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Abstract

Master of Science

Quasi-stationary distributions in the Moran model with two strategy games

by Philipp MERZ

This thesis studies the behaviour of a fixed size population that engages in two by
two games. We use the Moran model and introduce fitness based on average payoff
to weight the imitation happening at each step. This leaves us with a birth-death
chain or imitation chain which we can compare to the deterministic replicator dy-
namic.
Such population models have applications in many fields, for example biology or
economics and have been studied extensively. Most studies of the long term be-
haviour and its stability over time for the Moran model, included mutation because
this gives a unique stationary distribution with full support. In this thesis we ex-
clude mutation and work with the non-irreducible chain, which needs a different
approach. We mostly used numeric approximations when there were no explicit
formulas given.
In the limit of infinite populations the deterministic and stochastic models should
agree and we could mostly recapture this fact. We studied five different cases of two
by two games namely a neutral, a dominated, a coordination, an anti-coordination
and what we called an almost-neutral game. We give detailed discussions for each
case in terms of the quasi-stationary, pseudo-stationary and the long-term distribu-
tions. Also fixation probabilities and average fixation times are given. Additionally
we examine what happens if the game matrix is chosen with largely differing values
which in some cases gives us degenerated results.
Balanced versions of the classical coordination or anti-coordination games produce
really nice stochastic models which incorporate the details of the dynamics. The anti-
coordination case has the most paradoxical nature where it seems like the stationary
distribution is no longer relevant. But as it turns out the LTD would converge to the
stationary distribution but needs excruciatingly huge amounts of time compared to
all other cases. One could say it converges so slowly that the quasi-stationary dis-
tribution is a more relevant prediction. Additionally the QSD mirrors the interior
stable state of the corresponding REP dynamic and therefore recovers the connec-
tion between REP and imitation chain.

HTTP://WWW.UNIVERSITY.COM
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Zusammenfassung
Master of Science

Quasi-stationäre Verteilungen im Moran Modell für Spiele mit zwei Strategien

von Philipp Merz

Diese Arbeit befasst sich mit dem Verhalten einer Population, welche in zwei
Personen Spielen untereinander interagiert. Wir verwenden das Moran Modell und
führen eine Fitness basierte Immitation ein, welche die durchschnittlichen Payoffs
der Spieler sowie ihre Frequenz inkludiert. Damit erhalten wir eine Geburts-Todes
Kette oder Immitations Kette, die wir mit der deterministischen Replikator Gle-
ichung vergleichen können.
Solche Populations Modelle haben vielseitige Anwendungen, unter anderem in der
Ökonomie und der Biologie. Die meisten Arbeiten über das langfristige Verhalten
solcher Ketten inkludieren zusätzlich Mutation, wodurch eine eindeutige stationäre
Verteilung mit vollem Träger existiert. Eine Motivation dieser Arbeit, war dieses
Modell ohne Mutation und daher nicht-irreduzibel zu betrachten, was eine andere
Vorgehensweise benötigt. Wenn keine expliziten Lösungen bekannt sind appro-
ximieren wir mit numerischen Methoden.
Im Grenzwert für unendlich große Populationen sollte das stochastische mit dem de-
terministischen Modell übereinstimmen und zum großen Teil konnte dies von uns
bestätigt werden. Untersucht wurden fünf verschiedene Typen von zwei Personen
Spielen, nämlich Neutrales, Koordinations, Anti-Koordinations, Dominiertes und
das von uns benannte fast neutrale (almost neutral) Spiel. Für jeden Fall werden die
Quasi-stationäre, die Pseudo-stationäre und die Langzeitverteilung (long-term dis-
tribution) detailliert diskutiert. Zusätzlich werden durchschnittliche Absorptions-
zeiten (average fixation time) sowie die Fixierungs Wahrscheinlichkeit (fixation prob-
ability) angegeben.
Ausbalancierte Versionen der klassischen Koordinations und Anti-Koordinations
Spiele ergeben Modelle, welche die Eigenschaften und Dynamiken dieser wieder-
spiegeln. Das Anti-Koordinations Spiel stellte sich als paradox heraus, da hier die
Stationäre Verteilung scheinbar keine Rolle für das langfristige Verhalten spielt. Hier
liefert die Quasi-stationäre Verteilung die relevantere Prognose, da sie das innere sta-
bile Gleichgewicht der Replikator Gleichung wiedergibt. Dieser Effekt verstärkt sich
bei größeren Population noch, daher stimmen hier Replikator Dynamik und Imita-
tions Kette überein.
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Chapter 1

Introduction

This thesis studies the behaviour of a fixed size population that engages in two by
two games. We use the Moran model and introduce fitness based on average payoff
to weight the imitation happening at each step. This leaves us with a birth-death
chain or imitation chain which we can compare to the deterministic replicator dy-
namic.
Such population models have applications in many fields, for example biology or
economics and have been studied extensively. Most studies of the long term be-
haviour and its stability over time for the Moran model included mutation because
this gives a unique stationary distribution with full support. In this thesis we ex-
clude mutation and work with the non-irreducible chain which needs a different ap-
proach. We mostly used numeric approximations (the power method) when there
where no explicit formulas given.
In the limit of infinite populations the deterministic and stochastic models should
agree and we could mostly recapture this fact. We studied five different cases of two
by two games namely a neutral, a dominated, a coordination, an anti-coordination
and what we called an almost-neutral game. We give detailed discussions for each
case in terms of the quasi-stationary, pseudo-stationary and the long-term distribu-
tions. Also fixation probabilities and average fixation times are given. Additionally
we examine what happens if the game matrix is chosen with largely differing values
which in some cases gives us degenerated results.
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Chapter 2

Theory

In this chapter we try to mention all the necessary theory to follow the rest of the
thesis. First we dive into Game Theory and its evolutionary extension, where we
talk about the Replicator equation. Afterwards basics needed for stochastic processes,
more precisely Markov chains are established. Following this we can finally introduce
our main point of focus namely the Moran model. This model brings together two
concepts, a two by two game and a birth-death chain with two absorbing states.

2.1 Game Theory

Our model aims at combining game theory and population dynamics. First we need
to go over the basics of game theory. Our game will be a two person game, hence
we only have two players. Both of these players will have two possible strategies.
A well known example of a two person game is the prisoners dilemma. We will
explain the key components using this example. Both players have two available
options, they can either cooperate C or defect D. The payoffs for each of the four
different situations are written in the following matrix:

(C D
C α β
D γ δ

)
Here α is the payoff for Player 1 if he cooperates and his opponent cooperates as well
and γ corresponds to the payoff Player 1 receives if he defects and his opponent
cooperates. Every entry in this matrix describes a payoff for the row Player. In
our case the game is symmetric which means that both players get the same payoff
if they are in the same situation. Now this doesn’t mean that β and γ are equal,
because these are payoffs for different situations. If (C, D) is played where the first
entry corresponds to our row player and the second to the column player, the row
player receives β and the column player γ. From the column players perspective he
played D versus our C. The gist of this is that we see ourselves as the row player
most of the time and we only have to track the four values in this matrix, not eight if
both sides had different payoffs for every situation. We will see later that this is also
necessary for switching to the population perspective.

The following matrix is an example with explicit values for a prisoners dilemma:

(C D
C 3 0
D 5 1

)
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We can observe that the second row has higher values than the first in every
entry. If that’s the case we call D a dominant strategy. So obviously we should
always play D if we are uncertain what our opponent will chose. The dilemma here
lies in the detail that the two payoffs of both players combined are greatest if they
both cooperate than in any other constellation. So from a societal point of view if
there are many such interactions we would want as much cooperation as possible to
maximise our summed payoff over the whole population. If one is interested further
in this example, the book The Calculus of Selfishness by Karl Sigmund would be
a good read.

2.1.1 Evolutionary game theory

As the name suggests evolutionary game theory tries to apply game theoretic meth-
ods and frameworks to an evolutionary viewpoint. Where we before had two play-
ers battling it out, we now see only one large population of players. This population
consists of two types, namely players of strategy C and players of strategy D. From
here on we will refer to the frequency of strategy C players in the population with x.
That of course implies that 1− x is the frequency of D players, we will often write
them together in one vector like this (x 1− x). For convenience and readability we
now can express calculations like the average payoff in the population as

(
x 1− x

) (α β
γ δ

)(
x

1− x

)
= x2α + x(1− x)β + x(1− x)γ + (1− x)2δ. (2.1)

We can interpret equation (2.1) as the expected payoff if we chose two individuals
at random and let them play against each other. Now let’s fix our row player as
playing C and we only select his opponent randomly from the population, then
his expected payoff will be the first entry on the right hand side of the following
calculation: (

α β
γ δ

)(
x

1− x

)
=

(
xα + (1− x)β
xγ + (1− x)δ

)
(2.2)

Analogously if we fix the strategy D for our row player the second entry of the
right hand side in (2.2) shows our payoff. Now that we have the expected payoff
for each strategy and the average payoff in the whole population, it’s possible to
formulate the dynamics of the development of player densities in our population.

2.1.2 Replicator dynamics

The replicator dynamics of our population are based on equation (2.2) and (2.1) and
describe if the density of C or respectively D players will increase or decrease. The
replicator equation was first introduced in the book Evolutionary games and popu-
lation dynamics, 1998 written by J. Hofbauer and K. Sigmund, which covers many
important concepts regarding evolutionary dynamics. We will often reference them
as REP equations. It should be noted that our population is of fixed size so our
densities always sum to one. Formally we are then interested in the derivative with
respect to time of x, the density of C players. The motivation behind these equations
is that only a strategy that does better than the average of all players should increase
its density and should decrease it otherwise. This leads us to the following equation,
where the brackets evaluate to greater zero and thus induce an increase in density if
the payoff for C against the population is greater than the average payoff.
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Definition 1

ẋ =
dx
dt

= x[xα + (1− x)β−
(
x 1− x

) (α β
γ δ

)(
x

1− x

)
], x ∈ [0, 1] (2.3)

We can simplify it a lot by just calculating the average payoff and then rearrang-
ing the terms, first taking out (1− x) and then collect x and (1− x) terms as it is
shown in the following steps:

ẋ = x[xα + (1− x)β− x2α− x(1− x)β− x(1− x)γ− (1− x)2δ]

= x(1− x)[xα + (1− x)β− (xγ + (1− x)δ)]
= x(1− x)[x(α− γ) + (1− x)(β− δ)]

(2.4)

The last line gives us a nice equation that can also be interpreted easily. If we
will later talk about the replicator equation we will refer to the last line of (2.4). One
should note the similarity to a logistic growth equation where the only difference
regards the terms in the brackets. If we take a closer look at these we can see that the
following holds:

x(α− γ) > 0⇔ α > γ

(1− x)(β− δ) > 0⇔ β > δ
(2.5)

This means the density x of C players can only grow among other C players if its
payoff against C is greater then the payoff of D against C. Analogous for growth
of x among D players the second term needs to be positive as this is the payoff of
C against D which needs to be greater than the payoff of D against D. So if both
α > γ and β > δ hold ẋ will always be positive so the amount of C players grows
to one. Notice in (2.4) we only used the differences of payoffs, which means our
game is only relevant in how large the payoffs in each column are in relation to each
other. We will discuss all the different possibilities for the REP dynamics in the next
chapter.

