

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„Stochastic Primal-Dual Forward-Backward-Forward
Algorithm with Applications in Machine Learning“

verfasst von / submitted by

Klaus Kastner

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 821

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

 Masterstudium Mathematik

Betreut von / Supervisor:

Univ.-Prof. Dr. Radu Ioan Boţ

Table of Contents
1 Introduction 2

1.1 Monotone Inclusion Problem . 3

2 Background and Notation 3
2.1 Stochastic Foundation . 5

3 Main Result 6

4 Applications to Convex Optimization 25
4.1 Convex Optimization Problem . 25
4.2 Kernel based Machine Learning . 32

4.2.1 Computation of the Operators needed in the Algorithms . . . 34
4.2.2 Testing several Probability Distributions 35
4.2.3 Performance of the Algorithms within 5 seconds 37
4.2.4 Performance of the Algorithms within 60 seconds 39
4.2.5 Conclusion . 41
4.2.6 Implementation of the Algorithms in MATLAB 42

5 Abstract / Zusammenfassung 47

1 Introduction
There are many applications using primal-dual splitting methods in applied mathe-
matics, e.g. evolution inclusions, partial differential equations, mechanics, variational
inequalities, Nash equilibria, and various convex optimization problems such as sup-
port vector machine problems for classification and regression. The corresponding
general problem which has to be solved is the monotone inclusion problem. In this
thesis, we revisit the general primal-dual splitting framework presented in [2] from a
stochastic point of view. We modify the therein provided algorithm by applying a ran-
dom sweeping strategy, which selects the blocks of coordinates that are activated over
the iterations. The sweeping rule allows for an arbitrary sampling of the indices of the
coordinates. The resulting algorithm can be reduced to a stochastic error-tolerant ver-
sion of Tseng’s forward-backward-forward method in a product space. Essential for
proving its almost sure convergence is the concept of quasi-Fejér monotonicity. Im-
portant properties of the stochastic primal-dual forward-backward-forward algorithm
presented in this paper are that it tolerates errors in the implementation of the opera-
tors and that the operators involved are evaluated separately in each iteration, either by
forward steps in the case of the single-valued ones, in particular the linear continuous
operators and their adjoints, or by backward steps for set-valued ones, by using the
corresponding resolvents. Furthermore, the algorithm is expected to converge faster
than its deterministic counterpart, since every iteration computational effort is saved
by using a sweeping strategy.

The problem under investigation is the following, we derive it by setting z = 0 and
ri = 0 for all i∈ {1, ...,m} in [2, Problem 1.1]. The parallel sum operator � is defined
by Eq. 8.

2

1.1 Monotone Inclusion Problem
Let H be a separable real Hilbert space, let m be a strictly positive integer, let A : H→
2H be maximally monotone, and let C : H→H be monotone and µ-Lipschitzian for
some µ ∈]0,+∞[. For every i ∈ {1, ...,m}, let Gi be a real separable Hilbert space, let
Bi : Gi → 2Gi be maximally monotone, let Di : Gi → 2Gi be monotone such that D−1

i
is νi-Lipschitzian, for some νi ∈]0,+∞[, and suppose that Li : H→ Gi is a nonzero
bounded linear operator. The problem is to solve the primal inclusion

find x ∈H such that 0 ∈ Ax+
m

∑
i=1

L∗i
(
(Bi � Di)(Lix)

)
+Cx,(1)

together with the dual inclusion

find v1 ∈ G1, ...,vm ∈ Gm such that (∃x ∈H)

 −∑
m
i=1 L∗i vi ∈ Ax+Cx

(∀i ∈ {1, ...,m})
vi ∈ (Bi � Di)(Lix).

(2)

Problem 1.1 includes and extends diverse existing problem formulations, e.g. the
convex optimization problem presented later on in Section 4.1.

In Section 2, we specify our notation and indicate the underlying stochastic as-
sertion, which provides results about the convergence of quasi-Fejér monotone se-
quences. The main statement of this paper, which encompasses the stochastic primal-
dual forward-backward-forward algorithm is formulated and proven in Section 3. As
an offspring we obtain an algorithm in order to solve convex optimization problems.
The corresponding theorem is presented and proven in Section 4.1. Moreover, in Sec-
tion 4.2 we introduce the kernel based machine learning problem. In particular, we
use a pool of hand-written images showing the numbers four or five in order to train
a Support Vector Machine, which aims to classify the images correctly. This issue is
equivalent to solving a convex minimization problem. By means of this application we
test several types of the stochastic algorithm, assess their performances and compare
them to the performance of its deterministic counterpart. At the end, the according
MATLAB-codes are presented.

2 Background and Notation
We use the standard notation (cf. [1, Notation 2.1., Notation 3.1.], [2, 2 Notation and
Background] and [8, 2 Preliminaries]). H is a separable real Hilbert space with scalar
product 〈·, ·〉, associated norm || · ||, and Borel σ -algebra B. Id denotes the identity
operator on H and ⇀ and → denote, respectively, weak and strong convergence in
H. The sets of weak and strong sequential cluster points of a sequence are denoted by
W(xn)n≥0 and S(xn)n≥0, respectively. The underlying probability space is (Ω,F,P). A
H-valued random variable is a measurable map x : (Ω,F)→ (H,B). The σ -algebra
generated by a family Φ of random variables is denoted by σ(Φ). Let F = (Fn)n∈N
be a sequence of sub-sigma algebras of F such that (∀n ∈ N) Fn ⊂ Fn+1. We denote
by `+(F) the set of sequences of [0,+∞[-valued random variables (ξn)n∈N such that,
for every n ∈ N, ξn is Fn-measurable. We set

(
∀p ∈]0,+∞[

)
`p
+(F) =

{
(ξn)n∈N ∈ `+(F)

∣∣ ∑
n∈N

ξ
p
n <+∞ P-a.s.

}
.(3)

3

Given a sequence (xn)n∈N of H-valued random variables, we define

X = (Xn)n∈N where (∀n ∈ N) Xn = σ(x0, ...,xn).(4)

Equalities and inequalities involving random variables will always be understood to
hold P-almost surely, even if the expression ”P-a.s.” is not explicitely written. For
background on probability in Hilbert spaces, see [6] and [7].

For a strictly positive integer m let H1, ...,Hm be separable real Hilbert spaces and
let B1, ...,Bm be their corresponding Borel σ -algebras. Let KKK = H1⊕ · · · ⊕Hm be
their direct Hilbert sum with its corresponding Borel σ -algebra BBB, which is equal to
the product σ -algebra

⊗
i=1,...,mBi, i.e. a function from Ω to KKK is BBB-measurable if

and only if its i-th component is Bi-measurable for i = 1, ...,m. The scalar products
and associated norms of these spaces are all denoted by 〈·, ·〉 and || · ||, respectively,
and x = (x1, ...,xm) denotes a generic vector in in KKK, which remains a real separa-
ble Hilbert space with respect to the inner product 〈x,y〉 = ∑

m
i=1〈xi,yi〉 and the norm

||x|| =
√

∑
m
i=1 ||xi||2. Given a sequence (xn)n∈N = (x1,n, ...,xm,n)n∈N of KKK-valued ran-

dom variables, we set (∀n ∈ N) XXXn = σ(x0, ...,xn).
Let M : H→ 2H be a set-valued operator. We denote by ranM = {u ∈H | (∃x ∈

H) u ∈Mx} the range of M, by domM = {x ∈H | Mx 6= /0} its domain, by zerM =
{x ∈H | 0 ∈Mx} its set of zeros, by graM = {(x,u) ∈H×H | u ∈Mx} its graph,
and by M−1 its inverse, i.e., the set-valued operator with graph {(u,x) ∈H×H | u ∈
Mx}. The resolvent of M is

JM = (Id+M)−1.(5)

Moreover, M is monotone if

(∀(x,u) ∈ graM)(∀(y,v) ∈ graM) 〈x− y,u− v〉 ≥ 0,(6)

and maximally monotone if there exists no monotone operator M̃ : H→ 2H such that
graM (graM̃. We say that M is uniformly monotone at x ∈ domM if there exists an
increasing function φ : [0,+∞[→ [0,+∞] that vanishes only at 0 such that

(∀u ∈Mx)(∀(y,v) ∈ graM) 〈x− y,u− v〉 ≥ φ(||x− y||).(7)

The parallel sum of two set-valued operators M1 and M2 from H to 2H is

M1 � M2 = (M−1
1 +M−1

2)−1.(8)

This operation is very important in convex analysis and monotone operator theory, and
its is naturally connected to addition since (M1 +M2)

−1 = M−1
1 � M−1

2 . One can find
more information about the parallel sum in [3]. Let be H1 and H2 two separable real
Hilbert spaces with corresponding scalar products 〈·, ·〉1 and 〈·, ·〉2, respectively. For
a linear continuous operator L : H1 → H2, the operator L∗ : H2 → H1, defined via
〈Lx,y〉2 = 〈x,L∗y〉1 for all x ∈H1 and all y ∈H2, denotes its adjoint. We denote by
Γ0(H) the class of lower semicontinuous convex functions ϕ : H→]−∞,+∞] such
that domϕ = {x∈H | φ(x)<+∞} 6= /0. Now let ϕ ∈ Γ0(H). The conjugate of ϕ is the
function ϕ∗ ∈Γ0(H) defined by ϕ∗ : u 7→ supx∈H(〈x,u〉−φ(x)), and the subdifferential
of ϕ is the maximally monotone operator

∂ϕ : H→ 2H : x 7→ {u ∈H | (∀y ∈H) 〈y− x,u〉+ϕ(x)≤ ϕ(y)}(9)

4

with inverse given by

(∂ϕ)−1 = ∂ϕ
∗.(10)

Moreover, for every x ∈ H, ϕ + ||x− ·||2/2 possesses a unique minimizer, which is
denoted by proxϕ x. We have

proxϕ = J∂ϕ .(11)

We say that ϕ is ν-strongly convex for some ν ∈]0,+∞[if ϕ − ν || · ||2/2 is convex,
and that ϕ is uniformly convex at x ∈ domϕ if there exists an increasing function
φ : [0,+∞[→ [0,+∞] that vanishes only at 0 such that

(∀y ∈ domϕ)(∀α ∈]0,1[) ϕ(αx+(1−α)y)+α(1−α)φ(||x− y||)
≤ αϕ(x)+(1−α)ϕ(y).

(12)

The infimal convolution of two functions ϕ1 and ϕ2 from H to]−∞,+∞] is

ϕ1 � ϕ2 : H→ [−∞,+∞] : x 7→ inf
y∈H

(ϕ1(y)+ϕ2(x− y)).(13)

Finally, let S be a convex subset of H. The strong relative interior of S, i.e., the set of
points x in S such that the cone generated by −x+S is a closed vector subspace of H,
is denoted by sriS, and the relative interior in S, i.e., the set of points x in S such that
the cone generated by −x+S is a vector subspace of H, is denoted by riS.

2.1 Stochastic Foundation
The following result is a main ingredient in the prove of the stochastic primal-dual
forward-backward-forward algorithm. A sequence satisfying Eq. 14 P-a.s. is referred
to as quasi-Fejér monotone.

Theorem 1 (see [1, PROPOSITION 2.3.]) Let F be a nonempty closed subset of H,
let φ : [0,+∞[→ [0,+∞[be a strictly increasing function such that
limt→+∞ φ(t) = +∞, and let (xn)n∈N be a sequence of H-valued random variables.
Suppose that, for every z ∈ F, there exist (χn(z)n∈N) ∈ `1

+(X),(ϑn(z)n∈N) ∈ `+(X),
and (ηn(z)n∈N) ∈ `1

+(X) such that the following is satisfied P-a.s.:

(∀n ∈ N) E(φ(||xn+1− z||)
∣∣Xn)+ϑn(z)≤ (1+χn(z))φ(||xn− z||)+ηn(z)(14)

Then the following hold:

(i) (∀z ∈ F)

[
∑n∈N ϑn(z)<+∞ P-a.s.

]
.

(ii) (xn)n∈N is bounded P-a.s.

(iii) There exists Ω̃ ∈ F such that P(Ω̃) = 1 and, for every ω ∈ Ω̃ and every
z ∈ F, (||xn(ω)− z||)n∈N converges.

(iv) Suppose that W(xn)n∈N ⊂ F P-a.s. Then (xn)n∈N converges weakly
P-a.s. to an F-valued random variable.

(v) Suppose that S(xn)n∈N∩F 6= /0 P-a.s. Then (xn)n∈N converges strongly
P-a.s. to an F-valued random variable.

(vi) Suppose that S(xn)n∈N 6= /0 P-a.s. and that W(xn)n∈N ⊂ F P-a.s. Then
(xn)n∈N converges strongly P-a.s. to an F-valued random variable.

5

3 Main Result
The following statement is the main result of this thesis, it presents the new stochastic
primal-dual forward-backward-forward algorithm and describes its asymptotic behav-
ior.

Theorem 2 (Main Result) In the Problem given in Subsection 1.1, suppose that

0 ∈ ran
(

A+
m

∑
i=1

L∗i
(
(Bi � Di)(Li ·)

)
+C
)

.(15)

Let (a1,n)n∈N, (b1,n)n∈N and (c1,n)n∈N be sequences of H-valued random variables,
and for every i ∈ {1, ...,m}, let (a2,i,n)n∈N, (b2,i,n)n∈N and (c2,i,n)n∈N be sequences of
Gi-valued random variables. Furthermore, set

β = max{µ,ν1, ...,νm}+

√
m

∑
i=1
||Li||2,(16)

let x0 be a H-valued random variable, let (v1,0, ...,vm,0) be a G1⊕·· ·⊕Gm-valued vec-
tor of random variables, let ρ ∈]0,1/(β + 1)[, let (γn)n∈N be a sequence in [ρ,(1−
ρ)/β]. Set D = {0,1}m+1 \ {0}, and let for all n ∈ N (ε1,n,ε2,1,n, ...,ε2,m,n) be identi-
cally distributed D-valued random variables, and iterate

Algorithm 1:
1 for n = 0,1, ... do
2 y1,n = xn− γn(Cxn +∑

m
i=1 L∗i vi,n +a1,n)

3 p1,n = JγnA(y1,n)+b1,n
4 if ε1,n = 0 then
5 for i = 1, ...,m do
6 if ε2,i,n = 1 then
7 y2,i,n = vi,n + γn(Lixn−D−1

i vi,n−a2,i,n)
8 p2,i,n = J

γnB−1
i
(y2,i,n)+b2,i,n

9 q2,i,n = p2,i,n + γn(Li p1,n−D−1
i p2,i,n− c2,i,n)

10 vi,n+1 = vi,n− y2,i,n +q2,i,n

11 else
12 vi,n+1 = vi,n

13 xn+1 = xn

14 else [ε1,n = 1]
15 for i = 1, ...,m do
16 y2,i,n = vi,n + γn(Lixn−D−1

i vi,n−a2,i,n)
17 p2,i,n = J

γnB−1
i
(y2,i,n)+b2,i,n

18 q1,n = p1,n− γn(Cp1,n +∑
m
i=1 L∗i p2,i,n + c1,n)

19 xn+1 = xn− y1,n +q1,n
20 for i = 1, ...,m do
21 if ε2,i,n = 1 then
22 q2,i,n = p2,i,n + γn(Li p1,n−D−1

i p2,i,n− c2,i,n)
23 vi,n+1 = vi,n− y2,i,n +q2,i,n

24 else
25 vi,n+1 = vi,n

6

and for all n ∈ N set En = σ
(
(ε1,n,ε2,1,n, ...,ε2,m,n)

)
, X1,n = σ(x0, ...,xn) and (∀i ∈

{1, ...,m}) X2,i,n = σ(v2,i,0, ...,v2,i,n). In addition, assume that the following hold.

