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Abstract

Background: Mollusks display a striking morphological disparity, including, among others, worm-like animals (the

aplacophorans), snails and slugs, bivalves, and cephalopods. This phenotypic diversity renders them ideal for studies

into animal evolution. Despite being one of the most species-rich phyla, molecular and in silico studies concerning

specific key developmental gene families are still scarce, thus hampering deeper insights into the molecular machinery

that governs the development and evolution of the various molluscan class-level taxa.

Results: Next-generation sequencing was used to retrieve transcriptomes of representatives of seven out of the

eight recent class-level taxa of mollusks. Similarity searches, phylogenetic inferences, and a detailed manual

curation were used to identify and confirm the orthology of numerous molluscan Hox and ParaHox genes, which

resulted in a comprehensive catalog that highlights the evolution of these genes in Mollusca and other metazoans. The

identification of a specific molluscan motif in the Hox paralog group 5 and a lophotrochozoan ParaHox motif in the Gsx

gene is described. Functional analyses using KEGG and GO tools enabled a detailed description of key developmental

genes expressed in important pathways such as Hedgehog, Wnt, and Notch during development of the respective

species. The KEGG analysis revealed Wnt8, Wnt11, and Wnt16 as Wnt genes hitherto not reported for mollusks, thereby

enlarging the known Wnt complement of the phylum. In addition, novel Hedgehog (Hh)-related genes were identified in

the gastropod Lottia cf. kogamogai, demonstrating a more complex gene content in this species than in other mollusks.

Conclusions: The use of de novo transcriptome assembly and well-designed in silico protocols proved to be a robust

approach for surveying and mining large sequence data in a wide range of non-model mollusks. The data presented

herein constitute only a small fraction of the information retrieved from the analysed molluscan transcriptomes, which

can be promptly employed in the identification of novel genes and gene families, phylogenetic inferences, and other

studies using molecular tools. As such, our study provides an important framework for understanding some of the

underlying molecular mechanisms involved in molluscan body plan diversification and hints towards functions of key

developmental genes in molluscan morphogenesis.
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Background
Over the past decade, an ever increasing number of mo-

lecular data has become available for representatives of nu-

merous animal phyla. It has been shown that many genes

are evolutionary conserved, either sharing similar functions

or being co-opted into various novel functions, thereby

often displaying astounding functional plasticity during ani-

mal development (e.g., [1–3]). A substantial body of evi-

dence suggests that evolutionary changes or variations in

the regulation of highly conserved developmental genes, as

well as divergence in gene sequences (e.g., duplications and

mutations), have been responsible for major alterations in

the evolution of animal body plans [4–6]. Within these

conserved genes, two families of homeotic genes that en-

code transcription factors and are involved in bilaterian

anterior-posterior axis and/or digestive tract patterning, the

Hox and ParaHox genes, are among the best-investigated

so far [7–9]. Therefore, understanding and reconstructing

the evolutionary history of these gene families is crucial

for inferring animal evolution and the relationships be-

tween genetic and morphological complexity [10, 11].

Comparisons between Hox and ParaHox gene clusters

support the hypothesis that both families evolved from

an early duplication of an ancient ProtoHox cluster

[12–15]. Thereby, the Hox and ParaHox clusters under-

went different evolutionary pathways, in which the Hox

cluster expanded by several tandem duplications, whereas

the ParaHox cluster, composed of Gsx (paralog of the an-

terior Hox genes), Cdx (paralog of the Hox3 gene), and

Xlox (paralog of the posterior Hox genes), did not. Within

Lophotrochozoa, a major group of protostome animals

that often show a spiral cleavage pattern and/or a ciliated

larva in their life cycle, the Hox and ParaHox families are

usually composed of 11 and three genes, respectively [16].

Although the majority of studies are restricted to two

lophotrochozoan phyla (Mollusca and Annelida), these re-

sults suggest that the last common ancestor of all lopho-

trochozoan animals also harbored a toolkit that included

11 Hox and three ParaHox genes.

The phylum Mollusca comprises approximately 200,000

living species, ranking it the second-most speciose meta-

zoan phylum [17]. Most mollusks, like numerous other

lophotrochozoans, display a highly conserved pattern of

spiral cleavage in the early embryo, resulting in the forma-

tion of four vegetal macromeres and four animal micro-

meres. In many basally branching clades, embryology is

followed by indirect development via a free-swimming,

ciliated trochophore-like larva which most likely consti-

tutes the ancestral condition for Mollusca. This type of

larva is commonly found in caudofoveates (= chaetoder-

momorphs) [18], polyplacophorans [19], gastropods [20],

scaphopods [21–23], and bivalves (e.g., [24, 25]; see [26] for

review). Many gastropods and bivalves develop a second-

ary, planktotrophic larva, the veliger, while solenogasters

(= neomeniomorphs) and protobranch bivalves have inde-

pendently evolved a secondary lecithotrophic larval type,

the so-called pericalymma or test cell larva (see [26] for

review; [27–29]).

In evo-devo research, mollusks occupy an important

role in studies focused on the function and expression of

regulatory genes during development, providing insights

into the mechanisms that underlie the diversification of

metazoan body plans [30]. To this end, several transcrip-

tomic studies focusing on biomineralisation processes

and their concordant genes have recently become avail-

able [31–34]. However, given the high morphological

disparity, the complex life cycles, and the striking vari-

ation during the ontogeny among molluscan taxa, there

is a considerable lack of molecular studies dealing with

the expression of key developmental genes in this

phylum. As such, only a few gene expression studies

have been published, including Hox genes [35–41] and

ParaHox genes [42–44]. These studies suggest a high

plasticity and recruitment into novel functions of these

genes at least in cephalopods and gastropods. Since

these data stem from very few species only, the full com-

plement of Hox and ParaHox gene expression domains

(and hence their putative functions) in Mollusca is yet to

be analysed. To this end, an improvement of the equally

poor database of other molluscan developmental genes

will significantly contribute to further insights into the

molecular toolkit that governs key developmental pro-

cesses of this important lophotrochozoan phylum [45, 46].

With the advent of next-generation sequencing tech-

nologies (e.g., [47, 48]), large-scale comparative genomic

surveys of non-model species are now possible, allowing

for deeper insights into ancestral versus novel features of

the molecular machinery that underlies the ontogenetic

establishment of animal body plans. Recently, four im-

portant molecular resources were established by sequen-

cing and annotating complete genomes for mollusks

using the bivalves Crassostrea gigas [49] and Pinctada

fucata [50], the gastropod Lottia gigantea [16], and the

cephalopod Octopus bimaculoides [51] as model organ-

isms. Apart from useful insights into genome organisation

and the structure of individual genes in these species, the

studies identified the complete Hox and ParaHox comple-

ments, adding valuable knowledge about the diversity of

these homeotic genes in mollusks.

To expand this database, we sequenced transcriptomes

sampled from distinct developmental stages and provide

in-depth analyses of the Hox and ParaHox gene families

in representative species of seven out of the eight recent

class-level taxa of mollusks. Furthermore, we screened

our sequences for orthologs present in the Wnt, Notch,

and Hedgehog signaling pathways. These highly conserved

pathways contribute to orchestrating the broad display

of morphology diversity found in bilaterians through
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epigenetic interactions between cells and the entrain-

ment of certain developmental programs (for review,

see [52]). In addition, we provide a broad functional

characterisation of the molluscan gene content using

Gene Ontology (GO) terms and Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways.

Results

Pre-processing and de novo assembly of the

transcriptomic libraries

The filtering pipeline discarded between 4.78 % (the bivalve

Nucula tumidula) and 17.40 % (the neomeniomorph =

solenogaster Wirenia argentea) of low-quality, adaptor con-

taminated, paired-end reads from the molluscan libraries

(Table 1). The assembling process generated high-quality

transcriptomes ranging from 34,794 (the gastropod Lottia

cf. kogamogai) to 394,251 (W. argentea) sequences (Table 2).

