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Abstract
Optically levitated nanoparticles provide a promising platform for numerous
sensing applications as well as fundamental tests of physics. This thesis ex-
plores novel approaches for manipulating and controlling such particles in dif-
ferent pressure regimes using nanophotonic structures and optical cavities.
In the first part, a novel optical trap for nanoparticles utilizing hollow core

photonic crystal fibers is presented. The optical control and read-out allows
particle transport over unprecedented distances and feedback cooling inside
the fiber, which are relevant for loading nanoparticles into ultra-high vacuum.
Using the levitated nanoparticle as a localized pressure sensor, also allows
to directly study the hydrodynamic properties of the hollow core fiber chan-
nel. Our measurements are confirmed by DSMC simulations of the nonlinear
Boltzmann equation and rule out previous, simplified models of the pressure
distribution in narrow channels.
In the second part, an optically trapped nanoparticle is coupled to a Fabry-

Pérot cavity at high vacuum. This is achieved by overlapping an optical
dipole trap with the TEM00 mode of a compact high-finesse cavity. Three-
dimensional feedback cooling inside the dipole trap allows stable operation of
the optomechanical system in high vacuum. Compared to our previous ex-
periments, the new architecture reduces the mechanical losses by at least six
orders of magnitude and shows a promising route towards room-temperature
quantum control.

Zusammenfassung
Optisch levitierte Nanoteilchen offerieren eine vielversprechende Plattform für
zahlreiche Sensorikanwendungen als auch für fundamentale Tests der Physik.
Diese Arbeit sondiert neue Ansätze zur Manipulation und zur Kontrolle dieser
Teilchen in unterschiedlichen Druckbereichen unter der Verwendung von nanopho-
tonischen Strukturen und optischen Resonatoren.
Im ersten Teil wird eine neue optische Falle die photonische Hohlkernkristall-

fasern verwendet präsentiert. Die optische Kontrolle und das optische Auslesen
erlauben den Transport von Teilchen über noch nie da gewesene Entfernungen
sowie das Rückkopplungskühlen innerhalb der Faser. Beides ist relevant um
Nanoteilchen in Ultrahochvakuum zu laden. Die Verwendung des levitierten
Nanoteilchens als lokalisierten Drucksensor erlaubt es die hydrodynamischen
Eigenschaften des Hohlkernkanals direkt zu untersuchen. Unsere Messungen
sind mit DSMC Simulationen der nichtlinearen Boltzmanngleichung bestätigt
und wiederlegen vorhergegangene, vereinfachte Modelle von Druckprofilen in
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engen Kanälen.
Im zweiten Teil wird ein optisch levitiertes Nanoteilchen an einen Fabry-

Pérot Resonator im Hochvakuum gekoppelt. Dies wird verwirklicht indem
eine optische Dipolfalle mit der TEM00 Mode eines Resonators hoher Güte
überlagert wird. Dreidimensionales Rückkopplungskühlen in der Dipolfalle er-
möglicht zuverlässigen Betrieb des optomechanischen Systems im Hochvakuum.
Verglichen mit unserem vorhergehenden Experiment werden durch die neue
Architektur die mechanischen Verluste um mindestens sechs Größenordnungen
reduziert und der Ansatz zeigt einen vielversprechenden Weg zu Raumtemper-
aturquantumkontrolle auf.
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Abbreviations

AOM acousto-optical modulator
COM center of mass
CPB (CCPB) clockwise (counterclockwise) propagating beam
DSMC direct simulation Monte Carlo
fbL feedback logic
FSR free spectral range
GLMT Generalized Lorentz-Mie theory
GRIN gradient index
HCPCF hollow core photonic crystal fiber
LM locking mode
LO local oscillator
LP linear polarized
NA numerical aperture
NEB nebulizer
OMC optomechanical cavity
OMIT optomechanically induced transparency
PBS polarizing beamsplitter
ppm parts per million
SMF single mode fiber
TIR total internal reflection
vacL (vacR) left (right) vacuum chamber
VNA vector network analyzer
WD working distance
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1. Prologue

Optical levitation is a field pioneered by Arthur Ashkin [1, 2] who realized
that small dielectric objects can be trapped and manipulated with light. The
first experimental optical trap in vacuum [3] gave already a hint on the unique
properties of levitated systems. A silicon oil drop trapped at a pressure of
p ≈ 10−6 mbar was kicked and started oscillating with a ringdown time of 4.5 h.
A more quantitative measure of this property is the mechanical quality factor
Q = Ωm/γ which compares the oscillation period Ωm with the mechanical
damping γ. The number is a measure for how often the particle oscillates until
half of its energy is dissipated. For optically levitated systems numbers as
high as Q = 108 (see [4]) have been measured and are predicted [5] to reach
Q = 1012. Therefore, a levitated object can be extremely well decoupled from
its environment. The application of optical levitation was quickly expanded
to atoms [6], contributing significantly to the field of atomic physics [7], and
to biophysics by trapping bacteria and viruses [8].

This thesis presents two recent further developments in optical levitation.
First, a novel optical trap based on a hollow core photonic crystal fiber (HCPCF)
and its application for sensing and micro-manipulation are described. HCPCFs
are microstructured optical fibers with the optical mode located inside a hol-
low core. The ability to confine light in air or vacuum over long distances
in HCPCFs were already utilized to trap and guide atoms [9, 10] and dielec-
tric particles of micrometer size [11–13]. Here, the use of the HCPCF trap
is extended to optically levitate and manipulate dielectric particles in the in-
termediate range, between 100 nm and 1 µm. The combination of levitated
nanometer-sized particles and HCPCFs allows us to access a new parameter
regime for sensing with novel experimental measurement techniques and pro-
vides a promising tool for fundamental physics experiments.

In the second part of this thesis, we build up on our previous levitated
cavity optomechanics experiments [14]. Such experiments [15] promise access
to a new parameter regime for both, fundamental tests of quantum mechanics
[16, 17] and ultra-sensitive force detection [18, 19] at room temperature. While
current state of the art (non-levitated) optomechanical experiments routinely
operate in the quantum regime, e.g. sideband cooling into the ground state of
motion [20, 21], generation of non-classical states of light [22–24], generation
of non-classical correlations between mechanical motion and light [25], genera-
tion of non-classical states of motion [26], generation of entanglement between
light and mechanical motion [27] and generation of entanglement between two
mechanical oscillators [28], this is still an outstanding goal for levitated op-
tomechanics. While our previous experiment [14] was limited by particle loss
from the optical trap around p ≈ 1 mbar here we make it operational in high
vacuum by combining it with an optical tweezer. This step pushes the quan-
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tum cooperativity CQ of the combined system by five orders of magnitude
(CQ = 0.02), thereby closing in onto full quantum control (CQ > 1).
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2. Optical Levitation With Hollow Core Photonic Crystal Fibers

Hollow core photonic crystal fibers (HCPCF) are micro-structured optical
fibers with a hollow core in which the optical mode is located. In stark contrast
to conventional fibers, where the mode is located in the high refractive index
region, HCPCFs allow guiding of light in the gas or vacuum filled low index
domain of the fiber. This is possible because the photonic crystal surrounding
the hollow core provides a two-dimensional bandgap for optical frequencies
[29], prohibiting light from leaving the core. In comparison, conventional op-
tical fibers rely on total internal reflection (TIR) as the underlying guiding
mechanism, which requires a higher refractive index material in the fiber core
than in the cladding. Since, at optical frequencies, there is no material with a
lower refractive index than air (or vacuum), guidance in an air core is not pos-
sible by means of TIR. Figure 2.1 a) shows a darkfield photograph of a hollow

Figure 2.1.: Part a) displays a dark field microscope image of a HC1060
HCPCF from NKT Photonics. Part b) shows the manufacturer
specification [30] of the HC1060. The intensity profiles along the
two yellow lines in the inset are shown.

core photonic crystal fiber (NKT Photonics: HC1060). The photonic crystal
surrounding the air core creates a full two-dimensional bandgap for a center
wavelength λ = 1060 nm. It prevents light from penetrating the cladding and
hence forms an optical mode inside the hollow region. In figure 2.1 b) the
intensity profile of the fundamental mode is shown. Along the two orthogonal
axes the intensity profile is well approximated by a Gaussian shape.
The first realization of a hollow core photonic crystal fiber was reported by

Cregan et al. in 1999 [31]. The outstanding property of light confinement over
long distances in air or vacuum enabled new experiments and applications,
just to name a few: HCPCFs were used to guide [9] and trap atoms [10],
for high power laser beam delivery (continuous wave and pulsed) [32], for laser
beam delivery (continuous wave, pulsed, ultra-violet and supercontinuum) into
ultra-high vacuum [33], for compact and efficient all-fiber gas cells [34] and for
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excitation of caesium atoms to Rydberg states inside HCPCF [35]. Yet another
application is guidance [11] and trapping [12] of micrometer-sized dielectric
particles by means of radiation pressure, trapping with the aid of opto-thermal
forces [36], and transport of micrometer-sized particles with a mode-based
conveyor belt [13]. For further reading about hollow core fibers and their
applications the reader is referred to [37–41].
The principle idea of our hollow core fiber experiment is sketched in figure

2.2. A HCPCF is mounted between two vacuum chambers (vacL and vacR)
in which the pressure can be controlled individually. Two counterpropagating

read-out

vacL vacR

HCPCF x
z

y

Figure 2.2.: Two counterpropagating lasers are focused into a hollow core
photonic crystal fiber, mounted between two vacuum chambers
(vacL and vacR) and form an optical trap. A nanoparticle is
trapped inside the hollow core fiber and its motion can be de-
tected optically (read-out).

laser beams coupled into the HCPCF form a standing wave which serves both,
as optical trap and as optical conveyor belt. A dielectric particle trapped in an
intensity maximum of the standing wave can be transported along the fiber.
In addition, an all-optical read-out monitors the motion of the particle in three
dimensions and is used for feedback cooling.
The following chapter is divided into five sections:

• Chapter 2.1 is devoted to the theory of optical levitation using HCPCF.
The electromagnetic modes of the HCPCF are used to numerically com-
pute the optical forces with generalized Lorentz-Mie theory (GLMT).
The results are compared with the analytical Rayleigh approximation,
which is also used to derive the harmonic oscillator model for levitated
particles. Finally, two consequences of the multimode structure are dis-
cussed: Modulation of trapping position and frequency along the HCPCF
and all-optical, three-dimensional read-out of the particle motion.

• Chapter 2.2 describes the experimental setup and procedures. The op-
tical setup is divided into three parts which are explained separately:
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Beam preparation, optical trapping and read-out. The following two
parts describe how to cleave and mount HCPCFs and how the optical
conveyor belt is implemented. The last part presents characterisation
measurements of the HCPCF trap.

• Chapter 2.3 introduces linear feedback cooling, both, from a theoretical
and an experimental perspective. Feedback cooling is performed opti-
cally along the fiber axis with an additional laser and electrically along
one radial direction with a charged particle.

• Chapter 2.4 discusses the potential of the HCPCF experiment for con-
trolled and deterministic particle loading into ultra-high vacuum. The
important parameters defining the performance of the source are charac-
terized and the current status on the next generation experiment, which
is entirely fiber based, is summarized.

• Chapter 2.5 investigates the hydrodynamical properties of the HCPCF.
The HCPCF is a narrow channel connecting two vacuum chambers in
which the pressure can be controlled individually. A levitated particle is
used as nanomechanical pressure sensor to measure the pressure profile
along the fiber. We experimentally investigate a new parameter regime
for the first time and our results are backed up by direct simulation
Monte Carlo (DSMC) methods.
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2.1. Principles of Optical Levitation inside Hollow
Core Photonic Crystal Fibers

This chapter introduces optical levitation with a HCPCF based trap. The un-
derlying principles of optical levitation are described in more detail elsewhere,
for example [42–44]. Here the emphasis lies on the system specific physics.

2.1.1. The Electromagnetic Field inside Hollow Core Fibers
Hollow Core Photonic Crystal Fiber Modes

The mode structure of hollow core photonic crystal fibers can be approximated
with linear polarized (LPmn) modes [45, 46], which are also used to describe
the modes in conventional fibers. The LP modes in cylindrical coordinates are

LPj
mn(r, φ, z)~p = E0Jm

(
umnr

rco

)
cos(nφ− j π2 )e−iβmnz~p

= E0εmn(r, φ)e−iβmnz~p
(2.1)

with E0 the electric field, Jm Bessel functions of the first kind, umn the n-th
root of the m-th Bessel function, rco the radius of the hollow core , ~p the
polarization vector and the propagation constant

βmn = 2π
λ

1− 1
2

(
umnλ

2πrco

)2
 (2.2)

with λ the wavelength of the electromagnetic field in vacuum. The radial

Figure 2.3.: Radial electric field distribution of the fundamental fiber mode
ε01 a) and the first higher order mode ε11 b)

profile is lumped into the function εjmn(r, φ). Throughout this thesis only the
fundamental mode LP01 and the first higher order mode LP11 are of relevance.

27



2. Optical Levitation With Hollow Core Photonic Crystal Fibers

Without loss of generality we consider j = 0 which means the mode LP11 is
oriented along the x-axis, as shown in figure 2.3 b). The second mode LP11
with j = 1 is oriented along the y-axis (a 90◦ degree rotation of figure 2.3 b)).
Without active mode stabilization in the experiment, the LP11 mode appears
in an arbitrary superposition of j = 0 and j = 1. Figure 2.3 a) shows the
radial electric field distribution of the mode LP01.

Standing Wave Intensity Profile

A Gaussian laser beam with wavelength λ and polarization ~p is coupled from
one side into a HCPCF and a second Gaussian beam of same power, wave-
length and polarization is coupled from the other side into the HCPCF. The
Gaussian beams mainly excite the fundamental mode LP01 and due to imper-
fect alignment the higher order mode LP11 is weakly excited. The electric field
inside the HCPCF is

~E(r, φ, z) = E01ε01e
iβ01z~p+ E11ε11e

iβ11z~p+ E01ε01e
−iβ01z~p+ E11ε11e

−iβ11z~p.
(2.3)

It is assumed that the power of the fundamental and the higher order mode
are the same for beams propagating in +z and in −z direction, respectively.
The intensity in the fiber is proportional to

I ∝ | ~E|2

= 2P01ε
2
01

[
1 + cos(2β01z)

]
+ P11ε

2
11

[
1 + cos(2β11z)

]
+

+ 4
√
P01P11ε01ε11

[
cos(∆βz) + cos(Σβz)

] (2.4)

with ∆β = β01 − β11 and Σβ = β01 + β11. The optical power is related to
the electrical field via Emn ∝

√
Pmn. The first two terms in equation 2.4 are

standing waves of the fundamental and higher order mode and their wavelength
is given by π/β01 ≈ π/β11 ≈ λ/2, similar to a standing wave in free space. The
last two terms describe interference between the fundamental and the higher
order mode. The interference occurs with two wavelengths: 2π/Σβ ≈ λ/2
which is comparable to a free space standing wave and 2π/∆β ≈ 400 × λ/2
which is much longer than the free space standing wave pattern. Figure 2.4
is a plot of the intensity distribution across the x-z plane, averaged over the
fast oscillating standing wave terms of equation 2.4. Due to the interference
between the fundamental and the higher order mode, the intensity maxima
oscillate around the fiber axis with a modulation wavelength 2π/∆β. For
comparison, in a standing wave of two counterpropagating LP01 modes only,
the same plot would be invariant along the z-axis with all the intensity maxima
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Figure 2.4.: Intensity distribution inside a HCPCF averaged over the stand-
ing wave contributions along the z-direction. The interference
between fundamental and higher order mode lead to a modula-
tion of the intensity around the fiber axis.

on the fiber axis. Figure 2.5 a) is a plot of the intensity distribution (without
averaging) in the region around z = 0 (the fiber entrance) and figure 2.5
b) around z = 100/λ (inside the fiber). The intensity maxima are off-axis
compared to a standing wave composed of two counterpropagating LP01 modes.
The modulation wavelength of the maxima is ≈ λ/2.

Figure 2.5.: Intensity distribution inside a HCPCF. Due to interference be-
tween fundamental and higher order mode the standing wave
maxima are up-shifted a) and down-shifted b) with respect to
the fiber axis.

2.1.2. Optical Forces
Maxwell’s equations provide the most general Ansatz to compute forces of an
electromagnetic field on a dielectric object. Integration of the Maxwell stress
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tensor over a surface enclosing the dielectric object returns the mechanical
force acting on the object [47]

〈~F 〉 =
∮
∂V
〈T〉d~n

with T the Maxwell stress tensor, ∂V a surface enclosing the dielectric object
and ~n the unit vector perpendicular to the surface. The time dependence of
the electromagnetic field can be averaged 〈...〉 as the oscillations of the elec-
tromagnetic field are much faster than any mechanical response. The Maxwell
stress tensor contains the incident fields impinging on and scattered off the
dielectric object. The forces acting on the dielectric object are a consequence
of energy and momentum conservation of incident and scattered fields. Hence,
in order to compute the optical forces the scattering problem of the field and
the dielectric object needs to be solved first.
The most general solution for a spherical particle illuminated by a plane wave

is Lorentz-Mie theory, which provides an analytical solution in form of an in-
finite series. Generalized Lorentz-Mie theory takes focused Gaussian modes
(instead of plane waves) into account, see Gousbet and Gréhan [48] for further
reading. In the special case of particles with radius a much smaller than the
wavelength λ of the electromagnetic field (a� λ) the Rayleigh approximation
is applicable [49, 50]. The Rayleigh approximation provides analytical, closed
formulas to compute the optical forces. The experiments described in this
chapter are used to levitate particles of a radius a ≈ 200 nm and a ≈ 500 nm
with a laser of wavelength λ = 1064 nm. In order to verify that the Rayleigh
approximation is still applicable the results are compared with GLMT (gen-
eralized Lorentz-Mie theory) simulations. The optical tweezers computational
toolbox from Nieminen et al. [51] is used for the GLMT computations.

Rayleigh Approximation

The Rayleigh (or dipole approximation) treats the case of a particle that is
small with respect to the trapping laser wavelength a � λ. The particle is
described as a point dipole and its interaction with an electromagnetic field
can be separated into two components: Scattering force and gradient force. A
dielectric particle illuminated with a laser will either absorb, reflect (or scatter)
or transmit the impinging photons. Each absorbed photon transfers a momen-
tum p = h/λ and each reflected photon transfers a momentum p = 2h/λ onto
the particle, resulting in an effective force along the direction of beam prop-
agation. This type of interaction is called scattering force. Lets assume the
incident photons have zero transverse momentum. All photons transmitted
trough the particle will be diffracted (as a dielectric particle has a optical den-
sity n > 1) and acquire a non-zero transverse momentum component. Due to
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momentum conservation there has to be a momentum transfer onto the parti-
cle. This component of the light-matter interaction is referred to as gradient
force.
Harada and Asakura derived explicit analytical expressions for scattering

and gradient force [50] which will be applied to the HCPCF system. The
scattering force ~Fscatt of a laser beam propagating in z-direction is ~Fscatt =
σscatt/cI~ez proportional to the intensity I of the laser beam and the scattering
cross-section σscatt = 8πk4a6/3(ε − 1)2/(ε + 2)2 of the particle (a: particle
radius, ε: dielectric constant of the particle, c: speed of light) and ~ez the unit
vector along the z-axis. The HCPCF trap consists of two counterpropagating
laser beams of equal intensity. Therefore, the scattering force of one beam is
the same as the scattering force of the counterpropagating beam with opposite
sign and the resulting mean scattering force vanishes ~Fscatt = 0. The gradient
force ~F∇ is given [50] by

~F∇ = α

2∇
~E2 (2.5)

with α = 4πa3ε0(ε− 1)/(ε+ 2) the polarizability of the particle. The polariz-
ability is a measure for the induced dipole moment inside the particle. ε is the
dielectric constant of the particle and ε0 is the vacuum permittivity. The gra-
dient force is proportional to the direction of the steepest slope of the intensity
and attracts particles towards the highest intensity. For this reason dielectric
particles are called high-field seeker. The gradient force can confine a particle
in all three dimensions and counteracts displacements away from the intensity
maxima. The gradient force can be used to stably levitate (or trap) particles.

Harmonic Approximation

Optically levitated particles in a gaseous environment are subject to thermal
noise via collisions with surrounding gas molecules. If the particle is displaced
by a collision, the gradient force acts in the opposite direction counteracting the
displacement. For small displacements of the particle with respect to the next
local intensity maximum, the gradient force can be approximated with a linear
Hooke’s law. The standing wave intensity distribution is locally approximated
with a three-dimensional harmonic profile. Figure 2.6 shows the exact intensity
profile (see equation 2.4) inside a HCPCF along x- (red dots), y- (green dots)
and z-direction (blue dots) and a local fit of a harmonic function (solid lines).
The fit function is

Iharm ∝ E2
0

[
ax
2 (x− x0)2 + ay

2 (y − y0)2 + az
2 (z − z0)2

]
(2.6)
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Figure 2.6.: Intensity distribution inside a HCPCF (see equation 2.4) along
x-axis (red dots), y-axis (green dots) and z-axis (blue dots). The
inset on the right is a contour plot of the intensity in the x-z
plane. The red (blue) line correspond to the intensity along the
x- (y-) direction in the left plot. The solid lines are fits to a har-
monic function.

with ax, ay, az and x0, y0, z0 as free fit parameters. The ai parameters are a
measure for the local curvature of the electric field around the intensity maxi-
mum x0, y0, z0 respectively. The force on a dielectric particle in the proximity
of an anti-node can be calculated with equation 2.5:

~F∇ = αE2
0

[
ax(x− x0)~ex + ay(y − y0)~ey + az(z − z0)~ez

]
. (2.7)

Equation 2.7 describes a three-dimensional restoring force around the intensity
maximum (x0, y0, z0) and allows to spatially confine a dielectric particle in
a finite volume, hence optical trapping. The gradient force is conservative
and can be written as gradient of an optical potential ~Fgrad = −∇Uopt =
−∇(−α

2E
2
harm). The combined system of a trapped dielectric particle and the

electromagnetic field inside a HCPCF is well described by a three-dimensional
harmonic oscillator. The oscillation frequencies in each spatial direction are
Ωi

m =
√
κi/m with m the mass of the dielectric particle and κi the spring

constant along each spatial direction

κi = ∂2Uopt

∂i2
= αaiE

2
0 . (2.8)

Interestingly, the oscillation frequencies in the Rayleigh approximation do not
depend on the particle size, since both, polarizability α and particle mass m
scale with volume, hence

Ωi
m =

√
3E2

0
aiε0

ρ
ε0
ε− 1
ε+ 2 . (2.9)
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The mechanical frequencies in the Rayleigh approximation are proportional to
the square root of the optical power E2 ∝ P of the laser beam, its curvature
ai and the square-root of the inverse particle density ρ.

Generalized Lorentz-Mie Theory

The Rayleigh approximation described in chapter 2.1.2 requires the particle
radius to be much smaller than the wavelength of the trapping laser a � λ.
However, in the current HCPCF experiments particles with a radius of either
200 nm or 500 nm and a trapping laser with λ = 1064 nm are used. The
applicability of the Rayleigh regime is tested with GLMT computations to
back up the analytical results from the previous section.

Figure 2.7.: Intensity distribution inside a HCPCF (see equation 2.4) along
x-axis (red dots), y-axis (green dots) and z-axis (blue dots). The
inset on the right is contour plot of the intensity in the x − z
plane. The red (blue) line correspond to the intensity along
the x- (y-) direction in the left plot. The solid lines are fits to
a Gaussian standing wave.

Instead of running the simulation with the intensity distribution inside the
HCPCF described by equation 2.4, which is complicated due to multiple Bessel
functions, the intensity distribution will be locally parametrized with two coun-
terpropagating Gaussian beams. The dots in figure 2.7 represent the exact
intensity inside the HCPCF given by equation 2.4 and the solid lines are a
fit to a standing wave composed of two counterpropagating Gaussian beams.
Figure 2.8 a) displays the optical force acting on a 200 nm silica particle and
figure 2.8 b) on a 500nm silica particle. The points are GLMT simulations
and the solid lines are computed with the Rayleigh approximation. Interest-
ingly, the difference between the force computed with GLMT and the Rayleigh
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Figure 2.8.: Optical forces on a a = 200 nm (figure a)) and on a a = 500 nm
(figure b)) silica particle along x- (red) and z-direction (blue).
The dots are numerical simulations of GLMT and the solid lines
are computed using the Rayleigh approximation.

approximation is a constant factor that only depends on the particle radius
and direction. Figure 2.9 shows the same data as in figure 2.8 except that the
Rayleigh data is rescaled by a factor of 2.08 (15.15) along the axial direction
and by 1.27 (1.69) along the radial direction for a particle size of a = 200nm
(a = 500nm). The plot confirms that the Rayleigh approximation and GLMT
simulation differ only by a single multiplicative factor (dependent on particle
radius and direction). The difference between axial and radial direction is due

a) b)
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Figure 2.9.: Rescaled version of figure 2.8: Optical forces acting on a a =
200 nm (figure a)) and a a = 500 nm (figure b)) silica parti-
cle along x- (red) and z-direction (blue). The dots are the un-
changed numerical simulations of GLMT and the solid lines are
rescaled Rayleigh approximations.

to the standing wave trap. The Rayleigh approximation assumes a uniform
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electric field surrounding the particle [52]. Along the standing wave direction,
this condition is violated sooner compared to the radial directions. In order
to investigate this effect further the optical forces for a wide range of radii are
simulated.
Figure 2.10 displays the ratio between GLMT and Rayleigh approximation

versus particle radius along z- (blue) and x-direction (red). For radii a � λ
the Rayleigh approximation coincides with GLMT, their ratio is almost one.
For an increasing radius the Rayleigh approximation overestimates the optical
forces. It is interesting to realize that the axial force ratio becomes negative in
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Figure 2.10.: Ratio between GLMT simulations and Rayleigh approxima-
tion for varying radii a along z- (blue) and x-direction (red).
The insets show trapping positions with respect to the standing
wave for a particle with a/λ = 0.1 and a/λ = 0.3.

a region of a/λ ≈ 0.3. Within this region the particle diameter is comparable
to one wavelength of the standing wave. The particle encloses one antinode and
extends into the two neighbouring antinodes. It will feel the same attracting
force to the left and to the right antinode and therefore it is no longer a stable
trapping position. Instead, the particle will be trapped in a node of the field
which is the new stable trapping position making the particle effectively a
low-field seeker [53].