(A) For all n ∈ N, let a1,n, b1,n and c1,n be X1,n-measurable and (∀i ∈ {1, ...,m}) let
a2,i,n, b2,i,n and c2,i,n be X2,i,n-measurable.
Further, let ∑n∈N E(||a1,n||

∣∣X1,n)<+∞, ∑n∈N E(||b1,n||
∣∣X1,n)<+∞,

∑n∈N E(||c1,n||
∣∣X1,n)<+∞,

and let for all i ∈ {1, ...,m} ∑n∈N E(||a2,i,n||
∣∣X2,i,n)<+∞,

∑n∈N E(||b2,i,n||
∣∣X2,i,n)<+∞ and ∑n∈N E(||c2,i,n||

∣∣X2,i,n)<+∞.

(B) For every n ∈ N, letEn and σ(X1,n,X2,1,n, ...,X2,m,n) be independent.

(C) Let P[ε1,0 = 1]> 0 and for all i ∈ {1, ...,m} let P[ε2,i,0 = 1]> 0.

Then the following hold.

(i) ∑n∈N ||xn− p1,n||2 <+∞ P-a.s. and
(∀i ∈ {1, ...,m})∑n∈N ||vi,n− p2,i,n||2 <+∞ P-a.s.

(ii) There exists a solution x to Eq. 1 and a solution (v1, ...,vm) to Eq. 2 such that the
following P-a.s. hold.

(a) −∑
m
j=1 L∗jv j ∈ Ax+Cx and (∀i ∈ {1, ...,m}) Lix ∈ B−1

i vi +D−1
i vi.

(b) (∀i ∈ {1, ...,m}) 0 ∈ −Li
(
(A−1 � C−1)(−∑

m
j=1 L∗jv j)

)
+B−1

i vi +D−1
i vi.

(c) xn ⇀ x and p1,n ⇀ x.

(d) (∀i ∈ {1, ...,m}) vi,n ⇀ vi and p2,i,n ⇀ vi.

(e) Suppose that A or C is uniformly monotone at x. Then xn→ x and p1,n→ x.

(f) Suppose that, for some i ∈ {1, ...,m}, B−1
i or D−1

i is uniformly monotone at
vi. Then vi,n→ vi and p2,i,n→ vi.

In order to prove the above result, we use the following Theorem 3. Therein a
stochastic error-tolerant forward-backward-forward algorithm and its corresponding
convergence behavior is formulated. The concept of the proof of Theorem 2 (Main
Result) is basically to transform Algorithm 1 into the algorithm given in the following
theorem and then apply it.

Theorem 3 (A stochastic error-tolerant forward-backward-forward Alg.) For a
strictly positive integer m let H1, ...,Hm be separable real Hilbert spaces and KKK =
H1⊕· · ·⊕Hm be their direct Hilbert sum with corresponding Borel σ -algebra BBB. Let
for all i in {1, ...,m}Mi :KKK→ 2Hi : x = (x1, ...,xm) 7→Mixi and suppose that M :KKK→
2KKK : x 7→ ∏

m
i=1 Mixi is maximally monotone. Moreover, let for all i in {1, ...,m} Qi :

KKK→Hi : x 7→Qix be single-valued and let Q :KKK→KKK : x 7→∏
m
i=1 Qix be a monotone

and β -Lipschitz continuous operator, for some β > 0. Suppose that zer(M+Q) 6= /0.
Let x0 be a KKK-valued random variable, let (an)n∈N, (bn)n∈N and (cn)n∈N be sequences
of KKK-valued random variables, let ρ ∈]0,1/(1−β)[, and let (γn)n∈N be a sequence

7

in [ρ,(1−ρ)/β]. Set D = {0,1}m \{0} and let (εεεn = (ε1,n, ...,εm,n))n∈N be identically
distributed D-valued random variables. Iterate

Algorithm 2:
1 for n = 0,1, ... do
2 yn = xn− γn(Qxn +an)
3 zn = JγnM(yn)+bn
4 qn = zn− γn(Qzn + cn)
5 for i = 1, ...,m do
6 xi,n+1 = xi,n + εi,n(qi,n− yi,n)

7 xn+1 = (x1,n+1, ...,xm,n+1)

and for all n ∈ N set En = σ(εεεn), and XXXn = σ(x1, ...,xn) und set X = (XXXn)n∈N. In
addition, assume that the following hold.

(i) For every n ∈ N, let an, bn and cn be XXXn-measurable, and let
∑n∈N E(||an||

∣∣XXXn)<+∞, ∑n∈N E(||bn||
∣∣XXXn)<+∞ and

∑n∈N E(||cn||
∣∣XXXn)<+∞.

(ii) For every n ∈ N, let En and XXXn be independent.

(iii) (∀i ∈ {1, ...,m}) pi = P[εi,0 = 1]> 0.

Then the following hold for some random variable x ∈ zer(M+Q).

(a) ∑n∈N ||xn− zn||2 <+∞ P-a.s.

(b) xn ⇀ x P-a.s. and zn ⇀ x P-a.s.

(c) Suppose that M or Q is uniformly monotone at x. Then xn→ x P-a.s. and zn→
x P-a.s.

Proof to Theorem 3. (The paradigms to this proof are the proofs of [1, THEOREM
3.2], [3, Theorem 25.10-Tsengs algorithm] and [5, Theorem 2.5].) First we notice that
Algorithm 2 is well defined, since for all n ∈ N JγnM is single-valued [3, Corollary
23.8]. We define the linear operators

(∀n ∈ N) Tεεεn :KKK→KKK : (x1, ...,xm) 7→ (ε1,nx1, ...,εm,nxm),(17)

and set

(∀n ∈ N)


ỹn = xn− γnQxn ỹn = (ỹ1,n, ..., ỹm,n)
z̃n = JγnM(ỹn) z̃n = (z̃1,n, ..., z̃m,n)
q̃n = z̃n− γnQz̃n q̃n = (q̃1,n, ..., q̃m,n)
en = yn−qn− ỹn + q̃n en = (e1,n, ...,em,n)
ẽn = Tεεεn(en) ẽn = (ẽ1,n, ..., ẽm,n).

(18)

Thus the lines 5 to 7 in Algorithm 2 read as

xn+1 = xn +Tεεεn(qn−yn).(19)

We define a norm ||| · ||| on KKK by

(∀x ∈KKK) |||x|||2 =
m

∑
i=1

1
pi
||xi||2,(20)

8

where pi = P[εi,0 = 1] > 0 as defined in (iii). We are going to apply Theorem 1 in
(KKK, ||| · |||). For z ∈ zer(M+Q), let us set

(∀n ∈ N)(∀i ∈ {1, ...,m})
h̃i,n :KKK×D→ R : (xn,εεεn) 7→ ||xi,n + εi,n(q̃i,n− ỹi,n)− zi||2 and

hi,n :KKK4×D→ R : (xn,an,bn,cn,εεεn) 7→ ||xi,n+1− zi||2

= ||xi,n + εi,n(qi,n− yi,n)− zi||2.

(21)

Since M is maximally monotone, JγnM is firmly nonexpansive [3, Corollary 23.8],
hence continuous. Note that, for every n ∈ N and every i ∈ {1, ...,m}, since Q and
JγnM are continuous and hence measurable, so are the functions (h̃i,n(·,ηηη))ηηη∈D BBB-
measurable and (hi,n(·, ·, ·, ·,ηηη))ηηη∈D

⊗4
i=1BBB-measurable. Consequently, since, for ev-

ery n ∈ N, (ii) asserts that the events ([εεεn = ηηη])ηηη∈D form an almost sure partition of
Ω and are independent fromXXXn, and since the random variables (h̃i,n(xn,ηηη))1≤i≤m,ηηη∈D
and
(hi,n(xn,an,bn,cn,ηηη))1≤i≤m,ηηη∈D are XXXn-measurable, we obtain [4, Section 28.2]

(∀n ∈ N)(∀i ∈ {1, ...,m}) E(h̃i,n(xn,εεεn)
∣∣XXXn) = E(h̃i,n(xn,εεεn) ∑

ηηη∈D
1{εεεn=ηηη}

∣∣XXXn)

= ∑
ηηη∈D

E(h̃i,n(xn,ηηη)1{εεεn=ηηη}
∣∣XXXn)

= ∑
ηηη∈D

E(1{εεεn=ηηη}
∣∣XXXn)h̃i,n(xxxn,ηηη)

= ∑
ηηη∈D

P[εεεn =ηηη]h̃i,n(xxxn,ηηη) P-a.s. ,

(22)

and analogously,

(∀n ∈ N)(∀i ∈ {1, ...,m}) E(hi,n(xn,an,bn,cn,εεεn)
∣∣XXXn)

= ∑
ηηη∈D

P[εεεn =ηηη]hi,n(xxxn,an,bn,cn,ηηη) P-a.s.(23)

Since Q : KKK→KKK is monotone and continuous, it is maximally monotone [3, Ex-
ample 20.29]. Furthermore, since domQ =KKK, we derive from [3, Corollary 24.4(i)]
that

M+Q is maximally monotone.(24)

Since, for all n ∈N, an isXXXn-measurable, we have E(||an||
∣∣XXXn) = ||an|| P-a.s., i.e.,

for all n ∈ N exists a Ωn with P(Ωn) = 1 such that for all ω ∈ Ωn E(||an(ω)||
∣∣XXXn) =

||an(ω)||. Now set Ω̃ =
⋂

n∈N Ωn and let Ω̃c be its complement, then P(Ω̃) = 1−
P(
⋃

n∈N Ωc
n) ≥ 1−∑n∈N P(Ωc

n) = 1, hence P(Ω̃) = 1. We have for all ω ∈ Ω̃ and for
all n ∈N that E(||an(ω)||

∣∣XXXn) = ||an(ω)||. Analogously, we get the same result for bn
and cn, respectively, instead of an. Together with (i) we derive

∑
n∈N
||an||<+∞ P-a.s., ∑

n∈N
||bn||<+∞ P-a.s. and

∑
n∈N
||cn||<+∞ P-a.s.

(25)

9

We derive from Algorithm 2 and Eq. 18 the following inequalities. First,

||ỹn−yn||= γn||an|| ≤ ||an||/β .(26)

Hence, since JγnM is nonexpansive,

||z̃n− zn||= ||JγnM(ỹn)−JγnM(yn)−bn||
≤ ||JγnM(ỹn)−JγnM(yn)||+ ||bn||
≤ ||ỹn−yn||+ ||bn||
≤ ||an||/β + ||bn||.

(27)

In turn, we get

||q̃n−qn||= ||z̃n− γnQz̃n− zn + γn(Qzn + cn)||
≤ ||z̃n− zn||+ γn||Qz̃n−Qzn||+ γn||cn||
≤ (1+ γnβ)||z̃n− zn||+ γn||cn||
≤ 2(||an||/β + ||bn||)+ ||cn||/β .

(28)

Combining Eqs. 18, 26 and 28 yields ||en|| ≤ ||ỹn− yn||+ ||q̃n− qn|| ≤ 3||an||/β +
2||bn||+ ||cn||/β and, in view of Eq. 25 and Eq. 20, it follows that

∑
n∈N
|||en||| ≤

(
max

i=1,...,m

1
√

pi

)
∑

n∈N
||en||<+∞ P-a.s.(29)

Let us set

un = γ
−1
n (xn− z̃n)+Qz̃n−Qxn.(30)

Note that Eq. 18 and [3, Proposition 23.2(ii)] yield

ỹn− z̃n ∈ γnMz̃n and un = γ
−1
n (ỹn− z̃n)+Qz̃n ∈Mz̃n +Qz̃n.(31)

Now let z ∈ zer(M+Q) and let n ∈ N. We first note that

(z,−γnQz) ∈ graγnM.(32)

On the other hand, by Eq. 31 we have (z̃n, ỹn− z̃n) ∈ graγnM. Hence, by Eq. 32 and
monotonicity of γnM, 〈z̃n− z, z̃n− ỹn− γnQz〉 ≤ 0. However, by monotonicity of Q,
〈z̃n− z,γnQz− γnQz̃n〉 ≤ 0. Upon adding this two inequalities, we obtain

〈z̃n− z, z̃n− ỹn− γnQz̃n〉 ≤ 0.(33)

In turn, we derive from Eq. 18 that

2γn〈z̃n− z,Qxn−Qz̃n〉=2〈z̃n− z, z̃n− ỹn− γnQz̃n〉
+2〈z̃n− z,γnQxn + ỹn− z̃n〉
≤2〈z̃n− z,γnQxn + ỹn− z̃n〉
=2〈z̃n− z,xn− z̃n〉
=||xn− z||2−||z̃n− z||2−||xn− z̃n||2.

(34)

10

Furthermore, for ηηη = (η1, ...,ηm) ∈ D and for all i ∈ {1, ...,m} we derive from Eq. 18

||xi,n +ηi(qi,n− yi,n)− zi||2

≤ 1{ηi=1}
(
||xi,n + q̃i,n− ỹi,n− zi||+ ||ei,n||

)2
+1{ηi=0}||xi,n− zi||2

= 1{ηi=1}
(
||(z̃i,n− zi)+ γn(Qixn−Qiz̃n)||2

+2||xi,n + q̃i,n− ỹi,n− zi||||ei,n||+ ||ei,n||2
)
+1{ηi=0}||xi,n− zi||2,

(35)

where 1{ηi=1} =

{
1 if ηi = 1
0 otherwise

}
denotes the indicator function, and analogously,

||xi,n +ηi(q̃i,n− ỹi,n)− zi||2 = 1{ηi=1}||xi,n + q̃i,n− ỹi,n− zi||2 +1{ηi=0}||xi,n− zi||2

= 1{ηi=1}||(z̃i,n− zi)+ γn(Qixn−Qiz̃n)||2 +1{ηi=0}||xi,n− zi||2.

(36)

(The Eqs. 30, 31, 33, 34, 35 and 36 hold P-surely, i.e. for all ω ∈Ω.) Thus Eqs. 17, 20,
21, 22, 36, (iii), 34, the β -Lipschitz continuity of Q and the fact, that 0< 1−(1−ρ)2 <
1 yield

E(|||xn +Tεεεn(q̃n− ỹn)− z|||2
∣∣XXXn) =

m

∑
i=0

1
pi

E(||xi,n + εi,n(q̃i,n− ỹi,n)− zi||2
∣∣XXXn)

=
m

∑
i=0

1
pi

∑
ηηη∈D

P[εεεn =ηηη]||xi,n +ηi(q̃i,n− ỹi,n)− zi||2

=
m

∑
i=0

1
pi

(
∑

ηηη∈D,ηi=1
P[εεεn =ηηη]||(z̃i,n− zi)+ γn(Qixn−Qiz̃n)||2

+ ∑
ηηη∈D,ηi=0

P[εεεn =ηηη]||xi,n− zi||2
)

= ||(z̃n− z)+ γn(Qxn−Qz̃n)||2 +
m

∑
i=0

1− pi

pi
||xi,n− zi||2

= ||z̃n− z||2 +2γn〈z̃n− z,Qxn−Qz̃n〉+ γ
2
n ||Qxn−Qz̃n||2

−||xn− z||2 + |||xn− z|||2

≤ ||z̃n− z||2 + ||xn− z||2−||z̃n− z||2−||xn− z̃n||2

+ γ
2
n ||Qxn−Qz̃n||2−||xn− z||2 + |||xn− z|||2

≤−
(
1− (γnβ)2)||xn− z̃n||2 + |||xn− z|||2

≤−
(
1− (1−ρ)2)||xn− z̃n||2 + |||xn− z|||2 ≤ |||xn− z|||2 P-a.s.

