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Abstract

Innovation can be formulated as a combinatorial process where objects from a set

are combined to create new objects. These are in turn added to the set of objects

and can again be recombined to create further new objects. In some instances this

is a social process in which the recombination is performed by a group of people

working together which can be referred to as a group of collaborators. This social

aspect of innovation is especially evident in the the creation of new knowledge or

methods which mostly happens when people exchange and combine their current

knowledge and ideas to create new knowledge. For this to take place commu-

nication between collaborators is necessary. In social psychology, however, one

can often observe a phenomenon called the Ringelmann effect which states that

as groups grow in size the increasing coordination and communication overhead

reduces the rate at which successful communication among the collaborators takes

place. This ultimately leads to less innovative exchanges and a decline in novelty

production. Within this thesis a simple combinatorial innovation model, simulat-

ing the recombination of knowledge elements by a set of agents, is implemented

and studied. Additionally, an analysis of data from open-source-software projects

is conducted. The aim is to study the emergence of the Ringelmann effect in the

model and discuss the findings with regard to the data set.



Zusammenfassung

Innovation kann als ein kombinatorischer Prozess formuliert werden, bei dem Ob-

jekte aus einer Menge kombiniert werden, um neue Objekte zu erzeugen. Diese

werden anschließend zu der Menge an Objekten hinzugefügt und können wiederum

zu weiteren neuen Objekten rekombiniert werden. In manchen Fällen ist dies ein

sozialer Prozess, in dem diese Rekombinationen von einer zusammenarbeitenden

Personengruppe, einer Gruppe von Mitarbeitern, ausgeführt wird. Dieser soziale

Aspekt von Innovation ist bei der Entstehung neuem Wissens oder Methoden be-

sonders evident, welche in der Regel stattfindet, wenn Personen ihr aktuelles Wis-

sen und ihre Ideen austauschen und kombinieren, um neues Wissen zu erzeugen.

Damit dies geschieht ist Kommunikation zwischen den Mitarbeitern notwendig.

In der Sozialpsychologie kann allerdings häufig ein Phänomen beobachtet werden,

welches als Ringelmann Effekt bezeichnet wird. Dieses besagt, dass wenn solche

Gruppen anwachsen, der zunehmende Koordinations- und Kommunikationsbedarf

die Rate reduziert, mit der erfolgreiche Kommunikation zwischen den Mitarbei-

tern stattfindet. Dadurch kommt es zu weniger innovativem Austausch und einer

Abnahme in der Produktion von Neuem. Innerhalb dieser Masterarbeit wird ein

simples, kombinatorisches Innovations-Model implementiert, welches die Rekom-

bination von Wissen durch eine Gruppe von Agenten simuliert. Des weiteren wird

eine Analyse von empirischen Daten aus Open-Source-Software Projekten durch-

geführt. Ziel ist es, das Auftauchen des Ringelmann Effektes im Model zu studieren

und diese Erkenntnisse unter Berücksichtigung der Daten zu diskutieren.
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Chapter 1

Introduction

Etymologically, the term innovation origins from Latin and roughly translates to

change or renewal. The Oxford English Dictionary further defines it as: “the

alteration of what is established by the introduction of new elements or forms

[. . . ]”[1]. One of the first definitions of innovation was given by Joseph Schumpeter

in an economic context [2, 3, 4]. In general, an innovation can be the introduction

of a new technology to a market, or the improvement of existing ones; the arrival

of new species or genetic traits in an ecosystem; or the adaption of new theories

and paradigms by a society.

Typically new things come into existence by combining entities that already exist

at a given time. This phenomenon is especially evident in the creation of new

technologies, as emergence of new technologies often originates from a recombi-

nation of already existing technologies. In 2006, Brian Arthur et al. investigated

the evolution of technology with a simple computer model by focusing on this

combinatorial aspect of innovation [5, 6]. In other instances one can observe that

while some innovations can lead to a large number of further new entities, oth-

ers can cause the replacement or destruction of already existing ones, a process

that Schumpeter described as creative destruction [3, 4]. In more recent years

this interplay between constructive and destructive aspects of innovation has been

extensively studied by Thurner et al. within several heuristic models [7, 8, 9, 10].

Furthermore, the introduction of one novelty to a system can open up further

possibilities for innovations. The space of possible innovations thus expands. In

7



8 CHAPTER 1. INTRODUCTION

2016 Loreto et al. implemented a probabilistic model that reproduces this sample

space expanding aspect of innovations [11, 12]. Thus it can be seen that several

approaches have been made in modelling the dynamics of innovation, each focusing

on a different aspect of the phenomenon.

