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1 Introduction

There is often a need for modelling of losses incurred due to the underly-
ing process that generates a very large number of minor occurrences, which
are accompanied by very few high impact or even catastrophic events. In
the real world, to name few examples, it translates to modelling of damages
caused by natural disasters (e.g. earthquakes, hurricanes, tornados), opera-
tional losses in big and highly regulated institutions as banks or even claims
generated by an insurance policy. In the all above mentioned cases, whether
it may be policy making, regulatory capital requirements or managing risks,
statistical modelling plays an important role since it makes it possible to draw
rational conclusions in face of uncertainty about the distributions of aggre-
gate losses based on the empirical data over a given time period of study.
The data of interest inherits the property that is often summarized as high-
frequency-low-severity (HFLS) and low-frequency-high-severity (LFHS) or
high-probability-low-impact (HPLI) and low-probability-high-impact (LPHI).
The latter type makes the modelling challenging as there are many outliers
which are not easily captured by classical models.

One possible modelling strategy, pursued throughout this thesis, is to
record all individual losses and then build the sum for the time period. Since
the number of losses is not known a priori, the aggregate losses are repre-
sented as a sum of a random number of non-negative summands. The latter
are assumed to be independent and identically distributed and also indepen-
dent of the underlying process that governs the number of occurrences. Such
modelling strategy refers to a compound model where the number of losses and
their sizes are modelled with different distributions - counting and severity
distributions, respectively.

The purpose of this thesis is to describe the compound model in detail and
apply it to the real world problem characterized by the HFLS and LFHS prop-
erty, where the main objective is to model the distribution of yearly losses.
Such undertaking requires the development of a flexible modelling strategy
that can be easily extended for the needs of particular instance of a problem.
The general idea and characteristics of the compound model are introduced
in the second section in a formal way. Then the structure of this thesis aims
to follow natural steps in the model development process. Hence, the third
section deals with the problematic of the modelling of the severity part. It
first focuses on the extreme value theory that justifies the use of threshold
models, in particular Generalized Pareto Distribution, to model tail events.
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It then describes a modelling strategy that can be applied to losses that fall
below the threshold. The fourth section shifts the focus to the frequency part
of the compound model. At first, desired properties of frequency distribu-
tions are described and then few particular instances, that can be represented
as members of a broader (a,b,0) class, are introduced: binomial, Poisson and
negative binomal models. After the severity and frequency distributions are
chosen based on theoretical considerations and explorative analysis, selected
models have to be estimated using some parametric estimation techniques -
which is the main focus of section 5. In general, desired properties of esti-
mation methods are described of which the discussion is followed with the
introduction to specific techniques, such as maximum likelihood and mini-
mum distance estimation. Section 6 deals with the diagnostic of chosen fre-
quency and severity distributions. In the last section, the theory developed
throughout the thesis is consolidated and applied to model yearly damages
incurred due to tornadoes in the United States over the past 30 years.
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2 The Compound Model for Aggregate Losses

In this section the general framework of the compound model of aggregate
losses is discussed and formally introduced. It is followed by the derivation
of the expectation, variance and the moment generating function. Finally, a
Monte Carlo algorithm that allows approximating the compound distribu-
tion is provided.

Let us suppose that during some specified period of time a set of a ran-
dom number, N, of losses denoted by X1, ..., XN, where N is a counting dis-
tribution, was observed. Furthermore, Xis are continuous random variables
that take on non-negative values and are mutually independent regardless
of the number of losses. They also have a common distribution function
FX(x) = P(X  x) that does not depend on any particular realisation of
the counting distribution N. The aggregate losses can be then obtained by
summing over all Xis

S =
N

Â
i=1

Xi , for N = 0, 1, 2, ...

where S = 0 whenever N = 0. Due to the inherent property of heavy tails
and presence of outliers in the considered modelling problems, classical sta-
tistical methods like linear regression are not appropriate tools for modelling
of sizes of individual losses, denoted previously by Xis, since they usually
focus on predicting the conditional mean of data. Instead, a more reason-
able approach is to first focus on the extrema - the tail events themselves and
model their full conditional probabilistic distribution separately. Such tail is
sparsely populated with data points, due to the LFHS property as well as
by definition of the tail, and for this reason some distributional assumption
has to be made allowing interpolating available points and further extrap-
olating beyond the range of the data. The other part of the distribution, a
body, separated from the tail by a threshold usually contains a high number
of points and for this reason, it can be modelled via empirical distribution.
This results in a severity distribution that is split into two parts: body and
tail via an appropriate threshold. The choice of the tail distribution as well
as the problematic of the threshold selection are discussed in greater detail in
section 3. The section 4 is devoted to relevant counting distributions.

A distribution function of the random sum S is given by
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FS(x) = P(S  x) =
•

Â
n=0

P(N = n)P(S  x|N = n) =
•

Â
n=0

pnFn
X(x),

where, to simplify the notation, pn = P(N = n). The term Fn
X(x) refers to

the n-fold convolution of the distribution function FX(x), which is defined as

F0
X(x) =

8
<

:
1 x � 0

0 otherwise

and

Fm
X (x) =

Z x

0
F(m�1)

X (x � y) fX(y)dy.

The corresponding probability density function can be obtained by differ-
entiation and is given by

f m
X =

Z x

0
f m�1
X (x � y) fX(y)dy.

Finally, the probability distribution of the aggregate distribution FS(x) is
given by

fS(x) =
•

Â
n=0

pn f n
X(x).

Since Xis and N are independent, the expectation of the aggregate distri-
bution can be easily obtained by conditioning

E(S) = E(
N

Â
i=1

Xi) = E

 
E

 
N

Â
i=1

Xi|N
!!

= E(N E(X1)) = E(N)E(X1).

In order to compute the variance, the independence of Xis and N as well
as total variance formula can be exploited

Var(S) = EN(Var(S|N)) + VarN(E(S|N))

= EN(Var

 
N

Â
i=1

Xi|N
!
) + VarN(E

 
N

Â
i=1

Xi|N
!
)

= EN(N Var(X1)) + VarN(N E(X1))

= EN(N)Var(X1) + VarN(N)E(X1)
2.
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The moment generating function of S, provided that Xis are non-negative,
can be calculated in the following way

MS(z) = E(zS)

=
•

Â
n=0

E(zÂn
i=1 Xi |N = n)P(N = n)

=
•

Â
n=0

E

 
n

’
i=1

zXi

!
P(N = n)

=
•

Â
n=0

P(N = n) (MX(z))
n

= EN(MX(z)N)

= MN(MX(z))

In general, the compound distribution FS can be analytically obtained
only in few cases. For instance, when the negative binomial distribution
serves as a counting distribution and damages are modelled with exponen-
tial distribution (for more examples see section 4.4 in Klugman, Panjer, and
Gordon, 1988 or section 6.4 in Panjer, 2006). In most cases, one has to usually
resort to Monte Carlo simulations in order to find an approximate solution
to FS. The general simulation procedure is simple in that it only requires
sampling from estimated distributions and building sums.

It is assumed that the counting and severity distributions are selected and
their estimates are given by F̂N and F̂X, respectively. Furthermore, the latter
is a full distribution, i.e. it is not split into the body and tail; and the number
of Monte Carlo iterations, M, is reasonably high. The compound distribution
can be then approximated in the following way:

For each i 2 {1, 2, 3, ..., M}

• Sample a number of losses ni from the estimated counting
distribution F̂N

• Sample X1, X2, ...Xni from the estimated severity distribution F̂X

• Compute Si = Âni
k=1 Xk and store it

This yields M different values that represent sums of losses for a pre-
determined time period. The higher the number of Monte Carlo iterations
M, the more accurate the approximation of the compound distribution FS.
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When the severity distribution is split into the body and tail, the sim-
ulation is slightly more involved. First, the number of losses in the body
is simulated from the estimate of the separate counting distribution FN,body

and damages are sampled (with replacement) from the empirical distribution
F̂body. Analogically, the number of loss events in the tail is simulated from
F̂N,tail and the sizes of losses are sampled from the estimated tail distribution
F̂N,tail. More formally, the simulation can be structured as follows:

For each i 2 {1, 2, 3, ..., M}

• Sample a number of losses ni from F̂N,body

• Sample a number of losses mi from F̂N,tail

• Sample X1, X2, ...Xni from F̂X,body

• Sample Y1, Y2, ...Ymi from F̂X,tail

• Compute Si = Âni
j=1 Xj + Âmi

k=1 Yk and store it
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3 Modelling of Severity

In this section the focus is put on the modelling of the severity distribution,
which is split into the tail and the body. The former is modelled with an
appropriate parametric distribution and addresses the low-frequency-high-
severity aspect of the data. The latter is equipped with an empirical distribu-
tion that takes an advantage of the high-frequency-low-severity property of
the underlying losses. This approach implies that there is a certain point that
distinguishes body from the tail and this burning issue is also addressed.

In general, the discussion begins with desired properties of parametric
distributions which favour successful modelling of the tail risk. Then, the
general framework of the Extreme Value Theory is introduced and its appli-
cation to the modelling of losses in the tail is analyzed. The discussion is then
followed by an inventory of relevant parametric models that are applicable
to many different instances of the right skewed data. Finally, the modelling
of the body with an empirical distribution is considered.

