
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

Smart Approaches to the Parking Spot
Search Problem

verfasst von / submitted by

Moritz Bastian Reinhardt, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /
degree programme code as it appears
on the student record sheet:

A 066 940

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Scientific Computing UG2002

Betreut von / Supervisor: Univ.-Prof. Dipl.-Ing. Dr. Wilfried Gansterer, M.Sc.

Abstract

The parking spot search problem (PSSP) is a problem millions of drivers face each
day. It poses an economic cost as well as an environmental burden. Smart cities
offer new ways of assisting drivers to reduce the time spent looking for a free parking
spot and the distance between the final parking spot and the actual destination.
We compare three fundamentally different approaches to the PSSP in extensive
simulations on a grid network with randomly generated routes and varying vehicle
densities: First, and as a reference, a näıve random approach that does not use
any smart hardware. Second, a global approach where communication of atomic
parking spot availability data flows through a central server that can be reached
by all vehicles in the network. Third, a completely distributed approach where
vehicles gather such information themselves and only share it with their geographical
neighbors. Our results show that such smart approaches do reduce search times
and remaining distances significantly. The centralized approach performs best in all
scenarios. However, it poses the strongest assumptions, from a theoretical perspective
as well as on actual infrastructure, and its deployment would be much more expensive
than a decentralized solution. Such a distributed approach achieves nearly as good
results with a local memory that only stores information about 5 parking spots. It is
therefore an important option to consider when trying to improve driver satisfaction
in urban areas.

i

Zusammenfassung

Das Parking Spot Search Problem (PSSP) ist ein wohlbekanntes Problem, mit dem
Millionen von Autofahrern täglich konfrontiert werden. Es bedingt wirtschaftliche
Kosten und Umweltverschmutzung. Smart Cities bieten neue Möglichkeiten um
Fahrern dabei zu helfen, die Zeit, die sie zur Parkplatzsuche benötigen, und die
verbleibende Distanz zwischen dem Parkplatz und dem eigentlichen Ziel zu reduzieren.
Wir vergleichen drei fundamental verschiedene Ansätze das PSSP zu lösen mittels
umfangreichen Simulationen in einem Gitter-Netzwerk mit zufälligen Routen und
unterschiedlichen Verkehrsdichten: Erstens, zum Vergleich, einen naiven zufälligen
Ansatz, bei dem Autos keinerlei intelligente Hardware nutzen. Zweitens, einen globalen
Ansatz, bei dem jegliche Kommunikation von atomaren Parkplatzinformationen über
einen zentralen Server läuft. Drittens, einen komplett verteilten dezentralen Ansatz,
wobei Autos diese Informationen selber sammeln und nur mit ihren unmittelbaren
Nachbarn teilen. Unsere Resultate zeigen, dass solch intelligente Methoden die Dauer
der Parkplatzsuche und die verbleibende Distanz signifikant verringern können. Dabei
erzielt der zentrale Ansatz die besten Werte. Er stellt allerdings auch die stärksten
Bedingungen, aus theoretischer Sicht wie auch an die Hardware in der Praxis, und
seine Umsetzung wäre teurer als die eines verteilten Ansatzes. So ein verteilter
Ansatz erreicht beinahe die gleiche Leistung mit einem lokalen Speicher der nur
Informationen über 5 Parkplätze speichern kann. Daher ist eine dezentrale Lösung
für das PSSP eine wichtige Option, wenn man die Zufriedenheit von Autofahrern in
städtischen Räumen erhöhen möchte.

iii

Contents

Abstract i

Zusammenfassung iii

Contents v

List of Figures vii

List of Tables viii

List of Algorithms ix

1 Introduction 1
1.1 Problem Statement . 1
1.2 Motivation . 2
1.3 Synopsis . 4

2 Related Work 9
2.1 Traffic Flow Optimization . 10
2.2 Vehicular Communication . 11
2.3 Parking Spot Search Problem . 12

2.3.1 Disseminating Parking Spot Locations 12
2.3.2 Predicting Parking Spot Locations 16
2.3.3 Predicting Parking Spot Occupancy 17
2.3.4 Efficient Candidate Traversal 18
2.3.5 Simulation Setups . 19
2.3.6 Similar Studies . 21

3 Three Approaches to Parking Spot Search 25
3.1 The Näıve Approach . 26
3.2 The Global Approach . 28
3.3 The Fully Distributed Approach . 30

3.3.1 Data Merging . 31
3.3.2 Candidate Ranking . 33
3.3.3 The Advanced Fully Distributed Approach 35

4 Simulation Environment 37
4.1 Basic Model . 37

v

Contents

4.2 Demand Generation . 39
4.3 Simulation Generator Pipeline . 42
4.4 Simulation Pipeline . 44
4.5 Algorithm Parameter Definitions . 45
4.6 System . 46

5 Simulation Results 49
5.1 Time Spent During Parking Spot Search 49
5.2 Distance Driven During Parking Spot Search 52
5.3 Distance Between Parking Spot and Destination 55
5.4 Metrics of the Distributed Approach 55
5.5 Message Cost . 61
5.6 Discussion . 63

6 Conclusion and Future Work 67

Bibliography 69

vi

List of Figures

3.1 UML state machine—näıve approach 27
3.2 UML state machine—global approach 29
3.3 Information tuple . 31
3.4 UML state machine—fully distributed approach 33

4.1 Screenshot of the SUMO-GUI . 38
4.2 Route generation for the hot spot scenario 41
4.3 Visualization of the simulation generator pipeline 43
4.4 Visualization of the simulation pipeline 44

5.1 Average times spent looking for a parking spot (uniformly distributed) 50
5.2 Average times spent looking for a parking spot (hot spot) 51
5.3 Distribution of time spent looking for a parking spot (uniformly

distributed) . 52
5.4 Average distances driven looking for a parking spot (uniformly dis-

tributed) . 53
5.5 Average distances driven looking for a parking spot (hot spot) 54
5.6 Average distances between final parking spot and destination (uni-

formly distributed) . 56
5.7 Average distances between final parking spot and destination (hot spot) 57
5.8 Average number of vehicles with knowledge of a free candidate 58
5.9 Target area coverage . 59
5.10 Accuracy of data on all relevant parking spots 60
5.11 Accuracy of data on free relevant parking spots 61
5.12 Accuracy of coverage of free relevant parking spots 62
5.13 Average number of messages per vehicle 63

vii

List of Tables

4.1 Demand definition parameters for both scenarios 42
4.2 Algorithm parameters used in our simulations 47
4.3 System specifications of the platform running the simulation pipeline 47

viii

List of Algorithms

1 Näıve parking spot search . 27
2 Parking spot search with a global instance 29
3 Fully distributed cooperative parking spot search 32

ix

1 Introduction

Millions of drivers around the world drive into a city each day. All of them need to
park their car upon reaching their destination. Finding a place to do so can be an
enormous struggle and take a large amount of time due to the limited availability of
parking spots especially in city centers. In recent years urban planners and automobile
manufacturers realized the importance of this parking spot search problem which
lead to the development and installation of assisting hardware and software.

1.1 Problem Statement

To the best of our knowledge the problem stated in this section has only been
investigated in various forms but never been defined in one universally accepted
way. Therefore we define the parking spot search problem (PSSP) as the following
problem. A set V of active vehicles competes for a set P of free parking spots.
Usually |V | > |P |, at least in certain areas of the underlying road network. While
we present different traffic density control mechanisms in this thesis, in general it
can be said that the number of active vehicles and the number of free parking spots
(i.e. |V | and |P |) are dependent. When a parking vehicle becomes active, it leaves a
parking spot, generating a new free spot. On the contrary, a vehicle that parks at a
free spot, occupies it. Equation (1.1) shows the cost function of the parking spot
search for vehicle vi

C(vi) = tlfpvi + dpdvi → min, (1.1)

where tlfp denotes the time spent looking for a parking spot, which means the time
from search initiation until the final parking maneuver and dpd is the distance between
the final parking spot and the original destination. In fact, since the remaining
distance dpd has to be overcome walking—which in turn is slower than driving—it
can be converted to time as well. Hence, the actual constituent of cost is time.

The PSSP can be tackled from two perspectives, with two similar but effectively
different objectives. Using the individual perspective every driver wants to find a
parking spot as fast as possible as close to his destination as possible, ignoring the
needs of other drivers. This means every vehicle vi ∈ V tries to minimize its cost
function C(vi) → min. Such an egoistic approach can still rely on teamwork of

1

1 Introduction

different drivers to fulfill their goals. However, the competition and greedy behavior of
the actors may lead to very bad results (long time spent for parking spot search, long
distance between final parking spot and real destination) for some, and therefore to
worse results on average than taking a cooperative approach. The second perspective
is the general perspective in which we consider all actors that compete for the limited
amount of parking spots at the same time. This means we try to minimize the
cost function given in Equation (1.2) which is the sum of the costs of all vehicles in
V .

C(V) =
∑
v∈V

C(v) =
∑
v∈V

tlfpv + dpdv → min (1.2)

Note that due to the nature of the problem (i.e. the interdependence between the
solutions of the individual vehicles) it is likely that

min(C(V)) = min(
∑
v∈V

C(v)) <
∑
v∈V ∗

min(C(v)) (1.3)

where V ∗ denotes the same set of vehicles as V , but with a different assignment to
parking spots (i.e. a different solution to the problem). This means that if a driver
keeps the objective function for the global minimum (Equation (1.2)) in mind, in
some cases he might experience a worse result than he would if he was being greedy,
but on average he experiences a better one.

This thesis will present different algorithmic approaches to the PSSP. These ap-
proaches try to solve the objective of the general perspective (i.e. achieve good
performance in the average case, Equation (1.2)) and are evaluated by these means
while taking the individual perspective (each driver acts egoistically according to
Equation (1.1)). Therefore they should be insusceptible to individual actors that are
not part of the system and one could consider to be cheating.

While this theoretical problem definition does not distinguish between single parking
spots and aggregations in form of designated parking lots the experiments conducted
in this thesis only consider curb parking spots. In addition, one has to consider that
drivers who are on the lookout for a free parking spot are usually going at a lower
speed than other traffic. This reduces the flow within the underlying road network
even further than just the increased vehicle density itself.

1.2 Motivation

The time spent looking for a parking spot can essentially be considered wasted. In
addition, vehicles, whose drivers are looking for roadside parking spots, are usually
going at a slower speed than normal traffic flow which leads to road congestion and,

2

1.2 Motivation

hence, more wasted time. According to [3] the authors of [4] state that “traversing
vehicles looking for car park spaces occupy about 30% of the existing vehicles on
the road in the downtown area.” This excess traffic does not only result in an
economic loss but also poses an enormous environmental burden due to emissions
and noise exposure. According to [57] vehicles cruising for parking in the district
Westwood Village, Los Angeles, drive almost 4000 miles every day. Shoup sums up
the consequences very descriptively:

Over a year, cruising in Westwood Village creates 950,000 excess VMT
[vehicle miles of travel]—equivalent to 38 trips around the earth, or four
trips to the moon. The obvious waste of time and fuel is even more
appalling when we consider the low speed and fuel efficiency of cruising
cars. Because drivers average about ten miles an hour in the Village,
cruising 950,000 miles a year wastes about 95,000 hours (eleven years) of
drivers’ time every year. And here’s another inconvenient truth about
underpriced curb parking: cruising 950,000 miles wastes 47,000 gallons
of gasoline and produces 730 tons of CO2 emissions in a small business
district. ([57])

With the emergence of integrated hardware and increased computing capabilities in
Smart Cities [14] it is an obvious idea to use this infrastructure to solve the PSSP.
Urban planners realized the importance of the problem and some municipal authorities
have already deployed parking guidance systems (PGS) which are similar to the
well-known systems of modern parking garages [48]. These systems use stationary
sensors, some interconnecting hardware, and dynamic road signs to guide motorists
to vacant parking spots. Such sensors are usually either based on ultrasound [26, 47],
infrared light [50], changes in the magnetic field of the earth [77], visual imaging [16],
or a combination of those. However, in all cases there needs to be at least one
more advanced sensor per group of parking spots, or one simpler sensor per single
parking spot. Usually it is the municipal authority that provides them and bears the
costs. Given the fact that modern vehicles are already equipped with a wide range
of sensors to gather information about their environment it is worth considering
shifting the costs of sensor deployment to vehicle owners. Current vehicle-based
sensors gather information about other vehicles or traffic in general, road or weather
conditions, or the status of the vehicle itself [67]. However, in recent years there have
been efforts to develop vehicle-based sensors that can detect (free) parking spots
along the road while driving past them [42].

To tackle the PSSP the gathered information has to be shared and made use of in
some way. Therefore modern vehicles are not only equipped with sensors but also
with communication infrastructure. They can communicate with each other creating
Vehicular Ad-Hoc Networks (VANETs) which are a special type of Mobile Ad-Hoc
Networks (MANETs) [73]. Due to the mobility of the nodes (i.e. the vehicles)
of the network, its topology changes constantly. Neighborhoods split and unite
quickly, depending on the transmission ranges and driving speeds of the vehicles.

3

1 Introduction

These aspects have to be taken into consideration when thinking about the different
technologies and protocols available to realize the communication as well as the
specific use case. Another aspect that stands out when comparing VANETs to
classical sensor networks is that while energy and computational power is still limited
in vehicles, it is much larger than in a small sensor device. However, this thesis focuses
on the high-level algorithmic characteristics of a distributed approach neglecting
the low-level technical details of the implementation of the communication. For a
comprehensive overview about VANETs—and more generally—Wireless Ad-Hoc and
Sensor Networks, refer to [27] and [73].

1.3 Synopsis

This section gives a quick overview of the structure of this thesis and the contents
of the respective chapters. As already noted Chapter 1 gives an introduction to
the topic of Smart Cities, sensor networks, and vehicular communication within
VANETs. Emphasis is placed on the parking spot search problem (PSSP) and a
formal problem statement given. In short, it is an often experienced problem of a
motorist to find a suitable parking spot upon reaching the destination. Since the
number of vehicles is often larger than that of vacant parking spots competition
between drivers is high. Everyone of them tries to minimize both the time spent
on the search for a free spot and the distance between the final parking spot and
the actual destination. The main motivation to solve this problem is the reduction
of excess traffic due to motorists that are solely trying to park their vehicle. This
increased vehicle density leads to unnecessary pollution and economic loss.

In Chapter 2 we give an overview about related work done in the field. We start
off by presenting several exemplary applications of smart systems in the context of
vehicles such as the electronic brake warning system (EBW) or the vehicle stability
warning (VSW). The literature analysis is divided into three sections: First, traffic
flow optimization. Second, vehicular communication; and third, the parking spot
search problem. Traffic flow optimization is a typical use case for smart systems
in an urban environment. It is already common to use adaptive traffic lights to
keep traffic fluid and such have been widely investigated. There are two ways traffic
is modelled in theory: (i) as cellular automata (ii) with a continuous model that
only discretizes time. Traffic flow optimization is a prominent example that suits
the application of an automaton-based model. In this thesis we use the continuous
model. We distinguish between vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) communication. There have been efforts by authorities in the United States
as well as Europe to standardize such communication and they revolve around the
frequency band around 5.9 GHz. Many scientists have investigated the parking spot
search problem or certain aspects of it. A focal point of interest—and also at the
heart of this thesis—is the question of how to disseminate parking spot locations to
vehicles on the search. They can be aggregated or atomic, like in our case, and the

4

1.3 Synopsis

distribution can happen through a centralized server or completely decentralized. We
compare these two dissemination methods. Multiple methods have been published
that showcase the retrieval of parking spot locations in the first place (e.g. through
GPS traces). Since information about free parking spots is of spatio-temporal
nature, it is important to predict its reliability upon a possible arrival. Among
other ways, this has been done using Markov chains. Once a driver knows multiple
candidate parking spots his task is to traverse them efficiently. This can be seen as
a Time-Varying Travelling Salesman problem (TVTSP) and solved approximately
using heuristics. In the last subsection of Chapter 2 we present a few studies that
have very similar problem settings and methods applied to solve them. Namely,
three approaches to the parking spot search problem that resemble the core ideas of
our three approaches explained in Chapter 3 have been published: (i) Non-assisted
parking search (NAPS) (ii) opportunistically-assisted parking search (OAPS) (iii) and
centrally-assisted parking search (CAPS). However, in the details those analyses
differ from ours crucially. We point out these differences in Section 2.3.6.

We present three fundamentally different approaches to the parking spot search
problem in Chapter 3. They mainly differ in the underlying assumptions and illustrate
three common concepts of solving a problem with distributed data: (i) The simplest
solution is a random approach without any smart logic. Such behaviour—randomly
driving through the vicinity of the destination while looking for a free parking
spot—can be seen nowadays by drivers that do not use any assisting hardware
and software. We call this the näıve approach. (ii) A typical idea is using a
centralized approach. Such a solution, however, poses the algorithmically very strong
assumption that at least one node in the network can be reached from every other
node, independent of its actual position. We call this the global approach. It simulates
drivers that request available parking spot locations from a central server through
long-range communication like mobile internet. Another important assumption for
this solution is that this central server always knows of all parking spot states in the
network at any point in time. In reality this could be implemented by a multitude
of sensors throughout a city. (iii) The last, and most complex approach in terms
of implementation, is a fully decentralized distributed approach. In this case all
vehicles form a VANET and communicate only with their geographical neighbors
using short-range communication. The vehicles also are the ones that detect free
parking spots using on-board sensors. We call this the distributed approach. Vehicles
following this approach are equipped with a local memory that stores information
about recorded free parking spots and share this information with vehicles in their
vicinity. When initiating the search for a parking spot close to their destination they
query their own local memory for candidates. If the system does not know of any
free parking spot within the search radius around the destination, the driver behaves
as if he was following the näıve approach—he randomly traverses his search area
until he finds a free parking spot or receives new information. All three approaches
only consider curb parking and we therefore assume that vehicles that are actively
searching for a free parking spot reduce their maximum speed from 50 km/h to

5

1 Introduction

30 km/h. In any case the on-board system only supplies the driver with information.
The decision where to park is left to the driver, which means he stops his search and
parks whenever he encounters a free parking spot. In the näıve and the distributed
case the search radius increases the longer the search takes—this shall simulate
natural driver behavior and guarantee termination. As an additional model we
present an advanced variant of the distributed approach where vehicles also store
information about occupied parking spots they encounter.

