

MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

“Real-Time on Demand Crowdsourcing Framework
for Multimodal Process”

verfasst von / submitted by

Roman Habitzl, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Diplom-Ingenieur (Dipl.-Ing.)

Wien, 2018 / Vienna 2018

Studienkennzahl lt. Studienblatt /
degree programme code as it appears on
the student record sheet:

A 066 935

Studienrichtung lt. Studienblatt /
degree programme as it appears on
the student record sheet:

Masterstudium Medieninformatik

Betreut von / Supervisor:

Univ.-Prof. Dipl.-Ing. Dr. Wolfgang Klas

2

Declaration of Originality

I hereby declare that except where specific reference is made to the work of
others, the content of this thesis is original and has not been submitted in whole
or in part for any other degree or qualification in this, or any other university. I
confirm that the submitted thesis is original work and was written by me without
further assistance. Appropriate credit has been given where reference has been
made to the work of others.

Vienna, .
(Signature)

3

4

Abstract (Deutsch) Crowdsourcing nutzt die Intelligenz der Masse
von freiwilligen Akteuren, um Aufgaben zu bewältigen, welche zu kom-
plex sind, als das Computer sie alleine lösen könnten. Es existieren
zwar bereits einige Crowdsourcing-Plattformen, diese besitzen aber meist
bestimmte Einschränkungen, wie beispielsweise die begrenzte Erreich-
barkeit und Verfügbarkeit der Nutzer. Diese Arbeit versucht verschieden-
ste, aktuelle Methoden aus dem Bereich des Crowdsourcing zu verbinden,
um eine einzige Plattform zu schaffen, welche akzeptable Ergebnisse in
Echtzeit und auf Abruf liefern kann. Die weite Verbreitung von mobilen
Endgeräten wie Smartphones wird genutzt, um die Verfügbarkeit der
Nutzer zu steigern. Die getroffenen Design-Entscheidungen bezüglich Ar-
chitektur und Implementierung werden detailliert präsentiert und auf die
verwendeten Technologien wird eingegangen. Der entwickelte Prototyp
wurde schließlich auf seine qualitativen und quantitativen Eigenschaften
getestet, wodurch die Nutzerfreundlichkeit und technische Leistung bes-
timmt werden konnten. Letztendlich präsentiert die Arbeit zukünftige
Verbesserungs- und Erweiterungsmöglichkeiten.

5

6

Abstract (English) Crowdsourcing uses the collective intelligence of
voluntary crowd workers to handle tasks which are currently too com-
plex to be solved by computers alone. While there already exist quite
a few crowdsourcing platforms, most of them come with certain limita-
tions, such as the very restricted availability of the user base. This work
attempts to investigate and combine different existing state-of-the-art
approaches to build a single platform capable of providing acceptable re-
sults in real-time and on demand. By utilizing the wide spread of mobile
devices like smartphones, this project aims to increase the crowd workers’
availability. The work presents the design decisions in terms of architec-
ture and implementation in detail. Additionally, the used technologies
are introduced and discussed. The developed prototype was tested in
terms of quality and quantity, determining its capabilities regarding us-
ability and technical performance respectively. Finally, the work presents
possible ways of further improving the system and extending its features.

7

8

Table of Contents

1 Introduction . 12
1.1 Motivation and Problem . 12
1.2 Specification of Functional Requirements . 13

1.2.1 Task Creation . 13
1.2.2 Task Distribution . 13
1.2.3 Real-Time Results . 14
1.2.4 Score System . 14
1.2.5 On Demand Availability . 14
1.2.6 Expandability . 14

1.3 Research Questions . 14
2 State of the Art . 14

2.1 Crowd-Powered Interfaces . 15
2.2 Real-Time Crowd-Powered Interfaces . 15

2.2.1 Retainer Model . 15
2.2.2 Rapid Refinement . 15

2.3 Task Assignment in Mobile Crowdsourcing Systems 16
2.3.1 Worker-Task-Time Triples . 16
2.3.2 Location Based Task Assignment . 16

2.4 Worker Performance . 17
2.4.1 Gamification . 17
2.4.2 Moral Reminder . 17

3 Architecture . 18
3.1 Client-Server Model . 18
3.2 Messaging . 20

3.2.1 Request-Response Message Pattern . 20
3.2.2 Representational State Transfer . 20
3.2.3 JavaScript Object Notation . 23
3.2.4 Push Notifications . 24

3.3 Model-View-Controller Design Pattern . 25
3.4 Persistence . 26

3.4.1 Comparison of MySQL and MongoDB 27
3.4.2 Persistence Layer . 28

3.5 Summary of Architectural Decisions . 28
4 Design and Implementation . 30

4.1 Use Cases . 30
4.1.1 User Role . 30
4.1.2 Requester Role . 31
4.1.3 Worker Role . 33

4.2 Technologies . 33
4.2.1 Spring Framework . 34
4.2.2 Hibernate . 37

4.2.3 Jackson . 37
4.2.4 opencsv . 38
4.2.5 Firebase . 38

4.3 System Overview . 38
4.3.1 Messaging Contract . 39
4.3.2 Configuration . 40

4.4 Framework Features . 43
4.4.1 Users . 43
4.4.2 Tasks . 47
4.4.3 Dynamic Task Data . 52
4.4.4 Task Assignments . 54
4.4.5 Results . 57
4.4.6 Retainer Crowds . 60
4.4.7 Scores . 61
4.4.8 Push Notifications . 63
4.4.9 Monitoring . 63

4.5 Client Applications . 64
4.5.1 Web Client . 64
4.5.2 Android Application . 66

5 Evaluation . 68
5.1 Quality . 68

5.1.1 System Usability Scale . 68
5.1.2 Integration of Crowdsourcing Features 69

5.2 Quantity . 72
5.2.1 Result Validation Duration . 72
5.2.2 Task Distribution Load Test . 72

6 Conclusion . 73
6.1 Result . 73
6.2 Limitations . 73
6.3 Evaluation . 73

7 Future Work . 74
7.1 Utilization of Mobile Device Services and Technologies 74

7.1.1 GPS Service . 74
7.1.2 Calendar Synchronization . 74
7.1.3 Wearable Technologies . 75

7.2 Task Extensions . 75
7.3 Reputation System . 75
7.4 Final Product Completeness . 75

7.4.1 Score System . 75
7.4.2 User Verification . 76
7.4.3 User Interface Improvements . 76

A User Manual . 79
B Evaluation Survey . 86
C Source Code . 91

10

List of Tables

1 Properties of a request for creating a user . 44
2 Properties of worker settings . 44
3 Properties of a location . 45
4 Properties of an availability . 45
5 Properties of a request for updating a user . 46
6 Properties of a request for creating a task . 49
7 Properties of a question . 49
8 Properties of task settings . 50
9 Properties of assignment conditions . 51
10 Properties of a media resource . 51
11 Properties of a dataset for dynamic task data . 53
12 Properties of a task assignment . 56
13 Properties of a task result . 57
14 Properties of a question result . 57
15 Properties of a statistical task result . 59
16 Properties of a statistical question result . 59
17 Properties of a request for creating a retainer crowd 60
18 Properties of a retainer crowd . 61
19 Properties of a requester score . 61
20 Properties of a worker score . 62
21 Properties of monitoring information . 64

11

1 Introduction

1.1 Motivation and Problem

Using ”Machine Learning” techniques, algorithms can be specified that give
computers the ability to learn without being explicitly programmed. This works
by predicting the data based on a preceding learning process. However, the
results of such automated systems are often inaccurate due to limited training
data. With the use of crowdsourcing and the collective intelligence of voluntary
crowd workers, these training sets and therefore the accuracy of the resulting
outcome can be improved.

On the other hand, there are tasks that are too complex to be solved without
human intelligence [4]. Good examples of such tasks are text simplification mea-
surements [17] and activity recognition like identifying dependency relationships
between actions [18][19].

Figure 1 illustrates the concept of crowdsourcing and shows the interaction
of both the requester and the crowd workers with the crowdsourcing platform.

Fig. 1. Concept of crowdsourcing

Most existing crowdsourcing platforms come with certain limitations. Several
tasks often require the crowd workers to be available at a specific time or location.
When working from a desktop computer it may not be very appropriate to

12

provide solutions to these problems. Because of the wide spread of mobile devices
a mobile application for crowdsourcing could provide results from any place at
any time.

The challenge of this thesis is to combine different concepts to build a sin-
gle platform capable of providing acceptable results in consideration of all the
requirements that are presented in section 1.2. The implementation of the men-
tioned requirements leads to the development of a mobile crowdsourcing frame-
work which enables real-time crowd feedback on demand. In addition to the basic
functionality this framework prototype shall address the problems of real-time
results and feedback of workers from a specific location. As it is often desired
to receive answers for a specific task as soon as possible, interactive systems
require real-time results with low crowd latency. Although it is possible to re-
duce this latency by recruiting a retainer crowd that waits for the task, the use
of mobile devices has the potential to further improve solutions concerning this
requirement significantly.

Another issue is the warranty of quality. Crowd workers sometimes tend to
rush through tasks to earn their fee as fast as possible. While it is desired to
gather responses in seconds, the feedback quality should not be affected in a
negative way.

As it is not desired to over-complicate this project, a few limitations that
should not be part of the work have been defined. Also, a crowdsourcing appli-
cation is only useful when providing an appropriate community of crowd workers.
However, the process of growing such a user base and spreading the application
will not be part of this thesis.

1.2 Specification of Functional Requirements

This section covers the specific functional requirements that have to be imple-
mented in order to achieve the objective of the project prototype. A more de-
tailed and in-depth description of the implementation and design can be found
in section 4.

1.2.1 Task Creation The basic functionality of this framework consists of
the creation of tasks with varying complexity. These tasks can contain different
media types like simple texts or more complex media such as video or audio
files. Also, there should be different answering options to configure. The possible
answering options are plain text, single choice, multiple choice.

1.2.2 Task Distribution Aside from that it shall be possible to distribute
the tasks among crowd workers in consideration of location and availability. In
order to further improve the task assignment, other attributes such as age and
gender can be specified to find appropriate workers.

13

1.2.3 Real-Time Results The platform should try to guarantee real-time
results by utilizing technologies that lower crowd latency. To improve this aspect
of the framework, it is required to support the recruitment of retainer crowds.

1.2.4 Score System While it is not part of the project to implement a way
of paying crowd workers, there should be a simple score system that keeps track
of the requesters’ and workers’ activities.

1.2.5 On Demand Availability Clients shall be able to use the functions
of the platform on demand. This means that system should be implemented
according to the ”Software as a Service” (SaaS) delivery model. Operators of
the platform shall be able to configure the platform to fit their needs. Users of
the platform on the other hand, should be able to interact with the system via
a thin client application.

1.2.6 Expandability As some features will only be implemented in a very
basic way, the system shall be realized as a framework to provide the possibility
of extending features easily. With this approach, other developers can build their
own features using the developed prototype as a foundation.

1.3 Research Questions

Taking all the requirements presented in section 1.2 in consideration, follow-
ing main research questions can be identified and will be answered as resulting
outcome of this thesis.

1. How to design a mobile crowdsourcing framework capable of providing crowd
feedback in real-time on demand?
This question does not only refer to the used concepts and approaches, but
also to the technologies and software design considerations.

2. What problems occur when trying to combine existing approaches to imple-
ment such a system?
The implementation of such a system will most probably come with certain
limitations and problems.

3. How to evaluate such a system in terms of quantity and quality?
While quantity refers to the technical parameters of the system, the evalua-
tion in terms of quality refers to the perceived user experience.

2 State of the Art

In this section existing approaches to solve problems in the context of crowd-
sourcing applications or to improve their performance are presented. Some of the
referred strategies are implemented in the prototype developed for this project.

14

2.1 Crowd-Powered Interfaces

Typically user interfaces struggle to fulfill all the needs of the high-level tasks
that they desire to support. For example, tools for writing a paper might support
actions like creating a proper layout and finding spelling errors. However, there
are no solutions for more complex tasks, which require an actual understanding
of the written content, such as helping with writing decisions [4].

So-called crowd-powered interfaces take advantage of human intelligence to
provide support for those complex tasks. A study presented five different sys-
tems that have been developed, all of them aiming to provide user interfaces
by utilizing human computation and crowdsourcing concepts. The conclusion of
their work suggests that those interfaces succeed in being more intuitive and
efficient than other typical user interfaces [4].

2.2 Real-Time Crowd-Powered Interfaces

In order to provide an appropriate level of user experience, interactive systems
need to respond to user input within seconds. In the case of crowdsourcing
applications, the biggest time loss might be the crowd latency itself. Therefore
it is required to implement techniques that lower crowd latency. There are two
different approaches that aim to solve this problem [5]. A retainer model shall
enable payment for crowd workers who simply wait for a task and then respond
quickly. On the other hand, a technique called rapid refinement tries to find
consistency in received answers to dynamically improve the search space to focus
on promising answers.

2.2.1 Retainer Model The proposed retainer model is responsible for pro-
ducing reliable crowds that deliver results with a significantly reduced response
time. It does so by recruiting a certain amount of workers in advance and no-
tifying them when a task is available. In order to justify the waiting time for a
new task, workers are getting paid a small reward for participating in a retainer
crowd. The study showed that this solution is able to guarantee a fast response
time, while also maintaining scalability and still being useful even after a longer
wait time [5].

