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Chapter 1

Introduction

In the last years neural networks had a great revival. Today they are a popu-
lar topic in computer science, but also in mathematics. When they appeared
in 1940-1960 and later in 1980-1990 neither the computational capacity of
the hardware nor the amount of data was sufficient to produce adequate re-
sults. [5, pp. 13,18,19] Nowadays these problems were overcome and deep
learning networks are widely used in data analysis.

One task deep learning networks can be used for is the generation of sam-
ples drawn of a specific distribution. This is useful, for example, when
designing several possible environments for reinforcement learning, when
performing semi-supervised learning, working with multi-modal output or
for quality enhancement of images [7, pp. 3-4].

In 2014 a new type of such a network was found by Ian Goodfellow [6]: The
Generative Adversarial Network (GAN). The idea of the GAN was born in
a bar, the first implementation done in the same night [20].

Compared to other generating networks GANs have several advantages.
The design of their generating part is not very restricted, GANs do not need
Markov chains, variational bounds and are asymptotically consistent. More-
over, they are able to perform parallel generation of samples. On the other
hand an optimal trained GAN is more difficult to achieve than other gener-
ating networks. [7, p. 17]

An interesting variant of a GAN is the Wasserstein GAN which was intro-
duced by Arjovsky et al. in 2016 [1]. It is motivated by the idea to use an
approximation of the Wasserstein distance as cost function. This distance
between two probability measures has a long history. A variant of it was
described by Gini in 1914, it was rediscovered by Kantorovich, Wasserstein,
Mallows and Tanaka. [21, p. 118] Thus, there exist a range of mathemat-
ical properties of the Wasserstein distance the Wasserstein GANs can take
advantage of.
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1. Introduction

These properties are described in Chapter 2 after stating an overview about
the general results of optimal transport. Chapter 3 introduces in its first sec-
tion the Generative Adversarial Networks in general. In the second section
of Chapter 3 the Wasserstein Generative Adversarial Networks are described
as an application of the Wasserstein distance to GAN. In the last chapter an
application of conditional Wasserstein GAN, a specific variant of Wasser-
stein GAN, is presented.

Notation A Polish space is defined as a complete, separable metric space
with its Borel σ-algebra. The notation P(X ) describes the set of all Borel
probability measures on a space X .

pn → p denotes the weak convergence of pn to p, meaning for all bounded,
continuous functions ϕ

∫
ϕdpn →

∫
ϕdp holds. The space of all continuous

functions f : X → R is denoted by C(X ). And for any Lipschitz continuous
function f its Lipschitz constant is defined as L = ∥ f ∥Lip.

Lk(X , p) denotes the Lebesgue space of order k for the measure space (X , p)
and is also noted as Lk(p) if X is apparent from the context. The respective

Lk-norm is ∥ · ∥Lk =
(∫

| f |kdp
) 1

k for every f ∈ Lk(X , p). In general ∥ · ∥
denotes a norm and ⟨·, ·⟩ the associated scalar product.

1A(x) is the indicator function for a measurable set A and δx the Dirac mea-
sure at x. The identity mapping in every space is denoted by id.
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Chapter 2

The Wasserstein Distance

The subject of this chapter is the Wasserstein distance and its diverse proper-
ties mainly citing the book ’Optimal Transport, old and new’ of Villani. This
distance describes the optimal transport cost between two probability dis-
tributions. Therefore, the first section considers the foundations of optimal
transport and states additionally a few theorems and lemmata which are
important for the subsequent. The second section states the definition of the
Wasserstein distance and several properties of it. The last section considers
learning with a special variant of Wasserstein distance.

2.1 Optimal Transport

To formulate the problem of optimal transport between two probability mea-
sures p and q the notation of coupling has to be introduced first.

Definition 2.1 (Couplings and transport plans) [21, Definition 1.1, p. 22] Let
X and Y be two measure spaces with respective probability distributions p and q.
(X, Y) is a coupling of (p, q) if X is a random variable with distribution p and Y a
random variable with distribution q. The distribution of (X, Y) can also be called a
coupling of (p, q), but is mostly called transport or transference plan.

The optimal transport π is then the transport plan which solves the Monge-
Kantorovich problem:

Problem 2.2 (Monge-Kantorovich problem) [21, p. 22] Consider a cost func-
tion c : X ×Y → R ∪ {∞} and p ∈ P(X ), q ∈ P(Y). Let Π(p, q) denote the set
of all transference plans between p and q. Then the problem

inf
π∈Π(p,q)

E(x,y)∼πc(x, y)

is called the Monge-Kantorovich problem. Its solution C(p, q) is called total cost.
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2. The Wasserstein Distance

The Monge-Kantorovich problem is solved by the optimal way of transport-
ing one distribution to another. One can interpret this as an economic prob-
lem. In this case the distributions are the supply on different locations and
the demand on other locations. In this interpretation however, a transport
plan between the distributions is a way to transport the products between
those locations and the optimal way of doing this is the solution to the prob-
lem. Thus, the cost of transporting the products is the interpretation of the
solution of the Monge-Kantorovich problem, the total cost. [21, p. 42]

The next theorem, Prokhorov’s Theorem, connects tightness and precom-
pactness of measure sets. This connection will be required later on.

Theorem 2.3 (Prokhorov’s Theorem) [2, Theorem 5.1, 5.2] Consider a Polish
space X and M ⊂ P(X ). Then the following statements are equivalent:

• M is weakly precompact i.e. any sequence in M has a subsequence which is
convergent for the weak topology.

• M is tight i.e. ∀ε > 0 it exist a compact set Mε such that p(X \ Mε) ≤ ε
∀p ∈ M.

The next two lemmata state important properties of transference plans.

Lemma 2.4 (Upper bound of transport cost π) [21, Lemma 4.3] Consider the
Polish spaces X and Y . Moreover, let c : X × Y → R ∪ {∞} be a lower semicon-
tinuous cost function and h : X ×Y → R ∪ {−∞} an upper semicontinuous cost
function with c ≥ h. If (πn)n∈N, π ∈ P(X × Y) and h ∈ L1(πn) ∩ L1(π) are
such that ∫

X×Y
hdπn →

∫
X×Y

hdπ f or n → ∞

then ∫
X×Y

cdπ ≤ lim inf
n→∞

∫
X×Y

cdπn.

Lemma 2.5 (Transference plans are tight) [21, Lemma 4.4] Consider the Polish
spaces X and Y . If P is tight subset of P(X ) and Q is a tight subset of P(Y), then
the set of all transference plans between P and Q, Π(P ,Q), is tight in P(P ×Q).

The last two Lemmata 2.5 and 2.4 together with Prokhorov’s Theorem 2.3
are applied to prove that an optimal coupling exists.

Theorem 2.6 (Existence of optimal coupling) [21, Theorem 4.1] Consider the
Polish spaces X and Y with p ∈ P(X ) and q ∈ P(Y).

Moreover, let a : X → R ∪ {−∞} with a ∈ L1(p) and b : Y → R ∪ {−∞} with
b ∈ L1(q) be upper semicontinuous. Furthermore, consider a lower semicontinuous
cost function c : X → R ∪ {∞} with c(x, y) ≥ a(x) + b(y) ∀x, y. Then there is a
coupling of (p, q) such that Ec(X, Y) is minimal among all couplings (X, Y).
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2.1. Optimal Transport

Proof [21, Proof of Theorem 4.1] Every probability measure on a Polish
space is tight. Thus, since X and Y are Polish spaces, p and q are tight
in P(X ) and P(Y), respectively. From Lemma 2.5 it follows that also the
set of transportation plans between p and q is tight in P(X × Y). Using
Prokhorov’s Theorem 2.3 it is clear that Π(p, q) is weakly precompact. The
map from Π(p, q) to its marginals p and q is continuous. Thus, Π(p, q) is
closed and not only precompact for the weak topology, but also compact.

Consider the probability measures (πn)n∈N in Π(p, q) such that their cost∫
cdπn converges to the infimum of the transport cost. Since Π(p, q) is com-

pact, at least a subsequence of (πn)n∈N converges to some π ∈ Π(p, q) and
without loss of generality it is here assumed that (πn)n∈N is such that it
converges to π.

Furthermore, define the function h(x, y) := a(x) + b(y) for x ∈ X and y ∈ Y .
Then it holds that h : X × Y → R ∪ {−∞} is as sum of upper semicon-
tinuous functions likewise upper semicontinuous and c ≥ h. Additionally,
h ∈ L1(πn) ∩ L1(π) and∫

X×Y
hdπn =

∫
X

a(x)dp +
∫
Y

b(y)dq =
∫
X×Y

hdπ.

Consequently, the conditions of Lemma 2.4 are satisfied and thus∫
X×Y

cdπ ≤ lim inf
n→∞

∫
X×Y

cdπn

holds. Since by assumption
∫

cdπn converges to the infimum of the trans-
port cost, π is the optimal coupling between the probability measures p and
q. □

Note, that the last theorem only proves that an optimal coupling as cou-
pling with the smallest total cost exists. The optimal transport cost is not
necessarily finite in this case.

The dual formulation of the Monge-Kantorovich problem is called the dual
Kantorovich problem.

Problem 2.7 (Dual Kantorovich problem) [21, p. 65] Let X and Y be Polish
spaces and p ∈ P(X ), q ∈ P(Y). Consider ϕ ∈ L1(Y , q) and ψ ∈ L1(X , p). Then

sup
ϕ(y)−ψ(x)≤c(x,y)

∫
Y

ϕ(y)dq(y)−
∫
X

ψ(x)dp(x)

is called the dual Kantorovich problem.

This problem can as well be interpreted in terms of the product transport
between supply- and demand-locations. In this example ψ is the price at
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2. The Wasserstein Distance

which the product must be bought at the supply-locations and ϕ the price
at which the product can be sold at the demand-locations. Thus, the solu-
tion of the dual problem is the maximal money a company could make by
transporting the products between the locations. Obviously, the solution of
the dual problem is bound above by the solution of the Monge-Kantorovich
problem. The suppliers will transport the products themselves if that is
cheaper than the transport by the companies. [21, p. 65]

Moreover, under certain assumptions the solution of the primal and dual
problem is exactly the same. These assumptions include the terms of c-
convex and c-concave functions which are defined below:

Definition 2.8 (c-convex, c-concave functions) [21, Definition 5.2, 5.7] Con-
sider the cost function c : X ×Y → (−∞, ∞] on two sets X and Y . Moreover, let
ψ : X → R ∪ {∞}. If ψ is not ∞ everywhere and a function ζ : Y → R ∪ {±∞}
exists such that

ψ(x) = sup
y∈Y

(ζ(y)− c(x, y)) ∀x ∈ X ,

then ψ is called c-convex. The c-transform of ψ is ψc:

ψc(y) = inf
x∈X

(ψ(x) + c(x, y)) ∀y ∈ Y .

The function ϕ : Y → R ∪ {−∞} is called c-concave if ϕ is not −∞ everywhere
and a function ψ : X → R ∪ {±∞} exists with ϕ = ψc.

Thus, the Kantorovich duality which states the equality of the primal and
dual solution of the problem can be described now.

Theorem 2.9 (Kantorovich duality) [21, Theorem 5.10 (i,iii)] Consider (X , p)
and (Y , q) as Polish probability spaces and c : X × Y → R ∪ {∞} as lower
semicontinuous cost function which satisfies

c(x, y) ≥ a(x) + b(y) ∀(x, y) ∈ X ×Y

for the functions a ∈ L1(p) and b ∈ L1(q) which are real-valued upper semicontin-
uous. Then it holds that

min
π∈Π(p,q)

∫
X×Y

c(x, y)dπ(x, y) = sup
ψ∈L1(p)

(∫
Y

ψc(y)dq(y)−
∫
X

ψ(x)dp(x)
)

= sup
ϕ∈L1(q)

(∫
Y

ϕ(y)dq(y)−
∫
X

ϕc(x)dp(x)
)

where the suprema are taken over ψ c-convex and ϕ c-concave.
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2.1. Optimal Transport

If additionally the cost c is real-valued, the total cost C(p, q) < ∞ and the cost is
pointwise upper-bounded

c(x, y) ≤ g(x) + h(y) (g, h) ∈ L1(p)× L1(q)

then it holds that

min
π∈Π(p,q)

∫
X×Y

c(x, y)dπ(x, y)

= max
(ψ,ϕ)∈L1(p)×L1(q)

(∫
Y

ϕ(y)dq(y)−
∫
X

ψ(x)dp(x)
)

= max
ψ∈L1(p)

(∫
Y

ψc(y)dq(y)−
∫
X

ψ(x)dp(x)
)

where the maxima are taken over ψ c-convex and ϕ = ψc.

