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This Masterthesis aims to verify if the radial drift of anti-protons to the outside of the

positron plasma is a possible source of the drop in anti-hydrogen production rate in

the CUSP trap of the ASACUSA experiment at CERN. The radial drift is caused by

energy loss through collisions of the anti-protons with positrons and we use simulations

to get a qualitative timescale of this drift to compare to the experimental results. In

our approximate approach we investigate isolated collisions of the two particles in a

strong magnetic field and use a Classical Trajectory Monte Carlo scheme to arrive at an

averaged energy loss rate and furthermore a radial drift time for the anti-proton. The

simulation results of the p̄ drift times have the same order of magnitude, tens of seconds,

as the observed anti-hydrogen yield drop, but more extensive studies are necessary to

come to a conclusion.
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Energieverlust von Anti-Protonen in einem Positronenplasma

von Michael Bartel

Das Ziel dieser Masterarbeit ist es den möglichen Zusammenhang zwischen dem Abfall

der Anti-Wasserstoff-Erzeugung mit der radialen Expansion der Anti-Protonen in der

CUSP Falle des ASACUSA Experimentes (CERN) zu untersuchen. Diese radiale Bewe-

gung wird durch Kollisionen der Anti-Protonen mit dem Positronenplasma verursacht

und dadurch verlassen erstere das Plasma und stehen nicht mehr zur Anti-Wasserstoff-

Produktion zur Verfügung. Eine qualitative Ermittlung der Zeitskala auf welcher die

Expansion stattfindet, wurde unter Anwendung von Monte Carlo Simulationen der Kol-

lisionen der beiden Teilchen in einem starken Magnetfeld erreicht. Dabei kamen die in

der CUSP Falle vorherrschenden physikalischen Parameter zur Anwendung um einen

Vergleich mit den Messungen der Anti-Wasserstoff-Produktion zu ermöglichen. Das

Ergebnis dieser Untersuchung ist, dass die von uns in erster Näherung ermittelte Ex-

pansionszeitskala die selbe Größenordnung hat, wie die zugrundeliegende Messung der

Produktionsraten. Jedoch sind weitergehende Simulationen von Nöten um ein aus-

sagekräftiges Ergebnis zu erhalten.
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Chapter 1

The ASACUSA Experiment

The ASACUSA collaboration (Atomic Spectroscopy And Collisions Using Slow Anti-

protons) aims to produce and measure anti-hydrogen to find a possible CPT violation

or boundaries for the model predicted by an extension of the standard model briefly

described in section 1.1. The experimental setup in section 1.2 was able to produce

anti-hydrogen in 2010 [1], a beam of cold H̄ in 2012 [2] and had a first run of the full

experiment in 2014 [3]. The results of 2010 and 2012 showed an unexpected decrease

of anti-hydrogen production concentrated on a time scale of about 20s. The aim of this

master thesis is to identify possible processes to account for this drop and is further

outlined in section 1.3.

1.1 Theory

1.1.1 Basic symmetries in particles physics

1.1.1.1 P Symmetry

In the last century two of three main symmetries of particle physics have been found to

be broken under certain conditions. After a suggestion of T.D. Lee and C.N. Yang in

1956 [4] an experiment performed by C.S. Wu et al. in 1957 [5] showed that the parity

symmetry (P, spatial mirroring transforming between left and right handed chirality),

even though conserved in electromagnetic, gravitational and strong interaction, is found

to be broken in beta decay and therefore in weak interaction in general.

1.1.1.2 CP Symmetry

Just a few years later, in 1964, James Cronin and Val Fitch found a violation of CP-

symmetry in the decay of Kaons [6]. The charge conjugation symmetry (C) transforms

particles into anti-particles and vice-versa and is broken separately as well as in the

1
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combination CP that induces the more realistic transition from particle to anti-particle,

as there are only left-handed particles and right-handed anti-particles. In the experiment

they measured the decay of Kaons and anti-Kaons in two different channels connected

to the eigenstates of the CP-Operator

|KS〉 =
1√
2

(
∣

∣K0
〉

+
∣

∣K̄0
〉)

,

|KL〉 =
1√
2

(
∣

∣K0
〉

−
∣

∣K̄0
〉)

, (1.1)

with CP |KS〉 = +1 |KS〉 and CP |KL〉 = −1 |KL〉. The eigenstates are also called short-

lived KS and long-lived KL with regards to their respective lifetime of Γ−1
S = 1× 10−10 s

and Γ−1
L = 5× 10−8 s [7]. Assuming that CP holds, the KS state can now decay into two

pions, (π0π0) or (π+π−), or for higher angular momentum with odd quantum number

into (π+π−π0), as all of those states have the same +1 eigenvalue of the CP transfor-

mation. KL on the other hand can not decay into a two pion state, but only into states

with CP eigenvalue (-1). That is (π+π−π0) for quantum number l even or (π0π0π0) [7].

The experiment of J. Cronin and V. Fitch measured the decay of KL and found signa-

tures of forbidden decay into two pions with a probability of ǫ ∼ 2.0× 10−3, also called

the CP violation parameter [7].

1.1.1.3 CPT Symmetry

The last bastion of basic symmetries in particle physics, the CPT symmetry that adds

time inversion invariance T, still holds up to this moment. It was proofed, using Lorentz

invariance, by Wolgang Pauli [8] and Gerdart Lüders [9].

If CPT symmetry is not broken then one would assume that our baryonic universe must

consist of 50% matter and 50% anti-matter, as its origin lies in the pair-creation process

that would force them in the same way to annihilate on contact. Obviously we live in

a stable universe such that there is no anti-matter in our close vicinity, so where did

those 50% go? One theory is that there are whole galaxies made of anti-matter scatted

throughout the universe. In this case their interaction with the intergalactic medium

(IGM) as well as statistically speaking half of the merging galaxies should show annihila-

tion signatures that have not been observed to this moment. On the other hand if a very

small CPT violation is allowed, the disparity of matter and anti-matter can be explained.

One possible implementation by Don Colladay and V. Alan Kosteleckỳ provides a theo-

retical framework introducing CPT breaking terms into the standard model at the price
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of partially broken Lorentz invariance [10]. This reference presents a generalized form

of a CPT violating Lagrangian,

L = L0 − L′

L′ =
λ

Mk
〈T 〉 ψ̄Γ(iδ)kψ + h.c. (1.2)

where ψ is the particle field, k ≤ 2, λ a dimensionless coupling constant, M denotes

a mass scale to ensure the Lagrangian has mass/energy dimension 4, Γ = Gαγ
α is a

general spinor matrix element spanned by the Dirac matrices γµ and T is a general

tensor, with expectation values that break CPT and Lorentz symmetry. The lowest

order terms for k = 0 have then the general form

L′
a = aµψ̄γ

µψ L′
b = bµψ̄γ5γ

µψ, (1.3)

where aµ and bµ are CPT invariant coefficients that transform as external constant fields

under Lorentz transformation. Introducing them next to the free Lagrangian we arrive

at a most basic form of a particle with mass m that violates CPT:

L =
i

2
ψ̄γµ

↔
∂ µψ − aµψ̄γ

µψ − bµψ̄γ5γ
µψ −mψ̄ψ, (1.4)

where ψ̄γµ
↔
∂ µψ = ψ̄γµ (∂µψ) −

(

∂µψ̄γ
µ
)

ψ. Similar CPT violating terms can arise

as an extension to the Standard Model, which are chosen to be compliant with the

SU(3)xSU(2)xU(1) gauge symmetry of the (minimal) Standard Model as well as energy-

momentum conservation, micro-causality and renormalization [10]. The actual form of

the terms will not be given here, as they are out of the scope of this work, but if inter-

ested they can be found in [10, p24-29]. More importantly this extension gives rise to

additional factors in observables, as shown for example in equation 1.5, enabling us to

look for experimental proof of CPT violation.

The current experimental precisions are given in figure 1.1. The full bars represent

past experimental results, while the open boxes state experiments currently conducted

(status in 2014). None of these experimental setups found a possible CPT violation to

this point.
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(F,M) = (1, 1) → ∆EH
1 = −be3 − bp3 + de30me + dp30mp +He

12 +Hp
12

(F,M) = (1, 0) → ∆EH
2 = −cos(2θ) [be3 − bp3 − de30me + dp30mp −He

12 +Hp
12]

(F,M) = (1,−1) → ∆EH
3 = −∆EH

1

(F,M) = (0, 0) → ∆EH
4 = −∆EH

2 (1.6)

The parameter θ denotes the mixing angle between the (1,0) and (0,0) states and is

defined by tan(2θ) ∼ (51mT)/n3B. The Breit-Rabi formula for the Zeeman splitting,

defining the energy levels in dependence of an external magnetic field, is given in equation

1.7. From the equations one can see that for B = 0 the anomalous energy shifts cancels

the degeneracy of the triplet state.

(F,M) = (1, 1) → EH
1 =

1

4
E0 +

1

2
(gJ + gI)µBB +∆EH

1

(F,M) = (1, 0) → EH
2 = −1

4
E0 +

1

2
E0

√

1 +

(

B

B0

)2

+∆EH
2

(F,M) = (1,−1) → EH
3 =

1

4
E0 −

1

2
(gJ + gI)µBB −∆EH

1

(F,M) = (0, 0) → EH
4 = −1

4
E0 −

1

2
E0

√

1 +

(

B

B0

)2

−∆EH
2 (1.7)

In figure 1.2 we can see the Breit-Rabi diagram with the associated spin states on the

right hand side and on the left hand side the energy split for the triplet state at B = 0.

This split can artificially be attributed to a constant pseudo-magnetic field of free space

[13]

∆BLIV =
2∆EH

1

gJµB
(1.8)

The direction of this magnetic field locally breaks Lorentz symmetry as it defines a

preferred direction in space. This would additionally induce a difference between mea-

surements conducted on different times of the day, as the angle of the vector observables

changes with the rotation of earth.

From the energy of the singlet and triplet states one can derive the influence of the CPT

violation on the observable frequency of state transitions. In the experiment the low field

seeking states (1,1) and (1,0) are transformed to high field seeking states (1,−1) and (0,0)

in a B ∼ 0 environment, therefore only the π1 : (1, 1) → (0, 0) and σ1 : (1, 0) → (0, 0)

transitions can be measured experimentally [13]. The transition frequencies can be

computed from equation 1.7,
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Measurement and comparison of the π1 and σ1 lines in hydrogen and anti-hydrogen is

therefore a possible proof of CPT violation in the model of Kosteleckỳ! One can find

similar possible observables that give direct access to the parameters in question, but

using hyperfine splitting has several advantages.

The hyperfine transition frequency νHF in hydrogen is measured to very high precision

in maser experiments [14, 15]

νHF = 1420405751.767± 0.002Hz (1.12)

Furthermore the hyperfine frequency can be computed by means of Fermi contact inter-

action [16] such that in first order [13]

νHF =
16

3

(

mp

mp +me

)3 me

mp

µp
µN

α2cRy. (1.13)

Here mp (me) denote the proton (electron) mass, α = e2/2cǫ0h ∼ 1/137.036 the fine

structure constant, Ry = mee
4/8cǫ20h

3 ∼ 10.973× 106m−1 the Rydberg constant, c

speed of light and µp and µN the magnetic moment of proton respectively the nuclear

magnetron. This gives rise to the possibility to calculate the (anomalous) anti-proton

magnetic moment from the measurement of the absolute value of the transition frequency

in anti-hydrogen with high relative precision. The best measurement currently available,

conducted by the BASE experiment in 2017, has a relative precision of 2.6 ppb (95%

CL) [17], before the BASE experiment it was only around 0.3% [18].

1.2 The ASACUSA Experiment

The section before showed, that to find a CPT violation in the Kosteleckỳ model, mea-

surement of the hyperfine splitting frequency π1 is needed to a very high precision. This

calls for some conditions to be fulfilled in the experiment:

• the anti-hydrogen needs to be in the ground state,

• at the point of the π1 transition the magnetic field must be known precisely,

• high statistics are necessary and therefore high number of suitable anti-hydrogen

atoms are required.
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1.2.1 Overview

The schematic view in figure 1.3 shows the primary components of the experimental

setup. Anti-protons are prepared in the MUSASHI trap and positrons in the e+-

accumulator before both are transferred to the CUSP trap where anti-hydrogen is

formed.

Important note: At the time of release of this master thesis the CUSP trap was al-

ready updated to a double CUSP trap. All calculations were done on the old CUSP

setup though and therefore the following descriptions will still reference the setup used

at that time.

