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Abstract

This work presents a solution of hand gesture recognition by using only
image processing techniques. It consists of hand extraction and gesture
recognition, as well as modelling the hand in 3D. The proposed field to be
applied is Virtual Reality. Main techniques used for hand extraction are
background subtraction and Principal component analysis. For gesture
recognition a solution using the Levenberg-Marquardt algorithm, and an-
other using an Iterative Heuristic are presented. In the evaluation part
different gestures are tested, as well as different surrounding setups.

Abstract

Diese Arbeit präsentiert eine Lösung für die Erkennung von Handgesten
nur mithilfe von Bildverarbeitungsmethoden. Die Lösung besteht aus
Handextraktion und Gestenerkennung, sowie aus einer Modellierung der
Hand in 3D. Das vorgeschlagene Anwendungsgebiet wäre virtuelle Re-
alität. Die Hauptmethoden, die für die Handextraktion benutzt wurden,
sind Hintergrundsubtraktion und die Hauptkomponentenanalyse (Princi-
pal component analysis). Für die Gestenerkennung werden eine Lösung
mit dem Levenberg- Marquardt Algorithmus und eine iterative Heuristik
präsentiert. In der Evaluation wurden sowohl verschiedene Gesten, als
auch verschiedene Umgebungseinrichtungen getestet.

Keywords background subtraction, image stitching, hand extraction, gesture
recogniton, principal component analysis, Levenberg-Marquardt, virtual reality
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1 Introduction

The topic of this work is hand tracking and hand gesture recognition by using
image processing techniques without any external sensors. This means a camera
is capturing images of user’s hand and the system is applying various algorithms
to recognize the current hand pose. The result is a 3D hand model. The field
of applying the results was intended to be Virtual Reality (VR).

The field of virtual reality has emerged in last few years as very popular and
many commercial solutions have been developed mostly for the gaming indus-
try. Oculus1 and HTC Vive 2 are examples of VR systems with hand handheld
controllers and additional sensors for tracking user’s movement and interaction
with VR objects. Google Cardboard3 is an example of a simple VR mount
where user interactions are only tracked by head movement sensors and an ad-
ditional button is used for user input. Leap Motion4 is a sensor that can be
attached to a head mount for tracking user’s hands motions. Another example
of a sensor tracking hands are various hand gloves, e.g. Manus VR Glove5. All
of them require additional sensors that are either on a user’s body or hands to
track the hand motions. Our idea was to test a system where a user only needs
a phone with a camera, which will track and recognise the hand gestures. This
system would be non-invasive and the user would need fewer gadgets to interact
with a VR environment.

The system that was developed to test this relies on image processing tech-
niques and can be divided in two main topics: hand extraction and hand ges-
ture recognition. Hand extraction is done by using background subtraction,
which then includes image stitching and other techniques such as Principal
component analysis (PCA), filtering, feature detection and extraction etc. The
second topic, hand gesture recognition includes implementations of both the
Levenberg-Marquardt algorithm and one additional heuristic. The results of
both approaches are presented and compared at the end.

The main idea is having a static environment where user is imagined to be
sitting at his desk, wearing a VR head mount with a smartphone. The smart-
phone’s camera is capturing images of the surroundings. The images are then
fed to a developed solution which then runs hand gesture recognition algorithms.
The output is a 3D hand model that represents the recognized hand gesture.

The implemented solution consists of two components, one is called the Im-
age Processing Component and it runs image processing techniques to extract

1https://www.oculus.com/
2https://www.vive.com/eu/
3https://vr.google.com/cardboard/
4 https://www.leapmotion.com/
5 https://manus-vr.com/
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the hand from the background. Its output is a binary segmentation of a hand.
This has been developed using the EmguCv 6 library, which is a C# wrapper of
an OpenCV 7 library. The second component is a Unity3D 8 application which
contains a 3D hand model. This component executes the gesture recognition
algorithm. The output is a 3D hand, which represents the input gesture as
closely as possible.

6http://www.emgu.com/wiki/index.php/Main Page
7https://opencv.org/
8https://unity3d.com/de
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2 Related Work

The problem of tracking users’ movements has been a topic of many research
projects, especially since the field of virtual reality has become very popular in
the last few years. The gaming industry has been investing many resources into
this, as the users’ movement and interactions are of big importance here.

In general, the methods for capturing user input can be divided in two categories:
hardware and computer-vision based. The first category includes invasive ap-
proaches by mounting different sensors and devices on the user and getting the
input from them. The other category relies on camera and computer vision
techniques to extract the input. The hardware based ones have higher accu-
racy, but are mostly invasive and require additional gadgets for user to carry on
his body. The computer vision based approaches divide further into ones with
markers and without any markers. The first group includes approaches where
colour markers or gloves are used for gesture tracking. The second group uses
different techniques to recognise either static, pre-defined gestures or dynamic
gestures.

Yeo et al. [29] in their work present a computer vision based approach where
they perform gesture recognition by using a simple USB camera and a Kinect 9,
which is a depth camera. Their solution can recognise a set of gestures. In their
setup they have a camera taking photos of both the user’s face and hands in
the frame, so the first step they do is the background subtraction to extract the
user. They use Haar - like features and Canny Edges detector to remove the face
from the input. The Kinect depth data is used to remove the background and
determine the hand contours. Contour extraction and polygon approximation
is used for shape analysis. Further, they calculate the palm centre as the maxi-
mum inscribed circle inside the contour and extract the region of interest (ROI)
as the area surrounding the palm center. Convex hull and the convexity details
are also calculated and used for later analysis. In analysis of the convexity,
they define finger tips, their direction and location by several steps, where they
calculate angles and depths, as well as the K-curvature of each point. All these
steps are a part of a heuristic for determining the resulting gesture recognition
on the static set.

Demeulemeester et al. [14] present a teleconference system that includes a
so-called Virtual Meeting Room. They simulate human avatars sitting in a
meeting room and modelling their gestures and interactions. Following inter-
actions include: participants entering or leaving the room, which participant is
speaking or presenting and in which direction thye are looking. Participants are
located at different locations. Also additional metadata, such as e.g. company,
role of participants is tracked as well. The system consists of multiple cam-

9https://developer.microsoft.com/en-us/windows/kinect
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eras positioned around the room which send their input to a component that
aggregates it. This input is processed by computer vision algorithm such as
face recognition, by use of parabolic edge maps, people tracking, gaze detection
and hand detection and tracking. The last component visualises this processed
data. The location of the participant, the walking speed and the size of each
person is used to deduce the behaviour in the simulation. The visualisation of
the meeting room has been accomplished with Unity3D.

Ma and Wu [22] propose a model-based approach for hand tracking where they
use a time-of-flight camera that captures depth data. The hand model is based
on quadratic meshes and provides a simulation of all 26 degrees of freedom.
The system is initialised with a hand depth image database on which k-nearest
neighbour search is performed. This is done to help automatic initialization and
tracking loss recovery. The captured raw depth image is preprocessed, where
hand segmentation is preformed to remove unnecessary objects which results in
a binary mask of a hand. They developed a tracking system, which is an opti-
miser based on an improved version of the Particle Swarm Optimization (PSO)
[18] to find the optimal motion parameters to be applied on the hand. Thw PSO
algorithm consists of having a population of particles in the parameter space.
By iteratively moving the particles, the point with optimal objective function
value is searched.

Baltzakis et al. [7] in their paper on tracking hands, faces and facial features,
proposed an approach for hand tracking which is a blob tracker, specifically
trained to track skin-coloured regions. The aim of their work was to support in-
teraction of visitors in museums with an autonomously navigating guide robots.
The developed system had the task to classify the face and some facial expres-
sions, as well as the left and right hand correctly. The problems they tackled in
the work were: identification and tracking of hands and faces by detecting skin-
coloured blobs, classification and identification thereof, and tracking of specific
facial features within the recognised blobs. The approach of identifying hand
and face based on skin coloured areas relies on building a colour model of hu-
man skin and classifying the image pixels based on their fitness to those models.
The clustering of skin coloured pixels into solid blobs that correspond to hands
and faces was done by using segmentation techniques. The authors describe the
process of propagating the information about the location and shape of each
blob by means of a set of pixels hypothesis that are initialised at the setup
and forwarded between the subsequent frames. Additionally, an incremental
classifier was implemented to continuously update the classification of a tracked
hypothesis, i.e. whether it belonged to face, or left or right hand. The shape,
motion characteristics and relative location of each blob were also tracked.

In their work, Dardas and Patriu [13] used Principal component analysis for
real-time hand tracking and recognition. They have a training stage with a set
of hand gestures for which they do the training on different lightning, rotations
and scales. After that they calculate eigenvectors and training weights by pro-
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jecting images onto most eigenvectors. In the test phase, a frame containing
hand is projected onto the same eigenspace. By using Euclidean distance, it
is then classified to recognise the hand gesture. By using PCA in the training
stage they decrease the dimensionality by reducing each NxN image into a vec-
tor of length N2. The eigenvectors of a set of hand gestures form an eigenspace.
Each image from the training set corresponds to each eigenvector. Each image
from the training set is represented as a linear combination of the eigenspaces.
To extract the hand from the frame, authors use skin detection and contour
comparison algorithms. Skin detection was done by applying the thresholding,
i.e. a pixel is classified as skin if it fits some defined range. Having defined the
skin area, contours of that are are extracted and compared to the contours of
hand posture templates. If a match is found in those templates, that area will
be used for extracting PCA features.
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3 Hand Extraction

Hand extraction is a process of importing images from cameras and applying
various image processing methods in order to extract an area of the image that
contains only a hand. The result of this process is a binary segmentation, de-
sirably containing all black pixels around the hand, which is displayed by white
pixels. This segmentation is then further processed for hand gesture recogni-
tion. We used background subtraction to extract hand from the image and this
process is described in this section.

