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Abstract

This master’s thesis is concerned with an algorithm to solve parameter-dependent PDEs,
which uses rational Padé approximations to reduce the necessary computational effort. We
review a single point version, generalize it to multiple points using Newton-Padé approxima-
tions and test the algorithm on two examples, a scattering equation and a Helmholtz model
problem.
In the first part, we review theoretical results of the algorithm and present the two model
problems. In the second part, we test the algorithm numerically. The algorithm is imple-
mented in Python using the library NGSolve/Netgen. We try to reproduce theoretical results
for the single point method in two dimensions, expand the code to three dimensions and
make some first tests for the multi point version. We will also see how the Newton-Padé
approximation can be used as an eigenvalue solver for the Laplace operator.
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Zusammenfassung

Diese Masterarbeit beschäftigt sich mit einem Algorithmus für parameterabhängige par-
tielle Differentialgleichungen, der rationale Padéapproximationen verwendet, um den
Rechenaufwand zu reduzieren. Wir wiederholen eine Version mit einem Punkt, verallgemein-
ern diese zu mehreren Punkten mit der Hilfe von Newton-Padéapproximationen und testen
den Algorithmus numerisch an zwei Beispielen, einer Wellengleichung mit Zerstreuung und
einem Modellproblem für die Helmholtzgleichung.
Im ersten Teil wiederholen wir theoretische Resultate des Algorithmus und präsentieren
diese zwei Beispiele. Der Hauptfokus liegt auf dem zweiten Teil, wo wir den Algorithmus
numerisch testen. Der Algorithmus wurde in Python mit der Bibliothek NGSolve/Netgen
implementiert. Wir versuchen die theoretischen Resultate für die Ein-Punkt-Version in zwei
Dimensionen zu wiederholen, erweitern den Code auf drei Dimensionen und machen erste
Experimente für die Mehr-Punkte-Version. Als zusätzliche Anwendung werden wir sehen,
dass man die Newton-Padéapproximation auch als Eigenwertlöser verwenden kann.
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1 Introduction

This thesis is about an algorithm to solve partial differential equations (PDEs), which
depend on a parameter. We will look at the special case of the Helmholtz equation, which
describes a travelling wave and depends on a wave number ν2 ∈ R. Often one needs to
solve this PDE multiple times for different values of the parameter belonging to a certain
interval of interest. The "direct" method of just solving the PDE multiple times with some
Finite-Element solver is computationally very expensive for larger numbers of wave numbers
and therefore often not good to use in practice. We will discuss a different algorithm using
Padé approximations.
The idea will be to define a solution map T , which maps each wave number to the solution
of the PDE for fixed boundary conditions and source term. In the next step we will
approximate this solution map T by a Padé approximation. Using evaluation of this Padé
approximation one can calculate solutions of the PDE for any wave number.
This will allow us to define an algorithm which consists of an offline and an online part. In
the offline part one calculates the necessary data to construct the Padé approximation. This
may be computationally expensive, but can be done in advance. The data is saved and a
Padé approximation of T is constructed. The second part, the online phase, consists only of
the evaluation of the Padé approximation of the solution map T . This can be done nearly
instantly and also on less powerful machines. It is also important to note, that the offline
part is independent of the wave number, for which the solution should be calculated in the
online part.
Traditionally, Padé approximations are defined for real- or complex-valued functions
(see [HR00] and [Cla76]). We will generalize this to functions with values in some Hilbert
space using a least-square approach (see [BNP17]) in Chapter 2. In this paper, this was
done for Padé approximations with one center and we will generalize this theory to multiple
centers (also called Newton-Padé approximations) in Chapter 3. Again we will use the the
definition for C-valued functions as a basis (see [Cla78]).
The main focus of this thesis will be to test this algorithm numerically. Therefore, we define
two model problems, a Helmholtz equation on a squared domain with a source term and
Dirichlet boundary conditions and one example, which includes a scattering effect as well.
We will introduce these equations in Chapter 4 and review some important theoretical results.
For the implementation we will use the software Netgen/NGSolve (see [ngs18]) and its
Python interface NGSpy. For the single point case (one center for the Padé approximation)
we will try to repeat some of the numerical results from [BNP17] and [BNPP18] in two space
dimensions, expand this to three space dimensions and do some more examples. This is
done in Chapter 5. In Chapter 6 we will test, whether the multi-point Padé (Newton-Padé)
can outperform the single point Padé especially in the high frequency regime. We will
see that, for the implementation of the Newton-Padé, it is more challenging to find a
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1 Introduction

’good’ setup of the centers and derivatives than for the single point Padé. We will see
that we can get accurate results by using Chebyshev points. However we will only test this
numerically and do not give a theoretical explanation to the problem of placing the centers
and the derivatives. We will also see that the Padé approximation can be used to calculate
eigenvalues of the Laplace operator, if we approximate a model problem for the Helmholtz
equation. We will compare this way of calculating eigenvalues with a traditional method to
calculate eigenvalues, the inverse iteration.
In Chapter 7 we will summarize the results and give an outlook on what could be further
investigated in the future. In the appendix we will give the important parts of the code and
make some comments about the implementation.

At this point I want to thank my two supervisors Prof. Ilaria Perugia and Dr. Francesca
Bonizzoni for their great support and the many meetings in the last year.
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2 Single point Padé approximation

2.1 Single point Padé approximation in C
The first chapter is about the Padé approximation with one center. We will first look at
the Padé approximation for C-valued functions and then expand this theory to Hilbert
space-valued functions in the next section.
There are different possibilities to approximate some function f : C→ C by evaluating only
the function and its derivatives and such an approximation is often needed in praxis. In
order to investigate approximations we need the following definition from [Pri03].

Definition 2.1 (Holomorphic function). Let G ⊂ C be an open subset of the complex
plane and f : G→ C a function. f is complex differentiable in z ∈ G, if

lim
h→0

f(z + h)− f(z)

h

exists. We say that f is holomorphic on G, if it is complex differentiable in every z ∈ G.
Then we write f ∈ H(G,C).
If we just say that a function is holomorphic without mentioning a set, we mean that it is
holomorphic in its whole domain.

One of the most famous approximation is probably the Taylor approximation. In case one
does not have a holomorphic f , but f is only meromorphic it is often needed to make a
different approach to deal with the singularities. This can be done using a Padé approximation
instead of a Taylor approximation, i.e. approximating f not only by a polynomial but a
fraction of two polynomials. We will make this idea more clear giving a couple of definitions.
We will follow in this chapter the construction from [GHR98] and [BNP17].

Definition 2.2 (Meromorphic function). Let f : U ⊂ C→ C be a complex function and
W ⊂ U a discrete set, i.e. |W | <∞, where |W | denotes the number of elements of W . If
f is holomorphic on U\W and for each ẑ ∈ W there exists some n ∈ N such that (ẑ− z)nf
is holomorphic, we call f meromorphic and write f ∈M(C,C).

This definition can also be extended to functions with values in some Banach space
V := F(Cn,C) consisting of functions, i.e. for some f : C→ V . Here F(Cn,C) could be
for example the space of all L2- or Hk-functions for some k ∈ N.
We also define the space of polynomials with degree less equal M .

Definition 2.3 (Space of polynomials). Let be K either C or R, X some vector space and
M ∈ N some natural number. We denote by PM(K,X) the space of all polynomials with
degree smaller equal M mapping from K to X. In case of K = X we only write PM(K)
instead of PM(K,K).
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2 Single point Padé approximation

We will now define the Padé approximant for some complex valued function. Later on
this definition will be generalized to a larger set of functions.

Definition 2.4 (Padé approximant in C). Let f : C 7→ C be a holomorphic function
and fi,z0 its i-th Taylor coefficient in z0 ∈ C. Then f(z) :=

∑∞
i=0 fi,z0(z − z0)

i is the
complex-valued power series centered in z0 ∈ C and let P (z) :=

∑M
i=0 pi,z0(z − z0)

i and
Q(z) :=

∑N
i=0 qi,z0(z−z0)i be two polynomials of degree M respectively N. Then P (z)/Q(z)

is called a Padé approximant of f in z0, if∣∣∣P (z)

Q(z)
− f(z)

∣∣∣= O(|z − z0|M+N+1). (2.1)

We denote the Padé approximant also by f[M/N ]

Remark. Condition 2.1 can also be formulated in a slightly different way. We can also
write that the first M + N + 1 coefficients in a power series expansion of fQ − P in z0

should be zero, i.e.

(fQ− P )i,z0 = 0 for i = 0, . . . ,M +N. (2.2)

One should also note that in 2.2 we only have M + N + 1 conditions for M + N + 2
unknowns and the trivial solution P = Q = 0 also exists. Of course, this is not what we
want to achieve, when we try to calculate well approximated values of f(z). Therefore,
another condition has to be added. This can be for example done by requiring that Q is
normalized, i.e.

∑N
i=0 |Qi|2 = 1.

2.2 Single point Padé approximation in V

Now we will try to generalize this definition to V -valued functions. We will do this
generalization just with the center x0 = 0, but use functions, which are defined on the
complex plane. For other centers one can do the definition equivalently, but the notation
would be more complicated. First we need another definition. The following definitions are
from [BNP17].

Definition 2.5 (Padé functional). Let (V, ‖·‖V ) be a Hilbert space, f : C → V a map,
which is holomorphic around 0 and ρ ∈ R+ some positive, real parameter. We also have two
polynomials P ∈ PM (C, V ) and Q ∈ PN (C) and a natural number E ∈ N. Then we define

jE,ρ(P,Q) :=

(
E∑
i=0

‖(Qf(z)− P (z))i‖2
V ρ

2i

)1/2

. (2.3)

Using this definition we can define the Padé approximant for a V -valued function.

Definition 2.6 (Padé approximant in V ). Let be P,Q, f, ρ and E as in the previous
definition. Additionally we require E ≥M +N and Q to be normalized, which means that
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2.2 Single point Padé approximation in V

∑N
i=0 |Qi|2 = 1. We also define P1

N(C) := {S ∈ PN(C) :
∑N

i=0 |Si|2 = 1}. Then we say
that P/Q is the Padé approximant of f , if

jE,ρ(P,Q) = inf
R∈PM (C,V ),
S∈P1

N (C)

jE,ρ(R, S). (2.4)

Again we denote the Padé approximant by f[M/N ], if the degrees of the two polynomials are
M and N .

Remark. In fact the Padé functional and Padé approximant can also be defined, if V is only
a Banach space (see [HR00, Remark 2.2]). However, later when we define an algorithm to
calculate the Padé approximant, we will need that the norm is induced by a scalar product.

We can see that with condition (2.4) we minimize the coefficients in the power series
expansion of fQ− P . Therefore this is a natural extension to condition (2.2) for complex
valued functions. The next step will be to ensure that the infimum in (2.4) does exist.
We need this to make sure that we can calculate later polynomials P,Q for some given
f . Therefore we will reformulate jE,ρ as a functional, which depends only on Q and then
use the fact that jE,ρ is continuous and P 1

N(C) is compact. This is done in the following
theorem, which is from [BNP17]. We will review the proof here, since the derivation in 2.5
is important to understand later the algorithm.

Theorem 2.7 (Existence of a single point Padé approximant). The infimum in (2.4) is
always attained by at least one pair of polynomials (P,Q).

Proof. In the first step (2.3) is rewritten in the following way.

jE,ρ(P,Q)2 =
M∑
i=0

‖(Q(z)f(z)− P (z))i‖2
V, ρ

2i

+
E∑

i=M+1

‖(Q(z)f(z)− P (z))i‖2
V ρ

2i

=
M∑
i=0

‖(Q(z)f(z)− P (z))i‖2
V ρ

2i +
E∑

i=M+1

‖(Q(z)f(z)‖2
V ρ

2i (2.5)

We denote by pi the coefficients of P and by qi the coefficients of Q, i.e. P (z) =
∑M

i=0 piz
i

and Q(z) =
∑N

i=0 qiz
i. The second equality holds since pi = 0 for i > M . Now we can set

pi =

min(n,i)∑
j=0

qj(f)i−j (2.6)

and therefore the first summand in (2.5) is always zero and P is uniquely determined by Q
and f . Therefore, we have a minimization problem only in Q

j̃Eρ(Q) = inf
S∈P1

N (C)
j̃(S), (2.7)
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2 Single point Padé approximation

where j̃(S) =
∑E

i=M+1 ‖(S(z)f(z)‖2
V ρ

2i. Since P1
N (C) is homeomorphic to the unit sphere

in CN+1 and therefore compact and j̃E,ρ(·) continuous, the infimum is attained by at least
one polynomial Q. Then we reconstruct P from Q and f using (2.6) and therefore have a
solution (P,Q) for jE,ρ(·).

The next question is to find out what kind of approximation property we have for this
generalized Padé approximant.

2.3 Summary of convergence theory

In this section, we will summarize some results for the convergence theory of the previously
defined single point Padé approximation. All the results are from [BNP17, chapter 5], where
one can also find the proofs.
We will set in the following V = H1(Ω) for some open and bounded Lipschitz domain
Ω ⊂ Rd for d ∈ {1, 2, 3}. We define on V the following norm.

Definition 2.8 (Weighted H1-norm). We define for u ∈ H1(Ω) =: V and ν > 0 a weighted
H1-Norm with

‖u‖2
V,ν := ‖∇u‖2

L2(Ω) + ν2 ‖u‖2
L2(Ω) .

The following results have been proven for some map T : C → V , which fulfills the
following conditions:

• Let be R > 0. Then T is meromorphic on the closed disk B(0, R).

• There is some h : C→ V holomorphic on B(0, R) and g ∈ PN(C), where g(0) 6= 0,∑N
i=0 |(g)i|2 = 1 and g is N -maximal, which means that for every polynomial p,

pg ∈ PN(C) implies p ∈ C, such that T (z) = h(z)
g(z)

is an irreducible fraction.

The second condition is fulfilled, if a map is meromorphic and we define g in such a way
that the singularities of T are the zeros of g. One can also see the connection to the Padé
approximation since P as a polynomial is always holomorphic and the denominator Q fulfills
the conditions which are given for g.

