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Abstract

Acoustic phonons, the energy eigenstates of mechanical vibrations, possess a plethora of
interesting features for quantum information processing. For example, they can serve
as compact quantum memories with long life times, or can transduce quantum states
between a variety of otherwise incompatible quantum systems. Particularly interesting
among those are infrared photons in the telecommunication wavelength band, due to
their widespread use in quantum communication. Using artificial optical and mechanical
resonances, they can interact with phonons by radiation pressure. However, controlling
individual excitations of motion in micromechanical resonators has thus far been restricted
to the domain of microwave radiation, while optical control remained an outstanding goal.
In this thesis, I describe how this can be achieved experimentally, employing quantum
optics protocols. First, the operation of silicon optomechanical crystals in the quantum
regime is demonstrated by creating non-classical photon-phonon pairs through optome-
chanical down conversion. This quantum interface is subsequently used to characterize
heralded single phonons, and to generate quantum entanglement between two remote
mechanical oscillators. The realization of these classic quantum optics experiments with
single phonons establishes mechanical quantum memories in silicon photonics as a useful
resource for future quantum networks.

Zusammenfassung

Akustische Phononen, die energetischen Eigenzustände von mechanischen Vibrationen,
besitzen eine Vielzahl an interessanten Eigenschaften für die Verarbeitung von Quanten-
information. Beispielsweise können sie als langlebige und kompakte Quanteninformation-
sspeicher eingesetzt werden, oder Quantenzustände zwischen anderweitig inkompatiblen
Systemen übertragen. Aufgrund ihrer technischen Relevanz sind hierbei Photonen im
optischen Telekommunikations-Frequenzband von besonderem Interesse. Mit Hilfe von
künstlich erzeugten optischen und akustischen Resonanzen, können die Photonen mit
Phononen mittels Strahlungsdruck interagieren. Jedoch war die Kontrolle einzelner Be-
wegungsanregungen in mikromechanischen Resonatoren bisher auf den Mikrowellenbere-
ich beschränkt, wohingegen das Ziel einer Manipulation durch Laser unerreicht blieb. In
dieser Dissertation beschreibe ich, wie dies experimentell mithilfe von quantenoptischen
Protokollen erreicht werden kann. Zunächst wird gezeigt, dass optomechanische Kristalle
im Quantenbereich betrieben werden können, indem nichtklassische Photon-Phonon Paare
mittels optomechanischer parametrischer Fluoreszenz erzeugt werden. Diese Quanten-
schnittstelle wird daraufhin verwendet um einzelne Phononen zu charakterisieren, sowie
Quantenverschränkung zwischen zwei entfernten mechanischen Oszillatoren zu erzeugen.
Die Demonstration dieser klassischen Quantenoptik Experimente mit einzelnen Phononen
zeigt, dass mechanische Quanteninformationsspeicher eine vielversprechende Ressource
für künftige Quantennetzwerke darstellen.
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1. Introduction

Quantum optics is a field of research investigating and exploiting the consequences of the
quantization of the electromagnetic field and its interaction with matter. Triggered by
the invention of the laser, it experienced major advances, shaping our understanding of
the foundations of physics and enabling new technologies for the manipulation of quan-
tum systems. In this thesis, I employ quantum optical techniques to control individual
excitations of motion, called phonons, in micromechanical oscillators. The experiments
reported here demonstrate that optomechanical systems, in particular optomechanical
crystals, can be a valuable resource for future optical quantum information architectures.
They can serve as a quantum memory on an integrated silicon photonics platform, directly
interfaced with photons in the conventional optical telecommunication wavelength band.

Quantum Optics

Early quantum optics experiments, such as the observation of particle-like features of
light emitted by atoms [Cla74; KDM77], demonstrated the applicability of quantum field
theory for optical experiments. Further, these non-classical emitters allowed to study
quantum entanglement [FC72; AGR81], a counter-intuitive consequence of applying the
superposition principle to correlations of particles [EPR35; Bel64]. Conversely, it was
realized that light could be utilized to manipulate the internal [Kas50] and external degrees
of freedom of atoms [Ash70]. Later on, the quantum optical control techniques were refined
and extended to non-linear optical processes in bulk crystals [BW70; HM86] and various
atom-like systems, such as defects in solid state materials [Gru+97] or superconducting
qubits [Cla+88; NPT99; Wal+04a]. The ability to precisely manipulate these systems
led to various applications, such as precision metrology, quantum simulation, quantum
computation and quantum communication. Of particular interest is the coherent control
of individual excitations in these systems. They can form the quantum analogue to a
single bit of information, called qubit, which is the basis for the majority of quantum
information protocols.

Cavity Optomechanics

Optical manipulation of massive objects has been demonstrated early on [Bet36; Ash70],
however, it was limited to motion in the classical domain. Quantum control over motion
was later on achieved in atomic systems [Die+89; Mee+96] using laser cooling techniques.
In recent years, efforts to extend this quantum control to the motion of massive objects
has attracted considerable attention [AKM14]. Relying on artificial instead of atomic
resonances, this field of research was named cavity optomechanics. Technological advances
in micromechanics and optics are promising to enable quantum control over massive,
artificial degrees of freedom. On the one hand, this allows for an investigation on the
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1. Introduction

validity of quantum theory for macroscopic systems, some of them even visible to the
naked eye [Tho+08].

On the other hand, the mechanical element can act as transducer [Rab+10] and memory
[CG04; Fio+11; Cha+11b; Saf+11] in various quantum information applications. As the
optical and mechanical resonances are artificially created, they can be designed to work
at almost arbitrary frequencies. For example, a single mechanical element coupled to two
electromagnetic resonances in vastly different frequency domains can act as bidirectional
transducer between them [And+14; Vai+16].

Furthermore, the freedom of design can also be used to make mechanical quantum
memories available for wavelength ranges with notoriously few usable atomic resonances.
One such example is the conventional optical telecommunication band (C-band) around a
wavelength of 1550 nanometers, which is of enormous interest for long distance quantum
communication protocols, due to the high transmission of photons in this range in optical
fibers. To expand quantum communication beyond the typical absorption length of these
fibers, quantum repeaters have been proposed [Bri+98; Dua+01], which require mem-
ory elements interfaced to the traveling infrared photons. Particularly interesting is the
possibility to have an array of optomechanical devices with closely spaced resonances in
the C-band. This allows for wavelength division multiplexing of quantum communication
channels, thereby achieving very high operational bandwidths. The individual mechan-
ical elements can at the same time maintain long memory times, exceeding the current
limitations of other broadband telecom quantum memory techniques, like rare earth ion
doped crystals [Lau+10; Bus+14; Sag+15]. However, most protocols require control over
individual excitations in the mechanical memory element, which remained elusive in the
optical domain.

In a typical optomechanical system, the intensity of the light field couples to the me-
chanical displacement, exercising a force on the mechanical element known as radiation
pressure. While this force is non-linear in the amplitude of the cavity field, as required
for non-Gaussian control, it is very weak on the single photon level.

By driving the system strongly with an external laser, a considerable linear coupling
between the cavity field and the mechanical interaction can be generated. A red detuned
drive1 allows for laser cooling of the mechanical element [Gig+06; Sch+06; Arc+06], even-
tually to its quantum ground state [Teu+11a; Cha+11a]. By further increasing the drive
power, it is even possible to enter the regime of strong coupling between the mechani-
cal and optical oscillator [Grö+09; Teu+11b; Ver+12], or to observe radiation pressure
shot noise of a resonant optical field on the mechanical oscillator [PPR13]. While a blue
detuned laser can generate Gaussian entanglement between the optical and the mechan-
ical mode [Pal+13b], continuous driving leads to a parametric instability [Kip+05]. For
technical reasons, this continuous variable entanglement was thus far only achieved in the
microwave domain.

Single Phonon Control

In the driven system, the effective optomechanical interaction is linearized, preventing
the direct generation of non-Gaussian states [Wie+15], such as single phonon excitations.

1 In analogy to the visible spectrum, this corresponds to a drive laser with a frequency below that of
the optical resonance.
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In the microwave domain, it is instead possible to use an artificial non-linear resonance,
i.e. a superconducting qubit, to generate a non-Gaussian quantum state, and use a linear
interaction to transfer it to the mechanical element [OCo+10]. In addition to the pre-
viously described coupling in the driven system [Ree+17], this can also be achieved by
a piezoelectric material, allowing for a direct generation and control of single phonons
through the qubit [OCo+10]. Due to the smaller wavelength of mechanical waves, such a
system could serve as compact memory also for superconducting quantum computation
architectures [Chu+17].

In the optical domain, three main challenges prevented single phonon control so far:
Compared to the microwave domain, (1) drive photons carry higher energy, thus increasing
the absorption heating. (2) The higher frequency difference between the optical and
the mechanical resonance imposes stricter requirements on their relative stability. (3)
The optical domain lacks a tunable, strongly non-linear oscillator, akin superconducting
qubits.

In the presented work, these points are addressed by choosing a monolithic optome-
chanical system that provides strong interactions and a high mechanical frequency. This
is realized by nanofabricated resonators with a co-localized optical and mechanical mode,
called optomechancial crystals and pioneered by the group of Oskar Painter [Eic+09;
Cha+12]. (1) The high mechanical frequency of ∼ 5GHz allows for groundstate cool-
ing by cryogenic means, eliminating absorption of an otherwise necessary cooling laser
[Mee+14]. In addition, the high coupling strength reduces the drive power and therefore
the absorption heating [Mee+15]. (2) The monolithic design of the cavity, along with
the high mechanical frequency ensure that potential drifts in the cavity frequency are
negligible, and enable the stabilization of the drive lasers to an external reference. Thus,
the driven optomechanical interactions can be switched off completely when necessary.
Furthermore, laser noise at the relevant sideband frequencies is small and can easily be
further suppressed, in contrast to system involving low frequency oscillators. (3) While
there is no comparable analogue to a superconducting qubit in the optical domain in
terms of functionality2, the strongly non-linear response of single photon detectors can
be exploited to achieve non-Gaussian control over the mechanical element. In essence,
probabilistic quantum optical protocols employ single photon detection events to distill
quantum states from weakly driven system [Dua+01; Lee+11]. The use of single pho-
ton detectors for the detection of optomechanically generated photons, however, requires
the complete suppression of the drive beams, which are separated from the signal by the
mechanical frequency. As the latter is in the gigahertz range, this can conveniently be
achieved by an array of optical filters [Coh+15].

The combination of optomechanical crystals with photon counting protocols enabled my
coworkers and me to conduct a variety of quantum optics experiments with single phonons.
First, we demonstrated the quantum nature of the optomechanical interface by observing
non-classical correlations between photon-phonon pairs produced through optomechanical
down-conversion [Rie+16]. Using this interface, we exerted non-Gaussian quantum control
over the mechanical state, preparing a heralded single phonon, which was subsequently
analyzed in a Hanbury Brown and Twiss interferometer [Hon+17]. Finally, we observed
entanglement between two mechanical oscillators, by probabilistically preparing a single

2 While there are plenty of effective two-level systems in the optical domain, too, they do not possess a
comparable tunability, coherence time or ease-of-access as that of superconducting qubits.
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1. Introduction

phonon, and coherently erasing the information in which device it was generated [Rie+18].

Conclusion

Together, these three demonstrations of mechanical versions of quantum optical milestone
experiments establish cavity optomechanics in the telecom band as new resource for future
quantum networks. In particular the long lifetimes achievable in optomechanical crystals
[Mee+15] and the integration in a silicon photonics platform are of interest for long
distance quantum communication protocols.

Despite the impressive number of seminal experiments enabled by the development of
linear optomechanical crystals [Eic+09; Cha+12], such as ground state cooling [Cha+11a],
and phonon counting [Coh+15], amongst others [Saf+12; Hil+12; Mee+15; Fan+17;
Pur+17], the devices are far from being mature. Further developments, which will be
of great importance for the practical application of these devices, include the manage-
ment of the heat load through integration in two dimensional structures [Saf+14]. This
will allow for improvement of all relevant parameters of the experiments, by enabling
laser cooling instead of cryogenic cooling, leading for example to significantly higher en-
tanglement rates. Combining this with a full phononic bandgap shield to achieve long
mechanical lifetimes will enable the realization of large area quantum networks based on
silicon photonics.

Building on early experiments with phononic waveguides [Fan+16; Pat+18], it seems
likely that these photon-phonon interfaces can be mechanically connected to other sys-
tems, in particular superconducting circuits [Vai+16]. This could allow for efficient trans-
duction between microwave quantum processors and telecom optical photons. Applica-
tions thereof range from coherently linking separate quantum computers, to making a
quantum network with error correcting nodes.

Structure of this Thesis

This thesis is structured as follows. The theoretical basis for this work is developed in
chapter 2. After reviewing the standard treatment of the linearized optomechanical in-
teractions and a characterization of the system components, the interaction between the
flying optical mode and the mechanical memory element is described, and basic phonon
counting protocols are explained. In chapter 3, the working principle of optomechani-
cal crystals is briefly described. Thereafter, in the experimental part of this thesis, my
manuscripts on optomechanical quantum correlations [Rie+16], intensity interferometry
of single phonons [Hon+17], and mechanical entanglement [Rie+18] are presented in chap-
ters 4 to 6. They are each preceded by an overview of the quantum optical context of
the respective experiments. Finally, chapter 7 summarizes the results and gives a brief
outlook over the potential of the presented optical single phonon control.

4



2. Theory of Cavity Optomechanics

Harmonic oscillators are omnipresent in physics and related fields of science. On the one
hand, the equations of motion of a point-like mass on a spring are analytically easily solv-
able. This makes the harmonic oscillator in its classical and quantum version a textbook
example in physics classes on all levels. On the other hand, it is a very good model for a
vast number of physical systems. This can be understood by the fact that the equilibrium
state of a system can often be described as local minimum of some effective potential.
The system response to a small deviation from this state can be obtained from the first
non-zero term of the Taylor expansion of this effective potential, usually quadratic in
the deviation. This results in a linear restoring force, and thus in a harmonic oscillation
around the equilibrium state.

The physical realization of such harmonic systems can differ drastically in nature. Me-
chanical oscillators, as used in this thesis, are manufactured solid state resonators. Their
energy oscillates between the momentum P̂p of the moving atoms, and the strain in the

material or the local gravitational potential, both parametrized by a displacement X̂p

from the equilibrium position. In contrast, a light field confined by an optical resonator
has the energy oscillate between an electric and a magnetic field. Despite no masses and
spring being present in this system, it can be described in similar terms, with the magnetic
field serving as a potential for the electric field or vice versa.

Cavity optomechanics studies the nonlinear coupling between those two vastly different
systems. In addition to being an interesting toy system, it holds the promise to allow for
quantum control of the mechanical element, using quantum optical control techniques.
The standard example of an optomechanical system is a Fabry-Pérot Cavity with one
movable mirror. The photons it reflects change the direction of propagation and thereby
transfer momentum onto the movable mirror, an effect called radiation pressure. Con-

~pi = ~ωL/c~ex

~pf = −~ωL/c~ex

∆~p = 2~ωL/c~ex

Photon Mirror

Figure 2.1.: Radiation Pressure When photons are reflected, e.g. by a mirror, their momentum
~p is reversed. As the total momentum is conserved, the mirror experiences a kick ∆~p (~: reduced
Planck constant, ωL laser frequency, c: speed of light). The position of the mirror Xp is imprinted
in the phase ϕ = 2XpωL/c.
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2. Theory of Cavity Optomechanics

versely, a shift in the position of the mirror will change the distance the photons travel,
thereby imposing a phase shift onto them, see figure 2.1.

In this chapter, I present the theoretical foundations of my work. Starting with a dis-
cussion of the basic equations of the optomechanical interaction in section 2.1, I continue
reviewing the characteristics of the individual parts of the system in section 2.2. Note
that those two topics are also covered elsewhere, for example in [AKM14]. Section 2.3
describes the primitives of the pulsed optomechanical control sequences used in the ex-
perimental part of this thesis. This is followed by an explanation of the basic protocols
in section 2.4, employing the previously discussed control pulses.

In order to convey a feeling for the orders of magnitude, I will give examples using
standard parameters of the devices used in chapters 4 to 6. The set of parameters used
is given in table 2.1, along with an overview of frequently used operators.

This chapter is supposed to address inclined readers, as well as students, who are new
to the field of optomechanics. Therefore, I included numerous footnotes, thereby offering
the reader to go through the text at his or her own speed, suiting the interest and level
of understanding of the respective topics.

Symbol Description Unit or See
Typical Value pg.

ĉ† (ĉ)
creation (annihilation) operator of the
optical cavity mode

√
photon 7

Â Amplitude quadrature of the optical mode
√

photon 8

Ŷ Phase quadrature of the optical mode
√

photon 8
m̂
(
m̂†
)

mechanical annihilation (creation) operator
√

phonon 8

P̂ Momentum quadrature of the mechanical mode
√

phonon 8

X̂ Displacement quadrature of the mechanical mode
√

phonon 8

ôin (ôout) Optical input (output) field of the cavity
√

photon/s 11

ôloss Incoupled loss channel of the cavity
√

photon/s 11

ôloss,out Outcoupled loss channel of the cavity
√

photon/s 11
âin Discrete wave-packet inbound to cavity

√
photon 33

âout Discrete wave-packet outbound from cavity
√

photon 34
χL (χM) Optical (mechanical) susceptibility 2π ·s 18/25
g0 Optomechanical single photon coupling strength 2π ·825 kHz 9
Ω Angular mechanical frequency 2π ·5.2 GHz 7
Γ Mechanical energy decay rate 2πHz 12
ωc Angular optical resonance frequency 2π ·193 THz 7
κ Optical amplitude decay rate 2π ·450 MHz 11
ωL Angular frequency of the drive laser 2π ·193 THz 14
εP Stokes scattering constant, pair-creation probability 1 39
εR Anti-Stokes scattering constant, transfer efficiency 1 36

g
(2)
ab Intensity cross-correlation between system a and b 1 48

Table 2.1.: This is a brief overview over the most important operators and constants used in
this chapter. For relevant parameters, typical values for the devices used in this work are given.
For a more extensive list, refer to appendix A.
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2.1. The Optomechanical Interaction

2.1. The Optomechanical Interaction

The optomechanical interaction has been studied in detail theoretically as well as exper-
imentally in a plethora of physical realizations [AKM14]. Here, I will give a short review
of the basic equations, thereby clarifying the conventions and notations used throughout
this thesis.

This section is structured as follows: First, I will introduce the Hamiltonian of the
optomechanical system and its relation to the optical and mechanical environment. Para-
graph 2.1.3 describes how the interaction can be enhanced and linearized by driving the
system with an external laser. Finally, the transducing element, namely the optical cav-
ity, is eliminated in paragraph 2.1.4, such that a relation between the flying optical fields
and the stationary mechanical element is obtained. This description allows to identify
the mechanical resonator as long lived quantum memory coupled to a traveling quantum
field, as required for numerous quantum information protocols.

2.1.1. The Nonlinear System Hamiltonian

In a generic dispersive optomechanical system, the angular resonance frequency ωc of an
optical cavity is modified by a displacement X̂p of a mechanical element. The Hamiltonian

Ĥ = ~ ωc(X̂p)

(
ĉ†ĉ+

1

2

)
+

P̂ 2
p

2meff

+ V (X̂p) (2.1)

thus gives rise to an interaction between the displacement X̂p and the photon number

ĉ†ĉ in the optical resonator. Here, ~ is the reduced Planck constant, P̂p = ~
i

∂

∂X̂p
is the

momentum operator of the mechanical element with effective mass meff
1 and V (X̂p) is

the potential energy associated with the displacement X̂p. While the dependency of ωc
[Tho+08; San+10; Par+15] and V [AC05; GNQ13; Ric+17] on X̂p can be more complex
in general, we will only consider the lowest non-vanishing order of the Taylor expansion
here. This results in a harmonic potential V = meffΩ2X̂2

p/2 for the mechanical element
with the angular resonance frequency Ωm, and the interaction term

Ĥint = ~
∂ωc

∂X̂p︸︷︷︸
G

X̂p

(
ĉ†ĉ+

1

2

)
. (2.2)

The transduction parameter G/2π quantifies the linear shift of the optical resonance fre-
quency per unit displacement, here in SI units of [G/2π] = Hz/m. To investigate the
quantum effects of this system, it is convenient to use operators in natural (dimension-
less) units. When considering individual quantized excitations in a harmonic oscillator,
so-called ladder operators are a convenient choice, as they relate to jumps between neigh-
boring Fock states |n〉 with a well defined number n of energy quanta:

â |n〉a =
√
n |n− 1〉a â† |n〉a =

√
n+ 1 |n+ 1〉a (2.3)

1 The mechanical elements employed in cavity optomechanics are in general macroscopic objects with
a large number of normal modes. Here we consider a single mode with a unique frequency, such that
it can be spectrally resolved. The effective mass meff of this mode allows to describe the kinetic and
potential energy of this mode like for a point particle, see also paragraph 2.2.2.
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2. Theory of Cavity Optomechanics

Here, â reduces the number of excitations in system a and is therefore called annihilation
operator, whereas the so-called creation operator â† adds excitations to the system2.
Throughout this thesis, annihilation operators will be represented by lowercase operators
and creation operators as their Hermitian conjugates. For the excitations in the optical
cavity mode, called photons, we will use the annihilation operator ĉ, as already introduced
in eq. (2.1), and for the excitation in the mechanical mode, called phonons, the operator
m̂. For continuous variables, such as the displacement of the mechanical oscillator or the
phase of the optical field, it is convenient to use a different set of operators,

Q̂θ
â =

e−iθâ+ eiθâ†√
2

, (2.4)

which are called quadratures. These self-adjoint operators, here for the generic system
a, are characterized by a phase θ, and will be represented by capitalized operators. The
system can completely be described by quadrature or ladder operators, with each set
allowing for different intuitive access to the interaction. In this section, I will focus on a
quadrature description, as it has a close correspondence to classical equations of motion.
The important steps will be complemented by a ladder operator description, which is of
importance for the final goal of understanding the single phonon control protocols.

In the mechanical system, the physical observables, the quadrature operators and the
ladder operators relate to one another by

X̂ =

√
mΩ

~
X̂p X̂ =

m̂+ m̂†√
2

(2.5a)

P̂ =
1√
~mΩ

P̂p P̂ =
m̂− m̂†√

2i
(2.5b)

m̂ =
X̂ + iP̂√

2
m̂† =

X̂ − iP̂√
2

(2.5c)

The position (2.5a) and momentum (2.5b) quadrature operators X̂ = Q̂0
m̂ and P̂ = Q̂

π/2
m̂

are rescaled versions of the physical displacement X̂p and momentum P̂p of the mechanical
oscillator. As self-adjoint operators, they are observables. In contrast, the creation and
annihilation operators m̂† and m̂ are a Hermetian conjugate pair (2.5c), which cannot be
measured experimentally. In close analogy, we define the optical quadratures Â and Ŷ

Â =
ĉ+ ĉ†√

2
Ŷ =

ĉ− ĉ†√
2i

, (2.6)

which are associated with the oscillating electromagnetic field in the cavity. In para-
graph 2.1.3 we will see that in a rotating frame, these two quadratures can be related to
the amplitude (Â) and phase (Ŷ ) of the optical field, and hence we will occasionally refer
to them as amplitude, respectively, phase quadrature.

Using these relations3, we can express the Hamiltonian (2.1) exclusively in terms of

2 Note that the number operator â†â |n〉a = n |n〉a, is proportional to the free Hamiltonian of a harmonic
oscillator and thus the Fock states are the eigenstates of the system.

3 Note the commutation relations of these operators are[
X̂, P̂

]
= i

[
Â, Ŷ

]
= i

[
m̂, m̂†

]
= 1

[
ĉ, ĉ†

]
= 1
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2.1. The Optomechanical Interaction

quadratures

Ĥ =
~ωc
2

(
Â2 + Ŷ 2

)
+
~Ω

2

(
X̂2 + P̂ 2

)
+
~g0√

2
X̂
(
Â2 + Ŷ 2

)
(2.7a)

or in terms of ladder operators

Ĥ = ~ωc ĉ†ĉ+ ~Ω m̂†m̂+ ~g0

(
ĉ†ĉ+

1

2

)(
m̂+ m̂†

)
, (2.7b)

neglecting constant energy offsets due to the vacuum energy of the optical and mechanical
modes ~ωc/2 and ~Ω/2. The offset in the interaction term, ~g0/2

(
m̂+ m̂†

)
, gives rise to

a force based on the photonic vacuum fluctuations, as we will see in the next paragraph,
in analogy to the Casimir-Polder force. Here, the single photon coupling rate

g0 = Gxzpf (2.8a)

xzpf =
√
〈0| X̂2

p |0〉 =

√
~

2meffΩ
(2.8b)

describes how far the optical resonance is shifted by a displacement equivalent to the zero
point fluctuations xzpf of the mechanical mode. This nonlinearity is typically very weak,
i.e. the optical frequency shift due to a single phonon is small compared to the spectral
width of the optical resonance, which is the topic of the next paragraph. Nevertheless, the
nonlinearity can be used to generate significant linear interaction between the mechanical
and the optical mode, by driving the system with an auxiliary laser beam, as described
in paragraph 2.1.3.

Before we introduce the coupling to the environment, we can estimate what type of
interaction we can expect. In the Schrödinger picture, or more precisely in the interaction
picture, we obtain the unitary state evolution Û(t) after time t by integrating the interac-
tion term of (2.7b)4. For short interaction times

√
ε = g0t� 1 we can neglect higher order

terms and find the state after the interaction |ψ(t)〉 ≈ (1 + i
√
εĉ†ĉm̂ + i

√
εm̂†ĉ†ĉ) |ψ(0)〉.

Concentrating on the last term ∝ m̂†ĉ†ĉ, we find, that with probability ε, a cavity photon
will be annihilated under the creation of another cavity photon and a phonon. Energy
conservation, or a rotating wave approximation, suggests that the reemitted photon will
be downshifted by the mechanical frequency with respect to the annihilated photon. This
process is called Stokes scattering, a phenomenon commonly associated with the Raman
effect, i.e. the inelastic scattering of photons e.g. by molecules or crystals. The opposite
process, anti-Stokes scattering, is associated with the second term ∝ ĉ†ĉm̂, i.e. the up-
conversion of a photon under annihilation of a phonon. As Raman scattering reveals the
intrinsic vibrational frequencies of a substance, which are usually in the terahertz regime,
this effect is employed e.g. for spectroscopic purposes. When the involved vibrations are
not of molecular origin, but traveling waves in the bulk material, i.e. from the acoustic

and therefore we can express the number operators as

m̂†m̂ =
X̂2 + P̂ 2 − 1

2
ĉ†ĉ =

Â2 + Ŷ 2 − 1

2
.

4 With the formal integration Û(t) = exp(−i/~
∫ t
t0

dt Ĥ), we find |ψ(t)〉 = Û(t) |ψ(t0)〉.
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2. Theory of Cavity Optomechanics

instead of optical phonon branch, the effect is usually called Brillouin scattering. Conse-
quently, cavity optomechanics can be characterized as low frequency Raman scattering,
or doubly resonant Brillouin scattering.

2.1.2. Langevin Equations

In order to quantitatively study the interaction rates, we need to take into account the
coupling to the environment. For example, the finite lifetime 1/κ of photons in the
optical resonator will result in an effective interaction time t ∼ 1/κ and thus scattering
probability ε ∼ g2

0/κ
2 for each cavity photon. In addition, the optical bandwidth will

modify the spectral behavior of the Stokes and anti-Stokes processes.
For the treatment of open quantum systems, the system of interest is embedded in an

environment, i.e. coupled to large number of auxiliary systems, the so called ’bath’. To
reduce the complexity of the system, some assumptions on the bath are made, such that
an effective equation of motion can be recovered. While a more complex approach, based
on quantum stochastic calculus [Lin76; Bar90] will be used later on [Hon+17] to capture
the full dynamics of the experiment, in most cases a simpler approach is sufficient to
understand the basic effects of the system. Here, we use quantum Langevin equations for
the operator equations of motion, based on chapter 3 of reference [GZ04].

We assume a white bath of independent harmonic oscillators5, represented by the cu-
mulative quadrature operator β̂Q(t) ∝

∑
i Q̂i, summing over some quadrature Qi of all

individual bath systems i. The oscillators are evenly and densely spaced in frequency, and
are all coupling linearly with the same strength to a self-adjoint operator Ĉ of the system.
This is called the first Markov approximation [GC85] and is never exactly fulfilled, but is
a good model for narrow resonances (see also paragraph 2.2.2). As eventually only modes
with frequencies close to the system eigenfrequency are relevant, colored mode densities
and coupling strengths, e.g. by a finite bandwidth of the optical mirrors, can usually be
modeled by using the mode density and coupling strength close to the resonance frequency
for all bath modes. Note that in the first Markov approximation, the bath operator β̂Q(t)
can have an arbitrary time development. It is extrinsic to our system, i.e. its dynamics
can not be derived from the resulting model, but is instead part of the description of the
experiment. The equation of motion for a system operator Ŝ in the Heisenberg picture,
can then be derived as

d

dt
Ŝ =

i

~

[
Ĥ, Ŝ

]
+
i

2

[
1

qC

d

dt
Ĉ − β̂C ,

[
Ĉ, Ŝ

]]
+

(2.9)

with the coupling strength γC and the anti-commutator [., .]+
6. To illustrate how this

results in the dynamics we expect for a damped harmonic oscillator, we assume a bare,
one sided optical cavity with the free Hamiltonian Ĥfree = ~ω0(Â2 + Ŷ 2 + 1)/2. We can
imagine a single mode in a Fabry-Pérot cavity consisting of one perfectly reflective back
mirror and one semi-transparent input coupler mirror, see figure 2.2. The bath in this
case is the continuum of frequencies in the optical mode impinging on the input coupler.

5 The free Hamiltonian of the bath Ĥ =
∫∞

0
dω ~ω ô†in,ω ôin,ω is defined in the limit of infinitely dense

spacing of modes, i.e. the ladder operators fulfill the commutation relation [ôin,ω, ô
†
in,ω′ ] = δ(ω − ω′).

Consequently, their formal, free solution is ôin,ω(t) = ˆ̃oin,ωe
−iωt.

6 For two operators â and b̂, the anti-commutator is [â, b̂]+ = âb̂+ b̂â.
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2.1. The Optomechanical Interaction

κloss

ôloss
ôloss,out

κin

ĉôout

ôin

Figure 2.2.: Coupling to the Environment. The field inside a Fabry-Pérot cavity (ĉ) is
coupled to an input mode ôin with rate κin and emits into the mode ôout. Additionally, undesired
losses in the optical resonator, such as scattering, leak with rate κloss into the mode ôloss,out. In
the reverse direction, vacuum fluctuations from mode ôloss enter the cavity.

Coupling Â (Ŷ ) with strength 1/qA (1/qY ) to the bath quadratures β̂A (β̂Y ), equation
(2.9) leads to a system of linear equations. Solving this for the time derivatives, we obtain
the quantum Langevin equations of motion

d

dt
Â =

1

1 + 1/qAqY

(
ω0Ŷ −

ω0

qY
Â− β̂Y +

1

qY
β̂A

)
(2.10a)

d

dt
Ŷ =

1

1 + 1/qAqY

(
−ω0Â−

ω0

qA
Ŷ + β̂A +

1

qA
β̂Y

)
. (2.10b)

As expected, we obtain the equations of motion for a damped harmonic oscillator with a
slightly modified eigenfrequency ωc = ω0/(1 + 1/qAqY ) and driven by the external fields.
In the usual case of a cavity with narrow linewidth, i.e. qA = qY � 1, we can neglect the
renormalization as well as the coupling of the input fields to the respective other cavity
quadrature. We find the amplitude damping κin ≈ ω/qY and thus can interpret the
previously introduced coupling strength of the cavity to the external field as the inverse
quality factor 1/Qopt ≈ 1/qA + 1/qY of the resonance.

In order to relate the abstract bath operators β̂A,Y to the photon flux ˆ̇nin(t) = ô†in(t)ôin(t)
of the optical mode coupled to the cavity7, we change to annihilation operators using (2.6).
This results in [GC85]

d

dt
ĉ = −iωĉ− κinĉ+

√
2κine

iθin ôin. (2.11)

The output field is defined by the interference of the reflected input field and the emission
of the cavity as

ôout = eiθout
(
eiθin ôin −

√
2κinĉ

)
. (2.12)

7 The creation (anihilation) operators are defined as the integral over the implicit solutions of the bath
annihilation operators ôin (t) =

∫∞
0

ˆ̃oin,ωe
−iωtdω/

√
π and fulfill the relations[

ôin (t) , ô†in (t′)
]

= δ (t− t′) [ôin (t) , ôin (t′)] = 0,

see also 5. Note that the operator can also formally be defined by extending the bath to negative
frequencies, ôin (t) =

∫∞
−∞

ˆ̃oin,ωe
−iωtdω/

√
2π. While it is harder to motivate physically, the results

remain the same and it is easier to treat analytically. For this reason, this definition is preferred in
many theoretical derivations.
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2. Theory of Cavity Optomechanics

Note that there can be a arbitrary phase θin and θout between input field, the resonator
and the output field, depending on the exact cavity properties and the definition of the
location of the input and output operators. Without loss of generality, we will set those
phases to θin = θout = 0 in the following.

In a realistic optomechanical system, we have to consider the coupling to multiple envi-
ronments. The optical cavity will, in addition to the desired coupling to the input mode,
also loose energy by scattering, absorption and leakage into undesired modes. Conversely,
fields can also couple into the cavity through these loss channels. We will summarize all
these inbound fields into one artificial super-mode represented by the creation operator
ôloss, coupled with the rate κloss. We also define the respective quadratures Âloss = Q̂0

ôloss

and Ŷloss = Q̂
π/2
ôloss

of the inbound fields (see equation (2.4)).
The mechanical oscillator usually experiences damping only in its momentum quadra-

ture, due to friction and mechanical clamping losses to the substrate (see also para-
graph 2.2.2). These losses are characterized by the mechanical energy damping rate Γ.
They couple the resonator to a bath of thermal phonons represented by the creation
operator m̂†loss, respectively the quadrature P̂loss = Q̂

π/2
m̂loss

8.
From the system Hamiltonian (2.7a) we obtain the operator equation of motion9

d

dt
Â = ωcŶ +

√
2g0X̂Ŷ − κÂ+

√
2κinÂin +

√
2κlossÂloss (2.13a)

d

dt
Ŷ = −ωcÂ−

√
2g0X̂Â− κŶ +

√
2κinŶin +

√
2κlossŶloss (2.13b)

d

dt
X̂ = ΩP̂ (2.13c)

d

dt
P̂ = −ΩX̂ −

√
2g0

Â2 + Ŷ 2

2
− ΓP̂ +

√
2ΓP̂loss (2.13d)

with the cavity amplitude decay rate

κ = κin + κloss. (2.14)

Note that the right hand side of equation (2.13d) does not vanish, even if the me-
chanical and optical modes are in their respective groundstate. This becomes clear
when transforming it to creation and annihilation operators9, where the optical ground
state energy shows up explicitly in the optomechanical force term. It results in a force
〈dP̂p/dt〉 =

√
~meffΩg0/

√
2 exerted by the optical vacuum fluctuations on the mechanical

8 In a thermal environment, the input state approximately fulfills 〈m̂†loss(t)m̂loss(t
′)〉 = nthδ(t − t′)

[Hof15]. This is the case when the mean occupation number of all individual modes of the bath5 is
nth. Computing the cross spectral density of the mechanical oscillator (see also paragraph 2.2.2), one
finds that this results in the expected thermal state with the variance Var (X) = Var (P ) = nth + 1

2 .
9 The equivalent Langevin equations for the creation and annihilation operators are

d

dt
ĉ = −iωcĉ− ig0

(
m̂+ m̂†

)
ĉ− κĉ+

√
2κinôin +

√
2κlossôloss

d

dt
m̂ = −iΩm̂− ig0

(
ĉ†ĉ+

1

2

)
− Γ

2

(
m̂− m̂†

)
+ i
√

ΓP̂loss.
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2.1. The Optomechanical Interaction

object, known as Casimir effect10.
We can identify different parameter regimes of the optomechanical system by comparing

the various terms in equations (2.13). To this end, we use the standard deviation of
fluctuations typically appearing in the system to replace the operators. For example, the
vacuum fluctuations of the optical field justify the replacement Â→ (〈0| Â2 |0〉)1/2 = 1/2.

In order to sense the mechanical motion, e.g. of a thermal state with average phonon
number nth, its effect

√
2g0X̂Ŷ ∼

√
2g0
√
nthnopt on the optical quadrature (2.13a) should

exceed the quantum fluctuations of the field κÂ ∼ κ/2. Hence, this sets a lower limit
8g2

0noptnth/κ
2 > 1 for the average number of intracavity photons nopt.

If the force exerted by the optical field on the mechanical element is supposed to dom-
inate (2.13d), it requires

√
2g0nopt > Γ

√
nth. In contrast to the previous regime, this

requires more photons for larger thermal states.
Optomechanical back action means that the fluctuations of Â induced by the thermal

mechanical motion in eq. (2.13a) ∼
√

2g0
√
nthnopt/κ act back on the mechanical system

in eq. (2.13d). The resulting back action force exceeds the mechanical damping force if
the single phonon cooperativity C0 = 2g2

0nopt/(κΓ) > 1 exceeds unity.
Despite the quantum treatment of the equations of motion, all of these effects are still

classical. In order to reach the quantum regime, the back action from the mechanical
ground state fluctuations in eq. (2.13a) should dominate not only the thermal amplitude
decay ∼ Γ

√
nth in eq. (2.13d), but also the phonon exchange rate with the environment

∼ Γ(nth + 1). This results in the condition termed strong cooperativity, with the optome-
chanical cooperativity C = 2g2

0nopt/(κΓ(nth + 1)) > 1 exceeding unity.
As mentioned in the previous paragraph, the non-linearity g0 is relatively weak com-

pared to the optical linewidth κ in all state of the art systems. Consequently, thus far
in all experimentally interesting cases, it is necessary to work with a sizable number of
photons in the cavity nopt � 1, i.e. the cavity must be driven by an external laser field.

2.1.3. Linearization of the Interaction

Weak nonlinear interactions, such as the one discussed in equations (2.13), can be en-
hanced by driving the system, to become strong, yet linear interactions. The idea is to
replace one of the operators in the nonlinear interaction term X̂Â, by its mean value of
the driven system, e.g. Ā = 〈Â〉. This is achieved by splitting Â→ Ā+ δÂ into its mean
value and some fluctuations, and subsequently neglecting the small residual nonlinear
term. The resulting interaction is linear (∝ X̂), enhanced by a factor Ā, and couples the
mechanical motion to the fluctuations, that is the sidebands of the drive laser.

We typically drive the system with a coherent laser beam, characterized by a carrier
frequency ωL and a slowly varying envelope α0(t). Although laser beams are not exactly
displaced vacuum states, also called coherent states, they can conveniently predict and
reproduce experiments with laser beams [Møl97]. A coherent state with complex ampli-
tude α in a mode associated with the annihilation operator â is generated by displacing

10 This results in a steady state deflection of 〈Xp〉 = −xzpfg0/Ω = G~
2meffΩ2 , see also (2.20). Note that all

possible electromagnetic modes contribute to the full Casimir-Polder force, and the attractive force
originating from the decrease in the energy of the vacuum fluctuation dominates over the potentially
repulsive force described here.
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2. Theory of Cavity Optomechanics

|0〉 Â

Ŷ

|α〉

D̂ĉ(α)

Figure 2.3.: Coherent State. The displacement operator D̂ĉ(α) shifts the state it is applied
to in quadrature phase space by the complex amplitude α. Thus, its representation as quasi-
probability distribution, such as the Glauber Sudarshan P-function, is displaced by the vector√

2(Re[α], Im[α])T in a quadrature basis (Â, Ŷ ). This is scatched for a vacuum state |0〉 of the
optical cavity field, resulting in the coherent state |α〉 in the resonator.

the vacuum state

|α〉 = D̂â(α) |0〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉. (2.15)

using the displacement operator [Gla63a; CG69]

D̂â(α) = exp
(
αâ† + α†â

)
= e−|α|

2/2eαâ
†
e−α

†â, (2.16)

see also figure 2.3. They behave (i.e. propagate and interfere) like classical fields with
an additional noise term, corresponding to the optical shot noise11. Driving the system
(2.13) with a coherent input state

|ψdrive〉in = D̂ôin

(
α0(t)e−iωLt

)
|0〉 (2.17)

will induce a (classical) response, represented by the ensemble mean values of the system
operators. In order to access the quantum properties of the system, we will eliminate
these dynamics by moving to a well suited reference frame. In essence, we can achieve
this by splitting the operators into their mean value and their excess quantum fluctuations
â→ 〈â〉+ δâ.

In a first step, we transform the operators to a frame rotating at the frequency of the
optical field, making use of the knowledge that a driven harmonic system will oscillate at
the drive frequency. This is achieved by introducing new operators

ôa,ωL
= e−iωLt ô

†
aôa ôa e

iωLt ô
†
aôa = ôa e

iωLt (2.18a)

ĉωL
= e−iωLt ĉ

†ĉ ĉ eiωLt ĉ
†ĉ = ĉ eiωLt (2.18b)

11 Using the Baker Campbell Hausdorff formula, we find that the subsequent displacement by two complex
numbers α and β

D̂â(α) D̂â(β) = D̂â(α+ β) e(αβ
†−α†β)/2

results in the displacement by the sum α+ β and a global phase Im
(
αβ†

)
, such that the interference

between coherent states |α〉 and |β〉 essentially recreates the interference we expect from classical light
fields with the complex amplitudes α and β. It also immediately follows that D†a(α) = Da(−α) =

(Da (α))
−1

.
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2.1. The Optomechanical Interaction

by the unitary transformation ÛL = exp(iωLt ô
†
aôa) exp(iωLt ĉ

†ĉ)12 where ôa stands for
either input field ôin, ôloss

13. We also label the corresponding quadrature operators (2.4)

with an additional index ωL, e.g. ÂωL
= Q̂0

ĉωL
and ŶωL

= Q̂
π/2
ĉωL

. Using the product rule,

we obtain the equations of motion for the rotating operators

d

dt
ĉωL

=
dĉ

dt
eiωLt + ĉ

d

dt
eiωLt (2.19)

which shift the rotation frequency of the optical field to ωc − ωL, leaving the other terms
unchanged.

In the second step, we displace all operators by their mean values. In the adiabatic
limit, i.e. the change in the drive amplitude α0(t) is slow compared to all relevant time
scales (primarily κ and Ω), we can find the mean values by setting their derivative to zero,
using (2.13):

〈ÂωL
〉 =

√
2κin

κ2 + ∆2

(
κĀin + ∆Ȳin

)
〈ŶωL
〉 =

√
2κin

κ2 + ∆2

(
κȲin −∆Āin

)
(2.20a)

〈X̂〉 = −
√

2g0

Ω

(
κin

κ2 + ∆2

(
Ā2

in + Ȳ 2
in

)
+

1

2

)
〈P̂ 〉 = 0 (2.20b)

∆ =
(
ωc +

√
2g0〈X̂〉

)
− ωL. (2.20c)

Here, we introduced the effective detuning ∆ of the drive laser relative to the optical
resonance, see (2.20c), which is shifted by

√
2g0〈X̂〉 due to the optomechanical force

acting on the cavity14 Note that inserting the expression for the detuning (2.20c) into
equation (2.20b), we obtain an expression which is cubic in steady state displacement X̄.
As a consequence, for high intracavity powers, multiple steady state values for the mean
displacement are possible. This bistability of the optical cavity can limit the maximum
intracavity power [Dor+83; PPR13; Hof15]. By choosing the phase of the input beam,
we can set κȲin = ∆Āin without loss of generality, and thereby eliminate 〈ŶωL

〉 = 0.

We thereby define Â as the amplitude quadrature of the cavity field: 〈ÂωL
〉 =

√
2α0

12 We define a unitary transformation exp(iξB̂) with the observable B̂ and a phase ξ. Next, we employ

an equality derived from the Baker Campbell Hausdorff formula, using the function KB̂(b̂) = [B̂, b̂]:

eiξB̂ b̂ e−iξB̂ =

∞∑
n=0

(iξ)
n

n!
Kn
B̂

(b̂)

With Kĉ†ĉ(ĉ) = −ĉ and thus Knĉ†ĉ(ĉ) = (−1)nĉ, we obtain the unitary rotating frame transformation
by setting ξ = ωt.

13 The definition of the transformation requires that [ôa(t), ĉ(t)] = 0, which is not strictly true [GZ04].
However, we know that due to causality, [ôa(s), ĉ(t)] = 0 for all s > t, such that we can use an
infinitesimal shift in the definition of the time of the input field limδt→0+ [ôa(t+ δt), ĉ(t)] = 0

14 For the creation and annihilation operators, we find

〈ĉωL
〉 =

√
2κin

i∆ + κ
α0 =

√
2κin√

∆2 + κ2

κ− i∆√
∆2 + κ2

α0

〈m̂〉 = −g0

Ω

(
2κin|α0|2

∆2 + κ2
+

1

2

)
.
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2. Theory of Cavity Optomechanics

corresponds to the amplitude of a classical oscillating field, and the phase quadrature
Ŷ ∼ 〈ÂωL

〉ϕ relates to its phase ϕ. This choice of input phase is arbitrary, i.e. if it is
more convenient to describe the equations in terms of amplitude and phase of the input
or output fields, a different phase convention can be chosen.

Now we can subtract the classical dynamics from the equations of motion by displacing
the mechanical state with the unitary operation D̂m̂(−〈X̂〉/

√
2), defining the mechanical

position fluctuation operator

δX̂ = D̂†m̂

(
−〈X̂〉/

√
2
)
X̂D̂m̂

(
−〈X̂〉/

√
2
)

= X̂ − 〈X̂〉. (2.21)

Equivalently, we define the fluctuation operators for the rotating optical quadratures δÂωL

and δŶωL
by displacing the optical state by D̂ĉωL

(−[〈ÂωL
〉+ i〈ŶωL

〉]/
√

2), as well as the

input field fluctuations δÂin,ωL
and δŶin,ωL

by the transformation D̂ôin,ωL
(−α0(t)). Note

that we use the indication δ that the operators refer to the fluctuations only in this
paragraph, and will drop them in the rest of the thesis. Hence, we obtain the linearized
equations of motion15

d

dt
δÂωL

= ∆δŶωL
+ gY δX̂− κδÂωL

+
√

2κinδÂin,ωL
+
√

2κlossδÂloss,ωL
+O

(
g0δ

2
)

(2.22a)

d

dt
δŶωL

= −∆δÂωL
− gAδX̂− κδŶωL

+
√

2κinδŶin,ωL
+
√

2κlossδŶloss,ωL
+O

(
g0δ

2
)

(2.22b)

d

dt
δX̂ = ΩP̂ (2.22c)

d

dt
P̂ = −ΩδX̂ − gAδÂωL

− gY δŶωL
− ΓP̂ +

√
2ΓP̂loss +O

(
g0δ

2
)
. (2.22d)

We find a linear interaction between the mechanical and the optical mode with the en-
hanced linear coupling rate

g = g0c̄ = (gA + igY )/2 gA =
√

2g0〈ÂωL
〉 gY =

√
2g0〈ŶωL

〉 (2.23)

and in the case of weak single photon coupling g0 � κ, g, we can neglect the non-linear
terms O(g0δ

2). With the previous convention for the phase and amplitude quadrature
(〈ŶωL

〉 ≡ 0), we find that the mechanical oscillator experiences a force originating from

the amplitude fluctuations δÂωL
of the light field (2.22d), whose phase ∼ δŶ /〈ÂωL

〉 is in

turn changed by the mechanical displacement δX̂ (2.22b). If the life time of the cavity
1/κ is long enough, these phase shifts can turn into amplitude fluctuations, which will
again interact with the mechanical element. This back-action of the mechanical element
on itself can be understood by eliminating the mediating cavity field, as we will see in the
next paragraph.

