζe−η(R
2
ij+R

2
ik)fc(Rij)fc(Rik)

]
(97)

These symmetry functions take into account all possible triples within the cutoff

radius. The parameter ζ defines the angular resolution of the function. Again,

η defines the specific radius for which the symmetry function is sensitive while λ

defines where the maximum of the cosine term is found. G4
i and G5

i have basically

the same form, except for the term including Rik. This mean that the distance of
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the atom j has no effect on the results. Figure 12 shows the angular symmetry

function G4
i as function of θijk.

Figure 12: The angular symmetry function G4
i for different values of λ. The chart

on the left-hand side shows G4
i for λ = 1 , whereas the right chart shows G4

i for

λ = −1. The angular part of G4
i is identical to the angular part of G5

i . Figure taken

from [5].

6.3 Energy Gradients

There is a clear relation between the input values G of the NNP and the obtained

energy E. Therefore it is possible to analytically express the forces:

Fα = −∂Es
∂α
− ∂Eelec

∂α
(98)

Here, α is the spatial component of interest, Es is the short range component of

the energy and Eelec is the electrostatic energy. Of special interest is the short

component which is given by equation 99.

Fα,s = −∂Es
∂α

= −
Natom∑
j=1

∂Ej
∂α

= −
Natom∑
j=1

Nsym,j∑
µ=1

∂Ej
∂Gjµ

∂Gjµ

∂α
(99)

Here, Natom represent the number of atoms in the configuration, Nsym is the number

of symmetry functions and Gjµ is the µ-th symmetry function of the j-th atom.
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6.4 Training of the NNP

In the development of a NNP a process which was not considered yet is the calcu-

lation of the weights. This procedure is called training. The goal is to find suitable

weights in order to precisely predict the energies and forces of the molecular config-

uration. These parameters are obtained by a so-called learning process.

An iterative process compares the energies and forces obtained by the NNP with

the reference model energies and forces. A quantity describing how good the NNP

achieves the reference energies is the root mean squared error as seen in equation

100.

RMSE =

√√√√ 1

Nstruct

Nstruct∑
i=1

(Ei,ref − Ei,NN)2 (100)

An analog quantity describes the deviation of the forces. There are many opti-

mization algorithms which can be utilized in order to minimize RMSE. The most

important ones are discussed in a separate section.

The set of the configurations used for the training procedure is usually split into

two subsets. The first subset is the training set itself which ones configurations are

actively used to optimize the weights. In order to be able to identify overfitting the

second set, called test set, is utilized. The ratio of training set configurations to test

set configurations is usually around 10 : 1.

A typical learning process is shown in figure 13. The right chart depicts the fit of

the NN together with the physical function. The discrete data points are uniformly

distributed across the range of x. Two data points represent the test set which is

not used in the training procedure. Clearly visible are deviations at exactly this

”missing” descriptions of the system at this points.

The right-hand side figure shows the so-called learning curve of the NN which is

the evolution of the RMSE of the test set as well as the evolution of the training

set. Epochs are quantifying the training length. Initially both, the RMSE of the

training set as well as the RMSE of the test set, are decreasing. At approximately 20

epochs the RMSE of the test set starts to increase while the RMSE of the training

set is still decreasing. This is typical sign of overfitting. At this point the general

properties of the system have already been learned by the NN and further learning

with the training set leads only to improvement of the weights of the training set,

41



while impairing the description of the test-set.

Figure 13: The left chart shows the regression of a NN for a given training set (black

points) and a test set (white points). The test points are missing in the training.

The NN should be able to reproduce the overall dependence f(x). Overtraining the

NN leads to the loss of the overall trend. The right chart shows a learning curve

where the black points represent the RMSE of the training set and the white points

represent the test set. Here, the overfitting is visible in the increasing RMSE of the

test set. Figure taken from [6].

For a good NNP both, the test set as well as the training set are expected to have

minimized RMSE. To ensure this it is crucial to choose the training set such that all

relevant configurations are represented. Missing regions in the configuration space

cannot be represented by the NNP, especially extrapolations beyond the trained

parameters are unreliable.

7 Optimization Algorithms

A crucial process in NNs is the choice of the ideal parameters, i.e. the weights and

biases. There are many optimization algorithms available but for neural network ap-

plied as driver for molecular dynamics, especially the Kalman filter and the gradient

descent method are popular. These two methods are reviewed here.
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7.1 Kalman Filter

The Kalman filter ([15]) is a recursive method specifically designed for noise con-

taminated measurements based on linear dynamical systems. At each time-step

an operator is applied on the old state and mixed with noise. The mathematical

formulation is portrayed in this section.

7.1.1 Initialization

The initial value of the error covariance matrix P(t) can be manipulated with the

error parameter ε and the initial value of the process noise covariance matrix Q(t)

is determined by the parameter q(0).