Theorem 2.9. Let G := {z ∈ C : g(z) = 0} and assume that R > 0 is large enough
such that G ⊂ B(0, R). We also want h(z) 6= 0 for every z ∈ G and T[M/N ] is the Padé
approximant of T as defined in definition 2.6. Then

lim
M→∞

∥∥T[M/N ](z)− T (z)
∥∥
V,ν

= 0

uniformly on all compact subsets of B(0, R)\G.
Let A ⊂ B(0, ρ)\G be a compact subset. Then there exists some M? ∈ N such that we
have the following estimate for all M ≥M?

∥∥T[M/N ](z)− T (z)
∥∥
V,ν
≤ C sup

z∈∂B(0,R)

‖T (z)‖V,ν
( ρ
R

)M+1

, (2.8)

12



2.4 Algorithm

where ρ < R is the constant from definition 2.5. The constant C > 0 depends on
dist(0, A), ρ, R,N and minz∈A |g(z)|, but not on M (only if dist(0, A) → ρ, then C =
O(M)).

Regarding the constant C, it is important to note that we always have dist(0, A) ≤ ρ,
since A ⊂ B(0, ρ) and therefore the distance of any point in A to zero smaller equal than ρ.
With the last theorem and estimate (2.8), we know under the assumptions in this chapter the
Padé approximant is converging to the approximated function exponentially with increasing
M . In the numerical experiments later on, we will check whether we achieve exponential
convergence also in practice. The theorem also tells us that for approximations P/Q of a
function f , where the singularities of f are already the roots of Q, we should rather increase
M and not N to get more accurate results.

2.4 Algorithm

We want to approximate our solution function T by a fraction of two polynomials P and Q
with degrees M and N , i.e. T (z) = P (z)

Q(z)
. Therefore our goal is to calculate the coefficients

of this two polynomials pi ∈ V and qi ∈ C. For the construction of the algorithm we will
follow [BNPP18, 3].
We have seen in Theorem 2.7, that there exists always a Padé approximant for a meromorphic
function f : C→ V , which we can calculate by solving the minimization problem (2.4).

2.4.1 Calculating pi and qi

As we have seen in the proof of theorem 2.7 once we have calculated the qi we can reconstruct
the coefficients pi using the formula

pi =

min(N,i)∑
j=0

qj(f)i−j.

We take the minimum since qj = 0 for j > N since Q is a polynomial of degree N .
In order to calculate the coefficients qi, we need the following theorem from [BNPP18].

Theorem 2.10 (Calculation of the coefficients qi). The minimization in (2.7) is equivalent
to finding the normalized eigenvector corresponding to the smallest eigenvalue of the matrix
GE,ρ ∈ CN+1×N+1 with entries

(GE,ρ)i,j =
E∑

k=M+1

〈(f)k−j, (f)k−i〉V,√Re(z0)
ρ2k, with i, j = 0, . . . , N.

GE,ρ is Hermitian and positive semidefinite.

Proof. By the definition of the Taylor coefficients we know that qk = (Q)k for k = 0, . . . , n
and from the product rule we get that (Qf)k =

∑k
n=0 qn(f)k−n. We define that (f)k = 0

13



2 Single point Padé approximation

if k < 0. Then we can rewrite the Padé functional in the following way.

j̃E,ρ(Q)2 =
E∑

k=M+1

〈(Qf)k, (Qf)k〉V,√Re(z0)
ρ2k

=
E∑

k=M+1

〈
k∑
i=0

qi(f)k−i,
k∑
j=0

qj(f)k−j〉V,√Re(z0)
ρ2k

=
N∑

i,j=0

q∗i qj

E∑
k=0

〈(f)k−j, (f)k−i〉V,√Re(z0)
ρ2k

= ~q∗G~q,

where ~q = {q0, q1, . . . , qN} denotes the vector containing all the coefficients of Q. Therefore,
minimizing j̃E,ρ(Q)2 is equivalent to minimizing ~q∗G~q and this product is minimized by
taking ~q as the smallest eigenvector. In order to fulfill the constraint

∑N
i=0 |qi|2 = 1, we

normalize ~q.
GE,ρ is hermitian by its definition. Since ~q∗GE,ρ~q = j̃E,ρ(Q)2 for all q ∈ CN+1, we obtain
with the definition of j̃E,ρ(·)2, that ~q∗GE,ρ~q ≥ 0 for all q ∈ CN+1. Therefore, GEρ is positive
semidefinite.

Using this theorem, we know that in order to get the coefficients qi, we have to calculate
the normalized eigenvector corresponding to the smallest eigenvalue of GE,ρ.
Now we have all the necessary tools to calculate the Padé approximation. We will summarize
this in the following algorithm.

Algorithm 1 Single point Pade approximant
Require: some meromorphic function f : C→ V with Λ being the set of singularities of
f , z0 ∈ C\Λ, ρ ∈ R+,M,N,E ∈ N with M +N ≤ E
for k = 0, . . . , E do

calculate Taylor coefficients (f)k,z0
end for
for i, j = 0, . . . , N do

(GE,ρ)i,j ←
∑E

k=M+1〈(f)k−j, (f)k−i〉V,√Re(z0)
ρ2k

end for
~q ← normalized eigenvector to smallest eigenvalue of GE,ρ

for i = 1, . . . ,M do
pi ←

∑min(N,i)
j=0 qj(f)i−j,z0

end for
Q(z)←

∑N
i=0 qi(z − z0)i

P (z)←
∑M

i=0 pi(z − z0)i

return Pade approximant P (z)/Q(z)

14



2.4 Algorithm

Remark. Looking at the entries of GE,ρ, we can see that they are in fact weighted sums
of entries of the Gram matrix (G(f))ij = 〈(f)i, (f)j〉V,√Re(z0)

. Therefore, one could also
first construct the Gram matrix and then calculate the entries of GE,ρ. Depending on the
value of N this may be computationally cheaper, since each entry in GE,ρ is a sum of N + 1
entries of G(f). Of course both ways of calculating GE,ρ lead to the same result.
The parameter ρ attaches weight to the summands of (GE,ρ)ij. Larger values of ρ attach
more weight to the bottom right of G(f) and smaller values of ρ attach more weight to the
top left.
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3 Multi point Padé approximation

As an extension to the single-point Padé approximation in the last chapter, we will construct
in a similar way a multi point version. This means that instead of one center z0, we will have
multiple centers z0, . . . , zk. This approximation is also called Newton-Padé approximation.
We introduce this extension, since we hope to get a larger convergence area by using multiple
centers instead of using only one center.

3.1 Multi point Padé approximation in C
First we want to motivate the approximation in V by defining the Newton-Padé approximation
for C-valued functions. The following definitions are from [Cla76], [Cla78] and [FL07].
Also [BGM96] provides some introduction into the multi point Padé.
We look at some holomorphic function f : C → C and have a set of point {zi}∞i=0 ⊂ C.
We define divided differences in the following way.

Definition 3.1 (Divided Differences). Let be f and {zi}∞i=0 as above. Then we define the
divided differences fij for i ≤ j as

fi,i = f(zi) i = j (3.1)

fi,j =
fi+1,j − fi,j−1

zj − zi
i < j (3.2)

For i > j we set fi,j := 0.
In case we have zi = zj, then we have fij = (f)zi,j−i, where (f)zi,j−i denotes the Taylor
coefficient of f of degree j − i in zi (see [FL07]). Then we can write f in the following
series expansion

f(z) = f0,0 + f0,1(z − z0) + f0,2(z − z0)(z − z1) + · · · .

To shorten the notation in the following we define recursively w00(z) = 1 and w0i(z) =
(z − zi−1)w0,i−1 and write

f(z) =
∞∑
i=0

f0,iw0i(z),

since the set {w0,i}i≤N forms a basis of PN . This is called the Newton basis. In the
following we are only interested in a finite expansion of f and therefore we restrict ourselves
to some (z0, . . . , zE). Now we try to find two polynomials P (z) =

∑M
i=0 p0,iw0i(z) and

Q(z) =
∑N

i=0 q0,iw0i(z), which approximate f . Since w0,i is a polynomial of degree i, P
and Q are polynomials of degree M respectively N .
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3 Multi point Padé approximation

Definition 3.2 (Multi point Padé approximation in C). Let be f ∈ H(C,C), P ∈ PM (C)
and Q ∈ PN(C) such that (Qf − P )0,i = 0 for i = 0, . . . ,m+ n. Then we call P/Q(z) a
multi point Padé or Newton-Padé approximation of f .

In a similar way as in the single point case, we formulate this approximation as a linear
system of equations and will try to formulate a least-square minimization problem in the
case when f is V -valued. Since we want (Qf −P )0i = 0 for i = 0, . . . ,m+n, the following
equations have to be fulfilled:

i∑
j=0

q0,jfj,i = p0,i i = 0, 1, . . . ,m

i∑
j=0

q0,jfj,i = 0 i = m+ 1,m+ 2, . . . ,m+ n

In order to derive this two equations one uses the product formula for divided differences

(gh)i,j =

j∑
k=i

(g)i,k(h)k,j,

for two functions g, h and i < j (see [FL07]).

3.2 Multi point Padé approximation in V

In order to generalize this definition of the Newton-Padé approximation to V -valued functions,
we define like in the single-point case a functional, which has to be minimized. Instead of
the Taylor coefficient we will use divided differences and therefore the functional is called d
instead of j.

Definition 3.3 (Newton-Padé functional). Let V be a Hilbert space, f : C→ V a function,
which is holomorphic around some points {zi}Ei=0 ⊂ C and ρ ∈ R+ some positive parameter.
We also have two polynomials P ∈ PM (C, V ) and Q ∈ PN (C) and a natural number E ∈ N.
Then we define

dE,ρ(P,Q, {zi}Ei=0) :=

(
E∑
i=0

‖(Qf(z)− P (z))0,i‖2

V,
√
Re(z0)

ρ2i

)1/2

, (3.3)

where the divided differences are defined in the points {zi}Ei=0.

Remark. In case all the zi are the same (i.e. z0 = z1 = · · · = zE), this is the same
functional as in the single point case.
The coefficients p0,i of P are again elements of the Hilbert space V and the coefficients q0,i

of Q are complex numbers.

We conclude similar to the last chapter and define the Newton-Padé approximant as the
minimum of the functional (3.3).
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3.3 Algorithm

Definition 3.4 (Newton-Padé approximant in V). Let V, P,Q, F, ρ, E and {zi}Ei=0 be as
in the previous definition. Additionally, we want N + M ≤ E and Q to be normalized,
when they are represented in the Newton basis. This means if Q =

∑N
i=0 Q0,iw0,i, we want∑N

i=0 |Q0,i|2 = 1. We also define P1,N
N = {S ∈ PN(C) :

∑N
i=0 |Q0,i|2 = 1} the space of

polynomials of degree N which are normalized in the Newton basis. Then we say that P/Q
is the Newton-Padé approximation of f in {zi}Ei=0, if

dE,ρ(P,Q, {zi}Ei=0) = inf
R∈PM (C,V ),

S∈P1,N
N (C)

dE,ρ(R, S, {zi}Ei=0). (3.4)

In order to prove that the multi point Padé approximation exists, we will continue in a
similar way as in the single point case.

Theorem 3.5 (Existence of a Newton-Padé approximation). The infimum in (3.4) always
exists and is attained by at least one pair of polynomials (P,Q).

Proof. The proof runs in a very similar way as in theorem 2.7. First we rewrite (3.3).

d2
E,ρ(P,Q, {zi}Ei=0) =

M∑
i=0

‖(Qf(z)− P (z))0,i‖2

V,
√
Re(z0)

ρ2i

+
E∑

i=M+1

‖(Qf(z)− P (z))0,i‖2

V,
√
Re(z0)

ρ2i

=
M∑
i=0

‖(Qf(z)− P (z))0,i‖2

V,
√
Re(z0)

ρ2i

+
E∑

i=M+1

‖(Qf(z))0,i‖2

V,
√
Re(z0)

ρ2i

Here we use that P0,i = 0 for i > M . Now we set P0,i =
∑min(N,i)

j=0 Q0,jfj,i and therefore
the first summand is zero and P is uniquely determined by f and Q. We can again write it
as a minimization problem only in Q

d̃E,ρ(Q, {zi}Ei=0) = inf
S∈P1,N

N (C)

dE,ρ(S, {zi}Ei=0), (3.5)

where d̃E,ρ(Q, {zi}Ei=0) =
(∑E

i=M+1 ‖(Qf(z))0,i‖2

V,
√
Re(z0)

ρ2i
)1/2

. Now we know that P1,N
N

is compact, since it is homeomorphic to the unit sphere in CN+1, and d̃E,ρ continuous and
therefore we know that the infimum exists. Then we reconstruct P from Q and f and have
a solution (P,Q).

3.3 Algorithm

Now we conclude in a similar way as before to construct a matrix, which eigenvalues are
the divided differences Q0,i of the polynomial Q. The following theorem is the version for
multiple centers of theorem 2.10.

19



3 Multi point Padé approximation

Theorem 3.6 (Calculation of the coefficients Q0,i). The minimization in (3.5) can be
solved by calculating the normalized eigenvector of the smallest eigenvalue of the matrix
GE,ρ with entries

(GE,ρ)ij =
E∑

l=M+1

〈fi,l, fj,l〉2
V,
√
Re(z0)

.

GE,ρ is hermitian and positive semidefinite.

Proof. The proof is again very similar to the one of theorem 2.10. One can calculate that
(Qf)i =

∑i
j=0 Q0,jfj,i and therefore calculate

d̃E,ρ(Q, {zi}Ei=0)2 =
E∑

l=M+1

〈(Qf)0,l, (Qf)0,l〉V,√Re(z0)
ρ2l

=
E∑

l=M+1

〈
l∑

i=0

Q0,i(f)i,l,
l∑

j=0

Q0,j(f)j,l〉V,√Re(z0)
ρ2l

=
N∑

i,j=0

Q∗0,iQ0,j

E∑
l=0

〈(f)i,l, (f)j,l〉V,√Re(z0)
ρ2l

= ~q∗GE,ρ~q,

where ~q = {Q0,0, Q0,1, . . . , Q0,N} denotes the vector containing the coefficients of Q in the
Newton basis.Therefore minimizing d̃E,ρ(Q, {zi}ki=0)2 is equivalent to minimizing ~q∗GE,ρ~q
and this product gets minimal for the smallest eigenvector of GE,ρ. The normalization is
done by normalizing ~q.
GE,ρ is hermitian by its definition. Since ~q∗G~q = d̃E,ρ(Q)2 for all q ∈ CN+1, we can see
with the definition of d̃E,ρ(·)2, that ~q∗G~q ≥ 0 for all q ∈ CN+1. Therefore GEρ is positive
semidefinite.