In Chapter 4 we outline the simulation environment we built and used in the course
of this thesis. At the core of our simulation framework we use the microscopic traffic
simulator SUMO (Simulation of Urban MObility) with a 10× 10 grid network. That
means we simulate every single vehicle as an entity within a road network with
continuous space and only discretize time to seconds. Each vehicle has a predefined
route and the sum of all vehicle and route definitions is called vehicular demand.
We specify two scenarios that differ in the way this demand is initialized: (i) One
with uniformly distributed random routes and (ii) one with a simulated hot spot in
the center area of the grid where vehicles are more likely to target this area. To
compare the performance of the different algorithms we fix the number of free parking
spots within the network by always starting a vehicle when another parks. However,
we simulate varying active vehicle densities to analyze the effect of the density on
the different approaches. In the course of this thesis we developed a pipeline of
python scripts that generates the complete simulation setup with different parameter
initializations, multiple random runs for each of them, and result collection and
visualization. The individual runs are executed in parallel and consist of one call to
SUMO which is then controlled by a python script via the TraCI (Traffic Control
Interface) API that is based on socket communication. Chapter 4 also lists and
discusses the parameters used for the simulation environment as well as those used
for the initialization of the different algorithms.

The results of these simulations are presented in Chapter 5. We define four metrics
to compare the performance of the different approaches: (i) the time spent during
parking spot search (ii) the distance driven during parking spot search (iii) the
2D-distance between the final parking spot and the actual destination (iv) message
cost; and, additionally, analyze the local memory accuracy for the distributed
approach and its advanced variant with different memory sizes. Since the time
spent and the distance driven during the search are related, the approaches behave
similarly considering both metrics. In all cases the global approach achieves the
best performance, closely followed by the distributed approach. The näıve random
approach performs worst in all regards. The main findings are the following: (i) An
increasing number of active vehicles degrades the performance of the global approach
more than that of the others (ii) the advanced variant of the distributed approach,
that tries to accelerate information decay by also storing information about occupied
parking spots, always performs worse than the standard distributed approach (iii) as
expected, this advanced variant needs a larger local memory to perform, and otherwise
behaves like the näıve approach (iv) as few as five memory slots are sufficient for

6

1.3 Synopsis

the distributed approach; its performance does not improve with larger memories.
For the 2D-distance between the final parking spot and the actual destination the
relative performances are similar, however, we experience an inverse relationship
to the number of active vehicles. The more vehicles are active at the same time,
the more fluctuation in the positions of available parking spots, and therefore the
shorter these distances for both smart algorithms. Again, the global approach is
affected more than the distributed variants, which in this case means its performance
improves more. We compare the mean values of these times and distances measured.
However, looking at the actual distributions of the original values we notice that
they all have positive skew. This means most drivers experience a pleasant result
while only a few experience extremely bad results. The analysis of the local memory
accuracy for the different distributed variants shows that the additional storage of
information about occupied parking spots does not actually lead to more accurate
data on free parking spots within the relevant area. It just rather clogs the memory
with irrelevant data. In terms of message cost a decentralized approach obviously
needs more messages per vehicle than a global approach. However, this load is
distributed over all vehicles within the VANET, whereas in a centralized approach
the server could be the bottleneck. As expected, for both algorithms the number of
messages within the network increases as the number of active vehicles increases. In
all cases the results of the hot spot scenario are very similar to those of the uniformly
distributed scenario. This could either mean that the algorithms are not affected
differently by such a different setting, or—more likely—that the demand definition
of the hot spot scenario is not ideal to simulate such a setting.

Finally, in Chapter 6 we conclude the thesis and give an outlook on possible future
work in the field. While a centralized approach to the PSSP does lead to the best
results for drivers, it is more expensive for authorities than a decentralized approach
where the cost of sensor deployment and communication infrastructure could be
delegated to the drivers. Such a distributed approach still heavily outperforms a näıve
random approach and is therefore a reasonable solution to improve driver satisfaction
within city centers. The presented algorithms use a multitude of parameters that
are initialized with reasonable defaults, whose effects, however, are not analyzed in
detail. This is an immediate task for future work. Also, it is desirable to repeat
and prove this thesis’s findings using a real world road network in combination
with real traffic demand data. An idea for future research is a combination of the
smart approaches, for example using a central server for data aggregation but using
vehicle-based sensors for opportunistic parking spot discovery.

7

2 Related Work

As mentioned before, modern vehicles are already equipped with a wide range of
ICT hardware. This includes sensors to gather data about their environment, as
well as computational devices to turn this data into information, and communication
hardware to interact with other actors [67]. Given the introduction of ICT to
urban areas of life modern media coined the term Smart City (e.g. [49]). In the
general Smart City ICT hardware is not only vehicle-based but also stationary and
controlled by complex software. The idea is to create certain benefits for users of
the new infrastructure. Users of urban infrastructure can be residents, pedestrians,
cyclists, drivers, . . . These benefits can be of different nature. The most important
ones are safety, performance optimization, and entertainment. Since the PSSP
does not pose an immediate safety hazard, it falls into the category of performance
optimization.

Mousannif et al. present two exemplary applications of how smart hardware can
assist drivers in traffic to increase safety [44]. One is an electronic brake warning
(EBW) system. Consider an obstacle that requires one vehicle to brake sharply,
which leads to a sharp braking of a second vehicle. A third vehicle that has its view
blocked by the second vehicle can then only induce an emergency braking with a
delay due to the visual information being delayed. This delay can be enough to
result in a collision and can be avoided if the vehicles are communicating. Vehicle
one could broadcast an Electronic Brake Warning (EBW) message which would
induce an emergency braking in the following vehicles immediately [44]. The other
example is a vehicle that suddenly experiences hazardous road conditions. It can
then broadcast a Vehicle Stability Warning (VSW) message which alerts following
vehicles in advance [44]. Both applications need an existing network connection
between the vehicles beforehand but can improve traffic safety using very simple
event-based logic.

Caveney gives a deeper insight into possible safety applications that require commu-
nication between vehicles [15]. In addition to the aforementioned applications—and
among others—he also presents the on-coming traffic warning (OTW) and the lane
change warning (LCW) applications. The former emerges when a vehicle has to
cross lanes with the oncoming traffic to overtake another vehicle. In such situations
it is very difficult for humans to estimate the distance needed to avoid any head-on
collisions or even just deceleration of oncoming vehicles. Using complex path estima-
tion and long-range communication between the vehicle trying to overtake and an
oncoming vehicle the system could warn the driver if the distance is insufficient [15].

9

2 Related Work

The lane change warning (LCW) application considers a vehicle about to initiate
a lane change while doing so would result in a crash with a vehicle going the same
direction. A faster vehicle could approach the initial vehicle from its driver’s blind
spot. In the possibility of a crash the system alerts the driver to the danger and
prevents the lane change. This application requires vehicle-to-vehicle communication
between the faster vehicle coming from behind and the vehicle about to change lane.
It also requires path prediction to estimate possible intersections of vehicles going
the same direction [15].

2.1 Traffic Flow Optimization

A typical goal of using ICT in urban environments is to improve traffic flow which can
be considered performance optimization. A very common approach is using adaptive
traffic lights [8, 22–25, 32, 41]. While the scientific community is still studying new
possibilities and their performance many municipalities in the U.S. are already using
a system called InSync [51]. The system uses stationary hardware in the form of
cameras at intersections to monitor traffic density. It measures the waiting times of
the vehicles and adjusts the green phase timings dynamically. Many cities all over
the world are already optimizing their traffic flows using similar systems. For a more
detailed overview refer to [53] or [78].

In this thesis we are simulating urban traffic at a microscopic level. That is, each
vehicle is considered an entity. In comparison a macroscopic approach focuses on
general traffic flow definitions and road densities at its lowest level. There are
two different models for simulating urban traffic on a microscopic level. One is
the discrete model which basically uses cellular automata, and the other is the
continuous model. The idea of using cellular automata was first introduced by Nagel
and Schreckenberg [45]. The model is discrete in space, time, and state variables.
Every road is considered to consist of a certain limited amount of cells. Every one of
these cells has two possible states: (i) there is a vehicle inside or (ii) there is no vehicle
inside (i.e. it is empty road). The only parameters describing a vehicle are its position
(=which cell) and its velocity, which has to be an integer value. At every time step
every vehicle’s velocity is adjusted depending on the distance to the leading vehicle.
Only then, all vehicles are moved. This procedure makes the Nagel-Schreckenberg
model prominent for traffic jam simulation and research [45].

In this work we use the continuous model. We consider the space on a road to be
continuous and only discretize time for computational reasons. Every vehicle has
a certain velocity as well as acceleration at every given point in time. Using this
information its position along the road at the next time step is calculated. The
model will be described in more detail in Section 4.1.

Gier et al. investigated traffic flow performance gains depending on adaptive traffic
lights using a cellular automaton model that extends the original Nagel-Schreckenberg

10

2.2 Vehicular Communication

model [24]. As input they used the road network of the Australian city of Melbourne
with empirical real world traffic data as well as a Manhattan grid with generated traffic
data. Then they compared the traffic flow using non-adaptive and adaptive traffic
lights. Their conclusion is that adaptive traffic lights lead to shorter travel times on
average. In particular they state that the fluctuation of the travel time is lowest if
the system is fed with traffic data of both sides—upstream and downstream—of the
intersection [24].

In [32] Jiang et al. introduced the concept of Network Operation Reliability (NOR)
emphasizing on global gridlocks in a road network. They also base their analysis on
an extended cellular automaton model. In contrast to the aforementioned publication,
however, they use adaptive traffic lights to avoid and resolve network gridlocks [32].
Their results show that adaptive traffic lights improve traffic flow significantly if
all vehicles use the geometric shortest path in a grid network. In such a setting
there are multiple shortest paths with the same length if one ignores intersection
and turn details treating them all the same. However, when traffic reaches a certain
overall density eventually global gridlock is inevitable. Adaptive traffic lights that
adjust green phase timings depending on the density of incoming lanes help in
reducing global density hot spots and hence, keeping the network operational at
higher global density levels. Further analysis of the authors shows that up-to-date
traffic information for drivers to base their route choices on is even more effective in
reaching a high NOR. In the case of drivers choosing the time shortest path adaptive
traffic lights do not improve the NOR further [32].

2.2 Vehicular Communication

We distinguish between vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I)
communication. While this thesis neglects the in-depth analysis of the underlying
hardware realization it is worth noting that this is of course part of the scientific
discourse [27, 55]. The requirements for the communication technology depend
closely on the application. The most important parameters are the communication
range, bandwidth, speed, and whether the connection is constant or not. Examples
of some existing technologies are “direct short range communication (DSRC), 2.5/3G
cellular systems, Bluetooth, radar systems or ultra wideband (UWB) communication”
([55]).

The large number of applicable technologies poses the danger of incompatibility.
Since it is not of much use if only the vehicles of the same car manufacturer
can communicate with each other, authorities are making efforts to standardize
communication hardware and protocols. In 2002 the Vehicle Safety Communications
(VSC) Project was initiated by the VSC Consortium which consisted of seven major
car manufacturers. The project was supported by the United States Department
of Transportation (USDOT) and its final report was released in April 2006 [55, 68].

11

2 Related Work

The goals of the VSC project were to “evaluate the potential safety benefits of
communication-based vehicle safety applications” ([68]), “define and evaluate the
communications requirements” ([68]) of said applications, and ensure that proposed
standards fulfill these requirements [68].

From 2006 to 2009 the follow-up Vehicle Safety Communications - Applications (VSC-
A) Project was conducted by the Vehicle Safety Communications 2 Consortium
(VSC2) which had its final report published in 2011 [2]. The project focused
on developing and testing vehicle-based communication systems to solve safety
applications and evaluate if they outperform autonomous single-vehicle based systems
that do not use any communication. The main technology that was investigated was
Dedicated Short Range Communications (DSRC) at 5.9 GHz in combination with
vehicle positioning [2].

This frequency band around 5.9 GHz has been designated exclusively to Intelligent
Transportation Systems (ITS) or more generally speaking vehicle-to-everything
(V2X) communication by the European Union in Europe where it is referred to as
ITS-G5 [29, 30]. In the United States the radio technology is standardized by the
USDOT as the WLAN standard IEEE 802.11p referred to as Wireless Access in
Vehicular Environments (WAVE) [28]. Jiang et al. were one of the first to design
protocols using the WAVE standard [31]. They proposed a set of protocols to address
three identified key challenges: channel congestion control, broadcast performance
enhancement, and concurrent multichannel operation [31].

2.3 Parking Spot Search Problem

The parking spot search problem is a typical use case every driver frequently experi-
ences. Although it has been investigated in the scientific literature to our knowledge
there is no initial work that describes the general problem to be cited. Scientists
refer to it as the parking problem [11], the parking space problem [69], the parking
search problem [33], the parking space search problem [13], the parking assignment
problem [1], or the parking space allocation problem [19]. Therefore we defined the
problem we are addressing in this thesis ourselves in Section 1.1. In this section we
give a short overview of other work that has been done in this field and compare its
problem settings to ours. For a recent “Survey of Smart Parking Solutions” refer
to [38].

2.3.1 Disseminating Parking Spot Locations

There are many ways of how information about parking spots can be disseminated
to individual drivers. They can be categorized based on what information is com-
municated and how. As for the what, we can distinguish between aggregates and

12

2.3 Parking Spot Search Problem

individual data points that are sent over the network. In our analysis presented in
this thesis we consider atomic information about single parking spots (cf. Section 3.3
and Figure 3.3). The main differing principles of how information is shared are
(i) centralized over some server that can be reached from all vehicles (ii) distributed
directly across the vehicles themselves as mobile nodes (iii) distributed semi-directly
across multiple stationary nodes (iv) or a combination of those. Below we present
various systems and scientific publications that propose and analyze systems that
implement the dissemination of parking spot locations to vehicles on the search.

Since 2010 the San Francisco Municipal Transportation Agency uses a system called
SFpark [54] in the downtown area of San Francisco. The system consists of stationary
sensors at a almost every parking spot and a central server that distributes parking
spot locations to drivers. The aim of the project is not only blindly advertising free
parking spots to reduce search time, but also to enforce a dynamic pricing policy to
keep a certain amount of parking spots free at all times. This is done by increasing
and lowering parking cost based on current demand. As a result vehicles on the
search for a parking spot do not have to do so for long which in turn reduces the
number of vehicles on the streets [54].

In 2004 Basu and Little used short-range V2I communication and the GPS location
service to guide vehicles to available parking spots [5]. They created a multi-hop
wireless parking meter network which they call PMNET. A PMNET is a special class
of ad hoc networks that consists of some static immobile nodes (parking meters)
and mobile nodes (vehicles). The parking meters are equipped with radio frequency
(RF) transceivers and auxiliary hardware and software to communicate with vehicle
clients. The vehicles use wireless ad hoc networking to request the location of a
free parking spot. The authors stress that the special benefit of their system is that
it does not need any fixed wired or wireless infrastructure like cellular or satellite
networks in addition to its own hardware [5]. However, for the initial installation of
the system a location service like GPS is still needed.

Caliskan et al. developed a topology independent, scalabale information dissemination
algorithm for spatio-temporal traffic information within a VANET [13]. Those
VANETs are based on the WLAN IEEE 802.11 standard and as an example of spatio-
temporal traffic information the authors use parking spot availability data. Special
emphasis is put on the fact that the presented algorithm uses periodic broadcasts
of aggregated data which actually leads to information dissemination. Stationary
parking automats monitor parking space availability and broadcast this information.
Vehicles create aggregates of the received data based on a grid partitioning of the
area and broadcast these aggregates within the VANET again. Hence, the approach
presented in [13] does not only consider V2V but also V2I communication. In their
simulations the authors assume that each vehicle has a local resource cache that
is unlimited in size, however parking spot availability data is considered invalid if
it reaches a certain age. The idea is that atomic information, which in this case
corresponds to parking spot availability data of one parking automat—which are very

13

2 Related Work

likely multiple actual parking spots—is less time stable than aggregated information.
Also, information aggregated over a certain area should give a driver a good hint of
the parking situation upon entering a dense area or possibly even beforehand [13].
In our fully distributed algorithm we use the concept of valuing older information
less as well (cf. Section 3.3).

In [3] Aliedani et al. present the CoPark approach—a simple negotiation model
based on which vehicles decide which areas of a parking lot to target for parking spot
search. The approach is largely decentralized, as vehicles negotiate with each other
using short-range V2V communication. However, the actual detection of free parking
spots is done by stationary sensors and the information is passed on to the vehicles
entering the parking lot by a stationary roadside unit using V2I communication. The
authors focus on solving the problem of competition for a free parking spot between
multiple vehicles rather than the process of initially finding it [3]. This is similar
to the work presented in [19] but different to our work which leaves the problem of
competition to be discussed for further research (cf. Section 5.6). In [19] Delot et al.
present a cooperative reservation protocol for parking spaces in a fully distributed
VANET that is purely based on V2V communication. The authors emphasize
that solely informing neighboring vehicles of free parking spots does not solve the
problem but in fact increase the competition and, hence, reduce the satisfaction of
the drivers. For their analysis they use their own system called VESPA (Vehicular
Event Sharing with a mobile P2P Architecture) which has a built-in information
dissemination mechanism [18]. VESPA can be used for different types of events; in
[19] the authors define the event “available parking space” when a vehicle leaves a
parking position. That vehicle communicates this event. This is similar to our fully
distributed approach where the leaving vehicle communicates the time and position
of the vacated parking spot (cf. Section 3.3). While the authors explicitly state
that the event could also be triggered by a (stationary) sensor [19], in its original
form this is a different approach to previously discussed works where stationary
infrastructure needs to discover free parking spots (or the event of a vehicle vacating
it). Furthermore, every vehicle calculates an Encounter Probability (EP) for every
event to assess its relevance based on the positions, directions, and speeds, of the
vehicle and the event itself [19]. For every free parking spot one vehicle acts as the
coordinator who advertises it to neighboring vehicles and decides which vehicle the
parking spot gets reserved for. Other vehicles that are not chosen do receive the
information about the free parking spot; the system, however, does not show this
information to the driver [19]. In [20] Delot et al. present their distributed reservation
protocol in more detail.