The magnetic field of the CUSP is created by an anti-Helmholtz coil and at the down-

stream part the radial field gradient will focus the low field seeker states LFS (F ,M) =

(1,1) and (1,0) in the H̄ beam and defocus the high field seeker states HFS (1,−1) and

(0,0) that will annihilate on the tube surface.

The frequency of the electromagnetic field of the RF-cavity after the CUSP will be fine

tuned around the expected νRF, which depends on the magnetic field present, such that

it will hit the transition of H̄ inducing the π1 spin flip (equation 1.9) on resonance.

The sextupole magnet just before the detector will only focus low field seeker states,

such that, if the frequency of the cavity does not induce a spin flip the anti-hydrogen

will still be in a low field seeker state and pass the second sextupole magnet yielding

a signal in the detector. On the other hand, if a transition from a HFS to LFS state

occurs the H̄ atom will be defocused and will not reach the detector. Correlating the

time-frequency sweep of the cavity with the counts on the detector yields a graph of

signal versus frequency of the cavity which will reveal the π1 and σ1 frequencies.

1.2.2 Preparation of the anti-proton plasma

Bunches of about 4 × 107 p̄ are created by collision of 1013 protons, which are coming

from the proton synchrotron (PS) with a momentum of about 26GeV/c and collide with

a metal target. The created p̄ are injected and stored in the AD ring system, where

cavities, electron and stochastic cooling provide an efficient cool-down to about 5MeV

before transported to the individual experiments [19]. The ASACUSA experiment in-

cludes a unique device, the RFQD (radio frequency quadrupole decelerator), to further

reduce the energy to 10-100 keV with only moderate loss of anti-protons [20]. The flyby

spectroscopy used in this experiment necessitates to produce a beam of anti-hydrogen,

so the number of available anti-protons is an exceedingly important factor. The use of

the RFQD gives a huge advantage over other experiments that use degrader foils to slow

down the p̄ but lose a lot of particles in the process, yielding p̄ capture efficiencies about

two magnitudes smaller [21].
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the average radial energy loss of an anti-proton in an positron plasma.

In section 3.1 we will outline methods to calculate the radial energy loss and the simu-

lation approach chosen in the end.

Finally in chapter 4 the results of the simulations will be presented and section 4.5.6

will discuss if the radial drift is a possible reason for the drop in H̄ yield overtime.



Chapter 2

Theory

2.1 Basics of plasma physics

The cloud of positrons in the CUSP trap (see section 1.2.4) is a non-neutral plasma

therefore an introduction into the basic properties of such a plasma is necessary. The

next sections are loosely following the (unpublished) lecture scripts for the theoretical

plasma physics course of Prof. Dr. Kamelander of the Technical University (TU) Vienna.

2.1.1 Definition of a plasma

Plasma defines the fourth state of matter and generally consist of charged as well as

neutral particles. Not all such particle mixtures qualify as plasma though, as it has to

possess the following properties,

• the Debye length of the plasma must be much smaller than its size,

• the number of particles in a sphere with Debye radius must be much bigger than

1,

• and the scattering frequency of charged with neutral particles must be smaller

than the respective plasma frequencies.

2.1.1.1 Debye length

The Debye length, also called screening length, is a specific distance scale that arises if

charged particles are present. Imagine for simplicity a homogeneous gas of negatively

charged ions or electrons with some finite temperature T. If we introduce a positive

charge into the gas it will attract the negative particles, which will repulse each other in

addition to their thermal motion. In the stable final configuration the negative particle

density will shift towards the positive charge such that it is effectively covered by them

as we can see in figure 2.1.

17



Chapter 2. Theory 18

Figure 2.1: Schematic view of the charge shift in a negatively charged plasma introducing
a single positive charge.

The higher density of negative particles around the positive charge screens its potential,

such that the gas further away is not influenced by it anymore. The thermal motion

of the gas prevents the negative charges to build up to an densely packed particle layer

around the positive charge, so that the screening is continuous radially outwards. For

a generally applicable solution to this problem we consider a thermal plasma consisting

of positive, negative and neutral particles with their respective densities,

nneg(~r) = n0 · e
eφ(~r)
kBT

npos(~r) = n0 · e−
eφ(~r)
kBT (2.1)

Here n0 is the initial equilibrium density without introducing the external charge, fur-

thermore e is the unit charge and the plasma is considered to consist of particles with

positive or negative charge (1e). The plasma temperature T causes the density to follow

a Boltzmann distribution. Then the total charge density together with the external

positive charge (+Q) is

ρ(~r) = e (npos − nneg) +Qδ(0) (2.2)

With the charge density in hand we have to solve the Poisson equation to find the

solution for the total electric potential
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∆φ(~r) = −ρ(~r)
ǫ0

. (2.3)

Using equation 2.1 and 2.2, applying a first order series expansion to the exponential

terms and using the fact that the system is spherical symmetric around the external

charge one can solve equation 2.3 and find the electric potential to be

φ(~r) =
Q

4πǫ0r
· e−

r
√
2

λD λD =

√

ǫ0kBT

n0e2
, (2.4)

with λD the Debye length of the plasma. The potential consists of the part caused by

the bare charge that is damped by an exponential function with length scale λD. That

means for a lower temperature the Debye length will go to zero such that the negative

charges are able to pile up around the central charge and shield it in a very thin layer

around it, while for higher temperature the thermal motion prevents them from getting

close widening the layer. The first plasma criteria now dictates that the plasma size

itself must be much bigger than λD so that the effect described can occur naturally over

the whole plasma.

The second criteria in the beginning of the section is directly connected to the derivation

given above. In Equation 2.1 we used the Boltzmann distribution, a statistical concept,

that is only valid if there are enough particles to interact with each other and eventually

settle in the average static solution used.

2.1.1.2 Plasma oscillation

The third criteria needs us to introduce the concept of plasma frequency. Consider

a stationary neutral plasma state and now displace some negative charges in a small

area by a small amount, so we are now effectively having an area of surplus negative

particles next to an positively charged area. After stopping the external influence that

separates the charges the two areas will attract each other to get back to the original

neutral state. The accelerated particles can not immediately assume their old state,

because their inertia will make them overshoot and will force them to oscillate around

their former positions. Neglecting interactions and energy loss this collective oscillation

has the frequency

ωp =

√

nq2

ǫ0m
(2.5)

This is the plasma frequency for particles with charge q, n their local density and mass

m. These oscillations are essential for the collective motions inside of a plasma, and

therefore they should not be strongly dampened by interaction of the charged with
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neutral particles. This scattering with neutrals can be expressed in terms of a collision

frequency ωne/ni for, in this case, electrons and positive ions. The third plasma criteria

can now simply be written as

ωpe,pi >> ωne,ni (2.6)

If this condition is not fulfilled the collisions of charged particles with neutrals dominate

over the interaction between the charges and the plasma acts as a simple gas.

2.1.2 Motion of charged particles in electromagnetic fields

In Chapter 1 we saw that the processes investigated in this thesis, the interaction of

anti-protons and positrons, takes place in an CUSP trap. The basic motion of a charged

particle due to electric and magnetic fields is therefore an integral part in describing the

physics involved.

The electric and magnetic fields inside the trap do not change much over the positron

plasma volume, so it is a good approximation to consider the fields to be homogeneous.

Then the equation of motion for a single charged particle subject to the Lorentz force

is then

d~v

dt
=

q

m
( ~E + ~v × ~B) (2.7)

The vector product in equation 2.7 naturally decomposes the motion of the particle in

the direction along the magnetic field and perpendicular to it. The equation of motion

along the magnetic field is described by a simple constant acceleration by the electric

field, as the magnetic field does not have a component acting along it

d~v‖

dt
=

q

m
~E‖ ~r‖(t) =

q

2m
~E‖t

2 + ~v(0)t+ ~r(0) (2.8)

2.1.2.1 Cyclotron motion

For the perpendicular direction, assume for simplicity that there is no electric but only

the magnetic field present for the moment. In this case the equation of motion reduce

to

d~v⊥
dt

=
q

m
~v⊥ × ~B ⇒ d~v⊥

dt
= ~ωc × ~B (2.9)

~ωc = − q

m
~B (2.10)
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The simple integration finds the perpendicular motion in a magnetic field

vx = v⊥sin(ωct+ φ0) x(t) = −v⊥
ωc
cos(ωct+ φ0) + x(0) (2.11)

vy = v⊥cos(ωct+ φ0) y(t) =
v⊥
ωc
sin(ωct+ φ0) + x(0) (2.12)

This parameterizes a circular motion in the plane perpendicular to the magnetic field

with angular frequency ωc, the cyclotron frequency, and cyclotron radius

rc =
v⊥
ωc

(2.13)

This is an extremely important property for this work, as it shows, that the motion

perpendicular to the magnetic field is ”bound” to it. Consider the case of an electron

with room temperature T ∼ 300K in an magnetic field of B = 2.8T. The cyclotron

radius is then about 270 nm. That means that a charged particle can not move freely

in this plane. Furthermore any (small) change in energy (velocity), for example by

a collision, does only translate into an respective change of cyclotron radius but the

average position of the particle stays on the central field line. Combined with the linear

acceleration by the axial electric field this yields then a helical motion along the magnetic

field as in figure 2.2.

2.1.2.2 Magnetron motion

In the last part we ignored, for simplicity, an electric field acting perpendicular to the

magnetic field. This addition leads to the equation of motion

d~v⊥
dt

=
q

m
( ~E⊥ + ~v⊥ × ~B) (2.14)

This can be solved with a simple substitution with a constant velocity ~vE

~v⊥ = ~v′⊥ + ~vE ~vE =
~E × ~B

B2
(2.15)

for which equation 2.14 transforms into

d~v′⊥
dt

=
q

m
~v′⊥ × ~B (2.16)

which has the same form as Equation 2.9, leading to a cyclotron motion that is super-

posed with the velocity ~vE , called the ExB-drift velocity. It is important to note, that

this drift velocity is independent of charge, such that both anti-protons and positrons
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Figure 2.2: Helical motion of a charged particle in an electromagnetic field, taken from
[32].

drift in the same direction. This result comes into play if we now consider a stationary

plasma of positrons sitting in the central well of the CUSP trap (section 1.2.4). We

note that the cumulative charge builds up a radial electric field (perpendicular to the

magnetic field) and induce a ExB drift. In figure 2.3 we can see the radial electric field

rising linearly until the plasma boundary at r = 1mm and then falling off with r−2 as

expected from electrostatic theory. On top of the field generated by the positron plasma

we have a contribution from the MRE electrodes that is negligible inside of the plasma,

as shown by the red line.

It is important to note, that inside the plasma the radial electric field is increasing

linearly, such that the ExB drift velocity is

~vE(r) =
~E(r)× ~B

B2
=
d ~E/dr × ~B

B2
· r (2.17)

rising linearly with r as well. Furthermore the radial electric field is radially symmet-

ric, that means, that for a particle at some distance r the ExB drift velocity is always

tangential to the circle with radius r and the particle will move along it with velocity

~vE . This movement is called magnetron motion and the radius on which the particle

moves magnetron radius.
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Here x and y are the coordinates in the plane perpendicular to the magnetic field inducing

the cyclotron motion. Using the complex Ansatz u(t) = x(t) + iy(t) one can solve the

equation of motion and finds that the magnetron radius will increase with time as

rc(t) ∼ r(0)eγt (2.20)

γ ∼ ω2
0ν

Ω2
i + ν2

(2.21)

The magnetron and cyclotron frequency are given by

ω0 =
ω2
p

2Ωe
=

nee

2ǫ0B
(2.22)

Ωi =
eB

mi
. (2.23)

The calculation of the collision frequency needs more consideration. The energy transfer

we get from simulations is the change of radial energy while moving axially. Note that

the collision frequency in equation 2.19 acts along the cyclotron motion of the anti-

proton in the radial plane. Therefore we must map the energy change to the distance

covered radially by calculating the path in the radial plane, while the anti-proton moves

axially.

sradial = saxial
vradial
vaxial

From Equation 2.19 follows

dE

dx

∣

∣

∣

∣

radial

=
dE

dx

∣

∣

∣

∣

axial

saxial
sradial

=
dE

dx

∣

∣

∣

∣

axial

vaxial
vradial

= Fc = −mp̄vradialν

ν = − vax
mp̄v2radial

dE

dx

∣

∣

∣

∣

axial

(2.24)

Generally the energy transfer will change over time, as the particle is losing energy.