15 Using the same transformation Û = D̂m̂(−〈m̂〉)D̂ĉωL
(−〈ĉωL

〉)D̂ôin,ωL
(−α0) to define the annihilation

operators of the fluctuations, we obtain their corresponding Langevin equations of motion, with the
linearized coupling rate (2.23):

d

dt
δĉωL

= −i∆δĉωL
− ig

(
δm̂+ δm̂†

)
− κδĉωL

+
√

2κinδôin,ωL
+
√

2κlossôloss,ωL
+O

(
g0δ

2
)

d

dt
δm̂ = −iΩδm̂− i

(
g†ĉωL

+ gĉ†ωL

)
− Γ

2

(
δm̂− δm̂†

)
+ i
√

ΓP̂loss +O
(
g0δ

2
)
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2.1.4. Adiabatic Elimination of the Cavity

While the equations (2.22) describe the driven system well, often times we want to un-
derstand the interaction between the extrinsic light mode ôin,out and the mechanics m̂.
Whereas we can control the optical input and measure the optical output, we have no
direct access to the cavity field itself, and it merely is the mediator and amplifier of the
interaction between the free space mode and the mechanical element. In order to obtain
the equations of the direct interaction between the extrinsic light field and the mechanical
oscillator, we want to eliminate the cavity field from the equations. This can be achieved
in various parameter regimes [Van+11; Hof+11]. Here we will focus on the adiabatic limit,
i.e. where the bandwidth the drive field α0(t) is small16 compared to the relevant time
scales κ and Ω. Note that from here on we drop the prefix δ of the displaced operators,
which indicated that they refer to the fluctuations on top of the steady state mean value
of the original operators, as defined in the previous paragraph.

First, we introduce a super mode ô =
√
κin/κ ôin +

√
κloss/κ ôloss to combine the optical

input fields. It will mostly appear as Fourier transform ˆ̃oωL
=
∫

dτ ôωL
(τ)eiωτ/

√
2π of the

time domain operator ôωL
(τ) in a frame rotating with the drive frequency (2.18). Next,

we also transform the mechanical field to a rotating frame Û = exp(−iΩ̃t m̂†m̂), where the
frequency Ω̃ describes the dynamical frequency of the mechanical oscillator, i.e. including
the optical spring effect, as we will see later. For now we can simply assume that it is
sufficiently close to the mechanical frequency Ω, such that the new operator m̂Ω̃ = m̂eiΩ̃t

evolves slow compared to κ.
With this, we formally integrate the Langevin equation (2.22) for the cavity annihilation

operator17

ĉωL
= −ig

(
m̂Ω̃e

−iΩ̃t

i(∆− Ω̃) + κ︸ ︷︷ ︸
À

+
m̂†

Ω̃
eiΩ̃t

i(∆ + Ω̃) + κ︸ ︷︷ ︸
Á

)
+

√
κ

π

∫ ∞
−∞

ˆ̃o(ω)e−iωt

i(∆− ω) + κ
dω︸ ︷︷ ︸

Â

. (2.24)

This already offers us insight into the effects of the optomechanical interaction. The
first two terms show, that the mechanical motion will generate sidebands on the optical
field. The first term (À), associated with the annihilation of a phonon, will create a tone
at −i(ωL + Ω̃), i.e. upconvert photons from the drive laser. We will later see that this
corresponds to an anti-Stokes scattering process. The second term (Á), associated with
the creation of a phonon, downconverts drive photons to −i(ωL−Ω̃) in a Stokes scattering
process. The last term (Â) describes the modification of the optical input field by the
cavity. For the protocols considered in this thesis, we will usually assume no input power
at the optical side bands, such that we can essentially assume the optical vacuum as input
state.

16 More explicitly, at high frequencies, the Fourier transform α̃0(ω) =
∫∞
−∞

dt√
2π
α0(t)eiωt should fall off

steeper than the optical susceptibility χL(ωc+ω). A bandwidth smaller than the mechanical frequency
Ω is necessary to resolve the optomechanical sidebands.

17 We employ the formal integration da(t)
dt = −Ξa(t) + f(t) → a(t) =

∫ t
−∞dτ f(τ)eΞ(τ−t). With the

assumption that m̂Ω and ˆ̃oωL(ω) evolve slowly on the relevant time scales, we can approximate them
to be constant and pull them out from the integral. For example for the first term, this results in the

formal solution ĉωL
e(i∆+κ)t ≈ −igm̂Ω̃

∫ t
−∞dτ e(i∆+κ−iΩ̃)τ .
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2. Theory of Cavity Optomechanics

The denominators χωL
(ω) = 1/(i(∆−ω)+κ) describe the spectral filtering by the optical

cavity and can be understood as the rotating frame form of the cavity susceptibility

χL(ω) =
1

i(ωc − ω) + κ
(2.25)

describing the spectral response of the resonator to a drive field18. For a resonant drive
(∆ ≈ 0), both sidebands have equal strength, i.e. the optical state is proportional to a
generalized quadrature (2.4) ĉωL

∝̃ Q̂θ
m̂ of the mechanical mode, with the quadrature phase

depending on the sideband resolution. In the resolved sideband limit (Ω̃ � κ), we can
use the cavity response χωL

to select individual optomechanical sidebands. By setting
the detuning to the mechanical frequency ∆ ≈ ±Ω̃, we obtain a resonant enhancement
for one sideband, while suppressing the other sideband. For example, when choosing
∆ = −Ω̃, the Stokes sideband |χωL

(−Ω̃)| ≈ 1/κ is dominating over the anti-Stokes term
|χωL

(+Ω̃)| ≈ 1/(2Ω̃)� |χωL
(−Ω̃)|.

While we have no direct access on the intra-cavity field, it couples directly to the output
field (2.12):

ôout,ωL
=
√

2κinig
(
χωL

(+Ω̃)m̂Ω̃e
−iΩ̃t + χωL

(−Ω̃)m̂†
Ω̃
eiΩ̃t
)

(2.26a)

+

∫ ∞
−∞

dω√
2π

[i(∆− ω) + κloss − κin] ˆ̃oin(ω)− 2
√
κinκloss

ˆ̃oloss(ω)

i(∆− ω) + κ
e−iωt (2.26b)

In the first line, we can identify the optomechanical sidebands. The second line shows the
unitary, frequency-dependent mixing between the intended coupling to the inbound mode
and the unintended coupling to the loss channel. Note that if both optical input fields
are in their respective ground state, the entire line (2.26b) simply represents an effective
field in its ground state. This is a typical setting for many optomechanical protocols, see
also paragraph 2.3.1.

Beyond the effect of the mechanical element on the optical field, we would also like
to know the influence of the optical field on the motional state. To this end, we insert
equation (2.24) in eq. (2.22) to obtain the effective mechanical equations of motion19.

18 The optical susceptibility χL(ω) is obtained by Fourier transform of (2.13) when neglegting the op-
tomechanical interaction g0 ≈ 0 and describes the response of the optical cavity oscillator

〈ĉ(t)〉 =

∫
dω√
2π
χL(ω)ξ(ω)e−iωt

to a driving field ξ(ω) =
√

2κin

∫∞
−∞

dt√
2π
〈ô(t)〉 eiωt. Consequently, in a frame rotating with ωL, the

cavity response to a sideband frequency ω′ = ω − ωL is described by χωL
(ω′) = χL(ω).

19 The full equation is relatively bulky and contains several fast rotating terms:

d

dt
m̂Ω̃ =− i(Ω− Ω̃)m̂Ω̃ −

Γ

2

(
m̂Ω̃ − m̂

†
Ω̃
ei2Ω̃t

)
+ i
√

ΓP̂losse
iΩ̃t

− |g|2
(
χωL

(Ω̃)m̂Ω̃ + χωL
(−Ω̃)m̂†

Ω̃
ei2Ω̃t − χωL

(−Ω̃)†m̂Ω̃ − χωL
(Ω̃)†m̂†

Ω̃
ei2Ω̃t

)
− i
√
κ

π

∫ ∞
−∞

g†χωL
(ω)ˆ̃oωL

(ω)e−i(ω−Ω̃)t + gχωL
(ω)† ˆ̃o†ωL

(ω)ei(ω+Ω̃)tdω

They become negligible for integration times much longer than a mechanical period T = 2π/Ω̃, for
(sideband-)frequencies close to the mechanical frequency, and can thus be neglected in resonant proto-
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2.1. The Optomechanical Interaction

After neglecting the fast rotating terms [Hof15] and sorting for real and imaginary parts
of the backaction, we find the phonon annihilation operator dynamics to be

d

dt
m̂Ω̃ =− i

(
Ω + |g|2Im

(
χωL

(+Ω̃)
)

+ |g|2Im
(
χωL

(−Ω̃)
)
− Ω̃

)
m̂Ω̃ (2.27a)

−
(

Γ

2
+ |g|2Re

(
χωL

(+Ω̃)
)
− |g|2Re

(
χωL

(−Ω̃)
))

m̂Ω̃ (2.27b)

− i
√
κ

π

∫ ∞
−∞

g†χωL
(ω)ˆ̃oωL

(ω)e−i(ω−Ω̃)t + gχωL
(ω)† ˆ̃o†ωL

(ω)ei(ω+Ω̃)tdω (2.27c)

+ i
√

Γ ˆ̃mlosse
iΩ̃t. (2.27d)

In the first line, the spring constant is modified by the presence of the optical field. This
effect, called the optical spring, has its cause in the dynamic change of the optical force in
phase with the mechanical motion. As the mechanical element is displaced, it changes the
detuning and thus the amount of light in the cavity, thereby changing e.g. the radiation
pressure force, see e.g. [Cor+06; Teu+08; Nor14; Edg+16; Cri+18b]. We find as implicit
equation for the dynamic frequency

Ω̃ = Ω + 2|g|2∆
Ω̃2 −∆2 − κ2

(Ω̃2 + ∆2 + κ2)2 − 4∆2Ω̃2
(2.28)

where |g|2 is also a function of κ and ∆ (see figure 2.4). Note that in many cases, the optical
spring effect is small compared to the mechanical spring, i.e. it is a good approximation to
replace on the right hand side of equation (2.28) Ω̃ by Ω. It therefore offers a convenient
way to calibrate the coupling strength |g|.

In the second line of equation (2.27b), we find that the damping of the mechanical
resonator is modified. This relates to the linear coupling of the mechanical resonator to
the optical field. When tuning the system to the red side of the optical cavity, we bias the
interaction towards upconversion of drive photons, thereby extracting energy from the
system and damping the mechanical motion. This effect increases the effective linewidth

Γ̃ = Γ +
8|g|2∆κΩ̃

(Ω̃2 + ∆2 + κ2)2 − 4∆2Ω̃2
(2.29)

for positive detunings ∆ > 0 (see figure 2.4). Driving the optical cavity on the other side
∆ < 0, the downconversion of the drive photons is enhanced, pumping energy into the
system. This process is related to phonon lasing, thus reducing the linewidth. In fact
the damping (2.29) can become negative, i.e. amplifying the motion of the mechanical
motion instead of damping it. Note that this configuration is not stable for long times,
as the resulting large mechanical amplitudes will break the perturbation Ansatz used
for the linearization of the equations of motion and thus eventually run into some non-
linearity. Theoretically, this can result in non-classical limit cycles [BSV01; Kip+05], yet
experimentally, the typically relevant non-linearities are much stronger and sometimes
irreversible, e.g. losing the lock of the optical cavity or fracturing of the mechanical

cols in the adiabatic regime. Note that this also requires to approximate the mechanical environment

operator P̂losse
iΩ̃t ≈ ˆ̃mloss by a time averaged version ˆ̃mloss(t) ∼

∫ t+δt
t

dτ m̂loss(τ)eiΩ̃τ/δt, for details
see e.g. [Hof15]
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Figure 2.4.: Optical Spring. The optomechanical interaction modifies the mechanical re-
sponse. This can be characterized by a change in the mechanical frequency δΩ = Ω̃− Ω (cyan)
and the engergy damping rate δΓ = Γ̃−Γ (red). The parameters used are specified in table 2.1.
Note that for a mechanical quality factor of Qmech = 107, a single photon in the cavity is enough
to generate mechanical gain, i.e. Γ < 0, for a blue detuned drive laser (∆ = −Ω̃).

element. These undesirable effects can be circumvented by limiting the time during which
this interaction is driven [Hof+11; Pal+13b], thus resorting to a quasi-continous drive of
the system, see section 2.3.

The third (2.27c) and forth line (2.27d) of the effective mechanical equation of motion
describe the coupling to the optical and mechanical bath. To understand it better, we
artificially split up the individual terms of the modified mechanical dissipation relation
and assign a bath to each of them. For this, we introduce the root coupling

µ± = −g∓
√
Re
(
χωL

(∓Ω̃)
)

= − g∓
√
κ√

(∆± Ω̃)2 + κ2

(2.30)

with µ+ relating to the Stokes process (with the effective interaction Hamiltonian ĤS =
~gĉ†m̂† + h.c.20) and µ− relating to the anti-Stokes process (ĤaS = ~g†ĉm̂† + h.c.). The
optomechanical coupling constant g = g− = g0c̄ is complex conjugated only for the anti-
Stokes process (g+ = (g)†). The phase of the root coupling, however, only plays a role for
the coupling to the optical input field and thus can be neglected in most cases. We can
now rewrite equation (2.27) in the Langevin form of fluctuation dissipation relations

d

dt
m̂Ω̃ =− Γ

2
m̂Ω̃ + i

√
Γ ˆ̃mlosse

iΩ̃t (2.31a)

− |µ−|2m̂Ω̃ + i
√

2µ− ˆ̃o
(−)
eff (2.31b)

+ |µ+|2m̂Ω̃ + i
√

2µ+
ˆ̃o

(+)
eff (2.31c)

ˆ̃o
(±)
eff =

∫ ∞
−∞

χωL
±(ω ∓ Ω̃)

|χωL
(∓Ω̃)|

ˆ̃o±ωL
(ω ∓ Ω̃)e±iωt

dω√
2π

(2.31d)

20 This effective Hamiltonian recreates the relevant terms of the linearized equations of motion (2.22).
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2.2. Characterization of the Components

finding that the mechanical system couples to three different baths. Note that we now
eliminated the optical spring effect by choosing the actual mechanical frequency (2.28)
for the rotating mechanical frame. The first two terms describe a standard damping
and coupling to the phononic (2.31a) and optical bath (2.31b). The third term (2.31c),
however, can on its own not be understood by a fluctuation dissipation theorem, as
there is no finite steady state temperature associated with it, due to the inverted sign of
the damping. The optical baths (2.31d) are not in general independent. In the adiabatic
regime, i.e. when the interaction is long enough to spectrally resolve the mechanical modes,
only the resonant part of the drive, i.e. ω ≈ 0 will play a role. In this case, the prefactor
becomes a simple phase shift and we find that the relevant baths are the upper sideband
ˆ̃oωL

(+Ω̃) for the anti-Stokes term (2.31b), and the lower sideband ˆ̃o†ωL
(−Ω̃) for the Stokes

term (2.31c). The relevant bandwidth of the optical input will roughly correspond to
the maximum of the mechanical damping Γ, the optomechanical coupling |µ±|2 and the
bandwidth of the drive pulse α0(t).

Note that so far, we neither made an assumption on the sideband resolution Ω̃/κ nor
the conventional rotating wave approximation of neglecting either term (2.31b) or (2.31c).
Thus, the full dynamics of the system are covered, as long as the envelope of the drive
pulse is slow on the relevant time scales κ and Ω̃.

So far, we focused on the derivation of the equations of motion of the optomechanical
system. In the following section, we complement this by discussing the system parameters
and the mechanisms of the optomechanical system more specifically.

2.2. Characterization of the Components

In the previous section, we derived and described the effective interaction between an
itinerant optical field coupled to a mechanical oscillator via an optomechanical system. We
linearized the equations of motion and eliminated the cavity field, which is mediating and
enhancing the interaction between the traveling light wave and the mechanical element.
In this section, we will interpret the system dynamics, characterizing first the optical and
mechanical resonators individually. In paragraph 2.2.3, we will turn to the optomechanical
coupling, describing specific relevant examples of driven interactions.

2.2.1. The Optical Resonator

In order to describe the experiments, we need to characterize the optical cavity. This can
be done by scanning the drive laser across the resonance and monitoring the reflected
light. We defined the input light field by the flux operators〈

ˆ̇nin(t)
〉

=
〈
ô†in(t)ôin(t)

〉
= |α0(t)|2 =

Pin(t)

~ωL

(2.32)

where we made the approximation21 of a monochromatic light source of frequency ωL and
power Pin(t) at the cavity input coupler. Using the steady state values (2.20), we find for

21 More precisely, the full expression for the input power P̂in =
∫∞

0
dω ~ω ô†in(ω)ôin(ω) is based on the

original bath definition, see also 5. For a monochromatic light source (2.17), we in essence limit the
integration range of the power expression. Using the commutator relation [D̂ôin(ωL)(α0) , ôin(ω′)] =

δ(ωL − ω′)α0D̂ôin(ωL)(α0), we obtain the above equation.
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Figure 2.5.: Optical Resonance Scan The frequency of a laser with constant power is swept
over the optical resonance. Light coupled into the cavity can be scattered, reducing the reflected
power. From this dip, the exact resonance frequency (ωc/2π = c/1553.806nm) and amplitude
decay rate κ/2π = 463MHz can be extracted. To avoid strong optomechanical effects, the scan
is performed at low power (grey) and the resulting noisy data is numerically fitted (red). The
resonance characterized here belongs to device A in chapter 6.

the intracavity photon number

〈
ĉ†ĉ
〉

=

〈
Ā2 + Ȳ 2 − 1

2

〉
= |c̄|2 =

2κin
κ2 + ∆2

|α0|2. (2.33)

To scan the cavity, we change the detuning ∆, keeping the input power ∝ |α0|2 constant.
With the input output relation of the cavity (2.12) we obtain the reflected power

Pout(∆) = ~ωL

〈
ô†outôout

〉
= Pin

(
1− 4κinκloss

κ2 + ∆2︸ ︷︷ ︸
I(∆)

)
, (2.34)

see also figure 2.5. Here, we introduced the cavity dip I(∆) ∝ |χL(ωL)|2, which is pro-
portional to the absolute square of the cavity susceptibility (2.25), and can thus be used
for the basic characterization of the cavity. Its half width half maximum (in angular
frequency space) corresponds to the amplitude decay κ, i.e. I(0) = 2I(κ). Note that the
resonance scan has to be performed at low input powers, in order to keep the steady
state shift X̄ of the mechanical element negligible, such that ∆ ≈ ωc−ωL. Consequently,
these measurements can be noisy, such that numeric fitting the Lorenzian shape of I(∆)
is required to determine the exact optical resonance frequency and line width, see figure
2.5.

We know from equation (2.11) that the cavity field decays with rate κ, e.g. when
turning off the drive field instantly at time t0, the cavity field will ring down as 〈ĉωL

(t)〉 ≈
〈ĉωL

(t0)〉 e−κt. For the emitted power this means that ~ωL

〈
ô†outôout

〉
∝ e−2κt, i.e. the power

decay rate is κpower = 2κ. Thus the optical quality factor is defined as Qopt = ωc/(2κ).
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2.2. Characterization of the Components

Note that from the Lorenzian reflection dip, we cannot generally distinguish between the
decay into internal losses κloss and the coupling to the optical mode κin, as equation (2.34)
is symmetric in those two variables. While a ring down measurement of the reflection
could in principle provide a distinction, it is usually experimentally impractical for our
integrated devices due to the fast ring down times 1/κ ∼ 0.4ns. Instead, a more viable way
is to probe the phase response of the reflected field 22, e.g. by an off resonance reference
beam. An important exception is the case of a critically coupled cavity, that is when
the internal and external losses are degenerate κin = κloss = κ/2 and a distinction is
not necessary to determine the individual values. Under those circumstances, I(0) = 0
and thus the reflection vanishes on resonance. It turns out that this configuration is the
optimal trade-off between a narrow linewidth κ and maximum transduction |µ|2 ≈ |g|2/κ2

for most of our protocols, given the usual restrictions of the device fabrication in terms
of scattering losses, see also paragraph 2.4.2.

In paragraph 2.1.3, we introduced the notion of amplitude and phase quadrature. It is
important to keep in mind that the cavity imposes a phase shift on the reflected optical
field, which depends on its detuning. Therefore, different quadrature angles correspond
to the physical amplitude quadrature for the input, output and cavity field. Setting the
global phase of the complex input amplitude α0 (2.17) accordingly, allows for choosing
a convenient basis for one of these fields, e.g. setting the cavity quadrature 〈ŶωL

〉 = 0,

making ŶωL
the phase and ÂωL

the amplitude quadrature.

2.2.2. The Mechanical Resonator

In cavity optomechanics, a huge variety of mechanical oscillators are used, ranging from
clouds of cold atoms to massive pendulums in gravitational wave detectors. The major-
ity of experiments employ solid state resonators, comprising a large number of normal
eigenmodes [AKM14]. Here, we consider a single, well isolated normal mode with a non-
degenerate frequency, which can be spectrally resolved. This mode is described by a

displacement field ~̂d(~r) = X̂p · ~d0(~r), which is parametrized by the scalar operator X̂p.

Using the effective mass meff =
∫
d3r ρ(~r)|~d0(~r)|2, the kinetic and potential energy of the

mode can be described by23

Ĥmech =
P̂ 2
p

2meff

+meffΩ2X̂2
p/2, (2.35)

corresponding to the Hamiltonian of a point particle in a harmonic potential. The scalar
momentum operator parametrizes the momentum field ~̂p(~r) = P̂p · ~d0(~r) and relates to

the displacement operator as expected for a point particle, with P̂p = ~
i

∂

∂X̂p
and 〈P̂p〉 =

meff
d
dt
〈X̂p〉. Note that P̂p does not necessarily correspond to the total momentum

∫
d3r~̂p(~r),

which can be zero for example for breathing modes.

22 Inserting the steady state (2.20) into the input output relation (2.12), we obtain the reflected field

〈ôout,ωL
〉 =

(
1− 2κin√

∆2 + κ2

κ− i∆√
∆2 + κ2

)
α0

which exhibits a phase response linear in the input coupling rate κin for small detunings ∆.
23 Furthermore, we assume small oscillation amplitudes, such that nonlinearities can be neglected, for

example the coupling to other normal modes.
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2. Theory of Cavity Optomechanics

The equations of motion (2.13) of the mechanical oscillator differ from those of the
optical field, also when the interaction is neglected g0 ≈ 0. In contrast to the cavity,
ideally only one quadrature of the mechanical oscillator, the position X̂, couples to the
environment. Consequently, the dissipative term only appears in the derivative of the
orthogonal quadrature, the momentum P̂ (2.13d). Here, we will quickly review the causes,
limits and consequences of this trait. For further details, please refer to one of the excellent
reviews covering this topic [CR02; ER05; UFK10; GPI12; AKM14].

In a typical solid state harmonic oscillator, there are various damping mechanisms,
making a complete description and analysis of them difficult [PZ12]. Some examples
of known and at least partially understood mechanisms are gas friction, clamping or
radiative phonon losses [Wil08; Col+11; VS14], thermoelastic damping [Zen37; Cag+17]
and nonlinear phonon scattering [TRA09; KA11], coupling to localized defects in the
bulk [UFK10; Bas+13; Bil+17] and on the surface [VS14] amongst others [Bar+12]. Loss
mechanisms are sometimes categorized as extrinsic or intrinsic, with the first relating
to mechanisms that can be controlled, e.g. by resonator geometry or gas pressure, and
the second refers to properties of the bulk material. As the latter are typically hard
to determine, the term intrinsic material losses also sometimes is a phenomenological
summation of unidentified and less understood damping mechanisms [Sau90; Num+02;
Mar+14b].

For some mechanisms, it is straight forward to see that only the displacement quadra-
ture couples to the environment. Clamping losses couple the displacement of the oscilla-
tor to a small displacement of the supporting substrate [Wil08; Col+11]. Thermoelastic
damping describes the dissipation of temperature gradients generated by inhomogeneous
strain fields [Zen37; LR00]. This mechanism also couples to the mechanical displacement,
as the material strain is directly related to the potential energy of the mechanical oscil-
lator. Friction by residual gas in the viscous or molecular regime [Kok+87; Pal07b] is a
velocity dependent force, i.e. the bath is coupled to the displacement. The same holds for
eddy current damping of the motion of magnetic objects or of conductors in a magnetic
field. Two level systems in the material, e.g. crystal defects, can be coupled to the strain,
as investigated in the context of nitrogen vacancy defects in diamond [Mac+13; Tei+14;
Ova+14]. Other mechanisms, in particular coupling to intrinsic environments, can couple
also to the orthogonal quadrature and are thus better described by a general loss angle
[Sau90], much like the decay of the optical cavity. This can for example be related to
the relaxation of intrinsic bistable states [ZH46; Eti+03; Mar+14b], or, as an extrin-
sic mechanism, adsorption and desorption of gas molecules from the surface [EYR04;
Pal07a]. In summary, an accurate model of the damping of a mechanical oscillator is
highly complex and depends on the microscopic processes responsible for the dissipation
[AW01b; AW01a]. The topic gets even more complicated when taking into account fre-
quency dependent coupling to the bath. However, all of these effects mainly alter the
mechanical response far off its resonance [Sau90] or in strongly damped systems. Con-
sequently, they are of importance primarily for off-resonant detection schemes [Kra+12;
Mar+16] and when precise fitting of the mechanical spectrum is required [Cri+18a]. For
resonant processes, as considered in this thesis, the first Markov approximation and a
viscous damping model are a reasonable assumption. In fact, as argued in [Hof15], the
difference to a damping model that equally couples to both quadratures is negligible for
a strongly under-damped oscillator, when measurements average over many oscillation
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Figure 2.6.: Optical and Mechanical Susceptibilities The power susceptibilities of a reso-
nance with viscous and symmetric damping are compared. In both cases a resonance frequency
ω0 and a quality factor Q = 100 is assumed. For viscous damping, only one quadrature experi-
ences a coupling to the environment. This is approximately the case for a mechanical oscillator,
resulting in the power susceptibility |χM|2 (red). In a symmetric damping model, as used for the
optical power susceptibility |χL|2 (blue), both quadratures are coupled to loss channels. a On a
logarithmic scale, we can see that far off resonance, the response functions differ strongly. b For
the zoom onto the resonance on a linear scale, the lines are dashed to facilitate the comparison.
Close to the resonance they are nearly identical. Consequently, it is justified to approximate a
symmetric damping model for resonant protocols.

periods.
This effectively has been applied in the previous section when neglecting the fast ro-

tating terms in the derivation of the effective mechanical equation of motion (2.31a) in
the rotating frame. From this we can see, that the mechanical amplitude damping rate is
Γ/2 and the energy decay is thus described by e−Γt. The mechanical quality factor, i.e.
the ratio of stored energy H to energy dissipated per cycle L is therefore

Qmech = 2π
H

L
≈ Ω

Γ
(2.36)

in the limit of low damping. In order to extract the basic properties of the mechancial
resonator, i.e. the resonance frequency Ω and the damping Γ we introduce the mechanical
susceptibility

χM(ω) =
Ω

Ω2 − ω2 − iΓω
, (2.37)

which we can obtain by Fourier transformation of (2.13). It describes the spectral response
of the displacement to an external driving force24.

24 The displacement of the mechanical oscillator reacts with〈
X̂(t)

〉
=

∫ ∞
−∞

dω√
2π

χM(ω)f̃(ω)e−iωt

to a driving force
√

2Γ〈P̂loss(t)〉 =
∫∞
−∞

dω√
2π
f̃(ω)e−iωt, similar as the optical susceptibility (2.25). Note

25



2. Theory of Cavity Optomechanics

Note the difference to the optical susceptibility χL(ω) = (i(ωc−ω)+κ)−1 (2.25), originat-
ing from simultaneous damping of both quadratures, see figure 2.6. Close to the resonance
Ω we find similar behavior, with the energy decay rate corresponding to the full width half
maximum of the power susceptibility |χM(Ω ± Γ/2)|2 ≈ |χM(Ω)|2/2 and |χL(ωc ± κ)|2 =
|χL(ωc)|2/2. In contrast, the off-resonant behavior can vary strongly. The response to a
low frequency drive ω ≈ 0 differs by a factor 4 with |χM(0)|2/|χM(Ω)|2 = 1/Q2

mech and
|χL(0)|2/|χL(ωc)|2 ≈ 1/(4Q2

opt). At high frequencies ω � Ω, the scaling for the mechani-
cal response |χM(ω)|2∝̃1/ω4 is a lot steeper than for the optical response |χL(ω)|2∝̃1/ω2.
We can therefore see, that the microscopic damping model is predominantly only im-
portant for off-resonant mechanical protocols. In this case, the contributions from other
mechanical modes also need to be considered.

In case of the optical cavity, we had access to the power susceptibility |χL(ω)|2 by
scanning the optical resonance with the drive laser. As we do not always have a narrow
band actuator for the mechanical element, we need other ways to determine the basic
parameters. A first alternative is to use broadband noise to excite the cavity and directly
investigate the spectral response of the oscillator. Using noise which is approximately
white around the resonance, such as the excitations by the thermal environment, all fre-
quency components are driven equally and we can suspect the response to be proportional
to |χM(ω)|2.

In order to formally discuss the mechanical spectrum, we first introduce the power
spectral density (PSD). Using the finite-time-normalized Fourier transform25 z̃T (ω) =∫ T

0
dt z(t)eiωt/

√
T of a signal z(t) in a system subject to a stationary process, we define

the power spectral density as

Szz(ω) = lim
T→∞

〈
|z̃T (ω)|2

〉
(2.38)

which describes the distribution of power26 over the frequency range. For a random
process, such as a thermally driven oscillator, there is by definition no knowledge about
any Fourier component of the signal 〈z̃T→∞〉 = 0, i.e. the components of a sequence
of independent measurements are expected to average out and we cannot predict the
individual components of future trials. However, the higher statistical momenta of the
random process are non-vanishing. We can thus understand the PSD as the variance
of the distribution of finite-time-normalized Fourier components of our signal. The same
argument holds for the power spectrum of a random noise source ξ(t) =

√
2Γ〈P̂loss(t)〉, and

using the susceptibility (2.37), we can infer the PSD of the mechanical system driven by
this source, SXX(ω) = |χm(ω)|2 Sξξ(ω). For a Markovian thermal bath in the first Markov
approximation of white coupling, Sξξ = 2Γ(nth + 1/2) is white27, i.e. constant over all
frequencies, and therefore the resulting thermal spectrum can be used to to extract the
mechanical power susceptibility. The mean thermal occupation number corresponds to
the Bose distribution nth = (e~ω/kBT − 1)−1, with the Boltzmann constant kB and the
effective temperature T .

that the mean value of the driving force needs to be real (2.13d), and with χM(−ω) = χM(ω)† (2.37)
we can see immediately that 〈X̂(t)〉 is also real valued at all times.

25 This ensures a finite value of the Fourier transform for continuous signals.
26 In the signal processing sense, that is ∝ z2

27 We find for a Markovian bath that the force noise is uncorrellated at different times 〈P̂loss(t)P̂loss(t
′)〉 =

δ(t−t′)(nth +1/2), which results in the white PSD, as can be seen using the Wiener-Khinchin theorem
(2.39).
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Ideally we would like to relate the thermal spectrum to the temperature of the bath of
the oscillator. For this, we invoke the Wiener-Khinchin theorem, which relates the PSD
to the Fourier transform of the autocorrelation function28 γz(τ) = 〈z(t)z(t+ τ)〉 by

Szz(ω) =

∫ ∞
−∞

dτ γz(τ)eiωτ . (2.39)

Thus, we obtain the variance of the displacement by transforming its PSD back for τ = 0,
which is equivalent to 〈X̂2〉 =

∫∞
−∞

dω
2π
SXX(ω) = nth + 1/2, see also appendix B.1.

However, in many cases we will find that the full width half maximum of the thermal
or white noise driven peak will not correspond to the mechanical life time. This is due to
dispersive effects of the environment, that is fluctuations of the environmental conditions
will change the resonance frequency. Consequently, the power spectral density will be
convoluted with the likelyhood function of the resonance frequencies and thus smeared
out. There are numerous processes effecting the resonance frequency [CR02; EYR04],
such as temperature changes, adsorption and desorption of background gas molecules
[Pal07a], changes of material defects, mechanical nonlinearities [GNQ13] or fluctuations
in the optical drive power, thereby changing the optical spring (2.28), to name some of
the known effects. Frequency fluctuations can be translated into additional phase noise
δφ =

∫
δΩ(t)dt but has ideally no effect on the amplitude noise of the oscillator. Thus, to

probe the bare energy decay rate Γ, the measurement protocol needs to be insensitive to
the mechanical phase. Two important methods, both realizing this condition by employing
mechanical energy measurements29, are ring-down- and autocorrelation measurements.

In a ring down measurement, the mechanical oscillator is initially excited by an external
force to a mean phonon number ninit and after rapidly turning the external force off, the
mechanical energy decay is observed. The excitation can be provided for example by
optomechanically driving the Stokes transition, rapidly switching on and off a thermal
bath [Rie+16; Jai+16], or externally actuated by a piezoelectric transducer [Col+14]
or electrostatic forces [Sch+16]. Once the excitation ceased, the energy stored in the
mechanical oscillator will decay as

〈m̂†m̂〉(τ) = (ninit − nth)e−Γτ + nth, (2.40)

with the mean occupation number nth in the steady state of the system. In optomechanical
devices with narrow optical resonances, a measurement of the mechanical state can easily
act back on the system, modifying the mechanical damping rate (2.29). In order to obtain
the intrinsic damping rate, the optomechanical drive laser can be switched off for a time
τ between the excitation and the actual energy measurement, thereby varying τ to obtain
a full ring down measurement [Rie+16]. Alternatively, an auxiliary laser beam can be
used to measure the mechanical state, ideally accessing the mechanical element without
resonant enhancement, for example operating in a different wavelength regime or probing
the mechanical oscillator at a different angle.

An autocorrelation measurement is useful when no external force can be provided or
switched rapidly enough. It relies exclusively on the coupling to the thermal environment,

28 As the processes is stationary, the autocorrelation function γz(τ) is independent of the initial time t.
29 In most cases, the mechanical state will be deeply in the classical regime, thus the energy can be

computed from the root mean squared of a position measurement.
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2. Theory of Cavity Optomechanics

exploiting that the typical time scale for changes in the thermal state of the oscillator
also is given by the energy exchange rate with its environment Γ. Using the results from
paragraph 2.3.2, we find that the normalized autocorrelation of the mechanical energy
Ĥm(t) = ~Ωm̂†(t)m̂(t)

g(2)
mm(τ) =

〈:Ĥm(t)Ĥm(t+ τ) :〉
〈Ĥm(t)〉2

≈
(
g(2)

mm(0)− 1
)
e−Γτ + 1. (2.41)

For large equilibrium occupation numbers nth � 1, the normal ordering : · : can be
neglected (see paragraph 2.4.2). The autocorrelation of a thermal state is g

(2)
mm(0) ≈ 2,

yielding a decent visibility of the decay.

2.2.3. The Linearized Interaction

After describing the properties of the optical and the mechanical resonator, I turn to
discussing the coupling between these two systems. As the nonlinear parametric coupling
is weak on the relevant scales of the system, we need to enhance the interaction by driving
the system with an external laser beam. In this case, we obtain the linearized interaction,
described by the effective Hamiltonian

Ĥeff = 2~gX̂Â = ~g
(
m̂+ m̂†

) (
ĉ+ ĉ†

)
, (2.42)

which recreates30 the operator equations of motion (2.22). After the linearization, the
cavity operators correspond to fluctuations on the drive beam, that is the mechanical mo-
tion interacts with the optical sidebands, which are separated from the carrier frequency
ωL by the mechanical frequency. The enhanced interaction rate g = g0c̄, see equation
(2.23), can be understood in the following way: The single photon coupling g2

0 can be re-
lated to the (constant) scattering probability per photon in the drive beam. In contrast,
|g|2 relates to the probability of generating a photon in the sidebands, and thus it can be
enhanced by supplying more photons in the drive beam.

The effective interaction Hamiltonian (2.42) describes the Stokes (m̂†ĉ†) as well as
the anti-Stokes scattering (m̂ĉ†) due to the optomechanical interaction. By taking into
account the cavity response in paragraph 2.1.4, we found that the nature of the interaction
is influenced by the detuning of the drive beam with respect to the cavity. In the following
I will briefly discuss the cases when (a) the drive laser, (b) the higher frequency anti-Stokes
sideband, and (c) the lower frequency Stokes sideband is on resonance with the cavity.

Resonant Drive

When the drive beam is on resonance, i.e. the detuning ∆ = 0, the cavity susceptibility
of both sidebands has the same magnitude |χωL

(+Ω̃)| = |χωL
(−Ω̃)|. Consequently, we can

express the optical output field (2.26) as

ôout,ωL
= i

2
√
κing√

κ2 + Ω̃2
Q̂θ
m̂ + ôin,eff,ωL

(2.43)

30Here, we set the global phase such that the intracavity field c̄ ∈ R is real.
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2.2. Characterization of the Components

with the phase θ = arg(χωL
(−Ω̃)) and the normalized effective input field ôin,eff,ωL

, which
we assume to be in the vacuum state. We thus find that the cavity output field is pro-
portional to a mechanical quadrature, with a phase depending on the sideband resolution
of the system. In the bad cavity limit, that is κ � Ω̃, the phase is θ ≈ 0 and thus the
instantaneous mechanical displacement X̂ is measured. In the resolved sideband limit,
that is κ � Ω̃, θ ≈ −π/2 as a result of the delay induced by the cavity, corresponding
to a measurement of the momentum P̂ . As the proportionality in eq. (2.43) is purely
imaginary, the signal is on the phase quadrature of the optical output.

While a resonant drive does neither induce an optical spring (2.28), nor modify the me-
chanical damping (2.29), the vacuum fluctuations of the input beam act as an additional
bath, as can be seen in eq. (2.31). This force noise, called radiation pressure shot noise
in reference to the vacuum fluctuations of the drive beam, limits the accuracy with which
the displacement of an oscillator can be measured [Ede+78; Cav80]. This noise can in
fact exceed the thermal noise and become the dominant noise contribution [PPR13].

Red Drive

By tuning the drive beam to a frequency that is lower than the optical resonance by exactly
the mechanical frequency, that is ∆ = Ω̃, the anti-Stokes sideband becomes resonant. In
analogy to the visible spectrum, such a configuration is referred to as ’driving the cavity
on the red side’, and the corresponding drive beam is labeled ’red’. For a sideband
resolved system, this yields a maximum enhancement of the anti-Stokes process, while
at the same time strongly suppressing the off-resonant Stokes process |µ+| � |µ−|, see
(2.30). Neglecting the latter is called rotating wave approximation, referring to the fast
rotation of the off-resonant term in the frame of the cavity resonance. The interaction
generated by the red drive can be approximated as exclusively involving the anti-Stokes
process, corresponding to an effective interaction Hamiltonian of

ĤantiStokes = ~g
(
ĉ†m̂+ ĉm̂†

)
. (2.44)

It transfers phonons to resonant photons and vice versa, corresponding to a state trans-
fer in the weak coupling regime. When the optical sideband frequency is in its vacuum
state, that is there are no resonant photons injected into the cavity, mechanical excita-
tions are first transferred to the optical domain and then rapidly leave the system at the
optical decay rate κ. Consequently, the mechanical oscillator is cooled[Gig+06; Sch+08],
potentially to its ground state [Teu+11a; Cha+11a].

In a scattering picture, low energy drive photons are upconverted to resonant photons
of a higher energy, thus extracting energy from the system. The red drive thus couples
the mechanical element to an additional, optical bath, which is in its ground state and
thus appears very cold. This is reflected in an increased linewidth31 of the mechanical
resonances, see (2.29).

Alternatively, the interaction can be interpreted as a (partial) state transfer between
the mechanical and the optical resonance. As we will see in paragraph 2.3.2, the red drive

31 In a continuous variable pictures, the cavity response shifts the phase of optomechanical position
measurement by −π/2, generating a cavity field and thus radiation pressure force proportional to
−P̂ . In other words, resolved sideband cavity cooling is similar to feedback cooling, with the optical
resonator computing the feedback signal [HM13].
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2. Theory of Cavity Optomechanics

mixes the optical and the mechanical input similarly to the way an optical beamsplitter
mixes its input modes. Here, the state transfer fidelity, or the mixing ratio, corresponds
to the power of the drive laser. For this reason, (2.44) is also referred to as beamsplitter
interaction.

When the exchange rate of photons and phonons g exceeds the cavity decay rate κ, the
transferred phonons do not necessarily leave the cavity, but can be transferred back into
phonons again. This regime is called strong coupling [Grö+09; Teu+11b], leading to a
hybridization of the optical and the mechanical excitations. As the new hybrid modes are
split by the coupling rate g > κ and are thus spectrally distinguishable, it is also referred
to as normal mode splitting. This regime would be ideal for rapid and deterministic state
transfers between the mechanical and the optical resonances, exploiting Rabi oscillations
between the two domains. However, this regime has thus far not been accessible in the
nanofabricated optomechanical crystals used in the experimental part of this thesis.

While the rotating wave approximation (2.44) is good for understanding the cooling
and state transfer mechanism, it neglects the residual heating due to the off-resonant
Stokes scattering. As will be discussed in paragraph 2.3.4, the ratio between the Stokes
and anti-Stokes process is fixed by the sideband resolution Ω̃/κ. This results in a min-
imal achievable phonon number of 〈m̂†m̂〉 ∼ κ2/(4Ω̃2) � 1 by laser cooling [Sch+08],
corresponding to the effective temperature of the optical bath.

For typical parameters of the devices used in the experimental part of this work, the
sideband cooling limit κ2/(4Ω̃2) ∼ 2 · 10−3 is well below the observed residual absorption
heating.

Blue Drive

When the drive laser is tuned to a frequency, which is higher than the optical resonance,
that is the ’blue’ side in the analogy of the visible spectrum, the Stokes process is enhanced.
As in this case the high energy drive photons are downconverted to lower energy scattered
photons, we expect a heating of the system. In the resolved sideband regime with ∆ = −Ω̃,
the effective interaction Hamiltonian is

ĤStokes = ~g
(
ĉ†m̂† + ĉm̂

)
. (2.45)

in the rotating wave approximation, i.e. when neglecting the off-resonant anti-Stokes pro-
cess. In this case, resonant photons and phonons are created or annihilated in pairs.
Due to the proportionality of the ladder operators (2.3), phonons are more likely to be
generated, independent of the optical input, i.e. the energy in the mechanical mode is
generally increased. In fact, as m̂† |n〉 =

√
n+ 1 |n+ 1〉, this heating rate is proportional

to the number of mechanical excitations. Once it exceeds the internal mechanical damp-
ing, this corresponds to an exponential growth of the mechanical state, corresponding to
a negative mechanical decay rate (2.29). Thus the optomechanical system is unstable for
a continuous blue drive [BSV01; Kip+05].

Despite depositing energy in the system, which naively32 resembles thermal heating, the
process is coherent and can be employed as an active gain medium, once the self-amplifying
property of the interaction is limited. In this case, the blue drive provides a gain for the

32That is, when tracing over the optical output.
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optical and the mechanical mode, allowing for amplification of input signals [Mas+11;
Nun+14; Lec+15b; Mal+18], respectively spontaneous emission [Gru+10; Coh+15].

Beyond a simple gain, the optical and mechanical states generated by eq. (2.45) are
highly correlated. When decoherence and thermal noise is negligible, the pairwise occur-
rence of excitations in the two resonances corresponds to a two-mode-squeezed state. That
is, a linear combination of a mechanical and an optical quadrature exhibits fluctuations
below those of the optomechanical vacuum state. The properties of this state cannot be
reproduced by describing the systems individually, hence the two subsystems are ’not sep-
arable’ or ’entangled’ [Hof+11; Pal+13a]. Referring to this important continuous variable
state, the interaction (2.45) is also termed two-mode-squeezing interaction.

A different way of interpreting the optomechanical correlations [Rie+16] is to focus on
the interaction on the single particle level. In essence, a blue detuned drive photon decays
into a resonant photon and a phonon. This is similar to spontaneous parametric down
conversion in non-linear crystals [BW70; Mol73], an important source of non-Gaussian
states in quantum optics. While non-Gaussian states, i.e. states with a quasi-probability
distribution that is not a multi-dimensional Gaussian function, are of great importance
for quantum information protocols, they cannot be generated from initial Gaussian states
through linear interactions and linear detection33. With thermal states, including the
ground state, having Gaussian distributions, the linearized optomechanical interaction is
thus unable to generate non-Gaussian states on its own. Probabilistic quantum optical
protocols exploit the strong non-linearity of single photon detectors to conditionally pre-
pare highly non-classical states. For example, single phonon Fock states can be generated
in a heralding scheme [HM86], where the detection of a resonant signal photon, indi-
cates the presence of a single idler phonon [Hon+17], see also chapter 5. By driving two
optomechanical systems and erasing the information from which one the signal photon
originated, the idler phonon can be projected into a superposition of being in either one
device [Dua+01], thus entangling the two remote mechanical oscillators [Rie+18], see also
chapter 6.

2.3. Single Phonon Quantum Optics

In the previous sections, we reviewed the basic equations describing the optomechanical
interaction and then characterized the individual components of the system. Now we
turn to formulating a precise theoretical description for optical control of the mechanical
motion with slowly varying drive pulses. This method, called quasi-continuous control,
allows for individually addressing Stokes or anti-Stokes transitions in the resolved side-
band regime, as is the case for continuous drives, but also allows to limit the interaction
strength. Thereby, for example, the parametric instability associated with the continuous
driving of the Stokes transition can be avoided, providing access to its entangling property
between the light field and the mechanical mode. Furthermore, it allows for control of the
optomechanical state on a timescale which can be faster than the slow thermal processes
related to optical absorption, allowing e.g. for low-noise, high-fidelity transfer of the state
from the mechanical oscillator to the optical field.

33 This also explains why non-Gaussian states are important to obtain a quantum advantage in informa-
tion processing: Gaussian states can be very efficiently simulated, as they stay Gaussian under linear
interactions and measurements [Kal60; Wie+15].
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First, we will treat the time-varying effective coupling of the mechanical oscillator to a
bath in general terms in paragraph 2.3.1, followed by the specific case for the anti-Stokes
(paragraph 2.3.2) and Stokes scattering term (paragraph 2.3.3). These three paragraphs
are strongly based on references [Hof+11; Hof15], where important, complimentary tech-
nical details can be found. Here, the framework is developed further by creating a quan-
titative description for the experimentally important scenario of arbitrary pulse shapes
and lossy optical resonators. Thereafter, we will investigate contributions by the usually
neglected off-resonant scattering terms in paragraph 2.3.4, and describe how the quasi-
continuous protocols can be extended from the control of the amplitude of the mechanical
state to the control of its phase (paragraph 2.3.5).