2.2.2 Rapid Refinement This approach is a programming pattern specifi-
cally designed for reducing the actual work time. Even tasks of a limited com-
plexity like simply answering questions can take quite a time, especially when
expecting results of higher quality. The study suggests that low-latency crowds
are synchronous crowds, meaning that the workers handle their tasks simultane-
ously. This is possible by using the previously mentioned retainer model, which
basically ensures that the whole crowd is available shortly after starting the task.
While the crowd is still searching for a final answer, the system automatically
looks for emerging agreements within the search space and is able to narrow
down the possible answer options to a single result. By calculating the likeliness

15

of the workers to agree, the task can be focused more and more on a smaller
search space, guiding the workers to find a final answer [5].

2.3 Task Assignment in Mobile Crowdsourcing Systems

With the increased popularity of smart mobile devices it has become possible
to build mobile crowdsourcing systems. Those systems can potentially target a
much wider range of workers, as it is not required for a worker to be available
and online at home from a desktop computer or notebook. A study on assigning
tasks to workers by referring to their daily schedules addresses the dynamic
nature of tasks and workers’ availability [12]. Another aspect that comes with the
advantages of mobile devices is the use of location data. Studies show examples
of how to further improve task assignment with this additional improved source
of information [22][29].

2.3.1 Worker-Task-Time Triples As workers are most likely to handle
tasks in their spare time, many task assignments might be unanswered, because
the worker simply was not available at the required time. The proposed solu-
tion aims to generate worker-task-time triples in order to increase the coverage
of task assignments. The process starts by creating directed graphs containing
all combinations of workers and tasks for each time period. Those graphs are
then merged into a single ”time-extended” graph, allowing the system to find
the most optimized worker-task-time triples. The optimization is calculated by
minimizing the total cost of the assignment, which is done by considering the
time and distance of each combination [12].

2.3.2 Location Based Task Assignment Most mobile devices offer the
possibility to track its position by using the Global Positioning System (GPS).
The data provided by a device’s location service can be used to improve task
assignment in crowdsourcing systems.

A study presents the development of a ”Location-based Relevant User deter-
mination System (LoRUS)”, which has the capability of determining the most
relevant mobile users in a specified spatial region. The motivation behind the
creation of such a system is the fact that users operating on mobile devices do
not have a static location. As those users’ dynamic location can change quite
frequently over time, their relevance for certain tasks can also change. LoRUS
tries to determine the most relevant users, which are the ones that will most
likely handle tasks related to a certain location [22].

Another study made use of location information by creating a location based
forum and implementing an application that provides information about loca-
tions based on the data collected with the forum. With the help of Google Maps
the platform can map locations to questions and automatically generate answers
to questions which have been asked in a similar way before [29].

16

2.4 Worker Performance

Crowdsourcing systems not only rely on the intelligence, but also on the eager-
ness and accuracy of the mass in order to deliver high quality results. This is
given by the fact that in an unsupervised system, workers could simply provide
random results for their tasks, only aiming to finish their work as quickly as
possible. The reliability of the results would suffer from the lack of diligence.

Another aspect is the crowd’s eagerness to deliver results. If there is no reason
for a worker to handle an assigned task, it will be hard to fulfill the application’s
requirement of delivering results in real-time.

Therefore, one big question is how to improve the performance of workers in
the system.

2.4.1 Gamification One way of improving the quality of the results is by
applying reward concepts known from gaming to the system. This process is
known as gamification and has been proven to have a significant, positive impact
on the participation in crowdsourcing applications [23].

A more practical example for applying gamification to a crowdsourcing sys-
tem is the ”SimplyCity” project. This mobile crowdsourcing platform was de-
veloped to help collecting local information for cities that intend to become a
smart city. Most of the times, the first step of evolving into a smart city is mak-
ing city related data publicly available. As many emerging cities do not have the
capabilities of doing so, the ”SimplyCity” prototype encourages citizens to help
gathering the required data. On the one hand, the project introduced various
types of task, depending on the requirement of the data to collect. These task
types range from simple questionnaires to location tagging and taking pictures.
The other problem was to encourage people to participate in the data collection
process. This was achieved by setting up a competitive leaderboard for individu-
als as well as for whole cities. Contribution was rewarded by points that improve
the ranking in each leaderboard [24].

2.4.2 Moral Reminder Reducing an abusive behavior of crowd workers and
therefore improving the quality of the retrieved results can be achieved with
quite simple methods. A study showed that a simple moral reminder is enough
to significantly improve the performance of workers, especially on short surveys.
The moral reminder was the signing of a short statement, in which participants
basically committed to honesty before working on the task. The results proved
that technique to be a very efficient improvement possibility, given the simplicity
of the method [14].

17

3 Architecture

This section covers the design decisions in terms of a software architectural
point of view. Following main topics occurred when thinking about a possible
architectural solution:

– Structure for a distributed application:
As it is necessary to provide the system’s information to an arbitrary number
of users, it makes sense to go for a distributed application structure. The two
most commonly used approaches are the client-server model and peer-to-peer
networking.

– Messaging:
The data which is generated by users and utilized by the crowdsourcing
platform needs to be exchanged between every interested participant in the
system. Therefore it is needed to choose a reasonable messaging pattern
which defines how data is shared between users and the system.

– Architectural pattern:
There are plenty of architectural software patterns which can be used to
structure an application logically. Those patterns do not aim to solve a very
specific detailed problem, but address a broader aspect such as the basic
organization of an application.

– Persistence:
Some data needs to be stored persistently in order to be available for the
platform at any time, even after restarting or reinstalling the system. Usually
this is done via a database, which is collecting and storing the data in its
own format. There exists a variety of different database types, with the most
commonly used ones being relational and non-relational database systems.

3.1 Client-Server Model

The client-server model is an architectural structure for distributed applications
that distinguishes between client and server components. Servers provide various
services and functionalities and clients can request the usage of such a service.
Clients and servers can communicate over a computer network with each other
and do not share any resources. Because there can be an arbitrary number of
clients, each one requesting a server’s services at any given time, the server listens
for incoming requests. Therefore it is the client’s role to initiate a communication
session. Figure 2 illustrates the concept of the client-server model.

There are multiple different reasons why the client-server model was preferred
over a peer-to-peer approach for this project.

Management and maintenance Tasks will be created and managed by a variety
of users, the same goes for answering tasks and sending results. All this resulting
data, ranging from user information to actual tasks and results, must be stored
and persisted. By choosing the client-server approach the whole system becomes
much easier to manage and maintain, as there will be one single endpoint which

18

Fig. 2. Client-server architecture

is completely in control of an administrator. The data can be persisted in a
database and is quickly obtainable for modifications and calculations. Even if
errors occur, the central server can provide a log output to allow a faster problem
analysis.

Performance and scalability Furthermore, the calculations done by the system
might be more complex and therefore require more computational power. User
devices, especially when talking about mobile devices, may suffer from perfor-
mance problems when those expensive operations are calculated on them. When
relocating this concern on a centralized hardware like a server, the user will not
experience any performance-disturbing issues at all, which will lead to a much
better user experience. The client software itself only has to deal with displaying
the present data and triggering the server’s services in order to manipulate the
data. With a growing community and more data being stored and managed by
the platform, the operations will become more costly. In terms of scalability the
server’s hardware can easily be upgraded, leading to more computational power.
Also, the server’s performance can be monitored by an administrator, deciding
when to perform hardware upgrades or spotting bottlenecks in the software’s
performance.

Front end interchangeability Another advantage of the client-server model is the
possibility of easily developing different client applications for varying devices.
The client software only has to deal with displaying and visualizing the data.
Depending on the customer’s need, different client software solutions can be
implemented, each utilizing a different subset of the provided services by the
server.

Conclusion Overall the client-server architecture might come with a higher cost
in terms of hardware and resources compared to a peer-to-peer solution, espe-
cially in the beginning phase of a project. But in the long run it definitely pays

19

off due to the fact that the whole system becomes way more manageable and
maintainable.

3.2 Messaging

Messaging defines the way how two separate parts of the system communicate
with each other. This section however does not only cover the choice of an
appropriate message pattern, but also the way of how resources are accessed
and manipulated.

In terms of message patterns, there exist following commonly used concepts
[8]:

– Request-response: A service requestor sends a message to a service provider.
The service provider returns a resulting response for the according request.

– Publish-subscribe: With this approach the sending application is not inter-
ested in the identity of the receiving applications. Interested parties sub-
scribe themselves for receiving notifications and automatically get notified
when the sender publishes a message to the communication infrastructure.
Figure 6 illustrates this pattern.

– Fire-and-forget (either one-to-one or one-to-many): This one-way messaging
approach is used when the sender should not be affected by the receiver, for
example if the receiving party is not available.

3.2.1 Request-Response Message Pattern As described in section 3.1,
the system architecture of choice for this project is the client-server model. The
typical message exchange between a client and a server is done via the request-
response message pattern. That means that the client usually sends a request
to the server, which responds with data based on the outcome of the performed
operation. This approach enables a two-way conversation between different end-
points using a single communication channel.

3.2.2 Representational State Transfer This architectural style for dis-
tributed hypermedia systems defines a number of constraints based on the Hy-
pertext Transfer Protocol (HTTP). Following constraints are defined for the
Representational State Transfer (REST) style [9]:

Client-Server The first constraint is the use of a client-server architecture. This
brings the advantage of a separation in terms of concerns, splitting the user
interface from the business logic and data persistence. As discussed in section
3.1, the improvements of maintenance, scalability and front end portability are
important benefits of this constraint.

Statelessness Furthermore, the communication used for the interaction between
a client and the server has to be stateless. In detail this means that any request
sent by the client to the server needs to contain all information in order to be

20

Fig. 3. Request-response pattern

processed correctly. There is no stored session data which gives context to any
subsequently sent messages.

By keeping the communication stateless the system’s scalability and reliabil-
ity can be further improved, because there is no room for partial failures between
requests and the back end can free resources after each transaction without losing
data. Another benefit of the stateless nature is the fact that the workflow be-
comes more clear. Monitoring systems, for example, can determine the purpose
of each message without analyzing further messages.

Cache This constraint aims to reduce the required load sent over a network.
By giving response data the possibility of being cached on the client side, this
information can be reused for later requests which are equivalent to the initial
one.

Uniform Interface This design decision is considered as an essential part of any
application implementing the REST architectural style. The uniform interface
between components simplifies the whole application and further decouples the
architecture. The key restrictions to achieve this feature are the following:

1. Resource identification in requests:
A resource is uniquely identified by a uniform resource locator (URL) or
uniform resource identifier (URI).

2. Manipulation of resources through representations:
The response represents the resource identified by the URL or URI. The
resource can be manipulated directly via the resource identifier.

3. Self-descriptive messages:
Each message contains enough metadata to fully describe the message itself
and how to process it.

21

4. Hypermedia as the engine of application state:
Given the initial URL or URI for the REST application, all other states
should be accessible and possible to discover. The system should provide
links to all other available actions.

Layered System The scalability can be further improved by adding a layer con-
straint, which enables a hierarchically structured system. Components do not
know to which layer they are actually connected and have no awareness of what
is behind the layer they are interacting with, allowing intermediary layers to
manage certain aspects such as load balancing or security.

Fig. 4. REST concept example: Uniform-Layered-Client-Cache-Stateless-Server

22

HTTP method mapping When using HTTP for a RESTful interface, follow-
ing basic HTTP methods are typically utilized for accessing and manipulating
resources:

– GET:
This method is used to retrieve a specific resource or a collection of resources.
It should not change the state of the system and have no side-effects, meaning
the GET method is a nullipotent method.

– PUT:
This method replaces the according resource with the newly passed data.
If no resource for the addressed identifier currently exists, a new resource
will be added. The PUT method is idempotent, meaning that the state of
the system will always be the same, regardless of how many times the same
request is processed.

– POST:
This method updates an existing resource.

– DELETE:
This method simply deletes the addressed resource. Like the PUT method,
the DELETE method is an idempotent operation.

Conclusion Because of all the above mentioned advantages of using the REST
architectural style, such as improved maintenance, scalability, simplicity and
client portability, the implementation for this project was done in a RESTful
approach.

3.2.3 JavaScript Object Notation The widely used JavaScript Object No-
tation (JSON) is a lightweight data interchange text format, which also is inde-
pendent of any programming language [16].

JSON uses a text representation which can be read easily by humans. In
comparison with other data exchange formats like the Extensible Markup Lan-
guage (XML), the JSON format offers a shorter and better human-readable
representation. Figure 5 illustrates the schema of valid JSON structures.

23

Fig. 5. Graphical representation of valid JSON structures [16]

Due to the discussed advantages, its great popularity and the resulting vari-
ety of supporting technologies, the JSON data format was used as serialization
technology for the implementation of this project’s prototype. The platform it-
self offers the possibility to be extended easily with other formats, but for the
reference implementation only this approach was used.

3.2.4 Push Notifications Although the whole system’s main messaging style
is based on the request-response pattern, the crowd latency can be further re-
duced by sending notifications to the client devices. With this approach, the front
end application does not have to consistently query the back end for changes or
updates, but can simply wait to be notified about a new event. This is especially
useful for mobile devices, which are the key to the low response time of the
crowd.

The appropriate technology for this scenario is called push notifications,
where a remote server publishes a notification to the client application. In or-
der to make this happen, the client application usually has to subscribe itself
for receiving notifications first. After registering at the back end with a unique
identifier, the server can notify the client about a certain event by sending a
notification via a previously negotiated protocol, such as HTTP.