2.1.3 Different types of games

We now move on to briefly touch on the different types of symmetric two by two
games and how the REP dynamics work in each case. There are four different cate-
gories which can be identified by the relations of the payoffs per column.

Neutral case

The trivial case of a game with all entries being equal should be explained at this
place, because later on in the stochastic model this becomes our baseline. As already
mentioned the following has to be fulfilled

α = β = γ = δ (2.6)

then the resulting replicator equation collapses to ẋ = 0 and we have no flow at all.
It follows that any constant function satisfying the starting condition is a solution.

The phase portrait of the neutral dynamic shows that all states in [0, 1] are stable
states which is why this case is considered trivial. We explain the structure of a phase
portrait in more detail shortly.
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0 1

x

FIGURE 2.1: Phase portrait of a neutral replicator equation.

Dominated strategies

If either
α > γ and β > δ or α < γ and β < δ (2.7)

holds then we say that C (strictly) dominates D or vice versa. If that is the case the
REP dynamic will be either always positive, if C dominates D, or always negative, if
D dominates C. One example for a dominated strategy was given with the prisoners
dilemma earlier.

0 1

x

FIGURE 2.2: Replicator Equation for C dominating D

We can also draw the REP dynamic on the interval [0, 1], this is called a phase
portrait. We already showed the very easy version in the neutral case. Every state of
our population can be plotted here, where 1 means all of our population consists of
C players and accordingly being at 0 tells us that we only have D players left. Let’s
go over the notation used in figure 2.2:

unstable fixed point

stabe fixed point

direction of flow

FIGURE 2.3: Legend for the phase portrait

We will also refer to a fixed point as a rest point, it should be stated that at any
rest point ẋ = 0 has to hold. This obviously means that in our case of two by two
symmetric games, we will always have at least two rest points, at 0 and 1, due to the
factors x and (1− x) in (2.4).

As we can see from the phase portrait the D players will inevitably die out no
matter at what point x > 0 we start. The case is completely analogous if D dominates
C as in the prisoners dilemma so we omit the discussion for that.

Coordination games

A coordination game is characterized by the need of two or more players to coordi-
nate them to all chose the same strategy. It needs to fulfill the following conditions

α > γ and δ > β (2.8)

or in other words the largest entry per column needs to be on the diagonal. In our
case we will consider two players and the symmetric version, a good example is
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given with the stag hunt.
A pair of hunters go out to hunt and after some time they find a path were they are
certain a stag will come by. So they camp the path for a few days, but no stag shows
up. Now a hare comes along and they both have the opportunity to shoot it. But if
one shoots the hare the stag will certainly be startled and never show up. So they
face the decision of either defecting and shooting the hare, ruining the hunt for the
other or of cooperating and continue to wait for the stag, which in our game would
surely arrive but they don’t know that. This leaves them with the following payoff
matrix given in figure 2.4. If they both decide to defect and shoot the hare they will
have to share it resulting in payoff 4 for each.

( C D
C 10 0
D 8 4

)
0 1

x

x∗

FIGURE 2.4: (Left) Payoff matrix and (Right) phase portrait for the
coordination game stag hunt.

These payoffs result in three rest points of the dynamics (2.4) . If we switch our
perspective back to populations, we see that a population of only C players is stable
as it is the case for only D players. This is due to the fact that if everybody plays
C then no one would want to switch to D as this would yield a lesser payoff going
down from 10 to 8. And vice versa if all play D then a change to C would lead to
payoff 0 instead of 4. But what about a mixed population of C and D players? The
third rest point lies in between 0 and 1 and is unstable, we denote this point with x∗.
We can calculate it easily by setting the terms in the bracket of (2.4) to 0 and solve
for x. In figure 2.4 on the right we can see the phase portrait for the stag hunt. We
calculate x∗ below and recognize that it’s closer to 1 than to 0.

x(α− γ) + (1− x)(β− δ) = 0
xα− xγ− xβ + xδ + β− δ = 0 | − β + δ

x(α− γ− β + δ) = β + δ | : (α− γ− β + δ)

x∗ =
δ− β

α− γ− β + δ

x∗ =
4 + 0

10− 8− 0 + 4
=

2
3

(2.9)

This means for all populations starting with a density of C players less than x∗

that the C players will die out. Only if C players are more frequent than x∗ it’s the
case that they fixate and D dies out. In other words the basin of attraction of D is
double the size of that of C. It turns out that it’s more difficult for a population to
coordinate successfully to hunt a stag if the opposing possibility is much more safe,
like the hunt for the hare.

Anti-coordination games

There is a third form of two by two games that will be the most important one going
forward. It is the counterpart of a coordination game namely an anti-coordination
game. A game matrix that has its largest entries per column not on the diagonal, in
other words satisfies

α < γ and δ < β (2.10)
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is an anti-coordination game. In a coordination game the goal is, that all players
play the same strategy, now we aim at getting our players to chose opposing strate-
gies. But let’s begin with an example, we stay with the animal theme and discuss
the hawk-dove game as a typical anti-coordination game.
Now the cooperating strategy C is called the dove, seen as the peaceful and pacifist
side. The counterpart is the hawk with strategy D, that is aggressive and dangerous.
The two sides are fighting over a resource, which yields payoff 6. Two doves will
readily share the resource and each gain 3. But a hawk will bully a dove away from
the resource and claim it all, which leaves the dove with 0 and the hawk with 6.
Now what happens if two hawks fight over the resource? They will harm each other
resulting in severe damage 4 which we substract from their payoff. So if two hawks
battle each gets on average payoff −1 as each will win half of its fights, receiving
6 half the time but then the damage is substracted. We need to choose the damage
high enough, to not make D a dominating strategy. This results in the game matrix
and the replicator dynamic which we both give in figure 2.5.

(C D
C 3 0
D 6 −1

)
0 1

x

x∗

FIGURE 2.5: (Left) Payoff matrix and (Right) phase portrait for the
hawk-dove-game. Here C is dove, D is hawk.

We again get three rest points, as in a coordination game but now both the one at
0 and 1 are unstable and there now exists a mixed stable equilibrium at x∗ = 1

4 . This
can be explained, with the fact that if only C players or doves exist, then a D player
or hawk can easily invade. Analogously only hawks cannot further exist without
doves around to take their food, because they would always fight each other. So
there needs to be a balance of hawks and doves. Our population is stable with a
quarter of doves and three quarters of hawks. The little amount of doves is due to
the fact that the damage is relatively low, if we increase it we would decrease the
amount of hawks at the mixed equilibrium.

2.2 Birth-death chains

Let’s restate briefly what we think of when we say birth-death chain. It’s a special type
of Markov chain, where in one step we cannot go from a state to any other state, but
only to neighbouring states. The typical setup includes the following definitions.
First we specify the state space S as:

S := {0, 1, 2, . . . , N} for N ∈N

Later we can interpret this N as our population size.
So if we are in state i we can reach i + 1, i − 1 and i in one step. Now our birth-
death chain is a sequence of random Variables Xn where n ∈ N, is the discrete time
index. Each Xn only depends on Xn−1 and not on the whole history of the chain.
The behaviour in the states 0 and N needs to be defined separately as this can differ
according to the approach. We define 0 and N as absorbing barriers. Meaning once
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P =



1 0 0 0 . . . 0
d1 r1 b1 0 . . . 0
0 d2 r2 b2 . . . 0
...

. . . . . . . . . 0
0 . . . 0 dN−1 rN−1 bN−1
0 . . . 0 0 0 1


FIGURE 2.6: A transition matrix for a birth-death-chain with two ab-

sorbing states at 0 and N.

we reach 0 or N we will stay there forever. This leads us to the following transition
probabilities:

Definition 2 For i ∈ {1, 2, . . . , N − 1} and for n ∈N we define the following:

bi :=P[Xn+1 = i + 1|Xn = i]
di :=P[Xn+1 = i− 1|Xn = i]
ri :=1− bi − di = P[Xn+1 = i|Xn = i]
1 :=P[Xn+1 = 0|Xn = 0] = P[Xn+1 = N|Xn = N]

(2.11)

We will often call bi the birth probability and di the death probability. We will refer to ri as
the probability to remain.

Now we can define the transition Matrix P.

Definition 3 We call an (N + 1)× (N + 1) matrix P a transition matrix if the following
holds:

Pij = P[Xn+1 = j|Xn = i] ∀i, j ∈ S, ∀n ∈N

This means that P is a stochastic row matrix, i.e. ∑N
j=0 Pij = 1

The definition of a transition matrix is crucial for working with Markov chains,
because now we can use linear algebra to study our models. Let v be a N + 1 dimen-
sional stochastic row vector, i.e. the sum of all it’s elements is 1. We now identify the
i’th entry of v with the probability of being in the state i. So we can identify v with
a probability distribution over S. Now let’s say our chain iterates one step starting
in each state according to the probability given in v, then we get a new distribution
over S which we call v′. We can calculate v′ given P and v as:

vP = v′ (2.12)

We just matrix multiply the row vector v with P to get v′. If we want to go mul-
tiple steps, say n we can just raise the transition matrix to the power n and multiply
with that, see:

vPn = v(n) where v(n)i := P[Xn = i] (2.13)

Further we discuss the classification of our state space.
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2.2.1 Types of states

We can separate the states in our state space S into two different categories.

Definition 4 Let Xn be a Markov Chain on a finite, or countable, state Space S. A state
i ∈ S is called recurrent if the following holds:

P[∃n ≥ 1 : Xn = i|X0 = i] = 1 (2.14)

A state i is called transient if the following holds:

P[∃n ≥ 1 : Xn = i|X0 = i] < 1 (2.15)

It’s clear from the definition that a state needs to be either transient or recurrent.
If we start at a recurrent state we will almost surely visit it again at some point in
time. The same is not true for transient states. Once we start at a transient state we
might never return to it. An important notion regarding Markov chains is that of
irreducibility.

Definition 5 We call a Markov chain Xn on S irreducible if ∀i, j ∈ S, there exists a sequence
of possible steps, such that the probability of reaching j from i is positive.

So being irreducible means that it is always possible to reach every other state
from any given state no matter how many steps it might take. Another even stronger
property is that of a primitive Markov chain.

Definition 6 We call a matrix P primitive, if there exists an integer n such that the matrix
Pn has only positive entries. A Markov chain is called primitive if its transition matrix P is
primitive.

So every primitive chain is also irreducible, but not the other way round. For
example a Markov chain which is periodic with period two or greater can be irre-
ducible but cannot be primitive.