Now we have all necessary tools to calculate a Newton-Padé approximation. For the
following algorithm we will use a slightly different notation for the {zi}. We denote by
ẑ = (z0, z1, . . . , zk̂) a vector of all distinct zi, i.e. zi 6= zj for i 6= j. We have a second vector
dev = (dev_z0, . . . , dev_zk) ⊂ Nk

0, which denotes how many evaluations (derivatives) we
take for some zi. dev_zi > 1 (i.e. a derivative is calculated for zi) would mean in the
notation from before that some zi appeared multiple times and therefore divided difference
and derivative are the same. Note that we need

∑k
i=0 dev_zi = E + 1 in order to have the

right number of Taylor coefficients such that we can calculate the entries of GE,ρ. Another
point is that it is important to calculate the values fi,j in the correct order, since the
definition is recursive. It is a good idea to save the values fi,j in a triangular matrix to make
the calculation of GE,ρ more efficiently (as given in Algorithm 2). We do not say anything
here about the ordering of the zi. We will see in the numerical experiments in chapter 6
that this choice is very important. As in the single point case the following algorithm can
be used for any meromorphic function f : C→ V and not only for our solution map.
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3.3 Algorithm

Algorithm 2 Newton-Padé approximant
Require: some meromorphic function f : C→ V with Λ being the set of singularities of
f , ẑ = (z0, z1, . . . , zk) ⊂ C\Λ, dev = (dev_z0, . . . , dev_zk) ⊂ Nk with

∑k
i=0 dev_zi =

E + 1, ρ ∈ R+,M,N,E ∈ N with M +N ≤ E
for zi in ẑ do

for β = 0, · · · , dev_zi − 1 do
Calculate the Taylor coefficient (f)zi,β

end for
end for
for i = 0, 1, . . . , E do

for j = i, i− 1, . . . , 0 do
Calculate fi,j according to definition 3.1

end for
end for
for i, j = 0, . . . , N do

(GE,ρ)i,j ←
∑E

l=M+1〈(f)i,l, (f)j,l〉V,√Re(z0)
ρ2l

end for
~q ← normalized eigenvector to smallest eigenvalue of GE,ρ

for i = 1, . . . ,M do
pi ←

∑min(N,i)
j=0 qj(f)j,min(N,i)

end for
Q(z)←

∑N
i=0 qiw0,i

P (z)←
∑M

i=0 piw0,i

return Pade approximant P (z)/Q(z)
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3 Multi point Padé approximation

Remark. If we compare the complexity of the Padé approximation (Algorithm 1) and of
the Newton-Padé approximation (Algorithm 2), the algorithms differ in two aspects. The
first difference is, that only in Algorithm 2, we have to build up an extra matrix from the
calculated Taylor coefficients, which contains the divided differences. Note that the matrix
(f)ij is only a triangular matrix, since the divided differences (f)i,j are zero for j < i.
Let now Ax = b be the system of equations, which arises from modelling the PDE with
Finite Elements. The second difference between the single and the multi point Padé is that
we have to build up more matrices A in Algorithm 2 (one for each center). In Algorithm 1
we have to construct only one matrix A, make some decomposition of it and then solve the
linear system multiple times for different right sides. This strategy is less effective here and
may even be not good at all. This is the case, if we have only a few derivatives in each
center and therefore only have to solve each linear system a few times, which could mean
that the decomposition is even more expensive than using a direct solver.

As in the single point case, one could first build up a matrix G(f) with entries (G(f))i,j =
〈(f)il, (f)jl〉V,√Re(z0)

for the calculation of GE,ρ and use these entries for the summation in
the calculation of GE,ρ. This may save some computational time.
The parameter ρ attaches again weight to the entries of G(f) in the summation of the
calculation of GE,ρ.
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4 Model problems

4.1 Parametric interior Helmholtz problem

First we look at the Helmholtz equation with homogeneous Dirichlet boundary condition. Let
Ω ⊂ R2 be an open bounded Lipschitz domain, f ∈ L2(Ω,C) and ν ∈ [νmin, νmax] ⊂ R+ a
wave number. We define the equation as

−∆u− ν2u = f in Ω

u = 0 on ∂Ω.

Like f , u may be complex valued. We derive the following weak formulation for a general
wave number z ∈ C

Problem 1. Given f ∈ L2(Ω) find u ∈ H1
0 (Ω) such that ∀v ∈ H1

0 (Ω)∫
Ω

∇u∇vdx− z
∫

Ω

uv̄dx =

∫
Ω

fv̄dx

holds.

We also define the corresponding bilinear form as

az(u, v) :=

∫
Ω

∇u∇v̄dx− z
∫

Ω

uv̄dx.

As before, we define for u ∈ H1(Ω,C) and ν > 0 a weighted H1-Norm with

‖u‖2
V,ν = ‖∇u‖2

L2(Ω) + ν2 ‖u‖2
L2(Ω) .

This norm is equivalent to the standard H1-norm, since for c1 :=
√

min{1, 1/ν2}, c2 :=√
max{1, 1/ν2} holds

c1 ‖u‖V,ν ≤ ‖u‖H1 ≤ c2 ‖u‖V,ν .

The next step will be to prove that Problem 1 admits a unique solution. Therefore, we will
have a look at the following theorem from [BNP17].

Theorem 4.1. Problem 1 admits a unique solution, if z ∈ C is not an eigenvalue of the
Laplace operator ∆ with Dirichlet boundary conditions. We denote the set of eigenvalues of
∆ by Λ.
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4 Model problems

Proof. In the proof we also follow [BNP17]. We will distinguish three different cases
depending on the value of z.
Let us first look at the case where z has a negative real part, i.e. z ∈ R− + iR. Here we
will use the Lax-Milgram theorem to get existence and uniqueness of the solution. Therefore
we have to show continuity and coercivity of az. For continuity we take u, v ∈ H1

0 (Ω,C)
and conclude

|az(u, v)| = |
∫

Ω

∇u∇v̄dx− z
∫

Ω

uv̄dx| ≤ |
∫

Ω

∇u∇v̄dx|+ |z
∫

Ω

uv̄dx|

≤ ‖∇u‖L2‖∇v‖L2 + |z|‖u‖L2‖v‖L2

= ‖∇u‖L2‖∇v‖L2 +
|z|
ν2
ν2‖u‖L2‖v‖L2

≤ max{1, |z|/ν2}‖u‖V,ν2‖v‖V,ν2

For coercivity we make the following estimate.

|az(u, u)| ≥ |Re(az(u, u))| ≥
∫

Ω

|∇u|2dx−Re(z)

∫
Ω

|u|2dx

= ‖∇u‖2
L2 +

−Re(z)

ν2
‖u‖2

L2ν2 ≥ min{1, −Re(z)

ν2
}‖u‖2

V,ν2

We also need to prove that the linear form l(v) :=
∫

Ω
fvdx is continuous. We estimate

using the Cauchy-Schwarz inequality

l(v) =

∫
Ω

fvdx ≤ ‖f‖L2(Ω) ‖v‖L2(Ω) ≤ ‖f‖V,ν ‖v‖V,ν .

This concludes the proof in the first case.
In the second case we look at z ∈ R+ + iR with Im(z) 6= 0. Again we will use the Lax
Milgram theorem for the proof. Since we never used any assumptions in the continuity part
in the first case, we can prove continuity of az here in the same way. The same holds for
the continuity of l(v). We have to use a different estimate for the coercivity of az. First
note, that for w ∈ C holds

(|Re(w)|+ | Im(w)|)2 = Re(w)2 + Im(w)2 + 2|Re(w)|| Im(w)|
≤ 2(Re(w)2 + Im(w)2) = 2|w|2.

Taking the square root on both sides we get
√

2|w| ≥ |Re(w)|+| Im(w)|. Since az(u, u) ∈ C,
we have for ε ∈ (0, 1)

√
2|az(u, u)| ≥ εRe(az(u, u)) + | Im(az(u, u))|

= ε(‖∇u‖2
L2 − Re(z) ‖u‖2

L2) + | Im(z)| ‖u‖2
L2

= ε ‖∇u‖2
L2 +

| Im(z)| − εRe(z)

ν2
‖u‖2

L2 ν
2

≥ min{ε, | Im(z)| − εRe(z)

ν2
} ‖u‖2

V,ν
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4.1 Parametric interior Helmholtz problem

Now it is only left to proof that the coercivity constant is positive. Therefore, let ε ∈
(0,min{1, | Im(z)|

Re(z)
}). Then 0 < ε < 1 still holds and we have that | Im(z)|−εRe(z)

ν2
> 0.

Therefore az is coercive and we have a unique solution.
The only case left is z ∈ R+\Λ. Here we can apply another theorem from functional analysis,
the Fredholm alternative. It says that we have either a solution u 6= 0 to the case f = 0 or
u = 0 is the only solution to f = 0 and we have a unique solution for every f . Since we
assumed that z is not an eigenvalue of ∆, we know that problem 1 with f = 0 has only the
solution u = 0. Therefore, we have a unique solution for the inhomogeneous problem.

Since we know that problem 1 has for any z ∈ C\Λ a unique solution, we can define a
solution map T , which maps for a fixed right hand side f and fixed boundary conditions a
wave number z on its solution.

Definition 4.2 (Solution map). We define the solution map T in the following way:

T : C\Λ→ H1
0 (Ω)

z 7→ u(z, ·) (4.1)

The next step will be to prove an equality for the norm of the solution to understand
better the solution. This will be useful for our numerical experiments later. We will follow
again the proof in [BNP17].

Lemma 4.3. Let z ∈ C\Λ and u(z, x) the unique solution of problem 1. Let {φl}l∈N be
the L2-orthonormal basis of eigenfunctions of the Laplace operator corresponding to the
eigenvalues in Λ. Then we have the following equality

‖u(z, ·)‖2
V,ν =

∑
l

|fl|2

|λl − z|2
(λl + ν2) ‖φi‖2

L2(Ω) . (4.2)

Proof. We can write u(z, x) =
∑

l∈N ul(z)φl(x) and f(x) =
∑

l∈N flφl(x). Putting these
expressions into the Helmholtz equation (problem 1) and choosing v = φi we get the
following ∫

Ω

∇
∑
l∈N

ul(z)φl∇φidx− z
∫

Ω

∑
l∈N

ul(z)φlφidx =

∫
Ω

∑
l∈N

flφlφidx

−
∫

Ω

∆

(∑
l∈N

ul(z)φl

)
φidx− z

∫
Ω

∑
l∈N

ul(z)φlφidx =

∫
Ω

∑
l∈N

flφlφidx

∑
l

ulλl

∫
Ω

φlφidx− z
∑
l

ul

∫
Ω

φlφidx =
∑
l

fl

∫
Ω

φlφidx

ui(λi − z) = fi

Doing this derivation for all i ∈ N, we get that

ui =
fi

λi − z
. (4.3)
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4 Model problems

The next step is to derive a different expression for the norm of u.

‖u(z, ·)‖2
V,ν = ‖∇u‖2

L2(Ω) + ν2 ‖u‖2
L2(Ω)

=

∫
Ω

|
∑
l∈N

ul(z)∇φl(x)|2dx+ ν2

∫
Ω

|
∑
l∈N

ul(z)φl(x)|2dx (4.4)

Since we know that the (φi)i∈N are orthonormal in L2(Ω) (4.4) equals

∑
l

|ul|2
∫
|∇φl|2dx+

∑
l

ν2|ul|2
∫

Ω

|φl|2dx

=
∑
l

|ul|2(λl + ν2) ‖φl‖2
L2(Ω) .

Using 4.3 we get

‖u(z, ·)‖2
V,ν =

∑
l

|fl|2

|λl − z|2
(λl + ν2) ‖φi‖2

L2(Ω) .

Remark. Looking again at (4.2), we now better understand why the solution map T is only
defined for C\Λ and not for all complex numbers. Using (4.2), we get for z → λi for any i
that ‖u(z, ·)‖V,ν →∞. We know for the Laplace operator that all eigenvalues are on the
positive real axis. This will be later important when we construct the Padé approximation.

[BNP17, Proposition 3.1] shows that the previously defined solution map T is continuous
in V equipped with the norm ‖·‖V,ν .

Lemma 4.4. The solution map T , which was defined in (4.1), is continuous in the space
(V, ‖·‖V,ν).

The proof can be found in [BNP17].
In the first step of the Padé algorithm the Taylor coefficients of the solution map T have
to be calculated at z0. We will denote the i-th coefficient by (T )z0,i. The next theorem
from [BNP17] shows us how we can calculate the coefficients.

Theorem 4.5. The solution map T admits a complex derivative T (i), which is the unique
solution of the following equation,∫

Ω

∇T (i)∇v̄dx− z0

∫
Ω

T (i)v̄dx =

∫
Ω

T (i−1)v̄dx, (4.5)

for all v ∈ H1
0 (Ω).

Proof. First, we note that by Theorem 4.1, we know that (4.5) has a unique solution, since
T (i−1) is for all i a L2-function.
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4.1 Parametric interior Helmholtz problem

To prove that T (i) is the complex derivative of T (i−1), we have a look at the difference
quotient

T (1) =
dT

dz
= lim

h→0

u(z + h, ·)− u(z, ·)
h

=: lim
h→0

wh(z, ·).

We know that∫
Ω

∇u(z + h, x)∇v(x)dx− (z + h)

∫
Ω

u(z + h, x)v(x)dx =

∫
Ω

f(x)v(x)dx (4.6)

and ∫
Ω

∇u(z, x)∇v(x)dx− z
∫

Ω

u(z, x)v(x)dx =

∫
Ω

f(x)v(x)dx (4.7)

hold. Now we take the difference of the weak formulation in z + h and z.

0 =

∫
Ω

∇u(z + h, x)∇v(x)dx− (z + h)

∫
Ω

u(z + h, x)v(x)dx

−
∫

Ω

∇u(z, x)∇v(x)dx+ z

∫
Ω

u(z, x)v(x)dx

=

∫
Ω

∇(u(z + h, x)− u(z, x))∇v(x)dx− z
∫

Ω

(u(z + h, x)− u(z, x))v(x)dx

− h
∫

Ω

u(z + h, x)v(x)dx

= h

∫
Ω

∇wh(z, x)∇v(x)dx− zh
∫

Ω

wh(z, x)v(x)dx− h
∫

Ω

u(z + h, x)v(x)dx.

