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Abstract 

The present thesis aims to investigate the relation between expertise, performance, 

perceived performance and difficulty estimation in chess. A combination of methods 

was employed to cast light on the meta-cognitive phenomena of difficulty estimation 

and assessment of one’s own performance. 20 scholastic chess players participated 

in an experiment, solving 12 tactical chess problems, as well as assessing their own 

success in solving the problems and estimating the problems’ difficulty. Our findings 

suggest that expertise, here reflected by a chess player’s rating, is predictive for the 

success in solving the problems, but only weakly correlated to success in the difficulty 

estimation. The overestimation of incorrectly solved problems or the underestimation 

of successfully solved problems could not be evidenced in our sample. Interestingly, 

there was an overall correlation between actual and perceived success, albeit with a 

significant difference between unskilled and skilled participants. The discrepancy 

between perceived and actual success rate decreased with increased success. The 

present research thus represents first evidence for the Dunning-Kruger-Effect in the 

area of chess research. The employed Machine Learning analysis yielded that models 

for predicting difficulty derived from a previous experiment were useful when tested on 

the data of this experiment. The surprising results concerning the relation between 

performance, here success in solving the problem, and difficulty estimation suggest 

that further exploration of this neglected area of research is indicated.  

 

Die vorliegende Arbeit beleuchtet die Relation zwischen Expertise, Leistung und 

Schwierigkeitseinschätzung im Schachspiel. Eine Kombination aus Methoden wurde 

angewandt, um die meta-kognitiven Phänomene Schwierigkeitseinschätzung und 

Bewertung der eigenen Leistung näher zu beleuchten. 20 Schachschüler nahmen an 

diesem Experiment teil, welches daraus bestand 12 taktische Schachprobleme zu 

lösen und die eigene Leistung sowie die Schwierigkeit der Probleme einzuschätzen. 

Unsere Ergebnisse deuten darauf hin, dass Expertise, hier das Rating der 

Schachspieler, bestimmend ist für den Erfolg beim Problemlösen, jedoch nur schwach 

mit Erfolg bei der Schwierigkeitseinschätzung korreliert ist. Das Überschätzen der 

Schwierigkeit von Problemen, welche nicht richtig gelöst wurden und Unterschätzen 

der Probleme, die richtig gelöst wurden, konnte in unserer Stichprobe nicht 



nachgewiesen werden. Die Diskrepanz zwischen tatsächlichem und geschätztem 

Erfolg wurde kleiner mit einer höheren Erfolgsquote. Die Arbeit stellt erste Hinweise 

für den Dunning-Kruger-Effekt im Schachspiel dar. Eine Analyse mit Maschinellem 

Lernen ergab, dass Modelle, welche aus Daten eines vorherigen Experiments 

abgeleitet wurden, eine gewisse Voraussagekraft bezüglich der Daten aus diesem 

Experiment haben. Die Ergebnisse bezüglich der Relation zwischen Leistung, in 

diesem Kontext Erfolg beim Problemlösen, und Schwierigkeitseinschätzung deuten 

darauf hin, dass dieses bisher wenig beachtete Forschungsgebiet näher zu beleuchten 

wäre. 
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1. Introduction 

1.1 Topic of the Master thesis 

The present Master thesis is concerned with human problem solving and aims to 

cast light on the relation between expertise, performance, perceived performance 

and difficulty estimation. This relation is studied in the domain of chess which 

represents a high-validity environment and is hence suitable for the study of human 

problem solving and expertise. Expertise in this case refers to the individual’s 

proficiency in the problem solving domain and is reflected by a chess player’s rating 

(see section 2). Performance is the individual’s ability to correctly solve a given 

task – here a tactical chess problem (see section 2.3) – and perceived performance 

is the assessment of one’s own success.  

A problem is considered difficult when the person tackling the problem has a hard 

times solving it. If a given sample of people try to solve a problem, the same 

problem might be perceived more difficult by some, and less by the others. There 

are, however, problems that are considered difficult by more people than other 

problems, and those are presumably the problems, which were also solved by 

fewer people. It is evident, that when comparing two problems – one solved by half 

of the sample, and another one merely solved by 15% – the latter problem is 

probably the more difficult one. It can hence be said that problems with a lower 

solution frequency and a higher probability of failure are more difficult. But are 

solution frequency, reflecting objective difficulty, and perceived difficulty really two 

sides of the same coin?  

The objective of this thesis is to detect influential variables of a player’s difficulty 

estimation as well as to investigate the relation between performance and 

perceived performance in chess.  

The investigation of the metacognitive phenomenon of difficulty estimation and 

perceived performance is of interest to many disciplines and is primarily 

investigated by cognitive psychology (see section 1.2), educational sciences and 

neuroscience (Fleming & Dolan, 2012). For the present investigation Machine 
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Learning methods are employed to unravel hidden patterns concerning the relation 

of difficulty, performance and expertise.    

 

1.2 Review of Literature 

Borg et al. (1971a) showed that perceived difficulty of a test group, which had to 

solve 9 items of an intelligence test, was inversely related to solution frequency of 

a second control group with higher sample size. Problems with low percentage of 

correct solutions in the control group were hence also rated more difficult by the 

test group with a correlation of r=0.9. This overall strong positive correlation was 

replicated by other studies involving a visual search task (Borg et al., 1971b) and 

a different intelligence test, assessing reasoning and spatial ability as well as verbal 

comprehension (Borg et al., 1971a). These findings suggest an overall 

straightforward relation between objective and subjective difficulty. Nonetheless, 

this relation is questioned by one finding of the same study: It could be shown that 

subjects, who were not able to solve given tasks correctly, estimated those more 

difficult than subjects who did solve them correctly. This, however, was not true for 

all the involved sub-test, but only for the reasoning and spatial ability part. In 

another study using the Raven Progressive Matrices, Borg et al. (1971a) could 

show that perceived difficulty increased as a monotonically increasing function with 

order of the items, suggesting that also motivation and fatigue played a role in the 

perception of difficulty.  

In accordance with Borg et al. (1971a+b), in their experiment Touroutoglou & 

Efklides (2010) show that perceived difficulty, assessed by a 7-point Likert-scale, 

were higher in tasks with low performance. When comparing perceived difficulty 

before and after completion of a given task, it increased for the low performance 

task, whereas for the other task it stayed the same or even decreased. This then 

suggests that there is a relationship between performance and perceived difficulty, 

termed Feeling-Of-Difficulty by Touroutoglou & Efklides (2010).  

Desender et al. (2017) also demonstrated that perceived difficulty, here termed 

subjective experience of difficulty, is associated with variables that are indicative 

of performance. In their study involving a masked priming experiment where the 

participants had to determine in which direction a shown arrow was pointing, and 
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later report about the perceived difficulty when solving the task (a binary variable), 

they could show that cues like reaction time and response repetition, amongst 

others, contribute to perceived difficulty. Furthermore, they showed that training 

influences the relation of the stated variables to perceived, meaning cues to better 

estimate difficulty can be learned.   

Despite findings suggesting a straightforward relationship between objective and 

subjective difficulty, it can be concluded that there are nevertheless variables that 

influence perceived difficulty such as training and learning or motivation, as well as 

cues that are indicative of performance, suggesting that the relation to objective 

difficulty is not as straightforward as reported by Borg et al. (1971a+b).   

Furthermore, the role of expertise and its relation to actual and perceived 

performance shall be discussed. Playing chess can be seen as situated in a high-

validity environment where moves have determined outcomes, the number of 

possible moves are finite and the task environment is fully observable, and hence 

is considered to be a framework where expertise is likely to develop and be 

effective (Chase & Simon, 1973). In their 2014 paper, Hristova, Guid & Bratko 

nevertheless found that the chess players’ expertise, reflected by their rating, was 

not significantly correlated to success in solving the given problems. This research 

will be discussed in more detail in section 3. However, Park & Santos-Pinto (2010) 

showed that expertise does play a role when trying to predict outcomes of a chess 

tournament. They reported that when a sample of players were asked to estimate 

what percentage of the tournament’s participants will be eliminated before them, 

their forecasts, as opposed to poker players’ forecasts, were not random guesses. 

This is presumably due to the fact that the rating system in chess (Elo rating 

system, see section 3) provides information about their competitors’ skills and 

competences. Nevertheless, Park & Santos-Pinto (2010) could show that the 

chess player had an overestimation bias concerning their own performance; the 

forecast error, however, was lower for the participants with a higher rating.  
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    1.3 Hypotheses 

In the next section, the reasoning process behind the formulation of the hypothesis 

is presented and it is highlighted why the relation between difficulty estimation and 

performance was deemed to be associated. 

As stated in the introduction, Borg et al. (1971a) as well as Touroutoglou & Efklides 

(2010) show that success in a given task and perceived difficulty are related in a 

way that suggests that success in a given task has an influence on the perceived 

difficulty. The main hypotheses that will be tested in this thesis are that people tend 

to over- and underestimate the difficulty of given problems depending on whether 

they were able to solve these problems correctly or not.  

 

H1a – People tend to overestimate the difficulty of problems they did not solve 

correctly. 

H1b – People tend to underestimate the difficulty of problems which they solved 

correctly. 

Additionally, it will be tested whether their confidence in the correctness of their 

solution and their judgment about difficulty are associated. 

H2 – People tend to underestimate the difficulty of problems which they think they 

solved correctly. 

Park & Santos-Pinto (2010) showed that stronger players with a higher rating are 

better predictors of their own success in chess tournaments. Thus, it can be 

suspected that stronger players will also be more accurate in assessing their own 

success post-hoc. 

H3 – Higher skilled individuals will be better in assessing their own success in 

solving the presented problems.  

2. Chess Ratings 

As mentioned in the introduction, the present work aims to investigate the relation 

between performance, perceived performance, expertise and difficulty estimation. 
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In particular, the discrepancy between difficulty estimation by humans compared 

to statistical methods is of interest. In chess, these statistics are provided by two 

main ratings systems, which will be described in the following pages: The Elo rating 

is used by the international chess federation FIDE (Fédération Internationale 

d’Échecs) and gives account of a player’s strength, and the Glicko rating, a 

modification of the Elo rating, which here is used to indicate a chess problem’s 

difficulty (Elo, 2008; Glickman, 1998). Contrary to other competitive sports, there 

is no absolute measure of performance in chess; the players’ ratings hence need 

to reflect their relative strength in comparison to their competitors.  