The algorithm below sums the whole process of image stitching, creating back-
ground panos and extracting the hand.

Hand Extraction Algorithm

1. Capture n images of surroundings

2. Apply image stitching to create background pano p

For any following incoming image i :

1. Warp i to p

2. Extract ROI from p

3. Apply filtering to both i and p

4. Calculate difference between i and p

5. Apply thresholding to create binary segmentation s

6. Contour finding, resulting in biggest contour c

7. Apply Principal Component Analysis on c

8. Send s to modelling component

3.1 Background Subtraction

Background subtraction is also called foreground detection and it is widely used
in computer vision for motion and object detection. Many computer vision
systems use this technique for moving object detection without knowing a pri-
ori what those objects are. The most common applications for background
subtraction are video-surveillance for detecting persons, vehicles, intrusion e.g.
cameras on highways, intrusion detection, and person counting. Work by Xu
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et al. [30] classifies background modelling methods into three categories: pixel-
based, region-based and hybrid methods, as well as classification in parametric
and non-parametric methods.

Authors of [26] present a review of different background algorithms and state
that most of them share the following scheme:

Background initialization: a background model is built from a fixed number
of frames.

Foreground detection: this is a classification step, where a pixel is defined either
as background or foreground. The foreground is computed by comparing back-
ground model and the current frame.

Background maintenance: the background model is updated by analysing im-
ages for non-moving objects.

The process of creating a background model can also be categorised into two
categories: building the static images, the so-called Static Frame Difference and
by using previous frames, which is called Frame Difference [26]. In the first ap-
proach, a static background is defined and for all subsequent frames an absolute
difference is computed. In the second approach, the background is adaptively
maintained, by for example, computing the arithmetic mean between successive
frames. This approach has the advantage when ambient lights changes, but will
fail if moving objects stop suddenly. For foreground detection, most commonly,
as in the static background initialization, the absolute difference between back-
ground and current frame is computed.

Bouwmans in his survey [9] lists three main conditions for insuring functional
background subtraction models: the camera must be fixed, illumination is con-
stant and the background is static. The main issues and challenges that occur at
background subtraction are: illumination changes, jittering camera, poor qual-
ity image, moved or inserted background objects, foreground aperture, shadows,
“ghosting” of objects, etc. [9].

Most common approaches for building a background pano are:

1. Frame differencing

2. Mean filter: series of preceding images are averaged to create a background

3. Running Gaussian average

4. Adaptive Background Mixture Model [27]
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3.2 Gaussian Mixture Model

In common probabilistic pixel-based approaches, each pixel has a probability
density function. A pixel from new frame belongs to background if its value is
well described by its density function.

One of the most common statistical approaches is probabilistic method by Stauf-
fer and Crimson [27]. It is a Gaussian Mixture Model (GMM) where the dis-
tribution of each pixel colour is represented by a sum of weighted Gaussian
distributions, which are defined in given colourspace. The distributions are
evaluated to determine which pixel is most likely to result from a background.
The pixels that do not fit the background distributions are categorised as a
foreground until there is a Gaussian that will include them. Multiple Gaussians
are necessary due to lightening changes and authors use a mixture of adaptive
Gaussians to approximate the process. The value of each pixel represents a
measurement of the radiance in the direction of the sensor of the first object
intersected by the pixel’s optical ray [27]. The probability of observing the pixel
value Xt at time t is:

P (Xt) =

N∑
i=1

ωi,t × η(X − t, µi,t,Σi,t) (1)

Where N is number of Gaussian distributions, ωi,t is an estimate of weight of
the ith Gaussian in the mixture at time t, µi,t is the mean value of the ith

Gaussian in the mixture at the time t, Σi,t = σ2
kI is covariance matrix of the ith

Gaussian in the mixture at the time t and η(Xt, µ,Σ) is a Gaussian probability
density function:

η(Xt, µ,Σ) =
1

(2π)
n
2 |Σ| 12

e−
1
2 (Xt−µt)TΣ−1(Xt−µt) (2)

Depending on the computational resources, N is chosen between 3 and 5. The
on-line N -means approximation is implemented, because an exact expectation
maximisation would be too costly. By doing this, every pixel value is checked
against N Gaussian distributions. If none of the distributions match the pixel
value, the least probable distribution is replaced with a distribution with the
current value as its mean value. The prior weights of the N distributions at
time t are updated by following equations:

ωk,t = (1− α)ωk,t−1 + α(Mk,t) (3)

µt = (1− ρ)µt−1 + ρXt (4)

σ2
t = (1− ρ)σ2

t + ρ(Xt − µt)T (Xt − µt) (5)
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where:
ρ = αη(Xt|µk, σk) (6)

α is the learning rate and Mk,t is simply 1 for models that matched and 0 for
non-matches. ωk,t is the kth Gaussian distribution.

The Gaussians are ordered by the fitness value ω/σ. As the evidence of the
distribution increases, its value increases also and decreases as the variance in-
creases. Therefore, to determine which of the Gaussians of the mixture are
most likely produced by the background the goal is to find the distribution with
highest supporting evidence and lowest variance. The first B distributions are
chosen as the background model, where B is estimated as:

B = argminb(

b∑
k=1

ωk > T ) (7)

T is a measure of the minimum portion of data that should be accounted for
by the background. A pixel is marked as a foreground pixel if it is more than
2.5 standard deviations away from any of the B distributions. If a small value
is chosen for T , the model is then unimodal.

An improvement was proposed by using an online expectation minimisation
algorithm to update background model. An adaptive GMM was proposed by
Zivkovic [31]. Further improvements came from Shimada et al. [25] to improve
the accuracy by using a dynamic Gaussian component to control the Gaussian
mixture model. Chen et al. [12] proposed a hierarchical algorithm by combining
GMM and a contrast histogram. In their work, Zivkovic and van der Heijden
[32] review the GMM model of Stauffer and Crimson [27] and improve it further
by on-line selecting the number of components.

In his comprehensive study, Bouwmans [9] states that fuzzy concepts were in-
troduced by some authors, to deal with imprecisions and uncertainties in the
process of background subtraction. In combination with these, neural network
models, which learn to classify each pixel of the image have been proposed:
General Regression Neural Network, Multivalued Neural Network, Competi-
tive Neural Network, Self Organising Neural Network, etc. Bouwmans also
presents another category of algorithms: Robust PCA models, which separate
background and foreground via a robust subspace model which is based on a
low-rank and a sparse decomposition.

3.3 Static Frame Difference

The simpler approach to the adaptive frame difference for building the back-
ground is the static frame difference. The idea is to define one reference frame
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as the background and for every other incoming frame to compute the difference
to that background.

The problem can be formulated as following, having:

1. A defined reference frame fr

2. Current frame fc

3. Compute the difference: |fr − fc| > Th

where Th is some predefined threshold value.

The result is a binary segmentation which points out non – stationary objects.
Compared to the approach described in section 3.2 this one is not nearly as
robust, however because of its simplicity there is no need to update the back-
ground image. Background subtraction should provide a robust approach, which
is insensitive to illumination changes, motion changes and changes in the back-
ground geometry. As we will later see, this approach is sensitive to illumination
changes, so some filtering and defining the constraints in which the solution
works is necessary. However, our idea is to have a static environment setup, e.g.
a workplace with an user sitting at a computer desk. The camera is placed on
the user’s head taking photos of the workplace. Thus, if a camera is capturing
what is happening around user all the incoming frames will have hands in it. If
the setup is truly static, all that changes in it are user’s hands that are moving
or changing gestures. That is why we consider any further change as a trigger
for hand gesture recognition. The background will not change and as the im-
age for the background is precomputed the difference between this precomputed
pano image and the incoming frame is the hand.

3.4 Static Frame Difference vs. GMM

In Fig. 1, the left image represents simple background, whereas the right image
represents an incoming frame containing hand in foreground. The difference
between these two images can be computed, by simply subtracting the pixel
values. Left image in Fig. 2 is the result, a grayscale image where the back-
ground is mostly black and the hand is easily distinguishable, although some
filtering is necessary. This grayscale image can be further transformed into a
binary one. The right image in Fig. 2 shows a clear segmentation of a hand.
This can further be used to extract the exact gesture.

Mixture of Gaussians for background subtraction was tested with a stream of
input frames from Fig. 3 and results are presented in Fig. 4. The stream starts
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Figure 1: Background and hand image

Figure 2: Difference between background and hand image

with an empty background and then different hand gestures were captured in
the following frames. OpenCV BackgroundSubtractorMOG 10, which is an im-
plementation of Gaussian Mixture-based algorithm, was used for this. As one
can see, the hand is distinguishable and as the hand moves it keeps being recog-
nised as foreground object. In the case if hand would become static for some
time, it would fade into the background.