Dividing the last equation by h gives∫
Ω

∇wh(z, x)∇v(x)dx− z
∫

Ω

wh(z, x)v(x)dx =

∫
Ω

u(z + h, x)v(x)dx.

Taking the limit h→ 0 and using the continuity from lemma 4.4 we get that T (1) is the
unique the solution of∫

Ω

∇T (1)∇v(x)dx− z
∫

Ω

T (1)v(x)dx =

∫
Ω

u(z, x)v(x)dx.

We can do the same derivation inductively for any higher i and therefore equation 4.5
holds.

Remark. This lemma is very useful for us for two reasons. First, we now know how to
calculate derivatives of the solution map T . We can do this by using again a finite-element
method (as for T (z0)) and the operator on the left hand side (for matrix A in system of
equations) is always the same and therefore the stiffness matrix and the mass matrix do not
have to be recalculated for every Taylor coefficient.
We can also see that T is holomorphic in C\Λ. In order to see that T is meromorphic on
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4 Model problems

C (which we will need for the Padè approximation), we look at T (z) as the sum of the
L2-eigenfunctions as in the proof of theorem 4.3. We know that

T (z) = u(z, ·) =
∑
l

fl
λl − z

φl.

Since the multiplicity of every eigenvalue λj is finite, each factor 1/(λj − z) appears only
finitely many times in the sum (once for each eigenfunction corresponding to the eigenvalue)
and therefore the map is meromorphic.

We can now apply our theory on single-point Padé approximation to this map T . Since
we will be interested in some interval of frequencies K = [kmin, kmax] ⊂ R, we need to find
a good center z0 to cover that interval with our Padé map. Another important point is
that we need z0 /∈ R, since the singularities of T are real valued and we need that T is
holomorphic in a neighbourhood of z0. For this two reasons z0 = kmax+kmin

2
+ δi for some

δ ∈ R is an obvious choice. In order to have good convergence on the real axis, we do
not want δ to be too large. We will use δ = 0.5 in the numerical experiments later, which
worked well and is also used in [BNP17] and [BNPP18].

4.2 Scattering problem

This chapter is about the second problem, which we will use for our numerical tests. Again
we will present some important theoretical results, which are needed to construct the Padè
approximation. In addition to the first problem we will introduce a circle on which the
travelling wave gets scattered. In the whole chapter we will follow [BNPP18, 5].
Let Ω = (−π, π)2\B((0, 0), 0.5) ⊂ R2 be our domain, where B((0, 0), 0.5) denotes the circle
with center in (0, 0) and radius 0.5. We denote the outside boundary by ΓR = ∂[−π, π]2 and
the inner boundary by ΓD = ∂B((0, 0), 0.5). We have some incident wave ui = exp(ik~d ·~x),
where k is our wave number and ~d ∈ R2 is the travelling direction of the wave. We define k,
such that k2 ∈ K := [k2

min, k
2
max] ⊂ R holds. We denote by n the outgoing normal vector

from ΓR and set gk := ∂ui
∂n
− ikui. Our solution u will consist of two parts, the previously

defined incident wave ui and the scattered part uscat. The sum u = ui + uscat has to solve
the following differential equation and boundary conditions.

−∆u− k2u = 0 in Ω

u = 0 on ΓD
∂u

∂n
− iku = gk on ΓR (4.8)

This PDE with boundary condition describes a model, where the wave ui travels along the
direction ~d and the wave gets scattered at the circle in the center. The boundary condition
on the outer boundary is an approximation of the Sommerfeld radiation, which tries to
simulate the fact that the wave should scatter to infinity (or in our case the boundary) and
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4.2 Scattering problem

Figure 4.1: Real part of the P3 finite element solution in z = 3

not be reflected from there. In Figure 4.1 we can see the wave travelling from left to right
and that there is some "shadow" behind the circle, where the wave is fluctuating much less.
The first step is to derive a weak formulation for the problem. We set V := H1

ΓD
(Ω) =

{v ∈ H1(Ω) : u|ΓD = 0}, where u|ΓD denotes the trace of u on ΓD (as defined e.g.
in [Eva10]). Since we want to construct a Padé approximation on a part of the complex
plane later on, we will define the problem also for complex wave numbers.

Problem 2. Given z ∈ C find uz ∈ V such that for all v ∈ V∫
Ω

∇uz(x) · ∇v(x)dx− z2

∫
Ω

uz(x)v(x)dx− iz
∫

ΓR

uz(x)v(x)dS

=

∫
ΓR

gz(x)v(x)dS.

We can also define the solution map in a similar way as before. We set C+ := {z ∈ C :
Im(z) ≥ 0} and define

Ts : C+ → H1
ΓD

(Ω)

z 7→ u(z, ·), (4.9)

in such a way that u(z, x) solves problem 2. We define Ts only on C+, since we know that
there exists a unique solution on all compact subsets (see [BNPP18, Theorem 5.1]). [BNPP18,
Theorem 5.3] shows, that T is meromorphic in all open bounded and connected subsets of
C and that all its singularities have negative imaginary part. This is important to know in
order to be able to apply our Padé algorithm. Next, we have to find a formula to calculate
the Taylor coefficients of Ts for the scattering problem.

Lemma 4.6. The solution map for the scattering problem Ts admits a complex derivative
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4 Model problems

T
(i)
s , which is the unique solution of the following equation.∫

Ω

∇d
jTs
dzj
∇v̄dx− z2

∫
Ω

djTs
dzj

v̄dx− iz
∫

ΓR

djTs
dzj

v̄dS

=j(j − 1)

∫
Ω

dj−2Ts
dzj−2

v̄dx+ ji

∫
ΓR

dj−1Ts
dzj−1

v̄dS + 2jz

∫
Ω

dj−1Ts
dzj−1

v̄dx

+

∫
ΓR

∇(ui(id · x)j)v̄dS −
∫

ΓR

ij(d · x)j−1ui(zid · x+ j)v̄dS,

holds for every v ∈ H1
ΓR

(Ω).

Proof. The formula can be derived by simply taking the derivative of problem 2 with respect
to z. It is important to note that not only uz, but also gz depends on z.

Remark. As for the Helmholtz equation the operator on the left hand side is the same
for each j ∈ N. The right hand side can again be computed using Taylor coefficients of
lower degree. In contrast to the Helmholtz equation we do not only need here T (j−1)

s , but
also T (j−2)

s . The fact that the operator on the left hand side does not change is very useful
since we do not have to change the stiffness and mass matrix, when calculating the Taylor
coefficients with a FEM, but only have to solve the same linear system with different right
hand sides b. This can be used to decrease the computational effort, if one has to calculate
many derivatives by using some decomposition to solve the linear system, e.g. a Cholesky
or a LU decomposition.
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5 Numerical results for the single
point Padé approximation

In this chapter we will have a look at results from the single point Padé algorithm presented
in Algorithm 1. We will look at results from the interior Helmholtz problem with Dirichlet
boundary conditions and the scattering problem.

5.1 Remarks on the implementation

All the numerical experiments in the following were done using the software Netgen/NGSolve
and its python interface, which is a free software library which can be used to solve PDEs
using the Finite-Element-method(FEM) (see [ngs18]). A very informative introduction into
this, which is also the basis of the code used here, are the itutorials (see [itu18]).
Basically we implemented the Padé code as given in Algorithm 1 in Python but used the
interface to NGSolve for calculations like solving PDEs or calculating norms (i.e. evaluating
integrals numerically). In the following we will describe some important parts of the code in
more details.
The first step in NGSolve is defining some domain with some mesh and on this mesh a
Finite-Element(FE) space. The mesh consists of triangles and has a parameter hmax, which
denotes the maximum diameter of a triangle of the mesh. When defining the Finite-Element
space one has to define some parameter p, which denotes the maximum degree of the
polynomials on the FE space. Since these parameters determine basically the accuracy of
the solution of some PDE, we will state them in the following calculations.
A more detailed description of the implementation and the most important parts of the
code are given in the appendix at the end of the thesis.

5.2 Parametric interior Helmholtz problem

First we want to look at the results from the Helmholtz equation. This means we look for a
solution to the following problem (see Problem 1).

−∆u− zu = f in Ω

u = 0 on ∂Ω
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5 Numerical results for the single point Padé approximation

The following example is taken from [BNP17, chapter7]. We fix the domain Ω = [0, π]2 and
the right hand side

f(~x) =
16

π4
exp(−νi~x · ~d)[2iνd1(2x1x

2
2 − 2πx1x2 − πx2

2 + π2x2)

+2iνd2(2x2
1x2 − πx2

1 − 2πx1x2 + π2x1)− (2x2
1 − 2x2π + 2x2

2 − 2x1π)],

where ~d = (d1, d2) is the direction of the waves. We fix here ~d = (cos(π/6), sin(π/6)).
This right hand side was choose such that the analytical solution is the product of a
bubble w(x) = 16

π4x1x2(x1 − π)(x2 − π) and a plane wave v(x) = exp(−iν~x · ~d), which is
travelling in the direction ~d. For the following calculations we will also fix ν =

√
12 (to

calculate the right hand side f). In Figure 5.1 we can see the solution for z = 12. The
equation describes a wave travelling in the direction ~d, where the boundaries are kept at zero.

(a) real part (b) imaginary part

Figure 5.1: P3 finite element solution in ν2 = 12

Let us denote in the following the P3-FEM solution by uh and the Padé approximation by
uP,h. z0 ∈ C will always denote the point, where the Padé is centered and z ∈ C the point
where uh and uP,h are compared. Whenever a norm is taken, it is the ‖·‖

V,
√
Re(z0)

-norm
and the relative error is always calculated by

relative error =
‖uh − uP,h‖V,√Re(z0)

‖uh‖V,√Re(z0)

.

Some of the experiments with the Helmholtz problems were already done in [BNP17] and
are reproduced here.
We will run two different types of tests. First we will compare along an interval of wave
numbers the Padé approximant with a solution, which we will calculate by using a normal
Finite-Element-method (FEM). Since the Taylor coefficients are also computed via the same
FEM, we can compare how well the Padé approximant approximates here a function.
The second test will check the convergence order when we compare FEM against Padé for
some fixed z and z0 and increase the degree M of P . We will compare this convergence
also with the convergence of a simple Taylor approximation to check when it is worth in
practise to calculate the more expensive Padé approximation. Another interesting aspect
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5.2 Parametric interior Helmholtz problem

will be to check how we can influence the accuracy of the Padé approximation by increasing
the accuracy of the FEM, which calculates the input data (Taylor coefficients).
All the calculation in NGSolve in this section are done with polynomial degree 3 and a
maximum mesh size of 0.02, if not stated differently. This affects solving equations with
FEM (for comparison for the relative error and calculation of the Taylor coefficients) and
also calculating the integrals for the norm, which we use for example for the entries of G or
the relative error.

Figure 5.2: Center z0 = 3 + 0.5i, approximation in z = 3, M growing, N = 2, for the
theoretical bound

(
ρ
R

)M+1 we have ρ = |3 + 0.5i− 3| and R = |3 + 0.5i− 8|

Figure 5.3: Center z0 = 3 + 0.5i, approximation in z = 6, M growing, N = 2, for the
theoretical bound

(
ρ
R

)M+1 we have ρ = |3 + 0.5i− 6| and R = |3 + 0.5i− 8|
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5 Numerical results for the single point Padé approximation

In Figure 5.2 and Figure 5.3 we compared the convergence of the Padé approximation
with the theoretical bound from theorem 2.9, which is

(
ρ
R

)M+1. Remember that we have
used ρ = |z − z0| and R is chosen, such that the Padé approximation is meromorphic on
B(z0, R). Therefore, we have to check how many poles of T can be resolved by Q. Since
we have N = 2 here, we know that two poles can be resolved. We know that all Dirichlet
eigenvalues of the Laplacian in two dimension on the square [0, π]2 can be calculated with
the formula m2 + n2, where m,n ∈ N := {1, 2, 3, . . . }(see [KS84]). The two nearest
eigenvalues are 2 and 5 and therefore 8 has to be boundary of B(z0, R).
In Figure 5.2 and Figure 5.3 we can also see in which situation the Padé approximation has
a clear advantage and in which situations also a Taylor approximation can be used. While
in Figure 5.2 the Taylor approximation can also deliver good results, in Figure 5.3 only the
Pade works. In order to understand the difference we have to look at the eigenvalues of the
Laplacian, which are the singularities of the solution function. While there are no singularities
between 3 and 3 + 0.5i, we have a singularity at 5, which disturbs the convergence of Taylor
in z = 6. Since the Pade approximation consists also of a polynomial in the denominator, it
can deal with this and therefore also deliver good results in z = 6.
We can see as well that the theoretical bound from Theorem 2.9 is achieved in Figure 5.2
and Figure 5.3 for the Padé approximant. In Figure 5.2 this is only the case as long as the
FE error is not to large and the convergence stops.
Another interesting aspect, which we can see in Figure 5.2, is that for both the Taylor and
the Padé approximation there seems to be some barrier for the accuracy of the relative error.
Therefore, we have some Mmax, where it is not worth to increase M any more. Looking at
Figure 5.4, we can see that one of the factors influencing this maximal accuracy of the Padé
is the accuracy of the input data. Here the example of Figure 5.2 is done with different
mesh sizes, when calculating the input data with P3-FEM. While with a maximum mesh
size of hmax = 0.02 we can reach a relative error of around 10−8, with a much rougher
mesh (maxh = 0.16), we can only get a relative error of around 10−3. This error is due to
the error of the results of the Finite-Element method. This error is not produced by the
Padé approximation, since the Padé approximation is an approximation of the FE solution.
This shows that for an accurate Padé approximation one not only needs high degrees for
the polynomials P and Q, but also good accuracy when calculating the input data.

We did not only check the convergence in one point, but also the accuracy on an intervall
of frequencies. In Figure 5.5 we plotted the ‖·‖

V,
√
Re(z0)

-norm of the P3-FEM solution and
the Padé approximation centered in z0 = 9 + 0.5i with parameters M = 4 and N = 2. One
can see that the Padé approximation is capable of reproducing the norm on a whole intervall
accurately.