2.1.3. Consequences of Higher Order Modes for Optical
Levitation

The interference between the modes LP01 and LP11 leads to a radial position
modulation of the intensity maxima around the fiber center with a wavelength
of 2π/∆β, as already shown in figure 2.4 and figure 2.5. A direct consequence

35



2. Optical Levitation With Hollow Core Photonic Crystal Fibers

0 50 100 150

-0.15

0

0.15

z/λ

x/
r c
o

Figure 2.11.: The interference between mode LP01 and LP11 leads to a mod-
ulation of the intensity maxima around the fiber center. The
red line indicates the positions of local intensity maxima of the
standing wave, the position where a particle can be trapped.

is that particles, depending on there z-position along the fiber, are trapped
off-center. Figure 2.11 plots the positions of the intensity maxima in the x-z-
plane. Note that the trapping positions themselves are not a continuum, they
are equally spaced by the wavelength of the standing wave.
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Figure 2.12.: The interference between mode LP01 and LP11 modulates the
intensity maxima of the standing wave and therefore the lo-
cal mechanical frequency of the oscillator. The blue (red) line
are the normalized trapping frequencies along z-direction (x-
direction).

The presence of a higher order mode does not only affect the radial trapping
position, but also the mechanical frequencies Ωm. The mechanical frequency
is directly proportional to the square-root of the intensity and hence is mod-
ulated by a wavelength of π/∆β. A simulation of the normalized mechanical
frequency Ωz(z)/Ω0 (blue) and Ωx(z)/Ω0 (red) along the fiber axis are shown in
figure 2.12. Ω0 is the mean mechanical frequency averaged over the z-position
or the x-position inside the fiber. This dependence is used to infer the optical
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power in the higher order mode LP11 as well as the hollow core radius rco.

2.1.4. Equation of Motion of the Hollow Core Photonic
Crystal Fiber Trap

The dynamics of the center of mass (COM) motion of a trapped particle inside
a HCPCF can be described by a thermally driven, damped, three-dimensional
harmonic oscillator. This description is only valid for small amplitudes of the
particle, otherwise the anharmonicity of the potential needs to be considered
[4]. In case the anharmonicity is negligible, the three dimensions are decoupled
and each can be considered independently. Here, only one dimension is de-
scribed, the expansion to three dimensions is straight forward. The Langevin
equation for a levitated particle in one dimension is [54]

mz̈ +mγpż +mΩ2
m = Fth (2.10)

with m the mass and Ωm the mechanical frequency of the particle. Collisions
with surrounding gas molecules cause a Stokes-like friction force F = mγpż
and a Brownian stochastic force noise Fth [55] coupling the COM motion to a
thermal bath at room temperature T0 ≈ 300 K.

Mechanical Damping γp and Thermal Force Noise Fth

The trapped particle moves inside an environment of finite pressure p. Gas
molecules will constantly hit the particle causing two interactions: a Stokes
friction force mγpẋ proportional to the velocity, damping the particle motion,
and a Brownian force noise Fth at room temperature [55] driving the motion
of the particle. The damping depends on the local pressure p of the gas sur-
rounding the particle and is given by [56]

γp = 6πηa
m

0.619
Kn+ 0.619

(
1 + 0.310Kn

Kn2 + 1.152Kn + 0.785

)
(2.11)

with η the gas viscosity and Kn = Λfree/a the Knudsen number, which is
the ratio of mean free path of a gas molecule Λfree and the particle radius a.
Formula 2.11 contains the conventional Stokes friction γ = 6πηa/m and a cor-
rection factor for low pressures, as Stokes friction only holds for incompressible
fluids. If the mean free path of gas molecules becomes larger than the particle
radius, the mechanical damping can be simplified [4, 57] to

γp ≈
Λfree�a

15.8 a2p

mvgas
(2.12)
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Figure 2.13.: Mechanical damping versus pressure (blue curve) for a 200 nm
silica particle. The linear approximation (red curve) overesti-
mates the damping at high pressures.

with vgas the mean thermal velocity of gas molecules. The linear scaling of me-
chanical damping (or losses) with background pressure makes levitated parti-
cles a promising candidate for ultra-highQ oscillators [5]. Figure 2.13 compares
the two equations for the pressure dependence of mechanical damping for a
a = 200 nm silica particle immersed in air.

Spectrum of the Mechanical Motion

The noise-power spectral density of a mechanical oscillator is given by [55]

Szz(ω) = 2kBTγp

πm

1
(Ω2

m − ω2)2 + γ2
pω

2 . (2.13)

This equation is derived by taking the Fourier transform of equation 2.10. The
Wiener-Khinchin theorem [58] relates the Fourier transform of the spectral
density with the autocorrelation function of the displacement

〈z(t)z(t− t′)〉 =
∫
dω〈z̃(ω)z̃(ω)∗〉eiωt.

For the special case of t = 0 the mean square displacement is given by the area
of the spectral density

〈z2〉 =
∫
dωSzz(ω). (2.14)

For a system described by the equation of motion 2.10, equation 2.14 can
be used to assign a temperature to the COM motion using the equipartition
theorem kBT = mΩ2

m〈z2〉. The integral of the mechanical spectrum Szz is di-
rectly proportional to the COM temperature. This relation will appear again
in chapter 2.3 to quantify the effect of feedback cooling. Note that for anhar-
monic potentials [4] or oscillators which couple to more than one bath [59, 60]
a more careful assignment of the mode temperature is required [61].
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2.1.5. Three-Dimensional Read-Out of the Mechanical
Motion

Due to the multimode character of the light field inside the HCPCF, analysing
the light leaving the HCPCF is sufficient to infer the three-dimensional mo-
tion of the particle. The following chapter is oriented on the supplementary
information of [62] and on the master thesis of Julian Fesel [46].
The read-out of the particle COM motion inside the HCPCF is based on

interference between scattered light from the particle and the fundamental
trapping mode LP01. It provides position information of the particle with
respect to the intensity maximum it is trapped in. The levitated particle is
treated as dipole scatterer Edp which is preeminently excited by the funda-
mental trapping mode LP01, see chapter 3.1.2.
The read-out along the axial (z) direction relies on interference between light

scattered off the particle into the symmetric fundamental mode LP01 and the
trapping laser. The radial read-out (x, y) relies on interference between light
scattered off the particle into the anti-symmetric higher order mode LP11 and
the trapping laser.
Let us assume a particle trapped in an intensity maximum inside the HCPCF

is displaced by δz along the fiber axis. The mode overlap between scattered
light from the particle and the fundamental fiber mode LP01 is η01(δz) =
〈LP01, Edp(δz)〉 = |η01|eiβ012δz+iφ01 with |η01| and φ01 constants independent of
δz. The values of |η01| and φ01 are computed numerically [46]. Both fields, the
trapping mode and the light scattered off the particle into the fundamental
mode interfere and their intensity is given by

Iz(δz) = ε0c

2
∣∣∣LP01 + η01(δz)LP01

∣∣∣2
= I0

[
1 + |η01|2 + 2|η01| cos

(
[β01 − k]δz + φ01

)]
≈ I0 − 2I0|η01|(β01 − k)δz (2.15)

with I0 the intensity of the trapping mode. The second order term can be
neglected as the scattering off the particle into the fundamental HCPCF mode
LP01 is an inefficient process (O(|η01|2)� 1). With the combination of the nu-
merically computed scattering phase of φ01 ≈ π/2 and for small displacements
δz of the particle the cosine function can be approximated with its argument.
The first term of equation 2.15 is constant and the second term is proportional
to the axial displacement δz of the nanoparticle. The implementation of our
detection scheme, see chapter 2.2.2, allows subtraction of the constant term
and the resulting detector signal is solely proportional to the axial displacement
δz.
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The radial read-out relies on interference between light scattered from the
particle into the higher order mode LP11 and the trapping mode. A particle
moving radially by δx (without loss of generality we assume motion along the x-
axis, the treatment in the orthogonal direction y is analogous) excites the anti-
symmetric mode LP11 with a position dependent phase and amplitude, i.e.,
η11(δx) = 〈LP11, Edp(δx)〉 = E01(a + ib)δx. The values for a, b are computed
numerically [46]. The interference between light scattered off the particle into
the higher order mode LP11 and the fundamental trapping mode is

Ix(δx) = ε0c

2 |LP01 + η11LP11|2

= I0 + |η11|2ε2
11 + ε0cE01<{η∗11e

i∆βz}
≈ I0 + ε01ε11ε0cE

2
01|η11| sin(∆βz + φ11)δx (2.16)

with |η11| =
√
a2 + b2 and φ11 = arctan(b/a). It is important to note that the

first term I0 = ε0c/2E2
0ε

2
01(x, y) is symmetric with respect to the y-axis (x = 0)

and the second term ∝ ε01(x, y)ε11(x, y) is anti-symmetric with respect to the
y-axis (x = 0). Here, ε01(x, y) and ε11(x, y) are the radial field distributions of
the LP01 and LP11 mode, see chapter 2.1.1. Detection with a single photodiode,
which corresponds to an integration over the intensity Ix along the x-axis,
would only result in the optical power of the fundamental trapping mode P0 ∝
I0. The contribution of the second term of equation 2.16 vanishes due to its
anti-symmetry with respect to x = 0. Therefore, a split-detection scheme is
used, see chapter 2.2.2. In a split-detection scheme, half of the intensity of Ix
is measured with one photodiode and the other half with a second photodiode
(equally split around x = 0). The difference signal between both diodes is
proportional to

Sx ∝
0∫

−x0

dA Ix −
x0∫
0

dA Ix ∝ P0|η11| sin(∆βz + φ11)δx (2.17)

with x0 the extent of the photodiodes. Here, the symmetric part of Ix vanishes
and the anti-symmetric part survives, resulting in a signal directly proportional
to the radial particle motion δx. Note that the signal also depends on the
axial particle position z. In a consequence, the sensitivity of the radial read-
out is modulated with the wavelength of the interference pattern between
fundamental and higher order mode 2π/∆β ≈ 208 µm.
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2.2. Experimental Setup and Procedures
In this chapter the experimental setup and experimental procedures are ex-
plained in detail. It is separated into optical and vacuum setup, loading and
trapping particles, moving particles through the fiber and how the HCPCF is
prepared and mounted into vacuum chambers.

2.2.1. Optical Trapping Setup
The optical trapping setup can be divided into two parts, the beam preparation
and the optical trapping part. The beam preparation part is sketched in figure
2.14.

laser
λ=1064 nm

FI
λ/2

PBSPBS AOM 1

AOM 2

FG 1

FG 2

λ/2

λ/2

λ/4

λ/4

SMF1

SMF2

Figure 2.14.: A laser with λ = 1064 nm is split into two parts with a com-
bination of half waveplate (λ/2) and a polarizing beamsplit-
ter (PBS). Each beam propagates through an acousto-optical
modulator (AOM1 and AOM2) which is driven with a fre-
quency generator (FG1 and FG2). The deflected light leav-
ing the AOMs is coupled into a single mode fiber (SMF1 and
SMF2) and the light that is not deflected is sent onto a beam
dump. Before each SMF, a combination of half waveplate (λ/2)
and quarter waveplate (λ/4) compensates polarization rotations
introduced by the SMF. A Faraday isolator (FI) protects the
laser from back-reflections.

The output of a Coherent Verdi IR laser with a center wavelength of λ =
1064 nm is split into two parts with a combination of half waveplate (λ/2) and a
polarizing beamsplitter (PBS). The beam in transmission of the PBS is referred
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f fHCPCF

CCD

BS2

LO

Figure 2.15.: Light from the beam preparation setup is guided through single
mode fibers (SMF1 and SMF2) to the optical trapping part.
The HCPCF is mounted into two vacuum chambers (vacL
and vacR) and can be imaged with a laterally mounted cam-
era (CCD). The laser light exiting the SMF is reflected on two
90:10 beamsplitter (BS1,BS2) and coupled into the HCPCF
with lenses outside the vacuum chambers. 10% of the light
transmitted on BS1 is sent to the read-out part of the experi-
ment and 10% of the light transmitted on BS2 is used as local
oscillator (LO) for the read-out. The half (λ/2) and quarter
(λ/4) waveplate are aligned to compensate the polarization ro-
tation introduced by the HCPCF.

to as counterclockwise propagating beam (CCPB) and the beam in reflection as
clockwise propagating beam (CPB). Each, CCPB and CPB propagate through
an ATM-804DA6M acousto-optical modulator (AOM) from IntraAction Corp.
The AOM deflects the incident light depending on its drive frequency and
amplitude. They are typically driven with a 80 MHz tone and a power on
the order of 1 W (FG1 and FG2). In the first realization of the experiment
a DFE-804A4 dual channel frequency synthesizer from IntraAction Corp. was
used as AOM driver, which was recently exchanged with a Moglabs XRF421.
The new driver allows for finer tuning of the drive frequency compared to the
DEF-804A4, which was limited to 10 kHz steps. The first diffraction order of
the AOM is coupled into a single mode fiber (SMF) and the zeroth diffraction
order is dumped into a beam block. The maximum deflection efficiency of the
AOM is between 70-80 %. The single mode fibers are used as a mode cleaner
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since the mode leaving the laser is slightly elliptical. In order to compensate
rotations of the polarization by the SMFs, a combination of half and quarter
waveplate is placed before each fiber input. A Faraday isolator (FI) protects
the laser from back-reflections.
The main trapping setup is shown in figure 2.15. A HC1060 HCPCF from

NKT Photonics is mounted between two vacuum chambers (vacL and vacR).
The CCPB (light leaving SMF1) and the CPB (light leaving SMF2) are cou-
pled into the HCPCF with two lenses (f = 13 mm) outside of the vacuum
chamber. Two polarizing beamsplitters (PBS1, PBS2) in combination with
the waveplates before the SMFs, see figure 2.14, are used to define the polar-
ization state of light leaving the SMFs. The HCPCF, as any non-polarization
maintaining fiber, rotates the polarization state which is compensated for by
another pair of half (λ/2) and quarter (λ/4) waveplate between the HCPCF
and PBS2. Roughly 10% of the CPB is transmitted at the 90:10 beamsplitter
(BS2, Thorlabs: BSX11) and coupled into another SMF (not shown in figure
2.15). This fraction of light serves as local oscillator (LO) for the read-out of
the particle motion. Another 10% of the CPB after propagation through the
HCPCF is transmitted at the 90:10 beamsplitter (BS1, Thorlabs: BSX17) and
is used as signal beam for the particle read-out. A Playstation Eye camera
(CCD), with the infrared filter removed, is used for particle monitoring from
the side. A typical CCD image can be seen in figure 2.23.

2.2.2. Optical Read-Out
This chapter describes the experimental implementation of the read-out of the
COM motion. Figure 2.16 gives an overview of the read-out including the
z read-out. 10% of the scattered light from the nanoparticle and the CPB
trapping beam are transmitted at the beamsplitter (BS1), which is referred to
as signal beam. The signal beam is split into three parts with two polarizing
beamsplitters (PBS1 and PBS2) and two half waveplates (λ/2). The light
reflected at PBS1 is used for detection of the nanoparticle along the y-axis,
the light reflected at PBS2 is used for detection along the x-axis and the light
transmitted at PBS2 is used for detection along the z-axis.
As already described in chapter 2.1.5, the axial read-out relies on interference

between light scattered from the particle into the mode LP01 and the trapping
mode. The signal beam consists of a constant intensity I0 contribution from
the trapping laser and an alternating contribution of the particle motion, see
equation 2.15, which is coupled into a single mode fiber (SMF). A balanced,
amplified photodetector (Thorlabs: PDB420C-AC) is used for detection of the
light. The detector has two photodiodes, a difference circuit and an amplifier.
It subtracts the photocurrents from each diode and returns an amplified output

43



2. Optical Levitation With Hollow Core Photonic Crystal Fibers

λ/2

PBS2 PBS1

λ/2

Z1

Z2

LO

IM

to X
read-out

to Y
read-out

SZ

vacL

BS1SMF

Figure 2.16.: 10% of the light leaving the HCPCF is transmitted at the
beamsplitter (BS1). It is split into three beams with two po-
larizing beamsplitters (PBS1 and PBS1) and two half wave-
plates (λ/2). Light transmitted at PBS1 and PBS2 is used for
radial motion detection. The transmitted light is coupled into
a single mode fiber (SMF) and sent to the photo diode Z1. The
local oscillator (LO, see figure 2.15) propagates via an in-fiber
intensity modulator (IM) to the photodiode Z2. The difference
signal between Z1 and Z2 is used as error signal for a PID feed-
back loop and feed back to the IM. The feedback loop stabi-
lizes the difference signal between Z1 and Z2 to be zero on a
timescale much slower than the axial mechanical frequency Ωz.
The difference signal Sz is proportional to the particle motion
along the fiber axis.

voltage proportional to the difference current. The detector also provides a
monitor output for each diode. The signal beam from the SMF is sent onto
photodiode Z1 and light from the local oscillator (LO, see figure 2.15), passing
an in-fiber intensity modulator (IM, Jenoptik: AM1060HF) is sent onto the
photodiode Z2. The difference between the two monitor outputs is computed
with an analog differential amplifier circuit, see appendix A.5, and used as
error signal for a feedback loop. A PID controller (Toptica: PID110) and
the IM are used to stabilize the power difference between both diodes to zero
with a bandwidth between 0 and ≈ 5 kHz, not to interfere with the particle
dynamics at higher frequencies Ωz � 100 kHz. In doing so, the contribution
from the constant intensity I0 detected by photodiode Z1 is eliminated and
the resulting difference signal Sz is solely proportional to the axial particle
motion, see equation 2.15. Note that the anti-symmetric contribution in the
signal beam (due to the radial particle motion) vanishes due to its detection
with a single photodiode.
The read-out of the two radial directions x and y relies on interference

between scattered light from the nanoparticle into the mode LP11 and the

44



2.2. Experimental Setup and Procedures

X1

X2

HVA f2
f3

f1PZ-M

SX

MMF1

MMF2

Figure 2.17.: Signal light (light reflected from PBS1 or PBS2, see figure 2.16)
is focused with the a lens (f1) onto a knife edge on a piezo
stack (PZ-M) such that half of the impinging light is reflected
and half of the light is transmitted. The reflected light is col-
limated with a lens (f3) and coupled into a multimode fiber
(MMF1). The light transmitted is collimated with a lens (f2)
and coupled into another multimode fiber (MMF2). The multi-
mode fibers go onto the photodiodes X1 and X2. The difference
signal between both diodes is used as error signal for a PID
feedback controller. The output of the PID is amplified to high
voltages (HVA) and sent to the piezo stack with the knife edge.
The feedback loop controls the position of the knife edge such
that the optical power reaching the photodiode X1 is the same
as on X2. Their difference signal is proportional to the particle
displacement along the x-direction.

trapping mode. The read-out architecture along x- and y-direction is identical
up to a rotation by 90◦ around the fiber axis. Figure 2.17 displays a sketch
of a radial read-out. Light reflected from PBS1 (for the y read-out) or PBS2
(for x read-out), see figure 2.16, is focused with a f1 = 25 mm lens onto a
knife edge glued onto a piezo stack (PZ-M). The knife edge consists of a piece
of a Indium Gallium Arsenide which has high reflectivity for the wavelength
λ = 1064 nm. The plate is positioned in such a way that the impinging mode
is cut in half, such that one half of the mode is reflected and collimated by
the lens f3 = 25 mm and the remaining half is transmitted and collimated
by the lens f2 = 25 mm. Both collimated beams are coupled into multimode
fibers (MMF1 and MMF2) and sent onto a balanced, amplified photodetector
(Thorlabs: PDB420-C). The difference between the two monitor outputs is
computed with an analog differential amplifier circuit (see appendix A.5) and
used as error signal. A PID controller (Toptica: PID110) including a high-
voltage amplifier (HVA) generates a control signal acting on the piezo stack.
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The feedback loop stabilizes the knife-edge in such a way that half of the mode
is detected by detector X1 and the other half by detector X2. This ensures that
equation 2.17 is always fulfilled and, therefore, that the detector signal Sx is
proportional to the radial displacement. The bandwidth of the feedback loop is
between 0 and ≈ 1 kHz, far away from the radial particle motion Ωx > 10 kHz,
not to tamper with the detection of the COM motion. If the knife position
deviates from the center of the mode, the sensitivity of the read-out decreases.
Note that the symmetric modulation of the signal beam, caused by the axial
particle motion, vanishes due to the split-detection scheme.

Calibration of the Read-out

As described in chapter 2.1.5, the detector signal (along axial direction for
example, the same procedure is applied to the two radial directions) Sz = √czz
is proportional to the particle displacement z. The proportionality constant
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Figure 2.18.: Szz noise-power spectrum of a 387 nm diameter silica particle
trapped at a pressure of p = 4.9 mbar [62]. The red curve is
the signal with particle and the green curve is the background
signal without particle. The noise floor of the background sets
the position sensitivity of 2× 10−12 m/

√
Hz for the read-out.

cz depends on the mode overlap η01 between light scattered off the trapped
particle and the fundamental trapping mode, see chapter 2.1.5, which contains
the polarizability α of the particle. The polarizability is different for each
individual particle (scatter in size and dielectric constant) and therefore it is
not possible to calibrate the read-out independent of the levitated particle.
Without any external control of the system and at a pressure of p = 4.9
mbar for example, where coupling to the thermal environment is dominant [14,
59], the particle COM motion is in thermal equilibrium with the environment
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mΩ2
z〈z2〉 = kBT0. A measured spectrum from the axial read-out is shown in

figure 2.18. The green trace represents the noise floor of the read-out (recorded
without a particle in the trap) and the red trace represents the particle signal
in thermal equilibrium. The area of of a recorded signal with particle in the
trap 〈S2

z 〉 =
∫
dωSz(ω) at thermal equilibrium can be used to calculate the

proportionality cz. In a first step, the contribution of the background 〈S2
z,B〉

(green area) is subtracted from the particle signal 〈S2
z,P 〉 (red area) 〈S2

z 〉 =
〈S2

z,P 〉−〈S2
z,B〉. In a second step the equipartition theorem is used to calculate

the proportionality constant

cz = kBT0

mΩ2
z〈S2

z 〉
.

With cz, the voltage signal from the detection can be converted into a particle
displacement z = √czSz. The sensitivity of the read-out (the smallest de-
tectable signal) is given by 2×10−12 m/

√
Hz for the axial direction and better

than 40 × 10−12 m/
√

Hz for the radial directions for a levitated particle with
a diameter of d = 387 nm.
Figure 2.19 shows a measured and calibrated three-dimensional trajectory

of a trapped particle inside the HCPCF.
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Figure 2.19.: Measured three-dimensional trajectory of a levitated particle
inside a HCPCF at a pressure of p = 0.3 mbar [62]. The data
is bandpass filtered (between 5-50 kHz along x, y and between
50-500 kHz along z) to eliminate technical noise.

2.2.3. Vacuum Setup
The vacuum system in the HCPCF experiment is designed to have independent
pressure control and pressure monitoring in each vacuum chamber. Figure 2.20
schematically shows the vacuum setup combined with the basic optics setup.
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Figure 2.20.: A vacuum pump (P) is connected to the left vacuum chamber
(vacL) and to the right vacuum chamber (vacR) and each con-
nection can be individually controlled with membrane valves
(MV2 for vacL, MV2 and MV3 for vacR). Each vacuum cham-
ber is directly connected to a pressure sensor (PS1 and PS2). A
source for airborne nanoparticles (NEB) is connected to the left
chamber via a membrane valve (MV1). A needle valve (NV) is
connected to the outside at p = 1000 mbar and is used to have
a controlled influx of air.

A dry scroll pump (P, Edwards: nXDS6i) is connected to the left vacuum
chamber (vacL) and to the right vacuum chamber (vacR). The membrane
valves MV2 and MV3 allow individual evacuation of one or the other vacuum
chamber. MV2 is an automatic valve that can be computer controlled for au-
tomatized measurements. A needle valve (NV) connects the vacuum system
to the outside at room pressure. It can be used to have a controlled influx of
air into vacR. Each chamber is connected to a vacuum gauge (PS1 and PS2
respectively, MKS: Baratron 622C13MDE) to measure the individual chamber
pressure. A source of airborne nanoparticles (NEB) is connected via a mem-
brane valve (MV1) to the left vacuum chamber. More details about loading
particles and the source can be found in chapter 2.2.5.