The extractions above were results of using only one image as a background.
However, using only one image for a background is not enough. We want to
provide more freedom for the user, so if he rotates or slightly moves his head,
it should still be possible to extract the hand. To achieve this, we need to take
more images of the surroundings. These images need to be stitched into a pano,
which will serve as a background image.

3.5 Image Stitching

Image stitching is a process of stitching multiple images into a pano. There are
two different methods for doing this: direct and featured based ones. Direct

10https://docs.opencv.org/ref/2.4/db/dcf/classcv 1 1BackgroundSubtractorMOG.html
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Figure 3: Input images for background subtraction

ones require initialisation, whereas the feature based ones do not. For our
implementation, we used OpenCV Stitching namespace, which was implemented
based on work by Brown and Lowe [23]. They used an invariant feature based
approach for fully automatic panoramic image stitching. As shown in Fig. 5 (see
appendix A for larger image), the image stitching pipeline consists of following
main steps:

1. Registration: feature extraction and matching

2. Compositing: warping and blending images into a pano

18



Figure 4: Results from OpenCV BackgroundSubtractorMOG

Algorithm by Brown and Lowe [23]
For n unordered images:

1. Extract SIFT features from all n images

2. Find k-nearest neighbours for each feature using a k-d
tree

For each image i

1. Select m candidate matching images with most feature
matches for i

2. Find homography by RANSAC

3. Verify matches by probabilistic method

4. Find connected components of the matches

5. For each connected component c:

(a) Preform bundle adjustment

(b) Render panorama using multi-band blending

Algorithm above lists all algorithm steps by Brown and Lowe [23] with following
main steps:

1. Feature Matching

2. Image Matching
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Figure 5: OpenCV Image Stitching Pipeline [5]

3. Bundle Adjustment

4. Panorama Straightening

5. Multi-Band Blending

Feature Extraction and Matching Feature extraction is the process of
finding key-points of an image and representing them as a compact feature vec-
tor. Key-points are interesting points of an image that describe it. They are
used to identify an object and then to compare it to some other image. Thus,
feature detection, extraction and matching are combined in image processing for
object detection and recognition. The most common features are edges, corners
or interesting points, blobs or regions of interest. Edges have one-dimensional
structure and represent points that build a boundary of an image. Most com-
monly, they are defined as sets of points with a strong gradient magnitude.
Corners have a two-dimensional structure and are mostly called interest points.
Opposed to this, blobs describe images by regions. Commonly used feature
detectors for edge features are e.g. Canny [11], Harris and Stephens [17]. The
latter is also used for corner detection. Laplacian of Gaussian, as well as Differ-
ence of Gaussians are both used for corner and blob detection. The authors of
[23] however use Scale Invariant Feature Transform (SIFT) as a feature detector.
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Scale Invariant Feature Transform (SIFT) The algorithm uses a SIFT
model or an extraction of key points and computes descriptors that were pub-
lished by Lowe [21]. The approached is named SIFT because it transforms
image data into scale-invariant coordinates relative to local features. Generated
features vectors of an image are, as the name suggests, invariant to image trans-
lation, scaling, rotation, partially invariant to illumination changes and robust
to local geometric distortion.

The author presented four steps of the model that compute the set of image
features:

1. Scale-space extrema detection

2. Keypoint localisation

3. Orientation assignment

4. Defining a keypoint descriptor

In the first step, a Gaussian function is applied to a scaled space of smoothed
and resampled images. After calculating minima and maxima of the result of
the difference-of-Gaussians functions, key locations are defined. Dominant ori-
entations are assigned to these key points, but low contrast candidate points
and edge response points are discarded. The computed key features are then
indexed and matching keys are computed for the next image.

Finally, features must be matched between images. This is done by match-
ing each feature to its k-nearest neighbours in feature space. Lowe and Brown
[23] in their algorithm use a k-dimensional tree algorithm to identify nearest
neighbours. A k-dimensional tree is data structure used for organising number
of points in space with k dimensions. The binary search is performed, recursively
partitioning the feature space at the mean in the dimension with the highest
variance.

Image Matching The next step is to find all overlapping images. They must
be stitched to create a panorama. Here emerges a problem: the cost rises
quadratically with the number of images, because it is possible that each image
could match every other. The algorithm solves this by identifying images with
a large number of matches between them in the feature matching step. Random
Sample Consensus (RANSAC) [15] is used to select a set of inliers compatible
with a homography between the images and consequently probabilistic method
is used to verify the match. RANSAC uses minimal set of randomly sampled
correspondences to estimate image transformation parameters to find the solu-
tion best suiting the data.
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To map the corresponding points of an image to others, a transformation matrix
must be computed. This is called homography matrix.

The RANSAC Algorithm consist of three main steps:

1. Select a sample of points randomly

2. Fit the model to the sample

3. Check how many points agree: best estimation is with most agreement

By applying this estimation procedure, the homography matrix H is calculated.
RANSAC computes inliers and outliers. The former are a set of features that
are geometrically consistent, while the latter are a set of features that are inside
the overlapping area but not consistent. The probabilistic verification model is
used to compare the probabilities that the set of features are generated by a
correct image.

Bundle Adjustment Bundle Adjustment is the problem of refining a visual
reconstruction to produce a jointly optimal structure and viewing parameter
estimates. It is usually a last step in most feature-based 3D reconstruction
algorithms. The goal is to obtain a reconstruction that is optimal under cer-
tain circumstances regarding the noise in the observed image features. The
reprojection error is expressed as a summed square error of several nonlinear,
real-valued functions. The minimisation is achieved using least-squares algo-
rithms. The authors of [23] use a Levenberg-Marquardt approach to update
the parameters. Each feature is projected onto all the images where it matches
and the algorithm is used to minimise the sum of squared image distances with
respect to the camera parameters.

Panorama Straightening This step includes improving images so that the
up vector is vertical. The problem is that 3D rotation to a chosen world coor-
dinate frame is still unknown after all previous steps which would give relative
rotations between the cameras. The heuristic used here is that most people usu-
ally do not twist the camera relative to the horizon, so the camera’s horizontal
axis typically lies in the plane. The up vector is found by finding the null vector
of the covariance matrix of the camera x vectors, and the wavy effect is removed
after applying a global rotation such that the up vector is vertical. [23]

Multi Band Blending Blending is necessary to prevent image blurring, as
some pixels along the ray get more weight (intensity), this leads to some image
edges to be more visible due to some effects such as vignetting, mis-registration
errors, radial distortion etc. A weight function is assigned to each image and a
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weighted sum of the image intensities along each ray is performed using those
weight functions. To prevent blurring of high frequency detail due to small
registration errors, a multi band blending algorithm of Burt and Adelson [10]
is used by authors of [23]. This algorithm blends low frequencies over a large
spatial range and higher ones over a shorter range. In their work, spherical
coordinates for rendering the panorama are used.

3.6 Frame to Background Warping

After the image stitching is applied, the pano is defined and a new frame con-
taining hand is loaded, it is necessary to fit this frame to the background image
so that difference between them would be minimal. To achieve this, it is first
necessary to find key points and warp them together. The workflow here is
similar to the algorithm applied for image stitching, by again applying feature
extraction and matching. Steps are as follows:

1. Detect and compute key features by using SURF

2. Match feature: FLANN based matcher, k-nearest neighbours

3. Use RANSAC to get homography

4. Warp hand image to background by homography using the perspective

Speeded-Up Robust Features (SURF) SURF is a a sped-up version of
the SIFT algorithm. The method was published by Bay et al [8]. The algorithm
has three main steps:

1. Key points detection

2. Local neighbourhood description

3. Key points matching

As Lowe et al. approximated the Laplacian of the Gaussian with difference-of-
Gaussians for finding scale-space, SURF uses a box filter to further approximate
the Laplacian of the Gaussian, whereas SIFT uses cascaded filters. The advan-
tage of the box filter is that it can be calculated easily by using integral images.
A blob detector based on the Hessian matrix is used to detect key points. The
determinant of the Hessian matrix is used both to find the location, as it is
used as a measure of local change around the points where the determinant is
maximal. It is also used to select the scale. As the key points can be found
at different scales, the scale space is represented as an image pyramid. Images
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are smoothed with a Gaussian filter and subsampled to get the next higher
level of the pyramid. To assign the orientation, Haar wavelets are used in the
horizontal and vertical directions for a neighbour of 6s, where s is the scale at
which a key point was obtained. The calculated responses are weighted by a
Gaussian function, cantered at the point of interest. A sliding window of size
π
3 is used to calculate the dominant orientation. Two summed responses yield
a local orientation and the longest such vector overall represents orientation of
a key point. To describe the region around the key point, a Wavelet response
is used. Neighbourhood of 20s × 20s window size is taken for every key point
and divided in 4 regions. For each subregion, horizontal and vertical responses
are calculated and thus give then a SURF feature descriptor with 64 dimensions.