Therefore the collision frequency ν and the outward transport rate γ will change as well.

For a time dependent γ(t) we can generalize equation 2.20 to

rc(t) ∼ r(0)e
∫ t
0 γ(t′)dt′ (2.25)

Therefore it is important to see that the calculations of the drift times in the sections

below, that are using a constant energy transfer for a first approach, only provide a
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Solving the geometrical equations leads to the famous Rutherford scattering formula for

the cross section

dσ

dΩ
=

(

dc
4

)2 1

sin4(θ/2)
(2.26)

dc =
Q1Q2

4πǫ0

1

Ekin
(2.27)

The parameter dc denotes the distance of closest approach in a head on collision and is

used to simplify equation 2.26. The results of the simulations conducted in this thesis

come foremost in the form energy transfer over impact parameter b. Therefore we can

find a corresponding equation in [36, p626] that gives the exact relation for the energy

transfer that is needed

T (b) =

(

Q1Q2

4πǫ0

)2

· 2

mev2
· 1

b2 + b2min

(2.28)

bmin =
Q1Q2

4πǫ0

1

mev2
(2.29)

for the anti-proton positron collision investigation. The parameter bmin regularizes the

energy transfer for impact parameter zero such that T (0) = 2mev
2.



Chapter 3

Simulation Program

This chapter deals with the set-up of the simulations and introduces the programs used

in the process. The basis of the computation is the program SIMBUCA [37] written for

the WITCH project [38]. It was used for the computation of the particle trajectories

and interaction. The setup and configuration of SIMBUCA was done by a dedicated

self-written program - MCSIM - (see section 3.3) that utilized the Monte Carlo method

(see section 3.2) to produce statistical results for the observables of interest.

3.1 Motivation

The decision to use a Monte Carlo method stemmed from the fact that there are only

a few theoretical approximate approaches available, which are complex (see [39]) and

difficult to apply to our parameters. Several theories were simplified by ignoring the

physics in the plane perpendicular to the magnetic field, which is needed to solve our

problem (see section 1.3). It turns out, that for our parameters of interest in the CUSP,

the problem is strongly chaotic and theories have a hard time to predict the outcomes

anyway. Without a generally applicable comprehensible theory in hand, we turned to

numerical simulations of the problem.

The first approach was to simulate the full particle dynamics in the CUSP trap with

the program SIMBUCA. We were dealing with about 107 positrons and 106 anti-protons

and as the Coulomb interaction computation scales with N2 such a calculation is too

expensive in terms of computational power needed. The fastest approximate methods

available for the calculation are of order N · logN where, on a reasonably powerful

single computer, the computation of one time step takes about a second. The effect

investigated by this thesis (see section 1.3) is of the order of tens of seconds, while

the cyclotron motion of the positron allows for integration time steps not bigger than

about 1× 10−13 s, otherwise energy is not conserved in the trajectory integration. The

resulting simulation time of 1× 1014 s ∼ 3× 107 years, is obviously not applicable as well.

27
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If we reduce our focus to a single anti-proton, the Debye shielding, explained in section

2.1.1.1, can reduce the number of positrons that need to be simulated, as the influence

of e+ further away than a few times the Debye length can be neglected. Regrettably

the number of particles and the corresponding simulation time were still too high for

our purposes. On the other hand, the Debye length for our parameters was of the or-

der of 100 µm and therefore much larger than the average positron-positron distance

of about 10 µm, such that the interaction of the anti-proton with a single positron is

barely influenced by the rest of the cloud. This means we can handle the interaction of

an anti-proton with the positron cloud as the superposition of many single encounters,

enabling us to use a statistical procedure like the Monte Carlo method.

The advantage is striking, as instead of simulating the interaction of millions of particles

with each other, the integration simplifies to millions of calculations of a two particle in-

teraction effectively scaling with order N . Furthermore for a first approach an averaged

action of the positron cloud on the anti-particle is enough, so depending on the aspired

precision the number of trajectories computed can be lowered even more.

The downside of this approach is, that it is only another approximation, neglecting

positron-positron interaction. That means f.e. the interaction of the anti-proton with

positron plasma waves would add another contribution that has to be verified separately.

3.2 CTMC - Classical trajectory Monte Carlo method

The Monte Carlo method is a statistical procedure to describe a process by generating

an output distribution from randomly chosen parameter from the input distribution. If

this is done many times, depending on the error limits and the process itself, the method

gives a suitable representation of the process in question.

A very simple example is the integration of a function f(x) such that

F (x) =

∫ b

a

f(x)dx. (3.1)

If f(x) is a very complex function, that is not integrable by analytic means, the Monte

Carlo method can easily give a result, as the integral is simply the area bounded by the

x-axis and the function f(x) itself. In figure 3.1 we can see such a function and we want

to know the integral value between a = 1 and b = 3. Our input distribution is now all

possible points in the rectangular target area that is bounded by the x-axis and the two

limits a and b. The top boundary can be defined freely (even by any arbitrary curve, as

long as the total area is known) but must fully enclose the function f(x).







Chapter 3. Simulations 31

of SIMBUCA.

The first number determines the integration algorithm, in this case a Dormand-Prince

5th order scheme, and the second number activates(1) or deactivates(0) the adaptive step

size function, which takes the third number in line, the initial step size, and increases

and decreases it over the course of integration as necessary. This has the advantage

that for the part of integration, where the two particles do not interact strongly with

each other, the time step can be kept at the maximum value, determined by the fastest

motion in the system, the positron cyclotron movement, which sets the upper limit to

about 1× 10−13 s. Around the point of closest distance between the particles the inter-

action can become so strong, that the time step needs to be reduced by the algorithm,

about 1× 10−21 s was observed, to precisely integrate at that point. With a fixed time

step the whole integration would need to run with 1× 10−21 s, even though it is only

needed for a very small part of the trajectory, slowing down overall integration by many

orders of magnitude.

The COULOMB tag and the (1) after it activates the Coulomb interaction between the

particles with strength (k = 1), which would multiplicatively modify the Coulomb force

equation F = k ∗ FCoulomb. The next line defines the folder where the output of the

trajectory will be written to by SIMBUCA and the number next to it the time step

when it will be written. This number has no influence though, as only the first and

last line of the output file will be used for further calculations. The IDEALTRAP line

sets up a harmonic potential generated by an electrode with inner radius set by the first

and field strength implicitly defined by the second number. In our simulations we don’t

apply any external electrical fields (only the magnetic field of the trap), as the influence

of the radial field is already contained in the magnetron motion and the axial field is

shorted out by the positron plasma. Therefore the field strength is set to effectively

zero (SIMBUCA needs a non-zero value passed to it though). The third number gives

the magnetic field strength along the axial direction. The last line simply sets the final

time for the integration, that is actually not used for our computations. For details see

section 3.4.1.

3.3.1 Initial simulation parameters

The Monte Carlo method sets the initial values for the anti-proton and positron position

and velocities. It is important to note, that the coordinate system used in the simula-

tions is set up around the collision of the anti-proton and positron (see figure 4.1) and

does not correspond to the experimental setup. First of all the p̄ starts always at axial

position z = 0. Its radial position values (x,y) are determined by the constant radial

velocity set in the program, such that the anti-proton is set on the respective cyclotron

radius (see equation 2.13), with the center of the circular motion, also called guiding

center, located on axis (0,0). This implements the redefinition of impact parameter for
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two particles in a magnetic field with non-zero radial velocity, that is, the radial dis-

tance between the center of cyclotron motion of the respective particles. Therefore the

positron guiding center coordinates directly give the impact parameter of the simulation.

For the exact placement of the anti-proton on its cyclotron radius the phase is random-

ized (see section 3.2.1). Additionally there is the possibility to either use a fixed radial

velocity value, or dice the number from a Maxwell-Boltzmann distribution with a fixed

temperature. The axial velocity is a fixed value set in MCSIM.

For the positron velocities there is the possibility to either set the radial and axial veloc-

ity to a fixed value or dice it from a thermal distribution with fixed temperature. This

can be done for both directions separately. The axial placement of the positron now

depends on both values of axial velocity of e+ and p̄. In the case that vz,e+ < vz,p̄ means

that the positron is set to z = −boxsize for vz,p̄ < 0 and to z = +boxsize for vz,p̄ > 0.

On the other hand, if vz,e+ > vz,p̄ the positron distance to the anti-proton, that can not

keep up, will increase over time and no collision occurs. In a cloud of positrons there

can be a positron coming from behind with that same velocity instead and give the

anti-proton a kick from behind. This is realized by inverting the relation from before to

z = −boxsize for vz,p̄ > 0 and to z = +boxsize for vz,p̄ < 0. The only parameter left is

the radial placement of the positron, that has several important aspects tied to it and

deserves its own section.

3.3.2 Impact disc

Generally the radial position has two major contributions. On the one hand the cy-

clotron motion of the e+ defines a radius depending on its radial velocity and with the

help of a randomized phase it can be placed on the respective cyclotron circle.

On the other hand, the distance from the center of this cyclotron circle to the guiding

center of the anti-proton defines the generalized impact parameter for scattering in a

magnetic field (see section 3.3.1). This parameter is the only distance indicator of the

scattering process, because the particles will axially pass each other, and therefore sig-

nificantly defines the result of the collision simulation. It is of utmost importance and

in Chapter 4 we will use it to display several output values with respect to the impact

parameter.

Imagine now the anti-proton axially passing through the positron cloud and randomly

encountering positrons in different radial distances. To reflect this in the Monte Carlo

simulation we now need to randomly place the positrons guiding center in the radial

plane. It would make no sense to use the whole R2, as the Coulomb interaction strength

declines with r−2, additionally damped by Debye shielding (see section 2.1.1.1), so the
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contributions of particles far out can be neglected. The question is, how to decide the

maximum distance used for the impact parameter in the simulation?

With no theory at hand to give some limit, we need to implement a procedure that

checks, if particles outside of a set initial radial distance have an impact on our results,

and if they do, increases the range of possible impact parameter to take them into ac-

count. This procedure will be discussed in the next section 3.3.3.

In summary the positron radial position is made up by the random placement of its guid-

ing center inside a disc of a specific radius, from here on out called the impact disc,

and the added offset from placement on the cyclotron circle with random phase.

3.3.3 Simulation convergence

In section 3.2 we briefly discussed that we need to repeat the process subject to the

Monte Carlo analysis over and over until the error of our output is below some thresh-

old. Applied to our problem, we need to repeat the collision simulation until we have

enough trajectories to satisfy some error limit.

First we need to choose an output parameter of our simulations to define an error for. If

we go back to section 1.3 we see that in the end we want to calculate an energy transfer

from the simulation, that is proportional to the energy transfer averaged over all trajec-

tories calculated. Therefore our parameter of choice to base our error assessment on is

the average total energy transfer between the particles.

The next step is to define the error computation itself and for that we use a statistical

property of average values. The central limit theorem of mathematics states that in the

limit for infinitely many independent identically distributed random numbers (in our

case the total energy transfer of a collision) their average follows a normal distribution

[40]. For a finite but large number N the resulting distribution can still be approximated

by a normal distribution with the width

σ2
Ē
=
σ2E
N

=

∑N
i=0(Ei − Ē)2

N(N − 1)
(3.3)

If we apply this theory here, our average total energy transfer will be normally dis-

tributed and the width will give us a measure of how probable the calculated average is.

Normalizing to a relative value

σ̄ =
σĒ
Ē

(3.4)
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it might still be neglected. We define the simulation is convergent radially if, for an

increase R1 → R2, follows

ĒR2 ·R2
2 − ĒR1 ·R2

1

ĒR1 ·R2
1

< 1% (3.5)

You have to be careful with this definition though. Consider Rutherford scattering where

the energy transfer scales with r−2 (see 2.28), so we would at one point satisfy equation

3.5. On the other hand we know that the integral over the energy transfer diverges for

r → ∞ ⇒
∫ ∞

0
T (b)2πbdb ∼ ln(

∞
bmin

) → ∞ (3.6)

If we are in a plasma Debye shielding saves the day, as we have an additional exponen-

tial decay that forces the integral to converge quickly preventing the aforementioned case.

Theoretically it would be necessary for both radii R1 and R2 to converge separately

in number of trajectories and then compare the results to see if they converge radially.

This is a bad usage of computational power though, as the area spanned by R1 would be

probed twice without any real impact on the result. In figure 3.4 we can see an example

on how to increase the impact disc size without wasting computation time.