5.2.1 Numerical results in 3D

One can also run the code on a three dimensional example. The only difference is, that
instead of the the spline geometry in 2D, we use Constructive Solid Geometry (CSG), which
is also part of the Netgen package, to build our 3D domain. The idea is to use standard
geometries in 3D (e.g. half-spaces, spheres,...) to build up more complex domains. We
will use 6 half-spaces to build up a cube, which, of course, is the 3D extension of the
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5.2 Parametric interior Helmholtz problem

Figure 5.4: Comparison of different mesh sizes, Center z0 = 3 + 0.5i, approximation in
z = 3

Figure 5.5: Comparison of FEM solution and Padé approximation centered in z0 = 9 + 0.5i
with parameters M = 4 and N = 2 in 2D
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5 Numerical results for the single point Padé approximation

square in 2D. One advantage of NGSolve is that the rest of the code does not depend on
the dimension at the beginning. So we just have to construct the right geometry at the
beginning and can reuse the rest of the code.
In the code we used the cube [0, π]3. We did not change the right hand side f , i.e. f does
not depend on the third coordinate. In order to keep the computation time low, the mesh is
a bit rougher than in 2D (hmax = 0.6). Then we ran again the Padé code and compared it
to the FEM solution of this problem. In Figure 5.6 we compared the FEM solution with the
Padé approximation centered in 9 + 0.5i, 10 + 0.5i and 11 + 0.5i. As parameters we used
M = 4 and N = 2.
One interesting aspect one can see at this example is that the center should not only

be not exactly at a singularity, but should be also far enough away. If one would take the
center in z0 = 9 + 0.5i, one gets to much "information" of the singularity in 9 into the
Padé approximation and there is not enough "information" about the singularity in 11.
Therefore this second singularity cannot be resolved. In Figure 5.6 we can see, that we have
the same for problem vice versa for z0 = 11 + 0.5i. Still for M = 4 and N = 4 we can
approximate the norm on the interval well for z0 = 9 + 0.5i, as we can observe in the first
plot of Figure 5.7, but we have worse results for higher M and the same N due to numerical
instability and a higher condition number of G. We can also see that when looking at the
roots of Q for growing M and N = 4 in Table 5.1. There are the roots for some values of
M . While for M = 4 there are still roots at around 7 + i and 12 + i, for higher M the real
parts of the roots are moving to the center and for M ≥ 11 all four roots have a real part
of around 9. The root at around 12 + i already disappears for M ≥ 7 (largest real part at
around 9.4 for M = 7).

M roots of Q rounded to 2 digits
4 6.95 + 1.01i, 8.99 + i, 8.99 + i, 12.05 + 1.03i
6 7 + 1.02i, 8.99 + i, 8.99 + i, 12 + 1.2i
7 7 + 1.22i, 8.99 + i, 8.99 + i, 9.41 + 1.76i
8 6.9 + 1.12i, 9 + i, 8.99 + i, 9 + 1.02i
10 7.03 + 1.09i, 8.99 + i, 8.99 + i, 8.99 + i
11 8.99 + i, 8.99 + i, 8.99 + i, 9.02− 0.91i

Table 5.1: Roots of Q for Padé centered in z0 = 9 + 0.5i for N = 4 and M growing

As we can also see in Figure 5.6 that the center z0 = 10 + 0.5i seems to be a good choice
here, since it has the same distance to both singularities. Of course in a real-world example
one would not know the singularities in advance and therefore would have either to find
them with numerical experiments or a theoretical analysis or find a different strategy on
how to place the centers. We can also see that the middle of the interval of the real parts
z0 = 9.5 + 0.5i is a good choice for the center.
We can also see that with the Padé approximation and the right choice of the center, we
can calculate again the Laplace eigenvalues. For this domain the eigenvalues are at 9 and
11 in the intervall (7, 12). As in the 2D problem we are able to achieve a relatively high
accuracy on the whole domain with the right choice of parameters.
In Figure 5.8 we checked the convergence of the relative error for the center z0 = 10 + 0.5i
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5.2 Parametric interior Helmholtz problem

Figure 5.6: Comparison of the FEM solution with the Padé centered in 9 + 0.5i, 10 + 0.5i
and 11 + 0.5i in 3D

(a) M = 4, N = 2 (b) M = 4, N = 4

(c) M = 8, N = 4 (d) M = 10, N = 4

Figure 5.7: Comparison of the FEM solution with the Padé centered in 9 + 0.5i in 3D - we
have problems to approximate the singularity at 11 well
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5 Numerical results for the single point Padé approximation

in z = 10. We can see, that in order to reach the theoretical bound from Theorem 2.9,
we need a polynomial degree of N = 4 for the denumerator. For N = 2 we also have
convergence towards the FE-solution, but we cannot reach the theoretical bound. The fact
that the convergence stops for N = 4 for M larger than 10 is again due to the error of the
FEM as discussed before in two dimensions.

(a) N=2 (b) N=4

Figure 5.8: Convergence of the Padé approximation for the interior Helmholtz problem in 3

dimensions for growing M for N = 2, 4, for the theoretical bound
(
ρ
R

)(M+1) we
have ρ = |10 + 0.5i− 10| and R = |10 + 0.5i− 14|

5.3 Scattering problem

In this chapter we want to present the results for the scattering equation. We presented the
most important theoretical results in chapter 4.2.
In all the following examples we will set the direction of the wave as ~d = (1, 0), which means
that the wave is travelling in the direction of the x-axis. We will do similar experiments as
in the previous section for the Helmholtz equation. Most of the settings of the numerical
experiments are the same as in [BNPP18, chapter 5].
Recall that the singularities of T have negative imaginary part. Therefore, we should choose
the center in C+, since we do not want our center to be equal to a singularity of T .
For the scattering problem, we will use the ‖·‖V,Re(z0)-norm and the relative error is then
always calculated by

relative error =
‖uh − uP,h‖V,Re(z0)

‖uh‖V,Re(z0)

.

In this way the results are evaluated in the same way as in [BNPP18]. The parameters for
the FEM are always p = 3 as a polynomial degree and h = 0.02 for the mesh size, if not
stated differently. The scattering problem needs a finer mesh than the last problem to be
solved accurately enough.
A first big practical difference to the interior Helmholtz problem is that the convergence gets
worse a lot quicker, if we have a larger distance to the center. One can see that looking at

38



5.3 Scattering problem

the next two examples, where the center is in both plots z0 = 3 + 0.5i, but once we look at
the convergence in z = 2 and once in z = 3 (Figure 5.9).

(a) evaluated in z = 2 (b) evaluated in z = 3

Figure 5.9: Convergence for the scattering problem with center z0 = 3 + 0.5i evaluated in
z = 2 and z = 3

Looking at this two plots we can see an exponential convergence in z = 3 for different
values of N . Already for N = 2 we have a good convergence when M is increasing and
it does not seem to be worth investing computational time in a higher N , if the center is
so close. Even the normal Taylor expansion gives us quite accurate results. A theoretical
explanation for this is that the disk B(z0, |z − z0|) = B(3 + 0.5i, 0.5) is completely in C+

and therefore does not contain any singularities. Therefore we do not need a high N to
resolve singularities.
However it is a completely different situation in the first plot of Figure 5.9. Here we
evaluate the same Padé approximation (centered in z0 = 3 + 0.5i) in z = 2. Now the
disk B(z0, |z − z0|) = B(3 + 0.5i,

√
1.25) is bigger and also contains points with negative

imaginary part. We tried again the convergence for N = 0, 2, 4, 6 and also N = M . We can
clearly see that the value of N has a huge influence on the accuracy. The biggest difference
to the last example is for the normal Taylor expansion (N = 0), where the relative error
even diverges. We get the best convergence for N = M , which is called diagonal Padé. It is
the only one of the four choices of parameters, where the error always decreases for higher
M . The big drawback is of course that it is by fare the most expensive one to calculate
(for the same M), since we need to calculate many Taylor coefficients. In the end one has
to compare relative errors for the same value of E = M + N , since they need the same
number of Taylor coefficients.
In order to make the last argument more clearly we also plotted the Padé approximant in
z0 = 2 + 0.5i evaluated in z = 2 in Figure 5.10 for N = 0, 2, 4. As expected we have again
exponential convergence, even for N = 0. This shows that we can also get good results in
z = 2, if the center is close enough.
Next, we investigate whether we can see for the scattering problem the same behaviour

as in Figure 5.2 and Figure 5.4 for the interior Helmholtz problem, where at some point
increasing M does not change anything any more, since the result for the FEM need to be
more accurate to get better results for the Padé approximation. In the two plots Figure 5.11
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5 Numerical results for the single point Padé approximation

Figure 5.10: Convergence for the scattering problem in z = 2 with center in z0 = 2 + 0.5i

and Figure 5.12, the parameter h always denotes the maximum mesh size hmax, which
was used to construct the mesh with NGSolve. Both examples were done with the center
z0 = 3 + 0.5i and in z = 3.

Figure 5.11: Convergence for the scattering problem for different mesh sizes

In Figure 5.11 we can see that for a rough mesh with h = 0.16 we reach the point, where
increasing M does not help any more at M = 8, while with a finer mesh (h = 0.02), we
can still decrease the error by increasing M further. Furthermore the number of degrees M
in the numerator, which decrease the error for a given mesh size, is much higher for the
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5.3 Scattering problem

Figure 5.12: Convergence for the interior Helmholtz problem and the scattering problem
with the same mesh size

scattering problem than the interior Helmholtz problem. Looking at Figure 5.12, we can see
that here for the interior Helmholtz problem the error decreases only up to M = 4, while
for the scattering problem this is the case up to M = 9. This is probably due to the fact
that the scattering equation needs a finer mesh than the interior Helmholtz problem to get
the same accuracy for the FEM solution. We obtain again that the Padé approximation
works much better for the interior Helmholtz problem than for the scattering problem.

5.3.1 Numerical results in 3D

We also run a test for the scattering equation in 3D.
The domain Ω is here [0, π]3\B((π/2, π/2, π/2), π/8), i.e. we take the cube from 0 to
π and exclude the ball centered in (π/2, π/2, π/2) with radius π/8. As for the interior
Helmholtz problem we used CS geometry to build up the domain. The cube is again an
intersection of half-planes and then the sphere is defined as an extra object. We did not
change the direction and therefore the incident wave is, like in the 2D example, travelling in
the direction of the first coordinate. Boundary conditions are also the same as before. So
we have Dirichlet condition on the sphere and the mixed Robin boundary condition on the
boundary of the cube. Since the calculation are more expensive in 3D in terms of calculation
time and memory, we only used a mesh with a maximum mesh size of h = 0.12. As in 2D
we centered the Padé approximation in z0 = 3 + 0.5i and evaluated it against the FEM P3

solution in z = 3. The relative error is plotted against the degree of the numerator M for
different values of the degree of the denumerator N .

We can see in Figure 5.13 that in three dimensions we have also an exponential convergence,
if the disk B(z0, |z − z0|) is completely in C+. This is similar to the 2D example evaluated
in z = 3 in Figure 5.9. The results of the experiments done in 3D for the scattering and
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5 Numerical results for the single point Padé approximation

Figure 5.13: Convergence for the scattering problem in z = 3 in three dimensions, N =
0, 2, 4, 6, M growing, center z0 = 3 + 0.5i

the Helmholtz problem (see Section 5.2.1) seem to be of similar accuracy as in 2D. This is
consistent in the sense that the theoretical results do not depend on the dimension of the
domain Ω, where the problem is defined. One difference is of course that the calculation
takes much longer, since calculating Taylor coefficients and evaluating integrals takes more
time in higher dimensions, since we need more nodes in order to have the same mesh size.
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6 Numerical results for the multi
point Padé approximation

6.1 Remarks on the implementation

In this section we will investigate some practical results of the Newton-Padé approximation.
As in the single point case, Netgen/NGSolve and its python interface NGSpy are used. We
basically implemented Algorithm 2. Still there are, as in the single point case, a couple of
choices one has to make, which can have a huge influence on the accuracy of the results.
We will have a look at some results from the interior parametric Helmholtz problem with
Dirichlet boundary conditions (Problem 1) and the scattering problem (Problem 2). For
the interior parametric Helmholtz problem we will have a special look at higher frequencies
(ν2 ∈ (39, 55)), since in [BNPP18] it is shown numerically that the single point Padé cannot
resolve all singularities for this frequencies and we will see that with the right choice of
points the Newton-Padé performs better.
Regarding the distribution of the real parts of the points, different strategies could be used.
We decided here to take Chebyshev points of first kind. k Chebyshev nodes (z1, z2, . . . , zk)
in some interval [a, b] are calculated with the formula

zi =
1

2
(a+ b) +

1

2
(b− a) cos

(
2i− 1

2k
π

)
i = 1, . . . , k (6.1)

Chebyshev nodes of the first kind are chosen since it is known that they are a good choice
for polynomial interpolation for R-valued functions and, in contrast to second kind, they
exclude the boundaries (see [Xu16]). This seemed an useful property since the convergence
is always an area around the centers and therefore, if we would choose one center on the
boundary of the interval, we would loose some of the convergence area.
For the imaginary parts we take a constant value of 0.5. One could take also some other
(small) positive real number in order to make sure, that our centers do not coincide with
the singularities. In the future one could investigate whether it is possible to achieve better
results with other imaginary parts.
After calculating the points, we do a reordering of them. Therefore, let us look at some vector
z = (z1, z2, . . . , zk), which will be reordered to (zk/2, zk/2−1, zk/2+1, zk/2−2, zk/2+2, . . . ). If
k is not even, k

2
is always rounded up. The calculation of the Chebyshev points and the

reordering is done with the function in Listing 6.1.