There is, however, a further aspect of innovation that one has to pay attention

to as well. Innovation as the creation of new knowledge, in the form of new

ideas or paradigms, is, in general, a social process. Even though history provides

several examples of the archetypal singular genius coming up with new insights all

by themselves, in recent history cooperation has become increasingly important

in the creation of new knowledge. A trend that can be especially seen among

scientists [13]. Therefore, in order to create new concepts it is necessary that

people exchange ideas and recombine their knowledge. In other words, sometimes

two ideas need to “collide” with each other in order to be recombined to a new

and innovative idea [14]. This social aspect of knowledge-creation has already been

established by the physician and philosopher of science Ludwig Fleck, who defined

the concept of the thought collective as: “[. . . ] a community of researchers who

interact collectively towards the production or elaboration of knowledge using a

shared framework of cultural customs and knowledge acquisition [15].” Fleck’s

concepts have later been further elaborated by the famous physicist, historian and

philosopher of science Thomas Kuhn in his explanation of paradigm shifts [16].

One can refer to such a group of people working together as a group of collaborators.

It could be assumed that the interaction of a larger number of collaborators would

affect the innovation processes positively due to the higher number of possible

knowledge exchanges. However, this assumption ignores the fact that including

a larger group of people into the process can result in higher coordination and

communication overhead that can ultimately hinder the free and efficient exchange

of ideas. This phenomenon is known in social psychology as Ringelmann effect or

social loafing [17, 18, 19]. In the specific context of software development this

effect is also known as Brooks’ law. It states that if additional developers are

added to a project that is already behind schedule its moment of completion is

postponed even further [20]. Much work has been invested to test the validity

of these related effects by analysing data from either open-source-software (OSS)

projects or academic research groups [21, 22, 23, 24].
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This thesis follows up on this work and further studies the influence of group size

on the rate of combinatorial innovation production. The central hypothesis that

is tested here is the following:

Hypothesis: As a group of collaborators grows in size, the increasing coordination

and communication overheads reduce the rate of useful communication among

its members for knowledge production. This ultimately leads to less innovative

exchanges and a decline in novelty production.

This hypothesis is approached in two steps. As mentioned above, several ap-

proaches exist to model the process of innovation, all focusing on different aspects.

Based on these models a simple agent-based model is defined that replicates how

new knowledge is created within a group of collaborators via exchange and recom-

bination and the emergence of the Ringelmann-effect is tested within the model.

In a second step data of OSS projects obtained from the platform Git-Hub is used

to look for evidences for the influence of Brooks’ law in an empirical data set. Fur-

thermore, the results obtained from this data set are compared with the results

from the agent-based model.

The remainder of this thesis is structured as follows. In Chapter 2, the general

framework of complex adaptive interactions, evolutionary dynamics and innova-

tion is outlined and a short overview of the most important innovation models

that inspired or bear relevance to this work is given. Secondly, in Chapter 3, a

description of the model as well as the empirical data that is used to test the

adequacy of the model is provided. Thereafter, in Chapter 4, the main findings of

the model as well as a comparison between the results of the model and the data

is presented. Finally, in Chapter 5, the results are discussed and, in Chapter 6, a

conclusion is drawn.
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Chapter 2

Theory

2.1 General Framework and Notation

2.1.1 Complex Adaptive Interaction Networks

Figure 2.1: A set of five entities is represented as nodes in a network. Each
node contains the state σi of an entity i. The interactions among the entities
are represented as links between the nodes. There are three possible kinds of
interactions, each one indicated by a different type of link. This results in what is
called a multiplex network of interactions (Figure recreated from [25]).

In physics one can characterize an entity i at time t by a state σi(t) (e.g. its posi-

tion, momentum, spin, etc.). Entities might be subjected to interactions mediated

by forces (e.g. gravitational force, electromagnetic force, etc.) that act on the

states and thereby change them. To describe how the forces change σi(t) with

11



12 CHAPTER 2. THEORY

time, i.e. the time evolution of the state, one can often use a differential equation

which can be solved with suitable initial or boundary conditions. This way one

obtains the trajectory of the state that describes σi(t) at any time t. Typically,

one does not have a single entity but rather an ensemble of N entities (for example

a gas or a liquid, etc.) where the whole system at time t is then characterized by

the state vector ~σ(t) = (σ1(t), . . . , σN(t)). In such ensembles the entities usually

interact among each other via internal, pairwise forces that act the same way be-

tween all entities and only differ in the strength of the interactions. Often it is

still possible to describe the time-evolution of the whole ensemble with a system

of coupled differential equations.

One can try to use a similar formalism to describe systems of more complex or

abstract entities that are characterized by more general states and interactions,

e.g. a group of people and their opinions [26, 27, 28], an ecosystem of species

and their abundances [29, 30], a system of banks and their capital [31], etc. In

contrast to the ensembles described above, these systems possibly include variables

that can only have discrete values. Moreover, the interactions in such systems are

specific in the sense that only certain pairs of entities interact with each other in a

particular way. One can formulate such interactions as a network [32] the topology

of which is given by the matrix Mij(t): an entry Mij 6= 0 describes the strength

of an interaction between entities i, j while Mij = 0 indicates that there is no

interaction happening. Furthermore, such systems are not limited to one type of

interaction. In a social network, for example, there can be multiple ways people

can interact. They can be friends, enemies, coworkers, etc [25]. As seen in Fig.(2.1)

the interaction network has different types of links, which can be represented as

different network layers. If the interaction type is denoted with α, the topology of

this multi-layered interaction network can be described with a “tensor” Mα
ij: an

entry Mα
ij 6= 0 describes the strength of an interaction of type α between entities

i, j while Mα
ij = 0 indicates that there is no interaction of that type happening

between i and j [25]. Within this formalism one can formulate the time evolution

of the states as a (symbolic) equation:

d

dt
σi(t) ∼ F (Mα

ij(t), σj(t)) (2.1)
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Assuming one knows the exact topology ofMα
ij as well as the function F (Mα

ij(t), σj(t))

and all state variables are continuous this set of differential equations could still

be solved.