We start with 2000 red trajectories and assume they do not yet converge in number

so 10% more trajectories are computed in the smaller area depicted in green. Now the

simulation converges in trajectory number and the algorithm increases the size of the

impact disc by 10%. Instead of computing trajectories in the whole new area, we limit

them to be in the ring that was added, shown as the blue crosses. The number of new

computations must yield the same trajectory density in the ring as it was present in the

old disc. If we now add all of the trajectories we can again check for number convergence,

this time in the bigger area. If it converged, we can do the check in equation 3.5, if not

we need to add additional 10% more trajectories, but now randomized over the full area

defined by R2.

Eventually the algorithm will converge in number and radius, thus finishing the simula-

tion.
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3.4 SIMBUCA

SIMBUCA stands for Simulation of IonMotion in a Penning trap with realisticBUffergas

and Coulomb interaction using A graphics card and as the name implies is a program

that specialized in the computation of ion motion in trap configurations. The program

itself and a lot of information can be found at http://sourceforge.net/projects/simbuca/,

so I will only give a brief overview here.

The advantages of SIMBUCA for our purposes are

• the direct implementation of the trap configurations,

• the possibility to read in custom electrical and magnetic fieldmaps,

• fast and reliable integration routines with adaptive step size control,

• and very fast GPU accelerated N-body Coulomb interaction calculations.

3.4.1 Changes to SIMBUCA

SIMBUCA is used only for the computation of single trajectories, while the initial param-

eters are generated by MCSIM as well as the data analysis and preparation. Therefore

only a few small alterations to SIMBUCA were necessary in the end.

In a scattering experiment, the physical values in the initial and final state are taken at

infinite distance to each other, so that the interaction potential has initially no influence

on them. This is of course only a theoretical construct and not applicable in an actual

experiment or simulation. Therefore one tries to maximize those distances in order to

minimize the systematic error introduced. This can only be done within the boundary

given by the experiment or, in the case of simulations, by aspects of efficiency as dis-

cussed in section 4.1.1.

Originally SIMBUCA does not consider distances in order to trigger the end of the

simulation, but takes a simulation time parameter in the provided .sim-file to tell the

program the final time to integrate to. Even though, for classical Rutherford scattering

(B = 0, see section 2.3), the integration time can be estimated from the initial parame-

ters of the simulation, one runs into several problems with this approach.

It is possible to compute an approximate simulation time from the initial distance and

velocity of the particles and use twice the corresponding time-until-contact for the SIM-

BUCA computation. In the case of very small deflection angles of the positron, the

absolute value of the velocity changes only slightly and the two particles have nearly

the same initial and final distance. If that potential energy difference of initial and

final state is much smaller than the energy exchanged, the results are suitable, but are

carrying an additional (small) systematic error. This error is strongly pronounced for
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scattering events with a big change in the positron energy though. In that case the

particle distance can differ strongly between initial and final state and all related values

differ greatly from the ideal case of infinite distance.

A possible solution for this would be to extract the initial and final distances and man-

ually correct for the difference in potential energy by adding correction terms to all pa-

rameters. This is possible, because of the simple symmetric nature of the bare Coulomb

interaction involved in this case, but becomes far more difficult for the magnetized scat-

tering problem investigated in this thesis. Consider the extreme case of an interaction

process that transfers most axial energy along the field to the radial motion, such that

the positron is now axially close to the anti-proton at final simulation time. On the

other hand, even though the corresponding cyclotron radius increases due to the higher

radial energy (see equation 2.13), the positron is bound radially and the final distance

is fundamentally smaller than the initial one. This error can not easily be corrected,

so the described use of the final simulation time as parameter is not suitable for our

simulations.

The usual solution for tackling the outlined problem, or generally a scattering simula-

tion, is to implement a different condition to stop the integration of the trajectory. In

theory the initial and final state is one of infinite distance between the particles, distance

being the parameter of interest. Imagine a box of infinite size around one particle, such

that the initial state is the other particle entering this box and the final state has it

leaving. In the realistic case this box is shrunk to a ball of the initial distance between

the particles, so the final state is reached once the particles have the same relative dis-

tance again. The finite box size again introduces a systematic error, so the size must be

considered carefully.

For the implementation in SIMBUCA itself, a new condition was introduced, that checks

the relative distance of the particles after each time step and stops integration when the

initial separation is reached again. Depending on the values of the velocities it might

happen, that the particle triggers this condition after a few time steps because of cy-

clotron movement. This is an artifact of the finite sized box and those cases were filtered

out by setting an additional check of simulation time, such that the stop condition only

occurs after the particles came into contact. This was approximated by the time, the

particles need to axially meet derived from the initial axial separation and velocity.

This finite box method naturally solves the problems mentioned in the beginning of

this section, especially the field free case of Rutherford scattering does not need any

correction terms. The systematic error comes only from the finite box size, which can

be easily estimated and optimized. The case with a magnetic field still shows a subtle,

but important, error additionally introduced by the finite box size. Figure 3.5 shows

the axial position of a positron in a collision. The radial movement is bound to the

magnetic field, so that the particle can not leave the box by radial motion. Therefore

mainly the axial position triggers the stop condition for the integration. The solid and
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Simulation results

In this chapter we will present the results of the simulations conducted with MCSIM

and derive a qualitative description of the processes involved. In the end we will give

the results to our initial problem presented in section 1.3.

The first step to convince ourselves that the programs introduced in Chapter 3 are

working correctly is to validate the results for a well known setup. Coulomb collisions

without a magnetic field, Rutherford scattering, was used for that purpose. It is the

most basic form of two particle interaction and has an exact analytical solution, that

can easily be cross checked. Rutherford scattering will form a basis from which we will

slowly increase our parameter space one by one to the end up at the conditions present

in the CUSP setup in section 4.5.6. This is to disentangle the impact of a parameter on

the results as much as possible. Therefore the general outline of this chapter is:

• Rutherford scattering of p̄ and incident e+ with constant axial velocity,

• add magnetic field,

• add radial velocity for e+,

• e+ velocity diced from a Maxwell-Boltzmann distribution,

• add fixed axial and radial velocity for the anti-proton,

• and investigate CUSP conditions.

41
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axial separation [µm] axial velocity p̄ [m/s] axial velocity e+ [m/s]

Sim 1 50 -66000 0

Sim 2 50 -79800 0

Sim 3 100 -66000 0

Sim 4 1000 -66000 0

Sim 5 50 0 66000

Sim 6 50 -13800 52200

Table 4.1: Parameter values for simulations conducted to validate Rutherford scattering
results.

Comparing simulations 1, 3 and 4 tackle the issue of possible errors introduced by the

finite box size approach, while simulation 1, 5 and 6 are performed to verify the agree-

ment with Lorenz boosting along the axial direction.

Equation 2.28 shows the loss of energy of the incident particle over the impact parameter

in the frame where the heavy particle, that concentrates the center of mass in itself, hits

the stationary light particle. The ability to directly apply equation 2.28 is the reason why,

in this section, we will temporarily stray from the initial assumption of an anti-proton

at rest. The sections below, will return to the p̄ at rest assumption. For parameters of

simulation 1 in table 4.1 the analytical solution for energy change over impact parameter

is,

v = 66 000m/s

T (b) =
e4

(4πǫ0)2
· 2

mev2
· 1

b2 + b2min

∼ 1.68× 10−16 eV · 1m2

b2 + (5.8× 10−8m)2
,

T (0) ∼ 0.0495 eV

For simulation 2 the energy transfer is given by

v = 79 800m/s

T (b) =
e4

(4πǫ0)2
· 2

mev2
· 1

b2 + b2min

∼ 1.15× 10−16 eV · 1m2

b2 + (3.98× 10−8m)2
,

T (0) ∼ 0.0725 eV

With this we can compare the simulation results to the analytical solution in figure 4.2

and find perfect agreement for both investigated relative velocities.
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Figure 4.2: Simulation results and analytical solution for Rutherford scattering with the
positron at rest and the anti-proton velocity of Vp̄ = 66 000m/s (top panel) respectively

Vp̄ = 79 800m/s (bottom panel).
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4.1.2 Comparison of different frames of reference

As mentioned above, some of the simulations did not have the anti-proton at rest as

described at the beginning of the chapter, but the positron while the anti-proton carried

the initial velocity. In the unmagnetized case there is no preferential spatial direction

so that the collision description can always be transformed to a frame where the anti-

proton is at rest and the positron is the incident particle closing in along the so-defined

axial direction. The velocities involved are very slow and therefore the boost from the

frame where the anti-proton is at rest, is described simply by a one dimensional Galilean

transformation

vzp̄ = 0, vze+ = V
−V−−→ vzp̄ = −V, vze+ = 0 (4.1)

The simulation results must be invariant under this linear boost between inertial frames.

The next simulation set up compared three simulations with the same relative velocity

of V = 66 000m/s but split up differently on the two particles. In the top panel in

figure 4.4 we can see the results of the three simulations that show a different magnitude

in transfered energy (the blue dots are in the positive part of the plane) that comes

from their unlike energy in the laboratory frame. Although if the velocities involved are

boosted by a Galilean transformation to the frame (Vp̄ = 66 000m/s, Ve+ = 0) as seen

in the bottom panel of figure 4.2 they coincide as expected.

With this we were able to successfully reproduce the physical behavior of Rutherford

scattering, so we can be confident that the simulation program works as expected.
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Figure 4.4: Top panel: simulation results for three different frames of reference with the
same relative velocity V = 66 000m/s, bottom panel: Galilean transformation of the results

in the top panel to the frame (Vp̄ = 66 000m/s, V
e
+ = 0).
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by the simulation setup!

Adding the magnetic field to the analytically known Rutherford set up, it became dif-

ficult to cross check the results with theories as many of them rely on rather crude

approximations, like one dimensional collisions [41]. Nersisyan et al. [39, 42] presented

some possible theoretical approaches to the problem using perturbation theory. The

drawback is that the perturbed equations are only applicable, if the influence of the

Coulomb attraction on the cyclotron movement is small and the circular motion is only

slightly perturbed. The chaotic regions are in stark contrast to this approach and the

theory is not applicable.

We therefore decided to qualitatively describe the dynamics of scattering in strong mag-

netic fields, by trying to establish basic scaling laws for the parameters involved. The

parameters of interest were the impact parameter of start and end of the chaotic zone

as well as the seemingly physical boundary for maximal energy transfer.

4.2.1 Lorentz invariance

Despite the complications introduced by the magnetic field it does leave the physics

in axial direction untouched. Therefore the basic property of invariance regarding a

Galilean transformation along the axial direction, as it was done in section 4.1.2, must

be conserved. This was checked by conducting three simulations with the same relative

velocity V = 79 800m/s and a magnetic field of B = 2.8T. The axial velocities

• Vp̄ = 0, Ve+ = 79800 m/s

• Vp̄ = 13800 m/s, Ve+ = 66000 m/s

• Vp̄ = 79800 m/s, Ve+ = 0

and their respective energy transfer can be found in the top panel in figure 4.7. Then

the trajectories were boosted, using a Galilean transformation (equation 4.1), to the

frame with Vp̄ = 0, Ve+ = 79 800m/s and again compared. The bottom panel of figure

4.7 shows almost perfect coverage of the points. This comes from the fact, that all sim-

ulations use random number generators with the same initial seed, so that they should

map to the same point after the boost.

There are a few single energy transfers that have no corresponding boosted points

though. One reason is that the three simulations do not have the exact same num-

ber of points, so that there are some trajectories with no corresponding point in the

other simulations. The other is the effect of the finite box size of the simulation as ex-

plained in the section above. Some trajectories can show strongly bound behavior and

the cut off from the finite box size is different in the respective frames yielding results
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Figure 4.7: Top panel: simulation results for three different frames of reference with the
same relative velocity V = 66 000m/s, bottom panel: Galilean transformation of the results

in the top panel to the frame (Vp̄ = 66 000m/s, V
e
+ = 0).

that can differ greatly. For some of the single points the integration time is very long

compared to the rest, encouraging the argument. Most of the unpaired points come from

the fact, that the simulations are converging for different number of trajectories and if

the radius of the impact disc is increased in one simulation earlier than for the others,

all random points diced afterwards will not map on the same boosted point anymore.