In 2010 Mathur et al. presented a system called ParkNet [42]. Selected vehicles
are equipped with ultrasonic sensors that detect free parking spots and feed the
information into a central server that aggregates the data. Client vehicles can then
query the server to receive the locations of free parking spots [42]. The paper
especially addresses the GPS location accuracy limits by using an environmental
fingerprinting approach. The authors performed experiments in the real world by

14

2.3 Parking Spot Search Problem

equipping vehicles with said sensors and achieved over 90% accuracy when creating
occupancy maps for parking spots [42]. In addition they show that equipping as few
as 500 taxi cabs of San Francisco with these sensors would be enough to cover the
whole city. That approach would be around 10-15 times cheaper than stationary
sensors at every parking spot [42]. Coric and Gruteser follow up on this work focusing
on the differentiation between legal and illegal parking spots gathered from this
crowdsourced data [17]. They stress that multiple recordings of the same parking
spot are necessary to achieve satisfying results, but as few as 8 lead to around 90 %
classification accuracy.

Already in 2008 Boehle et al. had developed CBPRS, a City Based Parking and
Routing System [10]. CBPRS monitors and reserves parking spots for participating
vehicles using stationary sensors at every parking spot in addition to intelligent lamp
posts at intersections. Vehicles in fact only communicate with these lamp posts (V2I)
to receive parking spot and/or routing information [10]. Vice versa the vehicles send
their travel times for specific roads to the lamp posts at the intersections. Using
the vehicle density data the lamp posts exchange so-called ants to calculate routing
tables. The presented ant based algorithm then uses these routing tables based on
current traffic density to guide the vehicles to their reserved parking spot [10]. It is of
hierarchical nature because the authors distinguish between different types of streets
(residential, highway, . . .). Simulations show that the proposed algorithm leads to
a significant reduction of travel times in comparison to static routing information
generated by Dijkstra’s algorithm [10]. This in turn leads to an increase of city wide
traffic flows, and with an increasing number of participants the number and duration
of traffic jams decreases [10].

Lu et al. focused on large parking lots when creating the smart parking scheme
SPARK [40]. The system uses stationary roadside units (RSUs) to monitor the
parking lot. Similar to the previously discussed approach vehicles communicate with
these RSUs and are then guided towards their reserved parking spot. The authors
emphasize two things: First, while the RSUs provide real-time parking navigation,
they also offer intelligent anti-theft protection, as well as the whole system provides
high security. Communication is encrypted and the privacy of the drivers is protected
by using pseudo IDs for identification. Second, as GPS has the aforementioned
accuracy limitations SPARK does the localization of parking spots and vehicles itself
using triangulation between three RSUs. Simulations show an efficient reduction
of searching time delay for an available parking space [40]. In [46] Panayappan
et al. proposed a similar approach that also uses RSUs but to inform drivers of
the current occupancy of relevant parking lots. They specifically addressed the
problem of malicious drivers that could try to trick the system into believing they
target a different parking lot, hence, distorting the occupancy data reported by the
system [46].

15

2 Related Work

2.3.2 Predicting Parking Spot Locations

A common assumption in related literature—and in this thesis as well—is that maps
containing the locations of parking spots are given. However, with the exception of
systems that install stationary sensors at every parking spot (like [54] for example),
these maps usually do not exist. There has been research into generating them by
predicting parking spot locations from GPS traces [75] and additional data from
mobile phones [52, 58].

In [58] Stenneth et al. propose a method to detect parking spot locations by monitoring
GPS traces of mobile phones in combination with monitoring the respective device’s
bluetooth status. The method is based on their previous work [59] which shows how
to detect the current transportation mode of a mobile phone user from his GPS
traces. The concept presented in [58] states that the transition of the transport modes
car → stationary → walking very likely suggests that the user parked his vehicle at
his location during the stationary phase. The same holds for a transition the other
way round; which means the user left a parking spot in his vehicle. Therefore it can
be concluded, that there must be a parking spot at the position of the stationary
phase [58]. To reassure this conclusion, the authors propose combining the GPS
data with the timestamps when the mobile phones disconnect from or connect to the
vehicle’s on-board bluetooth system. If the user approaches a parking meter or uses
his phone to pay the parking fee immediately after leaving the car, the probability
of him having parked his car increases even further [58]. The authors tested the
proposed system with five drivers in the area of Chicago and achieved an average
parking detection of over 80 % and an average un-parking (i.e. a vehicle leaving a
parking spot) detection of over 85 %.

Later, Salpietro et al. present Park Here! [52], a mobile application that tries to
identify parking and un-parking events using the data from the accelerometer and
gyroscope of mobile phones to detect the transition between the modes driving and
walking. If requested by the user, the status of the bluetooth connection is used as
an additional feature in the same way as in the previously mentioned publication.
This bluetooth monitoring basically reduces false positives to zero [52]. The actual
classification of the feature vectors acquired from the sensor readings is done using
a random forest algorithm. To avoid individual outliers in the measurements, the
app uses an averaging mechanism and considers the last h readings. The value of h
is a trade-off between the accuracy and the responsiveness of the system (i.e. how
fast is a mode change detected). Experiments conducted by the authors show that
the system achieves a parking detection accuracy of over 90 % [52]. Given a sensor
sampling rate of 5 Hz the authors suggest setting h to ≥ 5 which results in a response
time of about 1 second.

16

2.3 Parking Spot Search Problem

2.3.3 Predicting Parking Spot Occupancy

A pivotal problem of parking spot location is the reliability of the data. A parking
spot becomes available when a previously parked vehicle departs. Depending on
the system used this information might reach interested vehicles instantly or with
a possibly random delay. Hence, when a vehicle receives it, it might already be
outdated, i.e. the parking spot is occupied again. Although some approaches try
to avoid this problem by reserving certain parking spots for certain vehicles, greedy
drivers that do not act according to the system could still block these spots. There
has been effort to predict parking lot occupancy (e.g. [11]), also based on information
exchanged among vehicles (e.g. [12]), and related studies occasionally implement
these prediction algorithms.

A typical idea to increase the reliability of the data is using aggregates of parking
spot data for a certain area of interest. The Park Here! mobile app (cf. Section 2.3.2),
for example, only shows probabilities of an empty parking spot in a grid cell to
the user [52]. It polishes this probability with an additional confidence value that
describes how much relevant information the system actually has. [52] and [58] also
present one possibility of predicting parking spot occupancy: The mode changes of
mobile phones always have a position and a location attached which could then be
disseminated to other vehicles.

In 2007 Caliskan et al. developed a model that predicts the occupancy of parking
lots based on queuing theory and continuous-time homogeneous Markov chains [12].
The argument for using a model that is continuous in time is that a parking spot
can become available or occupied at any point in time [12]. One parking automat
per parking lot monitors its capacity, the number of free parking spots, the arrival
rate, and the parking rate, which is based on the time vehicles spend parking. This
information in combination with a timestamp then gets distributed through the
VANET and disseminated to the vehicles by V2I and V2V communication [12]. The
vehicle’s on-board computers then compute the predicted occupancy (precisely the
probability that at least one parking spot is free) upon the vehicle’s possible arrival
time for each parking lot and present the results to the driver to make a choice.
The authors show efficient ways of performing the numerical computations using the
limited resources of on-board hardware of vehicles [12]. It is important to note that
the information on which the prediction relies consists of aggregated information
of multiple actual parking spots instead of individual atomic parking spots. The
described algorithm is therefore not directly applicable for the approach taken in this
thesis. In their previously discussed publication [13] the authors even used aggregates
of these aggregates (cf. Section 2.3.1).

More recently, in 2015, Bogoslavskyi et al. published another method for predicting
the occupancy of single parking spots in combination of efficient routing towards the
chosen parking spot within a parking lot [11]. Their approach is also based on a
Markov decision process (MDP), however, it does not include any communication

17

2 Related Work

and can be applied by an individual vehicle. The layout of the parking lot (or area
that contains the parking spots) and the positions of the parking spots have to be
known previously as they are modelled as a graph using different types of vertices
for the parking positions and the road positions from which the parking spots are
reachable [11]. Vehicles can detect if a parking spot is occupied by another vehicle by
using cameras and image recognition. Based on a prior occupancy probability estimate
and a series of observations of a parking spot its current occupancy probability can be
calculated using a static state binary Bayes filter [11]. Initially the prior probability
of all parking spots is 0.5. Upon every new observation or if an estimate hasn’t been
recalculated in a predefined amount of time, it gets adjusted using the Bayes filter.
Just like in [12] the events of cars leaving or parking since the previous observation of a
parking spot are modelled as a Poisson distributed random variable [11]. The resulting
MDP is solved using policy iteration and the solution guarantees to minimize the time
to find a free parking spot and the time it takes to walk from that parking spot to
the actual destination. The authors conducted experiments based on real world data
gathered from a parking lot to compute the prior probabilities. In simulations they
compared their MDP-based approach to three näıve heuristics (searching near the
goal, targeting parking spots with the lowest prior occupation probability, searching
right at the start) and it achieved significantly better results [11].

2.3.4 Efficient Candidate Traversal

Closely related to the prediction if a parking spot is occupied or not is the choice
in which order possible candidates are traversed. Verroios et al. formulate this as
a Time-Varying Travelling Salesman problem (TVTSP) and present a method to
calculate a good solution [69]. They define a cost-function to rate the paths between
the different candidate parking spots that depends on the distance between them, the
distance between the target parking spot and the real destination, and the probability
that the parking spot is still free at the time of arrival.However, the calculation of this
probability relies on the average time a parking spot is free and the average number
of occupied parking spots visited before having success [69]. The authors assume
that while the vehicles keep track of these statistics they are originally “collected”
from others [69]. Then they solve this TVTSP using an exact dynamic-programming
algorithm. However, this is only possible for small instances (about 9 candidates
max.) as the time complexity of the proposed algorithm is O(n3T2n) where n is the
number of candidate parking spots and T the time of the longest trip. In addition to
the inherent problem of complexity explosion the computational on-board hardware
of vehicles is also likely limited. Therefore, the authors show ways of reducing the
problem size by performing a clustering of the initial set of candidates to apply the
exact algorithm only to calculate the optimal route between the different clusters.
Within each cluster a simple best-first traversal is done. Tests show that the best
results are achieved by an initial clustering with a small radius and then reducing the
problem size even further by selecting a good subset of clusters using the k-medoids

18

2.3 Parking Spot Search Problem

method [69]. An important feature of the approach presented in [69] is the so-called
live-mode. As it is possible that a vehicle receives new information about free parking
spots while already being on a search trip, the initially best route might have to get
updated. The authors show an algorithm that reacts to these updates by calculating
the difference between the original set of candidates and the new set. If the difference
is small, the clusters just get updated and a new route calculated. If it is big, the
whole clustering has to be redone. In general, the calculation overhead caused by
these updates is quite small. Finally, the authors ran extensive simulations to show
the impact of clustering and cutting off and to compare their new live method to
a simple best-first search. Their results show that it significantly reduces the time
spent to find a parking spot while the remaining walking time from the parking spot
to the destination stays about the same [69].

In 2015 Abidi et al. published “A New Heuristic for Solving the Parking Assignment
Problem” [1]. They explain the parking slot assignment problem for groups (PSAPG).
This means they consider the problem of assigning a number of parking spots to a
number of vehicles based on individual driver preference (location, parking duration,
cost for parking). In fact, they assign vehicles to parking zones, which are aggregates
of multiple single parking spots that have the same parameters (general location and
cost). A novel hybrid heuristic which they call “hybrid genetic assignment search
procedure (HGASP)” ([1]) is presented and compared to three other algorithms.
The authors ran simulations based on real world map data from the city of Tunis,
including road network, parking zone capacities, and parking rates. The vehicle
routes and parking requests, however, were randomly generated with a bias towards
the city center. The proposed HGASP algorithm shows significant improvement
over simpler algorithms in the distance driven while looking for a parking spot [1].
However, the way this assignment problem is presented it can only be solved by
a global entity which could be a municipal parking guiding system server. This
server knows the state of all parking spots and supplies drivers that request a free
parking spot with a route to the one that fits this driver’s requirements best while
also considering other requests. The study is of basic algorithmic research nature
and does not consider any underlying vehicular communication.

2.3.5 Simulation Setups

Another important problem of investigating smart city applications, especially ones
that are based on vehicular communication, is that real world tests are often not
possible (without huge investments into hardware) or want to be avoided in the first
place when doing basic research. Just like for this thesis, the aim is often to get a basic
understanding and evaluation of how algorithms and problem approaches perform
before deciding which one to implement. In life sciences one would call this in-vitro
testing as opposed to in-vivo testing. Therefore, as presented, computer scientists
often rely on simulations for evaluation and comparison of the different methods.

19

2 Related Work

Although there have been many publications on the topic of smart city applications
and the parking spot search problem, there is no clear standard simulation software
that fits the needs of all applications.

An approach many teams take is implementing their own simulator. As did the
authors of [19], [69], and [33] in the programming languages Java and C. The latter
is to be discussed in more detail in Section 2.3.6. In the presentation of CBPRS [10]
the authors used their own environment which was previously developed by one of
them and is described in more detail in his Master thesis [9]. It is written in C#
and based on cellular automata (cf. Section 2.1) using an advanced version of the
Nagel-Schreckenberg model [45]. For testing the CoPark approach [3] the authors
used a combination of tools. To simulate the vehicles within the road network they
used the traffic simulator SUMO (Simulation of Urban MObility) [37] which we
also use in this work (cf. Chapter 4). On top of SUMO they used JADE (Java
Agent Development framework) [6] to simulate the application itself. Both tools were
connected through TraSMAPI [66], a generic API for microscopic traffic simulators.
While some use generic grid road networks, others import the networks of real
cities. However, vehicle routes are usually generated randomly as well as the parking
requests. Usually this is done with a bias towards the center to increase competition
(like in [56] for example, where the authors use MATLAB [43] in combination with
the Google Maps service). We analyze two settings, one with uniformly distributed
route origins and destinations, and one with such a bias towards a hot spot (cf.
Section 4.2). The remainder of this section discusses two exemplary publications of
an interlinking framework and a simulator itself that aim at simulating vehicular
communication applications.

In [39] Lochert et al. present a “Multiple Simulator Interlinking Environment for
IVC” which the contributing authors use in subsequent publications (e.g. [12,
13]). As the title suggests the proposed interlinking environment is specifically
designed to simulate applications involving vehicular communication. Originally
such applications are split into three levels, all needing different simulation software:
First, the road network and vehicle movements within. Second, the network traffic
within the VANET. Third, an approximation of the application data according to
some stochastic or deterministic process. The problem with such a setup is that
the previously existing tools did not offer any option for the vehicle movements
to react to application specific inputs [39]. The proposed architecture consists of
the open-source network simulator ns-2 [64] as the central module, simulating the
VANET with its nodes and messages; the VISSIM traffic simulator [65] performing
the movements of the vehicles; and the Matlab/Simulink [62] environment as an
application level simulator [39]. Since VISSIM runs on the MS Windows operating
system and the other parts on Unix systems, the authors developed a cross-platform
communication tool. They discuss the cost of the message based control of the
traffic simulation which is also used within the framework used in this thesis (cf.
Chapter 4). Finally, the proposed architecture is tested on the example application
of broadcasting emergency warning messages within a VANET [39].

20

2.3 Parking Spot Search Problem

In 2008 Wang and Lin published version 5.0 of NCTUns [63], an open-source network
simulator, which introduced the functionality of simulating vehicular communication
according to the IEEE 802.11p standard [70]. NCTUns runs on Linux and makes use
of the real-life TCP/IP protocol stack of the kernel to simulate the messages. It ships
with a GUI and, while the previous release could already simulate road networks,
realistic vehicle movement, and V2I communication by defining RSUs, the 5.0 release
adds the possibility of adding on-board units (OBUs) to vehicles. This allows to add
VANETs directly into the simulation and have the vehicles react to events from within
the VANET [70]. In 2011 NCTUns was renamed EstiNet [61] which is commercially
distributed and updated to date and has much higher functionality.

2.3.6 Similar Studies

In addition to the aforementioned literature there are publications that are even
closer related to our analysis. This mainly means that the problem setting or the
simulation setup are very similar to ours. We will present them in more detail in
this section and emphasize differences to our work.

In 2011 and 2012 Kokolaki et al. published a very similar study regarding the topic
of this thesis in two papers which are titled “Value of information exposed” [33] and
“Opportunistically assisted parking service discovery” [36]. Therein they investigate
three simple dissemination methods for parking spot availability data in VANETs
and conduct exhaustive simulations to compare their performance.

• As a reference method they use the same method we call näıve and name it
non-assisted parking search (NAPS). Upon reaching an initial parking
search radius around the real destination the vehicle starts targeting random
destinations within that radius. When it encounters a free parking spot it
parks. The search radius is increased with time.