2.2.4. Fiber Cutting and Fiber Mounting
The handling of a HCPCF is in general similar to standard optical fibers.
Some of the differences were already mentioned in my Master thesis [63]. Here
I want to present a more complete picture on preparation and mounting of
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HCPCFs for optical levitation. There is a useful application note [64] from
NKT photonics on HCPCF handling. In this chapter the steps from initial
cutting (or cleaving) of a HCPCF until mounting it into an optical levitation
experiment are described.

Figure 2.21.: HCPCF cleave and inspection station: The HCPCF is inserted
into a fiber optical ceramic ferrule in which the fiber can be
cleaved and visually inspected (inset a)). The station consists
of a simple optical microscope with an objective lens f1 and a
condenser lens f2. A CCD at the end of the microscope is used
for imaging of the HCPCF end. An image of a HCPCF front
surface after successful cleaving is shown in inset b) and for a
bad cleave with fractures in the photonic crystal area in inset
c). The fiber is illuminated either via the beamsplitter (BS)
and a white light source, or through the HCPCF with a white
light source.

In the experiments reported within this thesis the typical length of a HCPCF
is on the order of l0 ≈ 20 cm. The acrylic cladding protecting the HCPCF can
be removed with a sharp knife (a surgical scalpel or razor blade for example).
One end of the HCPCF is inserted into a fiber optic ceramic ferrule (Thorlabs:
CF126) and clamped into a self-made cleaving and inspection station. It allows
cleaving and inspection of a HCPCF inside a ceramic ferrule which is also used
for mounting the fiber later on.
A schematic of the station is shown in figure 2.21. A fiber optical ferrule

is fixed and aligned to a simple optical microscope with an objective lens (f1,
Nikon: Plan N 40x) and a standard achromatic lens with a focal length of
f2 = 30 mm as condenser. The camera (CCD, Sony: Playstation Eye, all orig-
inal optics and filters removed) in combination with the microscope is used to
visualize the surface of the HCPCF. The insets b) and c) of figure 2.21 show
typical images recorded with the CCD. Part b) shows the surface of a success-
fully cleaved HCPCF compared to part c), a bad cleave with fractures in the
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photonic crystal area. The fiber is illuminated either with white light entering
through the beamsplitter (BS) or with white light through the HCPCF.
The HCPCF is inserted into the ferrule until roughly 1 mm of fiber is stand-

ing out of the other side of the ferrule. A ceramic knife (Thorlabs: S90R) is
used to gently carve the HCPCF along the front surface of the ferrule, per-
pendicular to the fiber axis. The front surface of the ferrule can be used as
a guide for the knife. Then, the fiber is moved a few millimeters towards the
microscope objective and a few taps on the fiber tip with the knife breaks the
fiber along the carve. The microscope is used to visually inspect the surface
immediately after cleaving. If the fiber has a smooth surface without fractures,
the cleave is good. Otherwise the procedure of carving and breaking needs to
be repeated. The same procedure is applied to the remaining fiber end.
The next step is controlling the transmission performance of the fiber. The

easiest way to measure the transmission is butt-coupling the HCPCF to a SMF.
The fiber optical ceramic ferrule is compatible with standard fiber components,
such as the ceramic split mating sleeve (Thorlabs: ADAF1) and a FC/PC
connected SM980-5.8-125 single mode fiber (from Thorlabs). The HCPCF
inside the ferrule is inserted into the mating sleeve from one side and the
FC/PC fiber from the other side. By rotating the FC/PC fiber the coupling
can be optimized. As the mode field diameter of the HC1060 HCPCF and
the SM980-5.8-12 singlemode fiber match, a coupling efficiency > 90% is easy
to achieve. If the coupling efficiency is less than 90% a new piece of HCPCF
should be prepared.
After cleaving and transmission testing, the HCPCF is mounted into the

vacuum chambers. Figure 2.22 a) shows a picture of one vacuum chamber
with a mounted HCPCF. Figure 2.22 b) shows a SolidWorks drawing of the
vacuum chamber in a sectional view. The HCPCF and the fiber optical ferrule
are inserted into a hole on the backside of the vacuum chamber. The hole is
half a millimeter wider than the outer diameter of the ferrule to simplify the
insertion process. The chamber is designed to be compatible with the Thorlabs
cage system (Thorlabs: 30 mm Cage System). The HCPCF with the ferrule
are centered with respect to the cage system axis. The lens used for coupling
light into the HCPCF is outside the vacuum chamber and mounted inside the
cage system. The fiber should stand 1-2 mm out of the ferrule to provide
optical access with a camera from the side window and be within the focal
length of the lens outside. After insertion, a thin layer of glue (two component
Epoxy or Torr Seal) is put on the fiber-ferrule interface and on the ferrule-
chamber interface. After hardening of the glue the same procedure is applied
to the second fiber end and the second vacuum chamber. Once both fiber
ends are mounted light can be coupled into the HCPCF. With a good cleave
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a coupling efficiency around 80% can be achieved from a free space Gaussian
mode into the HCPCF.

Figure 2.22.: a) Photograph of one vacuum chamber with a HCPCF inside
a ferrule mounted. b) Sectional view of the vacuum cham-
ber. The hole on the backside matches the outer diameter of
the fiber optical ferrule. Once fiber and ferrule are inserted
the chamber is sealed with glue. The lens outside the cham-
ber is used to couple light through the optical window into the
HCPCF.

2.2.5. Particle Loading and Trapping
The experiments described in this thesis primarily use plain silica particles
with a diameter of either 387 nm (MicroParticles GmbH: SiO2-F-0.4) or 969
nm (MicroParticles: GmbH SiO2-F-1.0) for levitation. They are delivered in
water with a mass concentration of 10%. The particle-water solution is further
diluted with isopropanol to a final mass-solvent concentration of 10−7. A
medical asthma spray (Omron: MicroAir U22) is used to spray the solution into
air or a nitrogen atmosphere in a closed container. The isopropanol and water
will quickly evaporate and airborne silica particles are left. This approach was
first reported in [65]. A typical loading protocol is as follow. The left vacuum
chamber (vacL) is evacuated to a pressure of p ≈ 1 mbar and the membrane
valves MV1, MV2 and MV3 are closed (see figure 2.20). Then, valve MV1
is gently opened to have a steady flow of particles from the container (NEB)
into the left vacuum chamber. At the same time the transport mechanism of
the HCPCF trap, see chapter 2.2.6, is switched on. If a particle comes close
to the HCPCF entrance it might be trapped and transported towards vacR.
The CCD camera mounted laterally with respect to the fiber (see figure 2.15)
detects if a particle enters the field of view and stops the transport mechanism.
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Once a particle is trapped inside the HCPCF valve MV1 is closed. Typically
a particle will be trapped within 10 s.

2.2.6. Optical Conveyor Belt
This chapter is based on [62]. The optical trap is built up of a standing wave
of the counterpropagating modes inside the HCPCF. The standing wave is
used as an optical conveyor belt for levitated particles, which has already been
demonstrated in free space, both, for individual atoms [66] and macroscopic
dielectric particles [53]. Those approaches are limited to distances on the order
of the Rayleigh length of the laser beam. In our case, in contrast, transport is
limited by the fiber length which can be several meters. An optical conveyor
belt for micrometer sized particles inside a HCPCF has also been demonstrated
[13], in which a feedback loop optimizes a higher order mode with a spatial
light modulator. The method presented here is technologically simpler as only
a frequency change of one laser beam is required.
The dominant part of the intensity distribution inside the HCPCF is given

by the term proportional to P01 of equation 2.4. It can be rewritten as

I ∝ |ei(β01z−2πνt) + ei(β01(z−z0)+2π(ν−∆)t|2

= 2 cos2
[
β01(z − z0

2 ) + π∆t
] (2.18)

with ν = c/λ the frequency of the laser, z0 a change of optical path length in
one arm of the setup and ∆ a relative detuning between CPB and CCPB. The
end of the single mode fiber SMF1 (see figure 2.14) is mounted on a translation
stage and introduces the change in optical path length z0 to vary the distance
between the end of SMF1 and the surface of PBS. The relative detuning ∆ is
introduced by driving AOM1 (see figure 2.14) with a frequency ν = 80 MHz
and AOM2 with a frequency ν = 80 MHz + ∆. A particle will always be
trapped in an intensity maximum of the standing wave, i.e. at a localization
where β01(z − z0

2 ) + π∆t = 0. For ∆ = 0 the position of the trapped particle
is z = z0/2 which means by varying the path length difference the position of
a trapped particle can be changed. The velocity of an intensity maximum and
therefore the velocity of a particle trapped is v = dz/dt = π∆/β01 ≈ ∆ λ/2.
By detuning one laser beam by ∆ the standing wave starts moving and acts
as a conveyor belt for trapped particles.
In figure 2.23 ten consecutive pictures of a particle transported through the

HCPCF with the optical conveyor belt (detuning ∆ = 20 kHz) are shown.
The position of the particle is calibrated with the manual positioning stage.
By calculating the velocity of the particle with the known frame rate of the
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Figure 2.23.: Ten consecutive images of a 387 nm diameter particle at differ-
ent positions (x-axis) and different times (y-axis) while trans-
ported with a detuning ∆ = 20 kHz inside the HCPCF [62].

camera we find v = (10.66 ± 0.06) mm/s, which agrees with the theoretical
predicted value of v = 10.64 mm/s.

2.2.7. Optical Trap Characterization
This chapter presents characterisation measurements of the HCPCF trap. A
set of power-, position- and pressure dependent measurements confirms the
theoretical descriptions from chapter 2.1.

Power and Pressure Dependence

Two intrinsic parameters of a damped harmonic oscillator are the damping
coefficient and the oscillation frequency. Together with the mass and the tem-
perature of the force noise the system is uniquely defined, see chapter 2.1.4. In
optically levitated systems the oscillation frequency Ωm as well as the damping
γp can be controlled by the optical trapping power and the target pressure,
respectively. Figure 2.24 a) shows a mechanical damping measurement as a
function of the pressure in the vacuum system γp(p) and a fit according to
equation 2.11. Figure 2.24 b) shows a measurement of the frequency Ωx(P ) as
a function of the trapping power P . The solid line is a fit to equation 2.9. For
each power or pressure setting a spectrum was recorded and fitted to the noise-
power spectrum (see equation 2.13) with γp and Ωm as free fit parameters. For
both measurements the same silica particle with a diameter of d = 387 nm was
used. The mechanical frequency has a square-root dependence on the trapping
power. The mechanical damping depends linearly on the pressure, which is
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Figure 2.24.: a) Measurement of the damping γp (points) and fit (solid line)
for different pressures p. b) Measurement of the mechanical
frequency Ωx (points) and fit (solid line) for different trapping
powers P .

expected in the regime where the mean free path of air molecules is larger than
the particle diameter, see equation 2.12.

Frequency z-Position Dependence

The appearance of multiple modes inside the HCPCF causes deviations from a
free space standing wave, see chapter 2.1.1 and chapter 2.1.3. The intensity of
individual anti-nodes is modulated and since the mechanical frequency depends
on the intensity, this effect can be used to map out the interference pattern.
A measurement of the mechanical frequency Ωz for varying z-positions inside
the HCPCF is shown in figure 2.25. A levitated particle is moved to different
positions inside the HCPCF with the conveyor belt and at each position the
mechanical frequency is measured (blue dots). The solid line is a sinusoidal fit
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Figure 2.25.: Position dependent axial frequency: The normalized axial me-
chanical frequency along the fiber axis is measured (dots) and
fitted to an interference pattern between fundamental and
higher order fiber mode (solid line).

to the data with amplitude and frequency as free fit parameters. The wave-
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length of the frequency modulation is defined by half the beating wavelength
π/∆β between mode LP01 and mode LP11, see chapter 2.1.3. The value of ∆β
can be used to estimate the HCPCF core radius rco, according to equation 2.2.
For this particular HCPCF the fit results in a core radius of rco = 4.2±0.1 µm.
The amplitude of the fit can be used to infer the power ratio between mode
LP01 and mode LP11 and results in a ratio of P11/P01 ≈ 0.1.

Frequency x, y-Position Dependence

The same mechanisms that leads to a modulation of the axial mechanical
frequency modulates the two radial frequencies, too. Figure 2.26 displays a
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Figure 2.26.: Position dependent radial frequencies: The normalized radial
frequencies along x- (red points) and y-direction (green points)
are measured as a function of z-position inside the HCPCF.
The solid lines represent fits to the interference pattern between
fundamental and higher order mode.

measurement of the radial mechanical frequency as a function of position. It
is in close analogy to the measurement in the previous chapter, see figure 2.25.
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Figure 2.27.: Position dependent radial read-out sensitivity: Due to the in-
terference between fundamental mode LP01 and higher order
mode LP11, the sensitivity is modulated with a wavelength of
π/∆β. The solid lines are fits to the interference pattern.
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In contrast to the axial direction, the sensitivity of the radial read-out is
modulated with a wavelength of 2π/∆β, see equation 2.17. A measurement
of the sensitivity S is shown in figure 2.27. The sensitivity is defined as ratio
between maximum of the mechanical spectrum Sxx and the noise floor of the
spectrum. Note that this definition of the sensitivity is proportional to the
absolute value of the read-out and hence, has the same wavelength as the
frequency modulation.
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2.3. Linear Feedback Cooling Inside a Hollow
Core Fiber

Feedback control is a universal technique to stabilize a system parameter based
on a measurement of the system. In the context of mechanical oscillators, feed-
back stabilization turned out to be extremely useful, for example in atomic
force microscopy [67] and in gravitational wave detection [68]. It is also suc-
cessfully applied to cool the center of mass (COM) motion of mechanical os-
cillators [69–71]. For levitated systems Ashkin and Dziedzic applied feedback
stabilisation techniques already in 1977 to stabilize a levitated particle in high
vacuum [72] and Li et al. used feedback to cool the COM motion of a levitated
microsphere to ≈ 1.5 mK at room temperature [73].
The term linear feedback cooling is used to emphasize the difference to

parametric feedback cooling. Linear feedback applies a force proportional to
the displacement (or velocity or a combination of both) to the particle whereas
in parametric feedback cooling the spring constant is modulated proportional
to a product of displacement and velocity, see chapter 3.1.3. As a direct
consequence, the modulation happens at the mechanical frequency in linear
feedback and in the parametric case at twice the mechanical frequency. Beside
the pioneering work of Ashkin and Li, linear feedback techniques are commonly
applied to levitated systems, for example in the search of milli-charged particles
[74], ultra-sensitive force measurements [75, 76], or pressure sensing [62].

2.3.1. Theory of Direct Feedback Cooling
In this chapter feedback cooling is explained with a general, system indepen-
dent feedback force Ffb = mΠf(x). The feedback force is chosen to be pro-
portional to the particle mass and a parameter Π which describes the physical
implementation of the feedback. Most importantly, the feedback force is a lin-
ear function in the displacement variable x of the oscillator. The function f(x)
is implemented by, for example, a PID controller connected to the read-out of
the experiment. The additional feedback force modifies the equation of motion
to

ẍ+ γpẋ+ Ω2
mx = Fth + Ffb

m
. (2.19)

High-Q Approximation

If the mechanical quality factor is large Q = Ωm/γp � 1, the displacement
on short timescales t < 1/γp is well approximated with a sinusoidal function.
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For a feedback function f(x) = xt−τ which only introduces a delay τ between
displacement and feedback force, i.e.

xt−τ ≈ x0 sin
[
Ωm(t− τ)

]
= xt cosφ− ẋt

sinφ
Ωm

with φ = Ωmτ the phase shift corresponding to the delay τ , the equation of
motion can be rewritten as

ẍt + (γp + Π sinφ
Ωm

)ẋt + (Ω2
m − Π cosφ)xt = Fth

m
. (2.20)

The term γfb = Π sinφ/Ωm can be identified as additional damping and Ω2
fb =

Π cosφ as optical spring introduced by feedback control. Note that both effects
can be controlled with the delay φ = Ωmτ . For a value of Ωmτ = π/2 for
example, the optical spring term vanishes and the only effect of the feedback
is additional damping.

Derivative Feedback

Instead of introducing a time delay τ , the feedback function can also be chosen
to be the derivative of the displacement, i.e. f(x) = ẋ. The feedback force
becomes Ffb = mΠẋ and the equation of motion is given by

ẍt + (γp + Π)ẋt + Ω2
mxt = Fth

m
.

This corresponds to equation 2.20 for φ = Ωmτ = π/2 in which the optical
spring vanishes and the damping is maximal.

Effective Mode Temperature

The noise power spectral density corresponding to equation 2.20 is

Sxx(ω) = 2kBT0γp

πm

1
(Ω2 + Ω2

fb − ω2)2 + (γp + γfb)2ω2

= 2kBT0γp

πm

1(
Ω2

eff − ω2
)2

+ γ2
effω

2

(2.21)

with Ω2
eff = Ω2

m + Ω2
fb the effective mechanical frequency and γeff = γp +γfb the

effective mechanical damping caused by feedback control. Integration of the
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spectrum

〈x2〉 =
∞∫
0

dω Sxx(ω)

=
∞∫
0

dω
2kBT0γp

πm

1(
Ω2

eff − ω2
)2

+ γ2
effω

2

= kBT0

m

γp

Ω2
effγeff

and application of the equipartition theorem mΩ2
eff〈x2〉 = kBTeff allows the

definition of an effective mode temperature

Teff = mΩ2
eff〈x2〉
kB

= T0
γp

γeff
= T0

γp

γp + γfb
.

(2.22)

Note that for feedback control being switched off the effective mode temper-
ature is Teff = T0, the temperature of the environment. For γfb > 0 the
effective temperature Teff < T0 is smaller than the environmental temperature.
Hence, introducing damping via feedback is equivalent to operating at a colder
environmental temperature and therefore also called cold damping. For low
pressures and efficient feedback cooling γeff = γp + γfb ≈ γfb. The effective
temperature can then be simplified to Teff ≈ T0γp/γfb and becomes inversely
proportional to the damping introduced by feedback cooling.

2.3.2. Optical Axial Feedback Cooling
This chapter is based on [62]. Feedback control along the fiber axis (z-
direction) is implemented via radiation pressure of an additional feedback
laser. Figure 2.28 shows the additions to the optical setup for axial feedback
control. A laser with λ = 1064 nm and power Pfb for feedback cooling is su-
perimposed with the CCPB at PBS1. It is orthogonally polarized and shifted
in frequency with respect to the trapping laser to avoid interference. The
feedback laser propagates through the HCPCF and pushes the particle away
from the intensity maximum of the standing wave due to radiation pressure
~Fscatt = σscatt/cI~ez.
For a constant power Pfb a trapped particle has a new equilibrium position

z0 where Fscatt(z0) = Fgrad(z0). An increase or decrease of the feedback laser
power Pfb either pushes the particle further away from z0 or the gradient force
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Figure 2.28.: A laser for feedback cooling (green line) is superimposed with
the counterclockwise propagating trapping laser at a polarizing
beamsplitter (PBS1). A feedback logic (fbL) and a highpass
filter (HP) process the axial read-out signal of the particle. It is
transduced to an intensity modulation of the feedback laser via
the acousto-optical modulator (AOM3).

pulls the particle back towards intensity maximum of the standing wave. The
feedback laser is modulated with a ATM-804DA6M acousto-optical modulator
from IntraAction Corp (AOM3) which is driven by a MOD80 frequency source
from AA Opto-Electronic .
The voltage signal of the detector is highpass filtered (HP) with an analog

filter (corner frequency νhp ≈ 50 kHz), see appendix A.2, to suppress unwanted
low frequency noise. The feedback logic (fbL) converts the read-out signal into
a modulation signal sent to AOM3. It consist of three parts: a phase shifter,
a variable gain amplifier and a controlled switch. The variable gain ampli-
fier and the phase shifter are described in appendix A.3 and appendix A.4,
respectively. The phase shifter delays the signal by t = π/(2Ωz), effectively
resulting in a velocity feedback in the high-Q limit. The variable amplifier is
used to adjust the amplitude of the feedback signal. The controlled switch
(Mini-Circuits: ZASWA-2-50DR+) is used to enable or disable the feedback
control with a TTL signal. Alternatively, the feedback logic is replaced with
a field programmable gate array (FPGA, National Instruments: PXIe-7965 in
combination with a NI-5781 transceiver module). The FPGA is used to delay
the signal by τ = π/(2Ωz) in the same way as the phase shifter analog circuit.
A measurement of feedback cooling is shown in figure 2.29. A silica particle
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Figure 2.29.: Axial radiation pressure based feedback cooling: Effective axial
COM temperature as a function of inverse mechanical quality
factor 1/Q ∝ p. A silica particle with a diameter of 387 nm is
feedback cooled via radiation pressure [62]. The lowest mode
temperature achieved is Teff = (4.83 ± 0.28) K. The solid line is
a linear fit to the data points.

with a diameter of 387 nm is trapped inside the HCPCF and feedback control
is switched on. The delay of the feedback logic is chosen for optimal feedback
cooling. The effective mode temperature is measured as a function of the
pressure p, which effectively changes the mechanical quality factor Q = Ωm/γp.
The solid line is a fit to equation 2.22 confirming the pressure dependence of
linear feedback cooling Teff ≈ T0γp/γfb ∝ p. The minimal effective mode
temperature achieved is Teff = (4.83 ± 0.28) K, which is limited by particle
loss from the trap at lower pressures. For the future, implementation of three-
dimensional feedback cooling should prevent particle loss and allow cooling to
much lower temperatures.

2.3.3. Electrical Radial Feedback Cooling on Charged
Particles

The one-dimensional feedback cooling scheme needs to be extended to be able
to levitate in vacuum. One approach is electrical feedback along the radial
directions of motion (x and y).
Here we are using the fact that some of the particles from the nebulizer

are charged during the loading process. Alternatively there are techniques
available to control the charges on a levitated particle [74, 77]. Such a charged
particle is used for a proof-of-principle demonstration of electrical feedback
cooling. A plate capacitor around the HCPCF applies an electrostatic force
on a particle Fel = qU/d (q: charges on the particle, d: distance between the
plates, U : voltage applied to the capacitor). As above, for the optical case, the

61



2. Optical Levitation With Hollow Core Photonic Crystal Fibers

electrical force is modulated proportional to the velocity of the particle and
hence cooling the COM motion.
The experimental modifications to the setup are shown in figure 2.30 Two

read-out
vacL vacR λ/2

Cf f

BS2

LO
f(y)

HVAfbL

Figure 2.30.: A plate capacitor (C) is mounted around the HCPCF and a
particle is positioned between the plates, where the electric
field is homogeneous. The y read-out signal (which is parallel
with respect to the electric field of C) is sent to a feedback logic
(fbL) and is amplified with a high-voltage amplifier (HVA). The
signal of the amplifier is connected to the capacitor modulating
the electrostatic force on the particle.

copper plates (roughly 1 cm x 1 cm) separated by dC = 2 mm are mounted
around the HCPCF. A particle trapped inside the HCPCF is moved between
the two plates with the optical conveyor belt. The capacitor is aligned such
that the homogeneous electric field lines are parallel with the y-COM motion.
One way of aligning is driving the capacitor and hence the particle COM with a
sinusoidal tone. If the driving frequency appears in both, the x and y read-out,
the capacitor needs to be rotated until only one direction is addressed.
The feedback logic consists of an analog derivative circuit, see appendix

A.6 in combination with a variable gain amplifier, see appendix A.3. The
y read-out is connected to the feedback logic generating the feedback signal
f(y) ∝ gyẏ with gy the gain of the variable amplifier circuit. The signal is
further amplified with a high voltage amplifier (HVA, Trek: PZD350A-1-H-
CE) which is connected to the copper plates.
A measurement of the effective temperature Teff for a particle of diameter

a = 387 nm at a pressure of p = 2.9 mbar is shown in figure 2.31 for different
feedback gains gy. Feedback cooling of the COM motion is clearly observable
and a reduction to Ty ≈ 150 K from room temperature was possible. The
solid line is a fit to the effective mode temperature, see equation 2.22, with the
feedback gain gy as free fit parameter.
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Figure 2.31.: Radial electric feedback cooling: Effective mode temperature of
the y-COM motion versus feedback gain gy. The solid line is a
fit to the effective mode temperature.