3.1 Modelling of the tail

Capturing the low-frequency-high-severity (LFHS) property of the underly-
ing dataset is a crucial part for a realistic model of sizes of losses. This is-
sue can be directly addressed by focussing on the extreme points that can
be found in the tail. There is potentially an infinite number of models that
could be taken in consideration for modelling purposes, as any function after
appropriate scaling can be considered to be a valid probability distribution
- the only requirement is that it integrates to 1. In general, a parametric fam-
ily of probability distributions or a parametric model is a collection of distribu-
tion functions whose members are indexed by a finite-dimensional parame-
ter vector q. The family can be formally represented as

{F(x; q) : q 2 Q},

where Q 2 Rk is a set of all possible parameter values. Datasets rele-
vant to the topic are heavy tailed as they are inhabited by many enormous
outliers and therefore models used for modelling purposes must be able to
reflect increased risk at right endpoint of the distribution, which inevitably
reduces number of applicable models. First of all, they should be defined
on a non-negative support, since a loss cannot be negative. Also, their tails
should be sufficiently flexible to accommodate for different shapes while the
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distribution should be smooth and posses relatively simple functional form.

3.1.1 Extreme Value Theory

In the following, the classical result in Extreme Value Theory, known as the
Fisher–Tippett–Gnedenko theorem, is first introduced. It describes the asymp-
totic behaviour of the sample maxima after appropriate normalisation. Then,
the more relevant theorem to this thesis, the Pickands–Balkema–de Haan theo-
rem is discussed, which gives the asymptotical distribution of the excesses
over high thresholds. This section follows chapters 3 and 4 in Coles, 2001.

Let (X1, ..., Xn) be a sequence of n independently and identically distributed
random variables from a common but unknown distribution F and let Mn =

max{X1, X2, ..., Xn}. For each sample size n, the distribution of the maxi-
mum, Mn, is given by

P(Mn  z) = P(X1  z, X2  z, ..., Xn  z)

= P(X1  z)P(X2  z)...P(Xn  z)

= [P(X1  z)]n

= Fn(z)

The Fisher–Tippett–Gnedenko theorem states that if there exist sequences
of normalizing constants {an > 0} and {bn} such that

P
✓

Mn � an
bn

 z
◆
= Fn(anz + bn)

n!•�! G(z),

for all z 2 R, where G is non-degenerate distribution then G must be ei-
ther Fréchet, Gumbel or negative Weibull. It was shown by Jenkinson, 1955
that these three distributions can be represented as a single family of dis-
tributions, known since then as Generalized Extreme Value distribution. Its
distribution function is given by

G(z) = exp

"
�
✓

1 + x

✓
z � µ

s

◆◆�1/x
#

,

and is defined on {z : 1 + x( z�µ
s ) > 0}, where µ 2 R, x 2 R and s > 0.

The parameter x governs the type of the distribution: if x > 0 it reduces to
the Fréchet, if x < 0 the negative Weibull is obtained and in case of x ! 0
the Gumbel is recovered. This theory is used in practice in the following
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way: the data is split into m blocks that correspond to some specified time
interval, say, 1 year. Then in each block a maximum is found. Finally, the
Extreme Value Distribution is fit to all m maxima.

Since the modelling strategy pursued in this thesis focuses on making
use of as many individual losses as possible and modelling of the tail of
the severity distribution, working only with maxima could be considered as
counter-productive approach. Though the main goal of introducing of the
Fisher–Tippett–Gnedenko theorem, Extreme Value Distribution and block
maxima method was to build theoretical foundations upon which the next
important important result - the Pickands–Balkema–de Haan theorem was
historically built. The latter states that the conditional distribution of ex-
ceedances, given that the random variable is greater than the threshold, is
asymptotically distributed according to the Generalized Pareto Distribution
(GDP). This gives rise to the so called peaks over threshold method (POT), in
which the data is used more efficiently by taking all exceedances over a high
threshold in consideration.

More formally, let u > 0 be a threshold and X random variable with a
distribution F. Let y = X � u denote an excess loss. The conditional excess
distribution function Fu(y) is defined as follows

Fu(y) = P(X > u + y|X > u) =
F(u + y)
1 � F(u)

, y > 0.

Furthermore, let (X1, X2, ..., Xn) be a random sample from a common but
unknown distribution F for which the Fisher–Tippett–Gnedenko theorem
holds and denote by X an arbitrary Xi in the sequence and Fu(X) is its condi-
tional excess function. Then the Pickands–Balkema–de Haan theorem states
that for sufficiently high value of u

Fu(y) = P(X > u + y|X > u) �! H(y),

where H(y) is a Generalized Pareto Distribution given by

H(y) = 1 �
✓

1 +
xy
s̃

◆�1/x

and is defined on the set {y : y > 0 and (1 + xy/s̃) > 0}, where s̃ =

s + x(u � µ). The quantities x, µ and s are shape, location and scale param-
eters, respectively. When x ! 0 then the GPD simplifies to the exponential
distribution.

The mean Generalized Pareto distribution, Y ⇠ GDP(x, µ, s), is defined
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only for x < 1 and variance takes on finite values only for x < 1
2 . These first

two central moments are given by:

E(Y) = µ +
s

1 � x

Var(Y) =
s2

(1 � 2x)(1 � x)2 .

Block maxima justified by the first theorem and peaks over thresholds
based on the second theorem are closely related to the mathematical point
of view - if there is an approximate distribution in the former method, then
in the latter method there is a corresponding approximate generalized Pareto
distribution. The choice of a length of a block (1 day, 1 month, 1 year, etc.) cor-
responds to the difficulty of selecting a threshold value in the POT method.

Threshold selection constitutes a challenge, as there is no universally ap-
plicable methodology that would provide a correct and unique answer in
every instance of the problem. It amounts to navigating through the bias-
variance dilemma - the threshold has to be chosen in a way that is sufficiently
high so that the asymptotical argument approximately holds and it should be
small enough so that there is a substantial number of points in the tail allow-
ing a higher degree of precision when estimating parameters.

The mean excess plot is useful and a popular method that helps selecting
the threshold. It is based on the theoretical mean and is applicable as long as
the parameter x < 1 otherwise the mean takes on infinite value. This method
relies on the visual comparison of thresholds and corresponding estimates of
the conditional mean of excesses. The mean excess function for the General-
ized Pareto Distribution is given by

e(u) = E(X � u|X > u) =
s + xu
1 � x

and it is notably linear in the variable u. The corresponding empirical
estimate can be calculated with

ê(u) =
Sn

i=1 max(Xi � u, 0)
Ân

i=1 1(Xi > u)
,

where 1(X > u) is an indicator function. If the model is valid, the em-
pirical estimates ê(u) should also increase linearly as the value of u grows.
This assumption can be checked by inspecting at the mean excess plot given
below:
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{(u, ê(u)) : u < umax} .

The value after which the graph is approximately linear can be regarded
as a good guess for the threshold.

Another graphical method that facilitates selecting threshold relies on es-
timating the model to many different thresholds and checking if the param-
eter estimates are stable. The graph that depicts thresholds on the x-axis
and corresponding estimates of the scale parameter s on the y-axis should
be approximately linear and a similar graph of the shape parameter x should
be roughly constant. Ultimately, the tail can also be specified by selecting a
threshold according to a specific quantile, for instance, 0.9 quantile.

The theory of extreme values justifies the choice of the Generalized Pareto
Distribution for modelling of the tail by an asymptotical argument. In many
applications, especially in the financial world, the quantiles and more specif-
ically, the value of risk, are of main interest. Makarov, 2007 points out that for
the Generalized Pareto Distribution the convergence of quantiles is not guar-
anteed and hence it may not always be the best choice from a practical point
of view, even though supported by the theoretical foundations. Therefore,
it may be reasonable to apply other heavy-tailed distribution introduced the
following subsection to the tail at a cost of increased bias. The issue of model
selection is addressed in the section 6.

3.1.2 Inventory of parametric distributions

This subsection provides a small inventory of non-negative parametric mod-
els that can be used as benchmarks for the Generalized Pareto Distribution
fitted to the peaks over the high threshold. In some cases, they can possibly
be used as an alternative. The list contains parametric families with at most
two parameters and is not exhaustive. Included distributions vary in their
shapes and behaviour at large values. An excellent discussion of the classifi-
cation based on the tail behaviour can be found in Panjer, 2006, Section 4.6.
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3.1.2.1 Single parameter distributions:

Exponential distribution

f (x) =
1
l

e�
x
l , x � 0, l � 0

F(x) = 1 � e�
x
l

E(X) = l

Var(X) =
1

l2

Mode = 0

Single pareto distribution

f (x) =
aqa

xa+1 , x � q, q > 0, a > 0

F(x) = 1 �
✓

q

x

◆a

E(X) =
aq

a � 1
, a > 1

Var(X) =
q2a

(a � 1)2(a � 2)
, a > 2

Mode = q

3.1.2.2 Two parameter distributions:

Gamma distribution

f (x) =
(x/q)ae�x/q

xG(a)
, x > 0, a > 0, q > 0

F(x) = G(a, x/q)

E(X) = aq

Var(X) = aq2

Mode = (a � 1)q, a � 1
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Inverse gamma distribution

f (x) =
(q/x)ae�q/x

xG(a)
, x > 0, a > 0, q > 0

F(x) = 1 � G(a, x/q)

E(X) =
q

q � 1
, a > 1

Var(X) =
q2

(a � 1)2(a � 2)
, a > 2

Mode =
q

a + 1

Weibull distribution

f (x) =
t

l

⇣ x
l

⌘t�1
exp

⇣
�
⇣ x

l

⌘t⌘
, x � 0, l > 0, t > 0

F(x) = 1 � exp
⇣
�
⇣ x

l

⌘t⌘

E(X) = lG(1 + 1/t)

Var(X) = l2
⇣

G(1 + 2/t)� G(1 + 1/t)2
⌘

Mode = l

✓
t � 1

t

◆1/t

, t > 1 ( mode = 0 for t  1)

Log-normal distribution

f (x) =
1

xs
p

2p
exp

 
�1

2

✓
lnx � µ

s

◆2
!