(37)

Thus it follows from the Eqs. 18, 19, the Jensen’s inequality, Eq. 37 and the fact, that,
since en = γn(an− cn) and an and cn are XXXn-measurable, |||en||| is a XXXn-measurable
random variable

E(|||xn+1− z|||
∣∣XXXn)≤ E(|||xn +Tεεεn(q̃n− ỹn)− z|||

∣∣XXXn)+E(|||ẽn|||
∣∣XXXn)

≤
√

E(|||xn +Tεεεn(q̃n− ỹn)− z|||2
∣∣XXXn)+E(|||en|||

∣∣XXXn)

≤ |||xn− z|||+ |||en||| P-a.s.

(38)

Altogether, inequality 14 of Theorem 1 is satisfied with ϑn(z) = 0, χn(z) = 0, ηn(z) =
|||en|||, where (|||en|||)n∈N ∈ `1

+(X) due to Eq. 29, φ(x) = x and F = zer(M+Q),

11

which is closed by [3, Proposition 20.33 (iii)] since M+Q is maximally monotone
(Eq. 24) we have w ∈ zer(M+Q) ⇐⇒ (w,0) ∈ gra(M+Q). We therefore derive
from Theorem 1 (ii), that (xn)n∈N is bounded P-a.s. with respect to ||| · |||, and we
deduce from Eq. 18 that, since the norms ||| · ||| and || · || are equivalent and since
the operators Q and JγnM are Lipschitzian, (ỹn)n∈N, (z̃n)n∈N and (q̃n)n∈N are bounded
P-a.s. with respect to || · ||, hence for all z ∈ zer(M+Q) exists a µz ∈ R such that for
all i ∈ {1, ...,m} and all n ∈ N

||xi,n + q̃i,n− ỹi,n− zi|| ≤ µz P-a.s.(39)

Now we proceed similarly as we did in Eq. 37, thus Eqs. 20, 21, 23, 35, (iii), 39, 34,
the β -Lipschitz continuity of Q and the fact, that 0 < 1− (1−ρ)2 < 1 yield

E(|||xn+1− z|||2
∣∣XXXn) =

m

∑
i=0

1
pi

E(||xi,n+1− zi||2
∣∣XXXn)

=
m

∑
i=0

1
pi

∑
ηηη∈D

P[εεεn =ηηη]||xi,n +ηi(qi,n− yi,n)− zi||2

≤
m

∑
i=0

1
pi

(
∑

ηηη∈D,ηi=1
P[εεεn =ηηη]

(
||(z̃i,n− zi)+ γn(Qixn−Qiz̃n)||2+

+2||xi,n + q̃i,n− ỹi,n− zi|| ||ei,n||+ ||ei,n||2
)

+ ∑
ηηη∈D,ηi=0

P[εεεn =ηηη]||xi,n− zi||2
)

= ||(z̃n− z)+ γn(Qxn−Qz̃n)||2 + ||en||2

+2
m

∑
i=0
||xi,n + q̃i,n− ỹi,n− zi|| ||ei,n||+

m

∑
i=0

1− pi

pi
||xi,n− zi||2

≤ ||z̃n− z||2 +2γn〈z̃n− z,Qxn−Qz̃n〉+ γ
2
n ||Qxn−Qz̃n||2

+2µz||en||+ ||en||2−||xn− z||2 + |||xn− z|||2

≤ ||z̃n− z||2 + ||xn− z||2−||z̃n− z||2−||xn− z̃n||2 + γ
2
n ||Qxn−Qz̃n||2

+2µz||en||+ ||en||2−||xn− z||2 + |||xn− z|||2

≤−
(
1− (1−ρ)2)||xn− z̃n||2 + |||xn− z|||2 +2µz||en||+ ||en||2 P-a.s.

(40)

Altogether, inequality 14 of Theorem 1 is satisfied with ϑn(z) =
(
1− (1−ρ)2

)
||xn−

z̃n||2, where
((

1− (1−ρ)2
)
||xn− z̃n||2

)
n∈N ∈ `+(X), χn(z) = 0, ηn(z) = 2µz||en||+

||en||2, where (2µz||en||+ ||en||2)n∈N ∈ `1
+(H) due to Eq. 29, φ(x) = x2 and F =

zer(M+Q). We therefore derive from Theorem 1 (i) that ∀z∈ zer(M+Q) ∑n∈N ϑn(z)<
+∞ P-a.s., this yields

∑
n∈N
||xn− z̃n||2 <+∞ P-a.s.(41)

Hence, since (i) and Eq. 27 imply ∑n∈N ||z̃n− zn||<+∞ P-a.s., we have ∑n∈N ||z̃n−
zn||2 <+∞ P-a.s. We therefore infer that ∑n∈N ||xn−zn||2 <+∞ P-a.s., which proves
(a).

(b): It follows from Eq. 41, the Lipschitz continuity of Q and Eq. 30 that

Qxn−Qz̃n→ 0 P-a.s. and un→ 0 P-a.s.(42)

12

Now we show W(xn)n∈N ⊂ zer(M + Q) P-a.s. Let x be a weak sequential cluster
point of (xn)n∈N, say xkn ⇀ x. It remains to show that (x,0) ∈ gra(M+Q) P-a.s.
It follows from Eq. 41 that z̃kn ⇀ x P-a.s. and from Eq. 42 that ukn → 0 P-a.s.
Altogether, there exists a Ω̃ ⊂ Ω with P(Ω̃) = 1 such that for all ω ∈ Ω̃ we have
(z̃kn(ω),ukn(ω)) ∈ gra(M+Q) by Eq. 31, and it satisfies

z̃kn(ω)⇀ x(ω) and ukn(ω)→ 0.(43)

Since M+Q is maximally monotone (Eq. 24), it follows from [3, Proposition 20.33(ii)],
that (x(ω),0)∈ gra(M+Q) for all ω ∈ Ω̃. We showed W(xn)n∈N⊂ zer(M+Q) P-a.s.,
this together with the passage under Eq. 40 allows us to use Theorem 1 (iv), which im-
plies (xn)n∈N converge weakly P-a.s. to a zer(M+Q)-valued random variable x. This
together with (a) implies (zn)n∈N converge weakly P-a.s. to x. This proves (b).

(c): The assumptions in (c) imply that M+Q is uniformly monotone at x. Hence,
since x ∈ zer(M+Q) ⇐⇒ (x,0) ∈ gra(M+Q), it follows from Eq. 31 und 7 that
there exists an increasing function φ : [0,+∞[→ [0,+∞] that vanishes only at 0 such
that

(∀n ∈ N) 〈z̃n− zn,un〉+ 〈zn−x,un〉= 〈z̃n−x,un〉 ≥ φ(||z̃n−x||).(44)

We therefore deduce from Eq. 42, 27, (i), (b) and [3, Lemma 2.41(iii)] that φ(||z̃n−
x||)→ 0 P-a.s., which implies z̃n→ x P-a.s., due to Eq. 27 and (i) we derive zn→
x P-a.s. In turn, (a) yields xn→ x P-a.s.

�

Claim (c) of Theorem 3 is not used anymore in this thesis, however, we proved it
for the sake of completeness. Some remarks about the structure of Algorithm 2 and the
rule of the arising stochastic variables εi are given afterwards, first we do the proof of
the main result.

Proof to Theorem 2. (The paradigm to this proof is the proof of [2, Theorem 3.1].)
We are going to transform Algorihm 1 equivalently into Algorithm 2 of Theorem 3,
then we verify its conditions, this allows us to apply it and therefore proves the essential
part of Theorem 2. Let us first rewrite Algorihm 1 in three steps. In the first step we
dissolve the two inner if-loops in line 6 to 12 and in line 21 to 25, respectively, of
Algorithm 1. Moreover, we write the two for-loops in line 15 and 20 of Algorithm 1
as one common for-loop. The result looks as follows.

13

Algorithm 3:
1 for n = 0,1, ... do
2 y1,n = xn− γn(Cxn +∑

m
i=1 L∗i vi,n +a1,n)

3 p1,n = JγnA(y1,n)+b1,n
4 if ε1,n = 0 then
5 for i = 1, ...,m do
6 y2,i,n = vi,n + γn(Lixn−D−1

i vi,n−a2,i,n)
7 p2,i,n = J

γnB−1
i
(y2,i,n)+b2,i,n

8 q2,i,n = p2,i,n + γn(Li p1,n−D−1
i p2,i,n− c2,i,n)

9 vi,n+1 = vi,n− ε2,i,n(y2,i,n +q2,i,n)

10 xn+1 = xn

11 else [ε1,n = 1]
12 for i = 1, ...,m do
13 y2,i,n = vi,n + γn(Lixn−D−1

i vi,n−a2,i,n)
14 p2,i,n = J

γnB−1
i
(y2,i,n)+b2,i,n

15 q2,i,n = p2,i,n + γn(Li p1,n−D−1
i p2,i,n− c2,i,n)

16 vi,n+1 = vi,n− ε2,i,n(y2,i,n +q2,i,n)

17 q1,n = p1,n− γn(Cp1,n +∑
m
i=1 L∗i p2,i,n + c1,n)

18 xn+1 = xn− y1,n +q1,n

In the second step we dissolve the remaining if-loop and unite the two for-loops of
Algorithm 3, the resulting Algorithm reads as follows.

Algorithm 4:
1 for n = 0,1, ... do
2 y1,n = xn− γn(Cxn +∑

m
i=1 L∗i vi,n +a1,n)

3 p1,n = JγnA(y1,n)+b1,n
4 for i = 1, ...,m do
5 y2,i,n = vi,n + γn(Lixn−D−1

i vi,n−a2,i,n)
6 p2,i,n = J

γnB−1
i
(y2,i,n)+b2,i,n

7 q2,i,n = p2,i,n + γn(Li p1,n−D−1
i p2,i,n− c2,i,n)

8 vi,n+1 = vi,n− ε2,i,n(y2,i,n +q2,i,n)

9 q1,n = p1,n− γn(Cp1,n +∑
m
i=1 L∗i p2,i,n + c1,n)

10 xn+1 = xn− ε1,n(y1,n +q1,n)

In the last step we just change the structure by putting the equally denoted variables
together, the result looks as follows.

14

Algorithm 5:
1 for n = 0,1, ... do
2 y1,n = xn− γn(Cxn +∑

m
i=1 L∗i vi,n +a1,n)

3 for i = 1, ...,m do
4 y2,i,n = vi,n + γn(Lixn−D−1

i vi,n−a2,i,n)

5 p1,n = JγnA(y1,n)+b1,n
6 for i = 1, ...,m do
7 p2,i,n = J

γnB−1
i
(y2,i,n)+b2,i,n

8 q1,n = p1,n− γn(Cp1,n +∑
m
i=1 L∗i p2,i,n + c1,n)

9 for i = 1, ...,m do
10 q2,i,n = p2,i,n + γn(Li p1,n−D−1 p2,i,n− c2,i,n)

11 xn+1 = xn− ε1,n(y1,n +q1,n)
12 for i = 1, ...,m do
13 vi,n+1 = vi,n− ε2,i,n(y2,i,n +q2,i,n)

The Algorithms 3, 4 and 5 are all equivalent to Algorithm 1, but the computational
effort is different (see Remark 4(i)).

Next, we introduce the Hilbert space

KKK=H⊕G1⊕· · ·⊕Gm,(45)

and the operators

M :KKK→ 2K2K2K

(x,v1, ...,vm) 7→ Ax×B−1
1 v1×· · ·×B−1

m vm
(46)

and

Q :KKK→KKK

(x,v1, ...,vm) 7→ (Cx+L∗1v1 + · · ·+L∗mvm,−L1x+D−1
1 v1, ...,−Lmx+D−1

m vm).
(47)

Since the operators A and (Bi)1≤i≤m are maximally monotone, so is M maximally
monotone by [3, Propositions 20.22 and 20.23]. Additionally, we derive from [3,
Propositions 23.16]

(∀γ ∈]0,+∞[)(∀(x,v1, ...,vm) ∈KKK)

JγM(x,v1, ...,vm) =
(
JγA(x),JγB−1

1
(v1), ...,JγB−1

m
(vm)

)
.

(48)

Now we examine the properties of Q. Therefore, let (x,v1, ...,vm) and (y,w1, ...,wm)
be two points in KKK. The monotonicity of the operators C and (D−1

i)1≤i≤m and Eq. 47

15

yield

〈(x,v1, ...,vm)− (y,w1, ...,wm),Q(x,v1, ...,vm)−Q(y,w1, ...,wm)〉
=
〈
(x− y,v1−w1, ...,vm−wm),

(
Cx−Cy+L∗1(v1−w1)

+ · · ·+L∗m(vm−wm),−L1(x− y)+D−1
1 v1−D−1

1 w1, ...,

−Lm(x− y)+D−1
m vm−D−1

m wm
)〉

= 〈x− y,Cx−Cy〉+
m

∑
i=1
〈vi−wi,D−1

i vi−D−1
i wi〉

+
m

∑
i=1

(〈
x− y,L∗i (vi−wi)

〉
−〈vi−wi,Li(x− y)〉

)
= 〈x− y,Cx−Cy〉+

m

∑
i=1
〈vi−wi,D−1

i vi−D−1
i wi〉

≥ 0.

(49)

Hence, Q is monotone. The triangle inequality, the Lipschitzianity assumptions, the
Cauchy-Schwarz inequality, and Eq. 16 yield

||Q(x,v1, ...,vm)−Q(y,w1, ...,wm)||

=
∣∣∣∣∣∣(Cx−Cy,D−1

1 v1−D−1
1 w1, ...,D−1

m vm−D−1
m wm

)
+
(m

∑
i=1

L∗i (vi−wi),−L1(x− y), ...,−Lm(x− y)
)∣∣∣∣∣∣

≤
∣∣∣∣∣∣(Cx−Cy,D−1

1 v1−D−1
1 w1, ...,D−1

m vm−D−1
m wm

)∣∣∣∣∣∣
+
∣∣∣∣∣∣(m

∑
i=1

L∗i (vi−wi),−L1(x− y), ...,−Lm(x− y)
)∣∣∣∣∣∣

=

√
||Cx−Cy||2 +

m

∑
i=1

∣∣∣∣D−1
i vi−D−1

i wi
∣∣∣∣2

+

√∣∣∣∣∣∣ m

∑
i=1

L∗i (vi−wi)
∣∣∣∣∣∣2+ m

∑
i=1
||Li(x− y)||2

≤

√
µ2||x− y||2 +

m

∑
i=1

ν2
i ||vi−wi||2

+

√(m

∑
i=1
||Li||||vi−wi||

)2
+

m

∑
i=1
||Li||2||x− y||2

≤max{µ,ν1, ...,νm}

√
||x− y||2 +

m

∑
i=1
||vi−wi||2

+

√(m

∑
i=1
||Li||2

)(m

∑
i=1
||vi−wi||2

)
+
(m

∑
i=1
||Li||2

)
||x− y||2

= β ||(x,v1, ...,vm)− (y,w1, ...,wm)||.