In the end only a very small number of trajectories doesn’t have corresponding boosted

points, so that the effect on the overall result can be neglected.
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4.2.2 Scaling laws for the magnetic field strength for an axial velocity of

V = 20 000m/s

We already saw the dependence of the Rutherford scattering with the axial velocity of

∝ v−2 and now we want to find a scaling law for the magnetic field. The simulations are

set up with the same initial distances of 50 µm and positron velocity of V = 20 000m/s,

while the magnetic field is changed. Figure 4.8 shows the energy transfer for some values

of the magnetic field, where one can see that the chaotic zone shifts and widens with

lower field.

Figure 4.8: Total energy transfer dependence on magnetic field strength with axial relative
velocity of V = 20 000m/s and no initial radial movement

The regular structures inside the chaotic region appear for all values of the magnetic

field and seem to scale with the zone itself. Therefore the general properties of the chaos

are described to a good extend by parameterizing the impact parameter of start and

end of the chaotic zone as well as the function that acts as envelope for the maximal

energy transfer. The values were visually read from the data files and can be found in

table 4.2. The error was estimated from reading the same specific point several times

over the course of a few days and conservatively looking at the spread of the values.

For the impact parameter values an error of about ∆b ∼ 1 nm and for the energy values

∆E ∼ 0.5 µeV seems appropriate.



C
h
ap
ter

4
.
R
esu

lts
5
3

B [T]
start of chaotic

zone [µm]
end of chaotic
zone [µm]

position of
maximum of
energy transfer

[µm]

maximal energy
transfer [µeV]

position of
maximum of av.
energy transfer

[µm]

maximum of
average energy
transfer [µeV]

0.001 0.571 0.699 - - - -
0.01 0.462 0.796 - - - -
0.05 0.310 0.830 0.782 -2.730 - -
0.1 0.230 0.754 0.733 -3.50 - -
0.25 0.137 0.572 0.537 -5.621 0.531 -3.79
0.5 0.0850 0.424 0.403 -9.59 0.393 -6.0
0.75 0.0602 0.355 0.328 -12.80 0.320 -8.13
1 0.0490 0.305 0.286 -16.02 0.278 -10.1
1.5 0.0350 0.251 0.227 -21.20 0.215 -13.2
2 0.0273 0.215 0.196 -26.90 0.192 -16.8
2.5 0.0225 0.192 0.173 -33.95 0.172 -20.9
4 0.0143 0.149 0.134 -49.17 0.132 -28.6
5 0.0186 0.132 0.120 -61.19 0.116 -33.7

Table 4.2: Scaling parameter extracted from the simulation results with axial velocity of V = 20 000m/s and no radial velocity. The dash signalizes, that
the corresponding point could not be determined.
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Figure 4.10: Total energy transfer dependence for low magnetic field strength with axial
relative velocity of V = 20 000m/s and no initial radial movement. It can be seen, that
the boarders of the chaotic zone converge to a impact parameter of ∼ 0.63 µm from both
sides. As for B = 0.0001T the zone is so thin, that no trajectory falls into it, and it almost

follows the B = 0 solution.
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B [T]
start of chaotic

zone [nm]
end of chaotic
zone [nm]

energy transfer at
start [µeV]

energy transfer at
end [µeV]

position of maximum of
energy transfer [nm]

maximal energy
transfer [µeV]

0.05 51.6 64.6 13.5 13.5 - -
0.1 49.1 67.3 14.0 13.4 - -
0.25 44.8 71.5 13.7 13.4 - -
0.5 40.1 74.9 13.6 13.6 - -
0.75 36.8 76.6 14.1 14.0 - -
1 34.0 77.2 14.7 14.5 - -
1.5 30.2 77.0 14.8 15.4 - -
2 27.2 75.7 15.2 16.0 71.9 30.3
2.5 24.8 74.0 16.0 16.6 69.3 32.0
3 22.7 71.9 16.9 17.5 66.1 34.0
4 19.7 67.6 17.6 19.3 63.8 38.2
5 17.8 63.9 17.8 20.5 59.6 43.0
8 13.5 54.9 18.6 25.0 50.7 56.6
10 11.6 50.5 19.5 27.2 47.1 66.1

Table 4.3: Scaling parameter extracted from the simulation results with axial velocity of V=66000 m/s and no radial velocity. The dash signalizes, that
the corresponding point could not be determined.
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B [T]
position of
arc1 [nm]

energy transfer
of arc1 [nm]

position of
arc2 [nm]

energy transfer
of arc2 [nm]

position of
arc3 [nm]

energy transfer
of arc3 [nm]

position of
arc4 [nm]

energy transfer
of arc4 [nm]

1.5 50.1 28.1 59.1 28.2 - - - -
2 48.0 28.7 57.5 29.4 - - - -
2.5 46.3 29.5 56.7 30.5 - - - -
3 44.7 30.3 53.8 31.8 - - - -
4 41.7 32.2 50.5 34.7 54.6 35.9 56.8 36.4
5 39.3 34.1 47.4 37.3 51.2 39.3 53.4 40.6
8 33.6 40.6 40.5 46.8 43.6 50.1 45.2 52.1
10 30.8 45.0 37.1 53.1 39.8 57.1 41.5 59.5

Table 4.4: The arc entries are the maximum energy transfer point of the arcs of regularity inside the chaotic zone.
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4.3 Scattering in a magnetic field with radial positron energy

Having established two parameters in the sections above, axial velocity and magnetic

field, the next step is to give the positron a radial velocity. This induces a cyclotron

motion in the e+ that necessitates a redefinition of the impact parameter. This comes

from the fact, that the phase of the cyclotron movement is randomized in the simulation

to average over this parameter. The magnitude of the randomized initial radial velocity

and its direction define a specific cyclotron trajectory and all initial conditions that are

randomized to be situated on this same circle yield the same result from the simula-

tion effectively creating an ambiguity. That means that even though the radial distance

(=definition of impact parameter up to now) on this cyclotron radius is different they

all contribute to the same average result.

The redefinition comes naturally from the before mentioned fact, that on average all

initial conditions belonging to the same cyclotron circle are equal, making that circle

or even better its center a representative distance for the collision. Therefore the new

definition is simply

Definition of impact parameter:

Radial distance of the center of cyclotron motion for the respective radial velocity

4.3.1 Lorentz invariance

At this point we again turn to check if the Galilean boost along the axial direction leaves

our result invariant. This time we have the additional problem of an extended movement

in the radial plane, that might be able to spoil our simulation. Identical parameters for

axial velocities and magnetic field of B = 1T are used for the simulations

• Vp̄ = 0, Ve+ = 79 800m/s,

• Vp̄ = 13 800m/s, Ve+ = 66 000m/s,

• Vp̄ = 79 800m/s, Ve+ = 0.

We can see the total energy transfer in the top panel in figure 4.7. Then the trajectories

were boosted, using a Galilean transformation (equation 4.1), to the frame with Vp̄ = 0,

Ve+ = 79 800m/s and again compared. The bottom panel of figure 4.7 shows almost

perfect coverage of the points.
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Figure 4.14: Top panel: simulation results for three different frames of reference with
the same relative velocity V = 66 000m/s, bottom panel: Galilean transformation of the

results in the top panel to the frame (Vp̄ = 66 000m/s, V
e
+ = 0).
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We can see a few single and double points, but most of the trajectories end in a triple

point. This again comes from the fact, that on one hand the simulations converge for

a different amount of trajectories and therefore the distribution of initial parameters is

not the same, leaving some points without a respective one in the other simulations. On

top of that the finite box size can introduce an error here.

The great correspondence here validates the correctness of simulation and furthermore

shows, that the chosen initial box size is sufficiently big.

4.3.2 Scaling with radial Velocity

With this new impact parameter definition we can do another survey keeping axial ve-

locity constant at V = 20 000m/s and the magnetic field at B = 1T for the simulations

presented in figure 4.15. We can see again a hard boundary on the energy transfer that

is only violated by a few single trajectories, otherwise seems like a physical limit though.

We can see, that it does not depend on radial velocity at all, but in section 4.2.2 and

4.2.3 we see, that it scales with magnetic field and axial positron velocity.

Figure 4.15: Total energy transfer dependence on the radial positron velocity with axial
relative velocity of V = 20 000m/s and B = 1T.

The axial momentum transfer in figure 4.16 does show very interesting behavior in the

form of the lower hard boundaries, that is difficult to parameterize though.
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Figure 4.16: Axial momentum transfer dependence on the radial positron velocity with
axial relative velocity of V = 20 000m/s and B = 1T.

4.3.3 Scaling with radial temperature

The next logic step in our treatment is to dice the initial radial velocities from a Maxwell-

Boltzmann distribution of a specific temperature. In figure 4.17 we can see the transfered

energy and that it shows the same hard boundary as in the case of a single velocity, as

expected.

Figure 4.17: Total energy transfer dependence on the radial positron velocity with axial
relative velocity of V = 20 000m/s and B = 1T.
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The same can be said about the axial momentum transfer in figure 4.18. The hard

boundaries are not radial velocity dependent, but only scale with magnetic field strength

and axial velocity of the positron.

Figure 4.18: Axial momentum transfer dependence on the radial positron velocity with
axial relative velocity of V = 20 000m/s and B = 1T.
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4.4 Robicheaux simulations

In section 4.2 we saw that the addition of the magnetic field introduced chaotic behavior

not described by the theories. Having added even another parameter, the radial positron

energy, we can compare results to a paper from F. Robicheaux [43], which builds confi-

dence in our implementation and results at this point. Thus recalculating the results in

the paper will ensure correctness of the output our simulation program generates. The

parameters used in the paper are

• magnetic field B = 1T,

• anti-proton at rest,

• positron axial velocity between 10 000m/s and 60 000m/s,

• positron radial temperature 4K.

The paper focuses on the effects of scattering in a magnetic field on the axial motion,

so the two main physical parameters extracted from the simulation results are the axial

momentum transfer to the anti-proton and the axial energy transfer. Radial behavior is

mostly neglected, as it is assumed that any radial motion of the p̄ is exchanging energy

very fast and equilibrates very quickly compared to the axial motion. In the end radial

energy exchange is considered instantaneous and only the axial part is calculated. We

will strive to quantify and proof this statement here and will compute the radial energy

transfer as well.

First we will crosscheck our simulation results with figure 3 in the paper of Robicheaux

[43], showing axial momentum transfer between the particles. In figure 4.19 we see our

trajectories in red, the average over bins of 10 nm width in blue and the paper results in

black. Considering the lack of precise information on the details of the simulations we

get acceptable results from our simulation.
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Having established confidence in our simulations with the agreeable results above, we

now aim to extend the parameters space presented in Robicheaux’s paper. First we can

survey the temperature further and see how the curves in 4.20 look for higher thermal

energies. Furthermore we are interested into the energy transfer as well, so in figure 4.21

we see the extended transfer rates for some interesting temperatures.

Figure 4.21: Top panel: axial momentum transfer rate F for different values of the
temperature T , bottom panel: total energy transfer rate G.

To get a step closer to CUSP conditions again, it is interesting to investigate how the

magnetic field influences the results in figure 4.22.
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Figure 4.22: Top panel: axial momentum transfer rate F for different values of the
magnetic field B, bottom panel: total energy transfer rate G.

4.5 Adding anti-proton radial energy

We have now the full set of parameters, present in the experiment, at our disposal. The

finite radial anti-proton velocity induces a p̄ cyclotron motion in the magnetic field,

which necessitates another generalization of the impact parameter definition. This is

done in accord to section 4.2, where we generalized the impact parameter for positrons

with cyclotron movement.
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the two particles are actually separated by 32 µm and only interacting very weakly.

This aspect combined with the randomization of positron velocities lead to a very low

chance of making a hard collision seen as only a few points have a high energy transfer

even though figure 4.23 contains almost 106 trajectories.

4.5.1 p̄ outward drift

Having established the full parameter space in this section, we now get results that en-

able us to compute the outward drift rate of the anti-proton. Because of time constrains

the simulations below were stopped prematurely though, so that the convergence algo-

rithm was not able to increase the disc size (see section 3.3.3). Looking at the average

energy transfers, f.e. figure 4.31 or any of the others, it falls off to zero quickly for the

impact parameter close to the upper limit of 30 µm. Therefore trajectories outside the

simulated disc do not strongly impact the average which limits the error introduced.