Ratings allow to monitor the process of acquisition of skill and expertise and are 

useful for the design of tournaments as it becomes possible to let allegedly similarly 

strong players compete with each other which increases suspense and 

contentment among the contestants. In the present experiment we use both of 

these two ratings. Therefore, in this section, the two systems are explained, 

commonalities and differences are discussed and their predictive power is 

assessed.  

 

2.1 Elo rating system 

The Elo-rating was developed in the late 1950ies by the Hungarian-American 

physicist Arpad Elo. The United States Chess Federation assigned him to assess 

the flaws and weaknesses of the currently used rating system whereupon Elo 

proposed a formula with sound probabilistic underpinning, the Elo rating formula. 

As for other characteristics of a human like intelligence or height, also performance 

in sports is suspected to be normally distributed. This is deemed to be true also for 

chess. In fact, studies done by Elo (1946), as well as by McClintock (as reviewed 

in Elo 2008, p. 19) provided evidence for the validity of the claim that chess 

performances are normally distributed. The Elo rating formula is hence derived 

from the normal probability function (see Figure 2.1), also called the Gauss error 

curve or standard sigmoid. The curve displays the probability of a player winning 

against an opponent in a chess game in as a function of their difference in rating.   
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Figure 2.1 The Elo curve with expected scores for the played game. Retrieved from Hristova, 

Guid & Bratko (2014) 
 

The formula for updating a player’s Elo rating after each game played is the 

following 

Rn = Ro + k(W − We) 

𝑅𝑅𝑛𝑛 is the player’s new rating after the game, 𝑅𝑅0 the old rating and 𝑊𝑊 the game 

score  (1 for win, 0 for lose and 1
2
 for a draw), 𝑊𝑊𝑒𝑒 the expected game score based 

on the two players’ old ratings. 

The factor k is a relative weight, which is chosen for the pre-match rating and the 

performance rating of the match. A high k gives more importance to the recent 

performance, whereas a low k values the earlier performances. 

The Elo rating being a four-digit number grew out of tradition as the chess 

federations determined this arbitrarily and it was retained in order to be accepted 

by players at the time. Also the 200 points range between classes and the 2000 

points as a reference point discriminating between amateurs and experts were 

already common practice before Elo’s intervention in the rating system (Elo 2008, 

p.19). Despite being already developed in the 1950ies, the Elo system was only 
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adopted in 1970 after the FIDE (Fédération International d’Echecs) Congress in 

Siegen, former West Germany (Elo 2008, p.3).  

The Elo rating system proved to be predictive and is also used to validate other 

approaches for modelling a chess player’s strength (Van der Maas & 

Wagenmakers, 2005), as well as in predicting the outcome of football games 

(Hvattum & Antzen, 2010). Furthermore, it is also applied for modeling social 

dominance in primates (Newton-Fisher, 2017) and is used in adaptive educational 

systems (Pelánek, 2016). 

 

2.2 Glicko rating system 

The Glicko rating system builds on the system developed by Arpad Elo but 

introduces some improvements to the before mentioned. Within the Elo system, it 

is not relevant, how dated a player’s rating is when he is competing in a 

tournament, the points won or lost only depend on the rating difference between 

him and the opponent and on the k factor chosen for this occasion. According to 

Glickman (1998), datedness makes ratings unreliable, or at least less reliable than 

ratings of players which play with regularity. The Glicko system seeks to 

incorporate time dependency into the calculation of the rating to account for that. 

The Glicko rating system introduces a variable named Rating Deviation (RD). A 

player’s RD increases with time passing and decreases with shorter intervals in 

playing games (Glickman, 1998). The underlying statistical concept of the Rating 

Deviation is the same as the Standard Deviation, which means that with a 

probability of 95% a player’s actual – but not known – rating is within the range of 

the current rating and +/-2 RD.  

The incorporation of the RD does not only provide a more realistic rating for a 

player but also influences the degree to which a player’s rating changes after a 

won or lost game, respectively. Due to this, the Glicko system, unlike the Elo 

system, is not a symmetrical rating system as two players with different RD might 

compete with each other; the points won by the one might not be equal to the points 

lost by his opponent. 
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2.3 ChessTempo and ChessTempo rating 

ChessTempo is an online chess platform with 746444 registered users (as by 20th 

of September 2018) which provides more than hundred thousand tactical problems 

to be solved by its users (ChessTempo, n.d.). A problem is denominated tactical 

“if the solution is reached mainly by calculating possible variations in the given 

position, rather than by long term positional judgment with little calculation of 

concrete variations” (Hristova, Guid & Bratko, 2014, p.728). The 12 tactical 

problems of our problem set were retrieved from the website on January 2nd 2018 

and the problem specific statistics presented in Table 3.1 (page 10) represent the 

information provided by that date. For the ratings on the ChessTempo website, the 

Glicko rating system is used with an adaptation concerning the consideration of 

repeated attempts by the players.  

ChessTempo ratings are calculated as follows: Both the user and the presented 

problem receive ratings, starting with a default rating at the beginning, which is 

then updated according to the Glicko rating system. If a user solves a problem 

correctly, the rating of this problem decreases whereas the user’s rating increases. 

Consequently, if a problem is not solved, its rating increases. It foresees penalties 

for re-attempts in the range of loss of the full credit of 30% for one repeat,  and up 

to 85% for six or more repeats of a problem. Even though this only applies to 1 to 

3% of the players on this online platform (Rating system, n.d.), it is nevertheless 

useful as it prevents the most successful users to be those who have the best 

memory of already seen problems. This mechanism is termed Duplicate Reward 

Reduction (Rating System, n.d.). When a user solves a problem at the first repeat, 

he only gets 70% of the full credit, 55% after the second repeat and only 15% if he 

has seen it six or more times.  If a problem was not presented to a distinct player 

for 6 months or a year, it will receive 45% and 75% of the full credit, respectively, 

independent of how many times it was solved or attempted by that player in the 

past.  

ChessTempo hence provides a statistically sound measure of difficulty, which will 

be taken as basis for the difficulty classification in the present thesis. For the 

experiment, only problems with more than 6500 attempts are included to ensure 

reliability of the difficulty ratings. 
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3. The experiment 

The present experiment represents a replication of the experiment done by 

Hristova, Guid & Bratko (2014) and was slightly modified in terms of sample size 

(12 subjects in the 2014 experiment, opposed to 20 in the present) and composition 

and the chess problems used in the experiment. The players in the 2014 

experiment had ratings between 1845 and 2279 (2089 on average, +/- SD 134.65), 

indicating they were much stronger chess players than the players in our sample 

(see below). The participants solved 12 tactical chess problems of three difficulty 

classes ‘Easy’, ‘Medium’ and ‘Difficult’. There were 2 problems of the class ‘Easy’ 

with ChessTempo ratings between 1492.5 and 1495.3, 4 problems of the class 

‘Medium’ with ratings between 1875.2 and 1883.3, and 6 problems of the class 

‘Difficult’ with ratings between 2230.9 and 2274.9 (1493.9 on average for easy 

problems, 1878.8 on average for medium problems and 2243.05 on average for 

difficult problems).  After solving all the 12 problems, the participants had to rank 

them from ‘easiest’ with the rank 1 and ‘most difficult’ with rank 12.   

For our experiment, 20 subjects, 18 males and 2 females, between 7 and 15 years 

old (average age 11.3 years, SD +/-2.30), were recruited from different elementary 

and high schools as well as from the Chess Association of Slovenia (Šahovska 

zveza Slovenije) in Ljubljana.  

In our sample of participants, the ratings ranged from 1500 to 2000, with an 

average rating of 1644.5 (+/- SD 222.94). Players with a rating of 1000 to 1199 are 

classified as novices, this being the fifth lowest class. Players with a rating between 

1200 and 1399 classify as class D amateurs, and those with a rating between 1400 

and 1599 as class C amateurs (30% of our sample). With a rating between 1600 

and 1799 a player classifies as class B amateurs (25% of our sample). 8 players 

(40%) had a rating between 1800 and 1999, hereby classifying as class A player, 

i.e. a strong amateur or club player. Beginning with a rating of 2000 and above, a 

player is classified as expert, this being true for one player in our sample (Elo 2008, 

p.18. 9 players of our sample had an international Elo-rating in addition to the 

domestic, Slovenian one. The international rating was always substantially lower 

than the Slovenian rating, this assumedly due to the fact that these players do not 

play tournaments with international players often. Keeping in mind that the Elo 
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rating reflects relative strength of a player and his competitors, another reason for 

the low Elo rating of the participants might be that they competed only to other 

weak players hence not being able to earn a lot of points. Another thing to mention 

about scholastic players is that their ratings are mostly generated within a group of 

scholastic chess players who rarely compete with adults (Glickman 1995). The risk 

of increasing ratings if once competing outside of their distinct group, which do not 

reflect a player’s strength is hence given. 

Analogous to the 2014 experiment, the players had to solve 12 tactical chess 

problems presented to them on a screen using the chess software ChessBase14. 

These problems were of three difficulty levels, namely ‘Easy’, ‘Medium’ and 

‘Difficult’. Problems with a ChessTempo rating of 1000 +/-15 are considered easy 

problems, problems with a rating of 1420 +/-15 as medium and problems with a 

rating of 1750 +/-15 as difficult. The experimental problem-set contained four 

problems of each category ‘Easy’, ‘Medium’ and ‘Difficult’ (see Table 3-1).   

  
Table 3.1 ChessTempo statistics of the problem set and classification by the experimenters 

# ChessTempo 

ID 

Rating Attempts Average 

time 

Success  

rate 

Difficulty 

1 664 999 9325 1:08 69% Easy 

2 61725 1004 8037 0:45 69% Easy 

3 5358 1005 8820 0:39 69% Easy 

4 44557 1005 9315 1:07 69% Easy 

5 26533 1317 11657 2:35 63% Medium 

6 6908 1329 11635 1:04 63% Medium 

7 47751 1318 11431 1:28 63% Medium 

8 50864 1318 11598 1:46 62% Medium 

9 15914 1758 8182 2:04 53% Difficult 

10 73069 1754 6928 2:54 54% Difficult 

11 12973 1765 7448 4:39 53% Difficult 

12 52221 1762 7728 5:09 53% Difficult 
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The column ‘Attempts’ refers to the number of users of the website ChessTempo 

who attempted to solve the given problem and the column ‘Success rate’ gives 

account of which percentage did so successfully. The time needed to solve the 

problem, averaged over all the attempts, is listed in the column ‘Average time’.  