24

Fig. 6. Publish-subscribe pattern

3.3 Model-View-Controller Design Pattern

The idea of the Model-View-Controller (MVC) architectural software pattern is
to split the user interface from the underlying data model. As the name suggests,
it consists of three different aspects:

– Model
The model aspect of this pattern represents the available data and informa-
tion the system is based on. It also includes the logic for manipulating this
data.

– View
This aspect describes the way of how information is shown to the user. It is
possible for data to have more than one view representing its information.

– Controller
The controller aspect is used for processing user input and triggering specific
logic for the model and view.

Figure 7 shows the intended interactions between the components of the
MVC architectural pattern.

25

Fig. 7. Model-View-Controller pattern interactions

The description and advantages of using the Model-View-Controller pattern
are described as follows:

”Use of the MVC and PAC design pattern makes it easier to develop
and maintain an application since:
– the application’s ’look’ can be drastically changed without changing

data structures and business logic.
– the application can easily maintain different interfaces, such as mul-

tiple languages, or different sets of user permissions.
Colloquially, the term ’MVC’ has been extended to describe the way
that large-scale changes to an application’s Model are driven by a Con-
troller that is responsible, but not for logic that changes an application’s
overall state in response to the event created by the user’s interaction.
In response to changes in the Model, the Controller initiates creation of
the application’s new View.” [20]

So although the MVC pattern initially was developed for low-level user action
and desktop applications, it still can be applied to web applications as well. In
doing so, the three different aspects of the pattern are divided between the server
and the client part of the system [20].

3.4 Persistence

Basically there are two different database approaches applicable to this project.
The possible options are called relational and non-relational databases, with
the well-known and widely used solutions MySQL and MongoDB respectively.
MySQL is a typical relational database management system, storing data in
tables and using the Structured Query Language (SQL) for accessing and man-
aging the data. MongoDB on the other hand is a document-oriented database,

26

storing data as documents in the Binary JSON (BSON) format. Figure 8 displays
the different data structure used for each database.

Fig. 8. Comparision of SQL and MongoDB data structures [21]

3.4.1 Comparison of MySQL and MongoDB Both MySQL and Mon-
goDB have proven themselves to be useful and powerful database management
systems, although the core differences between them are in the very basic ap-
proach. Each one of them is by now famous enough to offer a relatively easy
setup and a wide range of support by different technologies.

When deciding which of the two approaches to use, it is necessary to take a
look at their respective advantages and features.

MySQL As the data is stored in tables and their predefined rows, the SQL
solution is a perfect fit for data with a known schema that fits in those tables
and rows. Furthermore the relational approach supports atomic transactions,
meaning that database operation are irreducible. Either all of of them are applied
or no changes occur at all, preventing wrong partially database updates. The
downside of supporting features like atomicity is that a lot of work has to be
done behind the scenes, which reduces the scalability in terms of write operations,
as many complex operations cannot be distributed to multiple machines.

MongoDB Here data is stored in documents, being an optimal solution for data
sets with an unstable schema. By dropping the support for atomicity, MongoDB
manages to reduce the time of tables being locked. Also, by using a technique
called ”sharding”, MongoDB enables horizontal scaling for its database. ”Shard-
ing” refers to an architecture that partitions database entries by key ranges,
allowing to distribute the data between multiple databases.

”MongoDB provided lower execution times than MySQL in all four basic
operations, which is essential when an application should provide support
to thousands of users simultaneously.
We can choose MongoDB instead of MySQL if the application is data
intensive and stores many data and queries lots of data.” [11]

27

Conclusion Although the non-relational approach seems to be a better fit for
growing and big data sets, the traditional relational database solution with the
MySQL implementation is used for this project. This decision was made because
in the system the data schema is well-known beforehand and there will not be
a huge amount of data in the prototype implementation. Also, the persistence
layer is implemented in an easily exchangeable way, allowing the database to be
switched at any time without too much effort.

3.4.2 Persistence Layer The persistence layer of the application is imple-
mented in a way that offers the possibility of replacing the logic easily. With this
approach, the interface connecting to an underlying database can be switched
on the developer’s demand without much trouble.

The reference implementation of the prototype uses a relational MySQL
database. As the data model is written in an object-oriented programming lan-
guage, it is incompatible to the data structure used by the database. To overcome
this issue, a programming technique called Object-Relational Mapping (ORM)
is used. Such tools can convert the complex objects used in the application’s
data model to the scalar values which are used in the database structure.

Fig. 9. Object-Relational Mapping as mapping tool between objects in memory and a
relational database management system

3.5 Summary of Architectural Decisions

As a result of the previously described architectural considerations and decisions,
the whole system was implemented as a distributed application, splitting the
responsibilities between a server and clients. The clients connect to the back end
over the internet and use request-response messaging to access and manipulate
resources. The server is providing an appropriate interface in a RESTful manner.
Especially useful for mobile devices, the client devices can register themselves
on the server to subscribe for push notifications, allowing the platform to inform
users about notable events.

The logical structure of the software follows a Model-View-Controller style,
relieving client devices from performance-intense calculations and leaving only
the representation of the view in their responsibility. Controller components
process requests sent by clients and trigger actions on the model. The persistence
is realized with a relational database management system — more precisely a

28

MySQL solution. For converting the objects in the application’s memory to
the relational data structure, an Object-Relational Mapping tool is used on the
boundary between business logic and database.

A complete overview of the resulting system architecture is shown in figure
10.

Fig. 10. System architecture overview

29

4 Design and Implementation

This section intends to cover the process of identifying the requirements of the
crowdsourcing framework in terms of use cases and features and the resulting
design decisions. The functional requirements mentioned in section 1.2 give a
rough overview on the initial specifications and are refined and elaborated. Fur-
thermore, the used technologies in the meaning of third party code components
will be introduced and explained. Finally, a list of all implemented features is
documenting the capabilities of the finished prototype software.

4.1 Use Cases

The activities of a user can be categorized in two different roles, being called
”Requester” and ”Worker”. As a requester, the user can create tasks and use
the platform to get results for those tasks. The worker role lets the user act as a
crowd worker and as a part of the collective intelligence of the crowd. Workers
get tasks automatically assigned by the system and can send results for their
assigned tasks. The use cases can therefore be described for three different actors:

– User
– Requester
– Worker

4.1.1 User Role The ”User” role applies for anyone using the application.
Use cases which can be performed by all users at any time without any context
are applicable to this role.

Fig. 11. Use cases for the actor ”User”

There was only one use case identified:

– Update Profile Information:
Users should be able to update their profile information at any point. This
implies personal information such as their name, email address, gender or

30

birthday, as well as their availability. Furthermore, the information about
participation in certain system functionalities should be changeable. In par-
ticular this refers to the option to participate as an active crowd worker or
to be available for retainer crowd assignments.

4.1.2 Requester Role As a ”Requester” users act to create and manage their
tasks, which will eventually be worked on by the crowd. Figure 12 illustrates the
identified use cases in two different diagrams, one showing general use cases and
the other one focusing on the use cases related to task creation and management.

Fig. 12. Use cases for the actor ”Requester”

Following use cases have been implemented in the platform:

– Create Task:
Creating tasks is considered one of the basic requirements for this project.
Requesters are allowed to create tasks at will. Each task may consist of
varying complexity, containing different media types such as a simple text,

31

video or audio. The number of questions for a task is also free to choose,
with each question having different answering options to configure. Possible
answering options can be an open text box with free text, single choice
options or multiple choice options. Besides from the questions and answer
options, there should be task settings to configure that specify the task
assignment conditions. A requester might want to filter the crowd workers
for a task according to special criteria like nationality or age.

– Activate Task:
Once a task has been created, its state shall be changeable by the initial
task author. Activating the task should trigger an automatic distribution to
crowd workers. Once a task is active, results can be received for it.

– Finish Task:
Finishing the task should irreversibly end the task, allowing no more results
to be submitted. An ended task cannot be activated again.

– Delete Task:
Deleting a task will completely remove the task and all received results from
the system with no option to restore the information.

– Pause Task:
Pausing a task should put the task in a state where no more results can be
submitted. A paused task however can still be resumed later.

– Resume Task:
Resuming a paused task will make it active again, allowing results to be
submitted again.

– View Requester Statistics:
The requester should have an overview on the points he has spent on getting
task results from the crowd. Also, some more sophisticated features such as
recruiting a retainer crowd might cost points. The statistics should at least
provide information about the spent points and the amount of created tasks,
with a possible extension to more data.

– List own Tasks:
Any created task has to be stored and available to be listed for the initial
creator. The task list should at least show the title of each task and the
creation date, with user interaction options to access or manipulate each
task.

– Inspect Task Result:
Naturally the requester wants to see the received result for each of his tasks.
The results should be presented in two different ways, an aggregated result
to clearly display the general opinion of all workers and a detailed view which
shows each single result on its own.

– Recruit Retainer Crowd:
The possibility to recruit a retainer crowd is useful for reserving crowd work-
ers for a specific point of time. Using this technique, the crowd latency can
potentially be lowered. Recruiting a retainer crowd however should require
the requester to spend score points. Otherwise, a requester could always
reserve an arbitrary amount of workers without any cost.

32

4.1.3 Worker Role In the role of a ”Worker” users participate as crowd
workers and act as part of the intelligence of the crowd. Workers get tasks
automatically assigned by the platform and can work on them.

Fig. 13. Use cases for the actor ”Worker”

The identified use cases for the worker role include following:

– Browse Assigned Tasks:
A worker should be able to see the tasks which have been assigned to him.
The overview of assigned tasks should at least provide information about
the task title and the reward for completing this task. Additionally, the user
should have the options to either accept or decline the assigned task.

– Work on Task:
Submitting results for created tasks is another very basic requirement for
the crowdsourcing framework. In order to submit results, workers have to be
able to work on a task, meaning that they can access assigned tasks, answer
the questions as defined by the task author and finally send the result.

– View Worker Statistics:
The worker should have the possibility to monitor their earned points for
completing tasks. The statistics view should at least provide an overview
about the score, the completed tasks and the declined tasks.

– Share Availability:
In order to enable a better task assignment for the system and to increase a
worker’s chance of getting tasks assigned, a worker should be able to share
his availability with the platform. By providing the time and location of
availability the system is able to identify appropriate workers for task as-
signments and retainer crowds more easily.

4.2 Technologies

There are many third party frameworks, libraries and tools available that help
building the foundation of this project’s software or support the development of

33

a certain feature. In this section the used technologies are introduced, including
the motivation of using them.

4.2.1 Spring Framework The Spring framework is an open-source Java
framework developed by Pivotal Software. It provides infrastructure support
for Java applications and handles infrastructure related concerns, so that the
developer only has to deal with his application. Furthermore, Spring enables
the development of software even of enterprise application size using ”plain old
Java objects” (POJOs) [15]. By using only POJOs it is not needed to run the
application on an application server that manages Enterprise JavaBeans (EJB)
— running a simple robust servlet container is sufficient.

Another central feature of the framework is its inversion of control (IoC)
container. Inversion of control, also called ”Hollywood’s Law” [28], is a design
principle that inverts the control flow of a program:

”The framework dictates the architecture of your application. It will
define the overall structure, its partitioning into classes and objects, the
key responsibilities thereof, how the classes and objects collaborate, and
the thread of control. A framework predefines these design parameters
so that you, the application designer/implementer, can concentrate on
the specifics of your application. The framework captures the design
decisions that are common to its application domain. Frameworks thus
emphasize design reuse over code reuse, though a framework will usually
include concrete subclasses you can put to work immediately.

Reuse on this level leads to an inversion of control between the applica-
tion and the software on which it’s based.” [10]

The Spring framework implements the inversion of control principle as depen-
dency injection (DI). In doing so, objects define their dependencies themselves,
for example by using constructor parameters. The container then automatically
injects the required dependencies when creating the object. Spring calls such
objects that are managed by the inversion of control container ”beans”. Beans
build the foundation of the application.

The modular organization of the Spring framework allows to only use the
needed parts, making it a lightweight framework with a broad range of services.
Following modules have been utilized developing the crowdsourcing framework:

– Web Model-View-Controller framework

– Transaction management

– Object Relational Mapping Data Access

– Security

Web Model-View-Controller framework This module offers an MVC architec-
ture and various components to develop a flexible web application while also
supporting RESTful web services:

34

”The Spring Web model-view-controller (MVC) framework is designed
around a DispatcherServlet that dispatches requests to handlers, with
configurable handler mappings, view resolution, locale, time zone and
theme resolution as well as support for uploading files. The default han-
dler is based on the @Controller and @RequestMapping annotations,
offering a wide range of flexible handling methods.
With the introduction of Spring 3.0, the @Controller mechanism also
allows you to create RESTful Web sites and applications, through the
@PathVariable annotation and other features.” [15]

Those features make it a perfect fit for the needs of the crowdsourcing plat-
form and the desired architecture described in section 3.

Figure 14 graphically shows the life cycle of a request being handled in the
Spring Web MVC framework.

Fig. 14. Request life cycle in the Spring Web MVC framework [25]

The Spring framework’s view resolution is designed to be really flexible, as it
allows view configuration through content negotiation via the Accept header of

35

HTTP requests, file extensions and many more options. The model, implemented
as a Map interface, will be transformed into the required format, which is JSON
in the case of this project’s prototype.

The crowdsourcing framework project uses the Spring Web MVC framework
of version 4.3.1.RELEASE of the Spring framework.