(50)

After all, we have shown that

M is maximally monotone and Q is monotone and β -Lipschitzian.(51)

16

Now, we observe that

Eq. 15 ⇐⇒ (∃x ∈H) 0 ∈ Ax+
m

∑
i=1

L∗i
(
(Bi � Di)(Lix)

)
+Cx

⇐⇒ (∃(x,v1, ...,vm) ∈KKK)



0 ∈ Ax+∑
m
i=1 L∗i vi +Cx

v1 ∈ (B1 � D1)(L1x)
.
.
.
vm ∈ (Bm � Dm)(Lmx)

⇐⇒ (∃(x,v1, ...,vm) ∈KKK)



0 ∈ Ax+∑
m
i=1 L∗i vi +Cx

0 ∈ B−1
1 v1 +D−1

1 v1−L1x
.
.
.
0 ∈ B−1

m vm +D−1
m vm−Lmx

⇐⇒ (∃(x,v1, ...,vm) ∈KKK) (0, ...,0) ∈ Ax×B−1
1 v1×· · ·×B−1

m vm

+(L∗1v1 + · · ·+L∗mvm +Cx,

D−1
1 v1−L1x, ...,D−1

m vm−Lmx)

⇐⇒ (∃(x,v1, ...,vm) ∈KKK) (0, ...,0) ∈ (M+Q)(x,v1, ...,vm).

(52)

Equivalently,

zer(M+Q) 6= /0.(53)

Next, we define the random variables

∀n ∈ N


xn = (xn,v1,n, ...,vm,n)
yn = (y1,n,y2,1,n, ...,y2,m,n)
zn = (p1,n, p2,1,n, ..., p2,m,n)
qn = (q1,n,q2,1,n, ...,q2,m,n)

and


an = (a1,n,a2,1,n, ...,a2,m,n)
bn = (b1,n,b2,1,n, ...,b2,m,n)
cn = (c1,n,c2,1,n, ...,c2,m,n)
εεεn = (ε1,n,ε2,1,n, ...,ε2,m,n)

(54)

Let us define the σ -algebraXXXn =σ(X1,n,X2,1,n, ...,X2,m,n), which is equal to σ(x0, ...,xn).
Thus and due to the assumptions in (A), we obtain that the random variables

an,bn and cn are XXXn-measurable and

∑
n∈N

E(||an||
∣∣XXXn)<+∞, ∑

n∈N
E(||bn||

∣∣XXXn)<+∞ and ∑
n∈N

E(||cn||
∣∣XXXn)<+∞.

(55)

Furthermore, it follows from the Eqs. 47, 48 and 54, that Algorithm 5 assumes in KKK

the form of Algorithm 2 in Theorem 3, the m in Algorithm 2 corresponds to m+1 here.

17

1 for n = 0,1, ... do
2 yn = xn− γn(Qxn +an)
3 zn = JγnM(yn)+bn
4 qn = zn− γn(Qzn + cn)
5 for i = 1, ...,(m+1) do
6 (xn+1)i = (xn)i +(εεεn)i

[
(qn)i− (yn)i

]
7 xn+1 =

(
(xn+1)1, ...,(xn+1)m+1

)
.

Now we apply Theorem 3, the Eqs. 51, 53, 55, (B), (C) and the above algorithm
ensure that all of its conditions are satisfied. Moreover, its statement (a) implies that
∑n∈N ||xn− zn||2 <+∞ P-a.s., that proves (i).

Next we prove (ii). It follows from Theorem 3 (b) that there exists a x∈ zer(M+Q)
such that

xn ⇀ x P-a.s. and zn ⇀ x P-a.s.(56)

We set

x = (x,v1, ...,vm).(57)

In view of Eqs. 46 and 47,

x ∈ zer(M+Q) ⇐⇒


0 ∈ Ax+∑

m
i=1 L∗i vi +Cx

0 ∈ B−1
1 v1 +D−1

1 v1−L1x
:
0 ∈ B−1

m vm +D−1
m vm−Lmx

⇐⇒


−∑

m
i=1 L∗i vi ∈ Ax+Cx

L1x ∈ (B−1
1 +D−1

1)v1
:
Lmx ∈ (B−1

m +D−1
m)vm

(58)

⇐⇒


−∑

m
i=1 L∗i vi ∈ Ax+Cx

v1 ∈ (B1 � D1)(L1x)
:
vm ∈ (Bm � Dm)(Lmx)

(59)

=⇒


−∑

m
i=1 L∗i vi ∈ Ax+Cx

L∗1v1 ∈ L∗1(B1 � D1)(L1x)
:
L∗mvm ∈ L∗m(Bm � Dm)(Lmx)

=⇒ 0 ∈ Ax+
m

∑
i=1

L∗i
(
(Bi � Di)(Lix)

)
+Cx

⇐⇒ x solves Eq. 1.(60)

Additionally, Eq. 59 means that

(v1, ...,vm) solves Eq. 2.(61)

Further, Eq. 58 implies (ii)(a).

18

Next we deduce from Eq. 58 that

x ∈ (A+C)−1
(
−

m

∑
j=1

L∗jv j

)
and

(∀i ∈ {1, ...,m}) Lix ∈ (B−1
i +D−1

i)vi.

(62)

Hence,

(∀i ∈ {1, ...,m})
{
−Lix ∈ −Li

(
(A−1 � C−1)(−∑

m
j=1 L∗jv j)

)
Lix ∈ (B−1

i +D−1
i)vi.

(63)

Thus,

(∀i ∈ {1, ...,m}) 0 ∈ −Li

(
(A−1 � C−1)

(
−

m

∑
j=1

L∗jv j

))
+B−1

i vi +D−1
i vi,(64)

which proves (ii)(b). Furthermore, (ii)(c) follows from Eqs. 56, 57 and 60 and (ii)(d)
follows from Eqs. 56, 57 and 61.

It remains to prove strong convergence, i.e. (ii)(e) and (ii)(f). Now we define

(∀n ∈ N)
{

ỹ1,n = xn− γn(Cxn +∑
m
j=1 L∗jv j,n)

p̃1,n = JγnA(ỹ1,n)
(65)

and

(∀i ∈ {1, ...,m})(∀n ∈ N)

{
ỹ2,i,n = vi,n + γn(Lixn−D−1

i vi,n)
p̃2,i,n = J

γnB−1
i
(ỹ2,i,n).

(66)

Then, due to the nonexpansiveness of the resolvents [3, Proposition 23.7] and Algo-
rithm 5 (which is equivalent to Alg. 1, but Alg. 5 is better readable) we obtain

(∀n ∈ N) ||p1,n− p̃1,n|| ≤ ||JγnA(y1,n)+b1,n− JγnA(ỹ1,n)||
≤ ||y1,n− ỹ1,n||+ ||b1,n|| ≤ γn||a1,n||+ ||b1,n||
≤ β

−1||a1,n||+ ||b1,n||.
(67)

The condition (A) implies that the sequences (a1,n)n∈N and (b1,n)n∈N are P-a.s. abso-
lutely summable, thus, it follows

y1,n− ỹ1,n→ 0 P-a.s. and p1,n− p̃1,n→ 0 P-a.s.(68)

Analogously, we derive from Eq. 66 and Algorithm 5 that

(∀i ∈ {1, ...,m}) y2,i,n− ỹ2,i,n→ 0 P-a.s. and p2,i,n− p̃2,i,n→ 0 P-a.s.(69)

Moreover, we deduce from (ii)(a) that there exists a u ∈H such that

u ∈ Ax P-a.s. and 0 = u+
m

∑
j=1

L∗jv j +Cx P-a.s.(70)

and that

(∀i ∈ {1, ...,m}) Lix−D−1
i vi ∈ B−1

i vi P-a.s.(71)

19

Additionally, in view of Eq. 65 and [3, Proposition 23.2(ii)] we derive

(∀n ∈ N) γ
−1
n (xn− p̃1,n)−Cxn−

m

∑
j=1

L∗jv j,n ∈ Ap̃1,n(72)

while in view of Eq. 66 and [3, Proposition 23.2(ii)] we derive

(∀i ∈ {1, ...,m})(∀n ∈ N) γ
−1
n (vi,n− p̃2,i,n)+Lixn−D−1

i vi,n ∈ B−1
i p̃2,i,n.(73)

Now we set

(∀n ∈ N)
{

α1,n = ||xn− p̃1,n||
(
ρ−1||p̃1,n− x||+µ||xn− x||+∑

m
i=1 ||Li|| ||vi,n− vi||

)
α2,n = ∑

m
i=1(ρ

−1 +νi)||vi,n− p̃2,i,n|| ||p̃2,i,n− vi||.

(74)

Then we derive from (i), (ii)(c), (ii)(d), Eqs. 68, and 69 that

α1,n→ 0 P-a.s. and α2,n→ 0 P-a.s.(75)

Using the Cauchy-Schwarz inequality, the Lipschitzianity and Monotonicity of C, the
fact, that ρ−1 ≥ γ−1

n and Eq. 70, we get

(∀n ∈ N) α1,n +

〈
xn− x,

m

∑
i=1

L∗i (vi− vi,n)

〉
≥ ||xn− p̃1,n||

(
ρ
−1||p̃1,n− x||+ ||Cxn−Cx||

)
+

〈
p̃1,n− xn,

m

∑
i=1

L∗i (vi− vi,n)

〉
+

〈
xn− x,

m

∑
i=1

L∗i (vi− vi,n)

〉
= ||xn− p̃1,n||

(
ρ
−1||p̃1,n− x||+ ||Cxn−Cx||

)
+

〈
p̃1,n− x,

m

∑
i=1

L∗i (vi− vi,n)

〉
≥
〈

p̃1,n− x,γ−1
n (xn− p̃1,n)+

m

∑
i=1

L∗i (vi− vi,n)

〉
+ 〈p̃1,n− xn,Cx−Cxn〉

=

〈
p̃1,n− x,γ−1

n (xn− p̃1,n)−
m

∑
i=1

L∗i vi,n−Cxn +
m

∑
i=1

L∗i vi +Cx
〉

+ 〈x− xn,Cx−Cxn〉

=

〈
p̃1,n− x,γ−1

n (xn− p̃1,n)−
m

∑
i=1

L∗i vi,n−Cxn−u
〉

+ 〈x− xn,Cx−Cxn〉

≥
〈

p̃1,n− x,
(

γ
−1
n (xn− p̃1,n)−

m

∑
i=1

L∗i vi,n−Cxn

)
−u
〉

P-a.s.

(76)

Now let A be uniformly monotone at x. Then, due to Eqs. 70, 72, and 76, there exists
an increasing function φA : [0,+∞[→ [0,+∞] that vanishes only at 0 such that

(∀n ∈ N) α1,n +

〈
xn− x,

m

∑
i=1

L∗i (vi− vi,n)

〉
≥ φA(||p̃1,n− x||) P-a.s.(77)

20

On the other hand, Eq. 74, the Lipschitzianity of the operators (D−1
i)1≤i≤m, the fact,

that ρ−1 ≥ γ−1
n , the Cauchy-Schwarz inequality, Eqs. 71, 73, and the monotonicity of

the operators (B−1
i)1≤i≤m and (D−1

i)1≤i≤m yield

(∀n ∈ N) α2,n +

〈
xn− x,

m

∑
i=1

L∗i (p̃2,i,n− vi)

〉
≥

m

∑
i=1
〈γ−1

n (vi,n− p̃2,i,n)−D−1
i vi,n +D−1

i p̃2,i,n +Li(xn− x), p̃2,i,n− vi〉

=
m

∑
i=1

(
〈γ−1

n (vi,n− p̃2,i,n)+Lixn−D−1
i vi,n− (Lix−D−1

i vi), p̃2,i,n− vi〉

+ 〈D−1
i p̃2,i,n−D−1

i vi, p̃2,i,n− vi〉
)

≥ 0 P-a.s.

(78)

Adding Eqs. 77 and 78, it follows

(∀n ∈ N) α1,n +α2,n +

〈
xn− x,

m

∑
i=1

L∗i (p̃2,i,n− vi,n)

〉
≥ φA(||p̃1,n− x||) P-a.s.(79)

Then Eq. 75, (ii)(c), (i), Eq. 69 and [3, Lemma 2.41(iii)] imply that φA(||p̃1,n− x||)→
0 P-a.s. and, in turn, that p̃1,n → x P-a.s. Thus, due to (i) and Eq. 68, we get xn →
x P-a.s. and p1,n→ x P-a.s. Likewise, if C is uniformly monotone at x, there exists an
increasing function φC : [0,+∞[→ [0,+∞] that vanishes only at 0 such that

(∀n ∈ N) α1,n +α2,n +

〈
xn− x,

m

∑
i=1

L∗i (p̃2,i,n− vi,n)

〉
≥ φC(||x̃n− x||) P-a.s.(80)

and we get the same conclusion. That finishes the proof of (ii)(e).
Finally, we prove (ii)(f). Let now B−1

i uniformly monotone at vi for some i ∈
{1, ...,m}. Then, proceeding as in Eq. 78 , there exists an increasing function φBi :
[0,+∞[→ [0,+∞] that vanishes only at 0 such that

(∀n ∈ N) α2,n +

〈
xn− x,

m

∑
j=1

L∗j(p̃2, j,n− v j)

〉
≥

m

∑
j=1

(〈
γ
−1
n (v j,n− p̃2, j,n)+L jxn−D−1

j v j,n− (L jx−D−1
j v j), p̃2, j,n− v j

〉
+
〈
D−1

j p̃2, j,n−D−1
j v j), p̃2, j,n− v j

〉)
≥

m

∑
j=1

〈
γ
−1
n (v j,n− p̃2, j,n)+L jxn−D−1

j v j,n− (L jx−D−1
j v j), p̃2, j,n− v j

〉
≥
〈
γ
−1
n (vi,n− p̃2,i,n)+Lixn−D−1

i vi,n− (L jx−D−1
j v j), p̃2, j,n− v j

〉
≥ φBi(||p̃2,i,n− vi||) P-a.s.

(81)

Moreover, according to Eqs. 70, 72, 76, and the monotonicity of A

(∀n ∈ N) α1,n +
〈
xn− x,

m

∑
j=1

L∗j(v j− v j,n)
〉
≥ 0 P-a.s.(82)

21

Thus,

(∀n ∈ N) α1,n +α2,n +
〈
xn− x,

m

∑
j=1

L∗j(p̃2, j,n− v j,n)
〉
≥ φBi(||p̃2,i,n− vi||) P-a.s.

(83)

By proceeding as previously, we deduce that p̃2,i,n → vi P-a.s. and thus, via Eq. 69
and (i), that p2,i,n→ vi P-a.s. and vi,n→ vi P-a.s. If we suppose that D−1

i is uniformly
monotone at vi, by the same arguments we get these conclusions.

�

In the following remark, we comment on the structure of Algorithm 1 and 2.

Remark 4 (i) If in Algorithm 2 a stochastic variable εi,n ∈ {0,1} is not activated,
i.e. εi,n = 0, qi,n− yi,n need not be computed. But (y1,n, ...,ym,n) is needed to
compute zn, thus εi,n only effects the sequence qn. So computational effort per
iteration is only saved in the computation of the sequence qn, the sequences yn
and zn have to be computed conventionally. In the proof above, the operators M
and Q, defined by Eqs. 46 and 47, respectively, have a convenient block struc-
ture, the diagonal structure of M is preserved in JγnM, i.e. JγnM(x1, ...,xm) =

∏
m
i=1(JγnM)i(xi). Therefore, some of the εi,n can already operate on the sequence

yn (instead of qn) yielding the same numerical result. In turn, instead of comput-
ing all components of yn and hence zn, just a few of its components, depending
on the probability distribution on the stochastic variables, have to be computed.
Thus, the computational effort per iteration decreases further. In Algorithm 1,
for all i ∈ {1, ...,m} the stochastic variables ε2,i,n operate on y2,i,n, only for one
stochastic variable, namely ε1,n, this is not possible. The reason is that p1,n, and
hence y1,n are always required to compute q1,n and q2,i,n for all i ∈ {1, ...,m},
independent of a concrete realization of the stochastic variables. Moreover, the
computation of q1,n in the case of ε1,n = 1 requires p2,i,n, and hence y2,i,n for all
i ∈ {1, ...,m}.