Therefore, under additional assumptions the supremum of the dual problem
is attained. This property will be crucial in the third section of this chapter.

The definition of c-cyclically monotone transference plans comes from the
intuition that one can attempt to improve a transference plan by redirecting
the transport from one target location to the next one. If the total transport
cost of the new transference plan is smaller than the original one, then the
attempt was of course successful. If that is not the case, the original trans-
ference plan could be a candidate for the optimal transference plan. [21, pp.
63-64]

Definition 2.10 (c-cyclically monotone sets) [21, Definition 5.1] Consider the
function c : X × Y → (−∞, ∞]. The subset Γ ⊂ X × Y is called c-cyclically
monotone if

n

∑
i=1

c(xi, yi) ≤
n

∑
i=1

c(xi, yi+1)

holds for any n ∈ N and (xi, yi)
n
i=1 in Γ, where yn+1 := y1.

A transference plan which is concentrated on such a Γ is also called c-cyclically
monotone.

The next theorem states that a weak convergence of probability measures
implies the convergence of their optimal transport plans to a c-cyclically
monotone transport plan. Moreover, under certain assumptions the result-
ing transport plan is optimal.
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2. The Wasserstein Distance

Theorem 2.11 (Optimal transport is stable) [21, Theorem 5.20] Consider X ,
Y as two Polish spaces. Let (cn)n∈N be a sequence of continuous cost functions
on X × Y which converges uniformly to a real-valued continuous cost function
c ∈ C(X × Y) such that inf c > −∞. Moreover, let (pn)n∈N be a sequence of
probability measures on X converging weakly to p and (qn)n∈N a sequence of prob-
ability measures on Y converging weakly to q. If πn denotes the optimal transport
between pn and qn for each n ∈ N and∫

X×Y
cn(x, y)dπn(x, y) < ∞ ∀n ∈ N,

then πn (or a subsequence) converges weakly to a c-cyclically monotone transport
plan π ∈ Π(p, q).

In case of

lim inf
n∈N

∫
X×Y

cn(x, y)dπn(x, y) < ∞

the total optimal transport cost C(p, q) < ∞ and π is an optimal transport.

The results of this section can be used to find several properties of the
Wasserstein distance in the next section.

2.2 The Wasserstein Distance and its Properties

The Wasserstein distance between two probability measures is 1
k of the op-

timal total cost as solution of the Monge-Kantorovich problem with cost
function dk. [21, p. 105]

Definition 2.12 (Wasserstein distance) [21, Definition 6.1] Consider a Polish
metric space (X , d), k ∈ [1, ∞) and p, q as probability measures on X . Then

Wk(p, q) := inf
π∈Π(p,q)

(∫
X×X

d(x, y)kdπ(x, y)
) 1

k

= inf
π∈Π(p,q)

(
E(x,y)∼πd(x, y)k

) 1
k

(2.1)

is called the Wasserstein distance of order k between p and q.

Therefore, the Wasserstein distance considers the optimal cost and not ex-
plicitly the optimal transport plan. The distance is also called Kantorovich-
Rubenstein distance, Earth-Mover distance or Optimal Transport. While in
some literature those names are used for all kinds of Wasserstein distances,
others use several names only for specific Wasserstein distances. In this
thesis for the general case only the term Wasserstein distance is used. The
1-Wasserstein distance with a metric induced by a norm will be called Earth-
Mover distance in this thesis. This is done to distinguish between the general
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2.2. The Wasserstein Distance and its Properties

Wasserstein distance and this specific variant which will play a big role in
the second part of this thesis.

In general the Wasserstein distance is not necessarily finite. However, in
most cases the Wasserstein distance is considered on the Wasserstein space
Pk on which it is always finite.

Definition 2.13 (Wasserstein space) [21, Definition 6.4] Consider the setting of
Definition 2.12. Then

Pk :=
{

p ∈ P(X )|
∫
X

d(x0, x)kdp(x) < ∞
}

for any x0 ∈ X is called Wasserstein space of order k.

Note, that the Wasserstein space depends not on the choice of x0. [21, Defi-
nition 6.4]

With this definition it can be shown that the Wasserstein distance satisfies
all conditions of a finite distance.

Theorem 2.14 (Wk is a distance) [21, pp. 106/107] Consider a Polish metric
space (X , d) and k ∈ [1, ∞). The Wasserstein distance of order k is a finite dis-
tance on Pk(X ).

Proof [21, pp. 106/107] In order to prove that the Wasserstein distance is a
finite metric it has to be proven that it is

i. positive definite

ii. symmetric

iii. satisfies the triangle inequality

iv. finite on Pk(X )

These properties hold indeed:

i. Since the Wasserstein distance is the infimum of an expected value of a
norm, the distance can never be negative. So it remains to show

Wk(p, q) = 0 ⇔ p = q.

Since d(x, y) is a metric, it is itself positive definite and thus

Wk(p, q) = 0 ⇔ ∃π ∈ Π(p, q) :
∫
X×X

d(x, y)kdπ(x, y) = 0

⇔ ∃π ∈ Π(p, q) : d(x, y) = 0 i f π(x, y) ̸= 0
⇔ id ∈ Π(p, q)
⇔ p = q

9



2. The Wasserstein Distance

ii. Using the symmetry of d(x, y) the symmetry of the Wasserstein distance
can easily be shown:

Wk(p, q) =
(

inf
π∈Π(p,q)

∫
X×X

d(x, y)kdπ(x, y)
) 1

k

=

(
inf

π∈Π(q,p)

∫
X×X

d(y, x)kdπ(y, x)
) 1

k

= Wk(q, p)

iii. To prove the triangle inequality for the Wasserstein distance the Gluing
Lemma is crucial. This Lemma can be found e.g. in [21, pp. 23-24].
Provided (X1, p1), (X2, p2) and (X3, p3) are Polish probability spaces
the Gluing Lemma states that for each coupling of (p1, p2) and (p2, p3)
there exist random variables X1, X2 and X3 such that (X1, X2) has the
same distribution as the coupling of (p1, p2) and (X2, X3) has the same
distribution as the coupling of (p2, p3).

Thus, the Gluing Lemma can be applied in the setting of the Wasser-
stein distance for optimal couplings of (p1, p2), (p2, p3). Then there
exist random variables X1, X2 and X3 on X such that (X1, X2) is an opti-
mal coupling of (p1, p2), (X2, X3) is an optimal coupling of (p2, p3) and
(X1, X3) is a coupling of (p1, p3). Using additionally the fact that d(x, y)
fulfills as distance the triangle inequality,

Wk(p1, p3) ≤ (Ed(X1, X3)
k)

1
k ≤ (E (d(X1, X2) + d(X2, X3))

k)
1
k

holds.

Moreover, with ∥ f + g∥Lk ≤ ∥ f ∥Lk + ∥g∥Lk for f , g ∈ Lk, the Minkowski
inequality for Lk, the following inequality results

Wk(p1, p3) ≤ (E (d(X1, X2))
k)

1
k + (E (d(X2, X3))

k)
1
k . (2.2)

Since (X1, X2) and (X2, X3) are constructed as optimal couplings, the
right side of (2.2) equals Wk(p1, p2) +Wk(p2, p3). Therefore, the triangle
inequality is satisfied for the Wasserstein distance.

iv. If p, q ∈ Pk(X ), then∫
X

d(x0, x)kdp(x) < ∞ and
∫
X

d(y, x0)
kdq(y) < ∞.

Additionally from the triangle inequality and (a + b)k ≤ 2k−1(ak + bk)
for a, b ≥ 0 the following inequality holds:

d(x, y)k ≤ (d(x, x0) + d(y, x0))
k ≤ 2k−1

(
d(x, x0)

k + d(y, x0)
k
)

10



2.2. The Wasserstein Distance and its Properties

With this inequality the desired result follows:

Wk(p, q)k = inf
π∈Π(p,q)

∫
X×X

d(x, y)kdπ(x, y)

≤ inf
π∈Π(p,q)

∫
X×X

2k−1
(

d(x, x0)
k + d(y, x0)

k
)

dπ(x, y)

= 2k−1
∫
X

d(x, x0)
kdp(x) + 2k−1

∫
X

d(y, x0)
kdq(y)

< ∞

□

The proof of Theorem 2.14 uses the properties of the Wasserstein space only
to prove the finiteness. Therefore, the Wasserstein distance is also a distance
if it is not defined on the Wasserstein space. However, in this case it is not a
finite distance.

A comparison of Wasserstein distances with different orders is provided in
the next theorem.

Theorem 2.15 (Order of Wasserstein distances) [21, Remark 6.6] Consider a
Polish metric space (X , d) and k1, k2 ∈ [1, ∞). In this setting

k1 ≤ k2 ⇒ Wk1(p, q) ≤ Wk1(p, q)

for any p, q ∈ Pk1(X ) ∩ Pk2(X ).

Proof Using Hölder’s inequality for the functions |d|k1 and 1 and the Hölder
conjugates k2

k1
and k2

k2−k1
the following holds:

∫
X
||d(x)|k1 · 1|dp(x) ≤

(∫
X
||d(x)|k1 |

k2
k1 dp(x)

) k1
k2
(∫

X
|1|

k2
k2−k1 dp(x)

) k2−k1
k2

⇔
(∫

X
|d(x)|k1 dp(x)

) 1
k1
≤
(∫

X
|d(x)|k2 dp(x)

) 1
k2

.

[23, p. 63]

And thus, immediately

Wk1(p, q) ≤ Wk2(p, q)

follows. □

As a consequence the Wasserstein distance of order 1 is the weakest Wasser-
stein distance. Thus, it can be bounded easier than the other distance. In
contrast the Wasserstein distance of order 2 admits better properties in a geo-
metric context. Therefore, these orders are the most convenient. [21, Remark
6.6]
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2. The Wasserstein Distance

An important property of the Wasserstein distance of each order is the con-
nection of its convergence to the weak convergence in the Wasserstein space.
This weak convergence in Pk(X ) is characterized in the following definition.

Definition 2.16 (Weak convergence in Pk(X )) [21, Definition 6.8] Consider a
Polish metric space (X , d) and k ∈ [1, ∞). For a sequence (pn)n∈N of probability
measures in Pk(X ) and p ∈ Pk(X ) the following statements are equivalent:

i. pn converges weakly to p and∫
X

d(x0, x)kdpn(x) →
∫
X

d(x0, x)kdp(x).

ii. pn converges weakly to p and

lim sup
n→∞

∫
X

d(x0, x)kdpn(x) ≤
∫
X

d(x0, x)kdp(x).

iii. pn converges weakly to p and

lim
R→∞

lim sup
n→∞

∫
d(x0,x)≥R

d(x0, x)kdpn(x) = 0.

iv. For every continuous ϕ with |ϕ(x)| ≤ C(1 + d(x0, x)k) for C ∈ R∫
X

ϕ(x)dpn(x) →
∫
X

ϕ(x)dp(x)

is satisfied.

If these statements are satisfied for any x0, pn is said to converge weakly in Pk(X ).

To prove the connection of the convergence in the Wasserstein distance with
the weak convergence in Pk(X ) the next Lemma is required.

Lemma 2.17 (Tightness of Cauchy sequences in (Pk(X ), Wk)) [21, Lemma
6.14] Consider a Polish space X and k ∈ [1, ∞). If (pn)n∈N is a Cauchy sequence
in the metric space (Pk(X ), Wk), then (pn) is tight.

With this knowledge the following theorem can be proven:

Theorem 2.18 (Wasserstein distance metrizes Wasserstein space) [21, Theo-
rem 6.9] Consider a Polish metric space (X , d), k ∈ [1, ∞) and p ∈ Pk(X ). If and
only if a sequence (pn)n∈N of probability measures in Pk(X ) converges weakly in
Pk(X ) to p then Wk(pn, p) → 0.

Proof [21, Proof of Theorem 6.9] “⇐” Let (pn)n∈N be a sequence in Pk(X )
such that Wk(pn, p) → 0. Since (pn)n∈N is a Cauchy sequence in Pk(X )
from Lemma 2.17, it is clear that the sequence is tight. Using Prokohorov’s

12



2.2. The Wasserstein Distance and its Properties

Theorem 2.3 it follows immediately that there exists a subsequence (pn′)
which converges weakly to a probability measure p̂. Thus, Lemma 2.4 can
be applied and results in

Wk( p̂, p) ≤ lim inf
n′→∞

Wk(pn′ , p).