However, the interactions in systems described within this formalism are usually

not static. For example: people can form new friendships or end them, new species

can enter an ecosystem and change the environment, etc. In other words, new links

may be formed or existing links may vanish. The change of the topology of Mα
ij(t)

depends on the existing links as well as on the states. Therefore, in addition

to Eq.(2.1), one needs a set of coupled differential equations describing the time

evolution of the topology Mα
ij(t):

d

dt
Mα

ij(t) ∼ G(Mβ
ij(t), σj(t)) (2.2)

In general it is not possible to come up with an analytical way of solving Eq.(2.1)

together with Eq.(2.2) as all the relevant parameters to formulate the functions F

and G, or the complete set of relevant entities and interactions to formulate ~σ(t)

and Mα
ij(t) are usually not known. It is possible however to make simplifications

and a priori assumptions in order to describe the system, or one may try to model

the change of states and the change of the networks algorithmically.

Together Eq.(2.1) and (2.2) symbolically describe a complex adaptive system of

entities that are characterized by their states. The interactions or relations between

the entities are described in the form of multi layered networks. The state changes

of the entities depend on the interaction network which in turn depends on the

states. In other words the state vector of the system co-evolves with the interaction

topology.

2.1.2 Evolutionary Processes

As established in the previous section, evolution in physics means to describe how

a state under the influence of external and/or internal forces changes over time.

Evolutionary processes, however, are more general in the sense that they describe

how a system of entities continuously creates or destroys other entities through

interactions among themselves or with an environment. The composition of the

system changes in a dynamical process that is typically irreversible and non-ergodic
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[33]. One immediately thinks of a biological context here, where the entities are

co-evolving species [29, 30]. However, as sketched above, one can look at more

general systems of entities, e.g. a mixture of chemicals [34, 7], a set of technologies

[5], etc., the choice of this context determines constraints acting on or within the

system (mass conservation, supply and demand, etc.).

Evolutionary processes can be described as a three-step algorithm [9, 10]: (1) a

new entity is created or assembled and enters the system. (2) The new entity

interacts with the environment of the system, composed of all the already existing

entities. Through these interactions the new entity is either destroyed or prolifer-

ates. (3) If the new entity survives, it becomes part of the environment itself and

the environment has been, often irreversibly, changed.

It is possible to describe the abundance of an entity i at time t with a scalar state

σi(t) which is a real and non-negative number. σi(t) > 0 then indicates that entity

i exists at time t while σi(t) = 0 indicates that it does not exist. To describe

the possible types of interactions among the entities, one can again use a multi-

layered interaction network Mα
ij(t). Since in evolutionary processes interactions

can exist between more than just pairs of entities, the interaction topology can be

generalized as Mα
ijk...(t). The dynamics implemented in this three-step algorithm is

then essentially the co-evolutionary dynamics described by Eq.(2.1) and Eq.(2.2),

where the environment changes the abundances of the species while the abundances

of the species change the environment.

One may attempt to come up with equations like Eq.(2.1) and Eq.(2.2) to formally

describe evolutionary processes. However, as stated in the previous section, one

usually lacks the necessary knowledge about all relevant system parameters. Fur-

thermore, evolutionary processes are in general open-ended as more and more new

entities are created and become part of the system, which creates new possibilities

for the entities to interact. As a consequence the state vector of all entities as well

as the sample space of interactions expand over time. Thus the system is never in

equilibrium.

Nevertheless, simplifications can be made in order to formally describe evolution-

ary processes. One may look at a finite system of N interacting entities whose

states σi(t) ∈ [0, 1] are the relative abundances with
∑

i σi(t) = 1. Basically one

can define four basic types of evolutionary interactions: replication [35], when an
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entity simply reproduces itself; competition [36, 37] when an entity drives another

entity out of the system; mutation [38] when an entity spontaneously mutates to

another entity. In any case, the most fundamental interaction for our purposes

is recombination. As illustrated in Fig.(2.3a), it essentially describes how a new

entity comes into existence through the combination of already existing entities.

The dynamics of σi(t) is then governed by the catalytic network equation [34]:

σ̇i(t) =
∑
j,k

Mijkσj(t)σk(t)− σi(t)φ(σ), φ =
∑
ljk

Mljkσj(t)σk(t) (2.3)

where φ is the normalization term. Mijk is the rule table where an entry Mijk 6= 0

indicates that there exists a recombination rule like Fig.(2.3a) that j, k can be

recombined to form i and gives the rate this recombination process is happening

with. Mijk = 0 indicates that no such rule exits. One can see from Eq.(2.3) and

Fig.(2.3a) that such recombination rules can only be active if both species are

present in the system. It can be argued that recombination is the most general

form of evolution [39, 40]. A system that is characterized by this dynamics is called

a combinatorial evolutionary system.