, x > 0, µ 2 R, s > 0

F(x) = F
✓

lnx � µ

s

◆
, where F is the CDF of the standard normal distribution

E(X) = exp(µ + s2/2)

Var(X) = (exp(s2)� 1) exp(2µ + s2)

Mode = exp(µ � s2)
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Loglogistic distribution

f (x) =
(b/a)(x/a)b�1

(1 + (x/a)b)2 , x � 0, a > 0, b > 0

F(x) =
1

1 + (x/a)�b

E(X) =
ap/b

sin(p/b)
, b > 1

Var(X) = a2
⇣

2b/ sin(2b)� b2/ sin2(b)
⌘

, b := p/b, b > 2

Mode = a

✓
b � 1
b + 1

◆
, b > 1, otherwise undefined

Inverse Gaussian distribution

f (x) =
✓

l

2px3

◆1/2
exp

 
� l

2x

✓
x � µ

µ

◆2
!

, x 2 (0, •), l > 0, µ 2> 0

F(x) = F

 
x � µ

µ

✓
l

x

◆1/2
!
+ exp

✓
2l

µ

◆
F

 
�x + µ

µ

✓
l

x

◆1/2
!

Mode = µ

 ✓
1 +

9µ

4l2

◆1/2
� 3µ

2l

!

E(X) = µ

Var(X) =
µ3

l

3.2 Modelling of the body

The body of the severity distribution contains all events that fall below a
certain threshold. Due to the LFHS property of the underlying data, there
is usually a very large number of points in the body and the shape of the
data generating process can be modelled with an empirical distribution with-
out imposing any distributional assumptions. The Glivenko–Cantelli theorem,
which is described in the following, provides a justification for the appropri-
ateness of the empirical distribution in the body.

Let {X1, X2, ...} be a sequence of independent and identically distributed
random variables with values in R and with common cumulative distribu-
tion function F(x). If F̂n(x) denotes the empirical distribution function de-
fined as
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F̂n(x) =
n

Â
i=1

1(Xi  x),

where 1(A) is an indicator funtion on a set A, then

sup
x2R

|F̂n(x)� F(x)| a.s�! 0.

Less formally, the theorem states that the empirical distribution F̂n(x) uni-
formly converges the true distribution as the sample size gets larger.
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4 Modelling of Frequency

This section focuses on the modelling of the number of events with a count-
ing distribution. The counting distribution, also named frequency distri-
bution, is a discrete probability function that assigns probabilities to non-
negative integers. Developing a counting distribution helps to understand
the process that governs the occurrence of events and enables predicting the
number of events that may happen in future. Parametric models are usu-
ally chosen as they allow interpolating the data within the range of observed
counts and also extrapolating beyond the historical maximum number of
losses. In other words, parametric models allow imposing a specific func-
tional form and assigning probabilities to arbitrary range of non-negative
integers accordingly.

There is a plethora of possible models, however, only few of them have
useful properties and are appropriate for a given modelling problem. In gen-
eral, it is practical that a counting distribution is infinitely divisible. It means
that if X is a random variable that follows some distribution F, it can be repre-
sented as a sum of n 2 {1, 2, 3, ...} independently and identically distributed
random variables {Y1, Y2, ..., Yn} and this sum also follows the distribution F.
A model with such property does not depend on the length of the consid-
ered time period and the expected counts are proportional to the length of
the time interval.

Throughout this section the discrete random variable N represents the
number of events, pk = P(N = k) denotes the probability that k 2 {0, 1, 2, 3, ...}
events occur and the corresponding probability generating function is de-
fined as

PN(z) = E(zN) =
•

Â
k=0

pkzk.

The later is a power series representation of a probability mass function
and, just like a moment generating function, can be used to obtain moments.
In the following, the most popular counting distributions are introduced and
subsequent subsections are in big part based on Klugman, Panjer, and Will-
mot, 1998. Any method from the section 5 can be used to obtain estimates of
the parameters.
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4.1 Poisson distribution

Poisson distribution is a counting distribution that is widely used to model
processes with a big number of possible events within a time interval but
each of them has a very small probability of occurrence. The probability
mass function of the Poisson distribution is given by

pk = P(N = k) =
e�llk

k!
,

where k 2 {0, 1, 2, 3, ...} and l > 0. The corresponding mean and variance
are

E(N) = Var(N) = l.

Interestingly, both first and second central moments are equal. This prop-
erty suggests that if the empirical mean and variance are more or less equal,
then the Poisson distribution is an appropriate choice, provided the model
is reasonable from the theoretical point of view. In order to obtain higher
moments, the probability generating function given below can be used.

PN(z) = el(z�1), for l > 0

Another useful property is related to the fact that Poisson distribution
is infinitely divisible. The sum of n Poisson distributed random variables
follows again Poisson distribution. More rigorously, if {N1, N2, ..., Nn} are
independent Poisson random variables with parameters {l1, l2, ..., ln} then
N = N1 + N2 + ... + Nn follows a Poisson distribution with the parameter
l = l1 + l2 + ... + ln. The proof involves applying a probability generating
function and can be found in section 3.2.1 in Klugman, Panjer, and Willmot,
1998. Another useful feature is that if the number of events within a specific
time window follows a Poisson distribution and these events can be divided
into n independent categories, then the distribution in each category is inde-
pendent and Poisson distributed with the scaled parameter l. It is especially
practical if, for instance, we know that counts follow a Poisson distribution
but only events that exceed a certain threshold are of particular interest.

4.2 Negative binomial distribution

The negative binomial distribution is another popular counting distribution
that is sometimes used as the alternative to the Poisson distribution. Its prob-
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ability mass function is defined via

pk =

✓
k + r � 1

k

◆✓
1

1 + b

◆r ✓ b

1 + b

◆k
,

where k 2 {0, 1, 2, 3, ...}, r > 0 and b > 0. The binomial coefficient can be
calculated with a well known formula

✓
n
k

◆
=

n(n � 1)...(n � k + 1)
k!

.

It can also be expressed in terms of the gamma function G(n) as follows:
✓

n
k

◆
=

G(n + 1)
G(k + 1)G(n � k + 1)

Here k is an integer and n is a real number for which n > k � 1 holds. The
mean and variance are given by

E(N) = rb

Var(N) = rb(1 + b)

Since b > 0, it can be seen that the variance is bigger then the expected
value. It suggests that if the empirical variance is bigger than the empirical
mean then the negative binomial distribution might be more suitable than
Poisson. Higher moments can be calculated with the probability generating
function that is defined as

PN(z) = (1 � b(z � 1))�r.

The negative binomial distribution can be viewed as a generalized ver-
sion of the Poisson distribution, since it can be represented as a mixture of
a family of Poission distributions with gamma mixing distribution. It also
generalizes the geometric distribution as it is a sum of independent and iden-
tically distributed geometric random variables. In particular, if r = 1, it sim-
plifies to a geometric distribution. Interestingly, when the value of the latter
parameter is smaller/bigger than 1, then the distribution has lighter/heavier
tail compared to the geometric distribution.

The negative binomial distribution is also infinitely divisible and the in-
dependent sum of n negative binomial random variables with the same pa-
rameter b and different ris follows negative binomial distribution with pa-
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rameters b and r = r1 + r2 + ... + rn.

4.3 Binomial distribution

The binomial distribution can also be used as a counting distribution and
presents an interesting alternative to the Poisson and the negative binomial
since it is defined on a finite non-negative support. It can be useful if it is
known that the number of events cannot exceed some threshold or if it is
reasonable to put restrictions to a maximal number of counts. Its probability
mass function is defined as

pk = P(N = k) =
✓

n
k

◆
pk(1 � p)n�k,

where n represents a finite number of possible losses, k 2 {0, 1, ..., n} is
the number of losses and p 2 [0, 1] is the probability the occurrence. The
mean and variance are given by

E(N) = np

Var(N) = np(1 � p).

Since p 2 [0, 1], it can easily be seen that the variance is always smaller or
equal to the mean. Hence, if the empirical variance is considerably smaller
than the empirical mean, the binomial distribution might be considered. The
probability generating function is given as follows

PN(z) = (1 � p + pz))n.

4.4 The (a,b,0) class

The Poisson, negative binomial and binomial described in previous subsec-
tions belong to the more general class of distributions known as (a, b, 0) class.
Each member of this class is characterized by the fact that it can be repre-
sented via following recursion:

pk
pk�1

= a +
b
k

,

where k 2 {1, 2, 3, ...}, pk = P(N = k) and a, b are real valued constants.
This recursion is satisfied only for Poisson, negative binomial and binomial
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distributions and the corresponding constants as well as the probability at
zero, p0, can be found in the table 1.

Distribution pk a b p0

Poisson e�llk

k! 0 l e�l

Negative Binomial (k+r�1
k )

⇣
1

1+b

⌘r ⇣ b
1+b

⌘k b
1+b (r � 1) b

1+b (1 + b)�r

Binomial (n
k)pk(1 � p)n�k � p

1�p (n + 1) p
1�p (1 � p)n

TABLE 1: Table with members of the (a, b, 0) class.

There is also a more broader class of counting distributions, (a, b, 1), how-
ever, it is beyond of the scope of this thesis. See section 3.5.1 and 3.6.1 in
Klugman, Panjer, and Willmot, 1998 for further details on (a, b, 0) and (a, b, 1)
classes. They are of practical importance since some software used in actu-
arial sciences define a counting distribution in terms of the previously men-
tioned classes.
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5 Parametric Estimation

This section introduces five parametric estimation methods that can be used
to find optimal values of parameters that belong to distributions described in
the section 3. Some assumptions and simplifications have to be made to make
the estimation process tractable, while still keeping it realistic. Throughout
this section, it will be assumed that there are n observations available. These
data points are a realisation of a sequence of real-valued random variables
(X1, ..., Xn) (random sample) that are independent and follow the same prob-
ability distribution described by q. The parameter vector q belongs to a pa-
rameter space Q which, in turn, is contained in the p-dimensional Euclidean
space (q 2 Q ✓ Rp). The functional form of the model is known, however,
the parameter vector q is unknown.