In an irreducible finite Markov chain, all states are recurrent. Now if we don’t
have irreducibility we can always find a subset of S that is irreducible. For example
a birth-death chain with two absorbing states is not irreducible because we can get
trapped in either 0 or N, but if we restrict our chain to again either 0 or N it will be
irreducible. We will often separate our state space into the set of all recurrent states
which we call R := {0, N} and the set T of all the transient states T := S \ R =
{1, 2, . . . , N − 1}. The key concept to take away here is that R and T can be seen as
states themselves and we can restructure our perspective on the chain and look only
at the probabilities to change between or stay in these states. We show the possible
dynamic in 2.7, where we see that we can stay in R and can stay in T and also go
from T to R. But once we’ve entered R we can never leave it and return to T. The
labels will be explained below. One question we will try to answer is how long can
we stay in T without being absorbed in R. To do that we will need some further
concepts from stochastic processes.

2.2.2 Fixation probability

In the context of finite birth-death chains with absorbing states, we get absorbed
almost surely. Then one can ask, how likely it is if we start in state i to be absorbed at
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T = {1, 2, . . . , N − 1}

R = {0, N}

ε1− ε

1

FIGURE 2.7: Transient and recurrent states with the probability of
transition from T to R based on the current distribution v(n). Where

ε = d1v(n)1 + bN−1v(n)N−1.

N. We will denote this probability with ρi. It follows that if we are trapped with ρi at
N and the only other trap is 0 we will be absorbed there with probability 1− ρi. This
quantity can be used to determine the mid to long term behaviour of our process
and thankfully there is an explicit formula for it in the context of birth-death chains.
Obviously ρ0 = 0 and ρN = 1 and for i ∈ T we get (Taylor et al., 2004)

ρi =
1 + ∑i−1

k=1 ∏k
j=1

dj
bj

1 + ∑N−1
k=1 ∏k

j=1
dj
bj

(2.16)

Later on we will often plot ρi for every state i in S which enables us to visualize
the dynamic of an imitation chain quite easily.

2.2.3 Stationary distribution

An interesting question to ask about Markov chains is about the existence of a sta-
tionary distribution. First we quickly define what we understand under the term.

Definition 7 Let Xn be a Markov chain on the states S with the transition Matrix P. We
call a N + 1 dimensional stochastic vector w a stationary distribution for Xn if the following
holds

wP = w

In other words if w is a left eigenvector of P for the eigenvalue 1.

Every irreducible, finite Markov chain has a unique stationary distribution w
with full support. If it is additionally primitive every starting distribution will con-
verge to the stationary distribution in the long run. Meaning no matter at what
distribution we start if we take enough steps our distribution will inevitably be arbi-
trarily close to w at some point. So for every starting distribution v(0) over the states
S the following holds for any primitive finite Markov chain:

lim
n→∞

v(0)Pn = w (2.17)

But a Markov chain doesn’t have to be irreducible or primitive, for a stationary
distribution to exist. For example our birth-death chain with absorbing states 0 and
N is not irreducible but every distribution starting only at 0 and N will be absorbed
immediately and thus be a stationary distribution. We can use the fixation probabil-
ity ρi to derive the stationary distribution to which we will converge to if we start in
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i ∈ T. It is given as the following N + 1 dimensional row vector:

(1− ρi, 0, . . . , 0, ρi) : i ∈ T (2.18)

And if we start with distribution v(0) over the states S we will be absorbed at N
with probability v(0)ρT in other words the sum of the element wise product of both
vectors. This also gives us the mass which will get trapped at N when a chain started
at v(0) runs infinitely long.

Now to reiterate we still have some long run convergence determined by the
stationary distribution, but it is dependent on the state i. In general one should use
the following lemma to relate the long term behaviour to the stationary distribution
for a non-irreducible Markov chain.

Lemma 1 Let Xn be a Markov chain on S with a stationary distribution w. Then for all
states i that are transient the corresponding entry of the stationary distribution w is 0, i.e.
wi = 0.

It should be mentioned that the situation becomes a bit more difficult if we also
consider infinite state spaces. In that case we would need to split the recurrent in
null-recurrent and positive-recurrent states, but in the finite setting all recurrent states
are automatically positive-recurrent. In lemma 1 we get the theoretic characterisation
of our long term behaviour, i.e. a birth-death chain with two absorbing states should
get absorbed completely in the long run with 0 mass at the transient states.

2.2.4 Quasi-stationary distribution

The quasi-stationary distribution was first introduced by Darroch and Seneta, 1965
together with the pseudo-stationary distribution which we will cover later. In the sim-
plified version of our birth-death chain with two absorbing states, in figure 2.7 we
omitted the explanation of the different labels which we give now. We can look at
our chain as having only two states T and R. To go from T to R there are two possi-
bilities. Say we are in i with probability v(n)i . Then we are at 1 with probability v(n)1
and a death occurs with probability d1 resulting in the number of C players dropping
to 0 which means they died out and we are absorbed. We could also be in the op-
posite situation with probability v(n)N−1 with N − 1 players for strategy C and a birth
happens with probability bN−1 leading to the D players becoming extinct, which
also leaves us absorbed. Therefore the combined probability to leave the transient
states T (in step n) and become absorbed in R is in our case d1v(n)1 + bN−1v(n)N−1.
Once we are in R we can never leave it again which is why we wrote the probabil-
ity 1 at the arc leaving and entering R. The arc leaving and entering the transient
states T is denoted with 1− d1v(n)1 − bN−1v(n)N−1 as this is the probability to survive
one more step at time n.
We denote with Q a matrix derived from the transition matrix P, where we removed
for all absorbing states the corresponding row and column, i.e. in our case the first
and last row and the first and last column. We can look at Q as a substochastic transi-
tion matrix operating only on the transient states, furthermore Q is primitive which
will become important later.
We now want to ask how long can we stay in T without being absorbed in R? We
will need the following definitions to answer that question.
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Definition 8 Let Xn be a Markov chain on S and v(n) be its distribution at time n over the
states S. As above we assume the states 0 and N to be recurrent and 1 to N− 1 as transient.
We define q(n)i as the probability of being in i ∈ T conditioned on not being absorbed at 0 or
N up to time n:

q(n)i :=
v(n)i

∑N−1
k=1 v(n)k

=
v(n)i

1− v(n)0 − v(n)N

(2.19)

Furthermore we can write all q(n)i in one vector which we will denote q(n) and it will be
our distribution over T at time n conditioned on survival.

q(n) :=

(
v(n)1 , . . . , v(n)N−1

)
1− v(n)0 − v(n)N

(2.20)

If we already know q(n) and Q derived from P as before we can get to q(n+1) via the following
calculation:

q(n)Q
‖q(n)Q‖1

= q(n+1)

where ‖u‖1 =
N−1

∑
k=1
|uk|

(2.21)

At last if a stochastic N − 1 dimensional vector q fulfills

qQ
‖qQ‖1

= q (2.22)

we call it a Quasistationary distribution for Xn or short QSD.

The last definition (2.22) suggests that the QSD q is similar to the stationary dis-
tribution independent from the starting distribution. Let’s fixate v(0) for the moment
as v(0)i being 1 and all other v(0)j being 0 for j in T with j 6= i, i.e. we start in i. We

search for a stationary conditional distribution which satisfies q(n) = q(n+1) = q over
T. We can rewrite equation (2.22) in terms of searching for the left eigenvector of Q,
where we write r for the leading eigenvalue of Q which is given by the following
equation, where the second inequality only holds for birth-death chains.

r = ‖qQ‖1 = 1− d1q1 − bN−1qN−1 (2.23)

Now we get the following equations for the left and right eigenvectors of Q to the
eigenvalue r:

qQ = rq (2.24)

QpT = rpT (2.25)

Because Q is a primitive matrix we can guarantee the existence of a positive
leading eigenvalue r with corresponding positive eigenvectors q and p by Perron-
Frobenious theorem. This theorem also gives us a limiting behaviour for primitive
matrices again in terms of the eigenvectors q and p and the leading eigenvalue r:

Qn

rn
n→∞−−−→ pTq

qpT (2.26)
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Now looking at the following equation for the probability to be at j ∈ T when
starting in i and not being absorbed at time n where we can take the limit using
(2.26).

P[Xn = j|Xn /∈ {0, N}, X0 = i] =
v(n)j

1− v(n)0 − v(n)N

=
q(n)j

∑N−1
k=1 q(n)k

n→∞−−−→
piqj

∑N−1
k=1 piqk

= qj

(2.27)

The first two equations are just our definition of q(n) we then took the limit and
cancel the pi term to arrive at only qj which is independent from the starting state i.
We also used that the qk sum to 1 over k ∈ T. We can conclude that no matter what
starting distribution v(0) is given over T we arrive at the same limiting conditional
distribution over T, namely the quasi-stationary distribution q. In some sense this is
similar to the ergodic theorem for irreducible finite markov chains.

The equations given with (2.22) become a lot simpler when applied to a birth-
death chain defined by the transition matrix in figure 2.6. They then read

qi(1− d1q1 − bN−1qN−1) = qi−1bi−1 + qiri + qi+1di+1

for i ∈ {2, 3, . . . , N − 2}
q1(1− d1q1 − bN−1qN−1) = q1r1 + q2d2, for i = 1

qN−1(1− d1q1 − bN−1qN−1) = qN−1rN−1 + qN−2dN−2, for i = N − 1

(2.28)

Here we used that ‖qQ‖1 becomes 1− d1q1 − bN−1qN−1. We can do this because
all qi sum to 1 which is our last equation. We don’t know an explicit formula for the
solution to this system of equations, which is why we will approximate the quasi-
stationary distribution numerically.

Now after that long definition we finally have a relevant piece we need to talk
about different aspects of the long term behaviour of our birth-death chain. The
quasi-stationary distribution tells us how our chain is distributed if it’s not yet ab-
sorbed, so if it takes a long time to get extinct this concept is quite relevant as it
differs a lot from the stationary distribution given in 2.18.

2.2.5 Pseudo-stationary distribution

Another interesting concept concentrating more on the medium run behaviour of
our imitation chain is given with the pseudo-stationary distribution (PSD). As already
mentioned this was first introduced in Darroch and Seneta, 1965 and builds onto the
quasi-stationary distribution q. To find q we solved the following equation qQ = rq
where r is the leading eigenvalue of Q. Now we need to find the right eigenvector
to the leading eigenvalue r of Q, i.e. we need to solve QpT = rpT for the N − 1
dimensional vector p.

Definition 9 Let q be the quasi-stationary distribution of a birth-death chain Xn on S with
absorbing states at 0 and N and transition matrix P and corresponding Q = P|T×T. If a
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vector p solves QpT = rpT, we define the pseudo-stationary distribution as

qp with i’th entry given by qi pi ∀i ∈ T (2.29)

where we normalize qp so it fulfills ∑N−1
i=1 qi pi = 1.