2.3.1. Generalized Quasi-Continuous Drives

For a continuously driven system, the input power of the drive laser is fixed, resulting in
a constant coupling strength. Thus, the system will reach a steady state and remain in it
indefinitely. In a quasi-continuous drive, the input power is varied slowly compared to the
cavity bandwidth and the mechanical frequency, such that the same approximations, e.g.
for addressing individual Stokes or anti-Stokes transitions can be made. Yet, by using
time scales which are fast compared to the mechanical damping, coherent manipulation
of the mechanical state is possible.

We start by investigating the individual terms of the fluctuation dissipation form of the
mechanical equation of motion (2.31)

d

dt
m̂Ω̃ = ±s̃±(t)m̂Ω̃ + ieiφ±

√
2s̃±(t)ζ̂

(±)
s̃±

(2.46)

with a coupling constant s̃±(t) ≥ 0 (which can vary in time) and an input noise operator
ζ̂s̃± . For the mechanical damping (2.31a), this would correspond to a negative sign with

(s̃−, φ−, ζ̂
(−)) = (Γ/2, 0, ˆ̃mloss). For the anti-Stokes interaction (2.31b), the parameters are

(s̃−, φ−, ζ̂
(−)) = (|µ−(t)|2, arg(µ−), ˆ̃o

(−)
eff ), and for the Stokes interaction term (2.31c) they

are (s̃+, φ+, ζ̂
(+)) = (|µ+(t)|2, arg(µ+), ˆ̃o

(+)
eff ).

In the following we will consider an interaction s̃±(t), which is limited to the time
interval t∈ [0, T ], i.e. we assume s̃±(t) = 0 ∀ t /∈ [0, T ]. For the subsequent steps, it will be
convenient to define the accumulated interaction rate

G̃±(t) = ±
∫ t

0

dτ s̃±(τ). (2.47)

Using the same type of formal integration as in the adiabatic elimination of the cavity
(see also 17), this allows us to express the mechanical annihilation operator in the rotating
frame as

m̂Ω̃(t) = eG̃±(t)m̂Ω̃(0)︸ ︷︷ ︸
À

+ieiφ± eG̃±(t)

∫ t

0

dτ e−G̃±(τ)
√

2s̃±(τ) ζ̂
(±)
s̃±

(τ)︸ ︷︷ ︸
Á

. (2.48)

We can see that the final mechanical operator (and thus state) m̂Ω̃(t) is a mix of the
initial mechanical operator in the homogenous solution term À and the integrated noise
input in the inhomogenous solution term Á.
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The latter is a discrete wavelet mode of the input flux operator ζ̂s̃±(t). In other words,
it is localized in time and frequency domain, allowing to address individual sidebands as
well as manipulations that are fast compared to the mechanical life time. This will be
discussed in more detail below. The mode shape in term Á can be normalized by ensuring
that the commutation relation of its annihilation and creation operator is the identity34.
We thus define the normalized input mode operator as

âin =
1√

±
(
1− e−2G̃±(T )

) ∫ T

0

dτ e−G̃±(τ)
√

2s̃±(τ)
(
ζ̂

(±)
s̃±

(τ)
)±
, (2.49)

which fulfills [âin, â
†
in] = 1 and describes the time envelope of an excitation in the input

mode which can interact with the mechanical system. This yields for the final mechanical
annihilation operator (2.48) the simple expression

m̂Ω̃(T ) = eG̃±(T )m̂Ω̃(0) + ieiφ±
√
±
(
e2G̃±(T ) − 1

)
â±in. (2.50)

While we will discuss more detailed implications of this equation in the subsequent para-
graphs, we can immediately see that the part of the mechanical operator which is in-
fluenced by the optical mode âin inherits the phase φ± of the drive beam. This reflects
the fact that the optomechanical interaction is a three body process, as described in
paragraph 2.1.1, involving the annihilation of one and creation of another photon, while
creating or annihilating a phonon. Hence, despite the linearization of the interaction in
the weak coupling limits discussed here, the phase information of the drive field is not
lost. This is employed, for example, to control the phase of the mechanical state in chap-
ter 6 and discussed further in appendix B.4. The phase coherence between the drive and
scattered fields is a common trait of parametric processes in quantum optics [Ou+90].

After keeping the discussion so far in general terms, in order to also treat the mechanical
coupling to the environment, we will now focus explicitly on the optomechanical interac-
tion. We start by relating the cumulative coupling, which characterized the interaction
between the optical and the mechanical input (2.50), to the extra-cavity control beam
driving the system35:

|G̃±(T )| = g2
0κ

(∆± Ω̃)2 + κ2︸ ︷︷ ︸
À

2κin

∆2 + κ2︸ ︷︷ ︸
Á

∫ T

0

dt |α0(t)|2︸ ︷︷ ︸
=Nin,±

(2.51)

34 We know that the pulse shape of the optical input âin is proportional to the inhomogeneous
part Á of the solution (2.48). We normalize it by introducing a factor N to the input mode

âin = N ·
∫ T

0
dτ e−G̃±(τ)

√
2s̃±(τ)ζ̂(τ) and setting the commutator to unity. Using the approxima-

tion
[
ζ̂(τ), ζ̂†(τ ′)

]
≈ δ(τ −τ ′), which is justified in the limit of a large bandwidth of the cavity κ→∞

[Hof15], we find[
âin, â

†
in

]
!
= 1 = N 2

∫ T

0

dτ e−2G̃±(τ) 2s̃±(τ)︸ ︷︷ ︸
=± d

dτ 2G̃±(τ)

= ±
(

1− e∓2|G̃±(T )|
)
N 2

35 We use the definition (2.47) of G̃± and the optomechanical coupling rate (2.30) and (2.23), together
with the steady state of the intra-cavity field (2.20) and obtain a direct proportionality of the cumu-
lative coupling to the extra-cavity photon number Nin,±.
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We find that it is directly proportional to the number of photons in the drive pulse Nin,±
as well as to the optical susceptibility at the frequency of the generated sideband À and
the drive itself Á.

Next, we investigate the explicit form of the optical input and output pulses. Using the
full expression (2.31d) for the optical input field ˆ̃oeff, the input mode (2.49) becomes

âin =

∫ ∞
−∞

dω√
2π

∫ T

0

dτ W in
(±)(ω, τ)ˆ̃oωL

(ω ∓ Ω̃). (2.52a)

The normalized wavelet envelope

W in
(±)(ω, τ) =

1√
±
(
1− e−2G̃±(T )

) χωL
(ω ∓ Ω̃)

|χωL
(∓Ω̃)|

e−G̃±(τ)
√

2s̃±(τ)e−iωτ (2.52b)

is localized in frequency space around the mechanical sideband frequency ω ∼ 0 (that is in
absolute frequency ωL ∓ Ω̃) with the bandwidth of the input mode shape. Consequently,
the input operators for the Stokes and anti-Stokes transition from the same drive field are
approximately orthogonal, despite occupying similar temporal envelopes.

For the output mode, we similarly define the super-mode

û =
√
κin/κôout +

√
κloss/κôloss,out

and its Fourier transform ˆ̃uωL
in a frame rotating at the drive frequency. With this, we

can define an output mode (see appendix B.2 for details) in analogy to (2.52)

âout =

∫ ∞
−∞

dω√
2π

∫ T

0

dτ Wout
(±)(ω, τ)ˆ̃uωL

(ω ∓ Ω̃) (2.53a)

Wout
(±)(ω, τ) =

1√
±(e2G̃±(T ) − 1)

χωL
(ω ∓ Ω)†

|χωL
(∓Ω)|

eG̃±(τ)
√

2s̃±(τ)e−iωτ , (2.53b)

using the wavelet Wout
(±). The mode is, in close analogy to the input mode, a narrow band

mode located on the respective sideband of the drive. It can be interpreted as the mode
with maximal overlap with the optomechanically generated photon. Using (2.26), this
allows to write the interaction as

âout = −ie±iφ±
√
±
(
e2G̃±(T ) − 1

)
m̂±

Ω̃
(0)− eG̃±(T )âin. (2.54)

The optical and mechanical output modes are orthonormal36, i.e. the final operators after
the interaction are a unitary transformation of the initial operators.

So far, we restricted our analysis to optical super-modes ô and û which couple to the
cavity. However, they combine the accessible fields ôin and ôout and the inaccessible stray
fields ôloss and ôloss,out. Additionally, there is also a set of decoupled, orthogonal modes for

the optical input ôd,in =
√
κloss/κôin−

√
κin/κôloss and the output ôd,out =

√
κloss/κôout−√

κin/κôloss,out. Employing the input-output relations (2.12), we find ôd,out = ôd,in, i.e. the
field is, as expected, decoupled from the cavity dynamics and thus does not participate

36 Using equations (2.50) and (2.54), we find [m̂Ω̃(T ), m̂†
Ω̃

(T )] = [âout, â
†
out] = 1 and [m̂Ω̃(T ), â±out] = 0.
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in the optomechanical interaction. Defining the corresponding discrete mode âdec (âwg,out,
âloss,out) belonging to the field ôd,in (ôout, ôloss,out) in analogy to (2.53)37, we find that
the decoupled mode âdec mixes with the mode emitted from the cavity âout to form the
experimentally accessible (âwg,out) and inaccessible (âloss,out) mode:

âwg,out =

√
κin

κ
âout +

√
κloss

κ
âdec (2.55a)

âloss,out =

√
κloss

κ
âout −

√
κin

κ
âdec (2.55b)

This description is similar to a directional coupler with splitting ratio κin:κloss. In the ex-
perimental work presented in this thesis, the optical input field at the mechanical sideband
frequencies is always in its groundstate. In this case, the directional coupler (2.55) can be
interpreted as a simple loss mechanism [Yur85; Sha85], in which a fraction κloss/κ of the
optomechanical signal is immediately lost to the environment and only a fraction κin/κ
couples into the desired mode âwg,out, e.g. confined in a waveguide and thus accessible for
measurements.

In applications where there is a non-vacuum optical input, we find that the accessible
input mode âwg,in

38 influences the mechanical state

m̂Ω̃(T ) =eG̃±(T )m̂Ω̃(0)

+ ieiφ±
√
κin

κ

√
±
(
e2G̃±(T ) − 1

)
â±wg,in

+ ieiφ±
√
κloss

κ

√
±
(
e2G̃±(T ) − 1

)
â±loss (2.56)

with an amplitude reduced by
√
κin/κ. Furthermore, in such protocols it needs to be con-

sidered that the pulse shape of the decoupled mode Wout
(±) differs from the coupled optical

inputW in
(±), in particular for large cumulative couplings |G̃±(T )|. Consequently, protocols

which are based on the interference of the interacting and non-interacting parts of the op-
tical beam, such as a quasi-continuous version of optomechanically induced transparency
[Wei+10] need to take into account a finite visibility of this interference.

2.3.2. Anti-Stokes Scattering

After deriving a general description of the optomechanical interaction driven by a slowly
varying laser pulse in the previous paragraph, we will now specifically investigate the
anti-Stokes scattering term before turning to the Stokes term in the next paragraph.
As described in paragraph 2.2.3, the anti-Stokes term, corresponding to the effective
interaction Hamiltonian ĤAntiStokes ∝ ĉ†m̂+ h.c., can be made dominant by detuning the

37 That is âdec =
∫∞
−∞

dω√
2π

∫ T
0

dτ Wout
(±)(ω, τ)ˆ̃od,ωL(ω ∓ Ω̃) for the Fourier transform ˆ̃od,ωL of the field

ôd,in in a reference frame rotating at the drive frequency ωL. Similarly, we define âwg,out =∫∞
−∞

dω√
2π

∫ T
0

dτ Wout
(±)(ω, τ)ˆ̃oout,ωL(ω ∓ Ω̃) and âloss,out =

∫∞
−∞

dω√
2π

∫ T
0

dτ Wout
(±)(ω, τ)ˆ̃oloss,out,ωL(ω ∓ Ω̃)

38 As described in 37 and (2.52), we define âwg,in =
∫∞
−∞

dω√
2π

∫ T
0

dτ W in
(±)(ω, τ)ˆ̃oin,ωL

(ω ∓ Ω̃) and âloss =∫∞
−∞

dω√
2π

∫ T
0

dτ W in
(±)(ω, τ)ˆ̃oloss,ωL

(ω ∓ Ω̃)
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drive laser frequency ωL ≈ ωc−Ω to the red, i.e. lower frequency side of the optical cavity
by the frequency of the mechanical oscillator. This corresponds to the detuning ∆ = Ω̃,
rendering the coupling constant of the anti-Stokes term s̃− = |g|2/κ much larger than for
the Stokes term s̃+ = |g|2/(κ + 4Ω̃2/κ) for Ω̃ � κ, i.e. in the resolved sideband regime.
We can define the probability

εR = 1− e−2|G̃±(T )| (2.57)

to rewrite the input output form of the interaction (2.50) and (2.54) as

m̂Ω̃(T ) =
√

1− εR m̂Ω̃(0) + ie−iθ
√
εR âin (2.58a)

âout = −ieiθ
√
εR m̂Ω̃(0)−

√
1− εR âin, (2.58b)

with θ = arg(−g0α0) defined by the phase of the drive beam and the sign of the optome-
chanical coupling constant g0. This is equivalent to the description of an optical beam
splitter or directional coupler with reflectivity εR, with one input and one output port
being the mechanical mode before and after the pulsed interaction, see figure 2.7. This
mixing of the optical and mechanical modes can be interpreted in multiple ways. First,
we consider the case where the optical input is in the vacuum state and the mechani-
cal mode initially is in a thermal state. The average number of phonons in the system

n̄(t) =
〈
m̂†

Ω̃
m̂Ω̃(t)

〉
after the interaction (at t = T ) is reduced to a fraction 1 − εR of

the initial (t = 0) phonon number n̄(T ) = (1 − εR)n̄(0). The extracted phonons are

converted to photons in the optical output mode
〈
â†outâout

〉
= εRn̄(0). Note that here we

neglected heating by absorption of drive photons and Stokes scattering, which in practical
experiments sets a limit to the minimal achievable phonon number.

The same setting can also be interpreted as a partial or lossy state swap: A beam
splitter with vacuum on one input port, here the optical input, can be used to model loss
in a transmission channel [Yur85; Sha85]. Thus, the state of the optical output mode after
the interaction is equivalent to the initial mechanical state going through a lossy element
with transmission εR. Note that the remaining part of the initial mechanical state is not
actually lost in this case, but simply remains in the mechanical oscillator, and can in
principle be retrieved by a subsequent pulse. Taking into account the additional loss due
to the inaccessible scattered light field, see equation (2.55), the equivalent transmission
after an ideal state transfer from the mechanical to the accessible optical mode drops to
εRκin/κ.

Another scenario is to have the mechanical mode initially in its ground state and sending
an optical state with envelope W in

(−) (2.52) to the device. In this case, the pulsed state
transfer of the anti-Stokes term converts the flying optical state in mode âin to a stationary
mechanical state in mode m̂Ω̃(T ) after the interaction. This again happens with a fidelity
of εRκin/κ, for a state sent in via the accessible input mode (2.56). The fidelity is composed
of the cavity input impedance κin/κ and the fidelity of the actual optomechanical state
transfer εR. This storage of the optical input state, controlled by the strength of the drive
field, modifies the interference between the different field contributions in the cavity39.
This can lead to an observed increase or decrease in the transmission of the probe beam
âwg,in similarly to optomechanically induced transparency. The main difference here is

39 For εR � 1, the envelope of the incoming and emitted wave are approximately the sameWout
(−) ≈ χ̃W

in
(−),

where χ̃ = χωL
†(Ω̃)/χωL(Ω̃) is a phase shift. We find for the wave package emitted into the accessible
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~pi = ~ωL/c~ex

∆~p = 2~ωL/c~ex

Mirror

|0〉o

|Ψm〉m

|0〉m

|Ψm〉o

Ĥint = ~g(ĉ†m̂+ ĉm̂†)

Time

Figure 2.7.: Optomechanical Beamsplitter Interaction. The description of the anti-Stokes
interaction (2.58) is equivalent to that of an optical beamsplitter with reflectivity εR. A strong
red detuned drive field (red dots) generates a linear interaction Ĥint between the optical (green
dot) and the mechanical resonance (harmonic potential), symbolized by a beamsplitter cube. For
εR ∼ 1, the input states (left side) of the optical and mechanical state are swapped, i.e. the final
state (right side) of the optical mode is the inital mechanical state and vice versa. This state
swap allows to optically read out the mechanical state. If the resonant optical sideband initially
was in the vacuum state, the mechanical resonance will be cooled to the ground state, neglecting
detrimental heating effects.

that we consider a mode which is matched to the emitted transferred state Wout
(−), while

OMIT protocols use a stored and retrieved state to generate an interference effect, i.e.
the initial mechanical state should not play a role. To recreate such protocols, the pulse
envelopes W in

(−) and Wout
(−) need to be adjusted to reduce the overlap with the transferred

state40, which however is beyond the scope of this thesis.
So far we discussed the effect of the anti-Stokes process with a general state transfer

fidelity εR. We now turn to a specific example of a system with the drive frequency tuned
to ∆ = Ω̃, i.e. the scattered field is resonant with the optical cavity. In this case, using

optical mode

âwg,out = −ieiθ
√
κin

κ
εR m̂Ω̃(0)−

(κin

κ

√
1−εR − χ̃

κloss

κ

)
âwg,in −

√
κinκloss

κ

(√
1−εR + χ̃

)
âloss.

Note that the optomechanical coupling modifies the impedance matching of the cavity. For example,
an impedance matched cavity (κin = κloss) has no contribution of âwg,in to âwg,out on resonance, when
the drive beam is off (εR = 0), but has finite reflection for εR > 0.

40 This can be seen for example in equation (B.16) in appendix B.2. By keeping the drive on after the
initial state is transferred, the optical output field is mainly correlated with the optical input field.
Matching the mode envelopes to this time-domain part of the field will result in OMIT like features.
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phonon

red detuned photon

resonant photon

time

p1

Figure 2.8.: Anti-Stokes Scattering. On a single particle level, one red detuned drive photon
(red) and a phonon (blue) are annihilated, and a resonant photon (green) is created. If a single
photon and phonon is present, this scattering process happens with a probability p1 ∼ 5 ·10−8 for
the parameters given in table 2.1. In order to achieve an efficient state transfer, a large number
of drive photons are necessary.

(2.51) we find the explicit form for the fidelity

εR = 1− exp

(
−κin

κ

4g2
0Nin,-

Ω̃2 + κ2

)
(2.59a)

≈ κin

κ

4g2
0Nin,-

Ω̃2 + κ2
for εR � 1 (2.59b)

with the average number of photons in the drive pulse Nin,-. For small transfer efficiencies,
it scales linearly with the number of photons in the drive pulse and saturates asymptot-
ically to an ideal state transfer of εR → 1 for larger numbers. The drop in fidelity per
drive photon can be understood by artificially splitting the drive pulse into several smaller
pulses. After the first fictitious drive transfers e.g. 50% of the mechanical state, the second
drive can only transfer 50% of the remaining state, i.e. 25% of the initial state, leading
to an exponential drop in the efficiency of per drive photon. Note that in the case of a
sideband resolved cavity, i.e. Ω � κ the optical linewidth κ does not change the fidelity
εR, but only the relative impedance κin/κ. However, the off-resonant intracavity photon
number

〈
ĉ†ωL

ĉωL

〉
∝ κin decreases, thereby reducing the power deposited in the system due

to absorption of drive photons in the cavity41. Note that the formalism used here assumes
weak coupling, i.e. |g| � κ, which sets a limit to the peak power of the drive pulse. While
this does not prevent us from asymptotically reaching an ideal state transfer εR → 1, it
sets a lower limit to the time required to reach a certain fidelity. While the experiments
presented in this thesis are well within this regime, strong coupling has been achieved
in optomechanical systems [Grö+09; Teu+11b; Ver+12], which allows for an ideal state
transfer in finite time.

For a small fidelity εR � 1, every drive photon contributes equally and we can recover
the non-linear interaction picture introduced in paragraph 2.1.1. Introducing the single

41 Assuming a fixed absorption rate κabs as part of the undesired cavity losses κloss, we find for the
deposited energy Eabs ≈ 4~ωLκabsκinNin,-/Ω̃

2 using the cavity input output relation (2.12) and the
mean cavity field (2.20). In real systems non-linear effects, such as saturation of the absorption centers
or two-photon absorption can also play a role.
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photon scattering probability

p1 =
κin

κ

4g2
0

Ω̃2 + κ2
(2.60a)

we can approximate the interaction for individual scattering events as42

|ψopt, ψm, ψdrive〉final ∼
(

1 + i
√
p1â
†
outâdrivem̂Ω̃ + i

√
p1â
†
drivem̂

†
Ω̃
âin

)
|ψopt, ψm, ψdrive〉initial

(2.60b)
with âdrive the annihilation operator of a photon in the drive mode and the wavefunction
|ψopt, ψm, ψdrive〉 containing the state of the resonant optical field, mechanical oscillator
and the red detuned optical drive mode. This crude approximation (see also figure 2.8)
is not intended for calculations, as it does not properly comprise, for example, the effects
of a lossy cavity κloss 6= 0 or situations in which multiple scattering events take place. It
is rather supposed to guide the intuition for the anti-Stokes process. We find that for the
transfer of the mechanical state to the optical mode, a drive photon is upconverted, i.e.
it is annihilated by âdrive and a higher frequency resonant photon âout is created, while
simultaneously annihilating a mechanical phonon. In the scenario of storing an inbound
optical state, the resonant photon is downconverted, i.e. it is annihilated by âin and a lower
frequency photon is generated by âdrive, and simultaneously a phonon is created. Both
processes can equivalently be enhanced by increasing the number of initial excitations,
bearing in mind that the description (2.60b) is based on the assumption that the number
of drive photons 〈â†driveâdrive〉 = Nin,- is much larger than the number of resonant input

photons 〈â†inâin〉. The systems presented in chapters 4 to 6 typically exhibit a single
photon scattering rate of p1 ∼ 5 · 10−8. Consequently, to approach a high fidelity state
transfer, on the order of Nin,- ∼ 2 · 107 drive photons are necessary.

2.3.3. Stokes Scattering

In the resolved sideband regime, the Stokes scattering term ĤStokes ∝ ĉ†m̂†+h.c. becomes
dominant when tuning the drive laser to the blue side of the optical resonance ωL ≈ ωc+Ω,
corresponding to the detuning ∆ = −Ω̃. In this case, the coupling constant for the
Stokes scattering process s̃+ = |g|2/κ by far exceeds the one for the anti-Stokes scattering
s̃− = |g|2/(κ+ 4Ω̃2/κ). We define the constant

εP = e2|G̃±(T )| − 1 (2.61)

and use it to express equations (2.50) and (2.54) as

m̂Ω̃(T ) =
√

1 + εP m̂Ω̃(0) + ieiθ
√
εP â

†
in (2.62a)

âout = −ieiθ
√
εP m̂

†
Ω̃

(0)−
√

1 + εP âin, (2.62b)

42 The unitary evolution operator Û allows to change from an interaction picture, evolving the wave-
function |ψ〉f = Û |ψ〉i, to the Heisenberg picture, evolving the operator ôf = Û†ôiÛ . For the anti-

Stokes scattering, Û = exp(iξ[e−iθm̂†
Ω̃
âin + h.c.]) recreates the discrete mode formulation described

in eq. (2.58). Here, ξ = sin−1(
√
εR) ≈ √p1

√
Nin,- for small εR and the exact pulse shape evolution

is hidden in the approximation âout = −âin in the interaction picture. We approximately map this
linearized evolution Hamiltonian back to the non-linear case by the replacement

√
Nin,-e

iθ → âdrive

under the assumption of a coherent input state (2.17) |ψdrive〉 = D̂ôin

(
α0(t)e−iωLt

)
|0〉.
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with θ = arg(−g0α0). Note that
√

1 + εP > 1 and thus there is always a gain for the
mechanical and optical mode. This can be understood by considering that the effective
damping (2.29) can become negative for detunings ∆ < 0, in particular as we currently
neglect the mechanical damping Γ ≈ 0. For this reason, continuous driving under these
conditions can easily turn the system unstable and drive it out of the linearized regime into
a parametric instability [BSV01; Kip+05]. For a pulsed interaction, εP is finite and the
system can stay linear [Hof+11; Pal+13b]. In this case, the interaction (2.62) constitutes
a combined squeezing of the optical and mechanical mode, entangling them with each
other. Accessing this type of two mode squeezed entanglement directly requires low noise
and a high readout fidelity [Hof+11; Pal+13b]. Tracing over one of the modes, the phase
information of the two-mode-squeezed or entangled state is lost and thus the interaction
appears like a gain for the individual modes. This can be exploited to generate states
by amplified spontaneous emission of photons respectively phonons, also termed phonon
lasing [Gru+10; Coh+15]. The optomechanical gain can alternatively be employed to
amplify mechanical [Lec+15b] and microwave signals [Mas+11; Nun+14; Mal+18] instead
of spontaneous emission. The interaction can also be interpreted as the pairwise creation
or annihilation of photons and phonons, as can be seen from the corresponding effective
interaction Hamiltonian Ĥeff = ~gĉ†m̂†+h.c.43. If both the mechanical and optical modes
are in their respective ground state, the creation operators in eq. (2.62) will still generate
excitations and we find 〈m̂†

Ω̃
m̂Ω̃(T )〉 = 〈â†outâout〉 = εP. Hence, for small εP � 1 the

scattering constant εP corresponds to the probability of the creation of a photon-phonon
pair (see also figure 2.9). As the vacuum-seeded pair creation process is spontaneous
emission and thus random, a small probability p1 ≈ εP � 1 of creating a single pair
implies that the creation of multiple pairs is drastically more unlikely, with a probability
of approximately p2 ≈ ε2P. Consequently, the emission of a photon in mode âout heralds
the existence of a single phonon stored in the mechanical resonator [HM86; Hon+17].

This type of probabilistic pair creation process also occurs in other systems, such as
non-linear crystals [BW70], atomic vapors [Kuz+03] or lattice or molecular vibrations in
bulk materials [AS71; LLK72]. It is a standard tool in quantum optics, called spontaneous
parametric down conversion, parametric fluorescence or parametric frequency splitting,
amongst others. Beyond the creation of high-quality single-excitation Fock states [HM86],
this process is used for example in non-linear crystals to generate complex entangled states
involving multiple excitations [Wal+04b; Wal+05; Giu+15].

For an optomechanical system with the drive laser tuned to ∆ = −Ω̃ on the blue side
of the cavity, i.e. the Stokes scattered field being resonant with the optical cavity, we find

43 Alternatively we can go from the Heisenberg picture, where the operator evolves with the time, with
the final operator ôf = Û†ôiÛ being a unitary transformation of the initial operator, to an interaction

picture, where the wavefunction evolves with this unitary transformation |ψ〉f = Û |ψ〉i from its initial
to final state. For (2.62), we find that the transformation

Û = exp
(
ir
[
eiθâ†inm̂

†
Ω̃

+ h.c.
])

with r = sinh−1(
√
εP)

approximately generates the desired behavior, where we exploit the equality also used in 12. Note
that here we approximated âout(T ) ≈ −âin(T ), neglecting the deformation of the envelope by the
interaction.
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Figure 2.9.: Optomechanical Down Conversion. The Stokes interaction leads to a correlated
amplification of the input states, as in an optical parametric amplifier. This also holds if the optical
and mechanical mode initially are in their groundstate: A high energy drive photon (blue dots)
is down converted to a resonant signal photon (green dots) and an idler phonon (orange dots).
For low probabilities εP � 1 of this spontaneous down conversion, multiple scattering events
are highly unlikely (∼ ε2P). Thus, the detection of a signal photon, e.g. with a superconducting
nanowire single photon detector (SNSPD) heralds the presence of a single idler phonon.

by employing (2.51) the Stokes scattering constant

εP = exp

(
κin

κ

4g2
0Nin,+

Ω̃2 + κ2

)
− 1 (2.63a)

≈ κin

κ

4g2
0Nin,+

Ω̃2 + κ2
for εP � 1. (2.63b)

The exponential scaling of εP with the number of photons in the drive pulse Nin,+ in
eq. (2.63a) corresponds to the amplification of the spontaneous pair creation, as mentioned
above. For low pump strengths, this amplification does not play a significant role and the
pair creation probability (2.63b) is approximately linear in the number of pump photons.
In this regime, we can again recover the interaction picture of the non-linear dynamics.
In this case the interaction changes the initial wavefunction by the transformation44

|ψopt, ψm, ψdrive〉final ∝
(

1 + i
√
p1â
†
inm̂

†
Ω̃
âdrive + i

√
p1â
†
driveâoutm̂Ω̃

)
|ψopt, ψm, ψdrive〉initial

(2.64a)

p1 =
κin

κ

4g2
0

Ω̃2 + κ2
(2.64b)

44 As in paragraph 2.3.2, we use the evolution operator described in 43 to approximately map the lin-
earized problem back to the non-linear process described in paragraph 2.1.1, by replacing

√
Nin,+e

iθ →
âdrive.

41



2. Theory of Cavity Optomechanics

where p1 stands for the scattering probability of each drive photon45 (see also figure 2.10).
Note that as in the case of anti-Stokes scattering in paragraph 2.3.2, this approximation is
mainly intended to guide the intuition of the process, as it does not properly capture losses
and finite coupling of the drive photons to the cavity. We find that for the photon-phonon
pair creation, an off-resonant, high frequency drive photon is annihilated by âdrive and a
low frequency, resonant photon is created by â†out along with a mechanical phonon m̂Ω̃. In
the Hermitian conjugate process, a resonant photon and a phonon both annihilate to add
a photon to the drive beam. Both processes can be enhanced by increasing the number
of excitations, bearing in mind the assumption made in the approximation (2.64a), that
the number of drive photons 〈â†driveâdrive〉 = Nin,+ greatly exceeds the number of photons

on resonance 〈â†inâin〉. In the optomechanical crystals used in chapters 4 to 6 the single
photon Stokes scattering rate is p1 ∼ 5 · 10−8. Hence, using approximately Nin,+ ∼ 2 · 105

drive photons results in a probability of about εP ∼ 1% of a single pair creation event per
pulse, keeping the probability of generating multiple pairs negligible.

phonon

blue detuned photon resonant photon

time

p1

Figure 2.10.: Stokes Scattering. A blue detuned drive photon (dark blue) decays into a
resonant photon (green) and a phonon (light blue). The probability of this process for each drive
photon is p1 ∼ 5 · 10−8 for the parameters given in table 2.1.

2.3.4. Combined Scattering Processes

In the previous paragraphs, we treated each interaction term independently. While this is
a good approximation for many experimental protocols in the resolved sideband regime,
there will always be a residual contribution by all types of interactions, Stokes and anti-
Stokes scattering, as well as mechanical decay. Here, we will treat the previously ignored
interaction terms as small perturbations to the dominant term, in order to estimate the
magnitude and scaling of their influence. First, I will treat the influence of the mechanical
decay during the protocol, followed by the influence of the simultaneous Stokes and anti-
Stokes scattering.

The mechanical oscillator is coupled to the thermal environment, allowing excitations
to escape the resonator and thermal phonons to enter it. This coupling s̃− = Γ/2 is
usually constant over time, such that we cannot define a single input or output mode by

45As in the previous paragraph, âdrive is the annihilation operator of a photon in the drive mode and the
wavefunction |ψopt, ψmech, ψdrive〉 contains the state of the resonant optical field, mechanical oscillator
and the blue detuned optical drive mode.
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an envelope with a finite localization in the time domain, as we did in paragraph 2.3.1
for the optical baths (2.49) and (2.53). However, as we are not primarily interested in
the pulse shape of the phonon emitted into the environment, but rather in the phonon
loss during the dominant optical interaction, it is a good approximation to consider the
mechanical coupling constant during the interaction for a characteristic time τeff and zero
outside of this time window. The proper choice of this characteristic time depends on the
exact goal of the calculation46, but is typically between the full width half maximum of
the optical pulse envelope τFWHM ≤ τeff and the total pulse length T ≥ τeff. For a more
precise computation of the influence of the mechanical environment, a master equation in
the Lindblad form can be used, as detailed in section 5.3. In analogy to the anti-Stokes
process for small fidelities (2.59b), we find the fidelity of a state transfer with the thermal
environment

εmech
R ≈ Γτeff. (2.65)

Consequently, during the pulsed optical interaction, a thermal environment with average
occupation number nth adds εmech

R nth phonons to the system. A state transfer by Stokes
scattering will asymptotically be limited to 1 − εmech

R , also for large numbers of drive
photons. Hence, it is advantageous to use short drive pulses, theoretically limited by
the condition of adiabaticity and weak coupling47. Practically, the pulse length T or
τFWHM is effectively limited by the bandwidth of the drive rejection filters, as discussed
in paragraph 2.4.2.

In addition to mechanical losses and heating by the thermal environment, there is
also a secondary optical scattering term. In the resolved sideband regime, this term is
off-resonant, i.e. the scattered photons are not close to the optical resonance, and it is
therefore much weaker than the dominant, resonant scattering term. We will first look
at the example of an off-resonant Stokes term, which causes heating during a resonant,
anti-Stokes based state transfer, as described in paragraph 2.3.2. For a single adiabatic
drive beam, we found in paragraph 2.3.1 that the optical baths for Stokes-process and the
anti-Stokes process are orthogonal modes, as they are separated in frequency. We thus
treat both processes independently48 and find for the Stokes pair creation probability

εred
P =

κinκ

κ2 + 4Ω̃2

4g2
0Nin,-

Ω̃2 + κ2
(2.66a)

≈ 1

1 + 4Ω̃2/κ2
εR for εR � 1. (2.66b)

For small transfer fidelities εR,the sideband resolution Ω̃/κ determines the optomechanical
heating induced by the anti-Stokes drive pulse. For the devices used in chapters 4 to 6,

46 A proper effective time will be slightly different when estimating e.g. the influx of phonons from the
thermal bath during a Stokes scattering based pair creation process or the reduction of state transfer
fidelity in a anti Stokes scattering based state transfer.

47 This limit is only with regard to the presented anti-Stokes state transfer. Of course, high fidelity state
transfer can also be achieved in the strong coupling regime, using a Rabi oscillations between the
mechanical and optical mode.

48 Scattering from the drive pulse into the optomechanical sidebands is independent, which is the case
described here. When there are initially coherent excitations in both of the sidebands, interference can
occur when they are scattered onto the drive frequency, and thus care must be taken when considering
this specific example, which is, however, beyond the scope of this work.
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the Stokes scattering probability εred
P ∼ 2 · 10−3εR is significantly smaller than the desired

anti-Stokes probability, and for a typical fidelity of εR ∼ 10% leads to a heating by
∼ 2 · 10−4 phonons. As the heating only occurs during the optomechanical interaction,
approximately ε2R/(1 + 4Ω̃2/κ2)/2 photons are added to the anti-Stokes sideband. Note
that these additional resonant photons correspond to a transferred phonon created by
a Stokes scattering event, before being transferred to the optical domain. Hence, they
are highly correlated with the corresponding Stokes photons at the off-resonant optical
frequency ωL−2Ω̃. While this contribution is negligible in the off-resonant driving schemes
applied in chapters 4 to 6, the residual Stokes interaction of an anti-Stokes state transfer
is exploited for example in references [Vit+07; BNG11] and [Kas+15; Kas+16]49.

When driving the Stokes transition, i.e. ∆ = Ω̃ as described in paragraph 2.3.3, the
off-resonant anti-Stokes fidelity is εblue

R = εP/(1 + 4Ω̃2/κ2) for a small Stokes pair creation
probability εP � 1. It thus scales in the same way with the sideband resolution as in
the previous example. Consequently, in both cases, the only way to reduce the secondary
optical scattering terms is to increase the sideband resolution Ω̃/κ, which in most cases
is limited by the unintentional losses of the cavity. Note that while a Stokes scattering
event can happen spontaneously,the anti-Stokes transition requires an input in the optical
anti-Stokes sideband or the mechanical resonator. The anti-Stokes scattering can thus be
suppressed if all input modes, except for the drive, initially are in their respective ground
state. Hence, photon-phonon pairs can be created also in the unresolved sideband regime,
as long as the mechanical resonator was previously cooled to the ground state. For the
creation of photon-phonon pairs by Stokes scattering, the undesired anti-Stokes transition
mainly represents a loss channel for the thereby created phonons. As this loss scales with
the pair creation probability εP, keeping the latter small reduces this effect. For sideband
resolved systems, εR � εP and therefore the quality of the photon-phonon pairs will
always be limited by the emission of multiple pairs, see also chapter 4.

When the system is driven by multiple lasers, in particular when some of the optome-
chanical sidebands are close in frequency, these sidebands can interact and non-trivial
effects can occur [Qiu+18]. In particular, when the system is driven at ∆ = ±Ω̃ simulta-
neously, the interference between Stokes transition of the blue drive and the anti-Stokes
transition of the red drive represents an engineered bath which can lead to squeezing of
the mechanical state [BVT80; Cir+93; CMJ08; Suh+14; Wol+15; Pir+15; Lec+15a].

2.3.5. Phase Control

So far, we focused on the discussion of the addition and subtraction of phonons by means
of Stokes and anti-Stokes transitions. Complementary to this optical control of the ampli-
tude of the mechanical motion, the drive laser also influences the phase of the mechanical
resonator. The dynamical backaction of the optomechanical interaction modifies the me-
chanical resonance frequency from the natural frequency Ω to the effective frequency
Ω̃ = Ω + δΩ. As the interaction, and therefore the frequency shift is finite in time, this
results in a finite accumulated phase δΦ =

∫
dt δΩ(t) during the interaction.

49 In other experiments with optical phonons [Lee+11; Lee+12], distinct read and write pulses are used
in order to obtain temporal resolution.
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Using the expression for the optical spring (2.28), we obtain a phase shift

δΦ = 2g2
0∆

Ω̃2 −∆2 − κ2

(Ω̃2 + ∆2 + κ2)2 − 4∆2Ω̃2

2κin

∆2 + κ2

∫ T

0

dt |α0(t)|2︸ ︷︷ ︸
=Nin,±

, (2.67)

which the mechanical mode accumulates relative to the evolution with its natural fre-
quency Ω. This expression is not easily accessible by intuition in its general form, as
it contains higher order polynomials in its numerator and denominator. We can see for

example, that the phase shift can become zero for various detunings (∆ = 0,±
√

Ω̃2 − κ2)
in the resolved sideband regime. Moreover, the expression implicitly still depends on the
mechanical frequency modified by the optical spring Ω̃. We will therefore restrict the
discussion to some cases relevant for the optical control of the mechanical quantum state.

The main focus of this thesis lies on off-resonant drives in the resolved sideband regime
with weak optomechanical coupling (Ω̃ > κ > g). In this limit, the frequency shift δΩ
is small compared to the natural frequency Ω, i.e. we can set Ω̃ ≈ Ω in equation (2.67),
rendering the expression explicit. As a drive laser will always induce Stokes and anti-
Stokes scattering, it is of interest how the phase shift relates to the scattering probability.
Note that the phase shift δΦ ∝ g2

0Nin,± is proportional to the squared single photon
coupling strength and the number of drive photons, just as the scattering cross sections
εP and εR in the limit of a weak drive. It is thus instructive to compare the phase shift
with the cumulative coupling

δΦ

2|G̃±(T )|
=

∆

κ

(
Ω̃2 −∆2 − κ2

)(
(∆± Ω̃)2 + κ2

)
(Ω̃2 + ∆2 + κ2)2 − 4∆2Ω̃2

(2.68a)

= ± κΩ̃

κ2 + 4Ω̃2
for ∆ = ∓Ω̃. (2.68b)

For protocols in which one sideband is resonant (2.68b), i.e. selective Stokes or anti-
Stokes scattering, we thus find that the phase shift is weak compared to the pair creation
probability, respectively state transfer fidelity, with δΦ/|2G̃±(T )| ≈ κ/(4Ω̃) � 1. For
the systems described in chapters 4 to 6, a state transfer fidelity of εR = 10% typically
would lead to a negligible phase shift of −δΦ ≈ 5 ·10−3 = 0.3◦. Thus, sideband scattering
protocols result in almost pure amplitude control of the mechanical state, justifying that
phaseshifts by the interaction are typically neglected (see also figure 2.4 on page 20).

In order to achieve predominant phase control, other detuning regimes need to be
considered. In the resolved sideband regime, the relative phase shift for very small or
very large detunings |∆| is

δΦ

2|G̃±(T )|
≈ +

∆

κ
for |∆| � Ω̃ (2.69a)

≈ −∆

κ
for |∆| � Ω̃. (2.69b)

Efficient phase control with small detunings sets strict requirements for the sideband
resolution, as it requires Ω̃ � |∆| � κ. For large detuning, efficient phase control is
also possible for moderate sideband resolution, but requires large drive powers, as the
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cavity is driven far off resonance. In both cases, the optical control of the phase requires a
significant amount of intracavity photons and can thus generate undesired side effects such
as absorption heating50. Consequently, while in principle this optomechanical analogue
to the AC Stark shift allows for phase control over the mechanical mode, in absorption
limited systems other solutions are preferable. For example, in chapter 6 the phase of the
mechanical state is altered during the transfer to the optical domain through the phase
of the optical drive pulse.

2.4. Basic Protocols

In the previous section, we investigated the interaction between the optical and the me-
chanical mode driven by a quasi-continuous control pulse. It was followed by a description
of the possibilities and limitations of pulsed optical control of mechanical motion in the
quantum regime. In this section, we specify some basic protocols that allow to characterize
the optomechanical state.

First, we will describe a method to measure the effective mode temperature of the
mechanical oscillator, exploiting the asymmetry in the scattering rate of the Stokes and
anti-Stokes transition for low phonon numbers in paragraph 2.4.1. Thereafter, we turn to
the correlation between the optical and the mechanical state, describing in paragraph 2.4.2
how to measure the second order coherence between the two modes, also called normalized
cross-correlations.

Finally, we will investigate a non-adiabatic protocol, briefly discussing the possibilities
and limitations of instantaneous, stroboscopic position measurements to achieve quantum
non-demolition measurements of a mechanical quadrature.

2.4.1. Sideband Asymmetry Thermometry

The effective temperature of the mechanical oscillator, or more precisely its mean oc-
cupation number n̄ = 〈m̂†m̂〉 is an important characteristic of the mechanical state. It
quantifies how well the resonator is thermalized, either to its mechanical environment or
the effective bath of a sideband cooling laser. In many quantum applications, n̄ relates
to the noise added to a pure quantum state in an operation involving the mechanical
oscillator, possibly masking its quantum properties such as entanglement or squeezing.

As we saw in paragraph 2.3.2, the optomechanical sideband created by anti-Stokes scat-
tering is a (usually incomplete) mapping of the mechanical state, and hence its intensity is
proportional to the mean occupation number n̄. Consequently, an intensity measurement
of this sideband can be converted to n̄, given that a proper normalization of the anti-
Stokes sideband is available. This can for example be a measurement at a known mode
temperature [Teu+11a], e.g. room temperature, or a complete and independent charac-
terization of all system parameters, primarily the linearized coupling strength g and the

50 The efficiency of the phase shift δΦ with respect to the deposited energy Eabs by absorption of drive
photons, see also 41, scales with δΦ/Eabs ∝ ∆/Ω̃2 for small detunings and ∝ 1/∆ for large detunings.
When quantifying the condition of small detuning as |∆| = Ω̃/k and large detuning as |∆| = Ω̃ · k,
with k � 1, both cases become δΦ/Eabs ∝ 1/(kΩ̃). Hence, they are similarly vulnerable to absorbtion
heating, and the choice of protocol will likely depend on the available sideband resolution and laser
power.
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losses in the optical path [Cha+11a]. Oftentimes, those two options are not possible, for
example when operating the experiment at cryogenic temperatures and not all system
parameters are accessible. When operating close to the mechanical ground state, luck-
ily, a new possibility arises, namely normalizing the anti-Stokes by the Stokes sideband
intensity [Die+89; Saf+12; Wei+14].

We consider quasi-continous control pulses, as described in section 2.3, driving a Stokes
transition with scattering probability εP and an anti-Stokes transition with a transfer
fidelity εR. The control pulses are weak and of the same strength, such that εP = εR � 1.
This can for example be achieved with a single drive pulse on resonance (∆ = 0) or with
two independent drive pulses with opposite detuning on the blue and red side. In the
resolved sideband regime, the latter configuration (with ∆ = ±Ω) is preferable, as it
minimizes the residual heating due to absorption of drive photons.

We now define the optical mode of the detection channel

d̂w(r) =
√
ηdâ

w(r)
out +

√
1− ηdl̂ (2.70)

for the Stokes (anti-Stokes) sideband âwout (ârout) emitted from the cavity, as described
by eq. (2.62) (respectively (2.58)). We model the absolute quantum efficiency ηd of the
detection, which is the same for both channels, by a directional coupling to an auxiliary
input mode l̂ which is in the ground state [Yur85; Sha85]. Further assuming the input
mode âin of the optical sidebands to be in the vacuum state, we find with eq. (2.62) and
(2.58)

〈d̂†wd̂w〉 = ηdεR 〈m̂m̂†〉 = ηdεR〈m̂†m̂+ 1〉 (2.71a)

〈d̂†r d̂r〉 = ηdεR 〈m̂†m̂〉. (2.71b)

Here, all mechanical operators are evaluated before the interaction m̂ = m̂(0). For the
anti-Stokes transition (2.71b), we find the expected proportionality of the number of
photons in the sideband to the number of phonons in the mechanical oscillator. For the
Stokes transition (2.71a), the inverted order of the mechanical operators results in an
offset given by the commutation relation of the ladder operators, see also 3, equivalent to
exactly one phonon. We can thus use this natural scale bar to normalize the anti-Stokes
scattering rate and obtain the mean phonon number

n̄ =

〈
d̂†r d̂r

〉
〈
d̂†wd̂w

〉
−
〈
d̂†r d̂r

〉 . (2.72)

As this natural scale bar given by the asymmetry in the scattering rates is equivalent to
a single phonon, this method is most reliable for small mean occupation numbers n̄ . 1.
While in principle it also works for larger n̄, in this case a good relative precision is
necessary, as single phonon resolution is required.

Note that this thermometry technique relies on several assumptions, which should be
checked to verify that the result is reliable. For a single, resonant drive, the detection
efficiency ηd of both sidebands needs to be the same, despite them being at different
absolute frequencies. In the case of two independent drives, the scattered photons are at
the same frequency ωc, however, the average photon number in both of them needs to be
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identical in order to ensure that both scattering parameters εP = εR are the same, see
(2.59b), (2.63b). Furthermore, the optical input modes need to be in the vacuum state,
as photons originating from residual laser noise can corrupt the measurement [KSG13;
Saf+13b].

Furthermore, for low phonon numbers n̄ � 1, the measurement of background pho-
tons can modify the apparent sideband intensity. For example, when using single photon
detectors, it is necessary to filter out the drive pulses (see also paragraph 2.4.2), as the
detectors cannot distinguish the drive from the signal photons. Realistic filters only have
a finite suppression ηleak at the drive frequency, such that in addition to the optome-
chanical sideband signal, the detectors also register leaked drive photons, for example
〈d̂†r d̂r〉 = ηdεR 〈m̂†m̂〉 + ηleak〈â†driveâdrive〉. This can be characterized and subratcted, e.g.

by an offresonant measurement 〈d̂†od̂o〉 = ηleak〈â†driveâdrive〉 suppressing the optomechanical
sideband. Hence, an accurate estimate for the true mean phonon occupation number is

n̄ =

〈
d̂†r d̂r

〉
−
〈
d̂†od̂o

〉
〈
d̂†wd̂w

〉
−
〈
d̂†r d̂r

〉 . (2.73)

This method can of course be refined by taking separate leak measurements for both
sidebands, in order to also compensate dispersion in the optical filtering setup [Rie+16;
Hon+17].