(ii) The error-sequences (a·,n)n∈N, (b·,n)n∈N, and (c·,n)n∈N relax the requirement for
exact computation of the operators and their reslovents, respectively, over the
course of the iterations. Are the algorithms used in an application, then usually
the stochastic variables are all set constantly to zero.

(iii) Extra computational effort can be saved in Algorithm 1 at the expense of memory
requirement. If ε1,n−1 = 0 for a n ≥ 1 and hence xn = xn−1, some intermediate
results from the (n− 1)-th iteration step computed with xn−1 can be stored and
again used in the n-th iteration. Analogously, we store and reuse results com-
puted with vi,n−1 if ε2,i,n−1 = 0. In this sense, Algorithm 1 reads as follows.

22

Algorithm 6:
1 storeCx =Cx0
2 for i = 1, ...,m do
3 storeLix = Lix0
4 storeL∗i vi = L∗i vi,0

5 storeD−1
i vi

= D−1
i vi,0

6 for n = 0,1, ... do
7 y1,n = xn− γn(storeCx +∑

m
i=1 storeL∗i vi +a1,n)

8 p1,n = JγnA(y1,n)+b1,n
9 if ε1,n = 0 then

10 for i = 1, ...,m do
11 if ε2,i,n = 1 then
12 y2,i,n = vi,n + γn(storeLix− storeD−1

i vi
−a2,i,n)

13 p2,i,n = J
γnB−1

i
(y2,i,n)+b2,i,n

14 q2,i,n = p2,i,n + γn(Li p1,n−D−1
i p2,i,n− c2,i,n)

15 vi,n+1 = vi,n− y2,i,n +q2,i,n
16 storeL∗i vi = L∗i vi,n+1

17 storeD−1
i vi

= D−1
i vi,n+1

18 else
19 vi,n+1 = vi,n

20 xn+1 = xn

21 else [ε1,n = 1]
22 for i = 1, ...,m do
23 y2,i,n = vi,n + γn(storeLix− storeD−1

i vi
−a2,i,n)

24 p2,i,n = J
γnB−1

i
(y2,i,n)+b2,i,n

25 q1,n = p1,n− γn(Cp1,n +∑
m
i=1 L∗i p2,i,n + c1,n)

26 xn+1 = xn− y1,n +q1,n
27 storeCx =Cxn+1
28 for i = 1, ...,m do
29 storeLix = Lixn+1
30 if ε2,i,n = 1 then
31 q2,i,n = p2,i,n + γn(Li p1,n−D−1

i p2,i,n− c2,i,n)
32 vi,n+1 = vi,n− y2,i,n +q2,i,n
33 storeL∗i vi = L∗i vi,n+1

34 storeD−1
i vi

= D−1
i vi,n+1

35 else
36 vi,n+1 = vi,n

Depending on the distribution of the stochastic variables and on the size of m,
the following algorithm may provide further benefits with respect to the compu-
tational effort. In difference to Algorithm 6, here the sum in line 8 is stored as
store∑

m
i=1 L∗i vi instead of the single summands storeL∗i vi . Of course the algorithm is

equivalent to Algorithm 1 and Algorithm 6.

23

Algorithm 7:
1 storeCx =Cx0
2 for i = 1, ...,m do
3 storeLix = Lix0
4 storeL∗i vi = L∗i vi,0

5 storeD−1
i vi

= D−1
i vi,0

6 store∑
m
i=1 L∗i vi = ∑

m
i=1 storeL∗i vi

7 for n = 0,1, ... do
8 y1,n = xn− γn(storeCx + store∑

m
i=1 L∗i vi +a1,n)

9 p1,n = JγnA(y1,n)+b1,n
10 if ε1,n = 0 then
11 for i = 1, ...,m do
12 if ε2,i,n = 1 then
13 y2,i,n = vi,n + γn(storeLix− storeD−1

i vi
−a2,i,n)

14 p2,i,n = J
γnB−1

i
(y2,i,n)+b2,i,n

15 q2,i,n = p2,i,n + γn(Li p1,n−D−1
i p2,i,n− c2,i,n)

16 vi,n+1 = vi,n− y2,i,n +q2,i,n
17 store∑

m
i=1 L∗i vi = store∑

m
i=1 L∗i vi − storeL∗i vi

18 storeL∗i vi = L∗i vi,n+1

19 store∑
m
i=1 L∗i vi = store∑

m
i=1 L∗i vi + storeL∗i vi

20 storeD−1
i vi

= D−1
i vi,n+1

21 else
22 vi,n+1 = vi,n

23 xn+1 = xn

24 else [ε1,n = 1]
25 for i = 1, ...,m do
26 y2,i,n = vi,n + γn(storeLix− storeD−1

i vi
−a2,i,n)

27 p2,i,n = J
γnB−1

i
(y2,i,n)+b2,i,n

28 q1,n = p1,n− γn(Cp1,n +∑
m
i=1 L∗i p2,i,n + c1,n)

29 xn+1 = xn− y1,n +q1,n
30 storeCx =Cxn+1
31 for i = 1, ...,m do
32 storeLix = Lixn+1
33 if ε2,i,n = 1 then
34 q2,i,n = p2,i,n + γn(Li p1,n−D−1

i p2,i,n− c2,i,n)
35 vi,n+1 = vi,n− y2,i,n +q2,i,n
36 store∑

m
i=1 L∗i vi = store∑

m
i=1 L∗i vi − storeL∗i vi

37 storeL∗i vi = L∗i vi,n+1

38 store∑
m
i=1 L∗i vi = store∑

m
i=1 L∗i vi + storeL∗i vi

39 storeD−1
i vi

= D−1
i vi,n+1

40 else
41 vi,n+1 = vi,n

24

A connection to existing work is shown next.

Remark 5 If we set the stochastic variables (ε1,n,ε2,1,n, ...,ε2,m,n) = (1, ...,1) for all
n ∈ N and consider x0,vi,0 as well as a1,n,b1,n,c1,n,a2,i,n,b2,i,n and c2,i,n for all n ∈ N
and for all i∈ {1, ...,m} as constant random variables in Theorem 2, then we obtain the
statement given in [2, Theorem 3.1] with z = 0 and ri = 0 for all i∈ {1, ...,m}. Because
in this case, condition (C) in Theorem 2 is given by P[ε1,0 = 1] = 1 and P[ε2,i,0 = 1] = 1
for all i ∈ {1, ...,m} and therefore satisfied, (B) is trivially satisfied and (A) transforms
into absolute summability of the error sequences as required in [2, Theorem 3.1].

4 Applications to Convex Optimization
As mentioned above, the computational effort per iteration in Algorithm 1 varies de-
pending on the probability distribution on the stochastic variables. Setting stochastic
variables equal to zero reduces the computational effort per iteration, however, as com-
pensation the number of iterations possibly has to be increased. Now we are interested
in whether this reduction translates into faster convergence of the sequences generated
by the algorithm when it is applied on real world problems. Since the convex subdiffer-
ential of a proper, convex and lower semicontinuous function is a maximally monotone
operator, Algorithm 1 can be used to solve convex optimization problems. We use the
algorithm given in the following theorem to solve a real world problem in order to as-
sess its performance, and to find ”good choices” for the probability distribution on the
stochastic variables.

We derive the following convex minimization problem by setting z = 0 and ri = 0
for all i ∈ {1, ...,m} in [2, Problem 4.1].

4.1 Convex Optimization Problem
Let H be a separable real Hilbert space, let m be a strictly positive integer, let f ∈
Γ0(H), and let h : H→ R be convex and differentiable with a µ-Lipschitzian gradient
for some µ ∈]0,+∞[. For every i ∈ {1, ...,m}, let Gi be a separable real Hilbert space,
let gi ∈ Γ0(Gi), let li ∈ Γ0(Gi) be 1/νi-strongly convex, for some νi ∈]0,+∞[, and
suppose that Li : H→ Gi is a nonzero bounded linear operator. Consider the problem

min
x∈H

f (x)+
m

∑
i=1

(gi � li)(Lix)+h(x),(84)

and the dual problem

min
v1∈G1,...,vm∈Gm

(f ∗ � h∗)
(
−

m

∑
i=1

L∗i vi

)
+

m

∑
i=1

(
g∗i (vi)+ l∗i (vi)

)
.(85)

The following result is an offspring of Theorem 2.

Theorem 6 In the Problem given in section 4.1, suppose that

0 ∈ ran
(

∂ f +
m

∑
i=1

L∗i
(
(∂gi � ∂ li)(Li ·)

)
+∇h

)
.(86)

25

Let (a1,n)n∈N, (b1,n)n∈N and (c1,n)n∈N be sequences of H-valued random variables,
and for every i ∈ {1, ...,m}, let (a2,i,n)n∈N, (b2,i,n)n∈N and (c2,i,n)n∈N be sequences of
Gi-valued random variables. Futhermore, set

β = max{µ,ν1, ...,νm}+

√
m

∑
i=1
||Li||2,(87)

let x0 be a H-valued random variable, let (v1,0, ...,vm,0) be a G1⊕ · · · ⊕Gm-valued
vector of random variables, let ρ ∈]0,1/(β + 1)[, let (γn)n∈N be in [ρ,(1− ρ)/β].
Set D = {0,1}m+1 \{0}, and let for all n ∈ N (ε1,n,ε2,1,n, ...,ε2,m,n) be identically dis-
tributed D-valued random variables, and iterate

Algorithm 8:
1 for n = 0,1, ... do
2 y1,n = xn− γn(∇h(xn)+∑

m
i=1 L∗i vi,n +a1,n)

3 p1,n = proxγn f (y1,n)+b1,n

4 if ε1,n = 0 then
5 for i = 1, ...,m do
6 if ε2,i,n = 1 then
7 y2,i,n = vi,n + γn(Lixn−∇l∗i (vi,n)−a2,i,n)
8 p2,i,n = proxγng∗i

(y2,i,n)+b2,i,n

9 q2,i,n = p2,i,n + γn(Li p1,n−∇l∗i (p2,i,n)− c2,i,n)
10 vi,n+1 = vi,n− y2,i,n +q2,i,n

11 else
12 vi,n+1 = vi,n

13 xn+1 = xn

14 else [ε1,n = 1]
15 for i = 1, ...,m do
16 y2,i,n = vi,n + γn(Lixn−∇l∗i (vi,n)−a2,i,n)
17 p2,i,n = proxγng∗i

(y2,i,n)+b2,i,n

18 q1,n = p1,n− γn(∇h(p1,n)+∑
m
i=1 L∗i p2,i,n + c1,n)

19 xn+1 = xn− y1,n +q1,n
20 for i = 1, ...,m do
21 if ε2,i,n = 1 then
22 q2,i,n = p2,i,n + γn(Li p1,n−∇l∗i (p2,i,n)− c2,i,n)
23 vi,n+1 = vi,n− y2,i,n +q2,i,n

24 else
25 vi,n+1 = vi,n

and for all n ∈ N set En = σ
(
(ε1,n,ε2,1,n, ...,ε2,m,n)

)
, X1,n = σ(x0, ...,xn) and (∀i ∈

{1, ...,m}) X2,i,n = σ(v2,i,0, ...,v2,i,n). In addition, assume that the following hold.

(A) For all n ∈ N, let a1,n, b1,n and c1,n be X1,n-measurable and (∀i ∈ {1, ...,m}) let
a2,i,n, b2,i,n and c2,i,n be X2,i,n-measurable. Further, let ∑n∈N E(||a1,n||

∣∣X1,n) <
+∞, ∑n∈N E(||b1,n||

∣∣X1,n)<+∞, ∑n∈N E(||c1,n||
∣∣X1,n)<+∞,

and let for all i ∈ {1, ...,m} ∑n∈N E(||a2,i,n||
∣∣X2,i,n)<+∞,

∑n∈N E(||b2,i,n||
∣∣X2,i,n)<+∞ and ∑n∈N E(||c2,i,n||

∣∣X2,i,n)<+∞.

26

(B) For every n ∈ N, letEn and σ(X1,n,X2,1,n, ...,X2,m,n) be independent.

(C) Let P[ε1,0 = 1]> 0 and for all i ∈ {1, ...,m} let P[ε2,i,0 = 1]> 0.

Then the following hold.

(i) ∑n∈N ||xn− p1,n||2 <+∞ P-a.s. and
(∀i ∈ {1, ...,m})∑n∈N ||vi,n− p2,i,n||2 <+∞ P-a.s.

(ii) There exists a solution x to Eq. 84 and a solution (v1, ...,vm) to Eq. 85 such that
the following P-a.s. hold.

(a) −∑
m
i=1 L∗i vi ∈ ∂ f (x)+∇h(x) and (∀i ∈ {1, ...,m}) Lix ∈ ∂g∗i vi +∇l∗i (vi).

(b) xn ⇀ x and p1,n ⇀ x.

(c) (∀i ∈ {1, ...,m}) vi,n ⇀ vi and p2,i,n ⇀ vi.

(d) Suppose that f or h is uniformly convex at x. Then xn→ x and p1,n→ x.

(e) Suppose that, for some i ∈ {1, ...,m}, g∗i or l∗i is uniformly convex at vi. Then
vi,n→ vi and p2,i,n→ vi.