Figure 2.2: The actual is the set of all entities that are already present in the
system (blue nodes). The adjacent possible is the set of entities that can be reached
within one step by combining entities from the actual (green nodes). All entities
that can be reached in further time steps through recombination are the far possible
[41] (gray nodes).
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In the context of combinatorial evolution, one can define and understand the con-

cept of the adjacent possible [42]. As illustrated in Fig.(2.2) the adjacent possible

is the set of potential entities that can be created at t + dt from all the entities

present in the system at time t. The adjacent possible is a kind of “creative poten-

tial” of the “near future”. As new entities are created through the combination of

existing entities new possibilities for pairing entities are formed. Thus, the com-

position of the adjacent possible changes with the actual. In other words: the

adjacent possible co-evolves with the entities of the system. Most approaches to

model evolutionary interactions are about the exploration of the adjacent possible.

In the following the most important examples are summarized.

2.2 Related Work

2.2.1 Constructive and Destructive Interactions in Inno-

vation Dynamics

(a) (b) (c)

Figure 2.3: (a) A constructive interaction, where entities i, j combine to produce
entity k. (b) A destructive interaction where entities m′, n′ together destroy entity
i′. (c) A system containing constructive and destructive interactions (Figures
recreated from [10, 9]).

As established above, a set of N entities interacting via recombination can be

analytically described using Eq.(2.3). These systems usually do not only have

constructive interactions, Fig.(2.3a), where two entities are recombined to create

a new one. As seen in Fig.(2.3b), there can also be destructive interactions, where
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two entities together destroy an existing entity e.g. by suppressing its production

or creating a new entity that drives the existing one out of the system. Thus, an

entity can be involved in constructive as well as destructive interactions. One can

see in Fig.(2.3c) that the combined interactions can lead to a complex dynamics

where constructive interactions reinforce destructive interactions and vice versa.

For instance, whenever a species exercising a destructive rule is created, this rule is

in turn activated. On the other hand, destroying an entity exercising a destructive

rule deactivates this rule, which in turn promotes the entity suppressed by this

very rule. In 2010, Thurner et al. formulated a model that is an excellent heuristic

means to understand complex dynamics of this kind [10].

In this simple model they assume that the abundance σi of an entity i at time

t is described by a binary variable: σi(t) = 1 indicates that the entity has an

abundance > 0, i.e. it is present in the system. σi(t) = 0 indicates that the entity

has an abundance of 0, i.e. it is not present in the system. The whole system at

time t is represented by the state vector ~σ(t) = (σ1(t), . . . , σN(t)).

The constructive interactions are captured in a rule table M+
ijk. Assuming that

there are multiple ways an entity k can be produced, there is a constructive rule

density r+ that quantifies how many productive pairs for a certain entity exist on

average. Likewise the destructive interactions are captured in a rule table M−
ijk

with a destructive rule density r−. For simplicity, the entries of M±
ijk are binary

as well, where M±
ijk = 1 indicates that there exists a constructive/destructive in-

teraction between the entities i, j, k, while M±
ijk = 0 indicates that there are no

such interactions. The rule tables are randomly set a priori with the probability

of an entry M±
ijk being 1 as P (M±

ijk = 1) = r±/
(
N
2

)
. The number of active produc-

tive/destructive sets for species i at any time t is: N±i (t) =
∑

jkM
±
ijkσj(t)σk(t).

Furthermore, one assumes that a randomly selected number σ0 of entities is present

in the system at t = 0.

It can be shown that in a system that is only based on constructive interactions,

the system reaches a steady state of populated entities. By varying σ0 and r+, one

can observe a phase transition in the production of new entities, from only a few

to the maximum number of possible entities populated [7]. Likewise, in a system

only characterized by destructive interactions, one observes a transition where the

system, depending on σ0 and r−, changes from a completely populated
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Figure 2.4: The left side shows the diversity D(t) measured at each time step
for N = 100, r+ = 10, r− = 15. The right side shows the individual trajectories
of each entity: a white cell indicates that an entity exists at time t, a whereas a
black cell indicates that it does not exist. D(t) and the individual trajectories are
shown for (a,b) a high innovation rate p, (c,d) an intermediate innovation rate p,
(e,f) a low innovation rate p (Figure taken from [10]).

to a sparsely populated state of remaining species (the system never becomes fully

depopulated, some “substrate” remains) [8, 9]. To describe the combined dynamics

of constructive and destructive interactions three simple update rules for an entity

i with σi(t) are formulated [10]:

If N+
i > N−i , the productive outweigh the destructive influences on i, entity i can

be created: σi(t+ 1) = 1

If N+
i < N−i , the destructive outweigh the productive influences on i, entity i is

destroyed: σi(t+ 1) = 0

If N+
i = N−i , the destructive and productive influences on i are in equilibrium,

entity i remains unchanged: σi(t+ 1) = σi(t+ 1)
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Additionally it is assumed that there is a chance for spontaneous innovations or

destructions to happen. Thus with a probability p a state σi(t) can be flipped.