P(0) = ε−11, ε = 0.001 ... 0.01 (101)

Q(0) = q(0)1, q(0) = 0.0 ... 0.1, qmin ≈ 10−6 (102)

7.1.2 Iteration

The Kalman filter is a iterative process minimizing the quantity y(t), which is in

this case the error of the energy and force estimation of the NNP:

y(t) = EDFT
pot − ENN

pot (t), and FDFT
i,α − FNN

i,α (t) (103)

The derivative matrix H(t) is formed by the derivatives of the error y(t) in respect

to the weights w(t):

H(t) =

(
∂

∂w1

...
∂

∂wn

)T
y(t) (104)

Additionally the scaling factor A(t) is calculated and is a function of the learning

rate η ε(0.001...1.0), the derivative matrix and the error covariance matrix:

A(t) =

[
1

η
+ H(t)TP(t)H(t)

]−1
(105)

The Kalman gain matrix K(t) can be expressed via a matrix multiplication of the

error covariance matrix and the derivative matrix multiplied with the scaling factor:

K(t) = P(t)H(t)A(t) (106)
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The values of the weights and the error covariance matrix are recalculated iteratively:

w(t+ 1) = w(t) + K(t)y(t) (107)

P(t+ 1) = P(t)−K(t)H(t)TP(t) + Q(t) (108)

Q(t) = q(t)1, q(t) = max(q(0)e−tτ , qmin) (109)

7.2 Fading Memory Kalman Filter

A further Kalman filter is the so-called fading memory Kalman filter, also called

extended Kalman filter ([36]). The idea of the fading memory Kalman filter is to

give more weight to recent results and to give less weight to results the older they

are. The forgetting factor λ is the parameter controlling how fast previous iteration

results are neglected for the current calculation.

7.2.1 Initialization

For the fading memory Kalman filter the error covariance matrix is initialized as

unity matrix and the initial value of the forgetting factor, as well as λ0 have to be

set.

P(0) = 1 (110)

λ(0) = 0.95 ... 0.99, λ0 = 0.99 ... 0.9995 (111)

7.2.2 Iteration

The goal of the iterative process is to minimize y(t) which is, as for the Kalman

filter, the error of the energy and force estimation of the NNP:

y(t) = EDFT
pot − ENN

pot (t), and FDFT
i,α − FNN

i,α (t) (112)

The derivative matrix in respect to the weights is formed:

H(t) =

(
∂

∂w1

...
∂

∂wn

)T
y(t) (113)
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The scaling factor is in the case of the fading memory Kalman filter a function of

the forgetting factor λ instead of the learning rate η:

A(t) =
[
λ+ H(t)TPH(t)

]−1
(114)

The Kalman gain matrix K(t) is calculated in the same way as in the case of the

Kalman filter

K(t) = P(t)H(t)A(t) (115)

The iterative calculation of the weights, the error covariance matrix and the forget-

ting factor is performed by following equations:

w(t+ 1) = w(t) + K(t)y(t) (116)

P(t+ 1) = λ(t)−1
(
P(t)−H(t)TP(t)

)
(117)

λ(t+ 1) = λ0λ(t) + 1− λ0 (118)

7.3 Gradient Descent

A commonly applied iterative optimization algorithm is the gradient descent method.

The general idea is to find minima of a function by utilizing multidimensional gra-

dients of the function.

Lets consider a function f(x) with multiple variables defined by the parameter vector

x. The goal is to find the parameters minimizing the function f(x):

min
xεRN

f(x) (119)

From a starting point x0 the subsequent point is determined by the direction of

the steepest descent which can be expressed via the gradient of the function. An

important parameter is the positive step size α.

xn+1 = xn − α∗n∇f(xn) (120)

The step size α∗n is chosen in such a way that it minimizes f(xn − α∗n∇f(xn)). It

is possible to maintain a constant step size α. Nevertheless, it is advantageous to
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calculate the ideal step size for every step. Several methods for calculating vary-

ing step sizes can be found in [37]. A method proposed by Barzilai-Borwein ([4])

determines the step size by following equation:

αn =
(xn − xn−1)

T [∇f(xn)−∇f(xn−1)]

|∇f(xn)−∇f(xn−1)|2
(121)

Lets assume fixed step sizes. There are several approaches of the gradient descent

methods, which will be discussed now.

7.4 Batch Gradient Descent

In machine learning the goal is the minimization of a cost function normally the

mean squared error (MSE) or the root mean square error (RMSE). The definition of

the MSE can be seen in equation 122. Here, m is the number of training instances,

θ is the parameter vector, y
(i)
m is the predicted value of the i − th instance and y(i)

is the value of the i− th instance.

MSE(θ) =
1

m

m∑
i=0

(
y(i)m − y(i)

)2
(122)

The MSE is the function which should be minimized. Hence, the gradient of this

quantity in respect to its parametrization ∇θMSE(θ) has to be formed.

θn+1 = θn − α∇θMSE(θ) (123)

7.4.1 Stochastic Gradient Descent

In order to calculate the gradient in the batch gradient descent method the whole

test set is used. This is computationally expensive. A solution is to use only one

instance for the calculation of the gradient which is chosen randomly. This approach

is called the stochastic gradient descent. A typical behavior of this method is that

the minimum is not reached directly as it is the case for the batch gradient descent

and that even at the minimum the parameters are fluctuating.

An upside of using this method is that local minima do not have the devastating

effect on the determined parameters as in the case of batch gradient descent since the

stochasticity of the methods helps to escape the local minima. The final fluctuations

around the minimum can be removed by using gradually decreasing step sizes.
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7.4.2 Mini-batch Gradient Descent

The third gradient descent method discussed is the mini-batch gradient descent. For

each step several randomly chosen instances are used for the calculation of the next

parameter set. This has the advantage that an averaging of some instances reduces

the impact of outliers in the data. Furthermore, in comparison with the stochastic

gradient descent the fluctuation in the parameter space are reduced once reached

the minimum of the cost function.