Transaction management A database transaction is defined as a sequence of
operations that affect the database. Each of those operations is considered as a
single unit of work and should either be applied to the database altogether or
not at all. This is necessary to assure data integrity and a consistent data set.

Spring’s transaction management module supports a generalized and simple
interface for a variety of different transaction management application program-
ming interfaces (APIs), for example Java Transaction API (JTA), Java Database
Connectivity (JDBC), Java Persistence API (JPA), Java Data Objects (JDO)
or Hibernate. Furthermore the module provides great integration with Spring’s
very own data access abstractions.

The prototype implementation uses Spring’s transaction management mod-
ule of version 4.3.1.RELEASE of the Spring framework.

Object Relational Mapping Data Access The Spring framework comes with sup-
port for various data access technologies, including first-class support for Hiber-
nate integration. Via dependency injection all supported features for ORM tools
can be configured quite easily. There are plenty of good reasons to use the ORM
data access module [15]:

– General resource management:
Hibernate’s SessionFactory instances are configured and managed by the
Spring application context, providing an easy, efficient and safe resource
handling.

– Integrated transaction management:
By using the @Transactional annotation the semantics of a transaction can
be declared, enabling an automatic management of exception handling for
rollbacks and other transaction specific concerns.

– Common data access exceptions:
With different transaction management APIs come a variety of custom ex-
ceptions. The Spring framework converts them to a common exception hi-
erarchy, allowing the developer to handle exceptions in a much easier and
generalized way.

– Easier testing:
With Spring’s inversion of control container and dependency injection the
different implementations of persistence related classes can be changed quite
easily, simplifying unit testing of the persistence code.

As Hibernate was chosen as ORM tool for this project, the built-in support
from the Spring framework is a convenient feature.

In particular, Spring’s HibernateTransactionManager class was used for
integrating Spring’s data access abstraction with Hibernate.

36

Spring’s ORM data access module of version 4.3.1.RELEASE of the Spring
framework was used for the development.

Security Spring Security is a Spring sub-project providing security features like
authentication and authorization for applications. The framework is considered
the recommended standard for integrating security into Spring-based applica-
tions. It supports solutions for the two major security aspects ”authentication”
and ”authorization” [2]:

– Authentication:
The sub-project provides strategies for different authentication models and
integration with a wide set of technologies, including form-based authenti-
cation, the Lightweight Directory Access Protocol (LDAP) and OpenID.

– Authorization: Spring Security supports three main authorization concerns,
which are authorizing web requests, method invocation and access to indi-
vidual domain object instances.

Version 4.1.3.RELEASE of the Spring Security project was used for develop-
ing this prototype.

4.2.2 Hibernate The Hibernate framework developed by Red Hat provides
a set of data related solutions for Java applications. The particular modules
used for developing the crowdsourcing back end are Hibernate ORM, an object-
relational mapping framework and Hibernate Validator, a bean validation API.

Hibernate ORM The object-relational mapping tool provides data persistence in
relational databases while supporting object-oriented concepts like inheritance,
polymorphism, association and composition. Furthermore, it has built-in support
for the Java collections framework. The strengths of the framework include high
performance, scalability, reliability and extensibility.

Hibernate Validator The bean validation API offers generalized, annotation-
based constraints to validate domain model objects. Metadata annotations such
as @NotNull, @NotEmpty or @Size can be used to automatically validate ob-
jects received via client requests on the back end side. Besides that the built-in
constraints can easily be extended by writing custom constraints.

The implementation uses version 5.2.2.Final of the Hibernate ORM frame-
work and version 5.3.0.Final of the Hibernate Validator.

4.2.3 Jackson The Jackson project is a collection of Java data-processing
tools, primarily known for its high-performance JSON parsing processor. It also
supports a variety of other data formats such as CSV, Protobuf, XML, YAML
and more. It is developed by FasterXML and aims to be a fast and lightweight
library. [26]

For this project, version 2.8.3 of the Jackson databind core module (https:
//github.com/FasterXML/jackson-databind) is used for serializing and dese-
rializing between the JSON data format and Java objects.

37

The support for the Java Specification Request 310 (JSR 310), which essen-
tially is the Java 8 date and time API, is enabled by importing version 2.8.3 of
the module https://github.com/FasterXML/jackson-datatype-jsr310.

4.2.4 opencsv The opencsv library is an open-source CSV parser developed
by Glen Smith. It provides a simple interface and supports useful configuration
options such as custom quotation and separation characters. Furthermore, there
is also the possibility to bind data values directly to bean fields via annotations
[27].

The prototype implementation uses the opencsv library to parse and validate
the uploaded CSV files, which can contain reusable data values and predefined
question definitions.

A comparison of CSV parsers for Java shows that the opencsv library is
considerably slower than other solutions for a large amount of records [7]. As
the use cases of the crowdsourcing framework only cover a relatively rare usage
of CSV files with a low number of lines, the performance impact is not that
important. In favor of API simplicity and easy configuration the implementation
uses version 3.9 of the opencsv parser.

4.2.5 Firebase The Firebase platform is a mobile and web application devel-
opment platform by Firebase Inc., a subsidiary company of Google. It provides
a wide range of different services, covering analytics, stability and performance
monitoring, mobile advertising, user base growth and development features like
authentication, data storage, hosting and cloud messaging [1].

In order to broadcast real-time notifications to mobile clients, the crowd-
sourcing framework makes use of the Firebase Cloud Messaging (FCM) service.
The service is free to use and aims to reliably deliver messages to cross-platform
clients. It is also capable of delivering messages in three different ways:

– Target single devices
– Target groups of devices
– Target devices subscribed to a specific topic

FCM differentiates between two types of messages, which are called notifi-
cation and data messages. Notification messages are only handled by the client
application if the app is currently active. If the app is in the background, an
automatically generated notification is displayed. However, FCM traditionally is
used with data messages, which are handled directly by the client app, regardless
whether it currently is in the foreground or background.

The prototype uses version 5.3.0 of the Google Firebase software develop-
ment kit (SDK) for delivering push notifications to mobile clients.

4.3 System Overview

The system consists of multiple features that work on domain objects. A domain
object is a logical entity that describes an aspect of the domain and reflects a
real-world concept.

38

Each feature has its own set of operations that can be triggered by requests
from external clients or other internal services. The handlers for those requests
are so-called controllers and map an HTTP request targeting a certain URL to
a service operation. Domain objects may also be persisted in the database using
repositories, which provide an interface to store the data model in a database
specific way.

Figure 15 shows the concept of controllers and services. Each controller can
have access to other services, but not to other controllers. Services can access
each other, but also do not have access to controllers. Furthermore, services can
have access to repositories to load and save domain objects.

Fig. 15. Concept of controllers and services

4.3.1 Messaging Contract As described in detail in section 3.2.3, JSON is
the preferred data format for exchanging information between server and clients.

39

All the available properties for each request are described in section 4.4 as well
as in the documentation pages of the crowdsourcing framework, which can be .

For example, following request data might be sent to create a user in the
system:

{
”username ” : ” john123 ” ,
”password ” : ”password ” ,
” f i rstName ” : ”John ” ,
” lastName ” : ”Doe” ,
” emai l ” : ” john . doe@email . com” ,
” workerSet t ings ” : {

” activeWorker ” : true ,
” re ta inerCrowdPart i c ipant ” : true ,
” gender ” : ”MALE” ,
” birthday ” : ”1992−07−31”,
” languages ” : [

”en ” , ”de”
] ,
” l o c a t i o n ” : {

” country ” : ” Austr ia ” ,
” c i t y ” : ”Vienna”

}
}

}

For each request, the system will answer with a response containing at least
a success flag indicating the successful handling of the request. Furthermore,
there might be additional information after processing the request successfully.
In an error case, there will be an error field with a short textual description of
the error.

The following data might be sent as a response to the previous request for
creating a user:

{
” s u c c e s s ” : f a l s e ,
” e r r o r ” : ”Username a l ready e x i s t s ”

}

4.3.2 Configuration The framework allows the configuration of certain pa-
rameters at system startup. Those configuration options are called deployment
properties, because they can only be defined at the initial deployment of the
application. Changing their values during run-time is neither supported nor ad-
vised, as most of them have a high technical or semantic impact on the platform.

There are two different files that specify the available deployment properties,
both located in the WEB-INF\classes directory of the deployed web application:

40

– application.properties

– database.properties

The application.properties file is used to define application specific set-
tings, while the database.properties file allows the specification of technical
settings regarding the connection to the database.

The database deployment properties consist of following settings:

– jdbc.driverClassName

The Java Database Connectivity (JDBC) interface needs the fully qualified
class name of the driver that will be used. For a typical MySQL database
this usually is set to com.mysql.jdbc.Driver.

– jdbc.url

The URL that is used to connect to the database.
– jdbc.username

The username used to authenticate to the database.
– jdbc.password

The password used to authenticate to the database.
– hibernate.dialect

This property defines the fully qualified class name of the dialect that should
be used. Hibernate needs this information to generate the correct database
queries.

– hibernate.show sql

This flag defines whether SQL queries should be printed to the console out-
put.

– hibernate.format sql

This flag defines whether the printed SQL queries should be formatted au-
tomatically for better readability.

– hibernate.hbm2ddl.auto

This property sets the mode that is used for automatically validating or
exporting schema DDL to the database when the SessionFactory is created.
Following modes are supported:
– validate: Validates the schema without changing the database.
– update: Updates the schema.
– create: Creates the schema, removing previously stored data.
– create-drop: Drops the schema when the SessionFactory is closed ex-
plicitly, for example when the application is shut down.

The following lists contain descriptions of all available application deploy-
ment properties. Most properties have a close relation to certain features, which
are explained in depth in the feature description of section 4.4.

General configuration properties:

– retainer.crowd.cost.per.minute.and.user

This integer property defines the amount of points that need to be paid to
each user per minute for participating in a retainer crowd. The default is 10,
which sums up to a cost of 600 points for an one hour retainer period per
user.

41

– cloud.messaging.token

The authorization token used by Google’s FCM service for sending push
notifications.

Logging properties:

– logging.enabled

This flag can be used to configure whether logging should be enabled. Log-
ging messages are print to the standard output stream and additionally
written to a specified log file.

– logging.level

This property can be used to set the granularity of logging messages. The
default value is DEBUG, which enables all logging information. Other possible
values to set are INFO, WARN and ERROR.

– logging.file.folder

Setting this value defines the directory to which the log file should be written.
The server running this application must have writing permissions to this
directory.

– logging.file.name

This property defines the name of the logging file. If both logging folder and
logging file name are not configured, no logging information will be written
to any file.

File upload properties:

– file.upload.folder.data

The upload folder for regular data files, which are restricted to CSV files in
the prototype implementation.

– csv.separator.character

This property allows the definition of a custom CSV separator character.
The default character is ,.

– csv.quote.character

This property allows the definition of a custom CSV quote character. The
default character is ".

Scheduled tasks properties:

– task.assignment.check.interval.millis

The interval to perform a validation of all assignments in milliseconds. If
open assignments, which are in the state ASSIGNED or ACCEPTED, belong to
a finished task, the assignments will change to EXPIRED or MISSED.

– task.time.check.interval.millis

The interval to perform a validation of start and end time of tasks in mil-
liseconds. If a task’s start or end time is reached, the task will automatically
be started or finished.

– result.check.interval.millis

The interval to perform a validation of all results in milliseconds. If results
belong to a task that no longer exists, the results will be deleted.

42

– distribution.check.interval.millis

The interval to perform a validation of all task distributions in milliseconds.
If task distributions belong to a task that no longer exists, the distribution
information will be deleted.

– availabilities.check.interval.millis

The interval to perform a validation of every user’s availability information
in milliseconds. If an availability has an end time that is already in the past,
the availability will be deleted.

– retainer.crowds.check.interval.millis

The interval to perform a validation of all retainer crowds in milliseconds. If
a retainer crowd has an end time that is already in the past, the crowd will
be deleted and all according points will be assigned.

4.4 Framework Features

This section dives a little bit deeper into the technical implementation details of
the prototype. The implemented features and realized concepts are described and
documented thoroughly, providing a complete overview on the whole software.
Some of the used concepts are inspired by state-of-the-art approaches mentioned
in section 2.

The set of features implemented in this prototype can be differentiated by
considering the domain object that will be targeted primarily by the client action.
For the following list of features, each implemented domain object is described
separately with all the available operations on it.

4.4.1 Users Any client interacting with the platform in an authenticated way
is required to register itself before. With a registration a user is created, holding
the login data and some personal information for an optimized task assignment.
A user represents both aspects of interacting with the crowdsourcing platform,
the requester part as well as the worker part. While participating as a requester
requires someone to actively create a task, the worker role is partially passive,
because the system decides which worker will get a task assigned. Therefore each
user also has settings that inform the system whether they want to participate
as a worker.

Creating a user, which basically is a registration in the system, can be done
by sending a POST request to /register. The JSON content of the request
consists of properties defined in table 1. If the user creation succeeds, a successful
response with the generated user ID is returned.

{
” s u c c e s s ” : true ,
” use r Id ” : ”320600 c4−dada−445 f−bf26−f556aba76b70 ”

}

43

Table 1. Properties of a request for creating a user

Property name Required Description

username yes The username which will be used for lo-
gin. Must be unique in the system and
therefore not already in use.

password yes The password for this user.

firstName yes The first name of the user.

lastName yes The last name of the user.

email no The email address of the user.

userRights no The user rights. Must be USER or AD-
MIN. This property can only be set if
the sender of this request is an authen-
ticated admin user.

workerSettings no The settings for the worker role as de-
fined in table 2.