Proof. (The paradigm to this proof is the proof of [2, Theorem 4.2].) First we define
the operators

A = ∂ f , C = ∇h, and (∀i ∈ {1, ...,m}) Bi = ∂gi and Di = ∂ li,(88)

in order to associate Problem 1.1 with Problem 4.1. It is obviously that Eq. 86 re-
sults in Eq. 15 and, using Eqs. 10 and 11, that Algorithm 1 is equal to Algorithm 8.
Furthermore, the operators A and (Bi)1≤i≤m are maximally monotone by [3, Theorem
20.40], and C is monotone by [3, Theorem 17.10]. In turn, the 1/νi-strongly convexity
of li for all i ∈ {1, ...,m} and [3, Corollary 13.33 and Theorem 18.15] imply that l∗i is
Fréchet differentiable on Gi with a νi-Lipschitzian gradient, together with Eq. 10 we
get D−1

i = ∇L∗i . Moreover, we notice that the stochastic requirements (A), (B) and (C)
of Theorem 2 are equal to those of Theorem 6. Altogether, Theorem 2 guarantees the
existence of a point x ∈H such that

0 ∈ ∂ f (x)+
m

∑
i=1

L∗i
(
(∂gi � ∂ li)(Lix)

)
+∇h(x),(89)

and of a vector (v1, ...,vm) ∈ G1⊕· · ·⊕Gm such that

(∃x ∈H)

{
−∑

m
j=1 L∗jv j ∈ ∂ f (x)+∇h(x)

(∀i ∈ {1, ...,m}) vi ∈ (∂gi � ∂ li)(Lix),
(90)

that satisfy (i) and (ii) of Theorem 6. Now it remains to show that x solves Eq. 84 and
(v1, ...,vm) solves Eq. 85. Since, for every i∈{1, ...,m}, dom l∗i =Gi, by [3, Proposition
24.27] we have

(∀i ∈ {1, ...,m}) ∂gi � ∂ li = ∂ (gi � li).(91)

27

In turn, we derive from [3, Corollary 16.38(iii) and Proposition 17.26(i)] that

∂ (f +h) = ∂ f +∇h.(92)

As a result, from Eq. 89 follows that

0 ∈ ∂ (f +h)(x)+
m

∑
i=1

L∗i
(
∂ (gi � li)

)
(Lix).(93)

Moreover, because if follows from Eq. 86 and [3, Proposition 16.5(ii)] that

∂ (f +h)+
m

∑
i=1

L∗i
(
∂ (gi � li)

)
(Li ·)⊂ ∂

(
f +h+

m

∑
i=1

(gi � li)◦ (Li ·)
)

,(94)

Eq. 93 implies that

0 ∈ ∂

(
f +h+

m

∑
i=1

(gi � li)◦ (Li ·)
)
(x).(95)

Hence, Fermat’s rule [3, Theorem 16.2] claims that x solves Eq. 84. Finally, we prove
that (v1, ...,vm) solves Eq. 85, therefore we notice that the Eqs. 92 and 10 and [3,
Proposition 15.2] imply that

(∂ f +∇h)−1 =
(
∂ (f +h)

)−1
= ∂ (f +h)∗ = ∂ (f ∗ � h∗).(96)

Similarly, Eq. 91 and [3, Proposition 13.21(i)] yield

(∀i ∈ {1, ...,m}) (∂gi � ∂ li)−1 = ∂ (gi � li)∗ = ∂ (g∗i + l∗i).(97)

Now we combine the Eqs. 90, 96 and 97 in order to derive

(∃x ∈H)

{
x ∈ ∂ (f ∗ � h∗)(−∑

m
j=1 L∗jv j)

(∀i ∈ {1, ...,m}) Lix ∈ ∂ (g∗i + l∗i)(vi),
(98)

and hence

(∃x ∈H)

{
−(Lix)1≤i≤m ∈ −

(
×m

i=1 Li

)(
∂ (f ∗ � h∗)(−∑

m
j=1 L∗jv j

))
(Lix)1≤i≤m ∈×m

i=1 ∂ (g∗i + l∗i)(vi).
(99)

Let us now introduce the following notation, let Ti be a mapping from Gi to some set R
for i ∈ {1, ...,m}, then we define

m⊕
i=1

Ti :
m

∏
i=1

Gi→ R : (yi)1≤i≤m 7→
m

∑
i=1

Tiyi.(100)

By this notation and [3, Proposition 16.5(ii) and 16.8] we obtain

(0, ...,0) ∈ −
(m×

i=1
Li

)(
∂ (f ∗ � h∗)

(
−

m

∑
j=1

L∗jv j

))
+

m×
i=1

∂ (g∗i + l∗i)(vi)

=−
(m⊕

i=1

L∗i

)∗(
∂ (f ∗ � h∗)

(
−
(m⊕

i=1

L∗i

)
(v1, ...,vm)

))
+∂

(m⊕
i=1

(g∗i + l∗i)
)
(v1, ...,vm)

⊂ ∂

(
(f ∗ � h∗)

(
−
(m⊕

i=1

L∗i

)
·
)
+

m⊕
i=1

(g∗i + l∗i)
)
(v1, ...,vm).

(101)

28

In other words, by Fermat’s rule, (v1, ...,vm) solves Eq. 85. Finally, the strong conver-
gence assertions in (ii)(d) and (ii)(e) follow from Theorem 2(ii)(e) and (ii)(f) because
the uniform convexity of a function ϕ ∈ Γ0(H) at a point of the domain of ∂ϕ implies
the uniform monotonicity of ∂ϕ at that point [11, Section 3.4].

�

In the context of convex optimization, the Remarks 4 and 5 read as follows. The
first item allows us to compare Algorithm 8 to its deterministic version, wherein ran-
dom variables are substituted by elements of the Hilbert spaces. The second one shows
how to save extra computational effort.

Remark 7 (i) If we set the stochastic variables (ε1,n,ε2,1,n, ...,ε2,m,n) = (1, ...,1) for
all n ∈ N and consider x0,vi,0 as well as a1,n,b1,n,c1,n,a2,i,n,b2,i,n and c2,i,n for
all n ∈ N and for all i ∈ {1, ...,m} as constant random variables in Theorem 6,
then we obtain the statement given in [2, Theorem 4.2] with z = 0 and ri = 0 for
i ∈ {1, ...,m}. This holds due to the same reasons given in Remark 5.

(ii) According to Remark 4 (iii), extra computational effort can be saved in Algo-
rithm 8 at the expense of memory requirement. Depending on the distribution of
the stochastic variables and on the size of m, one of the two following algorithms
provide more benefits.

29

Algorithm 9:
1 store∇hx = ∇h(x0)
2 for i = 1, ...,m do
3 storeLix = Lix0
4 storeL∗i vi = L∗i vi,0

5 store∇l∗i vi = ∇l∗i (vi,0)

6 for n = 0,1, ... do
7 y1,n = xn− γn(store∇hx +∑

m
i=1 storeL∗i vi +a1,n)

8 p1,n = proxγn f (y1,n)+b1,n

9 if ε1,n = 0 then
10 for i = 1, ...,m do
11 if ε2,i,n = 1 then
12 y2,i,n = vi,n + γn(storeLix− store∇l∗i vi −a2,i,n)

13 p2,i,n = proxγng∗i
(y2,i,n)+b2,i,n

14 q2,i,n = p2,i,n + γn(Li p1,n−∇l∗i (p2,i,n)− c2,i,n)
15 vi,n+1 = vi,n− y2,i,n +q2,i,n
16 storeL∗i vi = L∗i vi,n+1

17 store∇l∗i vi = ∇l∗i (vi,n+1)

18 else
19 vi,n+1 = vi,n

20 xn+1 = xn

21 else [ε1,n = 1]
22 for i = 1, ...,m do
23 y2,i,n = vi,n + γn(storeLix− store∇l∗i vi −a2,i,n)

24 p2,i,n = proxγng∗i
(y2,i,n)+b2,i,n

25 q1,n = p1,n− γn(∇h(p1,n)+∑
m
i=1 L∗i p2,i,n + c1,n)

26 xn+1 = xn− y1,n +q1,n
27 store∇hx = ∇h(xn+1)
28 for i = 1, ...,m do
29 storeLix = Lixn+1
30 if ε2,i,n = 1 then
31 q2,i,n = p2,i,n + γn(Li p1,n−∇l∗i (p2,i,n)− c2,i,n)
32 vi,n+1 = vi,n− y2,i,n +q2,i,n
33 storeL∗i vi = L∗i vi,n+1

34 store∇l∗i vi = ∇l∗i (vi,n+1)

35 else
36 vi,n+1 = vi,n

30

Algorithm 10:
1 store∇hx = ∇h(x0)
2 for i = 1, ...,m do
3 storeLix = Lix0
4 storeL∗i vi = L∗i vi,0

5 store∇l∗i vi = ∇l∗i (vi,0)

6 store∑
m
i=1 L∗i vi = ∑

m
i=1 storeL∗i vi

7 for n = 0,1, ... do
8 y1,n = xn− γn(store∇hx + store∑

m
i=1 L∗i vi +a1,n)

9 p1,n = proxγn f (y1,n)+b1,n

10 if ε1,n = 0 then
11 for i = 1, ...,m do
12 if ε2,i,n = 1 then
13 y2,i,n = vi,n + γn(storeLix− store∇l∗i vi −a2,i,n)

14 p2,i,n = proxγng∗i
(y2,i,n)+b2,i,n

15 q2,i,n = p2,i,n + γn(Li p1,n−∇l∗i (p2,i,n)− c2,i,n)
16 vi,n+1 = vi,n− y2,i,n +q2,i,n
17 store∑

m
i=1 L∗i vi = store∑

m
i=1 L∗i vi − storeL∗i vi

18 storeL∗i vi = L∗i vi,n+1

19 store∑
m
i=1 L∗i vi = store∑

m
i=1 L∗i vi + storeL∗i vi

20 store∇l∗i vi = ∇l∗i (vi,n+1)

21 else
22 vi,n+1 = vi,n

23 xn+1 = xn

24 else [ε1,n = 1]
25 for i = 1, ...,m do
26 y2,i,n = vi,n + γn(storeLix− store∇l∗i vi −a2,i,n)

27 p2,i,n = proxγng∗i
(y2,i,n)+b2,i,n

28 q1,n = p1,n− γn(∇h(p1,n)+∑
m
i=1 L∗i p2,i,n + c1,n)

29 xn+1 = xn− y1,n +q1,n
30 store∇hx = ∇h(xn+1)
31 for i = 1, ...,m do
32 storeLix = Lixn+1
33 if ε2,i,n = 1 then
34 q2,i,n = p2,i,n + γn(Li p1,n−∇l∗i (p2,i,n)− c2,i,n)
35 vi,n+1 = vi,n− y2,i,n +q2,i,n
36 store∑

m
i=1 L∗i vi = store∑

m
i=1 L∗i vi − storeL∗i vi

37 storeL∗i vi = L∗i vi,n+1

38 store∑
m
i=1 L∗i vi = store∑

m
i=1 L∗i vi + storeL∗i vi

39 store∇l∗i vi = ∇l∗i (vi,n+1)

40 else
41 vi,n+1 = vi,n

Of course, Algorithm 8, Algorithm 9 and Algorithm 10 are equivalent. Later on,

31

in Section 4.2.6 we present applications where Algorithm 9 outperforms Algo-
rithm 10, and vice versa.

4.2 Kernel based Machine Learning
The application which we present regards predicting the correct class of images. The
approach we use here is referred to as Support Vector Machines classification and be-
longs to the class of kernel based learning methods.

We use samples of handwritten gray-style digits of the numbers four and five, taken
from a pool consisting of 11339 images provided by the website http://www.cs.

nyu.edu/roweis/data.html. Each picture has pixel size 28× 28, and each pixel
takes values between 0 (black) and 255 (white), see Figure 1. We label the pictures
showing a four by −1 and the pictures which indicate a five by +1, in this case we
talk of supervised learning, because every sample is labeled. Now we aim to ”learn”
the classifier functional f from the samples, i.e. we want to find a function f , which
evaluated at an image showing a four is close to −1, while f evaluated at a picture of
five is close to +1. Then we use the decision function sign f to classify digits, where

(sign f)(x) =
{
−1 if f (x)≤ 0
+1 otherwise . Usually the sample set contains a few outliers,

e.g. a digit labeled by −1 which nobody would identify as a four. Such an outlier is
allowed to be misclassified, to force the decision function to assign outliers to their
labeled class would possibly deform it, this effect is called oversampling. In order to
asses the quality of the decision function, one splits the sample set in a training data
set and a test data set. The former one is used to determine the classifier functional
and hence the decision function, which in turn is used to classify the digits of the test
data set, the percentage of the misclassified ones is called misclassification rate, which
rates the quality of the decision function. A similar experimental setup is given in [8,
Section 4.3].

All numerical experiments are performed on a 2.3GHz Intel Core i3-2350 machine
with 4GB memory. The programs are implemented in MATLAB 7.12.0.

Figure 1 shows a sample of images belonging to the classes −1 (four) and +1 (five),
respectively.

We choose the classifier functional f to be an element of the Reproducing Kernel
Hilbert Space (RKHS) Hκ , which is in our case defined by the symmetric, finitely
positive definite and continuous Gaussian kernel function

κ : Rl×Rl → R, κ(x,y) = exp
(
− ||x− y||2

2σ2
κ

)
.(102)

32

Let 〈·, ·〉κ denote the inner product on Hκ . We define the Gram matrix K ∈Rm×m with
respect to the training data set

Z = {(X1,y1), ...,(Xm,ym)} ⊂ [0,255]784(=28×28)×{−1,+1},(103)

namely the symmetric and positive definite matrix with entries Ki j = κ(Xi,X j) ∈ (0,1]
for i, j = 1, ...,m. The sample images X j for j = 1, ...,m are in column vector-shape

and due to numerical reasons normalized, i.e. divided by
√

1
m ∑

m
i=1 ||Xi||2. Without the

normalization of the samples, the Gram matrix would be too close to the identity matrix
in order to obtain reliable results. To penalize the deviation between the predicted value
f (X) and the true value y ∈ {−1,+1}, we use the hinge loss

vH : R×R→ R : (x,y) 7→max{1− xy,0}.(104)

To avoid overfitting, we use the smoothness functional Ω :Hκ→R to keep the decision
function f smooth. Altogether, we get the decision functional as an optimal solution
of the Tikhonov regularization problem

min
f∈Hκ

C
m

∑
i=1

vH(f (Xi),yi)+
1
2

Ω(f),(105)

where C > 0 is referred to as regularization parameter. It regulates the tradeoff between
the sum over the loss functions and the smoothness functional, i.e. the greater C is
chosen, the more the decision functional f is forced to classify the training samples
correctly.

By the representer theorem (cf.[9]), for every f ∈Hκ exists a column vector c =
(c1, ...,cm)

T ∈ Rm such that f can be written as f (·) = ∑
m
i=1 ciκ(·,Xi), and vice versa

every such representation for any vector c ∈ Rm is a function in the RKHS Hκ . In this
context we define the smoothness functional Ω(f) = ||c||1, where c is the vector in the
representation of f . We have f (X j)=∑

m
i=1 ciκ(X j,Xi)= (Kc) j, hence the minimization

problem 105 is equivalent to the problem

min
c∈Rm

C
m

∑
i=1

vH((Kc)i,yi)+ ||c||1(106)

Let be c̃ a solution to this problem, then the decision function is given by (sign f̃)(X) =
sign

(
∑

m
i=1 c̃iκ(X ,Xi)

)
.

In order to solve this problem, we use 2000 samples showing the number four and
2000 samples of fives, thus m = 4000. Furthermore, the minimization problem can be
represented in context of problem 4.1, i.e. Eq. 106 is equivalent to Eq. 84, if we set

H = Rm, Gi = R,
h : Rm→ R : x 7→ 0,

f : Rm→ R : x 7→ ||x||1 =
m

∑
i=1
|xi|,

(∀i ∈ {1, ..,m}) li : R→ R : x 7→
{

0 if x = 0
+∞ otherwise ,

gi : R→ R : x 7→CvH(x,yi), and
Li : Rm→ R : x 7→ (Kx)i = Ki,:x,

(107)

33

where Ki,: denotes the i-th row of K. Therefore, we may use one of the Algorithms 9
and 10 to solve problem 106. All these functions in Eq. 107 satisfy the requirements
of Theorem 6 for weak convergence, however not for strong one. Together with Eq.
13 we get gi � li(x) = gi(x). Inserting in the definition of the conjugate function yield
l∗i ≡ 0, thus ∇l∗i ≡ 0. We also have ∇h ≡ 0. Note that f and gi are not differentiable,
thus it is not possible to process them via their gradients. For all n ≥ 0 we set the
error sequences a1,n,b1,n,c1,n and a2,i,n,b2,i,n,c2,i,n for i ∈ {1, ...m,} equal to 0, hence
condition (A) of Theorem 6 is satisfied (cf. Remark 4 (ii)). Since gi is real-valued for
all i, [2, Proposition 4.3, (ii)] applies, thus condition 86 is satisfied.

Usually the optimization problem 106 is solved using several values for the regu-
larization parameter C and the Gaussian kernel parameter σκ to find good choices for
them, here good means for example minimizing the misclassification rate. Although,
we are more concerned about the convergence behavior of the algorithm when solving
the optimization problem, i.e. finding good choices for γn and the stochastic variables
ε·,n, that is why we fix C = 1 and σκ = 1 for all numerical experiments in this section.