Typical paths of the three discussed typed of gradient descents are depicted in figure

14 for a two dimensional parameter space.

Figure 14: The batch gradient descent (blue lines) always choses the direct path to-

wards the cost functions minimum. The stochastic gradient descent (red) maintains

a large fluctuation in the parameter space even when the minimum is reached. The

green lines represent the path of a mini-batch gradient descent method with reduced

fluctuations. Figure source: [10] p.120.

8 Water Models

8.1 mW-Water

One of the greatest challenges in molecular dynamics is the creation of models which

should reproduce important quantities of the molecular configuration without com-

putational expensive ab-initio calculations. Of special interest is water. The goal of

the models is representing crucial molecular properties of water. Most of the water
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models follow the paradigm of using long-range interactions to create the tetrahedral

structure. Into this category fall the popular water models SPC ([8]), SPCE ([7]),

TIP3P and TIP4P ([14]). All of them utilize a long-range electrostatic potential and

consist of multiple force centers. A question arising is if a coarse-grained model, this

means a model where water is represented by a single particle, without long-range

interactions, can still reproduce crucial properties of water.

Existing coarse-grained water models using only short range interactions and spher-

ically symmetric potentials are not capable of reproducing the angular distribution

function, while being good at representing the radial distribution function. An idea

of Molinero et al. ([24]) is considering elements that form tetrahedral structures

which are silicon and germanium. For these elements low-density amorphous solids

with tetrahedral coordinations are found. A further similar property of silicon and

germanium in comparison to water is the density anomaly. All of this indicated that

long-range interactions are not the key ingredient in models to create tetrahedral

structures.

The potential to describe water is similar to the Stillinger-Weber ([33]) (SW) silicon

potential. Equation 124 shows the so-called mW mono-atomic water model poten-

tial introduced by Molinero et al. ([24]). It is a function of the distances of ”water”

pairs (rij, rik) and the angles between three particles (θijk).

E =
∑
i

∑
j>i

φ2(rij) +
∑
i

∑
j 6=i

∑
k>j

φ3(rij, rik, θijk) (124)

φ2(r) = Aε

[
B

(
σ

r

)p
−
(
σ

r

)q]
exp

(
σ

r − aσ

)
(125)

φ3(r, s, θ) = λε[cos θ − cos θ0]
2exp

(
γσ

r − aσ

)
exp

(
γσ

s− aσ

)
(126)

Here, r and s are the distances to two neighboring atoms. To ensure that tetrahedral

structures are formed the parameter θ0 = 109.47◦ is set. The parameter determining

the strength of the tetrahedral term is λ whereas ε determines the magnitude of the

two-body interaction.

The mW-model is able to reproduce the density of water in the temperature range

from 250K-350K within an error of 1%. Figure 15 shows the temperature-density

diagram for different water models. The depicted atomistic models are capable

to qualitatively correspond with the experimental data. However, mono-atomic,
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isotropic models do not show this behavior. Only when adding angle-dependency

to the mono-atomic potential, results according to the experimental data can be

achieved. For mW-water the temperature of maximum density is 250K which devi-

ates from the experimental value of 277K. Nevertheless, mW-water outperforms all

other models except for TIP5P (285K) and TIP4P (253K).

The best agreement with the experimental data is found for the melting tempera-

ture of hexagonal ice (Tm = 274.6K, Tm,exp = 273.15K), the density of the liquid

at Tm (ρliquid = 1.001gcm−3, ρliquid,exp = 0.999gcm−3), the density of the liquid at

T = 298K (ρliquid = 0.997gcm−3, ρliquid,exp = 0.997gcm−3), the enthalpy of fusion at

Tm (∆Hm = 1.26kcalmol−1, ∆Hm,exp = 1.436kcalmol−1).

Figure 15: Various atomistic models of water show qualitatively the same results

in the temperature-density diagram. TIP5P (black circles), TIP4P (white squares),

TIP3P (black triangles), SPC (white circles), experimental data (red line), mW-

water (blue line). In the case of mono-atomic models only non-isotropic models

reproduce this behavior. Figure taken from [24].

Since mW-water is a mono-atomic model it lacks of degrees of freedom in com-

parison to atomistic models. Molinero and Moore ([24]) claim that this causes the

heat capacity at 25◦C to be less than half of the experimental value. Furthermore,
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the model is not capable of reproducing the diffusion coefficient. At 298K D =

6.5·10−5cm2/s are achieved, whereas the experimental value isDexp = 2.3·10−5cm2/s.

The diffusion coefficient is drastically overestimated. A possible explanation favored

by the authors of the original paper is that the missing hydrogen atoms, which nor-

mally slow down the water molecule due to reorientation processes, are causing the

overestimation of the diffusion coefficient.

By the introduction of the tetrahedral mono-atomic mW-water model it is possible

to overcome the shortcomings of isotropic water models, which are not capable of

simultaneously reproducing the energetic and structural properties of water. Ad-

vantages in comparison to the atomistic models are the relatively low computational

costs, with the mW-water model being 100-times faster than the computationally

cheapest atomistic model.