The difference in the number of reconstructed base pairs,

transcripts, the values of the largest transcript, and the N50

(median transcript length) are obvious between 454 and

Illumina libraries. The best 454 library (the cephalopod

Idiosepius notoides) includes considerably less transcripts,

base pairs, and N50 transcript length than any of the short-

read Illumina libraries. To facilitate the downstream ana-

lysis, both assembled libraries derived from the cephalopod

I. notoides were combined.

Identification of the coding sequence regions and

clustering of the transcriptomes

This procedure generated high-quality redundant pro-

tein gene sets that contained between 17,163 (Lottia cf.

kogamogai) and 216,221 (the polyplacophoran Acantho-

chitona crinita) sequences. The percentage of transcripts

in each of the molluscan libraries that codes for a puta-

tive protein sequence ranges from 21 % (Idiosepius

notoides) to 59 % (A. crinita) (Table 3). After the cluster-

ing and the elimination of protein sequence redundancy,

the number of sequences lowered by more than 70 % in

some protein gene sets (approx. 74 % in Wirenia argen-

tea, approx. 72 % in A. crinita, and approx. 71 % in the

scaphopod Antalis entalis). The 454 protein gene set de-

rived from L. cf. kogamogai showed the lowest reduction

in the number of protein sequences, in which just more

than approx. 2 % of the sequences were clustered.

Assessment of the protein gene set completeness using

BUSCO

The completeness in the molluscan protein gene sets, as

approximated by the presence of universal single copy

orthologs [53], showed an ample variability ranging from

68.21 % (Lottia cf. kogamogai) to 95.02 % (Nucula tumi-

dula) (Table 4). A correlation of completeness and the se-

quencing technique is noticeable among the different

molluscan protein gene sets. For instance, the most incom-

plete protein gene set using deep Illumina sequencing (the

chaetodermomorph = caudofoveate Scutopus ventrolinea-

tus: 79.83 % of completeness) is more complete than the

one generated by the 454 pyrosequencing (L. cf. kogamogai:

68.21 % of completeness). Likewise, the number of frag-

mented BUSCOs in the S. ventrolineatus library is still

lower than the number of fragmented BUSCOs in the L. cf.

kogamogai 454 sequenced library. The statistics of pre-

Table 1 Summary of the pre-processing pipeline in the molluscan transcriptomic libraries

Organism No. of readsa before pre-processing No. of readsa after pre-processing No. of readsa excluded

Gymnomenia pellucida
(Neomeniomorpha)

53,751,440 50,292,634 (93.57 %) 3,458,806 (6.43 %)

Wirenia argentea
(Neomeniomorpha)

50,456,889 41,678,466 (82.60 %) 8,778,423 (17.4 %)

Scutopus ventrolineatus
(Chaetodermomorpha)

43,492,046 40,596,155 (93.34 %) 2,895,891 (6.66 %)

Acanthochitona crinita
(Polyplacophora)

35,737,364 33,695,610 (94.29 %) 2,041,754 (5.71 %)

Idiosepius notoidesb

(Cephalopoda)
588,878 588,878 (100 %) -

Idiosepius notoides
(Cephalopoda)

38,267,214 35,131,600 (91.81 %) 3,135,614 (8.19 %)

Lottia cf. kogamogaib

(Gastropoda)
402,814 402,814 (100 %) -

Nucula tumidula
(Bivalvia)

40,797,848 38,849,372 (95.22 %) 1,948,476 (4.78 %)

Antalis entalis
(Scaphopoda)

24,194,021 22,881,795 (94.58 %) 1,312,226 (5.42 %)

aRead pairs for Illumina libraries
bNote that the 454 datasets were just trimmed and converted to fasta and fasta.qual files. The quality and length filtering was executed by the program MIRA4

during the assembling step
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processing, assembly, and quality assessment pipelines are

summarised in Table 5.

Identification of Hox and ParaHox sequences and

phylogenetic analyses

A total of 64 Hox and eight ParaHox genes were identi-

fied and their orthology confirmed through Bayesian

phylogenetic analysis (Fig. 1). Monophyly of paralog

groups Hox1, Hox2, Lox4, Post1, Post2 and the ParaHox

groups Gsx, Xlox, and Cdx is well-supported (posterior

probability > 0.9). Identity of other paralog groups was

established by annotating them using information from

well-characterised model metazoan and molluscan se-

quences they cluster with. Supposedly complete (11 genes)

or almost complete (nine or more genes) sets of Hox genes

were obtained from the polyplacophoran Acanthochitona

crinita, the neomeniomorphs Gymnomenia pellucida and

Wirenia argentea, as well as the scaphopod Antalis entalis.

The putatively most incomplete set of Hox genes (three

genes) was retrieved from the chaetodermomorph (caudo-

foveate) Scutopus ventrolineatus (Fig. 2).

The common paralog peptide signatures in the homeo-

box domain and in its flanking regions greatly differ be-

tween the different Hox and ParaHox paralog groups

Table 2 Summary of assembly statistics from the nine molluscan transcriptomic libraries

Assembler Organism No. of transcripts No. of transcripts
> 1,000 bp

No. of reconstructed
bases (bp)

No. of reconstructed
bases in transcripts
>1,000 bp

Length of the largest
transcript reconstructed
(bp)

N50

IDBA-tran Gymnomenia pellucida
(Neomeniomorpha)

228,678 136,889 408,484,174 355,797,467 26,833 2,616

Wirenia argentea
(Neomeniomorpha)

394,251 178,721 495,209,150 369,131,155 13,881 1,725

Scutopus ventrolineatus
(Chaetodermomorpha)

220,258 96,068 253,037,497 181,977,467 17,067 1,555

Acanthochitona crinita
(Polyplacophora)

364,800 234,607 689,247,497 614,059,419 17,023 2,737

Idiosepius notoides
(Cephalopoda)

285,863 93,114 297,178,066 189,330,826 19,705 1,399

Nucula tumidula
(Bivalvia)

273,272 126,403 378,309,195 296,427,272 20,605 2,100

Antalis entalis
(Scaphopoda)

351,943 125,869 369,111,329 241,658,022 28,825 1,399

MIRA4 Idiosepius notoides
(Cephalopoda)

43,218 6,880 29,267,478 10,095,956 10,063 785

Lottia cf. kogamogai
(Gastropoda)

34,794 6,391 25,737,707 9,530,625 7,134 817

Table 3 Summary of empirical homology-based prediction and clustering methodology in the molluscan transcriptomic libraries

Organism No. of transcripts No. of possible putative
proteins

No. of selected putative
proteins

No. of non-redundant putative
proteins

Gymnomenia pellucida
(Neomeniomorpha)

228,678 834,304 125,766 54,997

Wirenia argentea
(Neomeniomorpha)

394,251 1,185,594 213,616 54,183

Scutopus ventrolineatus
(Chaetodermomorpha)

220,258 499,165 87,291 39,631

Acanthochitona crinita
(Polyplacophora)

364,800 1,663,283 216,221 59,271

Idiosepius notoides
(Cephalopoda)

329,081 543,405 70,861 21,533

Lottia cf. kogamogai
(Gastropoda)

34,794 47,120 17,163 16,781

Nucula tumidula
(Bivalvia)

273,272 787,355 105,381 38,563

Antalis entalis
(Scaphopoda)

351,943 739,709 124,738 35,443
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(Fig. 3). The paralog group 1 (HPG-1) contains one con-

served motif (positions 6-8) and two unique single amino

acid signatures (positions 29 and 56) in the homeobox do-

main. Additionally, two non-basic amino acids in the N-

terminal region inside of the homeobox at positions 2 and

3 (see [54]) and one conserved motif downstream of the

homeobox (positions +1 and +2) in the C-terminal region

provide unambiguous signatures for the paralog group 1.

The paralog groups 2 (HPG-2) and 3 (HPG-3) have a

unique DNA-contacting residue that lies between two

conserved basic amino acids at position 4 within the N-

terminal region in the homeobox [54]. Furthermore, the

paralog group 2 contains three unique single amino acid

signatures at position 2, 24, and 58-59, whereas paralog

group 3 contains one conserved bilaterian residue at

position 14 and one specific lophotrochozoan “AL” motif

in the positions 36-37.