4.2.1 Computation of the Operators needed in the Algorithms

In order to make the algorithm run, we have to calculate the proximal points for γn f
and γng∗i and the operator L∗i , we start with the computation of proxγng∗i

. We know from
the extended Moreau decomposition formula [10, Theorem 6.45] that

proxγng∗i
(x) = x− γn prox 1

γn gi

(
1
γn

x
)
.(108)

Therefore, we compute

prox 1
γn gi

(x) = argmin
u

{
gi(u)

γn
− ||x−u||2

2

}
= argmin

u

{
C max{1−uyi,0}

γn
− (x−u)2

2

}
.

(109)

In order to solve this strongly convex minimization problem, we make a case distinction
and set the derivative of G(u) = C max{1−uyi,0}

γn
− (x−u)2

2 equal to 0.

Case 1−uyi ≥ 0 : G′(u) = 0 ⇐⇒ −Cyi

γn
+u− x = 0 ⇐⇒ u = x+

Cyi

γn
,

1−uyi ≥ 0⇒ 1−uyi = 1− xyi−
Cy2

i
γn
⇐⇒ 1− C

γn
≥ xyi, since y2

i = 1.

Case 1−uyi < 0 : G′(u) = 0 ⇐⇒ u = x,

1−uyi < 0⇒ 1 < xyi.

Case 1− C
γn

< xyi ≤ 1 : u = yi.

(110)

Thus, we obtain

prox 1
γn gi

(x) =


x if xyi > 1
yi if 1− C

γn
< xyi ≤ 1.

x+ Cyi
γn

if 1− C
γn
≥ xyi

(111)

34

Hence, combining Eq. 108 and 111 yield

proxγng∗i
(x) = x− γn


x
γn

if xyi
γn

> 1
yi if 1− C

γn
< xyi

γn
≤ 1

x+Cyi
γn

if 1− C
γn
≥ xyi

γn

=

 0 if γn− xyi < 0
x− γnyi if 0≤ γn− xyi <C
−Cyi if C ≤ γn− xyi

= P−yi[0,C](x− γnyi),

(112)

where P denotes the projection operator. Implementing a function in a programming
language, we want to avoid case distinctions since they are time consuming and there-
fore slow down the algorithm essentially if the function is called often. In this sense,
we write proxγng∗i

as follows.

proxγng∗i
(x) =

{
P[0,C](x+ γn) if − yi = 1
P[−C,0](x− γn) if − yi =−1

=

{
min

(
max(x+ γn,0),C

)
if yi =−1

max
(

min(x− γn,0),−C
)

if yi = 1

=

{
yi max

(
y2

i min(yix− γn,0),−C
)

if yi =−1
yi max

(
min(yix− γn,0),−C

)
if yi = 1

= yi max
(

min(yix− γn,0),−C
)
.

(113)

We used that C > 0 and in the second to the last transformation step the fact that
min(x,y) =−max(−x,−y) and vise versa.

A similar calculation as above yield the proximal point operator

proxγn||·||1(x) =

( x1− γn if x1 > γn
x1 + γn if x1 <−γn
0 otherwise

, ...,

 xm− γn if xm > γn
xm + γn if xm <−γn
0 otherwise

)
.(114)

Next we compute L∗i : R→ Rm, inserting in its definition yields

(∀x ∈ Rm)(∀y ∈ R) :

〈x,LT
i y〉= 〈Lix,y〉= 〈(Kx)i,y〉= (Kx)iy = xT ((Ki,:)

T y) = 〈x,(Ki,:)
T y〉,

(115)

and since K is symmetric and real, we obtain L∗i (y) = LT
i y = K:,i y.

Finally, we have to choose values for the sequence (γn)0≤n<∞ ⊂]0,1/β [and a
probability distribution on the stochastic variables in order to start the numerical exper-
iment. Since ∇h is µ-Lipschitzian for any µ > 0, and since li is 1/νi-strongly convex
for any νi > 0 for i ∈ {1, ...,m}, we set according to Eq. 87, β >

√
∑

m
i=1 ||Li||2 =√

∑
m
i=1(max j |Ki j|)2 =

√
m =

√
4000, hence γn < (4000)−1/2. The starting points x0

and (v1,0, ...,vm,0) are chosen randomly.

4.2.2 Testing several Probability Distributions

Let us now define different probability distributions on the stochastic variables ε·,n ∈
{0,1}. Therefore we permute the vector (1,2, ...,m) 7→ (π1,π2, ...,πm), πi ∈ {1, ...,m}
for 1 ≤ i ≤ m and πi 6= π j for 1 ≤ i < j ≤ m, randomly (with uniform distribution),

35

Computations K · randn(m,1) K400 = K(1 : 400, :) K400 · randn(m,1)
Time (seconds) 0.015 0.011 0.002

Table 1 shows the average times needed for performing the respective computation 10
times in MATLAB, randn(m,1) is a m-dimensional column vector whose components
are standard normal distributed, K denotes the 104 by 104 Gram matrix and K(1 : 400, :)
is the MATLAB-notation for the sub-matrix consisting of the first 400 rows of K.

m = 4000 in our example, then we divide it by a fixed batch size bs ≤ m into len
batches

MB(0) = {π1, ...,πbs},
MB(1) = {πbs+1, ...,π2·bs},
:
MB(len−2) = {π(len−2)·bs+1, ...,π(len−1)·bs},
MB(len−1) = {π(len−1)·bs+1, ...,πm},

(116)

where len= dm/bse and dae rounds to the nearest integer greater than or equal to a∈R.
Now we set

ε2,i,n = 1 if i ∈MB
(
(n mod len)

)
for i ∈ {1, ...,m}

ε1,n = 1 if (n mod len) = len−1,
(117)

where (n mod len) denotes the remainder of the integer division n
len . Each after len

iterations every stochastic variable has been activated, i.e. equal to 1, with equal fre-
quency. Note that condition (C) of Theorem 6 is satisfied, however, condition (B) is
not. The reason why we fix the distribution of the stochastic variables in advance and
thus violate condition (B) lies in the encoding of the algorithm. Every iteration, the pro-
gram has to access to those lines of the Gram matrix K which have activated indices,
i.e. every line i of K with ε2,i,n = 1 for 1≤ i≤m. It is coded in the lines 16 and 33 in Al-
gorithm 9 and in the lines 18 and 37 in Algorithm 10, respectively, wherein L∗i vi,n+1 =
K(i, :)vi,n+1 has to be computed for all i with ε2,i,n = 1 (K(:, i) is the MATLAB-notation
for the i-th column of K). This accessing-operation requires proportionally much time
in comparison to a computation (e.g. multiplication) with the remaining part of the
matrix, see Table 1. Using the distribution scheme of the stochastic variables defined
by the Eqs. 116 and 117, it is sufficient to divide the Gram matrix K just once for
all iterations into the blocks K(MB(0), :), ...,K(MB(len− 1), :) (MATLAB notation),
store them and use the same block every len-th iteration. If another distribution scheme
satisfies condition (B) of Theorem 6, the vector [ε2,1,n, ...,ε2,m,n] has to be randomly up-
dated every iteration as well as the activated lines K([ε2,1,n, ...,ε2,m,n] == 1, :) (MAT-
LAB notation) of K have to be accessed every iteration. Therefore such a distribution
scheme slows down the algorithms essentially and could destroy the (possible) benefits
obtained by saving computational effort by using stochastic variables.

We perform the algorithms using the following concrete distributions.

(i) Type Det, (ε1,n,ε2,1,n, ...,ε2,m,n) = (1, ...,1) for all required n≥ 0.

(ii) Type Stoch 2, bs = 2000 (len = 2).

(iii) Type Stoch 10, bs = 400 (len = 10).

36

(iv) Type Stoch 50, bs = 80 (len = 50).

Due to Remark 7 (i), the algorithms performed by using Type Det can be seen as
deterministic. Note that type Stoch 2 saves almost half of the computational effort
per iteration, type Stoch 10 almost 90% and type Stoch 50 almost 98%. To perform
the types Det and Stoch 2 we use Algorithm 9 and for the types Stoch 10 and Stoch 50
Algorithm 10, that are the best choices for each type. We give the explanation therefore
in Section 4.2.6.

4.2.3 Performance of the Algorithms within 5 seconds

For each type we test several choices for γn, all chosen constant for all required n.
All algorithms are terminated after 5 seconds, the outcome is shown in Figure 2. It
displays the courses of the objective function values of problem 106 along the time in
a separate window for each type, the objective values are computed with c = xn and
c = (v1,n, ...,vm,n), notice that both sequences converge to the minimizer by Theorem
6. The time values shown here and in the following are total computation times for
performing all computations needed for each algorithm. We observe that the objective
function values computed with c = (v1,n, ...,vm,n) are greater by an order of magnitude
than those computed with c = x1,n, thus we restrict us in the remaining part of this
section to analyze the courses of the objective function values computed with c = x1,n.
In order to present all figures in this section clearly, not every pair of objective value
and corresponding time taken after each iteration is indicated. The choice γn = 4 ·10−4

proves do be the best one for the type Det, γn = 3.2 · 10−4 for type Stoch 2, γn =
4.2 ·10−4 for type Stoch 10 while the choice γn = 4.4 ·10−4 is the best one for the type
Stoch 50 within a runtime of 5 seconds.

37

Time [Seconds]

O
bj

ec
tiv

e
fc

t.
va

lu
e

(l
og

.s
ca

le
)

Type Det
: Objective function value computed with c = (v1,n, ...,vm,n)

−·−: Objective function value computed with c = x1,n

+, red: γn = 4.5 ·10−4
o, green: γn = 4 ·10−4
×, blue: γn = 3.5 ·10−4

Time [Seconds]

Type Stoch 2

+, red: γn = 3.7 ·10−4
o, green: γn = 3.2 ·10−4
×, blue: γn = 2.7 ·10−4

Time [Seconds]

O
bj

ec
tiv

e
fc

t.
va

lu
e

(l
og

.s
ca

le
)

Type Stoch 10

+, red: γn = 5 ·10−4
o, green: γn = 4.2 ·10−4
×, blue: γn = 3.6 ·10−4

Time [Seconds]

Type Stoch 50

+, red: γn = 5.2 ·10−4
o, green: γn = 4.4 ·10−4
×, blue: γn = 3.6 ·10−4

Figure 2 shows the courses of the objective function values for different values of γn,
each distribution type is presented in a separate window.

Let us now compare the courses of the objective function values of the four different
types of probability distribution, each performed with its best value for γn, the result
is shown in Figure 3. The types Stoch 2, Stoch 10 and Stoch 50 have essentially the
same convergence behavior, their objective function values decrease rapidly within the
first second, then raise a bit but decrease slightly again afterwards. In turn, the course
of type Det has a shaky start but then decreases continuously, and after 1.5 seconds it
has the same course as the other types. The lowest objective function value within 5
seconds is attained by type Stoch 10 after 0.4 seconds. The times and numbers of the
iterations after each type reached its best objective value and the objective values itself
are indicated in Table 2. Therein, the lowest objective function value and the lowest
time after a minimum is reached are indicated in bold. The misclassification rate with
respect to the training set and the test set for each type, computed respectively with the
x1,n corresponding to the lowest objective value is also reported in Table 2. We observe
that for three types the misclassification rate with respect to the test set is smaller than
those with respect to the training set, that is unusual. Further, we see that a smaller
objective value need not necessarily lead to a smaller misclassification rate. Figure 3
also shows us that the type Det terminates its first iteration essentially faster than the
stochastic types, this is because the Gram matrix has to be split into blocks just once at

38

The smallest objective function value of Misclassification rate
each type computed with c = x1,n was reached at | with respect to the

Type γn objective
fct. value

Iteration Time (s) Training
samples

Test
samples

Det 4 ·10−4 2956 92 5.01 3.33% 3.08%
Stoch 2 3.2 ·10−4 2843 24 0.82 6.47% 5.94%
Stoch 10 4.2 ·10−4 2242 30 0.4 7.98% 8.18%
Stoch 50 4.4 ·10−4 2405 250 0.65 6.5% 5.98%

Table 2 shows the statistics to Figure 3, when the smallest objective function value of
each type was reached, and the corresponding misclassification rates.

the beginning of the algorithm as described in Section 4.2.2 and performed by the code
MatrixBlocking presented in Section 4.2.6.

Time [Seconds]

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(l
og

ar
ith

m
ic

sc
al

e)

Comparison of the objective values of Type Det / Type Stoch 2, 10, 50 within 5 sec.

The objective function values are computed respectively with c = x1,n.

+, red: Type Stoch 50, γn = 4.4 ·10−4, 3500 iterations
×, blue: Type Stoch 10, γn = 4.2 ·10−4, 830 iterations
∗, cyan: Type Stoch 2, γn = 3.2 ·10−4, 178 iterations
o, green: Type Det, γn = 4 ·10−4, 92 iterations

Figure 3 shows the respective course of the objective function values within 5 seconds
of the types Det, Stoch 2, 10 and 50, each performed with its best choice of γn.

4.2.4 Performance of the Algorithms within 60 seconds

At the end let us test the performance of the algorithms using the four different types of
probability distribution within one minute, the result is shown in Figure 4. Numerical
experiments have shown that the choice γn = 4.4 · 10−4 is the best for all types. We
observe again that the objective function values computed with c = (v1,n, ...,vm,n) are
not competitive with those computed with c = x1,n. The types Stoch 10 and 50 cannot
keep up with the other two types. After 5 seconds the types Det and Stoch 2 have ba-
sically the same course of the objective function values computed with c = x1,n, which
leads to the lowest objective function value after one minute. Every type attained its
lowest objective value after the last iteration. The statistics to Figure 4 are indicated in
Table 3. Therein, the lowest objective function value is indicated in bold. The misclas-
sification rate with respect to the training set and the test set for each type, computed

39

respectively with the x1,n corresponding to the lowest objective value is also reported
in Table 3. We observe that the misclassification rates obtained here are much better
than those obtained after a runtime of 5 seconds. For example, the misclassification
rate 1.18% with respect to the test set, which consists of 1784 samples, provided by
type Stoch 10 means that just 21 samples are wrong classified. Furthermore, Figure 5
shows the best and worst classified images showing four and five computed with x1,9870
corresponding to the lowest objective value of type Stoch 10. Here best means that the
value of the classifier functional is closest to−1 and +1, respectively, and worst means
it is most positive and negative, respectively.

The number of iterations each type did after 5 and 60 seconds is written in the Fig-
ures 3 and 4, respectively. Performing the algorithm using type Stoch 2, half of the
stochastic variables are deactivated and thus a bit more than half of the computational
effort per iteration of type Det has to be done. This ”a bit more” comes from the fact,
that in every iteration certain computations (fixed computational work) always have to
be performed, independent from the distribution of the stochastic variables, e.g. line
7 and 8 in Algorithm 9 and line 8 and 9 in Algorithm 10. Hence, we expect a bit less
than two times the number of iteration done by type Det. The numerical experiments
presented in the Figures 3 and 4 show that type Stoch 2 performs circa 1.96 times as
much iterations as the deterministic algorithm. The types Stoch 10 and 50 do in aver-
age 9.02 and 38.08, respectively, times as much iterations as type Det. This numbers
conform that the quotient of reduced computational work to fixed computational work
per iteration decreases by decreasing the amount of activated stochastic variables.

Time [Seconds]

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

(l
og

ar
ith

m
ic

sc
al

e)

Comparison of the objective values of Type Det / Type Stoch 2, 10, 50 within 1 min.

: Objective function value computed with c = (v1,n, ...,vm,n)

−·− : Objective function value computed with c = x1,n

+, red: Type Stoch 50, γn = 4.4 ·10−4, 41700 iterations
×, blue: Type Stoch 10, γn = 4.4 ·10−4, 9870 iterations
∗, cyan: Type Stoch 2, γn = 4.4 ·10−4, 2168 iterations
o, green: Type Det, γn = 4.4 ·10−4, 1094 iterations

Figure 4 shows the respective course of the objective function values within one minute
of the types Det, Stoch 2, 10 and 50, each performed with γn = 4.4 ·10−4.