Table 2. Properties of worker settings

Property name Required Description

activeWorker yes A flag that indicates whether this user
wants to get tasks assigned and act as
a worker.

retainerCrowdParticipant yes A flag indicating whether this user
wants to get assigned to retainer
crowds, if his availability information
is fitting.

languages yes The list of spoken languages of the user.
Must be in form of IETF BCP 47 lan-
guage tags.

gender no The gender of the user, must be MALE
or FEMALE.

birthday no The birthday in the format yyyy-MM-
dd.

location no The usual location of the user as de-
fined in table 3.

availabilities no The list of availability information for
the user as defined in table 4.

44

Table 3. Properties of a location

Property name Required Description

country yes The country of this location.

city no The city of this location.

Table 4. Properties of an availability

Property name Required Description

startTime yes The start time of this availability in the
format yyyy-MM-dd HH:mm.

endTime yes The end time of this availability in the
format yyyy-MM-dd HH:mm.

location no The location during this time period as
defined in table 3.

In order to receive a complete list of all users, clients can send a GET request
to /user. It is possible to retrieve information about a specific user by sending
a GET request to /user/{userId} or to /user/username/{username}. If no
information can be found for the given user ID or username, null is returned.

A client can update specific user information by sending requests to the cor-
responding URL. There are two different update options, one for changing user
information and one for changing the user password. In order to change a user,
the requesting client must either be authenticated as the user to change or pos-
sess admin privileges. If the user updated was performed successfully, a success
response containing the user ID is returned. Updating the password of a user is
supported by sending a PUT request to /user/{userId}/password. The JSON
content of the request simply has to be the new password as a value. The other
user information can be updated by sending a PUT request to /user/{userId}.
The JSON data of the request supports the properties listed in table 5. Proper-
ties that are not defined or set to null are not affected by the update operation.

45

Table 5. Properties of a request for updating a user

Property name Required Description

firstName no The first name of the user.

lastName no The last name of the user.

email no The email address of the user.

gender no The gender of the user, must be MALE
or FEMALE.

birthday no The birthday in the format yyyy-MM-
dd.

location no The usual location of the user as de-
fined in table 3.

languages no The list of spoken languages of the user.
Must be in form of IETF BCP 47 lan-
guage tags.

activeWorker no A flag that indicates whether this user
wants to get tasks assigned and act as
a worker.

retainerCrowdParticipant no A flag indicating whether this user
wants to get assigned to retainer
crowds, if his availability information
is fitting.

Users can update their availability information by sending a POST request to
/user/{userId}/availability. The JSON content needs to be an availability
object as defined in table 4. By sending a DELETE request to the very same
URL, all availability information for this user will be deleted.

If a client desires to delete a user, a DELETE request to /user/{userId}
has to be sent. The requesting client must be either authenticated as the user
to delete or possess admin privileges.

46

4.4.2 Tasks The primary feature of the crowdsourcing platform is the pos-
sibility to create tasks and work on them. A task represents a set of questions
with different types of answers and answering options. Furthermore, tasks and
questions can also have a variety of media attached, such as images, audio and
video files. Each task also contains configurable assignment conditions, which
can be used to specify conditions that must be fulfilled by workers. The sys-
tem will automatically assign tasks only to workers that match the specified
requirements.

Any user can create a new task by sending a POST request to /task. The
JSON content of the request must represent a valid task, consisting of the prop-
erties defined in table 6. If the task creation succeeds, a success response with
the automatically generated task ID is returned.

{
” s u c c e s s ” : true ,
” taskId ” : ”320600 c4−dada−445 f−bf26−f556aba76b70 ”

}

Another way of creating new tasks is by cloning an existing one by sending a
POST request to /task/{taskId}/clone. The JSON data only consists of one
optional property, which is called dataId and defines the ID of a dynamic task
data. The newly created task has exactly the same settings as the original task
with following exceptions:

– The new task will have a new randomly generated task ID.

– The task state is set to the initial CREATED state of new tasks.

– The ID of the associated dynamic task data might be overwritten, if a new
one is sent with the request.

A task’s lifetime is represented by four different states. Figure 16 shows the
task state machine and the capabilities of each state. A newly created task always
starts in the CREATED state. This state represents the preparation of a task,
which is not yet distributed to workers. The task creator can activate a task in
this state and trigger the transition to the ACTIVE state. With this transition,
the system automatically determines optimal task assignments for workers and
distributes the task to them. As soon as a task is in this state, assigned workers
can submit their results. The task creator can always pause an active task and
set it to the PAUSED state. A task in this state cannot accept new results until
it is resumed again. At any point, the creator of the task can end the task and
transition it to the FINISHED state. This transition is irreversible, meaning that
a finished task will always stay finished, incapable of receiving new results.

47

Fig. 16. State machine of tasks

48

Table 6. Properties of a request for creating a task

Property name Required Description

taskSettings yes The task settings represent a general
configuration of the task. They consist
of properties as defined in table 8.

questions yes A list of defined questions for this task.
Each question consists of properties as
defined in table 7.

dataId no The ID of the dynamic task data. This
feature is explained in section 4.4.3.

Table 7. Properties of a question

Property name Required Description

questionType yes The type of this question. Supported
values are:

– SINGLE CHOICE
– MULTIPLE CHOICE
– DROPDOWN
– OPEN

questionText yes The text that contains the actual ques-
tion.

answerRequired yes A flag that specifies whether this ques-
tion must be answered by the worker.

answerOptions yes A list of possible answer options. This
property is not taken into consideration
if the question is of type OPEN.

media no An optional list of media resources at-
tached to the task description. The
structure of a media resource is defined
in table 10.

49

Table 8. Properties of task settings

Property name Required Description

title yes The main title of this task.

description yes A more detailed description of this
task.

media no An optional list of media resources at-
tached to the task description. The
structure of a media resource is defined
in table 10.

reward no The reward points that should be paid
to a worker for completing this task.
The range is from 0 to 1000 with a de-
fault value of 0.

maximumWorkers no The maximum amount of workers that
this task will be assigned to. The de-
fault value is 3, which is also the mini-
mum of this property.

startTime no The planned start time of this task in
the format yyyy-MM-dd HH:mm:ss. If
this property is set, the system will au-
tomatically activate the task at this
point of time and trigger the task as-
signment.

endTime no The planned end time of this task in
the format yyyy-MM-dd HH:mm:ss. If
this property is set, the system will au-
tomatically finish and end the task.

assignmentConditions no The assignment conditions used for
defining conditions for a more sophis-
ticated task assignment. The structure
of this property is documented in table
9.

50

Table 9. Properties of assignment conditions

Property name Required Description

requiredLanguage no The spoken languages of the worker.
Must be in form of IETF BCP 47 lan-
guage tags.

requiredMinimumAge no The minimum age of the worker.

requiredMaximumAge no The maximum age of the worker.

requiredGender no The gender of the worker. Supported
values are:

– MALE
– FEMALE

requiredLocation no The location of the worker as described
in table 3. The location specified in an
availability of a worker is always prior-
itized over his general location.

Table 10. Properties of a media resource

Property name Required Description

url yes The URL of the media file.

description no An additional description of this media
resource.

mediaType no A property used to help clients han-
dling the media by providing its type.
Supported values are:

– IMAGE
– VIDEO
– AUDIO
– UNKNOWN

The default value is UNKNOWN.

51

In order to receive information about a certain task, clients can send a GET
request to /task{taskId}. The platform responds with the very same infor-
mation as defined in table 6 for creating tasks. Additionally, the properties
requesterId with the identifier of the task creator and taskState with the
current state of the task are provided.

Clients can also send a GET request to /user/{userId}/assignments, which
is responded with a list of all tasks assigned to this user. To receive all tasks that
have ever been distributed to a worker, even the already finished ones, clients
can send a GET request to /user/{userId}/assignments/all. The requesting
client must either be the worker to whom the assignments belong of possess
admin privileges.

Changing the state of a task can be done by sending a PUT request to
/task/{taskId}/state. The JSON content has to be a simple value representing
the desired new state. In order to successfully change the state of a task, the
action must be either requested by the initial creator of the task or an user with
admin privileges. The state change from CREATED to ACTIVE triggers the
automatic task assignment by the system and distributes tasks to a number of
suitable workers, which is actually higher than the specified maximum amount
of workers in the task settings. This is done by the system to increase the chance
of receiving results as quickly as possible. For this reason, the platform monitors
the percentage of quickly accepted task assignments and uses the information
to calculate the amount of workers that will get a chance to handle the task.
For example, if 80% of all tasks are accepted within 10 minutes and a user
requested 100 results for a task, the system will distribute the task to 100 / 80%

= 125 workers. To prevent flooding the system with task distributions, there is
a defined limit of 60%. By assigning more workers to a task, this mechanism
compensates the lack of motivated and reliable workers in an environment. If
the performance of workers increases, it will automatically perform fewer task
distributions in the future. Lastly, changing the state of a task to FINISHED
ends the task irreversibly. All supported task states and state transitions are
shown in figure 16.

Clients can delete tasks by sending a DELETE request to /task/{taskId}.
The requesting client must be the creator of the task or possess admin privileges.

4.4.3 Dynamic Task Data Tasks can be customized by adding dynamic task
data via the dataId property during task creation. The property must be set to a
valid identifier of a previously created dataset. Such a dataset consists of a name
for identification purposes and a list of values which can act as exchangeable
parameters for the task description, question texts and answer options. Table
11 lists the properties of such a dataset. In combination with the task cloning
feature described in the previous paragraph, the dynamic task data can be used
to easily recreate similar tasks with different parameters.

In order to reference a data value in a text, it is required to insert a certain
token, which also holds the index of the referenced value. Such tokens are sur-
rounded by square brackets and start with the keyword data, followed by a colon

52

and the index. For example, referencing the first value can be done by adding
[data:0] to the text.

Table 11. Properties of a dataset for dynamic task data

Property name Required Description

dataSetName no A custom name to identify this dataset.
The default value is ”Data Set”.

dataValues yes A list of values that can be referenced
in tasks and questions. The values can
be referenced with a specific token in-
cluding the index of the value. For ex-
ample, referencing the first value can
be done via [data:0].

Clients can receive dynamic task data by sending a GET request to either
/task/data/{dataId} or /user/{userId}/data. The system responds with the
specific dataset or a list of all datasets created by the user respectively.

In order to create a new dataset, a user has to send a POST request to
/task/data with JSON content as defined in table 11. Additionally, task data
can also be uploaded in form of a CSV file by sending a POST request to
/upload/data. The uploaded CSV file must be in a certain format, separated
by the character of the configured CSV separator deployment property described
in section 4.3.2. All values have to be in the first line of the file. Given the default
value separator, the CSV file would have following structure:

[va lue 1] | [va lue 2] | [va lue 3] | . . .

The dataset name will be the original file name of the uploaded file.
Additionally to providing task data it is possible to define questions within

the CSV file. A task referencing a dataset via its dataId property will auto-
matically include the predefined questions. The questions from the CSV file are
simply added after the questions which have been defined in the normal task
definition. While the first line of the CSV file is reserved for data values, every
line afterwards can be used to define a new question. The structure of a question
definition also depends on the configured CSV separator character:

[type] | [r equ i r ed] | [t ex t] | [answer 1] | [answer 2] | . . .

The values correspond to the properties of a question listed in table 7. It is also
possible to directly reference the defined values of the first line of the CSV file
in the answer options afterwards. The following content shows a full example of
a CSV file defining both data values and multiple questions:

food | dr inks
DROPDOWN| t rue |What i s your gender ? |male | f emale

53

SINGLE CHOICE | t rue | Pizza be longs to . . . | [data : 0] | [data : 1]
SINGLE CHOICE | t rue | Cola be longs to . . . | [data : 0] | [data : 1]
MULTIPLE CHOICE | f a l s e | I l i k e . . . | none | [data : 0] | [data : 1]
OPEN| f a l s e |Do you have anything to say about t h i s survey ?

In this example the data values are used as topics that need to be allocated to
different terms. By cloning a task and simply changing the data values of the
first line it is possible to easily create a whole new task with different topics to
assign.

Users can delete their created datasets by sending a DELETE request to
/task/data/{dataId}. This action requires the user to be the creator of this
dataset or to possess admin privileges.

4.4.4 Task Assignments The crowdsourcing platform automatically chooses
suitable workers for each task. Such a task assignment contains the information
which task is assigned to which worker. Task assignments also have different
states, representing the actions a worker has taken and which operations can
be performed. Figure 17 illustrates the possible state transitions for task assign-
ments.

A new assignment initially starts in the ASSIGNED state, which means that
a worker has just been assigned to this task an can either accept or decline the
assignment. Depending on the taken action, the state changes respectively to
ACCEPTED or DECLINED. When a worker finishes his work on a task, the
assignment state will change to FINISHED. If a worker misses to accept, decline
or finish the assigned task and the task is ended, the assignment state transitions
to MISSED. On the other hand, if a worker fails to finish an already accepted
assignment before the task is ended, the assignment changes to the EXPIRED
state.

54

Fig. 17. State machine of task assignments

The differentiation between finished, missed and expired tasks can be used
to calculate a reputation for workers. Users who have missed a lot of tasks show
a lack of diligence and might be lower prioritized when being considered for a
task assignment.

