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1. Introduction 

Suppose you could choose any position within a given network. Which one would it be? Social 

Network Theory in its modern form allows the study of networks comprised of people, organ-

izations or groups. It provides tools to make assumptions and predictions about connections 

between actors, their relationships, and the way goods travel between them. For example, pro-

pinquity suggests that individuals are more likely to be connected if they are geographically 

close (Kadushin, 2012; Feld & Carter, 1998), an aspect that is of importance when choosing a 

company’s headquarters or making decisions about the location of research and development 

centres. The concept of homophily explains that actors with an uncommonly high number of 

matching characteristics are more likely to be connected (Lazarsfeld & Merton, 1954; Feld & 

Carter, 1998; Burt, 1982) – a quality that is of importance whenever teams are assembled and 

decisions about expected creativity and diversity need to be made. To some extent, social net-

work theory can go as far as assessing an individual’s importance within a network. Granovetter 

(1973) made the discovery that loose acquaintances, or weak ties, can be a source of valuable 

information because they allow access to remote network areas. Burt (2000) made similar find-

ings about individuals connecting otherwise isolated areas of a network. Such results are im-

portant to identify key players within a network, whose value lies in the brokering of infor-

mation or other goods. However, they cannot provide information about a randomly selected 

individual. 

Graph Theory, a subfield of discrete mathematics, looks at networks from a purely analytical 

perspective. Stripping away all social aspects of a network, a structured frame of nodes (actors) 

and ties (connections) remains, which lends itself to abstract analysis. Sociology has taken ad-

vantage of this and harnessed graph theory for its use.  

Regarding social networks from this reduced viewpoint introduces a plethora of evaluation 

methods that are based on the concept of centrality. Four of these are identified as important in 

literature and introduced in this work: degree centrality, betweenness centrality, closeness cen-

trality, and eigenvector centrality (Borgatti, 2005). Degree centrality bases its measurement on 

the number of direct neighbours and can – for example – help in identifying popular individuals 

in a group (Freeman, 1979). Such insight can be critical when information needs to be spread 

quickly among a wide number of people. Betweenness centrality tells us how often one indi-

vidual lies on a shortest path connecting any pair of others (Freeman, 1977). This can be of 

importance, if the objective is to identify players who have the power to delay or interrupt 

information flow. Closeness centrality measures how close an actor is to all other actors com-

bined (Bavelas, 1950). An important application of this measure lies in its ability to identify 
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influencers in a network, by recognising positions suitable for broadcasting. Lastly, eigenvector 

centrality gages an actor’s importance by looking at its immediate neighbours (like degree cen-

trality) but goes further and calculates those neighbours’ importance before adding their values 

(Bonacich, 1972). This measure of centrality is at the core of the ordering of results in the search 

engine Google (Brin & Page, 1998) but can be applied anywhere, if the importance of one 

individual is based on the importance of its neighbours.  

Based on these measures of centrality, graph theory provides the tools to evaluate network po-

sitions and assign a ranking in accordance with the derived results. However, not every method 

applicable to a graph yields reasonable results if it is used on a real-world problem. The be-

tweenness centrality measure, for instance, deals with shortest paths. Applying it to a network 

where an arbitrary route is taken, like a drunkard finding his way home, can lead to misleading 

or plain wrong results (Borgatti, 2005). 

In this work, we1 will briefly recapitulate the underlying theories of social network theory, 

graph theory and tournament theory. We will proceed by presenting in detail the four types of 

centrality mentioned above. This should provide the reader with the necessary knowledge to 

understand how each measure is obtained, how to derive a ranking from it as well as how and 

when to use it. Also, various economic applications are mentioned to illustrate directly possible 

uses of the respective concepts. We will conclude by providing an in-depth discussion of sci-

entific articles employing one of each centrality measures. This literature was chosen from a 

variety of areas to demonstrate versatility, reach and wide applicability of centrality analysis in 

social networks. 

2. Materials and Methods 

The theoretical aspects of this work were gathered through literature search in peer-reviewed 

journals, using internet search tools of the library of the University of Vienna. Hardcopies of 

subject literature were used to study selected elements in depth.   

Simulations of Radicchi’s (2011) diffusion algorithm using a variant of eigenvector centrality 

and creation of corresponding calculations and graphs as well as tables and graphs to illustrate 

aspects of closeness centrality and betweenness centrality were done using Microsoft Excel 

Version 1807. 

All other illustrations were composed using Microsoft PowerPoint, Version 1808. 

                                                 
1 Note that the use of “we” in this work does not indicate multiple authors but serves as an 

unpersonalized way to reference the author. 



8 

 

 

3. Underlying Theories 

In the following section three research areas are introduced: social network theory, graph theory 

and tournament theory. 

3.1 Social Network Theory 

Modern Social Network Theory is mostly based on developments in different fields of science, 

taking place in the first half of the 20th century, mainly psychology, anthropology and 

mathematics. Psychologist and inventor of sociometry, Jacob Moreno (1889 – 1974) started to 

actively plot networks of people’s circles of friends, the nature of their relationships and how 

these relationships translated into benefits and limitations. By mapping these networks, using 

points to represent people and lines to represent relationships, he invented the sociogram, the 

now common way to graphically represent social links. This facilitated the identification of 

social patterns, such as chains of connections, “stars”, or “isolates”. At roughly the same time, 

Kurt Lewin (1890 – 1947), also a psychologist, applied mathematics to study group behaviour, 

using topology and linkages through vectors also by means of points and lines, to create 

networks. In the field of anthropology, Alfred Radcliffe-Brown (1881 – 1955) and Siegfried 

Nadel (1903 – 1956) realized that social structures (and thus societies) are subject to individual 

relationships, forming a connected web – or network. Mathematics provided a language to 

analyze and measure social network phenomena, translating real-life networks into abstract 

patterns (Scott, 1997).  

The famous “Hawthorne studies” (1924 – 1932), commissioned by the US American National 

Research Council, with pioneering work done by Elton Mayo (1880 – 1949) and William 

Warner (1898 – 1970), also fell into this timeframe. They uncovered the now well known 

“Hawthorne effect” or “observer effect” in social systems, which describes that the knowledge 

of being observed leads individuals to adjust their behaviour, leading (among other things) to a 

temporary increase in productivity (Scott, 1997; McCarney, et al., 2007).  

This implied not only that observation can change people’s behaviour, but work performance 

and productivity are linked to social structures besides objective measures, such as pay (Scott, 

1997; McCarney, et al., 2007). 

These (and other) pioneers laid the groundwork for Mark Granovetter (*1943) and others to 

delve into complex social network analysis as we know it today. 
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Since social network analysis originates in a number of different fields of science, there is often 

more than one definition for any of the formal terms used. 

3.1.1 What is a Network 

Kadushin (2012) chooses a mathematical approach: “A network is a set of relationships. More 

formally, a network contains a set of objects (in mathematical terms, nodes) and a mapping or 

description of relations between the objects or nodes” (Kadushin, 2012, p. 14). 

Mitchell (1969) defines networks in terms of social sciences, defining nodes only as people: 

A network is “(...) a specific set of linkages among a defined set of persons with the 

additional property that the characteristics of these linkages as a whole may be used to 

interpret the social behavior of the persons involved“ (Mitchell, 1969, p. 2). 

Wasserman and Faust (2008) emphasize the importance of relations between nodes and their 

necessary connectedness:  

A social network “…consists of a finite set or sets of actors and the relation or relations 

defined on them. The presence of relational information is a critical and defining feature of a 

social network.” “A social network arises when all actors can, theoretically, have ties to all 

relevant actors” (Wasserman & Faust, 1994, p. 20). 

 

Figure 1. A network consisting of eight nodes and ten ties. 

 

In its most basic setup, all that is required to plot a network that can be formally analyzed, are 

a pair of objects (often referred to as “nodes”) and a (definite) relationship between them, 

represented through a connecting edge (or tie). These properties are sufficient to create a 

network that can be mapped and analyzed (Kadushin, 2012). An example for such a minimum 

network is a pair of friends. 
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Even this basic setup allows for three significantly different scenarios, depending on the 

relationship between nodes. Referring to object 1 as 𝐴 (Alice) and object 2 as 𝐵 (Bob), the 

following relationships, as described by Kadushin (2012), can be considered: 

1. the relationship between 𝐴 and 𝐵 is undirected. This can be visualized as a simple edge 

between A and B. A practical example for such a relationship would be Bob and Alice 

having the same mother. 

 

2. the relationship between 𝐴 and 𝐵 is directional. This can be visualized as an arrow between 

𝐴 and 𝐵. Either in the direction 𝐴 → 𝐵 or 𝐵 → 𝐴. Examples for such relationships could be 

Alice being the daughter of Bob or Bob being the son of Alice. Both could not be true in 

both directions. Consequently, it is not irrelevant in which direction the arrow’s head is 

directed. 

 

3. the relationship between 𝐴 and 𝐵 is symmetrical. In this case, the relationship is true in 

both directions. An example for such a relationship is Alice being married to Bob and Bob 

being married to Alice, with the connecting arrow having heads on both ends to visualize 

the mutual expression. 

 

At this point we emphasize that all immediate connections described are between exactly two 

nodes. (We note that the mathematical concept of hyper-graphs, which is part of graph theory 

and allows for more types of connections between nodes, is not considered in this work.) This 

however does not prohibit more than one edge leaving each node. 

Increasing the scope of the network by admitting additional nodes, allows for further scenarios, 

as all of the above relationships (undirected, directional, symmetrical) are possible between 
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each connected pair of nodes. But there is also the possibility for a new “role”: Adding one 

additional node 𝐶 (Claire), allows for the role of intermediary. 𝐴 might be connected to 𝐵 and 

𝐵 connected to 𝐶. Even though there is no immediate connection between 𝐴 and 𝐶 a path 

between them can be expressed, using 𝐵 as an intermediary.  

 

“Where three elements A, B, C, constitute a group, there is, in addition to the direct relationship 

between A and B, for instance, their indirect one, which is derived from their common relation 

to C”, (Simmel, 1950). 

Triads therefore allow for the possibility of an indirect relationship, which is impossible in a 

dyad, where there can only either be a connection – or not. The additional object can adopt roles 

impossible in a dyad: he/she might align with one of the others, gaining an advantage over the 

third, he/she might act as a mediator or broker, gaining individual advantage in both cases or 

be neutral. These new options can increase the complexity of a dyad network by far (Kadushin, 

2012). 

Another possibility is for all three nodes to be mutually connected, creating a triangle – and in 

certain cases transitivity. Such groups of three (or triads) are the smallest social structures 

studied in social network theory that display the characteristics of a society, and where real 

hierarchical development can be observed (Kadushin, 2012; Hanneman & Riddle, 2005). 

 

Figure 2. A triad. 

 

As indicated above, the number of possible network structures rises significantly with the 

number of nodes (Kadushin, 2012). 
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3.1.1.1 Visualizing networks 

There are two common ways to depict social networks: sociograms and matrices. The term 

sociogram was introduced by Moreno and is used for a visual diagram of social networks 

showing nodes as dots and connections as lines. This allows for easy peripheral understanding 

of networks as clusters or areas of high or low density that can be recognized at a glance and 

are intuitive to understand (Kadushin, 2012). Figure 1 above can be interpreted as a sociogram. 

For complex network analysis, matrices are often preferred. Adjacency matrices are sociograms 

displayed in a more mathematically formal way, with the rows and columns of the matrix 

indicating nodes and the values in the matrix indicating the presence (or absence) of a tie 

(Kadushin, 2012). Figure 3 shows two representations of an identical network, once depicted 

as a sociogram and once by ways of an adjacency matrix. 

 

Figure 3. Sociogram (left) and corresponding adjacency matrix (right) of an undirected 

network with six nodes and eight ties. 

 

Where structurally equivalent nodes form clusters, these can be represented by “blocks” in an 

adjacency matrix, forming a blockmodel (Burt, 1992). 

 

Figure 4. Sociogram and blockmodel of an undirected graph with four nodes. 

3.1.1.2 Transitivity 

This concept should not be confused with flow. While “flow” is established whenever a path 

exists from any start to any end-point, transitivity has a formal mathematical definition: 
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Whenever there exists a path of length 2 (from 𝐴 to 𝐵 and from 𝐵 to 𝐶), there must also be a 

direct path from start- to end-point (𝐴 to 𝐶): 

 

Figure 5. A transitive and a not-transitive triad. The second triad cannot be transitive because 

there is the need for a "broker" between non-consecutive nodes. 

In bigger networks, with paths of any length, the network is said to be transitive, if all paths of 

length 2 fulfil the above definition. 

 

Figure 6. Transitive relationship between four nodes A, B, C and D. 

 

Transitivity is an important feature in social networks, as these display a natural tendency to 

form clusters. A common example for this development is a group of friends, whose members 

tend to develop friendly relationships as well (Holland & Leinhardt, 1971; Davis, 1970). This 

leads to transitive sub-graphs. Another example for a transitive relationship could be superiors: 

If Alice is Bob’s superior and Bob is Claire’s superior, then Alice is also Claire’s superior.  

In some instances, transitivity is not a desirable network structure, as it can lead to a big number 

of redundant contacts, meaning that they are prone to having access to the same or similar 

resources. 

3.1.2 Network structure 

In terms of network structure, Kadushin (2012) defines three distinct set-ups that are commonly 

studied: Ego-centric, socio-centric and open-system networks. The first two are currently the 

main approaches used in social network studies (Chung, Hossain, & Davis, 2005). 
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Ego-centric: in this setup all nodes within the network are connected to one central node. There 

may also be connections between other nodes, but the focus lies on one main individual instead 

of the network as a whole (Chung, Hossain, & Davis, 2005). As noted above, it is an essential 

premise for network analysis, to have information about the relationships between nodes. If 

information is, for example, obtained through questionnaires, the resulting data might only 

allow for the establishment of ego-centric networks, as connections between other than the 

questioned individuals, cannot be identified (Kadushin, 2012; Hanneman & Riddle, 2005).  