2.4.2. Second Order Coherence

Many quantum properties constitute themselves in correlations between different observ-
ables of a system. For example, Heisenberg’s uncertainty relation predicts a correlation
between the variances of orthonormal quadratures such as momentum and position, and
quantum entanglement describes correlations between two systems which are stronger
than classically possible, thereby rendering the description of the states inseparable.

Here we discuss a specific type of correlation measurement, which is very useful for
the characterization of the interaction in an optomechanical system. The normalized
intensity cross-correlation, also called second order coherence, describes the intensity-
intensity correlations between two modes, represented by their annihilation operators â
and b̂, normalized to the average intensity of each mode [Gla63b]. It is defined as

g
(2)
ab (τ) =

〈: â†(t)â(t)b̂†(t+ τ)b̂(t+ τ) :〉
〈â†(t)â(t)〉〈b̂†(t+ τ)b̂(t+ τ)〉

, (2.74)

with : Ô : standing for normal ordering of operator Ô51. Due to its normalization, this
quantity is invariant under losses in the detection path, and therefore is convenient for
experiments with small detection efficiency. For classical fields, the Cauchy–Schwarz in-
equality sets an upper limit to the cross-correlation [Cla74; MW95; Kuz+03]. A violation
of this bound thus offers a simple possibility to identify if the system operates in the
quantum regime. Due to this property, the cross-correlation also serves as a benchmark

51 Normal ordering :Ô : of an operator Ô relates to expressing the operator in terms of annihilation and
creation operators, e.g. Ô = âb̂†ĉ+ d̂ê†, and sorting it such that all creation operators are on the right
side, and annihilation operators are on the left side, i.e. in this case :Ô := b̂†âĉ+ ê†d̂.
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for various quantum information protocols. In many cases, a condition for the feasibility
of a protocol can be formulated in terms of a minimum value of the cross-correlation.

In the following, we will address each of these points, first describing a typical measure-
ment protocol, then explaining the loss tolerance and giving an intuition for the classicality
bound. Finally, we review the properties of the normalized cross-correlation in the op-
tomechanical context, as well as the technical requirements for the measurement. Note
that chapter 4 describes the experimental work on optomechanical cross-correlations, and
contains complementary information on the topic.

Measurement Protocol

As we saw in paragraph 2.3.3, driving the optomechanical Stokes transition should lead to
the correlated creation of resonant photons and phonons. To characterize this interaction,
we measure the cross-correlation g

(2)
om between the optical mode containing the Stokes

scattered photons and the mechanical mode. While we have direct access to the emitted
photon, we first need to transfer the mechanical state to the optical domain in order
to measure its intensity, which we achieve by driving the anti-Stokes transition, see also
paragraph 2.3.2. Here, we consider a sideband resolved cavity, such that we can selectively
drive the Stokes and anti-Stokes transition, with the mechanical oscillator close to, and
the optical sideband input in their respective ground state. As detectors, we will assume
single photon detectors, though this is not strictly necessary [BNG11].

We first send a blue detuned drive pulse at ∆ = −Ω̃ with a scattering constant εP,
called “write pulse”. After a short period τ , we swap the mechanical state onto the
optical mode, using a red detuned drive at ∆ = +Ω̃ with scattering constant εR, called
“read pulse”. Both scattered fields, the Stokes sideband âwout and the anti-Stokes sideband
ârout have the same carrier frequency ωc and will thus experience the same loss 1− ηd on
their path to the detector. Modeling the loss as described in eq. (2.70), we find the total
detection quantum efficiency for the Stokes scattered photons to be ηd = ηqeηpathκin/κ,
with the quantum efficiency ηqe of the detector, ηpath the transmission of the optical path
from the device to the detector, and κin/κ the loss due to the cavity impedance. For the
mechanical mode, we also need to take into account the finite state transfer fidelity εR,
yielding the detection efficiency ηr = ηdεR of the mechanical mode m̂.

We can thus write the annihilation operator of the detection mode for the write pulse
d̂w =

√
ηdâ

w
out+
√

1− ηdl̂w and for the read pulse d̂r =
√
ηrm̂+

√
1− ηrl̂r, with the effective

loss mode l̂r ∝
√
ηd(1− εR)ârin +

√
1− ηdl̂d. The loss modes l̂w, l̂r, and l̂d are vacuum

ports, see also eq. (2.70). As the mode envelopes of l̂w and l̂d are defined at distinct times,
l̂w and l̂r can be considered orthogonal. Consequently, we find in analogy to (2.71b) that
the cross-correlation between the two detection channels

g
(2)
dwdr

=
〈ηdηr : âw†outâ

w
outm̂

†m̂ :〉
〈ηd â

w†
outâ

w
out〉〈ηr m̂†m̂〉

= g(2)
om (2.75)

is equivalent to the cross-correlation between the photon mode and phonon mode of
the Stokes scattering process. Hence, we see that detection losses do not modify the
cross-correlation, allowing e.g. for measurements with low optomechanical state transfer
fidelity.

Note that in a realistic experiment, the detectors will also detect signals which do
not originate from the scattering process, but for example relate to photons of the drive
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pulse, leaked through the filter setup. In order to understand the effect of these false
positive detection events, we reformulate the definition (2.74) of the cross-correlation by
introducing the notion of heralded states. The heralded state of the mechanical oscillator,
represented by the statistical operator ρ̂m,her, e.g. after a Stokes scattering process, is
obtained by conditioning the state on a detection event in the optical mode. The state
therefore can be expressed as ρ̂m,her = Trdw(d̂†wd̂wρ̂w)/Tr(d̂†wd̂wρ̂w) with the statistical
operator of optomechanical state ρ̂w after the write pulse. The index in Trdw( · ) indicates
that the trace is only taken over the optical part, here the detection channel associated
with d̂w, in contrast to Tr( · ) tracing over all systems. Consequently, ρ̂m,her is properly
normalized, such that we can deduce

g
(2)
dwdr

=
Tr
(
d̂†rd̂rρ̂m,her

)
Tr
(
d̂†rd̂rρ̂w

) =
〈d̂†rd̂r〉heralded

〈d̂†rd̂r〉unheralded

(2.76a)

≈ 〈m̂†m̂〉heralded

〈m̂†m̂〉unheralded

≈ g(2)
om, (2.76b)

i.e. that the cross-correlation describes the ratio of the expectation value of excitations
in the conditional state versus excitations in the unconditional state. Uncorrelated false
positive counts thus add a constant offset 〈d̂†rd̂r〉 ∝ 〈m̂†m̂〉+ const. to the numerator and

denominator, regressing g
(2)
dwdr

towards 1. Consequently, the measured g
(2)
dwdr

is typically a

conservative estimate of the pure optomechanical g
(2)
om.

Classical Cauchy–Schwarz Inequality

For classical waves, it is possible to describe their joint state by a well-behaved probabil-
ity distribution for their amplitudes and phases. This corresponds to a positive square
integrable Glauber Sudarshan phase space function52, which allows to bound the cross-
correlation of a classical system using a Cauchy-Schwarz inequality

g
(2)
ab ≤

√
g

(2)
aa g

(2)
bb (2.77)

by the mean value of the auto-correlations of the subsystems. We can understand this
from the following picture (see also figure 2.11): Due to the loss tolerance of the second
order coherence, the autocorrelation corresponds to the cross-correlation between the two
output ports of a 50:50 beamsplitter. Such a beamsplitter creates the highest classically
possible correlations, as the two outputs are identical copies of the input wave, albeit
with smaller amplitude. Thus, whatever the interaction driven by the laser pulse was
exactly, the correlations it creates cannot be higher than the (multiplicative) mean of
the auto-correlations. Note that this classicality bound only restricts the property of the
common system of mode â and b̂, in our case the optical and mechanical mode. It is
sufficient for one system to exhibit quantum properties to violate this inequality. For
example, if one system (â) is a decent single photon source, it’s autocorrelation will be

52 The statistical operator is expressed by the quasi-probability distribution P (α, β), named after Glauber
and Sudarshan, as ρ̂ =

∫∫
d2α d2β P (α, β) |α, β〉 〈α, β| and is considered classical if P (α, β) ≥ 0∀α, β,

in which case it corresponds to a well-behaved probability distribution for the phase and amplitude
of the classical waves.
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b̂â
41

32
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(2)
ab ≤

√
g

(2)
aa g

(2)
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SourceBS BS

Figure 2.11.: Classical Cauchy–Schwarz Inequality. A classical source emits fields into two

modes â and b̂. The intensity correlation between them g
(2)
ab = g

(2)
23 is given by the correlation

between ports 2 and 3 (red arrow). It cannot exceed the correlation of a mode with an identical

copy of itself (green arrows), such as the correlation between ports 1 and 2 g
(2)
12 = g

(2)
aa . For

unequal fields, this bound is given by the multiplicative mean value (g
(2)
aa g

(2)
bb )1/2. Quantum fields

can violate this inequality.

g
(2)
aa � 1/2. Therefore, any uncorrelated system b̂ with thermal properties, that is g

(2)
bb = 2,

and showing statistical independence, that is g
(2)
ab = 1, will violate the inequality (2.77).

This example also highlights, that it specifically is a bound against classical wave-like
behavior. Classical particles, like a football, can also violate the inequality, as they can
trivially be in a state with an autocorrelation g

(2)
ball,ball = 0, i.e. not being detected at two

places simultaneously.

Experimental Requirements

We now turn back to the optomechanical system described above, to analyze the properties
of the cross-correlation. As we learned in paragraph 2.3.3, the Stokes transition driven by
the write pulse should create photon-phonon pairs with a probability εP � 1, which we
assume here to be small. Consequently, the heralded state should contain a single phonon,
while the unheralded state has a mean phonon number of nf = εP + n̄ with the initial
mean occupation n̄� 1 of the mechanical mode. Thus, when starting close to the ground
state and using a weak write pulse, we expect a large violation g

(2)
om ∼ (1 + nf )/nf � 2

of inequality (2.77), given a thermal property g
(2)
oo = g

(2)
mm = 2 of both subsystems. In

appendix B.3, we find as full expression

g
(2)
dwdr

(τ) =
e−Γτ

nf (τ) + PB
+ 1 (2.78)

for a delay τ between the write and the read pulse, an the mean occupation number
nf (τ) � 1 of the mechanical oscillator at this time. The normalized background counts
PB � 1, i.e. the count rate of false positive events converted to an equivalent phonon
number PB expected from the read pulse53, can be characterized as described in the

53 The normalize count rate PB = P (false positive)/ηr corresponds to the probability of a false positive
detection event P (false positive) during the time window of the read pulse, normalized by the detection
quantum efficiency of a phonon ηr, as defined at equation (2.75). Compare also to the compensation
of false positive events in the sideband asymmetry protocol (2.73).
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2. Theory of Cavity Optomechanics

previous paragraph. Thus, a cross-correlation measurement allows for a self-calibrated
determination of the mean phonon number nf (τ).

The approximation (2.78) also helps to understand why the cross-correlation can be
used as a benchmark for other probabilistic protocols. The denominator quantifies the
added noise contributions from the thermal environment, the state preparation by the
write pulse, the read out noise of the stored state, all normalized to an equivalent phonon
number nNoise = nf +PB. Thus, the normalized cross-correlation can be used to estimate
if the system under investigation has low enough added noise such that it can potentially
yield a successful measurements of a more involved protocol. For example, the generation
of remote entanglement requires g

(2)
om ≥ 5.8 [BNG11]54, the violation of a Bell inequality

g
(2)
om ≥ 5.8 [Rie+06] and the autocorrelation of the heralded phonon can be approximated

as g
(2)
mm,heralded ∼ 4/(g

(2)
om − 1) for g

(2)
om � 1 [Gal+14; Rie+16].

Note that for simple thermometry, the single-fold count rate based sideband asymmetry
measurement described in paragraph 2.4.1 is more resource efficient, as the second order
correlation is a two-fold coincidence measurement. From the losses described in equation
(2.75), we can deduce the average number of repetitions necessary to observe one uncorre-
lated coincidence event as Ntries/coincidence ≈ 1/P (W ∪ R) = 1/(εPεRη

2
d). Hence, assuming

Gaussian counting statistics, a statistical uncertainty of σ = 0.1 in units of the normalized
cross-correlation requires ∼ 100 · Ntries/coincidence. Using this scaling, we can estimate the
optimal coupling to the cavity κin. In most measurements, the usable range of εP and εR
is limited by absorption of photons in the cavity, and the intrinsic loss rate κloss is limited
by fabrication. Consequently, fixing the intracavity photon number |c̄|2 and κloss, we find
the minimum Ntries/coincidence for κin = κ/255.

The classical bound requires slightly more measurements with a mean repetition number
per uncorrelated coincidence of Nw ≈ 1/(ε2Pη

2
d) for the write pulse and Nr ≈ 1/(n2

fε
2
Rη

2
d) for

the read pulse. Furthermore, we can estimate the minimum filter suppression 1/ηf of the
drive pulses required to achieve a maximum contribution to the normalized background
counts PB,leak,max by leaked drive photons, see also 53. As the drive pulses experience the
same loss in the optical path to the detectors, the residual transmission of drive photons
is bound by

ηf ≤ PB,leak,max
κin

κ

εR
Nin,-

≈ PB,leak,max
κ2

in

κ2

4g2
0

Ω̃2 + κ2
. (2.79)

In the second step, small state transfer fidelities εR � 1 are assumed. For larger fidelities,
the transfer efficiency per drive photon is reduced (2.59a), and thus even stronger sup-
pression 1/ηf is required. In order to also allow for high bandwidths of the drive pulse,
typically concatenated filters are required. Using nfilter identical filters with a bandwidth
κfilter

56, all resonant with the optomechanically scattered photons, we find for the residual
transmission

ηf =

(
1

1 + Ω̃2/κ2
filter

)nfilter

. (2.80)

54 In a different estimation, reference [Usm+12] requires g
(2)
om ≥ 7.8.

55 In the case that the absorption is low enough such that multiple Stokes scattering events are limiting
the usable range of εP, i.e. εP contributes significantly to nf , slight over-coupling κin = 2κloss becomes
optimal.

56The bandwidth corresponding to the amplitude decay rate of the filters, see also (2.34).
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For the typical parameters in chapters 4 to 6, the drive suppression (2.79) needs to exceed
1/ηf ∼ (Ω̃/κfilter)

2nfilter ≥ 4 · 108. For a mechanical frequency Ω̃/2π ∼ 5.2GHz, this can
be achieved with nfilter = 2 filters with a linewidth κfilter/2π ∼ 35MHz. Note that the free
spectral range of these filters must exceed 2Ω, and mode-matching to other spatial and
polarization modes of the filter must be taken into account.

2.4.3. Stroboscopic Measurements

The previous sections focused on optical control pulses with an envelope that changes
slowly compared to the mechanical oscillation frequency. For low frequency oscillators, it
is also possible to adiabatically drive the cavity, yet keep the pulse length much shorter
than the mechanical period. In this case, the free mechanical operator can be approx-
imated as remaining stationary during the presence of the drive pulse, such that the
interaction corresponds to a measurement of the instantaneous position of the mechan-
ical element [Van+11]. This in principle allows to evade the measurement back action
on the observed quadrature, allowing e.g. for conditional squeezing of the state [Van+13;
Vas+15]. As the quantum formalism for these stroboscopic measurements can be found in
details elsewhere [BVK78; Tho+78; BVT80; Kha+10; Van+11], I will restrict the expla-
nation of the measurement protocols to a basic level and focus on the practical limitations
with respect to stroboscopic quantum control of mechanical oscillators.

If an interaction only reveals information on one quadrature of the system under inves-
tigation, e.g. X̂, the unitary operator describing the evolution of the wavefunction57 due
to this interaction, Û = Û(X̂), can only be a function of this quadrature. In other words,
the unitary Û must be independent of the non-commuting orthogonal quadrature, in this
case P̂ , and consequently commute with the measured quadrature [Û(X̂), X̂] = 0. Thus,
a measurement that principally only allows to access a single property of the system will
not impart measurement back action on this property.

We can intuitively understand this by considering the radiation pressure interaction,
neglecting the mediating optical cavity. When a short laser pulse is reflected by an object,
the optical phase relates to its (instantaneous) position. The reversal of the propagation
direction of the laser pulse corresponds to change in its momentum, which is compen-
sated by transferring momentum difference to the object, an effect called radiation pres-
sure. Consequently, while information on the position is obtained, the measurement back
action only affects the momentum of the investigated object. This example also allows
to grasp the limits of this measurement scheme. Firstly, if the pulse is not infinitesi-
mally short, it can be split in two equal halves, with the difference of the two position
measurements revealing information on the momentum of the object. This corresponds
to the transition between an instantaneous optical phase measurement and a resolvable
continuous Doppler shift of the optical frequency. Secondly, the transferred momentum
will change the position of the object immediately. Thus, even though there is no back
action imparted to the instantaneous position, the free evolution of the object prevents a
continuous observation the position, such that the protocol cannot strictly be described
as a quantum non-demolition (QND) measurement. For a harmonic oscillator, the initial
position and momentum state will recur after a full mechanical period, allowing for a
repeated measurement of the same instantaneous position. For this reason, the (rotating)

57Respectively the evolution of the operators in the Heisenberg picture.
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2. Theory of Cavity Optomechanics

quadratures are called stroboscopic QND observables [BVT80]. However, this requires
the mechanical state to remain unaltered by the thermal environment for a full mechan-
ical period, setting strict bounds for the mechanical decoherence rate. Practically, the
stroboscopic nature of the QND observables leads to a third challenge. Massive mechan-
ical oscillators possess a plethora of mechanical modes at various frequencies. Thus, the
measured position of the object does not correspond to the recurring, stroboscopic QND
observable of a single mode, but the non-recurring total displacement of the mechanical
oscillator.

These three limitations render the stroboscopic measurement scheme vulnerable to
corruption by thermal noise. In the following I will briefly quantify the conditions for a
stroboscopic QND measurement arising from these classical noise contributions.

Pulse Length

If the measurement pulse is too long, it contains information on the change of position
and thus the momentum of the object. For simplicity, we will consider two consecutive,
ideal, and instantaneous position measurements and investigate the resulting uncertainty
due to the thermal momentum distribution. Assuming the back action noise imparted
on the momentum quadrature is negligible compared to its thermal distribution, we can
treat the system classically, defining the measurement Mi = X(ti), i = 1, 2 at time t1 = 0
and t2 = δt. For a harmonic evolution of the mechanical oscillator with angular frequency
Ω and neglecting the mean momentum transfer by the measurement pulse, as well as the
thermal decoherence, we find for the harmonic evolution X(t) = X0 cos(Ωt) + P0 sin(Ωt),
with the parameters X0 and P0 having a thermal distribution with the uncertainty σX0 =
σP0 =

√
nth + 1/2. For the difference δM = M2 −M1 we thus find the variance 〈δM2〉 ≈

(Ωδt)2〈P 2
0 〉. Consequently, in order to achieve a variance smaller than the ground state

fluctuations 〈0| X̂2 |0〉, that is allowing for conditional squeezing of the state, the time
difference needs to be smaller than

δt ≤ 1

Ω
√

2nth + 1
. (2.81)

On the one hand, this set an upper limit for the pulse length. On the other hand, when
using pulses which are much shorter than this bound, it describes a time scale during
which two consecutive measurements can in principle resolve conditional squeezing of
the position quadrature. Note that the effective phonon number of the thermal state
describing the variance of the instantaneous position and momentum quadrature X0 and
P0 does not have to correspond to the actual phonon number of the oscillator. Knowledge
on the instantaneous momentum quadrature previous measurements can be used to obtain
a conditional state of a lower temperature with σP0 =

√
〈P 2

0 〉 − 〈P0〉2.

Thermal Decoherence

For a truly stroboscopic measurement of the instantaneous position, it is necessary to wait
until the original instantaneous quadratures recur. While this happens after every full
period T = 2π/Ω, after half a period, the quadratures are recovered with an inverted sign.
In the high temperature limit, i.e. the fluctuations of the thermal environment nenv � 1/2
exceeding the vacuum fluctuations by far, we can approximate the rethermalization of
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the conditional position variance after a measurement at t = 0 as 〈P 2
0 (δt)〉 − 〈P0(0)〉2 ≈

(1−e−Γδt)·(nenv+1/2). Thus, to enable a variance between measurements, delayed by half
a mechanical period δt = T/2, to be smaller than the vacuum fluctuations 〈(M1+M2)2〉 ≤
1/2, the mechanical quality factor needs to exceed Q ≥ 2π(nenv + 1/2). For a mechanical
oscillator with a frequency of Ω/2π ∼ 100kHz at a temperature of 4K, this corresponds
to a minimum quality factor of Q ≥ 5 · 106.

Spectator Modes

Massive oscillators have a series of normal vibrational modes, of which all except of one are
typically neglected. However, a short pulse measures the displacement of the oscillator
at a large bandwidth, thus not allowing for spectrally selecting the mode of interest,
as is done in the quasi-continuous protocols described in the previous paragraphs. For
simplicity, we assume two mechanical modes, with the measurement being normalized to
the mode of interest at the angular frequency Ω0. The second mode, called spectator
mode, is transduced differently to the measurement signal by a factor µ, such that we can
express the time evolution of the observed displacement X(t) = X0 cos(Ω0t)+P0 sin(Ω0t)+
µX1 cos(Ω1t) + µP1 sin(Ω1t). For a stroboscopic measurement of the primary mode, i.e.
δt = 2π/Ω0, this results in a variance of the measurement difference

〈δM2〉 ≈ 2µ2σ2
X1

(1− cos (2π Ω1/Ω2)) . (2.82)

Here, we assumed equipartition of the uncertainty between the two instantaneous quadra-
tures of the spectator mode σX1 = σP1 =

√
n1 + 1/2, with the conditional variance of the

mode n1 + 1/2. Unfortunately, in contrast to the two previous cases, this does not result
in a simple condition indicating when a measurement uncertainty below the mechanical
shot noise limit is possible. It is further complicated by the fact that not just a single
spectator mode but all of them contribute to the added noise, i.e. if it is possible to can-
cel out the contribution of one spectator mode, another one will still contribute to the
measurement noise. In the following, I will describe mitigation strategies addressing the
individual factors of equation (2.82).

First, the conditional variance σ2
X1

can be reduced by cryogenic cooling and the use of
knowledge obtained from previous measurements to further lower the temperature of the
conditional state. This is effective for a broad frequency range. Note that the requirements
for conditional cooling-by-measurement [Van+13] of spectator modes to below the shot
noise limit of the primary mode are typically similar to the requirements necessary to
prepare a conditional pure state in the primary mode [Wie+15]. In other words, this
strategy to reach the quantum regime is usually only promising if feedback cooling to the
ground state is possible, which has only recently been achieved experimentally [Ros+18].

Secondly, the last term indicates that ideal higher harmonics of the primary mode do
not contribute to the noise. Therefore, it can be of interest to use a system with a simple
geometry, such as a vibrating string. As nanofabricated devices typically exhibit some
unintentional asymmetries, this approach is limited in its effectiveness. Furthermore, it
only works for full periods between pulses. When considering half periods between the
measurement pulses, which is advantageous for the thermal decoherence, even-numbered
higher harmonics will not cancel out.

Thirdly, the transduction to the spectator modes can be engineered. The transduction
parameter µ = g1/g0 used here corresponds to the ratio of single photon coupling strengths
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of the primary mode g0 to the spectator mode g1. This can be reduced for some modes
by exploiting symmetries, for example by coupling the optical cavity in the middle of a
vibrating string, even higher harmonics will be canceled out, similarly to out of plane
modes. To also address the odd higher order modes, it can be beneficial to increase the
stiffness of the middle part of the resonator compared to the supporting tethers. In the
extreme limit, the higher order modes can then be interpreted as string modes of the
tether, while the primary mode is the center of mass mode of the test mass in the middle.
While this reduces the coupling strength of the spectator modes, it will also cause the
spectrum to deviate strongly from the form of higher harmonics, which were found to be
beneficial in the previous point. Another way to reduce the coupling of spectator modes is
to increase the sampling area of the optical probe compared to the size of the mechanical
oscillator. In the limit of large oversampling, that is a beam spot much larger than the
test object, exclusively the center of mass motion will couple to the optical field, while
contributions of the higher order modes will in first order cancel out.

A promising approach therefore is the use of optically levitated nano-particles. Due to
the absence of mechanical support, they do not exhibit spectator modes associated with
tethering of the mass. Bulk modes of the nano particles are several orders of magnitude
higher in frequency than the center of mass motion, such that usually only three distinct
modes can be observed, corresponding to the center of mass motion in each dimension of
space. By probing only one direction, an effective single mode oscillator can be obtained
[Mag+18].
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While cavity optomechanics in the weak coupling regime is very accessible from a the-
oretical perspective, reaching the quantum regime in experiments is challenging. The
reason is, that the non-linear nature of the interaction allows for coupling between two
engineered degrees of freedom in vastly different frequency regimes. On the one hand,
this is an intriguing feature for many applications in quantum information science and
beyond, allowing e.g. for a direct interface between long lived mechanical quantum mem-
ories and photons in the conventional fiber telecommunication band. On the other hand,
using large numbers of high-energy optical excitations to control individual low-energy
mechanical excitations can lead to undesired side effects: A single absorbed drive photon
carries enough energy to potentially generate several hundred thousand phonons. De-
spite low conversion efficiency between absorption centers and the mechanical mode, this
incoherent quasi-thermal contribution can easily mask all quantum effects.

A large single photon coupling strength reduces the number of drive photons required
to achieve a certain interaction strength and thus the number of photons that can poten-
tially be absorbed. The coupling strength can be boosted by reducing the mode volume of
the optical and the mechanical resonator, that is increasing the field per photon, respec-
tively phonon. As described in section 3.1, nanophotonic cavities based on interference
in regularly patterned waveguides, called photonic crystal cavities, allow for small mode
volumes and at the same time narrow cavity linewidths.

The same principle, that is modulating the speed of propagation of a guided wave to
form strongly confined resonances, can also be applied to vibrations. In section 3.2 the
similarities and differences to photonic cavities are explored and the possibilities of co-
localizing and coupling photonic and phononic resonances are explained. A co-localized
photonic and phononic crystal resonance is called optomechanical crystal, a type of device
used in the experiments reported in chapters 4 to 6. These optomechanical crystals were
initially designed and realized in seminal works in the group of Oskar Painter [Eic+09;
Cha+11a; Cha+12] and were only slightly adapted in the present work.

3.1. Photonic Crystal Cavities

Photonic crystals are nanofabricated devices, which exhibit an artificial structural period-
icity on the order of the wavelength [Sak05; Joa+08]. The light scattered by the periodic
structures interferes and can therefore form a complex dispersion relation. Due to the
spatial periodicity, it can be mapped into a band diagram of the first irreducible Brillouin
zone of momentum space, in the same way as electronic and vibrational dispersion rela-
tions of single crystals are described in solid state physics [Yab87; Joh87], see figure 3.1a.
Similarly to semi-conductors, the artificial photonic crystals can exhibit band gaps, that
is optical frequencies to which no real wave vector in the reciprocal space corresponds
[YG89; Yab93]. The origin of these photonic band gaps can be understood as normal
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Figure 3.1.: Photonic and Phononic Crystal. Periodic structures on the wavelength scale
create non-trivial dispersion relations, as the scattered fields can interfere. a The band band
diagram shows the relation of the wavenumber to the frequency of horizontally polarized Bloch
modes in an infinite lattice of unit cells (blue). The unit cell for the waveguide photonic crystal
with (longitudinal length, width, height, [longitudinal, transverse] hole diameter)=(439, 550, 250,
[160, 403])nm exhibits a band gap at optical telecom frequencies. In this frequency region, no
light can propagate and will be reflected. Inside the lightcone (grey), the waveguide cannot
confine the light in the transverse direction. b In the scanning electron microscope picture of a
device as used in chapter 4 to 6 a pattern of such cells is used to generate mirrors in a waveguide.
c In the region between the mirrors, an optical resonance can form. The simulated absolute field
strength of the resonance is shown in arbitrary units. d The same principle also holds for sound
waves. By choosing the right geometry, a mechanical mode can be co-localized with the optical
resonance. The simulated displacement field of the breathing mode used in chapter 4 to 6 is
shown in arbitrary units.

mode splitting due to strong coupling of the forward and backward propagating waves,
induced by the periodic sub-wavelength structures. At frequencies within the band gap,
destructive interference in the forward direction does not allow for lossless transmission
of the wave, called Bloch mode, as it is the case on the photonic bands. Instead, the
wave number acquires a complex part, corresponding to exponential attenuation in the
band gap material [Joa+08; QDL10]. If scattering to the side is suppressed, inbound
light is reflected on the boundary of a photonic crystal exhibiting a band gap at the right
frequency, in close analogy to a distributed Bragg reflector.

We now consider a dielectric waveguide, radially confining the light by total internal
reflection. A photonic crystal mirror can be created by patterning the waveguide pe-
riodically, for example by etching holes of the right size and spacing into the material.
Similarly to a Fabry-Pérot cavity, an optical resonator can be formed by two such mir-
rors, separated at the right distance, see figure 3.1b-c. The space between them is called
defect, as it breaks the periodicity of the crystal. Such devices are called nano beam pho-
tonic crystal cavities and can at the same time exhibit very high optical quality factors
and small mode volumes when properly designed and fabricated [SP02; Vuc+02; SP03;
LMH04; EFV05; QDL10; QL11]. A fundamental condition for narrow optical resonances
is to avoid off-axis scattering, that is ensuring axial guidance of the wave by total internal
reflection of the waveguide. As scattered waves would have to propagate in vacuum, this
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can be achieved by avoiding spatial Fourier components in the light cone, i.e. at angu-
lar wave numbers below k ≤ ωc/c, with the resonance frequency ωc/2π and the speed
of light c. In other words, a smooth transition from the defect to the mirror region is
required [Aka+03], allowing for a smooth envelope of the resonant field, thereby localiz-
ing the spatial Fourier transform narrowly around the carrier wave number k = nωc/c,
with the effective refractive index n of the photonic crystal waveguide. Consequently,
it is necessary to strike a compromise between strong real-space localization and strong
wavenumber-space localization, something reasonably achieved for example by a Gaus-
sian envelope. Practically, high performance resonators need to be optimized in numerical
simulations, which is easily possible with dedicated software, even on modern notebook
computers.

Nanobeam photonic crystals have a strong geometric asymmetry between the horizontal
and vertical axial direction. Consequently, they have a strong birefringence, typically only
allowing for large bandgaps only for the horizontal polarization. While photonic crystal
cavities thus only work for a single polarization, the other polarization is for the same
reason strongly decoupled and has therefore no negative influence, e.g. in the form of an
additional loss channel for the resonance.

3.2. Phononic Crystal Resonators

A periodic pattern in a material does not only modulate the speed of propagation of
optical waves, but also of mechanical waves, that is vibrations. Consequently, the prin-
ciples described in the previous section can be applied to phononic crystals. Artificial
materials with high reflectivity for vibrations can be designed and employed to strongly
localize mechanical modes, in this case called phononic crystal resonators [Gor+05], see
also figure 3.1d. However, there are a number of differences to the optical case, which are
worth highlighting.

Firstly, the speed of sound cS is much slower than that of light cL in a material, with
cS/cL ∼ 10−4 for longitudinal waves in silicon [HNK10]. Consequently, feature sizes of
telecom band photonic crystals1, result in phononic crystals with typical frequencies in the
gigahertz (GHz) range. Thus, devices with common photonic and phononic band gaps will
exhibit resonances in these drastically disparate frequency regimes. While the freedom
of the design allows to shift the relative frequencies by about an order of magnitude
[Eic+09; SP10; Cha+12; Saf+14], accessing e.g. lower relative frequencies will require a
separation of the optical and mechanical functionality of the artificial crystal [Ale+11;
Kra+12; Saf+13a; Yu+14; Tsa+17].

Secondly, while light can propagate in vacuum, vibrations cannot, thereby lifting the
necessity of smoothly transferring from a defect to the phononic mirror material. As
a consequence, the requirements on the design of the resonator defect is significantly
relaxed for the phononic case, leaving leeway to optimize a co-localized optical resonance.
In addition, this means that a dedicated phononic bandgap material can suppress the
coupling to the support [Saf+11; Ale+11].

In contrast to light, which only has two polarizations, vibrations can be of many more

1More specifically, photonic crystals with a band gap covering the conventional telecommunication band,
that is infrared radiation with a free space wavelength close to λ ∼ 1550nm.
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types. Compression and shearing of the material creates a plethora of categories of vibra-
tional waves, leading to complex band diagrams [Cha+12]. While it is possible to create
full band gaps, i.e. frequency regions where all vibrational types are reflected, quasi-
bandgaps, inhibiting only the propagation of vibrational modes with a certain symmetry
are already enough to strongly localize modes of the same symmetry. Quasi-bandgaps
can further be employed to precisely engineer the coupling of the mechanical resonator to
the substrate by a controlled perturbation of one of these symmetries [Pat+17; Pat+18].
In case of the breathing mode of the optomechanical crystals used in chapters 4 to 6, this
allows to reduce the mechanical quality factor from Q ∼ 107 for a symmetric device with
a quasi bandgap nanobeam to Q ∼ 105 by slightly offsetting all holes of the device to the
side2.

The localized mechanical modes can couple in different ways to a co-localized optical
mode. In optomechanical crystals, there are two dominating mechanisms, related to the
deformation and the strain in the material induced by the mechanical motion [Cha+12].
The deformation of the material leads to a change of the boundaries of the optical cavity,
thereby changing its resonance frequency. This effect is similar to radiation pressure
on a movable end mirror in a macroscopic Fabry-Perot cavity [Cav80; Arc+06] or the
optical gradient force on dielectrics in an optical resonator [Tho+08; Kie+13; Mag+18].
For photonic crystals it can be quantified by perturbation theory on the surface fields
[Joh+02; SP10]. In addition, the strain due to the compressive part of the breathing
modes changes the refractive index of the material, a mechanism called photo-elastic
effect. This changes the effective length of the optical resonator, and thus its frequency.
This effect is relatively strong in silicon [CPB59; Bie74] and exceeds the effect of the
moving boundary in the investigated optomechanical crystals by far [Cha+12].

2The symmetry can also be broken by shifting only the center hole. However, this increases the coupling
to asymmetric tilting modes drastically and therefore is not as controllable as shifting all holes at once.
In both cases the optical resonance is barely influenced by the shift.
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4. Non-classical correlations between
single photons and phonons
from a mechanical oscillator

The second order coherence describes the correlation of the fluctuations of two systems,
and can therefore be quantified via a cross-correlation measurement. It carries a wealth
of information on the quality of bimodal quantum sources and has therefore become a
benchmark measurement in quantum optics. Here, I will report on my work on non-
classical photon-phonon correlations, first published as reference [Rie+16], preceded by
a summary of the scientific context of this manuscript. More details can be found in
paragraph 2.4.2.

While the first order coherence relates to the interference visibility of two modes, a
concept with close correspondence between the classical and quantum description, the
cross-correlation of a quantum system can assume values outside of the classical realm
[Lou80; RW86]. This motivated initial investigations by Clauser on the cross-correlation
between two light beams originating from cascaded fluorescence, trying to unambiguously
disprove semi-classical theories of light [Cla74].

Semi-classical theories assume a quantum description of atoms, but treat electromag-
netic radiation classically. They were met with interest, as they could reproduce many
experimental observations that were up to then considered to be genuine quantum effects,
including the photoelectric effect [MSW64; CJ69].

While it was not the first experimental falsification of semi-classical theories [Gav28;
Cla72; Gib72; WAR72; GCS73]1, the simplicity of Clauser’s experiment is striking. His
distinction to classical field theory is based on a Cauchy Schwartz inequality for probability
distributions [Gla63b; TG65]. If two fields a and b with the complex amplitudes α, β ∈ C
can be described by the probability distribution P (α, β), then the correlation between
their intensities Ia and Ib is bound by 〈IaIb〉2 ≤ 〈I2

a 〉〈I2
b〉, respectively its normalized form

(2.77). The experimental determination of the classicality bound allowed Clauser to omit
making assumption on the source, which limited the conclusiveness of previous correlation
experiments [ÁJV55] with respect to semi-classical theories. The classical Cauchy-Schwarz
inequality is therefore valid independent of the source, or more specifically how the latter
is modeled [Cla74].

Clauser’s experiment, employing cascaded decays in mercury atoms, was followed up
by theoretical prediction of violations of the Cauchy-Schwarz inequality in various other
systems [Zub82; MG83; RW84]. However, as the incompatibility of semi-classical field

1 Note that the experiment in reference [Gav28] was conducted well before the advent of semi-classical
theories in the 1960s, but was rediscovered and identified to falsify them only in the 1970s [ARW73]
after the newer experimental test were published. It was originally intended to disprove a theory by
Schrödinger, which would nowadays also be classified as semi-classical.
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theories with correlation experiments was demonstrated, the experimental focus shifted to
Bell’s inequality, as well as a variety of the Cauchy-Schwarz inequality involving a single
spatial mode at different times. Demonstration of this property, called anti-bunching,
allows to demonstrate the non-classicality of a radiation field from a single mode [KDM77],
see also chapter 5.

Aside from allowing for a distinction of quantum field theory and semi-classical theo-
ries, coincidence measurements were used as a standard method for the characterization
of bimodal sources [Cam+70; BW70]. In particular the coincidence measurements in
spontaneous parametric down conversion in reference [BW70] suggest that the classical
inequality could have been violated, but the classical bound was not determined.

The interest in the normalized second order coherence was renewed with proposals for
long range quantum communication. In order to overcome the exponential degradation of
distributed entanglement related to loss in the transmission channel, quantum repeaters
were suggested to distribute entanglement more efficiently [Bri+98; Dua+01]. Quantum
repeaters are based on a chain of local nodes, which interface a quantum memory, typically
a cloud of atoms, with a movable quantum state, typically a photon.

A violation of the classical Cauchy-Schwarz inequality allowed to demonstrate that
the node could operate in the quantum regime [Kuz+03]2. As in the normalized form

(2.77) the classical bound is close to

√
g

(2)
aa g

(2)
bb ∼ 2, corresponding to a thermal state

of the individual modes, subsequent experiments rarely measured this bound specifically
[Cha+05; Mat+05; Fel+05; Mat+06a].

Instead it was realized that the measurement of the normalized cross-correlation re-
alistically captures the noise in the generation of excitations pairs, in quantum memo-
ries [Rie+06; Lau+06; Lau+07; Usm+12] and other bimodal sources [Boc+09; För+13].
Thus, it can be measured to predict whether more involved experiments, such as a test of
Bell’s inequality or subpoissonian statistics of a heralded single phonon, can be successful.

In the context of bulk lattice vibrations, the normalized cross-correlation was measured
and used to characterize the Stokes and anti-Stokes scattering of naturally occurring
optical phonons in diamond [Lee+11; Lee+12], yet without testing the classicality bound.

In the following I will present my work demonstrating a quantum interface between
a nanofabricated, integrated quantum memory in the form of an optomechanical crys-
tal, and an itinerant photon with a wavelength in the conventional telecommunication
band [Rie+16]. I contributed to this work by conceiving, building and automating the
experiment, taking and analyzing the data and writing the manuscript.

In brief, a blue drive pulse probabilistically induces a Stokes scattering event, creating
a pair of a resonant photon and phonon. To measure the correlations between the emitted
optical mode and the mechanical mode, a red drive pulse transfers the mechanical state
to the optical domain, see also figure 4.1.

With the demonstration of non-classical optomechanical correlations, we show that
optomechanical crystals with their designed resonance frequencies act as a quantum in-
terface between the optical and the mechanical domain. Thus, the long lived mechanical
resonance can serve as quantum memory for quantum information processing protocols
with telecom photons, such as the DLCZ quantum repeater scheme [Dua+01]. Optome-
chanical down conversion of blue detuned drive photons is shown to work in the single

2Operation in the quantum regime can also be shown by other correlation measurements, e.g. the
observation of sub-shotnoise correlations in the Fourier domain [Wal+03].
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Time

II: Correlation III: Transfer

g
(2)
om

Figure 4.1.: Optomechanical Cross–Correlations. First, the device is initialized in its ground
state by cryogenic cooling, leaving enough time for residual phonons to decay. Then, a driven
Stokes interaction (fig. 2.10)generates correlated photons and phonons. The latter transferred

to the optical domain by an anti-Stokes interaction (fig. 2.8) and the intensity correlation g
(2)
om

between the optical and the mechanical mode is measured using superconducting nanowire single
photon detectors.

quantum regime, thereby enabling a plethora of probabilistic quantum protocols at the
heart of quantum information science, as well as for studies of fundamental questions in
macroscopic quantum physics. Examples are the generation of single phonon Fock state
[Hon+17], the generation of remote mechanical entanglement [Rie+18], or the violation
of Bell inequality between a stored mechanical phonon and an itinerant optical photon
[Mar+18].
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4.1. Abstract

Interfacing a single photon with another quantum system is a key capability in modern
quantum information science. It allows quantum states of matter, such as spin states
of atoms [Wil+07; Stu+13], atomic ensembles [Kuz+03; Wal+03] or solids [YFI10], to
be prepared and manipulated by photon counting and, in particular, to be distributed
over long distances. Such light-matter interfaces have become crucial to fundamental
tests of quantum physics [Hen+15] and realizations of quantum networks [Kim08]. Here
we report non-classical correlations between single photons and phonons – the quanta of
mechanical motion – from a nanomechanical resonator. We implement a full quantum
protocol involving initialization of the resonator in its quantum ground state of motion
and subsequent generation and read-out of correlated photon-phonon pairs. The observed
violation of a Cauchy-Schwarz inequality is clear evidence for the non-classical nature
of the mechanical state generated. Our results demonstrate the availability of on-chip
solid-state mechanical resonators as light-matter quantum interfaces. The performance
we achieved will enable studies of macroscopic quantum phenomena [Rom11] as well as
applications in quantum communication [Sta+10], as quantum memories [Cha+11b] and
as quantum transducers [Bar+12; Boc+13].

3 https://www.nature.com/articles/nature16536
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Figure 4.2.: Generation and read-out of photon-phonon pairs. a, Schematic of the ex-
periment. Two independent lasers (stabilized to a wave-meter) are used to generate a sequence
of ’write’ and ’read’ pulses with tunable time delay δt. They are sent through a circulator and
drive a nanomechanical photonic crystal cavity (a scanning electron microscope image of which
is shown in the inset) that is mounted inside a dilution refrigerator at a base temperature of
25 mK, which prepares the device in its quantum ground state of motion. For each pulse, Stokes
and anti-Stokes Raman scattering creates single photons (green dots) from the write (W ) and
the read (R) pulse, respectively, that are emitted at a frequency ωc. The detuned pump fields
are strongly suppressed by optical filtering and only the Raman scattered photons are measured
by two superconducting nanowire single-photon detectors (SNSPDs) in the output ports of a
50/50 beam-splitter. The time of each photon detection event is recorded and is then correlated
in post-processing to obtain both auto- and cross-correlations of the emitted photons. A more
detailed explanation of the experimental set-up is provided in the supplementary information (SI).
b, Pulsed optomechanical interactions in frequency space. A blue-detuned write pulse realizes a
two-mode squeezing interaction (blue and green pulses; see text). Cavity-enhanced Stokes Ra-
man scattering generates a single phonon, stored as an excitation on the mechanical resonator,
and a single (W ) photon, which is emitted from the cavity on resonance (upper panel). Reading
out of the phonon utilizes a red-detuned read pulse, which swaps the mechanical excitation onto
the optical cavity field, hence creating a single (R) photon (lower panel). The insets depict the
relevant energy level diagrams for the two processes, reminiscent of the Λ-schemes in atomic
Raman scattering. The grey bars indicate the energy levels that are not involved in the depicted
process (Stokes or anti-Stokes), but in the other one.

4.2. Main Text

Over the past few years, nanomechanical devices have been discussed as possible build-
ing blocks for quantum information architectures [Sta+10; Wal+09]. Their unique fea-
ture is that they combine an engineerable solid-state platform on the nanoscale with the
possibility to coherently interact with a variety of physical quantum systems including
electronic or nuclear spins, single charges, and photons [PZ12; AKM14]. This feature en-
ables mechanics-based hybrid quantum systems that interconnect different, independent
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physical qubits through mechanical modes.
A successful implementation of such quantum transducers requires the ability to create

and control quantum states of mechanical motion. The first step – the initialization of
micro- and nanomechanical systems in their quantum ground state of motion – has been
realized in various mechanical systems either through direct cryogenic cooling [OCo+10;
Mee+15] or laser cooling using microwave [Teu+11] and optical cavity fields [Cha+11a].
Further progress in quantum state control has mainly been limited to the domain of elec-
tromechanical devices, in which mechanical motion couples to superconducting circuits in
the form of qubits and microwave cavities [AKM14]. Recent achievements include single-
phonon control of a micromechanical resonator by a superconducting flux qubit [OCo+10],
the generation of quantum entanglement between quadratures of a microwave cavity field
and micromechanical motion [Pal+13], and the preparation of quantum squeezed mi-
cromechanical states [Wol+15; Pir+15; Lec+15].

Interfacing mechanics with optical photons in the quantum regime is highly desirable be-
cause it adds important features such as the ability to transfer mechanical excitations over
long distances [Sta+10; SP11]. In addition, the available toolbox of single-photon genera-
tion and detection allows for remote quantum state control [Kim08]. However, micro- and
nano-mechanical quantum control through single optical photons has not yet been demon-
strated. One of the outstanding challenges is to achieve single-particle coupling rates that
are sufficiently large to alleviate effects of optical and mechanical decoherence in the sys-
tem, that is, single-photon strong co-operativity. Some of the largest optomechanical
couplings have been reported in nanomechanical photonic crystal cavities [Saf+10], but
are still two orders of magnitude short of that regime. Although low coupling rates can
be overcome in principle by a strong and detuned coherent drive field [AKM14], such
measures typically result in unwanted heating of the mechanical device (SI).

Here we take a different approach that allows us to circumvent these problems and
to realize quantum control of single phonons through single optical photons. We use a
probabilistic scheme based on the well-known DLCZ protocol (Duan, Lukin, Cirac and
Zoller) [Dua+01], which, in its original form, uses Raman scattering for efficient gener-
ation and read-out of collective spin states of atomic ensembles. In essence, the scheme
generates entanglement through single-photon interference and post-selection, which does
not require strong coupling [Cab+98]. In the context of mechanical quanta, this protocol
has been used in an experiment to entangle high-frequency (40 THz) optical phonons of
two bulk diamond lattices [Lee+11]. However, the small interaction and coherence times
of such phonons are incompatible with their use in quantum transduction and storage, and
so it is necessary to take this approach to the level of chip-scale optomechanical systems.
In addition, we minimize absorption heating by using short optical pulses in a cryogenic
environment [Mee+15]. The combination of these techniques allows us to overcome the
previous limitations and realize a photon-phonon quantum interface.