The full algorithm of this model is [10]:

1. Select a random entity i.

2. Compute N±(t). If N+(t)−N+(t) > 0 set σi(t+ 1) = 1. If N+(t)−N+(t) < 0

set σi(t+ 1) = 0. If N+(t)−N+(t) = 0 set σi(t+ 1) = σi(t+ 1).

3. Select a random entity j and with probability p switch the state from σj(t) =

1(0) to σj(t+ 1) = 0(1).

4. Repeat (1)-(3) until all entities have been updated once (random sequential

update) then advance to the next time step.

On can describe the diversity of the system at t as D(t) = 1
N

∑N
i=1 σi(t), the mean

fraction of active species. In Fig.(2.4c), one can see that D(t) changes between

stable phases where the diversity remains almost unchanged and chaotic phases

where D(t) heavily fluctuates. One can furthermore see that the recovery time

from such chaotic phases as well as the life time of stable phases is controlled by

the parameter p. In the most extreme cases the diversity either reaches a global

steady state (low value of p) or does not reach a stable phase at all (high value p).

In general, this model is a good heuristic approximation to the complex combined

dynamics of constructive and destructive combinatorial interactions among enti-

ties. In an economical context, where the entities are goods and services, the model

furthermore provides a good way to algorithmically describe of the Schumpeterian

dynamics of creative destruction: the emergence of certain innovations can drive

out a large number of existing goods, in so called cascades of destruction. Thus,

phases of economic stability (plateaus in D(t)) are superseded by phases of large

changes (fluctuations in D(t)) [3, 4].

2.2.2 Innovation, Urn Processes and Expanding Sample-

Spaces

As mentioned above, evolutionary processes and the creation of novelties and in-

novations are generally open ended. As seen in Fig.(2.2) each newly created entity

opens up new ways to be recombined with other new entities or already existing

ones. The sample space of possible innovations therefore keeps growing or, in other
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words, the adjacent possible is expanding.

A good way of modelling expanding sample spaces is to describe the emergence of

innovations in a probabilistic way. Simon models are historically among the first

to do so [43]. The basic Simon model describes a stream of tokens S that at t = 0

initially consists of a single token. Every further time step t, an additional token

is added to S. With a probability p, this is a new token, while with probability

(1 − p) the token is randomly chosen from the already existing ones in S. The

model produces an expanding sample space as the number of possible tokens that

one can select is growing by adding new tokens to S. The model also shows a

so called the rich get richer dynamics as tokens that appear more often in S are

more probable to be selected again. However, one may note that new elements

enter the system simply with a constant rate p. In other words, the innovation

rate is assumed a priori and therefore is a model parameter and not an endogenous

variable.

Variations of the Simon model have been formulated, e.g. the Zanette-Montemurro

model, where the innovation rate p is not constant but varies as a time dependent

function [44], or the Dorogostev-Mendes model, where each token has an ageing

factor that reduces the probability of being selected [45]. Nevertheless, in both

variations the innovation rate is hard wired in the system. Another approach to

model expanding sample spaces is by using Pólya-Urn processes which describe an

urn containing balls of different colours. Whenever a ball is drawn at random, it is

put back into the urn with a certain amount of new balls of the same colour [46].

In 2014, Loreto et al. modelled innovation by using a variation of such a Pólya-Urn

process [12, 11]. This simple model like the Simon models, describes the emergence

of innovations in a probabilistic way. Again, a sequence S is constructed by drawing

elements from an urn U which initially contains N0 distinct elements. U and S

increase their content and length at each time step the following way [12]:

1. randomly select an element from U and add it to S

2. put the element and ρ copies of it back into U

3. if the extracted element has not yet appeared in S, add ν + 1 new distinct

elements to U as well

An innovation in this model is an element drawn randomly from U that appears

for the first time in the sequence S. For a sequence containing N elements the
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number of distinct elements is given as D(N) and its growth quantifies the rate at

which innovations are happening. If µ < ρ the growth of D(N) is [12]:

D(N) ∼ N
ν
ρ (2.4)

Unlike in the Simon models innovations here do not take place with a given rate,

instead the probability for an innovation to happen is an intrinsic property of

the urn U(t). Each innovation opens up new possibilities for further innovations

by adding ν + 1 new distinct elements to U . However, these are just possible

innovations. In other words: for one of these new elements to actually be an

innovation, it has to be drawn from U at some later time step. Theoretically, a

distinct element that was added to U might never be drawn over the course of

time, i.e. within one simulation run.

Nevertheless, in contrast to other innovation models that study the behaviour

of finite systems, this model is capable of reproducing the open ended sample

space expanding nature of innovation processes, although the production of in-

novations does not happen combinatorially but probabilistically. However, this

relieves the model from the necessity to make a priori assumptions about any

interaction topologies.