Perspective projection

After the homography matrix is calculated with SURF, we use the OpenCV
warpPerspective method to apply a perspective transformation to an image.
Given a homography matrix H:

H =
H11 H12 H13

H21 H22 H23

H31 H32 H33

the function applies the following transformation [6]:

dst(x, y) = src(
H11x+H12y +H13

H31x+H32y +H33
,
H21x+H22y +H23

H31x+H32y +H33
) (8)

where src denotes source image, which is the hand image and dst is output,
which is the warped hand image. The hand image is warped to the background
in the same matter as all initial frames are matched to be stitched together.
Only here the stitching is not done, as we are only interested in computing the
image difference. After computing the homography and warping the hand image
to the background it is necessary to then extract the ROI from the background
so that images of same dimensions can be compared. Here a simple heuristic is
used, by cutting all lines which have only black pixels from the warped image.
Having this, y and x coordinates with height and width of the ROI in the
background image are obtained.

3.7 Filtering

Although hand image warping transforms the image so it fits background, there
can still occur some mismatches that when computing the difference will lead to
incorporating pixels which should be ignored. In order to discard this noise, we
apply median filtering. A median filter is a non-linear digital filtering technique

24



Figure 6: Gaussian and box filter.

that is widely used in image and signal processing to remove noise by smoothing
the image. It goes through the image, pixel by pixel by replacing each value
with a median of neighbouring entries. A window of some square size is defined,
e.g. 5 × 5, which slides through the image. The pixel value in the centre is
replaced by the median value of neighbour pixels. Besides the median filter, a
normalised box filter and a Gaussian filter have been tested.

The OpenCV implementation of box filter smoothes an image by using the
following kernel [3]:

K =
1

ksizewidth × ksizeheight


11.1
11.1
....

11.1

 (9)

where ksizewidth is the width of box filter and ksizeheight its height.

Applying a Gaussian filter to the image convolves the image with a Gaussian
function:

G(x, y) =
1

2πσ2
e
−x2+y2

2σ2 (10)

where x is the distance from the origin in the horizontal axis, y is the distance
from the origin in the vertical axis, and σ is the standard deviation of the Gaus-
sian distribution [1].

In OpenCV [3] an image is convolved with Gaussian kernel:

Gi = αe
−(i−(ksize−1)/2)2

2σ2 (11)

where ksize is the aperture size, i = 0, ..ksize − 1 and α is scale factor chose so
that ΣGi = 1, σ is Gaussian standard deviation, computed:

σ = 0.3× (
1

2
(ksize − 1)− 1) + 0.8 (12)
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Figure 7: Median filtering

Results of applying a 5× 5 median filter to background and hand image are
shown in Fig. 7. The upper row contains original images, the lower contains
the results of median filtering.

To prevent an unnecessary loss of details, different sizes of filter windows
have been chosen for images containing a hand, depending on the image area.
The assumption is that hands will mostly be positioned in the central part of
the image so in that area the values would not be altered much. The rest of the
image might contain unnecessary details that should be removed. Thus, in the
central part no filtering was done, whereas in rest of the image the filter was
5× 5. The background image does not contain hands in it, so the whole image
was filtered by a window of 5 × 5. Fig. 6 shows on the left Gaussian filter, on
the right results from box filter, both of size 5× 5.

Erode and Dilate

Erosion and dilation [2] are morphological operations based on image shape,
normally performed on binary images. Most common uses are for noise re-
moval, isolation of individual elements and the joining of disparate elements in
an image. Dilation consists of convolving an image A with some kernel B, usu-
ally of square dimensions. Kernel B has an anchor point, which is usually the
centre of the kernel. As the kernel slides over the image, the maximal pixel value
overlapped by B is computed and the pixel value at the anchor point is replaced
by this maximal value. This causes bright regions in image to expand. Erosion
computes the minimum over the area of the kernel and replaces the anchor pixel
value with that. By applying erosion, the dark regions in image are expanded.
Erosion and dilation were applied on the binarily segmented image, so that the
noise originating from the background subtraction would be reduced.
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Figure 8: Comparison of different thresholds.

Binary Segmentation

After the filtering is done, the next step is converting the grey image to a
binary segmentation. Here again a threshold must be defined. Binary segmen-
tation is achieved by using that threshold value and converting all pixel values
above the threshold to black and all below to white. Different threshold values
on the blurred hand image from Fig. 6, are applied for comparison in Fig. 8.
Beginning from the upper right, images show results from following thresholds:
{20, 40, 60, 80, 100}. It has been decided to use a threshold value of t=80 to
create the binary segmentation for further processing, as this threshold seemed
to yield an image which has most unnecessary background details removed and
leaves the hand part mostly undamaged.

3.7.1 Contour Finding

Contour finding was done to get biggest contour which will be processed with
Principal Component Analysis in order to get the orientation angle. For finding
contours OpenCV findContours method was used. This method implements
an algorithm for finding contours in binary images by Suzuki and Abe [28].
Their algorithm uses border following and topological analysis by deriving a
sequence of coordinates from the border between a connected component of
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Figure 9: PCA results

1-pixels (1-component) and a connected component of 0-pixels (background or
hole). After finding all contours in hand image the next step is to extract the
biggest contour, which in the best case is the one defining the hand. This is
done by simply comparing sizes of the contours and choosing the biggest one.
That contour, i.e. the points of it are then further used for PCA Analysis. An
example is given in Fig. 9. Image in the top left corner is input to PCA, image
right to it contains the biggest contour in red, the two below show some of the
smaller contours also found by PCA.

3.8 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure that extracts
important features of a data set by using an orthogonal transformation to con-
vert a set of data points of possibly correlated variables into a set of points of
linearly uncorrelated variables called principal components.

Principal components are calculated by computing eigenvectors of a covariance
matrix. The highest n eigenvectors contain the maximum variance in the orig-
inal data. The principal components are orthogonal to each other and the first
components is in the direction of the greatest variance. The size of the eigen-
vector is encoded in the corresponding eigenvalue and it indicates how much
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the data varies along the principal component. All eigenvectors start at the
centre of the data points. Applying PCA to a n-dimensional data set yields
n-dimensional eigenvectors, n eigenvalues and one n-dimensional centre point.
If the variance of the component is small, it can be omitted and by this only a
small amount of data is lost. The key point of PCA is Dimensionality Reduction.
Dimensionality Reduction is a process of reducing the number of dimensions of
a data set.

When calculating the PCA, steps are:

1. Compute the d-dimensional mean vector

2. Compute covariance matrix of whole data set

3. Compute eigenvectors and corresponding eigenvalues

4. Sort eigenvectors by decreasing eigenvalues and choose k eigenvectors with
the largest eigenvalues

Given is a data set containing n observations of p variables. Firstly, data is to be
organised in n set of vectors with each representing a single grouped observation
of the p variables. An empirical mean vector u with dimensions p × 1, along
each dimension j = 1.., p is calculated:

u(j) =
1

N

N∑
i=1

x(i,j) (13)

The mean vector is then subtracted from each row of data matrix X:

B = X − huT (14)

where h is an n×1 column vector of all 1s. The next step is to find the covariance
matrix C:

C =
1

n− 1
B ∗ ⊗B (15)

Where ⊗ is conjugate transpose operator. Having the covariance matrix C, the
next step is to calculate eigenvectors and eigenvalues of it:

V −1CV = D (16)

where D is diagonal matrix containing eigenvalues of C in the form of an p× p
diagonal matrix:

D[k, l] =

{
λk, k = l

0, kl
(17)

λk is the k-th eigenvalue of the covariance matrix C. Matrix V, also of dimen-
sion p × p, contains p column vectors, each of length p, which represent the p
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Figure 10: PCA results with middle point

eigenvectors of the covariance matrix C. The eigenvalues and eigenvectors are
ordered and paired. The j-th eigenvalue corresponds to the j-th eigenvector.
Eigenvectors e1, e2, ...ep with corresponding eigenvalues λ1 through λp sorted:

λ1 ≥ λ2 ≥ ... ≥ λp

The variance of the i-th component is equal to the i-th eigenvalue:

var(Yi) = var(ei,1X1 + ei,2X2 + ...+ ei,pXp) = λp (18)

The principal components are uncorrelated with one another:

cov(Yi, Yj) = 0 (19)

The eigenvectors with the lowest eigenvalues carry the least information about
the distribution of the data, so they can be ignored. As we are interested in
the orientation, we take the first two eigenvectors and corresponding eigenval-
ues. One other important result of PCA is the determination of the middle point
which is used later as the middle point of the hand and thus the hand’s position.

The hand orientation angle is calculated by computing the tan of eigenvectors:

α = tan(
e1

e2
) (20)

where e1 and e2 are largest eigenvectors respectively. Fig. 10 shows the result
of PCA applied on the biggest hand contour. The blue axes represent principal
components, starting from the calculated middle point of the hand.

3.9 Finger Tip Recognition

In combination with hand contours, one additional heuristic that was tested was
to count the number of finger points to make gesture recognition easier. The
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idea is to define number of finger points and rotate the fingers of the hand model
correspondingly, so that the starting position and rotation of fingers reduces the
subsequent process of gesture recognition.