Given this statistical set-up and observations (X1, ..., Xn) the goal is to
estimate q. In other words, we look for an estimator q̂n = q̂n(X1, ..., Xn) that
depends only on data and is as close to q as possible. While doing so, it
is possible to obtain estimates that coincide with the true values by chance.
Such scenario is very desirable, however very unlikely. In almost every case,
we have to take into account some error and it is important to have tools
that allow us to asses the quality of an estimator in order to make a rational
choice.

In general, Klugman, Panjer, and Gordon, 1988 distinguish between four
different types of errors. The first error may occur when we collect data over
a longer period of time and the characteristics of the population change. In
such case, we draw conclusions about the population based on the sample
from another population (frame error). It can also happen that our assump-
tions about the data generating process or selected model do not reflect the
reality (model error). Klugman, Panjer, and Gordon, 1988 point out that these
two errors are not related to properties of the estimators and cannot be mea-
sured. Furthermore they discuss the estimation error that can arise when the
obtained sample is not representative of the population by chance and/or
if the estimation method has some shortcomings. Quantifying this kind of
error may give us an indication of the quality of the estimator and select an
appropriate one for a given problem.

The first very useful and popular measure of the quality of an estimator
q̂ is related to its average behaviour. More specifically, it is the difference
between the expected value of the estimator q̂ and the true value of q. It is
known as a bias and this concept was first introduced by David and Neyman,
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1938 in the context of point estimators.

biasq(q̂) = Eq(q̂ � q)

If the bias is equal to zero for all possible values of q then the estimator is
called to be unbiased. In such case, the sampling distribution of the estimator
is concentrated around the true value of the parameter and, it gives us the
true value on average. More formally, an estimator is unbiased if

8q 2 Q : Eq(q̂) = q

There may be an estimator that is biased for a finite sample. However,
with an increasing number of observations n, its tendency to overestimate or
underestimate the true parameter becomes smaller and smaller to eventually
vanish with an infinite number of observations. If such scenario is true for all
possible values of q then such estimator is called to be asymptotically unbiased.
Formally, an estimator is asymptotically unbiased if

8q 2 Q : lim
n!•

Eq(q̂n � q) = 0

Another desired property of an estimator is known as consistency, i.e.
with and increasing sample size the sampling distribution of q̂ becomes more
and more concentrated around the true value of q. Putting it into mathemat-
ical terms, an estimator is consistent if

8e > 0, 8q 2 Q : lim
n!•

P(kq̂n � qk > e) = 0

Consistency can be related to the bias as it suffices for an estimator to be
consistent, if it is asymptotically unbiased and its variance goes to zero with
an increasing sample size. One example of the aforementioned relationship
would be to estimate the population average by the sample mean penalized
by the reciprocal of the sample size n: q̂ = 1

n Ân
i=1 xi +

1
n .

It is also possible that an estimator is unbiased but not consistent. A sim-
ple example of such case is to estimate the true mean by the last observation
in the sample Xn = xn instead of the sample mean X̄ = 1

n Ân
i=1 xi of n in-

dependent and identically distributed observations (X1 = x1, ..., Xn = xn).
The estimator q̂ = xn is unbiased, as all values in the sample share the same
expectation. However, it does not converge to any point, as it jumps to the
other value whenever Xn = xn changes.

In general, it is desirable that an estimator is unbiased and converges to
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the true value of the parameter at the fastest possible rate. However, depend-
ing on the context, it may be preferable to choose an estimation method that
trades these properties for other desired qualities. For instance, in the face
of very rare but severe events in the dataset, one could consider taking into
account slightly higher variance for robustness. It is also advantageous that
the sampling distribution is (asymptotically) normally distributed, which in
turn allows to test statistical hypotheses and quantify uncertainty around the
parameter of interest.

5.1 Method of moments

The first popular estimation method is called "Method of moments". Its name
comes from the very idea of setting up a system of equations that match em-
pirical moments to theoretical moments. The number of equations has to be
equal to the number of parameters and solving for the latter yields method of
moments estimator. This simple, yet powerful, method was first introduced
by a well known Russian mathematician Pafnuty Chebyshev. Following the
statistical set-up, there are n independent and identically distributed (i.i.d.)
random variables (X1, ..., Xn) that follow some probability distribution de-
scribed by q 2 Q ✓ Rp.

The k-th theoretical moment of a probability distribution is given by

mk(q) = Eq(Xk), for k � 1

and the k-th empirical moment can be obtained by taking a sample aver-
age of samples raised to the k-th power

m̂k(q) =
1
n

n

Â
i=1

Xk
i , for k � 1

The p-dimensional parameter q 2 Q can be represented by a function of
the first p parameters. It must hold that the function g : Rp ! Rp is bijective.

q = g(m1(q), ..., mp(q))

The method of moments estimator q̂MM can be obtained in following
three steps:

1. solve g(m1(q), ..., mp(q)) for q

2. for k = 1, 2, ..., p estimate mk(q) by m̂k(q)
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3. set q̂MM = g(m̂1(q), m̂2(q), ..., m̂p(q))

The biggest advantage of the method of moments estimator is that it is
easy to obtain, and under some mild conditions it is consistent and asymptot-
ically normal (Vaart, 1998). However, this method may not be robust against
outliers, as it matches empirical moments to theoretical moments and the for-
mer may be easily affected by extreme values. Moment estimator is also not
necessarily unbiased.

5.2 Maximum likelihood estimation

Method of maximum likelihood is one of the most famous statistical esti-
mation procedures. It was introduced by R. A. Fisher in 1922. Because of
the popularity and general usefulness of this method, it may be beneficiary
to immerse into the long history of its development described in detail in
(Aldrich, 1997). The idea behind the maximum likelihood estimation is very
intuitive – it looks for a value of q that makes the observed data most likely
and chooses it as an maximum likelihood estimator denoted by q̂ML.

More formally, let (X1, ..., Xn) be a random sample from a distribution fq

that depends on the parameter q 2 Q ✓ Rp. For convenience, fq represents
either continuous probability density function (p.d.f) or a discrete probability
mass function (p.m.f.). The function

L(q) =
n

’
i=1

fq(xi)

is called likelihood function and assigns probability to a particular realisa-
tion (x1, ..., xn) of (X1, ..., Xn). Maximizing the likelihood function L(q) with
respect to q yields the maximum likelihood estimator q̂ML

In practice, it is more convenient and easier to optimize so called log-
likelihood function l(q), which is the natural logarithm of the original likeli-
hood function.

l(q) = lnL(q)

As x ! ln(x) is a positive monotonic transformation, it preserves the
properties of the original likelihood function and maximizing l(q) is equivalent
to maximizing L(q). So the maximum likelihood estimator is given by

q̂ML = argmax
q2Q

L(q) = argmax
q2Q

l(q)
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Optimizing a (log-)likelihood function may not be an easy task. It may
have multiple local maxima in addition to the global optimum. Also, the
maximum may not be unique and may not even exist. Furthermore apply-
ing classical calculus tools may not be possible and one must resort to the
numerical methods.

The popularity of this method lies in its large sample properties. The
maximum likelihood estimators are asymptotically unbiased, consistent and
have the smallest asymptotic variance among all consistent estimators. In
addition, they are invariant under parameter transformation. However, they
are not necessarily robust against outliers. It is also notable that the maxi-
mum likelihood estimators in an exponential family coincide with method
of moments estimators (Vaart, 1998).

5.3 Minimum distance estimation

The minimum distance estimation is a parametric technique that was developed
in the 1950s by Wolfowitz, 1957. It is not based on the likelihood principle,
nor does it try to match some characteristics of a distribution like the method
of moments does. Instead, a distance between a theoretical and an empirical
distribution is minimized according to some criterion function.

The following formal definition of the minimum distance estimator is
based on Drossos and Philippou, 1980. Let (X1, ..., Xn) be an i.i.d. random
sample from population with a distribution function F(x; q) that depends on
some parameter q 2 Q ✓ Rp. Let Fn(x) be an empirical distribution function
based upon (X1, ..., Xn) and let d(·, ·) be some criterion function that mea-
sures discrepancy between both arguments. If there exists q̂ 2 Q, such that

dy(Fn(x), F(x; q̂)) = inf{dy(Fn(x), F(x; q)) : q 2 Q}

it is called a minimum distance estimator q̂mde of q.

There are multiple choices for the discrepancy measure d(·, ·) and are dis-
cussed in detail by Parr and Schucany, 1980. Two popular alternatives are
weighted Kolmogorov distance and Cramér-von Mises distance. The former is
the supremum over absolute differences and the latter is the integral of the
squared differences. More formally, if K and L denote two distribution func-
tions with a common support and y(u) is a weighting function, then we
have:

• weighted Kolmogorov distance
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dy(K, L) = sup
x2R

|K(x)� L(x)|y(L(x))

with a Kolmogorov distance as a special case for y(u) ⌘ 1

• Cramér-von Mises distance

dy(K, L) =
Z •

�•
(K(x)� L(x))2y(L(x))dL(x)

With three special cases depending on the weighting function:

– the Cramér-von Mises statistic for y(u) ⌘ 1

– the Anderson-Darling statistic for y(u) = 1
u(1�u)

– the Upper tail Anderson-Darling statistic for y(u) = 1
1�u

The minimum distance estimator enjoys desired properties of asymptotic
unbiasedness and consistency (Wolfowitz, 1957). Just like maximum likeli-
hood estimators, they are invariant under parameter transformation, how-
ever, they are less accurate (Drossos and Philippou, 1980). In exchange, they
offer excellent robustness properties (Millar, 1981). In addition, Cramér-von
Mises type minimum distance estimators are asymptotically normal (Parr
and Schucany, 1980).