Therefore, with Wk(pn′ , p) → 0 it follows that p̂ = p. Since this argument
can be applied to every converging subsequence, (pn)n∈N converges weakly
to p as well.

To prove that (pn)n∈N also converges weakly in Pk(X ) to p, by Definition
2.16 (ii.) it has additionally to be shown that

lim sup
k→∞

∫
X

d(x0, x)pdµk(x) ≤
∫
X

d(x0, x)pdµ(x)

holds. In order to do so the following statement for a, b ∈ R+ will be used:

∀ε > 0 ∃aε > 0 (a + b)k ≤ (1 + ε)ak + aεbk.

Using this inequality for the distances between the points x0, x, y ∈ X and
the triangle inequality one gets

d(x0, x)k ≤ (d(x0, y) + d(x, y))k ≤ (1 + ε)d(x0, y)k + aεd(x, y)k. (2.3)

Now consider an optimal transference plan πn ∈ Π(pn, p). Then (2.3) is
equivalent to∫

X×X
d(x0, x)kdπn(x, y)

≤ (1 + ε)
∫
X×X

d(x0, y)kdπn(x, y) + aε

∫
X×X

d(x, y)kdπn(x, y)

⇔
∫
X

d(x0, x)kdpn(x)

≤ (1 + ε)
∫
X

d(x0, y)kdp(y) + aε

∫
X×X

d(x, y)kdπn(x, y).

Since by assumption for n → ∞∫
X×X

d(x, y)kdπn(x, y) = Wk(pn, p)k → 0,

when choosing y = x the following holds:

lim sup
n→∞

∫
X

d(x0, x)kdpn(x) ≤ (1 + ε)
∫
X

d(x0, x)kdp(x).

Letting ε → 0 the desired statement results:

lim sup
n→∞

∫
X

d(x0, x)kdpn(x) ≤
∫
X

d(x0, x)kdp(x).

13



2. The Wasserstein Distance

“⇒” Consider a sequence of probability measures (pn)n∈N in Pk(X ) which
converges weakly to p ∈ Pk(X ). In addition let (πn)n∈N be a sequence of op-
timal transference plans between pn and p. Since (pn)n∈N is by Prokhorov’s
Theorem 2.3 tight and p is also tight, from Lemma 2.5 follows that (πn)n∈N

is tight as well. Thus, again by Prokhorov’s Theorem there exists at least a
subsequence of (πn)n∈N converging weakly to a π ∈ P(X ×X ). From Theo-
rem 2.11 follows that π is as limit of optimal transference plans itself optimal
for the limit of the marginals. So π is the optimal coupling between the prob-
ability measures p and p and thus the identity coupling. Since this argument
holds for every subsequence, the sequence (πn)n∈N itself converges weakly
to π (the identity coupling).

For any x0 ∈ X and R > 0

R ≤ d(x, y) ≤ d(x0, y) + d(x, x0)

⇒ max(d(x0, y), d(x, x0)) ≥
R
2

and max(d(x0, y), d(x, x0)) ≥
d(x, y)

2
.

And thus,

max(0, d(x, y)k − Rk) = d(x, y)k1[d(x,y)≥R]

≤ d(x, y)k1
[d(x0,y)≥ R

2 ]∩[d(x0,y)≥ d(x,y)
2 ]

+ d(x, y)k1
[d(x,x0)≥ R

2 ]∩[d(x,x0)≥ d(x,y)
2 ]

≤ 2kd(x0, y)k1[d(x0,y)≥ R
2 ]
+ 2kd(x, x0)

k1[d(x,x0)≥ R
2 ]

holds.

This inequality can be applied in the third line of the following while in the
first line the definition of πn as optimal transport is used:

Wk(pn, p)k =
∫
X×X

d(x, y)kdπn(x, y)

≤
∫
X×X

min(d(x, y)k, Rk) + max(0, d(x, y)k − Rk)dπn(x, y)

≤
∫
X×X

min(d(x, y)k, Rk) + 2kd(x0, y)k1[d(x0,y)≥ R
2 ]

+ 2kd(x, x0)
k1[d(x,x0)≥ R

2 ]
dπn(x, y)

=
∫
X×X

min(d(x, y)k, Rk)dπn(x, y) + 2k
∫
X×X

d(x0, y)k1[d(x0,y)≥ R
2 ]

dπn(x, y)

+ 2k
∫
X×X

d(x, x0)
k1[d(x,x0)≥ R

2 ]
dπn(x, y)

=
∫
X×X

min(d(x, y)k, Rk)dπn(x, y) + 2k
∫
X×X

d(x0, y)k1[d(x0,y)≥ R
2 ]

dp(x, y)

+ 2k
∫
X×X

d(x, x0)
k1[d(x,x0)≥ R

2 ]
dpn(x, y)

(2.4)

14



2.2. The Wasserstein Distance and its Properties

Taking the limit of inequality (2.4)

lim sup
n→∞

Wk(pn, p)

≤ lim
n→∞

∫
X×X

min(d(x, y)k, Rk)dπn(x, y)

+ 2k lim
R→∞

lim sup
n→∞

∫
X×X

d(x0, y)k1[d(x0,y)≥ R
2 ]

dp(x, y)

+ 2k lim
R→∞

lim sup
n→∞

∫
X×X

d(x, x0)
k1[d(x,x0)≥ R

2 ]
dpn(x, y)

results. Since πn converges weakly to π as n → ∞ and min(d(x, y)k, Rk)
is a bounded and continuous function, the first term becomes 0. As also
the second and third term become zero, the convergence pn → p in the
Wasserstein distance is shown. □

Thus, the Wasserstein distance metrizes the Wasserstein space. This result
can be applied to prove the continuity of the Wasserstein distance.

Corollary 2.19 (Continuity of Wk on Pk(X )) [21, Corollary 6.11] Consider a
Polish metric space (X , d) and k ∈ [1, ∞). Moreover, let (pn)n∈N and (qn)n∈N

be sequences of probability measures and p, q probability measures in Pk(X ). If pn
converges weakly to p and qn to q for n → ∞, then

Wk(pn, qn) → Wk(p, q).

Proof Since from Theorem 2.18 it is known that weak convergence in Pk(X )
is equivalent to convergence of Wk, it follows immediately that for (pn)n∈N

converging weakly to p in Pk(X ) and (qn)n∈N to q the following holds:

Wk(pn, p) → 0 and Wk(qn, q) → 0

Applying the triangle inequality

Wk(pn, qn) ≤ Wk(pn, p) + Wk(p, q) + Wk(q, qn) and
Wk(p, q) ≤ Wk(p, pn) + Wk(pn, qn) + Wk(qn, q)

follow.

Taking the limit of both inequalities for n → 0

Wk(pn, qn) → Wk(p, q).

□

Therefore, the Wasserstein distance of order k is indeed continuous on Pk(X ).

So it was shown that the Wasserstein distances of each order have several
nice properties. However, the Kantorovich-Rubinstein formula applies only
to the Wasserstein distance of order 1. It represents the dual formulation of
the 1-Wasserstein distance.
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2. The Wasserstein Distance

Theorem 2.20 (Kantorovich-Rubinstein formula) [21, Remark 6.5] Consider
a Polish metric space (X , d) and let p, q ∈ P1(X ). Then the Wasserstein distance
of order 1 has the following dual representation:

W1(p, q) = sup
∥ f ∥Lip≤1

(∫
X

f (x)dp(x)−
∫
X

f (x)dq(x)
)

.

Proof [21, Particular Case 5.4, Remark 6.5] Applying Theorem 2.9 to the
Wasserstein distance of order 1 the equality

W1(p, q) = inf
π∈Π(p,q)

∫
X×X

d(x, y)dπ(x, y)

= sup
f d−convex

(∫
X

f (x)dq(x)−
∫
X

f d(x)dp(x)
) (2.5)

with f d as the d-transform of function f holds.

In order to get the desired result two statements have to be proven. First it
must be shown that the d-transform of a d-convex function f is the function
itself. Additionally it must hold that a function f is d-convex if and only if
it is 1-Lipschitz.

The first statement can be checked straightforward by using the definition
of the d-transform of f :

f d(y) = inf
x∈X

( f (x) + d(x, y)) = f (y) + d(y, y) = f (y) ∀y ∈ X

Since for a 1-Lipschitz function f obviously holds that

f (x) = f (x)− d(x, x) = sup
y∈X

( f (y)− d(x, y)) ∀x ∈ X ,

the function f is d-convex. A d-convex function on the other hand is 1-
Lipschitz continuous. Thus, also the second statement holds. □

If p and q are discrete probability distributions, finding the Wasserstein dis-
tance of order 1 corresponds to the transportation problem.

Definition 2.21 (Transportation problem) [9, pp. 307-309] Consider a discrete
Polish metric space (X , d) and discrete probability measures p, q on X such that

p =
n

∑
i=1

piδxi , q =
m

∑
j=1

qjδyj

for xi, yj ∈ X . Let D = (dij) = (d(xi, yj)) ∈ Rn×m be a cost matrix and
π = (πij) ∈ Rn×m be a transportation matrix.
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2.2. The Wasserstein Distance and its Properties

Then W1(p, q) is the solution of the following problem:

min
π∈Rn×m

m

∑
j=1

n

∑
i=1

dijπij

m

∑
j=1

πij = pi for i = 1, ..., n

n

∑
i=1

πij = qj for j = 1, ..., m

πij ≥ 0 ∀i, j

(2.6)

which is called the transportation problem.

The constraints of the transportation problem ensure π to be from the set of
joint probability distributions of p and q: Π(p, q).

Since the transportation problem is a linear program, it can be solved by
using the simplex algorithms. More specifically, to solve a transportation
problem the transportation simplex can be used, a simplex algorithm taking
advantage of the special structure of the transportation problem.

Definition 2.22 (Transportation simplex) [9, pp. 316-329] In the setting of Def-
inition 2.21 the transportation simplex is an algorithm consisting of the following
steps:

1. find a basic solution which satisfies the constraints

2. set ui = 0 for an arbitrary i ∈ 1, ..., n and for all (i, j) with πij being a basic
variable solve dij = ui + vj

3. perform optimality test: if dij − ui − vj ≥ 0 for i = 1, ..., n, j = 1, ..., m then
the basic solution is optimal and the algorithm can be stopped

4. find another basic feasible solution

a) choose πij with minimal dij − ui − vj as new basic variable

b) identify which basic variables decrease as the new basic variable increases
and eliminate the smallest of them

c) assign the value of the eliminated basic variable to a new basic variable

d) update the basic variables according to the constraints as well as ui for
i = 1, ..., n and vj for j = 1, ..., m

e) go to 3.

17



2. The Wasserstein Distance

Therefore, it is possible to calculate the exact Wasserstein distance of order
1 between discrete probability distributions as long as n and m are small
enough. For very large n and m the transportation simplex can become too
complex. In those cases the 1-Wasserstein distance can be approximated by
solving a coarser discretization of the problem.

Such an approximation can also be used if the Wasserstein distance of order
1 between two continuous probability distributions should be calculated.
This is done e.g. when calculating the 1-Wasserstein distance between the
colour distributions of images by using their signatures as presented in [16,
pp. 7-8]. Here, an image signature is a set {si = (mi, wi)} of clusters which
are described by their mean mj and the percentage of pixels wj the cluster
contains.

Consider two images with the signatures A = {(a1, wa1), ..., (an, wan)} and
B = {(b1, wb1), ..., (bm, wbm)}. Then the 1-Wasserstein distance between the
two signatures A and B is W1(p, q) where

p :=
n

∑
i=1

wai δai and q :=
m

∑
j=1

wbj δbj .