The process includes

1. Describing contours with convex polygons

2. Finding convexity defects

3. Filtering out irrelevant information

Figure 11: Results of finger tips recognition

Convexity defects are points furthest away from each convex vertex. This
heuristic gives additional information about the number of fingers and their po-
sition. However, the heuristic did not yield good enough results. Although the
number of fingers can be calculated, the exact finger cannot be identified so it
can lead to misinformation which is not helping the gesture recognition process.
Also, the position of the finger does not tell anything about which finger it is.

In Fig. 11 we can see the results of the fingertip recognition on different hand
gestures. The recognised finger tips are marked with red points. As one can
see the upper right image is a result of successful recognition, where all five
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tips were recognised. This clarity of the convexity defects is helped by the fact
that the fingers are spread. However, the remaining three images show that this
does not succeed when the fingers are closed or close to each other, so the pro-
cess could not identify a convexity defect for each fingertip. For testing of this
heuristic, we did not use background subtraction to extract hands, but simple
binary segmentation of normal hand images.

3.10 Fast Approximate Nearest Neighbour Search

One approach to find hand gestures could be to define a set of classified hand
gestures with a fixed number of classes and to try to match every new hand
gesture to one of these classes. The disadvantage to this is we need a huge
database with initialised classes and to run some classification algorithm for
every incoming frame.

We tested this with OpenCV library called FLANN: Fast Library for Approx-
imate Nearest Neighbors [4], which is based on an algorithm from Muja and
Lowe [24]. It is a library in OpenCV for performing fast approximate nearest
neighbour searches in high dimensional spaces. It is optimised for fast nearest
neighbour search in large datasets.
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Algorithm

1. Initialize database: images from some input set

2. Initialize mapping list: empty

3. Initialize descriptors matrix: empty

For every image from database:

1. Detect key-points and compute descriptors from key-
point locations:

2. Create a mapping with class name and mark start and
end index in descriptors matrix : m.Similarity = 0

3. Add descriptors to matrix

For any query image q:

1. Calculate descriptor: d(q)

2. Initialize FLANN index for database descriptors: f

3. Perform k-nn search: output is

(a) List of distances to k-nearest neighbours: S(n,k)

(b) List of indices of k-nearest neighbours found:
I(n)

1. For every index from I(n):

if(S(i, 0) < 0.6 ∗ S(i, 1)) : increase similarity of map-
ping M(i)

2. Sort the mappings , choose the one with highest sim-
ilarity as a resulting class

The prerequisite is to create a database of images which contains different hand
gestures. The first step is then to calculate feature descriptors on all images
from this database. Descriptors from all images are then concatenated in one
matrix. Additionally, there is a list of mappings, where one mapping includes
the class name and similarity value, as well as start and end indices indicating
part of the concatenated matrix that contains the descriptors for that class.
This serves as a database and all images for which the gesture must be guessed
is going to serve as a query. To define the gesture that yields the biggest simi-
larity for the query image, the descriptor of the query image must be calculated.
Here the process is the same as for calculating descriptor for a single database
image.
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Figure 12: Database images (FLANN)

Having the prerequisites, a query descriptor and a concatenated database of im-
ages descriptors, FLANN can be invoked. The OpenCV Index is initialised with
database features and a kd-tree parameter, which defines that the constructed
index will consist of a set of randomised kd-trees which will be searched in par-
allel. For our test we used 4 kd-trees. Then a k-nearest-neighbour is performed
with 2 nearest neighbours. The FLANN calculates distances to k-nearest neigh-
bours and returns indices of the k-nearest neighbours. If the distance to the first
nearest neighbour is less than 60% of distance to second neighbour, we consider
the image with the corresponding index from database similar to the query im-
age, so its similarity value in mapping is increased. Finally, the mappings are
sorted and the one with the biggest similarity value indicates the class of the
image from database.

Database images are shown in Fig. 12 and Fig. 13 shows the results of
FLANN on different hand gestures. For every query image we added five im-
ages of similar gestures to the database. Fig. 13 includes seven query images of
different hand gestures, one row for each query image. Left column are input
(query) images, right is the image from database that had highest similarity
value. In comparison, one can see that the first query image yields good results,
but image with left hand thumb up (second row in the table on the right) yields
bad output. This happens because first image had an almost identical image in
the database, whereas the images with the thumb up were very different.
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Figure 13: FLANN results
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4 Hand Gesture Recognition

This section describes methods used for hand gesture recognition. The result of
hand extraction, the binary segmentation of the hand is used in this process in
order to define the gesture and to model it in Unity3D. Two different methods
were used here, one is an implementation of Levenberg-Marquardt algorithm,
the second is a heuristic, named Iterative Heuristic. Both are explained in detail
here and the results are compared.

4.1 Levenberg-Marquardt

Levenberg-Marquardt (LM) is a technique used to solve a non-linear least squares
problem. Least squares is a method in regression analysis to approximate solu-
tion of overdetermined systems. Overdetermined systems are sets of equations
where there are more equations than unknowns. By this approach the solution
minimises the sum of the squares or the residuals made in the results of every
equation. The residual is the difference between an observed value and the fit-
ted value provided by the model. The best fit in the least-squares minimises
the sum of squared residuals. There are two classes of least-squares: linear and
non-linear. Linear apply to all residuals which are linear in all unknowns.

The non-linear least squares method is used to fit a set of m observations with
a model that is non-linear in n unknown parameters. The number of obser-
vations m is greater than number of parameters n . The basic approach is to
approximate the model by a linear one and to refine the parameters by succes-
sive iterations.

Levenberg-Marquardt interpolates between the Gauss Newton algorithm and
the gradient descent method. It is more robust than Gauss Newton, as it finds
solution more often even it if starts very far off from the final minimum. The goal
is to find the parameters that minimise the sum of the squares of the deviations.
This is an iterative procedure that starts with an initial guess of parameters that
are then updated in each iteration until some of the termination criteria are met.

The least squares problem can be described as an optimisation problem and
can be written as follows:

minx
∥∥r(x)

∥∥2
(21)

where x is a vector of model parameters and r is residual vector, which is formed
from individual residuals:

r(x) = (r1(x), r2(x), ...rm(x))T (22)
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where m is the number of data points (measurements) and each rj(x) represents
the difference between the expected and measured value:

rj(x) = y(x̄j)− ȳj (23)

y is the model function that returns expected value for the given point x̄j and
the model parameters, while ȳj value is the observed quantity. The 2-norm from
eq. 23 can be rewritten in terms of the objective function in the following form:

f(x) =
1

2

m∑
j=1

r2
j (x) (24)

The goal is to find x for which the function value is minimal. The model function
can be rewritten to following form:

y(a) = x1X1(a) + x2X2(a) + ...+ xnXn(a) (25)

x are model parameters and X are basis functions that can be any functions
of x and can be nonlinear. The derivatives of residuals with respect to model
parameters are:

∂rj
∂xi

=
∂

∂xi
=
[
y(x̄j | x)− ȳj

]
= Xi(x̄j) (26)

The partial derivatives can be defined in a single (design) matrix: Aji = Xi(x̄j),
and the residuals can be defined as:

rj =
[ n∑
j=1

xiXi(x̄j)
]
− ȳj , j = 1, ...m (27)

When dealing with nonlinear functions we are defining Jacobian matrix for
residuals

Jj,i(x) =
[ ∂

∂xi
rj

]
(28)

which is constructed directly from the model function:

J(x) =


∂
∂x1

y(x̄1 | x) ∂
∂x2

y(x̄2 | x) . ∂
∂xn

y(x̄n | x)
∂
∂x1

y(x̄1 | x) ∂
∂x2

y(x̄2 | x) . ∂
∂xn

y(x̄n | x)

. . . .
∂
∂x1

y(x̄m | x) ∂
∂x2

y(x̄n | x) . ∂
∂xn

y(x̄m | x)

 (29)

Since the objective function is Rn → R, the gradient and Hessian are used:

∇f(x) =

m∑
j=1

rj(x)∇rj(x) = J(x)T r(x) (30)

∇2f(x) =

m∑
j=1

∇rj(x)∇rj(x)T +

m∑
j=1

rj(x)∇2rj(x)
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= J(x)TJ(x) +

m∑
j=1

rj(x)∇2 (31)

When solving the nonlinear squares, the second summation term in the Hessian
is negligible and can be omitted, which leaves:

∇f(x) = J(x)T r(x) = g(x) (32)

∇2f(x) ≈ J(x)T r(x) = H(x) (33)

J(x) is a Jacobian matrix. It contains first-order derivatives of the residuals with
respect to every parameter and every measurement. The gradient g(x) contains
first-order derivatives of the objective function with respect to the model pa-
rameters. It describes the slopes of the objective function at some point x. H(x)
is the Hessian matrix and it contains the second-order partial derivatives with
respect to every combination of parameters. It describes the curvature of the
objective function at some point x.