We can derive the pseudo-stationary distribution similar to the quasi-stationary
distribution. Let m and n be positive integers with m < n. Now the probability
of being in state j at time m when we started in i and will still not be absorbed in
the future at time n is given by the equation below. Here we have to briefly use the
notation q(n)ij := P[Xn = j|Xn /∈ {0, N}, X0 = i] to be able to specify the probability
going from i to j while conditioning on survival up to n.

P[Xm = j|Xn /∈ {0, N}, X0 = i] =
q(m)

ij ∑N−1
k=1 qn−m

jk

∑N−1
k=1 q(n)ik

m→∞−−−−−→
n−m→∞

rm piqjrn−m ∑N−1
k=1 pjqk

rn ∑N−1
k=1 piqk

= qj pj

(2.30)

For the limit we used again (2.26) from Perron-Frobenius then we cancel the r
terms and pi and use that the sum of qk over all k in T is 1. This leaves us with qj pj
which is the j’th entry of the pseudo-stationary distribution. Again the PSD is in-
dependent of our starting distribution which is a really useful property as we don’t
have to differentiate the PSD between different starting points of our chain.

Where the quasi-stationary distribution describes the long run behaviour, the
pseudo-stationary distribution should be seen as a mid term distribution. It can be
interpreted as the distribution we are in if absorption is still a long time away but
we’ve taken already a large amount of steps. So we are conditional on survival a
long way into the future.

2.2.6 Expected time until absorption

Another interesting thing to look at when talking about processes with absorbing
states, is how long it will take on average to be trapped in one of them. We will call
it expected time until absorption or average fixation time and denote it with τ. It is
calculated as follows for a birth-death chain with absorbing states at 0 and N where
we know Q:

τ = (Id−Q)−11 (2.31)

Where Id stands for the identity matrix and 1 is a N − 1 dimensional column vector
filled with 1. Then τ is an N − 1 dimensional vector where the i′th entry τi is the
expected number of steps until absorption when starting in i.
For birth-death chains there is an explicit formula for τi, but as we calculate every-
thing using vectorized functions, it’s easier to use the above equation.
We will also calculate the expected time until absorption when one starts in distri-
bution v, which we will denote with τv. We can calculate it via:

τv =
N−1

∑
i=1

viτi (2.32)
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FIGURE 2.8: Tree describing the imitation process.

Often we use the uniform distribution as v, then τv is just the arithmetic mean of all τi
and can be seen as the average time to absorption if one starts uniformly random over
the states T.

2.3 The Moran model

We now focus on a population of N people in which the inhabitants engage in sym-
metric two person games to determine who has the most fitness. We model our
population as a birth-death chain on the States S, where the state i represents a popu-
lation of i many C players and N − i players of strategy D. In our model one player
per iteration can change his strategy. Meaning per iteration we first select a ran-
dom player then choose randomly which player he wants to imitate. This is why
the Moran model is also called a population model with imitation. An imitating
C player can choose from all other players whom to imitate meaning he can also
choose himself and other C players. Sometimes this self imitation is excluded but
we want that as a possibility, because otherwise the remain r1 probability is only
dependent on the D payoff and if a C player does well against D it should increase
his possibility to survive. We will explain the imitation process with a tree pictured
in figure 2.8. The first layer chooses the person that will get the choice of whom to
imitate in the second layer. The probability of choosing a C player in the first step is
simply i

N , the number of C players divided by the number of all players. Because we
model frequency dependent selection we will include the fitness of a strategy given
the current population in the decision process of whom to imitate, so we should first
define what we will mean by that.

Fitness in the Moran Model

We have our population of N players total of which i players are running with strat-
egy C. So the other N − i players play strategy D. These strategies belong to the
two by two symmetric game given with 2.33 where we restrict the entries to be non-
negative. The reason for this will be explained in a moment.

(C D
C α β
D γ δ

)
(2.33)
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Now we can derive the average payoff for a C player against the current popula-
tion which is in the state (i, N − i). So on average he will get payoff α about i−1

N−1 of
the time and payoff β the rest of the time which is about N−i

N−1 . The first fraction has
i− 1 in the numerator because here we exclude the possibility of self-play. This will
later lead to an interesting phenomenon if we set s to 1. We will talk about it in 4.2.5.

Definition 10 We denote with Fi the average payoff of a C player in an (i, N − i) popula-
tion, analogously for a D player the average payoff is denoted by Gi.

Fi :=α
i− 1
N − 1

+ β
N − i
N − 1

Gi :=γ
i

N − 1
+ δ

N − i− 1
N − 1

(2.34)

Furthermore we define with s ∈ [0, 1] the selection pressure of the model and call fi and gi
the fitness of C or respectively D.

fi :=(1− s) + sFi

gi :=(1− s) + sGi
(2.35)

The amount the average payoff influences the fitnesses fi and gi is controlled
with the parameter s. We will often set it to 1 because it makes discussions easier but
to be able to do that the game matrix needs to be positive in every entry. Otherwise
we might get ill defined probabilities. This is no serious restriction because every
game can be transformed by adding the same large enough constant to every entry
which then results in a game with the same properties as before but satisfying our
condition.
The fitness now becomes a factor in the decision of a player which other player he
wants to imitate. The higher the average payoff Fi is, the higher the fitness fi will be.
We want to model the imitation as if the player would look around observing who
is doing well and chooses accordingly. So we will weigh the probability of being
chosen with the fitness, hence the numerator i times fi or N − i times gi in layer
two of 2.8. We multiplied the amount of players with their fitness to also weigh in
the current population structure in the decision, so if almost no players of a strategy
exist their chances of being imitated will be small. With these small assumptions
and a normalisation with the total fitness of the population i fi + (N − i)gi we get
the probabilities of being imitated in the second layer of 2.8. It should be noted
that if one player type no longer exists it can never be reintroduced, because the
probabilities in both layers will be 0 or 1 in this case.
Let’s go back to our birth-death chain on the states S, which we use to model the
amount of C players in our population. Therefore bi is the probability of increasing
the number of C players by one, when already i many C players exist. This can be
derived from the tree 2.8. Only if we first chose a D player which then imitates a C
player, will the number of C players increase by one so we denote this path in the
tree with bi. Accordingly the C players only decrease if we first chose a C player,
which then imitates a D player so we can write di at the bottom of that path in
2.8. The probabilities of the remaining two paths can be added two get the remain
probability of the chain ri. We capture this result below.

Remark 1 Our Moran Model will consist of a symmetric two by two game from which we
derive a fitness for each strategy in each state which then gives us transition probabilities for
our birth-death chain via an imitation process given in 2.8. For all i ∈ {0, 1, 2, . . . , N} these
probabilities are:
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bi =
(N − i

N

)( i fi

i fi + (N − i)gi

)
di =

( i
N

)( (N − i)gi

i fi + (N − i)gi

)
ri =1− bi − di

(2.36)

Usually we set the states 0 and N to be absorbing but in our case they are automatically
absorbing following from our imitation process. This leaves us with a well defined birth-
death chain on the states S, which we will denote with Yn and often refer to as the imitation
chain.
For the most part we will set s to 1 which then requires a positive game matrix and results
in the following transition probabilities for all i ∈ {0, 1, 2, . . . , N}:

bi =
(N − i

N

)( i(α i−1
N−1 + β N−i

N−1 )

i(α i−1
N−1 + β N−i

N−1 ) + (N − i)(γ i
N−1 + δ N−i−1

N−1 )

)

di =
( i

N

)( (N − i)(γ i
N−1 + δ N−i−1

N−1 )

i(α i−1
N−1 + β N−i

N−1 ) + (N − i)(γ i
N−1 + δ N−i−1

N−1 )

)
ri =1− bi − di

(2.37)

This leaves us with a fairly simple setup to model stochastic frequency depen-
dent selection which is governed by interactions in two by two games. We can influ-
ence the development of the population of N individuals via our game matrix.
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Chapter 3

Methodology

Here we will give a detailed account of which methods were used during the thesis.
Precise parameter settings and also the programming language and packages will
also be given. The code written for the numerical simulations and plotting is avail-
able on github found under https://github.com/metaconsole/MoranModel.

For a start we want to give credit to the great open-source community surround-
ing python. All the simulations and all of the plotting was done solely with python
using the spyder IDE and the anaconda distribution and we couldn’t recommend them
enough. To be more explicit numpy, seaborne and matplotlib were the main pack-
ages used.

3.1 Numerical simulation of the replicator dynamic

In 2.4 we defined the replicator dynamics. We will not solve them explicitly but ap-
proximate a solution numerically using the Euler method.
The Euler method or forward Euler method is a very basic algorithm for numerically
integrating an ordinary differential equation with a given initial value by taking multi-
ple steps according to the differential equation. Let’s restate our situation. We have
the replicator equation given by

ẋ = x(1− x)[x(α− γ) + (1− x)(β− δ)] with t ∈ R+ and x(t) ∈ [0, 1]

We can chose an arbitrary initial value x(0) = x0 which will determine in what state
the population starts. Now we need a step size h which we will set to 0.01 and an
integer that tells us how many steps we will make, here 1000 was sufficient. Then the
Euler method tells us to calculate our next data point recursively with the following
formula:

xn+1 = xn + hxn(1− xn)[xn(α− γ) + (1− xn)(β− δ)] (3.1)

This gives us in our case 1001 pairs of (tk, xk) which we will plot to approximate
the replicator dynamic. We will use this method later to obtain approximations to
the different deterministic dynamics generated by different two by two games. In
3.1 the implementation of the euler method is given, were one can see that the only
input to the function not already mentioned is the game variable which stands for the
two by two game matrix. The outputs of the function t_k and x_k both are vectors
which combined result in the pairs (tk, xk).

https://github.com/metaconsole/MoranModel
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1 import numpy as np
2
3 def rep_moran ( game , s t a r t , h= 0 . 0 1 , s teps = 1 0 0 0 ) :
4 alpha , beta , gamma, d e l t a = game . f l a t t e n ( )
5
6 x_k = [ s t a r t ]
7
8 for i in range ( s t eps ) :
9 x_k . append ( x_k[−1]+h∗x_k[−1]∗(1−x_k [−1])∗( x_k[−1]∗\

10 ( alpha−gamma)+(1−x_k [−1])∗( beta−d e l t a ) ) )
11
12 t_k = np . arange ( 0 , h∗( s teps +1) , 0 . 0 1 )
13 return t_k , x_k

FIGURE 3.1: The implementation of the euler method with parame-
ters game matrix, the starting condition, the step-size and the number

of steps to be taken.

3.2 Simulation of the imitation chain

To simulate the stochastic dynamics of a birth-death chain a multi purpose class struc-
ture was programmed were future features could be added easily. We will shortly go
over the structure of this implementation. It was used mainly for simulating the im-
itation chain and can be extended to simulate a three by three version of the Moran
model as well.