Our experiment complements previous work on single- and two-mode (opto-)mechanical
squeezing in microwave circuits [Pal+13; Wol+15; Pir+15; Lec+15]. Although these ex-
periments were based on the same underlying interactions, they involved homodyne or
heterodyne detection of light to access continuous-variable degrees of freedom of a quan-
tum state – specifically, quadrature fluctuations in the mechanical and optical canonical
variables. In contrast, the DLCZ scheme uses photon counting, which allows access to
discrete quantum variables – here, in form of energy eigenstates (phonons) of the mechan-
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ical motion – and thereby enables realistic architectures for entanglement distribution and
quantum networking [Kim08].

The mechanical system studied here is a micro-fabricated silicon photonic crystal nano-
beam structure (Fig. 4.2a). Such optomechanical crystals co-localize optical and me-
chanical modes and couple them via a combination of radiation pressure and photo-
striction [AKM14]. Our device exhibits an optical cavity resonance at wavelength λc =
1,556 nm and a mechanical breathing mode at frequency ωm/2π = 5.3 GHz. The cavity
decay rate (full-width at half-maximum, FWHM) is κc/2π = 1.3 GHz and the mechanical
quality factor at cryogenic temperature is Qm = 1.1 · 106 (SI). Pulsed optical driving at
laser frequency ωL = ωc ± ωm (in which ωc = 2πc/λc is the cavity frequency and c is the
vacuum speed of light) allows to realize two different types of interactions on the basis of
cavity-enhanced Stokes (+) and anti-Stokes (−) Raman scattering (Fig. 4.2b). A blue-
detuned pulse (ωL = ωc +ωm) results in two-mode squeezing with interaction Hamiltonian

Htms ∝ ~g0

(
â†mâ

†
o + âmâo

)
, in which â

(†)
m and â

(†)
o are the creation (annihilation) opera-

tors of the mechanical and optical mode, respectively, g0 is the effective optomechanical
coupling rate (here, g0/2π = 825 kHz; see SI) and ~ is the reduced Planck constant. This
interaction generates photon-phonon pairs in close analogy to the photon-photon pairs
generated in parametric down-conversion [Wu+86]. A red-detuned pulse (ωL = ωc − ωm)
allows read-out of the mechanical state through the optomechanical beam-splitter inter-
action Hbs ∝ ~g0

(
âmâ

†
o + â†mâo

)
, in which an anti-Stokes scattering event realizes a state

swap between the mechanical and optical cavity mode.
Our protocol consists of three distinctive steps. First, we initialize the mechanical

system in its quantum ground state of motion by cryogenic cooling. Second, a short
blue pulse creates a photon-phonon pair and leaves the originally empty mechanical and
optical modes |0〉m and |0〉o at frequencies ωm and ωc, respectively, in the state |Φ〉om =
|00〉 +

√
p|11〉 + p|22〉 + O(p3/2). Here p is the probability for a single Stokes scattering

event to take place. Residual heating through optical absorption introduces additional
noise to the state (SI). Finally, a strong red pulse is used to read out the phonon state
via emission of an anti-Stokes scattered photon [Coh+15]. We confirm the non-classical
photon-phonon correlations on the basis of an observed violation of a Cauchy-Schwarz
inequality for the cross-correlation of the coincidence measurements between the Stokes
and anti-Stokes photons [Kuz+03].

Precooling of the nanomechanical device is performed using a dilution refrigerator that
operates at a base temperature of approximately 25 mK. If the mechanical system is in
its quantum ground state of motion, then anti-Stokes processes cannot occur because
no additional phonons can be extracted to support the scattering. This is in contrast
to Stokes processes, which deposit mechanical energy and hence can always occur. As
a consequence, the asymmetry in the scattering rates of these two processes is a direct
measurement of the mean thermal phonon occupancy nth. Using such photon-counting
based sideband thermometry [Mee+15], we find nth . 0.025 (see Fig. 4.3).

We create the desired photon-phonon pairs using a blue-detuned ’write’ pulse that is
sufficiently weak to minimize the effects of residual absorption heating (FWHM, 28.4 ns;
energy, 40 fJ). We find the relevant probability to generate a Stokes scattered photon
on cavity resonance to be p ≈ 3.0%. Subsequently, a red-detuned ’read’ pulse (effective
length, 55 ns; energy of approximately 50 fJ) is injected at a time delay δt (see Fig. 4.4a),
resulting in a phonon-to-photon conversion efficiency of approximately 3.7% (SI).
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Figure 4.3.: Mechanical quantum ground state preparation. a, Principle of sideband ther-
mometry. The finite element method simulation depicted in the main panel shows the structure
of the mechanical breathing mode under investigation. The upper (lower) inset shows the en-
ergy level scheme in case of blue- (red-) detuned pumping and the resultant cavity-enhanced
Stokes (anti-Stokes) scattering. The corresponding scattering rates ΓR and ΓB are proportional
to thermal occupation of the mechanics nth and nth + 1, respectively, and hence show a strong
asymmetry when the mechanics are close to the quantum ground state. b, Sideband asymme-
try. The optomechanical device is pumped with a sequence of alternating blue- and red-detuned
optical pulses at frequency ωc ± ωm (optical energy per pulse Eopt = 33 fJ; FWHM of 28.4 ns;
500 µs separation of pulse sequences). Shown are the count rates recorded by the SNSPDs as a
function of the arrival time of the scattered photons (blue, blue-detuned pulse; red, red-detuned
pulse). This data has been corrected for leakage of pump photons through the optical filters,
which was independently measured and subtracted from our data (SI). The inset shows a his-
togram of the total counts that are obtained when averaging over a 20 ns window centred on the
peak (within the dashed lines). The pronounced asymmetry in the rates (of more than a factor
of 40) corresponds to a thermal occupancy of nth = ΓR/(ΓB − ΓR) = 0.025 ± 0.002 and to a
mode temperature of 69 mK.
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Figure 4.4.: Non-classical photon-phonon correlations. a, Driving pulse sequence. A pair
of one write (blue) and one read (red) pulse is sent to the device every 1 ms. The long idle phase
between pulse pairs ensures the ground-state initialization by cryogenic cooling. Each pulse
sequence is labelled with a number (n). The read pulse is delayed by δt with respect to the write
pulse, and only the first 55 ns, equivalent to a read-pulse power of about 50 fJ, are used for the data
evaluation. This reduces the influence of absorption heating while maintaining reasonable state
swap fidelity. b, Violating a Cauchy-Schwarz inequality. Shown is the cross-correlation (green
bars) between the mechanical (read pulse) and optical state (write pulse) for δt = 100 ns, as well
as the classical (Cauchy-Schwarz) bound obtained from the autocorrelations at ∆n = 0 (grey
horizontal line, shading indicates a 68% confidence interval; see text). For photon-phonon pairs
that emerge from different pulse sequences (∆n 6= 0) the Cauchy-Schwarz inequality is fulfilled,

〈g(2)
om(∆n 6= 0, 100 ns)〉 = 1.04± 0.04, consistent with statistical independence. For pulses from

the same pair, the cross-correlation g
(2)
om(0, 100 ns) clearly exceeds the classical bound. g

(2)
om can

be interpreted as the ratio of heralded phonons nh to unheralded (thermal) phonons nth at the
time of the read pulse. c, Storage of non-classical correlations. Shown is the dependence of the
cross-correlation on the time delay δt between the write and read pulses. For each data point,
the classical bound is measured independently through the normalized autocorrelation functions
of the write (W ) and read (R) photons. For increasing δt, the photon-phonon cross-correlations
decrease, but stay above the classical limit even beyond 1 µs. The main contribution to the
loss of correlation is heating by absorption of the write pulse (SI). All error bars represent a 68%
confidence interval.
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We correlate the measured Stokes- and anti-Stokes photons via the cross-correlation
function g

(2)
om(∆n, δt) = P (W ∩ R)/ [P (R)P (W )], which is computed for read and write

pulses originating from pulse sequences from different trials separated by ∆n iterations
(see Fig. 4.4). P (W ∩ R) is the probability for a joint detection of both a Stokes (W ,
’write’) and an anti-Stokes (R, ’read’) photon from these pulses, and P (W ) and P (R) are
the unconditional probabilities to detect either of the two photons. For all pair correlations
of classical origin, the value of g

(2)
om is bounded by a Cauchy-Schwarz inequality of the

form [Kuz+03] g
(2)
om(0, δt) ≤

[
g

(2)
oo,δt(0)g

(2)
mm,δt(0)

]1/2

, in which g
(2)
oo,δt(0) and g

(2)
mm,δt(0) are

the autocorrelation functions for the optical and mechanical mode, respectively (SI). A
violation of this inequality [Kuz+03; Cla74; För+13] is an unambiguous measure for the
non-classicality of the generated photon-phonon state. The Cauchy-Schwarz inequality
for coincidence detection marks a well-defined border between the quantum and classical
domain. It is based on the fact that the Glauber-Sudarshan phase-space function, or
P-function, is positive definite for every classical field. This places a fundamental limit
on the relative strength of measurable cross-correlations versus autocorrelations between
classical fields. Previous applications of this limit include the distinction between the
classical and quantum field theoretical predictions for the photoelectric effect [Cla74],
and the storage and retrieval of non-classical states in the collective emission from an
atomic ensemble [Kuz+03]. A detailed derivation of the Cauchy-Schwarz inequality for
the case of non-stationary fields, as are being used here, is provided in ref. [Kuz+03].

We find a clear violation for an extended regime of time delays. Figure 4.4b shows the
value of gom at a time delay of 100 ns. For pairs emitted from the same pulse sequence
(∆n = 0) we find that

g(2)
om(0, 100 ns) = 8.0+0.6

−0.5 

√
g

(2)
oo,100 ns(0)g

(2)
mm,100 ns(0) = 2.09 + 0.23− 0.16,

which obviously violates the classical bound. As expected, pairs emitted from different
pulse sequences (∆n 6= 0) are uncorrelated and hence fulfil the inequality. Upon increasing
the time delay further, we find a violation even beyond δt = 1 µs (see Fig. 4.4c), which
demonstrates that we can store and retrieve non-classical states for an extended time
interval. Nevertheless, the lifetime of these non-classical correlations is still much shorter
than the lifetime of the mechanical excitations, Q/ωm ≈ 34 µs. We attribute this to the
fact that the dynamics are dominated by heating caused by absorption of pump photons,
which after some onset time drives the mechanical system towards a thermal state (SI).
As a consequence, reducing the energy of the write pulse further should allow non-classical
correlations to be maintained for much longer times. In addition, upon further reduction
of the absorption heating of the read pulse, even higher values for the cross-correlation
are obtained.

The cross-correlation is also linked to the autocorrelation of the heralded mechanical
state. If one considers two-mode optomechanical squeezing acting on an initial mechanical
thermal state, and if g

(2)
om � 1 – as is the case in our experiment – then one obtains

g
(2)
mm,heralded ≈ 4/

(
g

(2)
om − 1

)
. The largest value for g

(2)
om observed in our experiment was

g
(2)
om(0, 100 ns) = 19.6 − 2.8 + 3.9 (using an energy of 1.7 fJ in the first 30 ns of the read

pulse; see SI). In other words, our system should allow for a Hanbury Brown and Twiss

experiment with phonons yielding g
(2)
mm,heralded ≈ 0.22. A direct measurement of this value
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with the current experimental parameters is difficult without a prohibitively large number
of pulse sequences.

In summary, we have demonstrated non-classical correlations between single photons
and phonons from a nanomechanical resonator. This is a crucial step towards on-chip
photon-phonon quantum interfaces, which are relevant for future solid-state based quan-
tum information and communication architectures. For example, the observed photon-
phonon correlation of g

(2)
om = 19.6 suggests that conditional mechanical Fock-state prepa-

ration should be possible with fidelities exceeding 85% (SI). The ability to store and
retrieve non-classical states over extended storage times that we reported also shows
that nano-optomechanical resonators are a promising candidate for quantum memories.
The performance of the system we have demonstrated constitutes an improvement of al-
most two orders of magnitude on previous lifetimes of stored non-classical single-phonon
states [OCo+10]. Finally, photon-phonon conversion on the single particle level is required
to extend the ongoing efforts on mechanically transduced conversion between microwave
and optical fields [Boc+13] into the quantum domain [Bar+12].
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Session LXXIX, ed. by D. Estève, J.-M. Raimond, and J. Dalibard, (2004)
(cited on pg. 84).

4.3. Supplementary Information

4.3.1. Device fabrication and characterization

The optomechanical device used for this experiment (see Figure 4.5) is fabricated from
a silicon-on-insulator wafer, with a device layer thickness of 250 nm and 3 µm of buried
oxide. The structures are patterned using an electron beam writer and are then trans-
ferred into the top silicon layer in an SF6/O2 atmosphere using a reactive ion-etcher. The
devices are finally released and undercut using concentrated hydrofluoric acid. We de-
sign the nanobeams such that the fundamental mechanical breathing mode is at 5.3 GHz
(cf. Figure 4.3a, main text) and the optical resonance is around 1550 nm (the measured
wavelength for the device used here is 1556 nm) [Cha+12]. The optical and the mechan-
ical modes are co-localized in the center of the beam, where we create a defect region
of the photonic- and phononic-bandgap, allowing for an optomechanical coupling rate
g0/2π = 825 kHz. In order to minimize the thermalization time to the surrounding bath
we opted, unlike previous designs, to not use any additional phononic shielding. As a
consequence, the mechanical quality factors at base temperature are found to be around
1.1 · 106 (see section Mechanical response to optical pulses), compared to values above 107
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Figure 4.5.: Optomechanical device. Shown is a scanning electron microscope image of a set
of nanobeams, which are fabricated in silicon, as described in the text. Light is coupled into the
central, adiabatically tapered waveguide through a lensed optical fiber (not shown) from the left
of the image. The field then evanescently couples to each nanobeam (top and bottom). The two
devices have slightly different resonance frequency, which makes it possible to distinguish them.

with a phononic shield [Mee+15]. The laser pulses are coupled directly into a tapered
waveguide through an optical fiber with a lensed tip [Mee+14], achieving efficencies of
about 60%. The optical mode of the nanobeam is evanescently coupled to the waveguide,
which is terminated with a periodic array of holes, acting as a mirror, allowing us to
collect the light in reflection. For this experiment we chose a critically coupled device
(internal losses equal external losses) with an optical linewidth κc/2π of approximately
1.3 GHz. This places us well within the so-called resolved-sideband regime (ωm > κc).

4.3.2. Setup

In this section, we provide a detailed description of the experimental setup. It consists of
a ’pump part’, ’detection part’, and the ’electronic control part’ (cf. Figure 4.6).
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Figure 4.6.: Detailed experimental setup. See text for a detailed description.
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Pump part

We use two identical, tunable continuous-wave (CW) lasers (New Focus 6728) as our
light sources. The lasers are detuned and stabilized to the blue and red side respectively
of the device’s cavity resonance (1556.21 nm). The detuning is set to be the mechan-
ical frequency (5.307 GHz). The two lasers separately pass through voltage-controlled
tunable optical filters (MicronOptics FFP-TF2, free spectral range ∼18 GHz, bandwidth
∼50 MHz) to suppress any potential background emissions dispersed in frequency space.
In order to create short optical pulses we modulate the filtered CW fields using acousto-
optic modulators (AOM; IntraAction) and an additional electro-optic amplitude modu-
lator (EOM; EOSpace). We employ variable optical attenuators (VOA; Sercalo) on each
path to control the pulse power. The pulses are combined on a variable optical coupler and
then sent to the device in the dilution refrigerator (Vericold E21) via an optical circulator.
At the device (OMC; optomechanical crystal), the optomechanical interaction with the
blue (red) detuned pulses generates down-(up-) converted photons, whose frequency is on
resonance with the device’s optical cavity frequency. The scattered photons are reflected
back from the OMC into the optical fiber and routed to the detection part through the
output port of the circulator.

Detection part

Two voltage-controlled optical filters (MicronOptics FFP-TF2, specification as above) are
installed in series at the beginning of the detection path. These filters are tuned on reso-
nance with the OMC cavity frequency such that they only allow (anti-) Stokes scattered
photons to be transmitted, while strong off-resonant pump photons are rejected (suppres-
sion of about 84 dB). After the filters, a 50:50 beam splitter divides the path. Each output
is additionally filtered by broadband wavelength-division multiplexors (WDM), and fiber-
coupled to two superconducting nanowire single photon detectors (SNSPD; PhotonSpot,
detection efficiency ∼90%, dark count rate <10 Hz). The SNSPDs are mounted on the
1 K plate inside the dilution refrigerator. Upon receiving a photon the SNSPD generates a
brief voltage spike, which is then electrically registered by a time-correlated single photon
counting module (TCSPC; PicoQuant TimeHarp 260 NANO). The overall efficiency of
detecting a photon leaving the OMC is ∼2.7% (see below).

Control part

In order to generate programmable optical pulses and to detect photons synchronously,
we use a digital pulse generator (DPG; Highland Technology P400) and an arbitrary
waveform generator (AWG; Agilent Technologies 81180A). We first program the DPG to
generate a TTL gate voltage signal for the AOM on the read (red) path and to trigger the
TCSPC synchronously. The DPG additionally triggers the AWG, which then generates
a TTL gate voltage for the AOM and a voltage pulse for the EOM on the write (blue)
path.

4.3.3. Mechanical response to optical pulses

Over the past few years, several experiments have demonstrated precise control over opti-
cal and mechanical states through continuous optomechanical driving, including coherent
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Figure 4.7.: Pump-probe measurement of the mechanical response. We send in a brief,
intense blue detuned optical pulse (pump) and measure the mechanical response via red detuned
optical probe pulse as a function of pump-probe time delay (δt). a Long-term mechanical re-
sponse. The result fits well with a simple exponential decay (red dashed line; see the equation in
the plot) with a damping time constant (Td) of 34.4 µs. The inset shows the same data/fit with a
logarithmic scale on the x axis. CAS,0 is the extrapolated CAS(δt = 0). b Short-term mechanical
response. The data is fitted to a simple exponential curve (green dashed line; see the equation
in the plot). The fitted time constant (τd) is 0.37 µs. The fit results of long-term response (red
dashed line) projected to 0 µs delay is also shown for comparison. As the pump pulse had 5
times stronger energies than the write pulses in the correlation experiment, it is expected that the
delayed heating occurs on longer time scale, due to the temperature dependence of the thermal
conductivity of silicon [Mee+15]. Error bars in a and b represent a 68% confidence interval.

state transfer [Pal+13; Fio+11; Ver+12] and microwave-to-optics conversion [Boc+13;
And+14; Bag+14]. Due to the unavailability of the regime of single-photon strong co-
operativity, strong drive fields have to be used in order to achieve the wanted coupling
strength [Akr+10]. This leads to unwanted heating effects, in particular in the optical
domain. Since the mechanism of optical absorption couples only indirectly to the me-
chanical mode of interest [Mee+14], using short optical pulses as nonstationary drive
fields can substantially suppress the heating on short time scales – in particular at low
temperatures [Mee+15].

Here, we probe the thermal response of the mechanical mode by pump-probe type
measurements; we first send a short blue-detuned pump pulse onto the OMC cavity to
intentionally heat the mode, and subsequently inject a red-detuned probe pulse to read
out the mode’s phonon occupancy. By repeating the experiment with varying time delay
between the pump and the probe pulses, we monitor time-dependent evolution of the
mode’s phonon occupancy with a fixed initial impulse heating. The time delay δt is
defined as the delay between the end of the pump (blue) pulse and the start of the probe
(red) pulse detection window, as indicated in Figure 4.4a in the main text. In that way
the probing is performed after the optical absorption of the pump photons is completed.
In order to ensure that the mechanical mode fully re-thermalizes to the bath, we set the
duty cycle of sending another blue pulse after the red pulse to be one millisecond. For
an improved signal to noise ratio, the pulse energies of the blue (200 fJ) and red pulses
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(2 pJ) used here are substantially larger than in the cross-correlation measurements.
The effective mode temperature is inferred from the average count rate observed after

sending the red pulse (CR). CR can be decomposed into three terms: (1) the rate pro-
portional to the (on-resonance) anti-Stokes Raman scattered pump photons (CAS), (2)
the term corresponding to pump photons leaked through the optical filters (CLeak), and
(3) the additional anti-Stokes scattering term due to heating (ref. [Mee+15]) of the mode
during the readout pulse (CHeat). We minimize CHeat by only taking into account the first
30 ns of the red pulse as ’logical’ red pulse. CLeak gives a constant offset to the signal.
CAS directly reflects the mode’s effective temperature, as the anti-Stokes scattering rate
is proportional to the average number of phonons (nm) in the mode (see Figure 4.3a in
the main text). To that end, we deduce the following equation

CR(δt) = CAS(δt) + CLeak = α · nm(δt) + CLeak,

in which α is the constant of proportionality.
The long-term response of the mechanical mode to the initial blue pump pulse is shown

in Figure 4.7a. It exhibits an exponential decay with a time constant of Td = 34.4 µs,
which is interpreted as the mechanical damping time. The corresponding mechanical
quality factor is then Q = ωm · Td ≈ 1.1 · 106.

In addition, we probe the short-term response of the mechanics within one microsecond
after the blue pulse in more detail (Figure 4.7b). We observe an increase of CR with
a time constant of 0.37 µs (fit to a simple exponential curve). This data reveals slow
turn-on dynamics of pulse-induced heating, as previously studied in reference [Mee+15].
This time constant is even shorter than the decay of the cross-correlations (see Figure 4.4c
in the main text), which we attribute to the increased thermal conductivity of silicon at
higher temperatures, caused by absorption of increased optical pump energies.

4.3.4. Characterization of the detection scheme

Detection Efficiency

We first calibrate the fiber-to-chip coupling efficiency (ηfc) by sending in light far off-
resonant from the OMC cavity and then measure the reflected power (ηfc = 60.3% one-
way). The device impedance ratio (ηc), i.e. the ratio of external coupling losses κext to
total losses κc, is measured through the depth and the linewidth of the optical resonance,
which we find to be ηc = κext/κc = 0.5. The detection efficiency of scattered photons
for each detector (ηi; i=1,2) consists of ηfc, ηc, the total losses of the remaining detection
paths (ηpath,i), and the SNSPDs’ quantum efficiencies (ηQE,i). To measure ηi, pulses with
calibrated energy are sent off-resonantly to the OMC (Pin), and the reflected photons
transmitted through the optical filters are detected by the SNSPDs (Pout). Pin/Pout

corresponds to ηfc · ηfc · ηpath,i · ηQE,i, which we measure to be 0.013 for SNSPD1 and
0.019 for SNSPD2. Therefore, we deduce ηi = ηc · ηfc · ηpath,i · ηQE,i to be

η1 = 1.1%

η2 = 1.6%.

The detection efficiency of SNSPD1 (characterized quantum efficiency ηQE,1 = 65%) is
lower than SNSPD2 (characterized quantum efficiency ηQE,2 = 90%), as we needed to
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reduce the bias current to prevent the detector from latching [NTH12]. This latching
is probably caused by a nearby heater of the dilution refrigerator. It also results in a
slow drift in the quantum efficiency of SNSPD1. We note that the deduced ηpath,i come
from the various optical elements in the beam path of the detection part and are in good
agreement with their specified insertion losses.

Scattering rates and optomechanical coupling rate

With the total detection efficiency of resonantly generated cavity photons, we can estimate
the pair generation probability per write pulse (optical energy Eopt∼40 fJ) to be p∼3.0%,
including the effects of a finite starting temperature and leaked pump photons. The latter
is calibrated by sending detuned optical pulses (Eopt∼40 fJ, ωL = ωc−ωm−2π ·200 MHz)
to the device. The generated optomechanical sidebands are now blocked by the filters
and only leaked pump photons are detected. We measure a suppression of the pump
pulse by 84 dB compared to an on- resonance transmission. Thus, approximately 1 out
of 25 photons detected during the write pulse is a leaked pump photon. Knowing the
scattering rate and the energy of the detuned pump pulse, we can determine the single-
photon coupling rate of our OMC to be

g0 =
∂ωc

∂x

√
~

2mωm

= 2π · 825 kHz.

With this coupling rate, we can estimate the state-transfer efficiency of the red-detuned
optical readout pulse of Eopt = 50 fJ to be εR = 3.7%, where

âopt,out ≈
√

1− εRâopt,in + eiφ
√
εRâmech,in.

Here, âopt,in(out) are the annihilation operators of the temporal optical input (output)
mode of the cavity resonance, âmech,in the mechanical mode before the interaction, and φ
an arbitrary but fixed phase between the inputs [Hof+11].

4.3.5. Definition and properties of the second order correlation
function

We define the normalized second-order correlation function for two, not necessarily dif-
ferent modes α and β, and the respective annihilation operators âα and âβ, to be (refer-
ences [Kuz+03; MW95] and references therein)

g
(2)
αβ =

〈: â†αâαâ
†
βâβ :〉

〈â†αâα〉〈â
†
βâβ〉

,

where : Ô : denotes normal ordering of the operators. For the autocorrelation of the
optical field (photons scattered by the write pulse), α = β = o, for the mechanical field
α = β = m and for the cross-correlation α = o, β = m. By introducing effective modes
γ, δ it can be seen that this correlation-function is independent of losses in the detection.
Assuming the loss angles ϕα and ϕβ for detection of modes α, β, we define the annihilation
operators of the effectively detected modes γ, δ

âγ/δ = cos(ϕα/β)âα/β + sin(ϕα/β)l̂α/β
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by coupling the original modes α, β to modes lα and lβ represented by the annihilation

operator l̂α/β. As the detected modes γ, δ have frequencies in the optical domain, we can
assume the in-coupled modes lα, lβ to be in their respective ground state. Tracing over
lα, lβ, we find that

g
(2)
γδ = g

(2)
αβ

i.e. the second order correlation function is independent of losses or, in the case of the
mechanical mode, of ”ineffective” partial state-transfer to the cavity mode. Thus, e.g.
g

(2)
mm is equivalent to the autocorrelation of the photons scattered by the read pulse.
For autocorrelation measurements, we use a Hanbury Brown and Twiss setup, by split-

ting the mode on a symmetric beamsplitter and sending it to a pair of detectors. We define
the modes detected by the individual detectors d1, d2 with their annihilation operators

â1/2 = cos(θ)âα ± sin(θ)l̂d

with the splitting angle θ of the beam splitter and the annihilation operator l̂d of the
second input of the beamsplitter. The input state can as before be approximated to be in
its vacuum state. We find that the autocorrelation of mode α equals the cross-correlation
of the two detectors:

g(2)
αα = g

(2)
12 .

For a definition in terms of probabilities, see below.

δt 0.1µs 0.6µs 1.1µs 2.1µs 3.1µs total 0.1µs*
N(R ∩W ) 202 153 144 113 127 34
N(R1 ∩R2) 13 24 23 36 37 0
N(W1 ∩W2) 16 15 17 12 20 80 16
N(R1) 13.172 16.523 18.751 18.316 23.629 966
N(R2) 17.490 22.278 25.394 26.122 31.892 1145
N(W1) 12.471 12.061 13.051 11.870 15.032 64.485 12.471
N(W2) 19.409 18.616 20.176 18.329 23.601 100.131 19.409
T 38.806.017 38.829.923 39.958.216 35.712.159 47.964.927 201.271.242 38.806.017

Table 4.1.: Counts of the cross-correlation measurements. The row label ’N(event)’ repre-
sents the number of counts for a certain event, e.g. detection of a photon during the measurement
window of read pulse on detector 1/2 (R1/2), or the coincidence of a detection event of a sub-
sequent write and read pulse on either detector 1 or 2, R ∩W = (R1 ∪ R2) ∩ (W1 ∪W2). T
denotes the total number of pulse pairs sent to the optomechanical device. For the calculation
of the autocorrelation function of the read pulse, only counts from the delay setting δt are used,
as the delayed heating of the blue pulse (cf. Figure 4.4) influences the mechanical state. For
the autocorrelation function of the write pulse, counts from all delay settings are summed, as
the mechanical state is reinitialized by cryogenic cooling before measurement, independent of
the delay δt. The numbers for this are summarized in the column labeled ’total’. The highest
reported cross-correlation value was obtained by reducing the measurement window of the read
pulse from 55 ns to 30 ns, with a delay of δt = 100 ns between the write and the read pulse. The
counts for this evaluation window are presented in the column marked with ∗. The underlying
dataset is the same as for the standard evaluation period of 55 ns, i.e. the first column.
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4.3.6. Statistical Analysis

Due to the low detection probability, the uncertainty in the estimation of the second-order
correlation functions is completely dominated by the estimation of the coincidence rate
〈: â†αâαâ

†
βâβ :〉 of the two modes α, β. As the absolute number of coincidences is low

in some measurements, Gaussian statistics cannot be used for estimating uncertainties.
Instead, we use the likelihood function based on the binomial distribution for estimating
the probability p of the underlying process, i.e. to obtain N counts in T tries

L(p,N, T ) =
1

K
pN(1− p)T−N .

The normalization K is chosen such that
∫ 1

0
L(p,N, T )dp = 1. The upper and lower uncer-

tainty σ+ and σ− are chosen numerically, such that they cover a 68% confidence interval
around the maximum likelihood estimator pML = N/T , i.e.

∫ pML−σ−
0

L(p,N, T )dp = 0.16,∫ 1

pML+σ+
L(p,N, T )dp = 0.16.

For the classical bound of the cross-correlation, g
(2)
cb =

√
g

(2)
mm · g(2)

oo , the likelihood func-
tions of the individual autocorrelations are convoluted. Due to their asymmetry, the
maximum likelihood estimator of the classical bound is slightly lower than when using

the individual maximum likelihood estimators g
(2)
cb,ML ≤

√
g

(2)
mm,ML · g

(2)
oo,ML.

As estimators for the cross-correlation function, the probabilities P of a coincidence-
or single detection event during the read (R) and write pulse (W ) were used, with g

(2)
om =

P (W ∩R)/P (R)P (W ). This is valid for low event probabilities P � 1. Autocorrelations
were estimated by probabilities of coincidence- and single detection events on individual
SNSPDs (1,2), g

(2)
yy = P (X1∩X2)/P (X1)P (X2) during the evaluation periods of the write

(y = o, X = W ) and read (y = m, X = R) pulse, respectively. The statistics of the
cross-correlation measurements are summarized in Table 4.1.

For the read pulse, only the first 55 ns of the pulse were evaluated (cf. Figure 4.4, main
text). A further reduction of the evaluation period to teval = 30 ns (R∗) has the advantage
of reducing the influence of optical absorption of pump photons from the read pulse, while
still obtaining solid statistics for the cross-correlation, g

(2)
om(∆n = 0, δt = 100 ns, teval =

30 ns) = 19.6 − 2.8 + 3.9. However, this reduction also results in a much lower state
transfer efficiency ε∗R ≈ 0.1% (compared to εR = 3.7% above; see section Characterization
of the detection scheme). As a consequence we cannot obtain independent statistics on
the autocorrelation function of the read pulse, as the number of pulse sequences is too
low to observe coincidences during the reduced read pulse N(R∗1 ∩ R∗2) = 0. Thus, no
independent classical bound g∗cb can be obtained for this case. As the measurement is
identical to the one with longer evaluation window in the first column of Table 4.1, it is
reasonable to assume the same autocorrelation of the mechanical state and thus the same
classical limit.

We note that slight differences in the polarization of the two input lasers and the
optimal axis of the SNSPDs can lead to different detection rates of leaked pump photons
between the read and the write pulse. While this does not influence the cross-correlation
measurement, it is important to use the same laser source for the sideband asymmetry
measurements.
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4.3.7. Interpretation of the cross-correlation measurements

Classical bound

The classical bound gcb,ML is found to be slightly above 2, the value expected for a ther-
mal state of the mechanical system (cf. Figure 4.4c, main text). Although this increase
of the autocorrelation is not significant in our measurements, a behavior like this would
be expected in the case of mixed thermal states of different temperatures, caused e.g. by
fluctuations in the absorbed power. Effects that usually decrease the measured autocorre-
lation function of a thermal state, such as dark counts of the detectors and instantaneous
heating by the read pulse, do not play a major role in our experiment due to the choice of
pulse parameters. In conclusion, the classical bound in the present experiment is slightly
elevated compared to cross-correlation experiments in atomic physics or non-linear optics,
where the classical bound is usually assumed to be [San+11] below 2.

Decay of cross-correlations due to delayed heating

The cross-correlation can be interpreted as

g(2)
om ∼

〈nm〉h
〈nm〉

where 〈nm〉h is the average number of mechanical excitations in the state heralded on
a detection event of the write pulse (indicating the presence of an anti-Stokes scattered
photon), and 〈nm〉 the average number of unheralded events (essentially probing the
thermal excitation of the system when p� 1). In case of a delayed heating, the thermal
occupation of the system is a function of the delay δt after the write pulse 〈nm,th〉 =
〈nm,th〉(δt). Assuming our cross-correlation is dominated by the thermal occupation, we
obtain for δt� Td,

g(2)
om(δt) ∼ 1 + 〈nm,th〉(δt)

〈nm,th〉(δt)
,

which clearly decays in the case of substantial delayed heating as observed here (cf. Fig-
ure 4.7). Theoretical models of the complex thermodynamic non-equilibrium processes
contain many device dependent parameters [Mee+15], which will be subject of further
studies.

Estimation of the heralded single-phonon fidelity

In general, the toolbox of quantum optics provides unique means for quantum state control
of various systems [Zol+04]. As an example we discuss the application of single-photon
detection for the heralded generation of single-phonon Fock states of our mechanical
resonator [Hof+11; VAK13; Gal+14]. To estimate the fidelity of the single-phonon state
directly after heralding on the detection of a resonant photon generated by the write
pulse, we need to know all contributions to the diagonal of the density matrix, which
are not a single phonon. These contributions can either be higher excitations by thermal
contribution, multi-pair generation, or vacuum states by false positive heralding events.
Higher excitations can be estimated by the auto-correlation function of the heralded
state, which is related to the cross-correlations function [Zha+09]. As the target is to
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estimate the state immediately after heralding it, we reduce the evaluation window of
the read pulse as much as possible, while maintaining reasonable statistics on the cross-
correlation (cf. Table 4.1). From measured g

(2)
om(∆n = 0, δt = 100 ns, teval = 30 ns) =

19.6 − 2.8 + 3.9, we infer an auto-correlation function for the heralded mechanical state
of g

(2)
mm,heralded ≈ 0.22 ± 0.04, which approximately relates to the ratio of probabilities of

higher excitations pn>1 to single phonon excitations pn=1, 2 · pn>1 ≈ g
(2)
mm,heralded · p2

n=1.
In the meantime, the main contribution for non-zero pn=0 (i.e. the probability of the
heralded mechanical state being the ground state) is false positive heralding events, i.e.
dark counts and leaked pump photons. With the known ratio of true positive to false
positive heralding events (cf. section Characterization of the detection scheme), we obtain
an estimate of pn=0 ∼ 1/25. With these conservative estimates, we obtain a heralded
Fock-state fidelity of pn=1 = 87.7±1.2% on the basis of the standard system Hamiltonian
of the optomechanical device [Hof+11].
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5. Hanbury Brown and Twiss
interferometry of single phonons
from an optomechanical resonator

Control over single quanta of energy in a system plays an important role in quantum
information science [Win13; Har13]. In a bosonic system, such as an optical or mechanical
resonator, states containing a discrete number of excitations are called Fock states. They
are the basis of a vast number of quantum information protocols, in particular those Fock
states with a single excitation per mode [BB84; GHZ89; CZ95]. Here, I will report on my
work on Hanbury Brown and Twiss interferometry of single phonons, first published as
reference [Hon+17], preceded by a summary of the scientific context of this manuscript.

Sources of single Fock excitations can be characterized with a Hanbury Brown and
Twiss (HBT) interferometer, which refers to a pair of detectors coupled to the emission
mode of the source. For a source emitting into a single spatial mode, this can be achieved
for example by using a beam splitter, with one detector monitoring the power at each
of the two output ports of the beam splitter. As mentioned in the previous chapter, the
cross-correlation of the two output ports is equivalent to the normalized autocorrelation

g(2)
aa (t, τ) =

〈: â†(t)â(t) â†(t+ τ)â(t+ τ) :〉
〈â†(t)â(t)〉〈â†(t+ τ)â(t+ τ)〉

(5.1)

of the input mode â, i.e. the second order coherence of the source (with itself).
In their original experiments, Robert Hanbury Brown and Richard Q. Twiss intended

to determine the angular diameter of an astronomical object, in their case the star Sirius,
while avoiding the requirement of an interferometricaly stable telescope with a large base
line1 [HT56b; HT56a]. Based on earlier work with radio frequency telescopes [HJD52],
they realized that the stability criterion in intensity interferometers is based on the co-
herence length rather than the wavelength of the source, thus easing the requirements
for sub-wavelength stabilization of long base lines. Hence, by using a measurement of
the spatial autocorrelation to infer the first order coherence, i.e. the potential interference
visibility between two spatially separate parts of a wave emitted by a source, they man-
aged to increase the effective base lines such that they were able to resolve the angular
diameter of Sirius.2

1 The latter is necessary to form an image of the star with great enough resolution to determine its
geometrical properties, as the formation of the image in the focal plane of the telescope is based on
interference of spatially separate parts of the wave collected by the telescope.

2 While they were able to realize long base lines with their new method, intensity interferometers
require more intensity, respectively integration time, than classical telescopes, as they are based on
coincidences in the two detectors. In fact, they state that for this reason, Sirius was the only star
bright enough for their experiment.
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While the effect HBT used for their astronomical observations is of classical nature, the
quantum treatment of the effect attracted considerable attention. The correlations they
observed between two partially coherent light beams seemed to contradict an absence of
correlations in an earlier experiment with a very similar configuration [ÁJV55; BF56].
While it was found that both observations were indeed compatible [Pur56; TH57; Ján57],
the controversy lead to the realization that HBT type experiments, and more generally
the second order coherence, are of great interest to understand the quantum properties of
light [Man58]. Glauber’s formalism for the treatment of quantum fields [Gla63b; Gla63a]
enabled to formulate testable inequalities which distinct the predictions of a classical
field theory from those of a quantum field theory. Of those, two inequalities are of great
importance [Man86].

First, as the variance of the intensity is always positive, it follows for classical waves
that

g(2)(t, 0) ≥ 1. (5.2)

In a quantum language this means that a classical field will always exhibit poissonian
counting statistics. A quantized field can violate this inequality, for example with a fock
state |n〉 in mode â at time t resulting in a subpoissonian autocorrelation of g

(2)
aa (t, 0) =

1 − 1/n � 1. In particular, a Fock state with a single excitation |1〉 ideally exhibits

g
(2)
aa (t, 0) = 0. In other words, a single excitation cannot be detected at both outputs

of a beam splitter simultaneously. This anti-correlation is a typical particle-like feature
occurring naturally in fermionic systems, but representing a genuine quantum feature in
bosonic systems3.

The second relevant inequality is based on the Cauchy Scharz inequality discussed in
the previous chapter. For a single mode, it can be reformulated as

g(2)(t, 0) ≥ g(2)(t, τ) (5.3)

for a steady state4. This classical property is called bunching in a quantum language,
referring to the tendency of bosons to occur together, i.e. in bunches, rather than separate
[MM66]. Anti-bunching of bosons, i.e. a tendency of excitations to occur at different
times, rather than together, is a genuine feature of a quantum field. Note that the second
inequality is independent of the first, though a measurement of the first often implies a
violation of the second, with notable exceptions [Man86].

These two effects have been predicted for resonance fluorescence by Carmichael and
Walls [CW76]. While anti-bunching was observed soon after [KDM77], anti-correlation
in resonance fluorescence could initially only be inferred for the emission of single atoms
[KDM78; DM78], but was masked in the optical field by fluctuations in the number of
emitting atoms. Sub-Poissonian photon number statistics could eventually be observed
by ensuring that only a single atom was present [SM83], or more generally sub-Possonian
source number statistics [TS85; TRS87].

The quality of single photon sources was drastically improved by the advent of heralding
schemes [ST85; JW85] and the trapping of emitters [DW87]. In a heralding generation of

3 Note that anti-correlations g
(2)
aa (t, 0) ≤ 1 imply sub-Poissonian photon number statistics [Man79] and

vice versa, but strictly speaking they are different measurements.
4 If the system is not in a steady state, the autocorrelation at different times is not necessarily equal

and thus the inequality has the slightly more complex form
√
g(2)(t, 0)g(2)(t+ τ, 0) ≥ g(2)(t, τ).
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Figure 5.1.: Heralded Single Phonon Generation. First, the mechanical modes is initialized
in its groundstate by cryogenic cooling. The detection of a signal photon from a Stokes scattering
event heralds the presence of an idler phonon. The latter is transferred to the optical domain
by means of anti-Stokes scattering (step III) and analyzed in a Hanbury Brown and Twiss setup
(step IV).

single photons, a photon pair emission process is employed, in which the detection of a
first photon (called signal) can be used to herald the presence of a second single photon.
Such photon pair processes can be found for example in cascaded fluorescence [GRA86]
and spontaneous parametric down conversion [WJ85; HM86]. In contrast, trapping of an
emitter allows for exact control over the number of emitters, thereby allowing for high
quality single photons from a single fluorescence process [DW87].

With more and more single photon sources emerging [Bas+92; Mic+00; Bro+00], the
autocorrelation g(2)(0) became a figure of merit to determine the quality of the single
photon states [DW87; DDM96; Bru+99; Bro+00]. Moreover, for solid state emitters, it
often is of interest, how many emitters are coupled to the optical mode. As the molecules
and crystal defects used as fluorescent single photon sources are drastically smaller than
the emitted wavelength, two nearby emitters cannot necessarily be optically resolved.
However, a HBT experiment can be used to verify that only a single emitter is present,
by demonstrating an autocorrelation g(2)(0) < 1/2 below the value of a two photon
state [DW87]. State of the art single photon sources can reach extremely low values of
g(2)(0) < 10−2 [Dal+12; Hig+16].

HBT experiments have also been studied with other bosonic and fermionic systems,
including electrons [Oli+99; Hen+99], atoms [YS96; Sch+05; Jel+07], plasmons [Kol+09]
and subatomic particles [BGJ90].

For mechanical oscillators, HBT type intensity interferometry was recently realized
by Cohen et al. [Coh+15], observing the lasing threshold of optomechanically amplified
spontaneous emission. The preparation of single phonons, necessary to observe a violation
of either inequality (5.2) or (5.3), can readily be achieved for the motion of trapped ions

89



5. Hanbury Brown and Twiss interferometry of single phonons

[Mee+96; Lei+03], but remained elusive in massive resonators.
While individual phonons were previously generated by transferring an excitation from

a superconducting qubit to a mechanical resonator [OCo+10], the system lacked suit-
able single microwave photon detectors to perform an autocorrelation measurement. In
parallel to the experiment presented in the following, single phonons were generated in
electromechanical systems exhibiting longer coherence times [Chu+17; Ree+17], which
enabled the tomography of the mechanical state [Sat+18; Chu+18], as was previously
realized for the motion of trapped ions [Lei+96].

In the following, I will present my work on a HBT experiment with optically gen-
erated heralded single phonons. The experiment in this form was proposed by Gal-
land et al. [Gal+14]. I contributed to this work by conceiving, building and automating
the experiment, taking and analyzing the data and writing the manuscript.

In brief, a blue detuned drive pulse was used to probabilistically generate a photon-
phonon pair, as characterized in the previous experiment [Rie+16]. The detection of a
photon thus heralds the presence of a single phonon in the optomechanical crystal. This
is verified by transferring the mechanical state to the optical domain, using a red detuned
drive pulse, and analyzing it in a HBT interferometer, see also figure 5.1.

With this experiment, we demonstrated that optomechanical down conversion can be
used to generate mechanical states with genuine quantum properties, specifically anti-
correlated phonon counting statistics. These single phonons can for example be used
to generate on demand single photons in integrated silicon photonics, addressing the
question of scalability for photonic quantum computing [GAN14]. Further, they can act
as building block for more complex mechanical quantum states, such as mechanical path
entanglement [Rie+18].

While the mechanical state prepared here likely also exhibits phonon anti-bunching,
the observed anti-correlations are neither necessary nor sufficient to conclude it [Man86;
ZM90]. Consequently, a direct observation of this complementary quantum feature is
still outstanding. Further, it would be of interest to realize a phononic HBT experiment,
i.e. using phononic beam splitters and to separate optomechanical crystals as phonon
detectors, in order to directly explore the quantum behavior of the motion.
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5.1. Abstract

Nano- and micromechanical solid-state quantum devices have become a focus of attention.
Reliably generating nonclassical states of their motion is of interest both for addressing
fundamental questions about macroscopic quantum phenomena and for developing quan-
tum technologies in the domains of sensing and transduction. We used quantum optical
control techniques to conditionally generate single-phonon Fock states of a nanomechani-
cal resonator. We performed a Hanbury Brown and Twiss–type experiment that verified
the nonclassical nature of the phonon state without requiring full state reconstruction.
Our result establishes purely optical quantum control of a mechanical oscillator at the
single-phonon level.

5.2. Main Text

Intensity correlations in electromagnetic fields have been pivotal in the development of
modern quantum optics. The experiments by Hanbury Brown and Twiss were a partic-
ular milestone that connected the temporal and spatial coherence properties of a light
source with the second-order intensity autocorrelation function g(2)(τ, x) [HT56b; HT56a;

5 http://science.sciencemag.org/content/358/6360/203
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MM66]. In essence, g(2) correlates intensities measured at times differing by τ or at lo-
cations differing by x and hence is a measure of their joint detection probability. At
the same time, these correlations allow the quantum nature of the underlying field to be
inferred directly. For example, a classical light source of finite coherence time can only
exhibit positive correlations at a delay of τ ≈ 0 in the joint intensity detection probabil-
ity, leading to bunching in the photon arrival time. This result holds true for all bosonic
fields. Fermions, on the other hand, exhibit negative correlations and hence antibunch-
ing in the detection events [Hen+99; Oli+99; Jel+07], which is a manifestation of the
Pauli exclusion principle. A bosonic system needs to be in a genuine nonclassical state to
exhibit antibunching. The canonical example is a single-photon (Fock) state, for which
g(2)(τ = 0) = 0 because no joint detection can take place [GRA86]. For this reason,
measuring g(2) has become a standard method to characterize the purity of single-photon
sources [Eis+11]. In general, g(2)(τ) carries a wealth of information on the statistical
properties of a bosonic field with no classical analogue [ZM90; Dav96] – specifically sub-
Poissonian counting statistics [g(2)(0) < 1] and antibunching [g(2)(τ) ≥ g(2)(0)] – all of
which have been demonstrated successfully with quantum states of light [KDM77; SM83].

Over the past decade, motional degrees of freedom (phonons) of solid-state devices have
emerged as a quantum resource. Quantum control of phonons was pioneered in the field of
trapped ions [BW08], where single excitations of the motion of the ions are manipulated
through laser light. These single-phonon states have been used for fundamental studies
of decoherence [Lei+96] and for elementary transduction channels in quantum gates for
universal quantum computing [CZ95]. Cavity optomechanics [AKM14] has successfully
extended these ideas to optically controlling the collective motion of solid-state mechan-
ical systems. It has allowed for remarkable progress in controlling solid-state phonons
at the quantum level, including sideband cooling into the quantum ground state of mo-
tion [Teu+11; Cha+11], the generation of quantum correlated states between radiation
fields and mechanical motion [Pal+13; Lee+11; Rie+16], and the generation of squeezed
motional states [Wol+15; Pir+15; Lec+15].