From any network, each node’s ego-network can be extracted, resulting in many individual 

ego-networks (Hanneman & Riddle, 2005). Figure 7 shows Alice’s ego-network, which does 

not contain Fred since there is no immediate connection between the two. This network is 

extracted from a bigger network that includes Fred. 

An example for an ego-centric network would be Alice’s set of friends. They might or might 

not be mutually acquainted, but they are all connected to Alice. Fred on the other hand is not 

part of Alice’s set of immediate friends and therefore not part of her ego-network. 

Socio-centric: this set-up does not require one central node, instead it focuses on the network 

as a whole (Kadushin, 2012; Chung, Hossain, & Davis, 2005). Bernard et al. (1989) refer to 

socio-centric networks as “networks in a box”, meaning that the network consists of a 

predefined group. Examples for socio-centric networks would be the network of every tennis 

player in the ATP world tour of a certain year or the network of every student enrolled in a 

certain university in a given term (Kadushin, 2012). 

In both cases the networks are closed in terms of boundaries and there is no uncertainty 

pertaining as to who is part of the network. Socio-centric networks are most commonly studied 

if the available data allow for their construction (Kadushin, 2012). 

Figure 7. Ego network with Alice at its centre. Fred is not directly connected to 

Alice and therefore not part of this network. 
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Figure 8. Socio centric network. 

Open system: open system networks differ from socio-centric networks in that their boundaries 

are either not set at the beginning or cannot be known (without unreasonable effort). An 

example would be all people interested in music. While theoretically every person in the world 

could conceivably be questioned, the actual prospect of doing so is unfeasible, establishing the 

relationships between these nodes even more so (Kadushin, 2012). For analytical reasons, open 

systems are more difficult to study: “The restriction to a finite set or sets of actors is an analytic 

requirement. Though one could conceive of ties extending among actors in a nearly infinite 

group of acts, one would have great difficulty analyzing data such a network” (Wasserman & 

Faust, 1994, p. 19). 

Figure 9 shows an example of an open system network. For obvious reasons an infinite number 

of nodes cannot be portrayed. 

 

Figure 9. Open system network. Dotted lines represent ties to additional nodes to indicate the 

absence of a boundary. 

 

Selecting the boundaries of a network can be challenging but it is a necessary requirement for 

meaningful network analysis. Both actors and the nature of their ties needs to be defined 



16 

 

(Kadushin, 2012). “The boundary of a set of actors allows a researcher to describe and identify 

the population under study” (Wasserman & Faust, 1994, p. 31).  

All three types of networks allow for the analysis of networks of different orders of magnitude. 

From the simple network of a group of friends to the complex relationships between 

international organizations (Kadushin, 2012). 

3.1.2.1 Network connections 

There are a number of factors that determine the likelihood of two nodes being connected 

within a social network. Two important factors are discussed below: 

Propinquity: Geographical closeness increases the likelihood of a pair of nodes being con-

nected. This holds true for different kinds of networks, from housing projects where neighbours 

are more likely to be friends (Kadushin, 2012; Feld & Carter, 1998), to people serving on mul-

tiple boards of directors if firms’ headquarters are in close vicinity (Kono, Palmer, Friedland, 

& Zafonte, 1998)  

Homophily: If a pair of nodes has more matching characteristics than would be expected from 

a random sample in their network, this is considered homophilous and increases the likelihood 

of this pair to be connected (Lazarsfeld & Merton, 1954). However, there are two possible 

sources for homophily, as defined by Burt (1982): 1) common attributes in connected nodes 

may lead to common norms and 2) common norms may lead to a connection between nodes 

with common attributes. Feld and Carter (1998) on the other hand also consider a pair of nodes’ 

“structural location” within networks to be a source for homophily. A distinction between ho-

mophily and propinquity is not always intuitive as both might occur simultaneously or might 

even cause one another (Vernon & Hoover, 1962). 

3.1.2.2 Social Capital 

Social Science focuses on “social capital”, a concept of value derived from a network or re-

sources within an individual’s accessible network. This form of capital is often considered a 

measurable resource, like economic capital, though it is wrought with difficulty to establish 

rules to derive a monetary-equivalent measure of its value (Bourdieu, 2011). 

In any case, social capital cannot exist in isolation, but only within a group: “Unlike other forms 

of capital, social capital inhers in the structure of relations between actors and among actors” 

(Coleman, 1988, p. 98). Burt (2000) also determines that social capital is dependent on an ac-

tor’s ability to draw profit from their position within a network. There, relations can lead to 

profit chances for economic or social capital but are also determined by network structure and 
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each individual’s position within that structure (Kadushin, 2012; Coleman, 1988; Bourdieu, 

2011). 

3.1.3 Network Analysis 

Originating from diverse fields of research, network analysis is met with different limitations 

but also requirements and focus areas, depending on the field it is applied to.  

Social Science for instance faces limitations where certain network conditions cannot be 

achieved or are exceedingly unlikely to occur. Social structures (like hierarchy, social circles, 

etc.) can prevent ties between different levels and limit network connections. Other social as-

pects (members of direct neighborhood, group of co-workers, etc.) also have the tendency to 

shape networks, limiting possible structures and network shapes (Kadushin, 2012). 

3.1.3.1 Strength of weak ties 

Mark Granovetter (1973) coined the now famous concept of the “strength of weak ties”. He 

found that there is a tendency to form dense groups, or clusters, among strong ties (ties that 

form a strong connection like the circle of close friends), that tend to be connected through 

weak ties (ties that are only loosely connected, like acquaintances). “... [Our] acquaintances 

(“weak ties”) are less likely to be socially involved with one another than are our close friends 

(“strong ties”). Thus, the set of people make up on any individual and his or her acquaintances 

will constitute a low-density network (one in which many of the possible ties are absent), 

whereas the set consisting of the same individual and his or her close friends will be densely 

knit (many of the possible lines present) (Granovetter, 1982, p. 105). 

One of Granovetter’s key ideas is that weak ties allow access to remote parts of a network 

because they are more likely to be connected to a different set of nodes than the ego. In social 

relations this implies that gaining access to “new” people (and the corresponding resources) is 

more likely to occur through an acquaintance than it is through a close friend because it is likely 

you already know your friends’ friends: “... Ego will have a collection of close friends, most of 

whom are in touch with one another – a dense “clump” of social structure. Ego will have a 

collection of acquaintances, few of whom know one another. Each of these acquaintances, how-

ever, is likely to have close friends in his or her own right and therefore to be enmeshed in a 

closely-knit clump of social structure, but one different from Ego’s”, (Granovetter, 1982, pp. 

105). 

These weak ties allow the formation of “bridges” between clusters, connecting otherwise re-

mote or possibly inaccessible areas and “opening” closed networks. This leads to better disper-

sion of knowledge within a network and can serve to increase overall creativity since ideas can 
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travel “far and wide”. Access to different clusters is highly valuable for resource flow and for 

limiting redundancy – therein lies the “strength” of weak ties. Network structure, as it is de-

picted using sociograms, can help to detect valuable bridges (Granovetter, 1973). Figure 10 

shows an example of a network consisting of two clusters 𝐴 − 𝐵 − 𝐶 − 𝐷 − 𝐸 and 𝐹 − 𝐺 −

𝐻 − 𝐼 − 𝐽 that are bridged only by the tie 𝐸 − 𝐹. Absence of this crucial tie would entail a break 

up of the big network into two separate networks. 

 

Figure 10. A network of ten nodes with the bridge E-F serving as the only connection between 

two clusters. 

 

However, it is rarely the case in real life that individual clusters are totally isolated and only 

connected through single bridges. Instead, there tends to be an overlap of groups to some degree 

and sometimes even strong ties can be responsible for the formation of a bridge (Kadushin, 

2012). 

Both strong and weak ties have positive and negative connotations. As explained above, weak 

ties facilitate access to distant areas of a network and thus novel information, but strong ties 

allow for the development of trust (Kadushin, 2012; Granovetter, 1982). This trust will prevent 

actors from behaving self-interestedly, improving collaboration, knowledge diffusion and 

member contributions – important factors for team activities (Levin & Cross, 2004). In case 

trust is violated, social sanctions can be applied, the knowledge of this works as a deterrent 

factor (Kadushin, 2012). Apart from that, costly transactions are more likely to be fulfilled 

through strong ties because nodes are often unwilling to spend much of their resources on a 

flimsy connection. It is important to note that, while weak ties are more frequently bridges than 

strong ties, most weak ties are not bridges (Kadushin, 2012; Granovetter, 1982). 

3.1.3.2 Distance 

The number of “steps” or edges between nodes is often referred to as “distance” between these 

within a network (Kadushin, 2012). In many cases, however, there are multiple paths 

connecting any pair of nodes, creating the question of which path to select when determining 

the gap between them. Often, the length of a shortest path is used to determine the distance. 
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Another definition of distance uses the number of redundant paths to determine closeness: the 

greater the number of paths, the “closer” a pair of nodes. Generally speaking, different 

analytical techniques use different definitions of distance (Kadushin, 2012). Considering this, 

it is vastly important to know what an author understands under the notion of “distance” to 

properly understand his results. 

Stanley Milgram (Travers & Milgram, 1967) raised the subject of distance between people 

(distance in this case being the number of steps, in terms of personal contacts, separating them), 

when he published his paper “The Small World Problem” in 1967 and subsequent studies. In 

these studies, he found that the estimated number of steps between any pair of two people in 

the United States of America is six, meaning that on average, five intermediate people are 

necessary to connect any pair of two (Travers & Milgram, 1967). Several interesting 

phenomena were discovered during this research. For one, links between men and women were 

discovered to be less frequent than between the same sex, also social barriers were proven to 

be difficult to overcome. 

3.1.3.3 Network flow 

If relationships along a given graph are either symmetrical or directional, a transfer of resources, 

so called “flow”, can be established along its edges. The transferred resources can be either 

material or non-material, consisting of actual tangible goods, information, contracts or suchlike 

(Borgatti, 2005; Kadushin, 2012; Wasserman & Faust, 1994). For example, if A has access to 

information of B and B has access to information of C, then A can gain access to C’s 

information, allowing for a “flow” through the intermediary B. Depending on an individual’s 

position within a given network, his/ her social capital may be higher or lower, depending access 

to resources and thus (Kadushin, 2012). 

Flow through networks can be classified further, depending on the nature of goods (divisible or 

indivisible) that travel and the route that is selected through the network. Borgatti (2005) 

classifies network flow according to these two parameters. He distinguishes four kinds of routes 

(or trajectories) that goods can follow:  

• walk: an unrestricted route between 𝐴 and 𝐵. 

The route 𝐴 − 𝐷 − 𝐸 − 𝐵 − 𝐴 − 𝐷 − 𝐵 is an example of a walk, where nodes 𝐴, 𝐵 and 𝐷 

are visited multiple times, as is the edge 𝐴 − 𝐷. Shared coffee cups in an office or the 

sequence of positions of a knight on a chessboard during a game give examples of typical 

walks. 
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• trail: a route between 𝐴 and 𝐵, where no edge is visited twice. 

The route 𝐴 − 𝐷 − 𝐸 − 𝐵 − 𝐴 − 𝐸 is an example of a trail, where nodes 𝐴 and 𝐸 are visited 

multiple times, but no edge is used more than once. A recipe passed around within a group 

of friends, for example, may reach the same person more than once, but it is unlikely that 

this would happen through the same person. 

Note that every trail is a walk. 

• path: a route between 𝐴 and 𝐵, where no node is visited twice. 

The route 𝐴 − 𝐵 − 𝐶 − 𝐷 − 𝐸 is a path. Neither nodes nor edges are travelled multiple 

times. A birthday card (in the optimal case) will travel along a path, since everybody who 

signed the card passes it on to somebody who has yet to do so. 

Note that every path is a trail. 

• geodesic: shortest route between two nodes 𝐴 and 𝐵, which means that the smallest 

possible number of nodes between 𝐴 and 𝐵 is visited. (The length of an edge in a graph is 

purely dependent on purposes of visualization and has no significance for the graph-

theoretical length of a route.) 

In the graph below, both routes 𝐴 − 𝐵 − 𝐸 − 𝐹 and 𝐴 − 𝐶 − 𝐸 − 𝐹 connecting 𝐴 and 𝐹 

are examples of geodesics. Note that every geodesic is a path. 

 

Further, Borgatti (2005) suggests that it is important to differentiate between three methods of 

spread of goods: broadcast, serial replication, and transfer. The possible method of spread of 

any good depends on its characteristics: divisible or indivisible. 

• transfer: move mechanism for indivisible goods. Goods that cannot be divided have the 

property that they can only be passed on serially. They cannot be in two places at one time 

and therefore have to be passed on from node to node, like a football being passed between 

players (nodes) during a match or the office stapling machine. 
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• serial duplication: copy mechanism for divisible goods from one node to one other node. 

Under “divisible” we understand both actual divisibility (like water poured into two 

glasses) and the possibility of duplication (the stapler above cannot be duplicated, whereas 

a catchy tune can easily be copied to another person, with the result that both people suffer 

it). 

• parallel duplication (broadcast): copy mechanism for divisible goods from one node to at 

least one other node. An example for this mode of travel is dissemination of knowledge 

through a presentation held by one person to an audience of many. 

In network analysis, it is important to understand which “mode” of travel is used by which kind 

of good. Employing incompatible concepts and measures can lead to distorted or simply wrong 

results (Borgatti, 2005). 

3.1.3.4 Position - Centrality 

As discussed above, connections between nodes can be directional or un-directional, with flow 

possible between relationships and a vast increase of network complexity for networks 

containing three or more nodes. Also discussed is the importance of roles a “third” node in a 

triad can adopt. Keeping this in mind, and looking at more complex networks, the concept of 

position within a network needs to be discussed. It is not only important how “far” a pair of 

nodes is apart, but also how each node is positioned within a network (central or on the 

periphery, in a dense or sparsely occupied area or anywhere in-between). Any “location” has 

distinct characteristics that can be described using different types of the concept of “centrality”. 