The scheme could be extended to two dimensions. Instead of a plate capac-
itor one would need four rods around the HCPCF, arranged like a Paul trap.
Relying on metal rods outside the fiber and not covering the entire fiber (the
two vacuum chambers are in the way, for example) constrains the range in
which feedback cooling could be applied and hence the range where particles
could be trapped in high vacuum. A possible solution would be metal rods
incorporated in the photonic crystal of the fiber, as already demonstrated for
solid core photonic crystal fibers [78]. With this technology available, radial
electric feedback cooling could be applied over the full extend of the fiber. In
combination with the radiation pressure based feedback cooling described in
the previous chapter levitation in high vacuum would be feasible.
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2.4. The Hollow Core Trap as Source for
Ultra-High Vacuum Experiments

Cavity optomechanics with levitated nanoparticles is a promising platform for
fundamental tests of physics. Proposals range from ground state cooling of
the COM motion to macroscopic superposition states of motion [5, 16, 79–
81]. Several of them require extreme experimental conditions, particularly
ultra-high vacuum levels p . 10−10 mbar to isolate the system sufficiently well
from the environment [81, 82]. While free particles in ultra-high vacuum have
been prepared via laser ablation [83, 84], reliably trapping nanoparticles inside
ultra-high vacuum, to perform this type of experiments, is still an outstanding
challenge.
By loading a particle into the optical trap, neither the vacuum system nor

parts of the experiment inside the vacuum chamber should be contaminated
with residual particles or solvent. A standard approach to load particles into
optical traps uses ultrasonic nebulizers [65], as described in chapter 2.2.5 and
chapter 3.3.4. Optical mirrors inside the vacuum chamber, used for a high-
finesse cavity for example, are susceptible to a high particle concentration
in the solvent. We found experimentally that a mass concentration of 10−4

(particles to solvent ratio) degraded the finesse of our cavity from F = 200, 000
to F = 40, 000 (during a single loading attempt). However, a combination
of optical tweezer and high-finesse cavity as proposed in [16], requires this
concentration to load particles into the tweezer trap, see chapter 3.3.4.
Some protocols involving multiple modes inside the optomechanical cavity

require a particle levitated at a specific position inside the cavity field, for
example [5, 85]. By sucking a cloud of particles into the vacuum chamber
or by shaking particles off a piezo [2] or by laser ablation [83, 84], there is
no control over which trapping site will be occupied. Therefore a loading
mechanism with a controllable location of delivery is mandatory.

2.4.1. HCPCF as Particle Source
The HCPCF experiment as source for particles has the potential to comply
the previously mentioned requirements. The basic design is shown in figure
2.32. The left vacuum chamber (vacL) contains an ultrasonic nebulizer source
(NEB) and the right vacuum chamber (vacR) contains the target experiment.
In our case the target experiment is a high-finesse Fabry-Pérot cavity which
is used to control the COM motion of a levitated nanoparticle. The HCPCF
spatially separates the contaminating solvents from the cavity and is used to
deliver particles on demand with the optical conveyor belt to a well controlled
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position, i.e. the exit of the hollow core fiber.

d

l0

S
pl=10 mbar

pr

NEB

vacL vacR

Figure 2.32.: A HCPCF of length l0 connects the left vacuum chamber
(vacL) containing an ultrasonic nebulizer operating at p = 10
mbar with the right vacuum chamber (vacR) containing a high-
finesse Fabry-Pérot cavity. VacR is also connected to a pump
with a volume pumping rate S. The optical conveyor belt is use
to transport a nanoparticle from vacL on demand into the cav-
ity mode in vacR at ultra-high vacuum.

The HCPCF is not only the loading channel for particles into ultra-high
vacuum, it is also a leak which connects the chamber at ultra-high vacuum with
a higher pressure region. In the context of vacuum technology the conductance
C, the inverse of the flow resistance, is used to quantify the flow properties of
a pipe. The conductance C of the HCPCF is the sum of its conductance for
free molecular flow (the flow characteristics at the ultra-high vacuum side pr)
and its conductance for continuous flow (the flow characteristics at the high
pressure side pl) [86] and is given by

C = πvgas

12
d3

co
l0

+ π

256η
d4

co
l0

(pl + pr) (2.23)

with vgas the mean thermal velocity of gas molecules, η the gas viscosity, dco
the core diameter of the HCPCF and l0 the length of the HCPCF. The volume
flow from the left into the right vacuum chamber is qpV = C(pr − pl). The
right vacuum chamber is connected to a vacuum pump with an effective volume
pumping rate S. An equilibrium between gas influx through the HCPCF and
evacuation via the pump is reached if

∆pC = prS (2.24)

with ∆p = pl − pr.
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Ermolov et al. [33] showed for HCPCFs with a core diameter of dco = 30 µm
and a length l0 = 0.3 m that eight orders of magnitude in pressure can be
bridged. In their experiment one fiber end was at room pressure pl = 103 mbar
and a pump with S = 225 l/s was connected to the right vacuum chamber.
A final pressure of pr = 8× 10−6 mbar was reached, consistent with equation
2.23 .
In our scenario, the left vacuum chamber will be held at pl = 10 mbar for

initial particle loading from an ultrasonic nebulizer source. The conductance
C is dominated by the free molecular flow term proportional to ∝ d3

co and by
the inverse proportional scaling with the fiber length l0. Using the HC-1060
(the fiber used for the experiments presented in this thesis) HCPCF with a
core diameter of dco = 10µm reduces the conductance by a factor of 80 and
increasing the length to l0 = 1 m further decreases the conductance by another
factor of three, compared to the findings in [33]. In combination with a stronger
vacuum pump (pumping speed of S = 790 l/s, Pfeiffer HiPace800 for example)
the pressure in the right vacuum chamber can be reduced by eleven orders of
magnitude and a desired ultra-high vacuum level of pr = 10−10 mbar can be
reached.
A particle can be trapped in the left chamber at ambient pressures, trans-

ported with the conveyor belt into ultra-high vacuum and handed over into
the mode of an optical cavity. Particles can be routinely trapped within 10 s
on the high pressure side. Transport over l0 = 1 m of fiber with a detuning
of ∆ = 40 kHz takes 50 s (for this detuning, all acceleration and decelera-
tion effects due to starting and stopping of the conveyor belt are negligible).
In summary, a single particle could be delivered on demand into ultra-high
vacuum to a well-defined position and without contaminants from a nebulizer
source at a total time of t = 60 s. Currently, the system is limited by parti-
cle loss from the trap below a pressure of p ≈ 0.1 mbar. Once the HCPCF
is equipped with three-dimensional feedback cooling it is expected to levitate
particles in ultra-high vacuum, making the system a promising candidate for
loading.

2.4.2. Trapping in Front of the Hollow Core Fiber
One very important parameter for the HCPCF trap as particle source is the
distance d a particle can be levitated away from the fiber entrance. As indi-
cated in figure 2.32 the distance d needs to be bigger than the waist of the
cavity mode. If the fiber clips the cavity mode it will decrease its finesse and
therefore limit the performance of the optomechanical system. In our current
cavity system the optical losses of both cavity mirrors are 10ppm (parts per
million, limited only by the design transmission of the coatings). The pres-
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ence of the HCPCF should not increase losses significantly. The situation is

w0=41μm

dout=125μm

HCPCF d

Figure 2.33.: A HCPCF with an outer diameter of dout = 125 µm is po-
sitioned in the vicinity of a TEM00 mode (red area, cross-
sectional view, waist: w0 = 41 µm) with a distance of d be-
tween them.

illustrated in more detail in figure 2.33. A HCPCF with an outer diameter of
dout = 125 µm (the outer diameter of a HC1060) is positioned in the vicinity
of a TEM00 mode (indicated by the red area). In our cavity experiment the
waist of this mode is w0 = 41 µm. The clipping losses ηclip due to the presence
of the HCPCF are computed as one minus the ratio between the integral

a(p) = 1√
2πw2

0

∞∫
p

dx e
− x2

2w2
0 (2.25)

of the radial cavity field with the fiber at a position p = d and without the
fiber present p = −∞. For a distance of p = 5w0 between cavity mode and
HCPCF the additional clipping losses are ηclipp = 1 − a(5w0)/a(∞) = 0.3
ppm. If the clipping losses should not exceed a value of ηclipp < 10 ppm, we
find numerically that the minimal distance between fiber and cavity needs to
be at least d > 4.25w0.
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Figure 2.34.: Axial mechanical frequency Ωz of a particle trapped inside (z >
0) and in front (z < 0) of the HCPCF [62].

Figure 2.34 shows measurements of a particle being trapped in front of the
HCPCF. A particle at a pressure of p = 0.2 mbar is positioned inside the
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HCPCF (z > 0) and in front of the HCPCF (z < 0). The modulation of
the mechanical frequency Ωz inside the fiber is due to the beating between
fundamental trapping and the first higher order mode inside the HCPCF. The
mode in front of the fiber is expanding with a Gaussian envelope. Therefore the
trap frequency and the confinement decrease for increasing distance from the
fiber tip. In order to keep the particle trapped, the power of the trapping laser
is increased (color coding). At a pressure p = 0.2 mbar and without feedback

Figure 2.35.: A series (from top left to bottom right) of color-inverted pic-
tures of a 387 nm diameter particle (black arrows) for posi-
tions outside and inside the HCPCF (black dashed lines) [62].
The black dot at the fiber entrance is scattered light from the
HCPCF tip. The further outside of the HCPCF the less light is
scattered from the nano-particle which is due to the diverging
laser beam.

cooling the particle could be trapped up to a distance of d = 65 µm in front of
the fiber. At higher pressures (p ≈ 5 mbar) the distance can be increased, even
without power compensation, to 160 µm away from the HCPCF tip. Figure
2.35 shows a selection of pictures from the particle at different positions inside
and outside of the HCPCF in false coloring.
Once the HCPCF fiber experiment is equipped with three-dimensional feed-

back cooling we assume that a particle can be stably levitated in front of the
HCPCF at any pressure and at distances d ≈ 200 µm = 5w0, which would
allow safe loading of our levitated cavity optomechanics experiment [14].

2.4.3. All-Fiber Optical Trap
In the previous chapter the potential of the HCPCF setup as source for lev-
itation experiments was introduced. In the scenario shown in figure 2.32 the
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HCPCF needs to be aligned with respect to the cavity to hand over a particle.
The current HCPCF setup trap does not offer such positioning capabilities. In
this chapter I will present an all-fiber based optical trap that overcomes this
deficiency and report the current progress. Some results were carried out in
the Bachelor project of Christian Siegele [87].

SMF HCPCFGRIN

V-Groove

Figure 2.36.: A single mode fiber (SMF) with a grin lens (GRIN) is used to
build a standing wave trap with a hollow core fiber (HCPCF).
The SMF, GRIN and HCPCF are all fixed to the same v-
groove (dashed black line) and can be moved around together.

The free space optics used to couple light into the HCPCF make the trap
immobile. If one end of a HCPCF were to be aligned to a cavity mode, the
optics used for coupling would require simultaneous movement. This can be
avoided with the design shown in figure 2.36. A single mode fiber (SMF)
with a gradient index lens (GRIN) is used to couple light into a HCPCF
fiber. A GRIN lens is a cylindrical piece of glass which has radial variation
of the refractive index. With the proper length, such a glass cylinder acts as
focusing lens. The GRIN lens has a flat surface and therefore, it can be easily
fused to an optical fiber. The SMF, the GRIN lens and the HCPCF fiber are
glued to a v-groove such that all three components are quasi-monolithic. The
second end of the HCPCF is mounted into a vacuum chamber as described
in chapter 2.2.4 which is connected to an ultrasonic nebulizer. By coupling
light into the HCPCF and into the SMF an optical conveyor belt trap is
formed and can be used to transport particles towards the GRIN interface.
The v-groove is mounted on a three-dimensional translation stage and the
laser light for trapping and transport of particles arrives via flexible fibers.
The combined system can easily be moved around with the translation stage
and no realignment of optics is required. This is ideal to align a particle
trapped in front of a HCPCF to a cavity mode.
On of the main results of [87] was the characterisation of the SMF-GRIN-

HCPCF interface. For a distance of 1.3 mm between SMF (Thorlabs: SMPF0210)
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and GRIN (Thorlabs: GRIN2910) the beam from the SMF is focused at
d = 1.3mm behind the GRIN with a beam waist of w0 = 3.75 µm, hence
matching the mode field diameter of the HCPCF (Thorlabs: HC1060). That
means that the combination of GRIN and SMF can be used to launch light
into a HCPCF without any additional optics. The GRIN and SMF were held
together inside a glass sleeve (Thorlabs: 51-2800-1800) while the HCPCF was
glued into a ceramic ferrule (Thorlabs: CF270-10) with the same outer diam-
eter as the glass sleeve. The SMF and GRIN combination on one side an the
HCPCF with ceramic ferrule on the other side were glued into a self-made
v-groove. A prototype is shown in figure 2.37 in combination with four snap-

Figure 2.37.: Photograph a) shows a prototype of the all-fiber optical trap
[87]. A hollow core fiber (HCPCF) inside a ceramic ferrule on
one side and a GRIN lens and a pigtailed SMF inside a glass
sleeve on the other side are both glued on the same home-made
v-groove. b)-e) Photographs of a particle (red arrow) levitated
in front of a HCPCF (indicated by white, dashed line). The
all-fiber trap including particle is first moved to the right b)-
d) and then towards the bottom d)-e). The red dashed cross
marks the initial particle position.

shots of a video in which a particle is trapped inside the all-fiber trap and
moved around with a three-dimensional positioner (picture b)-e)). More de-
tails on the experimental setup, alignment procedures and construction of the
prototypes can be found in [87].
The current bottleneck of the all-fiber optical trap is the long-term stability.

It seems that over the course of a few days the alignment between SMF and
HCPCF deteriorates and the coupling efficiency from SMF to HCPCF reduces
(from initially 80%) to zero. The best explanation so far is that the GRIN lens
absorbs light (the manufacturer specifies 90% transmission), thermally expands
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and reduces the coupling from SMF to HCPCF. The thermal expansion might
deform the glue between GRIN and glass sleeve in an irreversible way until no
light is coupled and trapping is not possible anymore.
The next step is improving the mechanical mounting of the three components

with respect to each other. A first step is getting customized grin lenses already
fused onto a SMF and with better transmission at the trapping wavelength.
Also, a custom GRIN lens which is already fused on the SMF simplifies the
alignment procedure.
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2.5. A Nanomechanical Oscillator as Pressure
Sensor

The application described in the previous chapter, namely loading particles
into vacuum with a HCPCF, comes with an obvious question. If the left vac-
uum chamber holding the HCPCF is at moderate pressure (for initial particle
trapping) and the right vacuum chamber holding the other end of the fiber
(containing a sophisticated levitation apparatus) at ultra-high vacuum - what
is the pressure profile along the fiber? It turns out that this problem, flow
through a straight pipe, is non-trivial and requires modelling with the non-
linear Boltzmann equation. The Boltzmann equation is a fundamental model
for rarefied gas dynamics forming the basis for the kinetic theory of gases
[88–90]. The Boltzmann equation also applies to electron transport in solids
and plasmas, to neutron transport in nuclear reactors, to photon transport in
superfluids [90] and is relevant for vacuum technology, chemical apparatuses,
spaceship construction, gas-surface interaction and fabrication of semiconduc-
tors and microelectronics [91, 92].
The figure of merit to characterize flow through a pipe is the Knudsen num-

ber Kn = Λfree/d. It compares the mean free path of gas molecules Λfree with
the relevant geometry d of the system, in this case the hollow core radius rco.
Continuous flow occurs for Knudsen numbers below Kn < 0.01 if the mean
free path of gas molecules is much shorter than the fiber core. Continuous flow
in a pipe can be further separated into laminar and turbulent flow, depending
on the Reynolds number Re = 8.41 × 10−1Q/d (this is a specific expression
for air flow through round pipes [86] with Q the volume flow rate and d the
pipe diameter). Up to values of Re < 1200 the flow will be laminar [86]. In
the extreme case of pr = 1000 mbar and pl = 0 mbar, the Reynolds number
for flow through a l0 = 0.1 m long HCPCF is Re = 0.07 � 1200, placing
the system well into the laminar regime. Here, the gas is described as fluid,
molecules mainly interact with each other and have less frequent interactions
with the fiber walls. The pressure profile in the laminar continuum regime for

pl pr

Figure 2.38.: The HCPCF connects the left vacuum chamber at pressure pl
with the right vacuum chamber at pressure pr > pl.
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the situation shown in figure 2.38 is given by [86]

p(z) =
√
p2
l + z

l0
(p2
r − p2

l ). (2.26)

with z the coordinate along the tube and l0 the length of the tube.
Free molecular flow occurs for a Knudsen number Kn > 1 where the mean

free path is much larger than the fiber core. In this regime gas molecules hardly
interact with each other and the dynamics are governed by collisions with the
walls. The pressure profile along the tube in the free molecular regime is given
by [86]

p(z) = pl + z
pr − pl
l0

. (2.27)

In the HCPCF experiment the Knudsen number can be controlled via the
pressure in each vacuum chamber. For a pressure pl ≈ 0.1 mbar in the left vac-
uum chamber and pr = 1000 mbar in the right vacuum chamber the Knudsen
number lies between 70 > Kn > 0.007 including both, the free molecular flow
regime and the continuum flow regime at the same time. For this scenario no
general, analytical solution for the pressure profile is known to the author and
numerical simulations have to be employed.
We use a levitated particle inside the HCPCF as a nanomechanical pressure

sensor and directly measure pressure profiles along the hollow core fiber. The
COM motion of a levitated particle is damped by the surrounding gas with
a damping rate γp(p), which depends on the local pressure p. We have two
methods to measure the damping of a levitated particle and hence measure the
local pressure. For a highly underdamped oscillator γp � Ωm, feedback cooling
is used to perform energy relaxation measurements. For the remaining cases
of γp < Ωm and γp & Ωm the read-out of the COM motion alone is sufficient
to infer the damping from the mechanical spectrum, see equation 2.13.
The ability to choose the flow regime in the HCPCF experiment and directly

measure the pressure profile makes this experiment an ideal candidate for hy-
drodynamical studies. In the next chapter the measurement and calibration
procedures are described, followed by a chapter in which a direct measurement
of the pressure profile for pl = 0.2 mbar and pr = 100 mbar is performed. The
results directly contradict a theoretical prediction and an indirect measure-
ment of Yang and Garimella [93]. To further understand our findings, more
measurements for different pressure settings are performed and confirmed by
direct simulation Monte Carlo (DSMC) simulations from the John Sader group
of the University of Melbourne.
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2.5.1. Measurement Procedures and Calibration
Spectral Evaluation
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Figure 2.39.: Mechanical noise-power spectrum with fits of a particle at p =
0.7 mbar (red curve) and at p = 5 mbar (blue curve). The
inhomogeneous broadening at low pressures is caused by drifts
in the mechanical frequency and limits the spectral evaluation
method.

The width of the noise-power spectrum, see equation 2.13, is given by the
mechanical damping rate γp. Figure 2.39 shows two measured noise power
spectra of the COM motion of a levitated particle. The red curve shows data
taken at a pressure of p = 0.7 mbar and the blue curve at a pressure of
p = 5 mbar. Power drifts in the trap laser cause drifts in the mechanical
frequency Ωm of the particle and lead to inhomogeneous broadening of the
spectrum (red curve). We found experimentally that this effect limits the
spectral evaluation method to damping rates above γp > 4 kHz [62]. The
effects of inhomogeneous broadening become negligible for higher pressures,
where the damping γp dominates the width of the mechanical spectrum and
where fits agree well with the measured data (blue curve).

Energy Relaxation Measurement

In the regime in which the spectral evaluation method breaks down feedback
cooling is used for energy relaxation measurements. The Fokker-Planck equa-
tion describing the mean energy E(t) of the COM motion at an environmental
temperature T0 is [94]

Ė(t) = −γpE(t) + γpkBT0. (2.28)

Note that this equation will appear in chapter 3.1.5 in a modified version
including recoil heating and feedback noise. However, recoil heating and feed-
back noise are small in the regime considered here and can be neglected. For
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an initial state E(t = 0) = E0 the solution of equation 2.28 is

E(t) = kBT0 + (E0 − kBT0)e−γpt. (2.29)

In order to measure the relaxation constant and hence, the damping γp, the
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Figure 2.40.: Energy transient of the COM motion (dark blue curve) at a
pressure of p = 0.7 mbar [62]. Feedback cooling is switched on
until t < 4.9× 10−3 s (grey shaded area) and switched off after.
The COM motion is prepared at a low energy state E0 < kBT0
and relaxes back to thermal equilibrium E∞ = kBT0 with the
damping rate γp. The light blue line is an exponential fit to the
data (dark blue). The sharp peak is an electronic artefact due
to the switching process.

particle is initially prepared in a low energy state E0 < kBT0 with feedback
cooling. If feedback cooling is switched off, the energy evolves according to
equation 2.29 and relaxes back to thermal equilibrium E(t = ∞) = kBT0.
Figure 2.40 shows a relaxation measurement at pressure of p = 0.7 mbar.
The energy trajectory (dark blue curve) corresponds to an ensemble average
over approximately 2000 repetitions of a cooling cycle. For each repetition
the particle is cooled until the steady state E0 is reached and then, feedback
cooling is switched off until the COM motion reaches thermal equilibrium.
The damping rate γp is obtained by fitting the relaxation data to equation
2.29 with γp as free fit parameter (solid light blue curve) .

Calibration of the Pressure Sensor

The levitated particle can be used to measure the local damping rate γp, and
hence local pressure, inside the HCPCF. The relation between damping and
pressure is given by equation 2.11 with the particle radius a as free parameter.
Each particle has a slightly different radius (the manufacturer specification
gives the standard deviation of the particle size as 10% of its radius) and
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therefore a calibration for each levitated particle is necessary. The particle
is trapped inside (or in front of) the HCPCF and the two vacuum chambers
vacL and vacR are directly connected via valve MV3, see figure 2.20, such
that pl = pr. The mechanical damping can now be measured at a known
pressure which is read out by the pressure gauges. This procedure is repeated
for different pressures, as shown in figure 2.41 and the data is fitted using
equation 2.11. The resulting fit function is inverted and used to compute the
pressure p for a measured mechanical damping γp.

10 20 50 100

50

100

200

500

p [mbar]

γ
p
/2
π

[k
H
z]

Figure 2.41.: The mechanical damping γp is measured as a function of pres-
sure p (blue points). The solid curve is a fit to the measure-
ment data and used as calibration for the nanomechanical sen-
sor.

2.5.2. Measurements and Simulations
A measurement of the pressure distribution between vacL at pl = 0.2 mbar
and vacR at pr = 100 mbar is shown in figure 2.42. At the beginning of
the measurement a particle is positioned in front of the HCPCF inside vacL
and successively transported towards vacR. On the way, the damping γp is
measured as a function of position z. The red data points represent energy
relaxation measurements and the blue data points represent spectral measure-
ments. The two measurement procedures overlap in the regime between 1−10
mbar. The data points represented with a circle (in light red as well as in light
blue) indicate the limitations of their corresponding measurement methods.
For the relaxation measurement, efficient feedback cooling is necessary to get
a reliable fit to the energy transient and feedback cooling becomes inefficient
at high pressures. The spectral method is limited by inhomogeneous broaden-
ing and this is why the blue data points reach a plateau around p ≈ 2 mbar.
The solid black line is a linear fit to the pressure profile excluding the circles.
The linear pressure dependence describes the data very well and is consistent
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Figure 2.42.: Measured pressure profile inside a HCPCF. A particle is ini-
tially trapped in front of the HCPCF in the left vacuum cham-
ber at pl = 0.2 mbar (grey shaded area). The particle is trans-
ported in steps towards the right vacuum chamber at pr = 100
mbar. At each position either energy relaxation measurements
(red) or spectral measurements (blue) of the pressure are per-
formed [62]. The solid black line is a linear fit to the data
points and the dashed black line is the prediction for the pres-
sure profile by Yang and Garimella [93].

with free molecular flow over the entire fiber length. This is a surprising result
as the high pressure part of the fiber is described with a Knudsen number
of Kn = 0.06 and, according to equation 2.26, a nonlinear pressure profile
is expected due to the onset of laminar flow in this regime. Our result also
directly contradicts the predictions by Yang and Garimella [93], plotted as
dashed line in figure 2.42. Yang and Garimella solved the Burnett equation,
which is only valid in the near continuum regime where Kn < 1 at maximum.
Their claim that the solution holds for higher Knudsen numbers is rejected
with our experimental data.
A rigorous analysis of our experimental situation requires solving the full

nonlinear Boltzmann equation, which is done in collaboration with the John
Sader group (University of Melbourne) who used direct simulation Monte Carlo
(DSMC) methods. Figure 2.43 shows the results of the DSMC simulation for
the scenario described above, which is matching our measurement data. This
result can be interpreted as a combination of a short continuum flow region at
the high pressure end and a free molecular flow for the rest of the pipe. If the
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Figure 2.43.: DSMC simulations (orange dots) for pressure profile between
pl = 0.2 mbar and pr = 100 mbar, overlapped with the mea-
surement data from figure 2.42.

pressure difference between fiber inlet pr and the pressure pr− δp at a position
close to the inlet is small δp � pr, the pressure profile for a continuum flow,
see equation 2.26, can be approximated by

p(z) =
√

(pr − δp)2 + z

l0
(p2
r − (pr − δp)2)

≈
δp�pr

pr − δp+ z

l
δp

to a linear position dependence. This would explain the overall linear position
dependence of pressure profile.
DSMC simulations of the nonlinear Boltzmann equation accurately repro-

duce our measured pressure profile inside the HCPCF. For the first measure-
ment, between a pressure of pl = 0.2 mbar and a pressure of pr = 100 mbar,
a linear dependence between pressure and position is found. A more general
set of DSMC simulations, in which the pressure of the left vacuum chamber
was held at pl = 10 mbar and the pressure in the right vacuum chamber was
selected to be at pr = 300 mbar, at pr = 500 mbar and at pr = 700 mbar,
was performed resulting in a nonlinear pressure dependence. The simulation
data is shown in figure 2.44, the red curve corresponds to an inlet pressure
of pr = 300 mbar, the blue curve to pr = 500 mbar and the green curve to
pr = 700 mbar. The same measurement procedure as described above is per-
formed for the pressure parameters of the simulation: The left chamber is held
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Figure 2.44.: Measured (dots) and DSMC simulation (curve) results for
three pressure profiles along a HCPCF. The pressure in the left
vacuum chamber is held at pl = 10 mbar for each measure-
ment and the pressure in the right vacuum chamber is held at
pr = 300 for the red, pr = 500 mbar for the blue and pr = 700
mbar for the green measured points and simulation results.

at a pressure of pl = 10 mbar and the pressure in the right chamber varies
between pr = 300, pr = 500 mbar and pr = 700 mbar. A particle with a diam-
eter of d = 969 nm was first calibrated as nanomechanical pressure sensor, see
chapter 2.5.1, and then successively moved through the HCPCF for pressure
sensing. The measurement results are also shown in figure 2.44 as solid points
with the same color coding as the simulation results. The data confirms the
nonlinear behaviour predicted by simulations.
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2.6. Summary and Outlook
This chapter presented a novel optical trap based on a HCPCF. Particle levi-
tation inside an evacuated hollow core fiber, particle transport with an optical
conveyor belt, three-dimensional read-out of the particle COM motion as well
as feedback cooling techniques were discussed. The system was used to inves-
tigate its potential as a source for loading particles into ultra-high vacuum and
as a hydrodynamical platform to investigate relevant regimes of the nonlinear
Boltzmann equation. Both applications turned out to be promising and will be
further pursued in the future. Here I will discuss the roadmap for the HCPCF
experiment as particle source and as hydrodynamical platform.