W1(p, q) in turn is the solution of the transportation problem (2.6) where dij
denotes the ground distance between ai and bj one has to define. Using the
transportation simplex this problem can be solved exactly if the signature of
the images is not too long. [16, pp. 7-8]

There are several other ways to approximate different versions of the Wasser-
stein distance. As an example Solomon et al. presented in [19] a method
to approximate the Wasserstein distance of order 2 with the so called con-
volutional Wasserstein distance. This convolutional Wasserstein distance is
found by the construction of optimal transports via iterative kernel convolu-
tions. Another example is the linear approximation algorithm for a Wasser-
stein distance of order 1 with a thresholded ground distance presented by
Li et al. in [12].
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2.3. Learning by the Earth-Mover Distance

2.3 Learning by the Earth-Mover Distance

As already mentioned in the previous section the term Earth-Mover distance
describes in this thesis the Wasserstein distance of order 1 with a metric
induced by a norm. Thus, the Earth-Mover distance between probability
measures p and q is

EM(p, q) := inf
π∈Π(p,q)

∫
X×X

∥x − y∥dπ(x, y)

= inf
π∈Π(p,q)

E(x,y)∼π∥x − y∥.
(2.7)

[1, p. 4]

The name Earth-Mover distance is derived from a motivational example of
the distance. Assume p as the distribution of an earth pile and q as distribu-
tion of holes which have to be filled with earth. Thus, p(x) is the amount of
earth in a specific space segment x and q(x) is the amount of earth which
must be transported in a specific space segment x. In this case π ∈ Π(p, q)
can be interpreted as a transport plan of how to move the earth from the
earth pile into the holes. Therefore, the Earth-Mover distance would calcu-
late the minimal cost of filling the holes with earth from the earth pile. [16,
p. 7]

A distribution p can be learned by a function gθ(z) with distribution pθ by
adapting θ in such a way that EM(p, pθ) is minimized. To do so, EM(p, pθ)
should be continuous in θ and differentiable almost everywhere. The next
theorem will show that this is indeed true if gθ is locally Lipschitz and there
exist local Lipschitz constants L(θ, z) such that Ez∼pz L(θ, z) < ∞.

Theorem 2.23 (EM of p and pθ is continuous on θ) [1, Theorem 1 (i,ii)] Con-
sider a compact metric space X , a space Z and d ∈ N. Let gθ : Z → X for
θ ∈ Rd a function and Z ∼ pz a random variable on Z . Moreover, pθ denotes the
distribution of gθ(Z) and p a distribution over X . Then the following statements
hold

i. gθ is continuous in θ ⇒ EM(p, pθ) is continuous in θ

ii. gθ is locally Lipschitz and local Lipschitz constants L(θ, z) exist such that
Ez∼pz L(θ, z) < ∞ ⇒ EM(p, pθ) is continuous everywhere and differentiable
almost everywhere.

Proof [1, Proof of Theorem 1 (i,ii)]

i. Let θ, θ̂ ∈ Rd and π such that (gθ(Z), gθ̂(Z)) ∼ π. Thus, π is a transfer-
ence plan between pθ and pθ̂ and it holds that

EM(pθ , pθ̂) ≤ E(x,y)∼π∥x − y∥ = Ez∼pz∥gθ(z)− gθ̂(z)∥. (2.8)
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2. The Wasserstein Distance

If it can be shown that ∥gθ(z)− gθ̂(z)∥ can be uniformly bounded by a
constant and moreover, converges pointwise to 0 then by the bounded
convergence theorem its expectation converges to 0.

Since X is compact, there exists a constant which bounds ∥gθ(z) −
gθ̂(z)∥ uniformly. In addition the function gθ is by assumption con-
tinuous, so for θ → θ̂

gθ(z) → gθ̂(z)

and
∥gθ(z)− gθ̂(z)∥ → 0 pointwise.

Therefore, the conditions of the bounded convergence theorem are ful-
filled and for θ → θ̂ the convergence

Ez∼pz∥gθ(z)− gθ̂(z)∥ → 0

follows. From (2.8) it is clear that EM(pθ , pθ̂) converges for θ → θ̂ as
well to 0. With the triangle inequality this implies the continuity of
EM(p, pθ):

|EM(p, pθ)− EM(p, pθ̂)| ≤ EM(pθ , pθ̂) → 0 for θ → θ̂

ii. From the definition of local Lipschitz continuity there exist for every
(θ, z) an open set U which satisfies (θ, z) ∈ U and

∥gθ(z)− gθ̂(ẑ)∥ ≤ L(θ, z)
(
∥θ − θ̂∥+ ∥z − ẑ∥

)
∀(θ̂, ẑ) ∈ U

When taking the expected value and choosing ẑ = z the second condi-
tion implies

Ez∼pz∥gθ(z)− gθ̂(z)∥ ≤ Ez∼pz L(θ, z)∥θ − θ̂∥ ∀(θ̂, z) ∈ U.

By using the definition of the Earth-Mover distance and the triangle
inequality it holds that ∀(θ̂, z) ∈ U

|EM(p, pθ)− EM(p, pθ̂)| ≤ EM(pθ , pθ̂)

≤ Ez∼pz∥gθ(z)− gθ̂(z)∥
≤ Ez∼pz L(θ, z)∥θ − θ̂∥.

Since L(θ) := Ez∼pz L(θ, z) is by assumption finite and as U is open also
Uθ := {θ|(θ, z) ∈ U} is open, EM(p, pθ) is locally Lipschitz continuous:

|EM(p, pθ)− EM(p, pθ̂)| ≤ L(θ)∥θ − θ̂∥ ∀(θ̂) ∈ Uθ .

The local Lipschitz continuity implies that EM(p, pθ) is continuous ev-
erywhere. Since Rademacher’s theorem states that a locally Lipschitz
continuous function is almost everywhere differentiable, this applies to
EM(p, pθ).
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2.3. Learning by the Earth-Mover Distance

□

Thus, to learn p with EM(p, pθ) only makes sense if gθ satisfies respective
conditions. A class of functions which satisfy these conditions are feedfor-
ward neural networks if they are defined as follows:

Definition 2.24 [1, p. 5] Consider a compact metric space X , a space Z and
d ∈ N. A function gθ : Z → X is called a feedforward neural network if

gθ(z) = (hN ◦ AN ◦ hN−1 ◦ AN−1 ◦ ... ◦ h1 ◦ A1)(z)

holds where A1, ..., AN are affine transformations and h1, ..., hN−1 are pointwise non-
linear smooth Lipschitz continuous functions. The parameter θ ∈ Rd are defined as
the weights W1, ..., WN of the affine transformations.

This definition includes neural networks with activation functions as tanh,
sigmoid or elu. [1, p. 5] However, neural networks with activation function
that are not smooth or Lipschitz continuous such as threshold functions are
not considered in the following corollary.

Therefore, the fact that feedforward neural networks satisfy the conditions
of Theorem 2.23 can now be proven.

Corollary 2.25 (Learning by EM makes sense) [1, Corollary 1] Consider the
compact metric space X , the space Z and d ∈ N. Let gθ : Z → X with parameters
θ ∈ Rd be a feedforward neural network. Moreover, let Z be a random variable on
Z with distribution pz such that Ez∼pz∥z∥ < ∞. If pθ denotes the distribution
of gθ(Z) and p be a distribution over X , then gθ is locally Lipschitz continuous
and there are local Lipschitz constants L(θ, z) of gθ such that Ez∼pz L(θ, z) < ∞.
Additionally follows that EM(p, pθ) is continuous everywhere and differentiable
almost everywhere.

Proof [1, Proof of Corollary 1] To prove this corollary it only has to be shown
that the conditions

i. gθ is locally Lipschitz continuous

ii. there are local Lipschitz constants L(θ, z) of gθ with Ez∼pz L(θ, z) < ∞

are satisfied for feedforward neural networks gθ . In this case it follows by
2.23 (ii.) that EM(p, pθ) is continuous everywhere and differentiable almost
everywhere.

Feedforward neural networks in this context are defined as compositions of
affine transformations and pointwise non-linear smooth Lipschitz continu-
ous functions.

Consider gθ as such a feedforward neural network. Since a composition
of locally Lipschitz functions is as well locally Lipschitz, it is known that
condition (i.) is satisfied.
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As the pointwise non-linearities are additionally assumed to be smooth, gθ

as composition of smooth functions is also smooth.

Thus, for their local Lipschitz constants holds:

L(θ, z) ≤ ∥∇θ,zgθ(z)∥+ ε ∀ε > 0

Therefore,
Ez∼pz∥∇θ,zgθ(z)∥ < ∞ ⇒ Ez∼pz L(θ, z) < ∞

holds and if the first is shown both conditions are satisfied.

A feedforward neural network consists of N layers where each layer applies
a composition of an affine transformation and a non-linearity on the output
of the previous layer respectively the input z. Consider now the matrices Wn
for n = 1, ..., N as weight matrices of the affine transformation performed in
the n-th layer and Dn for n = 1, ..., N as the Jacobians of the non-linearity
in the n-th layer. The composition of all functions performed on the first n
layers is denoted by fn.

Therefore, differentiating the network with respect to z results in

∇zgθ(z) =
N

∏
i=1

WiDi

and differentiating with respect to the weights which are the parameters of
gθ results in

∇Wn gθ(z) =

((
N

∏
i=n+1

WiDi

)
Dn

)
fn−1(z).

Thus, the inequality

∥∇θ,zgθ(z)∥ ≤
N

∑
n=1

∥∇Wn gθ(z)∥+ ∥∇zgθ(z)∥

=
N

∑
n=1

∥
(

N

∏
i=n+1

WiDi

)
Dn fn−1(z)∥+ ∥

N

∏
i=1

WiDi∥
(2.9)

holds.

Note, that for L being the Lipschitz constant of the non-linearities the in-
equalities

∥Di∥ ≤ L ∀i = 1, ..., N and

∥ fn−1(z)∥ ≤ ∥z∥Ln−1
n−1

∏
i=1

∥Wi∥ ∀n = 1, ..., N

follow.
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With these inequalities and (2.9) one gets

Ez∼pz∥∇θ,zgθ(z)∥

≤ Ez∼pz

(
N

∑
n=1

∥
(

LN−n−1
N

∏
i=n+1

Wi

)
L∥
(
∥z∥Ln−1

n−1

∏
i=1

Wi

)
+ LN

N

∏
i=1

∥Wi∥
)

≤ Ez∼pz

(
∥z∥LN

N

∑
n=1

(
N

∏
i=n+1

∥Wi∥
)(

n−1

∏
i=1

∥Wi∥
)
+ LN

N

∏
i=1

∥Wi∥
)

= Ez∼pz (∥z∥) LN
N

∑
n=1

(
N

∏
i=n+1

∥Wi∥
)(

n−1

∏
i=1

∥Wi∥
)
+ LN

N

∏
i=1

∥Wi∥

The last term is by the assumption Ez∼pz∥z∥ < ∞ finite and therefore
Ez∼pz L(θ, z) < ∞ holds. □

Note, that the condition Ez∼pz∥z∥ < ∞ is satisfied for z being e.g. Gaus-
sian or uniformly distributed. [1, Corollary 1] Thus, using a feedforward
neural network over such a prior z to learn a distribution p makes sense by
minimizing EM(p, pθ).

To minimize EM(p, pθ) in order to learn p the gradient of EM(p, pθ) is used.
The next theorem describes the gradient of EM(p, pθ) in terms of the solu-
tion of an optimization problem.

Theorem 2.26 (Gradient of EM(p, pθ)) [1, Theorem 3] Consider the compact
metric space X , the space Z and d ∈ N. Let Z be a random variable on Z
with distribution pz. Moreover, let gθ : Z → X with parameters θ ∈ Rd be
a locally Lipschitz function such that there exist local Lipschitz constants L(θ, z)
with Ez∼pz L(θ, z) < ∞. Then, for pθ denoting the distribution of gθ(Z) and p a
distribution over X , a function f ∗ : X → R exists such that

f ∗ = argmax
∥ f ∥Lip≤1

Ex∼p f (x)− Ex∼pθ
f (x).

Additionally,
∇θEM(p, pθ) = −Ez∼pz∇θ f ∗(gθ(z))

holds if both sides of the equation are well-defined.

Proof [1, Proof of Theorem 3] From 2.20 and the assumptions it is clear that

EM(p, pθ) = sup
f∈F

(
Ex∼p( f (x))− Ex∼pθ

( f (x))
)

= sup
f∈F

(
Ex∼p( f (x))− Ez∼pz( f (gθ(z)))

)
.

holds, where F := { f : X → R|∥ f ∥Lip ≤ 1}.
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2. The Wasserstein Distance

By assumption X is compact and thus in the setting of the Earth-Mover dis-
tance also the additional conditions of Theorem 2.9 are satisfied. Therefore,
the supremum in the dual formulation is attained and for

V( f , θ) := Ex∼p( f (x))− Ez∼pz( f (gθ(z)))

the set X(θ) = { f ∈ F|EM(p, pθ) = V( f , θ)} is non-empty. From the enve-
lope theorem in [13, Theorem 1] follows

∇θEM(p, pθ) = ∇θV( f , θ)

for all f ∈ X if both sides of the equation are well-defined.