5.4 Bayesian estimation

All estimation methods introduced belong to the frequentist approach, in which
the unknown parameter q 2 Q is assumed to be fixed. Hence no probabilis-
tic statements about the uncertainty of q are made. The Bayesian inference
is fundamentally different, as it assumes that q is random and has its own
probability structure. The initial knowledge about the q is reflected in some
prior probability distribution. After observing some data, initial beliefs are
updated wtih Bayes’ theorem. This leads to a posterior distribution that pro-
vides full probabilistic description of the updated beliefs about the parameter
of interest.

More formally, let X1:n = (X1, ..., Xn) be a random sample of size n from
a distribution described by a parameter q 2 Q ✓ Rp. Let us define following
quantities:
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• p(X1:n|q) is the likelihood of data given under the parameter of interest
q

• p(q) is the prior distribution on q

• p(X1:n) =
R

Q p(X1:n|q)p(q)dq is the marginal likelihood of data.

The Bayes’ theorem states that the posterior probability p(q|X1:n) is given
by

p(q|X1:n) =
p(X1:n|q)p(q)

p(X1:n)

The initial knowledge of the parameter of interest is incorporated into the
estimation process via prior distributions. They do not have to be proper
distributions, as long as the resulting posterior distribution integrates to 1
though. However, the choice of a prior can influence the inference and adds
a source of subjectivity into it. They are usually chosen based on the past
experience, expertise of a subject-matter-expert or common sense.

A popular choice for the prior is a distribution from a family of conju-
gated priors. Such prior, multiplied by the likelihood, leads to the posterior
distribution from the same family. Although, they may not fully reflect the
prior information, they are computationally convenient and make the calcu-
lation of the posterior easy. Conjugated priors were introduced by Raïffa and
Schlaifer, 1961. Selecting other priors may lead to computational difficulties
as it may not be possible to compute the normalizing constant p(X1:n) ana-
lytically. In such cases, Markov Chain Monte Carlo (MCMC) techniques are
usually applied to obtain the posterior. If there is little or no prior informa-
tion available, an objective prior, like the Jeffrey’s prior may be used.

The Bayesian estimator q̂B is usually chosen to be the mean of the poste-
rior distribution, which minimizes the squared error risk.

q̂B = E(q|X1:n) =
Z

Q
q p(q|X1:n) dq

It is asymptotically unbiased, consistent and asymptotically normal. It
coincides with the maximum likelihood estimator in the limit as n ! •.

5.5 Quantifying the quality of point estimates with standard
errors

All described techniques in previous sections have desirable large sample
properties, with maximum likelihood estimator and Bayes estimator being
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the most accurate estimators in the asymptotic sense. However, in the real
world applications no infinite datasets are feasible and often one has to face
scarcity of data, where only few data points are available. It is crucial to quan-
tify the uncertainty about the point estimate to see how reliable a method is
and if there are better alternatives. It is not impossible that the theoretically
most efficient method would lead in some case to a higher uncertainty than
other less efficient techniques.

One way of assessing the quality of a point estimate is to compute a fre-
quentist standard error. Obtaining this measure of variability is analytically
not possible for all described methods and we have to resort to simulation.
Bootstrap, invented by Efron, 1979, is a powerful tool that can be used to do
so. The idea is to draw B independent samples with replacement from the
original sample. Then for each of the bootstrap samples, we estimate param-
eters of interest and store them. Finally, the standard deviation is computed
based on B estimates, which represents the standard error of the initial pa-
rameter estimate.

More formally, if (X1, ..., Xn) is a random sample from the population
with the distribution F and q̂n is a point estimate, then the standard error
of q̂n denoted by se(q̂n) can be obtained as follows:

• For j 2 {1, ..., B}, draw a sample with replacement (X⇤j
1 , ..., X⇤j

n ) from
the original sample (X1, ..., Xn)

• For j 2 {1, ..., B}, compute q̂
⇤j
n based on (X⇤j

1 , ..., X⇤j
n )

• Compute se(q̂n) =
q

1
B ÂB

j=1(q̂
⇤j
n � q̄⇤n)2 , where q̄⇤n = 1

B ÂB
j=1 q̂

⇤j
n
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6 Model Selection

There is a plethora of data-driven statistical models that can be used to de-
scribe a data generating process of interest and to make inference about its
specific aspects. As there is no single model that is able to fully represent
the underlying process, it is necessary to find the best approximating model
that allows to draw conclusions that are as close to the truth as possible. A
possible modelling approach is to first select a subset of appropriate models
for a given problem based on theoretical considerations. This collection of
models should be then narrowed down by an explanatory analysis, as well
as by the graphical methods that compare the data with the considered mod-
els. Finally, formal goodness-of-fit tests should be performed and their re-
sults stored in a table, which summarizes how well each model performed in
each test. The best fitting model could be then selected as the model with the
highest score. In the following graphical methods and formal goodness-of-fit
test are introduced and a possible way of assigning scores to each model is
suggested.

6.1 Graphical methods

Assume that a sample (X1, ..., Xn) containing n independent observations
comes from a population with unknown distribution F. Some estimation
method from the section 5 was used to obtain an estimate F̂ of F and the goal
is to visually assess the quality of fit. There are two popular methods that
rely either on comparing empirical distribution function with a theoretical
distribution function or quantiles of a sample with quantiles of a theoretical
distribution function. Prior that order statistics X(1), ..., X(n) is created so that
X(1)  X(2)  ...  X(n) and the empirical distribution function Fn(x) = j

n
for x(j)  x  x(j+1) is adjusted to Fn(x(j)) = j

n+1 for x(j)  x  x(j+1) to
avoid probability 1 for the maximum value in the sample.

The first method is so called probability-probability plot and can be ob-
tained in following way

⇢✓
F̂(x(i)),

i
n + 1

◆
: i = 1, 2, ..., n

�
.

The other method is known as quantile-quantile plot. It conveys the same
information as the method above, however, it is presented on a different
scale.
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⇢✓
F̂�1

✓
i

n + 1

◆
, x(i)

◆
: i = 1, 2, ..., n

�
.

In both cases, any departure from a 45° indicates differences between em-
pirical and theoretical distributions.

6.2 Goodness-of-fit tests

Given independent observations (X1, ..., Xn) from common population with
unknown distribution, the objective is to test whether the observed data was
generated by some specific distribution F. The null hypothesis H0 usually
assumes that the data comes from specified distribution and the alternative
H1 is its negation.

H0: Data comes from F
H1: Data does not come from F

The test statistic Tn usually measures the discrepancy between the em-
pirical distribution function Fn and the theoretical distribution function F or
the difference between expected and observed counts. Under the assump-
tion that the null hypothesis holds, the distribution of Tn is specified. If Tn

exceeds some critical value at some specified significance level a 2 (0, 1), the
null hypothesis is rejected.

6.2.1 Kolmogorov-Smirnoff test

One of the most prominent goodness-of-fit test until now was developed by
Kolmogorov and Smirnoff. It measures the biggest vertical difference be-
tween the empirical and the hypothesized cumulative distribution functions
and relates it to probability of such discrepancy, given that the hypothesized
distribution generated the data.

Let (X1, ..., Xn) be a sample of n independent variables coming from the
same distribution. Let denote the empirical distribution by

Fn(x) =
1
n

n

Â
i=1

1(�•,x](Xi)

where 1(�•,x](Xi) is an indicator function that takes on value 1 if Xi  x
and 0 otherwise. Assume Fq to be the hypothesized distribution with some
fixed parameter vector q 2 Rk. The null and alternative hypotheses are given
by
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H0 : (X1, ..., Xn) ⇠ Fq

H1 : (X1, ..., Xn) 6⇠ Fq

The corresponding test statistic K is obtained by computing the biggest
absolute difference between Fn(x) and F(x) (Smirnov, 1948).

K = sup
x

|Fn(x)� F(x)|

If Fq is continuous, then under the null hypothesis the distribution of
p

nK
converges the Kolmogorov distribution L and it is independent of Fq (Feller,
1948).

L(z) = P(K  z) = 1 � 2
•

Â
k=1

(�1)k =

p
2p

z

•

Â
k=1

e�(2k�1)2p2/8z2
.

6.2.2 Anderson-Darling test

Anderson-Darling test is another method of assessing whether a sample was
generated by some specified distribution. Similar to Kolmogorov-Smirnoff
test, a discrepancy between the empirical Fn and theoretical Fq distributions
is of interest and it is measured by a weighted average of squared differences.
This approach was developed by (Anderson and Darling, 1952).

The statistical set-up and hypotheses are identical as described in the
Kolmogorov-Smirnoff test. The Anderson-Darling statistic is

A2 = n
Z •

�•

(Fn(x)� F(x))2

F(x)(1 � F(x))
f (x)dx

Compared to the Kolmogorov-Smirnoff statistic, which looks for the good
fit in the middle of the distribution, the Anderson-Darling statistic focuses
more on the tails. It is shown in Anderson and Darling, 1954 that this test
statistic can be rewritten as

A2 = �n � 1
n

n

Â
j=1

(2j � 1)
⇣

log(U(j)) + log(1 � U(n�j+1))
⌘

where the sample is ordered (X(1) < X(2) < ... < X(n)) and Uj = Fq(X(j)).
Furthermore, the authors derived the limiting distribution, from which criti-
cal values for significance level of 5% and 1% can be obtained. They are given
by 2.492 and 3.857, respectively.
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6.2.3 Chi-square goodness-of-fit test

Chi-Square test is designed to assess whether an observed sample comes
from a discrete distribution. This method is based on the idea of compar-
ing the actual number of observations with the expected number for each
category if the null hypothesis holds. After some appropriate discretization
it can be also applied to continuous distributions with no major obstacles.
This famous test was first developed by Karl Pearson at the beginning of the
20th century (Pearson, 1900).