The participants were presented all the 12 problems of the problem set one by one 

in a randomized order on a computer screen (see Figure 3.1). After the participants 

chose their move, the experimenter moved the piece on the screen and, if 

applicable, moved for the opponent’s side. If the subject’s first move was incorrect, 

the experimenter would terminate this game and move on to the next problem 

without communicating if the subject solved it correctly or not.  In nine of the 

problems, it was white to move, in three problems it was black to move (as in Figure 

3.1). The number of moves to be made to solve the presented problem ranged 

from 2 to 6 moves. For the problem in Figure 3.1, the subject would choose a move 

and communicate this to the experimenter who would execute the move.  

 

 

In this case, the correct move is to move the black rook from d7 to d5 and capture 

the white knight. Then the experimenter would move for the opponent’s side, in 

this case move the white rook from d3 to d5, hereby capturing the black rook and 

Figure 3.1  Presentation of problem on the computer screen 
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wait for the subject to choose a second move and so on. After a wrong move or up 

to – in this case – maximum 6 moves chosen by the participant, the experimenter 

would terminate the game and move on to the next problem. All depictions of the 

problems, including solutions, can be found in the Appendix.  

After solving the given problems, either correctly or not, the players were subject 

to a short semi-structured interview in which they were asked about the 

characteristics of the given problem (e.g. spotted motifs) and other possible 

solutions, perceived success, as well as their assessment of the difficulty of each 

problem. As guiding question to explaining the approach to solving the problem the 

participants were asked why they chose this distinct move. In addition, they were 

inquired if they see others ways of solving the problem, if they deemed it easy or 

difficult and if they think the solved it correctly.  

The questions asked after each tackled problem were the following, always in the 

presented order: ‘Do you think you solved the problem?’, ‘Was this problem easy 

or difficult for you?’, ‘Why did you choose this move?’ and ‘Are there other ways of 

solving the problem?’. The first questions could only be answered by ‘yes’ or ‘no’, 

if a subject opted for another answer, the experimenter made him or her choose 

between the mentioned two. The answer for the second questions could also just 

be one of the possibilities ‘easy’ or ’hard’. Again, if the subject opted for another 

response, the experimenter forced a decision between the mentioned. In the 

question about the choice of move, the subjects had to explain the reason for their 

respective move. An arbitrarily chosen answer would be the one of Subject 4, who 

in the problem presented in Figure 3.1, moved the rook to d5 and stated, “It is 

forced mate. I open the line through which I will be able to take [the rook at] d1 with 

the queen.”    

The subjects’ accuracy in estimating their own performance was assessed by the 

Mean Square Contingency Coefficient or phi-coefficient, a measure of association 

of two binary variables. In our case these binary variables were success in solving 

the problem (yes or no) and the answer to the question ‘Do you think you solved 

the problem?’ (yes or no). 
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The formula for the phi-coefficient is  

𝜑𝜑 =
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

�(𝑎𝑎 + 𝑏𝑏)(𝑏𝑏 + 𝑎𝑎)(𝑎𝑎 + 𝑏𝑏)(𝑏𝑏 + 𝑎𝑎)
 

with 𝑎𝑎 and 𝑎𝑎 being the numbers of occasions a participant’s perceived success 

was congruent with his actual success, and 𝑏𝑏 and 𝑏𝑏 being the numbers of 

occasions when they were incongruent (see Table 3.2).  
 

 
Variable 2  

Perceived success 

 

Variable 1 

Success 

 1 0 

1 a b 

0 c d 

Table 3.2 Contingency table with frequency distribution for the variables Success and 

Perceived success 

The phi-coefficient compares the product of the diagonal cells from up left to down 

right with the product of the cells from up right to down left. The denominator of the 

formula ensures that the result of the equation is between +1 and -1. 

For assessing the participants’ difficulty estimates, a pairwise comparison of 

selected problems of the problem set was done by the player. The participants 

were presented with two positions at a time (see Figure 3.2) on a computer screen 

and had to state which of the two they consider more difficult or that the two 

positions were equally difficult. In contrast to the experiment by Hristova, Guid & 

Bratko (2014), a pairwise comparison was favored over a full ranking of the 

problems. This is due to the fact that the sorting that needs to be performed for a 

full ranking of 12 problems is difficult to carry out for the participants. It might result 

in them putting more importance to the extremes of the scale, neglecting the ranks 

in between, hence leading to inaccuracies. It was also favored over the 

assessment of difficulty via a Likert scale, as these scales pose the problem of 

calibration. 
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Figure 3.2 Comparison of Problem 9 and Problem 5 of the problem set 

 

After comparing 10 problem pairs, the number of correctly rated pairs was counted, 

the maximum possible number of correct pairs being 10, the minimum 0. 

Additionally, an error score was calculated according to the scheme presented in 

Table 3.3.     
 

 Participant’s answer 

C
or

re
ct

 a
ns

w
er

 

 A<B A=B A>B 

A<B 0 1 2 

A=B 1 0 1 

A>B 2 1 0 

     Table 3.3 Penalties for incorrect answer in the pairwise comparison 

In Figure 3.2, the problem on the left hand’s side is a problem of the class ‘Difficult’, 

whereas the problem on the right hand’s side is of the class ‘Medium’. The correct 

relation between the two is hence ‘>’, as Problem 9 on the left is more difficult than 

Problem 5 on the right, according to the ChessTempo rating. According to Table 

3.3, a participant who would rate the problems’ difficulty as equal would get 1 
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penalty-point added to his error score. If the participant rated the left problem as 

less difficult, he would receive 2 penalty-points added to the error score. This then 

reflects the degree to which the difficulty was misjudged. 
 

Subject 20 

Pairwise comparison 

 

Subject’s 

answer 

 

Correct 

answer 

 

Penalty 

Prob9-Prob5 < > 2 

Prob6-Prob10 < < 0 

Prob2-Prob3 < = 1 

Prob7-Prob3 < > 2 

Prob10-Prob11 = = 0 

Prob7-Prob8 = = 0 

Prob1-Prob5 > < 2 

Prob4-Prob8 > < 2 

Prob5-Prob6 > = 1 

Prob12-Prob8 = > 1 

Sum of correct 

pairwise comparisons 

3 Error score 11 

  Table 3.4 Pairwise comparisons and calculation of the error score 

In the following the terms underestimation and overestimation will be used if a 

given problem was under- or overestimated in relation to a distinct pair in the 

pairwise comparison. In fact, it is more accurately a relative overestimation or 

underestimation.  

To assess whether a participant over- or underestimated the difficulty of a given 

problem, an estimation score is calculated (see Table 3.4). For every vote in the 

pairwise comparison, it is determined if the participant over- or underestimated a 

given problem, or if he estimated the difficulty of the problems correctly. In the 

example illustrated in Figure 3.2, a participant who would rate the two presented 
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problems as equally difficult (‘=’) or would rate Problem 9 as being easier (‘<’), 

would underestimate the difficulty of Problem 9 and overestimate the difficulty of 

Problem 5.  This means, that here the terms underestimation and overestimation 

are used if a given problem was under- or overestimated when estimating the 

difficulty of distinct pair in the pairwise comparison. In fact, more accurately, it is a 

relative overestimation or underestimation.  
 

Problem Over Under Correct Average 

sum 

Estimation 

1   0 0 Correct 

2 +1   +1 Over 

3  -1 0 -1/2 Under 

4 +1   +1 Over 

5 +1  0 + 0 +1/3 Correct 

6 +1  0 +1/2 Over 

7   0 + 0 0 Correct 

8  -1 0 + 0 -1/3 Correct 

9  -1  -1 Under 

10  (-1) + (-1)  -2 Under 

11 -1   +1 Over 

12   0 0 Correct 

Table 3.5 Calculation of the estimation score 

For calculation of the estimation score, the scheme in Table 3.5 is used. If in a 

pairwise comparison a problem like Problem 3, is underestimated on one occasion 

and correctly estimated on another occasion, -1 and 0 are added together. As the 

problem is voted on twice, the sum of +1 and 0 is divided by the number of votes, 

resulting in −  1
 2. 



 

17 
 

For every value between   − 1
3 ≤ x ≤ + 1

3 the problem is considered to be correctly 

judged. For values higher than + 1
3 the problem is considered overestimated, for 

values lower than − 1
3 , it is considered underestimated. These thresholds were 

chosen because they well reflect the participant’s estimation in ambiguous cases, 

as can be derived from the participant’s judgment of Problem 5 (see Table 3.5): 

The estimation score results being + 1
3 when having relatively overestimated the 

problem in 1 paired comparison, but correctly estimated in 2 other comparisons. 

As the number of correct estimations is higher than the number of overestimations, 

Problem 5 is hence considered correctly estimated. The threshold +/− 1
3 is hence 

chosen to discriminate between correct estimation and over- or underestimation. 
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4. Analysis of Data 

4.1 Descriptive statistics 

20 subjects, 18 males and 2 females, between 7 and 15 years old (average age 

11.3 years, SD +/-2.30), from different elementary schools as well as from the 

chess school of the Chess Association of Slovenia (Šahovska zveza Slovenije) in 

Ljubljana participated in the experiment. The players’ ratings ranged from 1500 to 

2000, the average rating being 1728.25 (+/-SD 168.79). The average player in our 

sample hence qualifies as a class B amateur. On average, the participants solved 

6.35 (+/- SD 3.22) problems correctly, this being slightly more than half of the 

problems presented. The minimum of solved problems per participant was 0 

problems solved, the maximum 11. In Table 4.1, the problem specific statistics are 

presented. The table displays the problems’ IDs as found on the ChessTempo 

website, their respective ratings on January 2nd, their rating on September 20th, 

and their average success rate on these two dates.  
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Table 4.1 Table of ChessTempo statistics of the problem set January 2nd 2018 compared to 
September 20th 2018 

# ChessTempo 

ID 

Attemps 

01/2018 

Attempts 

09/2018 

Rating 

01/2018 

Rating 

09/2018 

Success 

rate 

01/2018  

Success 

rate 

09/2018 

1 664 9325 9874 999.0 989.9 68.58% 68.61% 

2 61725 8037 8649 1004.4 1012.0 68.65% 68.38% 

3 5358 8820 9240 1005.0 999.9 68.93% 68.92% 

4 44557 9315 9907 1004.8 983.0 68.38% 68.55% 

5 26533 11657 12521 1317.2 1326.1 62.51% 62.34% 

6 6908 11635 12197 1329.3 1331.0 63.03% 62.99% 

7 47751 11431 12276 1317.6 1305.5 62.77% 62.82% 

8 50864 11598 12359 1317.7 1312.6 62.42% 62.51% 

9 15914 8182 8433 1757.7 1750.0 53.40% 53.46% 

10 73069 6928 7311 1753.7 1755.8 54.11% 54.12% 

11 12973 7448 7822 1764.5 1765.4 52.85% 52.84% 

12 52221 7728 8116 1761.6 1751.6 51.73% 53.78% 

 

As depicted in Table 4.1, the four problems of each difficulty class are comparable 

in terms of rating within a class, but differ in this parameter when compared to 

problems of other classes. Looking at the success rates, the percentage of 

attempts which lead to solving of the problem, in the different classes, the 

difference between the classes is much less pronounced, especially not between 

problems of the class ‘Easy’ and the class ‘Difficult’. According to these statistics, 

the ratings are generally reliable predictors of success, as problems with higher 

ratings are solved by fewer users of the website, and vice versa. This is especially 

true when comparing the class ‘Difficult’ to the classes ‘Medium’ or ‘Easy’. When 

comparing the class ‘Medium’ to the class ‘Easy’ this is not so apparent. 