#c a l c u l a t e chebyshev p o i n t s and r e o r d e r them
#a , b boundary o f i n t e r v a l , n number o f p o i n t
#imag imag i na r y pa r t o f p o i n t s
impor t numpy as np
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6 Numerical results for the multi point Padé approximation

impor t math
p i=math . p i
d e f c a l c u l a t e_cheby sh e v ( a , b , n , imag ) :

p = np . z e r o s ( n ) + np . z e r o s ( n ) ∗1 j
#c a l c u l a t e p o i n t s
f o r i nd i n range ( n ) :

p [ i nd ] = 0 . 5∗ ( a+b ) +0.5∗(b−a ) \
∗np . cos ( ( 2∗ ( i nd+1)−1)∗ p i /(2∗n ) ) + imag∗1 j

#make r e o r d e r i n g
p2 = np . z e r o s ( n ) + np . z e r o s ( n ) ∗1 j
i f ( n%2 == 0) :

f o r i nd i n range ( n ) :
i f ( i nd%2 == 0) :

p2 [ i nd ] = p [ i n t ( ( n /2)−1− i nd /2) ]
i f ( i nd%2 != 0) :

p2 [ i nd ] = \
p [ i n t ( n/2 + i n t ( i nd /2) ) ]

e l s e :
f o r i nd i n range ( n ) :

i f ( i nd%2 == 0) :
p2 [ i nd ] = p [ i n t ( i n t ( n /2)− i nd /2) ]

i f ( i nd%2 != 0) :
p2 [ i nd ] = \
p [ i n t ( i n t ( n /2) + i n t ( i nd /2)+1) ]

r e t u r n p2

Listing 6.1: Calculation of centers

We do the reordering since points with a lower index in z influence the result more and
since the points in the middle of the interval have more "important information", we want
those points in the beginning of the vector. This is probably due to the definition of the
basis {w0i} and the fact that for the construction of P and Q, we only use the first M
respectively N elements. If we only use the first M of totally E basis elements, also only
the first M centers zi are used to construct this basis. We will discuss other reorderings
in Section 6.3 and see that this reordering seems to work quite well compared to others.
Still there may be other reordering, which are not tested here and lead to more accurate
results. Therefore this is a potential area for improvements if one wants to further develop
this method.
For the functional (3.3), we will always use ρ = 1 for the Newton-Padé approximation.
A more detailed description of the implementation and the most important functions are
given in the appendix.

6.2 Parametric interior Helmholtz problem

First of all, one has to choose two parameters for the Finite-Element space, the maximum
mesh size hmax and the polynomial order p. In the following example hmax = 0.1 and p = 5
are chosen. Using this paramaters we achieve for a wavenumber of ν2 = 47 a relative error
for the FE solution compared with the analytical solution of around 1.2 ∗ 10−6.
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6.2 Parametric interior Helmholtz problem

In the first example we check whether we can achieve again exponential convergence for
growing degree M of the numerator. We take one, four and six Chebyshev points on the
interval [2, 4] with 12 evaluations in total and evaluate the Newton-Padé in z = 3. We
use as norm ‖·‖V,√3. In Figure 6.1 one can see that we achieve a convergence for multiple
centers which bit slower than in the single point case, but still a straight line on a log-scale.
We will later see that this is due to the fact that we have a relatively small interval and that
in the case of one center this center z0 = 3 + 0.5i is quite close to the evaluation in z = 3.

Figure 6.1: Convergence for the Helmholtz problem in z = 3 with Newton-Padé and one,
four and six Chebyshev points on [2, 4]

Next, we have a look at how well the Newton-Padé works, when one tries to approximate
a whole interval. One would expect that the Newton-Padé potentially outperforms here the
single-point, since one can cover a larger region with multiple points. We will see that this
is in fact the case, if we choose the right number and location of the points.
As discussed before we will choose the example from [BNPP18, Section 6]. We have the
interval [39, 55] and calculate the Newton-Padé with different number of Chebyshev points.
We will take the parameters M = 10 and N = 6. The number of evaluations in each point
will be 18/k, where k denotes the number of points. In Table 6.1 there is an overview of
the different choices for the number of centers and the number of evaluations in each center.
In all the cases we have 18 evaluations and therefore, a similar computational effort in the
offline phase of the Newton-Padé approximation. When comparing the results for one center
with [BNPP18, Section 6] one should keep in mind that we have used here ρ = 1, while in
the other paper ρ = |z − z0| is used.
We first check the convergence in three different points z = 43, 47 and 51 for growing

degree of the numerator M for different number of centers in Figure 6.2. The relative error
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6 Numerical results for the multi point Padé approximation

number of centers number of evaluations in each center
1 18
2 9
3 6
6 3
9 2
18 1

Table 6.1: Number of centers and iterations for the following experiments with the Newton-
Padé approximations

is calculated as

relative error =
‖uh − uP,h‖V,√Re(47+0.5i)

‖uh‖V,√Re(47+0.5i)

,

where uh denotes the FEM solution and uh,P denotes the Newton-Padé approximation. For
one center the result is equivalent to the single point Padé. Therefore, the convergence is a
lot better for the middle point (z = 47), since the one center is located in the middle of the
interval (z0 = 47 + 0.5i) and therefore the distance is smaller to 47 than to the other two
points (43 and 53).
Two and three centers seem to be not a good choice, since they do not outperform the
single point method and then there is no reason to calculate the more complicated multi
point Padé approximation. We will also see this in Figure 6.4 and Figure 6.6, when we
further discuss the results.
The situation is different for a higher number of centers (6, 9 and 18). We can achieve there
convergence in all three points. Still, the accuracy is in a similar range (around 10−3) as for
the single point Padé. Comparing all plots with more than one center, we can also see that
the best convergence results can be achieved for 18 centers, since we then have a relative
error smaller than 10−3 in all three points.
We can see the difference between the single point and the multi point Padé better, when
we look at a larger interval. In Figure 6.3 we can see that the advantage of the multi point
Padé to the single point Padé grows, when we look at a larger interval. Here we have the
interval (36, 71). We look at the convergence in three points 43, 47 and 51. We set N = 11,
since there are 11 eigenvalues of the Laplacian in this interval. We did the calculation with
one center with 36 derivatives and with 36 centers with one derivative for each center. The
number of evaluations are doubled compared to the other example in order to be able to
cover such a large interval. We can see that in z = 51 both methods still work quite good,
since the point is near to the middle of the interval (55) where the single center is located
(plus 0.5i). For the other two points, which are farther away from the middle of the interval,
only the version with 36 centers works out. This shows that one needs a multi point version
of the Padé approximation, if one wants to cover a larger interval of frequencies with one
approximation. However, we can also see that we do not have a steady convergence here for
growing degree of the numerator M , but the relative errors are fluctuating for higher M .
We will now look again at the example on the interval (36, 51) and discuss the localiza-
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6.2 Parametric interior Helmholtz problem

(a) 1 center (b) 2 centers (c) 3 centers

(d) 6 centers (e) 9 centers (f) 18 centers

Figure 6.2: Relative error of the Newton-Padé approximation for a different number of points
chosen by Chebyshev nodes, the parameters are always M = 10 and N = 6

Figure 6.3: Convergence of the relative error for the parametric interior Helmholtz problem in
z = 43, 47, 51 of the Newton-Padé approximation compared to the FE-solution
on the interval (36, 71) for one and 36 centers for growing M , N = 11
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6 Numerical results for the multi point Padé approximation

(a) 1 centers (b) 2 centers (c) 3 centers

(d) 6 centers (e) 9 centers (f) 18 centers

Figure 6.4: Newton-Padé approximation and FEM solution for a different number of points
chosen by Chebyshev nodes, we always set M = 10 and N = 6

tion of the singularities by the Newton-Padé approximation. In Figure 6.4 there are the
comparisons of the FEM-solution and the Newton-Padé approximation for the different
numbers k of Chebyshev nodes. We can see that for k = 1, 2, 3 we cannot find all the
singularities correctly, while for k = 6, 9, 18 the Newton-Padé is able to localize them cor-
rectly. This means that these methods could be used for the calculation of the eigenvalues
of the Laplace operator instead of some eigenvalue solver. Here one would determine the
eigenvalues by calculating the zeros of the polynomial Q in the denominator. These results
can also be justified theoretically. Remember that all Dirichlet eigenvalues of the Laplacian
in two dimension on the square [0, π]2 can be calculated with the formula m2 + n2, where
m,n ∈ N := {1, 2, 3, . . . }(see [KS84]). On the interval (39, 55), which we look at here, the
eigenvalues are 40, 41, 45, 50, 52 and 53.
It is interesting to note that the most inaccurate Newton-Padé is for k = 3. This is due
to the way we reordered the centers. Let z = (z0, z1, z2) be the three centers in ascending
order. Then we would have first the six evaluations for z1, then for z0 and then for z2.
Since the evaluations of z2 are all at the end of the vector z, they contribute less to the
approximation. Therefore, we have a half of the interval, which is not enough covered, since
we have to little evaluations in the middle point z1 (more evaluations in z1 would lead to a
better results as we see it for one center) and z0 is to far away. Another strategy to order
the points would be to duplicate the vector ẑ, where each distinct zi appears only once,
i.e. a vector z = (z0, z1, . . . , zk, z0, . . . , zk, . . . , zk), where each zi appears once for each
evaluation. We will call this a mixed ordering. At first sight this seems a logical way to
avoid the problem for three centers described before. We tried this for the three centers,

48



6.2 Parametric interior Helmholtz problem

but as we can see in Figure 6.5 this is not a good strategy at all.
Now we will have a closer look at the fact that the Newton-Padé can be used as an

Figure 6.5: Mixed ordering, three centers, parameters as in Figure 6.4

alternative to a traditional eigenvalue solver for the Laplace operator. For the examples in
Figure 6.4, the roots of q rQ were calculated and compared to the analytical roots λ. Similar
numerical experiments for the convergence of the roots were already done in [BNPP18] for
the single point Padé approximation. The eigenvalues of the Laplace on the interval (39, 55),
are, as discussed before, 40, 41, 45, 50, 52 and 53. We will always look at the relative error
|rQ − λ|/|λ|. In the results in Figure 6.6 we can see that we have the accurate results for
all roots only for a higher number of centers. We already assumed this looking at the plots
in Figure 6.4.

Now we want to compare this way of calculating eigenvalues with a traditional eigenvalue
solver, the inverse iteration with shift. The inverse iteration with shift is a derivative of
the power method and calculates always the eigenvalue which is the nearest to the shift
parameter σ, while the classical power method calculates only the eigenvalue with largest
absolute value of a matrix (see [Bor16]). In the following we will construct a stiffness matrix
A and a mass matrix M using NGSolve, export these matrices and then solve the generalized
eigenvalue problem Ax = λMx using inverse iteration. The code which we used for this
can be found in the appendix in Listings 7.5.
We will investigate how many iterations we need to get an accuracy, which is similar to the
eigenvalues calculated with the Newton-Padé.
When exporting matrices from NGSolve, one has to keep in mind that they are created
without boundary conditions. We have stated before, that eigenvalues have the form m2 +n2

for m,n ∈ N. Since we do not include boundary conditions, we will have eigenvalues of the
form m2 + n2 for m,n ∈ N ∪ {0}. An intuitive explanation for this additional, unwanted
eigenvalues is, that normally we would rule out constant function ( 6= 0) with the zero
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6 Numerical results for the multi point Padé approximation

(a) 1 centers (b) 2 centers (c) 3 centers

(d) 6 centers (e) 9 centers (f) 18 centers

Figure 6.6: Convergence of the roots rQ of the denominator Q to the analytical roots of
the Laplacian λ, plotted is always the relative error |rQ− λ|/|λ|, the parameters
are always M = 10 and N = 6

boundary conditions. However we can look at an eigenvalue, which has the same neighbours
in both cases, by choosing a suitable shift parameter. The convergence of the inverse
iteration in such a case is not affected by the additional eigenvalues.
In the following we will create the matrices using hmax = 0.1 and polynomial degree p = 5.
Then we export stiffness and mass matrix and start the eigenvalue solver with an accuracy
of 10−7, since this is roughly the accuracy that we can achieve with the Newton-Padé for a
larger number of points (see Figure 6.6). Since the convergence speed of the inverse iteration
is highly dependent on how well the eigenvalue is approximated by the shift parameter
(see [Bor16],20.8), we will give the number of iterations for different shift parameters. The
starting vector is always a vector with random numbers on the interval (0, 1).
In the following we try to approximate the eigenvalue at λ = 52 by different shifts. The
next eigenvalues, which influence the convergence, are 50 and 53 and therefore the results
are not disturbed by the additional eigenvalues because of the missing boundary conditions.
The results are given in Table 6.2.
Here we can see that the inverse iteration quickly gets inaccurate, if we do not know a good
shift parameter. Therefore, the Newton-Padé approximation may be a good alternative, if
one does not have a good estimate of the eigenvalue in advance. Another advantage of the
method is that we can calculate multiple eigenvalues with one calculation.
In the future one could also try to investigate how the Newton-Padé approximation performs
in comparison to other solvers which calculate multiple eigenvalues on a given interval
(i.e. Lanczos algorithm). The eigenvalues of some other differential operator L could be
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6.2 Parametric interior Helmholtz problem

Shift parameter σ number of iterations
51.1 35
51.3 11
51.5 5
51.7 7
51.9 3
52.1 4
52.3 8

Table 6.2: Number of iterations needed in the inverse iteration to get an relative error smaller
than 10−7

calculated as well by applying the Newton-Padé to the equation Lu− λu = 0 with some
suitable boundary conditions.

Figure 6.7: Convergence of the relative error for the parametric interior Helmholtz problem
in z = 44 of the Newton-Padé approximation on the interval (36, 55) for one
and 18 centers for growing M and N = 4, 5, 6

We also investigated in high frequency regime how the multi and the single point Padé
react to a change of the degree of the denominator N . We look again at the interval
(39, 55) and compare a single point Padé with 18 evaluations and a multi point Padé with
18 centers and one evaluation at each center. We compare the convergence in z = 44 for
N = 4, 5, 6 for growing M . We can see in Figure 6.7 that the convergence is more uniform
for one center than for 18. The other difference is that the multi point Padé seems to have
problems for N = 4 as we can see for M = 8, 9. For higher N both methods work similarly
well for this kind of distance to the middle of the interval.
Looking at all the experiments in this chapter one can see that covering a small interval of
frequencies works fine for the interior parametric Helmholtz problem with the single and the
multi point method or is even better with the single point version. As soon as we have to
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6 Numerical results for the multi point Padé approximation

cover a large interval or want to calculate eigenvalues (i.e. roots of the denominator) one
should use the multi point Padé approximation.

6.3 Scattering problem

In this section we will present some numerical results of the Newton-Padé approximation for
the scattering problem introduced in Section 4.2. We set again hmax = 0.1 and p = 5. First,
we have a look at the convergence rate for growing M . We take five Chebyshev points on
the interval [2, 5], set N = 4 and evaluate the Newton-Padé in z = 3.5 against the FEM
solution. The norm used is ‖·‖V,3.5. In Figure 6.8 we can see that we get indeed exponential
convergence.