So far single-phonon manipulation of micromechanical systems has exclusively been
achieved through coupling to superconducting qubits [OCo+10; Chu+17; Ree+17], and
optical control has been limited to the generation of quantum states of bipartite sys-
tems [Lee+11; Lee+12; Rie+16]. Here we demonstrate all-optical quantum control of a
purely mechanical system, creating phonons at the single quantum level and unambigu-
ously showing their nonclassical nature. We combined optomechanical control of motion
and single-phonon counting techniques [Coh+15; Rie+16] to probabilistically generate a
single-phonon Fock state from a nanomechanical device. Implementing Hanbury Brown
and Twiss interferometry for phonons [Coh+15; Rie+16] (Figure 5.2) allowed us to probe
the quantum mechanical character of single-phonons without reconstructing their states.
We observed g(2)(0) < 1, which is a direct verification of the nonclassicality of the op-
tomechanically generated phonons, highlighting their particle-like behavior.

Our optomechanical crystal [Cha+11] consists of a microfabricated silicon nanobeam
patterned so that it simultaneously acts as a photonic and phononic resonator (Fig-
ure 5.3). The resulting optical and mechanical modes couple through radiation pres-
sure and the photoelastic effect so that a displacement equivalent to the zero-point
fluctuation of the mechanical mode leads to a frequency shift of the optical mode by
g0/2π = 869 kHz (g0: optomechanical coupling rate). The optical resonance has a wave-
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Step I: create single-phonon Fock state Step II: measure phonon correlation function
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Figure 5.2.: Working principle of the approach used to generate single-phonon states
and verify their nonclassicality. The first step (left) starts with a mechanical oscillator in
its quantum ground state, followed by pumping the optomechanical cavity with a blue-detuned
pulse. The resonator is excited to a single-phonon state with a probability pb = 1.2% through
the optomechanical interaction, which is accompanied by the emission of a photon on resonance
with the cavity. The detection of such a photon in a single-photon detector (indicated by the
“Click”) allows us to post-select on a purely mechanical Fock state. To verify the quantum
state that we created, a red-detuned read pulse is sent onto the optomechanical cavity in the
second step (right), which performs a partial state transfer between the optics and the mechanics.
With a probability of pr = 32.5%, the mechanical system’s excitation is converted into a photon
on cavity resonance, returning the mechanics to its ground state. The photon is sent onto a
beamsplitter, where we measure the second-order intensity correlation function g(2) by using a
pair of single-photon detectors. g(2)(0) < 1 confirms the nonclassicality of the generated phonon
states. The insets show the equivalent energy level diagrams of the processes.
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Figure 5.3.: Sketch of the experimental setup used to measure the intensity autocorre-
lation function g(2) of phonons. Blue-detuned pump pulses are sent into the optomechanical
cavity, which is kept at 35 mK. With a small probability pb, the optomechanical interaction cre-
ates a single excitation of the mechanical mode at 5.25 GHz (idler) and at the same time emits
a signal photon on resonance with the cavity. The original optical pump field is then filtered and
only the signal photon created in the optomechanical down-conversion process is detected in one
of the single-photon detectors (D1 or D2). With a time delay td, a red-detuned read pulse is sent
into the device, converting any mechanical idler excitation into an idler photon, which again is
filtered from the original pump. Conditioned on the detection of a signal photon, we measure the
g(2) of the idler photons. Because the red-detuned pulse is equivalent to a state-swap interaction,
the g(2) function that we obtain for the photons is a direct measure of the g(2) function of the
phonons in the mechanical oscillator. The inset in the top left corner shows a scanning electron
microscope image of the device (top) next to a waveguide (bottom). BS, beamsplitter.

length λ = 1554.35 nm and a critically coupled total quality factor Qo = 2.28×105 (cavity
energy decay rate κ/2π = 846 MHz), whereas the mechanical resonance has a frequency
of ωm/2π = 5.25 GHz and a quality factor of Qm = 3.8 × 105. The device is placed
in a dilution refrigerator with a base temperature of T = 35 mK. When the device is
thermalized, its high frequency guarantees that the mechanical mode is initialized deep
in its quantum ground state [Rie+16].

We utilized two types of linearized optomechanical interactions – the parametric down-
conversion and the state swap – which can be realized by driving the system with detuned
laser beams in the limit of weak coupling (g0

√
nc � κ, where nc is the intracavity photon

number) and resolved sidebands (κ � ωm) [AKM14]. The parametric down-conversion
interaction has the form Hdc = ~g0

√
nc(â

†b̂†+ âb̂) where ~ is the reduced Planck constant;

b̂† and b̂ are the phononic creation and annihilation operators, respectively; and â† and â
are the respective photonic operators. This interaction is selectively turned on by detuning
the laser frequency ωL to the blue side of the cavity resonance ωc (ωL = ωc + ωm). Hdc
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drives the joint optical and mechanical state, initially in the ground state, into the state
|ψ〉om ∝ |00〉 + p

1/2
b |11〉 + pb|22〉 + O(p

3/2
b ). For low excitation probabilities pb � 1,

higher-order terms can be neglected so that the system can be approximated as emitting
a pair consisting of a resonant signal photon and an idler phonon with a probability
pb [Hof+11]. Detection of the signal photon emanating from the device heralds a single
excitation of the mechanical oscillator |ψ〉m ≈ |1〉, in close analogy to heralded single-
photons from spontaneous parametric down-conversion. To read out the phonon state,
we send in another laser pulse that is now red-detuned from the cavity resonance by ωm
(ωL = ωc− ωm). This realizes a state-swap interaction Hswap = ~g0

√
nc(â

†b̂+ âb̂†), which
transfers the mechanical state to the optical mode with efficiency pr. We can therefore use
the scattered light field from this “read” operation to directly measure the second-order
intensity correlation function g(2) of the mechanical oscillator mode, which is defined as

g(2)(τ) = 〈b̂†(0)b̂†(τ)b̂(τ)b̂(0)〉/〈b̂†(0)b̂(0)〉〈b̂†(τ)b̂(τ)〉, (5.4)

where τ is the time between the first and the second detection event. Like for any other
bosonic system, g(2)(0) > 1 means that the phonons exhibit super-Poissonian (classical)
behavior, whereas g(2)(0) < 1 is direct evidence of the quantum mechanical nature of the
state and implies sub-Poissonian phonon statistics [Dav96].

We implemented the experimental approach (Fig. 5.2) by repeatedly sending a pair
of optical pulses, the first one blue-detuned [pump pulse, full width at half maximum
(FWHM) ≈ 32 ns] and the second one red-detuned (read pulse, FWHM ≈ 32 ns) with a
fixed repetition period Tr = 50 µs. Photons generated through the optomechanical inter-
actions were reflected back from the device and analyzed by a Hanbury Brown and Twiss
interferometer using two superconducting nanowire single-photon detectors (SNSPDs).
We set the mean pump pulse energy to 27 fJ so that pb = 1.2%, see Supplementary In-
formation (SI). Detection of resonant (signal) photons created by this pulse heralds the
preparation of the mechanical oscillator in a single-phonon Fock state, in principle with
a probability of 98.8%. Owing to a small amount of initial thermal phonons and resid-
ual absorption heating, a fraction of unwanted phonons were incoherently added to the
quantum states that we prepared [Rie+16]. After each pump pulse, a red-detuned read
pulse was sent to the device with a programmable delay td, reading out phonons stored
in the device by converting them into photons on resonance with the cavity. The mean
read pulse energy is set to 924 fJ, corresponding to a state-swap efficiency pr ≈ 32.5%.
Taking into account subsequent optical scattering losses, this yields an absolute quantum
efficiency for the detection of phonons of 0.9% (SI). Last, the pulse repetition period of
Tr = 50 µs, which is long compared with the mechanical damping time of 11 µs, provides
ample time for dissipating any excitation or unwanted heating generated by optical ab-
sorption. This ensured that each experimental cycle started with the mechanical mode
well in the quantum ground state. The pulse sequence was repeated more than 7 × 109

times to acquire enough statistics. Conditioned on heralding events from detector D1 by
the blue-detuned pulses, we analyzed the coincidence detection probability of photons at
D1 and D2 that are transferred from phonons by the swap operation.

In our first experiment, we set td = 115 ns and measured g(2)(0) of the heralded phonons.
One of our SNSPDs, D2, exhibited a longer dead time than td (SI) and we therefore only
used photon counts from D1 for heralding the phonon states. From these measurements,
we obtained a g(2)(0) of 0.65+0.11

−0.08 (Figure 5.4C), demonstrating a nonclassical character
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Figure 5.4.: Experimental single-phonon creation and HBT interferometry. A Pulse
sequence used in the experiments. Each cycle consists of a blue-detuned pump pulse and a
subsequent red-detuned read pulse delayed by td. The pulse sequence is repeated with the
period Tr. Both td and Tr can be adjusted. B The measurement result of the second-order
correlation function g(2)(τ = ∆n× Tr) of the heralded phonons, with g(2)(0) < 1 being a direct
measure of their nonclassicality. In this measurement, we set td = 115 ns and Tr = 50 µs.
g(2)(∆n × Tr) with ∆n 6= 0 depicts the correlations between phonons read from separate pulse
sequences with the cycle difference of ∆n. Whereas phonons from independent pulses show
no correlation [g(2)(∆n × Tr; ∆n 6= 0) ≈ 1], those from the same read pulse are strongly
anticorrelated [g(2)(τ = 0) = 0.65+0.11

−0.08]. C The influence of an incoherent phonon background

on the g(2)(0) of the generated mechanical states. Several measurements are plotted for a range
of different effective initial temperatures of the nanomechanical oscillator. The first data point
(green) was taken with a delay td = 115 ns and a repetition period Tr = 50 µs. We control
the initial mode occupation ninit (initial mode temperature Tinit) by using the long lifetime of
the thermally excited phonons stemming from the delayed absorption heating by pump and read
pulses. This allows us to increase ninit while keeping the bulk temperature and properties of the
device constant, causing an increase in g(2)(0), as the state becomes more thermal. The red line
shows the simulated g(2)(0) as discussed in (SI). For technical reasons all data points (yellow and
purple) except the leftmost (green) were taken with td = 95 ns. In addition, the second from the
right (purple) was taken at an elevated bath temperature of Tbath = 160 mK.

of the mechanical state.
The observed g(2)(0) of 0.65 is considerably higher than what we expect in the ideal

case g
(2)
ideal(0) ≈ 4×pb = 0.045 (SI). We attribute this to heating induced by the absorption

of the pump and read pulses. Although a detailed physical mechanism for the absorption
and subsequent heat transfer into the mechanical mode is still a subject of study [Rie+16],
the influx of thermal phonons ṅabs caused by the absorption of drive laser pulses can be
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experimentally deduced from the (unconditional) photon count rates generated by the
read pulses (SI). Including an estimation of the initial thermal phonon number ninit,
which is likewise inferred from the unconditional photon counts associated with the pump
and read pulses, we constructed a theoretical model that predicts g(2)(0) as a function of
pb, ninit, and ṅabs. Given the measured ninit ≈ 0.20 and ṅabs (SI) within the read pulse,
our model predicts g(2)(0) ≈ 0.76, which is consistent with the experimental value.

To further probe the effect of thermal phonons, we performed a set of experiments with
reduced repetition periods Tr, while keeping the other settings for the pump pulses the
same. This effectively increases ninit, because the absorbed heat does not have enough
time to dissipate before the next pair of pulses arrives. As expected, as Tr was reduced,
we observed an increase in g(2)(0). With the measured ninit and ṅabs from the same data
set, we can plot the predicted g(2)(0) values. The experimental values and theoretical
bounds on g(2)(0) are in good agreement (Fig. 5.4).

We also measured g(2)(0) for td = 350 ns and found that it increased to 0.84+0.07
−0.06.

This increase is consistent with previously observed delayed heating effects of the absorp-
tion [Rie+16] and is in good agreement with the theoretical prediction of 0.84. Even for
these longer delays, the value is still below 1, demonstrating the potential of our device
as a single-phonon quantum memory on the time scale of several hundred nanoseconds.

We experimentally demonstrated the quantum nature of heralded single-phonons in a
nanomechanical oscillator by measuring their intensity correlation function g(2)(0) < 1.
The deviation from a perfect single-phonon state can be modeled by a finite initial thermal
occupation and additional heating from our optical cavity fields. We achieved conversion
efficiencies between phonons and telecom photons of more than 30%, only limited by
our available laser power and residual absorption. Full state reconstruction of the single-
phonon state, as demonstrated with phononic states of trapped ions [Lei+96], should be
realizable with slightly improved read-out efficiency and through homodyne tomography.
The demonstrated fully optical quantum control of a nanomechanical mode, preparing
sub-Poissonian phonons, shows that optomechanical cavities are a useful resource for fu-
ture integrated quantum phononic devices, as both single-phonon sources and detectors.
They are also an ideal candidate for storage of quantum information in mechanical exci-
tations and constitute a fundamental building block for quantum information processing
involving phonons. Some of the potential applications include quantum noise–limited,
coherent microwave-to-optics conversion, as well as studying the quantum behavior of
individual phonons of a massive system.
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5.3. Supplementary Information

Optomechanical devices

The optomechanical device is fabricated from a silicon on insulator wafer (Soitec) with
a device layer of 250 nm thickness on top of a 3 µm buried oxide layer. We pattern our
chips with an electron beam writer and transfer the structures into the silicon layer in
a reactive ion etcher using a SF6/O2 plasma. One of the sides of the chip is removed
to allow for in-plane access to the lensed fiber couplers. After the resist is removed, the
device layer is undercut in 40% hydrofluoric acid. An additional cleaning step using the
so-called RCA method [KP70] is performed to remove organic and metallic residuals. The
final step is a dip in 2% hydrofluoric acid to remove the oxide layer formed by the RCA
cleaning and to terminate the silicon surface with hydrogen atoms.

Unlike in previous device designs [Cha12], we do not use an additional phononic shield
around the optomechanical structure as this unnecessarily increases the re-thermalization
time and therefore reduces the achievable repetition rate of our experiment [Rie+16]. We
reduce the mechanical quality factors of the designed structures further by offsetting the
photonic crystal holes laterally from the center of the beam by 30 nm [Pat+17]. This
yields a measured quality factor of Qm = 3.8× 105 at mK temperatures, while otherwise
such structures exhibit Q’s beyond 107.

In order to find particularly good devices on a chip, we characterize them in a pump-
probe experiment at cryogenic temperatures (35mK) and select devices with optimal me-
chanical Q and low optical absorption. We then perform cross-correlation measurements
of the photon-phonon pairs scattered by the pump pulse, while varying the repetition pe-
riod Tr, pump excitation probability pb and state-swap efficiency pr. This short two-fold
coincidence measurement (∼1h) allows us to predict the expectation value of the three-
fold coincidence autocorrelation measurement [Cho+04; Gal+14; Rie+16] as well as the
time required to obtain enough statistics for a targeted confidence interval. We chose
a parameter set, which allows for a statistically significant (p-value < 0.001, see below)
demonstration of intensity anticorrelations (g(2)(0) < 1) of the phononic state within a
realistic measurement time (∼100h).

Detection efficiency

We calibrate the total detection efficiencies of optomechanically generated cavity photons
(ηi; i = 1, 2) by performing a series of independent measurements. First, the fiber-to-
device coupling efficiency (ηfc = 0.48) is measured by sending light with known power to
the photonic crystal and then measuring the reflected power. The extraction efficiency of
cavity photons ηdev is obtained from the device impedance ratio, ηdev = κe/κ, where κe
is the external cavity energy decay rate. These values are extracted from the visibility
and the linewidth of the optical resonance scan, and we find ηdev = 0.5. Furthermore, we
measure the efficiency of detecting photons coming from the device for each SNSPD. We

102

https://doi.org/10.1103/PhysRevA.41.475


5.3. Supplementary Information

0.0

0.5

1.0

1.5

2.0

2.5

0 20 40 60 80 100 120 140 160

time (ns)

co
un

ts
 p

er
 p

ul
se

 p
er

 n
s

x 10-5

Figure 5.5.: A sideband asymmetry measurement is performed to extract the optomechanical
coupling rate g0. For a detailed explanation of the measurement see the text below. We plot
the detected photon counts per pulse repetition per nanosecond for a blue-detuned (blue) and a
red-detuned beam (red). Unwanted contributions from leaked pump photons and detector dark
counts are independently measured and subtracted. Integrating over the whole detection window
(i.e. from 30 to 150 ns in the plot) gives the photon counting probabilities Cb and Cr, respectively.
From this data, we extract the optomechanical coupling rate g0/2π = 869 kHz.

launch weak, off-resonant optical pulses with an average of 5.14 photons to the device and
measure the photon count rate of each SNSPD. This measurement gives the quantities
η2
fc × ηtrans,i × ηQE,i, where ηtrans,i is the transmission efficiency of the detection path to

each SNSPD, while ηQE,i is their quantum efficiency. As ηfc is measured independently,
ηtrans,i × ηQE,i can be calculated from these results. Finally, this allows us to obtain
ηi = ηdev × ηfc × ηtrans,i × ηQE,i, which are η1 = 1.16% and η2 = 1.50%, respectively.

Optomechanical coupling rate

In order to calibrate the optomechanical coupling rate g0 between the cavity field and the
mechanical mode, we perform a measurement similar to sideband thermometry [Mee+15;
Rie+16] (see Figure 5.5). In this measurement, pairs of pump and probe pulses are sent
to the device with a repetition period of Tr = 100 µs. For this pulse sequence, a blue-
detuned pump pulse (190.62 fJ) is sent to intentionally heat the device’s mechanical mode,
followed by the probe pulse (55.16 fJ) with a long delay of 99.825 µs. We perform two sets
of such repetitive measurements, one with red-detuned and the other with blue-detuned
probe pulses. From each measurement, we acquire a photon counting probability for
the probe pulses, Cr (red-detuned) and Cb (blue-detuned). These can be expressed as
Cr = (η1 + η2) × pr × nth and Cb = (η1 + η2) × pb × (1 + nth) in the limit of pb � 1 and
pr � 1, where pb and pr are equivalent to the photon-phonon pair excitation probability
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and state-swap efficiency as introduced in the main text. pb and pr can be explicitly
written as

pb = exp(κe/κ
[
4g2

0Ep/~ωc(ω2
m + (κ/2)2)

]
)− 1, (5.5)

pr = 1− exp(−κe/κ
[
4g2

0Ep/~ωc(ω2
m + (κ/2)2)

]
), (5.6)

where Ep is the total energy of the incident laser pulses and all the other terms as defined
in the main text. We find that Cr = 0.0064% and Cb = 0.0697%. From these values we
extract nth = 0.104, pr = 2.32% � 1 and pb = 2.37% � 1, which allows us to directly
obtain g0/2π = 869 kHz, in good agreement with our simulated value [Rie+16]. With
the calibrated value of g0, the scattering probabilites pr and pb can now be directly set
by simply choosing the appropriate pulse energies. The average phonon occupation of
the mechanical oscillator nth can also be obtained by measuring the count rates with
predetermined values of pb and pr, without requiring sideband thermometry.

Data analysis

The second order autocorrelation function is defined as

g(2)(t1, t2) =

〈
: N̂(t1)N̂(t2) :

〉
〈
N̂(t2)

〉〈
N̂(t1)

〉 , (5.7)

where N̂(t) = b̂†(t)b̂(t) is the phonon number operator of the mechanical mode at time t
after the start of the pulse sequence, and : : is the notation for time and normal ordering of
the operators. The mechanical mode is measured by the optical read pulses and the signal,
i.e. the scattered photons, are filtered before they are detected by SNSPDs. Consequently,
the observed detection events are averaged by the optical filters and weighted with the
envelope of the read pulse np(t), which holds for the weak coupling (i.e. adiabatic) regime.
Further, to gain enough statistics, the events associated with the read pulse are integrated.
We define the time interval [ta, tb], containing the effective pulse shape p(t), which is
obtained from the actual pulse envelope np(t) and the filter transfer function. This allows
us to express the observed autocorrelation function

g
(2)
obs(τ) =

∫ tb
ta
dt1
∫ tb+τ

ta+τ
dt2p(t1)p(t2)

〈
: N̂(t1)N̂(t2) :

〉
(∫ tb

ta
dt1p(t1)

〈
N̂(t1)

〉)(∫ tb+τ

ta+τ
dt2p(t2)

〈
N̂(t2)

〉) , (5.8)

for a delay τ between two phonon measurements. This averaging does not influence
the validity of the statements about sub-poissonian statistics and nonclassicality of the
mechanical state. Strictly speaking, within the averaging window there is a randomization
of the phonon statistics due to damping and heating. Thus, a small regression towards
g(2) = 1 is the expected. Due to the short averaging time, this effect is negligible compared
the other uncertainties and systematic effects described below, such that we can safely
assume g(2)(τ) ≡ g(2)(td, td + τ) ≈ g

(2)
obs(τ), with the effective delay of the read pulse

td = (ta + tb)/2.
A Hanbury Brown and Twiss setup with two single-photon detectors D1 and D2 with

low count rates allows to measure this second order autocorrelation [Hof+11; Gal+14].
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Specifically, for τ = 0, this expression reduces to the cross-correlation between those
detectors

g(2)(0) ≈ g
(2)
E1,E2

= P (E1 ∩ E2)/P (E1)P (E2), (5.9)

where P (X) describes the probability of the occurrence of event X, and En is a detection
event at detector Dn (n = 1, 2) during the time interval [ta, tb]. In this notation, it can
easily be seen that a rescaling of the detection efficiency of either detector drops out of the
expression. Consequently, g(2) is independent of losses in the optical path or the fidelity
of the state transfer by the read pulse. However, the value of g(2) can be changed by
measurement noise, in our case dominated by false positive detection events (caused by
electronic noise, stray light or leaked pump photons). In our setup this gives a negligible

systematic error δg(2) = g
(2)
E1,E2

−g(2)(0) of 0 < δg(2) < 3×10−4. If the state-swap is seen as
part of the measurement, heating of the mechanical state by optical absorption of pump
photons within the device can also be interpreted as measurement noise. The effect on
g(2) depends strongly on the initial effective temperature of the mechanical mode, so that
we cannot give a general number for the systematic error. From simulations, we deduce
that it spans from about 0 < δg

(2)
abs < 0.17 for the lowest temperature measurement

to 0 < δg
(2)
abs < 0.02 for the highest initial temperature. The absorption heating in

combination with dead time of the SNSPDs, additionally causes a systematic error of
0 < δg

(2)
dt < 0.03, which is described in detail in the following section. As the heating

related effects can also be considered to be part of the actual mechanical state and the
other effects are much smaller than the statistical uncertainties, all g(2) values presented in
this work are not corrected for these systematic errors. With all δg(2) > 0, the presented
values are upper bounds to the noise free auto-correlation of the mechanical state.

To estimate the statistical uncertainty of our measurement, we use the likelihood func-
tion based on a binomial distribution of photon detection events in the limit of low prob-
abilities. The experimentally measurable values for g

(2)
E1,E2

(0) are the maximum likelihood
values

ḡ
(2)
E1,E2

≡ C(E1 ∩ E2)/N

(C(E1)/N)(C(E2)/N)
≈ g

(2)
E1,E2

, (5.10)

where C(E1) (C(E2)) is the number of counts registered at detector D1 (D2) and C(E1∩
E2) is the number of co-detection events at both detectors, all conditioned on heralding
events (i.e. detection events from earlier pump pulses). N refers to the number of such

heralding events. In our experiment, the uncertainty of g
(2)
E1,E2

is dominated by that of

P̄ (E1∩E2) ≡ C(E1∩E2)/N , i.e. the estimated probability of P (E1∩E2), as E1∩E2 is the
rarest event among all the other events. Therefore, we use the likelihood function of P (E1∩
E2) to determine the confidence interval of the given values g(2)(0) = ḡ

(2)
E1,E2

+σ+

−σ− , such that

the likelihood of the actual value of g
(2)
E1,E2

is 34% to be within
[
ḡ

(2)
E1,E2

− σ−, ḡ(2)
E1,E2

]
and

34% to be within
[
ḡ

(2)
E1,E2

, ḡ
(2)
E1,E2

+ σ+

]
. While the low count numbers produce skewed

likelihood functions and therefore unequal upper and lower uncertainties σ±, the counts
are high enough such that the rule of thumb of requiring 3σ for statistical significance
(p-value< 0.001) still holds. Specifically, our null hypothesis is no correlation between

the phonons in the oscillator, i.e. an actual g
(2)
actual = 1. For the delay of the read pulse of

td = 115 ns and T = 35 mK, we measured an autocorrelation of g(2)(0) = 0.647+0.105
−0.079. The

p-value, i.e. the probability of observing this or a more extreme result, given that the null
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Figure 5.6.: Plotted are the heralded counts for various combinations of detection events: In
brown, yellow, purple and green are the counts of photons scattered by the read pulse (left axis),
heralded on the detection of a photon scattered by the pump pulse. They are normalized to the
detection efficiency of events heralded by detector D1 and detected by D2 (yellow). All com-
binations involving D1 either for heralding or detection match well with the simulated counting
distribution (blue). Notably, the combination of heralding and detecting with D2 deviates from
that. This reduced detection efficiency is caused by the longer dead time of D2 compared to D1.
In addition, the time window over which the pulse averages, is shifted to later times and is more
heavily influenced by the cumulative heating nabs(t) (red) by absorbed driving photons from the
read pulse. The latter is extracted from the detection of a thermal state and compensated for the
optomechanical cooling to obtain the true cumulative number of added phonons nabs(t) (right
axis).

hypothesis of no correlation was true, is p = P
(
ḡ

(2)
E1,E2

≤ 0.647
∣∣g(2)

actual = 1, N = 1.2×106
)
<

7 × 10−4. In our case this coincides with the probability of falsely rejecting the classical
bound P

(
g

(2)
actual(0) ≥ 1

∣∣ḡ(2)(0) = 0.647+0.105
−0.079

)
< 7 × 10−4. For the delay of td = 370 ns

and T = 35 mK, we find the p-value p < 0.01 for the observed g(2)(0) = 0.832+0.068
−0.058, also

coinciding with P
(
g

(2)
actual(0) ≥ 1

∣∣g(2)(0) = 0.832+0.068
−0.058

)
< 0.01.

Dead time effects

In order to reduce the effects of absorption heating on the mechanical state [Mee+14;
Mee+15; Rie+16], it is important to measure the state as quickly as possible upon its
generation by the pump pulse. For the data shown in Figure 5.4B in the main text, the
time delay between the read and the pump pulses is td = 115 ns. For the measurements
in Figure 5.4C, td is set to 95 ns, except for the first data point, which represents the
result of Figure 5.4B.

In our measurement scheme, we use the same pair of SNSPDs to herald the generation
of nonclassical mechanical states as we use to measure g(2)(0) through the read pulses.
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After a detection event, the superconducting nanowire is in the normal conducting state
and is therefore blind to additional photons arriving during this time, before it cools down
and returns into the superconducting state. This so-called dead time for our detectors
is nominally on the order of 50 – 70 ns. If the state is heralded by one of the SNSPDs
and its dead time overlaps with the arrival time of the photons from the read pulse, its
detection efficiency will be lower than the nominal value. In our experiment this is in fact
the case for detector D2 in the measurement of g(2)(0) with td = 115 ns (cf. Figure 5.6).

To first approximation, this should have no influence on the value of g(2)(0) itself, as
the detection probability of the heralded pulses enters equation (5.9) in the numerator
P (E1 ∩ E2) and the denominator P (E2) in the same way. However, a detected readout
pulse with a seemingly distorted shape as in Figure 5.6 effectively measures the mechanical
state slightly later than the nominal delay time td. Due to absorption heating during the
read pulse (cf. Figure 5.6), the mechanical state at later times is corrupted by the influx of
thermal phonons ṅabs(t). Therefore, it will increase the observed value of g(2)(0) towards
2, the value of a thermal state. For this reason we discard heralding events from detector
D2 for short delays.

A more detailed analysis allows us to quantify the systematic error by the shorter dead
time of detector D1. The minor reduction of the detection efficiency for a td of 115 ns
leads to 0 < δg

(2)
dt < 0.01, which corresponds to an overestimation of our observed value

of g(2)(0) by much less than our statistical uncertainty. For td = 95 ns, this effect from
detector D1 becomes stronger, resulting in 10% reduced detection efficiency. However,
thanks to an increased thermal background, it only produces a systematic error of around
0 < δg

(2)
dt < 0.03, which is again smaller than the statistical uncertainty. As they are

negligible in magnitude, we did not account for these systematic errors in the reported
values of g(2) in the main text.

Simulation of the correlation function

To calculate the expected value of g(2) we use the formalism developed by Barchielli [Bar87;
Bar90]. In order to do this, we require a model of the open-system dynamics of our optome-
chanical system, describing the coupling to the environment. In addition to the typical
assumption that the mechanical system couples to a heat bath of a fixed temperature, we
observe in our experiment an additional, time-dependent heating effect that is activated
by the strong read pulse. In the absence of a microscopic description of this effect, we
adopt a simple phenomenological description and model it as a standard Lindblad dynam-
ics with two parameters γ and nbath, which can be estimated from the singlefold detection
events of the exerimental g(2) data for each ninit. Note that nbath is not the occupation
number determined by the dilution refrigerator and is assumed to be a function of time.
In essence, the incoherent (thermal) phonon influx ṅabs = γnbath(t) is the derivative of the
cummulative absorbtion heating and can be extracted from singlefold detection events,
with calibrated scattering rates from sideband asymmetry measurements (see above) and
knowledge of the envelope of the read pulse (cf. Figure 5.6). The mechanical decay rate γ
is assumed to be the measured decay rate ωm/Qm. The Lindblad dynamics stay identical
when coupling to a number of different baths with different coupling strengths, as long as
the phonon influx and the mechanical decay rate stay constant. For reasons of simplicity,
we therefore work with a single phenomenological phonon influx γ × nbath(t).
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The evolution of the optomechanical quantum state ρ under open-system dynamics can
be described by a Lindblad master equation [Lin76] of the form [Wil+07]

ρ̇ = Lρ = − i
~

[Hswap(t), ρ] + κD[a]ρ+ γ(nbath(t) + 1)D[b]ρ+ γnbath(t)D[b†]ρ, (5.11)

where the time dependence in Hswap accounts for the time-dependent drive by the light
pulses. The Lindblad terms,

D[s]ρ = sρs† − 1

2

(
s†sρ+ ρs†s

)
, (5.12)

describe the coupling of the system to its electromagnetic environment (second term in
eq. (5.11)) and the mechanical heat bath with a mean occupation number nbath (third
and fourth term in eq. (5.11)). Below we will write the formal solution of eq. (5.11) as
ρ(t) = T (t, t0)ρ(t0).

To describe a photon-counting measurement with a quantum efficiency η, we iteratively
solve the master equation as [GZ04]

ρ(t) = S(t, t0)ρ(t0) +
∞∑
m=1

∫ t

0

dtm· · ·
∫ t2

0

dt1S(t, tm)JS(t, tm−1) . . .JS(t1, 0)ρ(t0), (5.13)

where we defined the operator J ρ = ηκ aρa† (which corresponds to the emission of one
photon from the cavity), and the propagator S that solves the effective evolution Ṡ =
(L − J )S. Equation (5.13) allows for the following interpretation: Assuming that we
register m photons on the photo-detector, the conditional state of the system is, up to
a normalizing factor, given by the m-th term in the sum above. In case no photons
are registered, the unnormalized conditional state is given by S(t, t0)ρ(t0) instead. The
heralded state of the mechanical system after the blue-detuned write pulse (for a click of
the detector at time tclick) is thus given by

ρclick =
Trcav[T (tclick, t0)ρ(t0)− S(tclick, t0)ρ(t0)]

Tr[T (tclick, t0)ρ(t0)− S(tclick, t0)ρ(t0)]
. (5.14)

Note that this state is conditioned on a measurement of at least one phonon. For our
case where two-fold events are rare, this effectively reduces to the first term in the sum
in eq. (5.13), i.e., ρclick ∝ Trcav[a

†aS(tclick, t0)ρ(t0)].
As the evaluation of g(2) is computationally expensive, we first adiabatically eliminate

the cavity mode from eq. (5.11), which is possible in the weak-coupling limit g0×
√
nc � κ.

For the case of the red-detuned read pulse we find the equation (neglecting the very weak
optical-spring effect) [Wil+07]

ρ̇m = [γ(nbath + 1) + Γ−(t)]D[b]ρm + (γnbath + Γ+(t))D[b†]ρm, (5.15)

for the reduced state of the mechanical system ρm, with Γ±(t) = 2κe/κ× g2
0nc(t)Re(η±),

η− = 2/κ, η+ = 2/(κ+ 4iωm). In this approximation the photo-counting measurement at
the cavity resonance frequency is described by J (t)ρ = ηΓ−(t)bρb†.

To calculate g(2) of the photons emitted from the cavity (after heralding) we need to
evaluate time- and normal-ordered expectation values of the cavity output field, which is
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readily achieved in this formalism. We find [Bar90]

〈Î(t1)〉 = Tr[J (t1)T (t1, tclick)ρclick], (5.16)

〈: Î(t1)Î(t2) :〉 = Tr[J (t2)T (t2, t1)J (t1)T (t1, tclick)ρclick]. (5.17)

To evaluate equations (5.16) and (5.17), we expand the mechanical operators in a number
basis up to a maximal phonon number of 50. We assume the mechanical system to
initially be in a thermal state with a mean phonon number ninit. In optomechanical
crystals, the mechanical damping rate γ tends to be a function of the environmental
temperature. As γ × nbath is effectively treated as a single parameter ṅabs and the time
scale of the simulation is short compared to the mechanical decay time 1/γ, potential
changes of γ with the bath temperature by up to one order of magnitude do not influence
the simulations significantly.
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Figure 5.7.: Shown is the numerically calculated g(2) function of a squeezed Gaussian state
with an initial thermal occupation of ninit = 0.20 as a function of displacement ᾱ and squeezing
parameter r (color-coded) for θ = 2φ. Even for the optimal choice of settings r = 0.44 and
ᾱ = 2.00, such a model cannot explain our data.

Nonclassicality and g(2)

The degree of second order coherence g(2) allows to draw various conclusions on the system
under investigation. The most prominent use of g(2) is to violate the nonclassicality bound
as described in the main text. The physical meaning of this bound can be inferred from
the variance of the energy Ĥ = ~ωmb̂†b̂ of the free mechanical oscillator.

Var(Ĥ) =
〈
Ĥ2
〉
−
〈
Ĥ
〉2

=
(
g(2)(0)− 1

) 〈
Ĥ
〉2

+ ~ωm
〈
Ĥ
〉
. (5.18)

For classical physics, i.e. not applying canonical quantization, 〈: Ĥ2 :〉 = 〈Ĥ2〉 and there-
fore the last term, stemming from the commutation relations, drops out. It immediately
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follows from Var(Ĥ) ≥ 0 that g(2)(0) ≥ 1. When using the canonical quantization, we
can infer from g(2)(0) < 1 that the source had sub-Poissonian phonon statistics. This also
classifies the mechanical state as ”nonclassical” in the sense that it cannot be represented
as an incoherent mixture of coherent states [SM83]. The degree of second order coherence
g(2) can be used to test against stricter bounds as well [FL13], some of them depending on
the physical system under investigation. For two level systems it is for example important
to demonstrate that only a single emitter is present. This can be done by demonstrating
g(2)(0) < 0.5 [IBW88]. In our case it is sufficient to show g(2)(0) < 1 as we only have a
single macroscopic oscillator by design.

As we can see from equation (5.18), states possessing a small variance and/or low
energies can also exhibit g(2)(0) < 1. One set of states, which is interesting to exclude is
incoherent mixtures of Gaussian states. In general, linear bosonic systems that involve
squeezing can exhibit g(2)(0) < 1. This has recently been theoretically shown in the
context of optomechanics [LDC14]. Using these models we numerically calculate g(2)(0)
for a general mechanical single-mode Gaussian state undergoing squeezing. For this, we
use the most favorable parameters observed in our correlation experiments. We start from
an initial thermal state ρ̂init with ninit = 0.20 phonons, which corresponds to the lowest
temperature observed in the correlation measurements. The state is assumed to be purely
thermal, which is in agreement with the experimentally observed autocorrelation of the
pump pulse of g(2)(0) = 2.0+0.1

−0.1. Neglecting any heating from the optical pulses, we apply

displacement D̂(α) = exp[αb̂† − α∗b̂] and squeezing operations Ŝ(ξ) = exp[1
2
(ξ∗b̂2 − ξb̂†2)]

with variable α = ᾱeiφ and ξ = reiθ (ᾱ, r > 0). We then numerically minimize g(2)(0)
of the resulting states ρ̂ = D̂(α)Ŝ(ξ)ρ̂initŜ

†(ξ)D̂†(α) as a function of α and ξ using the
quantum toolbox QuTiP [JNN12; JNN13]. The minimal correlation we can obtain is
g(2)(0) ≈ 0.95, with r = 0.44 and ᾱ = 2.00 for θ = 2φ, clearly exceeding our experimentally
measured value, as shown in Fig. 5.7. This simple model therefore allows us to exclude,
with a p-value of 0.002, the possibility that the states we generate are in fact squeezed
Gaussian states. When additionally limiting the mean occupation n = Tr[ρ̂b̂†b̂] to the
experimentally observed occupation number of the heralded states, 1.25 < n < 1.90, we
get a minimum g(2)(0) ≈ 0.99, rejecting the hypothesis of observing a squeezed state with
even stronger statistical confidence.
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6. Remote quantum entanglement
between two micromechanical
oscillators

Entanglement has been called “the characteristic trait of quantum mechanics” by Schrö-
dinger in a letter coining the term [Sch35]. He characterized it as the relation of two
initially independent systems in pure states, which interact for some time, and thereafter
cannot be fully described by two separate wavefunctions. In other words, the quantum
state is spread over both systems, making it impossible to capture the full information
of the physical reality when describing the systems separately. This phenomenon was
initially described by Einstein, Podolsky and Rosen (EPR), citing the counter-intuitive
consequences of quantum entanglement as a reason for their doubts about the complete-
ness of a quantum mechanical description of reality [EPR35]. Later on, it was realized
that quantum entanglement not only exists [FC72; KUW75; AGR81], but can be em-
ployed for efficient simulation of quantum systems [Man80; Fey82], computation [Deu85]
and communication [WS83; BB84]. Here, I will report on my work on entanglement of
two remote mechanical oscillators, first published as reference [Rie+18], preceded by a
summary of the scientific context of this manuscript.

The consequences of entanglement are at variance with the classical definition of “com-
pleteness” of a physical theory [EPR35]. In particular, one part of an entangled system
cannot completely be described without knowledge of the other part. Conversely, this
allows for example for manipulation of the first system by a mere measurement of the
second [Sch35]. A proposal by Bell for an experimental test of the EPR paradox [Bel64]
triggered a flurry of research on the topic. Bell’s inequality and related ones, like the
CHSH inequality [Cla+69], are a classical bound for correlation measurements that can
only be violated by entangled states. Subsequent experiments demonstrated the existence
of entanglement, using photon polarization correlations in cascaded fluorescence [FC72;
AGR81] and positron annihilation [KUW75].

In parallel, first ideas were developed for utilizing entanglement beyond the investigation
of fundamental test of physics. For example, it became clear that entanglement, as the
manifestation of the superposition principle in many-body systems, prevented classical
computers from efficiently simulating large quantum systems [Pop75; Fey82]. It was
thus proposed to use controlled quantum systems and the entanglement they produce
to circumvent this limitation for quantum simulations [Man80; Fey82]. Soon after, it
emerged that the computational power of such systems could also be employed for more
general computational tasks [Deu85]. Specific problems, such as the prime factorization of
numbers [Sho94] or the search of an entry in a database [Gro96] can in principle be treated
more efficiently on a quantum computer than on its classical analogue1. While these

1 It has been argued that some quantum algorithms do not require entanglement, but merely the super-
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algorithms have been realized in proof-of-concept experiments [CGK98; Van+01], the
demonstration of a speed advantage over classical computers (called quantum supremacy)
remains outstanding [Boi+18].

An alternative approach to exploit the unconventional properties of quantum mechanics
came from the field of cryptography [WS83; BB84]. Relying on the superposition princi-
ple for the polarization of single photons, as well as the no-cloning theorem for quantum
states [WZ82], public keys can be distributed while ensuring that no eavesdropping oc-
curred [BB14; Ben+92]. In complementary protocols, entanglement can be used to share
cryptographic keys [Eke91; Eke+92] or teleport quantum information [Ben+93; Bou+97].
While the no-cloning theorem is integral to the security of these quantum communication
protocols, it also limits their range. Due to losses in the absorption channel, increasing
the distance between the communicating partners requires an exponential increase in re-
sources. In classical communication, this is circumvented by inserting auxiliary nodes in
the transmission channel, called repeaters, which recieve and resend the information along
the line. As an unknown quantum state cannot be cloned, i.e. received and identically
resend, this is not possible in quantum communication.

With theoretical and experimental advances, the two directions merged to form the field
of quantum information science [Ben95]. The formalization and standardization of lan-
guage in the treatment enabled rapid further progress, such as the description of a quan-
tum computation architecture [Llo93; CZ95], quantum information algorithms [Sho94;
Sho95; Gro96], and general conditions for quantum computational supremacy [DiV96;
Got98].

The corresponding proof-of-principle experiments, like the demonstration of fundamen-
tal quantum gates [Mon+95] and the entanglement of two remote atoms [Hag+97], showed
the possibility to extend quantum communication from connecting merely two clients, to
forming small networks. In such a quantum networks, quantum channels connect several
nodes, consisting small quantum processors that can be locally manipulated. In order to
achieve an efficient operation of such a network, however, the range limits of quantum
communication had to be overcome.

To this end, Briegel et al. proposed the use of quantum repeaters [Bri+98]. In an
array of repeater nodes, neighboring sites are entangled and subsequently the ends are
connected by entanglement swapping. Including a nested scheme for the purification of
the state, this allows to efficiently generate high fidelity entanglement in distant sites,
which can then be used to teleport quantum information from the one to the other end
of the chain.

Duan, Lukin, Cirac and Zoller (DLCZ) subsequently proposed a scheme to realize a
quantum repeater requiring only atomic ensembles2, linear optics and single photon de-
tectors [Dua+01]. This sparked the experimental investigation into quantum repeater

position principle [Kni00]. This relates to the notion of path entanglement, as will be discussed later.
In brief, two formally identical quantum states, namely a single excitation being in a superposition of
multiple modes, can be considered an entangled state or not, depending on whether these are multiple
modes of the same of different systems.

2At the time, atomic ensembles seemed to be the most realistic physical system for an implementation
of the scheme. In more general terms, it is based on a pair creation process, such as Stokes scattering
or spontaneous parametric down conversion, and the storage of one of the created excitations in a
quantum memory, which can be read out on demand.
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architectures3, first demonstrating the non-classical correlations between an atomic en-
semble and an optical mode [Kuz+03], followed by the generation of remote heralded
entanglement in atomic ensembles [Cho+05; Yua+08], trapped ions [Moe+07],and single
neutral atoms [Hof+12]. In order to simplify the requirement, solid state quantum mem-
ories were employed, like optical phonons in diamond [Lee+11], ensembles of rare earth
ions doped in host crystals [Usm+12], nitrogen vacancy centers in diamond [Ber+13] and
semiconductor quantum dots [Del+16].

To efficiently make use of low-loss optical fibers, the quantum memories should be cou-
pled to photons in the telecommunication band, a wavelength range with notoriously few
natural resonances. Storage of entangled states coupled to telecom photons was demon-
strated in erbium doped fibers [Sag+15] and could be performed in lattice vibrations in
diamond [Lee+11], which does not rely on an optical resonance. In addition, artificial res-
onances in the telecom range were created using semiconductor quantum dots [Miy+05;
Olb+17]. In all three systems, however, the life time of the excitations is prohibitively
short, preventing network applications. Longer storage times, though only for coherent
states, were recently achieved in erbium doped crystals [Ran+17], at the cost of a narrow
optical resonance. In order to realize high entanglement rates, however, it is desirable to
use a significant part of the bandwith of optical fibers, e.g. by wavelength division multi-
plexing [Bra90; Tow97; Tan+08; Sas+11; Yos+12]. Operating in multiple densely spaced
frequency channels in the telecom range could be realized for example by wavelength con-
version, transferring visible photons that are interfaced with quantum memories to the
infrared range [Mar+14a; Mar+17].

Optomechanical crystals, on the other hand, couple directly to telecom photons [Rie+16]
and can be designed to work in any specific frequency channel in the conventional telecom-
munication band. An additional intriguing feature is that they are based on integrated
silicon photonics. The small form factor and compatibility with industry standard micro-
fabrication procedures [Ben+17] in principle allows for mass fabrication and deployment
of these devices. The demonstration of remote heralded entanglement presented here is
thus a major step towards silicon photonics based scalable quantum networks [Rie+18].

Beyond quantum communication applications, the entanglement of macroscopic res-
onators also is of fundamental interest. Demonstrating this core principle of quantum
theory for large objects pushes the boundary between the microscopic quantum domain
and the classical physics we see every day. Previously, entanglement was demonstrated
involving large numbers of electrons, e.g. in a superconducting electrical circuits [Ste+06;
Ans+09], or as a spin wave in atomic ensembles [JKP01; Cho+05; Usm+12], as well as
large numbers of photons [DSV08; Lvo+13]. In terms of mass, the largest systems where
entanglement was previously observed are lattice vibrations in bulk diamond [Lee+11] and
entanglement between a microwave field and an aluminum drum [Pal+13b]. In parallel
with the experiment presented here, entanglement between the motion of two such drums
was reported [Ock+18]. However, despite the differences between quantum mechanics and
our classical experience of physics in everyday life, there is no intrinsic limit to quantum
theory, neither in terms of mass, nor numbers of particles. For this reason, there is no
single clear measure of how macroscopic a certain state or system is, but rather a large
parameter space to be explored [Leg02; DSC02; MAD08; Ved08; LJ11; FD12; NH13;

3 Note that there has also been complementary research on quantum networking without repeaters, e.g.
entangling remote atomic systems [Mat+06b; Rit+12].
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Figure 6.1.: Mechanical Path Entanglement. First, the two devices are cryogenically initial-
ized in their groundstates (step I). Then, a weak drive pulse induces a Stokes scattering event
creating a photon-phonon pair either in device A (top half) or B (bottom half). The optical
paths are overlapped on a beamsplitter, such that the heralding detection event contains no
information about where the scattering took place (step II). Consequently, the single phonon is
in a superposition between device A |A〉 and device B |B〉, i.e. the mechanical oscillators are
entangled (step III). Finally the state is transfered to the optical domain by anti-Stokes scattering
and interferometrically analyzed (step IV).