The paralog groups 4 (HPG-4) and 5 (HPG-5) do not

show any specific motifs or unique residues within the

homeodomain. The unique signature of these two para-

log groups is the motif “YPWM” located in the upstream

N-terminal region outside the homeodomain. Moreover,

the paralog group 4 contains a “LPNTK” diagnostic motif

in the downstream C-terminal region of the homeodomain

Table 4 BUSCO summary of the molluscan protein gene sets

Organism Complete Single-copy BUSCOs Fragmented BUSCOs Missing BUSCOs Completeness (%)

Gymnomenia pellucida
(Neomeniomorpha)

708 87 48 94.31

Wirenia argentea
(Neomeniomorpha)

450 234 159 81.14

Scutopus ventrolineatus
(Chaetodermomorpha)

506 167 170 79.83

Acanthochitona crinita
(Polyplacophora)

660 136 47 94.42

Idiosepius notoides
(Cephalopoda)

680 102 61 92.76

Lottia cf. kogamogai
(Gastropoda)

286 289 268 68.21

Nucula tumidula
(Bivalvia)

705 96 42 95.02

Antalis entalis
(Scaphopoda)

697 100 46 94.54

Table 5 Summary of initial pre-processing and generation of the high-quality molluscan protein gene sets

Organism No. of raw readsa No. of reconstructed transcripts No. of n-rb putative proteins Gene set completeness (%)

Gymnomenia pellucida
(Neomeniomorpha)

53,751,440 228,678 54,997 94.31

Wirenia argentea
(Neomeniomorpha)

50,456,889 394,251 54,183 81.14

Scutopus ventrolineatus
(Chaetodermomorpha)

43,492,046 220,258 39,631 79.83

Acanthochitona crinita
(Polyplacophora)

35,737,364 364,800 59,271 94.42

Idiosepius notoides
(Cephalopoda)

38,267,214 285,863 21,533c 92.76c

Idiosepius notoides (454)
(Cephalopoda)

588,878 43,218 – –

Lottia cf. kogamogai
(Gastropoda)

402,814 34,794 16,781 68.21

Nucula tumidula
(Bivalvia)

40,797,848 273,272 38,563 95.02

Antalis entalis
(Scaphopoda)

24,194,021 351,943 35,443 94.54

aRead pairs for Illumina libraries
bNon-redundant
cAfter the assembly step the Idiosepius notoides libraries were combined together for the subsequent downstream analysis
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(see [55]). A unique specific molluscan motif with 6 resi-

dues (“HIAKNM”) was discovered in the paralog group 5,

located immediately after the last residue in the C-terminal

region of the homeodomain. The paralog group 7 (HPG-7),

albeit not possessing a unique signature within the homeo-

domain, is the only paralog group that contains the region

that regulates the Hox-PBC interaction located close to the

N-terminal region right before the start of the homeodo-

main (see [56]).

The Hox sequences belonging to the central class

Lox5 (HPG-6), Lox2, Lox4 (HPG-8), and the posterior

paralog groups Post-2 and Post-1 (HPG-9) were charac-

terised by the presence of specific lophotrochozoan signa-

ture motifs and amino acid residues in the homeodomain

and its surroundings. For example, the presence of a

strongly conserved C-terminal parapeptide motif in the

paralog genes Lox5 (Lox5-parapetide), Lox2, and Lox4

(Ubd-A-parapeptide), and the distinctive homeodomain

residues in the paralog genes Post-1 and Post-2 (see [57]).

Alignment of the ParaHox genes Xlox, Gbx, and Cdx

provides an overview of the conserved homeodomain

peptides and the specific signature motifs located in the

N- and C-terminal regions of these genes. Among these

signature motifs, a specific lophotrochozoan pentapep-

tide motif (“LRTCD”) in the C-terminal arm of the Gsx

gene is present. Apart from the gastropod Lottia cf.

kogamogai, the neomeniomorph Wirenia argentea, and

the chaetodermomorph Scutopus ventrolineatus, at least

Fig. 1 Phylogeny of Hox and ParaHox genes from amino acid sequences containing homeodomain and flanking regions. The consensus tree was

inferred by Bayesian phylogenetic analysis with MrBayes v3.2.2 discarding 25 % of the sampled trees as burn-in. The branch support values are

posterior probability values. The new Hox and ParaHox sequences identified in this study are highlighted by black stars. Hox and ParaHox paralog

groups are represented by different colors. The homeobox genes distalless and engrailed were used as outgroups
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one ParaHox gene was identified in each of the species

investigated.

Gene Ontology and KEGG annotation

The functional characterisation using the KEGG and

Gene Ontology (GO) Slim terms revealed a similar relative

percentage of genes distributed in the different functional

categories among the molluscan protein gene sets, with a

few exceptions (Table 6, Figs. 4 and 5). The percentage of

classified proteins belonging to the different molluscan

gene sets ranges from 29.59 % to 46.04 % in the KEGG

analysis and from 52.0 % to 60.11 % in the GO. Despite

the disparity in the number of protein sequences in the

molluscan protein gene sets, the number of pathway

maps, in which all KEGG Orthology (KO) groups were

mapped, is very similar among the species (between 332

and 342).

As expected for transcriptomes sampled from different

early developmental stages, the transcriptomes are

enriched with proteins that bind and interact with DNA

(and thus have, e.g., a putative role in the control of gene

expression, chromatin regulation, etc.) and/or RNA (e.g.,

have a function in RNA processing and modification

such as alternative splicing, editing, and polyadenylation).

Biological processes involving transmembrane transport

as well as carbohydrate and lipid metabolism are overrep-

resented in relation to other categories in both KEGG and

GO analyses. The functional category “signal transduc-

tion” is overpopulated with a high relative percentage of

proteins in both analyses (between 3-5 % in KEGG and 1–

2 % in GO). A deeper look into the fine-grained functional

categories inside “signal transduction” in KEGG shows

that Notch, Hedgehog, and Wnt are common signaling

pathways shared in all gene sets with a high percentage of

genes.

Regarding the Wnt gene family, at least one Wnt gene

was found in each of the transcriptomes according to

KEGG orthology assignments. The transcriptomes of the

aculiferans Acanthochitona crinita and Gymnomenia

pellucida are the most Wnt-rich transcriptomes with

nine and eight Wnt representatives, respectively, whereas

the gastropod Lottia cf. kogamogai and the chaetodermo-

morph Scutopus ventrolineatus harbor only the Wnt5

gene. Additionally, most of the cardinal signaling com-

ponents of the Notch and Hedgehog pathways were

identified and characterised in all transcriptomes,

Fig. 2 Summary of the Hox and ParaHox genes identified in the eight molluscan species studied herein. For comparison, the putative ancestral

lophotrochozoan gene toolkit is provided. Tree topology follows Smith et al. [61]. The colored boxes indicate the anterior, central, and posterior

Hox as well as the ParaHox paralog groups. To date, no known Hox or ParaHox sequences (represented by question marks) belonging to a

monoplacophoran mollusk have been identified. The colored circles in the branch nodes represent the last common ancestor of the monophyletic

clades Conchifera, Aculifera, and Mollusca, respectively. It is important to note that the figure does not depict the chromosomal organisation of the

Hox and ParaHox genes in the studied species. Thus, it is well possible (and in case of the cephalopod Idiosepius even likely) that the Hox complement

is not organised in a distinct cluster in (some of) the species depicted herein
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Fig. 3 Multiple sequence alignments of Hox and ParaHox sequences highlighting the conserved homeodomain and flanking regions. Bilaterian

diagnostic peptides in the homeodomain and in the flanking regions are highlighted by colored boxes. Conserved lophotrochozoan and

molluscan residues are highlighted by dark red and green colored letters, respectively. Black stars indicate DNA-contacting residues
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Table 6 Functional annotation of the molluscan transcriptomes using KEGG analysis and Gene Ontology terms

Functional annotation Gymnomenia pellucida
(Neomeniomorpha)

Wirenia argentea
(Neomeniomorpha)

Scutopus ventrolineatus
(Chaetodermomorpha)

Acanchothitona crinita
(Polyplacophora)