HCPCF as Particle Source

Currently, the lowest pressure a particle can be levitated both inside and out-
side of the HCPCF is around p ≈ 0.1 mbar and is limited by particle loss from
the optical trap at lower pressures. This is a phenomenon poorly understood
but observed in many levitation experiments [14, 59, 62, 75, 95]. However,
three-dimensional feedback cooling is known to stabilize the particle inside the
optical trap and should allow levitation in ultra-high vacuum.
In order to transport particles into ultra-high vacuum, the experiment needs

to be able to levitate particles below pressures of 0.1 mbar over the full extend
of the fiber, hence three dimensional cooling needs to be applicable over the full
extend of the fiber. A natural addition to the radiation pressure based feed-
back cooling along the fiber axis would be parametric feedback cooling along
the two remaining radial directions. Parametric feedback cooling is applied
via a modulation of the optical potential at twice the mechanical frequency
(see chapter 3.1). The modulation can be realized with the already installed
acousto-optical modulators in the beam-preparation part of the HCPCF ex-
periment, see figure 2.14 and the radial read-out, necessary to generate the
radial feedback signal is already in place, see chapter 2.2.2. The remaining
task would be implementation of the parametric feedback electronics. The
combination of axial direct feedback and radial parametric feedback can be
applied to a levitated particle over the entire range of the fiber and should
allow stable levitation at any given pressure.
The next step is fiber integration of the trap, as proposed in chapter 2.4.3.

We need to find a more stable mechanical mounting of the individual com-
ponents. We will start with custom produced GRIN lenses which are already
fused onto a SMF. The remaining step is further optimization of aligning and
gluing of the combination of GRIN lens and SMF with respect to a HCPCF on
a v-groove. The reduction of individual components due to the custom made
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parts should simplify this task. The reduction in optical absorption should
eliminate the thermal drifts and expansions which were most likely responsi-
ble for degradation of the prototypes.

Nanomechanical Pressure Sensor

The successful measurement of pressure profiles along the HCPCF for different
pressure gradients and the excellent agreement with DSMC simulations encour-
aged us to further investigate the hydrodynamical properties of the HCPCF.
A critical parameter entering all simulations of pipe flow is the accommoda-
tion coefficient α. It defines the interaction between individual gas molecules
with the walls of the fiber. For an accommodation coefficient of α = 1 each
molecule is absorbed by the wall, thermalizes and is re-emitted into a full solid
angle. For an accommodation coefficient of α = 0, a gas molecule interacts
fully specular with the fiber wall, which is in essence a ballistic reflection. Only
few experimental measurements exist to obtain values for the accommodation
parameter. In most cases, accommodation parameters have to be assumed
(e.g. α = 0.8 for standard materials).
For our situation, preliminary simulations show that the accommodation

coefficient does not affect the pressure profile, but the velocity profile along
the fiber, as shown in figure 2.45. For different pressures pl < pr there is a
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Figure 2.45.: Preliminary DSMC simulations of the pressure profile (left) and
the gas velocity profile (right) for different accommodation co-
efficients.

flow of air from the right to the left vacuum chamber causing a drag force
Fdrag = mγu on the particle, with u the velocity of the gas. As long as the
trap is switched on the optical force is much stronger than the drag force and
can be neglected, i.e. mΩ2z � mγpu. However, if the trap is switched off
the particle will be displaced by the drag force, which is monitored with the
laterally mounted CCD camera. The gas velocity at the fiber axis can then
be obtained with the switching time and the measured displacement. This
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type of measurement would allows us to access the accommodation coefficient
experimentally.
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Levitated cavity optomechanics is a promising platform for room-temperature
quantum experiments and high-precision force sensing. Recent proposals in-
clude the preparation of massive superposition states [5, 16, 17, 79, 81] as well
as ultra-sensitive force detection, e.g. for deviations from Newtonian gravity
[18, 96] or gravitational wave detection [19]. One intriguing feature of levitated
optomechanics is the ability to switch off the trapping field and change the sys-
tem dynamics to a free evolution. A levitated particle, prepared in its ground
state of motion, can be released from the optical trap and used to perform
a matter-wave type experiment, both on earth [16, 81, 96] and in space [17]
thereby testing the predictions of quantum mechanics for macroscopic objects
beyond 106 atomic mass units.
A necessary requirement for those experiments is stable levitation at ultra-

high vacuum and a sufficiently strong coupling of the center of mass motion to
the cavity mode, i.e. reaching the strong quantum cooperativity [55] regime

CQ = 4g2

κΓ > 1. (3.1)

Here, g is the coupling rate between the light field and the mechanical mode,
κ the optical losses and Γ the mechanical losses given by

Γ = γpn̄th + Γrc (3.2)

with n̄th the occupation number of the thermal bath, γp the mechanical cou-
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Figure 3.1.: Quantum cooperativity CQ and mechanical heating Γ depen-
dence projected for ultra-high vacuum for the experimental pa-
rameters of [14]. The experiment would reach the strong quan-
tum cooperativity regime if it could be operated at pressures
p < 10−8 mbar.

pling rate to the thermal bath and Γrc the photon recoil heating. Compared
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to other optomechanical systems, which have a massive support, levitated sys-
tems do not suffer from clamping losses. While mechanical quality factors
of Q ≈ 1012 were proposed [5] it became evident that for continuous trap-
ping photon recoil heating sets an ultimate limit on the mechanical losses
[57]. Nevertheless, the term γpn̄th due to the interaction of a levitated particle
with its thermal environment via gas collisions, see chapter 2.1.4, is linear in
pressure γp ∝ p. This is the main reason why levitated systems can be well
isolated from the environment and hence why they are a promising candidate
for room-temperature quantum experiments. The photon recoil heating Γrc is
unique to optically levitated systems. The restoring gradient force originates
from a laser field which is subject to shot-noise. This unavoidable intensity
fluctuations cause the additional heating of the COM motion [57, 97, 98].
Our goal is to enter the strong cooperativity regime CQ > 1. In our previous

experiment we demonstrated cavity cooling of a levitated nanoparticle [14]
and reached a quantum cooperativity of CQ ≈ 10−7, mainly limited by the
mechanical losses Γ. The experiment suffered from particle loss around a
pressure of p ≈ 1 mbar. For the experimental parameters in [14] the quantum
cooperativity (green) and mechanical losses (red) are projected to low pressures
in figure 3.1. This plot clearly shows that if we were able to stabilize the optical
trap and bring the system to a pressure of p ≈ 10−8 mbar, we would reach
the strong quantum copperativity regime CQ > 1. A cavity field was used
for trapping in the previous experiment, which was the main limiting factor
in reaching lower pressures since no feedback stabilization was possible. Here,
we combine the three-dimensional feedback control of tweezers with the cavity
setup to achieve high vacuum operation and hence large cooperativity. This
chapter is portioned into four parts:

• Chapter 3.1 introduces optical tweezer and parametric feedback cooling.
The trapping laser is tightly focused with a high numerical aperture
objective and numerical methods are used to compute the focal field
and the optical forces acting on a particle. A three-dimensional read-
out scheme and parametric feedback cooling for levitation in vacuum are
explained in the second and third part of this chapter. The last part
elaborates on photon recoil heating effects.

• Chapter 3.2 provides a brief introduction into cavity optomechanics with
levitated particles. The levitation specific Hamiltonian is transformed
into the standard optomechanical form and optomechanical cooling along
with the quantum cooperativity are explained. Optomechanically in-
duced transparency (OMIT) is introduced as well, which will be used to
estimate the quantum cooperativity.
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• Chapter 3.3 explains in detail the experimental setup and contains the
main technological developments rendering the combination of tweezer
and cavity possible. In the beginning, the cavity optomechanics and the
tweezer setup are explained independently. The third part deals with
cutting and mounting of the cavity mirrors which is necessary to overlap
cavity mode with the tweezer trap. The last part explains how a particle
is trapped in the tweezer without contaminating the cavity mirrors and
how it is aligned with respect to the cavity field .

• Chapter 3.4 gives an overview of the performance of the system. In a
first step it is shown that we can operate the tweezer close to the recoil
limit in high vacuum. In the second part we measure the optomechanical
coupling with OMIT measurements. The last part gives an estimate on
the quantum cooperativity CQ at the current state of the experiment.
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3.1. Principles of Optical Tweezers and
Parametric Feedback Cooling

The concept of optical tweezers can be traced back to a proposal for trapping
of atoms by Arthur Ashkin [99]. It was first demonstrated for small dielectric
particles in liquid [100] and later for atoms [6] in vacuum. An optical tweezer,
in its simplest form, consists of a single laser beam and a focusing lens. Inside
a tightly focused laser beam a small dielectric particle experiences a three-
dimensional restoring force and can be trapped.
In 2012 Gieseler at al. demonstrated optical levitation of particles in high

vacuum [101]. The particle was stabilized with parametric feedback cooling.
A basic experimental setup for an optical tweezer including feedback cooling
is shown in figure 3.2. A trapping laser and a feedback laser are superim-
posed on a polarizing beamsplitter (PBS) and focused with a high numerical
aperture (NA) lens (ftw). Scattered light from the particle is collected with a
collimation lens (fcoll) and used for detection of the particle COM motion in
three dimensions. The read-out signal is used to parametrically cool all three
directions of motion. The previously mentioned particle loss, see chapter 2.4
for example, around a pressure of p ≈ 1 mbar is prohibited by the parametric
feedback cooling and allows stable trapping in vacuum. The currently lowest
reported pressure for stable levitation know to the author is p = 7×10−9 mbar
[57].

ftw fcoll read-out

trap
laser

feedback
laser

PBS PBS

Figure 3.2.: A high NA lens ftw is used for focusing of a trapping and a feed-
back laser to form an optical trap. A collimation lens fcoll is
used to collect scattered light from a trapped particle in order
to monitor its three-dimensional motion with a split-detection
scheme (read-out).

The combination of an optical tweezer with parametric feedback cooling
turned out to be a powerful tool in the field of levitated optomechanics. To
date it is among the systems with the highest reported room-temperature me-
chanical quality factor [4] of Q = 108, alongside high-stress silicon nitride
membranes [102] and ”soft-clamped“ membranes [103]. Besides the achieve-
ment of levitation in vacuum, this system is also used for levitation of nitrogen
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vacancy centers [104], studies of non-equilibrium dynamics [94, 105], stochastic
bi-stable dynamics [106] and nonlinearities in optical potentials [4, 107], trans-
fer of nanoparticles into high vacuum [108], cooling of orthogonal mechanical
modes by coherent control [109], measuring of photon recoil heating [57] and
confirmation of Kramers turnover [110].
In this chapter I briefly introduce the basic concepts of optical tweezers and

parametric feedback cooling. A more detailed description can be found in the
PhD theses of Jan Gieseler [111] and Vijay Jain [112]. There is a big conceptual
overlap between the optical tweezer and the HCPCF trap described in chapter
2. Here, I will mainly focus on the differences between both systems.

3.1.1. Forces in an Optical Tweezer

An optical tweezer is formed by focusing a Gaussian laser beam with a high
numerical aperture (NA) lens. The optical forces arising from the laser act-
ing on a dielectric particle are computed like in chapter 2.1.2. The main
differences are particle size and electromagnetic modes forming the trap. Par-
ticles with a radius around a ≈ 75 nm are trapped with a laser wavelength of
λ = 1064 nm� a placing the system well into the Rayleigh regime, see chap-
ter 2.1.2. For a tightly focused Gaussian beam the commonly used paraxial
approximation is not applicable [47, 113] and a numerical method is used to
compute the focal field instead. A second difference compared to the HCPCF
trap is the absence of a counterpropagating beam. The scattering force does
not vanish and needs to be taken into account.

Tightly Focused Gaussian Beams

The incident Gaussian laser beam used for trapping is described by

~E(x, y, z, t) = E0
w0

w(z)e
−i(kz+2πνt)e

−x
2+y2

w2(z) e−ik
x2+y2
2R(z) eiζ(z)~p

= E(x, y, z)e−i2πνt~p
(3.3)

with E0 the electric field amplitude, w0 the minimal waist of the Gaussian, the
waist function w(z) = w0

√
1 + (z/zR)2, the Rayleigh length zR = πw2

0/λ, the
radius of curvature of the wavefronts R(z) = z[1 + (z/zR)2], the wavenumber
k = 2π/λ, the laser wavelength λ, the laser frequency ν, the Gouy phase
ζ(z) = arctan(z/zR) and the polarization vector ~p. Without loss of generality
we assume the electric field to be polarized along the x direction ~p = ~ex. The
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time averaged intensity of the incident Gaussian laser beam is

I(x, y, z) = 2P
πw2(z)e

−2x
2+y2

w2(z)

with P =
∫
dxdyI the optical power of the laser beam.

A lens with focal length f is used to focus a collimated incident laser beam.
The relation between the waist w0 of the incident laser beam and the waist
wfoc in the focus depends on the numerical aperture NA = w0/f = tan θ, the
ratio between initial waist w0 and the focal length f . The angle θ describes the
divergence angle of the focused field. For the case of weak focusing tan θ ≈ θ
the paraxial approximation holds [113] and the waist in the focal spot is

wfoc = λf

πw0
.

For a tightly focused beam a method described in [47] is used for numerical
computations of the focal field. The angular spectrum representation of the
focal field of an incident paraxial Gaussian beam focused with a high NA lens
is given by [47]

~E(ρ, ϕ, z) = ikf

2π e
−ikf

θmax∫
0

2π∫
0

dφdθ ~E∞(θ, φ)eikz cos θeikρ sin θ cos(φ−ϕ) sin θ (3.4)

with ρ =
√
x2 + y2, ϕ = arg(x, y), ~E∞ the refracted field after the lens and
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Figure 3.3.: Numerical solution of equation 3.4 for the intensity profile of
a tightly focused Gaussian beam with NA = 0.8 along the x-
direction (red dots) and the y-direction (green dots) compared
to the paraxial approximation (solid black line).

f the focal length. The integral in equation 3.4 is solved numerically for a
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lens with NA = 0.8 and the results are shown in figure 3.3, including the
paraxial solution. The paraxial approximation underestimates the beam waist
(solid black line) and does not resolve the difference along x- (red dots) and
y-direction (green dots), which is due to the linear polarization along the x-
axis. Since the mechanical frequency depends on the waits of the trapping
field, see equation 3.10, this lifts the degeneracy of the mechanical frequencies
along the radial directions. To describe our experimental situation correctly,
a modified Gaussian beam with different waists in x- and y-direction is fitted
to the numerical solution of equation 3.4

I(x, y, z) = 2P
πw2

xy(z)e
− x2
w2

xx(z)
− y2

w2
yy(z) (3.5)

with wij(z) = wiwj(1 + (z/zR)2) and wx and wy the waist along x and y-
direction, respectively. An example is shown in figure 3.4. For the following
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Figure 3.4.: Fits (solid lines) of Gaussian functions to solutions of the an-
gular spectrum representation along x- (blue dots), y- (red
dots) and z-direction (green dots) for a numerical aperture of
NA = 0.8.

considerations the fitted Gaussian beam is used instead of the numerical re-
sults.

Rayleigh Approximation

In analogy to chapter 2.1.2, the optical forces can be computed with the
Rayleigh approximation as the particle radius a = 75 nm is much smaller
than the laser wavelength λ = 1064 nm. The validity of the Rayleigh ap-
proximation for this size regime is also backed up by the results of the GLMT
simulations for the HCPCF trap, see figure 2.10. The main difference to the
HCPCF system is the absence of a second optical beam. Therefore the scatter-
ing force does not vanish and needs to be taken into account. The scattering
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force of a laser propagating along z-direction in a single beam dipole trap is
[50]

~Fscatt = σscatt

c
I~ez (3.6)

with c the speed of light and σscatt = 8/3πk4a6(ε− 1)2/(ε+ 2)2 the scattering
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Figure 3.5.: Optical forces on a levitated a = 75nm particle along the x-
(red), y- (green) and the z-direction (blue). Note that the scat-
tering force pushes the particle away from the beam center and
the equilibrium position is shifted. The inset is a zoom-in of the
axial force close to the beam center.

cross section, ε the dielectric constant of the particle and ~ez the unit vector
along the axis of beam propagation z. Here, the intensity I is the modified
Gaussian (the fitted result from the previous chapter). The gradient force is,
as in chapter 2.1.2, given by

~F∇ = α

2∇
~E2 = α

2cε0
∇I (3.7)

with the particle polarizability α = 4πε0a
3(ε − 1)/(ε + 2). The optical forces

acting onto a silica particle with a radius a = 75nm are shown in figure 3.5.
A particle will be trapped where ~F∇ + ~Fscatt = 0, which is at the beam center
along the x- and y-direction and at the axial position z0 where ~F∇(z0)~ez +
~Fscatt(z0)~ez = 0.
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Harmonic Approximation and Equation of Motion

The optical forces can be further simplified and brought into a similar form
as in chapter 2.1.2. For small particle motion, the scattering force can be
approximated with a Taylor expansion

~Fscatt = n2σscatt

c
I0 ~ez +O(z2) (3.8)

with I0 = 2P/(πwxwy). The gradient force can be harmonically approximated,
as already shown in chapter 2.1.2, to

~F∇ = α

2cε0
∇I

≈ 4Pα
πcε0wxwy

[ x
w2
x

~ex + y

w2
y

~ey + z

zR2~ez
]
.

(3.9)

The dynamics of a levitated particle in an optical tweezer are described by a
thermally driven, damped, three-dimensional harmonic oscillator. The optical
force along the radial x- or y-direction is conservative and can be written as
gradient of an optical potential ~F∇ = −∇Uopt, see equation 3.9. The oscillation
frequencies along the radial directions are given by

(
Ωx,y

m

)2
= 4Pα
mπcε0wxwy

1
w2
x,y

(3.10)

and along the axial direction by
(
Ωz

m

)2
= 4Pα
mπcε0wxwy

1
zR2 (3.11)

with P the power in the trapping laser. The equation of motions are the same
as in chapter 2.1.4, for example along the x-direction

mẍ+mγpẋ+mΩ2
xx = Fth (3.12)

with mγpẋ a Stokes-like friction force caused by interactions with surrounding
gas particles and Fth a Brownian force noise at room temperature [55], also
caused by collisions with gas molecules surrounding the particle. The axial
direction (z) is modified due to the presence of the scattering force

mz̈ +mγpż +mΩ2
zz = Fth + Fscatt.

For small particle motion, the scattering force is constant, see equation 3.8,
and a new displacement variable z → ζ = z − Fscatt/Ω2

m/m, shifted by the
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offset introduced by the constant scattering force, is introduced with ζ̇ = ż
and ζ̈ = z̈. The transformation returns the equation of motion into the typical
harmonic oscillator form and to keep a simple notation the new variable ζ is
replaced by z

mz̈ +mγpż + Ω2
zz = Fth (3.13)

Axial Stability in a Tweezer

The gradient force along all directions is attractive towards the beam center
and forms a stable trap in the two radial dimensions. The scattering force
pushes the particle away from the focal region which can destabilize the trap
along the axial direction [50, 114]. If the gradient force along z is much stronger
than the scattering force Fscatt � ~F∇ · ~ez the destabilization effect is negligi-
ble and three-dimensional trapping is possible. The ratio between maximal
gradient force along z direction and scattering force is given by

η =
~F∇ · ~ez
Fscatt

∝ 1
a3

ε+ 2
ε− 1 . (3.14)

It is independent of optical power and only depends on the dielectric constant
and radius of the particle. For a particle with a radius of a = 75nm and a lens
with a numerical aperture of NA = 0.8, this ratio is η = 7.5. In that case, the
trapping position is pushed 62 nm away from the focal position. This effect is
shown in the inset of the force plot, see figure 3.5.

3.1.2. Tweezer Read-Out
A levitated particle scatters light off the trapping field with a position depen-
dent phase. The phase information is read out with a split-detection scheme,
similar to the detection scheme for the HCPCF experiment (chapter 2.1.5 and
chapter 2.2.2), and allows three-dimensional monitoring of the COM motion.
The read-out is required for parametric feedback cooling, which allows stable
levitation in vacuum. The derivation for the read-out is similar to [111, 112]
and partially based on a private communication with Jan Gieseler.

Gaussian Fields in the Focus and in the Far-Field

The levitated particle is treated as a dipole excited by a Gaussian trapping
laser ~Etr, see equation 3.3, that is linearly polarized along the x-direction. A
trapped particle is close to the focal point where x, y � w0 and z � zR, such
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that the field exciting the particle can be approximated as a plane wave with

~Efoc
tr ≈ E0e

i

(
kz− z

zR

)
~ex. (3.15)

The trapping laser ~Etr also serves as local oscillator. In the far-field (z � zR)
it can be approximated by

~Eff
tr ≈ E0

zR

z
e
− z(x2+y2)

w0z eikz+k
x2+y2

2z −π2~ex.

and application of the paraxial approximation (light after the focal spot is
collimated with the collimation lens fcoll, see figure 3.2) z � x, y and therefore
r =
√
x2 + y2 + z2 ≈ z further simplifies the expression to

~Eff
tr ≈ E0

zR

r
eikr−

π
2~ex = Etre

ikr−π2~ex.

with Etr = E0zR/r

Scattered Light Field of a Levitated Particle

The electric field of a point-dipole is given by [47]

~Edp(~r, ~δr) = ω2

ε0c2 G(~r, ~δr) · µ (3.16)

with ω = 2πc/λ, G the dyadic Green’s function, ~δr the position of the dipole
and ~µ = α~Etr the dipole moment of the trapped particle excited by the trap-
ping field ~Etr. The dyadic Green’s function in the far-field is [47]

G(~r, ~δr) = eikr

4πre
ik(xδxr + yδy

r
+ zδz

r )
(1− x2/r2) −xy/r2 −xz/r2

−xy/r2 (1− y2/r2) −yz/r2

−xz/r2 −yz/r2 (1− z2/r2)

 .
Combination of the dyadic Green’s function and the trapping field inside the
focus, see equation 3.15, results in this expression for the scattered field from
the particle

~Eff
dp(~r, ~δr) = αE0ω

2

4πrε0c2 e
i

(
k− 1

zR

)
δz
eik(r+

xδx
r

+ yδy
r

+ zδz
r )
(1− x2/r2)
−xy/r2

−xz/r2

 .
It is detected in the far-field and hence, the paraxial approximation further
simplifies this expression to

~Eff
dp(~r, ~δr) = Edpe

ikrei(kxδx+kyδy+Kzδz)~ex.

with Edp = αE0ω
2/(4πrε0c

2), kx = kx/r, ky = ky/r andKz = (k+z/r−1/zR).
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Read-Out Signal and Detection

The interference between scattered light from a particle displaced by ~r = δ~r
from the focal point and the trapping beam is given by

Isig ∝ | ~Eff
dp(~r, ~δr) + ~Eff

tr(~r)|2

= E2
dp + E2

tr + 2EdpEtr sin(kxδx+ kyδy +Kzδz)
(3.17)

which will be referred to as signal beam from now on. The detection of the
signal beam happens in a similar fashion as the detection in the HCPCF read-
out, see chapter 2.1.5 and chapter 2.2.2. A fraction ηx,y,z of the signal beam is
split into three parts and sent to the x-, y- and z-detection, respectively, see
figure 3.13.
For the motion along the z-direction a single photodiode Z1 is used to detect

the signal beam Iz = ηzIsig. The diode Z1 returns a signal proportional to

SZ1 ∝
∫
A

dA ηzIsig = ηz(AE2
tr + AE2

dp + 2EtrEdp sin(Kzδz)

∝ ηz(Ptr + Pdp + 2
√
PtrPdp sin(Kzδz))

≈ ηz(Ptr + 2
√
PtrPdp sin(Kzδz))

(3.18)

with A the area of the photodiode, Ptr the power in the optical trap and Pdp
the scattered power by the particle. The scattered power of the dipole is small
compared to the trap power, i.e. P 2

dp �
√
PtrPdp, Ptr and can be neglected. A

second photodiode Z2 is used to detect a fraction ηz of the trapping laser before
interaction with the particle. The resulting read-out signal in axial direction
is the difference between the two signals

Sz = SZ1 − SZ2 = ηz(Pdp + 2cz
√
PtrPdp sin(Kzδz))

≈ 2ηzczKz

√
PtrPdp δz

(3.19)

where we use the fact that for small displacements δz the sine function can be
approximated with its argument. The resulting signal is therefore proportional
to the particle displacement along the axial direction δz.
The radial read-out is based on a split-detection and is the same along x-

and y-direction up to a rotation by 90◦ degree. A fraction of the signal beam
Ix = ηxIsig is split into two halves along the y-axis (x = 0) and detected
individually, see figure 3.13, with the photodiodes X1 and X2. The read-out
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signal is proportional to the difference between the two detector signals

Sx = SX1 − SX2 = ηx

 0∫
−x0

dx dy Isig −
x0∫
0

dx dy Isig


= 8r2ηxEdpEtr

δxδyk2

[
cos(kδx x0

r
)− 1

]
cos(Kzδz) sin(kδy y0

r
)

≈ 2ηxcxkx0

√
PtrPdp δx

(3.20)

with kx0 = kx0/r and x0, y0 the extend of the detectors. It is important to real-
ize that equation 3.17 is an anti-symmetric function in the variable kx = kx/r
and hence, in the x-variable. Due to the split-detection scheme, the symmetric
contributions (containing z and y particle signal) with respect to the integra-
tion axis vanish up to third order in displacement and the anti-symmetric
contribution, namely the particle signal along the x-direction, survives. In the
the last step, all trigonometric functions are expanded into a Taylor series up
to second order in δx, δy and δz and the resulting signal is proportional to the
displacement along the x-direction.