It can also be seen in Table 4.1 that neither the ratings of the problems and even 

less so their success rating changed drastically between the date of the selection 
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of the problems and today. This indicates reliability of the ratings provided by 

ChessTempo. 

When looking at the statistics of our sample in Table 4.2, it becomes evident that 

the class ‘Difficult’ differs significantly from the classes ‘Easy’ and ‘Medium’, and, 

as in the ChessTempo statistics, not so much between the classes ‘Easy’ and 

‘Medium’.  The difficulty classes are defined as described in the section where the 

experiment is explained. Problem 1 in Table 4.1 being the exact same problem as 

Problem 1 in Table 4.2. There is, however, a difference in time needed to solve the 

problems, this not so much for the classes ‘Easy’ and ‘Medium’, but very 

pronounced for the class ‘Difficult’. 

 
Table 4.2 Table of the participants’ statistics in solving the problem 

# Rating Average 

time 

Success Perceived 

success 

Difficulty 

1 999 0:38 60%   85% Easy 

2 1004 0:17 80% 90% Easy 

3 1005 0:34 65% 85% Easy 

4 1005 0:47 75% 90% Easy 

5 1317 0:53 60% 80% Medium 

6 1329 0:41 70% 80% Medium 

7 1318 0:55 55% 75% Medium 

8 1318 0:53 75% 90% Medium 

9 1758 0:42 15% 75% Difficult 

10 1753 0:40 30% 70% Difficult 

11 1764 1:21 10% 65% Difficult 

12 1762 1:19 20% 65% Difficult 

 

Compared to the ChessTempo statistics, the difference between the class ‘Difficult’ 

and the classes ‘Medium’ and ‘Easy’ is nevertheless more pronounced. 

Remarkably, the perceived success, the percentage of problems the participants 

thought they solved, is higher than the actual success, the discrepancy being 
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bigger in the problems of the ‘Difficult’ class. This finding will be discussed in more 

detail in section 6.2. 

4.2 Correlation between difficulty estimation and success in solving the 

problem 

In Table 4.3 we can see the subjects’ performance in the difficulty estimation 

reflected by the number of pairs which they rated correctly in the pairwise 

comparison and the above described error score (see Table 3.4 and 4.3). On 

average, the participants rated 3.9 (+/- SD 1.12) pairs correctly, with a minimum of 

2 pairs rated correctly, and a maximum of 6. The mean error score was 8 (+/- SD 

1.72), with a maximum of 11 and a minimum of 5.  

When correlating success in solving the problem including all the 240 instances – 

12 problems solved by 20 subjects – and the participants’ error score, a very weak, 

negative and non-significant (p=.565) correlation of r= -.037 resulted. From this is 

can be concluded, that success in solving the problem is negatively related to a 

high error score, even though the relation is very weak and not significant. 

The correlation with the participants’ ratings, however, yielded that there is 

negative relation between rating and error score, meaning the higher the rating of 

a player is, the lower the error score. Despite being only a weak correlation r=-.144 

with p=.026, the participants’ ratings seem to be a better predictor for correct 

difficulty estimation than it is the case for the success in solving the problem. 
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Table 4.3 The participants’ success, their perceived success, their success in the pairwise 

comparison and the respective error score 

Participant Rating Problems 

solved 

Perceived 

solved 

Correctly rated 

pairs 

Error score 

1 1559 1 11 4 8 

2 1500 3 9 4 8 

3 1500 3 4 4 7 

4 1850 10 11 5 6 

5 1896 8 11 3 8 

6 1719 6 10 5 7 

7 1919 8 7 6 6 

8 1566 4 7 3 8 

9 1600 2 11 5 5 

10 1500 0 12 3 10 

11 1516 6 11 3 11 

12 1950 10 11 5 6 

13 1700 8 9 5 7 

14 1823 6 12 2 10 

15 2000 9 11 2 10 

16 1650 6 11 4 7 

17 1758 8 12 4 8 

18 1867 11 11 3 8 

19 1812 9 10 3 11 

20 1880 9 10 5 6 

Additionally, there was an age effect for both the success in solving the problems 

and the correct assessment of one’s performance. When correlating age and 

number of problems solved there was a significant positive correlation (r=.795, 

p=.000), and when correlating age and the phi-coefficients, reflecting correct 

assessment of one’s performance, there was as well a significant positive 

correlation of r=.619 (p=.004)  
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4.3 Correlation between over- and underestimation and success in 

solving the problem  

When correlating success in solving the problem including all the 240 instances – 

12 problems solved by 20 subjects – and the difficulty estimation of the presented 

problems by means of the Mean Square Contingency Coefficient or phi-coefficient, 

no significant association between success in solving the problem and bias in the 

difficulty estimation could be found.  

Problems which were not solved by the participants were not significantly (p=.687) 

overestimated in the pairwise comparison. The correlation being r=.026, it can be 

stated that there is no or a negligible relationship between these two variables.   

The same is true for the inverse, problems which were solved correctly were not 
significantly (p=.882) underestimated by the participants. The degree of relation 
being r=.01, so negligible. 

 
 

4.4 Correlation between difficulty estimation and perceived success 

There is a very weak negative and non-significant (p=.239) correlation (r=-.76) 

between problems the participants thought they had solved correctly and their bias 

in estimating their difficulty. It can be concluded that there is no or a negligible 

correlation between perceived success and underestimation of the given problems. 

 

4.5 Correlation between subjects’ rating and their success in solving the 

problems 

In contrast to findings of Hristova, Guid & Bratko (2014), this research showed a 

positive, statistically highly significant (r=.854; p=0.000) relation between expertise, 

reflected by the subjects’ rating, and success in solving the problem. This 

correlation was computed by including the number of solved problems by the 

participants and correlating them to the players’ ratings. The 2014 findings hence 
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could not be replicated in this experiment, as the correlation of rating and success 

in solving the problem was merely r=.062. According to the 2014 results, there was 

no significant correlation between expertise, reflected by the rating, and success 

in solving the problems. In Figure 4.1, the relation between the participants’ ratings 

and their success in solving the problems in displayed. 

 

 

 

4.6 Correlation between success rate and perceived success rate  

The data show that the overall correlation of perceived and actual success was 

moderately high (r=.422) and highly significant (p=.00). However, the participants 

showed overconfidence in their competencies. While estimating to have solved 

10.5 (+/-SD2.01) problems correctly on average, the mean of problems actually 

solved was in fact 6.35 (+/-SD 3.21). A paired T-Test yielded that the participants 

overestimated their performance significantly (p=.000), on average thinking they 

solved 3.7 (+/-SD 3.51) problems more than they actually did.  

Figure 4.1 Relation between rating and the number of problems solved 
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For participants in the bottom quartile according to their success rate, perceived 

and actual success only correlated to a low degree (r=.108) and not significantly 

(p=.413), whereas the upper quartile showed a correlation of r=.767 with a p-value 

of p=.000. This indicates that worse performers differ from better performers in their 

judgements about success in solving the given problems making them worse 

predictors of their own success. 

In fact, the data also show that the difference between perceived success rate and 

actual success rate decreased with increased performance, meaning that subjects 

who were able to solve more problems correctly were also more correct in their 

judgments about their success. Perceived success was assessed by a question 

after each presented problem, enquiring if they think they were able to solve it or 

not. This overconfidence was more prevalent amongst subjects with little or no 

success in solving the given problems. The most remarkable example being a 

subject, who did not manage to solve any of the twelve presented problems, but 

estimated having solved all of them. In Table 4.4 and 4.5 we can see two cross 

tabulations of two subjects and their actual and perceived number of solved 

problems. The subjects were randomly chosen to illustrate the relation of the phi-

coefficient and the presented cross tabulations.  If most of the data falls along the 

diagonal cells from up left to down right, like in Table 4.5, the two variables are 

considered associated 

Table 4.4 

 
 
 
 
 
 
 

Table 4.5  
 

 

 

 

 

Cross tabulation 
Subject 1 

 
estimatedSolved 

Total 0 1 

solved 0 1 10 11 

1 0 1 1 

Total 1 11 12 

Cross tabulation 
Subject 4 

 

 
estimatedSolved 

Total 0 1 

solved 0 1 1 2 

1 0 10 10 

Total 1 11 12 
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The relation between actual performance and perceived performance, represented 

by a high, positive phi-coefficient, as explained in section 3, is displayed in more 

detail in Figure 4.2. It shows how the correlation between actual and perceived 

success, the phi-coefficient, is higher in better performing subjects.  

 

 
Figure 4.2  Relation between the number of solved problems and the computed phi-coefficient 

Computing the correlation between the phi-coefficients of the participants and the 

number of problems solved, it can be stated that phi-value and number of solved 

problems are strongly associated with a correlation coefficient of r=0.631. The 

correlation significant at the 0.01 level with a p-value of p=.003. 

This finding goes in line with previous findings of overestimation of someone’s skills 

and competency, called the Dunning-Kruger effect (Dunning & Kruger, 1999), 

which will be explained in more detail in the section 6.2. 
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4.7 Common errors in the pairwise comparison 

In this section common errors in the pairwise comparison will be discussed. 