3.2.1 Class structure for a Markov chain

The first thing to code was a structure that could represent a very general Markov
chain. This lead to a class MarkovChain with all the attributes that were necessary
for defining a Markov chain. The standard attributes are the population size N, a
transition matrix P, a two by two game matrix game, the selection parameter s, the
sets S, R and T. With these most aspects of the chain itself are specified although
we already additionally supplied the game matrix which is only necessary for an
imitation chain. We then implement several methods to calculate for example the
stationary distribution (if it exists) or an approximation to the quasistationary distri-
bution (the power method).
Then a way was necessary to store path specific data and parameters so a Path Ob-
ject was created. Per MarkovChain class Object we can store multiple Path objects.
Each Path needs a starting distribution, a MarkovChain Object and an identifier
name. Now we can run simulations and calculations which are dependent on a spe-
cific start.

3.2.2 Long-term distribution method

The most basic approach in the study of stochastic processes has to be a pure simu-
lation. So a method to run our imitation chain as long as possible was implemented.
The time horizon wasn’t determined at the start, but was rather dynamically set.
This is a common approach and was also done by Harper and Fryer, 2016.
The goal was to start at a given distribution v(0) over the states S and then to take as
many steps with our imitation chain Yn until no more change in the distribution hap-
pens, i.e. until y(n) is equal to y(n+1). For obvious reasons true equality was never
really reached so we stopped the run if they became really close according to the
euclidean norm. For the most part the following qualified as a maintainable abort
condition which gives precise results:

‖y(n) − y(n+1)‖2 < 10−10 (3.2)
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1 def qsd_approx_scr ipt ( s e l f , s t a r t , i t e r a t i o n s = None , p r e c i s i o n = 6 ) :
2 ’ ’ ’ C a l c u l a t e s the Quasi s t a t i o n a r y d i s t r i b u t i o n of a MC s t a r t i n g from a
3 given (N−1) Vector . I t m u l t i p l i e s i t with Q and then renorms the r e s u l t to
4 be s t o c h a s t i c again .
5 This w i l l be i t e r a t e d u n t i l the d i s t r i b u t i o n stops changing or a given
6 number of i t e r a t i o n s i s reached . ’ ’ ’
7 n = np . shape ( s e l f .Q) [ 0 ]
8 i f np . shape ( s t a r t ) [ 0 ] != n :
9 return 'start vector has wrong dimensions.\n'\

10 'Need '+ s t r ( n)+ ' entries.'
11 count = 0
12 i f i t e r a t i o n s i s None :
13 cond = True
14 e lse :
15 cond = i t e r a t i o n s > count
16 while cond :
17 step = s t a r t . dot ( s e l f .Q)
18 step /= sum( s tep )
19 i f l a . norm ( s t a r t− s tep ) < 10∗∗−p r e c i s i o n :
20 break
21 s t a r t = np . copy ( s tep )
22 count += 1
23 i f i t e r a t i o n s i s not None :
24 cond = count < i t e r a t i o n s
25
26 return step , count

FIGURE 3.2: Fixed point method for approximation of QSD.

When the abort condition was satisfied the distribution y(n) at that time n was
returned. Sometimes but very rarely our abort condition was too strong and never
triggered, then the precision was decreased by setting the exponent on the right-
hand side to −8 or at minimum −6. Additionally a condition of at most one million
steps was included. This maximum step number was only ever reached in the case of
large N and a well balanced anti-coordination game. All other cases came nowhere
near this amount of run time.
We will call that distribution over all the states in S that is the result of such a ter-
minated simulation the long-term distribution of our imitation chain and abbreviate
it by LTD. In the cases were the LTD becomes completely absorbed we can compare
its result for the amount of mass absorbed at 0 and N to the product of our starting
distribution and the fixation probability as described in 2.2.2. If we start uniformly
distributed over T we can just take the mean of our fixation probability.

3.2.3 Quasi-stationary distribution approximation

For the imitation chain, or a birth death chain with two absorbing states there is for
the most part no explicit formula known for the quasi-stationary distribution. This
is why we need to have a method for approximating it.

Power method

We can define the map v 7→ vQ
‖vQ‖1

which maps the N − 2 dimensional probability
simplex into itself. With the fact that this map is a contraction the Banach fixed point
theorem guarantees a unique fixed point. This fixed point is the quasi-stationary dis-
tribution q defined in equation (2.22) and solves qQ = rq where r is the leading
eigenvalue of Q.
This is commonly known as the power method and leaves us with an easy way to
numerically approximate the qsd. We just need to iterate the above map, with an ar-
bitrary starting distribution, on T. The algorithm for doing that is given in figure 3.2.
We use the same aborting condition given in equation (3.2), but can alternatively also
just take a fixed number of map iterations given as a parameter iterations. To reit-
erate we use the power method to find the left eigenvector, corresponding to the
leading eigenvalue of Q.
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FIGURE 3.3: Convergence to the leading left eigenvector of Q using
the power method.

1 Tau_unif = [ ]
2
3 x_ax is = np . arange ( 5 , 200)
4
5 for N in x_ax is :
6 moran = bd . MarkovChain (N, s =1 , game=G)
7 Tau_unif . append ( np . mean( moran . e x p e c t e d _ t i m e _ f i x a t i o n ) )
8 del moran

FIGURE 3.4: Script for calculating the average time until absorption
for increasing N.

We also use the power method to find the right eigenvector of the leading eigen-
value of Q. To be precise we find a vector p that solves QpT = rpT as we need it
to calculate the pseudo-stationary distribution described in section 2.2.5. We omit
the algorithm here because it’s essentially the exact same power method as before
except used on QT, multiplied with q and normalized.
To illustrate we plotted the results of different numbers of iterations in figure 3.3.
We started with a vector over T where each entry was chosen uniformly random
from [0, 1]. We then normalised it with the sum of all elements so that it’s a distribu-
tion over T. The matrix Q was taken from an imitation chain defined by the game(

1 4
4 1

)
where we set s to 1 and N to 100. The curve plotted in yellow is the distribu-

tion that also triggered our abort condition after 911 steps. This calculation finished
instantly which shows how efficiently this method performs.

3.2.4 Additional calculations

To further analyse our imitation chain we implemented small methods to derive key
parameters. This included the fixation probability, the expected time until fixation,
the mass absorbed at N or the interior stable state. One very valuable method was to
write mini scripts were everything was fixed and only one parameter was allowed
to vary over a given range. Then per value results were calculated and stored. This
was used to generate many graphs in chapter 4 and provides deep insights. For
example to plot the growth of the average fixation time with increasing population
size required such a script. We needed to generate the entire model and calculate
the average fixation time for each N, which is done in a for loop, see figure 3.4.
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Chapter 4

Results

We could derive interesting differences between the deterministic model and the
stochastic one. It needs to be said that the stochastic models themselves are strongly
determined by settings like population size, the game matrix and and the selection
pressure governing imitation, that’s why as a first step a few exploratory trials were
conducted to determine which range of these parameters seemed reasonable.

4.1 Experiment to determine population size

First we needed to consider the question of how large the population should be? At
one hand our population couldn’t be too small because then we got absorbed too
fast just by chance, meaning we never experienced long survival times. In theory
we could just make it very large but that hinders computation dramatically. Let’s
get specific, the largest test run had a population size of 2000 which was quite hard
to manage. A low end for a reasonable population would be 5 but then you need
immensely high selection pressure induced by the game. We arrived at N = 100 as a
sweet spot for the population size leading to fast run times and being large enough
to enable all dynamics of a chain to unfold.
One phenomena we were interested in was the non absorption of the long-term dis-
tribution, defined in 3.2.2, in a anti-coordination game setting. So the test run itself
consisted of fixing an anti-coordination game matrix G, setting the selection strength
s to one and then simulating the imitation chain for different values of N, i.e. find-
ing the long-term distribution. Setting s to one allows us to control the fitness of the
population solely with the game G, more precisely with β and γ. During this test we
chose the game matrix always to be an anti-coordination game, i.e. we set α and δ to
one and β and γ equal and greater one. For example:(

1 3
3 1

)
(4.1)

Going forward different values for the off-diagonal of G were set and then tests
run with different values of N. We always started in the middle of our popula-
tion with as many C as D players. If the mass got absorbed completely before the
condition (3.2) triggered we considered the N as too small. Because of the anti-
coordination game G we want an N that is large enough so the long-term distribu-
tion is also bistable meaning only a fraction gets absorbed and most of the mass is
over T. As already mentioned this is the case for the above game G and a population
of 100, to be precise our run was aborted when only 1.922 ∗ 10−10 of our mass was
absorbed. Here our chain took 2148 steps and was nowhere near full absorption, we
will later revisit this in the anti-coordination case where the long term distribution
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is already quite stable.

4.2 Deterministic versus stochastic models

Let’s now move on to compare how the stochastic and deterministic models faire in
providing us with useful information for each kind of game. We will look at a few
main avenues to draw information about our models from. First the deterministic
prediction, then the different kinds of distributions for our stochastic model, namely
the quasi-stationary, the pseudo-stationary and the long-term distribution. We don’t
need to check the stationary distribution for each game, as it is always the one de-
fined in equation (2.18) which tells us that for N → ∞ our imitation chain will get
absorbed at 0 and N.

4.2.1 The neutral case or no selection

As a baseline we look at the model with no selection pressure. This corresponds
to the neutral case in the replicator equations meaning we set the game matrix so
that all four entries are equal. Let’s first take a look at what our replicator dynamic
would predict for this case.

FIGURE 4.1: Replicator dynamics of a neutral game with time on the
x-axis and the population state on the y-axis.

In figure 4.1 we see that the trajectories of each population are constant, meaning
no absorption or evolution takes place. This makes sense as the replicator dynamic
is only dependent on the games payoff differences per column, which in this case
are all 0. One can interpret this along the lines of, if the game is completely fair no
competition exists and every population is ultimately stable.

Now we compare the stochastic model against this. We set the selection pressure
parameter s to 0, which is equivalent to just setting the game to a neutral one. But
it’s more efficient calculation wise. Now the population size does not really matter
that much, so we set it to 100 as this setting will be used again later.

In figure 4.2 we simulate this chain over the time horizon of 5000 iterations. The
number 5000 is the average time until absorption when one starts uniformly random
in T. It will later turn out that this is by comparison a very long time to be absorbed.
We show the expected time until absorption, when starting at state i, in figure 4.4 from
which we derived the average of 5000. One can also look at the average time until
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FIGURE 4.2: Paths of a neutral imitation chain.

absorption for different population sizes and as it turns out different games result in
different types of growth. In Antal and Scheuring, 2006 this is studied in detail and
we can verify their results here. They state that in the neutral case the average time
until fixation grows like N(N − 1) for increasing N, which can be seen in figure 4.3.

Now if we take a look at the long-term distribution, given in figure 4.4, we see
that eventually we will be absorbed completely and because we started uniformly
distributed we get the same mass of 0.5 at 0 and N. In this plot we used N equal to
40, because then the shape of the pseudo-stationary distribution is easier to distin-
guish and for this case in particular a larger N just stretches the plot in width. For N
equal to 100 we took 59240 steps until the abort condition (3.2) triggered. The long
time until the abort is due to the fact that there are almost always a few paths that
survive quite a long time.