9 Computational Methods and Set-up

The main part of the work is coding on the NNP which is based on the work

of Behler ([6], [5]) and currently maintained and improved by Andreas Singraber

([26]). Till now only radial and angular symmetry functions were available. I have

implemented the SBOPs as alternative to the angular symmetry functions. The

programming language used is C++ and the implementation is tested with the

BOOST-test library 2. The calculation of reference values of the SBOPs for perfect

lattices as well as the three dimensional visualization of the SBOPs is performed

python scripts.

Due to its simplicity the chosen reference model is the mW-model. Prior to the

training, the set of symmetry functions has to be chosen. For all simulations, an

identical set of 8 radial symmetry functions is chosen, which ones parameters can

be seen in table 1. In this thesis two different methods for the NNP training are

performed. For the training with angular symmetry functions, 36 functions are

chosen, which are optimized for the application on the mW-water model. The

parameters of the angular symmetry function can be seen in table 1. For the SBOPs

all orders from l = 3, ..., 12 are used for three different cuff-off radii of 4, 5 and 6Å.

This gives in total 30 functions, which is comparable to the number of angular

2https://bit.ly/2LrM26q, last time accessed on 28-07-2018
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Table 1: Parameter list of radial symmetry functions (equation 94) applied for the

training

ν 0.001 0.01 0.03 0.06 0.15 0.3 0.6 1.5

rshift (B) 0 0 0 0 4 4 4 4

rc (B) 12 12 12 12 12 12 12 12

Table 2: Parameter list of angular symmetry functions applied for the training,

which are the same for both the G4
i (equation 96) and G5

i (equation 97)

η λ ζ rc (B) η λ ζ rc (B)

0.06 1 1 12 0.03 -1 3 12

0.06 -1 1 12 0.03 1 9 12

0.06 1 3 12 0.03 -1 9 12

0.06 -1 3 12 0.01 1 1 12

0.06 1 9 12 0.01 -1 1 12

0.06 -1 9 12 0.01 1 3 12

0.03 1 1 12 0.01 -1 3 12

0.03 -1 1 12 0.01 1 9 12

0.03 1 3 12 0.01 -1 9 12

symmetry functions.

The training set consists of approximately 100 configurations each of about 128

atoms. In order for the NNP learning process to capture all relevant information of

the reference model, it is important that the training set contains as many different

relevant physical cases as possible. This means that the training set should con-

tain liquid configurations as well as perfect crystals. However, also displaced crystal

structures and crystals with removed lattice points should be included.

The training set consists of liquid water configurations at a T = 298K for pressures of

p = −2000,−1000, 0, 1000, 2000, 3000atm and icedIh configurations at T = 274.6K

for p = −2000,−1000, 0, 1000, 2000, 3000atm. Furthermore, configurations with ran-

dom displacements and random particle removals are in the training set. Finally,

configurations with randomly changed box vector angles and box vector lengths are

included. For each epoch in the training all energies from the training configurations
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are used and only 0.3% of all available forces. This ensures that approximately the

same number of energies and forces is used. The training process consists of two

steps: Before the actual training a scaling routine is applied to the training configu-

rations in order to normalize the symmetry functions to an input between zero and

one. This increases the flexibility of the NN. Secondly the training process evaluates

the weights and biases of the nodes.

The MD simulations are conducted with LAMMPS 3, a popular MD simulation

package. The weight data file, the NN configuration file, as well as the initial con-

figuration are needed to perform the time evolution. The calculations for the RDF

and the diffusion coefficient are both based on the MD simulation of a liquid mW

configuration at T = 298K as well as an ice configuration at T = 150K. The simula-

tion time for the RDFs and diffusion coefficients are 10ps and 20ps respectively. In

all cases the used integration scheme is the velocity Verlet algorithm, the time step

is 0.5fs with a Nosé-Hoover thermostat for a NPT ensemble. The pressure is chosen

to be 1atm for all simulations.

3https://lammps.sandia.gov/, last time accessed on 28-07-2018
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10 Calculation and Visualization of SBOPs for

Perfect Structures

10.1 Visualization of SBOP

The overall goal of this thesis is to use Steinhardt bond order parameters instead

of angular symmetry functions. A set of these functions should provide information

on the distribution of the angles between the center atom and neighboring atoms

within the cutoff radius.

The visualization of the Steinhardt bond order parameters provides a mean to iden-

tify symmetries which could reduce the amount of information provided about the

local atomic environment. For a given atomic configuration and order l the values ql

are calculated for all φ ∈ (0, 2π) and θ ∈ (0, π). This is done by shifting the position

of one atom of the nearest neighbors over all positions on the sphere while keeping

all other atoms at fixed positions. The radius in the visualization of the correspond-

ing SBOP value to the angle pair (φ, θ) is given with r(φ, θ) = 1 + aql(φ, θ), where

a is a fixed scaling factor.

10.1.1 Simple Cubic

In the case of the simple cubic lattice which is given by the atom configuration as

presented in table 3, the results of the visualization for the even orders can be seen

in figure 16 and for the odd orders in figure 17.

Table 3: The nearest neighbor positions in the simple cubic lattice

atom 1 2 3 4 5 6

x 1 -1 0 0 0 0

y 0 0 1 -1 0 0

z 0 0 0 0 1 -1
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(a) SBOP of order l = 2 (b) SBOP of order l = 4

(c) SBOP of order l = 6 (d) SBOP of order l = 8

Figure 16: Visualization of SBOPs of even order for the simple cubic lattice.