Overall, the participants estimated the difficulty correctly in 78 of the 200 cases – 

10 comparisons done by 20 participants. With 39% of the comparisons correctly 

judged the participants’ correct difficulty estimation is just slightly above chance (as 

in every comparison there were three possible answers ‘<’, ‘>’ and ‘=’). Of the 10 

comparisons performed by every participant, 3 comparisons were detected which 

show a clear misjudgment of difficulty by the participants. These comparisons 

involve 5 of the 12 presented problems and will be discussed in more detail below. 

The order of the presentation follows the order of display in the experiment. The 

first of the pairwise comparisons is termed Pair 1, the second Pair 2, the last Pair 

10 and so on. 

 

Pair 1: Comparison of Problem 9 to Problem 5 

In Figure 4.3 we see two problems of different difficulty classes: Problem 9 with a 

ChessTempo rating of 1758 classifies as ‘Difficult’ whereas Problem 5 is of the 

class ‘Medium’ with a rating of 1317. In the pairwise comparison, though, almost 

two thirds or 13 of 20 subjects rated Problem 5 to be more difficult than Problem 9, 

this despite only 15% of the participants solving the latter correctly (opposed to 

Figure 4.3  Pairwise comparison of Problem 5 (left) and Problem 9 (right) 
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60% for Problem 5). One participant deemed it equally difficult. In terms of 

perceived success – how many participants thought that they solved these two 

problems correctly – the values were comparable: For Problem 5, 16 participants 

or 80% estimated that they solved it correctly, whereas for Problem 9, the value 

was 15 participants or 75%. Nevertheless, the majority of participants rated 

Problem 5 to be more difficult when compared to Problem 9 and hereby relatively 

overestimating Problem 5. When looking at their respective ratings, the difference 

between the two problems is significantly more pronounced, namely 441 rating 

points.  

A possible explanation for this misjudgment of difficulty is that in Problem 9 there 

is an obvious move for White which appears to be the winning move. To establish 

that White is in reality not winning after that move requires some calculation. 

Seemingly, many participants were not able to calculate this defensive chance for 

Black and hence had no motivation to consider the much less obvious rook 

sacrifice move 1 Rh7+, which indeed leads to a forced mate after 1 ... Nxh7 2. g7+ 

Kg8 3 Nh6 mate. 

Pair 5: Comparison of Problem 10 to Problem 11 

The next two problems both belong to the difficulty class ‘Difficult’, hence the 

correct difficulty estimate when comparing the two should be that they are equally 

difficult (‘=’).  

The problems presented in Figure 4.4 only differ in 11 ChessTempo rating points 

(1753 for Problem 10 and 1764 for Problem 11), with 54% and 53% as their 

respective success rates according to ChessTempo. However, the majority of 

participants of our experiment (namely 55%) considered Problem 10 to be less 

difficult when compared to Problem 11. Only 5 participants, so 25% rated this 

Problem 11 to be equally difficult as Problem 11. This goes in line with the finding 

that Problem 10 had the by far largest success rate, namely 30%, of the difficulty 

class ‘Difficult’. Especially when opposed to Problem 11, which with only 2 people 

solving it correctly, had the lowest solving rate (10%) of all the 12 presented 

problems.  
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In Problem 10, there is an obvious and very promising move (1 Qxg6+) which 

appears to be winning convincingly and might have made the problem appear 

easy. Therefore there was no motivation for White to look for alternative moves. 

On the contrary, the winning move in Problem 11 is a rather unnatural move – the 

White Queen moving so as to be easily captured by Black Bishop –   which players 

might be reluctant to consider.    

In this comparison, there seems to be a relation between performance and difficulty 

estimation, namely the relative underestimation of the problem which was solved 

by more people (6 participants) and relative overestimation of the problem which 

was solved by only a few, namely 2 participants.  

 

Pair 9: Comparison of Problem 5 to Problem 6 

In Pair 9 (see Figure 4.5), again two problems of the same difficulty class, namely 

the class ‘Medium’, are compared. Problem 5, as mentioned, has a ChessTempo 

rating of 1317 and Problem 6 one of 1329, the difference being 12 rating points. 

The two problems have comparable solving rates (70% and 60%, respectively) and 

for both of the problems 80% of participants believed to have solved them correctly. 

Nevertheless, 12 of 20 participants (or 60%) deemed Problem 5 to be more difficult 

than Problem 6, and 4 participants stated that the two problems are equally difficult. 

Figure 4.4 Pairwise comparison of Problem 10 (left) and Problem 11 (right) 
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It becomes apparent that Problem 5 is not only relatively overestimated when 

compared to a problem of the same class like in this case, but also when compared 

to a more difficult class like in Pair 1.  

  

 
The misjudgment of difficulty might be explained by the length of the variation to 

be calculated in the two presented problems. In Problem 5, 4 moves need to be 

executed whereas in Problem 6 there are just 2 moves needed to mate. A shorter 

variation is in principle easier to be detected.   

Figure 4.5 Pairwise comparison of Problem 5 (left) and Problem 6 (right) 
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5. Analysis of Data with Machine Learning methods 

 

The rationale for applying Machine Learning methods is to characterize problem 

specific features and their influence on the prediction of variables such as success 

in solving the problem, as well as difficulty estimation by the participants. By 

employing these methods on the present data, hidden patterns and relations could 

be revealed which are not easily accessible to the human’s judgment.  

In the following sections, predictive variables of difficulty will be analyzed with 

machine learning methods. There are several problem specific features, which give 

account of the complexity of a presented tactical problem, like the number of pieces 

and the presence of a queen on the board, as well as the number of knights, 

material value, material imbalance and the number of non-pawns. In the game of 

chess, pawns have limited ability to move on the board and hence are easier to 

handle than other pieces. A high number of non-pawns therefore increases 

complexity and, presumably, difficulty. In contrast to pawns, the presence of 

queens on the board increases complexity as queens have many possibilities to 

move and can also move to remote areas of the chess board. The knight’s ability 

to perform its characteristic move, which involves jumping over pieces, can lead to 

oversight and hence increases the probability of error in the calculation of 

variations, hereby increasing difficulty. In chess, pieces can be assigned a value, 

which reflects its strategical value in a chess game. The sum of these values of the 

pieces, termed material value, hence reflects the strength of the pieces on the 

board. A high material value suggests high strategic value of the pieces on the 

board, which may increase difficulty. Material imbalance refers to the difference 

between the material values of the two players’ pieces on the board. Unbalanced 

material values are sometimes indicative of a strategic disadvantage for the player 

and may hence increase difficulty. In other cases, however, material imbalance 

decreases difficulty if it is for the benefit of a participant.  

In the following, Machine Learning software will be used to compute decision trees 

and derive rules from data of the present experiment, as well as from the 

experiment by Hristova, Guid & Bratko (2014). Additionally, several models 
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including decision trees and induced rules which are derived from the experimental 

data of the 2014 experiment will be tested on the data of the present experiment 

and evaluated in terms of their predictive power. Predictive variables for difficulty 

and success in solving the problem will be presented in the following sections.  

 

5.1 Orange Machine Learning software 

For the present analysis, Orange, an open source Machine Learning, data mining 

and visualization software developed by the University of Ljubljana, is used. 

Orange is a visual programming package based on components, the so-called 

widgets. These widgets implement algorithms for data analysis and visualization 

for evaluation of learning algorithms as well as for predictive modeling (Demšar et 

al., 2013). The version used for the present thesis is version 3.4.5. 

 

5.2 Feature ranking 

Feature ranking criteria seek to find the attributes most relevant for the modelling 

problem, selecting attributes with great prediction relevance. In the present thesis, 

the feature ranking criteria Gain Ratio and Relief-F were used.  

Information gain of an attribute is the degree to which information entropy, the 

amount of information contained in a data set, decreases by splitting the given data 

according to the attribute. Information Gain Ratio takes into account both the 

information gain and the  attribute values’ entropy and  hereby  reduces bias  

towards  features with  many values. This characteristic of information gain when 

compared to Gain Ratio is depicted in Table 5.1, where variables with higher values 

like material value or number of non-pawns are ranked higher when employing 

Information Gain. As a second feature ranking method, the Relief-F algorithm is 

employed. In contrast to Gain Ratio, the latter takes into account possible 

dependencies between the attributes to be ranked (Kononenko et al., 1996). The 

algorithm takes feature value differences between nearest neighbour instance 

pairs and assigns this feature a high score if these instances are of a different 

class. If there is a feature value difference between two nearest neighbour 

instances of the same class, the assigned score decreases. Apart from ranking the 
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most discriminative features, the scores assigned by ReliefF can also be applied 

as weights for a model. ReliefF is furthermore proposed for feature ranking for 

learning algorithms (Kononenko et al., 1996), such as the rule induction algorithm 

employed in this thesis.     

 
Table 5.1 Feature ranking of the 2014 model’s features with ‘Difficulty’ as Target variable 

Features Inf. gain Gain Ratio 

material value 0.770 0.385 

numberNonpawns 0.770 0.385 

numberKnights 0.667 0.340 

sumPieces 0.563 0.287 

material imbalance 0.459 0.500 

Queen 0.143 0.347 

 

 

5.3 Cross validation 

In order to test whether a model is descriptive of the input data and consequently 

predictive for chosen variables – not under- or overfitting the train data – it has to 

be validated. To give account of how well the model generalizes from the learning 

data to new, unknown data (so called unseen data), an estimation of the model’s 

accuracy needs to be performed. In the present case Leave-one-Out, a special 

case of k-Fold Cross Validation was used due to the scarcity of data. When 

performing k-Fold-Cross Validation, the data is split into k subsets, also called 

folds. The learning algorithm is then trained with all but one subset, the latter being 

used to test the model and output its prediction error (Witten et al., 2016). This is 

performed k times. The average of all the returned errors of the k folds is then taken 

to be the true error. In our case (leave-one-out), the number of subsets (k) was 

equal to the number of instances (m), always testing one example on the model 
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trained with the remaining m-1 instances. Despite its computational complexity, 

this cross validation method is often used when there is not abundant amount of 

data, as in our case. Our data of the 2014 and the 2018 experiment consists of 12 

instances, the 12 tactical problems, each with 6 problem specific features. 

Parameters of validity of the models used in this thesis are the Area under the 

Receiver Operating Curve (AUC), Classification Accuracy (CA), Precision and 

Recall. 