Moreover, the model is comparable to results from empirical data. As Eq.(2.4)

shows the number of innovations D(N) in the sequence S grows sub-linearly like

Heaps’ law [47]. One can furthermore find that the frequency-rank distribution of

elements in S approximately follows Zip’s law [48]. Similar behaviour can be found

in the appearance of novelties in texts, Wikipedia pages, online music catalogues

etc. [12]

2.2.3 Evolution of Technology: The Arthur-Polak Model

In principle, the creation of new technologies can be seen as a combinatorial evo-

lutionary process: new devices are constructed from already existing ones, which

in turn can be used as possible components for the construction of further new

devices and so forth. In 2006, Arthur et al. included this aspect in a computer

model in order to simulate the evolution of technology [5].

The technological elements in the model are logical circuits which are randomly
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wired together to create new circuits. To control the process a list of goals, de-

sirable functions the circuits should fulfil, is defined. This list of goals defines the

utility landscape of the process [33]. Furthermore, each circuit has a cost that is

determined by the number of its components. The model starts with a set that

initially only contains primitive components, like the NAND-gate. A certain num-

ber of these primitive components is then randomly selected and the circuits are

randomly wired together. These newly created circuits are added to the set of

existing circuits, if they fulfil one of the specified goals. Additionally, an already

existing circuit might be taken from the set and replaced by a newly created circuit

fulfilling its goals more effectively and/or costing less. Therefore the model con-

tains two possible ways an innovation might happen: either by achieving goals that

have not been achieved yet or by improving already existing technologies. Thus,

it is observed that there are constructive interactions (two circuits combined to

a new one fulfilling specific goals) as well as destructive interactions (two circuits

create a replacement for an existing circuit).

The adjacent possible in this model is the set of all circuits that can be created

by the currently available circuits. In order to reach more complex circuits that

are in the far possible it is first required that simple circuits are made in order

to serve as stepping stones [49]. As more gates are added to the system, more

and more complex circuits can be created and the adjacent possible expands. One

innovation can trigger the arrival of further innovations and, in certain cases, the

creation of a key circuit enables a huge range of new and more complicated circuits

to be built [5]. Therefore, one can observe bursts of creation of new technologies,

but likewise there can be cascades of destruction. For example, the replacement of

a circuit might leave its components with no further use which subsequently leads

to them being replaced as well [5].

One can see that even though the Arthur-Polak model focuses on the combinatorial

aspect of innovation, can replicate the expansion of the adjacent possible and the

phenomenon of creative destruction [3, 4] as well. The model is limited though by

the need for a predefined list of desirable functions for circuits to fulfil. Neverthe-

less, it laid out the foundations to further explore the aspects of expanding sample

spaces in the model of Loreto et al. [12, 11] as well as the interplay of constructive

and destructive interactions in the models of Thurner et al. [7, 8, 9, 10].
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Methodology

3.1 An Agent-Based Model for Innovation

The central aim of this thesis is to investigate the hypothesis that, as a group of

collaborators is growing in size, the influence of the Ringelmann effect leads to a

decline in the production of new, innovative knowledge. For a first approach to this

hypothesis, a simple numerical model is implemented to replicate how new knowl-

edge is created by a group of collaborators through exchange and recombination

of existing knowledge. The influence of the Ringelmann effect is then thoroughly

studied within this model. In the following sections, a detailed description of this

model is given.

3.1.1 Agents and Knowledge Elements

In this simple model, the group of collaborators is represented as a set of N agents.

At any time t an agent i can be characterized by a scalar state σi(t) and the whole

team is represented by the state vector ~σ(t) = (σ1(t), . . . , σN(t)). The dimension

N is the group size, which is assumed to be a constant parameter (A table with all

variables and parameters is provided in Tab.(3.1)). The setup is similar to opinion

dynamic models [26, 27, 28]. However, unlike these models, where the states of the

agents represent their opinion on one or more topics, here the states of the agents

represent their most recent piece of knowledge they possess, e.g. an idea that they

currently have. Like in opinion dynamics models, the agents can interact among

23
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each other at any time and change their states with the additional possibility to

create new knowledge elements through these interactions. For simplicity, the

knowledge elements are labelled with an index m ∈ N corresponding to their order

of appearance in the system: m = 1 is the first knowledge element, m = 2 the

second, etc. The set of all unique knowledge elements that have been created up to

time t is then I(t) = {1, 2, . . . ,m, . . . ,M} with M as the largest, or in this context

most recent, knowledge element at time t. I(t) represents the total knowledge

that is available to the agents at t as the states of the agents are σi(t) ∈ I(t). As

already mentioned, the agents can create new knowledge elements by interacting

with each other. The new elements are then added to I(t), thus expanding it1. This

expansion of I(t) is similar to the expansion of the adjacent possible in [12, 11].

At any time, several agents can possess the same amount of knowledge, i.e. their

states are the same elements from I(t). The abundance of a knowledge element

l is defined as the number of agents for whose state at time t one has σi(t) = l.

It is denoted as nl(t), with
∑

l nl(t) = N . Furthermore, to measure the activity

of an agent, the contribution of an agent i is defined as the number of successful

interactions the agent i has had with another agent. It is denoted with ci(t).