• What we call the distributed approach Kokolaki et al. call opportunistically-
assisted parking search (OAPS). They argue that vehicles communicate
with stationary sensors at each parking spot to gather availability information
whereas we consider the sensors vehicle-based. However, this differentiation is
mainly of theoretical nature and only possibly impacts the method’s perfor-
mance if we consider the detection of parking spots on the opposite side of
the road. Vehicles have a local cache, store this data of parking spots they
encounter, and share it with other vehicles that are within communication
range. When looking for a parking spot, the driver targets the parking spot
within his vehicle’s cache, that is the closest to the original destination. In doing
so, information that is older than a threshold is discarded. This is different to
our distributed approach where the ranking (decision making) process is more
sophisticated (cf. Section 3.3.2). The authors give no extensive description of
the information sharing process used (cf. Section 3.3.1).

21

2 Related Work

• The third approach that includes a central server is called centrally-assisted
parking search (CAPS) and similar to our global approach. This omniscient
instance knows the status of all parking spots and vehicles can query it. An
important difference to our work, however, is that vehicles do not only receive
information about free parking spots, but rather only the location of one free
parking spot that is closest to their destination. The global authority reserves
this parking spot for the assigned vehicle. This is a fundamental difference
to our global approach that leaves the decision making to the drivers by only
serving as a live database. In [33] the central server handles the requests
in a First-Come-First-Served (FCFS) manner. This reservation approach is
susceptible to cheaters since it might not be enforceable physically, but only
by legislative means. For as long as there is no parking spot available within
a vehicle’s parking search radius it traverses random points within that area.
This is also different to our model of a global approach which does not consider
an area of interest but always uses the free parking spot that is closest to the
driver’s destination.

The authors developed their own simulation environment in C and ran multiple
simulations to compare the three paradigms of information dissemination between ve-
hicles [33]. They investigate two scenarios—one where the destinations are uniformly
distributed, and one where they are biased towards a hot spot. For the uniformly
distributed scenario it can be said that with an increasing number of vehicles and
a limited number of parking spots the general competition increases and leads to
worse results in terms of time spent looking for a parking spot as well as distance
between destination and parking spot for all three approaches. This is intuitive and
expected. The distributed OAPS outperforms the näıve NAPS in all regards. The
global CAPS manages to achieve shorter parking search times for a higher amount of
vehicles (increasing it even further CAPS gets worse than OAPS and NAPS) but at
the expense of immensely increased distances between parking spot and destination.
The central server obviously reserves parking spots that are sub-optimal and due to
vehicles taking a long time reaching them, the requests of other vehicles cannot be
satisfied [33].

In the hot spot scenario results are different. As expected, the performance of
all three approaches deteriorates. However, CAPS outperforms NAPS and OAPS
for all vehicle densities tested significantly in terms of parking search time. The
distance between parking spot and destination is worse for CAPS than for NAPS
and OAPS, albeit not as much worse as for the uniform scenario. Also, NAPS and
OAPS perform more or less the same, with OAPS achieving minimal better parking
search time [33].

We will compare the results presented in [33] to ours in more detail in the discussion
(Section 5.6).

In two subsequent publications Kokolaki et al. investigate the effect of vehicular node
selfishness in the opportunistically-assisted parking search [34, 35]. Therein they

22

2.3 Parking Spot Search Problem

specifically consider two types of misbehavior: information denial and information
forgery. Vehicles that belong to the first group do not share information themselves,
but only consume information received from other nodes. Vehicles of the second
group deliberately share wrong information. This means that they communicate
all parking spots within their own area of interest as occupied, thereby driving
competitors away from it. The main findings presented in [34] are, that rather
counter-intuitively such selfish behavior does not necessarily lead to better results
for those showing it. Also, in the first case of vehicles not sharing information with
others at all, if the overall vehicle density is not too low, a negative effect on other
vehicles cannot be seen. We will analyze the results from [34] in more detail in
Section 5.6 as well.

Bessghaier et al. present an “agent-based approach to management of urban park-
ing” [7]. This approach is similar to our distributed approach but not the same.
Instead of one, in their work vehicles store two lists about parking spots: one only
containing free spots (FS) and one only containing occupied spots (OS) [7]. They
then compare the parking spot search time of vehicles that are part of the system to
those that are not. The second performance metric the authors present is the number
of messages per participant of the network. This is compared to a central approach
where one server handles all requests for parking information. The authors argue
that in terms of message cost it is therefore beneficial to distribute the work load
across multiple nodes. No information about the simulation setup is given [7].

A very fundamental analysis about “Opportunistic resource exchange in inter-vehicle
ad-hoc networks” is performed in [74]. In contrast to our work therein the authors
prescind from the level of vehicles on roads and rather investigate the phenomenon
of information decay within a simple network of nodes that follow straight paths on
a two-dimensional pane. These nodes broadcast their location upon leaving their
initial position to other nodes within close vicinity and exchange their local stores
of such data points when coming in communication range with one another. The
authors give a theoretical proof of a boundary radius beyond which data points do
not leave their origin based on simple parameters and confirm it with simulations.
With parameters similar to ours (cf. Section 4.5) in a 50× 50 mile grid this radius
turns out to be around 0.8 miles [74].

23

3 Three Approaches to Parking
Spot Search

This chapter will explain three fundamentally different approaches to the PSSP that
we investigated in more detail. The differences lie within the assumptions of the
underlying model and its requirements. This mainly regards the availability of smart
hardware, including sensors and different communication technologies, and smart
software for computations.

Nonetheless, all three approaches have the following things in common:

• They take the individual perspective. This means the decision where to park is
always left to the driver. Any system only assists the driver during the search
by suggesting possible candidate parking spots. This avoids the risk of cheaters
that do not act according to some implicit set of rules. One could say that
the ultimate decision where to park is always made independently and in a
decentralized manner.

• They only consider curb parking. In all simulations run and explained in
Chapters 4 and 5 the possibility of designated parking lots is neglected. How-
ever, the addition of such would not break any approaches, but could rather
produce different results in performance. The investigation of such scenarios in
combination with the proposed approaches is therefore left open for further
research.

• In all cases drivers have a specific destination within a road network. While
going towards this destination the vehicles are in the state driving. Upon
reaching a certain threshold distance dlfpInit from the destination, a vehicle
switches state to lookingForParking (lfp). From this moment on it will park
at any free parking spot it encounters on its side of the road. While in the
state lookingForParking a vehicle’s maximum speed is lowered to 30 km/h to
simulate a driver actively looking for a free spot while being able to abruptly
break when he encounters one.

The following point only holds for the distributed and näıve approaches:

• Vehicles start with a personal initial search radius rinit. Only parking spots
within this radius around the destination are considered relevant. With in-
creasing time spent looking for a free parking spot this search radius increases.
Given that the number of available parking spots is larger than the number

25

3 Three Approaches to Parking Spot Search

of vehicles looking for such spots, this procedure assures that all approaches
terminate, i.e. every vehicle finds a free parking spot. It is also an intuitive
thing a driver would do. The exact value of the initial search radius as well as
the increment function can be defined by driver’s preference. The values we
used in our simulations are listed in Section 4.5 and the search radius increment
function can be seen in Equation (3.1)

r = rinit + tlfp/60 · rinit (3.1)

where tlfp is the time spent looking for a parking spot in seconds. Obviously r
increases linearly, continuously, and increases by rinit every minute. The idea is
to simulate realistic driver behavior and the values produced by this function
seem reasonable. Naturally, a driver first tries to find a free parking spot close
to his destination and only with increasing search time trades off the remaining
distance against a higher chance of actually finding such a spot sooner.

3.1 The Näıve Approach

The näıve approach shall simulate what most people do today. It involves no smart
hardware for parking spot detection or (inter-vehicle) communication and serves as a
reference base for the following more sophisticated approaches. Figure 3.1 visualizes
a vehicle taking the naive approach as a UML state machine. As soon as the driving
distance to the destination is less than the search initiation distance dlfpInit the
driver starts looking for a free parking spot. Henceforth, the vehicle is considered
to be in the state looking for parking spot (lfp). From this state on the following
conditions apply:

• If the vehicle encounters a free parking spot on its side of the road, it parks.

• If the driver sees one on the opposite side of the road, he targets it by turning
at the next intersection.

Upon reaching such a previously targeted parking spot or the original destination he
randomly targets an address within his search radius r around the original destination.
This process repeats until the driver manages to park his car. The search radius r,
which is used for the random secondary destination generation, is increased constantly
using Equation (3.1). As stated above, given that the number of available parking
spots is higher than the number of vehicles looking for such spots, this search radius
increase assures that the näıve approach terminates at some point, i.e. every vehicle
finds a free parking spot.

Algorithm 1 shows the näıve approach in pseudo code.

26

3.1 The Näıve Approach

looking for parking spot (lfp)

entry/ set max. speed to 30km/h

driving towards destination

driving towards destination

distance to destination < dlfpInit

parked

free parking spot along road detected/ park

driving towards parking spot

destination reached/ target random parking
around destination within r

targeted parking reached [it is taken]/
update r and target random parking
around destination within r

free parking spot that is not on
this side of the road detected/
target it

Figure 3.1: UML state machine of a vehicle taking the näıve approach to the PSSP

Algorithm 1: Näıve parking spot search

CurrentDestination : OriginalDestination
r : rinit

while DistanceToDestination > dlfpInit do
DriveTowards(CurrentDestination);

end
StartLfpTimer();
MaxSpeed ← 30 km/h;
while not Parked do

if detected free parking spot on the same side of the road then
Park();

end
if detected free parking spot p on the opposite side of the road then

CurrentDestination ← p;
end
if reached CurrentDestination then

r ← UpdateSearchRadius(LfpTimer);
CurrentDestination ← GenerateRandomPointAround(OriginalDestination, r);

end
DriveTowards(CurrentDestination);

end

27

3 Three Approaches to Parking Spot Search

3.2 The Global Approach

The scenario in which all vehicles within the road network can communicate with
some global instance shall henceforth be called the global approach. This global
instance which offers the possibility to exchange information over large distances
throughout the whole network could be considered a server on the internet. Therefore,
taking the global approach requires the availability of such a server and long-range
communication hardware. Cellular networks which are already highly available in
urban areas could well be used for the purpose of communication of parking spot
availability data. However, the strongest requirement of this approach is the presence
of stationary sensors that detect if a parking spot is available or not. There are two
main possibilities of how such sensors could be implemented: (i) as (underground)
sensors at every single parking spot [76, 79], or (ii) as overground sensors that could
be mounted on lamp posts and possibly monitor a group of parking spots [16, 26].
Such sensors are often based on magnetic field changes, radar, or visual detection (cf.
Section 1.2).

Figure 3.2 visualizes a vehicle taking the global approach as a UML state machine.
The event that initiates the parking spot search is the same as for the näıve approach.
Upon reaching the destination by a driving distance of dlfpInit the driver starts
looking for a parking spot; he enters the state lfp. From now on the following same
conditions as in the näıve approach apply:

• If the vehicle encounters a free parking spot on its side of the road, it parks.

• If the driver sees one on the opposite side of the road, he targets it by turning
at the next intersection.

In addition to the näıve approach, upon initiating the search the vehicle automatically
requests the best candidate parking spot from the server using long-range communi-
cation. In doing so it communicates its destination to the server. The best available
parking spot is the one that is closest to the driver’s destination. Its location is
reported back to the driver who targets it and is now registered as a prospect for this
parking spot. Should its availability change, the server notifies all vehicles currently
targeting it and supplies them with new best candidates. Note that in comparison to
[33] the server in our model does not reserve any parking spots for specific vehicles
and neither performs any optimization as to schedule all vehicles based on their
interests. It merely serves as a live database for free parking spots. Thereby all
participating vehicles have the same chances and the possibility of aforementioned
cheaters who may not even use the service is accounted for. However, the server also
does not alert vehicles if a better candidate has become available.

Algorithm 2 shows the global approach in pseudo code.

28

3.2 The Global Approach

looking for parking spot (lfp)

entry/ set max. speed to 30km/h

driving towards suggested parking spot

driving towards destination

distance to destination < dlfpInit/ query global instance for free parking spot
closest to destination

targeted parking spot taken/ query global instance again

parked

free parking spot along road detected/ park

free parking spot that is not on
this side of the road detected/
use it as suggestion

Figure 3.2: UML state machine of a vehicle taking the global approach to the PSSP

Algorithm 2: Parking spot search with a global instance

CurrentDestination : OriginalDestination

while DistanceToDestination > dlfpInit do
DriveTowards(CurrentDestination);

end
MaxSpeed ← 30 km/h;
CurrentDestination ← QueryServer(OriginalDestination);
while not Parked do

if detected free parking spot on the same side of the road then
Park();

end
if detected free parking spot p on the opposite side of the road then

CurrentDestination ← p;
end
if reached CurrentDestination or received notification that CurrentDestination is
taken then

CurrentDestination ← QueryServer(OriginalDestination);
end
DriveTowards(CurrentDestination);

end

29

3 Three Approaches to Parking Spot Search

3.3 The Fully Distributed Approach

The third approach to parking spot search we investigate is a fully distributed
one which means that there is no long-range communication between vehicles—or
more precisely within the VANET—but only between vehicles within a certain
neighborhood. The size of this neighborhood depends on the communication radius
of the on-board short-range radio communication hardware and its protocols. We
assume that this communication radius is around 100 m at most, which is a reasonable
value [31]. The exact values used in our simulations are stated in Section 4.5.

The second most important aspect of this scenario after its limited communication
range is that sensors for the detection of free parking spots are purely vehicle-based.
As mentioned in Section 2.3.1 such sensors are being developed and have already
been tested [42]. In [42] these sensors are based on ultrasonic sound. Unfortunately,
the detection of free parking spots by passing vehicles has the drawback that it is
not faultless. So far field tests have achieved an accuracy of 95 % [42]. However,
in this thesis we ignore this fact knowingly as we focus on the performance of the
fully distributed approach in an ideal scenario. We assume a detection accuracy of
100 %. The other inherent disadvantage of communicating such availability data
from vehicle to vehicle after detection is that any information is always outdated. A
parking spot that was detected to be free is not necessarily still available by the time
a vehicle receives the information. This is not to be confused with the problem that it
might not be available anymore by the time the vehicle would reach it. Therefore the
probability for every information to be valid is closely related to its age. Section 3.3.2
describes in more detail how vehicles handle this problem in our fully distributed
scenario.

Every vehicle is equipped with sensors that constantly scan its side of the road for
free parking spots. Therefore it needs a map containing the positions of legal parking
spots beforehand (cf. Section 2.3.2 and [17]). For simplicity these parking spots
are unanimously encoded by an ID. This should not be considered a requirement
since ultimately they can be differentiated by their position. Additional hardware
requirements are access to a location service like GPS, a local memory for storing
parking spot availability data, and short-range communication hardware.

Figure 3.4 visualizes a vehicle taking the fully distributed approach as a UML
state machine. During the whole time the vehicle is active its sensors scan the
environment for the availability of legal parking spots (according to the official map).
If it detects a free parking spot, an information tuple containing its ID, its position,
and the timestamp of its detection (cf. Figure 3.3) is stored in local memory. If it
detects a parking spot to be occupied, it removes any possible entry from the local
memory.

This local memory is defined as a sorted set which can be used like a queue while
adding new entries. It has a maximum size q. The exact values used in our simulations
are stated in Section 4.5. Therefore any new detection is always simply added to

30

3.3 The Fully Distributed Approach

ID
(string)

time of detection
(timestamp)

position
(double[2])

(a)

1/1to1/2 6 1510667613 (13.524, 24.213)

(b)

Figure 3.3: (a) Schema of an information tuple describing the detection of a free
parking spot including the data types. (b) An example tuple.

one end while the oldest entry is dropped if the queue would overflow. Additionally,
a vehicle constantly communicates with its neighbors. That is, it creates wireless
links to other vehicles within its communication radius and exchanges parking spot
information. Section 3.3.1 explains this process in detail. Like in both previously
presented approaches, as soon as the remaining distance towards the destination
becomes less than dlfpInit, the vehicle enters the state lfp, which means the driver
starts looking for a parking spot. Thus, again he parks at any free parking spot
he encounters and targets free parking spots he sees on the opposite side of the
road.

When starting the search, the on-board system checks the local memory for informa-
tion about a free parking spot within the initial search radius rinit around the driver’s
destination. If there are multiple candidates their ranking is based on a certain logic
that uses the age of the information tuples and the parking spot positions. This
ranking process is described in more detail in Section 3.3.2. The system only supplies
the driver with the best option which he targets. If there is no entry of a relevant
parking spot in the local memory, the driver targets random points within his search
radius (he behaves like a driver that follows the näıve approach) while continuously
checking the vehicle’s memory for new information. The targeting of the suggested
parking spot only stops if its entry is dropped from the local memory due to a merge.
In such a case the local system is queried again for the best candidate parking spot.
The detection of a free parking spot would result in an immediate stop occupying
it. If the targeted spot is detected to be in use when reaching it, its information
tuple is deleted and the system queried again. Like in the näıve approach a vehicle
constantly increases its search radius according to Equation (3.1).

Algorithm 3 shows the distributed approach in pseudo code.

3.3.1 Data Merging

When a vehicle enters the neighborhood (i.e. communication radius) of another
vehicle these vehicles merge their local memories. This happens once when they
establish a connection and does not repeat while this wireless connection is established.