Idiosepius notoides
(Cephalopoda)

Lottia cf. kogamogai
(Gastropoda)

Nucula tumidula
(Bivalvia)

Antalis entalis
(Scaphopoda)

KEGG (total) 20,861 20,662 16,935 25,460 16,672 9,409 18,524 20,842

Pathways 341 338 340 342 336 332 337 338

Metabolism 3,720 4,324 4,371 5,806 2,951 1,910 3,984 4,958

Genetic Information 2,409 2,180 1,779 2,477 1,834 1,143 2,239 2,146

Enviromental Information 2,087 1,920 1,232 2,443 1,697 809 1,993 1,772

Cellular Processes 1,546 1,636 1,128 1,961 1,128 755 1,433 1,556

Organismal System 2,991 2,655 2,249 3,315 2,609 1,281 2,806 2,557

Human Diseases 3,915 3,619 2,634 3,803 3,127 1,828 4,386 3,367

Not classified 4,193 4,328 3,542 5,655 3,326 1,683 1,683 4,486

GO (total) 23,080 31,149 18,543 30,541 17,469 8,776 23,906 23,779

Biological Process 3,346 4,776 3,196 4,947 2,434 1,352 3,765 3,522

Molecular Function 12,989 16,957 9,683 15,688 9,186 4,662 12,999 12,630

Cellular component 6,745 9,416 5,664 9,906 5,846 2,762 7,142 7,627
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Fig. 4 Distribution of the 25 most represented KEGG functional categories in the eight molluscan transcriptomes. The numbers represent the

relative percentage of mapped proteins in each category in regard to the total number of transcripts in the respective species
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Fig. 5 Comparative functional classification using Gene Ontology-Slim terms. Only the 13 most expressed terms in each ontological domain are

shown. The relative percentages represent the numbers of mapped GO terms in each category in reads to the total number of transcripts in the

respective species
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including the Notch and Hh orthologs (with the exception

of S. ventrolineatus) (Fig. 6). Phylogenetic analysis with Hh

genes confirmed the orthology of these molluscan genes

and supports the monophyly of the three major clades of

bilaterian animals (Deuterostomia, Lophotrochozoa, and

Ecdysozoa) (Fig. 7a).

A detailed view at the sequence composition of Hh

and Notch orthologs was performed, highlighting the

organisation of the respective protein domains (i.e., N-

terminal Hh and C-terminal Hint domain in Hh orthologs

and EGF-like repeats, LNR, and ANK domains in Notch

orthologs) and the characteristic conserved residues

among these genes. The Notch sequences identified herein

showed the absence of certain diagnostic motifs in all se-

quences, with the exception of the protobranch bivalve

Nucula tumidula, implying that these genes, despite being

classified as a bona fide Notch, are not represented in their

totality (partial coding sequence region). Regarding the Hh

genes, apart from Lottia cf. kogamogai in which the Hint

domain is missing, all the Hh sequences harbor the full

length diagnostic Hedgehog domains. Despite the partial

Hh sequence of the limpet Lottia cf. kogamogai, the

number of Hh-related genes retrieved from this tran-

scriptome was the highest among all transcriptomes

with 11 representatives. Phylogenetic analysis using the

11 Hh-related genes of the limpet, one polyplacophoran

Hh-related gene obtained from A. crinita, and previ-

ously published sequences from other lophotrochozo-

ans recovered the “Lophohog” clade, supporting the

existence of a lophotrochozoan-specific Hh-related

gene family ([58]; cf. Fig. 7b).

Overall, the diversity of different GO terms and KEGG

functional categories in the protein gene sets show a

high resolution picture of the molluscan transcriptomes.

Discussion
Feasibility of non-model mollusks for comparative

transcriptomic studies

As next-generation sequencing costs have dramatically

decreased during the last years, transcriptome shotgun

sequencing has emerged as a powerful tool to investigate

RNA dynamics of living organisms qualitatively (e.g.,

which genes are expressed during a given ontogenetic

period) and quantitatively (e.g., expression levels of a

specific gene) e.g., [59]. Accordingly, it is now feasible to

obtain a full catalog of the transcriptome composition

and complexity of organisms on a broader and compara-

tive level, enabling to assess several questions in evolu-

tionary biology with the assistance of genomic data [60–

62]. Additionally, such a comparative approach is useful

to discover shared and unique evolutionary events from

different taxa, allowing plausible evolutionary inferences

of specific biological questions. The 1KITE (1,000 Insect

Transcriptome Evolution) project is a good example as

to how next-generation transcriptome sequencing can

form the base not only for phylogenetic analyses, but

also for insights into genome and transcriptome evolu-

tion of species-rich animal clades [63].

Fig. 6 Identification of cardinal gene components in Wnt, Hedgehog, and Notch signaling pathways in the transcriptomes. Crassostrea gigas, Lottia gigantea,

and Octopus bimaculoides genes identified from genomic sequences were used for comparison. Not identified sequences are marked by the red “X”

De Oliveira et al. BMC Genomics  (2016) 17:905 Page 12 of 23

58



In our study, nine new transcriptomes belonging to

representatives of seven out of the eight recent class-

level taxa of mollusks were deeply sequenced using

next-generation sequencing (Illumina and 454). To gen-

erate reliable and good quality protein gene sets for

downstream analyses (e.g., functional and phylogenetic

analyses, sequence identification), various protocols for

pre-processing, assembly, clustering, and coding se-

quence region prediction were established.

Despite many limitations in the de novo assembly and

the scarce resources of molluscan genomic references

(including fully annotated genomes), transcriptome se-

quencing offers a cost-effective method of characterizing

the gene set of non-model species. One challenging as-

pect in every transcriptomic project is the comparison

between assemblies using either common statistics (e.g.,

N50, number of reconstructed bases, and average length

of the transcripts) or annotation-based metrics (e.g.,

number of single copy orthologs). As pointed out by O´

Neil & Emrich [64] and Mundry et al. [65], although

many metrics have been used to evaluate and compare

these assemblies, it is unclear how precise and accurate

these metrics are. Despite these limitations, we assessed

and evaluated common statistics in order to compare

our assembly results with other recent transcriptome

studies on lophotrochozoan organisms (e.g., N50 tran-

script and number of reconstructed bases). The assembly

results obtained herein (excluding the 454 libraries) are

at least comparable and in most cases outperform some

recent transcriptome studies (cf. [46, 66, 67]). Regarding

the completeness and integrity of the transcriptome (i.e.

fragmentation of genes), the BUSCO analysis revealed a

reasonable completeness in all molluscan libraries, corrobo-

rated by the great diversity of gene and gene families identi-

fied in the downstream analysis. The high proportion of

fragmented genes in the transcriptome of the patellogastro-

pod Lottia cf. kogamogai, as pointed out by the BUSCO

analysis, reflects the high rates of insertions and deletions

due to homopolymeric regions during the pyrosequencing

process [68], creating frameshifts and disrupting the align-

ments between these sequences and their respective homo-

logs. Indeed, the first phylogenetic analyses with Lottia cf.

kogamogai Hox genes resulted in atypically long branches

showing a great amount of genetic divergence between the

patellogastropod sequences and their respective homologs

in Mollusca and another bilaterians. Accordingly, even if it

remains unclear as to how the aforementioned metrics

most accurately reflect the assembly results, comparisons

among our data as well as with those of different tran-

scriptome studies clearly demonstrate the high quality

of our results.