Classification Accuracy (CA) is the percentage of correctly predicted among all the 

predicted instances of a distinct class. If the Classification Accuracy is close to 1, 

meaning close to 100% of the predicted instances are correctly classified, the 

model performs well. Precision is the proportion of true positives of all predicted 

positives, meaning the correctly predicted instances of a given class of all 

instances predicted to be of this same class. Recall is the proportion of predicted 

positives of all true positives of the data set, meaning the ratio between instances 

correctly predicted to be of one class and all the instances actually being of this 

class. The Area under the Curve (AUC) is a measure of validity of both Precision 

and Recall. The Fall-out-Rate is plotted against the sensitivity, meaning the true 

positive rate. The Area under the Curve is a good measure of performance of a 

model.  

   

In addition to these parameters, the validity of a model can also be illustrated with 

a confusion matrix (Figure 5.1), which gives more detailed account of shortcomings 

of a model. The confusion matrix displays the number or percentage of correctly 

classified instances, and additionally informs about the nature of the incorrect 

classification. If a model is predictive for the fed in data, the boxes from top left to 

bottom right should contain the most instances or highest percentage respectively. 

As depicted in Figure 5.1, for the present experiment, the result is a 3x3 confusion 

matrix, as in the experiment there are 3 difficulty classes. If the cells from top left 

to bottom right contain the percentage 100%, the model accurately predicted every 

instance of the training set, which could indicate a case of overfitting to the train 

data and might perform poorly when confronted with new, unseen data of a test 

set.  
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5.4 Rule induction algorithms 

Rule induction algorithms seek to generate a model in form of a set of if-then rules. 

A rule consists of a premise and a conclusion. The premise is a conjunction of 

attribute-value expressions, the conclusion is the class that is predicted by this rule. 

The attributes in the premise can also comprise conjunctions (‘AND’) and/or 

disjunctions (‘OR’), if applicable. An example of a possible rule for the present 

experiment is the following: 

 

IF numberKnights≥3.0 THEN class=difficult 

 

The premise in this case consists of an attribute, a relational operator, and a value. 

The rule hence relates the premise of the number of knights on the chessboard 

being greater or equal to 3 to the conclusion that this then is a problem of the 

difficulty class ‘Difficult’.  

5.4.1 CN2 algorithm 

The CN2 algorithm was developed by Peter Clarke and Tim Niblett of the Turing 

Institute in Glasgow (Clarke & Niblett, 1989). It belongs to the group of Separate-

and-Conquer Algorithms which seek to generate rules that accurately predict one 

class of the target attribute (Conquer) and then exclude the covered instances from 

the training set (Seperate). The algorithm reiterates this process until all the training 

instances are excluded. As it does so, refinements to the already generated rules 

are made so that a measure of accuracy is maximized. The algorithm then returns 

a decision list, an ordered set of rules. 

The CN2 algorithm generates rules in propositional logic, which are intelligible to 

humans. It is used in knowledge discovery and knowledge acquisition, inter alia for 

expert systems. It is a modification of the AQ and the ID3 algorithm, taking the 

advantages and strong features of both. Similar to the ID3 algorithm’s pruning 

strategy, it employs a top-down search until no further specialization is justified by 

statistical significance (Clarke & Niblett, 1989). Like the AQ algorithm, also the CN2 

algorithm employs logical expressions and propositional calculus. In contrast to the 
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AQ algorithm, it is not dependent on specific examples and hereby increases the 

search space for possible rules. The CN2 algorithm does not require impeccability 

of the generated rules by also including those, which do not perform perfectly on 

the training data (Ruppert, 2006). It serves well to elicit knowledge in the form of 

IF-THEN rules, which give account of the underlying organization and relation of 

the features of the given data set.  

In this analysis, the CN2 algorithm is employed to generate rules, which give 

account of the decisive characteristics of the tactical chess problems, which 

constitute their difficulty. 

 

5.5 Decision Tree algorithms 

Decision Tree learning algorithms compute decision trees that give an overview of 

the dependences in the data. Tree algorithms belong to the group of Divide-and-

Conquer algorithms, which divide problems down to sub-problems, which are then 

easier to solve. A Decision Tree learning algorithm iterates to search for an 

attribute to split that best separates the different classes. In contrast to rule 

induction algorithms, the goal of a tree algorithm is to make this split in a way that 

the purity of its branches are maximized by considering all the classes, whereas 

rule induction algorithms try to find a rule that is predictive of one class. 

In the present analysis, a classification tree is computed to illustrate the relation of 

the decisive attributes and the difficulty of the tactical chess problems.  

 
Figure 5.1  Confusion matrix of a fictitious model  
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5.6 Modelling difficulty with Machine Learning methods 

In the following section, Machine Learning will be employed to analyze predictive 

variables and generate predictive models of difficulty. The problem specific 

features, which give account of the complexity of the presented tactical problems, 

are analyzed in terms of their influence on the difficulty of the problems. This is 

done for both the experiment performed by Hristova, Guid & Bratko (2014) and the 

present experiment.  

5.6.1 The 2014 experiment 

In the following, the results of the analysis of the data of the experiment performed 

by Hristova, Guid & Bratko (2014) will be presented. 

5.6.1.1 Feature Ranking  

 
Table 5.2 Feature ranking with ‘Difficulty’ as target variable 

Features GainRatio ReliefF 

material imbalance 0.500 0.085 

material value 0.385 0.052 

numberNonpawns 0.385 0.062 

Queen 0.347 0.024 

numberKnights 0.340 0.049 

sumPieces 0.287 0.044 

    

As depicted in Table 5.2, in the 2014 experiment, material imbalance, material 

value and the number of non-pawns on the chess board appear to be the most 

influential variables when employing GainRatio as ranking algorithm. When 

employing the ReliefF algorithm, the number of non-pawns on the board turns out 

to be more influential than the material value.  
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5.6.1.2 Induced rules 

Following, the induced rules are depicted. In the first column of Table 5.3, the 

premise – here termed IF-condition – is shown, followed by its conclusion, the 

THEN-class.  
 

IF conditions  THEN class Distribution Probabilities 
[%] 

material imbalance=0.0 → Difficulty=difficult [0, 0, 4] 14 : 14 : 71  

Queen=0.0 → Difficulty=medium [0, 1, 0] 25 : 50: 25  

numberKnights≥1.0 AND 
material value≥65.0 → Difficulty=medium [0, 2, 0] 20 : 60 : 20 

material value≥53.0 → Difficulty=difficult [0, 0, 2]  20 : 20 : 60 

material value≥41.0 → Difficulty=medium [0, 1, 0] 25 : 50 : 25  

TRUE → Difficulty=easy [2, 0, 0]  60 : 20 : 20 

      Table 5.3 Induced rules with the target variable ‘Difficulty’ 

 

The CN2 rule induction algorithm generated 6 rules covering all the 12 instances, 

the 12 tactical chess problems. 4 of the 6 difficult problems could be classified as 

such due to their material balance. The remaining difficult problems were classified 

as such since their material value was greater or equal to 53. 2 of the 4 medium 

problems were classified ‘Medium’ as their number of knights was ≥1.0 and their 

material value was over or equal to 65. The remaining medium problems were 

either classified as such due to the lack of a queen on the board, or by their material 

value being ≥41.0, but smaller than 53 (rule 4). The two easy problems were 

covered by the last rule with the else-condition. 

The column Distribution shows how many of the training instances fell into the 

given class by meeting the condition proposed by the rule. The Probability 
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displayed in the fifth column shows how likely it is that a training instance with the 

condition met would fall into either the class ‘Easy’, ‘Medium’ or ‘Difficult’. This 

parameter employs the Laplace estimate of probability. 

Summarizing, the generated rules show signs of overfitting which limits their 

generalizability. However, they are informative in terms of classifying 75% of the 

difficult problems as such, merely due to the fact that there is material balance. 

This is plausible, because if there is no clear advantage for the player, this might 

increase complexity and hence difficulty of the presented problems. The generated 

rules also suggest that the material value being high discriminates well between 

the problems of the class ‘Easy’ (lower values) and the two other classes, ‘Medium’ 

and ‘Difficult’. 

 

5.6.1.3 Decision Tree 

For the Decision Tree, the minimum number of instances in the leaves was set to 

1 and subsets that are smaller than 3 are not split to increase accuracy and avoid 

overfitting to the train data. The computed decision tree is shown in Figure 5.2. 

 
Figure 5.2  Computed decision tree with Difficulty as target variable 

As Figure 5.2 shows, the decisive feature for splitting the data in two groups is the 

material value of the pieces on the board, one group comprising of easy and 
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medium problems (if the material value is ≤ 41), the other of medium and difficult 

problems (if the material value is > 41). For problems with material values under or 

equal to 41, the number of knights on the board is decisive for discriminating 

between the 2 easy problems and 2 of the medium problems. If the material value 

is over 60 and there is material imbalance, then the problems are classified as 

medium. Both the rule induction and the decision tree fair models of difficulty for 

the present training data (see Table 5.4), the tree showing signs of overfitting.  

 
Table 5.4 Results of the cross validation (Leave-one-out) for the 2014 experiment 

Method CA 

CN2 Rule Induction 0.667 

Tree 0.417 

Constant 0.333 

The classification accuracy shows that the CN2 model and the Tree model 

performed reasonably well on the training data. Both models surpassed the 

Constant method, returning the relative frequency of the classes of the variable to 

be predicted and hereby informing about the probability of a correct classification 

by chance.  

5.6.2 The 2018 experiment 

In the following section, the results of the analysis of the data of the present 

experiment with 20 chess players of various schools in Ljubljana will be presented. 

 

5.6.2.1 Feature ranking  

Table 5.5 Feature ranking with Difficulty as target variable 

Features GainRatio ReliefF 

Queen 0.347 0.018 

knights 0.308 0.112 
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sumPieces 0.234 0.020 

nonPawns 0.213 0.031 

Material imbalance 0.172 0.054 

Material value 0.049 0.019 

 

Table 5.5 shows that that the influential variables for predicting difficulty in the 2018 

experiment differ fundamentally from the ones of the 2014 experiment. Material 

value and material imbalance, the two most influential features of the 2014 

experiment, are amongst the three least influential here. When employing Gain 

Ratio, the presence of a queen on the board was the most influential variable, when 

employing ReliefF, it was the number of knights. 