31

3 Three Approaches to Parking Spot Search

Algorithm 3: Fully distributed cooperative parking spot search

CurrentDestination : OriginalDestination
r : rinit

while DistanceToDestination > dlfpInit do
if vehicle enters communication radius then

MergeMemories()

end
if parking spot p detected then

if p is free then
Save(pID, CurrentTime, CurrentPosition);

else
remove possible entry p from memory;

end

end
DriveTowards(CurrentDestination);

end
MaxSpeed ← 30 km/h;
CurrentDestination ← GetBestLocalCandidateOrRandom(OriginalDestination, r);
while not Parked do

if detected free parking spot on the same side of the road then
Park();

end
if parking spot p detected then

if p is free then
CurrentDestination ← Save(pID, CurrentTime, CurrentPosition);

else
remove possible entry p from memory;

end

end
if vehicle enters communication radius then

temporarily remove CurrentDestination from local memory;
MergeMemories();

end
if reached CurrentDestination or not CurrentDestination ∈ LocalMemory then

r ← UpdateSearchRadius(LfpTimer);
CurrentDestination ← GetBestLocalCandidateOrRandom(OriginalDestination,
r);

end
DriveTowards(CurrentDestination);

end

32

3.3 The Fully Distributed Approach

driving towards destination

parking spot detected [it is free]/ save (ID, time, position) in local memory

parking spot detected [it is used]/ remove possible entry from local memory

another vehicle enters communication radius/ merge memories

looking for parking spot (lfp)

entry/ set max. speed to 30km/h
entry/ update r

entry/ check local memory for free parking spot
within r around destination

distance to destination < dlfpInit

driving towards saved parking spot
[relevant parking spot
found in local memory]

driving towards random parking spot

[no relevant parking spot found in local memory]

parked

free parking spot along road detected/ park

parking spot detected [it
is free and not on this road]/
save (ID, time, position) in
local memory and target itH

parking spot detected [it is used]/
remove possible entry from local memory

vehicle enters communication radius/
merge memories but do not share current target

targeted parking spot reached [it is used]

targeted parking spot reached [it is used]

targeted parking spot dropped from
local memory due to a merge

Figure 3.4: UML state machine of a vehicle taking the fully distributed approach to
the PSSP

The merging process keeps the q newest information tuples of both original queues.
In doing so the set property has to be kept intact meaning every parking spot is only
stored once. Its newest detection timestamp is kept. Given that both vehicles have
the same q the resulting local memories are the same.

It is important to note, that a vehicle in the state lfp does not share the information
about its current target. However, the effect of this behavior is likely not very
high if there is at least one other vehicle around sharing the specific information
tuple [34].

3.3.2 Candidate Ranking

Let Q be the set of all parking spots stored in a vehicle’s local memory. Then the
set R of relevant parking spots is defined as

R := {p ∈ Q | dpd ≤ r}, (3.2)

where dpd is the distance from p to the original destination and r is the current parking
search radius. It is possible that R contains (tuples for) multiple relevant parking
spots. In such a case the on-board system has to choose the best candidate to report
to the driver. In Section 2.3.3 we presented and discussed multiple approaches how
this problem has been tackled before. An intuitive idea is to value older information
less [13]. However, one cannot only consider the probability of a parking spot still
being free at the current moment but at the time the vehicle would arrive at its

33

3 Three Approaches to Parking Spot Search

location. Therefore, as already mentioned in [19], the authors of [74] present the
relevance function

F (p) = −α× t− β × d, α, β ≥ 0, (3.3)

where p is the parking spot candidate, t is the age of p, d is the distance from the
location of p, and α and β are non-negative constants that represent the relative
importance of time and distance [74].

In this thesis we use the following slightly different relevance function

F (p) = −t− T, p ∈ R (3.4)

for the parking spot candidate p, where t is the age of p (i.e. the time since its
detection stored in memory), T is the expected travel time from the current position
to p and R is the set of relevant parking spot candidates defined in Equation (3.2).
With respect to the age t this is very similar to the relevance function given in
[74] (Equation (3.3)) and just setting α to 1. However, in contrast to [74], as the
constraint states, we use a hard cut to determine whether a parking spot within
the memory is relevant at all which depends on the vehicle’s current parking search
radius. The function itself is then only used to rank relevant parking spot tuples.
It does so by estimating the travel time from the current vehicle position to the
respective candidate and adding it to the age of the information. This is slightly
more complex than just using the distance to the parking spot itself. The benefit
of this transformation of the distance to time is that it is easily possible to extend
the model by incorporating traffic density or traffic light information into the travel
time calculation. It is also more practical to use travel time as a factor instead of
distance to properly handle cases where the shortest route is not the quickest to
drive. However, we do not implement factors like α and β to put any individual
bias on the distance to p or the age of the information t. After calculating the
relevance for all parking spot candidates we impose another hard cut as we discard
all candidates whose information would be too old upon reaching them. The best,
and hence proposed, parking spot candidate is the one that has the highest relevance
value F (p) while still fulfilling

|F (p)| ≤ maxAge (3.5)

with maxAge being the user-defined threshold which could be individual according
to each driver’s preference.

34

3.3 The Fully Distributed Approach

3.3.3 The Advanced Fully Distributed Approach

In addition to the previously described fully distributed approach we analyze a
variant that we shall call the advanced distributed approach. The only difference to
the standard version is that vehicles do not only store information about free parking
spots but instead also record information about parking spots that are detected to
be occupied. The idea behind this modification is that a possible downside of the
standard version is that outdated information is only slowly removed from the local
memories (only when new information about free parking spots is acquired) and
the only mechanism to avoid its usage is the maxAge parameter. This means the
standard approach has no active mechanism for information decay [74]. Hence, by
storing information about used parking spots any outdated information tuples listing
them as free is dropped during merges. However, since the amount of occupied
parking spots is usually inherently larger than that of free parking spots, this means
that most of the on-board storage is used for information about occupied spots.
Therefore larger local memories are needed which in turn leads to higher message
cost during merges (cf. Sections 5.4 and 5.5).

35

4 Simulation Environment

The three approaches to parking spot search presented in Chapter 3 are analyzed
through extensive simulations. This chapter will explain the nature of these simu-
lations, underlying assumptions, used programs, and the way they are initialized,
while Chapter 5 will present and discuss the results.

4.1 Basic Model

In various publications discussed in Chapter 2 the authors simulated their problem
settings to calculate results for their approaches. The wide range of simulation
setups used shows the difficulty of finding the perfect tool for the specific task one is
interested in. Section 2.3.5 gave a short overview of simulation setups that have been
used in similar studies. While many authors developed their own simulators [10, 19,
33, 69], we take the same road as the authors of [3] and use the microscopic traffic
simulator SUMO (Simulation of Urban MObility) [37] at the core of our simulations.
However, we use basic python scripts that communicate with SUMO through the
TraCI (Traffic Control Interface) [71] API to implement the logic. Figure 4.1 shows a
screenshot of SUMO’s GUI version running one of our simulations. The possibility to
run it with a graphical user interface along with our python script in the background
makes it a very convenient tool for such an application as this makes it easier to
follow the actions and decisions of actors within the simulation.

SUMO is open source and freely available online1. It is a completely microscopic
simulator meaning that it simulates every single vehicle by itself with individual
attributes such as speed, maximum speed, position, and an independent route. It
uses the continuous model which means all distances, especially the space on roads,
are considered to be continuous while only time is discretized to seconds. At every
time step the position of each vehicle within the next time step is calculated based
on its current position, speed, acceleration/deceleration, route, and exterior limiting
factors such as other vehicles or traffic lights. A SUMO simulation requires three
types of input files: vehicle definitions, route definitions (usually included in the
vehicle definitions), and a network definition. All these input and SUMO’s native
output files are in XML format. The combination of vehicles and routes is called
demand. Every vehicle has a clearly defined starting position on the first edge of its

1http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/

37

http://www.dlr.de/ts/en/desktopdefault.aspx/tabid-9883/16931_read-41000/

4 Simulation Environment

Figure 4.1: Screenshot of the SUMO-GUI. Vehicles are displayed as triangles. Purple
vehicles have already switched to the state lfp. Parked vehicles are shown
next to the road. Red boxes indicate occupied parking spots. Green
boxes indicate available parking spots.

38

4.2 Demand Generation

route. The route is an ordered list of edges and the end position on the last edge is
defined like the starting position. While it is possible to insert vehicles together with
their routes into a simulation dynamically through TraCI, in general all demand is
defined before SUMO starts the simulation. This means in the usual application
a SUMO simulation is deterministic. Since our external steering through TraCI
according to the logic explained in Chapter 3 contains randomness, our simulations
are not deterministic.

Although SUMO and its accompanied tools support various network import formats
(e.g. from OpenStreetMap2) for simplicity we generate generic grid road networks
with the following specifications:

• 10× 10 junctions

• 100 m between junction centers (leads to an actual road length of 90.5 m
between junctions)

• only single-lane per direction roads

• maximum speed of 50 km/h

• 6 parking spots per curb (2160 total)

• junction type: right before left / priority to the right

We started off using junctions that were regulated by traffic lights with differing
intervals of 45 and 90 seconds but these tests turned out to be difficult to interpret and
posed a higher threat of gridlock, which of course always depends on the active vehicle
density. The impact of the traffic lights on the parking spot search performance
was also hard to determine which is why we use right before left junctions in the
experiments presented in this thesis. Kokolaki et al. used roundabouts [36]. Such
aspects have to be considered when defining vehicle demand (see Section 4.2).

4.2 Demand Generation

We generate the vehicle demand for our simulations in the following way. There
are two initialization parameters: initial occupancy and active vehicle density. The
initial occupancy describes how many parking spots are occupied at the start of the
simulation. Depending on the density control mechanism this occupancy remains
the same throughout the whole simulation. Referring to the number of parking spots
available is obviously equivalent. The active vehicle density constitutes the amount
of vehicles that are active (i.e. driving towards their destination) at the beginning of
a simulation run vinit. Again, depending on the density control mechanism, it stays
the same throughout the whole simulation. The starting positions and destinations
of all vehicles are randomly distributed according to distributions given below.

2http://www.openstreetmap.org

39

http://www.openstreetmap.org

4 Simulation Environment

Throughout a simulation run the total number of vehicles does not change, only the
number of active vehicles fluctuates. SUMO loads all vehicles and their routes prior
to the actual simulation.

There are two types of randomness in the simulations. One lies in the static demand
generation with the routes and the order in which vehicles activate and the other is
dynamic and inherent to the approaches simulated (i.e. random target selection if no
information about a free parking spot is available, see Chapter 3). While obviously
the dynamic randomness is different between the different approaches, the random
routes prior to the simulation and the order in which vehicles get active is the same
for all of them. This means that the results presented for all three approaches are
based on the same demand definitions.

There are two types of scenarios considering the random vehicle routes:

uniformly distributed Routes are uniformly distributed over the whole grid. When
determining the order in which vehicles leave their initial parking spot they are
chosen randomly from the whole network. For every vehicle a target position
on a road that is at least s meters air-line distance away from the starting
point is randomly chosen from the whole network.

hot spot The order in which vehicles leave their initial parking spot is chosen
randomly from all vehicles like in the uniformly distributed scenario. However,
in the target point generation there is a bias towards the center of the network.
The center is defined as a square with side length 270 m mapped around the
center point of the grid network (see Figure 4.2). With a probability of 20 %
vehicles from the outside will target a point in the center and map it onto a
road. With a probability of 80 % they will target a random point that is in
the outskirts. Destinations for vehicles that start in the center are generated
in the same way as for vehicles in the uniformly distributed scenario. All
road positions are sampled uniformly to generate the destinations. In all cases
the randomly generated target point has to be at least s meters away from
the starting point (note that the actual target point for vehicles starting in
the outskirts could be closer to the respective starting point than s after the
mapping onto a road). Since the area outside of the center is much larger this
leads to sufficiently high competition for free parking spots in the center.

In both scearios s is defined the same way as the center square side length in the hot
spot scenario

s = netwidth× 0.3 = 900× 0.3 = 270.

In all cases the shortest route calculation is performed using Dijkstra’s algorithm [21].

For both scenarios we tried two vehicle density control mechanisms:

constant density The vehicle density is kept constant by starting a parking vehicle
every time an active vehicle parks. The density is defined by the number of

40

4.2 Demand Generation

80%

20%

Figure 4.2: The route generation for the hot spot demand scenario. Any points
within the red square are considered to be in the center. Vehicles starting
their route outside of the center have a bias of targeting a random point
in the center. They do so with a probability of 20 % while targeting a
point outside with a probability of 80 %. Vehicles starting in the center
randomly select a target point from the whole network. All routes have
a minimum 2D-distance between start and end point of 270 m.

initially active vehicles vinit. This number has to be fine-tuned to avoid both
grid lock and the impossibility of vehicular communication. Constant vehicle
density implies constant free parking spot density. In reality the vehicle density
obviously fluctuates depending on the area and time of the day. However, for
the same urban areas this active vehicle density is likely similar during the
same periods of a week day. Therefore, by changing this parameter we can
simulate different real world settings while being able to generate sufficient
data for each of them.

constant departure interval In a static interval a parking vehicle is activated. This
leads to changing vehicle densities throughout a single simulation run. A
problem is that the vinit initially active vehicles all reach their destination
at around the same time while new vehicles are activated constantly. More
importantly, this leads to different vehicle densities for the different approaches
that are being compared. While the idea behind such a control mechanism
is to penalize approaches that do not manage to keep the traffic fluent, it is
not really suitable to compare them. In one case all vehicles might spread
through the network efficiently, in another gridlock could occur and freeze
the simulation. Our results show that as a consequence of these effects it is
not consistent to compare the different approaches in a fair manner using this
density control mechanism. We therefore will not discuss it any further.

41

4 Simulation Environment

vinit occupancy # free parking spots # vehicles total

uniformly distributed

20-100 0.99 22 2138 + vinit

hot spot

center outside

20-100 0.93 0.995 22 2138 + vinit

20-100 0.90 0.990 36 2124 + vinit

20-100 0.80 0.990 50 2110 + vinit

Table 4.1: Demand definition parameters for both scenarios. The specific values of
vinit were 20, 25, 30, 40, 50, 60, 70, 80, 90 and 100.

As mentioned before in both cases the order in which vehicles depart is the same
for a specific demand definition for all approaches compared. Also, in all cases the
simulation ends when all vehicles have been activated once which means that there
are exactly vinit vehicles remaining. Thereby all vehicles that contribute to the final
analysis experience the same network conditions (average number of communication
partners, average number of free parking spots available).

To overall reduce the possible effects of randomness (in the route generation as well
as the dynamic random target generation inherent to the näıve and distributed
approaches) we generate multiple simulation runs and analyze the accumulated
data.

Table 4.1 lists all demand scenarios and their respective initial parameters that
we analyzed. To quantify the level of competition we can check the ratio between
the number of active vehicles |V | = vinit and the number of free parking spots |P |.
Thereby we see, that our simulations of the uniformly distributed scenario cover
ratios from 0.91 to 4.55 and for the hot spot scenario from 0.4 to 4.55. As mentioned
in the problem statement, situations when |V | > |P | are those of interest.

4.3 Simulation Generator Pipeline

We have developed a range of python scripts that generate SUMO input files according
to the aforementioned parameters. While these scripts are in fact all runnable on
their own to fulfill a specific task, the simulationGenerator combines them into a
single pipeline. This section will explain this generator pipeline in general. Figure 4.3
visualizes the simulation generator pipeline. The final output is a fully prepared
folder containing a python script startSimulations.py that can be run without

42

4.3 Simulation Generator Pipeline

gridGenerator.py parkingGenerator.py simulationGenerator.py

NETGENERATE

simulation folder

run 1 files (net, sumocfg)

run 2 files (net, sumocfg)

. . .

simulation folder

run 1 files (net, sumocfg, parking spot positions, vehicle routes)

run 2 files (net, sumocfg, parking spot positions, vehicle routes)

. . .
simulation folder

input param. cfg. folder 1 input param. cfg. folder 2 . . .

run 1 files (net, . . .) run 1 files (net, . . .) . . .

run 2 files (net, . . .) run 2 files (net, . . .) . . .

.

Figure 4.3: Visualization of the simulation generator pipeline.

any parameters to start the whole simulation pipeline (see Section 4.4).

First the simulationGenerator calls the gridGenerator which in turn calls the SUMO
tool NETGENERATE 3 to create the basic grid network structure. This results in a
simulation folder with as many network and SUMO configuration files as the number
of runs specified by the user. Note that by default these networks are identical,
but the gridGenerator provides the option to add even more randomness between
individual runs by distributing edge maximum speed limits from a given set of values.
However, tests show that this feature leads to gridlock relatively quickly with rising
traffic density. This is due to the fact that roads with higher limits are preferred in
the route generations but the network infrastructure does not support this obvious
bias. Independent of speed limit all roads have one lane per direction and neither
right-before-left junctions nor traffic lights with regular intervals for all incoming
lanes prioritize any one of them.

Then the gridGenerator invokes the parkingGenerator which uses the simulation
folder from the first pipeline step to add the files needed for the parking logic. Based
on the network files it calculates the parking spot positions and writes them to an
XML file. It also creates a polygon file that is needed for visualization of the parking
spots during graphical inspection when starting SUMO with its GUI. The main
function of the parkingGenerator, however, is that it generates the vehicle routes for
the different demand scenarios described in Section 4.2. In doing so it also writes the
vehicle’s arrival positions on their target edges and the order in which they depart
into files.

As the last step of the simulation generator pipeline the simulationGenerator itself
performs traffic light adaptions if requested (i.e. it adds the option to simulate and

3http://sumo.dlr.de/wiki/NETGENERATE

43

http://sumo.dlr.de/wiki/NETGENERATE

4 Simulation Environment

runTraci.py SUMO

TraCI

pickle results file

debug-output file

pickle results file

debug-output file

pickle results file

debug-output file

pickle results file

debug-output file

pickle results file

debug-output file

pickle results file

debug-output file

pickle results file

debug-output file

pickle results file

debug-output file

pickle results file

debug-output file

startSimulations.py

for each config
for each approach

traciDataLoader.py

visualizeSimulationResults.Rmd

csv results filecsv results filecsv results filecsv results filecsv results filecsv results filecsv results filecsv results filecsv results file

plots / html report

Figure 4.4: Visualization of the simulation pipeline.

compare multiple traffic light intervals for the same simulation setup) and prepares
the simulation folder for use. This includes creating sub folders for the different traffic
light intervals as well as for the different memory sizes of the distributed approach
that are being compared. To avoid recalculation of the global and näıve approaches
it then creates dummy result files within these folders. An R-script that generates
plots and visualizes the results of the simulations is also copied to the output folder.
Finally, the starter script is generated from a template and all parameters set.