Centrality in its most basic idea, describes how close to the center a node is located within a 

network (Kadushin, 2012). 

Structural similarity implies that comparable network patterns or building blocks bring forth 

similar roles: “Nodes that have similar patterns of relationships with other nodes are […] 

grouped together,” (Burt, 1992). At the same instance, a social network is a flexible structure 

that is prone to change whenever any of its nodes changes its position, set of acquaintances or 

the like. A studied network is therefore only ever a snapshot in time of a network at a certain 

instance in time. 

In social networks, centrality can relate to concepts like hierarchy: “Hierarchy in networks is 

stated strictly in terms of location of a given node relative to other nodes, without assuming any 

content to this position” (Kadushin, 2012, p. 40). Some nodes will be important simply because 

of their position and ability to connect individual groups (see also “strength of weak ties” above) 
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or facilitate connection between them (Burt, 2000; Kadushin, 2012). However, all positions in 

a network are necessarily defined by the nature of their connection (supervisor-employee; 

friends; kinship; …), leading to certain structural patterns occurring repeatedly and in 

independent networks. In real-life scenarios, relationships between people are complex, 

multilayered structures and individuals are connected through more than one set of 

characteristics. Such social networks are made up of a number of overlapping networks with a 

multitude of different types of connections between them. Separating which network is 

responsible for any single flow can be impossible. This overlapping of linking properties is 

called “multiplexy” but beyond the scope of this work, where each network is connected only 

through one kind of tie (Kadushin, 2012). 

Different measures of centrality and their implications and applications are discussed below. 

3.2 Graph Theory 

As part of discrete mathematics, “graph theory” is concerned with abstract objects called graphs 

that consist of nodes and ties (corresponding to actors and their connecting characteristic in 

social networks) and the structure and ordering they enclose. A directed graph 𝐺 = (𝑉, 𝐸) is 

defined as an ordered pair consisting of a set 𝑉 of vertices (or nodes in network theory) and a 

set 𝐸 of edges (or ties in network theory). Each element of 𝐸 is an ordered pair of elements of 

𝑉. Such an element (𝑣, 𝑤) can be visualized as an arrow starting at 𝑣 and ending in 𝑤. Undi-

rected graphs 𝐺 = (𝑉, 𝐸) are defined similarly but with the difference that 𝐸 consists of sets 

{𝑣, 𝑤} of two elements, representing an undirected edge that can be visualized as a connecting 

line (Chartrand, 1984).  

A generalization of graphs are weighted graphs. These are directed or undirected graphs with 

weights attached to the edges. Formally this can be realized by assigning a function 𝑓 to the 

graph 𝐺 = (𝑉, 𝐸, 𝑓), which ascribes a real number to each edge 𝑒. Alternatively, we can choose 

a function 𝑤𝑖𝑗 that allocates a weight to each pair of nodes (in this way we can dispense with 

the set 𝐸 which could be recovered as the set of pairs having non-zero weight) (Chartrand, 

1984). We will meet this concept in the chapter on eigenvector centrality as in the subsequent 

simulation part. 

Social Network Analysis employs methods developed in graph theory to model, study and eval-

uate social relationships, which are “translated” into networks. Networks are graphs with addi-

tional information about nodes and edges, such as names or ages of individual people in a group 

of friends or the nature of their connection in a social network. Analysis of such networks can 

be done with the use of software solutions (Butts, 2008) 
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3.2.1 Ramsey’s Theorem 

An interesting mathematical theorem originating in graph theory is called “Ramsey’s theorem” 

and deals with the inevitability of certain structural properties that are bound to arise in graphs. 

Each of these properties will occur in a graph of sufficient size. More specifically, given any 

number k, each sufficiently large undirected graph contains k nodes that either form a complete 

graph or the graph with no connections at all (Ramsey, 1930). A popular example for Ramsey’s 

theorem, that has entered mathematical folklore, is the case 𝑘 = 3, commonly known as the 

“theorem on friends and strangers”. 

Claim: Consider 6 people in a room. If any pair is either acquainted or not (there is an edge 

between them or not), there is at least one cluster of three that either know each other or do not. 

Proof: The proof for this special case is intriguing in its simplicity. Leader (2001) uses a 

network of color coded edges: consider a node 𝐴 (Alice), at a party of at least six people. There 

she will either know (red edge) three people or be a stranger (blue edge) to three people. 

Consider without loss of generality that she knows three people 𝐵 (Bob), 𝐶 (Claire) and 𝐷 

(Dennis), the other case would be analogous, swapping red and blue. One of two cases will 

occur. First case: there are two out of 𝐵, 𝐶 and 𝐷 that know each other. In this case Alice and 

these two people know each other and form a monochromatic (red) triangle (figure 11): 

 

Figure 11. Ramsey's Theorem for k=3 with Alice knowing three people. First case scenario: 

two of the people Alice knows are mutually acquainted. Red triangles indicate the groups of 

three A-B-C, A-B-D and A-C-D that can occur. 

 

The other possible case is that Bob, Claire, and Dennis are mutual strangers. In this case, these 

three form a blue triangle, which finishes the proof of the case 𝑘 = 3 of Ramsey’s theorem, 

showing in particular that a graph of six nodes is sufficient. ∎ 
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Figure 12 depicts this possible scenario: 

 

Figure 12. Ramsey's Theorem for k=3 with Alice knowing three people. Second case scenario: 

none of the people Alice knows are mutually acquainted. The blue triangle B-C-D indicates 

the group of unacquainted people that are all connected to Alice. 

 

For a general 𝑘, the smallest size 𝑚 of the graph needed in order to find a monochromatic 

complete graph of 𝑘 nodes is not known. However, Ramsey showed that there is such an 𝑚.  

3.3 Tournament Theory 

We have discussed social network theory and graph theory in the previous sections. The third 

theory of interest to this work is tournament theory and more specifically, rank-order-

tournaments.  

Three kinds of tournaments are often studied:  

• Optimal labor contracts are the subject of economic considerations, 

• Abstract mathematical objects are studied in graph theory (see chapters on graph theory 

above and degree centrality below), and 

• Sport-related tournaments we come across in everyday sporting events (see chapter on 

eigenvector centrality below). 

This shows that the term tournament theory is used in different contexts and that the general 

idea of inducing competition to find an optimal outcome is of interest in diverse areas of science 

and everyday life in general.  

The tournaments we consider in this work are such that their associated networks are relevant 

in real-life scenarios but can be modelled mathematically.  
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3.3.1 Background 

In 1981, economists Edward Lazear and Sherwin Rosen developed the theory that optimal labor 

contracts might be evoked, if compensation was not based on absolute performance, but on 

relative performance instead (Lazear & Rosen, 1981). An important incentive for employers to 

choose such a compensation and selection system is that it attempts to circumvent the problem 

of finding absolute performance measures that would be costly and difficult to implement. As 

long as it is possible to rank performance, the incentive factor of a tournament should elicit high 

performance from employees.  

Looking at this setting from a different perspective, it is of interest how any position within a 

tournament network is evaluated. Consider a network of international companies and a 

manager, who wants to take an influential position within this network by becoming the CEO 

of the company with the greatest centrality. Classic tournament theory deals with the question 

of how to obtain the sought position. Our view point on the other hand is how to assess the 

strength of each company’s position by evaluating their respective measure of centrality: In this 

work the focus lies on achieving advantageous network positions.  

3.3.2 Approach 

We are not interested in absolute performance measures but in the ensuing ranking. In some 

cases, achieving a top rank may even be sufficient motivation to maximize effort (subject to 

utility) without an actual (monetary) prize being offered.  

Let us consider the ranking of scientific journals, where a top rank is associated with high 

quality articles. Achieving a position within the network of peer-reviewed journals that 

improves its perceived public influence, is likely to increase such a journals dissemination. This 

in turn would increase the publications income and attract quality authors. Again, this increase 

in high performing authors would improve the ranking and the circle would start anew. 

Obviously, as there is a network of competing journals, they all have the same goal of achieving 

a highest possible rank. In such a model, ranking could result from the number of citations per 

article a journal receives. Below, such a network is discussed. 

Consider a network made up of journals in the role of nodes and citations in the role of edges. 

Because scientists cite articles according to their relevance to their own work, they are likely to 

reference different journals, thus creating (and constantly changing) the network. Figure 13 

shows such a network of journals and the referenced articles that connect them. 
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Figure 13. Arrows represent citations of articles in journal A by articles in journals A, B and 

C. 

An edge from journal A to journal B is weighted according to the number of citations from 

articles in A to articles in B (figure 14). To obtain the necessary weights, these numbers of 

citations are divided by the number of articles published in journal A. By adding the weights of 

incoming edges, an evaluation can be obtained. If this is repeated for all journals, a ranking of 

these journals is obtained. This system is used in the real world. The online platform 

MathSciNet (AmericanMathematicalSociety, 2018a) uses a very similar ranking method for 

their content. This webpage (with restricted access) is hosted by the American Mathematical 

Society (AMS) and contains mathematical reviews for a great number of research papers. It 

ranks journals according to a five year “mathematical citation quotient” or in short “5-year 

MCQ” (AmericanMathematicalSociety, 2018b) to provide users with information about the 

quality of the respective journals. Clearly, a journal with a higher MCQ is likely to contain 

articles of higher quality (on average). This measure of quality uses a limited timeframe for its 

assessment.  

In short it works as follows: for any given year 𝑌, citations by articles published in Y of articles 

in journal A that are no older than five years are summed up and divided by the number of 

Figure 14. Weighted arrows indicate the ratio of citations by published articles. 
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articles published in this journal in the same five-year period. This time constraint ensures that 

outlier years with a very high or very low number of citations are mediated and the measure is 

relatively stable. It also makes sure that singularly successful articles do not continually distort 

a journal’s measure (Lazear & Rosen’s article on rank-order-tournaments is cited regularly even 

today, the 5-year MCQ however, would not take it into account). It is important to keep in mind 

that only comparable journals (or whatever else is reviewed) should be ranked at the same time 

when this method is used. Failing to take similarity into account would result in misleading 

results as the number of both citations and articles greatly depends on issues like the popularity 

of a field of research or the number of scientists working in it.  

Below, the chapter on degree centrality deals with such a ranking method: the points system and 

the corresponding generalization to weighted graphs.  

We consider the striving towards a high ranking as a tournament, where the achieved rank is 

considered the prize and trying to achieve it elicits effort and implies motivation. A major 

difference to traditional rank-order tournament theory is that the prize-spread cannot be defined 

in a useful manner, considering it 1 between every pair of adjacent ranks would be possible but 

lacking significance.  

Graph theory has a separate definition of the term “tournament”. In this field of discrete 

mathematics, every directed graph where there is exactly one arrow (with one arrow-head) 

between each pair of different nodes, is called a tournament. The number of possible 

tournaments increases exponentially with the number of players, as each arrows orientation 

changes the graph, resulting in a separate tournament. For 𝑛 nodes there are exactly (𝑛
2
) =

𝑛(𝑛−1)

2
 many arrows, as there are that many 2-element subsets of the set {1, … , 𝑛}, meaning that 

this many links are necessary to connect each pair of different nodes. Because each of the 

connecting arrows can have two orientations, there are 2(𝑛
2) tournaments of size 𝑛 (that is, 𝑛 

players). This sequence grows rapidly: for 𝑛 = 2,3,4,5,6,7 players there are 

2, 8, 64, 1024, 32768, 2097152 many tournaments respectively. More elements of this 

sequence can be retrieved from the On-Line Encyclopedia of Integer Sequences under sequence 

number A006125 (Sloane, 2018).   

(Note that this is also the number of undirected graphs on 𝑛 nodes; however, a number of these 

graphs will be disconnected.) Below, figure 15 displays one of the 32768 possible tournaments 

for six nodes. 
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Figure 15. Network depicting one possible outcome of a graph-theoretical tournament 

between six nodes. Each pair of nodes is connected, the arrow pointing towards the winner of 

each match. 

In real-world applications, such tournaments occur in round-robin settings, a type of 

tournament, where each pair of players competes in an individual match in order to determine 

an overall winner.  

Curiously, groundwork was laid in this field, when H. G. Landau (1953) studied dominance 

relations and the societal structure of chickens in a flock. His real-life observations allowed him 

to mathematically define key properties of tournaments like the number of wins in a tournament 

being equal to the number of games and that number being 
𝑛(𝑛−1)

2
 when he proves his theorem 

on a score structure (Landau, 1953). 

It is important to keep in mind that abstract mathematics can be inspired by real-life 

circumstances but that in turn, abstract mathematics may have unexpected applications in the 

“real” world – with all corresponding implications that can arise from social-networks. 

4. Measures of centrality 

There are numerous measures of centrality, a selection of which are degree centrality, closeness 

centrality, eigenvector centrality, betweenness centrality, the rush index, flow betweenness, 

information centrality and more (Borgatti, 2005; Bonacich, 1987; Freeman, 1979; Freeman, 

1977). Above, the general notion of centrality was introduced as a concept of more or less 

advantageous locations within a network. Below, four measures of centrality are described in 

detail: degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality. 

Three of these are discussed by Freeman (1979), who in fact discovered betweenness centrality, 

all four are identified as important by Borgatti (2005) and commonly used in the analysis of 

networks (Borgatti, 2005). After this introduction we will further study these four concepts by 

means of selected research papers. Borgatti (2005) stresses the importance of using the right 
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measure, compatible with the characteristics of the studied network. He warns: “It is shown that 

the off-the-shelf formulas for centrality measures are fully applicable only for the specific flow 

processes they are designed for, and that when they are applied to other flow processes they get 

the ‘wrong’ answer” (Borgatti, 2005, p. 55) 

All measures of centrality discussed in this work are measures of point centrality (as opposed 

to graph centrality). This means that we are measuring characteristics of points and not of entire 

graphs (Freeman, 1977). 

Let us now define these measures. 