Figure 6.8: Convergence for the scattering problem in z = 3.5 with Newton-Padé and five
Chebyshev points on [2, 5]

In Figure 5.9 we have seen that in the single point Padé we have problems approximating
the scattering problem in z = 2 and z = 3 with one Padé approximation. We will now try
to do this with a multi point Padé. Since we can place centers near both points here, we
would expect better results.

In Figure 6.9 we have the results for the multi point Padé. We place six Chebyshev points
on the interval (1, 4) and three derivatives each. Then we set N = 6 and let M grow from
6 to 10.
We can see that except for z = 2 and M = 8 we have a steady convergence in both points.
This is better than with the single point Padé and it highlights again the advantage of the
multi point Padé, if one wants to cover a whole interval.

In the next example we will illustrate, why it is important to reorder the centers as
described in Section 6.1. Assume we would have the centers and its evaluations in an
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6.3 Scattering problem

Figure 6.9: Relative error for the scattering problem in z = 2 and z = 3 with Newton-Padé
and six Chebyshev points on [1, 4], N = 6 and M growing

ascending order. Since points in the beginning have a greater influence on the result, we
would have more information about smaller wave numbers and vice versa if we would store
the centers in a descending order. We can see this in Figure 6.10. In both examples we have
taken the parameters M = 8 and N = 4, which would be enough for more accurate results
with a correct ordering of the points, as one can see in the "correct" half of the interval.
We also try out again the mixed ordering described in Section 6.2. This is not working as

(a) ascending centers (b) descending center

Figure 6.10: Newton-Padé for the scattering problem without reordering of the centers

we see in the left part of Figure 6.11. It is the same example as before and we can see
that with this mixed ordering we are nowhere near the right solution on the whole interval.
Therefore, this is not a useful strategy. In the right part of Figure 6.11 we can see the
strategy from the code in Listing 6.1, which was used in this thesis. Here we can, at least,
approximate the growth of the norm in most parts of the interval. However we also see that
covering accurately a whole interval for the scattering problem is a challenging task and the
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6 Numerical results for the multi point Padé approximation

approximation is already getting more inaccurately near the boundaries of the interval. As
mentioned before there may be other reorderings which produce a more accurate solution.

(a) Mixed ordering for the Newton-Padé
approximation - not a good choice at
all

(b) Ordering used in this thesis

Figure 6.11: Mixed ordering and ordering according to the code in listing 6.1
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7 Conclusions

We presented a method to solve a parameter-dependet PDE in a computationally cheap
way for multiple values of the parameter, which was introduced in [BNP17]. We defined a
solution map, which maps parameter values onto its solution for fixed right hand side and
boundary conditions. Then we defined and calculated a Padé approximation of this solution
map. The main focus was on numerical experiments. For the numerical experiments we
defined two model problems, the Helmholtz equation with Dirichlet boundary conditions
and a source term and a wave equation with additional scattering on a circle in the domain.
We reviewed first the Padé approximation in one center (as in [BNP17] and [BNPP18]) and
then extended it to multiple centers (multipoint Padé/Newton-Padé). For both strategies
there are numerical experiments in two dimensions and for the single point Padé also in
three dimensions. We figured out numerically that the Padé approximation works also in
three dimensions. For the multipoint Padé we tried different strategies how to order the
centers and we found in the numerical experiments with Chebyshev points one reordering
which seems to achieve exponential convergence. For some numbers of centers we were able
to outperform the single point Padé in a high frequency regime for the Helmholtz equation.
We also saw that the Newton-Padé can be used as a eigenvalue solver for the Laplacian
and is in the high frequency regime superior to the single point Padé in this perspective.
The algorithm may be useful for calculating eigenvalues, if one wants to calculate multiple
eigenvalues on a specific interval.
However especially for the Newton-Padé approximation there are still a lot of open questions.
The ordering and choice of the centers was only investigated numerically and not theoretically
as well as the ration number of points/derivatives, i.e. how one should spent the evaluations
which are available. We also did not talk about the convergence rate or the convergence
area. We have only seen in the experiments that in some cases exponential convergence can
be achieved.
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Appendix

In the following the code for some important functions used in the numerical experiments
and a short description of it is given.

Listing 7.1 shows two functions. calculate_pq calculates the coefficients for the two
polynomials P and Q and the second one calculate_pade evaluates the two polynomials. IP
calculates the weighted H1-inner product of two function. We can also calculate ‖·‖

V,
√
Re(z0)

with this function. IP will also be used in the other pieces of code as well. We will change it
slightly for the scattering problem, since we need then the ‖·‖V,Re(z0)-norm instead in order
to be consistent with the results in [BNPP18].
#c a l c u l a t e s c o e f f i c i e n t s f o r P and Q f o r s i n g l e p o i n t Pade
#m1 deg r ee o f P , n deg r ee o f Q
#l i s t _ c o e f f c o n t a i n s Tay lo r c o e f f i c i e n t s ( saved as G r i dFunc t i on )
#z po i n t i n i n t e r v a l l , where Pade i s l i k e l y to be e v a l u a t e d
#z_0 c e n t e r o f Pade ( used f o r we ighted norm )

#f u n c t i o n f o r I n n e r Product
de f IP ( a , b , mesh1 ) :

r e t u r n I n t e g r a t e ( I nne rP roduc t ( grad ( a ) , Conj ( grad ( b ) ) ) + ( ( z_0 . r e a l
) ) ∗( I nne rP roduc t ( a , Conj ( b ) ) ) , mesh1 )

de f ca l cu l a t e_pq (m1, n , l i s t_ c o e f f , z , z_0) :
#s e t up mat r i x G
G=np . z e r o s ( ( n+1,n+1) , dtype=complex )
rho = abs (z_0−z )

#s e t up f o r l oop ove r a lpha
f o r i nd1 i n range ( n+1) :

f o r i nd2 i n range ( n+1) :
f o r a l pha i n range (m1+1,e+1 ,1) :

G [ i nd2 ] [ i nd1 ] += IP ( l i s t _ c o e f f [ a lpha−i nd1
] , l i s t _ c o e f f [ a lpha−i nd2 ] , mesh ) ∗ rho
∗∗(2∗ a lpha )

w, v = l i n a l g . e i g h (G)
#save e i g e n v e c t o r to sm a l l e s t e i g e n v a l u e i n q
q=v [ : , 0 ]

#c a l c u l a t e c o e f f i c i e n t s o f p
p=[]

f o r i nd i n range (m1+1) :
p_cur = 0 .∗ x+1 j ∗0 .∗ x
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#c a l c u l a t e p_ind = (QT) _ind
f o r i nd2 i n range ( min ( i nd +1,n+1) ) :

p_cur = p_cur + l i s t _ c o e f f [ ind−i nd2 ]∗ q [ i nd2 ]

#put c o e f f i c i e n t p_ind to l i s t p
p . append ( p_cur )

r e t u r n p , q

#e v a l u a t e s Pade app rox imat i on o f deg r ee m/n i n z
#Pade c en t e r e d i n z_0
de f ca l cu l a t e_pade (p , q , z ,m, n , z_0) :

abstand = z−z_0
q_val = 0.+0.∗1 j
f o r i nd i n range ( n+1) :

q_val = q_val + q [ i nd ] ∗ ( abstand ) ∗∗( i nd )
p_val = 0 .∗ x+1 j ∗0 .∗ x
f o r i nd i n range ( degree_p+1) :

p_val = p_val + p [ i nd ] ∗ ( abstand ) ∗∗( i nd )
pade = p_val /q_val
r e t u r n pade

Listing 7.1: Calculation of P and Q for the single point Padé approximation

Listing 7.2 shows the main part of the code for the single point Padé approximation,
where the Taylor coefficients are calculated. We look here at the Helmholtz equation with
Dirichlet boundary conditions on the square [0, π]2. In the beginning there are calls to the
NGSolve library. This part is a modified version of example 1.7 from [itu18]. In order to
build up the linear form, we use the function calc_source, which calculates the function f
as defined in Chapter 5.2. Then we solve the PDE and afterward inductively calculate the
derivatives. Here the right hand side is calculated according to Theorem 4.5. Then we save
the Taylor coefficients in the list list_coeff. This data can be used to calculate the single
point Padé with the code in Listing 7.1. In order to repeat the calculations in this thesis
one needs to combine the code in Listing 7.1 and Listings 7.2.
#con s t r u c t s v e c t o r T c o n t a i n i n g d e r i v a t i v e s
#o f the s o l u t i o n f u n c t i o n

#impor t packages
impor t math
impor t cmath
from ng s o l v e impor t ∗
from netgen . geom2d impor t Sp l i neGeomet ry
impor t numpy as np
from numpy impor t l i n a l g as LA
impor t ma t p l o t l i b . p y p l o t as p l t
from s c i p y impor t l i n a l g

#f u n c t i o n tha t r e t u r n s s ou r c e term f o r wave number
de f ca l c_sou r c e ( nu ) :

e rg = 16 . / ( p i ∗∗4 . 0 ) ∗ exp (−(nu ∗∗0 . 5 ) ∗1 j ∗( x∗d1+d2∗y ) ) ∗(2∗1 j ∗( nu
∗∗0 .5 ) ∗d1 ∗(2∗ x∗y∗y−2∗p i ∗x∗y−p i ∗y∗y+p i ∗∗2∗ y )+2∗1 j ∗( nu ∗∗0 . 5 ) ∗d2
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∗(2∗ x∗x∗y−p i ∗x∗x−2∗p i ∗x∗y+p i ∗∗2∗ x ) \
−(2∗y∗y − 2∗y∗ p i ) − (2∗ x∗x − 2∗x∗ p i ) )

r e t u r n e rg

#main f u n c t i o n
i f (__name__ == ’__main__ ’ ) :

#l i s t f o r s o l u t i o n s
l i s t _ s o l =[ ]

#s t a r t c a l c u l a t i n g s o l u t i o n at z_0

#De f i n e mesh
geo = Sp l i neGeomet ry ( )
geo . AddRectangle ( ( 0 , 0 ) , ( p i , p i ) , bcs=["b" , " r " , " t " , " l " ] )
mesh = Mesh ( geo . GenerateMesh (maxh=0.06) )

# H1−con fo rming f i n i t e e l ement space
f e s = H1(mesh , o r d e r =3, d i r i c h l e t=" l | r | t | b" , complex=True )

# d e f i n e t r i a l − and t e s t−f u n c t i o n s
u = f e s . T r i a l F u n c t i o n ( )
v = f e s . Tes tFunc t i on ( )

#sou r c e
s ou r c e = ca l c_sou r c e ( omega )

# Forms
a = B i l i n e a rFo rm ( f e s )
a += Symbol icBFI ( grad ( u ) ∗ grad ( v )−z_0∗u∗v ) #Helmho l tz problem
c = P r e c o n d i t i o n e r ( a , t ype=" mu l t i g r i d " , f l a g s= {" i n v e r s e " : "

s p a r s e c h o l e s k y " })
a . Assemble ( )

#RHS
f = LinearForm ( f e s )
f += Symbo l i cLF I ( s ou r c e ∗ v )
f . Assemble ( )

#s o l v e system
gfu = Gr i dFunc t i on ( f e s , name="u" )
i n v = CGSolver ( a . mat , c . mat , complex=True , p r i n t r a t e s=Fa l s e , maxsteps

=200)
g fu . vec . data = i n v ∗ f . vec

#put s o l u t i o n i n l i s t
l i s t _ s o l . append ( g fu )

#c a l c u l a t e d e r i v a t i v e s
f o r num_dev i n range (1 , e+1) :
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gfu2 = Gr i dFunc t i on ( f e s , name = ’ u2 ’ )

#new rh s from o ld s o l u t i o n
f2 = LinearForm ( f e s )
r h s = l i s t _ s o l [ ( num_dev−1) ]∗ num_dev
f2 += Symbo l i cLF I ( r h s ∗v )
f 2 . Assemble ( )
g fu2 . vec . data = i n v ∗ f 2 . vec
l i s t _ s o l . append ( gfu2 )

#mu l t i p l y by 1/ i ! and make Gr i dFunc t i on aga in
l i s t _ c o e f f = [ ]
f o r i nd i n range ( l e n ( l i s t _ s o l ) ) :

c o e f f = Gr i dFunc t i on ( f e s , name=’ c o e f f ’ )
d i v = l i s t _ s o l [ i nd ]∗ ( 1/ math . f a c t o r i a l ( i nd ) )
c o e f f . Set ( d i v )
l i s t _ c o e f f . append ( c o e f f )

Listing 7.2: Calculation of vector with derivatives for the single point Padé approximation

Listing 7.3 contains three functions. The function calc_pq calculates the coefficients
of the polynomials P and Q, w_ret calculates the values of the Newton basis in x and
calculate_pade evaluates P/Q in z_calc

#Mu l t i p o i n t Pade
#c a l c u l a t i n g c o e f f i c i e n t s o f the po l y nom i a l s P and Q
#F mat r i x w i th d i v i d e d d i f f e r e n c e s
#m1 deg r ee o f P , n deg r ee o f Q
de f calc_pq (F ,m1, n ) :

G=np . z e r o s ( ( n+1,n+1) , dtype=complex )
#make cho i c e f o r rho
rho = 1

f o r ind1 i n range ( n+1) :
f o r i nd2 i n range ( n+1) :

f o r a l pha i n range (m1+1,e+1 ,1) :
G [ i nd1 ] [ i nd2 ] += IP (F [ a lpha ] [

a lpha−i nd2 ] , \
F [ a l pha ] [ a lpha−i nd1 ] , mesh ) ∗ rho

∗∗(2∗ a lpha )

p=[]
f o r i nd1 i n range (m1+1) :

p_cur = Co e f f i c i e n t F u n c t i o n ( 0 . ∗ x+1 j ∗0 .∗ x , 1 )

#c a l c u l a t e p_ind = (QT) _ind
f o r i nd2 i n range ( min ( ind1 +1,n+1) ) :

p_cur = p_cur + F [ ind1 ] [ ind1−i nd2 ]∗ q [ i nd2 ]

#put c o e f f i c i e n t p_ind to l i s t p
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p . append ( p_cur )
r e t u r n p , q