To date, there are only a few genetic or physical maps

publicly available which describe genome organization,

extrachromosomal DNA (mitochondrial genomes) [69–71],

gene structure, or functional contents for lophotrochozoan

animals and especially mollusks. However, three recent

ba

Fig. 7 Phylogenetic reconstruction of Hh (a) and Hh-related (b) genes from amino acid sequences. The consensus trees were inferred through

Bayesian phylogenetic analysis with MrBayes v3.2.2 discarding 25 % of the sampled trees as burn-in. The branch support values are posterior probability

values of Bayesian likelihood. Colored branches in A represent the three major superphyla Ecdysozoa, Deuterostomia, and Lophotrochozoa. The Lophohog

Hh-related family was first described by Bürglin [58] and originally included two sequences retrieved from the lophotrochozoans Lottia gigantea (mollusk)

and Capitella teleta (annelid). Names followed by black stars correspond to newly described sequences obtained in this work
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studies based on a robust genome annotation in the patel-

logastropod limpet Lottia gigantea [16], the Pacific oyster

Crassostrea gigas [49], and the octopus Octopus bimacu-

loides [51] have shown that the expected number of protein

coding genes in these mollusks ranges from approx. 24,000

to 34,000. In our study, except for Lottia cf. kogamogai and

Idiosepius notoides, all protein gene sets have an inflated

number of putative proteins when compared to the patello-

gastropod, oyster, and octopus data. This elevated number

of protein-coding genes does not necessarily represent the

real complexity of the transcriptomic machinery in our

study species; rather, it might be influenced by biases and

limitations brought by the next-generation DNA platforms

(i.e. fragmentation of genes, sequencing biases) (see [72])

and/or assembly artifacts. Considering the annotation of

the coding sequence regions in the different molluscan li-

braries, a relatively small proportion of proteins (between

21–59 %; see Table 3) have shown sequence homology

against well-curated public databases. This high proportion

of non-annotated protein sequences is not unusual in tran-

scriptome projects, and this feature is commonly observed

in a vast diversity of taxa (cf. [73, 74]), including mollusks

[75–77]. This lack of detectable sequence homology in the

public databases may be due to several factors, including

taxonomically restricted genes (e.g., orphan genes), novel

isoform transcripts or protein-coding genes, non-functional

coding sequence regions, and poor quality of the sequences

themselves or the assembly procedures performed [78, 79].

Specifically in mollusks, various studies have described the

emergence of numerous specific suites of genes and gene

families, which are either present in different molluscan lin-

eages or are restricted to a single one [51, 80]. The discov-

ery of an independent large-scale expansion and evolution

of the tyrosinase gene family in bivalves [81] is a good ex-

ample of how comparative genomics and transcriptomics

are useful to characterise novel lineage-specific genes and

gene families.

Diversity of Hox and ParaHox genes in mollusks

To elucidate the utility of the molluscan transcriptomes

for evo-devo studies, an extensive comparative survey

was conducted focussing on Hox and ParaHox gene se-

quences. A total of 64 Hox and eight ParaHox genes

were found and fully characterised. Prior to our study,

complete (or near-complete) sets of Hox genes had only

been identified in three bivalve species (Pecten maximus,

Crassostrea gigas, and Pinctada fucata) [49, 82, 83], two

marine gastropods (Gibbula varia and Lottia gigantea)

[16, 38], and in two cephalopods (the squid Euprymna

scolopes and the octopod Octopus bimaculoides) [51, 84].

We here report a complete Hox gene complement for

the neomeniomorph Gymnomenia pellucida. Addition-

ally, at least near-complete Hox gene complements were

identified from the polyplacophoran Acanthochitona

crinita, (10 genes), the scaphopod Antalis entalis (10

genes), and another neomeniomorph, Wirenia argentea

(nine genes). Notably, only few ParaHox sequences were

retrieved from our molluscan transcriptomes, considering

that all three ParaHox genes had been found in various

molluscan lineages prior to our analysis [16, 42, 49, 83, 85].

The publicly available genomic resources and the data

presented here show that the molluscan Hox and Para-

Hox clusters share a similar composition in terms of

gene content despite the great disparity of morphological

features within the phylum [26]. This implies that the

rich morphological diversity among different class-level

taxa of mollusks lies in the regulation and subtle

changes of the regulatory networks in the developmental

program rather than in the physical organisation and

composition of the Hox and ParaHox clusters. By com-

paring Hox sequences from a vertebrate, fly, and amphi-

oxus, it was proposed earlier that many of the amino

acid replacements used as diagnostic criteria for the dif-

ferent paralog groups are likely to be localised on the

surface of the respective proteins and have a major func-

tional impact on protein-protein interactions [86]. This

fact, associated with the relaxed DNA-binding specificity

of the homeodomain, provides the necessary toolbox to

promptly originate new regulatory interactions between

the Hox genes and their target genes [87], thereby form-

ing an important prerequisite for the evolution of novel

morphological features. Within Mollusca, a striking ex-

ample as to how the possible relaxation of the regulatory

constraints and the recruitment of novel regulatory

genes are responsible for morphological changes has

been reported for the cephalopod Euprymna scolopes

[36]. Hox gene expression in this bobtail squid deviates

from the proposed ancestral role of patterning the

antero-posterior body axis; instead, the reported Hox

genes are expressed during ontogeny of various taxon-

specific morphological innovations such as the brachial

crown, funnel, light organ, or the stellate ganglia. In

addition to the striking plasticity of the Hox genes and

their functional co-option during evolution, the study

also proposed the possibility that the non-collinear mode

of expression of these genes in cephalopods correlates

with the disruption of the Hox cluster in the genome.

This notion has recently been confirmed by detailed

analyses of the genome of an octopod [51]. Concerning

the ParaHox genes, it was shown that the expression of

Gsx in the gastropod Gibbula varia coincides with the

area that surrounds the radula anlage, indicating that the

function of this homeobox gene was co-opted into the

formation of this molluscan autapomorphy [42]. Studies

on a scaphopod and the pygmy squid Idiosepius, however,

revealed a different scenario, whereby Gsx is expressed in

components of the developing larval and adult nervous

system, respectively, but not in the digestive tract or
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the developing radula, thus again demonstrating the

plasticity of Hox and ParaHox expression domains

across Mollusca [43].

It is difficult to determine whether the lack of specific

Hox and ParaHox genes in the species of our study is due

to gene loss, methodological biases, or low gene expres-

sion levels. However, loss of certain genes in both Hox

and ParaHox clusters has been described as a recurrent

event in the evolutionary history of metazoans [16, 88, 89]

including mollusks [45, 49, 90]. Tunicates are a prime ex-

ample as to how massive gene losses and disrupture of the

cluster-like chromosomal organisation can occur in the

Hox gene complement [91]. As such, disintegration of the

Hox cluster and the loss of central class Hox genes have

been reported for the tunicates Oikopleura dioica [92] and

Ciona intestinalis [93]. Losses involving the anterior, cen-

tral, and posterior Hox as well as the ParaHox genes have

been shown by whole genome sequencing studies in ceph-

alopods and bivalves [49, 51]. In addition, various molecu-

lar studies have failed to amplify and retrieve particular

Hox and ParaHox gene fragments from a wide range of

molluscan lineages [45, 84, 90, 94]. Taking into consider-

ation these gene losses, the high degree of completeness of

the scaphopod and polyplacophoran transcriptomes ob-

tained from our BUSCO searches (94.54 % and 94.42 %,

respectively) and the deep transcriptome sequencing, it

seems reasonable to assume that both the polyplaco-

phoran (Acanthochitona crinita) and the scaphopod

(Antalis entalis) Hox set are made up of 10 genes and are

represented in their totality in our analysis. Regardless of

the Hox and ParaHox set completeness, it is important to

notice that the Hox and ParaHox sequences identified in

this study contain the full length protein-coding sequence

and are long and informative enough for a great deal of

molecular (e.g., in situ hybridisation) and bioinformatics

applications (e.g., phylogenetic analysis).

The identification and characterisation of signature

residues (i.e., residues that are shared at certain positions

by orthologous proteins but not likely to be present in

paralogous proteins) inside the homeodomain and in the

surroundings of N-terminal and C-terminal regions pro-

vides a better understanding of the evolutionary history

of Hox genes [7] and metazoan phylogeny. Herein, a

hexapeptide molluscan motif in the paralog group 5 is

described for the first time, together with a lophotro-

chozoan five residue motif in the C-terminal arm of the

ParaHox gene Gsx. The molluscan-specific motif repre-

sents an important marker in distinguishing, from the

same paralog, closely related species. To date, this is the

first molluscan-specific motif related to a Hox paralog

group. These findings show the suitability of the mollus-

can transcriptomes for the identification of target develop-

mental genes and the specific fine-grained characterisation

of these sequences in a phylogenetic context.