Task assignments cannot be created directly by users, they are automatically
determined by the system. The platform iterates throw a series of steps in order
to optimize the way of finding suitable workers. In a first step workers who got re-
cruited for a retainer crowd are taken into consideration. The concept of retainer
crowds is explained as a separate feature in this section. The second step tries
to find workers that have declared their availability at the current point of time.
This means that workers who provide their availability information are always
favored for being assigned to tasks. Lastly all other workers are considered.

The amount of workers that are assigned to a task depends on the maxWorkers
setting defined during the task creation, which is explained in table 6. In order to
minimize the time needed for receiving a sufficient amount of results, the system
calculates the overall percentage of assignments that are accepted or finished
by a worker within ten minutes. The task will get distributed to a number of
workers based on this factor and the defined maxWorkers setting of the task.

Clients can receive task assignments by sending a GET request to the URL
/assignment/user/{userId}/new. The system responds with a list of all new
assignments for this worker. This only includes assignments that have not yet
been accepted, declined or finished by the worker. Table 12 lists the properties
that describe a task assignment.

55

Table 12. Properties of a task assignment

Property name Required Description

id yes The identifier of this task assignment.

workerId yes The identifier of the worker to whom
the task is assigned.

taskId yes The identifier of the task that is as-
signed to the worker.

taskAssignmentState yes The current state of this task assign-
ment.

taskState yes The current state of the task cor-
responding to this assignment. This
property is provided to increase the us-
ability for clients, so that they can hint
users whether the task is ready to re-
ceive results.

New task assignments can be accepted or declined by workers by sending a
PUT request to /assignment/{assignmentId}. The JSON content of the re-
quest must simply hold a value representing the desired new state, which is either
ACCEPTED or DECLINED. If the state change was successful, the system an-
swers with a success response containing the identifier of the assignment and the
new state.

{
” s u c c e s s ” : true ,
” ass ignmentId ” : ”320600 c4−dada−445 f−bf26−f556aba76b70 ” ,
” taskAss ignmentState ” : ”ACCEPTED”

}

56

4.4.5 Results Workers have the responsibility to finish the tasks that have
been assigned to them. Therefore, when receiving a task assignment, a user can
submit a new result for the task. This can be done by sending a POST request
to /result. The JSON content must represent a task result as listed in table 13.
Users can only submit results if they have been assigned to the task and have
no other result submitted for this task so far.

Figure 18 illustrates the workflow of creating tasks, activating and distribut-
ing them to workers. Finally a worker submits a result, which can then be re-
trieved by the creator of the task.

Table 13. Properties of a task result

Property name Required Description

taskId yes The identifier of the task that corre-
sponds to this result.

questionResults yes A list of results for questions contained
in the task. The structure of a question
result is defined in table 14.

Table 14. Properties of a question result

Property name Required Description

questionId yes The identifier of the question.

chosenAnswerOptions yes A list of answer options that have been
chosen for this question. Depending
on the question type, this list can be
empty or contain a single or multiple
values. The values must accurately rep-
resent the provided answer options of
the question.

57

Fig. 18. Workflow of creating and working on tasks

By sending a GET request to /result/{resultId} the system responds with
the found result. In order to receive all results for a specific task, a client has
to send a GET request to /task/{taskId}/results/detail. If the requesting
client is the initial creator of the task or possesses admin privileges, the platform
will respond with a list of all results.

Another feature is the receiving of a statistical overview of all results for a
specific task. Clients can send a GET request to /task/{taskId}/results to
receive statistical information of the received results and some data of the task
itself for convenience reasons. The properties of such a statistical task result are
listed in table 15.

58

Table 15. Properties of a statistical task result

Property name Required Description

taskId yes The identifier of the task.

title yes The title of the task. This property is
included for convenience reasons, as the
overview of such a statistical represen-
tation might want to show some con-
text regarding the according task.

receivedResults yes The total number of task results re-
ceived so far for this task.

statisticalQuestionResults yes A list of statistical question results.
The structure of such a result is de-
scribed in table 16.

Table 16. Properties of a statistical question result

Property name Required Description

questionId yes The identifier of the task.

questionText yes The actual question text. This property
is included for convenience reasons, as
the overview of such a statistical rep-
resentation might want to show some
context regarding the according ques-
tion.

questionType yes The type of the question. This property
is needed to help the client figure out
how to present the received results.

submittedAnswers yes The total number of answers received
so far for this question.

answerOptions yes The list of possible answer options for
this task. This property is provided
for conveniently displaying the avail-
able answers.

chosenAnswers yes A list of numbers that indicate the to-
tal amount of how often each answer
option has been chosen by workers. The
number’s index in this list corresponds
with the answer option’s index.

59

4.4.6 Retainer Crowds A requester has the possibility to recruit a so-called
retainer crowd to reserve users for a specific range of time. During this time,
workers of the retainer crowd have the topmost priority at getting the task
assigned when the requester activates it. An in-depth explanation of the concept
of retainer crowds is provided in section 2.2.1.

Users can create a new retainer crowd by sending a POST request to the
URL /retainercrowd. The request’s JSON content must specify the properties
as defined in table 17. Users that have requested a retainer crowd have to reward
the recruited workers with a configured amount of points per minute of the
retainer crowd duration. The configuration is mentioned in section 4.3.2. Upon
receiving a request for creating a new retainer crowd, the system automatically
searches for workers that have announced their availability within the requested
time duration.

Table 17. Properties of a request for creating a retainer crowd

Property name Required Description

startTime yes The start time of the retainer crowd in
the format yyyy-MM-dd HH:mm. Must
be a future point of time before the end
time.

endTime yes The end time of the retainer crowd in
the format yyyy-MM-dd HH:mm. Must
be a future point of time.

maxNumberOfWorkers yes The maximum amount of workers that
shall get recruited for the retainer
crowd. The value must be at least 3.

It is possible to receive information about a specific retainer crowd by send-
ing a GET request to /retainercrowd/{retainerCrowdId}. The information
provided for the retainer crowd contains the properties described in table 18.
Additionally, the system provides a list of all retainer crowds a user has cur-
rently requested. This information can be received by sending a GET request to
/user/{userId}/retainercrowds/requested. Furthermore, by sending a GET
request to /user/{userId}/retainercrowds/assigned, a list of all retainer
crowds this user has been assigned to is returned.

60

Table 18. Properties of a retainer crowd

Property name Required Description

id yes The identifier of the retainer crowd.

requesterId yes The identifier of the user who created
this retainer crowd.

startTime yes The start time of the retainer crowd in
the format yyyy-MM-dd HH:mm.

endTime yes The end time of the retainer crowd in
the format yyyy-MM-dd HH:mm.

workerIds yes A list of identifiers of users that have
been recruited for participating in this
retainer crowd.

4.4.7 Scores The prototype of the crowdsourcing platform uses a simple score
system that keeps track of requesters’ spent points and workers’ earned points.
This information is automatically updated by the application upon task related
actions. Additionally, some statistical information about tasks is stored within
requester scores and worker scores.

A user can receive his requester score by sending a GET request to the
URL /score/requester/{userId}. The returned response provides information
about the requester’s spent points and the amount of created tasks. The structure
of a requester score is described in table 19.

Table 19. Properties of a requester score

Property name Required Description

requesterId yes The identifier of the user to whom the
requester score belongs.

spentPoints yes The total amount of points spent so
far for creating tasks and requesting re-
tainer crowds.

createdTasks yes The total amount of created tasks.

Similar to the requester score a user can retrieve his worker score by sending a
GET request to the URL /score/worker/{userId}. Additionally to the earned
points, the worker score provides information about the tasks that have been
assigned to the user and the amount of times this user has participated in a
retainer crowd.

61

Table 20. Properties of a worker score

Property name Required Description

workerId yes The identifier of the user to whom the
worker score belongs.

workerScore yes The total amount of points earned so
far by working on tasks and participat-
ing in retainer crowds.

completedTasks yes The total amount of completed tasks.

completedQuestions yes The total amount of completed ques-
tions.

expiredTasks yes The total amount of expired tasks. A
task is expired if the worker fails to fin-
ish an already accepted task before the
task is ended.

missedTasks yes The total amount of missed tasks. A
task is missed if the worker does not
accept, decline or finish a task before
the task is ended.

retainerCrowdParticipations yes The total amount of times this user has
participated in a retainer crowd.

62

4.4.8 Push Notifications One goal of the crowdsourcing platform is the
ability to provide results as quickly as possible, at best in real-time. This goal
is obviously tightly bound to the number of active users, as the pool of suitable
and hard-working workers increases. However, even with a high amount of users,
the availability of the users is crucible for short response times. By providing an
interface that is also accessible on mobile devices, the range of available workers
can be vastly extended. People do not need to be at home on their desktop
computer or notebook in order to work on tasks. Instead, they can quickly react
on a new task assignment wherever they are.

In order to further improve the reaction time of crowd workers, the frame-
work allows clients to register for push notifications. The concept of push no-
tifications is explained in section 3.2.4. For the development of this prototype,
the Firebase platform has been used as described in section 4.2.5. Clients can
register their device for receiving push notifications by sending a POST request
to /user/device. The JSON content of the request needs to hold the Firebase
device ID token of the client’s device. For example, Java clients can query their
current token by calling following method provided by the Firebase Java API:

F i r eba s e In s tance Id . g e t In s tance () . getToken ()

As Firebase device identifiers can get refreshed, clients have to communicate
their updated device ID to the crowdsourcing platform. As the system maps
each received device identifier to the logged in user, a client registering for push
notifications needs to be logged in when subscribing itself. Therefore it is also
possible that one device is used with multiple accounts or one account is used
on multiple devices. According to the publish-subscribe messaging pattern, the
crowdsourcing platform will publish push notifications to all devices that have
ever been registered in association with the affected user identifier. Additionally,
the system will automatically detect invalid or outdated device identifiers and
remove them from the mapping.

Clients can also explicitly unsubscribe from push notifications by sending a
DELETE request to /user/device. Just like the subscription request, the JSON
content for unsubscribing needs to hold the device identifier as value.

4.4.9 Monitoring The crowdsourcing platform provides a monitoring service
which keeps track about certain actions that are performed within the system.
In order to retrieve the current state of monitoring information, clients can send
a GET request to /monitoring. Table 21 describes the available properties of
events that are monitored.

Most of the properties are only used for informational purposes. The number
of quickly accepted assignments however, which represents the total amount of
task assignments that have been accepted by users within ten minutes, is also
used for calculating the number of workers that will get assigned to a task. The
idea behind this feature is that depending on the average reaction time of the
workers, the system can distribute a task to an optimal number of workers in
hindsight to minimize the time a requester has to wait for results.

63

Table 21. Properties of monitoring information

Property name Required Description

numberOfUsers yes The total number of users
that have registered them-
selves in the system so far.

numberOfTasks yes The total amount of tasks
that have been created by all
users.

numberOfQuestions yes The total amount of ques-
tions that have been created
by all users.

numberOfAssignments yes The total amount of task
assignments that have been
created by the system.

numberOfAcceptedAssignments yes The total amount of task
assignments that have been
accepted by users.

numberOfQuicklyAcceptedAssignments yes The total amount of task
assignments that have been
accepted by users within ten
minutes.

Users with admin privileges have the possibility to reset the monitoring in-
formation by sending a DELETE request to /monitoring. If the reset succeeds,
the system responds with the newly initiated monitoring information.

4.5 Client Applications

The prototype implementation not only includes the back end functionality,
but also two simple test applications for clients, which provide graphical user
interfaces for most of the presented functionality.

4.5.1 Web Client The web client is a really basic homepage that only sup-
ports a very limited set of features. Users can login, logout and register via this
client application. Additionally, the main purpose of this client is to allow the
upload of task data sets as described in section 4.4.3. The monitoring informa-
tion, which is mentioned in section 4.4.9, can also be queried and reset using the
web client’s interface. Additionally, the web client can retrieve the results of a
logged in requester’s tasks in JSON format.

Figure 19 and 20 show screenshots of the client’s user interface with all
possible actions.

The web client comes with the server and can be installed by deploying the
attached crowdsourcing.war archive on a Java application server.

64

Fig. 19. User interface of the web client

Fig. 20. Receiving all created tasks and a specific result via the web client

65

4.5.2 Android Application In comparison to the small web client, the vast
majority of the prototype’s features are integrated in a native Android appli-
cation. This application also mainly serves as a test client that only provides a
simple user interface to work with the implemented back end functionality.

The entry menu of the application is a login screen, which also gives the
option to register in the system. After logging in and authenticating against the
server, the main menu presents buttons for major features, split by the requester
and worker roles. Furthermore, a profile menu allows the user to update his or
her information as described in section 4.4.1. There is also the option to to add
availability information. Figure 21 shows screenshots of those login and main
menu pages.

Fig. 21. Login page and main menu of the Android client

Users can create tasks and request retainer crowds. Previously uploaded data
set via the web client application mentioned in section 4.5.1 can be inspected in
a separate menu and used during task creation.

A dedicated menu lists all the tasks created by the user and provides a few
options to interact with them. Users can change the state of a task, which also
includes activating a task as described in section 4.4.4. Additionally, retrieved
results can be obtained and the task can be cloned or deleted.

When a task is activated and distributed to workers, their Android device
with an installed client application will receive a push notification. In the worker
section, a list of all assigned tasks is available, with the option to work on a task
and submit the result. Figure 22 shows screenshots of the menus for browsing
all assigned tasks and working on a task.