Zar+17].
Before transitioning to the experimental part of this chapter, I would like to introduce

the notion of entanglement witnesses, which is of importance for the understanding of
this work. While initially entanglement was mostly discussed in the context of the EPR
paradox and Bell’s theorem, it was found that only a sub-set of entangled states violate
Bell type inequalities [Wer89]. More specifically, in the spirit of Schrödingers definition,
two subsystems a and b are considered to be entangled if they are not separable, i.e. the
density matrix ρ cannot be factorized in the form

ρ =
∑
i

piρa,i ⊗ ρb,i. (6.1)

The sum over instances i, with positive probabilities pi and the density matrices ρa,i (ρb,i)
of subsystem a (b), accounts for classical correlations, see e.g. [Wer89; Per96]. Determining
whether a state is entangled consequently is a non-trivial problem. To tackle it, various
necessary conditions for the separability of states were found [Per96; HHH96]. When a
measurement contradicts such a condition, it can be concluded that the systems are entan-
gled. Separability conditions, which do not require a full reconstruction of the compound
quantum state are called entanglement witnesses, with the Bell or CHSH inequality being
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Figure 6.2.: Entanglement of the Optical and Mechanical Mode. The devices are initialize
(step I) and a single photon-phonon pair is generated by Stokes scattering (step II). Before any
detection takes place, the pair is in a superposition of path A with state |AA〉 or in path B with
state |BB〉. This corresponds to entanglement between the local mechanical two-mode-system
and the flying optical two-mode-system (step III). The entanglement is verified by a Bell test,
using the anti-Stokes process to transfer the mechanical part to the optical domain (step IV).
For details see reference [Mar+18]

two specific examples thereof [Hor+09]. As for the Bell inequality, witnesses typically only
can identify a subset of all entangled states, i.e. fulfilling a certain separability condition
is not sufficient to prove that the systems are indeed separable. In this work, we use a
witness proposed by Børkje et al., which was tailored to optomechanical systems [BNG11].
The witness R ∼ g(2)/V , described in detail below, can be approximated4 as the ratio of
the intensity autocorrelation of both systems g(2) to the visibility V of the interference
between the states of the two systems, see also appendix B.4. The separability condition
R ≥ 1 can be violated for example by a single phonon in a coherent superposition of being
in either device.

In the following, I will present my work on the entanglement of two remote mechan-
ical oscillators. I contributed to this work by conceiving, building and automating the
experiment, taking and analyzing the data and writing the manuscript.

In brief, a blue detuned drive pulse probabilistically creates a photon-phonon pair in
either of two nearly identical devices. The information, where the Stokes scattering took
place is erased by overlapping the paths of the signal modes. Consequently, when the
detection of a signal photon indicates the presence of a phonon, located in a superposition
of the two devices [Cab+99; Dua+01]. The non-separable nature of the mechanical state
is verified by transferring it to the optical domain, using a red detuned drive pulse, and
performing a single photon interference experiment, see also figure 6.1.

The entangled state generated in this scheme can be referred to as path entanglement,

4For small excitation numbers in the mechanical oscillators.
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with the phonon in a coherent superposition of being located in path, or more precisely
device A or B, i.e. its wavefunction can be approximated as |ψ〉 = |A〉 + eiφ |B〉. Here
the state |A〉 = |10〉 (|B〉 = |01〉) describes the location of the phonon. This type of
entanglement was first demonstrated by Grangier et al. [GRA86], though in a different
context. From a formal point of view, this state is equivalent to a photon being in
superposition of horizontal and vertical polarization, mapping each polarization to a path
(e.g. A → H and B → V ). Thus, while constituting entanglement, as multiple systems
are inseparably involved, the state is effectively equivalent to the degrees of freedom of
a single polarization qubit5. This was pointed out in the proposal by DLCZ [Dua+01],
where a pair of memories was required at every node. The advantage is, however, that
the auxiliary |0〉-|1〉 qubit basis is intrinsically used for state purification. In other words,
when no photon is detected, it is clear that the entanglement operation failed.

The emission of the Stokes photons is correlated with the location of the phonon
[Rie+16]. Thus, prior to the detection of the Stokes photon, the four mode state can
be written as |ψ〉 = |AA〉+ eiφ |BB〉, with the state describing the location of the Stokes
phonon and photon, see figure 6.2. This is equivalent to the state used in photonic realiza-
tions of the EPR paradox with “polarization” [AGR82] or “path qubits” [RT90], with the
important difference, that it describes entanglement between a photonic and a phononic
“path” qubit. We recently reported the observation of this type of entanglement in refer-
ence [Mar+18]. Notably, the optomechanical Bell experiment is the first demonstration
of entanglement between the motion of a massive oscillator and photons in the optical
domain.

5 The reason is that for the phononic state, as well as for photons, the |0〉-|1〉 basis cannot be effectively
employed, due to its intolerance against loss.

116



Remote quantum entanglement
between two micromechanical
oscillators

Ralf Riedinger*,a, Andreas Wallucks*,b, Igor Marinković*,b, Clemens
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6.1. Abstract

Entanglement, an essential feature of quantum theory that allows for inseparable quantum
correlations to be shared between distant parties, is a crucial resource for quantum net-
works [Kim08]. Of particular importance is the ability to distribute entanglement between
remote objects that can also serve as quantum memories. This has been previously re-
alized using systems such as warm [Jen+11; Rei+11] and cold atomic vapours [Cho+05;
Mat+06], individual atoms [Rit+12] and ions [Moe+07; Jos+09], and defects in solid-
state systems [Usm+12; Sag+15; Hen+15]. Practical communication applications require
a combination of several advantageous features, such as a particular operating wave-
length, high bandwidth and long memory lifetimes. Here we introduce a purely micro-
machined solid-state platform in the form of chip-based optomechanical resonators made
of nanostructured silicon beams. We create and demonstrate entanglement between two
micromechanical oscillators across two chips that are separated by 20 centimetres. The
entangled quantum state is distributed by an optical field at a designed wavelength near
1550 nanometres. Therefore, our system can be directly incorporated in a realistic fibre-
optic quantum network operating in the conventional optical telecommunication band.
Our results are an important step towards the development of large-area quantum net-
works based on silicon photonics.

6 https://www.nature.com/articles/s41586-018-0036-z
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6.2. Main Text

In recent years, nanofabricated mechanical oscillators have emerged as a promising plat-
form for quantum information processing. The field of opto- and electromechanics has
seen great progress, including ground-state cooling [Teu+11; Cha+11], quantum inter-
faces to optical or microwave modes [Pal+13; Rie+16], mechanical squeezing [Wol+15;
Pir+15; Lec+15] and single-phonon manipulation [OCo+10; Chu+17; Hon+17; Ree+17].
Demonstrations of distributed mechanical entanglement, however, have so far been limited
to intrinsic material resonances [Lee+11] and the motion of trapped ions [Jos+09]. En-
tanglement of engineered (opto-)mechanical resonances, on the other hand, would provide
a route towards scalable quantum networks. The freedom of designing and choosing opti-
cal resonances would allow operation in the entire frequency range of the technologically
important C-, S- and L-bands of fibre-optic telecommunications. Together with dense
wavelength-division multiplexing (on the ITU-T grid), this could enable quantum nodes
separated by long distances (about 100 km) that can communicate at large bandwidths.
State-of-the-art engineered mechanical elements have energy lifetimes that typically range
between micro- [Rie+16] and milliseconds [Mee+15], which would allow entanglement dis-
tribution on a regional level [RPL09]. In addition, these entangled mechanical systems
could be interfaced with microwaves [Boc+13], opening up the possibility of integrating
superconducting quantum processors in the local nodes of the network.

Here we report on the observation of distributed entanglement between two nanome-
chanical resonators, mediated by telecommunication-wavelength photons. We use the
DLCZ protocol [Dua+01], which was experimentally pioneered with ensembles of cold
atoms [Cho+05]. The entanglement is generated probabilistically through the condi-
tional preparation of a single phonon, heralded by the detection of a signal photon that
could originate from either of two identical optomechanical oscillators. Fabrication imper-
fections have previously limited the use of artificial structures, requiring external tuning
mechanisms to render such systems indistinguishable. Here we demonstrate not only that
obtaining sufficiently identical devices is in fact possible through nanofabrication, but also
that our method could in principle be applied to more than two systems.

The mechanical oscillators that we use in our experiment are nano-structured silicon
beams with co-localized mechanical and optical resonances. Radiation pressure forces and
the photoelastic effect couple the optical and mechanical modes with a rate g0, causing
the optical frequency to shift under the displacement of the mechanical oscillator [Cha12].
This effect can be used to selectively address Stokes and anti-Stokes transitions by driving
the optical resonance with detuned laser beams, resulting in a linear optomechanical
interaction. As was recently shown, this technique can be used to create non-classical
mechanical and optomechanical states at the single-quantum level for individual devices
by using photon counting and post-selection [Rie+16; Hon+17].

To apply the DLCZ scheme to the entanglement of two separate optomechanical crys-
tals, a critical requirement is that the photons emitted from the optomechanical cavities
must be indistinguishable. This can be achieved by creating a pair of nanobeams with
identical optical and mechanical resonances. Until now, however, fabrication variations
have inhibited the deterministic generation of identical devices and the design of cur-
rent oscillators does not include any tuning capabilities. Considering the optical mode
alone, typical fabrication runs result in a spread of the resonance frequency of about 2 nm
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Figure 6.3.: Devices and experimental setup. a, Optical resonances of device A (grey) and
device B (magenta). The Lorentzian fit result (red line) yields a quality factor of Q = 2.2× 105

for each cavity. b, Mechanical resonances of device A (grey) and device B (magenta). The
normalized mechanical resonances are measured through the optomechanical sideband scattering
rates. The linewidth is limited by the bandwidth of the optical pulses and filters. The frequencies
of the devices differ by ∆Ωm/2π = 45 MHz, which could result in distinguishable photons,
potentially reducing the entanglement in the system. We compensate for this shift by tuning the
optical pump fields accordingly through serrodyning, erasing any information that could lead to
a separable state. c, Experimental setup. We create optical pulses using two lasers, which are
detuned to the Stokes (pump) and anti-Stokes (read) transition of the optomechanical cavities.
The lasers are then combined on a 50/50 beam splitter (BS), which forms an interferometer with
a second combining beam splitter. Each arm of the interferometer contains one of the mechanical
oscillators, cooled to its ground state using a dilution refrigerator (central dashed rectangle). The
phase of the interferometer, φ0, is stabilized using a fibre stretcher (labelled ‘phase’), while the
phase difference between the pulses, ∆φ, is controlled using an electro-optic modulator (EOM).
The same EOM is also used for serrodyning. Optical filters in front of two superconducting
single-photon detectors (D1, D2) ensure that only photons scattered onto the cavity resonance
are detected, whereas the original laser pulses are completely suppressed. The mechanical devices
are physically separated by 20 cm and their optical separation is around 70 m.
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around the centre wavelength. Therefore, finding a pair of matching optical resonances
on two chips close to a target frequency currently relies on fabricating a large enough set,
in which the probability of obtaining an identical pair is sufficiently high. In fact, this is
achievable with a few hundred devices per chip, see Supplementary Information (SI) for
details. In addition, a small mismatch in the mechanical frequencies, which is typically
around 1%, can readily be compensated by appropriate manipulation of the optical pulse
frequencies in the experiment.

For the experiments presented here, we chose a pair of devices with optical resonances
at wavelength λ = 1553.8 nm (optical quality factor Q = 2.2× 105 and g0/2π = 550 kHz
and 790 kHz for devices A and B, respectively; see Fig. 6.3). For these structures, the
mechanical resonance frequencies are centred around Ωm/2π ≈ 5.1 GHz and have a dif-
ference of ∆Ωm/2π = 45 MHz. The two chips are mounted 20 cm apart in a dilution
refrigerator. Although we use a single cryostat, there is in principle no fundamental or
technical reason for keeping the devices in a common cold environment. For our setup,
if the telecommunication fibres linking the two devices were to be unwrapped, our setup
would already allow us to bridge a separation of about 70 m between the two chips without
further modification.

The protocol [Dua+01] for the creation and verification of the remote mechanical entan-
glement consists of three steps (for a schematic, see Fig. 6.4). First, the two mechanical
resonators are cryogenically cooled, and thus initialized close to their quantum ground
states [Mee+15; Rie+16; Hon+17] (see SI). Second, a weak ‘pump’ pulse tuned to the
upper mechanical sideband (at frequency ωpump = 2πc/λ + Ωm, where c is the speed of
light), is sent into a phase-stabilized interferometer (with a fixed phase difference φ0, see
Fig. 6.3 and SI) with one device in each arm. This drives the Stokes process–that is, the
scattering of a pump photon into the cavity resonance while simultaneously creating a
phonon [Rie+16]. The presence of a single phonon is heralded by the detection of a scat-
tered Stokes photon in one of our superconducting nanowire single-photon detectors. The
two optical paths of the interferometer are overlapped on a beam splitter, and a variable
optical attenuator is set on one of the arms so that a scattered photon from either device
is equally likely to reach either detector. The heralding detection event therefore contains
no information about which device the scattering took place in and thus where the phonon
was created. The energy of the pulse is tuned to ensure that the scattering probability
ppump ≈ 0.7% is low, making the likelihood of simultaneously creating phonons in both
devices negligible. The heralding measurement therefore projects the mechanical state
into a superposition of a single-excitation state in device A (|A〉 = |1〉A|0〉B) or device B
(|B〉 = |0〉A|1〉B), with the other device remaining in the ground state. The joint state of
the two mechanical systems

|Ψ〉=
1√
2

(
|1〉A|0〉B ± eiθm(0)|0〉A|1〉B

)
(6.2)

is therefore entangled, where θm(0) = φ0 is the phase with which the mechanical state
is initialized at delay τ = 0. This phase is determined from the relative phase difference
that the pump beam acquires in the two interferometer arms [Cho+05], which we can
choose using our interferometer lock. However, because the two mechanical frequencies
differ by ∆Ωm, the phase of the entangled state will continue to evolve as θm(τ) = φ0 +
∆Ωmτ . The sign in equation (6.2) reflects which detector is used for heralding, with +
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(−) corresponding to the positive (negative) detector, as defined by the sign convention
of the interferometer phase φ0.

In the third step of our protocol, we experimentally verify the entanglement between
the two mechanical oscillators. To achieve this, we map the mechanical state onto an
optical field using a ‘read’ pulse after a variable delay τ . This relatively strong pulse is
tuned to the lower mechanical sideband of the optical resonance (ωread = 2πc/λ − Ωm).
At this detuning, the field drives the anti-Stokes transition–that is, a pump photon is
scattered onto the cavity resonance while annihilating a phonon [Rie+16]. Ideally, this
state transfer will convert |Ψ〉 into

|Φ〉=
1√
2

(
|1〉rA
|0〉rB

± ei(θr+θm(τ))|0〉rA
|1〉rB

)
, (6.3)

where rA and rB are the optical modes in the two interferometer arms. The state of
the optical field now contains the mechanical phase as well as the phase difference θr

acquired by the read pulse. We can add an additional phase offset ∆φ to the read pulse
in one of the interferometer arms so that θr = φ0 + ∆φ by using an electro-optic phase
modulator, as shown in Fig. 6.3. Sweeping ∆φ allows us to probe the relative phase θm(τ)
between the superpositions |A〉 and |B〉 of the mechanical state for fixed delays τ . To
avoid substantial absorption heating creating thermal excitations in the oscillators, we
limit the energy of the read pulse to a state-swap fidelity of about 3.4%, reducing the
number of added incoherent phonons to about 0.07 at a delay of τ = 123 ns (see SI).

So far we have neglected the consequence of slightly differing mechanical resonance
frequencies for our heralding scheme. To compensate for the resulting frequency offset in
the scattered (anti-) Stokes photons and to erase any available ‘which device’ information,
we shift the frequency of the laser pulses by means of serrodyning (see SI). Specifically,
we use the electro-optic phase modulator, which controls the phase offset ∆φ, to also shift
the frequency of the pump (read) pulses to device A by +∆Ωm (−∆Ωm). The frequency
differences of the pulses in the two opposing paths cancel out their mechanical frequency
differences exactly, ensuring that the scattered photons at the output of the interferometer
are indistinguishable.

To confirm that the measured state is indeed entangled, we need to distinguish it from all
possible separable states, that is, the set of all states for which systems A and B can be de-
scribed independently. A specifically tailored measure that can be used to verify this non-
separability of the state is called an ‘entanglement witness’. Here we use a witness that
is designed for optomechanical systems [BNG11]. In contrast to other path-entanglement
witnesses based on partial state tomography, such as concurrence, this approach replaces
measurements of third-order coherences, g(3), by expressing them as second-order coher-
ences, g(2), assuming linear interactions between Gaussian states. This greatly simplifies
the requirements and reduces the measurement times for our experiments. Because the
coherences refer to the unconditional states, the nonlinear detection and state projection
do not contradict these assumptions. The above assumptions are satisfied for our system
because the initial mechanical states of our devices are in fact thermal states close to
the corresponding quantum ground states (step 1 of our protocol; see SI) and we use
linearized optomechanical interactions (described in steps 2 and 3) [Wie+15]. The upper
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Figure 6.4.: Creation and detection of entanglement between two remote mechanical
oscillators. A pump pulse detuned to the Stokes sideband of two identical optomechanical res-
onators is sent into an interferometer, creating a single excitation in either device A or B. This
process emits a photon on resonance with one of the cavities, and the two possible paths are su-
perimposed using a beam splitter (black square) when exiting the interferometer (left). Detection
of this photon in one of the single-photon detectors projects the two mechanical systems into an
entangled state, in which neither device can be described separately. To verify this non-separable
state, an optical read pulse tuned to the anti-Stokes sideband is sent into the interferometer with
a delay of τ , de-exciting the mechanical systems and emitting another on-resonance photon into
modes ri (i = A,B) with operators r̂i. The two optical paths are again superimposed on the same
beam splitter (right), and the photon is detected, allowing us to measure various second-order
correlation functions, which are used to test an entanglement witness. The operators p̂j and r̂j,
with j = 1, 2, denote the optical modes created from the pump and the read pulses, respectively,
after recombination on the beam splitter and m̂i (i = A,B) are the operators of the mechanical
modes. We note that in our experiment, the detectors used for the pump and read photons are
identical (see Fig. 6.3).

bound for this witness of mechanical entanglement is given by [BNG11] (see SI).

Rm(θ, j) = 4 ·
g

(2)
r1,pj(θ) + g

(2)
r2,pj(θ)− 1

(g
(2)
r1,pj(θ)− g

(2)
r2,pj(θ))2

, (6.4)

in a symmetric setup. In equation (6.4), θ = θr + θm, j = 1, 2 denotes the heralding

detectors and g
(2)
ri,pj = 〈r̂†i p̂

†
j r̂ip̂j〉/〈r̂†i r̂i〉〈p̂†j p̂j〉 is the second-order coherence between the

photons scattered by the pump pulse (with p̂†j and p̂j the creation and annihilation op-
erators, respectively, of the mode going to detector j) and the converted phonons from
the read pulse (with r̂†j and r̂j the creation and annihilation operators, respectively, of the
mode going to detector j). For all separable states of the mechanical oscillators A and B,
the witness yields Rm(θ, j) ≥ 1 for any θ and j. Hence, if there exists a θ and j for which
Rm(θ, j) < 1, the mechanical systems must be entangled.

Although entanglement witnesses are designed to be efficient classifiers, they typically
depend on the individual characteristics of the experimental setup. If, for example, the
second beam splitter (see Fig. 6.3) were to malfunction and act as a perfect mirror–that is,
if all photons from device A (B) were transmitted to detector 1 (2)–thenRm(θ, j) could still
be less than 1 for separable states. This is because the witness in equation (6.4) estimates
the visibility of the interference between |A〉 and |B〉 from a single measurement, without
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Figure 6.5.: Phase sweep of the entangled state. We vary the phase difference between
the pump and the read pulses, ∆φ, and measure the second-order coherence g(2) of the Raman-
scattered photons for a fixed delay of τ = 123 ns between the pulses. Blue crosses represent

measurements of g
(2)
ri,pj ,i 6=j and red circles are the results for g

(2)
ri,pi , where i, j ∈ {1, 2}. We fit

simple sine functions (shown as solid lines) to each of the datasets as guides to the eye. The
sinusoidal dependence on the phase clearly highlights the coherence of the entangled mechanical
state. We observe a periodicity of 1.95π, in good agreement with the expected value of 2π for
single-particle interference (see equation (6.3)) [BNG11]. The phase sweep allows us to identify
the optimal phase ∆φ = 0.2π for maximum visibility, at which we acquire additional data (green
cross and circle) to determine the entanglement witness with sufficient statistical significance.
All error bars represent a 68% confidence interval.

requiring a full phase scan of the interference fringe. To ensure the applicability of the
witness, we therefore verify experimentally that our system fulfills its assumptions. We
first check whether our setup is balanced by adjusting the energy of the pump pulses in
each arm, as described above. This guarantees that the scattered photon fluxes impinging
on the beam splitter from both arms are equal (see SI). To make the detection symmetric,
we use heralding detection events from both superconducting nanowire single-photon
detectors–that is, we obtain the actual bound on the entanglement witness Rm,sym(θ)
from averaging measurements of Rm(θ, 1) and Rm(θ, 2) (see SI). By choosing a phase θ
such that the correlations between different detectors exceed the correlations at the same
detector, g

(2)
ri,pj ,i 6=j > g

(2)
ri,pi with i, j ∈ {1, 2}, we avoid our measurements’ susceptibility to

unequal splitting ratios applied by the beam splitter.
In Fig. 6.5, we show a series of measurements of the second-order coherence g(2), per-

formed by sweeping ∆φ with a readout delay of τ = 123 ns, which verify the coherence
between |A〉 and |B〉. Using these data, we chose an optimal phase setting θ = θopt

with ∆φ = 0.2π for the main experiment. We obtain Rm,sym(θopt) = 0.74+0.12
−0.06, which is

well below the separability bound of 1. By including measurements at the non-optimal
adjacent phases ∆φ = 0 and 0.25π, the statistical uncertainty improves, and we obtain
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Figure 6.6.: Time sweep of the entangled state. Shown is the interference of the entangled
mechanical state at different delays τ between the pump and read pulses, with the phase of the
interferometer, φ0, and the phase difference between the pump and read pulses, ∆φ, fixed. The

blue crosses represent the measurements of g
(2)
ri,pj ,i 6=j and red circles are the results for g

(2)
ri,pi , where

i, j ∈ {1, 2}. The solid lines are sinusoidal fits averaged over the two out-of-phase components
for each delay window and serve as a guide to the eye. The coherence of the entangled state
is reduced over time, which can be seen by the decay of the interference visibility (inset). This
decoherence is consistent with a delayed optical absorption heating and the mechanical decay
time of about 4 µs of device A. The inset shows the visibility of the interference (green crosses)
and the expected upper bound on the visibility due to heating and mechanical decay (orange line;
see SI). All error bars represent a 68% confidence interval.

Rm,sym([θopt−0.2π, θopt +0.05π]) = 0.74+0.08
−0.05. Hence, we experimentally observe entangle-

ment between the two remote mechanical oscillators with a confidence level above 99.8%.
The coherence properties of the generated state can be characterized through the decay

of the visibility

V =
max(g

(2)
ri,pj)−min(g

(2)
ri,pj)

max(g
(2)
ri,pj) + min(g

(2)
ri,pj)

. (6.5)

We therefore sweep the delay time τ between the pump pulse and the read pulse. The
mechanical frequency difference ∆Ωm allows us to sweep a full interference fringe by
changing the delay τ by 22 ns. Owing to the technically limited hold time of our cryostat,
this sweep had to be performed at a higher bath temperature of about 80 − 90 mK
(see Fig. 6.3), yielding a slightly lower, thermally limited visibility at short delays when
compared to the data in Fig. 6.5. By varying the delay further, we observe interference
between |A〉 and |B〉 (V > 0) up to τ ≈ 3 µs (see Fig. 6.6). The loss of coherence can be
explained by absorption heating and mechanical decay (see SI) and appears to be limited
at long delays τ by the lifetime 1/ΓA ≈ 4 µs of device A, which has the shorter lifetime
of the two devices.

We have experimentally demonstrated entanglement between two engineered mechan-
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ical oscillators separated spatially by 20 cm and optically by 70 m. Imperfections in the
fabrication process and the resulting small deviations of optical and mechanical frequen-
cies for nominally identical devices are overcome through the statistical selection of devices
and optical frequency shifting using a serrodyne approach. The mechanical systems do
not interact directly at any point, but are interfaced remotely through optical photons
in the telecommunication-wavelength band. The coherence time of the entangled state
is several microseconds and appears to be limited by the mechanical lifetime of the de-
vices and by absorption heating. Both of these limitations can be considerably mitigated.
On the one hand, optical absorption can be substantially suppressed by using intrinsic,
desiccated silicon [Asa+17]. Mechanical lifetimes, on the other hand, can be greatly
increased by adding a phononic bandgap shield [Mee+15]. Although our devices are en-
gineered to have short mechanical lifetimes [Hon+17; Pat+17], earlier designs including
such a phononic shield have reached [Mee+15] 1/Γ ≈ 0.5 ms and could still be further
improved. Combined with reduced optical absorption, which would allow efficient laser
cooling, such lifetimes can potentially put our devices on par with other state-of-the-art
quantum systems [Mar+17].

Our experiment demonstrates a protocol for realistic, fibre telecommunication-compat-
ible entanglement distribution using engineered mechanical quantum systems. With the
current parameters of our system, a device separation of 75 km using commercially avail-
able telecommunication fibres would result in a drop of less than 5% in the interference
visibility (see discussion in SI for more details). The system presented here is directly
scalable to include more devices (see SI) and could be integrated into a real quantum
network. Combining our results with those of optomechanical devices capable of trans-
ferring quantum information from the optical to the microwave domain, which is a highly
active field of research [Boc+13; Rue+16; Hig+18], could provide a backbone for a future
quantum internet based on superconducting quantum computers.
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6.3.1. Device fabrication and characterization

The devices in the main part are fabricated as described in reference [Hon+17]. The most
crucial steps for generating two identical chips are the electron beam lithography and
the inductively coupled plasma reactive ion etching. We beamwrite and etch on a single
proto-chip containing two sets of devices. This chip is then diced into two halves, each
with several hundred nominally identical resonators. The structures are subsequently
released in 40% hydrofluoric acid and cleaned with the RCA method, followed by a dip in
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Figure 6.7.: Distribution of optical wavelengths. We plot a histogram (bin size 1 nm)
of the optical resonance wavelengths for a large set of devices on each of the chips containing
devices A (gray) and B (magenta). The fits of a Gaussian distribution to the data sets (red
solid lines) give a standard deviation of 2.3 nm and 2.0 nm, respectively. The large overlap of
the optical resonance frequencies highlights the feasibility of extending the entanglement to even
more optomechanical devices in the future.

2% hydrofluoric acid. When characterizing the two chips, we find the center wavelengths
to be 1552.4 nm on chip A and 1550.0 nm on chip B (see Figure 6.7). The standard
deviation on the spread of the optical resonances is around 2 nm on both chips. For the
experiments in the main text, we search for resonances that overlap to within 10% of their
linewidth, which is equal to around 100 MHz. We find a total of 5 pairs fulfilling this
requirement within 234 devices tested per chip.

In order to verify that finding identical devices is not just lucky coincidence and that
this can even be done with a smaller sample size per chip, one can estimate the number
of devices needed for a birthday paradox type approach. Therefore, we assume a pair
of chips with 234 devices each that are centered at the same target wavelength. Taking
similar parameters as found in our actual chips, we use a spread in resonance wavelength
of 2 nm and we define resonances to be identical if they match to within 100 MHz.
While the probability of obtaining a single device exactly at the center wavelength is
only 0.03%, the probability of finding two matching devices at any wavelength within
this distribution is 99.9996%. This is reduced if an offset in the mean wavelength of
the two chips is introduced. For an offset of 2.5 nm, the probability is 99.98%, and for
5 nm, it is still 92.7%. By extending this approach to, for example, four chips, with the
same parameters as above, no offset in the center wavelength and 500 devices per chip,
we calculate the probability of finding four identical resonances to be 51.6%. Such a
quartet would directly enable experiments on entanglement swapping and tests of a Bell
inequality, as proposed by DLCZ. Further improvements could include post-fabrication
wavelength tuning, as has recently been demonstrated for similar devices [Fan+17]. This
could significantly improve the prospect of scalability of our approach, as it would allow
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Figure 6.8.: Experimental setup. A detailed schematics of our setup is shown here and
described in the text. AOM are the acousto-optic modulators, AWG the arbitrary waveform
generators, VRC the variable ratio couplers, EOM the electro-optic modulator, VOA the variable
optical attenuator, BS the 50/50 beamsplitter and SNSPD the superconducting nanowire single-
photon detectors.

to fabricate identical devices more deterministically.
In addition, the mechanical resonances are also susceptible to fabrication errors and

vary by up to 50 MHz for our devices. To overcome this mismatch, we use serrodyne
frequency shifting (see sections below).

6.3.2. Experimental setup

A detailed drawing of the experimental setup is shown in Figure 6.8. The light sources
for our pump and read beams are two New Focus 6728 CW lasers, tuned and stabilized
on their respective sideband of the optical resonance. The beams are filtered by Mi-
cronOptics FFP-TF2 tunable optical filters in order to reduce the laser phase noise in
the GHz regime. We then proceed to generate the actual pump and read pulses by driv-
ing acousto-optic modulators (Gooch&Housego T-M110-0.2C2J-3-F2S) with an arbitrary
function generator (Tektronic AFG3152C). These pulses are then combined on a variable
ratio coupler (Newport F-CPL-1550-N-FA). The combined optical mode is subsequently
split by another variable ratio coupler and fed into the Mach Zehnder interferometer. The
coupling ratio is adjusted to primarily compensate for a small difference in total losses
between two paths. The power in the interferometer arms can additionally be balanced
by an electrically driven variable optical attenuator (Sercalo VP1). We reflect the pulses
from the two devices via optical circulators and recombine on a 50/50 coupler (measured
deviation of 0.6%, see below). The strong pump pulses are filtered with two MicronOp-
tics FFP-TF2 fiber filters per detection arm, tuned to transmit only the scattered (anti-)
Stokes photons (bandwidth 50 MHz). We detect the resonant photons with supercon-
ducting nanowire single photon detectors (Photonspot) and register their arrival times on
a TimeHarp 260 NANO correlation board.
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6.3.3. Serrodyne frequency shifting

In our experiment, the mechanical frequency of device B (Ωm,B) is greater than of device
A (Ωm,A) by ∆Ωm = 2π · 45 MHz. If we were to send pump pulses with exactly the
same frequency ωpump to both of the devices, they would produce scattered photons with
frequencies ωo,A = ωpump −Ωm,A and ωo,B = ωpump −Ωm,B = ωo,A −∆Ωm. This frequency
mismatch of scattered photons from the two devices would make them distinguishable,
therefore preventing the entangled state. A simple solution is to shift the frequency of
the pump pulse going to the device A by ∆Ωm, i.e. ωpump,A = ωpump − ∆Ωm. We ex-
perimentally realize this by electrically driving the electro-optic phase modulator on the
path to device A, with a sawtooth waveform. This so-called serrodyne modulation with
frequency ωs = ∆Ωm and peak-to-peak phase amplitude of 2π results in an optical fre-
quency shift of ωs [Cum57; WRW82]. We use an arbitrary waveform generator (Agilent
81180A, bandwidth DC to 600 MHz) to generate the sawtooth voltage signal, amplify it
with a broadband amplifier (Minicircuits TVA-R5-13A+, bandwidth 0.5 to 1000 MHz)
and apply it to the optical phase modulator (Photline MPZ-LN-10-P-P-FA-FA-P, band-
width DC to 12 GHz). We also apply an additional DC-bias to the serrodyne signal in
order to generate a fixed phase offset ∆φ in the interferometer arms. Due to the high
analog bandwidth of the AWG compared to the frequency shift of 45 MHz, higher order
sidebands were negligible and were not observed in the experiment.

6.3.4. Phase stabilization of the interferometer

For stabilizing the phase of the interferometer, we use an additional laser pulse ∼5 µs
after the read pulse. To produce these auxiliary pulses, we also use the red-detuned laser
that generates the read pulses and send them along the same beam paths. After being
reflected from the optical filters in the detection line, the pulses are re-routed by optical
circulators and picked up by a balanced detector (see Figure 6.8). These signals are then
sent to a PID controller, which regulates a fiber stretcher to stabilize the relative path
length and therefore locking the phase of the interferometer on a slow timescale (i.e. with
the experiment repetition period of 50 µs).

In principle, the read or pump pulses that are reflected off the filter cavities could also
be used for the phase locking. However, the serrodyne modulation during pump and read
results in a beat signal of the pulses behind the beam splitter. This beating requires
more sophisticated signal processing, which we avoid by using the auxiliary pulses, during
which the serrodyne modulation is off. We note that the auxiliary pulses also induce some
absorption heating of the devices. However, the 50 µs repetition period is sufficiently long
compared to the decay times of the devices for the extra heating not to influence our
experimental result.

6.3.5. Entanglement witness and Systematic Errors

The entanglement witness [Hor+09]

R(τ, j) =

〈
m̂†A(τ)m̂A(τ)m̂†B(τ)m̂B(τ)

〉
j∣∣∣∣〈m̂†A(τ)m̂B(τ)

〉
j

∣∣∣∣2 (6.6)
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derived in reference [BNG11] is based on the concurrence [HW97] of the bipartite me-
chanical system. Here, the conditional average 〈ô〉j = 〈ô p̂†j p̂j〉/〈p̂

†
j p̂j〉 for an operator ô

is its expectation value of the state heralded by a Stokes photon detected by detector
j. The m̂i (m̂†i ) are the mechanical annihilation (creation) operators of device i = A,B.
While R is experimentally not directly accessible, the upper bound to this witness Rm,
see Eq. (6.4), is a measurable quantity in our interferometry setup. The derivation of the
inequality Rm ≥ R, as described in reference [BNG11] and its supplementary material,
is based on several of assumptions: The unheralded state must be Gaussian at all times,
and the interference on the combining beamsplitter must be symmetric. In this section,
we would like to discuss the validity of each of these assumptions in more detail.

To obtain Rm, threefold coincidence measurements are re-expressed as twofold coin-
cidences, which can be done for Gaussian states. Note that as the degrees of second
order coherence in Eq. (6.4) are measured between the pump and the read pulse, they
are applied to this Gaussian state, not to the heralded, non-Gaussian entangled state
|Ψ〉 ∼ |A〉+eiθ|B〉. We ensure that the mechanical states at the beginning of our protocol
are Gaussian by allowing sufficiently long thermalization times (7x the mechanical decay
time) prior to any optical manipulations. Consequently, the initial state is thermal, which
for a bosonic system [Rie+16; Hon+17] implies Gaussian quadrature statistics [Wie+15].
Next, all optomechanical interactions involved in our protocol are linear [Hof+11], there-
fore conserving the Gaussianity of the state [Wie+15]. Specifically, the Stokes process is
described by the linear interaction Hamiltonian ĤS ∝ g0m̂

†
i ô
†
i + h.c. and the anti-Stokes

process by ĤAS ∝ g0m̂iô
†
i + h.c. for device i = A,B with the annihilation (creation)

operator of optical resonance ôi (ô†i ).
Unintentional interactions, like absorption heating, happen probabilistically and in a

remote frequency regime, such that it effectively acts as a Gaussian thermal bath [Mee+15;
Hon+17]. Though not strictly contributing to the mechanical state, we also consider false
positive detection events: drive photons leaking through the filter stages can be described
by a coherent state (with Gaussian intensity fluctuations). Detection of stray photons
and electrically caused false positive events are rare (∼0.3% of the total count rate in the
detection window) and uncorrelated (autocorrelation g(2)(0) = 1.05±0.09), such that it is
reasonable to model them as a Gaussian process as well. More specifically, we observe an
average added noise of ∼0.14 phonons during the measurement, from which the individual
contributions of leaked drive photons, background detection events, and optical absorption
heating can be estimated with additional measurements (for details see the section on
”Second Order Coherence and Entanglement”). With the latter being a thermal process
and therefore yielding Gaussian quadrature statistics, and an estimation of the initial
thermal occupation from the nominal cryostat temperature, this leaves ∼ 4+2.8

−2.7 · 10−2

phonons in device A and ∼ 0+1.4
−0 · 10−2 in device B of unidentified origin. These are

likely thermal phonons stemming from the non-ideal thermalization of the chips with
their environment [Rie+16; Hon+17].

For the modes leaving the interferometer r̂j, p̂j, reference [BNG11] assumes an ideal
50/50 beamsplitter with equal powers on each input. Small experimental deviations
from this idealized scenario result in quadratic corrections to the witness. For example,
when the ratio of read photons at the beamsplitter originating from devices A and B is
1 + δ, the measurable upper bound changes to Rm(1 + δ2/2) ≥ R for small δ. In our
experimental setup, we choose a fused fiber beamsplitter with a measured deviation of
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0.6%, leading to a relative correction on the order of 10−5. Experimentally, we cannot
achieve power balancing at the input of the beamsplitter for photons scattered from the
pump and the read pulses at the same time because the devices have slightly different
thermal occupation. We choose to match the detection rates of heralding photons, i.e.
photons scattered by the pump pulse. This preserves the unknown origin of the heralding
photons. Differences in the optomechanical coupling strength and optical losses on the
path from the device to the combining beamsplitter are compensated by adjusting the
drive power in each path. After the balancing procedure, the relative difference in count
rates of heralding photons is below 2%, limited by the measurement precision during
the balancing run and laser power fluctuations during the measurements. This leads to
a relative correction of the witness below 10−3. The slightly different heating dynamics
between devices A and B result in a measured flux ratio deviation of the scattered readout
photons of δ ∼ 5 − 10%. It can easily be seen from Equation (6.4) that an increased
heating will increase the witness Rm, and therefore the heating induced imbalance does
not limit the validity of the witness. Yet, neglecting the thermal origin of the imbalancing,
employing the correction Rm(1 + δ2/2) ≥ R, we obtain a relative systematic correction of
0.5% to our result in the worst case scenario. Adding all systematic errors, we obtain a
conservative upper bound of all relative systematic corrections of ∼0.5%. Consequently,
we use a reduced classicality bound of Rm ≥ 0.995 instead of 1, reducing the confidence
level slightly from 99.84% to 99.82%.

6.3.6. Statistical Analysis

Results in the text and figures are given as maximum likelihood values and, where applica-
ble, with a confidence interval of ±34% around this value. For the second order coherences
g

(2)
ri,pj, (i, j = 1, 2), we apply binomial statistics based on the number of counted two-fold

coincidences, which dominates the statistical uncertainty [Rie+16]. The entanglement

witness Rm (θ, j) in Eq. (6.4) is a non-trivial function of multiple such g
(2)
ri,pj, expressed

here as Rm (θ, j) ≡ Rm

(
g

(2)
r1,pj (θ) , g

(2)
r2,pj (θ)

)
. To estimate its confidence intervals, we dis-

cretize the probability density function of the second order coherences P (g
(2)
ri,pj ∈ [a; a+δa])

at equidistant a = nδa, n ∈ N. The probabilities for finding Rm in an interval [f, f + δf ]

is then given by P (Rm ∈ [f, f +δf ]) =
∑

(a,b)∈M P (g
(2)
r1,pj ∈ [a, a+δa])P (g

(2)
r2,pj ∈ [b, b+δb])

on the setM for which Rm(a, b) ∈ [f, f+δf ]∀(a, b) ∈M. For the optimal read phase θopt

we obtain as maximum likelihood values for the witness bounds Rm(θopt, 1) = 0.612+0.152
−0.057

and Rm(θopt, 2) = 0.846+0.210
−0.090. We obtain the symmetrized witness by treating the ex-

perimentally observed Rm(θopt, 1) and Rm(θopt, 2) as two independent measurements of

the expectation value Rm, sym(θ) ≡ 〈Rm(θ, 1)〉 !
= 〈Rm(θ, 2)〉 of the optomechanical state

in a symmetric setup with no detector noise. For a realistic setup with detectors ex-
hibiting different noise properties, without loss of generality, let detector j have more
false positive detection events than detector i. We then find the symmetrized witness
〈Rm(θopt, i)〉 ≤ Rm, sym ≤ 〈Rm(θopt, j)〉 to be an upper bound to the entanglement witness
of the state heralded by the better detector i. Consequently 1 > Rm, sym ≥ Rm(θopt, i) ≥ R
implies entanglement between the two remote mechanical oscillators. The observed values
yield a confidence level for Rm, sym < 1 of 98.4%. When correcting for the conservative
upper bound of systematic errors, see above, the confidence level for having observed
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entanglement remains at 98.3%.
The complete counting statistics of the witness measurement at θopt are accumulated

over N = 1.114 · 109 trials (i.e. sets of pulses). We obtain C(p1) = 111134 and C(p2) =
184114 counts for photons scattered by the pump pulse on detectors i = 1, 2 and C(r1) =
108723 and C(r2) = 167427 counts from the read pulse. This yields the coincidence
counts Cri,pj, (i, j = 1, 2) for counts on detector i, heralded by detector j, Cr1,p1 = 9,
Cr2,p1 = 130, Cr1,p2 = 129, Cr2,p2 = 37.

For non-optimal phases θ 6= θopt, Rm(θ, i) ≥ Rm(θopt, i). Consequently, by adding the
photon counts of measurements from an interval [θ1, θ2], the resulting Rm([θ1, θ2], i) ≥
Rm(θ ∈ [θ1, θ2], i) serves as an upper bound to any phase θ within that interval. Including
the measurements at the non-optimal phase ∆φ = 0, we obtain Rm([θopt−0.2π, θopt], 1) =
0.66+0.114

−0.055 andRm([θopt−0.2π, θopt], 2) = 0.806+0.129
−0.071, resulting inRm, sym([θopt−0.2π, θopt]) =

0.74+0.08
−0.05 ≥ Rm, sym(θopt). The confidence level for Rm, sym < 1 is 99.84%, dropping to

99.82% when correcting for the conservative upper bound for systematic errors. Note
that for states heralded only with the more efficient detector 1, we already have a confi-
dence level for entanglement between the two mechanical oscillators of 99.50%, including
corrections for systematic errors.

The statistics of the witness within the extended phase region are obtained from N =
1.949 · 109 experimental trials. We get C(p1) = 196080 and C(p2) = 322608 counts
for photons scattered by the pump pulse on detectors i = 1, 2 and C(r1) = 194023
and C(r2) = 300373 counts from the read pulse. This yields the coincidence counts
Cri,pj, (i, j = 1, 2) for counts on detector i, heralded by detector j, Cr1,p1 = 16, Cr2,p1 =
223, Cr1,p2 = 242, Cr2,p2 = 67.

6.3.7. Second Order Coherence and Entanglement

The second order coherence between the scattered photons from the pump pulse and signal
phonons transfered by the read pulse after a delay t, g

(2)
i,rp(t) = 〈r̂†j p̂

†
j r̂jp̂j〉/〈r̂†j r̂j〉〈p̂†j p̂j〉, of

the individual devices i = A,B, allows to us quantify the total noise contribution limiting
the interference visibility. The measurements are performed the same way as described in
the main text, however with the optical path to the other device blocked (see Fig. 6.4).
Though there is no fundamental difference between the detectors j = 1, 2, we only use
detector j = 2 for the single device measurements. Following [Kuz+03] and starting from
a thermal state for the mechanical system ρm and vacuum |0〉〈0|o in the optical sidebands
we obtain in the low temperature limit

g
(2)
i,rp(t) ≈ 1 +

e−Γit

ni,th(t) + ppump,i · e−Γit + nleak + nbg

, (6.7)

where ni,th � 1 is the mean phonon occupation of the device, ppump,i � nth is the
Stokes excitation probability, nleak � nth is the average number of leaked pump photons
per transfered phonon, and nbg � nth is the average number of background counts per

detected phonon. At a delay of τ = 123 ns� 1/Γi we measure g
(2)
A,rp = 7.1+1.2

−0.9 and g
(2)
B,rp =

9.6+1.1
−0.9. With calibrated rates of nbg = 3 · 10−3, ppump,A = 0.56 · 10−2, ppump,B = 0.80 · 10−2

and leaks at detector 1 nleak,1 = 4.2 · 10−2 and detector 2 nleak,2 = 3.2 · 10−2 we can
estimate the number of incoherent phonons to be nth,A = 11.9+2.8

−2.7 · 10−2 for device A and
nth,B = 6.9+1.4

−1.3 · 10−2 for device B. In a more detailed analysis, including the mechanical
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Figure 6.9.: Pump-probe experiment. The experiment reveals the response of the devices
mechanical modes to the initial optical pump. See text for details. Error bars are s.d.

decay measurement (see below), we can estimate that absorption by the pump pulse
contributes npump ∼ 3 · 10−2 phonons and absorption from the read pulse contributes
nread ∼ 5 · 10−2 phonons. This suggest, that the performance of device A is limited by
imperfect thermalization with the cryostat at a temperature of 60 mK.

The interference contrast of the entangled state, i.e.

Ce(t) = max
(
g

(2)
ri,pj(t, θ))−min(g

(2)
ri,pj(t, θ)

)
is bound by the cross-correlation of the individual devices [Lee12]

Ce,max(t) ≈ min(g
(2)
A,rp(t), g

(2)
B,rp(t))−1. A pump-probe measurement of the thermal response

of the devices [Rie+16] allows us to predict the cross correlations and thus an upper bound
to the interference contrast. We excite the devices with a blue detuned pump pulse with
ppump,A = 2.8% (ppump,B = 4.0%) and vary the delay of a read (or probe) pulse with 5.6%
(8.0%) state swap fidelity for device A (B). Note that for this experiment, we deliberately
choose pulse energies higher than for the interference experiments in order to reduce the
measurement time. As is done for sideband asymmetry [Rie+16; Hon+17], the scattering
rate of the probe pulse can be converted into the number of phonons at time t, when using
the rate of the pump pulse (after scaling the signal according to the pump-to-probe power
ratio) as a reference signal of single-phonon strength. This is only valid when nth � 1 at
the time of pump pulse, which we find is the case later in the section. The results of these
measurements are shown in Figure 6.9. We observe an initial rise in phonon occupation
after the pump pulse, followed by a decay to an equilibrium state. The delayed heating
can be understood by the presence of long lived high frequency phonons, which weakly
couple to the 5 GHz modes under investigation. We model these high frequency phonons
by an effective thermal bath, exponentially decaying with rate γi. This results in the rate
equation ṅi(t) = −Γini(t) + kie

−γit + Γini,init of the mean occupation number ni of device
i = A,B. The additional bath couples with strength ki, and the thermal environment of
the chip has an equilibrium temperature of ni,init. The detected signal of the probe pulse
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di(t) = ni,pump(t) + ni,final contains the average phonon number ni,pump(t) = ni(t)− ni,init

induced by the pump beam, as well as a constant offset ni,final = ni,init+ni,probe+nleak+nbg

given by the thermal environment ni,init, the false positive events nleak and nbg and the
heating during the probe pulse itself ni,probe. Consequently, we fit the pump-probe data
with the general solution of the above differential equation di(t) = ai·e−Γit−bi·e−γit+ni,final,
with ai, bi fitting parameters and including the offset ni,final of the probe pulse detection
rate. We obtain 1/ΓA = 4.0 µs, 1/ΓB = 5.8 µs, 1/γA = 0.5 µs and 1/γB = 0.5 µs. Using
the calibrated false positive detection rates and estimating the equilibrium occupation
from the thermal environment ni,init ∼ 1/(e~Ω/kBT − 1), with the Boltzmann constant kB
and cryostat temperature T , we can obtain the individual contributions to the absorption
heating by the pump (ni,pump) and the probe pulse (ni,probe) for any given delay t. Adapting
the number of phonons added by the optical drive pulses ni,pump and ni,probe for the lower
energies, under the assumption of linear absorption and optomechanical processes, we
obtain an estimate of the thermal occupation ni,th(t) = ni(t) + ni,probe − ppump,ie

−Γit

during the entanglement experiment. Using the calibrated rates and equation (6.7), we
can obtain an upper bound to the interference contrast Ce,max (see above) and therefore
also for the visibility Vmax = Ce,max/(Ce,max + 2), which is shown in Figure 6.6.