 

5.6.2.2 Induced rules 

In Table 5.6, the induced rules are depicted. In the first column, the premise – here 

termed IF-condition – is shown, followed by its conclusion, the THEN-class.  
Table 5.6 Induced rules of the 2018 experiment 

 

 

 

 

 

 

 

 

              

 

 

IF conditions  THEN class Distribution 
Probabilities 

[%] 

sumPieces≥25.0 → Difficulty=difficult  [0, 0, 2] 20 : 20 : 60 

nonpawns≥12.0 → Difficulty=easy  [2, 0, 0] 60 : 20 : 20 

knights≥3.0 → Difficulty=difficult  [0, 0, 1] 25 : 25 : 50 

material imbalance≠0.0 

AND nonpawns≥10.0 
→ Difficulty=medium  [0, 2, 0] 20 : 60 : 20 

knights≥2.0 AND 

sumPieces≥22.0 
→ Difficulty=easy  [1, 0, 0] 50 : 25 : 25 

knights≥2.0 → Difficulty=difficult  [0, 0, 1] 25 : 25 : 50 

nonpawns≥10.0 → Difficulty=medium  [0, 1, 0] 25 : 50 : 25 

TRUE → Difficulty=easy  [1, 1, 0] 40 : 40 : 20 
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For the 2018 analysis, the CN2 algorithm induced 2 more rules than for the 2014 

experiment, possibly pointing to the prediction of difficulty being more complex in 

the present case. 3 of the 8 rules have the attribute presence of knights on the 

board in their premise, which is in line with it being one of the most influential 

according to the feature ranking.  

Again, the fourth column (Distribution) shows how many of the training instances 

fell into a given class and the Probability displayed in the fifth column gives account 

of how likely it is that a training instance with the condition met would fall into either 

the class ‘Easy’, ‘Medium’ or ‘Difficult’. As the rules merely cover one or two 

instances, the model did not succeed to really generalize from the input data. 

The most prominent attribute of the premises, the presence of knights, however, 

also plays an important role in the computed decision tree in Figure 5.3, 

discriminating between easy and medium problems on the one hand, and difficult 

problems on the other hand.  

 

5.6.2.3 Decision tree  

To increase accuracy and avoid overfitting of the tree model, the minimum number 

of instances in the leaves was set to 1 and subsets that are smaller than 4 are not 

split. In Figure 5.3 the computed decision tree is shown.  
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Figure 5.3 Computed decision Tree with ‘Difficulty’ as target variable 

Overall, the decision tree model is not very informative. It only classifies 8 of the 

12 problems according to the presence of knights and the material imbalance. 

When modifying the pruning conditions, the tree model shows signs of overfitting 

and its informational content does not increase significantly.  

 
Table 5.7 Results of the cross validation (Leave-one-out) for the 2018 experiment 

Method CA 

CN2 Rule Induction 0.333 

Tree 0.167 

 

Table 5.7 shows that both models performed poorly on the training data. The Tree 

model even has a classification accuracy below chance, the CN2 Rule Induction 

performs merely slightly better.   

 

5.7 Testing of the models derived from the 2014 data with the 2018 data 

When feeding in the 2018 experiment’s data as test data into the models derived 

from the 2014 experiment, difficulty was sought to be predicted. When looking at 

the results, it can be stated that the models derived from the 2014 experiment’s 
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data are better models for the 2018 data than the models derived from the same 

data (see Table 5.8).  

 
Table 5.8  Validation parameters for the 2018 data tested on the 2014 model 

Method CA 
CN2 Rule Induction 0.500 
Tree 0.333 

 

Classification accuracy, the percentage of correctly classified instances, increased 

for both the CN2 rule induction and the Tree model (see Table 5.8). When looking 

at the confusion matrix of the Tree model (Table 5.9), the 2 problems of the class 

‘Difficult’ were classified as such, and merely 1 problem of each class ‘Easy’ and 

the class ‘Medium’. The class ‘Difficult’ was also the class that was most often 

predicted, with 8 instances being classified as such. Overall, the 2014 Tree model 

was more predictive when tested on the 2018 data as was the Tree model derived 

from the 2018 data. 

Ac
tu

al
 

              Predicted 
 easy medium difficult ∑ 

easy 25.0 % 0.0 % 75.0 % 4 

medium 0.0 % 25.0 % 75.0 % 4 

difficult 25.0 % 25.0 % 50.0 % 4 

 ∑ 2 2 8 12 
 

Ac
tu

al
 

  Predicted    

 easy medium difficult ∑ 

easy 0.0 % 50.0 % 50.0 % 4 

medium 50.0 % 25.0 % 25.0 % 4 

difficult 25.0 % 50.0 % 25.0 % 4 

∑ 3 5 4 12 

      

Table 5.9 Confusion matrix for the Tree model for the 2014 model tested on the 2018 data 

(top), and the results of the cross-validation of the 2018 Tree model (bottom) 
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The 2018 Tree model was merely able to classify 2 problems correctly, 1 problem 

of the class ‘Medium’ and 1 problem of the class ‘Difficult’.  

In Table 5.10, the results of the 2014 CN2 rule induction model tested on the 2018 

data, as well as the results of the cross-validation (Leave-one-out) for the 2018 

CN2 rule induction model are shown. It can be seen that the 2014 model performed 

better on the 2018 data than did the model derived from the 2018 data. For both 

the 2014 and the 2018 model problems of the class ‘Difficult’ were classified most 

successfully, with the 2014 model correctly classifying all the 4 difficult problems, 

the 2018 model merely 2. One of the ‘Easy’ problems was predicted to be of the 

class ‘Medium’, 2 of the ‘Medium’ problems and 3 of the ‘Easy’ problems were 

classified as ‘Difficult’ by the 2014 model. 

   
   

Ac
tu

al
 

                                      
Predicted Predicted 
 easy medium difficult ∑ 

easy 0.0 % 25.0 % 75.0 % 4 

medium 0.0 % 50.0 % 50.0 % 4 

difficult 0.0 % 0.0 % 100.0 % 4 

∑ 0 3 9 12 

 

                          Predicted 

Ac
tu

al
 

 easy medium difficult ∑ 

easy 25.0 % 50.0 % 25.0 % 4 

medium 50.0 % 25.0 % 25.0 % 4 

difficult 0.0 % 50.0 % 50.0 % 4 

 ∑ 4 3 5 12 

 
Table 5.10 Confusion matrix for the CN2 rule induction for the 2014 model tested on the 2018 
data (top), and the results of the cross-validation of the 2018 CN2 model (bottom) 

 

Summarizing, the 2014 models performed better on the 2018 data than did the 

models derived from the 2018 data. Both the CN2 rule induction model and the 

Tree model were most successful when classifying problems of the class ‘Difficult’.  
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6. Discussion and further research 

 

6.1 Summary 

In contrast to the 2014 experiment, the present experiment yielded that the players’ 

ratings were positively correlated to their success in solving the problems. The 

results of Hristova, Guid & Bratko (2014) could not be replicated. The player’s 

ratings were significantly, but weakly correlated to a low error score in the pairwise 

comparison, indicating that better players are also slightly better in estimating the 

difficulty of the presented problems. The participants’ success in solving the 

problem was a worse predictor for correct difficulty estimation, as the correlation 

between success and error score was very weak and non-significant.  

However, the reported relation between difficulty estimation and success in solving 

a problem (Borg et al., 1972; Touroutoglou & Efklides, 2010) could not be 

replicated in this experiment. Participants who did not solve a problem correctly did 

not significantly overestimate its difficulty. The hypotheses that people tend to 

overestimate the the difficulty of problems they did not solve correctly and to 

underestimate the ones they solved correctly could not be confirmed. Neither the 

overestimation of incorrectly solved problems, nor the underestimation of 

successfully solved problems seems to be prevalent in our sample. The 

coefficients are r=.01 and r=.026, respectively, the correlation is hence very weak 

to almost nonexistent.  

Interestingly, the experiment yielded that even though the overall correlation 

between actual and perceived success was moderately high, there was a 

significant difference between unskilled and skilled participants. The hypothesis 

stating that higher skilled individuals, in this case strong chess players according 

to their rating, will be better in assessing their own success in solving the problems 

was confirmed. The difference between perceived and actual success rate actually 

decreased with increased success. This phenomenon is termed the ‘Dunning-

Kruger effect’ and is described in more detail in the next section. 
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The present Machine Learning analysis yielded that the models derived from the 

data of the experiment by Hristova, Guid &Bratko (2014) were more successful in 

classifying the data of the present experiment. However, both the 2014 and the 

2018 models were merely fair models of difficulty with overall low predictive power. 

 

6.2 The Dunning-Kruger effect 

The Dunning-Kruger effect describes a cognitive distortion that results in an 

unskilled individual not recognizing his own deficits in skill and competence and 

hence overestimating them. This bias of illusionary superiority was first described 

by the psychologists David Dunning and Justin Kruger from the Cornell University 

in New York (Dunning & Kruger, 1999). The effect can be observed not only in 

everyday life situations like examinations in school (Sinkavich, 1995), assessment 

of ones abilities at the work place, but also when assessing the correctness of 

one’s diagnosis of mental illnesses (Garb, 1989).  

In their paper Dunning and Kruger argue that the skills needed for solving a given 

task are the same as those needed for assessing one’s performance in doing so 

which provides an explanation of this discrepancy between actual and perceived 

competence or performance. According to their inference, the meta-cognitive 

process of judging one’s own skills and expertise is related to the cognitive task 

assessing these same skills and expertise (Dunning & Kruger, 1999). More 

evidence for this assumption is presented in studies that show that the discrepancy 

between actual and perceived performance is smaller when the skills or 

prerequisites needed for assessing one’s performance are different from the ones 

that are needed to succeed in solving the task, or performing well in the given task 

respectively. In archery, the skills needed for hitting the target (controlled limb 

movement, precision in shooting) and assessing one’s performance in doing so 

(simply watching the arrow hit the target) are properly different from each other. It 

is hence not surprising that Mabe & West (1982) found correlations of actual and 

perceived performance to be higher for athletic performances (r=.47), than for 

managerial skills (r=.04), for assessing one’s own interpersonal abilities like 

empathy and openness towards the other (r=.17), or intellectual tasks (r=.34). 
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The Dunning-Kruger effect, however, does not suggest that an individual’s 

ignorance or inability and the estimation of competency are inversely related, 

meaning that the worse one’s performance is, the more successful it will be 

perceived. Actually, in their study, Dunning and Kruger (1999) found that 

individuals with lower skills and competences rated their skills overall lower than 

did those with higher expertise and abilities. The crucial point is in fact the 

discrepancy between the perceived and the actual performance, and not so much 

the mere overestimation of their performance. 