66

Fig. 22. Browsing assigned tasks and working on a task in the Android client

Fig. 23. Inspecting the retrieved results of a requested task in the Android client

67

As soon as task results are submitted to the server, the requester can see the
currently retrieved results for each task in a separate menu. This menu presents
the statistical results with the option to view the details of each received single
result. The different result views are explained in section 4.4.5. An example of
the result overview is shown in the screenshot presented in figure 23.

5 Evaluation

The evaluation has been performed in consideration of two different aspects,
namely quality and quantity. The quality evaluation targets the user experi-
ence and was done with an evaluation survey. The quantity aspect describes the
system from a more technical point of view and presents measurements of the
crowdsourcing platform during operation.

5.1 Quality

The first part of the user quality survey focuses on the usability of the applica-
tion [6][13], giving an overview on the design of the client applications, which
are described in section 4.5. Additional questions target the integration of the
crowdsourcing features within the system and the tester’s belief that the system
can actually fulfill the functional requirements stated in section 1.2.

The survey has been answered by 10 different people, which have been given
access to the prototype system with an installation of the Android application.
They also received a user manual on how to operate the system with a suggestive
to-do list to get familiar with all the main features. The user manual is attached
to this thesis and can be found in appendix A.

The original evaluation survey as presented to the test subjects can be found
in appendix B.

5.1.1 System Usability Scale Questions 1 to 10 are statements that con-
cern the user’s experience with the interface. Each question offers five answer
options, agreeing and disagreeing on a scale from 1 to 5 with the statement. The
statements are taken from the system usability scale (SUS) [6].

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use

this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.

10. I needed to learn a lot of things before I could get going with this system.

68

Figure 24 illustrates the result from questions 1 to 10. The answers have been
quite homogeneously, showing that all users felt comfortable using the developed
prototype. This is quite a positive outcome to notice, given the fact that nobody
of the testers have had worked with a crowdsourcing system before. The highest
variation is spotted for question 1, which can be explained by the fact that some
people simply do not desire to participate in crowdsourcing, for example due to
their lack of time or interest.

System Usability Scale Score The SUS score is a simple way of rating a system’s
usability based on the questions of the system usability scale. The score can range
from 0 to 100, which refer to the worst and best possible usability respectively.
The developed crowdsourcing prototype achieved an average SUS score of 93.6,
which represents an excellent usability [3].

Fig. 24. Evaluation survey result of questions 1 to 10 about the user experience

5.1.2 Integration of Crowdsourcing Features The last four questions
deal with the presentation and integration of crowdsourcing specific topics.

Question 11 let the test subjects rate the system’s usability on a more fine-
grained level.

11. How did you experience the user interface of the mobile application?
– Highly user-friendly
– User-friendly
– Little user-friendly
– Not user-friendly

As shown in figure 25, the answers for question 11 correlate to the observed
result from the system usability scale questions. Only one person did not vote for
the application being ”highly user-friendly” or ”user-friendly”. The most com-
mon improvement suggestion was the unnecessary scrolling in the main menu,
as all menu options are listed right below each other.

69

Fig. 25. Evaluation survey result of question 11

Question 12 targeted the integration and presentation of crowdsourcing fea-
tures. As the test persons had no prior experience with crowdsourcing, the pro-
vided user manual introduced some of the available features to a certain extent
already.

12. Are all provided features presented easily understandable or did you have
problems figuring out the purpose of certain options?
– I had no problems; all features were presented easily understandable.
– I had troubles understanding some features.
– I did not understand most features.

Diagram 26 illustrates that the majority of people found the presentation of
the crowdsourcing features good enough for them being easily understandable.

Fig. 26. Evaluation survey result of question 12

70

The test persons were also confronted with the crowdsourcing system’s re-
quirement of delivering results on demand and in real-time. After testing the
application for a short amount of time and getting familiar with the features,
the users should have an opinion whether the platform is capable of fulfilling
those needs.

13. In your opinion, is the system able to deliver results on demand and in
real-time?
– Yes, the system fulfills those criteria.
– The system fulfills those criteria to a certain extent but needs improve-

ment.
– No, the system is not able to satisfy those needs.

As figure 27 shows, all users were confident that the application fulfills the
requirements.

Fig. 27. Evaluation survey result of question 13

The last question was about the presentation of the received task results. The
platform is able to provide an aggregated statistical view on the results, which is
described in section 4.4.5. Additionally, an anonymous view on each single result
is also available. The combination of those two views allows the user to quickly
interpret the result in various levels of detail.

14. How useful is the presentation of the task results?
– Very useful
– Useful
– Not useful

As presented in diagram 28, all testers found the presentation at least useful,
with the majority considering it a very useful solution. Although the comments

71

suggested to further improve the result view by providing even more information
with possible diagrams and graphs, the overall reception was quite positive.

Fig. 28. Evaluation survey result of question 14

5.2 Quantity

The second aspect of the evaluation interprets some technical measurements.
The goal of those measurements is to detect whether the system can fulfill the
functional requirements in an appropriate amount of time, not being a bottleneck
of the overall user experience.

5.2.1 Result Validation Duration One of the main critical aspects of the
real-time requirement is the validation of results. Task results uploaded by the
crowd should take as little time as possible, minimizing the delay until the re-
quester receives an outcome of his task.

In average, the validation of a task with 100 questions of varying complexity
took 51 milliseconds. This is a very good result, meaning that the duration of
the result validation does not play any considerable role at all.

5.2.2 Task Distribution Load Test Another critical step during the whole
task workflow is the distribution of tasks. For this measurement, a load test has
been performed that performed a task distribution to a total of 116 users.

The measured duration included the determination of the crowd workers and
the creation of every task assignment. The average duration of the whole task
distribution was 2884 milliseconds. In comparison to the load test with lots of
assignments, a smaller distribution to only 5 different users took in average 339
milliseconds.

72

The task assignment process could definitely be improved, but overall it is
taking an acceptable amount of time. Users will not suffer too hard from the short
waiting time until their task is distributed to the desired amount of workers.

6 Conclusion

The goal of this project was to create a working prototype of a crowdsourcing
system fulfilling the requirements specified in section 1.2. In order to achieve
this, some state-of-the-art approaches have been reviewed and implemented.

While developing the crowdsourcing platform, the questions presented in
section 1.3 should be answered. The following sections deal with those questions
and summarize the discovered findings.

6.1 Result

The main question was about the design of a real-time on demand crowdsourc-
ing framework for multimodal process. As the resulting prototype is able to
fulfill the specified functional requirements, the chosen architecture and design
can be seen as a successful solution for this problem. An in-depth explanation
of the architectural decisions and the design can be found in section 3 and 4
respectively.

One requirement of the prototype was to offer the functionality of a frame-
work, meaning that it should be easily extensible for other developers. By choos-
ing to implement the platform as a web service, this functionality is implicitly
given. It is easily possible to extend the features by implementing a new service
and offering additional URL mappings via separate controllers. The prototype
already offers services for the core feature set. Also there are base classes in place
that help implementing new components.

6.2 Limitations

While investigating different state-of-the-art approaches to various challenges in
crowdsourcing, it was pretty obvious that some techniques target to optimize or
improve a very specific topic or aspect of the field. As the scope of this project
was only to develop a prototype supporting basic functionality, it was not feasible
to implement some approaches, because they would have required a much more
complicated feature set.

6.3 Evaluation

The evaluation process in terms of quality was performed with the system us-
ability scale [6] and a related method for interpreting the resulting score [3].
While this approach was able to quickly deliver results, it also turned out to be
really simple and straight-forward to perform. The downside of this evaluation
method is that it only provides a generic overview on a system’s usability. That

73

means that the scale exclusively shows if there exist any usability problems and
not what problems there are exactly. Even John Brooke himself called it only
a ”quick and dirty” solution [6]. In order to overcome this downside, a few ad-
ditional questions have been added to the qualitative evaluation survey, asking
for improvement suggestions and targeting the crowdsourcing features explicitly.
With this extension, a really short questionnaire was enough to retrieve quite
useful results.

On the other hand, the evaluation in terms of quantity was purely based on
technical measurements. As the key aspect of the application is to deliver re-
sults in real-time, the main focus of those measurements was the computational
duration of possible bottlenecks in the workflow for retrieving results. Addition-
ally, as a crowdsourcing system requires a lot of users to work out, some time
measurements under load have been performed. This evaluation strategy was
also easy to perform and clearly pointed out improvement possibilities from a
technical point of view.

7 Future Work

As specified in the functional requirements in section 1.2, the goal of this project
was to develop a prototype that implements the basic features of a crowdsourcing
platform. Additionally, some state of the art concepts should be integrated to
further improve the performance of the system. However, there still are many
improvement possibilities, regarding the addition of new features as well as some
technical adaptions to enhance the quality of the software.

7.1 Utilization of Mobile Device Services and Technologies

Most modern mobile devices come with a rich set of services that provide useful
functionality. For this project, mobile devices have been mainly used to increase
the users’ availability. However, with the integration of existing services and
technologies, the product’s capabilities could be seriously enhanced.

7.1.1 GPS Service All location features of the current prototype implemen-
tation are purely text based. Making the platform aware of GPS data would
be a major improvement of the whole application. The integration of location
information not only allows mobile devices to make use of their location tracking
services, which would lead to a much better user experience by automatically
detecting and submitting the user’s location. It could also enable the easy inte-
gration of location based third party services like maps.

7.1.2 Calendar Synchronization One more great opportunity is the syn-
chronization of the device’s or third party calendars with the user information.
The platform would be able to automatically determine the users’ availability,
ultimately leading to more fine-grained task assignments and therefore an im-
proved overall performance.

74

7.1.3 Wearable Technologies Another step would be the combination of
mobile devices with wearable technologies such as smart watches in order to fur-
ther improve availability and response time of crowd workers. The wide spread
of wearable applications is yet to come and the hardware itself comes with cer-
tain restrictions, namely limited hardware power and user interface constraints.
Therefore it would need a prior analysis of how to design a supportive wearable
application that further improves the system’s results.

7.2 Task Extensions

Currently there are only simple text or multi-media based tasks supported. As
described in 2.4.1, there exists a variety of other task concepts. The platform
could be extended to support other task types, such as location tagging, upload-
ing pictures, ratings or even very specific ones like defining schedules for opening
hours of stores and restaurants.

7.3 Reputation System

In general, it is desired that reliable workers also get to work on tasks in the
future. Therefore it makes sense to implement a reputation system that keeps
track of each worker’s reliability. During the task assignment phase, the platform
could then prioritize workers with a higher reliability. As the framework already
stores the amount of finished, missed and expired tasks, those statistics could
be reused to determine a reliability score. Additionally, the detection of quickly
accepted tasks is already implemented, so the approach could be even more
refined to also take the speed of a worker into account.

7.4 Final Product Completeness

The prototype implementation is not yet ready to actually being used as a
complete product. Some aspects of the platform are only implemented in a very
basic way. There are specific features that need to be extended and improved to
satisfy the needs of a production ready system.

7.4.1 Score System Currently the users can only track their work by a
simple score system that only counts the rewarded and spent points. While this
is useful to monitor the own status of productivity, it lacks some additional value
to motivate users for a continuous participation in the crowdsourcing system.
There are a few possible extensions to overcome this drawback.

Payment System The obvious solution for motivating people to work on some-
thing is to pay them. The score system could be extended to an actual payment
system that maps the rewarded points to earned money. This requires of course
a few other improvements, especially from a security perspective. Various pay-
ment methods could be offered, not only to pay workers, but also to allow a
requester to buy points for his credit balance.

75

Leaderboard As described in section 2.4.1, a good approach for improving the
participation in crowdsourcing applications is the integration of gamification
concepts [23]. The introduction of a global leaderboard, maybe even in combina-
tion with other elements like achievements, can help keeping up the motivation
for crowd workers.

7.4.2 User Verification The prototype implementation allows anyone to
register with hardly any input validation and no user verification at all. In order
to guarantee the valid existence of a user, the registration process can be refined.
Possible verification methods include the widely used e-mail verification or the
integration of social media platforms.

7.4.3 User Interface Improvements An evaluation of the user experience,
presented in section 5, resulted in an already excellent usability. However, there
are still improvement possibilities that can help avoiding small annoyances.

The most requested change concerned the structure of the Android applica-
tion’s main menu. It is possible to introduce a role based interface, only showing
menu options of the current role. This separation of requester and worker role
would lead to a much cleaner user interface, making the work with a mobile
device more appealing. Additionally, the input of certain data could definitely
be improved.

Furthermore, it is still possible to provide more information in the client
application. The presentation of the already available information can also be
enhanced. The introduction of additional diagrams and dashboards would allow
a better overview, leading to an easier understanding and interpretation of the
data.