In every iterative step, the parameters are updated:

x(k + 1) = x(k) + p(k) (34)

Steepest Descent Method

One of the approaches here for finding the function minimum that can be used
is the steepest descent method. This method consists of three steps in each
iteration:

1. Select step direction p

2. Select step length a

3. Update parameters with the steepest descent step x(k+ 1) = x(k) + p× a

The steepest descent step can be expressed as:

pSD(k) =
−∇f(k)(x)∥∥∥∇f(k)(x)

∥∥∥a (35)
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or in terms of the Jacobain and residuals:

pSD(k) =
−J(k)r(k)∥∥∥J(k)r(k)

∥∥∥a (36)

Gauss-Newton Method

This method contains an improvement of Newton’s method for solving the op-
timisation problem. The Newton step:

pN(k) = −∇2f−1
(k)∇f(k) (37)

Incorporating the Hessian into formula:

pGN(k) = −H−1
(k)g(k) (38)

With highly non-linear functions, the Hessian matrix can get singular or near-
singular with the Gauss Newton method. Also, the initial guess is far from the
minimiser. Thus, it can converge very slowly or not converge at all. In order to
address these problems the Hessian can be modified to improve the convergence.
The step direction is a descent direction whenever Hessian is positive definite.
As the function can be concave in some points and convex in others, this may
not be the case because the Hessian is indefinite. So, to make the Hessian
approximation positive definite we can simply add a multiple of the identity to
it:

H(x) = H(x) + λI (39)

Altering of the diagonal elements of H(x) is called damping and factor λ is
a positive number and it is thus called the damping term [20]. I is an iden-
tity matrix of size n× n. This step is adding positive numbers to the diagonal
of the Hessian matrix to make it diagonally dominant and thus positive definite.

If the Hessian matrix from the Gauss-Newton step is replaced with an updated
version with the damping parameter, we get:

pLk = −(Hk + λI)−1gk (40)

The smaller the λ is, the more method approaches Gauss-Newton, the larger the
λ is, the smaller and safer steps are made in the descent direction. Because λ is
scalar, the diagonal elements of the Hessian are scaled equally. As different pa-
rameters can be scaled differently, Marquardt updated the step, so that instead
of identity matrix, the diagonal is used, which takes scaling into account:

pLMk = −(Hk + λD)−1gk (41)

where D = Diag(Hk)
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This Levenberg-Marquardt step from eq. 41 can be rewritten in terms of the
Jacobian and the residuals to the following:

(Hk + λD)pLMk = −gk (42)

(JTk J + λD)pLMk = −JTk rk (43)

This leads to the Levenberg-Marquardt algorithm with following steps:

1. Initialise λ

2. Compute current value of function

3. Compute Jacobian and residuals

4. Compute LM step

5. Update parameters by λ factor

6. Compute new value of function

7. If a new value is smaller than the current value, increase λ , else decrease
it and update parameters and values with new ones.

8. If the conditions for termination are met, stop the process, else go to step
3.

As this is an iterative process, the conditions for its termination must be defined.
The conditions for termination of LM algorithm are [20]:

• The magnitude of gradient JTk rk drops below a threshold ε1

• The relative change in magnitude of pLMk drops below a threshold ε2

• The error JTk rk drops below a threshold ε3

• A maximum number of iteration kmax is reached.

4.2 Levenberg-Marquardt for Hand Gesture Recognition

The hand gesture recognition process can be defined as an optimisation problem
with an aim to minimise the objective function. The objective function itself
is an image, the binary segmentation of a hand. The residual is the difference
between the incoming frame and a current snapshot of the 3D hand model. The
snapshot is transformed to binary segmentation, so that compared images con-
tain only black and white pixels. The goal is to find the rotation and translation
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Figure 14: 3D Hand model

parameters that transform the model hand so that the difference between these
two segmentations is minimal.

In the modelling component which is running in Unity3D, the hand model is
located at some initial position in neutral rotation. Every time when this com-
ponent receives input from the image processing component, the hand is reset
to this neutral position and rotation and the LM algorithm is triggered. At
every frame, the hand is updated by current parameters, a screenshot of the 3D
model is taken and a binary segmentation of it is created. This is then compared
to the input image and the error is calculated. The error between two images
is simply the number of pixels that mismatch. The goal of the algorithm is to
minimise this number of mismatching pixels.

Model function

In order to apply LM to solve a system of non linear equations it is impor-
tant to identify the model function in the case of recognizing the hand gesture.
We are working with binary segmented 2D images, so the best way to compare
two of them is to iterate through all pixels and count the number of mismatches.

Other criteria such as histogram comparison, for example, would not be helpful
here. The histogram of an image represents the distribution of pixels colours.
As in our case we have all black values for the background and white values for
hand section, the histogram of two completely different images could be same
or very similar.

Our goal is to find a set of parameters, which when applied to our 3D hand
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model produce a minimum difference to the input frame coming in from camera.

A snapshot of the 3D hand model used in Unity3D is shown in Fig. 14. The
hand joints are defined as data points with its rotation angles as parameters.
Specifically, data points are x, y and z coordinates of a joint. At every iter-
ation of the LM algorithm, a joint is rotated by an updated parameter and
the difference between the snapshot of this new hand model and input frame is
calculated. In order to define objective function in terms of rotation angles for
joints we first list basic rotations that can be applied to hand model.

Rotations

Basic rotations around the axes of a coordinate system Around X axis:

Rx(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (44)

Around Y axis:

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

− sin(θ) 0 cos(θ)

 (45)

Around Z axis:

Rz(θ) =

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (46)

Every hand joint can be rotated to some degree around these axes. We use
this to construct our objective function and further for the Jacobian matrix and
the residual.

Rotation parameters

The implemented LM seeks to find the best parameters for the rotation of
fingers around x axis. The parameter is the rotation angle for each finger that
must be defined:

θlittleF inger, θindexFinger, θmiddleF inger, θringFinger, θthumb

At the beginning of the process, some initial guess value is assigned to them.
For each of the fingers and parameters we define the rotation equations over the
X axis:

Rx(θ) =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

 (47)

42



If we define x, y and z as coordinates for joint position, after rotating the finger
around X so the new position will be:x

′

y
′

z
′

 = Rx(θ)

xy
z


x
′

y
′

z
′

 =

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

xy
z


x
′

= y

y
′

= cos(θ)y − sin(θ)z

z
′

= sin(θ)y + cos(θ)z

By using this formula updated x, y and z coordinates of each finger can be
calculated.

Implementation

The parameters needed for the LM algorithm are initialised as follows:

• Minimum Error emin = 0.0019: If the calculated error reaches this value,
the process is stopped.

• Maximum number of iterations: kmax = 20

• Lambda initial = 0.1. Initial guess for λ.

• Lambda factor = 0.01. Factor by which λ is updated.

Parameters that are calculated in every iteration k:

1. Minimum Delta Value (MinDeltaValue): given the minimum error emin
and ek, which is the error in the current iteration, the delta value is cal-
culated as: ∣∣(ek − emin)

∣∣
If this value is smaller than the defined MinDeltaValue, the iteration stop
is triggered.

2. Minimum Delta Parameters (MinDeltaParams): this is calculated as a L2-
norm of the parameters vector from current iteration pLMk and previously
retrieved optimum parameters pLM :

p = pLMk − pLM
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|p| =

√√√√ n∑
i=1

|pi|2

If this value is smaller than MinDeltaParams, the iteration is stopped.

MinDeltaValue and MinDeltaParams are set initialized with value 0.000001.
The initial guess parameters for x rotation angle was set to following values:

θlittleF inger = θindexFinger = θmiddleF inger = θringFinger = θthumb = 10

At each iteration, the residual is computed:

• defined joints of the hand model are rotated by the new θ

• a screenshot is taken

• number of pixels that mismatch are counted.

In eq. 23 the residual has been defined as the difference between the expected
and measured value:

rj(x) = y(x̄j | x)− ȳj
y(x̄j | x) is the input frame from the Image Processing Component, ȳj is the
snapshot of the 3D hand model, rotated by the θ parameters from the current
iteration k. x̄ is a data point, which is in our case is the joint position, j is the
current parameter, which is the rotation angle θ. The residual is calculated as
a difference between the observed and the modelled image, which is simply a
number of pixels whose values do not match:

rj =
count

width ∗ height
(48)

count is the number of pixels that mismatch. The value is normalised by dividing
it with the total number of pixels. This residual is squared and summed up for
all joints rj :

1

2

m∑
j=1

r2
j (x)

Jacobian

The number of rows in the Jacobian matrix corresponds to number of data
points (joints) , and the number of columns to the number of parameters, which
are in our case the rotation angles. Each row in the Jacobian matrix contains a
gradient value for parameters that is computed as follows.
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Each finger position contains three coordinates: x, y, z. However, we can choose
only one as our data point for the model function, because the rotation angle on
an axis is the same for all three. For a y coordinate that was chosen and that
was previously defined, a new y value in respect to rotation can be calculated:

y
′

= cos(θ)y − sin(θ)z

Gradient in respect to θ:

∂

∂θ
= −z cos(θ)− y sin(θ)

Hessian

Hessian is calculated by transposing the Jacobian and multiplying it by itself:

∇2f(x) ≈ J(x)TJ(x) = H(x)

Further, we build the diagonal matrix D from it and finally, the LM step is
calculated:

(Hk + λD)pLMk = −JTk rk
This system of non-linear equations is solved by using Cholesky decomposition
of the left side matrix (Hk+λD). Cholesky factorization decomposes the matrix
into the product of a lower triangular matrix and its conjugate transpose. The
result is a vector, whose size is number of parameters. The old parameters are
updated by subtracting the step value.