The neutral case is the only one were we can give an explicit solution to the quasi-
stationary distribution. For a neutral imitation chain on the states S = {0, 1, 2, . . . , N}
the quasi-stationary distribution is approximately given as

qi ≈
1

N − 1
for all i ∈ T, (4.2)

or in other words the uniform distribution over T. The plot in figure 4.4 of the QSD
is actually derived with the power method described earlier, but they obviously give
the same result. Now we already know that the QSD gives the distribution prior to
absorption, but how can this realistically be the uniform distribution? This is due
to the fact that the neutral imitation chain has no focused pull whatsoever, or to be
more precise the death and birth probabilities are equal in each step i. We plot them
on the left in figure 4.5, were only the green death probability curve can be seen,
because it overlaps the birth probability curve perfectly, except for the state 0 where
we don’t have a possibility of death. The term pull is a heuristic as to how much our
probability mass gets shifted around by the chain and in this case the shift goes al-
ways equally in both directions, which is why we can start anywhere equally likely
as our QSD. After one step everything gets shuffled around and not transported in
any designated direction and therefore more or less stays were it is, in the condi-
tional sense of survival. The neutral imitation chain does what we would expect.
It moves around quite random, because there is no fitness to guide it and only gets
absorbed by chance.
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FIGURE 4.3: The average time until absorption in the neutral case,
having the shape of a parabola.

FIGURE 4.4: (Left) The long and mid term behaviour of a neutral im-
itation chain. (Right) The fixation time shown per state i of a neutral

imitation chain.

The pseudo-stationary distribution is quite intuitive, as it shows how we are al-
located if extinction is still a long time away. Here that leads to a parabolic formed
PSD distribution with the peak in the middle, were we can remain the longest be-
fore being absorbed. Then it decreases steadily towards 0 and N, where we find
zero mass. The fact that the PSD has significant positive mass at every state in T is
quite remarkable and is again due to the lack of focused pull in the movement of our
chain. We also recognise this looking at the fixation probability ρi on the right in fig-
ure 4.5, which only increases linearly from 0 to N. The plot of ρ for every state is an
important indicator and it will differ, from case to case, in shape and its non-trivial
points, meaning where it is different from 0 or 1. Our heuristic for now is that if ρi is
non-trivial for a state i then the PSD will have significant mass at that state i.

We now go over the non-trivial games and later revisit the neutral case, when we
look at an almost neutral game in 4.2.5.
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FIGURE 4.5: (Left) The transition probabilities of a neutral imitation
chain. (Right) The probability to be absorbed at N when one starts in

i, plotted for each state i.

FIGURE 4.6: (Left) REP simulation and (Right) imitation chain paths
for the Prisoners dilemma game.

4.2.2 The prisoners dilemma or dominated strategies

We start by examining the case when one strategy dominates the other. We choose
the following game matrix G, where we replaced the 0 payoff of C against D with
0.0001, to only have positive entries and still discuss a classic version of the prisoners
dilemma.

G =

(
3 0.0001
5 1

)
(4.3)

The replicator dynamics are very clear for this game. At 0 when the extinction
of C happens we have our only stable fixed point and we can verify the phase por-
trait with simulation of four different populations, which we show in the plot 4.6.
We can start arbitrarly close to 1 but will still be fixated at 0. This behaviour is only
dependent on the differences between the columns of the game matrix, meaning if
we had instead chosen the second row as 3.1 and 0.1 so that D still dominates C only
not as much as before, we just need to wait longer to see the exact same behaviour
as before the change of G.

Next to our replicator equations plot we show five different paths of the imita-
tion chain constructed with the game matrix G given above, the selection strength
set to 1 and a population size of 100, so this is the analogous stochastic model. We
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FIGURE 4.7: The average time until absorption for different N in the
dominated case.

can see that the behaviour of our chain is quite similar to the REP equation in the
sense of the very strong trend to extinction at 0 which captures all paths except the
one started at 97. This shows the importance of also considering stochastic models.
Let’s say we want to ask the question, if one single D player can overtake the whole
population of C players? The REP equations answer is always yes because we are
deterministic and have to decide in terms of yes or no. In our stochastic version we
can start with mass 1 at 99 and then look at the long term distribution generated by
that chain. Under these conditions we arrive at the LTD that is completely absorbed
but only with mass 0.407935 at 0 and actually mass 0.592064 at 100 after 4544 steps.
This means that our stochastic population is quite resilient against the intrusion of a
single D player in almost 60% of all cases they defend against the intruder compared
to the 0% chance that is given to the C players in the REP equation. Now one should
not forget that the REP dynamics considers N infinitely large and can therefore be
seen as a limit to our stochastic version. In an infinite population the chance of inva-
sion by only one individual is 0.

The average time until absorption for an uniform starting distribution v(0) over T
is given as τv(0) which is equal to 596.208737. Now the state 0 has trapped almost all
the mass ( 97.584098%) compared to N = 100 where only 2.415901% was absorbed.
To arrive at this state the chain took 4120 steps, which is a lot longer then the aver-
age time until absorption and shows that there are a very small number of paths that
survive a really long time. A look at the expected time until absorption plotted for
every state T on the right in figure 4.8 confirms this conclusion. The average time
until absorption calculated for different population sizes grows like N log(N) for in-
creasing N, which was also already stated by Antal and Scheuring, 2006 and can be
seen in figure 4.7. It turns out that the dominated case gets absorbed a lot faster than
the neutral case, no matter how large the population.

Now consider the quasi-stationary distribution, which reflects our occupation
time distribution before being absorbed. We can see our QSD in figure 4.8 and rec-
ognize that its mass is concentrated at the states leading to 0, which is our only stable
fixed point of the REP dynamics. So the QSD is different than the stationary or long
term distribution, but agrees with the deterministic model. Only the states near 0
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FIGURE 4.8: (Left) QSD for an imitation chain with a prisoners
dilemma. (Right) The average fixation time per state, with maximum

of 1013.28 at 94.

FIGURE 4.9: (Left) The transition probabilities for a dominated imi-
tation chain. (Right) The fixation probability of the same chain, with

non-negative values from 87 upward.

are visited frequently before absorption. This can also be seen in the sample paths
on the right in figure 4.6, where the bottom four paths have a clear tendency of being
absorbed, but are staying longer in the states being closer at 0.
The pseudo-stationary distribution shows where we can stay to not be absorbed for
a long time, which in our case means on the farthest point from 0 as we are very
likely to be absorbed there, but we also can’t go to 100 due to the fact that it has
some small amount of pull as we see in 4.9 in the right plot where the ρi goes from
0 to almost 1 spanning the states 87 to 98. This interval represents an uncertainty
region where we don’t know for sure if we get absorbed at 0 or 100. To not be ab-
sorbed for a long time into the future one has to stay within this interval, which is
why the PSD has its peak at the state 97 where ρi is equal to 1

2 .

To reiterate both the transition probabilities and the fixation probability make
quite clear how strong the pull towards the state 0 is, in our dominated imitation
chain. In figure 4.9 on the left, we see that the death probability is quite a bit higher
for every state i, than the birth probability. This results in the almost always 0 fixa-
tion probability on the right which shows we will almost always be absorbed at the
state 0.
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In the case of dominated strategies the overlap between the replicator dynamics
and our stochastic model is great. If we start at a state below 94 we will almost
certainly be absorbed at 0, which is what the REP dynamics predict, of course the
state 94 is no strict boundary. So only the rare case, when starting in a population
already quite close to 99 many C players, is not reflected in our deterministic model,
because here it’s actually more probable to be absorbed at 100 than 0.

4.2.3 Coordination game or bistability

Let’s now compare the different dynamics for the case of bistability in the replicator
equation, which corresponds to a coordination game in our imitation chain. The
following matrix is used in our case study:

G =

(
3 1
1 2

)
(4.4)

The deterministic model is again quite clear. The replicator dynamics now have
three rest points at 0, 1 and x∗, where the ones at 0 and 1 are stable. With the given
matrix G the unstable interior rest point x∗ turns out to be at 1

3 . Every population
with a starting frequency of C players less than 1

3 will be taken over by the D play-
ers. Only if the starting frequency of C is higher then 1

3 they can establish themselves
in the population and D dies out. This can be seen in the numerical simulations of
the REP dynamic in figure 4.10. Reiterating that the REP dynamics represent an in-
finitely large population the probability of starting exactly at x∗ is 0.

Now comparing our stochastic model in the form of our imitation chain to the
REP dynamic, we again see a quantitative overlap between them. We chose N as
100, set s to 1 and used the same game matrix G to define our imitation chain. The
simulated paths on the right in figure 4.10, started at 10, 50 and 90, almost look the
same as their deterministic counterparts started at 0.1, 0.5 and 0.9. But the closer
we get to x∗, which corresponds to the state (33, 67), it’s not that clear anymore if
both models agree with each other. We can clear up the situation with a look at the
fixation probability ρi, which gives the chance to be absorbed at N when one starts
at i. We plot ρi for every state on the left in figure 4.11 and as one can see most of the
time it is either 0 or 1. Starting in states 1 to 16 we will almost surely be absorbed at
0 and starting from 52 upward almost certainly at 100. In between these intervals,
so from 17 to 51, we get an uncertainty region were we choose randomly where to
be absorbed. At one point our chances of being absorbed at 0 or N are even, which
marks an important state going forward. It’s the state corresponding to x∗ of the
replicator dynamic. We can find it again as the state where our chance of death
di and birth bi are equal. We plot in figure 4.11 on the right the birth, death and
remain probabilities of our chain and recognize the intersection of birth and death
at approximately 33.

Let’s now look at the quasi-stationary distribution (QSD) compared to the long-
term distribution (LTD), together with the pseudo-stationary distribution (PSD) which
are all plotted in figure 4.14. First the long-term distribution started uniformly dis-
tributed is completely absorbed with 2

3 of its mass at N and only 1
3 located at 0. So

on average we can recapture the replicator dynamic prediction and stay consistent
with the fact that our Markov chain should converge to the stationary distribution
given enough time.
Now the QSD looks at first a bit counter intuitive, with more of its mass at 0 than
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FIGURE 4.10: (Left) Replicator dynamic simulation and (Right) sim-
ulated runs of the imitation chain with a coordination game.