4.4 Simulation Pipeline

The previously described simulation generator pipeline outputs a simulation folder.
Within this folder the python script startSimulations.py, that can be invoked
without any parameters, starts the simulation pipeline. This simulation pipeline
is visualized in Figure 4.4. Its underlying processes will be described in this sec-
tion.

The start script generates a job list based on the parameters of the simulation folder,
checks which of these jobs have already run and generated a result file, and starts
the remaining jobs in as many parallel threads as requested. Hence, if aborted, it
only loses the data of the currently running jobs and can recover easily. In addition
it provides informative status output with an estimate of the remaining calculation
time.

One job consists of one call of the python script runTraci.py. This script is at the
heart of the whole pipeline as it handles the logic of the parking mechanics and the

44

4.5 Algorithm Parameter Definitions

underlying approaches to information dissemination. Each job starts one instance of
SUMO which performs the actual microscopic traffic simulation. The python script
then controls SUMO through the TraCI python API which uses TCP/IP sockets.
It effectively simulates the application layer of the VANET on top of SUMO. The
data that is sent from SUMO to our script consists of vehicle states such as their
position, speed, current route, and neighboring other vehicles and parking spots.
In turn, the python script sends reroute triggers and stopping signals to SUMO.
In all cases, SUMO performs the actual re-routing. When there are less than vinit
vehicles remaining runTraci.py closes the simulation, computes the driving distance
between each vehicle’s final parking spot and its actual destination, and calculates a
few basic statistics for immediate debug output. It then stores the results in a pickle
file. By default all output of this script is redirected to a file for further inspection.
Depending on user preference this contains only warnings and errors or additional
debug information too.

A downside of the socket communication is that it is comparatively slow and should
therefore be avoided for performance reasons. Hence, the information retrieval is
done in an aggregated form using (context) subscriptions where a predefined set of
status variables is retrieved every simulation step. A context subscription allows
retrieving all objects of interest within a certain radius around the specified object.
This is useful to automatically get the vehicles and parking spots around every active
vehicle without having to do expensive distance calculations in python.

After all jobs have completed successfully, the traciDataLoader loads all pickle files
and stores the information in human-readable comma-separated values (CSV) files.
This usage of and conversion between two file formats is done for two reasons: First,
the result data for each run has multiple types (vehicle specific and simulation specific
for the different timesteps) and the pickle format offers a good way to keep them
concentrated. Second and more importantly, the final visualization is done in R which
cannot read pickle files naturally. The R Markdown script that is responsible for the
final output, including visual display in various plots, and statistical analysis is called
visualizeSimulationResults.Rmd. It loads all single run CSV files, performs some
transformations, and saves one comprehensive CSV file for each combination of data
type, demand scenario, and vehicle density mechanism. Then it uses the knitr 4

R package to generate a comprehensive HTML report of the whole analysis. All
plots presented in Chapter 5 were, in their basic form, automatically created by this
pipeline.

4.5 Algorithm Parameter Definitions

Table 4.2 summarizes all parameter values for the different approaches that we used
in our simulations. This section will explain some of them in more detail.

4https://yihui.name/knitr/

45

https://yihui.name/knitr/

4 Simulation Environment

Some parameters are the same for all three approaches while others are only relevant
for particular ones.

search initiation distance (dlfpInit) The driving distance left towards the destina-
tion at which a vehicle switches to the state lookingForParking (lfp). In this
state it will park at any free parking spot it encounters. The reason why dlfpInit
is smaller than the parking search radius is that we try to simulate the natural
behaviour of a greedy driver who is trying to get as close to his destination
as possible before initiating the search. Also, if there is a high availability of
free parking spots and dlfpInit is larger, it leads to a greater average distance
between the final parking spot and the actual destination.

initial parking search radius (rinit) The initial radius around their destinations
within which vehicles consider parking spots relevant.

maximum information age (maxAge) The maximum age an information tuple may
have upon an expected arrival (see Section 3.3.2).

4.6 System

All computations were performed on a PC with the specifications listed in Ta-
ble 4.3.

46

4.6 System

Parameter Value

all

search initiation distance (dlfpInit) 50m

maximum speed while lfp 30 km/h

näıve

initial parking search radius (rinit) 100m

search radius increment function rinit + tlfp/60 · rinit

global

best candidate criterion closest to destination

distributed

initial parking search radius (rinit) 100m

search radius increment function rinit + tlfp/60 · rinit
communication radius 100m

merge new data if partner was not a partner in the last simu-
lation step

maxAge 300 s

best candidate criterion argmaxp∈R F (p), |F (p)| < maxAge

local memory size, in number of
information tuples (q)

5, 15, 50

Table 4.2: Algorithm parameters used in our simulations

Component Value

Operating system Ubuntu 17.10 64bit

Kernel version 4.13.0-46-generic

CPU Intel Core i7-6700 3.4GHz × 8

Memory 15.6 GB

Python version 2.7.14

SUMO version 0.32.0

of parallel runs 8

Table 4.3: System specifications of the platform running the simulation pipeline

47

5 Simulation Results

We define the following metrics to compare the different approaches to the PSSP
and how they perform in the different scenarios:

1. time spent during parking spot search

2. distance driven during parking spot search

3. 2D-distance between final parking spot and actual destination

4. message cost

Additionally, we analyze the effect of the local memory size in the distributed
approach by measuring its accuracy. The number of merges and the vehicle density
let us compare the effects of the two demand scenarios.

5.1 Time Spent During Parking Spot Search

As stated in Section 2.3 the main quantity one wants to minimize about the PSSP
is the time spent during parking spot search. This is the time a vehicle spends
in the state lfp. Figures 5.1 and 5.2 visualize the averages of these durations for
all three approaches in the proposed scenarios. The distributed approaches are
shortened to dist and distA for the advanced variant. The numbers behind these
labels indicate the local memory size. The values plotted are the mean values of all
vehicles over the respective groups along with 95 %-confidence intervals. Multiple
conclusions can be drawn from these plots: First, it is obvious that the global
approach clearly outperforms both the näıve and the distributed approaches. Second,
with increasing vehicle density the performance of said global approach deteriorates
whereas there is no clear trend for the others. Third, the normal distributed
approach that only stores information about free parking spots (greenish dashed
lines) constantly outperforms its advanced counterpart (dot-dashed lines) that tries
to accelerate the effect of information decay by storing information about all parking
spots encountered. Fourth and as expected, said advanced distributed approach
behaves like the random näıve approach if it is used with a small memory. This is
due to the fact that most likely all stored information is about occupied parking
spots and, hence, does not help during parking spot search (cf. Section 5.4). Fifth
and last, with proper parametrization the distributed approach clearly outperforms
the näıve random approach. Interestingly, the parking search times do not differ

49

5 Simulation Results

●

●
●

●

●

● ●

●

●

●

100

200

300

10020 30 40 50 60 70 80 90
active vehicles

tim
e

[m
]

algorithm
● global

naive

dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.1: Average times spent looking for a parking spot in the uniformly dis-
tributed scenario with 22 free spots along with their 95 %-confidence
intervals.

significantly between the uniformly distributed and the hot spot scenario given the
same number of available parking spots (Figures 5.1 and 5.2a). This might be due to
the fact that the majority of the vehicles in the network due to design still does not
target the center in the hot spot scenario. Therein, the search times are only slightly
higher for the smart algorithms (all but the näıve). However, with an increasing
number of active vehicles the performance of the global approach deteriorates faster
than in the uniformly distributed scenario. Comparing Figures 5.2a and 5.2b we can
see that with a higher number of available parking spots the search times decrease
for all algorithms. This is expected. Also, the relative speedup of the global over the
distributed approach increases compared to the relative speedup of the global over
the näıve approach.

We are plotting mean values and related works have done so too [35, 36], and while
the confidence intervals add some value in terms of reliability to these means, it
is worth looking at the actual distributions of the data. Let the time spent in the
state lfp be a continuous random variable X. Figure 5.3 shows the distributions of
X exemplarily for the uniformly distributed scenario for selected values of active
vehicles as box plots. The same plots for the hot spot scenario look similar which
is why we do not show them here. It is obvious that the data has positive skew in

50

5.1 Time Spent During Parking Spot Search

●

●
●

●

●
●

●

●

●

●

100

200

300

10020 30 40 50 60 70 80 90
active vehicles

tim
e

[m
]

algorithm
● global

naive

dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

(a) 22 free parking spots

●
●

●

●

●

●

● ●

●

●

●
● ●

●
●

●

●
●

●

●

36 50

10020 30 40 50 60 70 80 90 10020 30 40 50 60 70 80 90

50

100

150

200

active vehicles

tim
e

[m
]

(b) 36 and 50 free parking spots

Figure 5.2: Average times spent looking for a parking spot in the hot spot sce-
nario with different numbers of free parking spots along with their 95 %-
confidence intervals. Note the different y-axis scales between (a) and
(b).

51

5 Simulation Results

0

250

500

750

1000

1250

10020 40 60 80
active vehicles

tim
e

(s
)

algorithm
global

naive

dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.3: Distributions of the time spent looking for a parking spot in the uniformly
distributed scenario with 22 free spots. The whiskers of the boxes are
defined as 1.5× IQR from the respective hinge, where IQR is the inter-
quartile range, which is the distance between the first and the third
quartile. Outliers beyond these whiskers are not shown.

all problem settings. This means most drivers experience reasonable parking spot
search times while only a few do not. Since the goal is to reduce the times overall,
the mean is a valid metric for comparison. However, since the mean is highly affected
by extreme values, improving it means focusing on these few drivers that suffer from
long parking spot searches.

5.2 Distance Driven During Parking Spot Search

The effort put into the parking spot search can also be described by the distance
driven during the process. In comparison to simply the time this measure is not
affected by side-effects that arise from the traffic layer. It is stable in matters of
delays through traffic jams or traffic lights. However, these effects do not seem to alter
the search times of the different approaches differently as the relative performances,
given the distance driven during the search, look similar (Figures 5.4 and 5.5).

52

5.2 Distance Driven During Parking Spot Search

●

●
●

●

●

● ●

●

●

●

500

1000

1500

2000

10020 30 40 50 60 70 80 90
active vehicles

di
st

an
ce

 [m
]

algorithm
● global

naive

dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.4: Average distances driven looking for a parking spot in the uniformly
distributed scenario with 22 free spots along with their 95 %-confidence
intervals.

53

5 Simulation Results

●

●
●

●

●
●

●

●

●

●

500

1000

1500

2000

2500

10020 30 40 50 60 70 80 90
active vehicles

di
st

an
ce

 [m
]

algorithm
● global

naive

dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

(a) 22 free parking spots

●
●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●
●

●

●

36 50

10020 30 40 50 60 70 80 90 10020 30 40 50 60 70 80 90
250

500

750

1000

1250

active vehicles

di
st

an
ce

 [m
]

(b) 36 and 50 free parking spots

Figure 5.5: Average distances driven looking for a parking spot in the hot spot
scenario with different numbers of free parking spots along with their
95 %-confidence intervals. Note the different y-axis scales between (a)
and (b).

54

5.3 Distance Between Parking Spot and Destination

5.3 Distance Between Parking Spot and

Destination

The second main metric we try to minimize about the PSSP is the distance between
the final parking spot and the actual destination of the driver. This distance dpd
is the main criterion for parking spot selection in the global approach and factors
into the candidate ranking in the distributed approach (cf. Section 3.3.2). Looking
at dpd (Figures 5.6 and 5.7) the results regarding relative performance of the three
approaches are similar: The global approach constantly outperforms all others,
while the distributed approaches outperform the näıve approach (again with the
exception of small local memories in the advanced variant). However, we observe
an inverse correlation with regard to the number of active vehicles in general—with
a growing number of active vehicles dpd decreases. We assume that the reason for
this correlation is the fact that with more active vehicles free parking spots are more
often created, since vehicles arrive and leave in a quicker interval. This means that
with a higher turnover it is more probable that within the parking search area a
relevant parking spot is vacated and then detected and its location transmitted to a
vehicle on the search.

When looking at the average dpd for different numbers of free parking spots in the
hot spot scenario (Figures 5.7a and 5.7b), we can see a similar effect as with a
changing number of active vehicles. As expected, when more free parking spots are
available, the average distance between the final spot and a driver’s actual destination
decreases.

5.4 Metrics of the Distributed Approach

We analyzed the fully distributed approach in more detail to understand and visualize
the effect of certain parameters, mainly to be discussed here—the size q of the local
memory.

The point in time when the accuracy of the data in the local memory is of utmost
importance to the driver is when he initiates the search for a parking spot. Thus,
in the following we compare the vehicles’ local memories at the moment of this
transition to the state lfp. Again, all plots show the average values over the specific
scenarios along with 95 %-confidence intervals. The results for the hot spot scenario
with 22 free parking spots are nearly identical to those of the uniformly distributed
scenario with the same number of available spots and, hence, not shown here for
the sake of brevity. As previously, if not otherwise stated, all parking spots within
rinit around a driver’s destination are considered relevant parking spots. First, we
check how many vehicles actually have information about a free relevant parking
spot candidate stored locally (Figure 5.8). This shows that with a low active vehicle

55

5 Simulation Results

● ● ●

●

●
●

● ●
● ●

100

150

200

250

300

10020 30 40 50 60 70 80 90
active vehicles

di
st

an
ce

 [m
]

algorithm
● global

naive

dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.6: Average 2D-distances between the final parking spot and the actual
destination dpd in the uniformly distributed scenario with 22 free spots
along with their 95 %-confidence intervals.

56

5.4 Metrics of the Distributed Approach

● ● ●

●
●

● ● ● ● ●

150

200

250

300

10020 30 40 50 60 70 80 90
active vehicles

di
st

an
ce

 [m
]

algorithm
● global

naive

dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

(a) 22 free parking spots

●

● ● ●

● ● ● ●

●

●

●
●

●
●

●
● ●

● ●
●

36 50

10020 30 40 50 60 70 80 90 10020 30 40 50 60 70 80 90

100

150

200

250

active vehicles

di
st

an
ce

 [m
]

(b) 36 and 50 free parking spots

Figure 5.7: Average 2D-distances between the final parking spot and the actual desti-
nation dpd in the hot spot scenario with different numbers of free parking
spots along with their 95 %-confidence intervals. Note the different y-axis
scales between (a) and (b).

57

5 Simulation Results

0%

20%

40%

60%

80%

10020 30 40 50 60 70 80 90
active vehicles

ve
hi

cl
es

algorithm
dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.8: Average number of vehicles with a relevant parking spot in their local
memory upon parking search start in the uniformly distributed scenario
and 95 %-confidence intervals.

density most vehicles initiate their parking spot search with a random guess, like
those following the näıve approach. Also, with a larger memory the probability
of knowing of a relevant candidate parking spot increases. Interestingly, drivers
following the normal distributed approach are more likely to have knowledge of a free
relevant parking spot when needed than those following its advanced variant.

In Figure 5.9 we can see how much of the target area the local memory covers for
different memory sizes in both distributed variants in the uniformly distributed
scenario. It is apparent that the advanced variant that stores information about
occupied parking spots too has more knowledge. A vehicle following the normal
algorithm could only theoretically achieve 100 % if all parking spots in the target
area were free. We can see that, as expected, smaller memory sizes always lead to
having less information about the area of interest. Vehicles following the advanced
version that only stores information about 5 parking spots seem to always have their
memory filled with 5 relevant parking spots. Notably, with an increasing number of
active vehicles vehicles gain more knowledge about their destination area.

When looking at the accuracy of this relevant data stored locally (Figure 5.10)
we can see three things: (i) The data stored in the advanced variant is almost

58

5.4 Metrics of the Distributed Approach

0%

5%

10%

15%

10020 30 40 50 60 70 80 90
active vehicles

re
le

va
nt

 p
ar

ki
ng

 s
po

ts algorithm
dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.9: Average coverage of relevant parking spots in a vehicle’s memory upon
parking search start in the uniformly distributed scenario and 95 %-
confidence intervals.

59

5 Simulation Results

20%

40%

60%

80%

100%

10020 30 40 50 60 70 80 90
active vehicles

re
le

va
nt

 p
ar

ki
ng

 s
po

ts algorithm
dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.10: Average accuracies of information about all relevant parking spots in a
vehicle’s memory upon parking search start in the uniformly distributed
scenario along with their 95 %-confidence intervals.

completely correct. This is intuitive as most parking spots are occupied and, hence,
the information stored is almost exclusively about occupied parking spots. (ii) The
larger the local memory is, the more inaccurate information about free parking spots
a vehicle stores. However, this plot does not consider the age of the information like
the relevance function the on-board system uses before selecting a candidate. This
means that it is possible that the additional entries that are stored with a larger
memory are already outdated and therefore timewise not relevant for the search.
(iii) With an increasing number of active vehicles, the quality of information received
about possible parking spot candidates degrades too. However, this effect seems
to stall at different levels depending on the memory size. Again, the additional
information received through more communication partners is most likely mainly
outdated.

If we focus on the actually interesting data on free parking spots within the vehicle’s
memories (Figure 5.11), we see that vehicles following the standard algorithm achieve
higher accuracy than those using the advanced variant. Note the y-axis percent
scale—the actual average number of free relevant parking spots stored in local
memory is 0.19 in both demand scenarios with 22 free parking spots overall. It rises
from 0.13 with 20 active vehicles to 0.25 with 100 active vehicles. The basis for the
plotted percent values are only vehicles that actually had information about at least
one free parking spot in their memory. In fact, Figure 5.11 shows that, if a vehicle

60

5.5 Message Cost

93%

96%

99%

10020 30 40 50 60 70 80 90
active vehicles

re
le

va
nt

 fr
ee

 p
ar

ki
ng

 s
po

ts
 in

 m
em

or
y

algorithm
dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.11: Average accuracies of information about free relevant parking spots in a
vehicle’s memory upon parking search start in the uniformly distributed
scenario along with their 95 %-confidence intervals.

following the normal distributed approach has information about a free parking spot
in the target area, this information is almost always correct.