76

References

1. Google Firebase documentation. Website, https://firebase.google.com/docs/,
last visit on 2018-05-02

2. Alex, B., Taylor, L., Winch, R., Hillert, G.: Spring Security Reference 4.1.3
RELEASE. Website (2015), https://docs.spring.io/spring-security/site/

docs/4.1.3.RELEASE/reference/pdf/spring-security-reference.pdf, last
visit on 2018-04-11

3. Bangor, A.: Determining What Individual SUS Scores Mean : Adding an Adjective
Rating Scale (2009)

4. Bernstein, M.S.: Crowd-powered interfaces. In: UIST (2010)

5. Bernstein, M.S., Brandt, J., Miller, R.C., Karger, D.R.: Crowds in Two Seconds:
Enabling Realtime Crowd-powered Interfaces. In: Proceedings of the 24th Annual
ACM Symposium on User Interface Software and Technology. pp. 33–42. UIST
’11, ACM, New York, NY, USA (2011), http://doi.acm.org/10.1145/2047196.
2047201

6. Brooke, J.: SUS: A quick and dirty usability scale 189 (11 1995)

7. Bruno, A., Backes, J.: Comparison between CSV parsers. Website (Feb 2018),
https://github.com/uniVocity/csv-parsers-comparison, last visit on 2018-05-
02

8. Erl, T.: Service-Oriented Architecture: A Field Guide to Integrating XML and
Web Services. Prentice Hall PTR Upper Saddle River, NJ, USA (2004)

9. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis (2000), aAI9980887

10. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA (1995)

11. Gyorodi, C., Gyorodi, R., Pecherle, G., Olah, A.: A comparative study: MongoDB
vs. MySQL. 2015 13th International Conference on Engineering of Modern Electric
Systems (EMES) pp. 1–6 (2015)

12. Hadano, M., Nakatsuji, M., Toda, H., Koike, Y.: Assigning Tasks to Workers by
Referring to Their Schedules in Mobile Crowdsourcing. In: HCOMP (2015)

13. Hearst, M.A.: Search User Interfaces. Cambridge University Press, New York, NY,
USA, 1st edn. (2009)

14. Hwang, H.: Moral Reminder as a Way to Improve Worker Performance on Amazon
Mechanical Turk. In: HCOMP (2015)

15. Johnson, R., Hoeller, J., Donald, K., et al.: Spring Framework Refer-
ence Documentation 4.3.1 RELEASE. Website (2015), https://docs.

spring.io/spring/docs/4.3.1.RELEASE/spring-framework-reference/pdf/

spring-framework-reference.pdf, last visit on 2018-04-11

16. The JSON Data Interchange Format. Tech. Rep. Standard ECMA-404 1st Edi-
tion / October 2013, ECMA (Oct 2013), http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-404.pdf, last visit on 2018-04-07

17. Lasecki, W.S., Rello, L., Bigham, J.P.: Measuring text simplification with the
crowd. In: W4A (2015)

18. Lasecki, W.S., Weingard, L., Ferguson, G., Bigham, J.P.: Finding action depen-
dencies using the crowd. In: K-CAP (2013)

19. Lasecki, W.S., Weingard, L., Ferguson, G., Bigham, J.P.: Finding dependencies
between actions using the crowd. In: CHI (2014)

77

20. Leff, A., Rayfield, J.T.: Web-Application Development Using the Model/View/-
Controller Design Pattern. In: EDOC (2001)

21. Malaya, V.: SQL vs. NoSQL. Website (2013), http://www.sql-vs-nosql.

blogspot.co.at/2013/11/indexes-comparison-mongodb-vs-mssqlserver.

html, last visit on 2018-04-09
22. Mondal, A., Raravi, G., Chugh, A., Mukherjee, T.: LoRUS: A Mobile Crowd-

sourcing System for Efficiently Retrieving the Top-k Relevant Users in a Spatial
Window. In: HCOMP (2015)

23. Morschheuser, B., Hamari, J., Koivisto, J.: Gamification in Crowdsourcing: A Re-
view. In: HICSS (01 2016)

24. Nandan, N.: SimplyCity - A Simple Mobile Crowdsourcing Platform for Emerging
Cities. In: HCOMP (2015)

25. Raj, R.: Spring MVC Request Life Cycle. Website (May
2014), https://justforchangesake.wordpress.com/2014/05/07/

spring-mvc-request-life-cycle/, last visit on 2018-04-10
26. Saloranta, T., Brown, P.: Jackson project repository on GitHub. Website (Sep

2016), https://github.com/FasterXML/jackson, last visit on 2018-05-02
27. Smith, G., Conway, S.: opencsv documentation. Website (Nov 2017), http://

opencsv.sourceforge.net, last visit on 2018-05-02
28. Sweet, R.E.: The Mesa programming environment. SIGPLAN Notices 20, 216–229

(1985)
29. Vazirabadkar, K.M., Gadre, S.S., Sebastian, R., Dwivedi, N.: Crowdsourcing Based

on GPS. In: HCOMP (2015)

78

A User Manual

The following user manual has been provided to all testers which were involved in
the evaluation phase of the project. It gives a short overview about the topic and
describes some major use cases and functionalities of the system. Additionally,
there is a to-do list appended, providing a suggestive list of actions to perform
to discover the application’s features.

79

2

INTRODUCTION

CROWDSOURCING

Crowdsourcing is the concept of outsourcing smaller subtasks to a group of

voluntary workers over the internet.

Most existing crowdsourcing platforms come with certain limitations. Several

tasks often require the crowd workers to be available at a specific time or

location. When working from a desktop computer it may not be very

appropriate to provide solutions to these problems.

Because of the wide spread of mobile devices, a mobile application for

crowdsourcing could provide results from any place at any time.

PLATFORM

The system consists of a server back end and a mobile front end application.

Following main characteristics define the functionality of the crowdsourcing

platform:

• Registered users can either create tasks (“requester”) or work on tasks

that are assigned to them (“worker”).

• Every user can choose whether he wants to be active as a worker and

therefore receive tasks. This option can be changed in the profile settings.

• Users are rewarded with points for finishing tasks.

• Users are charged with points for each received result of a created task

or for reserving retainer crowds.

• Users can upload CSV files that contain referenceable, reusable data

and predefined question definitions.

3

USER INSTRUCTIONS

REQUESTER – CREATING TASKS

A task consists of title, description, the reward to give each worker and a list of

questions.

Images, audio and video files can be referenced for the whole task or a

specific question.

Furthermore, assignment conditions can be defined in order to only target

specific workers.

Additionally, a previously uploaded data CSV file can be referenced to provide

data values and predefined questions.

Here is a list of all task properties:

PROPERTY DESCRIPTION

Title The title of the task.

Description A more detailed description.

Reward The reward a worker is paid for completing this task.

Must be in between 0 and 1000.

Maximum workers The maximum amount of results that will be received.

Must be over 3. The default value is 3.

Start time The planned start time for this task.

The task will automatically be activated and assigned

to workers at this time.

End time The planned end time for this task.

The task will automatically be finished at this time.

Task media A list of attached media resources.

These will be displayed before the questions.

Each media consists of the URL to the source, a

description and the media type.

Task data The referenced data CSV file.

A more detailed description can be found below.

4

 Here is a list of all assignment condition properties:

PROPERTY DESCRIPTION

Gender A worker must be of this gender to be suitable.

Minimum age The required minimum age in years.

Maximum age The required maximum age in years.

Country A worker must be in this country to be suitable.

City A worker must be in this city to be suitable.

A country must be set when setting a city.

Language A worker must speak this language in order to be

suitable.

Here is a list of all question properties:

PROPERTY DESCRIPTION

Question type The type of the question.

Can be either “single choice”, “multiple choice”,

“dropdown” or “open”.

Question text The question itself.

Answers A list of possible answer options.

“Open” questions ignore the answer options, as the

worker is expected to type in a custom text.

Required This option defines whether it should be mandatory to

answer this question.

Question media A list of attached media resources.

These will be displayed after the question.

Each media consists of the URL to the source, a

description and the media type.

REQUESTER – TASK STATES

Tasks are initially in the “created” state and not distributed to any worker.

The distribution only starts as soon as the task is “activated”.

Active tasks can either be “paused” or “finished”.

Only active tasks can receive new results from workers.

5

REQUESTER – TASK DATA

Task data has two different purposes:

1. Reusable data values can be defined.

The data values can be referenced in the task description, question

texts and answer options.

References are done with the mark-up [data:0], where the number is

the index of the data value.

2. Questions can be defined.

This is useful for creating quickly many questions in the CSV file and not

having to build them manually via the mobile application.

Task data can be either uploaded using the web client (accessible via any

browser), or manually created using the mobile application (data values only).

When uploading a CSV file, following format is required:

data value 0|data value 1|data value 2

question type|required|question text|answer option 1|answer option 2

Example:

sky|fire

SINGLE_CHOICE|true|”Is ‘blue’ matching the topic ‘[data:0]’?”|yes|no

SINGLE_CHOICE|true|”Is ‘blue’ matching the topic ‘[data:1]’?”|yes|no

OPEN|false|Please add any comments about this survey.

Entries need to be separated by the ‘|’ character.

More complex strings can be written using the ‘”’ character.

The first line is reserved for all the data values.

From the second line on, questions can be defined.

For questions, the first entry must be the question type

(SINGLE_CHOICE, MULTIPLE_CHOICE, DROPDOWN, OPEN).

When choosing OPEN, the answer options for this question are ignored.

The second entry is the flag whether an answer to this question is required and

must be a bool value (true, false).

Task data can be uploaded by visiting the “Crowdsourcing Web Client”:

http://131.130.122.222:8080/crowdsourcing/

To do so you simply have to log in and then select “Upload a file”. Afterwards

you should be able to see your uploaded data set in the mobile application’s

main menu under “Created data sets”.

6

REQUESTER – TASK CLONING

Tasks can be cloned with a different data set.

Every other property will be taken over from the original task.

Cloned tasks are created just like any other task and need to be activated

again.

WORKER – PROFILE INFORMATION

In order to be suitable for more tasks, workers can specify information in their

user profile.

They can also add availabilities to improve their chances of being assigned to a

task, because the system will assume a shorter response time.

WORKER – WORKING ON TASKS

When a task is assigned to a worker, a push notification is sent to the mobile

device.

A worker can either accept or decline the assignment – or start working on the

task right away.

If the worker does not react on an assignment and the task is finished, his

assignment will be counted as a “missed task”.

If the worker accepts an assignment and the task is finished before he

completed the task, his assignment will be counted as an “expired task”.

Once the task is completed, the worker will be rewarded with the defined score

points.

7

TO-DO LIST

A SUGGESTIVE LIST OF ACTIONS TO PERFORM

In order to provide a reasonable feedback and allow a proper evaluation of

the system, here is a list of tasks that should be accomplished.

TASK DESCRIPTION PRIORITY DONE

Register as an active worker high ☐

Log into the system high ☐

Visit your user profile and check your information medium ☐

Add some availability information medium ☐

Check your initial requester and worker statistics low ☐

Create your own task

• feel free to attach video or audio data to

task or questions

• do not be too strict on the assignment

conditions, as the group of testers is not very

large

high ☐

Activate your created task

• this step is required in order to distribute your

task

high ☐

Upload a CSV with task data via the web client

• make sure to try defining data and

questions within the file

medium ☐

Create another task with the use of your

uploaded CSV data

medium ☐

Work on tasks that are assigned to you high ☐

Check your received results medium ☐

Check your requester and worker statistics medium ☐

Update your profile low ☐

B Evaluation Survey

The following evaluation survey has been handed to all testers which were in-
volved in the evaluation phase of the project. It includes basic questions about
the user interface and more complex ones about more detailed aspects of the
application. The evaluation itself is described in detail in section 5.

86

Evaluation Survey | Crowdsourcing Platform

1

Evaluation in terms of quality of a real-time
on demand crowdsourcing platform

1. I think that I would like to use this system frequently.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

2. I found the system unnecessarily complex.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

3. I thought the system was easy to use.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

4. I think that I would need the support of a technical person to be able
to use this system.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

Evaluation Survey | Crowdsourcing Platform

2

5. I found the various functions in this system were well integrated.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

6. I thought there was too much inconsistency in this system.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

7. I would imagine that most people would learn to use this system very
quickly.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

8. I found the system very cumbersome to use.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

9. I felt very confident using the system.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

Evaluation Survey | Crowdsourcing Platform

3

10. I needed to learn a lot of things before I could get going with this system.

 Strongly agree

 Agree

 Neutral

 Disagree

 Strongly disagree

11. How did you experience the user interface of the mobile application?

 Highly user-friendly

 User-friendly

 Little user-friendly

 Not user-friendly

How could the user experience be improved?

12. Are all provided features presented easily understandable or did you have
problems figuring out the purpose of certain options?

 I had no problems; all features were presented easily understandable.

 I had troubles understanding some features.

 I did not understand most features.

How could the features be presented in a more understandable way?

Evaluation Survey | Crowdsourcing Platform

4

13. In your opinion, is the system able to deliver results on demand and in real-
time?

 Yes, the system fulfills those criteria.

 The system fulfills those criteria to a certain extent but needs improvement.

 No, the system is not able to satisfy those needs.

What improvements are necessary in order to provide on demand and real-time

functionality?

14. How useful is the presentation of the task results?

 Very useful

 Useful

 Not useful

How could the presentation of results be improved?

C Source Code

The source code can be found on the enclosed CD. It includes the Java server
back end as well as an example client software in form of an Android app.
Additionally to the source code, it also provides a back end web application
archive (compiled with Java 8) and an Android package (built for Android 7.1),
both ready for installation.

The back end can be installed by deploying the attached crowdsourcing.war

archive on a Java application server. Once installed, the web client is accessible
via the URL /crowdsourcing.

The attached crowdsourcing.apk is the package for the native Android
client application. Before installing it on an Android device, the server ad-
dress of the installed back end should be configured in the configuration file
config.properties located in the package’s assets directory.

91