FIGURE 4.11: (Left) Fixation probabilities and (Right) transition prob-
abilities of a coordination game imitation chain.

at N, conflicting the idea that N is the stable state with the greater attraction power,
which it definitely is. But we have to interpret the QSD as the distribution our pro-
cess is in prior to absorption. And the amount of mass the QSD allocates at a state
shows how long the chain stays at these states before being absorbed. This means
that the higher amount of mass right of 0 is due to the fact that we aren’t absorbed
as fast there compared to being close to N. The lesser the pull the slower we will be
absorbed, although not less certain. We also show again the expected time to fixa-
tion which is maximal at 33 the corresponding state to x∗. Here our average fixation
time is 676.3698 when starting uniformly distributed. So compared to the neutral
case we get absorbed a lot quicker. Now we again plot the average fixation time for
different population sizes and see that it grows like N log(N) in figure 4.12. This is
significantly slower than the growth in the neutral case and similar behaviour to the
dominated case, suggesting that the pull towards fixation is comparable between
coordination and domination case.

The pseudo-stationary distribution describes were we would be allocated, if ab-
sorption is still a long time away and we also already made many steps. In our case
the place farthest away from any absorbing states is again 33, which is exactly were
the peak of the PSD is located. Additionally the mass of the PSD is between the
states 4 and 59, which almost aligns with the interval where the fixation probability
is non-trivial. The length of this interval was calculated for all N from 20 to 800 and
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FIGURE 4.12: The average time until absorption growing like
N log(N) in the coordination case.

FIGURE 4.13: Length of uncertainty interval of a coordination im-
itation chain for different values of N. The spread was derived as
the distance between k and l where k is the smallest state where

ρk ≥ 0.001 and l is the largest state with ρl ≤ 0.999.

it was observed that it grows only logarithmic, which means that in the limit of N in-
finitely large it becomes insignificant. We plotted this in figure 4.13, the irregularities
in the graph are due to the discrete state space but a slowing growth of the length
of the interval is undeniable. This re-establishes the known fact that the replicator
dynamic is the limit of our imitation chain, because only when starting within this
interval the two models disagreed. All other behaviours stay the same for different
N.

4.2.4 Anti-coordination or coexistence

Although we are using an anti-coordination game now we will not use the classical
stag hunt game, because nevertheless its dynamics are equivalent to the ones given
in this section, we want to avoid 0 as a payoff and need a less extreme matrix. That’s
why we choose the payoffs closer together out of the range [1, 2.1] with the smallest



4.2. Deterministic versus stochastic models 33

FIGURE 4.14: (Left) Long and mid term distribution and (Right) the
average fixation time for a coordination imitation chain.

FIGURE 4.15: The replicator dynamic simulation of an anti-
coordination game.

values per column on the diagonal.

G =

(
1.1 2
2.1 1

)
(4.5)

For this type of game the replicator dynamic has rest points at 0, N and the mixed
rest point at x∗. As before we first take a look at the deterministic simulation to know
what to expect, it is given in figure 4.15. We see immediately that 0 and N are not
stable and all trajectories converge to x∗, which is equal to 1

2 . The pure populations
are not stable, because of the lower payoffs of (C, C) and (D, D) compared to (C, D)
and (D, C). Now the question is, what does this mean for the stochastic model.

We define the anti-cooperation imitation chain by setting the game to G given
above, setting s again to 1 and N again to 100 at least for the moment. We simulate a
few paths of this chain seen in figure 4.16 and immediately see the drift to the middle
of all paths, but the one started at 97, which was unlucky and became trapped at 100
quite early. We also made 10, 000 steps already during this simulation and haven’t
been absorbed for the most part. This phenomenon is quite remarkable and in our
setup exclusive to the anti-coordination imitation chains.

First let’s look at the mid and long term behaviour given by the QSD, the PSD
and the LTD given on the left in figure 4.17. Here the paradox of our case becomes
quite clear, namely the apparent similarity between the quasi-stationary distribution
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FIGURE 4.16: Simulated paths of an anti-coordination imitation
chain.

and the long-term distribution. As a reminder we know the stationary distribution
is our limiting distribution if we take up to infinitely many steps. So our long-term
distribution should obey this trend as it does in all the cases before, where the LTD
only had mass at 0 and N = 100, therefore reflecting the convergence to the sta-
tionary distribution. We know how much mass should ultimately get trapped at N
when starting uniformly by calculating the mean of the ρi vector, which gives 0.6499.
But now our abort condition triggered after 2, 839 steps with almost all of the mass
being unabsorbed and distributed over T following the QSD in shape. This paradox
was also recognised by Da Zhou, Bin Wu and Hao Ge, 2010, where they study the
conditional stationary distribution in the same kind of model just with added muta-
tion. An analogous effect was mentioned in the book An Introduction to Stochastic
Processes with Applications to Biology, 2003 by Linda J. S. Allen in a more gen-
eral birth-death chain setting. Within our model this paradox arises only in anti-
coordination imitation chains with large enough values of N. We arrive at our LTD
with an uniform starting distribution and at each step a bit of mass is shifted to the
traps. This shift to the traps gets so small that almost any abort condition triggers
and tells us there is no more change in the LTD. So when N is small enough the flow
to the traps happens fast enough before the bulk of the mass gets pulled towards
the state 50 corresponding to x∗. In figure 4.18 on the left we see the transition
probabilities describing the pull of our chain and the intersection of birth and death
probabilities at 50. Now the pull towards the state 100 is only dominating in the
states approximately 5 to 45 and the same is true for the death pull on the states 55
to 95 towards 0. These two forces cancel each other out always shifting mass to-
wards 50 which is why we can stay such a a long time in the proximity of this state.
The expected time to absorption, shown on the right in figure 4.17, of on average
970, 026, 786.80 mirrors this fact and is by far the largest of the different game types.
We also see that N = 100 is a little bit stronger attraction wise than 0, because of the
higher amount of mass allocated to it in the LTD. Here 0.021 is at state 0 and 0.022
is at N, because we set the payoff Of (C, C) to 1.1, this becomes also more apparent
later.
Now what’s also interesting is the shape of the quasi-stationary distribution, com-
pared to say the coordination case. Before our pre-absorption distribution was near
the absorbing states, now it’s concentrated around 50 and almost looks like a gaus-
sian. The reason for that is again the strong pull towards the middle where we will
stay for the longest time. That’s why we are still in this shape prior to absorption
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FIGURE 4.17: (Left) Long and mid term distribution of the Imitation
chain with an anti-coordination game. (Right) The expected time to

absorption with the highest values by far of all game types.

FIGURE 4.18: (Left) Transition probabilities of a anti-coordination im-
itation chain, with intersection at approximately 50. (Right) The prob-
ability to be absorbed at N for each state i, being almost constant from

15 to 82.

and only on the far left and far right the tails of the QSD will flow towards the traps.
Meaning most paths will move around the interior states and need to have a streak
of bad luck to move straight to an absorbing state and get trapped. The pseudo-
stationary distribution shows our mid-term distribution which is now almost uni-
formly distributed with decreases at the traps. This is due to the fact that it’s now
possible to be in the interior states and not become absorbed for a long time. This
again is verified through the high expected time until absorption in the states from
12 to at least 82. Here the fixation probability sadly is no indicator of how the PSD
is shaped. If we tweak the (C, C) payoff α to 1.4 our fixation probability is almost
everywhere 1, meaning fixation in N is certain yet the PSD’s shape remained more
or less unchanged.

The fixation probability also shows an interesting property. Starting on the fringes
of the state space still means we will be mostly absorbed next to the trap we started,
but now if we start in between 15 to 85 we have a nearly constant probability of
around 64.89% to be absorbed in N. To reiterate starting at 80 we have almost the
same probability to wander to 0 as if we would start in 20. This shows again how
balanced the pulls towards extinction and fixation are in the interior states. First
we get pulled towards x∗, then we stay there for a long time and after that wander



36 Chapter 4. Results

FIGURE 4.19: Long and mid term distribution of the Imitation chain
with an anti-coordination game. (Left) N equal to 50 and no mass sur-
vival in the LTD. (Right) N equal to 54 where 8.4% survived around

state 27.

towards a trap choosing it by chance. Again the absorption strength is stronger at
N which is hard to see in the plot of the fixation probability. If we would now de-
crease the population size the pulls of 0 and N would stay the same, but the number
of states with chance 64.89% would go down, meaning only the portion of fixation
probabilities that are constant becomes smaller.

The paradox described here only arises if the game matrix is balanced enough
between all four entries and the population size is large enough to give place for the
mass to fluctuate around the state corresponding to x∗, without being too close to
the traps. Leaving our setting constant and only changing N we first find the para-
dox at a population of around 54. For lower values of N our uniform starting mass
gets absorbed completely yet it still takes a very long time. For N equal to 53 all of
our mass is absorbed and 0.441 of it at 0 and 0.559 at N. This chain has an average
fixation time of already 198, 437.95. Now we repeat our simulation with N equal to
54 and only a tiny amount of mass is not absorbed, even after 1, 000, 000 steps which
is the maximal amount we allow for a run. The reach of the maximum amount of
steps is due to our strong abort condition. We even surpassed the average fixation
time of 395, 412.38 by a huge margin, but still no complete fixation took place. The
run with N = 54 ended with 0.400 mass at state 0 and 0.516 at state N which leaves
0.084 to be allocated around state 27, again the middle of the state space. We show
the mid and long term behaviour of these two examples in figure 4.19. The QSD and
PSD are independent from N but as we see the LTD is not.

We can recapture an observation already made in the above mentioned book by
Linda J.S. Allen, where she stated that the average time until absorption grows ex-
ponentially with the population size N. Her statement also considered population
models based on birth-death chains and now we found it again in this special case
for Moran models. We show the graph of the average time until absorption depen-
dent on population size in figure 4.20 where we applied a logarithmic scale to the y
axis, so one can easily verify the exponential growth. Our findings again align with
Antal and Scheuring, 2006 who state that for anti-coordination games the average
fixation time grows exponentially with N. This exponential growth, surpassing the
growth in the other cases, is what separates the anti-coordination case from the re-
maining ones and restates its differing nature regarding survival times.
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FIGURE 4.20: We plot the average time it takes to become absorbed
for an anti-coordination chain for different values of N. We applied

an logarithmic scale on the y-axis.

4.2.5 Almost neutral case

Now we look at an imitation chain based on a game that is not totally neutral, but
should induce no drift in the population. We start with the following matrix G where
both rows are identical, but α is different from β.