How exactly these interaction processes change the states of the agents and create

new knowledge elements as well as what counts as a successful interaction will be

discussed in detail in the following sections.

3.1.2 Exchanging and Recombining Knowledge

There are two interaction processes linking the agents in the model. First, there

is a pairwise interaction between two agents which is referred to as the exchange

(EXCH) process. It simulates how two people randomly meet, exchange their

current knowledge and by recombining it, possibly create a new knowledge element.

In general, not all combinations of elements are possible or lead to meaningful

outcomes. Therefore, as in the innovation dynamics models of Thurner et al.

[7, 8, 10], the rule table Rt, indicating which pairs of elements can be recombined

to new elements, is defined. By contrast, Rt is not fixed a priori but one

1For example: if ~σ(t1) = (3, 3, 2) and I(t1) = {1, 2, 3}, the agents σ1 = 3 and σ3 = 2 could
recombine their states to the new element 4. Then one has ~σ(t2) = (4, 3, 4) and I(t2) = {1, 2, 3, 4}.
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(a) (b)

(c)

Figure 3.1: There are three possible scenarios for the EXCH process. (a) Inno-
vation: Two randomly selected agents change their knowledge states from l,m to
M + 1. (b) Update: Two randomly selected agents change their knowledge states
from l,m to n. (c) Failed communication: Two randomly selected agents remain
in their knowledge states l,m.

rather lets the agents through interaction ”discover” new rules that then might

be added to Rt. So Rt : I2 → I2, (σi, σj) 7→ (σ′i, σ
′
j) is a function containing all

the knowledge element pairs and the resulting products at time t. The number of

production rules that a knowledge element m is part of at time t is given by the

variable rm(t) which is named the record of m. Furthermore, it is assumed that

there is an upper bound for the number of production rules that exist for a certain

knowledge element which is set by the saturation parameter Q. This parameter

is comparable to the production rule density in [7, 8, 10]. If for a knowledge

element m one has rm(t) = Q, no further rules involving it can be added to Rt.

This element is therefore called saturated 2. The motivation here is that there is

a limited potential for a knowledge element to create other elements.

For the EXCH process at time t, two agents i, j are randomly selected to change

2For example: if Q = 2 and at t the element m = 3 is already in two production rules: Rt(2, 3) = 4
and Rt(3, 5) = 6 its record is r3 = 2 therefore m = 3 is saturated.



26 CHAPTER 3. METHODOLOGY

their states from σi(t), σj(t) to σi(t + δt), σj(t + δt). Assuming that σi(t) = l and

σj(t) = m, with l,m ∈ I(t) and the rule table is Rt, there are three possible ways

for the this process to play out:

• Nor rule for l,m exists, @ Rt(l,m), and l,m are both not saturated, rl, rm < Q.

The knowledge element M + 1 is created and added to I(t + δt), the entry

Rt+δt(l,m) = M + 1 is added to the rule table. As seen in Fig.(3.1a), one has:

σi(t+ δt) = M + 1 , ci(t+ δt) = ci(t) + 1

σj(t+ δt) = M + 1 , cj(t+ δt) = cj(t) + 1

Here an innovation occurs, as a new knowledge element is created. This con-

tribution by both agents increases their contribution counter by 1. For the

knowledge elements m,n as well as the newly created element M + 1 the abun-

dances nml, nm, nM+1 are changed accordingly. Furthermore the records rl, rm

are increased by 1 as a new production rule involving l,m is added to Rt+δt.

• A rule for l,m exists, ∃ Rt(l,m) = n. As seen in Fig.(3.1b), one has:

σi(t+ δt) = n , ci(t+ δt) = ci(t) + 0.5

σj(t+ δt) = n , cj(t+ δt) = cj(t) + 0.5

This outcome is not an innovation as no new knowledge element is created.

However, both agents still update their states to a more recent knowledge state.

Due to this partial contribution, both agents increase their contribution counter

by 0.5. For the knowledge element l,m, n the abundances nl, nm, nn are changed

accordingly while the records rl, rm are not changed as no new production rule

involving l,m is created

• No rule for l,m exists, @ Rt(l,m), but either l or m is already saturated, rl = Q

or rm = Q. There is neither a knowledge element to which the agents could

update nor a new production rule involving l,m that can be created. As seen

in Fig.(3.1c), one has:

σi(t+ δt) = l , ci(t+ δt) = ci(t)

σj(t+ δt) = m , cj(t+ δt) = cj(t)

This outcome represents a failed communication between the agents as their
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states are unchanged and no new knowledge is created. As there is no contri-

bution by both agents, ci(t) and cj(t) remain unchanged. For the knowledge

elements l,m the abundances nl, nm as well as the records rl, rm are left un-

changed as well.

3.1.3 Discarding Knowledge

|

(a) (b)

Figure 3.2: There are two possible scenarios for the DISC process. (a) Discard-
ing: A randomly selected agent changes its knowledge state from n to either l or
n. (b) Remaining: A randomly selected agent remains in its knowledge state n.