In the present case incomplete knowledge about the moves to make and therefore 

incomplete knowledge about best strategy, led to the selection of a suboptimal 

strategy that is nevertheless deemed to be the optimal one. Analysing the 

participants’ responses in the semi-structured interview showed that those who did 

not perform well in solving the tactical problems were also not able to accurately 

explain their reasoning behind their decision to make the move. This lack of insight 

concerning one’s deficiencies, the lack of meta-comprehension and not optimal 

self-monitoring are considered to be the underlying reasons for this discrepancy 

between actual and perceived success as witnessed in other studies observing the 

Dunning-Kruger effect. 
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Figure 6.1 Error in the subjects’ estimation of performance  

 

Figure 6.1 shows the relation between perceived and actual success in solving the 

problems. The participants are ordered according to their success in solving the 

problems, Subject 1 in the graph having solved 0 problems correctly, subject 20 

having solved 11 correctly. The vertical line depicts the error of the participants 

when estimating their performance, the difference between perceived and actual 

success. In all but in the case of subject 12, the lower end of the line depicts the 

number of problems solved and the upper end the number of perceived solved 

problems. Subject 12 believed to have solved only 7 problems correctly, while in 

reality he solved 8. The longer the vertical line, the higher the error. As we see in 

Figure 6.1, the first subject did not solve any of the problems correctly, hence the 

vertical line starts at the x-axis, but estimated to have solved all of them, resulting 

in the line to end at 12 on the y-axis. For this participant the vertical line, 

representing the error in estimating his performance, was the longest. In all but one 

case the participants were optimistic regarding their success.  

Similarly to what Dunning and Kruger (1999) found, subjects in our sample who 

did poorly in solving the given problems did rate their performance as overall worse 

than the subjects who performed well (see Figure 6.1). The lower quartile of worst 
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performers estimating to having solved 9.4 problems (+/-SD 3.21) on average, 

opposed to 10.6 (+/-SD 0.55) for the upper quartile.  

There is a significant positive relation between the subjects’ ratings and their 

computed phi-values as we can see in Figure 3. This positive relation (r=.54; 

p=.036) between rating and phi-value, a measure of association of success and 

perceived success, supports the assumption that participants with higher rating 

were also able to assess their success more accurately.  
 

 
Figure 6.2 Relation between the subjects’ rating and the Phi-coefficient  

 

Interestingly, the resulting CN2 and Tree models for classification of the tactical 

problems of the 2014 experiment was predictive in terms of difficulty of the 2018 

problems even though they were easier problems according to ChessTempo 

ratings. The average rating of the difficult problems was 2243.05 in the 2014 

experiment and 1759.25 in the present one. The present problems also required 

more moves to make than the ones used in the 2014 experiment. However, neither 

the 2014 nor the 2018 models allow for meaningful generalization in terms of 

difficulty categorization due to the very small number of learning examples (11 and 

12 tactical problems, respectively).    
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6.3 Critical points 

In the present thesis the relative overestimation of a problem had to serve as 

general overestimation as formulated in the hypotheses H1a and H1b, which 

represents the main weakness and imprecision of this research. This circumstance 

is due to the unavailability of a complete ranking of the problems to be obtained 

from the pairwise comparisons of the participants. Considering the time constraint 

with which the experimenters had to reckon with given the time window provided 

for the experiment, the number of pairwise comparisons was limited to 10 

comparisons. For the bottom quartile of worse performers this also turned out to 

be a reasonable decision, as the time scheduled for the experiment was just 

sufficient. For better players, time turned out not be a limiting factor, which would 

have allowed for more paired comparisons, hereby increasing the usefulness in 

terms of analysis and interpretation (see below). In order to be able to rank the 

subjects’ difficulty estimates more accurately, more paired comparisons should be 

performed. If replicating the experiment, the number of paired comparison should 

be an acceptable tradeoff between the ideal of comparing each problem to all of 

the other problems, resulting in 66 comparisons ( 𝑛𝑛(𝑛𝑛−1)
2

 with n=12 for the 12 

presented problems) and a number that is low enough not to induce fatigue, which 

might lead to inaccuracies in judgment. This might then yield more accurate 

insights into the participants’ rankings as well as their over- and underestimation 

of the given problems. 

The difficulty with the obtained results as described above then arose in the course 

of the interpretation of the pairwise comparison, this not only due to the few 

comparisons but as crucial comparisons were missing as shown in Figure 6.3.  The 

three rows are composed of the four problems of each difficulty class. The arrows 

refer to the relation of two compared problems, the arrowhead pointing to the 

problem that was deemed to be less difficult. The lack of an arrowhead signifies 

that the compared problems were considered equally difficult. The participants’ 

answers allowed for inferences beyond the direct comparisons, as for instance the 

relation of Problem 1 with Problem 9. As shown in Figure 6.3, the problem set 

resulted to be divided into two groups, and the relation between two groups of 
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problems could not be identified. This was due to the lack of a comparison of the 

problems of the left side with the ones on the right side as shown in Figure 6.1. 

Neither Problem 1, Problem 6 nor Problem 11 were compared to one of the 

Problems 2, Problem 7 and Problem 12, which would have allowed further 

inferences, and following perhaps a complete ranking according to the three 

difficulty classes as proposed by the experimenters. 

 

Figure 6.3 Illustration of a pairwise comparison by a randomly chosen participant 
 

 

Additionally, one of the participants stated in the interview that the experimenter 

not making another move after the participant’s first move was taken as indication 

that the given problem was not solved correctly. This presumably due to the fact 

that previous, already tackled problems involved more than one move. As it was 

only clearly stated by one of the participants, it is nevertheless suspected to have 

played a minor role, but surely does represent a weakness of the experimental 

design. The reliability of this cue for the participant might be restricted by the 

experimenter clearly stating that to solve a presented problem, one or more moves 

need to executed, even though this was not the case for the present experiment 

because 2 to 6 moves needed to be made. Another way of circumventing this 

circumstance is to also include problems, which can be solved correctly by making 

only one move.  
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The discrepancy between actual and perceived success being more pronounced 

in lower skilled participants might be due to the fact that there was a general 

overestimation of performance and probability of being wrong just decreased for 

higher skilled individuals. The experiment design of the present research allowed 

for identifying the exact problems that were assessed incorrectly. The participants 

were not asked to estimate their success rate (in percent or in relation to other 

participants) but were interrogated after each problem individually, if they think they 

solved it or not. All but one participants overestimated their success in solving the 

problems, participants from the upper quartile just did so to a minor degree. From 

the present data it hence cannot definitively be concluded that better players are 

more objective predictors of theirs own success.  

The present models obtained by the Machine Learning analysis do not make 

meaningful generalization possible. This is due to the very small number of 

examples from which it was sought to derive predictive models of difficulty. 

 
6.4 Conclusion and further research 

The present experiment demonstrates that the relation between expertise, 

performance and perceived difficulty is still not very clear. Even though the data 

show a relation between expertise reflected by the participants’ ratings and 

performance, here success in solving the presented tactical problems – conflicting 

with results found by Hristova, Guid & Bratko (2014) – the relationship between 

performance and difficulty estimation is not as pronounced.    

In this research, the well-studied Dunning-Kruger effect could be evidenced. In 

contrast to Park & Santos-Pinto (2010), the present research investigated the 

assessment of one’s performance post-hoc, and hence in the spirit of the effect 

described by Dunning & Kruger (1999). The present research thus represents first 

evidence for the effect in the area of chess research. The underlying reason for 

this discrepancy between actual and perceived success suspected by Dunning & 

Kruger (1999), namely that the skills needed for solving a given task are the same 

as those needed for assessing one’s performance, could also be detected in our 

research. Participants who played an incorrect move also mostly lacked insight 

concerning their error. In the interview following every tackled tactical problem, they 
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still argued in favour their wrong move or did not provide a useful explanation at 

all. This also led them to assess their performance incorrectly, meaning that the 

participants were confident in their judgement due to the wrong reasons.  

Evidence from the present Machine Learning analysis suggests that the models 

derived from the data of the experiment by Hristova, Guid &Bratko (2014) were 

more successful in classifying the data of the present experiment. Despite the 

relative superiority of the 2014 models, they were merely poor models of difficulty 

with overall low predictive power. 

In the present research the relation between success in solving the problem and 

over- or underestimation, respectively, could not be evidenced. Neither was there 

a significant underestimation of problems which were solved correctly, nor an 

overestimation of incorrectly solved problems. This is both in conflict with results 

from Borg et al (1971a+b) and indications by Touroutoglou & Efklides (2010), as 

well as with intuitive judgements about this relation. Further research on the 

relation between difficulty estimation and performance is indicated. 
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8. Appendix  

Problem 1 

 

Correct solution: 1 d6, Qxd6 2 Bxb7  

Problem 2 
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Correct solution: 1 Rh8+ Bxh8 2 Qxh8 mate 

Problem 3 

 

Correct solution : 1 ... Ne3   2 Qf3 Nxf1+ 

Problem 4 

 

Correct solution : 1 Bxe5 Qxe5 2 Rd8+   
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Problem 5  

 

Correct solution: 1 Rd7 Bxd7 2 Rxd7 Qc6 3 Rxf7+ Kh8 4 Qxg6 

Problem 6 

 

Correct solution: 1 Qh8+ Ke7 2 Bf6 mate 
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Problem 7 

 

Correct solution: 1 ... Bxd4   2 Qxf6 Bxf6  

Problem 8 

 

 

 

 

 

 

 

 

 

 

 

Correct solution: 1 Qd3 Qxc3  2 Qd8 
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Problem 9 

 

Correct solution: 1 Rh7+ Nxh7 2 g7+ Kg8 3 Ngh6 mate 

Problem 10 

 

Correct solution: 1 Bxf7+ Kxf7 2 Qxf7+ Kf8 3 Ne6 mate 
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Problem 11 

 

Correct solution: 1 Qg5 Bxg5 2 Rxh8 mate 

Problem 12 

 

Correct solution: 1 ... Rxd5 2 Rxd5  Qxd1+ 3 Rxd1 Rxd1+  

       4 Kh2 Ng4+ 5 Kh3 Nxf2+ 6 Kh2 Rh1 mate 
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