4.1 Degree Centrality  

The basic idea of degree centrality is simply that of counting the number of edges leading to a 

node (Borgatti, 2005). A number of special kinds of degree centrality have been developed that 

are applicable only under specific circumstances (such as special network structure or adjacency 

requirements). For examples of these, see Rogers (1974) or Czepiel (1974). Nieminen (1974) 

however formalized the general measure of degree centrality for undirected graphs as the 

number of adjacent nodes 𝑖 to a given node 𝑗: 

𝐶𝐷(𝑗) = ∑ 𝑎𝑖𝑗

𝑖

. 
(1) 

𝑎𝑖𝑗 can either be 1, if the nodes 𝑖 and 𝑗 are connected or 0, if they are not (Nieminen, 1974). 

𝐶𝐷(𝑗) is 0, if 𝑗 is isolated and not connected to any other nodes, and it is large, if 𝑗 is connected 

to many nodes. We will come across this measure several times, as it is such an obvious and 

natural object. 

In some cases, it may be useful to normalize the quantity 𝐶𝐷(𝑗) to be able to compare similar 

networks of differing size: 

𝐶𝐷
′ (𝑗) =

𝐶𝐷(𝑗)

𝑛 − 1
, (2) 

where 𝑛 is the number of nodes in the network (Freeman, 1979). Division by 𝑛 − 1 is sensible 

because it describes the maximum number of edges possible, the maximum 𝐶𝐷
′ = 1 is attained 

for the star graph, for example (see figure 16).  
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Figure 16. Star graph with n=7 nodes and n-1=6 edges. Since 𝑎𝑖𝑗 is either 1 or 0 and 

0 ≤ 𝐶𝐷(𝑗) ≤ 𝑛, division by 𝑛 − 1 can leave 𝐶𝐷
′  no larger than 1. 

  

This normalization is helpful, if the relation between the number of nodes and edges is 

comparable among examined networks. Also, the normalization leads to 𝐶𝐷
′  converging towards 

0, if the average number of connections is small compared to network size (consider Facebook, 

where each users’ number of “friends” is miniscule compared to the total number of clients). 

Borgatti (2005) calls degree centrality a “measure of immediate influence” (Borgatti, 2005, p. 

62) because only adjacent nodes affect each other, and distant edges have no influence in the 

measure of a node. In terms of flow, a possible realization is parallel duplication. Consider a 

randomly distributed and copiable good that travels with a certain probability from one node to 

the next in a network. Each node’s probability of receiving this good is dependent on the number 

of his/her immediate neighbors as each node has an equal probability of having the good in the 

first place (Borgatti, 2005). Another application for degree centrality given by Borgatti (2005) 

is the number of times a node is visited by a good taking a random walk (both nodes and edges 

can be visited multiple times) through the network. The greater the number of arrows pointed 

toward a node, the greater the probability of a random walk leading to (or through) that node – 

as discussed above, these properties are measured by degree centrality. 

Degree centrality can be calculated very easily and is therefore suitable for everyday use. 

Possible applications in an economic context include tracking in-and out-going account activity 

for book keeping purposes or monitoring transactional records. Among wider applications are 

the identification of individuals who are likely to have direct access to a big number of people 

in order to quickly spread ideas, advertisement or other goods that need to be distributed 

quickly. Also, individuals with a high degree centrality might be interesting first-contact targets 

for example for companies trying to establish new markets because they are likely able to gather 

community feedback quickly – and efficiently. 
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4.2 Betweenness centrality 

The second measure of centrality we wish to consider is betweenness-centrality. The rough idea 

of this measure is that a node’s importance increases with the number of geodesics (shortest 

paths) it lies on. Freeman (1977) introduced this measure of centrality as “…the degree to which 

a point falls in the shortest path between others and therefore has a potential for control of 

communication. [It] … may be used to index centrality in any large or small network of 

symmetrical realltions, whether connected or unconnected”, (Freeman, 1977, p. 35). An 

important premise is that goods are indivisible and thus can only travel along one path at a time. 

Moreover, every possible (shortest) path is selected with equal probability (Freeman, 1977); 

(Borgatti, 2005).  

Consider all shortest paths from 𝐴 to 𝐹 in the graph depicted in figure 17. There are three such 

paths: 𝐴 − 𝐷 − 𝐺 − 𝐹, 𝐴 − 𝐶 − 𝐸 − 𝐹 and 𝐴 − 𝐷 − 𝐸 − 𝐹. Node 𝐷 lies on two of these three 

geodesics, meaning that the pair (𝐴, 𝐹) contributes 
2

3
 to the betweenness centrality of 𝐷. (Node 

𝐺 on the other hand lies on only one of these three paths, thus receiving 
1

3
 as (𝐴, 𝐹)’s 

contribution; 𝐵 on the other hand, which is on no shortest path, receives 0.). To calculate 𝐷’s 

total betweenness centrality, we have to sum up all contributions of pairs (𝑋, 𝑌), where 𝑋 ≠ 𝑌 

and 𝑋 ≠ 𝐷 ≠ 𝑌. In plain language, we sum up all contributions of all shortest paths 𝐷 lies on.  

 

Figure 17. Depiction of all three shortest paths (geodesics) between nodes A and F. 

 

Formally, as described by Borgatti (2005), who uses a slight variation of Freeman’s (1977) 

notation, betweenness centrality is defines as follows. Let 𝑔𝑖𝑗 be the number of geodesics 

between nodes 𝑖 and 𝑗. Assuming that all shortest paths are chosen with equal probablility and 
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that only one such path is selected at any time, the probability for coosing a particular path is 

1

𝑔𝑖𝑗
 under the assumption that  𝑔𝑖𝑗 ≠ 0. By 𝑔𝑖𝑘𝑗 he denotes the number geodesics crossing 𝑘. 

Then the probability that node 𝑘 lies on a randomly chosen shortest path between 𝑖 and 𝑗 is 
𝑔𝑖𝑘𝑗

𝑔𝑖𝑗
. 

Adding up these probabilities for all 𝑖, 𝑗 such that 𝑖 ≠ 𝑘 ≠ 𝑗 ≠ 𝑖, we receive the total 

betweenness centrality 𝐶𝐵(𝑘) of a node 𝑘: 

𝐶𝐵(𝑘) = ∑ ∑
𝑔𝑖𝑘𝑗

𝑔𝑖𝑗
𝑗: 𝑖≠𝑘≠𝑗≠𝑖𝑖

. 
(3) 

Note that 𝑔𝑖𝑗 may be 0 if there is no connection between 𝑖  and 𝑗. In such a case 𝑔𝑖𝑘𝑗 logically 

needs to be 0 as well. In the above formula (3), we assume that 
0

0
= 0. This property is implicitly 

assumed, but not stated explicitly in neither Freeman (1977) nor Borgatti (2005). Radicchi 

(2011), who uses the same assumption similarly, also does not deal with this case explicitly. 

Below, the betweenness centrality for the graph depicted in figure 17 is calculated. Rows 

correspond to 𝑘, the node we want to calculate the centrality measure for, and columns indicate 

pairs 𝑖, 𝑗 of nodes between which the shortest paths are considered. Observe that 𝐷 has the 

greatest betweenness centrality of this graph, while 𝐵 has the lowest. The ranking induced is 

𝐷 > 𝐶 > 𝐸 > 𝐴 > 𝐺 > 𝐹 > 𝐵. 

Table 1. Betweenness centrality of nodes A to G from the network depicted in figure 17. 

 

 

Betweenness centrality is all about shortest paths and the flow along them. Economic applica-

tions therefore include situations where quick flow is required. Imagine a fashion blogger with 

high betweenness centrality, who might be able to direct a trend (and sales) towards a certain 

brand or product when respective sales go down. This would be possible because he could 
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influence the speed with which a trend travels. For the same reason, betweenness centrality 

comes with the power for disruptive behaviour and a node with a high betweenness measure 

has the ability to cause flow to stagnate or possibly even to fail in time-sensitive situations. 

Because of these characteristics, nodes with a high betweenness centrality often act as brokers 

or are consulted as such by other members of their network, be it to broker business dealings, 

information, work force or any other good that can be exchanged along the network at hand. 

4.3 Closeness Centrality 

The third measure of centrality we wish to examine is closeness centrality. When Bavelas 

(1950) introduced his precursor to modern closeness centrality, he developed a method that 

lends itself beautifully to induce a ranking. Bavelas’ objective was to study communication 

patterns: their efficiency and effectivity in task-oriented groups (Bavelas, 1950), He found that 

in real-world situations social processes within groups drive communication paths (even if dif-

ferent paths are formally deemed superior). However, he states that “…any hope of success 

depends upon an effective flow of information” (Bavelas, 1950, p. 725). The study of patterns 

of graphs and distance between nodes led to his definition of dispersion and relative centrality. 

“Dispersion” signifies the “sum of internal distances” ∑ 𝑑𝑗𝑖 between nodes 𝑖 and 𝑗. For the 

network depicted in figure 18 below (based on Bavelas, figure 2, p. 276), the dispersion figure 

is 20 (6 + 4 + 4 + 6).  

 

Figure 18. Simple linear network with four nodes A-B-C-D. 

 

Table 2. This table displays the sum of distances 𝑑𝑗 = ∑ 𝑑𝑗𝑖𝑖: 𝑖≠𝑗   of points A, B, C and D to all 

other points. 

AB 1 BA 1 CA 2 DA 3 
AC 2 BC 1 CB 1 DB 2 
AD 3 BD 2 CD 1 DC 1 

 𝑑𝑗 6   4   4   6 

 

Under “relative centrality”, we understand the “ratio of the sum of all internal distances to sum 

of distances from a particular position” (Bavelas, 1950): 

∑ 𝑑𝑗𝑖

𝑑𝑗
 (4) 
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For the nodes 𝐵 and C in the above network, this measure is 
20

4
= 5, whereas for nodes A and 

D it is the smaller value 
20

6
= 3. 3̇. 

Beauchamp (1965) refined the notion that information could be spread very successfully 

through a network, if nodes have short distances to other nodes. He defines point centrality of 

a node 𝑗 as follows: 

𝐶𝐶(𝑗) =
𝑛 − 1

∑ djii: i≠j
. (5) 

We wish to generalize our four-point example from above to a line of 𝑛 nodes.  

 

Figure 19. We split the line graph at node j to simplify the problem of summing up all 𝑑𝑗. 

In order to calculate 𝐶𝐶(𝑗), we face the problem of calculating 𝑑𝑗, that is the problem of sum-

ming up all distances of 𝑗 to all other nodes 𝑖 ≠ 𝑗. We wish to employ the sum formula ∑ 𝑖𝑁
𝑖=1 =

𝑁(𝑁+1)

2
 but need to make adjustments, because we need the formula to take care of general 

positions 𝑗 that are variable. To simplify the problem, we split the graph at the the 𝑗th node in 

order to obtain two graphs, one comprising the nodes 1 up to 𝑗, the other containing the nodes 

𝑗 to 𝑛. This way, we have reduced to problem to two simpler problems. The first is computing 

dj of the first graph, which is the same as computing d1 of the same graph, because of the 

symmetry of the problem. The second is computing dj of the second graph (nodes 𝑗 to 𝑛). The 

second is more complex, because we need to rename the nodes by shifting the indices by 𝑗 − 1. 

The second problem is therefore the same as computing d1 for the graph with nodes 1 up to 

𝑛 − 𝑗 + 1 (obviously, we are considering a different graph). We therefore need to compute d1 

for the graphs with nodes 1, … , 𝐿, where 𝐿 = 𝑗 (for the first graph) and 𝐿 = 𝑛 − 𝑗 + 1 (for the 

second graph). Now we can use the sum formula from above: for such a graph, the sum of 

distances from node 1 is 1 + 2 + ⋯ + (𝐿 − 1) = ∑ 𝑖𝐿−1
𝑖=1 =

𝐿(𝐿−1)

2
. Consequently, using this for-

mula twice, multiplying everything out and regrouping terms, we receive 

 

dj =
𝑗(𝑗 − 1)

2
+

(𝑛 − 𝑗 + 1)(𝑛 − 𝑗)

2
=

𝑛(𝑛 + 1)

2
− 𝑗(𝑛 − 𝑗 + 1). (6) 
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We have used the above formula (6) to calculate 𝐶𝐶(𝑗) for a linear graph with 𝑛 =100 nodes. 

In figure 20 we see that central nodes have the highest closeness centrality (as is expected) and 

that the distribution of values is symmetrical.  

 

Figure 20. Symmetrical distribution of closeness centrality 𝐶𝐶(𝑗) in a line graph with n=100 

nodes. 

 

We wish to compare the above formula (6) for dj to a formula for betweenness centrality of 

points in a graph as above (linear graph with 𝑛 nodes). Let us compute 𝐶𝐵(𝑗) as defined in 

Borgatti (2005). Suppose that 1 ≤ 𝑗 ≤ 𝑛 (see figure 21) with nodes 𝑖, 𝑙 such that 𝑖 ≠ 𝑗 ≠ 𝑙 ≠ 𝑖.  

 

Figure 21. Line graph with n nodes. 

 

To calculate 𝐶𝐵(𝑗), we need to sum up all geodesics running through 𝑗. Logically this applies 

only to shortest paths between nodes 𝑖 and 𝑙, if they lie on opposite sides of 𝑗. Moreover, because 

we are considering an undirected graph both shortest paths 𝑖 → 𝑙 and 𝑙 → 𝑖 exist. We therefore 

assume that 𝑖 is to the left side of 𝑗 with 𝑙 lying to its right and multiply the calculated shortest 

paths by two. There are 𝑛 − 𝑗 shortest paths 𝑖 → 𝑙 running through 𝑗 for every node 𝑖 < 𝑗. (There 

are also 𝑗 − 1 shortest paths 𝑙 → 𝑖 running through 𝑗 for every node 𝑙 > 𝑗.) We can therefore 

multiply the number of nodes on the left of 𝑗 by the number of nodes on its right and obtain  

𝐶𝐵(𝑗) = 2(𝑗 − 1)(𝑛 − 𝑗). (7) 
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This expression resembles the second term in our formula (6) for dj (the other term does not 

depend on 𝑗). For completeness, we also give a plot of the betweenness centrality for the linear 

graph with 𝑛 = 100 nodes. 