40

|Misclassification rate w. r. t. the
Type γn objective fct. value Training samples Test samples
Det 4.4 ·10−4 455 1.15% 1.35%
Stoch 2 4.4 ·10−4 475 1.23% 1.35%
Stoch 10 4.4 ·10−4 538 1.08% 1.18%
Stoch 50 4.4 ·10−4 663 1.18% 1.23%

Table 3 shows the statistics to Figure 4, the smallest objective function value of each
type and the corresponding misclassification rates.

Figure 5 shows in the left column two fours and in the right column two fives, those in
the first line are correct classified and those in the second line are wrong classified with
respect to the best value obtained by type Stoch 10.

4.2.5 Conclusion

Finally, we conclude that performing the stochastic algorithm instead of the determin-
istic one does not improve the results for this application. Within a run-time of one
second the stochastic Algorithm 10 using distribution type Stoch 10 or 50 provides es-
sentially lower objective function values as the deterministic one, but the performance
of the Support Vector Machine corresponding to these objective function values, i.e.
its misclassification rate is bad. After a longer runtime, these types cannot keep up
anymore. However, the stochastic Algorithm 9 in combination with distribution type
Stoch 2 provides after a run-time of 10 seconds the same course of the objective values
as the deterministic algorithm, which lead to a good performance of the Support Vector
Machine. Unfortunately, we could not find a probability distribution to the stochastic
variables, which used in a stochastic algorithm outperforms the deterministic one after
a longer runtime.

41

4.2.6 Implementation of the Algorithms in MATLAB

Here we present the MATLAB codes to the main routines and its sub-functions. If a
code line is too long for the width of the page, we make a word wrap and indent the
new line. Some explanations to the code are given in the following as well.

The following code is based on Algorithm 9 and we used it to perform the numerical
experiments for the types Stoch 2 (batchSize = 2000) and Det (batchSize = 4000).

1 function [OFV x, OFV v, TimePerIt, Min x, Min v]
2 = StochasticAlgV1(x, v, K, y, gamma, MaxTime, C, batchSize)
3 % INPUT PARAMETERS:
4 % x, v ... starting points.
5 % K ... Gram matrix corresponding to the training data set.
6 % y ... labels (-1,+1) corresponding to the training data set.
7 % gamma ... step size.
8 % maxTime ... time after which the algorithm stops.
9 % C ... regularization parameter.

10 % batchSize ... number of stochastic variables which are
11 % set to 1 per iteration.
12

13 % OUTPUT PARAMETERS:
14 % OFV x ... list of obj. fct. values
15 % computed with x, respecticely taken after a iteration.
16 % OFV v ... list of obj. fct. values
17 % computed with v, respecticely taken after a iteration.
18 % TimePerIt ... list of times,
19 % respecticely taken after a iteration.
20 % Min x ... list of x, respecticely taken after a iteration.
21 % Min v ... list of v, respecticely taken after a iteration.
22 tic
23 m=size(K,1);
24 % Initialisation
25 OFV x=[];
26 OFV v=[];
27 TimePerIt=[];
28 Min x=[];
29 Min v=[];
30 totalTime=0;
31 Kx=K*x;
32 [Block, epsilon]=MatrixBlocking(K, batchSize);
33 KvElement=zeros(m,length(Block));
34 for j=1:length(Block)
35 KvElement(:,j)=Block{j}'*v(epsilon{j});
36 end
37 %
38 while totalTime < MaxTime
39 for j=1:length(Block)
40 Kv=sum(KvElement,2);
41 y1=x-gamma*Kv; % K is symmetric, i.e. K=K'.
42 p1=proxNorm1(y1, gamma);
43 if j ~= length(Block)
44 y2=v(epsilon{j})+gamma*(Kx(epsilon{j}));
45 p2=proxConjugateHingeLoss(y2, y(epsilon{j}), gamma, C);
46 q2=p2+gamma*(Block{j}*p1);
47 v(epsilon{j})=v(epsilon{j})-y2+q2;
48 else
49 y2=v+gamma*(Kx);
50 p2=proxConjugateHingeLoss(y2, y, gamma, C);
51 q1=p1-gamma*(K*p2); % K is symmetric, i.e. K=K'.
52 x=x-y1+q1;

42

53 Kx=K*x;
54 q2=p2(epsilon{j})+gamma*(Block{j}*p1);
55 v(epsilon{j})=v(epsilon{j})-y2(epsilon{j})+q2;
56 end
57 KvElement(:,j)=Block{j}'*v(epsilon{j});
58 end
59 timePerIteration=toc;
60 % Computing the Output
61 Min x=[Min x,x];
62 Min v=[Min v,v];
63 valx=C*sum(max(ones(m,1)-(K*x).*y,0))+norm(x,1);
64 valv=C*sum(max(ones(m,1)-(K*v).*y,0))+norm(v,1);
65 OFV x=[OFV x,valx];
66 OFV v=[OFV v,valv];
67 TimePerIt=[TimePerIt,timePerIteration];
68 %
69 totalTime=totalTime+timePerIteration;
70 tic
71 end
72 end

The next code is based on Algorithm 10 and we used it to perform the numerical
experiments for the types Stoch 10 (batchSize = 400) and Stoch 50 (batchSize = 80).
If we perform the above code StochasticAlgV1 for the types Stoch 10 and Stoch 50, in
line 40, 9 and 49, respectively, m-dimensional vector additions have do be done every
iteration. However, in the subsequent code StochasticAlgV2 just one m-dimensional
vector addition and one m-dimensional vector subtraction have to be done in the lines
57 and 59 yielding the same result. Due to the same arguments the program Stochas-
ticAlgV1 is the better choice for type Stoch 2, since just one addition has to be done in
line 40.

1 function [OFV x, OFV v, TimePerIt, Min x, Min v]
2 = StochasticAlgV2(x, v, K, y, gamma, MaxTime, C, batchSize)
3 % INPUT PARAMETERS:
4 % x, v ... starting points.
5 % K ... Gram matrix corresponding to the training data set.
6 % y ... labels (-1,+1) corresponding to the training data set.
7 % gamma ... step size.
8 % maxTime ... time after which the algorithm stops.
9 % C ... regularization parameter.

10 % batchSize ... number of stochastic variables which are
11 % set to 1 per iteration.
12

13 % OUTPUT PARAMETERS:
14 % OFV x ... list of obj. fct. values
15 % computed with x, respecticely taken after a iteration.
16 % OFV v ... list of obj. fct. values
17 % computed with v, respecticely taken after a iteration.
18 % TimePerIt ... list of times,
19 % respecticely taken after a iteration.
20 % Min x ... list of x, respecticely taken after a iteration.
21 % Min v ... list of v, respecticely taken after a iteration.
22 tic
23 m=size(K,1);
24 % Initialisation
25 OFV x=[];
26 OFV v=[];
27 TimePerIt=[];
28 Min x=[];

43

29 Min v=[];
30 totalTime=0;
31 Kx=K*x;
32 [Block, epsilon]=MatrixBlocking(K, batchSize);
33 KvElement=zeros(m,length(Block));
34 for j=1:length(Block)
35 KvElement(:,j)=Block{j}'*v(epsilon{j});
36 end
37 Kv=sum(KvElement,2);
38 %
39 while totalTime < MaxTime
40 for j=1:length(Block)
41 y1=x-gamma*Kv; % K is symmetric, i.e. K=K'.
42 p1=proxNorm1(y1, gamma);
43 if j ~= length(Block)
44 y2=v(epsilon{j})+gamma*(Kx(epsilon{j}));
45 p2=proxConjugateHingeLoss(y2, y(epsilon{j}), gamma, C);
46 q2=p2+gamma*(Block{j}*p1);
47 v(epsilon{j})=v(epsilon{j})-y2+q2;
48 else
49 y2=v+gamma*(Kx);
50 p2=proxConjugateHingeLoss(y2, y, gamma, C);
51 q1=p1-gamma*(K*p2); % K is symmetric, i.e. K=K'.
52 x=x-y1+q1;
53 Kx=K*x;
54 q2=p2(epsilon{j})+gamma*(Block{j}*p1);
55 v(epsilon{j})=v(epsilon{j})-y2(epsilon{j})+q2;
56 end
57 Kv=Kv-KvElement(:,j);
58 KvElement(:,j)=Block{j}'*v(epsilon{j});
59 Kv=Kv+KvElement(:,j);
60 end
61 timePerIteration=toc;
62 % Computing the Output
63 Min x=[Min x,x];
64 Min v=[Min v,v];
65 valx=C*sum(max(ones(m,1)-(K*x).*y,0))+norm(x,1);
66 valv=C*sum(max(ones(m,1)-(K*v).*y,0))+norm(v,1);
67 OFV x=[OFV x,valx];
68 OFV v=[OFV v,valv];
69 TimePerIt=[TimePerIt,timePerIteration];
70 %
71 totalTime=totalTime+timePerIteration;
72 tic
73 end
74 end

In the lines 61-67 of the code StochasticAlgV1 and in the lines 63-69 of the program
StochasticAlgV2 the output arguments are computed each after a certain amount of
iterations and added in a list in order to generate the figures in the preceding section.
The time needed therefore is excluded of the time the programs needed to perform
a iteration in order do avoid falsifying of the measurements. Usually it is enough to
compute the output arguments just once after the last iteration.

The following sub-program basically performs the process described in Section
4.2.2, i.e. splitting the Gram matrix according to the batches defined by Eq. 116.

44

1 function [Block, epsilon] = MatrixBlocking(M, batchSize)
2 % M is a m by m matrix, batchSize a vector with Dimension <= m
3 % Block and epsilon are lists of matrices and vectors, resp.
4 m=size(M, 1);
5 Step=ceil(m/batchSize);
6 Block=cell(1,Step);
7 epsilon=cell(1,Step);
8 range=randperm(m);
9 for i=1:Step

10 l=min(batchSize*i,m);
11 epsilon{i}=sort(range(batchSize*(i-1)+1:l))';
12 Block{i}=M(epsilon{i},:);
13 end
14 end

The following sub-functions compute the proximal points to the conjugate function
of the hinge loss and to the 1-norm according to the Eqs. 113 and 114, respectively.

1 function [z] = proxConjugateHingeLoss(x, y, gamma, C)
2 % Proximal Point Operator of the Conjungate Function
3 % of the Hinge Loss gamma*C*max(1-x*y,0).
4 % Dimension of x = Dim. of y = Dim. of z = a positive integer.
5 % Dimension of gamma = Dimension of C = 1.
6 z=max(min(x.*y-gamma,0),-C).*y;
7 end

1 function [z] = proxNorm1(x, gamma)
2 % Proximal Point Operator of gamma* | |. | | 1.
3 % Dimension of gamma = 1.
4 % Dimension of x = Dimension of z = a positive integer.
5 z=zeros(size(x,1),1);
6 greater=x>gamma;
7 z(greater)=x(greater)-gamma;
8 lower=x<-gamma;
9 z(lower)=x(lower)+gamma;

10 end

45

References
[1] Combettes, P.L., Pesquet J.-C.: Stochastic Quasi-Fejér Block-Coordinate Fixed

Point Iterations with Random Sweeping. SIAM Journal on Optimization (SIOPT)
Vol. 25, No. 2, pp. 1221-1248, (2015).

[2] Combettes, P.L., Pesquet J.-C.: Primal-Dual Splitting Algorithm for Solving Inclu-
sions with Mixtures of Composite, Lipschitzian, and Parallel-Sum Type Monotone
Operators. Set-Valued Var. Anal (2012) 20:307-330.

[3] Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator The-
ory in Hilbert Spaces. Springer, New York (2011).

[4] Loève, M.: Probability Theory II, 4th ed. Springer, New York (1978).

[5] Briceño-Arias, L.M., Combettes, P.L.: A Monotone + Skew Splitting Model
for Composite Monotone Inclusions in Duality. SIAM Journal on Optimization
(SIOPT), (2011).

[6] Fortet, R.M.: Vecteurs, Fonctions et Distributions Alèatoires dans les Espaces de
Hilbert. Hermès, Paris, (1995).

[7] Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Pro-
cesses. Springer, New York, (1991).

[8] Boţ R.I., Csetnek E.R., Hendrich C.: Recent Developments on Primal-Dual Split-
ting Methods with Applications to Convex Minimization. In: Pardalos P., Rassias
T. (eds) Mathematics Without Boundaries. Springer, New York, (2014).

[9] Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge
University Press. Cambridge, (2004).

[10] Beck, A.: First-Order Methods in Optimization. SIAM, (2017).

[11] Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific, River
Edge, NJ, (2002).

46

5 Abstract / Zusammenfassung
Abstract

We propose a stochastic primal-dual forward-backward-forward algorithm for solving
monotone inclusion problems involving maximally monotone operators, linear com-
positions of parallel sums of maximally monotone operators and single-valued Lips-
chitzian monotone operators. The stochastic algorithm is expected to converge faster
than its deterministic counterpart, since every iteration computational effort is saved by
using a random sweeping strategy. Based on the concept of quasi-Fejér monotonicity,
we prove the almost sure convergence of the algorithm. In the second half of this the-
sis, we discuss the employment of the proposed algorithm in context of solving convex
minimization problems, arising in the field of Kernel based Machine Learning. We
use a pool of hand-written images showing the numbers four or five in order to train
a Support Vector Machine, which aims to classify the images correctly. This issue is
equivalent to solving a convex minimization problem. By means of this application
we test several types of the stochastic algorithm, assess their performances and com-
pare them to the performance of its deterministic counterpart. Finally, we present the
according MATLAB-codes.

Zusammenfassung

Wir präsentieren ein stochastisches Primal-duales Vorwärts-Rückwärts-Vorwärts Ver-
fahren zum Lösen des monotonen Inklusions-Problems, welches maximal- monotone
Operatoren, lineare Zusammensetzungen paralleler Summen von maximal- monotonen
Operatoren und einzelwertige Lipschitz-stetige monotone Operatoren umfasst. Wir
erwarten uns ein besseres Konvergenzverhalten vom stochastischen Algorithmus im
Vergleich zu seinem deterministischen Gegenüber, weil ersterer durch zufälliges Ak-
tivieren der Koordinaten in jeder Iteration Rechenaufwand einspart. Basierend auf dem
Konzept der quasi-Fejér Monotonie beweisen wir die fast-sicher Konvergenz des Algo-
rithmuses. Im zweiten Teil dieser Arbeit zeigen wir, wie man das stochastische Primal-
duale Vorwärts-Rückwärts-Vorwärts Verfahren einerseits zum Lösen allgemeiner kon-
vexer Optimierungsaufgaben und darauf basierend andererseits zum Lösen speziell
für das Kernel-basierte Maschinelle Lernen verwenden kann. Konkret benützen wir
eine große Auswahl von Bildern, welche die handgeschriebenen Ziffern Vier oder
Fünf zeigen, um eine Support Vektor Maschine zu trainieren. Diese zielt darauf ab,
die Bilder richtig zu unterscheiden. Abstrakt formuliert gleicht diese Aufgabe einer
konvexen Optimierungsaufgabe. Anhand dieser Anwendung testen wir verschiedene
Typen des stochastischen Algorithmuses, bewerten deren Leistungsfähig- keiten und
vergleichen diese mit der Leistungsfähigkeit seines deterministischen Gegenüber. Zum
Schluss präsentieren wir noch die MATLAB-Codes.

47