3.1.3. Parametric Feedback Cooling
Optical traps suffer from noise sources that are heating the particle’s COM
motion. Some are of technical nature, such as classical laser intensity noise or
vibrations of the trap position [115]. There exist also more complicated heat-
ing mechanisms coupling the COM motion to the internal temperature of the
particle, for example [59, 61]. A combination of mechanisms driving the par-
ticle motion will lead to particle loss from of the trap at low pressures. This is
a phenomenon reported by multiple research groups for different experiments
[14, 59, 62, 75, 95] and it typically happens at a pressure around p ≈ 1 mbar.
For optical tweezers this problem can be circumvented by parametric feedback
cooling of all three motional directions [101]. Parametric feedback cooling is
implemented with a second laser (the feedback laser) which is superimposed
with the trapping laser, see figure 3.2, and which is modulated at twice the me-
chanical frequency 2Ωm. In more detail, each directions’ modulation at twice
the mechanical frequency is summed to a single modulation signal and used
as a feedback signal. Therefore, three-dimensional parametric feedback cool-
ing requires only one additional laser beam co-propagating with the trapping
laser. This is in contrast to linear optical feedback cooling schemes where one
additional laser per direction [73, 75] or where multiple read-out lasers [74] are
necessary.
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A detailed theory of parametric feedback control can be found in [105, 111,
112] and a quantum description in [116]. To describe the relevant effects of
parametric feedback for this thesis an approach from [117] is used.
In parametric feedback cooling the spring constant of an oscillator is mod-

ulated at twice the mechanical frequency. In optically levitated systems, the
spring constant is proportional to the power of the trapping laser and hence a
modulation of the trapping laser power is sufficient. To circumvent obstruction
of the read-out, which is based on the trapping laser, an additional feedback
laser is superimposed with the trapping laser and used for modulation instead.
The equation of motion is extended by the feedback force Ffb = ∆k/(x2

0Ωm)x2ẋ
with ∆k the modulation amplitude of the spring constant and x0 the mean
Brownian amplitude of the particle

ẍ+ γpẋ+ Ω2
mx = Fth + Ffb

m
. (3.21)

Without loss of generality the principles are explained for the x-direction, the
treatment of the other directions is analogous. With the linear-fluctuation
approximation x = x̄+ δx (x̄: slowly varying amplitude, δx: fast fluctuations)
the equation of motion 3.21 can be separated into an equation for the slowly
varying amplitude and an equation for the fluctuations. The fluctuations are
much smaller than the mean amplitude |δx| � |x̄| and the feedback force can
be approximated to linear order in fluctuations

Ffb = ∆k
x2

0Ωm
(x̄+ δx)2( ˙̄x+ δẋ)

≈ ∆k
x2

0Ωm
(x̄2 ˙̄x+ 2x̄ ˙̄xδx+ x̄2δẋ)

For simplicity we change the notation for the fluctuations δx → x and the
equation of motion for the fluctuations becomes

ẍ+ (γp + γfb)ẋ+ (Ω2
m + Ω2

fb)x = Fth

m
(3.22)

with the optical spring Ω2
fb = ∆kx̄̄̇x/(x2

0Ωmm) and the optical damping γfb =
∆kx̄2/(x2

0Ωmm). This approximation resembles the same dynamics as in lin-
ear feedback cooling, see chapter 2.3.1. The mechanical noise power spectral
density is given by

Sxx(ω) = 2kBT0γp

πm

1
(Ω2

m + Ω2
fb − ω2)2 + (γp + γfb)2ω2 .
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For Ωfb � Ωm and γeff = γp + γfb an effective COM mode temperature can be
defined

Teff = T0
γp

γeff
(3.23)

Figure 3.6 shows a measurement of the effective mode temperature for a par-
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Figure 3.6.: Measured effective mode temperature as a function of pressure
while three-dimensional parametric feedback cooling is switched
on.

ticle with a radius of a = 71.5 nm while parametric feedback cooling switched
on. The optical power in the feedback laser is approximately 1.5% of the
optical power inside the trapping laser. The experimental implementation is
described in chapter 3.3. During the measurement the pressure inside the vac-
uum chamber was reduced to the final base pressure of our current vacuum
system p = 6×10−7 mbar. The effective temperature for each direction reaches
a plateau around Teff ≈ 100 mK. The performance of the feedback cooling is
limited by the reduced signal-to-noise ratio at low effective temperatures but
sufficient to keep the particle trapped in high vacuum. Note that the read-out
can be improved and effective mode temperatures below 1 mK can be reached
[57].

3.1.4. Beyond the Harmonic Approximation
The harmonic approximation, see chapter 3.1.1, works well for small displace-
ments. However, if the amplitude grows bigger anharmonic effects become
visible [4]. One indication is coupling of orthogonal modes or appearance of
higher harmonics of the COM motion.
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The harmonic approximation is based on a Taylor expansion of the optical
potential that is truncated at the quadratic order (hence the term harmonic),
which is equivalent to a Taylor expansion of the optical force to linear order.
Here, the force along y-direction is developed into a Taylor series around the
trapping position (0, 0, z0)

T
(
~F∇ · ~ey

)
= 2Pα
cε0πwxwy

[
1

w2
y(z0)y︸ ︷︷ ︸

harmonic approx.

+ 4z4
R

w3
y(z0)y(z − z0)︸ ︷︷ ︸

1. anharmonic term

+...
]

(3.24)

The first term gives rise to the harmonic force. The second term is due to
the nonlinear nature of the gradient force and introduces a coupling to the z
motion of the particle. Intuitively, this can be understood by considering the
waist of the trapping laser beam as seen by the particle. If the particle has a
large amplitude along the z-direction, it samples a region where the waist of
the laser beam is not constant anymore w0 6= w(z) and hence, the confinement
of the orthogonal modes changes depending on the particle position along
the z-axis. This effect is weak but can be observed for large amplitudes. A
similar term will appear in the second radial direction x. The axial direction
z does not experience a coupling to the radial directions in quadratic order, as
the amplitude of the radial motion is approximately a factor of four smaller
compared to the axial motion and hence has less influence. Figure 3.7 shows
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Figure 3.7.: Axial spectrum Szz at p = 4× 10−2mbar: While z-feedback cool-
ing is switched on (blue trace), the area is reduced by a factor
of 20 and the second harmonic peak vanishes, compared to feed-
back switched off (black trace). The two radial COM motions
are present due to imperfect alignment.

two measured noise-power spectra of the z read-out. The axial mechanical
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frequency is at Ωz = 2π×42 kHz and while feedback cooling is switched off the
second harmonic of the axial motion is visible at 2Ωz = 2π×84 kHz. Remnants
of the two radial COM motions Ωx,Ωy are also present in the axial read-out.
They do not appear due to anharmonic coupling, they origin from imperfect
alignment of the axial read-out. While feedback cooling is switched on (blue
curve) the area of the spectrum reduces from room temperature (black curve)
to an effective mode temperature of Teff = 15 K at a pressure of p = 4× 10−2

mbar. As the amplitude of the z-motion is reduced the anharmonicities of the
potential are not sampled anymore and the second harmonic peak vanishes.
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Figure 3.8.: Radial spectrum Syy at p = 4 × 10−2 mbar: While feedback
cooling is switched off (black curve) mixing between spatial di-
rections and appearance of the axial motion is observable. If
z-feedback cooling is switched on, the y peak is unaffected, the
mixing is suppressed and the axial peaks vanish. Due to imper-
fect alignment a small x peak is present in the y read-out.

The radial read-out has a more complicated spectrum. Figure 3.8 displays
two measured spectra Syy, one while z-feedback is switched on (green curve)
and one while z-feedback is switched off (black curve). The most prominent
peak at ν = 206 kHz belongs to the y-motion at Ωy. Due to imperfect align-
ment, in particular the angle of the D-shaped mirror, there is also a small peak
which belongs to the x-motion at ν = 181 kHz. The axial motion in combina-
tion with the anharmonicity generates sidebands at ν = νx,y ± νz. This is due
to the mixing term between z and y in equation 3.24, the axial displacement
is imprinted on the radial motion. The axial COM motion including second
and third harmonic are also visible in the y read-out. If z-feedback cooling is
switched on (green curve), the axial COM motion does not sample the anhar-
monicity and all mixing terms and the axial peaks with its higher harmonics
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vanish from the spectrum. The x and y peak are unaffected by the feedback
cooling, as expected. A similar behaviour is found for the Sxx spectrum. These
two measurements confirm the nonlinear behaviour of the gradient force and
also the origin of the mixing between spatial directions.

3.1.5. Photon Recoil
The gradient force that is responsible for the three-dimensional confinement
of the particle is based on a laser field. In general a laser field is subject
to intensity and phase noise, which can be further divided into classical and
quantum noise. An optical tweezer is not sensitive to phase noise because the
gradient force ~F∇ ∝ ∇I of a single Gaussian beam is determined solely by
its intensity profile. In turn, classical intensity noise of the laser gives rise to
parametric heating [115], which can be avoided by using a low-noise laser and
by actively stabilizing the intensity in a narrow bandwidth around twice the
mechanical frequency.
The quantum nature of light sets a fundamental limit to the intensity noise

of a laser, the shot-noise limit. A coherent state (the typical output of a
laser) of power P has a mean number of photons n̄ = P/~ω and an uncer-
tainty

√
n̄ due to quantum fluctuations. These fluctuations in the trapping

field are imprinted on the gradient force and also on the particle motion.
Random scattering events of photons transfer momentum onto the particle,
resulting in the photon recoil heating Γrc. A typical recoil heating rate of an
optical tweezer is on the order of Γrc ≈ 10 kHz [57]. The Brownian force
noise causes a pressure dependent heating rate Γ = γpn̄th, due to collisions
with the background gas, see equation 2.12 and equation 3.2, and scales like
Γ = γpn̄th ≈ p × 2 × 108 kHz/mbar for typical tweezer parameters (particle
radius a = 75 nm, mechanical frequency Ωm = 2π × 160 kHz). Therefore,
photon recoil only becomes relevant at low pressures. It was recently observed
for a levitated particle at a pressure of p ≈ 10−8mbar [57] where photon recoil
becomes comparable to collisions with gas molecules.
The following derivation is based on [57]: The Fokker-Planck equation de-

scribing the dynamics of the mean particle energy E is

Ė(t) = −γE(t)− γE∞ (3.25)

with γ the cumulative damping and E∞ the equilibrium temperature of the
system. The damping γ = γp + γrad + γfb is the sum of damping due to colli-
sions with gas molecules γp, radiation damping γrad due to scattering between
particle and photons [118] and the effect of parametric feedback cooling γfb.
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The equilibrium temperature is

E∞ = ~Ωm
Γ
γ

= ~Ωm
Γp + Γrc + Γfb

γ

with Γp = kBT0γp the thermal heating rate, Γrc the photon recoil rate and Γfb
the heating rate due to the parametric feedback cooling. The photon recoil
rate along the axis of polarization (in our case the x-axis) is given by [57]

Γirc = kσscattI

10mcΩi

. (3.26)

The recoil heating sets the ultimate limit for the mechanical losses and
therefore also for the quantum cooperativity CQ. In order to measure the
mechanical losses, the particle is cooled to a low energy state E0 � E∞ much
colder than the equilibrium temperature. At a time t = 0 the feedback cooling
is switched off (γfb = Γfb = 0) and the mean particle energy evolves according
to equation 3.25

E(t) = E∞ + (E0 − E∞)e−γt. (3.27)

For small damping and short times (γt� 1) the time evolution can be Taylor
expanded to

E(t) = E∞ − γt(E0 − E∞) +O(t2)
≈

E0�E∞
E0 + γE∞t

= E0 + ~Ωm(Γp + Γrc)t
(3.28)

Equation 3.28 is a linear function in time and the mechanical losses Γ =
Γp + Γrc = γpn̄ + Γrc are precisely the parameter required to estimate the
quantum cooperativity CQ.
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3.2. Principles of Cavity Optomechanics with
Levitated Particles

The first experiments on levitated cavity optomechanics demonstrated cavity
cooling of an optically trapped silica particle [14] and cavity cooling of free
silicon particles [83]. Later on, cavity cooling was demonstrated for charged
particles levitated inside a Paul trap [119, 120] and also for rotational degrees
of freedom of nanorods [84].
In this chapter I will briefly introduce the optomechanical concepts of cavity

cooling and optomechanical induced transparency (OMIT) for levitated sys-
tems. A more detailed theoretical description can be found in the PhD thesis
of Uros Delic [121] .

3.2.1. Linearisation of the Optomechanical Hamiltonian

The Hamiltonian of a harmonically trapped Rayleigh particle that is linearly
coupled to a driven, single TEM00 cavity mode [5, 14, 79] is

Htot = −~ωcav(a†a + 1
2) + mΩ2

mx2

2 + p2

2m+

+ iE1(a†e−iωcot − aeiωcot)− ~U(x)a†a sin2(kx)
(3.29)

with a†(a) the creation (annihilation) operator of the cavity mode with fre-
quency ωcav, x(p) the displacement (momentum) operator of the levitated
particle COM motion with frequency Ωm, E1 the cavity drive with a frequency
ωco and U(x) = ωcavα

2ε0Vcav
(1 + x2/x2

R) = U0(1 + x2/x2
R) (α: particle polarizability,

Vcav: cavity mode volume, xR cavity mode Rayleigh length) the frequency shift
of the cavity resonance due to the presence of a particle [14]. Note, that the
Hamiltonian changes for bigger particles outside the Rayleigh regime [122].
The first three terms of equation 3.29 represent the energy of the TEM00
cavity mode and the potential and the kinetic energy of the COM motion, re-
spectively. Note that in contrast to [5, 14] no cavity mode provides the optical
trap, but the particle is held in place by an optical tweezer. The mechani-
cal frequency Ωm is therefore defined by the tweezer trapping mode (in our
case along the x-direction of the tweezer and hence Ωm = Ωx). The fourth
term describes the cavity drive and the last term describes the interaction
between optics and mechanics. The Hamiltonian can be transformed into a
reference frame rotating with the driving frequency ωco by the transformation
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H→ UHU† − i~U∂U†/∂t with U = eiωcoa†a, yielding

Htot = −~∆a†a − 1
2~ωC + mΩ2

mx2

2 + p2

2m+

+ iE1(a† − a)− U(x)a†a sin2(kx)
(3.30)

with the cavity detuning ∆ = ωcav − ωco. The COM motion is separated into
mean displacement and small fluctuations around the mean value x = x̄+ δx.
We focus on particle locations that exhibit linear coupling to the cavity field,
i.e. where sin2(kx) ∝ δx. Experimentally, this can be achieved by moving
the tweezer relative to the cavity, see chapter 3.3.5. In theory, a particle
couples linearly to the cavity mode if the mean displacement is an integer
multiple m of λ/8 such that x̄ = mλ/8. The coupling is maximal at the cavity
center w(λ/8) ≈ w0 with a dispersive frequency shift U(x̄ = λ/8) = U0. The
interaction Hamiltonian can be developed in a Taylor series around x̄ = λ/8

Hint(
λ

8 + δx) = −U0a†a sin2
(
k
λ

8 + kδx
)

= −U0a†a
(1

2 + kδx
)

+O(x3).

The first term represents a constant shift of the cavity resonance frequency
and is compensated for by the locking scheme of the laser to the cavity. That
leaves the interaction Hamiltonian to be

Hint = −kU0a†aδx = −g0a†a(b† + b) (3.31)

with δx = xZPF(b† + b), b†(b) the phonon creation (annihilation) operator,
xZPF =

√
~/(2mΩm) the zero-point fluctuations and g0 = kU0xZPF the single

photon coupling. The single photon coupling quantifies the interaction between
a single mechanical excitation, a phonon, and a single photon in the cavity.
Equation 3.31 is the commonly used starting point in cavity optomechanics and
is generic for most optomechanical systems [55]. For a strongly driven cavity
a similar approach as above can be applied to the optical mode. The cavity
field is decomposed into its mean amplitude 〈a〉 = αco and its fluctuations δa.
The interaction Hamiltonian becomes

Hint = −g0(α2
co + αcoδa† + αcoδa + δa†δa)(b† + b)

≈ −g0α
2
co(b† + b)− g(δa† + δa)(b† + b)

(3.32)

with g = αcog0 = √ncog0 the effective optomechanical coupling strength, which
scales with the square-root of number of photons inside the cavity. The first
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term is a constant radiation pressure force causing a mean displacement of the
mechanics. As the mean field |αco| � |δa| is much bigger than the fluctuations
the term quadratic in fluctuations is neglected. Combination of equation 3.29,
3.31 and 3.32 results in the linearised optomechanical Hamiltonian

Htot = ~∆δa†δa + ~Ωmb†b + ~g(δa† + δa)(b† + b) (3.33)

where we have dropped constant terms that are not relevant for the following
considerations. At this level, an optomechanical system is comprised of two
coupled harmonic oscillators: the levitated nanoparticle and the cavity mode
coupled with an interaction rate g.

3.2.2. Optomechanical Cooling and Quantum Cooperativity
One of the main benefits of levitated cavity optomechanics is the ability to pre-
pare quantum states of motion of solids at room temperature, essentially by
laser-cooling of the COM motion into the ground state. The quantum theory
of ground state cooling can be found in [123–125] and applies for weak cou-
pling (g < κ, γ) and the sideband-resolved regime (Ωm > κ). Experimentally,
optomechanical cooling based on radiation pressure was first demonstrated for
the vibrational mode of a doubly clamped free-standing mirror [126, 127] and
for the radial breathing mode of a toroid microcavity [128]. The ground state
of a vacuum-gap capacitor has been reached via cryogenic cooling [129] and
via radiation pressure cooling in the microwave regime [20, 130]. The first
optical ground state cooling was performed on the vibrational mode of a sil-
icon nanobeam [21]. All these experiments were either performed in Helium
cryostats or dilution refrigerators. The isolation of levitated systems should al-
low the ground state to be reached starting from room-temperature [5, 79, 80].
Depending on the detuning ∆ in equation 3.33 three different interactions

can be specifically tailored [55]. Rewriting the light and mechanics operators
with an explicit time dependence δa → δa0e

−i∆t and b → b0e
iΩmt allows for

an intuitive understanding. The interaction Hamiltonian then reads

Hint = ~g(δa† + δa)(b† + b)
= ~g

(
δa†0b

†
0e
−it(Ωm−∆) + δa0b0e

it(Ωm−∆)+

+ δa†0b0e
it(Ωm+∆) + δa0b†0e−it(Ωm+∆)

)
.

(3.34)

For a red-detuned cavity drive, i.e. detuned by the mechanical frequency
∆ = −Ωm, the beamsplitter interaction prevails. The terms δa†0b0 + δa0b†0
are resonantly enhanced by the cavity and the terms δa†0b†0 + δa0b0 rotate at
twice the mechanical frequency 2Ωm. If the system is in the sideband-resolved
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regime, the components rotating at twice the mechanical frequency are strongly
suppressed (rotating wave approximation) [55]. The beamsplitter represents
a swap of excitations from mechanics to optics and vice versa. If the optical
state is in its ground state (shot-noise limited) no excitation from the optics
will be swapped on the mechanical state, but excitations from the mechanics
are swapped onto the optical state. For a finite lifetime of the optical state
in the cavity κ > g the optical excitations will leak out of the cavity before
they are transferred back to the mechanics (Rabi-oscillations). The mechanical
excitations are dissipated via the optical field of the cavity, thereby effectively
cooling the mechanical state.
There exist alternative pictures to understand this mechanism, e.g. the

scattering picture [55]. The motion of the nanoparticle at Ωm inside the cavity
field scatters photons into the optical Stokes and anti-Stokes sidebands at
frequencies ωco−Ωm and ωco + Ωm, respectively. During this process, photons
with initial energy of E = ~ωco gain (loose) one mechanical quanta of energy
~Ωm due to inelastic scattering. If the cavity pump is red-detuned, i.e. ∆ < 0,
the cavity envelope suppresses the Stokes process and amplifies the anti-Stokes
process such that more anti-Stokes photons with an energy of E = ~(ωco +Ωm)
are created than Stokes photons with E = ~(ωco − Ωm). This scattering anti-
symmetry transfers energy from the mechanical motion into the cavity field
and hence, cools the oscillator.
The efficiency of this cooling process depends on the optomechanical inter-

action g, the cavity lifetime κ and the sideband resolution parameter 4Ωm/κ.
The sideband resolution describes how well the inverse process (simultaneous
creation of mechanical and optical excitations) is suppressed. In addition, the
mechanical system couples to the thermal environment via collisions of the
particle with surrounding gas molecules γpn̄th and via recoil heating due to
the quantum nature of the trapping field Γrc, see chapter 3.1.5. The combined
heating rate of both mechanisms is Γ = γpn̄th + Γrc and the final occupation
of the mechanical state in the sideband-resolved limit is given by [123, 124]

n̄min = 1
γopt + γp + γrad

[
γopt

(
κ

4Ωm

)2
+ Γ

]
(3.35)

with γopt = 4g2/κ the optomechanical damping rate for a detuning of ∆ =
−Ωm and γrad = 4σscattI

5mc2 the radiation damping due to the motion of the particle
inside a laser field [118]. For typical experimental parameters (particle radius
of a = 75 nm, intensity in the trap I ≈ 1012 W/m2 ) the radiation damping
is γrad ≈ 0.1 mHz. For strong optomechanical interaction γopt � γp, γrad the
denominator in equation 3.35 can be approximated with γopt. In the absence
of mechanical heating Γ = 0 the final occupation number in the sideband-
resolved limit is n̄0 = ( κ

4Ωm
)2 � 1. Taking into account heating (neglecting
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other technical noise sources) results in the minimal achievable occupation
number

n̄min ≈
1
γopt

(γoptn̄0 + Γ) = n̄0 + κΓ
4g2

= n̄0 + 1
CQ

.

(3.36)

Here the quantum cooperativity is defined as CQ = 4g2/(κΓ). Note that, in
contrast to clamped optomechanical systems, photon recoil heating has to be
taken into account for the quantum cooperativity, i.e. Γ = γpn̄th+Γrc. In order
to reach the quantum ground state of motion it is evident that n̄0 +1/CQ needs
to be smaller than one, which requires both, sideband-resolution and strong
quantum cooperativity CQ > 1.