 

Figure 22. Symmetrical distribution of betweenness centrality 𝐶𝐵(𝑗) in a line graph with 

n=100 nodes. 

 

Note that these values are twice the size as values obtained by the original Freeman (1977) 

formula, obviously the shape of the graph is unchanged. In this very special case, the rankings 

obtained by the different measures of centrality are the same, as is obvious when looking at the 

plots: highest ranks are achieved by the middle nodes, lowest ranks by the outermost nodes. 

That is, 50 and 51 are in the first rank, 49 and 52 are in the second, and so forth. 

The application of this measure of centrality centres on speed and range. An individual with a 

high measure of closeness centrality has the ability to quickly spread information (or other 

goods) throughout the entire network. If, say, a position needs to be filled very quickly, an actor 

with a high betweenness measure will likely be able to broadcast this information well. Also, 

because of the ensuing reach, individuals with high betweenness centrality may be powerful 

influencers, simply because they have better access to the network as a whole most quickly. 

Another important feature is that their power can be interpreted in terms of independence. An 

individual who has broad reach will be less dependent on brokerage through other actors. 

4.4 Eigenvector centrality  

Finally, we wish to illustrate the fourth measure of centrality: eigenvector centrality. As op-

posed to all other notions of centrality introduced so far, this measure does not allow the eval-

uation of individual nodes. Instead, the relevance of each node is dependent on the relevance 
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of the neighbouring nodes – which are also unknown at the onset. We are therefore dealing with 

a system of equations where each node corresponds to one variable (Wasserman & Faust, 1994).  

To formalize this idea, Bonacich (1972) used the following approach: We are considering a 

directed graph, where 𝑗 → 𝑖 means that the tie between 𝑖 and 𝑗 is directed towards 𝑖. Let 𝑃𝑖 

denote the valuation of node 𝑖. This valuation 𝑃𝑖 should depend on the valuation 𝑃𝑗 of neigh-

bouring nodes 𝑗. More precisely: 

𝜆𝑃𝑖 = ∑ 𝑃𝑗 ,

𝑗:𝑗→𝑖

 (8) 

where 𝜆 is a parameter to be chosen (a so-called eigenvalue). (This 𝑃𝑖 is the centrality we wish 

to calculate to achieve an assessment of each node’s importance.) Note that 𝑃𝑖 = 0 for all 𝑖 is 

always is a solution, but we are not interested in this solution. Instead, we wish to find the 

greatest possible 𝜆.  

In order to obtain a familiar notation that is used in mathematics and physics, we define a matrix 

𝑊 with the entries 𝑤𝑖𝑗. If 𝑗 → 𝑖 we set 𝑤𝑖𝑗 = 1, 𝑤𝑖𝑗 = 0 otherwise. The resulting matrix is an 

adjacency matrix for the graph we are considering. Using this notation, we can now rewrite 

equation (8) as follows: 

𝜆𝑃𝑖 = ∑ 𝑤𝑖𝑗𝑃𝑗

𝑗

 (9) 

in other words  

𝜆𝑃 = 𝑊𝑃 (10) 

where 𝑃 is the vector consisting of the entries 𝑃𝑗 . In a more extensive form, this can be written 

as 

𝜆 (

𝑃1

⋮
𝑃𝑛

) = (
∗ ⋯ ∗

𝑤𝑖1 ⋯ 𝑤𝑖𝑛

∗ ⋯ ∗
) (

𝑃1

⋮
𝑃𝑛

). (11) 

Equation (10) is an eigenvalue equation, value 𝜆 𝑖𝑠 𝑎𝑛 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 and the vector 𝑃 is an ei-

genvector (if it is not 0) (Franks, Griffith, & Anand, 2014; Bonacich P. , 1972; Wasserman & 

Faust, 1994). Further it is known that only the largest eigenvalue gives sensible results because 

for all other 𝜆 there is at least one entry 𝑃𝑖 in the eigenvector that is not a real number ≥ 0 

(Frobenius, 1912). 

Summarizing these observations, we can state that the vector of eigenvector centralities 𝑃𝑖 is an 

eigenvector of the adjacency matrix. 

Returning to plain language, eigenvector centrality can only be solved for all nodes of a network 

at once. This is due to all values being mutually interdependent. An actor achieves a high 
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centrality score if many actors with high scores have arrows pointing towards him. In other 

words, each node’s importance is dependent on it’s neoghbours importance (Borgatti, 2005).  

Ranges for the application of eigenvector centrality and its derivatives are wide as we believe 

that it can often be used as a “fallback” measure of centrality. For example it would be interest-

ing to study the usefulness of this measure in networks derived from round-robin tournaments 

as this could help dealing with the problem of ties. Most famously, the PageRank-algorithm, 

which the web-search engine Google is based on, is a variant of eigenvector centrality (Brin & 

Page, 1998). Eigenvector centrality has also been used to predict the social rise of male birds 

(lek-mating wire-tailed manakins, to be precise) (Ryder, McDonald, Blake, Parker, & Loiselle, 

2008). However, there may be more economic value in applying this measure, for example, on 

the study of relationships in social media networks.  

5. Discussion of literature and simulation 

In the following section four scientific articles are discussed to illustrate each measure of cen-

trality’s application in contemporary science. Chapter 5.4 contains a self-devised implementa-

tion of a diffusion-based algorithm. 

5.1 Degree Centrality: Ranking the participants in a tournament – 

(Rubinstein, 1980) 

An elementary method of ranking the participants in a tournament network, called the “points 

system” was studied by Rubinstein (1980). Given a network derived from a complete tourna-

ment, a ranking of participants can be obtained by counting each participants’ number of wins. 

This is the basic idea of the points system ranking method.  

There is a number of prerequisites that need to be considered: 

1. We are interested not in ranking any arbitrary network, but specifically in ranking 

participants of networks resulting from tournaments.  

2. Tournaments consist of (𝑛
2
) =

𝑛(𝑛−1)

2
 matches (each pair of players competing), each match 

resulting in a unique outcome of one winner and one loser which are represented by arrows. 

3. The result of any tournament is given – meaning the network itself is given. 

In his paper Rubinstein (1980) defines a set of three axioms that completely characterizes this 

ranking method: the points system satisfies all three axioms and is the only system to do so. 
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This formal approach to a seemingly simple method has two distinct merits: Axiom I is a de-

sirable characteristic for ranking methods of different complexity, Axioms II and III highlight 

the fact that rankings are based on local network properties.  

The three axioms, as defined by Rubinstein (1980), are: 

Axiom I: “Anonymity Axiom”: renaming any participant does not influence the ranking. 

Axiom II: Suppose 𝑖 and 𝑗 are distinct players in a tournament and are ranked such that 𝑖 ≥ 𝑗. 

Assume that a third player 𝑘 wins against 𝑖, that is, 𝑘 → 𝑖. If this arrow is reversed, yielding a 

new tournament where 𝑖 → 𝑘, then 𝑖 is ranked strictly greater than 𝑗, in symbols 𝑖 > 𝑗. 

Axiom III: Suppose that 𝑖, 𝑗, 𝑘 and 𝑙 are distinct players. The outcome of the match between 𝑘 

and 𝑙 does not influence the relative ranking of 𝑖 and 𝑗. 

 

The following example illustrates the points system as well as the above axioms: 

Consider the tournament (figure 23) given by the six (= 4(4 − 1)/2) beating relations  

𝑎 → 𝑏, 𝑎 → 𝑑, 𝑏 → 𝑐, 𝑏 → 𝑑, 𝑐 → 𝑎, 𝑑 → 𝑐. Players 𝑎 and 𝑏 both win two matches, while 𝑐 and 

𝑑 only achieve one win respectively. The points system allocates a ranking corresponding to 

these numbers, resulting in 𝑎 and 𝑏 coming in first place/ rank, and 𝑐 and 𝑑 sharing second 

place/ rank. The fact that 𝑎 beats 𝑏 does not prevent both from sharing the same rank. The fact 

the 𝑐 beats 𝑎 does not cause 𝑐 to be placed higher or as high as 𝑎, in fact 𝑐 is ranked below 𝑎. 

 

Figure 23. Tournament between nodes a, b, c and d. Arrows indicate winners of individual 

matches. To the right the resulting ranking achieved through the points system. 

We wish to understand the axioms by means of this example. Axiom I states that renaming any 

participant of the tournament does not influence the players rankings. If we were to change the 

players designations in Figure 1 from 𝑎, 𝑏, 𝑐 and 𝑑 to 𝑤, 𝑥, 𝑦 and 𝑧, the ranking induced by the 

ranking method would be obtained by applying the same substitution of monikers to the original 

ranking. Instead of 𝑎 and 𝑏 we would find 𝑤 and 𝑥 on top rank and 𝑦 and 𝑧 on the bottom rank. 

In order to understand Axiom II, consider the three players 𝑎, 𝑏, 𝑐. Players 𝑎 and 𝑏 occupy the 

same rank, but as soon as we let 𝑎 win against 𝑐, all else unchanged, player 𝑎 occupies a higher 

rank than player 𝑏. 
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Figure 24.  Tournament as seen in figure 23 with the difference that the match between a and 

c is won by a. To the right the resulting ranking achieved through the points system. 

 

Finally, changing the outcome of the match between 𝑐 and 𝑑 does not change the ordering of 𝑎 

and 𝑏 in the ranking, even though they now share the top rank with 𝑐. 

All three axioms are satisfied only by the points system, rendering it one of the most simple 

ranking methods. 

Most networks found in the “real world” are not complete (containing pairs of nodes not directly 

connected) and rankings for naturally occurring networks are the subject of this work. It is 

therefore  

 

 

Figure 25. Tournament as seen in figure 23 with the difference that the match between c and d 

is won by. To the right the resulting ranking achieved through the points system. 

 

an obvious question if the points system can be extended to general networks: Is the points 

system applicable to non-complete networks and does this ranking method satisfy Rubinstein’s 

axioms I, II and III for such networks? The former is obviously the case, yes. Counting the 

number of outgoing arrows (wins) is just as possible for non-complete networks as it is for 

complete networks. The latter can be verified as easily as in the complete case: Axiom I is valid 

because names do not influence the number of outgoing edges. In order to verify Axiom II, we 

consider two nodes 𝑖 and 𝑗 such that 𝑖 has at least as many outgoing arrows (wins) as 𝑗. Replac-

ing the arrow 𝑘 → 𝑖 by 𝑖 → 𝑘, the number of wins of 𝑖 is strictly larger than that of 𝑗. In the 

same way, Axiom III can be verified: the orientation of the arrow between 𝑘 and 𝑙 does not 
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influence the number of outgoing arrows of 𝑖 and 𝑗. Moreover, in applications, draws may oc-

cur, necessitating the possibility of weighted outcomes. We therefore also consider directed 

graphs with weighted edges, to allow for such possibilities. Clearly, instead of the number of 

wins, we are now interested in the sum of weights of outgoing edges. Repeating the arguments 

from above, we see that Axioms I, II and III again hold true (for weights > 0).  

Potential applications 

Because the points system is such a simple and easy to apply method, it lends itself to common 

use. Firstly, round-robin tournaments are an ideal premise for the application of the points sys-

tem, as the structure of such tournaments renders complete networks. For example, preliminary 

rounds of the football World Cup and European Championship use the round robin format (a 

knock-out system is used for the main round) (Müller, 2017).  

However, large numbers of participants imply an increasing number of matches (𝑛(𝑛 − 1)/2), 

causing ever greater effort and investment for tournament organizers and participants. Where 5 

players require 10 matches, 10 participants already necessitate 45 matches and so on. This im-

plies that round robin tournaments may only be of use for limited participant numbers or where 

a great number of matches does not correspond with greatly increased cost. 

Secondly, the points system may be applied to more general networks, but it is unclear if this 

is sensible in all cases. Consider the non-complete network 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ with loosely con-

nected areas of high density 𝐴 and 𝐵: area 𝐴 consisting of players 𝑎, 𝑏, 𝑐 and 𝑑, area 𝐵 consisting 

of players 𝑒, 𝑓, 𝑔 and ℎ. If all players in area B are better than the players in area 𝐴, such that 

any player in 𝐵 would beat any player in 𝐴, the points system will not lead to a meaningful 

ranking. Players within the weaker area 𝐴 are able to achieve an equal or higher number of wins 

against each other, than players in the stronger area among each other. This leads to weaker 

players achieving an equal or higher rank than players of the stronger area 𝐵. Figure 26 depicts 

a possible scenario: 

 

Figure 26. Non-complete network with two separate areas of high density. If all players in 

area B are better than the players in area A, the points system does not lead to a meaningful 

ranking. 
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This demonstrates that the points system, while easily applicable, is not suitable in all cases. 

Also, due to the method of counting outgoing (weighted) arrows, there may not always be a 

distinct winner, but several participants might share each rank. 

Below, a diffusion algorithm developed by Radicchi (2011) will be introduced. For knock-out 

tournaments, that method yields the same ranking as the Points System.  

5.2 Betweenness Centrality: Quantifying the Performance of Individual 

Players in a Team Activity – (Duch, Waitzman, & Amaral, 2010) 

Many real-world networks consist not of independent individuals, but of teams working to-

gether to achieve a common goal. This is true not only in sports but in business settings, science 

and social communities as well. Big companies such as Google or Facebook actively add team-

work skills and opportunities into their job offers, making the ability to work well in teams a 

crucial recruitment requirement. Targeted team-selection and -composition can be crucial to 

establish maximum output or increased creativity. Within a team, certain roles will be occupied 

that are often not interchangeable and whose impact cannot be easily compared. In football for 

example, there are goalkeepers, centre forwards and defence players, all are necessary to suc-

cessfully compete in a match, but their contributions are of different nature. Measuring the 

performance of a team is obviously dependent on its members’ contributions but these individ-

ual contributions need to be measured with the different assignments in mind, necessitating 

individual performance evaluations. This allows for the interesting question if (large) discrep-

ancies of compensation of players within a team are warranted and if such differences in pay 

arise from actual differences in those player’s contribution (Duch, Waitzman, & Amaral, 2010). 