The null hypothesis assumes that the data follows a specific distribution
and is tested against an alternative that negates the null. The corresponding
Chi-Square statistic is

c2 =
n

Â
i=1

(Oi � Ei)
2

Ei
,

where Oi represents the observed number of observations from the sam-
ple falling into the i-th category and Ei corresponds to the expected counts
for the same category under the null hypothesis. The expected counts can be
obtained with Ei = npi, where n is the sample size and pi is the probability
of the i-th. If the hypothesized distribution F is continuous, then some arbi-
trary discretization m = d0 < d1 < ... < dk = • with k � 1 points has to be
considered and the probability pi is replaced by p⇤i = F(di)� F(di�1) for all
groupings. Such procedure leads to the loss of information, so that the test is
not consistent against the alternative anymore. This test statistic follows the
Chi-Square distribution with l � 1 degrees of freedom, where l is number of
categories.

6.3 Goodness-of-fit tests for left truncated data

In this subsection modifications of goodness-of-fit statistics that account for
the left truncation are considered. Such tests emerge in a natural way in
many different contexts when the data is recorded if it exceeds some speci-
fied value. Also, simple hypothesis are replaced in favour of composite hy-
pothesis. They aim to answer the question whether the empirical distribution
obtained from a sample of observations belongs to a parametric family of dis-
tributions F = {Fq : q 2 Q} or not. Such test problem is more relevant from
a practical standpoint. In general, this section follows the work of Chernobai,
Rachev, and Fabozzi, 2015.

More formally, the sample (X1, ..., Xn) is left-truncated at a threshold point
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H 2 R and X(1) < X(2) < .... < X(n) is the ordered statistics. The empirical
distribution Fn(x) of the sample is given by

Fn(x) =

8
>>><

>>>:

0 x  x(1)
j
n x(j)  x  x(j+1), j = 1, 2, ..., n � 1

1 x � x(n).

A continuous truncated distribution Fq is fitted to the sample and esti-
mate q̂ of the conditional parameter q is obtained. The resulting truncated
distribution F⇤

q̂
of the sample is given by

F⇤
q̂
(x) =

8
<

:

Fq̂(x)�Fq̂(H)
1�Fq̂(H) x � H

0 x < H

A composite hypothesis tests whether the empirical distribution is a mem-
ber of some specific parametric family. As the particular shape of the distri-
bution is not specified, the idea is to compare the best fitting member of the
hypothesized parametric class to the empirical estimate

H0 : Fn 2 F⇤
q̂

H1 : Fn 62 F⇤
q̂

.

For such test problem the distribution under the null is not known and,
hence, critical values and p-values are not available. In order to overcome
this problem, one has to resort to re-sampling methods. One particular ap-
proach is to first estimate a test statistic T based on the observed dataset
(truncated at H) and then to follow steps 1-3 described below.

1. For i 2 {1, 2, ..., I}:

(a) Generate a sample Si,n of size n from the fitted truncated distribu-
tion F⇤

q̂
.

(b) Fit truncated distribution to the sample Si,n and obtain conditional
parameter q̂.

(c) Estimate a test statistic Ti and store it in a list.

2. Obtain p-value as a fraction of times the sample statistics Ti are bigger
than the sample statistic T. In other words, p-value can be calculated
as 1

I ÂI
i=1 1(Ti > T).
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3. Reject null hypothesis if the p-value is smaller than the significance
level a 2 (0, 1)

In order to simplify the notation, zH = F⇤
q̂
(H) is going to denote a fitted

truncated distribution evaluated at the truncation point and zj = F⇤
q̂
(x(j)) is

a shorthand for the fitted truncated cdf evaluated at j-th order statistic. All
tests introduced in the following subsections can be performed using an R
statistical software (R Core Team, 2017).

6.3.1 Kolmogorov-Smirnoff statistic

Kolmogorov-Smirnoff statistic was previously introduced in the subsection
6.2 for the simple hypothesis and full sample. Its modification for composite
hypothesis and left-truncated data can be obtained as follows:

K+⇤ =
p

n sup
j

n
Fn(x(j))� F⇤

q̂
(x(j))

o

=

p
n

1 � zH
sup

j

⇢
zH +

j
n
(1 � zH)� zj

�

K�⇤ =
p

n sup
j

n
F⇤

q̂
(x(j))� Fn(x(j))

o

=

p
n

1 � zH
sup

j

⇢
zj �

✓
zH +

j � 1
n

(1 � zH)

◆�

K⇤ = max{K+⇤, K�⇤}

6.3.2 Anderson-Darling statistic

This test was also introduced in the previous subsection for the simple hy-
pothesis. To test a composite hypothesis based on the left-truncated sample,
the following computing formula can be used:

A⇤2 = �n + 2n log(1 � zH)

� 1
n

n

Â
j=1

(1 + 2(n � j)) log(1 � zj)

+
1
n

n

Â
j=1

(1 � 2j) log(zj � zH).
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6.3.3 Anderson-Darling upper tail statistic

Anderson-Darling upper tail test was proposed by Chernobai, Rachev, and
Fabozzi, 2015. The difference to the original Anderson-Darling test is that
weights are applied to the right tail. If F denotes the theoretical distribution
and Fn is empirical distribution for a complete sample, then the test statistic
is computed with

A2
up = n

Z •

�•

(Fn(x)� F(x))2

(1 � F(x))
f (x)dx

For left-truncated sample and composite hypothesis, the computing for-
mula is given by:

A⇤2
up = �2n log(1 � zH) + 2

n

Â
j=1

log(1 � zj) +
1 � zH

n

n

Â
j=1

(1 + 2(n � j))
1

1 � zj

6.4 Scoring table

Selecting a model based on a given sample may be a challenging task, es-
pecially if there are multiple models that - from a theoretical point of view -
should provide a reasonable fit. Preparing a table that summarizes how well
each of these models performed in goodness-of-fit tests may make the selec-
tion process easier. One possible approach is to select few tests and award
each model with points depending on the value of the test statistic. There is
no unique grading system and one particular example would be to assign

• 1 point for third smallest test statistic

• 2 points for second smallest test statistic

• 3 points for the smallest test statistic.

Selected tests may vary depending on the problem. For instance, for
left truncated data with heavy outliers, tests with composite hypotheses de-
scribed in the previous section may be a good choice:

• Kolmogorov-Smirnoff test - it tries to find a good fit in the middle of
the distribution.

• Cramer-von Misses test - alternative to the KS-test.
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• Anderson-Darling test - compared to the KS-test, it emphasises the fit
in tails.

• the Anderson-Darling upper tail test - focuses on the fit in the upper
tail.

The best performing model can be considered as a model with the highest
points.
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7 Case Study: Yearly losses incurred due to Torna-
does in the USA

This analysis focuses on the modelling of the total damages incurred due to
tornadoes in the United States from 1988 till 2017 and is based on the dataset
maintained by the Storm Prediction Center 1 (SPC), which is in turn the part
of the National Oceanic and Atmospheric Administration 2 (NOAA). The
SPC tornado archive distinguishes between the damages to property and
damages to crops. Both are based on the estimates in the US Dollar val-
ues from an insurance company, and if they are not available then they are
either estimated by a qualified individual or left blank. The documentation
and the dataset and all data collection directives can be found on the official
SPC webpage. Throughout this study, the total damages are defined as the
sum of damages to property and to crops, scaled by a factor of one billion.
The losses are not adjusted for inflation and other possible normalizations,
as population and wealth multipliers are also not applied. The compound
model with a frequency distribution and severity distribution, split into the
body and tail, is applied to the underlying dataset. All computational as-
pects of the analysis are performed with the R statistical software (R Core
Team, 2017) using own developed code as well as special extensions: fitdistr-
plus (Delignette-Muller and Dutang, 2015), POT (Ribatet and Dutang, 2016)
and truncgof (Wolter, 2012).

The study begins with the explorative analysis, which aims to give a bet-
ter insight into the tornado loss event collection and is intended to facilitate
the development of the compound model. It then proceeds with the thresh-
old selection, which enables selecting and calibrating tail and frequency dis-
tributions. Lastly, the compound distribution is approximated with a Monte
Carlo simulation.

7.1 Explorative analysis

According to the dataset compiled by SPA, from 1988 till 2017 there were
38,693 tornadoes causing total losses of about 40.81 billion of US dollars in
total. Notably, about 46% of occurrences did not result in any economic dam-
age and almost 94% had individual economic impact smaller than $1M. The
biggest single loss was estimated at $2.8B in 2011. As we can see in the figure

1https://www.spc.noaa.gov
2https://www.noaa.gov



38

1, year 2011 was the most devastating year in terms of total damages and
amounted to 9.71 billion of US dollars. Two years later, in 2013, unusually
high losses were again recorded at $3.65 billion. In other years, the estimates
vary around the mean of $1.36 with standard deviation of $1.73. The US econ-
omy suffered the smallest damages in 2016, 2015 and 1995, of about $180M,
$320M and $330M, respectively.
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FIGURE 1: Distribution of yearly sums of damages incurred due
to tornados in US from 1988 till 2017. The red horizontal repre-

sents the mean of historic yearly damages.