#c a l c u a t e s Newton b a s i s f o r e v a l u a t i o n i n x wi th c e n t e r s saved i n z
#x i s double , z i s v e c t o r o f doub l e s
de f w_ret ( x , z ) :

w = np . z e r o s ( l e n ( z ) )+1 j ∗np . z e r o s ( l e n ( z ) )
f o r i i n range ( l e n ( z ) ) :

i f i == 0 :
w[ i ] = 1

e l s e :
w[ i ] = w[ i −1]∗( x−z [ i −1])

r e t u r n w

#c a l c u l a t e s Pade app rox imat i on o f deg r ee degree_p
#z_calc po i n t where pade i s c a l c u l a t e d
#z2 v e c t o r w i th c en t e r s , appear mu l t i p l e t imes i f d e r i v a t i v e
de f c a l cu l a t e_pade (p , q , z_calc , z2 ,m, n ) :

w = w_ret ( z_calc , z2 )
q_val = 0.+0.∗1 j
f o r i nd i n range ( n+1) :

q_val = q_val + q [ i nd ]∗w[ i nd ]
p_val = Co e f f i c i e n t F u n c t i o n ( 0 . ∗ x+1 j ∗0 .∗ x , 1 )
f o r i nd i n range (m+1) :

p_val = p_val + p [ i nd ]∗w[ i nd ]
pade = p_val /q_val
r e t u r n pade

Listing 7.3: Calculation of P and Q for the Newton-Padé approximation

Listing 7.4 holds the main part of the calculation of the Newton-Padé approximation.
This is an example for the scattering equation (problem 2). First the centers are calculated
with Chebyshev points as described in Chapter 6.1. Then we set the number of derivatives
in each center. Here we want a total of 18 derivatives equally distributed over the center
(num_z denotes the number of centers). Then we set up a vector z2, which contains each
center once for each derivative, that should be calculated.
The next part consist of calls to the NGSolve library. These calls are partly taken from [itu18].
We build up the domain and define a mesh and a FE-space. Then we loop over all different
centers (contained in vector z) and solve the PDE. If we need to calculate derivatives, we
have to take the formula from Lemma 4.6. In the end we we have to make Taylor coefficient
out of the derivatives and save them as GridFunctions (data format from NGSolve) in
results2. In the last step we construct the matrix F , which contains the divided differences.
After these steps we have enough information to construct the Newton-Padé approximation
with the functions in Listing 7.3.
#con s t r u c t mat r i x F c o n t a i n i n g d i v i d e d
#d i f f e r e n c e s o f the s o l u t i o n f u n c t i o n

#impo r t i n g packages
impor t math
impor t cmath
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from ng s o l v e impor t ∗
from netgen . geom2d impor t Sp l i neGeomet ry
impor t numpy as np
from numpy impor t l i n a l g as LA
impor t ma t p l o t l i b . p y p l o t as p l t
from s c i p y impor t l i n a l g

#a u x i l i a r y f u n c t i o n to c a l c u l a t e i nd ex f o r c a l c u l a t i o n o f F
de f get_cur_z ( j , d ) :

i nd = 0
wh i l e ( j−d [ i nd ] > 0) :

j = j − d [ i nd ]
i nd = ind + 1

r e t u r n i nd

#main f u n c t i o n
i f (__name__ == ’__main__ ’ ) :

#c a l c u l a t e c e n t e r s
z = np . z e r o s (num_z)+np . z e r o s (num_z) ∗1 j
z = ca l c u l a t e_cheby sh e v (2 , 5 ,num_z , 0 . 5 )

#number o f d e r i v a t i v e s , 1 means z e r o d e r i v a t i v e s ,
#i . e . minimum i s 1 i n v e c t o r
devs = np . ones (num_z)
devs = devs ∗(18/num_z)

sum_dev = 0
f o r num i n devs :

sum_dev=sum_dev+num ;

#s e t up v e c t o r where each z appea r s once f o r each d e r i v a t i v e /
r e s u l t

#tha t has to be computed f o r i t
z2 = np . z e r o s ( i n t ( sum_dev ) )+np . z e r o s ( i n t ( sum_dev ) ) ∗1 j
i nd ex = 0
f o r i nd i n range (num_z) :

f o r i nd2 i n range ( i n t ( devs [ i nd ] ) ) :
z2 [ i nd ex ] = z [ i nd ]
i nd ex = index + 1

# Geometry
geo = Sp l i neGeomet ry ( )
geo . AddRectangle ((− pi , −p i ) , ( p i , p i ) , l e f t d oma i n =1, r i gh tdoma in

=0, bc="out_bound" )
#c a l l r e c t a n g l e 1 and i n n e r c i r l e 2
geo . AddC i r c l e ( ( 0 , 0) , 0 . 5 , l e f t d oma i n =2, r i gh tdoma in =1, bc="

scat_bound" )

geo . S e tMa t e r i a l (1 , " ou t e r " )
geo . S e tMa t e r i a l (2 , " i n n e r " )
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#bu i l d mesh
mesh = Mesh ( geo . GenerateMesh (maxh=0.1) )
#d e f i n e F i n i t e Element space
f e s = H1(mesh , o r d e r = 5 , d i r i c h l e t = ’ scat_bound ’ , d e f i n edon = ’

ou t e r ’ , complex = True )

# d e f i n e t r i a l − and t e s t−f u n c t i o n s
u = f e s . T r i a l F u n c t i o n ( )
v = f e s . Tes tFunc t i on ( )

#l i s t f o r d e r i v a t i v e s
r e s u l t s = [ ]

f o r z_num i n range ( l e n ( z ) ) :
r e s u l t s . append ( [ ] )

#u_i
u_i_coef f = calc_u_i ( z [ z_num ] )
u_i = Gr i dFunc t i on ( f e s , name = ’ u_i ’ )
u_i . Set ( u_i_coef f )

#b i l i n e a r form
p r i n t ( z )
a = B i l i n e a rFo rm ( f e s )
a += Symbol icBFI ( grad ( u ) ∗ grad ( v ) )
a += Symbol icBFI(−z [ z_num]∗ z [ z_num]∗ u∗v )
a += Symbol icBFI (−1 j ∗ z [ z_num]∗ u∗v , d e f i n edon=mesh .

Bounda r i e s ( ’ out_bound ’ ) )
c = P r e c o n d i t i o n e r ( a , t ype=" mu l t i g r i d " , f l a g s= {" i n v e r s e "

: " s p a r s e c h o l e s k y " })
a . Assemble ( )

#d e f i n e outward normal
normal = s p e c i a l c f . normal (mesh . dim )

#c a l c u l a t i o n f o r z_0
#RHS
f = LinearForm ( f e s )
f += Symbo l i cLF I ( ( grad ( u_i ) ∗normal−1 j ∗ z [ z_num]∗ u_i ) ∗v ,

d e f i n edon = mesh . Bounda r i e s ( ’ out_bound ’ ) )
f . Assemble ( )

f o r num_dev i n range ( i n t ( devs [ z_num ] ) ) :
#c a l c u l a t e d e r i v a t i v e
i f num_dev == 0 :

#s o l v e system
gfu = Gr i dFunc t i on ( f e s , name="u" )
i n v = CGSolver ( a . mat , c . mat , complex=True ,

p r i n t r a t e s=Fa l s e , maxsteps=200)
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gfu . vec . data = i n v ∗ f . vec
r e s u l t s [ z_num ] . append ( g fu )

e l s e :

#new rh s from o ld s o l u t i o n
g fu = Gr i dFunc t i on ( f e s , name="u" )
f2 = LinearForm ( f e s )
i f (num_dev > 1) :

f 2 += Symbo l i cLF I (num_dev∗(
num_dev−1)∗ r e s u l t s [ z_num ] [
num_dev−2]∗v )

f 2 += Symbo l i cLF I (2∗num_dev∗ z [ z_num]∗
r e s u l t s [ z_num ] [ num_dev−1]∗v )

f 2 += Symbo l i cLF I (num_dev∗1 j ∗ r e s u l t s [
z_num ] [ num_dev−1]∗v , d e f i n edon = mesh .
Bounda r i e s ( ’ out_bound ’ ) )

u_i_j_coeff = u_i ∗(1 j ∗( d1∗x+d2∗y ) ) ∗∗(
num_dev)

u_i_j = Gr i dFunc t i on ( f e s )
u_i_j . Set ( u_i_j_coeff )
f 2 += Symbo l i cLF I ( ( grad ( u_i_j ) ∗normal ) ∗v ,

d e f i n edon = mesh . Bounda r i e s ( ’
out_bound ’ ) )

f 2 += Symbo l i cLF I ((−1∗(1 j ) ∗∗num_dev∗( d1∗x
+d2∗y ) ∗∗(num_dev−1)∗( z [ z_num]∗1 j ∗( x∗d1
+y∗d2 )+num_dev) ) ∗u_i∗v , d e f i n edon =
mesh . Bounda r i e s ( ’ out_bound ’ ) )

f 2 . Assemble ( )

g fu . vec . data = i n v ∗ f 2 . vec
r e s u l t s [ z_num ] . append ( g fu )

#make Tay lo r c o e f f i e n t s out o f d e r i v a t i v e s
r e s u l t s 2 = [ ]
f o r i nd1 i n range ( l e n ( r e s u l t s ) ) :

r e s u l t s 2 . append ( [ ] )
f o r i nd2 i n range ( l e n ( r e s u l t s [ i nd1 ] ) ) :

d i v = r e s u l t s [ i nd1 ] [ i nd2 ] ∗ ( 1/ math . f a c t o r i a l ( i nd2 )
)

g fu2 = Gr i dFunc t i on ( f e s )
g fu2 . Set ( d i v )
r e s u l t s 2 [ i nd1 ] . append ( gfu2 )

F=[]

#c on s t r u c t mat r i x F wi th e n t r i e s f_ j i
f o r i i n range (m+n+1) :

F . append ( [ ] )
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f o r j i n range ( i ,−1 ,−1) :
i f ( z2 [ i ] == z2 [ j ] ) :

#we have to take d e r i v a t i v e o f f o r f ( z2 [
i ] )

g r i d f = Gr i dFunc t i on ( f e s )
g r i d f . Set ( r e s u l t s 2 [ i n t ( get_cur_z (

i +1, devs ) ) ] [ i n t ( i−j ) ] )
F [ i ] . append ( g r i d f )

e l s e :
#we have to take d i v i d e d d i f f e r e n c e

g r i d f = Gr i dFunc t i on ( f e s )
g r i d f . Set ( ( F [ i ] [ i−j−1]−F [ i −1] [ i−j
−1]) /( z2 [ i ]−z2 [ j ] ) )

F [ i ] . append ( g r i d f )

Listing 7.4: Calculation of matrix F consisting of divided differences

The next piece of code in Listing 7.5 was used for the eingevalue calculation in Chapter 6.
First one construct with NGSolve a stiffness and a mass matrix and exports them to Python
using the csc format in Scipy.
The function inverse_iteration in the second part calculates the eigenvalue of the generalized
eigenvalue problem Ax = λBx, which has the smallest distance to shift. eps gives the
maximal relative error to the analytical value real_ev and num_iterations the maximal
number of iterations. The function returns the number of iterations needed to get a relative
error smaller than eps, since we evaluated this for the results in Table 6.2.

#c a l c u l a t i n g e i g e n v a l u e s o f L ap l a c i a n u s i n g
#i n v e r s e i t e r a t i o n
impor t math
impor t cmath
from ng s o l v e impor t ∗
from netgen . geom2d impor t Sp l i neGeomet ry
impor t numpy as np
from s c i p y impor t l i n a l g
impor t s c i p y . s p a r s e as sp
impor t s c i p y . s p a r s e . l i n a l g as s p l a

p i=math . p i
#De f i n e mesh
geo = Sp l i neGeomet ry ( )
geo . AddRectangle ( ( 0 , 0 ) , ( p i , p i ) , bcs=["b" , " r " , " t " , " l " ] )

mesh = Mesh ( geo . GenerateMesh (maxh=0.1) )
f e s = H1(mesh , o r d e r =5, d i r i c h l e t=" l | r | t | b" , complex=True )

# d e f i n e t r i a l − and t e s t−f u n c t i o n s
u = f e s . T r i a l F u n c t i o n ( )
v = f e s . Tes tFunc t i on ( )
a = B i l i n e a rFo rm ( f e s )
a += Symbol icBFI ( grad ( u ) ∗ grad ( v ) )
a . Assemble ( )
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m = Bi l i n e a rFo rm ( f e s )
m += Symbol icBFI ( u∗v )
m. Assemble ( )

#make mat r i x to s c i p y s p a r s e fo rmat
rows , c o l s , v a l s = a . mat .COO( )
A = sp . csc_matr ix ( ( v a l s , ( rows , c o l s ) ) )

rows , c o l s , v a l s = m. mat .COO( )
M2 = sp . csc_matr ix ( ( v a l s , ( rows , c o l s ) ) )

#c a l c u l a t e e i g e n v a l u e u s i n g i n v e r s e i t e r a t i o n
de f i n v e r s e _ i t e r a t i o n (A,B, num_ite ra t ions , eps , s h i f t , r ea l_ev ) :

#s t a r t p o i n t
x = np . random . rand (A . shape [ 1 ] )

#make s h i f t
A = A − s h i f t ∗B
#con s t r u c t s p a r s e LU decomp to s o l v e system
s o l v e = s p l a . f a c t o r i z e d (A)

#i t e r a t i o n s
f o r i nd i n range ( num_i te ra t i on s ) :

#c a l c u l a t e r e l a t i v e e r r o r
r h s = B. dot ( x )
Ax = A. dot ( x )
e i g e n = x . dot (Ax) /( x . dot ( r h s ) )

e r r = l i n a l g . norm ( e i g en ∗ r h s − Ax)
e r r = abs ( rea l_ev −( e i g e n+s h i f t ) ) / r ea l_ev

i f ( e r r > eps ) :
x = s o l v e ( r h s )
x = x/ l i n a l g . norm ( x )

e l s e :
r e t u r n i nd

i f ( i nd == num_ite ra t ions −1) :
e i g e n = x . dot (A . dot ( x ) ) /( x . dot (B . dot ( x ) ) )

r e t u r n i nd

Listing 7.5: Calculating eigenvalues of ∆ using NGSolve and inverse iteration
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