Diversity and a lack of redundancy are looked-for to achieve a balanced and fruitful collabora-

tion basis in a network. In terms of network-structure, it is desirable to obtain a composition 

that allows for easy information (or other desired commodity) access along shortest possible 

paths.  

Duch, Waitzman, & Amaral (2010) study performance evaluation of teams and individuals on 

the basis of the 2008 Euro Cup football tournament. By utilizing large amounts of publicly 

available statistical data, they devise a variant of betweenness-centrality, called “flow central-

ity”, that “…captures the fraction of times that a player intervenes in those paths that result in 

a shot” (Duch, Waitzman, & Amaral, p. 2, 2010). While betweenness-centrality is concerned 

only with shortest paths between two nodes, flow centrality as defined by Duch, Waitzman, & 

Amaral (2010) also takes into account measures of passing and shooting accuracy of each 

player, thus extending the original concept. The resulting diagrams are complex visualizations 
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of each player’s contribution in a given match, depicting both passing accuracy and individual 

performance as well as the number of successful passes. 

Figure 27 shows how Duch, Waitzman, & Amaral (2010) depict the studied matches in terms 

of flow networks. Node size is contingent on player performance and colour coded by passing 

accuracy; arrow thickness represents the number of successful passes between two players, ar-

row colour codes arc centrality. 

 

Figure 27: Rearranged from Figure 5 in Duch, Waitzman, & Amaral 2010. The flow network 

depicts centrality, passing accuracy and player performance of studied matches. 

 

Let 𝑁 denotes the total number of all players in a team. Each player 𝑖 of team 𝐴 is assigned a 

match performance 𝜌𝑖
𝐴 according to his flow centrality measure. For 𝑛 ≤ 𝑁 team performance 

𝜌𝐴,𝑛 is measured as the average performance of the best 𝑛 individual players (sorted from best 

to worst) of a given team 𝐴:  

𝜌𝐴,𝑛 =  
1

𝑛
 ∑ 𝜌𝑖

𝐴

𝑛

𝑖=1

. (12) 

These values offer an opportunity to compare the performance of any pair of teams by calcu-

lating the difference 𝛿𝑛 of team performances: 

𝛿𝑛 =  𝜌𝐴,𝑛 −  𝜌𝐵,𝑛. (13) 

The value of this measure lies in its predictive power. Duch, Waitzman, & Amaral (2010) find 

significant correlation between the values 𝛿2 and the actual outcome of a match. In fact, they 

suggest a significant correlation for values of 𝑛 ≤ 4 (that is a correlation for the case of four or 

fewer than four of the best players of a given team). This finding is of great interest, as it implies 

that only the top players’ performances are determining factors for match outcomes. This in 

turn can be viewed as justification for compensation disparities within teams. If it is only the 

top performing players who are the deciding factor to lead their team to victory, compensation 

premiums seem justified. 
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This method of ranking individuals in a network, though applicable in sport, was not proven 

viable in a tentative study in the context of teamwork within scientific projects (Duch, 

Waitzman, & Amaral, 2010). However, further and more detailed research is warranted to ex-

pand on possible additional applications of this approach like the above mentioned identifica-

tion and ranking of individuals with the power to exert influence within their network. 

5.3 Closeness Centrality: Fast Approximation of Centrality – (Eppstein & 

Wang, 2004) 

A common problem when calculating centralities is that due to increasing network size, com-

putations get ever more complex. While this is not a problem in principle, even for most per-

sonnel computers, vast data ranges require a long time to process. With time being a valuable 

commodity, expediting the computing process is welcomed.  

In computer science, the quality of an algorithm is given by the time it takes to solve a problem. 

This can be measured by the number of elementary computations, as this is what computers are 

basically capable of. The notation Ο is used to measure the complexity of an algorithm. For 

example, if the complexity of an algorithm is Ο(𝑛2), this means that if the input size is 𝑛 (for 

example number of nodes in a graph) the algorithm needs at most 𝐶𝑛2 operations to solve the 

problem where 𝐶 is constant. Consider the multiplication of two numbers using pen and paper. 

For single digits the multiplication requires one step. Multiplication of larger numbers, say 87 ∙

23, involves multiplying each digit of the first number with each digit of the second number. 

In the above case four elementary multiplications are needed. For numbers having 𝑛 respec-

tively 𝑚 digits, the number of elementary multiplications is 𝑛 ∙ 𝑚. This usual “pen and paper 

algorithm” therefore has complexity Ο(𝑛𝑚).  

There are different algorithms used at present to compute closeness centrality in undirected 

graphs (Eppstein & Wang, 2004). One possibility to solve this problem is through an algorithm 

that takes into account all nodes 𝑛 and delivers a result for all of these at once at the end of the 

computing process. There are no interim results in such a case and to obtain any particular 

closeness centrality (for a selected 𝑗), the computation has to be finished. One such algorithm 

solves 𝐶𝐶(𝑗) =
𝑛−1

∑ djii: i≠j
, which is equation (5) by Beauchamp (1965) above, for all 𝑗 in time 

Ο(𝑛𝑚 + 𝑛2 log 𝑛) where 𝑚 is the number of edges and 𝑛 is the number of nodes (Johnson, 

1977). 

The other general path to solve equation (5) is to use an algorithm that calculates 𝐶𝐶(𝑗) for 

individual 𝑗 (one at a time). This obviously can be used to calculate the closeness centrality for 



45 

 

all nodes 𝑗 but does not need to. Solving the Single Source Shortest Path (SSSP) problem is one 

way to do this. An algorithm that can do so in time Ο(𝑛 log 𝑛 + 𝑚) was discovered in by Fred-

man and Tarjan in 1987 (Fredman & Tarjan, 1987). To recap, this means that it takes time 

Ο(𝑛 log 𝑛 + 𝑚) to compute the closeness centrality 𝐶𝐶(𝑗) for any individual node in a network 

consisting of 𝑛 nodes and 𝑚 edges. To compute 𝐶𝐶(𝑗) for all 𝑗 using this algorithm, it takes 𝑛 

times as long and curiously we arrive back at Johnson’s estimate Ο(𝑛𝑚 + 𝑛2 log 𝑛) (Johnson, 

1977).  

Eppstein and Wang (2004) have also tackled this latter problem. Their approach is to give an 

approximation of 𝐶𝐶(𝑗) for any node by using a randomized algorithm. First, they select 𝑘 nodes 

𝑣1, . . . , 𝑣𝑘  at random (𝑘 to be selected according to the size of a network and desired quality of 

approximation) and calculate their respective distances to all nodes, using the algorithm devel-

oped by Fredman &Tarjan. Table 3 shows an example for such a table of distances, with rows 

corresponding to the pivot points and columns indicating all nodes. The time needed to compute 

this table is Ο(𝑘𝑛 log 𝑛 + 𝑘𝑚). Adding up all entries in a row would yield the closeness cen-

trality 𝐶𝐶(𝑣𝑖), but this is not what we want. 

Table 3. Table of distances between the pivot points 𝑣𝑖 and all points of the network. In this 

abstract example 𝑘 = 3 and 𝑛 = 6. 

 

 

Instead, they consider the columns of this table. By adding up the values in column 𝑗 and mul-

tiplying the obtained value by 
𝑛

𝑘
, they obtain an estimate for the sum of distances from 𝑗 to all 

other nodes. This can be done because the selection of random 𝑘 nodes usually is a good rep-

resentative of the entire network. The result is further used to obtain a centrality estimator for 

node 𝑗 as follows: 

𝐶̂𝐶(𝑗) =
𝑛 − 1

𝑛
𝑘

∑ 𝑑(𝑗, 𝑣𝑖)𝑘
𝑖=1

 (14) 

Eppstein & Wang (2004) could reduce the time needed to calculate (by approximation) the 

closeness centrality for all nodes 𝑗 to Ο(
log 𝑛

𝜀2 (𝑛 log 𝑛 + 𝑚)) with 𝜀 being the quality of approx-

imation (the smaller 𝜀, the better the approximation). However, there are two caveats: firstly, 
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𝐶̂𝐶(𝑗) is only an approximation of 𝐶𝐶(𝑗) and secondly, the algorithm yields the desired result 

only with the high probability of 1 −
1

𝑛
 because of the random selection of the pivot nodes. 

Let us now roughly compare the complexity of Johnson’s algorithm with that of Eppstein and 

Wang. We select a network with 109 nodes and 𝑚 edges. Johnson’s method yields a running 

time of Ο(𝑛𝑚 + 𝑛2 log 𝑛) = Ο(𝑛(𝑚 + 𝑛 log 𝑛)). Eppstein and Wang’s approximation returns 

a result in Ο(
log 𝑛

𝜀2 (𝑛 log 𝑛 + 𝑚)). Note that the complexities differ only in the first factor, it is 

therefore sufficient to compare these facors: 𝑛 versus 
log 𝑛

𝜀2 . For 𝜀 =
1

100
 the quotient of these 

two quantities is about 5000. To put this into perspective, a calculation that would take one 

year (8760 hours) with the first algorithm is finished within a couple of hours when using the 

approximation method. 

 

5.4 Eigenvector Centrality: Who is the best player ever? A complex network 

analysis of the history of professional tennis. – (Radicchi, 2011) 

In some cases, tournament networks demand sophisticated ranking methods to do justice to the 

fact that each node’s ranking should depend on the ranking of its neighbours. Winning against 

a strong participant should be valued more highly than winning against a weak opponent. This 

property allows a more nuanced ranking and is the main feature distinguishing such a system 

from the more basic points system.  

Radicchi (2011) developed a diffusion algorithm that allows to assign a score to each node, 

based on the value of all other nodes in the network. In other words, the scores are determined 

by solving a system of equations in 𝑁 variables, where 𝑁 is the number of nodes. This algorithm 

is heavily built on Google’s “PageRank” system, developed by Brin and Page (1998). 

The general idea is to determine the best tennis player in history, by analysing all results from 

certain professional tennis matches (Grand Slams and ATP World Tour tournaments) taking 

place between 1968 and 2010. In order to do so, a complex network of tournaments needs to be 

established that has the capacity to compare players of several generations. He also needs to 

cover the fact that not all pairs of players have competed and that a great number of actual 

tournaments needs to be considered. Interestingly, the only necessary input is information about 

which pairs of players competed and who won each match, no external evaluations (like points 

collected during a tennis season) are used. 

Each individual tennis tournament can be visualized as a tree (since there are always exactly 

two players competing per match). The winner of each match “rising” to the next level in a 
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knock-out fashion until there is only one final player left, the ultimate winner (see figure 28). 

(Each match is represented by an arrow pointing towards the winner.) 

 

Figure 28 based on Radicchi (2011), figure 2. Tree graph to the left and directional network to 

the right depicting all matches and outcomes played during a single tournament with four 

participants. 

A combined network of several tournaments has no such clear structure. Individual tournaments 

are linked seemingly haphazardly, creating a complex network that does not necessarily intui-

tively show the best player. Figure 29 graphically represents such a setting. 

 

Figure 29. Eight distinct players competing in three individual tournaments (left). Combined 

network depicting each matches winner of the same three tournaments (right). 

 

Considering all 133261 matches taken into account by Radicchi (2011), a weighted graph is 

constructed as follows: players are the nodes of the graph, arrows connect the nodes, pointing 

towards the winner and weighted according to the number of wins a player was able to achieve 

against the other.  

In order to take all players into consideration at the same time, Radicchi (2011) develops the 

“prestige score”, a measure of quality that represents the overall strength of each individual 

player, the highest value representing “the best player ever”. This prestige has the property of 

flowing along the weighted arrows of the graph, representing the valuable resource that is dis-

tributed throughout the network.  
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In more detail, Radicchi’s (2011) system is implemented as follows. We start with the following 

formula, taken from formula (1) of that paper: 

𝑃𝑖 = (1 − 𝑞) ∑ 𝑃𝑗

𝑤𝑗𝑖

𝑠𝑗
𝑜𝑢𝑡

𝑗: 𝑗≠𝑖

+
𝑞

𝑁
+

1 − 𝑞

𝑁
∑ 𝑃𝑗𝛿(𝑠𝑗

𝑜𝑢𝑡)

𝑗

. (15) 

 

In this equation 𝑖 and 𝑗 represent tennis players and 𝑃𝑖 represents the prestige score achieved by 

player 𝑖. It is calculated by solving the above system of 𝑁 equations (𝑁 being the number of 

total players), furthermore, it is assumed that ∑ 𝑃𝑖𝑖 = 1.  

We note that 𝑃𝑖 is dependent on the score of all other players. The number of times 𝑖 won against 

𝑗 is denoted by 𝑤𝑗𝑖; 𝑠𝑗
𝑜𝑢𝑡 = ∑ 𝑤𝑗𝑖𝑖  denotes the “out-strength” of player 𝑗, representing the num-

ber of games lost by 𝑗; the term 𝛿(𝑠𝑗
𝑜𝑢𝑡) is used to avoid any player receiving all prestige in the 

case of not losing any matches (in which case he would receive prestige but it could not be 

redistributed to other players, effectively making such players black holes for prestige). It is 1 

if 𝑠𝑗
𝑜𝑢𝑡 = 0 and 0 otherwise. Finally, 𝑞 serves as a “control parameter”, set at 𝑞 = 0.15, Ra-

dicchi (2011) choosing this value “by tradition” in accordance with Brin & Page (1998). 