One immediate observation is that all plots for odd orders are showing a rota-

tional symmetry, whereas the even orders do not show such a symmetry, except for

the order l = 2.
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(a) SBOP of order l = 3 (b) SBOP of order l = 5

(c) SBOP of order l = 7 (d) SBOP of order l = 9

Figure 17: Visualization of SBOPs of odd order for the simple cubic lattice.

10.1.2 FCC

Another visualized cubic lattice type is the FFC lattice given by the atomic con-

figuration in table 4. The results of the SBOP visualization for even orders can be

seen in figure 18 and for odd orders in figure 19.

Table 4: The nearest neighbor positions in the FCC lattice

atom 1 2 3 4 5 6 7 8 9 10 11 12

x 1 -1 1 -1 0 0 0 0 1 -1 1 -1

y 1 1 -1 -1 1 -1 1 -1 0 0 0 0

z 0 0 0 0 1 1 -1 -1 1 1 -1 -1
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(a) SBOP of order l = 2 (b) SBOP of order l = 4

(c) SBOP of order l = 6 (d) SBOP of order l = 8

Figure 18: Visualization of SBOPs of even order for the FCC lattice.
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(a) SBOP of order l = 3 (b) SBOP of order l = 5

(c) SBOP of order l = 7 (d) SBOP of order l = 9

Figure 19: Visualization of SBOPs of odd order for the FCC lattice.

Similarly to the results for the simple cubic lattice it is found that odd orders

show rotational symmetries which are not found in the even orders of the SBOPs.

An exception is again the SBOP l = 2 where a rotational symmetry is found.

10.1.3 Tetrahedral Structure

The list of nearest neighbors for the tetrahedral structure is given by table 5. The

visualization of even orders of SBOPs is seen in figure 20 while the odd orders are

seen in figure 21.
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Table 5: The nearest neighbor positions in the tetrahedral structure

atom 1 2 3 4

x -1 1 1 -1

y -1 -1 1 1

z -1 1 -1 1

(a) SBOP of order l = 2 (b) SBOP of order l = 4

(c) SBOP of order l = 6 (d) SBOP of order l = 8

Figure 20: Visualization of SBOPs of even order for the tetrahedral structure.
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(a) SBOP of order l = 3 (b) SBOP of order l = 5

(c) SBOP of order l = 7 (d) SBOP of order l = 9

Figure 21: Visualization of SBOPs of odd order for the tetrahedral structure.

It is found, that in the case of a non-cubic symmetry like the tetrahedral struc-

ture, the distinction between even and odd orders in terms of rotational symmetry

is no longer valid.

10.2 SBOPs for Crystal Structure

For a perfect lattice the SBOPs yield a fixed value, which is the reason why SBOPs

of different order can be utilized to identify the crystal type in MD simulations. The

results for the calculations can be seen in table 6. For cubic lattices it is typical that

the odd orders of the SBOPs vanish, while the even orders obtain non-zero values,

except for the order l = 2. When comparing the calculated values of the SBOPs

with the visualization, we see that for every order, where the SBOP value vanishes

the rotational symmetry in the visualization is found.
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Table 6: List of SBOPs for perfect structures including only the nearest neighbors.

It can be seen that all odd orders disappear for cubic symmetries, while in the case

of a tetrahedral structure this is not true.

ql SC FCC BCC tetrahedral

1 0.0 0.0 0.0 0.0

2 0.0 0.0 0.0 0.0

3 0.0 0.0 0.0 0.7454

4 0.7638 0.1909 0.5092 0.50924

5 0.0 0.0 0.0 0.0

6 0.3536 0.5745 0.6285 0.6285

7 0.0 0.0 0.0 0.6120

8 0.7181 0.4039 0.2128 0.2128

9 0.0 0.0 0.0 0.5179

10 0.4114 0.01286 0.65015 0.6502

11 0.0 0.0 0.0 0.3514

12 0.6955 0.6001 0.4153 0.4153

11 Derivatives for SBOP

In order to be able to analytically calculate the forces acting on the particles, the

derivatives of the symmetry function in respect to the centered and neighboring

particles coordinates are needed, as it can bee seen in equation 99:

The SBOP takes the has following functional form:

G101 = ql(i) =

√√√√ 4π

2l + 1

l∑
m=−l

| 1

Nb(i)

Nb(i)∑
j=1

Ylm( ~Rij)fc(| ~Rij|)|2 (127)

The derivatives in respect to the coordinates of the centered atom ~∇iql(i) itself as

well as the derivatives of the SBOP in respect to the neighboring atoms ~∇kql(i) are

required for the force calculation.