On average, there were 1,290 tornadoes every year with standard devia-
tion of about 330. By inspecting the distribution of yearly occurrences, de-
picted on the figure 2, one can see peaks in 2004, 2008, and 2011 exceeding
1,900 events. The latter peak coincides with the highest total damage on the
previously described figure 2.
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FIGURE 2: Distribution of yearly occurrences of tornadoes in
USA from 1988 till 2017. Red line corresponds to the historic
yearly average number of tornadoes within the considered time

period.

The number of tornadoes is usually below the average and the small-
est number, 616, was recorded in 1993. In general, the correlation between
yearly counts and totals is 0.425 [CI: 0.076, 0.681] and is statistically signifi-
cant at the 95% confidence level. This confirms the common sense that with
an increasing number of tornadoes, the economy suffers bigger total dam-
ages. All yearly totals and counts together with simple summary statistics
are presented in tables 2 and 3 below.

Year Loss Count Year Loss Count Year Loss Count
1988 1.12 773 1998 1.74 1529 2008 1.87 1954
1989 1.76 921 1999 2.00 1520 2009 0.58 1273
1990 1.56 1264 2000 0.43 1169 2010 1.16 1446
1991 1.15 1208 2001 0.64 1351 2011 9.71 2074
1992 1.41 1404 2002 0.80 1040 2012 1.65 1058
1993 0.82 616 2003 1.28 1535 2013 3.65 1053
1994 0.76 947 2004 0.55 1947 2014 0.64 1055
1995 0.33 1217 2005 0.50 1342 2015 0.32 1320
1996 0.73 1267 2006 0.71 1263 2016 0.18 1079
1997 0.74 1180 2007 1.36 1241 2017 0.65 1647

TABLE 2: Yearly total losses (in bn) and counts from 1988 till
2017.
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Loss Count
Sum 40.81 38693
Average 1.36 1290
Std. dev. 1.73 328

TABLE 3: Simple summary statistics of yearly total losses and
counts from 1988 till 2017.

During the time period of the study, there were almost 40,000 tornadoes,
however, only a small fraction of them inflicted damages that could be de-
scribed as catastrophic. The top 10 highest losses, account for 26% of the
total historic losses ($40.81B). Analogously, top 25 and 50 highest losses cor-
respond to 36% and 45% of the total share.

The top 10 most catastrophic tornadoes are summarized in the table 4. It
can be seen that 8 of these tornadoes occurred after 2010 and 5 of them only in
2011. The most devastating tornado happened in 2011 in Missouri inflicting a
total damage of $2.8B. Half of the aforementioned tornadoes wreaked havoc
in Alabama and Oklahoma.

Loss Year State
2.8 2011 Missouri

2 2013 Oklahoma
1.5 2011 Alabama

1 2011 Alabama
0.91 2013 Illinois
0.7 2011 Alabama
0.5 2011 Mississippi
0.5 2012 Kansas

0.45 1999 Oklahoma
0.45 1999 Oklahoma

TABLE 4: Summary of the ten most destructive individual tor-
nadoes from 1988 till 2017 in United States. Each loss is valued

in billion US dollars.

As it can be seen on figures 3 and 4, the south-central part of the USA is
mostly affected by tornadoes. Alabama, Missouri and Oklahoma lost more
than $4B each in the past 30 years. Most of these damages come from the
catastrophic events listed in the table 4.
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FIGURE 3: Total damages (in bn) incurred due to tornadoes in
USA at state level from 1988 till 2017.

Although, Texas is the state with the most recorded tornadoes - more than
4,500 - it is on the fourth place in terms of damages at around $3B.
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FIGURE 4: Occurrences of tornadoes in USA at state level from
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7.2 Selection of threshold and severity distribution

As indicated in the previous subsection, the underlying dataset contains mul-
tiple extreme events that have to be addressed with a very heavy tailed dis-
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tribution. The most reasonable choice for the tail distribution, supported by
the extreme value theory (as described in subsection 3.1.1) as well as by the
explorative analysis, is the Generalized Pareto Distribution. However, three
other distributions are going to be fit to the right tail with the same threshold
- log-normal, log-logistic and inverse Gaussian. The first has light right tail,
the second is similar to the log-normal but has heavier tail, and finally the
inverse Gaussian is known for its heavy tail. They are going to serve merely
as benchmarks and if any of them would over-perform the GPD, the choice
for the tail model would need to be reconsidered.

One of the most challenging part of this analysis was to select an appro-
priate threshold that separates body from the tail and, hence, defines extreme
events. In the following, two visual methods are going to be used - mean ex-
cess plot and stability of parameters. The strategy is to identify such value,
above which the mean excess plot is approximately linear, and simultane-
ously above which both parameter estimates indicate stability. In both meth-
ods thresholds from 1M to 100M are considered. Values above 100M would
result in a very small number of losses in the tail. Such choices would sup-
port the asymptotic argument and lower the bias, however at too high cost
of increased uncertainty around the parameter estimates.

The figure 8 represents the mean excess plot. It can be seen that there
are two major jumps around 25M and 50M. After the latter value, the graph
seems to increase almost linearly, which suggests a threshold of 50M.
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FIGURE 5: Mean excess plot for Generalized Pareto Distribu-
tion. All considered thresholds fall into the range of 1M to

100M.
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By inspecting the figures 6a and 6b that show the estimates of the mod-
ified scale and shape parameters with confidence intervals over a range of
pre-determined thresholds, one can see that the estimated values become
more stable after the value of 50M. This supports the hypothesis that an opti-
mal value for the threshold is about 50M. Hence, the threshold is going to be
fixed at 50M and all values above are going to be considered as tail events.
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FIGURE 6: Stability of parameter estimates for thresholds be-
tween 1M to 100M. Panels (A) and (B) depict estimates of the
modified scale parameter and the shape parameter, respec-

tively.

As the threshold is fixed and the tail with 104 losses is uniquely defined,
the parameters of the Generalized Pareto Distribution and all three bench-



44

mark models are going to be estimated using the minimum distance estima-
tion technique with the Anderson-Darling distance. This combination offers
excellent robustness properties and also a good fit in tails. The parameter es-
timates of the scale parameter is 0.07267 with a standard error of 0.0125 and
the estimate of the shape parameter is 0.5517 with a standard error of 0.193.
Both standard errors were simulated with 10.000 bootstrap samples.

The figure 7 shows the probability and quantile plots for the GPD. In case
of the first diagnostic graph, all points fall within the simulated 95% confi-
dence interval and are close to the unit diagonal. The quantile plot shows
bigger departures from the theoretical line for values bigger than 0.9B, how-
ever they are still within confidence bounds. Although not perfect, the visual
inspection of classical diagnostic plots indicates a reasonable fit of the model.
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FIGURE 7: Probability plots for the Generalized Pareto Distri-
bution. Panels (A) and (B) contains the pp-plot and qq-plot re-
spectively. Both graphs include simulated 95% confidence in-

tervals.

In addition to the diagnostic plots, three goodness of fit tests with com-
posite hypotheses, previously described in the subsection 6.3, were performed
using simulation with 10.000 repetitions and are summarized in the table 5.
They are meant to asses the goodness-of-fit in global fashion focusing on the
fit-in-the-middle of distribution (KS-test) and in tails. As it can be seen, all
tests fail to reject the the null hypothesis at the confidence level of 95% and
proves that the Generalized Pareto Distribution provides a reasonable fit to
the tail.
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Test T p-value
Kolmogorov-Smirnoff 0.74 0.60

Anderson-Darling 1.88 0.51
Anderson-Darling upper tail 3.66 0.31

TABLE 5: Summary of goodness of fit tests with composite hy-
pothesis for the Generalized Pareto Distribution.

Similar goodness-of-fit tests were performed for all benchmark models.
As all of these statistical tests measure the discrepancy between the empir-
ical distribution and the fitted distribution, the smaller the test statistic, the
better the fit to the dataset. The table 6 summarizes results for each test and
distribution. The fitted Generalized Pareto Distribution has uniformly small-
est values of test statistics, which in turn indicates that no benchmark model
is performing better, given events in the tail.

GPD Inv. Gaussian Log-logistic Log-normal
Anderson-Darling 1.88 5.16 3.69 3.94

Anderson Darling upper tail 3.66 19.71 9.73 8.89
Kolmogorov-Smirnoff 0.74 2.47 1.65 1.79

TABLE 6: Summary of goodness-of-fit tests for Generalized
Pareto Distribution and benchmark models.

An important aspect of a proper model is how well it is calibrated to the
data. A return level plot is another visual diagnostic method that addresses
this issue by depicting the level which is expected to be exceeded on average
once in k-years. The figure 8 represents the aforementioned tool for the fitted
Generalized Pareto Distribution. Yearly levels of tail events, indicated with
circles on the graph, are adjusted according to the method suggested in R. M.
Hosking and R. Wallis, 1995. It can be seen that they are relatively close to the
solid line and all of them fall within the simulated 95% confidence bounds.
Slightly bigger departure can be seen for the second and third biggest tail
events. The highest loss in the tail ($2.8B from 2011) is well captured by the
model according to the graph.
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FIGURE 8: Return level plot based on the Generalized Pareto
Distribution with estimated 95% confidence interval.

Based on the diagnostic plots and the statistical tests, there is no evidence
speaking against the particular instance of the Generalized Pareto Distribu-
tion chosen to model the tail events. Also, benchmark models do not perform
better in terms of the goodness-of-fit to the tail events. Hence, the fitted GPD
(shape: 0.5517, scale: 0.07267) model is going to be used for the modelling
of the tail of the severity distribution. The other part of the severity distri-
bution, the body, is going to be modelled with the empirical distribution as
described in subsection 3.2.