Let us break down the equation into more comprehensible parts. The first summand is the most 

important, 
𝑤𝑗𝑖

𝑠𝑗
𝑜𝑢𝑡 being the proportion of all of 𝑗’s losses that are due to 𝑖. If we imagine all prestige 

of 𝑗 to be distributed among players 𝑖 he lost against, then each of those players will receive a 

proportion of this prestige that is in accordance with the number of times he lost against 𝑖 out 

of all his losses. It is therefore the part of the equation that factors in the “importance” of all 

other players. It is central to note that 𝑃𝑗 is completely redistributed to players he lost against 

apart from one separate case: if 𝑠𝑗
𝑜𝑢𝑡 = 0, the fraction 

0

0
 is meant to be interpreted as 0 (this 

detail however, is omitted by Radicchi). Such a case would occur if a given player 𝑗 never loses 

(for example the last standing player in a single knock-out tournament). The next term, 
𝑞

𝑁
 rep-

resents an equal constant distribution of prestige among all players. Finally, the last summand 

deals with the case of 𝑗 not losing a single match. The function 𝛿(𝑠𝑗
𝑜𝑢𝑡) = 1 if  𝑗 has 0 losses. 

In this case all his prestige 𝑃𝑗 is distributed evenly among all players (including himself). Oth-

erwise, if 𝛿(𝑠𝑗
𝑜𝑢𝑡) = 0, the sum is 0 and the term has no impact.  

There are two distinct ways to find an (approximate) solution to equation (15). The first is to 

solve the system of equations (for example using Gaussian elimination), the second is to find 

an approximate solution using the diffusion method. In both cases, total distributed prestige is 

1 (in every iteration).  
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Claim: Total prestige is 1 in every iteration. 

Proof: To show that this requirement is fulfilled for the diffusion method, we proceed by in-

duction. We start by distributing a total prestige of 1 to all players. Which is the case 𝑘 = 1:  

∑ 𝑃𝑖
(1)

= 1.

𝑁

𝑖=1

 (16) 

We need to show that if we have total prestige = 1 in one step, we also have a total prestige of 

1 in the following step. This process can then be repeated indefinitely. Let 𝑃𝑖
(𝑚)

 be the prestige 

of player 𝑖 at the moment 𝑚 (𝑚th iteration). Beginning with ∑ 𝑃𝑖
(𝑘−1)

= 1𝑁
𝑖=1 , we need to show 

that ∑ 𝑃𝑖
(𝑘)

= 1𝑁
𝑖=1 .  

∑ 𝑃𝑖
(𝑘)

=

𝑁

𝑖=1

∑(

𝑁

𝑖=1

1 − 𝑞) ∑ 𝑃𝑗
(𝑘−1) 𝑤𝑗𝑖

𝑠𝑗
𝑜𝑢𝑡

𝑁

𝑗: 𝑠𝑗
𝑜𝑢𝑡>0

+ ∑
𝑞

𝑁

𝑁

𝑖=1

+ ∑
1 − 𝑞

𝑁

𝑁

𝑖=1

∑ 𝑃𝑗
(𝑘−1)

𝛿(𝑠𝑗
𝑜𝑢𝑡)

𝑁

𝑗:𝑠𝑗
𝑜𝑢𝑡=0

 

(17) 

 

Note that in the first sum over 𝑗 we excluded the indices where 𝑠𝑗
𝑜𝑢𝑡 = 0, so that 𝑠𝑗

𝑜𝑢𝑡 > 0 

remains, in order to avoid division by 0. As noted above, this is assumed implicitly by Radicchi. 

In the rightmost sums over 𝑗 we excluded the indices where 𝑠𝑗
𝑜𝑢𝑡 > 0 , so that only 𝑠𝑗

𝑜𝑢𝑡 = 0 

remains. This is admissible because for 𝑠𝑗
𝑜𝑢𝑡 > 0 it is the case that 𝛿(𝑠𝑗

𝑜𝑢𝑡) = 0. 

We interchange the sums of the first term (the sums of the second and third term remain un-

changed as they do not contain 𝑖). For  𝑠𝑗
𝑜𝑢𝑡 = 0 it is the case that 𝛿(𝑠𝑗

𝑜𝑢𝑡) = 1 and we obtain 

∑ 𝑃𝑖
(𝑘)

=

𝑁

𝑖=1

∑ (

𝑁

𝑗: 𝑠𝑗
𝑜𝑢𝑡>0

1 − 𝑞) ∑ 𝑃𝑗
(𝑘−1) 𝑤𝑗𝑖

𝑠𝑗
𝑜𝑢𝑡

𝑁

𝑖=1

+ ∑
𝑞

𝑁

𝑁

𝑖=1

+ ∑
1 − 𝑞

𝑁

𝑁

𝑖=1

∑ 𝑃𝑗
(𝑘−1)

𝑁

𝑗:𝑠𝑗
𝑜𝑢𝑡=0

. (18) 

We extract the constant factors of the first term (those that are not depending on 𝑖) 

= (1 − 𝑞) ∑ 𝑃𝑗
(𝑘−1)

𝑁

𝑗:𝑠𝑗
𝑜𝑢𝑡>0

1

𝑠𝑗
𝑜𝑢𝑡 ∑ 𝑤𝑗𝑖

𝑁

𝑖=1

+ ∑
𝑞

𝑁

𝑁

𝑖=1

+ ∑
1 − 𝑞

𝑁

𝑁

𝑖=1

∑ 𝑃𝑗
(𝑘−1)

𝑁

𝑗:𝑠𝑗
𝑜𝑢𝑡=0

. (19) 

Because ∑ 𝑤𝑗𝑖
𝑁
𝑖=1 = 𝑠𝑗

𝑜𝑢𝑡, the first term can be further simplified to 
1

𝑠𝑗
𝑜𝑢𝑡 ∑ 𝑤𝑗𝑖

𝑁
𝑖=1 = 1. We ex-

tract further factors and receive 

= (1 − 𝑞) ∑ 𝑃𝑗
(𝑘−1)

𝑁

𝑗:𝑠𝑗
𝑜𝑢𝑡>0

+
𝑞

𝑁
∑ 1

𝑁

𝑖=1

+
1 − 𝑞

𝑁
∑ 1

𝑁

𝑖=1

∑ 𝑃𝑗
(𝑘−1)

𝑁

𝑗:𝑠𝑗
𝑜𝑢𝑡=0

. (20) 

Because ∑ 1𝑁
𝑖=1 = 𝑁, we get 
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= (1 − 𝑞) ∑ 𝑃𝑗
(𝑘−1)

𝑁

𝑗:𝑠𝑗
𝑜𝑢𝑡>0

+ 𝑞 + (1 − 𝑞) ∑ 𝑃𝑗
(𝑘−1)

𝑁

𝑗:𝑠𝑗
𝑜𝑢𝑡=0

. (21) 

The conditions under the summation signs are complementary to each other and we obtain the 

full sum over 𝑗 = 1, … , 𝑁: 

= (1 − 𝑞) ∑ 𝑃𝑗
(𝑘−1)

𝑁

𝑗=1

+ 𝑞. (22) 

As we started out under the condition that ∑ 𝑃𝑖
(𝑘−1)

= 1𝑁
𝑖=1  we have completed the induction 

step and have shown that total prestige of 1 is preserved through the diffusion process. For all 

𝑘 it is the case that  

∑ 𝑃𝑗
(𝑘)

𝑁

𝑗=1

= 1. 
(23) 

∎ 

In his work, Radicchi (2011) goes on to develop a separate equation for the special case of 

single tournaments. The graphs for such tournaments can be drawn as trees (see figure 28), their 

special feature being, that there are no cycles within the system and the number of participants 

shrinking by half with every level. The number of players can be denoted as 𝑁 = 2𝑙, 𝑙 being 

the total number of rounds (or matches the winner must compete in) in the tournament, because 

each match has two participants, one of whom drops out at every round until there is a final 

winner. The tree structure of such tournaments leads to the following observation: the score of 

any player only depends on the number of wins, in other words, two players with the same 

number of wins have the same score. We can show this by induction, starting at the lowest 

level. If we consider equation (15) and assume that a player 𝑖 never wins, the first summand 

will be 0 (because 𝑤𝑗𝑖 = 0 for all 𝑗). Indeed, this player will only receive the amount given by 

the second and third term which distribute equal amounts of prestige to all players. In conclu-

sion, the corresponding score will not depend on 𝑖 and all players who never win, receive the 

same score. One level up, the first summand of equation (15) will be equal for all players losing 

in this round. This is due to their opponents all having had the same amount of prestige 𝑃𝑗  as 

just discussed. The second and third term remain equal for all players and do not influence the 

ranking. The same thought-process can be repeated for all higher levels. We can further tell that 

additional wins lead to higher prestige scores (as long as 𝑞 ≠ 1) because the first summand of 

equation (15) is higher if an additional term is added, as is the case with an additional win. If 

the number of rounds is 𝑙, the number of ranks is 𝑙 + 1 because there is a bottom rank for players 

who never win and a rank corresponding with every level of the tournament. The number of 
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rounds is log2 𝑁, the number of ranks is log2 𝑁 + 1 (because half of the remaining players drop 

out every round and there is one additional rank for the overall winner). 

Apart from arrows pointing in opposite directions, the resulting ranking is the same as would 

be achieved using the Points System developed by Rubinstein (1980). In both cases only the 

number of arrows pointing towards (resp. away from) a node is the determining factor. How-

ever, if we consider scoring, Radicchi (2011) provides a finer result. 

In the case of a single (knock-out) tournament, the prestige score can be analytically calculated 

for any individual player, it is not necessary to solve a system of equations for all players. The 

solution found through Radicchi’s (2011) formula (6) is exact (whereas the above universal 

diffusion algorithm only allows an approximation): 

𝑃𝑟 =
𝑞(2 − 𝑞)𝑟

2𝑙 + (2 − 𝑞)𝑙(𝑞 − 1)
 . (24) 

𝑟 denotes the number of times a player wins. Due to the nature of single tournaments, as de-

scribed above, the number of successful match outcomes for a player is sufficient information 

to rank them.  

Indeed, the tree-shape also provides information about how many players will occupy each rank 

and how many ranks there are: because half of the players are eliminated in every round, and 

they all started at the same level, these eliminated players (per level) will occupy the same rank, 

halving the number of participants with every level. In case of a single tournament with eight 

participants, there will be a final ranking of one player in first place, one player in second place, 

two in third place and four in fourth place. There is no ranking beyond these four ranks and 

there is no additional network flow to influence the outcome (see figure 30 for a possible tour-

nament). 

 

Figure 30. Single knock-out tournament with eight participants. The circled players are 

eliminated. All eliminated players of a common level share the same rank. There are 

𝑙𝑜𝑔2 8 = 3 levels and 𝑙𝑜𝑔2 8 + 1 = 4 ranks in this tournament. 
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Below, we ran a simulation of Radicchi’s diffusion algorithm in order to calculate an approxi-

mate solution of the system of equations for exemplary tournaments and compared the results 

for single tournaments with formula (24), which is formula (6) in Radicchi (2011). 

5.4.1 Simulation of Radicchi’s (2011) diffusion algorithm 

Using Microsoft Excel Version 1807, we run a simulation of Radicchi’s diffusion algorithm, 

building up individual components with help of the spreadsheet program. First, we simulate a 

single knock-out tournament with four participants. A tree-shaped graph (compare figure 30 

above) illustrates the matches and their outcomes. It is our intent to find a stable ranking. To 

test our result, we then calculate the exact solution, using formula (24). Next, we repeat the 

process with a combination of three interconnected tournaments. Again, we simulate with four 

players for every tournament but a total of eight different players, as one of these tournaments 

is interconnecting the other two. We include two cycles in this case to allow for a more com-

plicated setup. A tree-shaped graph is no longer sufficient to illustrate the network whose par-

ticipants we want to rank. 

We start by building the individual components of equation (15) and implement the correspond-

ing weighted graphs in two separate spreadsheet pages "graph representation 1" and "graph 

representation 2". The diffusion process is also realized in individual sheets "single tournament" 

and "combined tournaments". 

5.4.1.1 Single tournament 

 

 

We use the same tournament as is depicted in figure 29 above but transcribe the information 

into an adjacency-matrix, representing 𝑤𝑗𝑖 where rows are to be read as 𝑗’s losses and columns 

represent 𝑖’s wins. Row one reads as player one having no loss against himself or players three 

and four but losing against player 2. Column one reads as player one not achieving a single win. 

Figure 31. Tournament between four players: tree graph, directional network, and 

adjacency matrix. 
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We get the out-strength 𝑠𝑗
𝑜𝑢𝑡 by summing up each row separately of the adjacency-matrix to 

obtain the number of losses of 𝑗. A table for the division of 
𝑤𝑗𝑖

𝑠𝑗
𝑜𝑢𝑡 is built, to tell which proportion 

of 𝑗’s losses is due to 𝑖. We use the if-function (Wenn-Funktion) to deal with the case of division 

by 0 (that is to be read as 0, see above). This function allows a differentiation between outputs. 

We select output 0 in case of 𝑠𝑗
𝑜𝑢𝑡= 0 and 

𝑤𝑗𝑖

𝑠𝑗
𝑜𝑢𝑡 otherwise. The function 𝛿(𝑠𝑗

𝑜𝑢𝑡) is implemented 

by again using the if-function to provide the output 1 if 𝑠𝑗
𝑜𝑢𝑡= 0 and 0 otherwise. For visual 

documentation of these processes, please refer to Appendix 8.3. 

 

With these building-blocks, we can assemble equation (15) using the sumproduct-function 

(Summenprodukt-Funktion). This function allows the scalar multiplication of two vectors. We 

start with a uniform distribution of prestige (although any start vector with ∑ = 1 could be 

used). We choose 0.25 as our start vector and allow for variable 𝑞 but select 𝑞 = 0.15 as default 

value. (The implementation is realized through the formula =(1-$D$3)*SUMMENPRO-

DUKT(C$6:C$9;'graph representation 1'!$Q$8:$Q$11)+$D$3/4 +((1-$D$3)/4)*SUMMENPRO-

DUKT(C$6:C$9;'graph representation 1'!$O$8:$O$11). The cells represent the following: $D$3 = 𝑞, 

C$6:C$9 represents the start vector 0.25 for all 𝑃𝑖, $Q$8:$Q$11 represents the first column of the 

𝑤𝑗𝑖

𝑠𝑗
𝑜𝑢𝑡-table, $O$8:$O$11 represents the function 𝛿(𝑠𝑗

𝑜𝑢𝑡).) We find that the diffusion process 

quickly leads to stable values. By using the Microsoft Excel feature of “shifting” the formula 

(thereby copying cells held by the $-symbol but equally shifting other cells that are linked), we 

run 30 iterations of the above and arrive at a stable result (for eight positions after the decimal 

point) for all 𝑃𝑖 after 22 iterations. The value used for 𝑃𝑗 in any given iteration is the output of 

the previous run. It is noteworthy that the two participants losing in the first round, 𝑃1 and 𝑃4, 

indeed have identical results in all iterations. 
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We find the ranking of player 2 in first place, player 3 in second place and players 1 and 4 

sharing third position. 