Since

∇θV( f , θ) = ∇θEx∼p( f (x))− Ez∼pz( f (gθ(z))) = −∇θEz∼pz f (gθ(z))

for all f ∈ X, it remains to show that

−∇θEz∼pz f (gθ(z)) = −Ez∼pz∇θ f (gθ(z)). (2.10)

As f ∈ X is 1-Lipschitz and gθ is locally Lipschitz continuous with constants
L(θ, z) the composition f (gθ(z)) is also locally Lipschitz continuous with
constants L(θ, z). Therefore, by Rademacher’s Theorem f (gθ(z)) is almost
everywhere for (θ, z) differentiable, meaning that the measure of the set
A = {(θ, z)| f (gθ(z)) is not differentiable} is zero. Then Fubini’s Theorem
implies that also the set Aθ = {z| f (gθ(z)) is not differentiable} has measure
zero for almost every θ.

Choosing now a θ̂ such that Aθ̂ has indeed measure zero, ∇θ f (gθ(z))|θ̂ is
well-defined for almost any z. Since additionally

Ez∼pz(∇θ f (gθ(z))|θ̂) ≤ Ez∼pz L(θ̂, z) < ∞

holds, the right side of (2.10) is for almost every θ well-defined.

It remains to show that also the left side of (2.10) is well-defined if the right
side is. This can be done by proving that

Ez∼pz f (gθ(z))− Ez∼pz( f (gθ̂(z))
∥θ − θ̂∥

−
⟨
(θ − θ̂), Ez∼pz∇θ( f (gθ(z))|θ̂)

⟩
∥θ − θ̂∥

= Ez∼pz

(
f (gθ(z))− f (gθ̂(z))−

⟨
(θ − θ̂),∇θ f (gθ(z))|θ̂

⟩
∥θ − θ̂∥

)
.

(2.11)

converges to 0 as θ → θ̂ using the Theorem of dominated convergence.
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2.3. Learning by the Earth-Mover Distance

For θ → θ̂
f (gθ(z))− f (gθ̂(z))−⟨(θ−θ̂),∇θ f (gθ(z))|θ̂⟩

∥θ−θ̂∥ converges to zero pz-almost ev-

erywhere. As Ez∼pz L(θ̂, z) < ∞ was assumed and

∥
f (gθ(z))− f (gθ̂(z))−

⟨
(θ − θ̂),∇θ f (gθ(z))|θ̂

⟩
∥θ − θ̂∥

∥

≤
∥ f (gθ(z))− f (gθ̂(z))∥

∥θ − θ̂∥
+

∥
⟨
(θ − θ̂),∇θ f (gθ(z))|θ̂

⟩
∥

∥θ − θ̂∥

≤ L(θ̂, z) +
∥θ − θ̂∥∥∇θ f (gθ(z))|θ̂∥

∥θ − θ̂∥
≤ 2L(θ̂, z)

holds, also the domination by a integrable function is shown and the The-
orem of dominated convergence can be applied. Therefore, as θ → θ̂ term
(2.11) converges to 0.

And with this convergence equation (2.10) holds if the right side of the equa-
tion is well-defined.

□

The results obtained in this section show that the Earth-Mover distance can
be used to learn distributions by neural networks. The next chapter presents
an example of this application of the Earth-Mover distance.
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Chapter 3

Application of the EM to Generative
Adversarial Networks

As described in the last chapter it is reasonable that a neural network learns
by using the Earth-Mover distance. One kind of neural network which does
so is the Wasserstein Generative Adversarial Network (WGAN). This kind
of network is the subject of this part.

This chapter is divided into two sections. Firstly the general concept of Gen-
erative Adversarial Networks (GANs) is described mainly citing Goodfel-
lows ’NIPS 2016 Tutorial: Generative Adversarial Networks’ [7]. The second
section considers the Wasserstein Generative Adversarial Networks itself as
stated in Arjovsky et al. ’Wasserstein GAN’ [1].

3.1 Generative Adversarial Networks

3.1.1 Structure of a GAN

The Generative Adversarial Networks (GANs) were introduced in 2014 by
Goodfellow et al. [6]. As the name already mentions these networks are a
type of generative model.

Definition 3.1 (Generative models) [7, p. 2] A model is called generative if it
estimates a real distribution pr by learning from samples of this distribution. The
set of samples the generative model learns from is called training set. The output
of a generative model can be either the learned estimation itself or samples of this
distribution.

The output of a GAN can be both an explicit distribution or samples of the
distribution. Though the most GANs do the second and this thesis will
consider this case in the following. [7, p. 2]
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3.1. Generative Adversarial Networks

The term adversarial in Generative Adversarial Network results from the
fact that a GAN consists of two neural networks competing with each other.
These neural networks are the Generator and the Discriminator. [7, p. 17]

Definition 3.2 (Generator) [7, pp. 17-18] Let l, n ∈ N with l ≥ n and consider
two parameter spaces ∆ and Γ. The Generator of a GAN is a neural network

Gγ : Rl → Rn

for γ ∈ Γ such that G ∈ C(Rl). Rl is the space of latent variables and Rn the space
of observed variables.

The cost function of the Generator is noted as JG : ∆ × Γ → R.

Definition 3.3 (Discriminator) [7, pp. 17-18] Let n ∈ N and consider two
parameter spaces ∆ and Γ. The Discriminator of a GAN is a neural network

Dδ : Rn → [0, 1]

for δ ∈ ∆ such that D ∈ C(Rn). Rn is the space of observed variables.

The related cost function for the Discriminator is JD : ∆ × Γ → R.

From this two networks one can construct a GAN in the following way.

Definition 3.4 (Generative Adversarial Networks) [7, pp. 17-19] Consider
l, n, m ∈ N with l ≥ n. Let z ∈ Rl be a latent variable with the probability
distribution pz, x ∈ Rn be an observed variable and δ ∈ ∆, γ ∈ Γ network pa-
rameters. Moreover, consider (xtrain

i )m
i=1 ⊂ Rn as training set of samples with the

distribution pr.

A Generative Adversarial Network (GAN) creates samples x ∼ pg from z by us-
ing its Generator Gγ. The Discriminator Dδ of the GAN outputs an estimated
probability of a sample being of the training data or generated.

Both neural networks are trained on the set (xtrain
i )m

i=1 ⊂ Rn and latent samples
z ∼ pz to minimize their costs JG(δ, γ) and JD(δ, γ). These cost functions must
satisfy the following two conditions:

Dδ∗(x) =

{
1 if x ∈ (xtrain

i )m
i=1

0 if x = Gγ(z)
for argmin

δ

JD(δ, γ) = δ∗. (3.1)

and
Dδ(Gγ∗(z)) = 1 for argmin

γ
JG(δ, γ) = γ∗, z ∼ pz. (3.2)

Note, that there are only a few restrictions on the design of the two net-
works. Beside the networks being differentiable the only restriction is to
have dim(Rl) ≥ dim(Rn). That is, the dimension of the latent variable space
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3. Application of the EM to Generative Adversarial Networks

must be greater equal to the dimension of the space of observed variables
to ensure pg having full support on the space of observed variables. [7, pp.
18-20]

Sample z
from pz

Generator Gγ

Gγ(z) ∼ pg

Discriminator Dδ

Dδ(Gγ(z))

Sample x from
(xtrain

i )m
i=1

Dδ(x)

Figure 3.1: Structure of a Generative Adversarial Network

By training a GAN one aims for a Generator which produces samples indis-
tinguishable from the training samples (xtrain

i )m
i=1. [7, p. 17]

This leads to three questions:

1. How can the network be trained?

2. Does GAN learning converge to the desired result?

3. What are good choices for the cost functions JD and JG?

The general training process of a GAN is introduced in Section 3.1.2. Section
3.1.3 covers the second question and the third question is considered in the
Sections 3.1.4 and 3.1.5.

3.1.2 Training of a GAN

Since a GAN is a network consisting of two neural networks, training a
GAN means training these neural networks. Both, the Generator and the
Discriminator, are trained by using one of the most popular training meth-
ods in deep learning: (Minibatch) Stochastic Gradient Descent. [7, p. 20]

28



3.1. Generative Adversarial Networks

For simplicity this method will only be called Stochastic Gradient Descent
or SGD as it is done in [5, 8.3.1].

Definition 3.5 (Stochastic Gradient Descent) [5, p. 294] Let f ∈ C(Rr) be
a neural network with a loss function L : C(Rr) × Rr × Rs → R+ and initial
parameters θ0 and let r, s, k, m ∈ N. Moreover, (xi, yi)

m
i=1 ⊂ Rr × Rs is the

training set with respective solution of f .

The Stochastic Gradient Descent chooses a minibatch i1, ..., ik uniformly at random
from 1, .., m to calculate

gt = ∇θt

1
k

k

∑
j=1

L( fθt , xij , yij).

It then updates the parameters θt by

θt+1 = θt − εt · gt,

where εt is the learning rate in step t ∈ N.

How the learning rate εt is designed depends entirely on the SGD variant
used. In general one can use any SGD variant for the update of the GAN
parameters. [7, p. 20] A range of different variants can be found for example
in [17].

Stochastic Gradient Descent is a stochastic approximation of the Gradient
Descent Method (see e.g. [5, 4.3]). The expected average gradient of a SGD
method equals the average gradient of the Gradient Descent Method as can
be seen in Corollary 3.6.

Corollary 3.6 (SGD approximates Gradient Descent) [5, p. 281] Consider
the setting of Definition 3.5. For i1, ..., ik chosen uniformly at random from 1, .., m
the equation

Ei1,...,ik

1
k

k

∑
j=1

∇θt L( f , xij , yij) =
1
m

m

∑
i=1

∇θt L( f , xi, yi)

holds.

In contrast to the Gradient Descent method the complexity of a SGD method
does not depend on the size of the training set. It does only depend on k,
the number of samples chosen of the training set. This property makes SGD
useful for large training sets and therefore in neural networks. [5, p. 153]

But how can a SGD method be applied to the Discriminator and the Gener-
ator? Since the Discriminator’s aim is to distinguish between the generated
samples and the training samples (xtrain

i )m
i=1, the SGD training data has to
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3. Application of the EM to Generative Adversarial Networks

contain both. Therefore, one has to sample two minibatches in each SGD
step of the Discriminator. [7, pp. 20-21]

One minibatch contains samples of (xtrain
i )m

i=1. The Discriminator’s output
of these samples has to be compared to the desired result 1. The other mini-
batch will be filled with samples created by the Generator from z ∼ pz. The
outputs Dδ(Gγ(z)) of the batch of latent variables have to be compared to 0.
By comparing the Discriminator’s output with the desired output one can
calculate a loss for each of the samples. The cost function of the Discrimina-
tor JD is the sum of these losses. In each SGD step its gradient ∇δ JD is used
to update the Discriminator’s parameters δ. [7, pp. 20-21]

The training set of the Generator is a minibatch of samples z ∼ pz. The
loss of these samples is calculated by comparing Dδ(Gγ(z)) with the desired
value 1. The Generator’s cost function JG is the sum of these losses. There-
fore, the gradient of this cost ∇γ JG is used to update the parameters of the
Generator γ in each SGD step. [7, pp. 20-21]

As described above and shown in Figure 3.2 the training of the Generator
involves the Discriminator and vice versa.

Sample (zj)
k
j=1

from pz

Generator Gγ

(Gγ(zj))
k
j=1

∼ pg

Discriminator Dδ

(Dδ(Gγ(zj)))
k
j=1

Sample (xij)
k
j=1

from (xtrain
i )m

i=1

(Dδ(xj))
k
j=1

δ = δ − ε ·
∇δ JD(δ, γ)

γ = γ − ε ·
∇γ JG(δ, γ)

Figure 3.2: Training of a Generative Adversarial Network

It is possible to perform the Gradient Descent for both networks simultane-
ously, but it is also possible to perform more Gradient Descent steps for one
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3.1. Generative Adversarial Networks

network than the other. For traditional GAN Goodfellow recommended in
late 2016 a simultaneous Gradient Descent with one training step for each
player [7, p. 20].

3.1.3 Equilibrium of a trained GAN

The solution of an optimization problem is a minimum. However, in a Gen-
erative Adversarial Network there is not only one optimization problem but
two, one for each neural network. Additionally the training of each of those
two networks involves the parameters of the other network. Consequently
it is difficult to separate the two optimization problems from each other in
order to find their minimum.