~∇iql(i) = C

l∑
m=−l

( ~∇iqlm)∗qlm + q∗lm( ~∇iqlm) (128)

~∇kql(i) = C

l∑
m=−l

( ~∇kqlm)∗qlm + q∗lm( ~∇kqlm) (129)
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The constant C is given by

C =
2π

(2l + 1)

1

ql(i)
. (130)

For the derivatives of the SBOP the value qlm as well as its derivatives in respect to

coordinates of the centered atom and the neighboring atoms are required:

qlm =
1

Nb(i)

Nb(i)∑
j=1

Ylm( ~Rij)fc(| ~Rij|), (131)

~∇iqlm =
1

Nb(i)

Nb(i)∑
j=1

fc(| ~Rij|) ~∇iYlm( ~Rij) + Ylm( ~Rij)
~Rij

| ~Rij|
∂fc

∂| ~Rij|
, (132)

~∇kqlm =
1

Nb(i)
fc(| ~Rik|) ~∇kYlm( ~Rik)− Ylm( ~Rik)

~Rik

| ~Rik|
∂fc

∂| ~Rik|
. (133)

12 NNP Training Results with SBOP

12.1 Even Order and Odd Order SBOP

Due to the large discrepancy of the results in the visualization and calculation of the

SBOPs, a classification into even and odd orders of SBOPs seems to be reasonable.

Here, the training progress for a NNP using radial symmetry functions and odd

order SBOPs is analyzed and compared to the training progress for a NNP using

radial symmetry functions and even order SBOPs. The goal is to find a minimal set

of SBOPs without compromising accuracy in the training.
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Figure 22: The energy learning curve for even and odd orders of SBOPs shows that

in the case of energies odd orders perform better than the even orders. The upper

chart shows a comparison of the test and training set performance measured by the

RMSE for both NNP setups. The lower chart depicts the difference of the training

set energy RMSE between even order SBOPs and odd order SBOPs.

Figure 22 shows the result of the training process for a training set of approx-

imately 90 configurations, with each one consisting of about 128 water molecules.

It is found, that in general the odd order SBOPs perform significantly better and

the final energy RMSE is half of the error of the even orders. Furthermore, the

lower chart shows that the error is consistently about the same value after about 12

epochs, which shows that the deviation is systematic. No overfitting is observed in

the training procedure.
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Figure 23: The comparison of learning curves of even and odd orders in term of force

calculation show that odd orders outperform even orders of SBOPs in the case of

forces. The lower chart shows the difference of the training set force RMSE between

angular symmetry functions and odd SBOPs.

A similar situation occurs for the forces which is depicted in figure 23. Again,

the odd order SBOPs perform better than the even orders, with the separating

factor in the RMSE being ≈ 2. The lower chart shows that the difference of the two

approaches is constant after approximately 10 epochs. It can be concluded that in

both cases the odd order SBOPs outperform the even order SBOPs.

Nevertheless, when the training is performed with only odd orders of SBOPs the

performance is still decreased in comparison to even and odd orders combined. For

this reason, all orders are utilized in further trainings.

To summarize, it was found that in general for cubic lattices a rotational symmetry

for the odd order SBOPs exists. How can this surprising result be interpreted

with the knowledge from the visualization? At first one has to remember that

the symmetries are only applicable to systems with a cubic lattice. This is not

the general case for atomic configurations. In the training process many different

configurations of mW-water are used including solid states, liquid configuration

and even displaced lattices. However, water forms tetrahedral structures where
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no difference between even and odd orders of SBOPs in terms of symmetries in the

visualization can be observed. This makes it currently not possible to give an answer

for the significantly better training with odd order SBOPs

12.2 Training Comparison Angular Symmetry functions and

SBOP

The crucial part of this thesis is the comparison of performance between the angular

symmetry functions and the SBOPs. For this case a NNP is trained with radial

and angular symmetry functions and another one is trained with the same radial

symmetry functions and SBOPs. Both approaches are trained with the same training

and test set.

Figure 24: The energy learning curve for the NNP with angular symmetry functions

and the NNP with SBOPs show that the angular symmetry functions perform bet-

ter. The upper chart shows a comparison of the test and training set performance

measured by the RMSE for both NNP setups. The lower chart depicts the difference

of the training set energy RMSE of the results for SBOPs and the results for angular

symmetry functions.
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Figure 25: The force learning curve for the NNP with angular symmetry functions

and the NNP with SBOPs show that the angular symmetry functions perform sig-

nificantly better. The upper chart shows a comparison of the test and training set

performance measured by the RMSE for both NNP setups. The lower chart depicts

the difference of the training set force RMSE of the results for SBOPs and the results

for angular symmetry functions.

The comparison of the energy learning curve of the two approaches can be seen

in figure 24 and for the force learning curve in figure 25. In both cases it is clearly

visible that the angular symmetry functions perform better. For the force RMSE the

difference of the test set is decreasing over time but does not change significantly

after 20 epochs. This shows that the differences are systematic and cannot be

compensated by longer training sessions. Figure 26 shows the correlation of the

forces of all molecules in the training and test set after the training process. The

chart on the left-hand side shows the force correlation for the NNP with angular

symmetry functions, whereas the chart on right-hand side shows the force correlation

for the SBOP NNP. It is apparent that the deviations of the SBOP forces are larger

than those of the angular symmetry functions. This is consistent with the results of

the learning curves.
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(a) Angular symmetry funciton (b) SBOP

Figure 26: Comparison of test and training forces with the reference values after the

training.

Another interesting question is, how the accuracy of the training is improved

by adding further SBOPs into the the learning process. A comparison between the

energy learning curves of a NNP with 18 SBOPs and a NNP with 45 SBOPs is

seen in figure 27. The NNP with 45 SBOPs has a smaller RMSE than the NNP

with 18 SBOPs. This is not surprising, since more descriptors of the local molecu-

lar environment should also provide a better accordance with the reference model.