 

The calculated ranking corresponds with the intuitive ranking apparent from the graph. To test 

our result, we compare our findings to equation (24) for this simulation.  

For the exact solution, we need the number of wins 𝑟, the number of rounds 𝑙 = 2 and 𝑞 (se-

lected at 𝑞 = 0.15 following Radicchi’s (2011) example). We create a table for 𝑟 and calculate 

the results for 𝑃𝑖. (We use the following formula: =(D$3*(2-D$3)^C16)/(2^2+(2-D$3)^2*(D$3-1)). The 

cells represent the following: D$3 = 𝑞, C16 = 𝑟.) Comparing the exact solution with the result of 

the final iteration of our simulation, we find them to be identical. 

 

The induced ranking is independent of the value of 𝑞 for 0 ≤ 𝑞 < 1. This is due to the fact that 

equation (24) is increasing in the variable 𝑟. For 𝑞 = 1 prestige would be equally divided be-

tween all players, which is apparent from both formulas (15) and (24). If 𝑞 = 1 formula (15) 

would only consist of the second term 
1

𝑁
 and formula (24) read 

1

2𝑙 =
1

𝑁
. We created a graph using 

different values for 𝑞 (0, 0.15, 0.3, 0.5, 0.7, 0.85, 1), showing that the lines converge but do not 

cross apart from merging at 𝑞 = 1. 𝑃1 and 𝑃4 are identical because each of them has 0 wins and 

they therefor achieve the same score. 

 

Figure 32. Scoring for different values of q. P1 and P4 are identical. All lines converge 

towards the equal score of 0.25 at q=1. 
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5.4.1.2 Combined tournaments 

 

Figure 33. Combined tournament between eight players in total: directional network, and 

adjacency matrix 

Again, we use a tournament depicted above (figure 33) and transcribe the information into an 

adjacency-matrix representing 𝑤𝑗𝑖 where rows are to be read as 𝑗’s losses and columns represent 

𝑖’s wins. In this case, the tournament between players 2, 4, 5 and 6 (orange) connects the two 

single tournaments between players 1, 2, 3, 4 and 5, 6, 7, 8 respectively (both blue). A cycle 

between players 2 → 5 → 4 → 3 → 2 adds interest to the network structure as this means that 

the best player of one single tournament (player 2) loses to one of the worst player of another 

tournament (player 5). A second cycle can be found (in shape of a figure eight loop) between 

players 2 → 5 → 6 → 4 → 3 → 2. 

 

Figure 34. Cycles in combined tournament from figure 33: 2-5-4-3-2 and 2-5-6-4-3-2. 

 

The idea of finding a reasonable ranking that is dependent on the opponents’ qualities now 

gains interest. We can see that players 1 and 8 never win, players 3, 5 and 7 all achieve one win, 

players 2, 4 and 6 win twice. Player 5 on the other hand loses twice, once to player 4 and once 

to player 6. We employ the same methods used above for single tournaments to get the out-

strength 𝑠𝑗
𝑜𝑢𝑡, a table for 

𝑤𝑗𝑖

𝑠𝑗
𝑜𝑢𝑡 and the function 𝛿(𝑠𝑗

𝑜𝑢𝑡). The fact that player 5 loses twice leads 
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to 𝑠5
𝑜𝑢𝑡 = 2 as well as 

𝑤5,4

𝑠5
𝑜𝑢𝑡 =

𝑤5,6

𝑠5
𝑜𝑢𝑡 = 0.5. We can see that all players lose at least once, leading 

to all 𝛿(𝑠𝑗
𝑜𝑢𝑡) being 0 and the third term of equation (15) dropping out. 

For a visual documentation of the simulation process, please refer to Appendix 8.3. 

 

Nevertheless, we assemble equation (15) in the same way we did for the single tournament and 

run the diffusion algorithm. We use an even distribution of prestige at the outset and select 

0.125 as a start vector, 𝑞 = 0.15 remains unchanged. We find that the diffusion process does 

not converge as quickly towards stable values in our simulation as it did in the single tournament 

experiment. Indeed, we run 100 iterations and it is only after 94 iterations that we arrive at 

constant values for eight places after the decimal point. We arrive at the following ranking:  

 

  

 

Of course, equation (24) is not applicable in this more general case and cannot help us discern 

an exact solution. Other methods, like the Gaussian elimination could be utilized to find an 

exact solution but such methods can get ungainly with increasing network size.  

We also ran the simulation for several values of the control parameter 𝑞 and noticed that the 

induced ranking is not independent of this parameter. We again created a graph using the dif-

ferent values for 𝑞 (0, 0.15, 0.3, 0.5, 0.7, 0.85, 1) we employed and arrived at the interesting 

observation that the lines showing different scoring for different values of 𝑞 intersect: player 6 
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“overtakes” players 3 and 5 around 𝑞 = 0.5, player 2 passes player 4 between 𝑞 = 0.5 and 𝑞 =

0.7, thereby changing the overall ranking. It remains unchanged that all lines converge to the 

uniform distribution, in this case 0.125, for 𝑞 = 1.  

 

 

We compared our results to a slightly modified Points System (reversing arrows to count in-

going edges instead of the opposite) and found that it yields the following ranking that does not 

take into account the opponents’ strength: 

 

This is similar to the ranking the diffusion method yields for higher values of 𝑞 (after the final 

intersection of lines in our graph), where players 2, 4 and 6 occupy the first three positions, 

players 3, 5 and 7 the following three positions and players 1 and 8 sharing the bottommost 

rank. 
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6. Conclusion 

In this work, we have investigated four distinct measures of centrality: degree centrality, be-

tweenness centrality, closeness centrality and eigenvector centrality. While some parts of this 

work are technical, this did not prevent us from delving into the subject matter. The mathemat-

ics involved in the studied literature may rise beyond a basic level at times but the increase in 

understanding achieved is rewarding and egalizes the effort spent. 

Social network analysis is an important tool in modern economics. To establish a ranking of 

actors, measures of centrality can be valuable instruments. Used correctly, they can help to 

identify potentially influential individuals, who have the power to reach large network areas. 

High closeness centrality values could indicate such a situation. Whenever it is an objective to 

achieve extensive broadcasting, be it of information, ideas or technology, this measure is useful. 

Imagine a new vaccine that can prevent the common cold on the market. Valuable vendors of 

this medicine would be people with far and wide reach into the network of doctors, who would 

in turn administer the drug. High values of betweenness centrality indicate individuals, who 

have the power to control the pace with which goods flow between nodes. Economic value is 

achieved by actors, who can make use of such a brokerage position. These may be individuals 

who demand compensation for their work of simple passing on information that would other-

wise have to take a longer route. A journalist may be tempted to use such individuals in order 

to be the first to report breaking news. Also, advantages might be gained from knowing actors, 

who in turn are in contact with other powerful players. Consider a CEO, who shares friendships 

with powerful business leaders. Eigenvector centrality could help to identify this person as a 

target to be befriended. 

Centrality measures can be applied to a host of situations, whenever basic network structures 

arise. Equally, rankings can be derived from the obtained measures, but trust in these rankings 

must be preceded by the understanding of the context. It is remarkably simple to use a wrong 

measure and not realize it, devoiding any work involved. It seems prudent to use caution both 

when applying a measure of centrality and when accepting results based on such measures. In 

any case, interpretation must correlate with the respective measure. 

If a ranking is for instance based on the points system, it should not be used to measure a nodes’ 

brokering power as this depends on further reach and access within the network. Closeness 

centrality and betweenness centrality would better fit these requirements. On the other hand, to 

measure and rank the popularity of an actor, degree centrality seems best suited. Betweenness 

centrality may convey the wrong picture if a node with just two acquaintances bridges otherwise 
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separate clusters of a network. All flow between clusters would travel through this node, result-

ing in a large betweenness centrality.  

Powerful influencers in a network can be identified by ranking actors through either closeness 

or betweenness centralities and eigenvector centrality is the method of choice if one node’s 

importance depends on the importance of its neighbours, as in the evaluation of a chess players’ 

strength.  

We have established that the appropriate measure of centrality used in the correct way can yield 

significant assessments of network positions that can be translated into powerful rankings. Fur-

ther research into obtaining these positions would be of great interest. 
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8. Appendix 

8.1 Abstract 

A social network is a network of individuals (actors) who are connected through a common 

relationship. To evaluate actors in social networks, we consider such networks from a graph-

theoretical perspective. There are two possibilities to visualize such a network. One is the soci-

ogram, where actors are depicted as nodes and relationships as ties between them. The other is 

by means of an adjacency matrix, where both rows and columns indicate actors and entries 

represent the corresponding relationship. If we consider a social network, the entry „1“ may 

indicate friendship and „0“ the absence thereof. Also, weighted connections are possible. 

In this text we will describe in detail four mathematical methods that allow the formal imple-

mentation of the intuitive notion of „centrality“. The considered measures of centrality are de-

gree-, betweenness-, closeness-, and eigenvector centrality. There are explicit formulas to cal-

culate the valuation of individual actors for the first three of these measures. Degree centrality 

counts the number of incoming edges, betweenness centrality is concerned with the number of 

shortest paths an actor lies on, and the related notion of closeness centrality measures an actor’s 

mean distance to all other actors. Finally, eigenvector centrality does not allow the calculation 

of individual values alone but needs to be calculated (possibly approximately) by means of a 

system of equations. This can be done through matrix calculus.  

Because of their versatility, the introduced measures of centrality are of great economic interest. 

Famously, Google’s PageRank-algorithm is a variant of eigenvector centrality. Here, an item’s 

ranking determines its further exposure. This visibility is of economic relevance for businesses, 

since users usually will not look past the first few entries. Other potential applications are the 

estimation of a Twitter users’ popularity by counting his followers (degree centrality), which 

can be of interest when placing advertisements. The detection of influential actors through ei-

ther betweenness- or closeness centrality, which can be used to identify brokers, is another field 

of application. 

Four scientific articles are further analyzed in depth, providing links from each considered 

measure of centrality to contemporary topics. This work is rounded off with two mathematical 

proofs and a self-devised simulation of an algorithm of the PageRank type. 
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8.2 Zusammenfassung 

Ein soziales Netzwerk besteht aus Akteuren, die durch eine gemeinsame Beziehung verbunden 

sind. Um Individuen in einem sozialen Netzwerk bewerten zu können, betrachten wir derartige 

Netzwerke aus einem graphentheoretischen Blickpunkt. Mögliche Darstellungsformen sind ei-

nerseits das Soziogramm, bei dem Individuen als Knoten und Beziehungen als Verbindungen 

dargestellt werden, sowie andererseits die Darstellung als Nachbarschaftsmatrix, bei der Zeilen 

und Spalten Individuen bezeichnen und Einträge in der Matrix die Qualität der Verbindung 

beschreiben. Wird als Beziehung etwa das Bestehen einer Freundschaft gewählt, so kann dies 

beispielsweise durch die Einträge „1“ oder „0“ in der Matrix realisiert werden. Auch gewichtete 

Verbindungen sind möglich. 

Vier mathematische Methoden, die den intuitiven Begriff der Zentralität in einem Netzwerk 

formal beschreiben, werden genau erläutert. Die betrachteten Zentralitätsbegriffe lauten 

Degree-, Betweenness-, Closeness-, und Eigenvector Centrality. Die ersten drei dieser Maße 

können durch explizite Formeln berechnet werden, wodurch die individuelle Bewertung eines 

einzelnen Knotens leicht möglich ist. Degree Centrality beschäftigt sich mit der Anzahl einge-

hender Verbindungen, Betweenness Centrality bestimmt die Anzahl an kürzesten Pfaden, auf 

denen ein Knoten liegt, der verwandt Begriff der Closeness Centrality bestimmt den mittleren 

Abstand eines Knotens zu allen anderen. Eigenvektorzentralität kann nicht für individuelle 

Knoten berechnet werden, hier ist die (mitunter näherungsweise) Lösung eines Gleichungssys-

tems nötig für das sich Matrizenrechnung anbietet. 

Die vorgestellten Maße haben große ökonomische Bedeutung, da sie auf verschiedenste Netz-

werksituationen angewandt werden können. Große Bekanntheit hat der Google PageRank Al-

gorithmus, nach dem die Ergebnisse der Suchmaschine Google geordnet wurden. Die erhaltene 

Reihung bestimmt die für Unternehmen wirtschaftlich bedeutsame Sichtbarkeit und basiert auf 

einer Variante der Eigenvector Centrality. Andere Anwendungsmöglichkeiten sind beispiels-

weise das für Werbezwecke bedeutsame Bewerten der Beliebtheit eines Twitter-Users durch 

Zählen seiner Follower (Degree Centrality). Die Identifizierung einflussreicher Individuen, die 

etwa Vermittlerrollen übernehmen können, kann durch Betweenness- oder Closeness Centrality 

erfolgen.  

Um einen Bezug zwischen Zentralitätsmaßen und aktueller Forschung herzustellen, werden 

vier wissenschaftliche Artikel im Detail analysiert. Zwei mathematische Beweise und eine 

selbsterstellte Simulation eines Algorithmus der PageRank-Art, runden die Arbeit ab. 
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8.3 Visual Documentation of the simulation process 
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