With the updated parameters pLMk , the objective value is calculated and com-
pared to previous value. If the computed objective value with new parameters is
smaller than previous, λ is increased by a defined factor, parameters are stored
as optimum parameters, and the minimum error is also updated:

λ = λ− lambdaFactor

pLM = pLMk

emin = ek

Otherwise is increased:
λ = λ+ lambdaFactor

4.3 Iterative Heuristic

In addition to Levenberg-Marquardt, we also implemented a simple heuristic to
compare the results. This iterative heuristic consists of defining an initial rota-
tion angle for every finger and then, in a limited amount of iterations updating
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the angle for each finger by some angle and calculating the error. At the end,
an angle that yielded minimal error is chosen as the best rotation angle for the
finger. The results of this heuristic are shown in next section.

The process for finding optimum rotation angle φ for each finger is:

1. Calculate the initial error es, which is the number of pixels that differ.

2. Define the minimum φmin and maximum rotation angle φmax

3. Define increase factor u

4. Initialize angle φ1 = φmin

5. Initialize emin = es

6. Initialize φ = φmin

7. Until φmax is reached:

(a) Stepwise increase angle by a factor u:
φi = φi−1 + u

(b) Calculate the current error ei
if ei < emin:
emin = ei
φ = φi

The resulting rotation angle φ is considered to be the angle by which finger
should be rotated, so the error between the incoming frame and the current
snapshot of 3D model is minimal.

4.4 Hand Model

As this work concentrates on hand tracking and gesture recognition in this
section we describe the model of the human hand. We do not concentrate on
the skin of the hand, but on the skeletal form and motion. Therefore, we present
a kinematic model of a hand. It is kinematic because it describes a set of motions
that a hand can perform. The human hand consists of several joints that are
flexible in motion and allow several degrees-of-freedom (DoF). The biology of a
hand is complex with its bones and muscles, but the model used in this work is
simplified by using an skeletal model, which is presented in Fig. 15. A similar
model has been used in the works of [19] and [16].

The human hand consists of five fingers: little, index, middle, ring and
thumb. Each hand contains four metacarpal (MC) bones, all fingers but the
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Figure 15: Skeletal model of human hand depicting finger joints.

thumb consist of three bones each: proximal (PP), middle(MP) and distal pha-
lanx (DP). The thumb consists of MC, PP and DP [16]. The joints of a hand
represent constraints that define the degrees-of-freedom. The human hand has
27 DoF. The metacarpophalangeal joint (MCP) constrains the pose of PP and
MC, the proximal interphalangeal joint (PIP) constrains MP to the PP, the
distal interphalangeal joint (DIP) constrains the DP to MP, the interphalangeal
joint (IP) constrains DP to the IP in the thumb. These joints are shown in
Fig. 15. As one can see, the thumb consists of MCP and IP, all other fingers of
DIP, PIP and MCP. The DIP and PIP each have one DoF, MCP has two due
to flexion and abduction. The thumb differs, as it has five DoF. The remaining
six DoF are due to wrist’s rotation and translation DoF.

The recognition of hand gesture by using this model brings a certain complex-
ity, so we decided it has been decided to limit the scope of this work to wrist
translation and rotation, as well on rotation of the fingers on the fixed axis. If
we imagine a standard coordinate system with three axes, X, Y and Z, where
the Z axis implies depth, the rotation of the fingers was done around the X axis.
The wrist has been translated on the Y and X axes, with fixed depth. The
rotation of wrist was done around the Z axis.
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5 Evaluation

5.1 System Overview

The implementation includes two separate components, as shown in Fig. 16,
which are:

1. Image Processing Component

2. Hand Modelling Component

Figure 16: Solution system overview

The Image Processing Component was implemented in C# using the
EmguCV library, which is a wrapper of OpenCV. Its processing includes image
stitching and background subtraction and PCA on the binary segmented hand
image. The result of the process is a binary image that is sent to the second
component. The data package sent includes:

• Binary image

• Results from PCA: calculated orientation and middle point position.

The Hand Modelling Component is an Unity3D application, which reads
the data sent from the first component, runs the hand recognition algorithm and
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Figure 17: Images used for building background pano

all the approximations on a 3D hand model, to rotate and position the hand in
the best possible way.

The data between these two components is sent via User Datagram Protocol
(UDP). UDP was chosen because it uses a simple connectionless communication
model with a simple protocol mechanism. Although in UDP there is no guar-
antee of delivery, it is still preferred as it avoids the overhead of handshaking,
error checking and correction. The drop of packets, which are camera frames in
this case, is preferable to network delays that occur when there are additional
checks.

5.2 Hand Extraction

The first step is to take photos of the surroundings. In the setup described in
this work, the user is placed at his working desk, the environment is thought to
be static, (i.e. minimum changes in object positions are supposed to change).
The user rotates his head from left to right and takes some photos of the sur-
roundings. The results are background photos shown in Fig. 17. Taken photos
are first stitched to a pano, which will later be used as a background for hand
recognition. After applying image stitching the result, the background is shown
in Fig. 19. By doing this, background building is done complete and all further
steps include hand extraction and gesture recognition.
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Figure 18: Image containing hand

Figure 19: Background pano

Images for building background pano are taken only once at the beginning
of the process. All subsequent images are considered to contain hand and are
processed for hand extraction and finally, gesture recognition. Fig. 18 is an
example image of a hand for which we apply algorithms to recognise a hand
gesture and in the final step, the 3D model. The hand image must match the
background by homography, so the first step is to warp it to the background.
As one can see in Fig. 21, the warped image contains a redundant black area,
which needs to be cropped out. By doing this, columns and rows are defined
which will be taken as as a ROI from a background pano. After cropping this
out the results are images in Fig. 20. The left image is ROI from hang image,
the right image from the background. These two images can be compared to
then extract the hand.

The next step is to calculate the difference between the ROI from the back-
ground pano and the warped hand image. This is done by simply subtracting

50



Figure 20: Extracted regions of interest (ROI)

Figure 21: Warped hand image

every pixel value of hand image from background pano. The resulting image is
the left image in Fig. 22. In order to create a segmentation image, thresholding

Figure 22: Difference between background and hand image and the binary seg-

mentation

is applied. Different threshold values have been tested here. The threshold value
of t = 80 seemed to produce the clearest segmentation. The result is the image
on the right in Fig. 22. This is the image that is sent via UDP socket to the
Unity3D component. The next step is applying Principal Component Analysis
to calculate the orientation angle. Having done this, the image can be further
sent to the next component, which is applying the hand recognition algorithm
and modelling the Unity3D hand model.

The workflow and techniques we described previously used for hand extrac-
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Figure 23: Different illumination settings: input

Figure 24: Different illumination settings: output

tion have some shortcomings and limitations. The process we described in this
work relies on the assumption that the result of background subtraction will
be a hand segmentation that can be fed into the Hand Modelling Component.
However, if the background subtraction does not produce an usable result, it
cannot be proceeded to the other step of gesture recognition. The limitations
of the background subtraction method are:

1. Illumination

2. Camera angle

3. Changes in background

Illumination The background subtraction approach is sensitive to sudden il-
lumination changes. This means that if the background pano is created under
one lightening condition, but hand images come from a differently lit setting,
most often the resulting segmentation will contain noise due to this illumination
change. To analyse the limitation on different lighting settings in the surround-
ings, we created one background image with normal lightening conditions, i.e.
room was lit up by bulb and then took two images of hands, one without camera
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Figure 25: Different camera angles: input

flash and one with. Fig. 23 shows image taken with flash on the left and image
with normal illumination on the right. The resulting hand segmentations, pro-
duced by background subtraction are presented in Fig. 24. The image on the
left is the result of an input image taken with flash, image on the right is re-
sult of an image taken without flash. The flash image produced a segmentation
containing an additional area marked white, due to the big difference in pixel
intensities. Image on the right does not contain such artifacts. The conclusion
is that when creating a background pano and later taking the hand images, the
lightening setting in surroundings must not change suddenly and dramatically,
otherwise the segmentation will include additional redundant areas.

Camera angle One important step at extracting the hand from the back-
ground is warping the hand image to the background pano. This is described in
subsection 3.6. In that process, the hand image is warped to the background by
a homography matrix using the perspective transformation. In case the camera
orientation angle changes too much, the warping will not be successful, and it
will not be possible to extract the hand. The image on the left in Fig. 25 is an
example of an input image, where camera angle did not change much, whereas
image on the right is an example where camera changed the orientation angle.
It appears as the camera translated to the left and then rotated it so that it
is more orthogonal to the black monitor than to the hand itself. This resulted
in warped images in Fig. 26 in first row and hand segmentations in the second
row. As one can see this result is useless and cannot be used for further gesture
recognition. Thus, when taking images of the hand, the camera orientation and
position cannot be changed to an extent where the incoming images can no
longer be matched to the background pano.