Consider now a cylinder with the base area equal the impact disc and a length dz in

axial direction. As stated above positrons radially outside of the disc are assumed to not

contribute to the energy change. The anti-proton now travels along the axial direction

interacting with positrons inside of the cylinder contributing E each to the overall energy

transfer. In a homogeneously dense plasma the energy transfer dE/dz can therefore be

expressed as

dE

dz
= ne+r

2πE. (4.3)

The anti-proton is moving axially through the nested trap and we assume that it does

not interact while in the harmonic potential part of the trap and only transfers energy

while passing through the positron cloud. We can calculate the time spent outside the

plasma from the harmonic frequency of the well Tharmonic = 1/fharmonic ∼ 2.5× 10−6 s.

The time inside the plasma can be calculated from the length of the positron cloud of

about 6.6 cm (beam time 2014) and the axial velocity of the anti-proton, that depends

on the injection energy (in this work an axial energy of 1 eV is adopted most of the time,

so that vz ∼ 13 800m/s). With those numbers we can define the relations in equation

4.4 that give us the macroscopic energy transfer per pass through the positron cloud and

the average energy transfer per second. The latter needs careful attention, because it

assumes that the energy transfer stays constant with each pass, but as the anti-proton

is exchanging energy the transfer rate will change too.
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∆E

pass
=

dE

dz
· lplasma

∆E

∆t
=

∆Epass

tplasma + Tharmonic
=

∆Epass

lplasma

vaxial
+ 1

fharmonic

(4.4)

In the next sections we will present a basic parameter survey of the important param-

eters of magnetic field strength B, positron temperature T and a first approach to the

impact of different initial anti-proton energies. The energy transfer rates as well as the

outward transport rate γ will be computed, as well as a representative drift time scale

that, as mentioned above, gives only a guiding value for the drift effect.

Note that simulation times up to two or three weeks are necessary for a statistical suf-

ficient amount of trajectories. Even then the results did not yet converge to the limits

set in section 3.3.3, but were stopped prematurely with an error of around 10%. For

more reliable results a longer time to conduct simulations or more resources are needed.

The results shown hereafter will concentrate on a qualitative description and yield a first

result for radial outward drift at the end of this chapter.

4.5.2 Influence of different magnetic fields

In this section the influence of the magnetic field on the collision results is investigated

for positron temperatures of 100K and 30K. Simulations with different magnetic field

strength require a change to the initial size of impact disc, because the anti-proton cy-

clotron radius changes as well (see equation 2.13). Therefore the averages can not be

directly compared as they are computed over all trajectories in the disc area, yielding

lower averages for bigger disc sizes. The energy transfer in equation 4.3 is a more ap-

propriate number to compare different simulations.

The tables below, show the energy transfer calculated from the simulation results for

different magnetic field strength as well as the outward transport rate (see equation

2.21)

B [T]
averaged total
energy transfer

[eV/m]

averaged axial
energy transfer

[eV/m]

averaged radial
energy transfer

[eV/m]

outward transport
rate γ [s−1]

1 −1.123 +0.703 −1.826 25.054
2.8 −1.217 +0.039 −1.256 0.280
5 −0.773 +0.068 −0.841 0.018

Table 4.5: transferred energy of an anti-proton with an axial energy of 1 eV, radial energy
of 0.1 eV and positron temperature of T = 30K and density n = 1.5× 1014 m−3, the

impact disc size is 30 µm for B = 5T, 30 µm for B = 2.8T and 90 µm for B = 1T
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B [T]
averaged total
energy transfer

[eV/m]

averaged axial
energy transfer

[eV/m]

averaged radial
energy transfer

[eV/m]

outward transport
rate γ [s−1]

1 −0.670 +0.087 −0.756 10.37
2.8 −0.447 +0.104 −0.551 0.123
5 −0.423 +0.023 −0.445 0.010

Table 4.6: transferred energy of an anti-proton with an axial energy of 1 eV,radial energy
of 0.1 eV and positron temperature of T = 100K and density n = 1.5× 1014 m−3, the

impact disc size is 30 µm for B = 5T, 30 µm for B = 2.8T and 60 µm for B = 1T

For both temperatures we can observe that the energy transfer decreases with increasing

magnetic field in both components. The same effect can be observed in figure 4.22.

From the outward transport rate we can calculate the drift time for an anti-proton

starting at half the plasma radius to reach the outer boundary. We do this for two

scenarios, on the one hand the realistic case where the anti-proton traverses the plasma

and harmonic side wells, where no energy transfer is present, and therefore yields longer

drift times. For this calculation we use equation 4.4. Section 4.5.6 features a more

detailed description of this calculation. For an anti-proton to drift from radius r to the

edge of the positron cloud at R in a infinitely long plasma cylinder, it needs the time

t∞ =
ln
(

R
r

)

γ
(4.5)

In the CUSP setup the anti-proton traverses the positron plasma with length lplasma and

the harmonic side wells with Tharm = 1
fharm

∼ 2.3× 10−6 s, such that the drift time is

given by

tCUSP = t∞ × Tharm + tplasma

tplasma
tplasma =

lplasma

vaxial
(4.6)

B [T]
r = 0.5Rplasma

drift time 30K
t∞

r = 0.5Rplasma

drift time 100K
t∞

r = 0.5Rplasma

drift time 30K
tCUSP

r = 0.5Rplasma

drift time 100K
tCUSP

1 0.03s 0.07s 0.04s 0.1s
2.8 2.47s 5.64s 3.66s 8.34s
5 37.55s 71.0s 55.53s 105.0s

Table 4.7: Drift times of an anti-proton with an axial energy of 1 eV, radial energy of
0.1 eV and positron temperature of T = 100K and density n = 1.5× 1014 m−3, the impact
disc size is 30 µm for B = 5T, 30 µm for B = 2.8T and 60 µm for B = 1T. The two
columns on the right feature the realistic case in the CUSP, while the two columns on the

left are calculated for a infinitely long plasma cylinder.
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4.5.3 Comparison with B=0

We began the simulation analysis by cross checking our simulation with the analytically

known results of Rutherford scattering. Once again we turn back to the non-magnetic

case here to compare our results to. With the lack of a magnetic field there is no cy-

clotron motion of the anti-proton so it proofs difficult comparing to simulations where

the p̄ is found on a certain radial distance. Therefore the simulation program is mod-

ified to randomly distribute the anti-protons on a fixed cyclotron radius corresponding

to B = 2.8T that we want to compare the B = 0 results to.

An important aspect when comparing the following simulations, is that for the B=0 case

the same axial velocity distribution was used as for B = 2.8T, but without any radial

energy. That means that on average the total energy of positrons in the magnetized

case is three times higher.

The following figures 4.26 and 4.27 show the comparison between total energy transfer

to the anti-proton for B = 0 and B = 2.8T with positron temperatures of 300K, 100K,

30K and 10K.
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The difference relating to b approaching 0 is not yet clear. One thing that comes to mind

would be the broken symmetry of the interaction, because of the magnetic field. If the

positron is close to the center b = 0, the anti-proton describes a circular orbit around

the positron over the integration time. Depending on the axial velocities involved, it

can be one or more full revolutions for a small relative axial velocity difference or only

an arc for high velocities, because for this case the integration time is smaller than the

p̄ cyclotron period. This kind of influence does not exist for the B = 0 case and the

effect of this movement might present itself differently for an impact parameter > 20 µm

in the magnetized situation, where we can see that the two cases are very similar for all

temperatures.

Another interesting aspect is that there are more collisions with a very high energy

transfer in the collision within a magnetic field, while the effective range of the interac-

tion, the width of the green compared to the purple peak at b = 16 µm, seems smaller,

independent of the temperatures.

In table 4.8 the averaged energy transfer of the anti-proton is calculated for all trajecto-

ries. The results show, that only for a 10K plasma, the anti-proton is actually cooling.

For the other temperatures positrons are transferring energy to the anti-proton.

T [K]
impact disc
radius [m]

averaged total
energy transfer [eV]

averaged total
energy transfer [eV/m]

300 3× 10−5 +3.178× 10−7 +0.135
100 3× 10−5 +1.058× 10−6 +0.448
30 3× 10−5 +9.176× 10−7 +0.389
10 3× 10−5 −1.485× 10−5 −6.300

Table 4.8: Transferred energy of an anti-proton with an axial energy of 1 eV in a B = 0
set up.
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4.5.4 Analysis of different positron temperatures

Figure 4.28 shows the dependence of the energy components from the positron tempera-

ture for a magnetic field of B = 2.8T. The dominating radial component scales directly

with the temperature, as the energy transfer gets higher the colder the plasma is. The

axial component shows less of this relation, for temperatures higher than 30K there is

an actual axial energy gain. Cooling becomes effective only for T = 10K. The averages

of all trajectories are found in table 4.9.

T [K]
averaged total
energy transfer

[eV/m]

averaged axial
energy transfer

[eV/m]

averaged radial
energy transfer

[eV/m]

outward transport
rate [s−1]

300 −0.330 −0.028 −0.301 0.067
100 −0.447 +0.104 −0.55 0.123
30 −1.217 +0.039 −1.256 0.280
10 −2.972 −0.811 −2.161 0.482

Table 4.9: Transferred energy of an anti-proton with an axial energy of 1 eV and radial
energy of 0.1 eV in a trap with B = 2.8T, the impact disc size is 30 µm.

The axial energy transfer, in these and almost all other simulations, does not show a

clear correlation and is very ”noisy”. Axial cooling for 10K that was already seen in

the non-magnetized case (table 4.8) shows up here again even though it is an order

of magnitude smaller. As expected radial cooling becomes more effective for lower

temperatures showing a monotonous decrease.

T [K]
r = 0.5Rplasma

leave time
t∞

r = 0.5Rplasma

leave time
tCUSP

300 10.3s 15.3s
100 5.7s 8.4s
30 2.5s 3.7s
10 1.4s 2.1s

Table 4.10: Drift times of an anti-proton with an axial energy of 1 eV and radial energy of
0.1 eV in a trap with B = 2.8T, the impact disc size is 30 µm.The second column features
the realistic case in the CUSP, while the third column is calculated for a infinitely long

plasma cylinder.
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4.5.5 Analysis of different anti-proton energies

One main concern of a realistic computation of the outward drift of the anti-proton is

that information on the energy progression of the anti-proton energy is needed.

axial E
[eV]

radial E
[eV]

averaged total
energy transfer

[eV/m]

averaged axial
energy transfer

[eV/m]

averaged radial
energy transfer

[eV/m]

outward transport
rate [s−1]

1 0.1 −2.972 −0.811 −2.161 0.482
5 0.1 −2.210 −1.963 −0.247 0.123
10 0.1 −0.396 −0.394 −0.0026 0.0019

10 1 −1.047 −1.650 +0.603 -0.043

Table 4.11: Transferred energy of an anti-proton in a positron plasma with temperature
of T = 10K, B = 2.8T and impact disc size of 40 µm for Eradial = 0.1 eV and 80 µm for

Eradial = 1 eV.

Smaller energy transfer with increasing axial velocity is the expected result of the lower

interaction time between the two collision bodies. Interesting is, that for increasing axial

energy the up to now somewhat undefined axial energy transfer shows a distinctive peak

at the anti-proton position. Even more astounding is that for 5 eV the axial transfer is

maximal (in this simulation set) and gets smaller again for 10 eV. Generally one can see

that for higher axial energy the share of radial energy transfer on the total gets consid-

erable smaller. For a 1 eV p̄ radial energy transfer was about one magnitude bigger in

absolute value, for 10 eV they are about the same.

We have no explanation yet for the behavior of the radial transfer component for the

(10 eV,1 eV) simulation. More simulations with different radial anti-proton energies are

needed here.

axial E
[eV]

radial E
[eV]

r = 0.5Rplasma

leave time
t∞

r = 0.5Rplasma

leave time
tCUSP

1 0.1 1.4s 2.1s
5 0.1 5.6s 11.7s
10 0.1 378s 950s

10 1 - -

Table 4.12: Drift time of an anti-proton in a positron plasma with temperature of T =
10K, B = 2.8T and impact disc size of 40 µm for Eradial = 0.1 eV and 80 µm for Eradial =
1 eV. The third column features the realistic case in the CUSP, while the fourth column is

calculated for a infinitely long plasma cylinder.
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4.5.6 CUSP Parameters

This section covers the important results for parameters present in the experiment in

more detail. In the interaction region of the CUSP trap:

• homogeneous magnetic field of B = 2.8T,

• positron plasma with T ∼ 100K,

• fixed axial and radial velocity of the anti-proton Eaxial = 1 eV, Eradial = 0.1 eV.