Recently, two phylogenomic studies have shed light on

the evolutionary interrelationships between seven [60] or

the entire eight recent class-level taxa of Mollusca ([61];

see also [95] for some corrections of their 2011 analysis).

Remarkably, both analyses strongly support the Aculifera-

Conchifera hypothesis, i.e., a basal split of Mollusca into a

clade comprising all mollusks that derive from an ancestor

with a single shell (Conchifera) and a taxon uniting both

aplacophoran clades (Neomeniomorpha and Chaetoder-

momorpha) with the Polyplacophora as Aculifera. In the

light of these results, the characterisation of the Hox and

ParaHox gene sets described herein, which includes four

aculiferan species, provides an important prerequisite for

gene expression studies, and thus research into assessing

the putative functional plasticity of these genes across

Mollusca. As a matter of fact, expression patterns of ten

Hox (all representatives except Post-1) and one ParaHox

gene (Cdx), based on the transcriptome of the polyplaco-

phoran Acanthochitona crinita analysed herein, have re-

cently become available from our group [41, 44]. These

studies show that the Hox genes in polyplacophorans are

expressed in a conserved anterior-posterior pattern along

the primary (i.e., longitudinal) body axis. Thereby, their

expression was found to be staggered and not restricted to

trochozoan- or molluscan-specific features such as the

prototroch, the apical organ, or the anlagen of the shell

(plates). Instead, the Hox genes are expressed in contigu-

ous domains originating from different germ layers. This

is in stark contrast to cephalopod and gastropod mollusks,

where they are expressed in a non-staggered fashion in the

foot, apical organ [35, 37, 38, 96] or in taxon-specific

features of the squid Euprymna [36]. Thus, the polypla-

cophoran Hox gene expression pattern is more similar

to annelids than to their molluscan allies. This has led

to the conclusion that the Hox genes were co-opted into

the patterning of morphological novelties in at least some

conchiferans, a situation that most likely contributed to

the evolutionary successes of its representatives (see [26]).

Functional characterisation and diversity of the gene

repertoire in mollusks

The ability to correlate individual sequences and their

respective molecular function is an important step to

elucidate the biological background of large numbers of

genes (e.g., a putative role in axis specification, neurogen-

esis, digestive tract formation, and the like). The categor-

isation of genes and gene products into well-constructed

hierarchical classes and pathways aids in the understand-

ing of both cell and organismal biology [97, 98]. This use

of molecular information also aids in understanding gen-

etic regulatory networks that control expression levels of

mRNA and proteins. The GO as well as KEGG enrich-

ment analyses showed a common overlap of functional

categories, which are compatible with the biological

De Oliveira et al. BMC Genomics  (2016) 17:905 Page 15 of 23

61



background where the transcriptomes were sampled.

The functional GO terms “DNA binding”, “nucleus”,

and “methyltransferase activity” are terms with a high

relative percentage of proteins in all gene sets. This re-

flects the transcriptome background during the devel-

opment of the species, composed by the presence of

many proteins involved in the basal regulation of the

transcription (e.g., general transcription factors), develop-

ment (e.g., homeobox genes such as Hox and ParaHox

genes), and protein methylation (e.g., regulation of the epi-

genetic levels that affect transcription).

Considerable differences were found between the KEGG

categories and GO terms retrieved from the predatory sea

snail Rapana venosa (larval and post-larval stages) [99]

and the transcriptomes presented herein. The number of

different metabolic pathways into which the proteins were

mapped was also found to be higher in our study (between

332 and 342 pathways) than in that of Song et al. [99] (270

pathways). However, this discrepancy can be explained by

the nature of the biological samples used to construct the

RNA libraries. While the six R. venosa samples consisted

of only larval and post-larval stages, our samples covered

larval, post-larval, juvenile, and adult stages. Due to this

broader sampling, one would expect a higher number of

metabolic pathways in our analysis than in that of Song

et al. [99]. The low percentage and absence of some devel-

opmental genes in the Scutopus ventrolineatus and Lottia

cf. kogamogai transcriptomes, as revealed by the func-

tional analysis with KEGG and GO, as well as the Hox

and ParaHox survey, is a direct reflection of the use of

adult specimens during the construction of the transcrip-

tome library and the shallow depth of the 454 sequencing

methodology, respectively.

The Wnt, Hedgehog, and Notch signaling pathways

are related to the regulation of cell proliferation, transcrip-

tion, translation, and the proper embryonic development

of bilaterian animals, in which any interruption of their

signaling activity has severe consequences on develop-

mental outcomes [100]. Thirteen Wnt subfamilies have

been characterised in metazoans, while lophotrochozoan

representatives, such as the polychaete annelids Capitella

teleta and Platynereis dumerilli, commonly possess only

12 subfamilies and the basal-branching gastropods Patella

vulgata and Lottia gigantea only nine (WntA, Wnt1,

Wnt2, Wnt4, Wnt5, Wnt6, Wnt7, Wnt9, and Wnt10) [101,

102]. We found three additional subfamilies in mollusks

using KEGG orthology assignment, namely Wnt8, Wnt11,

and Wnt16, suggesting that molluscan gene content in the

Wnt subfamilies matches that of their lophotrochozoan

relatives. Indeed, in a recent publication of the genome of

the cephalopod Octopus bimaculoides [51], the presence

of 12 Wnt genes was reported, corroborating our results

and expanding the Wnt complement to at least 12 genes

in Mollusca. The Wnt3 gene is not present in any

molluscan transcriptome analysed so far and is likewise

absent in all other lophotrochozoans and ecdysozoans

hitherto examined (but not in cnidarians) (see [103, 104]),

reinforcing the idea that this gene was lost at the base of

Protostomia.

Regarding the Hedgehog and Notch signaling path-

ways, no study focusing on the characterisation and

phylogenetic relationships of these genes in mollusks is

currently available. The limited knowledge about these

important pathways is restricted to some gene expres-

sion studies in a few gastropod and cephalopod repre-

sentatives [105, 106]. Comparisons with respect to the

core components present in these two pathways between

the transcriptomes described here and two molluscan

reference genomes (the limpet Lottia gigantea and the

oyster Crassostrea gigas) revealed a highly shared molecu-

lar framework. These results are not surprising, given that

both signal transduction pathways play a fundamental role

in animal development (e.g., patterning of body axes) and

have been characterised in several metazoan animals, from

sponges [107] to chordates including humans [108]. Our

analysis of the domain organisation in Notch and Hh

orthologs revealed different architectures and patterns of

conservation within mollusks and other major groups of

bilaterian animals (ecdysozoans and deuterostomes). The

receptor Notch is a multidomain protein made by six dif-

ferent components: 30 to 40 amino acids EGF (epidermal

growth factor) repeats containing six conserved cysteines;

three LNR (lin-notch-repeat) or Notch domains; one

NOD and NODP domain; a RAM 23 domain; a PEST

domain; and, finally, several Ankyrin repeats [109].

Comparisons of the EGF domain content between the

basally-branching bivalve Nucula tumidula, the poly-

placophoran Acanthochitona crinita, and the gastropod

Lottia gigantea Notch sequences revealed the presence

of 34 to up to 36 repeats in these lophotrochozoan pro-

teins. The presence of the NOD and NOPD domains

has also been reported for the bivalve N. tumidula and

is shared by the gastropod L. gigantea. The function of

these domains is still obscure and remains to be eluci-

dated, albeit they are present in almost all major metazoan

lineages (with the exception of the Porifera) [110].