Finally, we check how well a vehicle’s local memory covers the actually free parking
spots within the target area (Figure 5.12). Note that we are plotting percentages and
that the actual average number of free parking spots within rinit around a vehicle’s
destination is 0.65, if there are 22 free parking spots overall. This is independent of
the demand scenario. We can see that the normal distributed approach achieves a
better coverage of the free relevant parking spots than its advanced variant. From
Figures 5.9 and 5.12 we can conclude that the increased coverage, that is gained by
also storing information about occupied parking spots, does in fact clog the memory
with such irrelevant information and thereby lower the coverage of actual interesting
potential candidate spots.

5.5 Message Cost

From an algorithmic perspective the cost of the different algorithms can be defined
by the number of messages sent or, in addition, their respective sizes. We ignore the
size and model this number the following way:

61

5 Simulation Results

20%

40%

60%

10020 30 40 50 60 70 80 90
active vehicles

re
le

va
nt

 fr
ee

 p
ar

ki
ng

 s
po

ts

algorithm
dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.12: Average correct coverage of free relevant parking spots in a vehicle’s
memory upon parking search start in the uniformly distributed scenario
and 95 %-confidence intervals.

• In the global approach, each vehicle notifies the server of the parking spot it is
vacating at the start of the trip (this message could also be sent by a stationary
sensor) and does the same for the final parking spot upon arrival. These count
as one message each. Additionally, each vehicle requests information about
a free parking spot once it initiates the search. This is another message sent.
It then receives one message every time the central server notifies it that the
current target has been taken by sending information about a new target.

• In the distributed approach, during every merge each vehicle sends and receives
exactly one message (although such messages usually contain much more data
than the messages sent by the central server mentioned above).

In the näıve approach no messages are sent at all. Figure 5.13 visualizes the average
number of messages sent or received for both demand scenarios with 22 free parking
spots. Note, that this counts messages twice for every distributed approach. We can
see that the number of messages increases with the active vehicle density. For the
global approach this increase is faster in the hot spot scenario than in the uniformly
distributed scenario and results from the fact, that more often a currently targeted
parking spot gets taken by a competing vehicle, which in turn triggers an update
message from the server. In the distributed case obviously the number of merges
increases with the number of neighboring vehicles. There are two ways to argue which
of the smart approaches is cheaper in terms of message cost: In the decentralized

62

5.6 Discussion

● ● ● ●
● ● ●

●
●

●

● ● ●
●

● ●
●

●
● ●

uniformly distributed hot spot

20 40 60 80 100 20 40 60 80 100

0

10

20

30

40

50

active vehicles

m
es

sa
ge

s
pe

r
ve

hi
cl

e

algorithm
● global

naive

dist−5

dist−15

dist−50

distA−5

distA−15

distA−50

Figure 5.13: Average number of messages sent and received per vehicle in both
scenarios with 22 free parking spots and 95 %-confidence intervals.

case the overall number of messages is obviously higher than in the centralized
one. However, the load is shared among all participating vehicles. On the contrary,
in the global approach the central server—which is a node within the network as
well—sends or receives every message of the system.

5.6 Discussion

As stated in Section 2.3.6 we performed a very similar study to [36]. However,
although we used similar parameters for our simulations, we were not able to
reproduce their results in detail. The authors of [36] did not explicitly state their
parameters of the demand generation in the hot spot scenario. This makes it
difficult to compare it to ours. Nonetheless, even for the scenario with uniformly
distributed destinations our results differ. To us this indicates a pivotal aspect of
the topic: Microscopic traffic simulations of the PSSP are very parameter-dependent.
Therefore it is very important to include the specific values in a publication. In the
one discussed [36], the underlying road network was crucially different: While the
network bounding box, and hence the covered area, was larger than ours (1 440 000 m2

vs. 810 000 m2), the overall road length of the network was much smaller (24 000 m
vs. 32 400 m when we consider every lane/direction). This arises from the fact that
our grid is more fine-meshed with individual road lengths of 100 m (in comparison to

63

5 Simulation Results

their 300 m roads). The usage of unregulated priority to the right junctions instead
of roundabouts [36] should not impact the simulation results. Both designs are aimed
at keeping the traffic flowing.

However, the other very important parameter category next to network topology is
the design of vehicle demand. Many studies mentioned, as well as the one conducted
in this thesis, use uniformly distributed vehicle routes within a generic network.
While we argue for reproducibility, realistic traffic, especially in city centers, does not
behave this way. As hinted in Section 4.2, the task of finding a credible vehicle and
parking spot density is not straightforward. Either such information is not easily
available, or it might not even be suitable to analyze and compare general paradigms.
This means every simulation has to be fine-tuned—not just due to the danger of
gridlock but also to visualize the desired aspects. It would be preferable to perform
such an analysis on a real road network topology with realistic (evidence-based)
demand data.

A fundamental difference is how the global approach is modeled in [36] compared to
this thesis. It is expected, that a method that uses reservations behaves different to
our approaches. For example, it is easy to argue that the centrally-assisted parking
search (CAPS) [36] results in short parking search times but long distances between
parking spot and destination. This is a direct consequence from the reservation
mechanism. However, the way we model a centralized approach in this thesis, it
does not suffer the drawbacks of being too rigid. In our model a driver that targets
a centrally advertised parking spot immediately parks at a free parking spot he
encounters whereas he would ignore this opportunity in the approach presented
in [36].

At the core of the very problem that this thesis addresses lies the desire to get
the best available parking spot for every driver. Hence, one must define what best
means beforehand. In this thesis we have done so with the cost function given in the
problem statement (Equation (1.1)) which is the basis for the relevance function in
the distributed approach (see Section 3.3.2). In the global approach we have defined
the distance between parking spot candidate and destination to be the criterion. In
reality such a ranking would probably be different for different drivers. One does not
mind walking a little further, but finding a parking spot more quickly, while another
may not even be able to walk long distances and prefers to keep searching until he
finds a parking spot close to his destination. As stated, the authors of [74] incorporate
these individual parameters into their relevance function (Equation (3.3)).

The way the different approaches were modeled and implemented in this thesis is just
one of many. There are multiple aspects that could be modified without changing
the general ideas. A globally available server could for example notify vehicles as
soon as a better candidate parking spot becomes available. However, this would of
course increase the message cost, i.e. the number of messages sent. In the distributed
approach our algorithm does not address the competition between vehicles more than
not sharing the own target parking spot. Such a mechanism would most likely be

64

5.6 Discussion

beneficial [19, 20]. In all our algorithms containing parking information dissemination
we send atomic information tuples about single parking spots. Others have used
aggregates [13, 52] (see Section 2.3.1) and argue that aggregated information is more
time stable and, hence, reliable. We tested a very simple method of countering
information decay in the advanced version of our distributed approach by using the
same local memory to also store information about occupied parking spots. Our
results show that this is not beneficial with the memory sizes used. The performance
of this advanced variant does improve with increasing memory size and it could
outmatch its normal counterpart with even larger memory capacities. However, this
increases the message cost and complexity for every merge operation significantly.
Another possibility is using two local memories to store information about free and
occupied parking spots separately [7]. We leave the analysis of information decay in
our approaches to further research. An—also theoretical—analysis of this process
can be found in [74].

A crucial detail in the implementation is also the handling of free parking spots
on the opposite side of the road. We tried to design our scenarios as realistically
as possible—and in reality a driver who sees a free parking spot on the opposite
side of the road is very likely to turn at the next intersection and target it. This
is how we implemented driver behavior. However, it is difficult to argue how such
a “visually detected” parking spot becomes an information tuple in the vehicle’s
on-board memory. At least, since in such a situation the driver targets it immediately,
it does not get shared with others. As for the näıve random algorithm, the algorithm
itself does not necessarily resemble realistic driver behavior, since often drivers have
some knowledge of areas around their destination with increased probabilities for
containing a free parking spot.

Solving the PSSP, a problem that is centered around global up-to-date information,
in a completely decentralized manner is not only of interest from a scientific point of
view, but poses financial benefits as well. According to [58] each sensor in SFpark [54]
costs about US $500 whereas each sensor deployment per vehicle in [42] costs about
US $400. When we add the authors’ of [42] own argumentation, according to which a
deployment on 500 taxi cabs would be enough for a city of the size of San Francisco to
have sufficient parking spot detection coverage, we can easily see that the distributed
approach is much cheaper in overall sensor installation cost. In numbers, such a
distributed approach could be around 10-15 times cheaper than a stationary sensor
at every parking spot [42].

In Section 2.3.2 we have addressed the fact that maps of parking spot locations are
usually not given, especially those differentiating legal from illegal ones. If we extend
on this, we have to remember that we are detecting parking spots on-the-fly in our
distributed approach and that in reality this detection is not always 100 % correct.
More importantly, parking spots differ in size as well as vehicles differ in size demand.
In our simulations for simplicity we have assumed that all vehicles are of the same
type and have the same size. Also, all parking spots have the same length and the

65

5 Simulation Results

vehicles all agree on these parking spot locations. In reality, especially with curb
parking, it is often the case that individual parking spots are not clearly defined and
the lane that is used by parking vehicles is used in a dynamic way. This means the
locations and sizes of the individual spots move and change depending on the order
in which different types of vehicles occupy them.

Important aspects which we have not mentioned yet are privacy and security. The
emergence of smart hardware introduces new channels for criminals to harm users.
For an overview about “Data Security in Vehicular Communication Networks” refer
to [72]. In [60] the authors present a method that treats locations as the primary
entity of interest, in contrast to users with their current locations attached. This is
one way to achieve a certain level of privacy when handling geospatial data. Focusing
on the approaches to the PSSP presented in this thesis, there are a few things to
consider: In an unassisted näıve search obviously no privacy concerns arise. When
communicating with a global entity things are trickier and implementation-dependent.
For the sake of the algorithm a driver does not have to share his location with the
server. Since we are not using any reservation mechanism there is theoretically
no way for the server to know which vehicle parked at which parking spot (with
the exception of visual sensors that could read a license plate). Then the vehicle’s
on-board system would query the server for all parking spot locations (within a
larger area) and do the distance calculations by itself. The downside of such an
implementation is the increased computational load on vehicles’ limited hardware as
well as an, from a theoretical standpoint, immensely increased bandwidth usage for
the central server (i.e. message cost).

66

6 Conclusion and Future Work

The parking spot search problem is a problem millions of drivers face each day.
Its effects are not only an economic loss due to wasted time but also an immense
environmental burden. Smart hardware and software create new possibilities of
solving this problem. There are three fundamentally different approaches to do so:
(i) The näıve way, where drivers do not use any assisting technologies and randomly
search their target area for a free parking spot. (ii) The global way, where all vehicles
within the road network communicate with a central instance (e.g. a server on the
internet) to gain knowledge about currently free parking spots. (iii) The distributed
way, in which vehicles solve the problem completely decentralized by communicating
only with their geographical neighbors; vehicles detect parking spots, store them in a
local memory, and share their knowledge with others. We have conducted extensive
simulations in varying traffic scenarios on a 10× 10 grid road network with randomly
generated routes. Our results show that smart approaches using ICT infrastructure
can significantly reduce search times and distances between the final parking spot
and the actual destination. Especially a centralized approach outperforms all others.
However, it is the one with the strictest assumptions regarding connectivity and sensor
deployment. A decentralized approach still achieves significant performance gains
while the cost of sensor deployment and communication infrastructure is delegated
to the drivers. In both cases the usage of atomic information about individual
parking spots suffices. In the distributed case the data from the local memory has
to be ranked by relevance. Our results show that a simple function based on the
information age and the position of its origin handle information decay better than
also storing information about occupied parking spots in the same memory. Hence,
a small local memory capable of storing information about as few as five free parking
spots is sufficient to improve driver satisfaction in city centers.

Similar studies have been performed by others [35, 36] and our results do not conform
to theirs completely. The fact that their investigated approaches to the PSSP as well
as simulation settings differ to ours in the details, shows us that any research done
in this field is highly parameter-dependent. Therefore we suggest a more theoretical
analysis of the problem as well as the usage of real world data for road network and
traffic initialization during simulations in future research. Also, the fact that the
attempt to handle information decay in a distributed approach by storing information
about occupied parking spots as well actually worsens performance, might indicate
that vehicles using this mechanic would need even larger memories. This has to be
investigated.

67

6 Conclusion and Future Work

While we have analyzed the PSSP in different problem settings and the three
approaches with different initial parameters, there are multiple things left for future
work. We have assumed that all vehicles and parking spots are of the same type and
size—a more realistic setting uses different types and possibly overlapping parking
spot positions that change depending on the order of parking vehicles. It would
be interesting to compare the performance of vehicles using a smart approach to
vehicles in the same network that do not take part in the system similar to the work
in [7], instead of creating separate scenarios for smart and näıve approaches. Since
our smart algorithms differ from those presented in [34], it would be desirable to
analyze the effect of cheaters on them. The presented algorithms use a multitude
of parameters (like the parking search radius rinit and its increment function) that
we initialized with reasonable defaults in our simulations. However, an extensive
analysis of the parameters’ effects is left for further research. Also, an individual
and dynamic parameter adaption on a per-vehicle basis needs to be investigated.
This includes an update of rinit if a vehicle detects very high or low occupancy for
example. The presented analysis is left to be repeated in a scenario with a real world
road network and real traffic demand definitions. As stated in Chapter 3, one could
add designated parking lots with a certain capacity to the scenarios in which the
different approaches are tested. Also, one could adapt the given algorithms to create
a new hybrid approach similar to the one presented in [52], where a vehicle uses
the distributed approach if the active vehicle density is high enough, and queries
a central server if it is not; or where all vehicles use a central server, but only the
sensors for free parking spot detection are vehicle-based. Finally, the idea of solving
a problem completely decentralized through sharing of atomic information could
be used for similar applications (like sharing road travel times for traffic density
estimation).

68

Bibliography

[1] S. Abidi, S. Krichen, E. Alba, and J. M. Molina. “A New Heuristic for Solving
the Parking Assignment Problem”. In: Procedia Computer Science. Knowledge-
Based and Intelligent Information & Engineering Systems 19th Annual Con-
ference, KES-2015, Singapore, September 2015 Proceedings 60 (Jan. 1, 2015),
pp. 312–321.

[2] F. Ahmed-Zaid, F. Bai, S. Bai, C. Basnayake, B. Bellur, S. Brovold, G. Brown,
L. Caminiti, D. Cunningham, H. Elzein, K. Hong, J. Ivan, D. Jiang, J. Kenney,
H. Krishnan, J. Lovell, M. Maile, D. Masselink, E. McGlohon, P. Mudalige,
Z. Popovic, V. Rai, J. Stinnett, L. Tellis, K. Tirey, and S. VanSickle. Vehicle
Safety Communications – Applications (VSC-A) Final Report. Final Report
DOT HS 811 492A. U.S. Department of Transportation, Sept. 2011.

[3] A. Aliedani, S. W. Loke, A. Desai, and P. Desai. “Investigating vehicle-to-
vehicle communication for cooperative car parking: The CoPark approach”. In:
2016 IEEE International Smart Cities Conference (ISC2). Sept. 2016, pp. 1–8.

[4] R. Arnott, T. Rave, and R. Schöb. Alleviating urban traffic congestion. The
CESifo book series. OCLC: ocm57749517. Cambridge, Mass: MIT Press, 2005.
240 pp.

[5] P. Basu and T. D. Little. “Wireless ad hoc discovery of parking meters”. In:
MobiSys Workshop on Applications of Mobile Embedded Systems (WAMES’04).
2004.

[6] F. Bellifemine, A. Poggi, and G. Rimassa. “JADE: A FIPA2000 Compliant
Agent Development Environment”. In: Proceedings of the Fifth International
Conference on Autonomous Agents. AGENTS ’01. New York, NY, USA: ACM,
2001, pp. 216–217.

[7] N. Bessghaier, M. Zargayouna, and F. Balbo. “Management of Urban Parking:
An Agent-Based Approach”. In: Artificial Intelligence: Methodology, Systems,
and Applications. Ed. by A. Ramsay and G. Agre. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2012, pp. 276–285.

[8] R. Bodenheimer, D. Eckhoff, and R. German. “GLOSA for adaptive traffic
lights: Methods and evaluation”. In: 2015 7th International Workshop on
Reliable Networks Design and Modeling (RNDM). Oct. 2015, pp. 320–328.

[9] J. L. Boehle. “City-Based Parking and Routing System”. Master Thesis. Eras-
mus University Rotterdam, 2007.

69

Bibliography

[10] J. L. Boehle, L. J. M. Rothkrantz, and M. v. Wezel. Cbprs: A City Based
Parking and Routing System. SSRN Scholarly Paper ID 1144292. Rochester,
NY: Social Science Research Network, 2008.

[11] I. Bogoslavskyi, L. Spinello, W. Burgard, and C. Stachniss. “Where to park?
minimizing the expected time to find a parking space”. In: 2015 IEEE In-
ternational Conference on Robotics and Automation (ICRA). 2015, pp. 2147–
2152.

[12] M. Caliskan, A. Barthels, B. Scheuermann, and M. Mauve. “Predicting Parking
Lot Occupancy in Vehicular Ad Hoc Networks”. In: 2007 IEEE 65th Vehicular
Technology Conference - VTC2007-Spring. Apr. 2007, pp. 277–281.