3.2.3. Optomechanically Induced Transparency
Optomechanically induced transparency (OMIT) is an interference effect of
the cavity-optomechanical system in presence of a strong optical pump and a
weak probe tone. The interaction between a levitated nanoparticle coupled to
the cavity mode renders the transmission properties of the cavity. The effect is
in close analogy to electrically induced transparency (EIT) [131, 132] and was
demonstrated using optomechanical crystals [133] and toroidal microcavities
[134].
Let us consider a levitated particle coupled to a sideband-resolved cavity, as

described by equation 3.33. The optomechanical cavity is driven with a strong
control mode α∆e

−i∆t at the mechanical frequency ∆ = −Ωm (indicated by the
red arrow in figure 3.9 a)) with respect to the cavity resonance at ωcav. The
particle oscillates at its resonance frequency Ωm and scatters photons from the
control mode into the anti-Stokes and Stokes sideband, respectively (as indi-
cated by the two red Lorentzian peaks in figure 3.9 a)). The frequency of the
Stokes photons is off-resonant by δω = −2Ωm with respect to the cavity res-
onance in contrast to the anti-Stokes photons, which are resonant at δω = 0.
The sideband-resolved cavity (black, dashed line) suppresses the Stokes scat-
tering process while resonantly enhancing the anti-Stokes process. A second,
weak probe mode αδe−iδt (blue arrow) detuned by the frequency δ with respect
to the cavity is used to probe the optomechanical interaction caused by the
control mode. For δ ≈ 0, the probe beam destructively interferes with the anti-
Stokes photons from the pump beam. Figure 3.9 b) shows the transmission
characteristics of an OMIT signal as a function of difference frequency δ −∆
between pump and probe beam. The dip appearing around the mechanical
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frequency Ωm is called the ”transparency window“ and is an unambiguously
feature of the coherent interaction between COM motion of the particle, pump
and probe beam. The transmission T of the optomechanical cavity in presence

a)

0- Ωm- 2Ωm
0.0 0.5 1.0 1.5 2.0
0

0.5

1

δ- Δ [Ωm]

b)

δ T

Δ

Figure 3.9.: a) The COM motion of the levitated particle scatters light of the
drive laser (red arrow) into the Stokes and anti-Stokes sideband.
For a red-detuned drive with ∆ = −Ωm the Stokes sideband is
suppressed by the cavity envelope (dashed black line) and the
anti-Stokes sideband is resonant with the cavity. A weak probe
mode at frequency δ (blue arrow) is used to scan the cavity res-
onance. b) A typical OMIT response T as a function of δ − ∆,
the optomechanical interaction gives rise to the transparency
window around the mechanical frequency.

of the particle and the pump as seen by the probe beam is given by [55, 134]

T =
∣∣∣∣∣1− κ

2
χopt(δ)

1 + g2χm(δ)χopt(δ)

∣∣∣∣∣
2

(3.37)

with the mechanical susceptibility χ(δ)−1
m = −i(δ − Ωm) + γ/2, the optical

susceptibility χopt(δ)−1 = −i(δ + ∆) + κ/2 and the detuning between control
mode and cavity mode ∆ = ωco − ωcav. For ∆ = −Ωm, the width of the
transparency window is given by [55]

γOMIT = γp + 4g2

κ
= γp + γopt. (3.38)

In the following chapter OMIT will be used to measure the width of the trans-
parency window in order to estimate the cooperativity of the levitated op-
tomechanical system. The mechanical heating rate Γ, which is also required
to estimate CQ, is measured independently with relaxation measurements, see
chapter 3.1.5.
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3.3. Combination of a Tweezer and a
Macroscopic Fabry-Pérot Cavity

The cavity optomechanical setup described here is based on [14] and the op-
tical tweezer design is based on [101]. Both systems are combined inside the
same vacuum chamber such that the levitated particle inside the tweezer is
coupled to the fundamental cavity mode. The cavity optomechanical setup
and the tweezer are introduced independently in the first two sections and
the remaining parts of this chapter are devoted to the combination of both
systems.

3.3.1. Cavity Optomechanical Setup
The experimental implementation of the cavity optomechanics part is divided
into three parts: The main setup, the control mode generation and the homo-
dyne read-out of the particle motion.

The Main Setup

Figure 3.10 shows a schematic drawing of the experiment. A λ = 1064 nm laser
(Innolight/Coherent: Mephisto) is locked onto a Fabry-Pérot cavity (OMC,
for optomechanical) with a Pound-Drever-Hall locking scheme [135]. A free-
space electro-optical modulator (not shown in figure 3.10, between polarizing
beamsplitter PBS2 and PBS3) generates sidebands for the lock. The OMC is
in a near-confocal configuration. Both mirrors have a radius of curvature of
R = 1 cm, the cavity has a length of lcav = 10.7 mm, a free spectral range
of FSR = 14 GHz and a finesse of F ≈ 70, 000. The lock loop stabilizes
the laser to the fundamental TEM00 mode of the resonator with a waist of
w0 = 41 µm. This mode is referred to as locking mode (LM). The cavity
is inside a vacuum chamber which is connected to a scroll pump (Edwards:
nXDS) and a turbo pump (Edwards: nExt300). The vacuum chamber is
also connected to a ultrasonic nebulizer (Omron: MicroAir U22) providing a
source for airborne nanoparticles [65]. A more detailed description about the
mounting and particle loading follows in chapter 3.3.3 and 3.3.4. The base
pressure of the vacuum system is p ≈ 6 × 10−7 mbar, limited by outgasing
of the elements inside the vacuum chamber. A fraction of the LM is split
off at PBS1 and coupled into a single mode fiber (SMF). This light is used
to generate the optomechanical control mode. A second fraction of the LM is
separated at PBS2 and serves as a local oscillator (LO) for the homodyne read-
out of the transmitted cavity field. After the vacuum chamber, in transmission
of the OM cavity, the locking beam and the orthogonally polarized control
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PDH
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λ/2

PBS1
laser
λ=1064 nm

OMIT
HOvac

OMCPBS2
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Figure 3.10.: A λ = 1064 nm laser is locked to a Fabry-Pérot cavity (OMC)
inside a vacuum chamber (vac) with a Pound-Drever-Hall lock-
ing scheme (PDH: Pound-Drever-Hall detector, sideband gen-
eration not shown). A fraction of the locked laser is separated
at a polarizing beamsplitter (PBS1) and coupled into a sin-
gle mode fiber (SMF). It is used to generate the control mode
(CM) which is orthogonally polarized and superimposed with
the locking beam on PBS4 before the OMC. A second fraction
is split at PBS2 and used as local oscillator (LO) for the homo-
dyne detection (HO) in transmission of the OMC. The orthog-
onal control mode is separated from the locking beam on PBS5
and used for optomechanical induced transparency measure-
ments (OMIT).

mode are separated at PBS5. The transmitted light is used for homodyne
detection (HO) and the light reflected will be used for OMIT measurements
(Thorlabs: SM05PD4A photodiode in combination with Femto: DHPCA-S
current amplifier).

The Optomechanical Control Mode Generation

Figure 3.11 shows a schematic of the control-mode generation. Light in re-
flection of PBS1, see figure 3.10, is coupled into a SMF which is connected
to a fiber-based electro-optical modulator (EOM, EOSpace: PM-0K5-20-PFA-
PFA-106). A microwave signal generator (FG, Rhode&Schwarz: SMF100A)
drives the EOM with a frequency νFG = FSR + ∆ such that the light after the
EOM consists of three frequency components: the unmodulated carrier νcav,
the upper sideband νcav +FSR+∆ and the lower sideband νcav−FSR−∆. For
the optomechanical control mode only one of the two sidebands is required.
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PD
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FC λ/2 PBS
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Figure 3.11.: Optomechanical control mode generation: A fiber based
electro-optical modulator (EOM) is used to generate sidebands
at ν = νcav ± (FSR + ∆) of the laser resonant with the OMC.
A free-space Fabry-Pérot cavity (FC) is used as a filter to re-
ject the carrier frequency and one of the two sidebands gener-
ated by the EOM. A photodiode (PD) in combination with a
PID controller and a high-voltage amplifier (HVA) are used to
change the cavity length with a piezo (PZ) such that only one
sideband of the laser is transmitted.

A low-finesse Fabry-Pérot resonator (FC) is used to reject the unwanted side-
band and the unwanted carrier. The length of the FC and hence its resonance
frequency νFC, can be changed with a piezo (PZ). The FC has a linewidth
of κFC ≈ 2π × 100 MHz, sufficiently narrow to reject the two unwanted fre-
quencies. The cavity is stabilized with a ”side-of-the-peak“ locking scheme.
Initially, the filtering cavity resonance frequency is tuned such that the upper
sideband coincides with the linear slope of the cavity envelope. A photodiode
(PD) detects a fraction of the transmitted light and provides an error signal
for a software based feedback loop (LabView: PID and Fuzzy Logic Toolkit).
The control signal from the PID is amplified with a high-voltage amplifier
(HV-A, Piezomechanik GmbH: SVR 150/3) and connected to the piezo (PZ)
to stabilize the cavity length such that the power measured on the PD is con-
stant. Hence, the light after the PBS has a single frequency component at
νco = νcav + FSR + ∆ and is referred to as control mode (CM) from now on.
For ∆ = 0 the light would excite another TEM00 mode of the OMC. The de-
tuning ∆ can now be chosen arbitrarily for optomechanical control. Note that
the microwave signal generator has a frequency modulation option. If enabled,
the frequency νFG that creates the sidebands in the EOM is modulated by an
external frequency δ and creates additional sidebands at νFG ± δ. For small
external frequencies δ � κFC the modulation will create optical sidebands of
the CM mode which will be transmitted by the filtering cavity. That means
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that the light leaking out of the filtering cavity has three frequency compo-
nents: the CM mode at νcav + FSR + ∆, the lower sideband of the CM mode
νcav + FSR + ∆ − δ and the upper sideband at νcav + FSR + ∆ + δ. The
additional sidebands will be used for optomechanical induced transparency
measurements.

The Homodyne Read-Out

The homodyne read-out scheme is shown in figure 3.12. Light of the locking
mode leaking out of the OMC (signal beam) is superimposed with the local
oscillator (LO) at PBS2. The phase of the LO with respect to the signal beam
is controlled with a mirror glued on a piezo stack (PZ-M). The LO is reflected
at PBS1, propagates through a quarter waveplate (λ/4), is reflected by the
PZ-M and propagates again through the quarter waveplate. Passing it twice
effectively rotates the polarization of the LO by 90◦ degrees and therefore, the
LO is transmitted at PBS1 and superimposed with the signal beam at PBS2.
Typically, homodyne detection schemes use a 50:50 beamsplitter instead of

OMITvac

OMC

LO

λ/4

λ/2
D1

D2

PZ-M

PBS1

PBS2

PBS3

S

Figure 3.12.: Homodyne detection scheme: Light leaking out of the OMC is
superimposed with a local oscillator beam (LO) at the polariz-
ing beamsplitter (PBS2). To interfere both beams at PBS3, a
half waveplate (λ/2) is used to rotate the polarization by 45◦
degrees. Two photodiodes D1 and D2 detect the transmitted
and reflected port of PBS3. A mirror glued on a piezo stack
(PZ-M) allows to control the phase of the LO. The difference
signal between both photodiodes is used to stabilize the homo-
dyne read-out with a PID feedback loop driving the PZ-M. The
LO is first reflected at PBS1, reflected by the PZ-M and passes
a quarter waveplate λ/4 twice such that its polarization is ro-
tated by 90◦ degrees and transmitted at PBS1.
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a polarizing beamsplitter. Here, the combination of PBS-λ/2-PBS has the
same effect as a 50:50 beamsplitter. The electric field after PBS2 and the half
waveplate is

Eλ/2 = − i√
2

(ELO + ESIG)|H〉 − i√
2

(ELO − ESIG)|V 〉 (3.39)

with ELO (ESIG) the electric field of the local oscillator (signal beam) and
|H〉(|V 〉) the basis vector for horizontal (vertical) polarization. The intensity
measured at the homodyne photodiodes D1 and D2 is

ID1/2 ∝
1
2 |ELO ± ESIG|2. (3.40)

Starting from here, this is a standard homodyne detection scheme which
is described elsewhere [136]. A balanced, amplified photodiode (Thorlabs:
PDB420-C) is used for homodyne detection. A PID controller (Toptica: PID110)
is used to lock the PZ-M to the desired homodyne phase.

3.3.2. Tweezer Setup
The optical tweezer setup consists of three parts: Beam preparation, feedback
electronics, trapping and read-out, which is described in detail below:

Trapping and Read-Out

Figure 3.13 shows a schematic drawing of the trapping and read-out part of
the tweezer setup. The trapping laser (red) and an orthogonally polarized,
ν = 82 MHz frequency shifted (with respect to the trapping laser) feedback
laser (green) are delivered by a single mode fiber (SMF, see figure 3.14), en-
ter the vacuum chamber (vac) and are aligned onto a long working distance
WD = 3.4 mm, high NA = 0.8 microscope objective (MO, Olympus: LMPL
100x IR). The tightly focused laser beam forms the optical trap for nanoparti-
cles. A collimation lens (CL, Thorlabs: A260-C) with a focal length of f = 15
mm is used to collect scattered light from the particle for position read-out.
A quarter (λ/4) and a half (λ/2) waveplate in combination with a Glan-Laser
polarizer (GLP, Thorlabs: GL10-C) are used to separate feedback and trap-
ping laser after leaving the vacuum chamber. The beamsplitters PBS1 and
PBS2 divide the beam into three parts for the three-dimensional read-out of
the COM motion, as explained in chapter 3.1.2. Along the x-direction the
mode is split by a D-shaped mirror (DS, Thorlabs: BBD1-E03) into two equal
halves and each part is sent to the photodiode of a balanced photodetector (X1
and X2, Thorlabs: PDB420C-AC). The detector returns the difference signal
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Figure 3.13.: The feedback (green) and trapping (red) laser enter the vacuum
chamber (vac) from a single mode fiber (SMF). Inside the vac-
uum chamber is a high NA microscope objective (MO) and a
collimation lens (CL) to form the optical trap and collect light
for the read-out. A Glan-Laser polarizer (GLP) in combina-
tion with a half (λ/2) and a quarter (λ/4) waveplate are used
to separate feedback and trapping laser. The trapping laser is
split on PBS1 and PBS2 into three parts. Each part is used to
detect the COM motion along one spatial direction. For radial
read-out the mode is split into two halves with a D-shaped mir-
ror (DS) and each half is detected separately with a photodiode
(X1 and X2 for the x read-out and Y1 and Y2 for the y read-
out). Note that the y read-out is rotated by 90◦ degrees with
respect to the x read-out, along the axis indicated by the blue
arrow. For axial read-out (z-direction) the signal beam is de-
tected with photodiode Z1 and the (LO) is detected with Z2.
The difference signal between each detector pair is proportional
to its corresponding COM motion, see chapter 3.1.2.

Sx between the two diodes which is, according to equation 3.20, proportional
to the particle displacement along the x-direction. The read-out along the
y-direction is the same except the D-shaped mirror is rotated by 90◦ degrees
with respect to the blue arrow, to detect the motion perpendicular to x. The
third fraction is sent to the photodiode Z1 of a balanced photodetector (Thor-
labs: PDB420C-AC) and the same optical power from the trapping laser (LO),
separated before interaction with the particle, is sent on the second diode Z2.
The difference signal Sz is proportional to the particle COM motion along the
z-direction, see equation 3.19.
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Tweezer Beam Preparation and Feedback Electronics

Figure 3.14 shows a drawing of the tweezer beam preparation setup and a
schematic circuit diagram of the feedback electronics. Roughly P ≈ 10 mW
from a free-running Innolight/Coherent Mephisto laser (not shown in figure
3.14) are used to seed a fiber amplifier (Nufern: NUA-1064-PB-0005-B3). The
frequency of the free-running laser is chosen far off-resonant with respect to the
OMC resonance frequency ωcav to avoid pumping the cavity via the tweezer.
The output of the fiber amplifier is split into three parts with PBS1 and PBS2.
The light transmitted at both, PBS1 and PBS2 is coupled into a single mode
fiber and forms the optical trap in the optical tweezer setup. The fraction of
light reflected at PBS2 is sent to the tweezer read-out and is used as local
oscillator (LO) for z-detection. The light reflected at PBS1 passes an acousto-
optical modulator (AOM, IntraAction Corp: ATM-804DA6M) which is driven
by an DFE-804A4 dual channel frequency synthesizer (IntraAction Corp, only
one channel is used). The first diffraction order is shifted by ν = 82 MHz, is
orthogonally polarized (green) with an additional half waveplate (not shown
in figure 3.14) with respect to the trapping laser (red) and also coupled into
the SMF via PBS3. This mode is used for parametric feedback cooling. The
electronic feedback signal is sent into the modulation input of the AOM driver
and results in an amplitude modulation of the feedback laser. For parametric
feedback cooling, the spring constant needs to be modulated by twice the
mechanical frequency. The optical potential of the feedback laser adds to the
optical potential of the trapping laser. By modulating the intensity of the
feedback laser the combined optical potential is modulated and hence, the
spring constant of the levitated nanoparticle. Without loss of generality the
signal processing is explained for the x-direction. In a first step the signal is
bandpass filtered (HP and LP) around the mechanical frequency Ωx to suppress
technical noise (low frequency acoustical noise and noise peaks introduced by
the fiber amplifier) and remnants of the other mechanical modes present due
to imperfect isolation of the read-out. After filtering, the signal is squared
(SQ) an a phase shift (φx) is applied to compensate for unwanted phase shifts
introduced by the high- and lowpass filter and by the squaring circuit. This is
done for each spatial direction independently and all three signals are added
with an summing amplifier (S). In a last step the signal passes a switch (SW,
Mini-Circuits: ZASWA-2-50DR+) which is electronically controlled and used
to turn feedback cooling off or on.
In the beginning of the experiment we started with parametric feedback

cooling along the axial direction only and used self-made analogue circuits,
inspired by the PhD thesis of Jan Gieseler [111]. The circuit consisted of
bandpass filter, see appendix A.1, with a center frequency of Ωz to reject tech-
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Figure 3.14.: Light from a fiber amplifier (laser λ = 1064 nm) is split into
three parts at PBS1 and PBS2. The light transmitted at PBS2
is used for optical trapping and is coupled into a single mode
fiber (SMF). Light reflected at PBS2 is sent to the read-out
and serves as local oscillator (LO). Light reflected at PBS1 is
sent through an acousto-optical modulator (AOM) and the
first diffraction order is superimposed with the trapping laser
at PBS3 and also coupled into the SMF. The optical power in-
side the first diffraction order is modulated by a signal from the
feedback logic (dashed box). The feedback logic consists of a
series of functions applied to the read-out signals in order to
modulate the trap frequency for parametric feedback cooling
(SW: switch, S: summing amplifier, PH: phase shift, SQ: squar-
ing, HP: high-pass filter, LP: low-pass filter, Si read-out signal
along the i-axis).

nical noise peaks from the fiber amplifier and low frequency noise in the axial
read-out. In a second step the signal was phase shifted, see appendix A.4,
to compensate the delay introduced by the bandpass filter and the squaring
circuit. For squaring, the circuit displayed in figure 26 of the AD734 (analogue
multiplier) specification sheet [137] was used in order to generate the modula-
tion signal at 2Ωz. And in a last step, a variable gain amplifier, see appendix
A.3, allowed for adjustment of the overall gain of the feedback signal. Nowa-
days, one phase-locked loop (PLL, Zurich Instruments: HF2LI) is used for
each direction of motion. Instead of filtering and squaring the read-out signal,
a PLL uses an internal PID controller in combination with a phase detector
to lock a reference signal to the oscillation frequency at its input. The PLL
is configured to output the second harmonic of the locked reference oscillator
with an adjustable phase. The signals along each direction can be internally
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added and are sent to the switch. The components inside the dashed line of
figure 3.14 are all combined inside the three PLLs.

3.3.3. Mounting and Mirror Cutting
On of the main challenges of combining an optical tweezer with the Fabry-Pérot
cavity from [14] is illustrated in figure 3.15. Typical available substrate for

Figure 3.15.: Working distance versus substrate diameter: True-to-scale
drawing of the Olympus LMPL100xIR microscope objective
and the two mirrors (M) forming the Fabry-Pérot cavity. The
drawing a) is a top view of the rendered picture b). The opti-
cal mode of the cavity (pink) and of the tweezer (red) are for
illustration purpose only. The working distance (WD) of the
microscope objective is not long enough to overlap the focus of
the tweezer with the cavity mode as long as WD < dM/2.

cavity mirrors with a radius of curvature of R = 1 cm are only 1/2” or larger.
The availability of long working distance, high numerical aperture lenses for the
near-infrared is also limited. The only commercially off-the-shelf available lens
complying our requirements is an Olympus LMPL100xIR microscope objective
with a working distance of WD = 3.4 mm. As illustrated in figure 3.15 a),
this working distance is too short to laterally reach the cavity axis and hence,
not long enough to position a particle trapped with the microscope objective
inside the mode of the cavity.
The waist of the TEM00 mode inside the cavity is described by the waist

function w(z) = w0

√
1− (z/zR)2, with w0 = 41 µm and zR the cavity Rayleigh

length. For a cavity length of lcav = 10.7 mm, the waist of the cavity mode
on the mirror is w(lcav/2) = 61 µm. This means that most of the mirror
surface is not used to form the cavity mode. The problem was addressed in a
collaboration with the group of Professor Martin Weitz at University of Bonn
(especially Tobias Damm and the mechanical workshop). Due to their work
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on optical microcavities [138], they have a long-standing experience in cutting
high quality mirrors without degrading the optical quality. An initially 12.7
mm diameter mirror was cut to 4 mm wide strip, as shown in figure 3.16 a),
which corresponds to 30 times the mode size on the mirror and hence, clipping
losses are negligible. Now, the objective can be laterally closer to the cavity
axis and a particle trapped in the tweezer can be positioned inside the cavity
mode.

Figure 3.16.: a) True-to-scale drawing of the Olympus LMPL100xIR micro-
scope objective and the two cut mirrors pieces (M) forming the
Fabry-Pérot cavity. Due to the reduced width of the cavity mir-
rors the working distance of the microscope objective is long
enough to overlap the tweezer trap with the cavity mode. b)
Rendered picture of drawing shown in a). c) Photograph of one
cut cavity mirror.

Figure 3.17 shows drawings of how cavity mirrors and tweezer are mounted.
Part a) shows an aluminium metal mount on which the two cut cavity mirrors
are glued. The groove along the horizontal direction is used to pump the cavity
from one side (red arrow) and used for collection of the light leaking out of
the cavity from the other side. The hole in the middle of the aluminium part
is used to insert the collimation lens for the read-out of the tweezer. Part b)
is a top view of the combined system of tweezer and cavity. The surface of
cavity mount and mirrors shown in part a) are pointed towards the front face
of the microscope objective. The collimation lens used for collection of the
tweezer light is glued onto an Invar tube and is positioned through the hole
in the cavity mirror mount (see part a)). This way of mounting the optical
components allows trapping of a nanoparticle with the microscope objective
and positioning it into the TEM00 mode of the cavity. The collimation lens is
used for read-out of the particle motion. Part c) shows a side view of the cavity
and tweezer mounting. The microscope objective is mounted onto a vacuum
compatible, triaxial stepper motor (Mechonics: MX35) which is used to align
the tweezer trap with respect to the cavity mode (one cavity mirror is indicated
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Figure 3.17.: Cavity and Tweezer Combination (black arrows indicate COM
directions): a) Drawing of the cavity mirror mount. The cav-
ity (two mirrors glued on aluminium mount) is driven via the
left groove (red arrow) and the right groove enables detection
of the light leaking out of the cavity. b) Top view of the micro-
scope objective, the collimation lens mounted on an Invar tube
and cavity in an assembled state. c) Side view: The microscope
objective and the collimation lens tube are mounted on triaxial
positioners. The red arrow indicates one cavity mirror

by an arrow). The collimation lens tube with the collimation lens is mounted
onto another vacuum compatible, triaxial stepper motor (Mechonics: MX25).
After alignment of the microscope objective with respect to the cavity mode,
the MX25 is used to align the collimation lens with respect to the microscope
objective.