7.3 Selecting and estimating frequency distributions

For the modelling of frequency in the body and tail only Poisson and nega-
tive binomial distributions are going to be considered. The binomial law is
excluded because there is no reason to assume that there is a fixed maximal
number of tornadoes during a year. Selected models are going to be esti-
mated using maximum likelihood method. Tables 7 and 8 below provide a
full description of frequencies in the body and tail.
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Year Body Tail Year Body Tail Year Body Tail
1988 772 1 1998 1523 6 2008 1948 6
1989 918 3 1999 1511 9 2009 1271 2
1990 1263 1 2000 1167 2 2010 1439 7
1991 1206 2 2001 1349 2 2011 2056 18
1992 1403 1 2002 1037 3 2012 1052 6
1993 616 0 2003 1531 4 2013 1047 6
1994 946 1 2004 1945 2 2014 1053 2
1995 1217 0 2005 1339 3 2015 1320 0
1996 1264 3 2006 1261 2 2016 1079 0
1997 1177 3 2007 1233 8 2017 1646 1

TABLE 7: Yearly total counts in body and tail from 1988 till 2017.

Body Tail
Total 38589 104
Average 1286.3 3.47
Variance 106340.8 13.64
Std. Dev. 326.1 3.69

TABLE 8: Simple summary statistics of yearly counts in the
body and tail and counts from 1988 till 2017.

As it can be seen on the figure 9, there was only one year with more than
10 tornadoes, each causing damage of over $50M. In four other years there
were no tornadoes that could be classified as tail events. On average there
were 3.47 tail occurrences with a standard deviation 3.69. The empirical vari-
ance is considerably larger than the empirical mean due to 18 counts in 2011.
This discrepancy suggests that the negative binomial model may be prefer-
able over Poisson distribution, since the latter assumes the variance being
equal to the mean.
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threshold.

By inspecting the figure 10 one can notice that the negative binomial pro-
vides a slightly better description of tail counts than the Poisson distribution.
In addition to the visual analysis, formal chi-squared tests for both models
were performed. The null hypothesis that the tail counts follow Poisson
model, was rejected at 95% significance level (p-value: 0.0013) and the test
failed to reject the negative binomial model (p-value: 0.489). The same anal-
ysis was performed for the counts in the body. On the figure 10, one can
notice that the Poisson distribution fails to describe data well, whereas the
negative binomial provides a reasonably good fit. The chi-square test does
not reject the negative binomial model. All test results are summarized in ta-
ble 9. Hence, the negative binomial distribution is going to be used to model
body and tail occurrences.
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FIGURE 10: Panel (A) represents the fit of the Poisson distribu-
tion and the panel (B) represent the fit of the negative binomial

distribution to the tail counts.
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FIGURE 11: Panel (A) depicts the fit of the Poisson distribution
to counts in the body. Analogously, panel (B) shows the fit of

the negative binomial distribution.

Tail Body
Estimates T p-value Estimates T p-value

Poisson l= 3.467 (SE: 0.34) 17.95 0.001 l = 1286.3 (SE: 6.55) >1000 0

Negative Binomial size = 1.5817(SE: 0.613) 2.42 0.489 size = 16.254 (SE: 4.21) 3.17 0.53mu = 3.4663 (SE: 0.607) mu = 1286.325 (SE: 58.62)

TABLE 9: Maximum likelihood estimates and results of chi-
square tests for Poisson and negative binomial distributions.
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7.4 Estimating compound distribution

Total yearly damage incurred due tornadoes in United States from 1988 till
2017 is going to be modelled with a compound negative binomial distribu-
tion, in which tail events are defined as losses exceeding $50M and are de-
scribed by the Generalized Pareto distribution with scale parameter 0.07267
(SE:0.0125) and shape parameter 0.5517 (SE: 0.193). Estimates were obtained
using the minimum distance estimator with Anderson-Darling distance. Prior
the analysis, all losses were scaled by a factor of 1B. Economic damages
smaller than the threshold are described via empirical distribution. Since
the negative binomial distribution provides a good fit to counts in the body
and tail, it is used in both cases as frequency distribution. For the body, the
maximum likelihood estimates are: size=16.254 (SE: 4.21) and mu=1286.325
(SE: 58.62) and for the tail: size=1.5817 (SE: 0.61) and mu=3.4664 (SE: 0.61).
The compound aggregate distribution Monte Carlo simulation with 10M it-
erations.

The figure 12 presents the return level plot for the approximated com-
pound aggregate distribution. It can be seen that empirical 1 to 2 years return
periods, marked with points, are slightly underestimated by the model. From
2 to 20 years return period, the model captures well the empirical behaviour
with all points being close or at least within simulated 95% confidence inter-
val. For higher return periods the model extrapolates smoothly.
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FIGURE 12: Return level plot based on the compound negative
binomial model with simulated 95% confidence interval.
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Return Period (Years) 2 5 25 50 100 500 1000 10000
Return level (in bn) 1.06 1.56 2.72 3.49 4.57 9.34 13.05 41.75

TABLE 10: Estimated return levels based on the developed neg-
ative binomial model.

The table 10 represents estimated return levels. 1 in 1000 years event cor-
responds to a $13.05B loss. The highest historical loss of $9.7B from 2011 is
predicted to be 1 in about 500 years loss. It empirically corresponds to 1 in
85 years event but the prediction is still within 95% confidence bounds. It
can be seen that the model provides a realistic description of the historical
yearly losses. Extending the developed model with seasonal and spatial ef-
fects could provide even more accurate description, but such undertaking is
beyond of the scope of this thesis.
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8 Summary

The main goal of this work is to describe a modelling strategy for phenomena
that generate a large number of events causing minor damage and only a
small number of extreme events that manifest themselves through enormous,
even catastrophic impact. Total damage incurred due to such phenomena
can be estimated with a model, that is a merge of two separate distributions
that describe the number of occurrences and their severities independently,
elaborated throughout this thesis. The theory is then applied to a study of
yearly total losses caused by tornadoes in United States from 1988 till 2017.
The Generalized Pareto Distribution is chosen to model tail events separated
from the body by a threshold of $50M. The negative binomial distribution
is used to model frequency. The developed compound negative binomial
model is shown to provide a realistic description of yearly losses and can be
further extended to include seasonal and spatial effects.
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Appendix

Abstract

In many real world phenomena the need for modelling of losses caused by
an underlying process that generates both large number of occurrences with
minor losses and occurrences with severe impact exists. Prominent examples
are natural disasters (earthquakes, hurricanes, tornadoes etc.), operational
losses in highly regulated institutions or claims generated by an insurance
policy. In each case, the aggregated loss distribution can be modelled with
a so called compound model that is a combination of two separate distribu-
tions describing the number of events and their severities. The latter can be
further split into the empirical body and tail. This distinction allows the mod-
elling of the high-probability-low impact and low-probability-high-impact
aspects of the underlying data with an empirical distribution function and
a continuous distribution as justified by the Glivenko–Cantelli theorem and
the extreme value theory, respectively. The developed model is then applied
to a study of yearly total losses caused by tornadoes in the United States from
1988 till 2017. Based on theoretical considerations and empirical evidence
the Generalized Pareto Distribution is chosen to model tail events separated
from the empirical body by a threshold of $50M. It is then calibrated apply-
ing the minimum distance estimation with the Anderson-Darling distance.
The frequency analysis reveals that the negative binomial distribution pro-
vides a good fit of yearly tornado counts. The resulting compound negative
binomial model provides a realistic description of yearly loss events and can
be further extended to include seasonal and spatial effects.
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Kurzfassung

In vielen Problemstellungen ist es erforderlich Verluste zu modellieren, ver-
ursacht durch den zugrundeliegenden Prozess, der eine große Anzahl von
Ereignissen mit geringer Verlusthöhe und wenige Ereignisse mit sehr ho-
hen Verlusten erzeugt. Prominente Beispiele sind Naturkatastrophen (wie
beispielsweise Erdbeben, Wirbelstürme, Tornados), Betriebsverluste in stark
regulierten Institutionen oder Versicherungsfälle. In jedem Fall kann die Ge-
samtverlustverteilung mit einer sogenannten zusammengesetzten Verteilung
modelliert werden, bei der zwei getrennte Verteilungen zusammengeführt
werden, die die Anzahl der Ereignisse und ihre Verlusthöhe beschreiben.
Letzteres kann weiter in das empirische Verteilungszentrum und den Ver-
teilungsrand aufgeteilt werden. Diese Unterscheidung erlaubt die Modellie-
rung der Aspekte hoher Wahrscheinlichkeit mit geringer Auswirkung und
niedriger Wahrscheinlichkeit mit hoher Auswirkung der zugrunde liegen-
den Daten mittels einer empirischen Verteilungsfunktion bzw. einer kon-
tinuierlichen Verteilung, die jeweils durch das Glivenko-Cantelli-Theorem
und der Extremwerttheorie gerechtfertigt sind. Das entwickelte Model wird
dann auf eine Untersuchung der jährlichen Gesamtverluste durch Torna-
dos in den Vereinigten Staaten von 1988 bis 2017 angewendet. Basierend auf
theoretischen Überlegungen und statistischen Nachweisen wird die gene-
ralisierte Pareto-Verteilung gewählt. Dies wird dann mit der minimum di-
stance estimationMethode mittels der Anderson-Darling-Distanz kalibriert.
Die Häufigkeitsanalyse zeigt, dass die negative Binomialverteilung eine gute
Beschreibung der jährlichen Tornado-Zählungen liefert. Die daraus resultie-
rende zusammengesetzte negativ Binomial Verteilung bietet eine realistische
Beschreibung der jährlichen Verlustereignisse und kann um saisonale und
räumliche Effekte erweitert werden.
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