Nevertheless, the magnitude of the improvement is not justifying the increased com-

putational costs of utilizing more SBOPs.

A similar situations occurs for the comparison of the force learning curves depicted

in figure 28. The RMSE for the NNP with 45 SBOPs is smaller than the RMSE of

the NNP with 18 SBOPs. Nevertheless, the differences are smaller than in the case

of the energy training. Generally, it can be concluded that the optimal number of

SBOPs for the training process is about 30. The accuracy of the learning process is

increased with the number of SBOPs used. However, this is connected with immense

computational efforts.
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Figure 27: The energy learning curve for a NNP training with 18 and 45 SBOPs

respectively: The NNP with 45 SBOPs has a significantly smaller RMSE for the

energy training. The difference is consistent over the whole training process as seen

in the lower chart, which depicts the differences of the test set’s RMSE between the

NNP with 18 SBOPs and the NNP with 45 SBOPs.
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Figure 28: The force learning curve for a NNP training with 18 and 45 SBOPs

respectively: The NNP with 45 SBOPs has a smaller RMSE for the force training.

Also in this case the difference is consistent over the whole training process as seen

in the lower chart, which depicts the differences of the test set’s RMSE between the

NNP with 18 SBOPs and the NNP with 45 SBOPs.

13 MD Simulations with SBOP NNP

13.1 Radial Distribution Function

In order to test the quality of the results of MD-simulations with the newly im-

plemented SBOPs for the NNP, some basic quantities like the radial distribution

function can be utilized. In this case a liquid configuration of mW-water at a tem-

perature of T = 298K with 128 molecules is used. For a simulation time of 10ps

the radial distribution functions for the mW-model, the NNP with angular symme-

try function and the NNP with SBOPs are depicted in figure 29. Both the NNP

with angular symmetry functions as well as the NNP with SBOPs are trained with

the mW-model as reference model. Ideally the NNPs reproduce the same values as

the reference model for the investigated quantities. It is found that the NNP with

SBOPs show stronger peaks than the reference model, as well as the NNP with an-
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gular symmetry functions. The NNP with SBOPs is not capable of reproducing the

RDF correctly, whereas the NNP with angular symmetry functions is doing quite

well.

Furthermore, the RDF of a solid phase of mW-water at T = 150K is depicted in

figure 30. In this case the fit of the SBOP NNP is reproducing the shape of the

reference model better than in the case of the liquid configuration. Nevertheless,

a radial shift of the RDF is found, which is increasing for bigger values of r. This

findings indicate that the NNP with SBOPs performs better in solid configurations

than in liquids.

Figure 29: Liquid configuration at T = 298K: The upper chart depicts the radial

distribution function for three different calculations of mW-water at T = 298K.

The mW-model of water is represented by the blue line whereas the NNP with

angular symmetry functions is represented by the green line. The newly implemented

method of NNP with SBOPs is given by the yellow line. The lower chart shows the

deviations of the two NNP approaches to the reference mW-model.
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Figure 30: Solid configuration at T = 150K: The upper chart depicts the radial

distribution function for three different calculations of mW-water at T = 150K.

The mW-model of water is represented by the blue line whereas the NNP with

angular symmetry functions is represented by the green line. The newly implemented

method of NNP with SBOPs is given by the yellow line. The lower chart shows the

deviations of the two NNP approaches to the reference mW-model.

13.2 Diffusion Coefficients

The diffusion coefficient in a molecular dynamics simulation can be calculated via

the mean squared displacement (MSD) of the particles as shown in equation 50.

Here, the diffusion coefficient for three different models and a liquid configuration

at T = 298K is calculated by applying a linear fit with minimization of the RMSE

(numpy.polyfit4) on the mean squared distance. The results can be seen in figure 31,

where the mW-water is compared with the NNP trained with two different types

4https://bit.ly/2jd9dqt, last time accessed on 28-07-2018
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Table 7: This table contains results of the calculation of the diffusion coefficient at

T = 298K. The reference value for mW-water is from the original paper of Molinero

and Moore ([24]). The difference between the mW-model and the mW-test value is

caused by finite size effects.

model at T = 298K mW mW-test angular SBOP experimental

D(10−5cm2/s) 6.5 4.5 3.2 2.2 2.3

of symmetry functions: angular symmetry functions and the newly implemented

SBOPs. A comparison to experimental values, as well as a published diffusion

coefficient for the mW-model, are compiled in table 7.

Figure 31: The diffusion coefficient can be calculated via the slope of the time

evolution of the mean squared displacement. The blue line is the simulation result

for mW-water model while the dotted line represents the linear fit. The green line

represents the results of the NN with angular symmetry functions and the red line

represents the results of the NN with SBOPs.

It is found that both, the angular symmetry functions, as well as SBOPs underes-

timate the mobility of the molecules in comparison to the reference value of the pure

mW-model. The reference value for the diffusion coefficient is D = 6.5 · 10−5cm2/s.
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Nevertheless, due to missing finite size correction the used reference value for mW-

water is the one found for the same initial configuration with the mW-model, which

is 4.5 · 10−5cm2/s. The NNP with SBOPs fails to reproduce the diffusion coefficient

correctly and underestimates it by a factor of approximately 2. It is worth to men-

tion that also the NNP with angular symmetry functions fails to find the correct

value and lies somewhere between the reference value and the NNP with SBOPs.