This problem can be avoided when treating the GAN as a game. Instead
of the minimum of a typical optimization the solution of a game is a Nash
equilibrium. More specifically, since Gradient Descent is a local optimization
method, the solution of a GAN trained with SGD is a local Nash equilibrium.
[7, p. 18]

Definition 3.7 (Local Nash equilibrium) [15, Definition 1] Consider the cost
functions J1 : S1 × S2 → R and J2 : S1 × S2 → R of two players with respective
strategy spaces S1 and S2. If ∃M1 ⊂ S1, M2 ⊂ S2 such that for s1

∗ ∈ M1 and
s2

∗ ∈ M2, it holds that

J1(s1
∗, s2

∗) ≤ J1(s1, s2
∗) ∀s1 ∈ M1 and

J2(s1
∗, s2

∗) ≤ J2(s1
∗, s2) ∀s2 ∈ M2,

then (s1
∗, s2

∗) is a local Nash equilibrium.

Considering a GAN as a game is possible by regarding the Generator and
the Discriminator as players. Their parameters δ and γ are in this context the
strategies of the players. These players aim to minimize their cost functions
J1(s1, s2) := JG(δ, γ) and J1(s1, s2) := JD(δ, γ). Therefore, the solution of a
GAN is a local Nash equilibrium (δ∗, γ∗). [7, p. 18]

Of course the optimal outcome of a GAN training would be a Generator
which is producing samples x ∼ pg = pr. In this case Gγ would generate
samples of the same distribution as the original data. Thus, one wishes the
desired Generator to fulfill the conditions of a local Nash equilibrium. But
even if this is the case, it is not sure that the GAN will reach this equilibrium.
Although a GAN reaches a local Nash equilibrium if it converges, in general
it is not proven that the GAN training converges. [7, p. 34]

Nevertheless, there are convergence proofs for specific GAN variants. One
of them is presented in ’GANs Trained by a Two Time-Scale Update Rule
Converge to a Local Nash Equilibrium’ of Heusel et al. [8]. This paper shows
that GAN training converges under certain assumptions to a stationary local
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3. Application of the EM to Generative Adversarial Networks

Nash equilibrium when using two different learning rates. The main idea is
to allow the Discriminator a faster learning than the Generator. This way the
Discriminator should learn nearly unaffected by the Generator’s adaptions
and reaches a local minimum.

3.1.4 The Discriminator’s Cost

There are two cost functions in a GAN which highly affect the success and
structure of the GAN, the Discriminator’s cost JD and the cost of the Gen-
erator JG. One can interpret the Discriminator as classifier which labels
generated data with 0 and original data with 1. Consequently the cost func-
tion of the Discriminator is mostly chosen as one of the most popular cost
functions: the cross-entropy. [7, p. 21]

This cost function between the probability distribution p of samples x and
an estimated probability distribution q of this samples measures the average
number of bits required to encode a sample x using q. [14, p. 2]

Definition 3.8 (Cross-entropy) [14, p. 2] Consider a metric space X and P(X )
as the space of all probability measures defined on X . The cross-entropy between
two probability distributions p, q ∈ P(X ) of samples x ∈ X is defined as

H(p, q) := Ex∼p(−logq(x)).

More specifically, for the Discriminator’s cost the cross-entropy for a binary
classification with sigmoid output is used. Meaning that in case of the Dis-
criminator the true distribution of the samples is not only one distribution p.
Instead, one half of the samples comes from the distribution pr since it con-
sists of original data. The other half is distributed as pg since it is generated.
Thus, the cost is split up into two partial costs: the cross-entropy between pr
and Dδ and the cross-entropy between pg and 1 − Dδ. [7, p. 21]

Definition 3.9 (Discriminator’s cost) [7, p. 21] Consider the setting of Defini-
tion 3.4. The cost function of the Discriminator of a standard GAN is defined as

JD(δ, γ) := −1
2

Ex∼pr log(Dδ(x))− 1
2

Ez∼pz log(1 − Dδ(Gγ(z))). (3.3)

With this definition one can find the function Dδ(x) which minimizes the
cost function of the Discriminator and thus what probability the Discrimina-
tor with optimal parameter δ∗ outputs for every sample x it gets.

Theorem 3.10 (Optimal Discriminator) [7, pp. 46-47] Consider the setting of
Definitions 3.4 and 3.9. Assume that pr and pg are non-zero for every x. Then

argmin
Dδ(x)

JD(δ, γ) =
pr(x)

pr(x) + pg(x)
.
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3.1. Generative Adversarial Networks

Proof [7, pp. 46-47] To find the optimal Discriminator for the cost one sets
its partial derivative to 0.

∂

∂Dδ(x)
JD(δ, γ) = 0

⇔ ∂

∂Dδ(x)
(−1

2
Ex∼pr log(Dδ(x))− 1

2
Ez∼pz log(1 − Dδ(G(z)))) = 0

⇔ ∂

∂Dδ(x)
(−1

2
Ex∼pr log(Dδ(x))− 1

2
Ex∼pg log(1 − Dδ(x))) = 0

⇔ − 1
2

pr(x)
Dδ(x)

− 1
2

pg(x)
1 − Dδ(x)

(−1) = 0

⇔ pr(x)
Dδ(x)

=
pg(x)

1 − Dδ(x)

⇔ 1
Dδ(x)

=
pg(x)
pr(x)

+ 1

⇔ Dδ(x) =
pr(x)

pg(x) + pr(x)

Therefore, the optimal Discriminator is argmin
Dδ(x)

JD(δ, γ) = pr(x)
pg(x)+pr(x) . □

The assumption of pr and pg being non-zero in Theorem 3.10 ensures that
every sample x can be trained. The behaviour of an untrained sample would
be undefined. [7, p. 46]

With this knowledge of an optimal Discriminator one can check if the de-
fined cost function really satisfies the optimality condition (3.1) of the GAN
definition 3.4.

Corollary 3.11 (Optimality condition for Dδ∗) Consider the setting of Defini-
tions 3.4 and 3.9. The optimal cost of the Discriminator

Dδ∗(x) =
pr(x)

pr(x) + pg(x)

satisfies the optimality condition (3.1)

Dδ∗(x) =

{
1 if x ∈ (xtrain

i )m
i=1

0 if x = Gγ(z)

Proof This is caused directly by x ∈ (xtrain
i )m

i=1 ∼ pr and x = Gγ(z) ∼ pg. □

From Theorem 3.10 is known that JD(δ, γ) is minimal for parameter δ∗ with
Dδ∗(x) = pr(x)

pr(x)+pg(x) . Thus, the Discriminator in an equilibrium of the GAN
is always using this strategy. As discussed in Section 3.1.3 it is not clear
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that the GAN will converge. However, since the GAN will converge to a
Discriminator with this optimal strategy if it converges, the Discriminator’s
strategy can be seen as estimate of the optimal strategy Dδ∗(x) = pr(x)

pr(x)+pg(x) .

From this ratio-estimate a wide range of divergences can be computed.
These values can be used then by the Generator to improve pg. [7, p. 21]

Keep in mind that the Discriminator is designed as a supervised learning
network. As such it does not only have advantages, it also suffers of the
disadvantages of this kind of networks as over- and underfitting. Of course
over- and underfitting can be avoided in the same way as in the standard
supervised learning network by using a lot of training data and a good
optimization. [7, p. 21]

3.1.5 The Generator’s Cost

While the last section described that the cost function of the Discriminator
JD is usually chosen as the cross-entropy loss of a binary classification, there
is a range of choices for the Generator’s cost JG.

Divergences

The Generator aims to minimize the differences between the distribution
of the original samples pr and the distribution of the generated samples
pg. Thus, it appears likely to choose a cost function which measures the
divergence between pr and pg. Consequently a few probability divergences
are introduced before presenting possible choices of cost functions.

A quite intuitive probability divergence is the Total Variation distance. This
distance measures the largest difference that two probability distributions
have on all Borel subsets.

Definition 3.12 (Total Variation distance) [1, p. 3] Consider a metric space X
and P(X ) as the space of all probability measures defined on X . Denote the set
of all Borel subsets of X with Σ. The Total Variation distance of p, q ∈ P(X ) is
defined as

TV(p, q) := sup
A∈Σ

|p(A)− q(A)|.

The Kullback-Leibler divergence between distributions p and q outputs the
expected information which is lost when a sample with distribution p is
approximated by a model with distribution q. [5, p. 74]
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3.1. Generative Adversarial Networks

Definition 3.13 (Kullback-Leibler divergence) [1, p. 3] Consider the metric
space X and P(X ) as the space of all probability measures defined on X . Let p,
q ∈ P(X ) then the Kullback-Leibler divergence of p and q is

KL(p||q) := Ex∼plog
(

p(x)
q(x)

)
.

This divergence has several disadvantages. It is not only asymmetric but
also becomes infinity if the support of p is not a subset of the support of q.
The Jensen-Shannon divergence is based on the Kullback-Leibler divergence.
In contrast to the Kullback-Leibler divergence it is symmetric and has only
finite values. [14, p. 3]

Definition 3.14 (Jensen-Shannon divergence) [14, p. 3] Consider a metric
space X and P(X ) as the space of all probability measures defined on X . Let p,
q ∈ P(X ) then

JS(p, q) :=
1
2

KL
(

p|| p + q
2

)
+

1
2

KL
(

q|| p + q
2

)
is called the Jensen-Shannon divergence of p and q.

Zero-Sum Game

The simplest choice for the cost of the Generator is to use the negative cost
of the Discriminator:

Definition 3.15 (Generator’s cost of Zero-Sum Game GAN) [7, p. 22] Con-
sider the setting of Definitions 3.4 and 3.9. The cost function of the Generator in a
GAN of the Zero-Sum Game variant is defined as

JG := −JD.

Considering the Generator as a player which aims to trick the Discriminator
motivates this choice of a cost function. In this case the GAN results in a
Zero-Sum Game. [7, p. 22]

This kind of game is relatively easy to analyze since it suffices to look on
one cost function. While for the Discriminator Dδ the optimal parameters
are chosen as

δ∗ = argmax
δ

JG(δ, γ), (3.4)

the parameters for the Generator Gγ are chosen as

γ∗ = argmin
γ

max
δ

JG(δ, γ). (3.5)

[7, p. 22]
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An advantage of the choice of the Generator’s cost function as JG = −JD
is its connection to the Jensen-Shannon divergence which is investigated in
Theorem 3.16.

Theorem 3.16 (Connection to the Jensen-Shannon divergence) [6, Theorem
1] Consider the setting of Definitions 3.4, 3.9 and 3.15. For the optimal Discrimi-
nator Dδ∗(x) it holds that

JG(δ
∗, γ) = JS(pr, pg)− log(2).

Proof [6, Proof of Theorem 1] With Theorem 3.10 the cost function becomes

JG(δ
∗, γ) = −JD(δ

∗, γ)

=
1
2

Ex∼pr log(Dδ∗(x)) +
1
2

Ex∼pg log(1 − Dδ∗(x))

=
1
2

Ex∼pr log
(

pr(x)
pr(x) + pg(x)

)
+

1
2

Ex∼pg log
(

pg(x)
pr(x) + pg(x)

)
.

Using Definition 3.13 and 3.14 the cost function can be expressed in terms
of the Jensen-Shannon divergence.

JG(δ
∗, γ) =

1
2

Ex∼pr log
(

2pr(x)
pr(x) + pg(x)

)
+

1
2

Ex∼pg log
(

2pg(x)
pr(x) + pg(x)

)
− log(2)

=
1
2

KL
(

pr||
pr + pg

2

)
+

1
2

KL
(

pg||
pr + pg

2

)
− log(2)

=JS(pr, pg)− log(2)

□

Therefore, minimizing the Jensen-Shannon divergence between pr and pg is
equivalent to minimizing JG(δ

∗, γ).

Another advantage of the Generator’s cost defined in 3.15 is that a GAN
with this cost has a Nash equilibrium with pr = pg.

Theorem 3.17 (Nash equilibrium of Zero-Sum Game GAN) [6, Theorem 1]
Consider the setting of Definitions 3.4, 3.9 and 3.15. Then (δ∗, γ∗) such that

Dδ∗(x) =
pr(x)

pr(x) + pg(x)
and pr = pg

is a local Nash equilibrium of a GAN with JG = −JD.

Proof [6, Proof of Theorem 1] If δ∗ and γ∗ are such that they minimize
JD(δ, γ) and JG(δ, γ), respectively, (δ∗, γ∗) is a local Nash equilibrium. From

36



3.1. Generative Adversarial Networks

Theorem 3.10 it is known that Dδ∗ =
pr(x)

pr(x)+pg(x) is the optimal Discriminator
strategy. Thus, it remains to show that for γ∗ with pg = pr it holds that

JG(δ
∗, γ∗) ≤ JG(δ

∗, γ) ∀γ ∈ Γ.