6.3.8. Rates and Extrapolation of Results

In order to highlight the scalability of the mechanical entanglement, we recapitulate the
detection rates in the entanglement witness measurement. The experiment is repeated ev-
ery 50 µs, limited by the thermalization time of the mechanical modes. Using the counting
statistics of the measurement at the optimal phase θopt, see above, we have a probability
of pherald ≈ 2.7 · 10−4 and the unconditional probability to also detect the anti-Stokes
photon from the readout pulse of pread ≈ 2.8 · 10−7. These probabilities contain the op-
tomechanically generated photons, leaked pump photons and background counts. In the
current setup these rates are limited by losses in the filtering setup and low optomechan-
ical scattering rates to retain the effects of absorption heating. When the two mechanical
devices are placed in two separate refrigerators and placed in different locations, addi-
tional fiber would be inserted, causing additional losses. While the detection rate of
leaked pump photons reduces in the same manner as the of the optomechanical photons,
the rate of background counts stays the same. Consequently, the signal-to-noise ratio re-
duces, lowering the normalized cross-correlation between Stokes and anti-Stokes photons.
In the present measurements, the inverse signal-to-background ratio is nbg,1 = 2.9 · 10−3

(nbg,2 = 3.2 · 10−3) for detectors 1 (2). The most reliable estimate of the second order
coherence of device A, which has worse properties, can be extracted from the observed in-
terference contrast, resulting in g

(2)
A,rp ∼ 7.5±0.35, as it has better statistics than the direct

measurement. For device B, we use the direct measurement g
(2)
B,rp = 9.6+1.1

−0.9. To maintain
an interference contrast of 95% of the current level, the second order coherence of both
devices is allowed to decrease to ∼7.1. With equation (6.7) we can estimate that an addi-
tional loss of 5.4 dB (10.6 dB) loss in the optical path from device A (B) to the combining

beamsplitter decreases the signal-to-background ratio, such that g
(2)
A,rp ≈ g

(2)
B,rp ≈ 7.1. Us-

ing the nominal attenuation of commercial low-loss telecom fiber (Corning SMF-28 ULL
∼0.17 dB/km), we can estimate that an additional fiber length of 94+8

−12 km could be
inserted between the devices. The projected entanglement witness in this configuration

137



6. Remote quantum entanglement between two micromechanical oscillators

is Rm ∼ 0.76 and would need roughly the same number of coincidence events to clear the
classicality bound of 1 by 3 standard deviations. Including the reduced scattering rates
from matching both paths, this would require ∼170 days of integration time, including
a 15% overhead time for stabilization of filters and interferometer as well as data man-
agement. Reducing the separation distance to 75 km, i.e. an additional fiber length of
32 km (43 km) between device A (B) and the beamsplitter, requires 38 days of continuous
measurement time for a statistically significant demonstration of remote entanglement.
While our cryostat currently only allows for a few weeks of measurements at a time due
to technical limitations, much longer times should in principle be easily achievable.
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7. Outlook

In this thesis, I presented three classic quantum optics experiments using single phonons
in silicon optomechanical crystals. In reference [Rie+16] and chapter 4, we observed the
violation of a classical Cauchy–Scharz inequality for cross-correlations [Cla74], and thereby
demonstrated that the mechanical memory operates in the quantum regime [Kuz+03].
Using these optomechanical quantum correlations, we created heralded single phonon
Fock states in reference [Hon+17] and chapter 5. The mechanical state exhibited the
genuine quantum feature [SM83] of phonon anti-correlations, which were measured by
Hanbury Brown and Twiss interferometry. Employing two nearly identical devices in
reference [Rie+18] and chapter 6, we reported mechanical path entanglement of a single
phonon [GRA86; RT90]. This demonstrated that the optomechanical memory elements
have the functionality required for quantum repeater nodes [Dua+01; Cho+05].

The intriguing feature of optomechanical crystals, which distinguishes them from the
plethora of readily available quantum systems, is that they are engineered and integrated
devices. The freedom of design allows to choose virtually any wavelength in the infrared
telecommunication bands as optical resonance. This allows for high speed applications
through wavelength division multiplexing, while maintaining long mechanical memory
life times. In addition, the compatibility with silicon photonics enables the integration
of large parts of the optical setup on chip. With small individual footprints, large num-
bers of devices can be located and interfaced on a single chip. Complex optical quantum
networks, e.g. featuring hundreds of deterministic single photon sources, can potentially
be realized on chip and connected to remote locations by low loss optical fibers. In prin-
ciple, the mechanical modes can also be coupled to superconducting circuits, e.g. using
piezoelectric transducers. This opens up the perspective of a hybrid infrared-mechanical-
microwave architecture, which combines the advantages of superconducting circuits, me-
chanical memory elements and high speed infrared communication to form powerful local
nodes of a large quantum network. Intriguingly, all elements of such a system are artifi-
cial, macroscopic devices, which can be engineered to be compatible with each other and
to excel in their respective task.

Clearly, these visions require intense further development of the systems before they can
be realized. Primarily, the influence of absorption heating in the optomechanical crystals
needs to be reduced. Further, the basic elements of silicon photonics, such as tunable
filters, need to be made compatible with a cryogenic environment, and phonon mediated
electro-optic conversion ought to be demonstrated in the quantum regime.

Fortunately, very encouraging steps in these directions have recently been reported.
Optomechanical crystals were extended to two dimensional geometries [Saf+14], yielding
the promise of better thermalization and thus operating them in the strong cooperativ-
ity regime. Furthermore, tuning mechanisms for photonic crystal cavities were explored
[Sip+16; Pfe+16], with the prospect of generating large arrays of identical devices, to-
gether with matched integrated filters [Bek+18]. Mechanical transduction between pho-
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7. Outlook

tons at microwave and infrared frequencies is a very active field of research, inching ever
closer to the quantum domain [Vai+16; Hig+18]. In addition, our recent demonstration
of entanglement between an optical and a mechanical system [Mar+18] is an important
step towards quantum communication applications with an optomechanical back bone.

In conclusion, my work on single phonon quantum optics highlighted the potential of
optomechanical crystals for quantum information applications. Due to their unique and
designable properties, the are a promising extension to the arsenal of quantum devices.
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Hakonen, and M. A. Sillanpää, “Microwave amplification with nanomechan-
ical resonators.”, Nature 480, 351 (2011), doi: 10.1038/nature10628 (cited
on pgs. 31, 40).

[Mat+05] D. N. Matsukevich, T. Chanelière, M. Bhattacharya, S.-Y. Lan, S. D. Jenk-
ins, T. A. B. Kennedy, and A. Kuzmich, “Entanglement of a Photon and a
Collective Atomic Excitation”, Physical Review Letters 95, 040405 (2005),
doi: 10.1103/PhysRevLett.95.040405 (cited on pg. 62).

[Mat+06a] D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy,
and A. Kuzmich, “Deterministic Single Photons via Conditional Quantum
Evolution”, Physical Review Letters 97, 013601 (2006), doi: 10 . 1103 /

PhysRevLett.97.013601 (cited on pg. 62).

[Mat+06b] D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy,
and A. Kuzmich, “Entanglement of Remote Atomic Qubits”, Physical Re-
view Letters 96, 030405 (2006), doi: 10.1103/PhysRevLett.96.030405

(cited on pg. 113).

[Mee+14] S. M. Meenehan, J. D. Cohen, S. Gröblacher, J. T. Hill, A. H. Safavi-Naeini,
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[Pop75] R. P. Poplavskĭı, “Thermodynamic models of information processes”, Soviet
Physics Uspekhi 18, 222 (1975), doi: 10.1070/PU1975v018n03ABEH001955
(cited on pg. 111).

[PPR13] T. P. Purdy, R. W. Peterson, and C. A. Regal, “Observation of Radiation
Pressure Shot Noise on a Macroscopic Object”, Science 339, 801 (2013), doi:
10.1126/science.1231282 (cited on pgs. 2, 15, 29).

[Pur+17] T. P. Purdy, K. E. Grutter, K. Srinivasan, and J. M. Taylor, “Quantum
correlations from a room-temperature optomechanical cavity.”, Science 356,
1265 (2017), doi: 10.1126/science.aag1407 (cited on pg. 4).

[Pur56] E. M. Purcell, “The Question of Correlation between Photons in Coherent
Light Rays”, Nature 178, 1449 (1956), doi: 10.1038/1781449a0 (cited on
pg. 88).

[PZ12] M. Poot and H. S. van der Zant, “Mechanical systems in the quantum
regime”, Physics Reports 511, 273 (2012), doi: 10.1016/j.physrep.20
11.12.004 (cited on pg. 24).

160

https://doi.org/10.1063/1.2714792
https://doi.org/10.1063/1.2435328
https://doi.org/10.1063/1.2435328
https://doi.org/10.1103/PhysRevX.5.041024
https://doi.org/10.1103/PhysRevX.5.041024
https://doi.org/10.1103/PhysRevApplied.8.041001
https://doi.org/10.1103/PhysRevLett.121.040501
https://doi.org/10.1103/PhysRevLett.77.1413
https://doi.org/10.1364/OE.24.011407
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1103/PhysRevLett.115.243601
https://doi.org/10.1070/PU1975v018n03ABEH001955
https://doi.org/10.1126/science.1231282
https://doi.org/10.1126/science.aag1407
https://doi.org/10.1038/1781449a0
https://doi.org/10.1016/j.physrep.2011.12.004
https://doi.org/10.1016/j.physrep.2011.12.004


[QDL10] Q. Quan, P. B. Deotare, and M. Loncar, “Photonic crystal nanobeam cav-
ity strongly coupled to the feeding waveguide”, Applied Physics Letters 96,
203102 (2010), doi: 10.1063/1.3429125 (cited on pg. 58).

[Qiu+18] L. Qiu, I. Shomroni, M. A. Ioannou, D. Malz, A. Nunnenkamp, and T.
Kippenberg, “Motional Sideband Asymmetry in Quantum Optomechanics in
the Presence of Kerr-type Nonlinearities” (2018), arXiv: 1805.12364 (cited
on pg. 44).

[QL11] Q. Quan and M. Loncar, “Deterministic design of wavelength scale, ultra-
high Q photonic crystal nanobeam cavities”, Optics Express 19, 18529 (2011),
doi: 10.1364/OE.19.018529 (cited on pg. 58).

[Rab+10] P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and
M. D. Lukin, “A quantum spin transducer based on nanoelectromechanical
resonator arrays”, Nature Physics 6, 602 (2010), doi: 10.1038/nphys1679
(cited on pg. 2).
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A. Notations

Symbol Description Unit or See
Typical Value pg.

[Â, B̂] commutator ÂB̂ − B̂Â [AB] 8

Ô† Hermetian conjugate of operator Ô [O] 7

Ĥ Hamiltonian operator J 7
~ = h/2π reduced Planck constant Js 7∫∞
−∞

dt√
2π
f(t) Fourier transform of function f(t) [f ]s 17

D̂â(α) Displacement operator for mode â 1 14

Ôω Operator Ô in frame rotating with ω [Ô] 14
meff effective mass of the mechanical mode kg 7

P̂p Physical momentum of the mechancial mode kg m/s 7

X̂p Physical displacement of the mechancial mode m 7

P̂ Momentum quadrature of the mechancial mode
√

phonon 8

X̂ Displacement quadrature of the mechancial mode
√

phonon 8
m̂
(
m̂†
)

mechanical annihilation (creation) operator
√

phonon 8

ĉ† (ĉ)
creation (annihilation) operator of the
optical cavity mode

√
photon 7

Â Amplitude quadrature of the optical mode
√

photon 8

Ŷ Phase quadrature of the optical mode
√

photon 8

ôin (ôout) Optical input (output) field of the cavity
√

photon/s 11

ôloss Incoupled loss channel of the cavity
√

photon/s 11

ôloss,out Outcoupled loss channel of the cavity
√

photon/s 11
âin Discrete wave-packet inbound to cavity

√
photon 33

âout Discrete wave-packet outbound from cavity
√

photon 34
χL (χM) Optical (mechanical) susceptibility 2π ·s 18/25

g
(2)
ab Intensity cross-correlation between system a and b 1 48

Table A.1.: Important operators and functions.
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A. Notations

Symbol Description Unit or See
Typical Value pg.

G optomechanical transduction Hz/m 7
g0 Optomechanical single photon coupling strength 2π ·825 kHz 9
Ω Angular mechanical frequency 2π ·5.2 GHz 7
Qmech Mechanical quality factor 105 to 107 25
Γ Mechanical energy decay rate 2πHz 12
ωc Angular optical resonance frequency 2π ·193 THz 7
Qopt Optical quality factor 220 · 103 23
κ Optical amplitude decay rate 2π ·450 MHz 11
ωL Angular frequency of the drive laser 2π ·193 THz 14
εP Stokes scattering constant, pair creation probability 1 39
εR Anti-Stokes scattering constant, transfer efficiency 1 36

Table A.2.: Important system parameters and typical values.
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B. Theory

B.1. The Thermal Mechanical State

A mechanical oscillator with viscous damping in contact with a thermal bath in thermal
equilibrium is in a thermal state. The following section intends to show how this thermal
state is connected with the equations of motion (2.22) derived in paragraph 2.1.3.

In order to achieve this, we adapt a matrix formalism of describing the equation of
motions of the mechanical oscillator, that is neglecting the optical field and the optome-
chanical coupling g ∼ 0. We start by noting that we defined the mean value of all degrees
of freedom in equilibrium to be zeros, that is for the state vector

〈 ~X〉 = 〈(X̂, P̂ )T 〉 = (0, 0)T . (B.1)

The equations of motion can be expressed as the matrix equation

d

dt
~X = B ~X =

(
0 Ω
−Ω −Γ

)(
X̂

P̂

)
. (B.2)

In order to describe the thermal state, we will first derive the cross-correlation1 spec-
tral density (CSD) SXX(ω) will then obtain the covariance matrix P = 〈 ~X ~X†〉 of the
quadratures by integrating over it.

From the system dynamics we can deduce the transfer function of the thermal noise
input by going into Fourier transforming (B.2)

− iω ~̃X(ω) = B ~̃X(ω) + Λ~̃ξ(ω) (B.3)

with the noise input vector ~ξ = (0, P̂loss) and the coupling matrix Λ = diag(0,
√

2Γ). Thus
the CSD is

SXX(ω) = ~̃X(ω) ~̃X†(ω) = (iω −B)−1ΛSξξ(ω)ΛT
{

(iω −B)−1
}†

(B.4)

The CSD is Hermetian, but can contain complex values, corresponding to time corre-
lations. As they are of no relevance for the covariance, consequently the CSD is sym-
metrized, i.e. its real part is taken, before the integration2

Pth =

∫ ∞
−∞

dω

2π
Re(SXX(ω)) . (B.5)

1Not to confuse with the normalized cross-correlation, which is short for the degree of second-order
coherence as defined by reference [Gla63b].

2 For practical applications, that is if only a one sided frequency spectrum is available, this corresponds
to Pinit = 2

∫∞
0

df Re(SXX(f)).
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B. Theory

In the following, we will evaluate this integral analytically.
We calculate the transfer function between the noise input and the state vector

− (iω +B)−1 =
1

Ω2 − ω2 − iωΓk︸ ︷︷ ︸
χM(ω)/Ω

(
−iω + Γ Ω
−Ω −iω

)
(B.6)

to obtain the cross spectral density

Skk(ω) = (iω +B)−1 ΛSξξ(ω)ΛT
[
(iω +B)−1]† (B.7)

=
|χM(ω)|2

Ω2

(
Ω2 iωΩ
−iωΩ ω2

)
2Γ

(
nth +

1

2

)
(B.8)

The off diagonal terms are purely imaginary, i.e. they do not play a role for the co-
variance matrix. We further simplify the system by assuming a high Q oscillator, which
allows to approximate the inverse absolute square of the determinant as a δ distribution,
with the normalization∫ ∞

−∞

dω

2π
|χM(ω)|2 =

1

2Γ
(B.9)

⇒ |χM(ω)|2 ≈ δ(ω − Ω) + δ(ω + Ω)

4Γ
. (B.10)

We thus find the covariance matrix

Pth =

∫ ∞
−∞

ω
dω

2π
Re(SXX(ω)) =

(
nth + 1

2
0

0 nth + 1
2

)
, (B.11)

recovering as expected the energy equipartition between the quadratures and a thermal
equilibrium with the environment.

B.2. Emitted Mode Envelope in a Quasi-Continuously
Driven System

Here we will discuss the mode envelope of the waves emitted from an optomechanical
system driven by a quasi-continous way, as described in section 2.3. The derivation will
closely follow [Hof+11; Hof15], generalizing them to arbitrary envelopes of the drive pulse.

For the input wavelet mode, we found in equation (2.52)

âin =
1√

±
(
1− e−2G̃±(T )

) ∫ ∞
−∞

dω√
2π

∫ T

0

dτ
χωL

(ω ∓ Ω̃)

|χωL
(∓Ω̃)|

ˆ̃oωL
(ω ∓ Ω̃)e−G̃±(τ)

√
2s̃±(τ)e−iωτ .

(B.12)
For the output we expect a similar integration kernel, as it should also be located at the

optomechanical sideband and in the weak coupling case follow the drive pulse envelope.
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In order to find an expression for the output field, we rephrase the expression for the
cavity field (2.24) with the general parametrization3 and in the limit of a single sideband

√
2κĉωL

= ie±iφ±
√

2s̃±
χωL

(∓Ω)

|χωL
(∓Ω)|

m̂±
Ω̃
e±iΩ̃t + 2κ

∫ ∞
−∞

dω√
2π

χωL
(ω)ˆ̃oωL

(ω)e−iωt (B.13)

Using the cavity input output relation (2.12) we can define the continuous output field as

ûωL
= ôωL

−
√

2κĉωL
(B.14)

= −ie±iφ±
√

2s̃±
χωL

(∓Ω)

|χωL
(∓Ω)|

m̂±
Ω̃
e±iΩ̃t −

∫ ∞
−∞

dω√
2π

χωL
(ω)

χωL
(ω)†

ˆ̃oωL
(ω)e−iωt. (B.15)

This expression is still dependent on the time evolution of the mechanical operator. In
order to obtain an expression, which only depends on the initial mechanical operator, we
can use equation (2.50)4, such that we obtain

ûωL
(t) =−ie±iφ±

√
2s̃±

χωL
(∓Ω)

|χωL
(∓Ω)|

e±iΩ̃teG̃±(t)m̂±
Ω̃

(0) (B.16a)

∓
√

2s̃±
χωL

(∓Ω)

|χωL
(∓Ω)|

e±iΩ̃teG̃±(t)

·
∫ t

0

dτ

∫ ∞
−∞

dω√
2π

e−G̃±(τ)
√

2s̃±(τ)
χωL

(ω ∓ Ω̃)

|χωL
(∓Ω̃)|

ˆ̃oωL
(ω ∓ Ω̃)e−iωτ (B.16b)

−
∫ ∞
−∞

dω√
2π

χωL
(ω)

χωL
(ω)†

ˆ̃oωL
(ω)e−iωt. (B.16c)

The first line of this rather bulky expression shows the pulse shape of the emitted photon
to have the envelope

√
2s̃±(t)eG̃±(t) and is shifted in frequency by ±Ω̃ compared to the

drive frequency. Hence, we make an Ansatz for the output mode

âout =

∫ ∞
−∞

dω√
2π

∫ T

0

dτ Wout
(±)(ω, τ)ˆ̃uωL

(ω ∓ Ω̃) (B.17a)

Wout
(±)(ω, τ) =

1√
±(e2G̃±(T ) − 1)

χωL
(ω ∓ Ω)†

|χωL
(∓Ω)|

eG̃±(τ)
√

2s̃±(τ)e−iωτ , (B.17b)

with ˆ̃uωL
the Fourier transform of ûωL

. In the limit of large κ, we can see that this mode
is normalized, in analogy to the optical inputmode (2.52).

3 Here we use the same notation as in section 2.3, that is, the coupling strength is

µ± = −g∓
√
κ|χωL

(∓Ω̃)| =
√
s̃±e

iφ± .

4 For reference, we fully expand the expression for the evolution of the mechanical annihilation operator:

m̂(t) =eG̃±(T )m̂Ω̃(0)

+ ieiφ±eG̃±(t)

∫ ∞
−∞

dω√
2π

∫ t

0

dτ e−G̃±(τ)
√

2s̃±(τ)
χωL
±(ω ∓ Ω̃)

|χωL(∓Ω̃)|
ˆ̃o±ωL

(ω ∓ Ω̃)e±iωτ
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We will now analyze the contribution of (B.16) to the output mode line by line in order
to obtain an equation for the interaction in terms of modes.

âout =

∫ ∞
−∞

dω√
2π

∫ T

0

dτ Wout
(±)(ω, τ)

∫ ∞
−∞

dt√
2π

ûωL
(t)e−i(ω∓Ω̃)t

=

∫ ∞
−∞

dω√
2π

∫ T

0

dτ

∫ ∞
−∞

dt√
2π
Wout

(±)(ω, τ)e−i(ω∓Ω̃)t

[
(B.16a)︸ ︷︷ ︸
ÛÀ

+ (B.16b)︸ ︷︷ ︸
ÛÁ

+ (B.16c)︸ ︷︷ ︸
ÛÂ

]

For this, we will repeatedly make a couple of approximations: due to the slow time
envelope in the mode definition (B.17), we we can see that the mode is peaked very
narrowly around the mechanical sidebands, i.e. at ω ∼ 0. As the bandwidth of the cavity
is large compared to the pulse bandwidth, we can approximate χωL

(ω ∓ Ω) ∼ χωL
(∓Ω),

the cavity response will in essence correspond to an effective phase shift. We apply the
above approximation in the first term

À =− 1√
±(e2G̃±(T ) − 1)

∫ ∞
−∞

dω√
2π

∫ T

0

dτ
χωL

(ω ∓ Ω)†

|χωL
(∓Ω)|

eG̃±(τ)
√

2s̃±(τ)e−iωτ

∫ ∞
−∞

dt√
2π

ie±iφ±
√

2s̃±(t)
χωL

(∓Ω)

|χωL
(∓Ω)|

eG̃±(t)m̂±
Ω̃

(0)eiωt

=−ie±iφ±
√
±(e2G̃±(T ) − 1)m̂±

Ω̃
(0), (B.18)

simplifying the ω-integral to a Dirac delta distribution δ(t− τ). Note that the boundaries
of the τ -integral can equivalently be set to [−∞,∞], as the integrand is zero outside
the original bounds of [0, T ]. Hence, it can be resolved with the distribution, eventually
resulting in the same type of t-integral as already encoutered in the normalization of
mode shape (B.17). Employing the same steps, we can resolve the first two integrals
of the second term, and then simplify the remaining three integrals using the equality∫ T

0
dt
∫ t

0
dτ f(t, τ) =

∫ T
0

dτ
∫ T
τ

dt f(t, τ), which can be applied to integrable functions f

176



B.3. The Cross-Correlation in an Optomechanical System

[Hof15]:

Á =∓ 1√
±(e2G̃±(T ) − 1)

∫ T

0

dt e2G̃±(t)2s̃±(t)

∫ ∞
−∞

dω√
2π

∫ t

0

dτ e−G̃±(τ)
√

2s̃±(τ)
χωL

(ω ∓ Ω̃)

|χωL
(∓Ω̃)|

ˆ̃oωL
(ω ∓ Ω̃)e−iωτ

=∓ 1√
±(e2G̃±(T ) − 1)

∫ T

0

dτ

∫ T

τ

dt e2G̃±(t)2s̃±(t)

e−G̃±(τ)
√

2s̃±(τ)

∫ ∞
−∞

dω√
2π

χωL
(ω ∓ Ω̃)

|χωL
(∓Ω̃)|

ˆ̃oωL
(ω ∓ Ω̃)e−iωτ

=− eG̃±(T )√
±
(
1− e−2G̃±(T )

) ∫ ∞
−∞

dω√
2π

χωL
(ω ∓ Ω̃)

|χωL
(∓Ω̃)|

ˆ̃oωL
(ω ∓ Ω̃)

∫ T

0

dτ e−G̃±(τ)
√

2s̃±(τ)e−iωτ

+
1√

±(e2G̃±(T ) − 1)

∫ T

0

dτ eG̃±(τ)
√

2s̃±(τ)

∫ ∞
−∞

dω√
2π

χωL
(ω ∓ Ω̃)

|χωL
(∓Ω̃)|

ˆ̃oωL
(ω ∓ Ω̃)e−iωτ

=− eG̃±(T )âin −Â. (B.19)

Going from the second to the third line, we use the definition (2.47) of the cummulative
coupling d/dt G̃±(t) = ±s̃±(t) to resolve the t-integral over the interval [τ, T ]. We can
thus eliminate the third term, yielding equation (2.54) for the output mode

âout = −ie±iφ±
√
±
(
e2G̃±(T ) − 1

)
m̂±

Ω̃
(0)− eG̃±(T )âin. (B.20)

B.3. The Cross-Correlation in an Optomechanical System

In paragraph 2.4.2, the normalized cross-correlation between the optical and the me-
chanical mode of an optomechanical system was introduced, and its relation to the cross-
correlation between the counting measurements of the Stokes and the anti-Stokes scattered
photons was discussed. Here, this relation is investigated in a more formal way, and the
relation between the measured cross-correlation and typical noise processes is treated.

B.3.1. Measurement Operators and Initial State

In a real experiment, we do not have access to the ideal number operators m̂†m̂ and
â†wg,outâwg,out, but instead use single photon detectors as estimators, which are partially
corrupted by measurement noise. We define the approximate measurement operator5 for

5 Note that typical single photon detectors can not resolve the number of excitations excitations. There-
fore, they are best described by 1 − |0〉 〈0|b̂ for a mode b̂. When the average photon number is low,

e.g. in the presence of a significant loss channel, higher excitation numbers are negligible and thus b̂†b̂
is a good approximation, with 〈1− |0〉 〈0|b̂〉 ∼ 〈b̂

†b̂〉.
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the Stokes (D̂o) and anti-Stokes (D̂m) scattered photons

D̂o = d̂†wd̂w + f̂ †o f̂o (B.21a)

D̂m = d̂†r d̂r + f̂ †mf̂m. (B.21b)

The detection modes d̂w and d̂r are defined as in paragraph 2.4.2 and equation (2.70)
modeling the transmission losses from the device to the detector with the absolute quan-
tum efficiency for the Stokes photons ηd and the transferred phonons ηdεR

6. The number
operator f̂ †o f̂o (f̂ †mf̂m) summarizes the origins of false positive counts, with 〈f̂ †o f̂o〉 (〈f̂ †mf̂m〉)
corresponding to the mean number of false positive detection events during the time gate
associated with the Stokes (anti-Stokes) scattered photons. We further assume that the
noise channel f̂ and the loss channel vacuum port l̂ and the Markovian thermal envi-
ronment are uncorrelated with the initial optomechanical system, i.e. we can decompose
the density matrix ρ̂ ≈ ρ̂o,m ⊗ ρ̂f,l,t. The first factor ρ̂o,m is the density matrix of the
initial optomechanical system before any interaction takes place, and the second factor
ρ̂f,l,t represents the auxiliary systems at that time.

This allows to define the estimators of the optomechanical system as

M̂o = Trl̂,f̂ ,T̂ (D̂oρ̂f,l,t)/ηd ≈ â†wg,outâwg,out + Pfpo1 (B.22a)

M̂m = Trl̂,f̂ ,T̂ (D̂mρ̂f,l,t)/(ηdεR) ≈ m̂†m̂+ Pfpm1, (B.22b)

with the normalized false positive detection probability Pfpo = 〈f̂ †o f̂o〉/ηd . The mechanical
phonon number estimator is defined in close analogy for detection events during the
time gate associated with the anti-Stokes scattered photons and Pfpm = 〈f̂ †mf̂m〉/(ηdεR)
corrected for the finite state transfer fidelity εR. The indexes of the trace operator Trl̂,f̂ ,T̂
indicate that the trace is only taken over the loss channel l̂ and the noise channels f̂
of both Stokes and anti-Stokes drive pulses, as well as the initial thermal environment,
represented by the abstract operator T̂ . Due to including the latter, the normalized false
positive rate of the readout pulse Pfpm also includes the thermally generated phonons in
the system after the initial interaction.

The initial state of the optomechanical system is

ρ̂i = ρ̂o,m = ρ̂th ⊗ |0〉 〈0|opt , (B.23)

with the vacuum state |0〉 〈0|opt in the optical resonator and a thermal state ρ̂th in the
mechanical oscillator. The latter is characterized by the mean number of phonons

Tr
(
m̂†m̂ρi

)
= ni (B.24)

and autocorrelation g
(2)
mm = 2 in the initial state.

B.3.2. The Heralded State

The ’write’ pulse drives the Stokes transition and is represented by the unitary transfor-
mation

Û = exp
[
i
√
p
(
â†wg,outm̂

† + âwg,outm̂
)]
, (B.25)

6 As a reminder, ηd = ηqeηpathκin/κ, with the quantum efficiency ηqe of the detector, ηpath the trans-
mission of the optical path from the device to the detector, and κin/κ the loss due to the cavity
impedance.
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with the small probability p = εP � 1 of a Stokes scattering event, see also para-
graph 2.3.3. This yields the state after the write pulse in the interaction picture ρ̂p =

Û ρ̂iÛ
†.

Here, we want to estimate the cross-correlation between the read and the write pulse
in the limit of p, ni � 1. In order to obtain an expression of the leading terms of the
cross-correlation, we need to include the process of creating two photon-phonon pairs7.
We thus expand the state up to the quadratic terms O(p2) in the Stokes pair creation
probability. As the counting measurements are not sensitive to the coherences of the
state, we can further neglect the off-diagonal terms in the density matrix.

In this approximation8 the state after the Stokes interaction is

ρ̂p ≈ρ̂i + p(m̂†â†wg,outρ̂iâwg,outm̂)− p

2
m̂m̂†ρ̂i −

p

2
ρ̂im̂m̂

†

+
p2

4
(m̂†2â†2wg,outρ̂iâ

2
wg,outm̂

2) +
p2

4
m̂m̂†ρ̂im̂m̂

†

− p2

6

[(
3m̂†m̂+ 2

)
m̂†â†wg,outρ̂iâwg,outm̂+ h.c.

]
+
p2

24

[(
2m̂2m̂†2 + (m̂m̂†)2

)
ρ̂i + h.c.

]
.

(B.26)

The expectation value for the photon and phonon measurement of this state yield

Tr(M̂oρ̂p) = Pfpo + p(1 + ni)− p2 2 + 5ni + 3n2
i

3
(B.27a)

Tr(M̂mρ̂p) = Pfpm + ni + p(1 + ni) +O(p2) ≡ M̄, (B.27b)

where we used the expression for the autocorrelation of the thermal state 〈m̂†2m̂2〉 =

g
(2)
mmn2

i ≈ 2n2
i . The measured mean phonon number is an important figure of merit, and

is therefore noted as 〈M̂m〉 ≡ M̄ .
We can now express the mechanical state heralded by the detection of a signal photon

from the write pulse. In essence, the heralding process selects those mechanical states,
for which a photon was detected by the detector represented by M̂o, i.e. the state is
proportional to the trace over the optical part of the system Tro(M̂oρ̂p), including the
photo-detection. As this process is not unitary, the density matrix of the heralded state

7 For this reason, the following equalities for bosonic ladder operators â = m̂, âwg,out will be used
frequently, and are therefore given here as reference:

ââ† = â†â+ 1 â2â†2 = â†2â2 + 4â†â+ 2

ââ†ââ† = â†2â2 + 3â†â+ 1 â2â†ââ†2 = â†3â3 + 8â†2â2 + 14â†â+ 4

8 The relevant terms of the unitary transformation of the write pulse are thus

Û = 1+i
√
pâ†wg,outm̂

† − p

2
m̂m̂† − p

2
â†2wg,outm̂

†2

− ip
3/2

6

(
2m̂m̂†2 + m̂†m̂m̂†

)
â†wg,out +

p2

24

(
2m̂2m̂†2 + m̂m̂†m̂m̂†

)
.
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ρ̂H = Tro(M̂oρ̂p)/Tr(M̂oρ̂p) needs to be normalized. This leads to the expression

ρ̂H =
PfpoRTro(ρ̂p) + m̂†ρ̂thm̂+ p

2
m̂†2ρ̂thm̂

2 − p
6

[(
3m̂†m̂+ 2

)
m̂†ρ̂thm̂+ h.c.

]
PfpoR + (1 + ni)− p2+5ni+3n2

i

3

, (B.28)

where we introduced the relative false positive detection rate of the write pulse PfpoR =
Pfpo/p. It describes the ratio between false positive detection events and intended ones,
and is therefore comparable with the expression for the read pulse. This will be discussed
more extensively in the following paragraph.

For negligible noise figures PfpoR, p, ni � 1, we find that the dominant term in the
heralded state is m̂†ρ̂im̂, i.e. a single phonon is added to the initial thermal state ρ̂th.

B.3.3. The Cross-Correlation

We found in paragraph 2.4.2, that the crosscorrelation g
(2)
om = 〈M̂mM̂o〉/(〈M̂m〉〈M̂o〉) is

equivalent to the ratio of tha apparent phonon numbers in the heralde versus the unher-
alded state g

(2)
om = Tr(M̂mρ̂H)/Tr(M̂mρ̂p). With the previously derived expressions (B.27)

and (B.28) we obtain the the cross-correlation

g(2)
om =

1 + 3ni + 2n2
i + p(1

3
− 2ni) + Pfpm

[
1 + ni − p

3
(2 + 5ni)

]
+ PfpoRM̄

(1 + ni + p(1 + 2ni)− p
3
(5 + 11ni) + PfpoR)M̄

, (B.29)

where we neglected terms of a higher order than O(pni). In order to identify the dominant
terms, we linearize the denominator 1/(1+S) ∼ 1−S with S = PfpoR+ni−p(2+5ni)/3�
1. Keeping only the dominant terms in the numerator9 we arrive at

g(2)
om =

1 + M̄ + ni − PfpoR + Pfpm

[
ni − 2p

3

]
+ g

(2)
ff PfpmPfpoR

M̄
(B.30a)

=
1 + ni − PfpoR

M̄
+ 1. (B.30b)

In the first line, we included the possibility of correlation g
(2)
ff of the background noise

processes for the read and write pulse. For uncorrelated noise g
(2)
ff = 1. In the second line

we further assumed low readout noise Pfpm � 1, resulting in exclusively linear terms in
the numerator. This expression can be used to reproduce corresponding results from the
literature: For negligible noise in the detectors Pfpm, PfpoR ∼ 0 and no thermal background

ni ∼ 0, we find M̄ ∼ p, resulting in the expression g
(2)
om ≈ 1+1/p from reference [Kuz+03].

Again neglecting detection noise and a weak drive strength p� ni, the expression g
(2)
om ≈

2 + 1/ni from reference [BNG11] is recovered.

9 This includes terms which are linear in the noise figures p, ni, PfpoR � 1. As Pfpm includes the the
mean number of phonons induced absorption heating, it is not in general small, and higher orders are
kept.
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B.3.4. Noise Processes

We now have a closer look at the false positive detection probabilities. They are defined
normalized to equivalent phonon numbers

PfpoR = 〈f̂ †o f̂o〉/(ηdεP) (B.31)

Pfpm = 〈f̂ †mf̂m〉/(ηdεR). (B.32)

In the limit of weak state transfer fidelities, the scattering constants εR and εP are pro-
portional to the respective drive pulse energy. Consequently, the contribution of leaked
drive photons to the detector noise is equivalent for the write and read pulse, with

Pleak = ηf
κ2

κ2
in

Ω̃2 + κ2

4g2
0

(B.33)

in the resolved sideband regime, compare equation (2.79). The second contribution to
the false positive detection events are background counts, related e.g. to the detection
of stray photons, thermal photons or related to electronic noise. The expectation value
of background counts during the gate times for either pulse P (background) is typically
negligible compared to leaked photons P (background)/(ηdεP)� Pleak. For the read pulse,
the third noise source is phonon related to absorption heating caused by drive photons,
with the expectation value nheating. In summary, we can approximate the normalized false
positive rates as

PfpoR = Pleak + P (background)/(ηdεP) (B.34a)

Pfpm = Pleak + P (background)/(ηdεR) + nheating. (B.34b)

Neglecting background counts P (background) ∼ 0 and defining the total average occupa-
tion during the read pulse

nf = ni + p+ nheating (B.35)

we can rewrite the cross-correlation (B.30b) as

g(2)
om =

1 + nf + ni
nf + Pleak

(B.36)

Finally we take into account the time dependence of the mechanical state. One the one
hand, the state generated in the heralding process will decay, on the other hand, phonons
from the thermal environment will leak into the system. Including these effects, the time
dependent expression for the optomechanical cross-correlation becomes

g(2)
om(t) =

1 + ni − Pleak

nf (t) + Pleak

e−Γt + 1. (B.37)

Note that in most cases treated in the experimental part of this thesis, ni, PfpoR � 1 and
therefore can be neglected.

Further, we can investigate the autocorrelation of the heralded state. Using the density
matrix (B.28), we find that

g
(2)
mm,H =

Tr(:M̂mM̂mρ̂H :)

Tr(M̂mρ̂H)2
≈ 2ni + 2M̄ ≈ 2(ni + nf + Pleak) (B.38)

in a linear approximation. For negligible heating and other false positive detection events,
this reproduces the result g

(2)
mm,H = 4ni from reference [Gal+14].
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B.4. Generation and Verification of Remote Mechanical
Entanglement

In chapter 6, the generation and characterization of remote mechanical entanglement is
reported. Here, additional information on the generated state and the verification of en-
tanglement is provided. First, the phase relation of the mechanical state is investigated.
Thereafter, the entanglement witness is discussed, providing a more intuitive understand-
ing of its meaning.

B.4.1. The Role of Drive Laser Phase for Remote Mechanical
Entanglement

The entanglement between two mechanical elements is generated by the DLCZ protocol
[Dua+01]. In brief, spontaneous optomechanical downconversion creates a single photon-
phonon pair. The information, in which device the Stokes scattering event took place
is erased, overlaping the optical paths on a beamsplitter before detecting the heralding
photon. Thereby, the phonon is projected in a superposition of being located in device A
or B, see also [Cho+05]. Here, we discuss the relation of the phases between the different
modes involved in the experiment.

In order to keep the discussion as simple as possible, we restrict it to the subset of
states where a single scattering event took place, neglecting dissipation, absorption and
damping in either mode. As discussed in sections 2.3.2 and 2.3.3, we adopt an effective
nonlinear interaction picture of the optomechanical scattering processes. For the blue
detuned ’write’ pulse, one photon from the drive mode d̂†j is scattered onto resonance ô†j,

while creating a phonon in the mechanical oscillator m̂†j in either one of the interfereometer
arms j = A,B. Keeping only the terms where a single scattering event took place, we
thus obtain the ’write’ interaction

√
ε1Ŵj =

√
ε1d̂j ô

†
jm̂
†
j, with the single photon scattering

probability ε1 = κin

κ

4g2
0

Ω̃2+κ2 , compare equation (2.64a).

For the read pulses the anti-Stokes interaction then is equivalently
√
ε1R̂j =

√
ε1d̂j ô

†
jm̂j,

compare equation (2.60b). The six modes of the system are described by the wavefunction

|Ψ〉 = |ψdrive, A, ψmech,A, ψopt,A, ψdrive, B, ψmech,B, ψopt,B〉 , (B.39)

with the optical drive pulse ψdrive, j, mechanical ψmech, j and the resonant optical field ψopt,j

in path j = A,B. Initially, we assume all resonances to be in their respective vacuum
state. In the first step of the protocol, we drive the Stokes transition, sending coherent
pulses with equal amplitudes |Ψ(t)〉 =

∣∣α(t), 0, 0, α(t)eiφ0 , 0, 0
〉

into the interferometer. A
controlled phase offset φ0 is added to arm B. The coherent state oscillates with its optical
frequency, i.e. α(t) = α0 · e−iωwritet.

Without loss of generality, we assume that both pulses arrive at equal times t0 at the
optomechanical resonators, driving the Stokes transition. The amplitude α0 is chosen
such that the integrated scattering probability εP � 1 of the process is low. Neglecting
higher order excitations, the state after the Stokes interaction is |Ψp(t0)〉 ∝ (1+iεŴA)(1+

iεŴB) |Ψ(t0)〉. Selecting only states where a single scattering event took place, we thus
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find

|Ψp(t0)〉 ∝ (ŴA + ŴB) |Ψ(t0)〉 (B.40a)

∝ α(t0)
∣∣α(t0), 1, 1, α(t0)eiφ0 , 0, 0

〉
+ α(t0)eiφ0

∣∣α(t0), 0, 0, α(t0)eiφ0 , 1, 1
〉

(B.40b)

After the interaction, the resonant optical and mechanical excitation acquire phases
according to their eigenenergies, i.e. with frequencies ωc respectively Ω. At time t1 the
signal photons interfere on the combining beamsplitter. Adding the phases of all modes,
we find that the phase φtA,B in each arm is equivalent to the phase of the drive beam
α(t1), e.g. for arm A we find φA = ωwritet0 + ωc(t1 − t0) + Ω(t1 − t0) = ωpumpt1, as
ωwrite = ωc + Ω. Consequently, the relative phase of the superposition θm = φ0 is given
by the relative phase of the drive beams in the two interferometer arms.

The detectors i = 1, 2 on the output of the interferometer beamsplitter are described by
the annihilation operators p̂i = (ôA±ôB)/

√
2 for an ideal 50/50 beamsplitter. Heralding on

a detection event in detector i and tracing over the optical modes, see also appendix B.3,
we obtain

|Ψi,H〉 = |ψmech,A, ψmech,B〉 = (|1, 0〉 ± eiθm |0, 1〉)/
√

2. (B.41)

At time t2 we send in the read pulses with amplitudes β(t) = β0e
−iωreadt. After adding an

phase offset −∆φ to arm A and φ0 to arm B, they arrive at time t3 at the optomechanical
resonators, yielding the state

|Ψ(t3)〉 ∝e−iΩ(t3−t1)
∣∣β(t3)e−i∆φ, 1, 0, β(t3)eiφ0 , 0, 0

〉
± eiφ0−iΩ(t3−t1)

∣∣β(t3)e−i∆φ, 0, 0, β(t3)eiφ0 , 1, 0
〉 (B.42)

prior to the interaction.
The anti-Stokes transition acts as a state transfer between the mechanical and resonant

optical mode. As there is at maximum a single phonon in either mechanical oscillator,
we can again neglect higher order terms. Thus, the state after the anti-Stokes interac-

tion is |Ψr(t3)〉 ∝̃
(

1 + iεR̂A

)(
1 + iεR̂B

)
|Ψ(t3)〉. We further neglect all branches, where

no state transfer happened, as we will later on only register states containing photons.
Consequently we find for t > t3 the effective state

|Ψr,eff(t)〉 ∝e−iωc(t−t3)(R̂A + R̂B) |Ψ(t3)〉 (B.43a)

∝β(t3)e−i∆φ−iΩ(t3−t1)−iωc(t−t3) |β, 0, 1, β, 0, 0〉
± β(t3)eiθm+iφ0−iΩ(t3−t1)−iωc(t−t3) |β, 0, 0, β, 0, 1〉 .

When the photons arrive at time t4 at the beamsplitter, we find that the relative phase
between the superposition state is equivalent to the sum of the initial mechanical phase θm
and the phase of an of an optical field at frequency ωc traveling through the interferometer.
This is a consequence of the sideband frequency relation ωread + Ω = ωc, resulting in the
optical phase θr = φ0 + ∆φ. Consequently, the optical effective optical state at the beam
splitter is |Ψread〉 ∝ |1, 0〉+ ei(θr+θm) |0, 1〉.

B.4.2. the witness

The entanglement witness (6.4) developed by Børkje et al. [BNG11] is based on another
witness called ’concurrence’ [HW97; Woo98; Cho+05]. The concurrence requires a par-
tial state tomography of the entangled state, with one entry being the probability p11

183



B. Theory

of finding an excitation in both devices. Directly determining this quantity requires a
threefold coincidence measurement, with one heralding detection of a Stokes scattered
photon and two independent phonon detections, similarly to the Hanbury Brown and
Twiss interferometry presented in chapter 5.

The witness (6.4) replaces the direct threefold coincidence measurement by a more
resource efficient twofold coincidence measurement. As the initial state is thermal, ex-
hibiting a Gaussian quasi-probability distribution, and all interactions are linear, the final
unheralded state is still Gaussian. Thus, higher order statistical momenta, such as p11

can be derived from the mean value and covariance of the distribution, or the first and
second order degree of coherence.

At the ideal relative phase θ = θopt between the two mechanical oscillators, the max-
imum cross-correlation between the Stokes and anti-Stokes photons for either detector

combination maxi,j=(1,2)

(
g

(2)
ri,pj

)
can be approximated by the lower cross-correlation of

the individual devices g
(2)
om = mindev=(A,B)

(
g

(2)
om(dev)

)
[Lau+07]. The witness can be ex-

pressed as Rm ≈ 4 · g(2)
om/(g

(2)
om − 1)2, requiring Rm ≥ 1 for separable states.

For g
(2)
om � 1 we can thus approximate the visibility of the interference fringes as V ≈

(g
(2)
om − 1)/(g

(2)
om + 1) ≈ (g

(2)
om − 1)/g

(2)
om. Further, we find with equation (B.36), that the

mean number of phonons in the unheralded state is nf ≈ 1/(g
(2)
om− 1)� 1. Therefore, we

obtain

Rm ≈
4nf
V
≈
g

(2)
mm,H

V
(B.44)

using the autocorrelation of the heralded state g
(2)
mm,H in either one of the devices. In

the last step, we neglected readout noise of the phononic state, see also equation (B.38)
or reference [Gal+14]. The quantity nf can be interpreted as the noise in the system
expressed as an average phonon number. In a classically correlated state, e.g. two identical
coherent states in both oscillators, the mechanical shot noise nf ∼ 1/2 will ensure Rm ≥
110. In other words, the witness requires stronger correlations than classically possible to
demonstrate that the two mechanical oscillators are entangled.

The final expression of (B.44) further clarifies the meaning of witness. A violation of the

separability criterion, i.e. Rm < 1 requires (1) g
(2)
mm,H < 1 as well as (2) a large visibility

V . The first condition (1) ensure that only a single phonon is present in the system.
The second condition (2) demonstrates that the state of both mechanical oscillators is
coherent. In other words, the single phonon must be in a coherent superposition of being
located in device A and B, corresponding to path entanglement, as described in equation
(B.41).

10 Note that (B.44) is only valid for nf � 1, i.e. it is not directly applicable for nf ∼ 1/2.
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and Université Joseph Fourier, Grenoble, France

Sep 1999 - Jun 2008 Abitur, Humboldt Gymnasium Vaterstetten, Germany

Research Experience
Oct 2013 - Sep 2018 Research Assistant

Prof. Markus Aspelmeyer Lab, University of Vienna, Austria
Topic: Single phonon quantum optics

Jun 2017 - Aug 2017 Secondment
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Gröblacher, “An optomechanical Bell test” (2018), arXiv: 1806.10615 (cited
on pgs. 63, 115, 116, 140).

[Rie+16] R. Riedinger, S. Hong, R. A. Norte, J. A. Slater, J. Shang, A. G. Krause,
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