The Hh gene family is present throughout the Metazoa,

being secondarily lost in some lineages. For example, the

nematode Caenorhabditis elegans lacks an Hh ortholog,

whereas Drosophila melanogaster, the sea anemone Nema-

tostella vectensis, and mammals have one, two, and three

Hh genes, respectively [111–114]. Herein, one single Hh

gene was identified in each of the molluscan transcriptomes

(apart from Scutopus ventrolineatus) through KEGG

orthology assignments. Notably, a distinct Hh-related fam-

ily named “Lophohog” was previously retrieved from the

genomes of the annelid Capitella sp. I and the gastropod

Lottia gigantea [58]. In this study, 12 Hh-related genes were
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first identified and described for the basally branching

gastropod Lottia cf. kogamogai (11 genes) and the polypla-

cophoran Acanthochitona crinita (one gene). No Hh-re-

lated genes were found in the remaining transcriptomes

analysed in this study. Interestingly, three new Hh-related

sequences (two from the limpet L. cf. kogamogai and one

from the polyplacophoran A. crinita) showed a close

relationship with Lophohog members, expanding the

previously described Lophohog clade to five sequences.

Accordingly, it seems that the genomes of the basally

branching gastropods L. cf. kogamogai and L. gigantea

are enriched with Hh-related genes, more than in any

other molluscan representative investigated to date.

The apparent lack of Lophohog representatives in the

other mollusks investigated herein must be treated with

care as it may not represent the real genetic back-

ground as fixed in the genome of these species due to

the nature of the transcriptome sequencing; however,

the available genomic and transcriptomic data so far

support such a scenario. It is expected that the evolution

of Hh and Hh-related sequences will become clearer as

soon as additional molluscan genomes become available.

Conclusions

Mollusks show a striking diversity of body plans and are

a key taxon for a better understanding of the underlying

mechanisms that guide the evolution of developmental

processes in multicellular animals. In this study, high-

quality transcriptomes were generated from eight mol-

luscan species, representing seven of the eight recent

class-level taxa. Different pipelines were carefully de-

signed and implemented, yielding results that are com-

parable with those generated from model organisms.

Furthermore, an extensive catalog of annotated gene

products was generated for application in a broad range

of downstream analyses. The study focused on the iden-

tification and evolution of important developmental

genes (Hox and ParaHox) and molecular pathways,

nevertheless the results can be used in a broad range of

in silico (e.g., phylogenomics and gene profiling) and

molecular developmental and functional analyses (e.g.,

in situ localisation of mRNAs, expression and characterisa-

tion of cloned genes, gene silencing). The data presented

herein increase the knowledge on the molecular toolkit of

mollusks, especially of the understudied aplacophoran

clades, and provides a valuable molecular resource, in par-

ticular for further research with a focus on comparative

evolutionary developmental (i.e., evo-devo) studies.

Methods

Collection sites, animal cultures, RNA extraction, and

fixation

Adults of the polyplacophoran Acanthochitona crinita

were collected at the Station Biologique de Roscoff,

(Roscoff, France) during the summers of 2013 and 2014.

Embryos were cultured and staged as previously de-

scribed [41, 115]. Several hundred individuals of early

cleavage stages, blastulae, gastrulae, trochophore larvae,

and metamorphic competent individuals as well as early

juveniles were collected. Adults of the solenogasters (=

neomeniomorphs) Wirenia argentea and Gymnomenia

pellucida, the basally branching protobranch bivalve

Nucula tumidula, and the caudofoveate (= chaetoder-

momorph) Scutopus ventrolineatus were collected from

sediment that was sampled with a hyperbenthic sled at

180–220 meter depth on muddy seafloor in Hauglandso-

sen (Bergen, Norway) during the winters of 2012 and

2013. The solenogaster and bivalve embryos were cul-

tured and staged as previously described [28, 115, 116].

Adults of S. ventrolineatus were kept at 6.5 °C in UV-

treated millipore-filtered seawater (MFSW) at the mar-

ine living animal facilities at the Department of Biology,

University of Bergen, and total RNA of two adult indi-

viduals was extracted. Several hundred individuals of

early cleavage stages, blastulae, gastrulae, pericalymma (i.e.,

test cell) larvae, and metamorphic competent as well as ju-

venile individuals were collected from the solenogaster and

bivalve species. Adults of the scaphopod Antalis entalis

were collected from approx. 30 m depth by the staff of the

research vessel Neomys off the coast of Roscoff (France).

Embryos were cultured and staged as previously described

[43]. A total of several hundred individuals of mixed devel-

opmental stages up to the early juveniles were collected.

Adults of the pygmy squid Idiosepius notoides were dip-

netted in the sea grass beds of Moreton Bay, Queensland,

Australia. Adult squids were kept in closed aquaria facilities

at the School of Biological Sciences of the University of

Queensland and the RNA of seven nervous systems of

adults was collected. Embryos of I. notoides were cultured

and staged as previously described [117]. Several individuals

(approx. 300) representing all stages from freshly laid zy-

gotes to hatchlings were collected. Adults of the basally

branching patellogastropod Lottia cf. kogamogai were col-

lected from intertidal rocks and stones in the vicinity of the

marine biological station Vostok (approx. 150 km north

of Vladivostok, Russian Federation). Embryos and adults

of L. cf kogamogai were cultured and staged as previously

described [118, 119]. Several hundred L. cf. kogamogai em-

bryos, larvae, and juveniles of key developmental stages (i.e.

trochophore, veliger, metamorphic competent, early juven-

ile stages) were collected.

For RNA extraction, some individuals were stored in

RNAlater (Lifetechnologies, Vienna, Austria) at −20 to

−80 °C. The RNA of these specimens as well as freshly

collected specimens was extracted with a Qiagen extrac-

tion kit (Roermond, Netherlands) and subsequently stored

at −80 °C. Representatives of the cryptic monoplacophor-

ans were not accessible to us for this study.
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Next-generation sequencing, sequence pre-processing,

and filtering

High-quality molluscan transcriptome libraries using

next-generation sequencing were generated for each one

of the aforementioned class-level taxa (Table 7). The

short-read libraries were generated with Illumina HiSeq

2000, chemistry v3.0, 2 x 100 pb paired-end modules

and the normalised random-primed cDNA. 454 librar-

ies were generated with GS FLX+ with read length of

up to 750 bp. The number of reads (or read pairs in

Illumina libraries) generated per pooled transcriptomic

library varied between 402,814 (Lottia cf. kogamogai)

and 53,751,440 (Gymnomenia pellucida), depending on

the sequencing technology used.

To remove low quality reads and avoid substandard re-

sults in the downstream analyses, different pre-processing

bioinformatics pipelines were developed and empirically

tested regarding the sequencing method used to obtain

the transcriptomic libraries. The short-read libraries pre-

processing (Illumina) was carried out using the multi-

threaded command line tool trimmomatic v0.3.2 [120].

Known specific Illumina adapters were removed from the

paired-end libraries with the parameter ILLUMINACLI-

P:adapters/TruSeq3-PE-2.fa:2:30. The filtering by quality

and length was executed with the command line SLI-

DINGWINDOW:4:15 MINLEN:40 for all the transcrip-

tomes except for the Wirenia argentea library, in which

the parameters SLIDINGWINDOW:4:20 MINLEN:40

were defined. The long read libraries (454) were

trimmed and converted from SFF (Standard Flowgram

Format) to fasta and fasta.qual with the program

sff_extract.py v0.3.0 included in the seq_crumbs pack-

age (http://bioinf.comav.upv.es/seq_crumbs/) with the

default parameters as well as -min_left_clip = 30 param-

eter for Lottia cf. kogamogai and –min_left_clip = 32

for the Idiosepius notoides library. The quality of the

filtered libraries was assessed with the software fas-

tx_toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) taking

into consideration the quality score of the bases, the GC-

content, and the read length. The assemblies and all

downstream analyses were conducted with high-quality

and clean libraries.

Transcriptome assembly and quality assessment

The filtered short-read and long-read transcriptome librar-

ies were reconstructed into contiguous cDNA sequences

with IDBA_tran v1.1.1 [121] and MIRA4 [122] software,

respectively. Information regarding the mRNA sources is

summarised in Table 7. The short-read transcriptome

assemblies with IDBA_tran were executed with the param-

eters –mink 20 –maxk 60 –step 5, except for the Wirenia

argentea library for which the additional parameter –max_-

count 3 was used. All long-read transcriptome assembling

was executed with the parameter mmhr = 2 and the default

settings. The quantitative quality assessment of the recon-

structed libraries were carried out using QUAST program

v2.3 [123] regarding the number of transcripts, number of

total bases reconstructed, N50 value, and GC content. The

assembling results of the different Idiosepius notoides

libraries (454 and Illumina) were combined and used in all

posterior downstream analyses.