3.3.4. Particle Loading and Trapping
Initial loading of particles into the combined tweezer-cavity experiment is a
more complicated process compared to loading the HCPCF setup or loading
the cavity-only experiment [14]. The focal volume of the microscope objective
is on the order of Vfoc = wx×wy×zR ≈ 1 µm3, compared to Vfoc ≈ 600 µm3 at
the HCPCF entrance and Vcav ≈ 2.5×107 µm3 for trapping in a cavity. As the
trapping volume of the tweezer is significantly smaller than in the other two
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Figure 3.18.: Cavity insertion procedure: After a particle is initially trapped
in the tweezer a) the cavity is inserted into the main aluminium
block b). The aluminium piece on which the MX25 is mounted
including collimation lens and collimation lens tube is laced
into the hole of the cavity mirror holder and screwed into the
main aluminium block c) & d).

cases, a higher concentration of nanoparticles is required to trap a particle.
The particles are initially launched in the same way as described in chapter
2.2.5. An Omron MicroAir U22 ultrasonic nebulizer is used to nebulize a
solution of Isopropanol and silica nanoparticles with a radius of a = 71.5 nm
(Microparticles GmbH: SIO2 − F− 0.15). The airborne particles are delivered
close to the microscope objective via an inlet in the vacuum chamber. The
ideal mass concentration between nanoparticles and solvent for trapping a
particle in the tweezer was found heuristically to be 10−4. However, this mass
concentration is too high when the cavity is present, since initial loading of
the tweezer would contaminate the high quality optical coatings of the cavity
mirrors (we saw a reduction in finesse from 200, 000 to below 40, 000 from a
single attempt!). This is the main reason for the modular design of cavity and
collimation lens mount. In order to prevent degradation of the optical coating,
the cavity is removed from the vacuum chamber before loading a particle into
the tweezer.
The loading procedure happens in the following steps (figure 3.18). Step a):

The cavity is removed from the vacuum chamber. In order to make this process
as efficient as possible there is a CF quick access door with 10 cm diameter
and viewport (Vacom: QAD100BK-AL-304) to remove the collimation lens
including the MX25 stage and the cavity. The vacuum chamber is closed and
evacuated to a pressure of roughly p ≈ 10 mbar. Then, airborne nanoparticles
from the ultrasonic nebulizer are sucked into the vacuum chamber until a
particle occupies the tweezer trap. The trap is monitored with a CCD camera
mounted on top of the vacuum chamber. Once a particle is trapped, the
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Figure 3.19.: The brave experimenter reaching into the vacuum chamber
while a nanoparticle is trapped inside the tweezer (photograph
on the left). a)-f): Six consecutive pictures of a video show-
ing the insertion procedure. The microscope objective is in-
dicated by the blue shaded area, a red arrow points towards
the trapped particle and the trapping mode is indicated by the
light red area. The green shaded areas indicate the position of
the two cavity mirrors.

vacuum chamber is vented and the quick access door is opened. Step b): The
cavity is inserted while a particle is trapped inside the tweezer. The purple
surfaces shown in figure 3.18 a) and b) serve as arrester for the cavity mirror
holder. The cavity is gently moved into the the holder until it touches the
two purple surfaces. The insertion procedure is very reproducible, hardly any
realignment of the cavity is necessary. Typically, only the last steering mirror
before the cavity needs minor adjustment in order to restore the pre-aligned
coupling. Step c): The MX25 stage with mount including the collimation lens
and holder is inserted into the vacuum chamber. Part d): The collimation lens
tube is laced into the hole of the cavity mirror holder and screwed into the
main aluminium block. The last step is closing the quick door and evacuating
the vacuum chamber.
Six consecutive pictures of a video inserting the cavity into the vacuum

chamber are shown in figure 3.19. In the first picture the levitated particle is
marked by a red arrow. The red area indicates the trapping mode and the blue
area indicates the microscope objective. The cavity is moved in from the top
left side and its two mirrors are highlighted with green areas. Once the cavity
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is touching the two stop surfaces (purple surfaces in figure 3.18 a)), which is
shown in picture f), the collimation lens on the MX25 is added and the vacuum
chamber is closed. The photograph in the left shows myself inserting the cavity
through the quick access door.
Although this procedure might seem crude and the HCPCF experiment [62]

or the MOBOT experiment [108] are potential alternatives, it is surprisingly
reliable and reproducible. With a few days of training, four out of five trapped
particles inside the tweezer survive the entire procedure. The most common
reason for particle loss is coming too close to the vicinity of the trapped particle
with the cavity. The entire loading procedure takes approximately 20 min.

3.3.5. Alignment of the Tweezer to the Cavity Mode
In order to align the microscope objective and hence, the particle with respect
to the TEM00 mode of the cavity, a CCD camera is placed behind the cavity
(outside of the vacuum chamber). The direction of the camera is indicated by
the blue arrow in figure 3.20 a). Part b) to e) display photographs taken with

Figure 3.20.: a) The blue arrow highlights the camera perspective for pic-
tures b)-e). b)-e): Alignment procedure between microscope
objective and cavity mode (purple arrows) while a particle is
trapped (red arrows). The blue area indicates the microscope
objective and the green area indicates the cavity mirror.

this camera. The blue shaded area indicates the front part of the microscope
objective, a red arrow points at the levitated particle, the green shaded area
highlights one of the cavity mirrors and the purple arrow points at the TEM00
mode of the cavity. In the first three pictures the vertical position of the
particle is adjusted with respect to the hight of the TEM00 mode by moving
the microscope objective with the triaxial stage (MX35). Photographs d) and
e) show how the microscope is moved towards the cavity mirror. Then, the
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CCD camera is removed and the cavity homodyne read-out is monitored with a
spectrum analyzer. The position of the microscope objective is systematically
scanned around the position of the TEM00 mode until the motion of the
particle becomes visible in the spectrum analyzer. Once the mechanical peak
appears in the spectrum, this signal can be used to optimize the coupling
between cavity mode and nanoparticle.
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Figure 3.21.: Cavity Homodyne Read-out: The COM motion of a levitated
particle inside the tweezer is aligned with respect to the linear
slope of the cavity mode. Once the particle comes in the vicin-
ity of the cavity field, its motion can be seen in the homodyne
read-out of the cavity (blue trace). The position of the micro-
scope objective with respect to the cavity mode is optimized
by increasing the signal-to-noise ratio around the frequency of
Ωx and simultaneously minimizing the signal-to-noise at twice
the mechanical frequency of the tweezer 2Ωx. The colored dots
(same color coding as traces) in the inset indicate the particle
position inside the cavity standing wave

Figure 3.21 shows three homodyne read-out spectra Sxx while the microscope
objective is aligned with respect to the tweezer. If the particle inside the
tweezer comes in the vicinity of the cavity mode the homodyne read-out picks
up the phase modulation due to the particle motion (blue trace). As soon as
any coupling to the cavity mode is present, the signal-to-noise ratio around
the frequency Ωx, the motion along the cavity axis, needs to be maximised
(red trace) while simultaneously minimizing the signal-to-noise ratio at the
frequency 2Ωx kHz, which is indicative of quadratic coupling. This occurs if
the particle is close to an antinode or a node of the standing wave inside the
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cavity (green trace). In such a scenario the microscope objective needs to be
moved along the cavity axis until the second harmonic vanishes (red trace).
This method is a convenient way of aligning the cavity and tweezer with

respect to each other and of optimizing the coupling. Note that in the green
trace, where the particle is close to an antinode or node of the cavity standing
wave, a similar effect as described in chapter 3.1.4 appears. Due to the an-
harmonicity of the optical potential, the axial tweezer motion couples to the
motion along the cavity axis and hence, two peaks at Ωx ± Ωz are observed.

3.3.6. Summary
The main result of this chapter is the ability to levitate a nanoparticle with an
optical tweezer while simultaneously coupling it to a TEM00 mode of a high-
finesse Fabry-Pérot cavity. This is achieved by reducing the diameter of high
quality mirrors, three-dimensional alignment capabilities of the microscope
objective and by consecutive execution of the experiment: Loading the tweezer
without cavity present to protect the high quality mirrors and insertion of the
cavity while the particle is trapped. These developments provide the basis to
bring a levitated optomechanical system into high vacuum.
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3.4. Experimental Levitated Cavity
Optomechanics in High Vacuum

The previous chapter described how to equip a levitated cavity optomechanics
experiment with an optical tweezer with the goal to operate in ultra-high
vacuum and reach the strong quantum cooperativity regime CQ > 1. Here the
performance and the current limitations of the optical tweezer and the cavity
are described. The mechanical losses Γ are solely measured with the tweezer
down to the base pressure of the vacuum system (p = 6× 10−7 mbar). OMIT
measurements are performed with the combined system of tweezer and cavity
to infer the optomechanical coupling rate g. Here we report the latest status
of the currently ongoing experiments.

3.4.1. Relaxation Measurements
The mechanical losses are quantified with relaxation measurements. The pro-
cedure is completely analogous to the one used in the HCPCF experiment
(chapter 2.5). The theoretical description can be found in chapter 3.1.5. A
silica particle of radius a = 71.5 nm is levitated inside the optical tweezer
without the cavity mode being present. All three spatial directions of the
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Figure 3.22.: Relaxation measurement of a particle levitated at a pressure of
p = 0.2 mbar a) and p = 10−6 mbar b). The particle is feed-
back cooled (indicated by the grey shaded area) to an effective
temperature of Teff = 60 K and Teff = 100 mK, respectively.
After reaching a steady state, feedback cooling is switched off
and the relaxation towards thermal equilibrium is recorded. At
high pressure the full exponential is observed whereas at low
pressure only the linear part is measured to avoid losing the
particle from the trap. The solid black curve is a fit to the par-
ticle energy (red).

particle motion are subject to parametric feedback cooling to avoid both, par-
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ticle loss from the trap and coupling of modes. For pressures p > 10−2 mbar,
a pressure at which the particle stays trapped without feedback cooling, the
three-dimensional feedback cooling is switched off until the COM motions re-
lax back to thermal equilibrium E∞ = kBT0. For pressures below p < 10−2

mbar, feedback cooling is switched back on before relaxation to thermal equi-
librium to prevent particle loss. Therefore, in the high-pressure regime the full
exponential decay is resolved, while in the low-pressure regime only the linear
part is accessible. Typically, the relaxation times for low pressures are on the
order of t ≈ 1/(10γp). This procedure is repeated 5000 times for each pressure
and the energy of the COM motions are computed as ensemble variance. To
be precise, all recorded displacement trajectories were first bandpass filtered
around the mechanical frequency with a bandwidth of 10 kHz, after which
the variance was computed. Two examples for the tweezer x-direction (which
coincides with the cavity axis) are shown in figure 3.22. Part a) shows a full
relaxation to thermal equilibrium T0 at a pressure of p = 0.2 mbar. The black
curve is a fit to an exponential relaxation (equation 3.27). Part b) shows a
relaxation measurement of the same particle at a pressure of p = 10−6 mbar.
The red shaded area is the computed variance within its error bars (note that
the error bars for part b) are to little to be represented, however they are
accounted for in the fit) and the solid black line is a fit to the linear part of
the relaxation, see equation 3.28.
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Figure 3.23.: Mechanical losses Γ are quantified via relaxation measurements
along the x-axis as a function of pressures. The solid red line
is a linear fit to the data indicating the recoil limit at low pres-
sures.

In cases where a fit of a full relaxation was possible, the heating rate Γ =
E∞γ is computed with the two free fit parameters E∞ and γ. In the cases
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where only the beginning of the relaxation was observed, the slope of the
fit returns the estimate for the mechanical losses Γ. Figure 3.23 shows a
systematic measurement of the mechanical losses as function of pressure. The
solid red line is a linear fit to the data. The plateau at low pressures indicates
the recoil limit which is pressure independent and the linear behaviour at
higher pressures resembles the mechanical losses due to collisions with residual
air molecules in the vacuum chamber. Theoretical estimation of the recoil
heating rate with equation 3.26 results in Γrc = 2π × 7 kHz (particle radius
a = 71.5 nm, mechanical frequency Ωx = 2π×163 kHz, trapping intensity I =
6×1011 W/m2). The recoil heating rate from the fit is Γrc = 2π×(20±7) kHz.
The deviation to the theoretical prediction can be explained by the insufficient
data for the relaxation measurement at low pressures. In order to get a better
prediction for the recoil limit more data points which show a deviation from the
linear pressure dependence are required. Further improvement of the vacuum
system by installation of an ion pump would allow pumping to lower pressures.
The lowest pressure achieved in the measurement presented here is p = 6×10−7

mbar and the total mechanical reheating rate at this pressure is Γ = 2π × 30
kHz.

3.4.2. OMIT Measurements
The optomechanical interaction can change the transmission properties of the
cavity via optomechanically induced transparency (OMIT), see chapter 3.2.3.
This effect is used here to measure the optomechanical coupling rate g. Com-
bination with the mechanical losses Γ and the optical losses κ allows us to
compute the quantum cooperativity CQ = 4g2/(κΓ).
A particle with a radius of a = 71.5 nm is levitated with the tweezer and

linearly coupled to the cavity mode, such that the interaction is described by
equation 3.33. In addition to the strong, red-detuned control mode at a de-
tuning of ∆ = −Ωm, a second, weak probe mode is required to measure the
transparency window in the cavity transmission induced by the optomechani-
cal interaction. As already described in chapter 3.3.1, a phase modulation can
be applied to the control mode in such a way that in addition to the carrier
frequency at ∆ = −Ωm, two sidebands at frequency −Ωm ± δ are generated.
The output of a vector network analyzer (VNA, Rhode&Schwarz: ZNB8) is
used to create the phase modulation at frequency δ, which is swept between
0 and −1.5Ωm. The lower sideband at −Ωm − δ moves away from the cav-
ity resonance and is strongly suppressed by the cavity envelope. The upper
sideband with frequency −Ωm + δ moves towards the cavity resonance and is
probing the transmission T . The resulting cavity field, comprising both, probe
and control mode is monitored with the OMIT detector, see figure 3.10. The
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detector signal of the interference between probe and control beam is used
as input for the VNA. The VNA returns the transfer-function of the cavity
optomechanical system as a function of the phase modulation δ, see equation
3.37.
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Figure 3.24.: OMIT measurements at high pressure: The red (green) data
points represent the normalized transmission of the probe
mode as a function of frequency δ − ∆ for nco = 9.5 × 108

(nco = 5.2 × 109) photons in the control mode. The fre-
quency axis is normalized to the mechanical frequency Ωm
and while the detuning of the control mode is kept constant
at ∆ = −0.97Ωm (∆ = −0.98Ωm), the frequency δ is swept over
the cavity envelope. The solid lines are fits to the expected the-
oretical function resulting in an optomechanical coupling rate
of g = 2π × 6 kHz (g = 2π × 14 kHz).

Figure 3.24 and figure 3.25 show preliminary results of OMIT measurements,
both, at high pressure (p = 0.5 mbar) and at high vacuum (p = 4 × 10−6

mbar). During the high pressure measurements parametric feedback cooling
was switched off all the time as particle loss does not occur. The particle
position was optimized for maximal linear coupling to the cavity mode, see
chapter 3.3.5, and the OMIT measurement was performed for two different
control beam powers.
For the OMIT measurement in high vacuum, three-dimensional feedback

cooling is necessary in order to keep the particle inside the trap. Once the
particle is coupled linearly to the cavity mode, the strong control mode at
∆ = −Ωm and the probe mode sweep from 0 to 1.5Ωm are initiated, the radial
parametric feedback cooling is switched off for the time of one OMIT mea-
surement (toff < 1 s). During the OMIT measurement the mechanical motion
along the cavity axes is cooled via cavity-cooling (the control mode is on the
red mechanical sideband), the axial tweezer motion (z) via parametric feed-
back and the remaining y-motion undergoes free oscillation until the feedback
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cooling is switched back on. For an initial mode temperature of Teff ≈ 0.13 K
(at a pressure of p = 4 × 10−6 mbar), according to the measurement shown
in figure 3.6, and with a heating rate of Γ ≈ 170 kHz, according to the mea-
surement shown in figure 3.23, the effective mode temperature along the axes
that undergoes free oscillations increases to Teff ≈ 0.33 K. As shown in figure
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Figure 3.25.: OMIT measurements at low pressure: The red data points
represent the normalized transmission of the probe mode as a
function of frequency δ − ∆. The frequency axis is normalized
to the mechanical frequency Ωm, the detuning of the control
mode is kept constant at ∆ = −0.84Ωm while the probe fre-
quency δ is swept over the cavity envelope. The solid line is a
fit to the expected theoretical function resulting in an optome-
chanical coupling rate of g = 2π × 13 kHz for nco = 4.5 × 109

photons in the control mode.

3.8 the three orthogonal modes are still decoupled at Teff = 15 K. Hence, we
can safely assume that no mode-coupling occurs at Teff ≈ 0.33 K, i.e. the free
oscillations along the radial cavity axes should not interfere with the OMIT
measurements.
A detailed theoretical treatment of the OMIT measurements performed here,

as well as fitting data to theory and error estimation are a part of the PhD
work of Uros Delic [121]. The main result of this chapter is: The combination
of optical tweezer and cavity is functional and the OMIT measurements show
unambiguously the coherent optomechanical coupling between COM motion
of a levitated nanoparticle and a cavity mode at high vacuum (p = 4× 10−6).

3.4.3. Estimate of the Quantum Cooperativity
The measurement results from the previous two chapters allow a tentative
estimate of the quantum cooperativity at the present state of the experiment.
At the lowest pressure of p = 4×10−6 mbar, where an OMIT measurement was
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performed, an optomechanical coupling rate of g = 2π × 13 kHz was inferred.
The corresponding mechanical losses at the same pressure are Γ = 2π × 164
kHz and the cavity linewidth, which is pressure independent, was determined
to be κ = 2π × 200 kHz (independent optical measurement without trapped
particle). This results in a quantum cooperativity of

CQ = 4g2

κΓ = 0.02.

Note that this value for CQ is obtained by independent measurements of the
individual parameters. The mechanical losses were measured without cavity
field present and hence the contribution of the control mode to the recoil
heating is not accounted for. The presence of the control mode increases
the recoil heating rate by Γ = 2π × 150 Hz (computed value with particle
radius a = 71.5 nm, mechanical frequency Ωx = 2π × 163 kHz, control mode
photon number nc = 5.4 × 109 corresponding to a control mode intensity
of I = 1.4 × 1010 W/m2). Assuming the coupling rate g stays the same,
independent of pressure, the highest achievable quantum cooperativity is CQ =
0.11 (limited by the measured mechanical losses of Γ = 2π × 30 kHz at a
pressure of p = 6× 10−7 mbar).
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3.5. Summary and Outlook
This chapter was motivated by the prospects of levitated cavity optomechanics
for room-temperature quantum experiments with macroscopic objects. A nec-
essary requirement to perform this type of experiment is reaching the strong
quantum cooperativity regime CQ > 1. Our previous experiment operated at
a value of CQ ≈ 10−7, limited by mechanical losses Γ due to particle escape
from the optical trap around a pressure of p ≈ 1 mbar. Instead of using a
cavity mode to optically trap and control a nanoparticle, an optical tweezer
with parametric feedback cooling is used to stably trap a particle and couple
it to the cavity mode. Operation of the combined system at a pressure of
p = 4 × 10−6 mbar was demonstrated, reaching an estimated quantum co-
operativity of CQ = 0.02, an improvement by five orders of magnitude while
decreasing the mechanical losses by 6 orders of magnitude.
A more rigorous characterization of the optomechanical parameters are nec-

essary to find the maximal reachable quantum cooperativity of the current
system. The next step is to perform combined mechanical loss measurements,
as described in chapter 3.4.1, including the cavity control mode and opera-
tion of the combined system at the base pressure of the vacuum system. As
a second step, the vacuum system needs to be improved in order to operate
tweezer and cavity at the recoil limit [57], which, for the current particle size, is
expected at a pressure around p = 10−8 mbar, see figure 3.22. The remaining
parameter that can be improved to reach the strong quantum cooperativity
regime is the optomechanical coupling rate g =

√
ncog0. The most obvious way

to increase the coupling is to increase the number of photons circulating inside
the control mode nco until either heating and drifting of the cavity due to a too
high intra-cavity power limits this approach, or until the control mode reaches
a similar intensity as the tweezer and starts to act as a trap. The particle
would leave the linear slope of the standing wave and move towards the next
antinode, where the linear coupling is reduced. Note that in the recoil limited
regime particle size does not enter the quantum cooperativity. The mechanical
losses for a cavity-tweezer system operating at the recoil limit are solely given
by recoil heating, which is proportional to the particle volume Γ ∝ a3, see
equation 3.26. The optomechanical coupling g ∝ a3/2 w−2

0 is proportional to
the square-root of the volume and inversely proportional to the cavity mode
waist, see chapter 3.2.1. Ultimately, the quantum cooperativity in the recoil
limit is proportional to

CQ = 4g2

κΓ ∝
1
w4

0

and independent of particle radius a. Another way to increase the coupling
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is a reduction in the cavity waist w0, as shown in the above equation. These
directions are also explored in [121].
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A.1. Multiple Feedback Bandpass Filter
A multiple feedback bandpass filter is used to reject unwanted frequency com-
ponents in a signal, i.e. noise peaks from a fiber amplifier. The design and
values for the components were chosen with the help of this1 homepage. Figure
A.1 shows its circuit diagram. The transfer function of the filter is

−

+

R4

C2

R2

R1

Uin

C1

R3

UoutAD871

Figure A.1.: Multiple feedback bandpass filter

Uout(ω) = − Uin

R1C1

ω

ω2 + ω
(

1
R3C2

+ 1
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)
+ 1

R3C1C2

(
1
R1

+ 1
R2

)
and its center frequency is given by

ω0 =
√

1
R3C1C2

( 1
R1

+ 1
R2

)
.

Resistor R4 = 10kΩ is used to ground the positive input of the operational
amplifier. Figure A.2 shows the frequency response of the multiple feedback
bandpass filter for a center frequency of ω0 = 2π× 300 kHz with the following
components: R1 = 5.1 kΩ, R2 = 3.6 kΩ, R3 = 9.1 kΩ, R4 = 10 kΩ, C1 =
100 pF, C2 = 150 pF and a AD817 from Analog Devices [139].

1http://sim.okawa-denshi.jp/en/OPtazyuBakeisan.htm
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Figure A.2.: Amplitude response of a multiple feedback bandpass filter for
ω0 = 2π × 300kHz

A.2. Multiple Feedback Highpass Filter
This highpass filter is a part of the feedback cooling electronics in the HCPCF
experiment. It suppresses low frequency acoustic noise in the read-out signal.
The design and values for the components were chosen with the help of this2

homepage. Figure A.3 shows its circuit diagram. The transfer function of the

−

+

R4

C2

R1

C1

Uin

C3

R2

UoutAD871

Figure A.3.: Multiple feedback highpass filter

filter is

Uout(ω) = −Uin
1
C3

ω2C

ω2 + ωC1+C2+C3
R2C2C3

+ 1
R1R2C2C3

and its cut-off frequency is given by

ω0 = 1√
R1R2C2C3

2http://sim.okawa-denshi.jp/en/OPtazyuBakeisan.htm
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Resistor R4 = 10kΩ is used to ground the positive input of the operational
amplifier. Figure A.4 shows the frequency response for a multiple feedback
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Figure A.4.: Amplitude response of a multiple feedback highpass filter for
ω0 = 2π × 50 kHz

high-pass filter for a cut-off frequency of ω0 = 2π × 50 kHz with the following
components: R1 = 3 kΩ, R2 = 6.8 kΩ, R4 = 10 kΩ, C1 = 680 pF, C2 = 680 pF,
C3 = 680 pF and a AD817 from Analog Devices [139].

A.3. Variable Gain Amplifier
The variable gain amplifier is used to continuously amplify an arbitrary input
voltage Uin, e.g. for feedback control. The design used here is from [140] and
shown in figure A.5.
The capacitor C2 limits the gain towards DC-frequencies and the capacitor

C1 in combination with resistor R4 builds a highpass filter to block DC signals
entering the amplifier. The transfer function of the circuit is given by

Uout = Uin
R1 +R2

R1
= gUin

with the gain g = (R1 +R2)/R1. By changing the value of R2 the gain g of the
amplifier is changed. A typical implementation uses the following components:
C1 = 220 nF, C2 = 4.7 µF, R4 = 100 kΩ. For a variable gain between g = 1
and g ≈ 10 the defines the remaining components: R1 = 1 kΩ, a potentiometer
with R2 = 10kΩ and a AD817 from Analog Devices [139].

A.4. Phase Shifter
The phase-shifter circuit is used to effectively delay an oscillatory signal Uin(t)
by a time t0. For an oscillation frequency Ω, the phase shift corresponding to
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Figure A.5.: Variable gain amplifier

t0 is φ = Ωt0. The circuit diagram is shown in figure A.6 and based on [141].
The complex transfer function of this circuit is given by

Uin(ω) = Uout
1− ω2R2C2 − 2iωRC

1 + ω2R2C2

with R = R2 + R4. The circuit has unity gain |Uin/Uout| = 1 and the phase
angle φ between input signal Uin and output signal Uout is given by

tanφ = −2ωRC
1 + ω2R2C2

The value of R = R2+R4 can be changed with the potentiometer R2 and hence,
the phase between φ between input and output signal. The circuit is used to
introduce a well defined delay for axial direct feedback cooling in the HCPCF
and for parametric feedback cooling in the tweezer. For example, the circuit
for direct axial feedback consists of the following components: R1 = 12 kΩ,
R4 = 120 Ω, a potentiometer with R2 = 10 kΩ, C = 100 pF and a OP37 from
Analog Devices [142].
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Figure A.6.: Phase shifter

A.5. Differential Amplifier
For the locking schemes of particle read-outs as well as for homodyne detection
we need the difference between two voltage signals U1 and U2. The differen-
tial amplifier circuit shown in figure A.7 is a simple circuit to perform this
operation. The transfer function of this circuit is given by

−

+

R2

R1

U2

R1

U1

R2

UoutOP27

Figure A.7.: Differential amplifier

Uout = R2

R1
(U2 − U1).

For R1 = R2 = 10kΩ, the output voltage resembles the exact difference voltage
between the two input voltages. As operational amplifier a OP27 from Analog
Devices [143] is used.
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A.6. Differentiator
For radial electrical feedback cooling, an analog differentiator is used to derive
the modulation signal proportional to the particle velocity. The differentiator
circuit shown in figure A.8 returns the time derivative Uout ∝ dUin/dt of an
input voltage signal Uin. The transfer function of the circuit is given by

−

+

R3

C1
R1

Uin

R2

C2

UoutOP37

Figure A.8.: Differentiator

Uout = −R2C1
dUin

dt
.

The additional resistor R1 and capacitance C2 limit the gain at high frequencies
to suppress noise amplification. The circuit used for radial electrical feedback
in the HCPCF experiment consists of the following components: R1 = 15 Ω,
R2 = 1 kΩ, R3 = 10 kΩ, C1 = 4 nF, C2 = 400 pF an a OP37 from Analog
Devices [142].
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