Those numbers come from theoretical assessment and measurements of the experimen-

tal conditions. The magnetic field value is extracted from field-maps simulated with

the program COMSOL [44], showing a maximum of about 2.8T at the position of the

positron plasma. The value changes to about 90% at the axial plasma edges, but for

qualitative results it is considered to be homogeneous.

The temperature of the positron plasma is more difficult to determine precisely. After

injecting the positrons into the nested well (see figure 1.5) they will develop to a radiative

equilibrium with the electrodes of the trap, such that in the ideal case the temperature

of electrodes and plasma are the same. Measurements are done by slowly lowering the

potential of the downstream electrode and measuring the number of escaping positrons

[45]. The results of this extraction show possible positron plasma temperatures between

T ∼ 100K and T ∼ 300K [23]. In general a lower temperature positron plasma greatly

enhances the H̄ production [27], therefore temperatures as low as T ∼ 10K are studied

as well [26, 46].

There are two different procedures to inject anti-protons into the positron plasma de-

scribed in section 1.2.4. For the simulations the direct-injection-procedures energies were

used. In the case of adiabatic transport from the MUSASHI trap, they can be as low as

1 eV axially and 0.1 eV radially [22].

In figure 4.31 the results of the simulation are shown once more, as well as the 0.15 µm

bin-averaged energy transfer components.
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Comparing the magnetized (figure 4.32, top) and unmagnetized case (figure 4.33) we see

a clear asymmetry when a magnetic field comes into play.

Figure 4.33: Energy transfer of the e+ depending on its axial velocity for T = 100K in
the case B = 0.

For a non-magnetic collision, the e+ to the left of the line with vaxial,e+ = −13 800m/s

will always loose energy to the anti-proton in a collision, whereas the positrons to the

right will collide from the front and gain energy the p̄ loses. This can be seen in figure

4.33.

The asymmetry in the magnetized case is not known and might partly stem from the

fact, that because of the magnetic field the positron can not escape radially but stays

close to the anti-proton for longer times. This is especially true for velocities a bit smaller

than −13 800m/s as the positrons will move into the same direction as the p̄ trailing

them with only slightly higher velocity while staying close axially as well as radially.

So when they are loosing energy to the anti-proton by kicking them from behind the

velocity difference will become even smaller enabling them to fly side-by-side, further

increasing the interaction effect.

From figure 4.31, bottom panel, we can see that the loss of total energy stems primar-

ily from radial energy loss. The axial component seems to even gain energy from the

positron plasma. Averaging over all trajectories we can quantify these observations and

find that axial energy is indeed increasing while the radial energy loss tips the balance

to a resulting overall energy loss as seen in table 4.13. If we compare with the results

for non-magnetic positrons in table 4.8 we see that for B = 0 we yield an axial energy

gain too, that is by a factor of five bigger though.
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For CUSP conditions the average density is ne+ = 1.5× 1014m−3 so we yield the energy

transfer in table 4.13.

impact disc
radius [µm]

averaged total
energy transfer [eV/m]

averaged axial
energy transfer [eV/m]

averaged radial
energy transfer [eV/m]

30 −0.447 +0.104 −0.550

Table 4.13: Transferred energy of an anti-proton with an axial energy of 1 eV and radial
energy of 0.1 eV in a B = 2.8T trap with a T = 100K positron plasma.

Using equation 4.4 the energy transfer per pass through the positron cloud and per

second is calculated, taking the time the p̄ is outside of the plasma into account.

[eV/m] [eV/pass] [eV/s]

total energy −0.447 −0.029 4085

axial energy +0.104 0.0069 972

radial energy −0.55 −0.036 5070

Table 4.14: Energy transfer rates of an anti-proton with an axial energy of 1 eV and
radial energy of 0.1 eV in a B = 2.8T trap with a T = 100K positron plasma of density
ne+ = 1.5× 1014 m−3 and length 6.6 cm, passing it with a frequency of f = 4.4× 105 s−1.

For the CUSP parameters we can calculate the magnetron, cyclotron and dampening

frequency

ω0 =
ω2
p

2Ωe
=

nee

2ǫ0B
= 4.85× 105 s−1, (4.7)

Ωi =
eB

mi
= 2.69× 108 s−1, (4.8)

ν = − 1

mp̄vradial

vaxial
vradial

dE

dx

∣

∣

∣

∣

axial

= 3.75× 104 s−1 (4.9)

With this we find the rate of outward transport to be γ = 0.123 s−1. Assume an

anti-proton at a radial distance of 0.5mm to the center of the plasma with a radius of

1mm. From equation 2.20 we find the time for the anti-proton to leave the plasma to

be t = ln2/γ = 5.65 s. This calculation assumes the anti-proton is moving through an

infinitely long plasma tube. The actual situation is that the plasma is traversed only for

a short time t ∼ 2.3× 10−6 s (for the p̄ axial velocity of 13 800m/s) then the anti-proton

leaves the plasma axially and moves through the nested trap potential before coming

back into the plasma. The anti-proton will therefore leave the plasma after 1.2 × 106

passes through the center of the trap. The axial frequency of the p̄ in the nested trap

is about fpassage ∼ fharmonic ∼ 4.4× 105 s−1 yielding a total time of 8.35 s for the anti-

proton to leave the plasma.
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4.5.6.1 Conclusions

An anti-proton with axial energy of 1 eV and radial energy of 0.1 eV in a positron plasma

of T = 100K and B = 2.8T loses radial energy with the rate dE/dx ∼ −0.55 eV/m,

which translates to a rate of outward transport of γ = 0.135 s−1. Therefore a particle at

radius r will leave the plasma (with R = 1mm) in

r 0.01mm 0.1mm 0.2mm 0.5mm 0.8mm 0.9mm

tleave,∞ 37.5s 18.8s 13.1s 5.64s 1.81s 0.85s
tleave,CUSP 55.5s 27.8s 19.4s 8.35s 2.69s 1.26s

Table 4.15: Radial escape times of anti-protons with Eradial = 0.1 eV and T = 100K
positron plasma.

The results of the simulations are giving numbers for the energy transfer and further-

more for the outward drift rate of the anti-proton. The time scales of outward drift

found for CUSP parameters are around 10 s which is close to the time scale observed in

the experiment.

The problem is, that the number computed from the simulation acts as guiding value for

the drift time, because the energy transfer is assumed to be constant over this macro-

scopic time. Therefore the anti-proton would have lost its energy a million times over,

see table 4.14, making this result unrealistic. Assuming that the energy transfer will vary

over time, the integrated outward drift rate would probably yield time scales consider-

ably different from the 10 s found here. So on a first glance the centrifugal separation

alone might not cause anti-protons to leave the positron plasma on an experimentally

significant timescale.

For convincing results more simulation have to be done, especially for different axial and

radial energies to get an energy and therefore time dependent outward drift rate, that

can be integrated for a realistic result of the time scale of the outward drift.
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The simulation results for the p̄ outward drift times in table 5.1 are of the same order of

magnitude as we would need, but to get to these times a constant energy loss rate was

used. That means, that the anti-proton needs to loose the same −0.55 eV/m over the

whole tens of seconds time frame to achieve those drift times. Having only 0.1 eV radial

energy to begin with this deduction is not realistic, but defines a guiding value for the

drift times at hand. More simulations for different anti-proton energies are needed to

calculate a realistic integrated drift time.

r 0.01mm 0.1mm 0.2mm 0.5mm 0.8mm 0.9mm

tleave,∞ 37.5s 18.8s 13.1s 5.64s 1.81s 0.85s
tleave,CUSP 55.5s 27.8s 19.4s 8.35s 2.69s 1.26s

Table 5.1: Radial escape times of anti-protons with Eradial = 0.1 eV and T = 100K
positron plasma.

The conclusion for me here is, that there is not enough data to determine if centrifugal

separation causes the anti-hydrogen yield drop or to completely exclude this process as

possibility. The numbers tell us that the drift times themselves are in the right order of

magnitude, so combining it with some other processes like heating of the anti-protons

outside of the plasma or high energy loss rates even for low energies can make centrifugal

separation an important factor in the yield drop and worth of further investigations.



List of Figures

1.1 Current experimental precision of different experiments for detection of
a possible CPT violation. The right edge of the bars gives the energy
(frequency) equivalent of the observable measured, while the left edge
shows the absolute precision of the measurement. Status of 2014 [11]. . . 4

1.2 Zeeman splitting of the groud state hyperfine levels of hydrogen, adapted
from [13]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Schematic overview of the ASACUSA experiment [2]. . . . . . . . . . . . . 9

1.4 Schematic view of the positron accumulator [23]. . . . . . . . . . . . . . . 10

1.5 (a) Multi ring electrode (MRE) of the CUSP trap, (b) its axial magnetic
field strength and (c) potential configurations of positron loading φ1, e

+

cooling φ2, anti-hydrogen forming φ3, p̄ loading φ4 and FIT empty/regular
operation mode φ5 [1]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Schematic view of spin selection, transition and detection elements, adapted
from [23]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.7 Measurement of σ1 and π1 spin flips in a hydrogen beam [3]. . . . . . . . . 13

1.8 H̄ formation rate in beamtime 2010 [1]. . . . . . . . . . . . . . . . . . . . . 14

1.9 H̄ formation rate in beamtime 2012, with direct injection of anti-protons(black
squares) and auto resonance (red dots) taken from [2]. . . . . . . . . . . . 15

1.10 Ion interaction with a neutral buffer gas leads to a loss of cyclotron energy
that translates to an increase of magnetron radius [31] . . . . . . . . . . . 15

2.1 Schematic view of the charge shift in a negatively charged plasma intro-
ducing a single positive charge. . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Helical motion of a charged particle in an electromagnetic field, taken
from [32]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 Radial electric field at the center of the positron plasma in the CUSP trap
as a superposition of the field of the plasma and the outer electrodes. The
red lines shows the electrode field if no plasma is present. . . . . . . . . . 23

2.4 Geometrical set up of Rutherford scattering. The alpha particle is repelled
by the stationary nucleus and follows a hyperbolic trajectory. The dashed
asymptotes span well defined angles from which the geometrical equations
of Rutherford scattering can be deduced [35]. . . . . . . . . . . . . . . . . 25

3.1 Integration by the Monte Carlo method. . . . . . . . . . . . . . . . . . . . 29

3.2 Sample simulation file for SIMBUCA. . . . . . . . . . . . . . . . . . . . . 30

3.3 A simple example to show, that the number - area · average - converges to
a constant if the radius of the impact disc is increased, including trajec-
tories with a very small energy (∼ 0) transfer for higher impact parameter. 34

95



List of Figures 96

3.4 Example trajectories for the impact disc radius convergence mechanism.
Shown is the initial position of the positron in the radial plane, while the
anti-proton is considered to be at (0,0). . . . . . . . . . . . . . . . . . . . 36

3.5 Sample trajectory for chaotic scattering. The axial position of the positron
(green) and anti-proton (red) that is initially at rest in z=0. The black
horizontal lines show the impact of two different box sizes. In the case of
the solid line (boxsize 40 µm) multiple scattering events take place, that
are completely suppressed for the case of the dashed line (boxsize 10 µm). 39

4.1 This setup for the Rutherford simulations shows the initial placement of
the anti-proton in the origin of the coordinate system and a possible ran-
dom starting position of the positron inside the dashed impact disc. The
axial separation here is chosen to be 50 µm, the number most simulations
will use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Simulation results and analytical solution for Rutherford scattering with
the positron at rest and the anti-proton velocity of Vp̄ = 66 000m/s (top
panel) respectively Vp̄ = 79 800m/s (bottom panel). . . . . . . . . . . . . 44

4.3 Rutherford scattering with the positron at rest and the anti-proton ve-
locity of Vp̄ = 66 000m/s showing the differences of the simulation to the
analytical solution for different box sizes of 50 µm, 100 µm and 1mm. . . 45

4.4 Top panel: simulation results for three different frames of reference with
the same relative velocity V = 66 000m/s, bottom panel: Galilean trans-
formation of the results in the top panel to the frame (Vp̄ = 66 000m/s,
Ve+ = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Total energy transfer in a collision between a resting anti-proton and an
incident positron with V = 20 000m/s in a magnetic field with B = 1T.
The red line shows the analytic result for B = 0. . . . . . . . . . . . . . . 48

4.6 Axial position of the positron (green) and anti-proton (red) that is initially
at rest in z = 0. The positron is in a weakly bound state around the anti-
proton, as it can not escape radially because of the magnetic field, and
does more than 200 collisions. . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.7 Top panel: simulation results for three different frames of reference with
the same relative velocity V = 66 000m/s, bottom panel: Galilean trans-
formation of the results in the top panel to the frame (Vp̄ = 66 000m/s,
Ve+ = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.8 Total energy transfer dependence on magnetic field strength with axial
relative velocity of V = 20 000m/s and no initial radial movement . . . . 52