14 Conclusion

The goal of this master’s thesis was the implementation of SBOPs which are used to

describe the angular distribution of the local molecular environment for a NNP in

order to replace the angular symmetry functions. The upsides of SBOPs are, that

they provide a simpler and more generic parametrization, making the setup process

more straightforward. Each SBOP is characterized only by the order l and and the

cutoff radius rc. The simplification is immediately apparent, when comparing this

to the more complex form in equations 96 and 97 with many free parameters.

The three dimensional visualization of the SBOPs revealed, that for perfect cubic

lattices the odd order SBOPs display a rotational symmetry. This perfectly co-

incides with vanishing values of the SBOP for odd orders in cubic systems. An

investigation of the learning curves led to the conclusion, that the utilization only

of odd orders gives significantly better results in the energy and force RMSE for the

test set. Nevertheless, the accuracy suffers in comparison to the usage of both even

and odd orders. For this reason both are implemented for further investigations.

The direct comparison of learning curves from a NNP with angular symmetry func-

tions and a NNP with SBOPs showed, that in general the angular symmetry func-

tions yield a smaller error than the SBOPs. This leads to the conclusion that SBOPs

are not as capable in describing the general angular distribution of an atom’s local

environment as the angular symmetry functions are. However, the SBOPs perform

extremely well in determining ordered structures. For the learning curve of the

SBOPs the RMSE is roughly by a factor 2 larger than the RMSE of the angular

symmetry functions. This is the case for both energies and forces.

Molecular dynamics simulations performed with LAMPPS at a fixed temperature

of T = 298K and T = 150K were conducted in order to test the applicability of the
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SBOP NNP as driver of a MD simulation. To make the results comparable, further

simulations were performed, one with a NNP utilizing angular symmetry functions

and another simulation based on the mW-model as reference. For all three simula-

tions the same initial configuration and conditions are used. The RDF shows that

the SBOP NNP tends to produce more pronounced peaks in the RDF of liquids,

compared to the reference model, whereas the angular symmetry function is almost

identical to the reference model. In the case of solids the results of the SBOP NNP

are closer to the reference model. The calculation of the diffusion coefficient leads

to similar results. The NNP with SBOPs underestimates the diffusion coefficient by

a factor of 2 with the value DSBOP = 2.2 ·10−5cm2/s, while the reference simulation

yields a value of DmW = 4.5 · 10−5cm2/s. The angular symmetry function yields a

value of Dangular = 3.2 · 10−5cm2/s.

Despite the outstanding performance of SBOPs in the determination of local ordered

structures, i.e. crystal lattices, they are not the best choice for a general descriptor

of the angular distribution of an atom’s local environment and are outperformed in

this task by angular symmetry functions.
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Abstract

In dieser Arbeit wird ein neuer Typ von Symmetriefunktionen als Input

für ein Neural Network Potential (NNP) untersucht. Die Symmetriefunktio-

nen werden an Stelle von kartesischen Koordinaten verwendet, da von den

Eingangsgrößen zusätzlich Invarianzen erfüllt werden müssen. Es gibt zwei

Arten von Symmetriefunktionen für das NNP: radiale Symmetriefunktionen

sowie Winkelsymmetriefunktionen. In dieser Arbeit werden die Winkelsym-

metriefunktionen durch sogenannte Steinhardt bond order parameter (SBOP)

ersetzt, welche eine breite Anwendung in der Physik sowie Chemie finden.

Die bis dato verwendeten Winkelsymmetriefunktionen haben den Nachteil,

dass deren funktionale Form sehr variantenreich ist und dadurch die Wahl

der besten Funktionen und dazugehörigen Parameter erschwert wird. An-

ders ist es bei den SBOPs: Hier reicht es, ein generisches Set verschiedener

Ordnungen zu verwenden, um die lokale Winkelverteilung der Nachbaratome

zu reproduzieren. Es zeigt sich, dass für kubische Gitter und ungerade Ord-

nungen der SBOPs die dreidimensionale Visualisierung durchwegs Rotation-

ssymmetrien aufweist. Dies koinzidiert mit dem Fakt, dass für ungerade Ord-

nungen die berechneten Werte von idealen kubischen Kristallen null sind.

Nichtsdestotrotz wurde gezeigt, dass SBOPs in der Anwendung auf ein NNP

schlechtere Ergebnisse erzielen als die bisher eingesetzten Winkelsymmetriefunk-

tionen. Konsistent zeigen die Lernkurven eine größere Abweichung vom Ref-

erenzmodell mW-Wasser als die Winkelsymmetriefunktionen. Obwohl SBOPs

sehr effizient im Auffinden von kristallinen Strukturen sind, fehlt ihnen das

Vermögen zur ganzheitlichen Beschreibung der Winkelverteilung der Nach-

baratome. Dies ist auch deutlich an den großen Abweichungen in Ergebnissen

aus molekulardynamischen Simulationen sichtbar. Die radiale Verteilungs-

funktion zeigt deutliche Abweichungen zum Referenzmodell, sowie Simula-

tionen mit Winkelsymmetriefunktionen. Der berechnete Diffusionskoeffizient

wird ebenfalls um ca. eine Faktor 2 unterschätzt.
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