For δ∗ the cost function of the Generator becomes

JG(δ
∗, γ) =

1
2

Ex∼pr log(D∗
δ (x)) +

1
2

Ex∼pg log (1 − Dδ ∗ (Gγ(z)))

=
1
2

Ex∼pr log
(

pr(x)
pr(x) + pg(x)

)
+

1
2

Ex∼pg log
(

pg(x)
pr(x) + pg(x)

)
.

For pg = pr this resolves to

JG(δ
∗, γ∗) =

1
2

Ex∼pr log
(

pr(x)
pr(x) + pr(x)

)
+

1
2

Ex∼pr log
(

pr(x)
pr(x) + pr(x)

)
= log

(
1
2

)
= −log(2).

From Theorem 3.16 it is known that JG(δ
∗, γ) = JS(pr, pg)− log(2). Since

the Jensen-Shannon divergence is always non-negative,

JG(δ
∗, γ) = JS(pr, pg)− log(2) ≥ −log(2) = JG(δ

∗, γ∗)

follows. □

The downside of the minimax game is that an almost optimal Discriminator
causes a vanishing gradient of the Generator’s cost as long as the Genera-
tor is not optimal. This is demonstrated in the following Corollary which
applies since an optimal Discriminator outputs a probability of 0 for every
generated sample to be a sample of the training set. [7, p. 22]

Corollary 3.18 (Vanishing Gradient) Consider the setting of the Definitions 3.4,
3.9 and 3.15. Let δ∗ such that

Dδ∗(Gγ(z)) = 0 and
∂

∂Gγ(z)
Dδ∗(Gγ(z)) = 0 ∀z ∼ pz.

Additionally let ∇γGγ(z) ̸= 0 then

∇γ JG(δ
∗, γ) = 0.
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Proof For the optimal Discriminator Dδ∗ the gradient of the Generator is

∇γ JG(δ
∗, γ) = ∇γ

[
1
2

Ex∼pr log(Dδ∗(x)) +
1
2

Ez∼pz log(1 − Dδ∗(Gγ(z)))
]

=
1
2

Ez∼pz

1
(1 − Dδ∗(Gγ(z)))

∇γ(−Dδ∗(Gγ(z)))

= −1
2

Ez∼pz

1
1
∇γDδ∗(Gγ(z))

= −1
2

Ez∼pz

∂

∂Gγ(z)
Dδ∗(Gγ(z)) · ∇γGγ(z).

Then for ∂
∂Gγ(z)

Dδ∗(Gγ(z)) = 0 and ∇γGγ(z) ̸= 0

∇γ JG(δ
∗, γ) = 0.

□

Therefore, it seems not to be advisable to use the cost JG(δ, γ) = −JD(δ, γ).

Non-saturating Game

Another approach for the Generator’s cost function is to choose the cross-
entropy between the distribution of the latent variables z and their output
Dδ(Gγ(z)). While in the first approach for the Generator’s cost one aims for
the Discriminator being wrong, one now aims for the Discriminator being
tricked by the Generator. [7, p. 23]

In this case the Generator’s cost function becomes as follows.

Definition 3.19 (Cost of non-saturating Generator) [7, p. 22] Consider the
setting of Definition 3.4. The cost function of the Generator in a GAN of the non-
saturating variant is defined as

JG := −1
2

Ez∼pz log(Dδ(Gγ(z))).

This cost function does not suffer from the vanishing gradient problem like
the cost function of the Zero-Sum Game. In fact this choice of JG has a large
gradient when the Discriminator is almost optimal and thus won’t saturate
when the Generator performs bad. [7, p. 22]

Although this is an advantage of the non-saturating game over the Zero-
Sum Game, the non-saturating game has no theoretical motivation. It is
only heuristically motivated. [7, p. 23]
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3.2. Wasserstein Generative Adversarial Nets

3.2 Wasserstein Generative Adversarial Nets

3.2.1 Motivation for Using the Earth-Mover Distance

Of course one is interested in a cost function of the Generator which is the-
oretically motivated and does not suffer from the vanishing gradient prob-
lem. A strong candidate for such a cost function is the Earth-Mover distance,
which was introduced in Chapter 2, since it is relatively weak and thus con-
verges comparatively easy. In the following theorem which is a direct con-
clusion of [1, Theorem 2] the Earth-Mover distance is compared with several
divergences with respect to their strength.

Theorem 3.20 (Weakness of EM) Consider X as a compact space with proba-
bility space P(X ) and p ∈ P(X ). Additionally let (pn)n∈N be a sequence of
probability distributions in P(X ).

Then EM(pn, p) → 0 for n → ∞ if at least one of the following statements holds:

• KL(pn||p) → 0

• KL(p||pn) → 0

• JS(pn, p) → 0

• TV(pn, p) → 0

for n → ∞.

Proof The Theorem’s statement is equivalent to the three statements [1,
Proof of Theorem 2]:

1. KL(pn||p) → 0 or KL(p||pn) → 0 ⇒ TV(pn, p) → 0

2. JS(pn, p) → 0 ⇒ TV(pn, p) → 0

3. TV(pn, p) → 0 ⇒ EM(pn, p) → 0.

These three statements can be proven in the following way:

1. For p, q ∈ P(X ) Pinsker’s inequality states TV(p, q) ≤
√

1
2 KL(p||q).

[3, p. 371] Therefore, it holds that

TV(pn, p) ≤
√

1
2

KL(pn||p), TV(p, pn) ≤
√

1
2

KL(p||pn).

And thus TV(pn, p) → 0 results from KL(pn||p) → 0 or KL(p||pn) → 0.
[1, Proof of Theorem 2.3.]

2. Since the Total Variation distance satisfies the triangle inequality,

TV(pn, p) ≤ TV
(

pn||
pn + p

2

)
+ TV

(
p|| pn + p

2

)
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holds. Applying Pinsker’s inequality and the definition of the Jensen-
Shannon divergence

TV(pn, p) ≤

√
1
2

KL
(

pn||
pn + p

2

)
+

√
1
2

KL
(

p|| pn + p
2

)

≤ 2

√
1
2

KL
(

pn||
pn + p

2

)
+

1
2

KL
(

p|| pn + p
2

)
≤ 2

√
JS(pn, p).

follows. Consequently, TV(pn, p) → 0 if JS(pn, p) → 0 for n → ∞. [1,
Proof of Theorem 2.1.]

3. For every x, y ∈ X it is clear that ||x − y|| ≤ 1x ̸=y diam(X ) where
diam(X ) = sup{||x − y|| | x, y ∈ X}. Therefore, for p, q ∈ P(X ) it also
holds that

inf
π∈Π(p,q)

E(x,y)∼π||x − y|| ≤ inf
π∈Π(p,q)

E(x,y)∼π1x ̸=y diam(X ). (3.6)

Since the Total Variation distance can also be characterized as

TV(p, q) = inf
π∈Π(p,q)

E(x,y)∼π1x ̸=y,

inequality (3.6) is equivalent to

EM(p, q) ≤ TV(p, q) diam(X ).

[4, Theorem 4]

Thus, if TV(pn, p) → 0, also EM(pn, p) → 0 for n → ∞. □

From Theorem 3.20 it is clear that the Earth-Mover distance is at least as
weak as the other considered divergences. The following example shows
that cases exist where the Earth-Mover distance converges while the other
divergences do not. Thus, the Earth-Mover distance is indeed the weakest
of the considered divergences.

Example 3.21 [1, Example 1] Let Z ∼ U(0, 1) be a uniformly distributed random
variable on the interval [0, 1] and Σ the set of all Borel subsets of R2.

In addition consider p0 as the distribution of (0, Z) ∈ R2 and the distribution of
gθ(Z) = (θ, Z) ∈ R2 as pθ .

Then for θt → 0 the following statements hold

• (pθt)t∈N → p0 with the Earth-Mover distance as

EM(p0, pθ) = inf
π∈Π(p0,pθ)

E(x,y)∼π||x − y||

= Ez∼U(0,1)||(0, z)− (θ, z)|| = |θ|.
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• (pθt)t∈N does not converge to p0 with the Total Variation distance

TV(p0, pθ) = sup
A∈Σ

|p0(A)− pθ(A)|

= |p0({(0, z)|z ∈ [0, 1]})− pθ({(0, z)|z ∈ [0, 1]})|

=

{
|1 − 0| = 1 if θ ̸= 0
|1 − 1| = 0 if θ = 0

• For θ = 0

KL(p0||pθ) = KL(p0||p0) = Ex∼p0 log
(

p0(x)
p0(x)

)
= Ex∼p0 log(1) = 0

results and for θ ̸= 0 the support of pθ is different of the support of p0 such
that

KL(p0||pθ) = Ex∼p0 log
(

p0(x)
pθ(x)

)
= ∞.

Therefore, (pθt)t∈N does not converge to p0 under KL(p0||pθ). One can
argue analogously for KL(pθ ||p0).

• Under the Jensen-Shannon divergence (pθt)t∈N → p0 does not hold since

JS(p0, pθ) =
1
2

KL
(

p0||
p0 + pθ

2

)
+

1
2

KL
(

pθ ||
p0 + pθ

2

)
=

1
2

Ex∼p0 log
(

2p0(x)
p0 + pθ

)
+

1
2

Ex∼pθ
log
(

2pθ(x)
p0 + pθ

)
=

{
1
2 log

( 2·1
1+0

)
+ 1

2 log
( 2·1

0+1

)
= log(2) if θ ̸= 0

1
2 log

( 2·1
1+1

)
+ 1

2 log
( 2·1

1+1

)
= 0 if θ = 0

Another conclusion of the given example is that the statement of Theorem
2.23 would not hold for any of the considered divergences but the Earth-
Mover distance. Therefore, using the Earth-Mover distance as the Genera-
tor’s cost is theoretically justified.
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3.2.2 Approximation of Earth-Mover Distance in a WGAN

Thinking back to Chapter 2 it is computationally expensive (in discrete case)
if not intractable to calculate a Earth-Mover distance exactly. Same holds for
its gradient which is required for the Stochastic Gradient Descent steps if
the Earth-Mover distance is chosen as the Generator’s cost function.

However, Theorem 2.26 states a way to estimate the gradient of the Earth-
Mover distance which can be used in the setting of a GAN.

Corollary 3.22 (Gradient of EM(pr, pg)) Consider the setting of Definition 3.4.
Let the samples of a Generator be Gγ(z) ∼ pg with latent variables z ∼ pz. Then
there is a function f ∗ : Rn → R such that

f ∗ = argmax
|| f ||Lip≤1

Ex∼pr f (x)− Ez∼pz f (Gγ(z)) (3.7)

and
EM(pr, pg) = Ex∼pr f ∗(x)− Ez∼pz f ∗(Gγ(z)).

For this f ∗ the gradient of the Earth-Mover distance between pr and pg is

∇γEM(pr, pg) = −Ez∼pz∇γ f ∗(Gγ(z)).

Therefore, it is essential to find the function f ∗ in order to calculate the
desired gradient. Since solving the optimization problem (3.7) exactly is
intractable, in a Wasserstein Generative Adversarial Network the solution
is roughly approximated by the function with the maximal value among a
family of functions ( fθ)θ∈Θ:

fθ∗ = argmax
θ∈Θ

Ex∼pr fθ(x)− Ez∼pz fθ(Gγ(z)).

This is realized by a neural network, called the Critic of the Wasserstein
GAN. [1, pp. 6-7]

Definition 3.23 (Critic) [1, p. 7] The Critic of a Wasserstein GAN is a neural
network

fθ : Rn → R

for θ ∈ Θ with fθ(x) is differentiable with respect to x and θ. Rn is the space of
observed variables and Θ compact.

The cost function of the Critic is

J f (θ, γ) := −Ex∼pr fθ(x) + Ez∼pz fθ(Gγ(z)).
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3.2. Wasserstein Generative Adversarial Nets

The condition of Θ being compact ensures that the Critic fθ is K-Lipschitz,
independent of the actual choice of θ. It holds that

K · EM(pr, pg) = sup
|| f ||Lip≤K

Ex∼pr f (x)− Ez∼pz f (Gγ(z)).

Consequently the Critic approximates a scaled Earth-Mover distance. [1, pp.
6-7]

The Critic replaces the Discriminator of the standard GAN. Therefore, the
Wasserstein GAN consists of the Critic and the Generator with the cost
JG(θ, γ) = EM(pr, pg). [1, p. 8]

Definition 3.24 (Wasserstein GAN) [1, pp. 7-8] Let l, n, m ∈ N with l ≥ n.
Consider z ∈ Rl as a latent variable with the probability distribution pz, x ∈ Rn

as an observed variable and θ ∈ Θ, γ ∈ Γ as network parameters. Moreover, let
(xtrain

i )m
i=1 ⊂ Rn be a training set of samples with the distribution pr.