4.9 Fit functions of the magnetic field scaling. . . . . . . . . . . . . . . . . . . 54

4.10 Total energy transfer dependence for low magnetic field strength with
axial relative velocity of V = 20 000m/s and no initial radial movement.
It can be seen, that the boarders of the chaotic zone converge to a impact
parameter of ∼ 0.63 µm from both sides. As for B = 0.0001T the zone is
so thin, that no trajectory falls into it, and it almost follows the B = 0
solution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.11 Total energy transfer dependence on magnetic field strength with axial
relative velocity of V = 66 000m/s and no initial radial movement. . . . . 56

4.12 Total energy transfer dependence on magnetic field strength with axial
relative velocity of V = 66 000m/s and no initial radial movement. . . . . 57



List of Figures 97

4.13 Fit functions of the magnetic field scaling for the beginning and the end
of the chaotic zones, that scale with B0.18 and B0.40 respectively. . . . . . 60

4.14 Top panel: simulation results for three different frames of reference with
the same relative velocity V = 66 000m/s, bottom panel: Galilean trans-
formation of the results in the top panel to the frame (Vp̄ = 66 000m/s,
Ve+ = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.15 Total energy transfer dependence on the radial positron velocity with
axial relative velocity of V = 20 000m/s and B = 1T. . . . . . . . . . . . 63

4.16 Axial momentum transfer dependence on the radial positron velocity with
axial relative velocity of V = 20 000m/s and B = 1T. . . . . . . . . . . . 64

4.17 Total energy transfer dependence on the radial positron velocity with
axial relative velocity of V = 20 000m/s and B = 1T. . . . . . . . . . . . 64

4.18 Axial momentum transfer dependence on the radial positron velocity with
axial relative velocity of V = 20 000m/s and B = 1T. . . . . . . . . . . . 65

4.19 Comparison of our simulation results with the figure published in the
paper of F.Robicheaux et al. [43]. The red dots are the energy transfers
of our trajectories while the blue line is their binned average (bin-width
10 nm). The black dots and lines are the results from the paper. . . . . . 67

4.20 Comparison of our simulation results with the figure publicized in the
paper of F.Robicheaux et al. [43]. The red dots show our result for
a selection of five different axial velocities that match the black paper
results acceptably well. The solid line here shows the momentum transfer
rate for T = 4K, the dotted line for T = 8K and the dashed line for
T = 16K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.21 Top panel: axial momentum transfer rate F for different values of the
temperature T , bottom panel: total energy transfer rate G. . . . . . . . . 69

4.22 Top panel: axial momentum transfer rate F for different values of the
magnetic field B, bottom panel: total energy transfer rate G. . . . . . . . 70

4.23 Total energy transfer of a 1 eV anti-proton in a T = 100K positron plasma. 71

4.24 Magnetic field dependence of energy transfer for an anti-proton of Eaxial =
1 eV, Eradial = 0.1 eV and T = 30K. Total energy (top panel), axial
component (middle panel) and radial component(bottom panel). . . . . . 75

4.25 Magnetic field dependence of energy transfer for an anti-proton of Eaxial =
1 eV, Eradial = 0.1 eV and T = 100K. Total energy (top panel), axial
component (middle panel) and radial component(bottom panel). . . . . . 76

4.26 Total energy transfer for an anti-proton of E = 1 eV with positrons of
axial temperature T = 300K (top panel) and T = 100K (bottom panel). . 78

4.27 Total energy transfer for an anti-proton of E = 1 eV with positrons of
axial temperature T = 30K (top panel) and T = 10K (bottom panel). . . 79

4.28 Temperature dependence of the energy transfer for an anti-proton of
Eaxial = 1 eV, Eradial = 0.1 eV and B = 2.8T. Total energy (top panel),
axial (middle panel) and radial component(bottom panel). . . . . . . . . . 82

4.29 Axial velocity dependence of energy transfer for an anti-proton in a mag-
netic field of B = 2.8T and a positron plasma with T = 10K. Total
energy (top panel), axial (middle panel) and radial component(bottom
panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



List of Figures 98

4.30 Radial velocity dependence of energy transfer for an anti-proton in a
magnetic field of B = 2.8T and a positron plasma with T = 10K. Total
energy (top panel), axial (middle panel) and radial component(bottom
panel). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.31 Top panel: total energy transfer of a 1 eV anti-proton in a 100K positron
plasma, bottom panel: average energy transfers. . . . . . . . . . . . . . . . 87

4.32 Energy transfer of the e+ depending on its velocity that is diced from a
Boltzmann-distribution of T = 100K. Top: axial velocity, bottom: radial
velocity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.33 Energy transfer of the e+ depending on its axial velocity for T = 100K
in the case B = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.1 H̄ formation rate in beamtime 2012, with direct injection of anti-protons(black
squares) and auto resonance (red dots) taken from [2]. . . . . . . . . . . . 93



List of Tables

4.1 Parameter values for simulations conducted to validate Rutherford scat-
tering results. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.2 Scaling parameter extracted from the simulation results with axial veloc-
ity of V = 20 000m/s and no radial velocity. The dash signalizes, that
the corresponding point could not be determined. . . . . . . . . . . . . . . 53

4.3 Scaling parameter extracted from the simulation results with axial veloc-
ity of V=66000 m/s and no radial velocity. The dash signalizes, that the
corresponding point could not be determined. . . . . . . . . . . . . . . . . 58

4.4 The arc entries are the maximum energy transfer point of the arcs of
regularity inside the chaotic zone. . . . . . . . . . . . . . . . . . . . . . . . 59

4.5 transferred energy of an anti-proton with an axial energy of 1 eV, radial
energy of 0.1 eV and positron temperature of T = 30K and density
n = 1.5× 1014m−3, the impact disc size is 30 µm for B = 5T, 30 µm for
B = 2.8T and 90 µm for B = 1T . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 transferred energy of an anti-proton with an axial energy of 1 eV,radial
energy of 0.1 eV and positron temperature of T = 100K and density
n = 1.5× 1014m−3, the impact disc size is 30 µm for B = 5T, 30 µm for
B = 2.8T and 60 µm for B = 1T . . . . . . . . . . . . . . . . . . . . . . . 74

4.7 Drift times of an anti-proton with an axial energy of 1 eV, radial en-
ergy of 0.1 eV and positron temperature of T = 100K and density
n = 1.5× 1014m−3, the impact disc size is 30 µm for B = 5T, 30 µm
for B = 2.8T and 60 µm for B = 1T. The two columns on the right
feature the realistic case in the CUSP, while the two columns on the left
are calculated for a infinitely long plasma cylinder. . . . . . . . . . . . . . 74

4.8 Transferred energy of an anti-proton with an axial energy of 1 eV in a
B = 0 set up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.9 Transferred energy of an anti-proton with an axial energy of 1 eV and
radial energy of 0.1 eV in a trap with B = 2.8T, the impact disc size is
30 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.10 Drift times of an anti-proton with an axial energy of 1 eV and radial energy
of 0.1 eV in a trap with B = 2.8T, the impact disc size is 30 µm.The
second column features the realistic case in the CUSP, while the third
column is calculated for a infinitely long plasma cylinder. . . . . . . . . . 81

4.11 Transferred energy of an anti-proton in a positron plasma with tem-
perature of T = 10K, B = 2.8T and impact disc size of 40 µm for
Eradial = 0.1 eV and 80 µm for Eradial = 1 eV. . . . . . . . . . . . . . . . . 83

99



List of Tables 100

4.12 Drift time of an anti-proton in a positron plasma with temperature of
T = 10K, B = 2.8T and impact disc size of 40 µm for Eradial = 0.1 eV
and 80 µm for Eradial = 1 eV. The third column features the realistic case
in the CUSP, while the fourth column is calculated for a infinitely long
plasma cylinder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.13 Transferred energy of an anti-proton with an axial energy of 1 eV and
radial energy of 0.1 eV in a B = 2.8T trap with a T = 100K positron
plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.14 Energy transfer rates of an anti-proton with an axial energy of 1 eV and
radial energy of 0.1 eV in a B = 2.8T trap with a T = 100K positron
plasma of density ne+ = 1.5× 1014m−3 and length 6.6 cm, passing it with
a frequency of f = 4.4× 105 s−1. . . . . . . . . . . . . . . . . . . . . . . . 90

4.15 Radial escape times of anti-protons with Eradial = 0.1 eV and T = 100K
positron plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1 Radial escape times of anti-protons with Eradial = 0.1 eV and T = 100K
positron plasma. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94



Bibliography

[1] Y. Enomoto, N. Kuroda, K. Michishio, C. H. Kim, H. Higaki, Y. Nagata, Y. Kanai,

H. A. Torii, M. Corradini, M. Leali, E. Lodi-Rizzini, V. Mascagna, L. Venturelli,

N. Zurlo, K. Fujii, M. Ohtsuka, K. Tanaka, H. Imao, Y. Nagashima, Y. Matsuda,

B. Juhász, A. Mohri, and Y. Yamazaki. Synthesis of cold antihydrogen in a cusp

trap. Phys. Rev. Lett., 105:243401, Dec 2010. doi: 10.1103/PhysRevLett.105.

243401. URL https://link.aps.org/doi/10.1103/PhysRevLett.105.243401.

[2] N. Kuroda, S. Ulmer, D. J. Murtagh, S. van Gorp, Y. Nagata, M. Diermaier,

S. Federmann, M. Leali, C. Malbrunot, V. Mascagna, O. Massiczek, K. Michishio,

T. Mizutani, A. Mohri, H. Nagahama, M. Ohtsuka, B. Radics, S. Sakurai,

C. Sauerzopf, K. Suzuki, M. Tajima, H. A. Torii, L. Venturelli, B. Wunschek,

J. Zmeskal, N. Zurlo, H. Higaki, Y. Kanai, E. Lodi Rizzini, Y. Nagashima,

Y. Matsuda, E. Widmann, and Y. Yamazaki. A source of antihydrogen for in-

flight hyperfine spectroscopy. Nature Communications, 5:3089, January 2014. doi:

10.1038/ncomms4089. URL https://www.nature.com/articles/ncomms4089.

[3] ASACUSA Collaboration. Status Report ASACUSA - Recent progress and plans

for 2014. Technical Report CERN-SPSC-2014-004. SPSC-SR-131, CERN, Geneva,

Jan 2014. URL https://cds.cern.ch/record/1642570.

[4] T. D. Lee and C. N. Yang. Question of parity conservation in weak interactions.

Phys. Rev., 104:254–258, Oct 1956. doi: 10.1103/PhysRev.104.254. URL https:

//link.aps.org/doi/10.1103/PhysRev.104.254.

[5] C. S. Wu, E. Ambler, R. W. Hayward, D. D. Hoppes, and R. P. Hudson. Ex-

perimental test of parity conservation in beta decay. Phys. Rev., 105:1413–1415,

Feb 1957. doi: 10.1103/PhysRev.105.1413. URL https://link.aps.org/doi/10.

1103/PhysRev.105.1413.

[6] J. H. Christenson, J. W. Cronin, V. L. Fitch, and R. Turlay. Evidence for the

2π decay of the k02 meson. Phys. Rev. Lett., 13:138–140, Jul 1964. doi: 10.1103/

PhysRevLett.13.138. URL https://link.aps.org/doi/10.1103/PhysRevLett.

13.138.

[7] N. Tuning. lecture notes on cp violation. URL https://www.nikhef.nl/~h71/

Lectures/2017/lecture5-slides.pdf.

101



Bibliography 102

[8] W. Pauli. Exclusion Principle, Lorentz Group and Reflection of Space-Time and

Charge. W. Pauli, L. Rosenfeld and V. Weisskopf, Eds., Niels Bohr and the De-

velopment of Physics, McGraw-Hill, New York, pages 30–51, 1955.

[9] Gerhart Luders. On the Equivalence of Invariance under Time Reversal and under

Particle-Antiparticle Conjugation for Relativistic Field Theories. Kong. Dan. Vid.

Sel. Mat. Fys. Med., 28N5(5):1–17, 1954.

[10] Don Colladay and V. Alan Kostelecký. CPT. Phys. Rev. D, 55:6760–6774, Jun
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