Changes in background The prerequisite for using static background sub-
traction, as it is used here, is to have objects that do not change their position
during the recognition process. This means that once the background pano had
been created, objects that are part of it must not change their positions, because
they might be falsely recognized as the hand. Further, no new objects other

53



Figure 26: Different camera angles: output

Figure 27: Background objects: input

Figure 28: Background objects: output

54



Figure 29: Background objects moving: input

Figure 30: Background objects moving: output

than hand itself must be part of the incoming frames that are used for hand
extraction. Fig. 27, left contains an image which has the same objects as the
background pano. The image on the right in this figure has the difference that
the laptop lid is open. Because of that, the resulting segmentation presented on
the right in Fig. 28 does not contain clear distinction of the hand and cannot
be used for further processing. An example with existing background objects,
which are moving is presented in Fig. 29. The laptop in image on the right has
changed the position and because of that the segmentation in Fig. 30 on the
right does not show clear distinction of hand, whereas the one on the left does.

5.3 Hand Gesture Recognition

The Unity3D application waits for an input image to be received via UDP
socket. Once the component receives an image, it starts the preparation for
gesture recognition, which consists of the following steps:

1. Reset fingers to neutral rotation

All finger joints have their defined neutral position, to which they are reset
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Figure 31: Hand in neutral position and hand translated according to PCA

at the beginning of the recognition process.

2. Translate hand to neutral position

The Image Processing Component sends the position of the hand, which
was computed via PCA. These are X and Y coordinates to which hand is
translated. The hand is shown in neutral position in Fig. 31 on the left. The
hand, translated according to PCA mean position coordinates, is in Fig. 31 on
the right side.

3. Estimate hand translation on X axis iteratively to improve the initial
setup, hand is additionally translated by an estimated distance, which is itera-
tively computed.

Iterative translation and rotation

Both for improving the initial position and rotation of the hand with the aim
of reducing the error, the process of iterative estimation of the start parameters
was calculated. The process for each finger is:

1. Calculate the initial error, which is the number of pixels that differ.

2. Define minimum and maximum parameters and the increase factor

For rotation:

1. Define the minimum angle φmin and maximum rotation angle φmax:
For fingers these angles have values:
φmin = 0
φmax = 100

For wrist:
φmin = −50
φmax = 50
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Figure 32: Input image and result from iterative translation estimation.

2. Start with angle φ1 = φmin , then stepwise increase angle by a factor u:
u = 6.0
φi = φi−1 + u

For translation:

1. Define min and max distance points for a given x coordinate:
xmin = x− diffmax
xmax = x+ diffmax
where diffmax = 0.2

2. Start with x1 = xmin and stepwise increase until xi = xmax by the factor
u:
u = 0, 012
xi = xi−1 + u

3. In each step translate/rotate by new parameter and calculate error: ei

4. When the maximum parameter(angle φ or x position) is achieved, stop
and choose the parameter that yielded minimum error

For the input image from Fig. 32 on the left, the error for the initial position
es was 0.317475. The iterative estimation yielded position shown in Fig. 32 on
the right. The calculated error for this position was e = 0.17158.

Estimate wrist rotation by X axis

The optimum hand rotation angle is also computed iteratively. The result of
translation is taken as input for estimating hand rotation by X axis. The initial
error was es = 0.37599. The resulted best rotation with error e = 0.3746 is by
angle φ = 26.0, result in Fig. 33.

After this preparation, either the Levenberg-Marquardt algorithm is started
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Figure 33: Result from iterative rotation

or the Iterative Heuristic, which again tries to iteratively rotate the finger joints
to find the best rotation angles.

Levenberg-Marquardt vs. Iterative Heuristic

To compare the Levenberg-Marquardt and the Iterative Heuristic, a set of ges-
tures has been defined and images of the gestures were taken. The test set
consists of hands showing one, two, three and five fingers in different orienta-
tions. In total the set includes 25 images.

Each image has been loaded and run through the whole process, that has
been described previously in this section. This includes first running the back-
ground subtraction, and afterwards, for each image separately the Levenberg-
Marquardt and the Iterative Heuristic. The result of each algorithm was a
rotated 3D hand model with an error value. Fig. 35 contains a scatter plot
with error values of the Iterative Heuristic and the Levenberg-Marquardt ap-
proach for different gestures. (See appendix B for larger image). The Y axis is
the error value, the X axis contains gesture labels. E.g. label one side1 de-
scribes a gesture containing one pointed finger like in the image in Fig. 34 in the
lower right. Blue dots represent the error values of the Iterative Heuristic and
red ones of the Levenberg-Marquardt. For the gestures where there is only one
colour depicted, that means the values were same, so the other dot is occluded.
To better understand the results, Fig. 36 displays the results of the recognition
process for the following gestures:

• five rotated1

• three1

• two rotated1

• five2

• two side2
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Figure 34: Gestures from test set

Figure 35: Resulting error values of Levenberg-Marquardt and Iterative Heuris-

tic
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(a) five rotated1

(b) three1

(c) two rotated1

(d) five2

(e) two side2

Figure 36: Resulting gestures from the Levenberg-Marquardt and the Iterative

Heuristic
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In Fig. 36 the first column consists of input gestures, the second one contains
the resulting gesture of the Levenberg-Marquardt algorithm and the last col-
umn is the resulting Iterative Heuristic gesture. Under each gesture the label is
given. The first gesture, labelled as five rotated1 is a hand with five fingers
but rotated so that camera is capturing the palm. As the recognition process is
not performing the rotation around the Y axis, the complete recognition would
not be possible. In the second column, the result of the LM algorithm shows
that the little finger is rotated around the X axis by an angle so large that
it appears hidden. Interesting is that the error value that the LM algorithm
yielded was 0.2467825, whereas the error from the IH is 0.183415. For a human
eye it is easy to see that LM result is better, as the little finger is hidden, so it
appears shorter and more like the thumb.

Gesture labelled as three1 shows an almost perfect match where both algo-
rithms recognized three fingers. However, instead of showing middle, index and
thumb, both algorithms determined the left ring, middle and thumb in the orig-
inal rotation, but rotated the index instead of ring finger.

Gesture two rotated1 shown in Fig. 36c yielded the smallest error value for
both algorithms. The error value for LM was 0.1290525, for IH 0.127965. Con-
sidering that rotation over the Y axis was not a part of the process, the better
match would be if one additional finger was rotated, so the resulting gestures
would also show only two fingers.

The most basic gesture is the one labelled five2 from the test set. Both algo-
rithms rotated a thumb too much, but still the complete number of fingers in the
modelled hand corresponds to the input gesture. The last gesture two side2

is a hand rotated over the Y axis showing two fingers. Due to the occlusion,
it is hard to say whether the middle finger is bent or standing straight. Both
algorithms produce pretty much the same result, where the thumb and middle
fingers are rotated. Even though the number of fingers does not match, the
rotation of the hand is pretty similar to the original one.

5.4 Conclusion

The aim of this work was to explore the possibilities of using only image pro-
cessing techniques to recognize human hand gestures. Although this seems very
natural to us humans, as we engage in this process everyday when communicat-
ing with each other, it is not that easy for a computer to handle this task. That
is why current solutions in virtual reality mostly include different controllers, so
that user can interact with the environment.

The first part of our solution, the background subtraction and principal compo-
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nent analysis show that it is possible to extract the hands from the surroundings
under some limitations.

The second part, the recognition itself included two approaches, the Levenber-
Marquardt and the Iterative Heuristic. Comparing the results of them, one can
conclude that the Iterative Heuristic yields very similar results to the Levenberg-
Marquardt approach. The IH has an advantage of being a simple approach
where the fingers are only rotated iteratively in the defined range and in the
end the angle which produced the smallest error is chosen as the best one. As
it is simple heuristic, it was also used for the initial setup of the location of the
hand and the translation of the wrist. Compared to it, the advantage of LM
is that it can stop processing anytime one of the conditions is met. Further,
additional parameters, e.g. rotation around another axis could be included into
the model. This would of course lead to an increase in computing time but
could also lead to better results.

The results have shown that both algorithms, IH and LM, could recognize the
gesture to some extent, depending on the gesture’s complexity. The standard
gestures that include only finger rotation would yield to a similar 3D hand
model, as shown in the figures of the previous section. However, as the model
used here includes only a rotation parameter for the X axis, different rotations
of the hand itself, which produce an occlusion of the fingers, would not lead to
satisfying results.

We have seen as well that the mathematical error which was computed does
not necessarily correspond to that what a human eye sees. The error measure
that was computed returns the number of pixels that differ, but no information
about the location of the pixel.

Even though the presented flow has limitations such as difficulties with illumi-
nation changes, camera orientation and static objects, it still has the advantages
that it is not limited to some predefined model of images of gestures. It could be
applied to anybody’s hands as far as the surroundings correspond to the back-
ground subtraction’s limitations. However, there are definitely different ways
in which the system could be improved. One additional optimization could be
to add some pre-defined gestures in order to speed up the process. Some very
common gestures could be stored in some database and then the input could
first be compared to them. One possibility here would be to use the FLANN
algorithm that was described in previous sections.

The solution we designed, relies only on image processing techniques and thus
has the advantage of being non-invasive to the user and not limiting his inter-
actions. Another advantage as well is that the number of external gadgets is
minimal, as only a camera is necessary, thus making it also inexpensive.

62



A OpenCV Image Stitching Pipeline
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B Results of Levenberg-Marquardt and Itera-

tive Heuristic
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