A Wasserstein Generative Adversarial Network consists of a Critic fθ : Rn → R

and a Generator Gγ : Rl → Rn. Both neural networks are trained on the set
(xtrain

i )m
i=1 ⊂ Rn and latent samples z ∼ pz to minimize their costs JG(θ, γ) and

J f (θ, γ). The cost of the Generator is JG(θ, γ) := Ex∼pr fθ(x)− Ez∼pz fθ(Gγ(z)).

Thus, a better Critic induces a Generator’s cost which is able to approximate
EM(pr, pg) better. [1, p. 8] This leads to a new interpretation of the two
networks. Instead of two separated players which compete with each other
the two networks of the WGAN can be considered as a teacher and his
student. The better the teacher (Critic) is, the better the student (Generator)
will become.

3.2.3 Training of a WGAN

Analogously to the networks of a standard GAN the neural networks of a
Wasserstein GAN are trained by step-wise updating their parameters. Again
this is done by Stochastic Gradient Descent. The accuracy of the Generator’s
cost benefits of a good Critic. Consequently the Critic and the Generator are
not trained simultaneously in contrast to the standard GAN presented in [7].
Instead the Critic’s parameters are updated more often than the Generator’s
parameters. [1, p. 8]

Additionally one has to ensure that the parameters θ lie indeed in a compact
space Θ as it is required in Definition 3.23. This can be done by projecting the
calculated parameters onto a compact space Θ. Another way is to clip these
parameters. Weight clipping is of course problematic. Up to the clipping
parameters it can slowdown the convergence of the parameters or cause
vanishing gradients. On the other hand Arjowsky et al. observed good
results using clipping and not large differences using projection instead. [1,
p. 7]
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Thus, the training process can be presented as follows [1, Algorithm 1]:

while γ has not converged do

for t = 0, ..., nCritic do

Sample (xij)
k
j=1

from (xtrain
i )

m
i=1

Sample (zj)
k
j=1 ∼ pz

θ = θ − ε f · ∇θ [− 1
k

k
∑

j=1
fθ(xij) +

1
m ∑k

j=1 fθ(Gγ(zj))]

Enforce compactness of Θ

end for

Sample zj
k
j=1 ∼ pz

γ = γ + εG · ∇γ
1
k

k
∑

j=1
fθ(Gγ(zj))

end while

Hereby, ε f and εG are the step length of the Stochastic Gradient Descent
of the Critic and Generator, respectively. nCritic is the amount of parameter
updates of the Critic for each parameter update of the Generator.

3.2.4 Performance of a WGAN

Arjovsky et al. ran several experiments on the LSUN-Bedrooms dataset
where they used a batch size for the training samples x and z of 64, respec-
tively. They chose a constant learning rate of 0.00005 for Critic and Generator
and trained the Critic 5 times for each training step of the Generator. To en-
sure the parameters of the Critic coming from a compact space they clipped
each parameter to the interval [−0.01, 0.01]. [1, p. 9]

Throughout these experiments they recognized that a reduction of the gen-
erator’s cost in a WGAN correlates with the visual quality of generated
images. Clearly this fact cannot be used to compare different WGAN only
by their generator’s cost since their costs will differ in their scaling factor.
Nevertheless this means that one can trust the learning curves of the cost
function and does not need to double check the visual quality of each sam-
ple. In contrast both the Generator variants presented in Section 3.1.5 do not
have this property. [1, pp. 10-12]

A disadvantage which was observed in [1] is that a WGAN becomes unsta-
ble when a momentum based optimizer like ADAM is used on the Critic.
This seemed to be caused by the fact that the loss of the Critic is non-
stationary. Additionally high learning rates are not advisable, they also
induce an unstable training. [1, p. 12]
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On the other hand the stability of WGAN is in general better than the stabil-
ity of the standard GAN training. In standard GAN it can happen that the
Generator concentrates on a few modes instead of generating from the full
distribution. This mode collapse occurs when the Discriminator performs
bad on certain modes and the Generator exploits this. Since it is possible to
train the Critic of a WGAN till optimality, this problem cannot occur when
it is trained this way. [1, p. 12]

In conclusion it does not only theoretically make sense to use the Earth-
Mover distance in the GAN setting. The experiments of Arjovsky et al. also
showed that Wasserstein GAN indeed performs well in practice, too.
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Chapter 4

Application of Conditional Wasserstein
GAN

In the first section of this chapter the conditional Wasserstein GANs are
introduced as a variant of Wasserstein GANs. In the second section this
variant is applied to the MNIST dataset [11]. The Python code used in the
computation is based on a general GAN/WGAN model of Lilian Weng [22]
which in turn is an adaption of the code [10].

4.1 Conditional Wasserstein GAN

Many applications of Wasserstein GANs require the use of input data e.g.
when the quality of an image should be increased or the next image in a
sequence should be found. The Wasserstein GAN introduced in Section 3.2
includes only latent variables z and observed variables x but no variable for
the input data. Thus, it can not be applied directly to these kind of problems.

However, a conditional generative model involves not only latent variables
z and observed variables x but also conditional variables v. It estimates the
conditional probability p(x|v) i.e. the probability of x given a specific input
v. [18, pp. 3-4] Therefore, this kind of model can solve the above described
problems by choosing v e.g. as the low quality image or the sequence of
previous images.

Combining the structure of conditional generative models with Definition
3.24 one gets the conditional Wasserstein GAN. This is a model which ex-
tends the Wasserstein GAN design by the use of the conditional variable v
in both networks. The Generator is trained to generate samples of the prob-
ability p(x|v) which enables the use of the conditional Wasserstein GAN in
problems which involve input data.
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Definition 4.1 (conditional Wasserstein GAN) Let l, n, m, k ∈ N with l ≥ n.
Consider z ∈ Rl as a latent variable with the probability distribution pz, x ∈ Rn

as an observed variable and v ∈ Rk as conditional variable. Moreover, let θ ∈ Θ
and γ ∈ Γ be network parameters. (xtrain

i , vtrain
i )m

i=1 ⊂ Rn×k is a training set of
samples and respective input data with the distribution pr.

Then a conditional Wasserstein Generative Adversarial Network consists of a Critic
fθ : Rn × Rk → R and a Generator Gγ : Rl × Rk → Rn. Both neural networks
are trained on the set (xtrain

i )m
i=1, (vtrain

i )m
i=1 and latent samples z ∼ pz to minimize

their costs JG(θ, γ) and J f (θ, γ). The cost of the Generator is

JG(θ, γ) := E(x,v)∼pr fθ(x, v)− Ev∼pr(v),z∼pz fθ(Gγ(z, v))

and the cost of the Critic is

J f (θ, γ) := −E(x,v)∼pr fθ(x, v) + Ev∼pr(v),z∼pz fθ(Gγ(z, v)).

Note, that it is not specified in which way v is inputted in the networks. It
can be fed to any layer of the networks, also using it multiple times as input
is possible.

4.2 Example of Conditional Wasserstein GAN

In the following an application of a conditional Wasserstein GAN to MNIST
[11] (dataset of handwritten digits) is shown. The code regarding this appli-
cation can be accessed via https://github.com/AlinaLeu/conditional-

WGAN. It is based on an implementation of Lilian Weng [22] and thus also on
an implementation of Taehoon Kim [10].

The regarded conditional Wasserstein GAN estimates the distribution of the
64 × 64 greyscale-images of the MNIST dataset given specific columns of
the images. The observed variables x are the images themselves and the
conditional variables v are chosen as columns of the images. The latent
variables z are in this implementation chosen to be uniformly distributed
from [−1, 1].

The integration of the conditional variables in the Generator and the Critic
is in this implementation done by appending v to z and x, respectively, and
then feeding them to the first layer of the networks. This is the only way the
conditional variables are involved in the networks.

The results shown in the following are obtained by updating the Critic five
times for each training step of the Generator. Moreover, a learning rate of
5 · 10−5 is used and a batch size of 64. To ensure that the parameters θ lie in
a compact space they are clipped to the interval [−0.01, 0.01].
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4. Application of Conditional Wasserstein GAN

In Figure 4.1 the Generator loss of the first 10000 steps is plotted for different
choices of v. Note, that the exact generator loss of different models cannot
be compared as they are probably k-Lipschitz for different k. Therefore, only
the learning curves can be compared.
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every second column

11th-15th column

11th column
none

Figure 4.1: Generator loss by iteration steps for different types of conditional variables v

The learning curves of all types of conditional variables have a quite similar
shape. Each of the curves shows a good progress in the beginning. From it-
eration step 1500 on only little progress can be observed while the Generator
loss shows strong perturbations.

(A)

(B)

(C)

(D)

Iteration 500 1500 2500 3500 4500 5500 6500 7500 8500 9500

Figure 4.2: Generated image by iteration steps for conditional variable chosen as (A) every
second column, (B) the 11th - 15th column, (C) the 11th column, (D) none

Comparing the quality of the images of Figure 4.2 it can be seen that the
quality enhancement between step 500 and 1500 is the largest. The qual-
ity enhancements between step 1500 and 9500 are comparatively low. Thus,
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the enhancement of the image quality in Figure 4.2 and the decrease of the
Generator loss in Figure 4.1 seem to follow the same curves. So the correla-
tion between sample quality and Generator’s cost which was mentioned in
Section 3.2.4 appears indeed in this implementation.

Figure 4.3: (Line 1) MNIST test image with (Line 2) conditional variable and (Line 3-8) gener-
ated test images after 100000 training steps

In Figure 4.3 six generated samples of three models are shown which all
belong to the same ground-truth of eight images. It can easily be seen that
the left model which involves no conditional variable and thus equals the
standard Wasserstein GAN generates samples with a lot more variety than
the other models. The right model in contrast generates samples which are
nearly indistinguishable of each other. This is consistent with the design of
the conditional Wasserstein GANs as networks which estimates the distribu-
tion p(x, v) by generating samples drawn of this distribution.

Altogether these results suggest that the design of conditional Wasserstein
GANs is well adapted for the given problem. In general this might not
always be the case since the specific design of the problem greatly affects
the success of a network. Specifically the MNIST dataset is as one of the
largest datasets with comparatively low-dimensional samples easier to train
than the most others.
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Appendix A

Abstract & Zusammenfassung

Abstract

This thesis presents the Wasserstein distance which measures the op-
timal cost of the transport between two probability measures. This
distance metrizes the weak convergence in the Wasserstein space and
is continuous. Moreover, a Wasserstein variant, called the Earth-Mover
distance, is continuous everywhere and differentiable a. e. in parame-
ters θ when measuring the distance between p and pθ for pθ being the
distribution of a feedforward neural network gθ .

In addition the application of the Earth-Mover distance in Wasserstein
Generative Adversarial Networks (WGANs) is shown. This variant
of Generative Adversarial Networks (GANs) is comparatively stable
throughout its training process and provides a cost which is strongly
correlated with the quality of the generated samples.

This thesis is mainly based on the book ‘Optimal Transport, old and
new’ of Villani [21] and the papers ‘NIPS 2016 Tutorial: Generative
Adversarial Networks’ of Goodfellow [7] and ‘Wasserstein GAN’ of
Arjovsky et al. [1].
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Zusammenfassung

In dieser Arbeit geht es um die Wasserstein-Distanz, die die optimalen
Transportkosten zwischen zwei Wahrscheinlichkeitsmaßen misst. Die-
se Distanz ist stetig und eine Konvergenz in der Wasserstein-Distanz
ist äquivalent zu einer schwachen Konvergenz im Wassersteinraum.
Darüber hinaus ist eine Variante der Wasserstein-Distanz, die Earth-
Mover-Distanz, überall stetig und fast überall differenzierbar für die
Parameter θ, wenn die Distanz zwischen einer Verteilung p und der
Verteilung eines feedforward-Netzes, pθ , betrachtet wird.

Zusätzlich wird in dieser Arbeit die Anwendung der Earth-Mover Di-
stanz in Wasserstein Generative Adversarial Networks (WGANs) be-
schrieben. Diese Variante der Generative Adversarial Networks (GANs)
ist während des Trainings vergleichsweise stabil und ihre Kostenfunk-
tion korreliert stark mit der Qualität der generierten Daten.

Diese Arbeit basiert auf dem Buch ‘Optimal Transport, old and new’
von Villani [21] und den Papern ‘NIPS 2016 Tutorial: Generative Ad-
versarial Networks’ von Goodfellow [7] und ‘Wasserstein GAN’ von
Arjovsky et al. [1].
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