G =

(
α β
α β

)
(4.6)

The replicator dynamics of this type of game are the same as for the neutral case,
because there are no differences in the column entries, which leads to ẋ = 0. So
according to that our imitation chain should also be completely neutral, like the one
in figure 4.2, were we see no particular drift and mostly long survival times. But for
N again 100 and s equal to 1 we can fix α to 1 and let β increase over the range [1, ∞).
We then witness an increasing pull of the state N = 100, which we show by plotting
the absorbed mass at N for each value of β in figure 4.21 on the left. As β increases
so does the mass absorbed at N approaching 0.6755. One interesting thing to note
is that the curve in figure 4.21 looks the same for all values of N and only the maxi-
mum value increases with decreasing N. The absorbed mass at N increases almost
logarithmic and after β = 100 there is almost no more gain until the maximum is
reached. So this phenomenon arises quickly, but doesn’t scale with the increase of β.
Now for example with β = 6 and everything else the same, the chain still looks a
lot like a neutral imitation chain only with a little bit more pull towards N. This is
verified by the slightly higher mass of the QSD near N, which is otherwise constant
like in the neutral case. We again see the LTD on the right in figure 4.21 where the
mass at N (0.6287) is significantly higher than at state 0 (0.3712) and also the PSD
with a peak shifted slightly to the left. The PSD again mirrors the maximum of the
expected time to fixation of 6, 000, which we plot on the left in figure 4.22 and has
only positive mass where the fixation probability is non-trivial. This chain has an
average time to fixation of 4, 350.88, which is only a little bit lower then the average
fixation time of the neutral chain, which was 5, 000. Also the growth of the average
fixation time with increasing N is analogously to the neutral case quadratic. On the
right in the same plot we see the fixation probability per state and recognise the ab-
sorption in N is always more likely, than in the neutral case where we had a line
from (0, 0) to (100, 1).
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FIGURE 4.21: (Left) For N = 100 we plot the mass that get’s absorbed
at N for different games defined by β. (Right) We plot the QSD, LTD
and the PSD for α = 1 and β = 6, which results in an almost neutral

behaviour.

FIGURE 4.22: (Left) The expected time until absorption per state for
an almost neutral imitation chain. (Right) The fixation probability for

the same chain.

Now to recognize where this effect comes from, one needs to look at the model
details to realize we excluded self-play when calculating our average payoff in (2.34).
This leads to a paradoxical situation, where the higher the payoff β for D against D
compared to α, the higher the resulting loss from the exclusion of self play. One could
say, no one has an incentive to switch because the rows of the game are the same, but
D gets a higher penalty than C on their average payoff as a result from excluding one
interaction of two D players. This leads to a slight advantage of C over D, although
α is smaller then β. This effect is unique to the stochastic model and isn’t captured
at all from the replicator equation. This leads to this case being a deviation from
the deterministic model, because even for large N the effect is still significant and
not evened out by a large population size. For example while keeping everything
constant, except for the population size which was set to 800, we still had almost
the same LTD as before. Meaning we would need to change our model to include
self-play to get rid of this phenomenon and achive again a truly neutral imitation
chain. Although one could easily question the practicality of a game matrix with
equal rows and different values for α and β, but the effect is nonetheless interesting
and should be mentioned.
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4.2.6 Cases of degeneration

We already showed what happens for nice examples of coordination and anti-coordi-
nation games. It turns out that one can choose parameter constellations that techni-
cally fall into one of the above categories, but behave and look like a dominated
or neutral case. Because we set s to 1 for most of our simulations the game matrix
needs to have only positive entries but in theory they are not bounded from above.
The population size is also unbounded and is chosen independently from the game
matrix. We already talked about N and how to chose it in 4.1 and as a result we
already know that we need to choose it higher then 5, but less than 2, 000 and we
arrived at 100 as a suitable population size. So we only look at the game matrix for
this size and its significance in determining the observable classification of the chain.

We use the neutral case of our game with every entry being 1 as a baseline. Let’s
start with a coordination game, so without loss of generality we set δ to 3 and set α
as a variable which we add to 1, this gives us the following matrix G. For very large
α the resulting process will look in almost every detail like a dominated game which
is what we call degenerated.

G =

(
1 + α 1

1 3

)
(4.7)

To find out how large α needs to be we can plug in values out of the interval
[0, ∞) for which we calculate the interior state i where the probabilities for birth and
death are equal, which is analogous to x∗ of the replicator equation. What we recog-
nise is that for α large enough the intersection between birth and death probabilities
happens at 1, which we see in figure 4.23. We also plot x∗ which approaches 0 for α
large. We can compute x∗ with the known formula

x∗ =
δ− β

α− β− γ + δ
(4.8)

and we see in our plot that the state i, where birth and death probabilities are equal,
is closely related to it. We now call a coordination imitation chain defined by the
game G degenerated, if its x∗ or the equivalent state i is at the fringes of our state
space, i.e. the states 1, 2 or 3 and 97, 98 and N − 1 = 99 in our case. Normally it
should be in the interior of the state space so between 4 and 96. Of course these
numbers are not exact, but only an estimate. It follows that only α less than 75 will
not completely degenerate to an dominated game and could be considered when
setting model parameters, but the resulting imitation chain will still look immensely
like a dominated chain, with the exception of the QSD and the PSD. Of course this
is not a strict definition for the parameter range, but should instead be used as a
heuristic as to what games can be considered, for which population sizes and still
behave like an example of the category they technically belong. It should be noted
that in theory one can just choose a larger N if the game is too unbalanced, but this
could soon reach unfeasible ranges of N to work with.

We can witness the same behaviour of degeneration for anti-coordination games
where we use the matrix

G =

(
1 1 + β
3 1

)
(4.9)

and do the same as before but with the parameter β. We can recover almost the same
picture only flipped upside down. We show it on the right in figure 4.23. The same
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FIGURE 4.23: The interior state i where birth and death probabilities
are equal together with x∗ for different α or β.

heuristic as before can be applied here and we obtained nice games when all values
were in the range [1, 4]. Obviously one can lift the lower end of the range and then
set larger values for the game matrix, but we excluded this because our baseline was
1. The gist is that one can determine if a game is particularly extreme by looking at
its x∗ and its equivalent state i in relation to N.
In both cases of degeneration the imitation chain behaves similarly to the corre-
sponding deterministic replicator dynamic. We saw in figure 4.23, that for a very
unbalanced game x∗ is getting close to 0 or 1. In the coordination game this leads
to a basin of attraction of 1, which spans almost all of [0, 1]. In the anti-coordination
case only x∗ is attractive and it approaches 1 for β large. We can conclude that in both
cases the replicator dynamics predict the fixation at 1 with increasing likelihood, the
more unbalanced the game G becomes with increasing α or β. One should note that
the probability for fixation at 0 is always at least positive in the deterministic model,
but with increasing N the imitation chain would start to reflect that again. So in the
limit of an infinite population size both models agree in this aspect as well.

The other extreme is if the game is not differentiating enough between its differ-
ent payoffs. If this is the case almost no selection pressure will be induced, which
leads to almost no pull, which in turn let’s the process look like the neutral case.
Here our recommendation is only to not chose values smaller then 0.1% of your
baseline. The imitation chain induced by the game G below differed in no way from
a neutral imitation chain even for very large values of N. Again in theory one can
find N large enough that these small fitness differences have a significant impact,
but without serious computing power it’s almost impossible.

G =

(
1 1.001

1.002 1

)
(4.10)
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Chapter 5

Conclusion

We witnessed how different the imitation chain and the replicator dynamics lay
themselves out for different games. Balanced versions of the classical coordination
or anti-coordination games produce really nice stochastic models, which incorpo-
rate the characteristic details of the dynamics. One can say that for the most part
with large N the deterministic and stochastic models agree with each other. But
the stochastic model often leaves more wiggle room and is therefore a somewhat
more accurate representation of a realistic frequency dependent selection in small to
medium size populations where random effects usually play a role.
The anti-coordination case has the most paradoxical nature where it seems like the
stationary distribution is no longer relevant. But as it turns out the LTD would con-
verge to the stationary distribution, but needs excruciatingly huge amounts of time
compared to all other cases. One could say it converges so slowly that the quasi-
stationary distribution is a more relevant prediction. Additionally the QSD mirrors
the interior stable state of the corresponding REP dynamic and therefore recovers
the connection between REP and imitation chain. This paradox only gets stronger
for infinite population sizes, so in a sense the replicator equation is again a correct
limit to the imitation chain.
Otherwise interesting is the connection between states where the PSD has positive
mass and the states where the fixation probability is non-trivial. Here some formal
investigation into the calculus behind the two would be interesting. Also the cor-
respondence between expected time until fixation and the PSD could be studied in
detail.
One should note that even for large N the payoff range to choose from to get a typ-
ical example is still quite small. It’s easy to choose games where some aspect may
look confusing although the others are readily classified. For example the fixation
probability in the anti-coordination case is very sensible or the location of the PSD
peak in the dominated case.
For further investigations one could extend the model to three strategy games, which
then considers the dynamics of a population consisting of three different types of
players. A first implementation was done for this project and Harper and Fryer,
2016 already did something similar but with added mutation. In their approach the
results were in many ways analogous to their two strategy imitation chain, which
we could replicate in our model. This leads to the prediction that our model would
again replicate their results in the three by three game case.
With more computing power and an completely optimized framework one could
try to run the results again for very large N and take a look at when the stochastic
imitation chain goes over into the deterministic model. Also realistic values for se-
lection strength and the game matrix to mirror true biological settings, which would
get very low, are a possibility for further research.





43

Bibliography

• Allen, L.; An Introduction to Stochastic Processes with Applications to Biology, 2003.

• Antal, T.; Scheuring, I.; Fixation of Strategies for an Evolutionary Game in Fi-
nite Populations Bull. Math. Biol. 68, 1923-1944, 2006.

• Darroch, J. N.; Seneta, E.; On quasi-stationary distributions in absorbing discrete-
time finite Markov chains J. Appl. Prob. 2, 88-100, 1965.

• Harper, M.; Fryer, D.; Stationary Stability for Evolutionary Dynamics in Finite
Populations, Entropy 2016.

• Hofbauer, J.; Sigmund, K.; Evolutionary games and population dynamics, 1998.

• Sigmund, K.; The Calculus of Selfishness, Chapter 2.15, 2009.

• Taylor, C.; Fudenberg, D.; Sasaki, A.; Nowak, M.A.; Evolutionary game dy-
namics in finite populations. Bull. Math. Biol. 66, 1621-1644, 2004.

• Traulsen, A.; Hauert, C. Stochastic evolutionary game dynamics. Rev. Nonlin-
ear Dyn. Complex. 2009.

• Zhou, D.; Wu, B.; Ge, H.; Evolutionary stability and quasi-stationary strategy
in stochastic evolutionary game dynamics Journal of Theoretical Biology 2010.


	Abstract
	Introduction
	Theory
	Game Theory
	Evolutionary game theory
	Replicator dynamics
	Different types of games
	Neutral case
	Dominated strategies
	Coordination games
	Anti-coordination games


	Birth-death chains
	Types of states
	Fixation probability
	Stationary distribution
	Quasi-stationary distribution
	Pseudo-stationary distribution
	Expected time until absorption

	The Moran model

	Methodology
	Numerical simulation of the replicator dynamic
	Simulation of the imitation chain
	Class structure for a Markov chain
	Long-term distribution method
	Quasi-stationary distribution approximation
	Additional calculations


	Results
	Experiment to determine population size
	Deterministic versus stochastic models
	The neutral case or no selection
	The prisoners dilemma or dominated strategies
	Coordination game or bistability
	Anti-coordination or coexistence
	Almost neutral case
	Cases of degeneration


	Conclusion