Table 7 Summary of the sequencing methods, organisms, and mRNA extraction sources

Organism Class mRNA source Sequencing

Gymnomenia
pellucida

Neomeniomorpha 1/5 total RNA from developmental stages (i.e. freshly hatched larvae until metamorphosis) –
4/5 mRNA from adults.

Illumina

Wirenia argentea Neomeniomorpha 1/7 total RNA from developmental stages (i.e. freshly hatched larvae until metamorphosis) –
6/7 mRNA from adults.

Illumina

Scutopus
ventrolineatus

Chaetodermomorpha Total RNA from 2 adult individuals Illumina

Acanthochitona
crinita

Polyplacophora Early cleavage stages – gastrula – early, midstage, and late trochophore larvae – metamorphic
competent and settled (post metamorphic) individuals

Illumina

Idiosepius
notoides

Cephalopoda Central nervous system of 7 adult individuals Illumina

Idiosepius
notoides

Cephalopoda 2/3 total RNA from mixed developmental stages (i.e. stages collected after egg laying until the
hatching stage) – 1/3 total RNA from adult central nervous system (brain), arm, and gonads
tissue)

454

Lottia cf.
kogamogai

Gastropoda 2/3 total RNA from mixed developmental stages (i.e. trochophore – veliger – pediveliger –
metamorphic competent – first juvenile stages) – 1/3 total RNA from adult foot, and central
nervous system (CNS)

454

Nucula tumidula Bivalvia Early cleavage stages – gastrula – early, midstage, and late pericalymma larvae – metamorphic
competent and settled (post metamorphic) individuals

Illumina

Antalis entalis Scaphopoda Early cleavage stages – gastrula – early, midstage, and late trochophore larvae – metamorphic
competent and settled (post metamorphic) individuals

Illumina
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Identification of the coding sequence regions (CDS)

To predict the most probable coding sequence regions

within the transcripts, an empirical homology-based meth-

odology was designed using Novaes et al. [124] as a guide,

rather than the use of gene prediction tools. The use of

gene prediction tools requires the construction of a high-

quality training dataset, an arduous task for understudied

animals as those used herein. All the reconstructed se-

quences were translated into protein sequences (located be-

tween a start and a stop codon) greater than 50 amino

acids in length with the program getorf from the EMBOSS

package (http://emboss.sourceforge.net/). The libraries were

then submitted to similarity searches with a defined e-value

of 1e-06 against three well-curated reference libraries (Uni-

ref90, Pfam and CDD) using the blastp [125], hmmsearch

[126], and rps-blast [125] tools, respectively. An in-house

Perl script was written in order to select the unique CDS in

each transcript with the highest number of evidences (posi-

tive hits against the reference library). All the posterior

downstream analyses were conducted with the protein gene

set libraries created with the aforementioned procedure.

Generation of molluscan non-redundant gene sets

To decrease the computation resources required for the

downstream analyses and prevent inflation of the results,

the redundancy of the molluscan protein gene sets was

reduced using the program UCLUST [127]. The protein

sequences with 100 % identity were clustered together,

in which the identity is a measure of the number of

matches (identities) between two sequences divided by

the number of alignment columns.

Assessment of completeness of protein gene sets

In addition to the statistical assessment of the assembled

transcriptomes (e.g., N50 values, number of reconstructed

base pairs), an analysis to assess the protein gene set com-

pleteness in terms of gene content was performed, in

order to provide a better understanding and interpretation

of the results obtained in the downstream analyses. The

assessment of gene content and completeness of the pro-

tein gene sets was performed with the program BUSCO

using the pre-defined metazoan Benchmarking set of Uni-

versal Single-Copy Orthologs with 843 evolutionary con-

served orthologous groups [53]. The gene sets were

classified into BUSCO metrics as follows: C: complete, D:

duplicated, F: fragmented, M: missing.

Hox and Parahox sequence identification and

phylogenetic analysis

The protein libraries from all transcriptomes were used

in local similarity searches using the program blastp

[125] against known and well-curated molluscan Hox

and ParaHox sequences retrieved from GenBank non-

redundant protein database. The top 3 blast hits of each

similarity search were analysed and re-blasted against

the entire GenBank non-redundant protein database to

reconfirm the homology. Additionally, each putative

Hox and ParaHox gene was independently aligned to-

gether with their representative homologs from several

different metazoan phyla also retrieved from GenBank

non-redundant database using the program mafft [128]

with the parameters –max_iterate 1000 –localpair. The

multiple sequence alignment containing the Hox and

ParaHox sequences were searched for the presence of the

diagnostic residues/motifs in the homeodomain as well as

in the flanking regions. Frameshift errors in Lottia cf.

kogamogai Hox1/Hox2/Post-1/Post-2 sequences were cor-

rected using the HMM-FRAME program [129]. All the se-

quences were then manually edited with the program

aliview [130]. The phylogenetic analysis was carried out

using MrBayes v3.2.6 [131] with Jones-Taylor-Thornton

model of amino-acid substitution [132] as determined

using Akaike information criterion (AIC) as implemented

in prottest3 [133], 6 rates categories for the gamma distri-

bution, and 30,000,000 generations. After the removal of

the initial 25 % of the sampled trees as burn-in, the quality

of the run was assessed using Tracer (http://beast.bio.ed.a-

c.uk/Tracer), regarding the convergence of the likelihood

values. The final phylogenetic tree was created and edited

with Figtree (http://tree.bio.ed.ac.uk/software/figtree/).

The list of species and gene names, phyla, and GenBank

accession numbers used in the phylogeny are available in

Additional file 1: Table S1.

Identification of Hh and Hh-related genes and

phylogenetic analysis

The Hh and Hh-related genes were retrieved from the mol-

luscan transcriptomes based on the KEGG orthology as-

signments. All putative sequences were blasted against

known protein databases (PFAM, CDD, and the non-

redundant protein database from NCBI), in order to recon-

firm the initial orthology assignments. The Hh and Hh-re-

lated sequences were aligned, edited, the phylogeny

inferred, and the final tree generated as described above.

Frameshift errors in Lottia cf. kogamogai lko_tr2004/

lko_tr12013/lko_20227 were corrected using HMM-Frame

program [129]. The substitution model, the number of

generations, and sample frequency defined in MrBayes

were WAG+G model of amino acid substitution [134],

30,000,000, and 1,000 respectively. The list of species and

gene names, phyla, and GenBank accession numbers of the

sequences used in the phylogeny are available in Additional

file 2: Table S2 and Additional file 3: Table S3.

GO-Slim annotation and pathway mapping with KEGG

The Gene Ontology analyses (GO) were performed in two

steps. First, all protein databases that originated from the
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high-quality assembled transcriptomes were locally blasted

against the UniProtKG database. In the second step all

transcripts with positive GO-ids were categorised and

quantified (with an in-house Perl script) into the generic

149 categories of the GO-Slim database (http://www.ebi.

ac.uk), including the three main ontologies: biological

process, cellular component, and molecular function.

The KEGG analysis was performed online through

KAAS (KEGG Automatic Annotation Server) using the

bi-directional best hit (BBH) methodology and the Gene

database. First, all proteins were annotated using the

KEGG GENES ortholog group database. This procedure

assigned KO (Kegg Orthology) identifiers to the pro-

teins, which were then mapped to BRITE hierarchies of

functional classifications. The KEGG results were then

categorised and quantified with the help of an in-house

Perl script.

Additional files

Additional file 1: Table S1. Data used for the phylogenetic analysis of

Hox and ParaHox genes, including the respective GenBank accession

numbers. (DOC 31 kb)

Additional file 2: Table S2. Data used for the phylogenetic analysis of

Hedgehog genes including the respective GenBank accession numbers.

(DOC 31 kb)

Additional file 3: Table S3. Data used for the phylogenetic analysis of

Hh-related genes including the respective GenBank accession numbers.

(DOC 31 kb)
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