[13] M. Caliskan, D. Graupner, and M. Mauve. “Decentralized Discovery of Free
Parking Places”. In: Proceedings of the 3rd International Workshop on Vehicular
Ad Hoc Networks. VANET ’06. New York, NY, USA: ACM, 2006, pp. 30–39.

[14] A. Caragliu, C. Del Bo, and P. Nijkamp. “Smart Cities in Europe”. In: Journal
of Urban Technology 18.2 (2011), pp. 65–82.

[15] D. Caveney. “Cooperative Vehicular Safety Applications”. In: VANET Vehic-
ular Applications and Inter-Networking Technologies. Ed. by H. Hartenstein
and K. P. Laberteaux. John Wiley & Sons, Ltd, 2010, pp. 21–48.

[16] L. Chen, J. Hsieh, W. Lai, C. Wu, and S. Chen. “Vision-Based Vehicle Surveil-
lance and Parking Lot Management Using Multiple Cameras”. In: 2010 Sixth
International Conference on Intelligent Information Hiding and Multimedia
Signal Processing. Oct. 2010, pp. 631–634.

[17] V. Coric and M. Gruteser. “Crowdsensing Maps of On-street Parking Spaces”.
In: 2013 IEEE International Conference on Distributed Computing in Sensor
Systems. May 2013, pp. 115–122.

[18] B. Defude, T. Delot, S. Ilarri, J.-L. Zechinelli, and N. Cenerario. “Data Aggre-
gation in VANETs: The VESPA Approach”. In: Proceedings of the 5th Annual
International Conference on Mobile and Ubiquitous Systems: Computing, Net-
working, and Services. Mobiquitous ’08. ICST, Brussels, Belgium, Belgium:
ICST (Institute for Computer Sciences, Social-Informatics and Telecommuni-
cations Engineering), 2008, 13:1–13:6.

[19] T. Delot, N. Cenerario, S. Ilarri, and S. Lecomte. “A Cooperative Reservation
Protocol for Parking Spaces in Vehicular Ad Hoc Networks”. In: Proceedings of
the 6th International Conference on Mobile Technology, Application & Systems.
Mobility ’09. New York, NY, USA: ACM, 2009, 30:1–30:8.

[20] T. Delot, S. Ilarri, S. Lecomte, and N. Cenerario. “Sharing with Caution:
Managing Parking Spaces in Vehicular Networks”. In: Mobile Information
Systems 9.1 (Jan. 18, 2013), pp. 69–98.

[21] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In:
Numer. Math. 1.1 (Dec. 1959), pp. 269–271.

70

Bibliography

[22] S. Faye, C. Chaudet, and I. Demeure. “A distributed algorithm for adap-
tive traffic lights control”. In: 2012 15th International IEEE Conference on
Intelligent Transportation Systems. Sept. 2012, pp. 1572–1577.

[23] S. Faye, C. Chaudet, and I. Demeure. “A Distributed Algorithm for Multiple
Intersections Adaptive Traffic Lights Control Using a Wireless Sensor Networks”.
In: Proceedings of the First Workshop on Urban Networking. UrbaNe ’12. New
York, NY, USA: ACM, 2012, pp. 13–18.

[24] J. d. Gier, T. M. Garoni, and O. Rojas. “Traffic flow on realistic road networks
with adaptive traffic lights”. In: Journal of Statistical Mechanics: Theory and
Experiment 2011.4 (2011), P04008.

[25] V. Gradinescu, C. Gorgorin, R. Diaconescu, V. Cristea, and L. Iftode. “Adaptive
Traffic Lights Using Car-to-Car Communication”. In: 2007 IEEE 65th Vehicular
Technology Conference - VTC2007-Spring. Apr. 2007, pp. 21–25.

[26] G. Harini and A. G. Selvarani. “Off-Street Parking Guidance System”. In:
Indian Journal of Science and Technology 9.21 (June 16, 2016).

[27] H. Hartenstein and K. Laberteaux, eds. VANET Vehicular Applications and
Inter-Networking Technologies. Wiley, 2009.

[28] IEEE 1609 - Family of Standards for Wireless Access in Vehicular Environments
(WAVE). Sept. 25, 2009.

[29] Intelligent Transport Systems (ITS); Access layer specification for Intelligent
Transport Systems operating in the 5 GHz frequency band. EN 302 663 V1.2.0.
European Telecommunications Standards Institute, Nov. 2012.

[30] Intelligent Transport Systems (ITS); Mitigation techniques to avoid interference
between European CEN Dedicated Short Range Communication (CEN DSRC)
equipment and Intelligent Transport Systems (ITS) operating in the 5 GHz
frequency range. TS 102 792 V1.2.1. European Telecommunications Standards
Institute, June 2015.

[31] D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich. “Design
of 5.9 ghz dsrc-based vehicular safety communication”. In: IEEE Wireless
Communications 13.5 (Oct. 2006), pp. 36–43.

[32] R. Jiang, J.-Y. Chen, Z.-J. Ding, D.-C. Ao, M.-B. Hu, Z.-Y. Gao, and B. Jia.
“Network operation reliability in a Manhattan-like urban system with adaptive
traffic lights”. In: Transportation Research Part C: Emerging Technologies 69
(Aug. 1, 2016), pp. 527–547.

[33] E. Kokolaki, M. Karaliopoulos, and I. Stavrakakis. “Value of information
exposed: Wireless networking solutions to the parking search problem”. In: 2011
Eighth International Conference on Wireless On-Demand Network Systems
and Services. Jan. 2011, pp. 187–194.

71

Bibliography

[34] E. Kokolaki, G. Kollias, M. Papadaki, M. Karaliopoulos, and I. Stavrakakis.
“Opportunistically-assisted parking search: A story of free riders, selfish liars
and bona fide mules”. In: 2013 10th Annual Conference on Wireless On-demand
Network Systems and Services (WONS). Mar. 2013, pp. 17–24.

[35] E. Kokolaki, M. Karaliopoulos, G. Kollias, M. Papadaki, and I. Stavrakakis.
“Vulnerability of opportunistic parking assistance systems to vehicular node
selfishness”. In: Computer Communications 48 (July 15, 2014), pp. 159–170.

[36] E. Kokolaki, M. Karaliopoulos, and I. Stavrakakis. “Opportunistically assisted
parking service discovery: Now it helps, now it does not”. In: Pervasive and
Mobile Computing. Special Issue: Wide-Scale Vehicular Sensor Networks and
Mobile Sensing 8.2 (Apr. 1, 2012), pp. 210–227.

[37] D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker. “Recent Development
and Applications of SUMO - Simulation of Urban MObility”. In: International
Journal On Advances in Systems and Measurements 5.3 (Dec. 2012), pp. 128–
138.

[38] T. Lin, H. Rivano, and F. L. Mouël. “A Survey of Smart Parking Solutions”. In:
IEEE Transactions on Intelligent Transportation Systems 18.12 (Dec. 2017),
pp. 3229–3253.

[39] C. Lochert, A. Barthels, A. Cervantes, M. Mauve, and M. Caliskan. “Multiple
Simulator Interlinking Environment for IVC”. In: Proceedings of the 2Nd ACM
International Workshop on Vehicular Ad Hoc Networks. VANET ’05. New
York, NY, USA: ACM, 2005, pp. 87–88.

[40] R. Lu, X. Lin, H. Zhu, and X. Shen. “SPARK: A New VANET-Based Smart
Parking Scheme for Large Parking Lots”. In: IEEE INFOCOM 2009. Apr.
2009, pp. 1413–1421.

[41] N. Maslekar, M. Boussedjra, J. Mouzna, and H. Labiod. “VANET Based
Adaptive Traffic Signal Control”. In: 2011 IEEE 73rd Vehicular Technology
Conference (VTC Spring). 2011, pp. 1–5.

[42] S. Mathur, T. Jin, N. Kasturirangan, J. Chandrasekaran, W. Xue, M. Gruteser,
and W. Trappe. “ParkNet: Drive-by Sensing of Road-side Parking Statistics”.
In: Proceedings of the 8th International Conference on Mobile Systems, Appli-
cations, and Services. MobiSys ’10. New York, NY, USA: ACM, 2010, pp. 123–
136.

[43] MathWorks. MATLAB. url: https://www.mathworks.com/products/

matlab.html (visited on 09/10/2018).

[44] H. Mousannif, H. A. Moatassime, and I. Khalil. “Cooperation as a Service
in VANETs”. In: JUCS - Journal of Universal Computer Science 8 (Apr. 28,
2011).

[45] K. Nagel and M. Schreckenberg. “A cellular automaton model for freeway
traffic”. In: Journal de Physique I 2.12 (1992), pp. 2221–2229.

72

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

Bibliography

[46] R. Panayappan, J. M. Trivedi, A. Studer, and A. Perrig. “VANET-based
Approach for Parking Space Availability”. In: Proceedings of the Fourth ACM
International Workshop on Vehicular Ad Hoc Networks. VANET ’07. New
York, NY, USA: ACM, 2007, pp. 75–76.

[47] W.-J. Park, B.-S. Kim, D.-E. Seo, D.-S. Kim, and K.-H. Lee. “Parking space
detection using ultrasonic sensor in parking assistance system”. In: 2008 IEEE
Intelligent Vehicles Symposium. June 2008, pp. 1039–1044.

[48] Parking Guidance System. url: http://www.parkeninwien.at/en/Parking%
20Guidance%20System.html (visited on 08/24/2018).

[49] A. Picon. Smart Cities: A Spatialised Intelligence. Ad primers. John Wiley &
Sons, Nov. 16, 2015. 168 pp.

[50] S. V. Reve and S. Choudhri. “Management of Car Parking System Using
Wireless Sensor Network”. In: International Journal of Emerging Technology
and Advanced Engineering 2.7 (July 2012), pp. 262–268.

[51] Rhythm Engineering. InSync - Advanced Traffic Management for improved
safety. url: http://rhythmtraffic.com/insync/ (visited on 06/01/2017).

[52] R. Salpietro, L. Bedogni, M. D. Felice, and L. Bononi. “Park Here! a smart
parking system based on smartphones’ embedded sensors and short range
Communication Technologies”. In: 2015 IEEE 2nd World Forum on Internet
of Things (WF-IoT). Dec. 2015, pp. 18–23.

[53] S. Samadi, A. P. Rad, F. M. Kazemi, and H. Jafarian. “Performance Evaluation
of Intelligent Adaptive Traffic Control Systems: A Case Study”. In: Journal of
Transportation Technologies 02.3 (July 23, 2012), p. 248.

[54] San Francisco Municipal Transportation Agency. SFpark. url: http://sfpark.
org (visited on 08/27/2018).

[55] F. Schmidt-Eisenlohr. Interference in Vehicle-to-vehicle Communication Net-
works: Analysis, Modeling, Simulation and Assessment. KIT Scientific Publish-
ing, 2010. 180 pp.

[56] J.-H. Shin and H.-B. Jun. “A study on smart parking guidance algorithm”.
In: Transportation Research Part C: Emerging Technologies 44 (Supplement C
July 2014), pp. 299–317.

[57] D. Shoup. “Cruising for Parking”. In: ACCESS Magazine. ACCESS Magazine
1.30 (Apr. 1, 2007), pp. 16–23.

[58] L. Stenneth, O. Wolfson, B. Xu, and P. S. Yu. “PhonePark: Street Parking
Using Mobile Phones”. In: 2012 IEEE 13th International Conference on Mobile
Data Management. July 2012, pp. 278–279.

[59] L. Stenneth, O. Wolfson, P. S. Yu, and B. Xu. “Transportation Mode Detection
Using Mobile Phones and GIS Information”. In: Proceedings of the 19th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems. GIS ’11. New York, NY, USA: ACM, 2011, pp. 54–63.

73

http://www.parkeninwien.at/en/Parking%20Guidance%20System.html
http://www.parkeninwien.at/en/Parking%20Guidance%20System.html
http://rhythmtraffic.com/insync/
http://sfpark.org
http://sfpark.org

Bibliography

[60] K. P. Tang, P. Keyani, J. Fogarty, and J. I. Hong. “Putting People in Their
Place: An Anonymous and Privacy-sensitive Approach to Collecting Sensed
Data in Location-based Applications”. In: Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems. CHI ’06. New York, NY, USA:
ACM, 2006, pp. 93–102.

[61] The EstiNet Network Simulator. url: http://www.estinet.com/ns/ (visited
on 09/18/2017).

[62] The Matlab/Simulink Application Simulator. url: https://www.mathworks.
com/products/simulink.html (visited on 09/18/2017).

[63] The NCTUns Network Simulator and Emulator. url: http://nsl.cs.nctu.
edu.tw/NSL/nctuns.html (visited on 09/18/2017).

[64] The ns-2 Network Simulator. url: https://www.isi.edu/nsnam/ns/ (visited
on 09/18/2017).

[65] The VISSIM Traffic Simulator. url: http://vision-traffic.ptvgroup.
com/en-uk/products/ptv-vissim/ (visited on 09/18/2017).

[66] I. J. P. M. Timóteo, M. R. Araújo, R. J. F. Rossetti, and E. C. Oliveira.
“TraSMAPI: An API oriented towards Multi-Agent Systems real-time interac-
tion with multiple Traffic Simulators”. In: 13th International IEEE Conference
on Intelligent Transportation Systems. Sept. 2010, pp. 1183–1188.

[67] J. D. Turner. Automotive Sensors. Vol. 1st ed. Sensors Technology. New York:
Momentum Press, 2009.

[68] Vehicle Safety Communications Project - Final Report. Final Report DOT HS
810 591. U.S. Department of Transportation, Apr. 2006, p. 1291.

[69] V. Verroios, V. Efstathiou, and A. Delis. “Reaching Available Public Parking
Spaces in Urban Environments Using Ad Hoc Networking”. In: 2011 IEEE
12th International Conference on Mobile Data Management. Vol. 1. June 2011,
pp. 141–151.

[70] S. Y. Wang and C. C. Lin. “NCTUns 5.0: A Network Simulator for IEEE
802.11(p) and 1609 Wireless Vehicular Network Researches”. In: 2008 IEEE
68th Vehicular Technology Conference. Sept. 2008, pp. 1–2.

[71] A. Wegener, M. Piórkowski, M. Raya, H. Hellbrück, S. Fischer, and J.-P.
Hubaux. “TraCI: An Interface for Coupling Road Traffic and Network Simula-
tors”. In: Proceedings of the 11th Communications and Networking Simulation
Symposium. CNS ’08. New York, NY, USA: ACM, 2008, pp. 155–163.

[72] A. Weimerskirch, J. J. Haas, Y.-C. Hu, and K. P. Laberteaux. “Data Security
in Vehicular Communication Networks”. In: VANET. Ed. by H. Hartenstein
and K. P. Laberteaux. Wiley-Blackwell, 2009, pp. 299–363.

[73] B. Xie and D. P. Agrawal. Encyclopedia On Ad Hoc And Ubiquitous Computing:
Theory And Design Of Wireless Ad Hoc, Sensor, And Mesh Networks. Singapore:
World Scientific, 2010.

74

http://www.estinet.com/ns/
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
http://nsl.cs.nctu.edu.tw/NSL/nctuns.html
http://nsl.cs.nctu.edu.tw/NSL/nctuns.html
https://www.isi.edu/nsnam/ns/
http://vision-traffic.ptvgroup.com/en-uk/products/ptv-vissim/
http://vision-traffic.ptvgroup.com/en-uk/products/ptv-vissim/

Bibliography

[74] B. Xu, A. Ouksel, and O. Wolfson. “Opportunistic resource exchange in inter-
vehicle ad-hoc networks”. In: IEEE International Conference on Mobile Data
Management, 2004. Proceedings. 2004. May 24, 2004.

[75] B. Yang, N. Fantini, and C. S. Jensen. “iPark: Identifying Parking Spaces
from Trajectories”. In: Proceedings of the 16th International Conference on
Extending Database Technology. EDBT ’13. New York, NY, USA: ACM, 2013,
pp. 705–708.

[76] C. Zhang, H. Dong, L. Jia, Y. Qin, and Z. Yang. “Robust vehicle detection and
identification with single magnetic sensor”. In: 2017 2nd IEEE International
Conference on Intelligent Transportation Engineering (ICITE). Sept. 2017,
pp. 94–98.

[77] Z. S. Zhang, H. Q. Yuan, and L. Chen. “A Parking Vehicle Detection Algorithm
Using Magnetic Sensor”. In: Applied Mechanics and Materials 409-410 (Sept.
2013). Ed. by W. Yang and J. Liang, pp. 1353–1356.

[78] Y. Zhao and Z. Tian. “An Overview of the Usage of Adaptive Signal Control
System in the United States of America”. In: Applied Mechanics and Materials
178-181 (2012), pp. 2591–2598.

[79] H. Zhu and F. Yu. “A Vehicle Parking Detection Method Based on Correlation
of Magnetic Signals”. In: International Journal of Distributed Sensor Networks
2015 (July 8, 2015).

75

	Abstract
	Zusammenfassung
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Problem Statement
	Motivation
	Synopsis

	Related Work
	Traffic Flow Optimization
	Vehicular Communication
	Parking Spot Search Problem
	Disseminating Parking Spot Locations
	Predicting Parking Spot Locations
	Predicting Parking Spot Occupancy
	Efficient Candidate Traversal
	Simulation Setups
	Similar Studies

	Three Approaches to Parking Spot Search
	The Naïve Approach
	The Global Approach
	The Fully Distributed Approach
	Data Merging
	Candidate Ranking
	The Advanced Fully Distributed Approach

	Simulation Environment
	Basic Model
	Demand Generation
	Simulation Generator Pipeline
	Simulation Pipeline
	Algorithm Parameter Definitions
	System

	Simulation Results
	Time Spent During Parking Spot Search
	Distance Driven During Parking Spot Search
	Distance Between Parking Spot and Destination
	Metrics of the Distributed Approach
	Message Cost
	Discussion

	Conclusion and Future Work
	Bibliography