The second process is a self-interaction of agents which is referred to as the dis-

carding (DISC) process. It simulates how sometimes a person might forget their

current knowledge or simply discards it in favour of older, more trusted knowledge.

The discarding of knowledge takes place with the probability Pf , the forgetting-

probability.

For the DISC process at time t an agent k is randomly selected to change its state

from σk(t) to σk(t+ δt). Assuming that σk(t) = n with n ∈ I(t) and the rule table

Rt that contains the rule Rt(l,m) = n, there are two possible ways for this process

to play out:

• With probability Pf one has, as seen in Fig.(3.2a):

σk(t+ δt) = l | m

The agent assumes either l or m with a 50% probability for each possible out-

come. This scenario represents an agent forgetting or discarding its current
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knowledge. For simplicity, it is assumed here that the agent equally “remem-

bers” both pieces of knowledge that have led to its current state and randomly

decides for one of the two possibilities, independently of the state the agent pre-

viously occupied. The contribution ck(t) of the agent is unchanged as nothing

new is created. The records of the knowledge elements rl, rm, rn are unchanged

as well, while the abundances nl, nm, nn are changed accordingly.

• With probability Pf − 1, or if σk = 1, the agent remains in its current state.

One has, as seen in Fig.(3.2b):

σk(t+ δt) = σk(t)

For the knowledge elements the records rl, rm, rn as well as the abundances

nl, nm, nn are left unchanged. The contribution ck(t) of the agent is unchanged

as well.

3.1.4 Implementation of the Model

To simulate the model described above the following steps are implemented:

1. Initialize the states of all agents to σi = 1 ∀ i, one therefore has I = {1}
with n1 = N . Like in the Arthur-Pollak model where the system initially only

contains primitive circuits [6] one starts with all agents in the most basic state

of knowledge. Furthermore set S = {} with r1 = 0. Set the time to t = 1

2. Select two random agents i, j in the states σi and σj. Apply the EXCH process

to them

3. Draw another random agent k in the state σk. Apply the DISC process to it.

4. update the time step t 7→ t+ 1/N

Steps 2-4 are then repeated. The motivation behind the last step is that in one full

time step t 7→ t+1, N pairs of agents are selected to update their states. This way

every agent gets on average updated once in one time step. The whole algorithm

is implemented using the programming language Julia3. All relevant variables and

parameters are summarized in Tab.(3.1).

3For the complete source code see Appendix C.
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Variable

σi(t) state of agent i
ci(t) contribution of agent i
I(t) set of knowledge elements
nm abundance of element m
rm record of element m
Rt rule table

(a)

Parameter

N number of agents/group size

Q saturation parameter

Pf forgetting probability

(b)

Table 3.1: Summary of model variables and parameters.

3.2 Analysing Data from Open-Source-Software

Projects

timet

t-7d

productivity 
window

commit
event

[...]

t-295d team size 
window

Figure 3.3: A graphical representation of the time-slice analysis. Each dot rep-
resents a commit, the colour represents the responsible developer. All dots in the
window [t − 7d, t] are the commits CR(t) while the number of unique colours in
the time window [t− 295d, t] represents the team size MR(t).

The second aim of this thesis is to study data from open-source-software (OSS)

projects and look for empirical evidence of the Ringelmann effect which, in the

context of this specific data set, corresponds to Brooks’ law [20]. The results

obtained from this investigation are then compared to the results from the agent-

based model of the previous section by interpreting the set of agents as a team of

developers and the knowledge elements as lines of code. An exchange of knowledge

might occur by two developers co-editing the same file, while an innovation is to

add or change a line of code possibly resulting in an improved version of the initial

file.

The specific data set that is considered, is a collection of the histories of 85 Open-
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Source-Software (OSS) projects from GitHub [24]4. It contains, for each repository,

the information of all commits made over the course of the project, time and date

of each commit, the author who committed and the files that have been edited.

The possible influence of Brooks’ law is studied by measuring how the number of

commits from the developers depends on the size of the respective developer team.

For this purpose one needs a way to extract these two variables from the data set.

The method for doing so has been extensively discussed in [24]. The same method

is adopted here.

3.2.1 A Time-Slice Analysis of Commit-Events

Intuitively, one could take the total number of developers as well as the total num-

ber of commits within a repository R as measures for team size and productivity.

However, the authors of [24] chose a more fine grained analysis to better capture

the fluidity of collaborative teams. Looking at the distribution of time differences

between two commit events for all repositories, it is observed that most commits

fall in a time window of 7 days. Thus, one defines the variable CR(t) as the num-

ber of commits that occurred in a time window of [t− 7d, t] within repository R.

Likewise, one may look at the distribution of times the developers in all the repos-

itories are inactive. It can be observed that apart from one time contributors most

developers are active within a time window of 295 days, while developers who have

been inactive for a period longer than that are most likely not to commit again.

Therefore, the variable MR(t) is defined as the number of developers that have

been active within a time window of [t− 295d, t] within repository R.

As pictured in Fig.(3.3), the team that is responsible for the commits done in a

7-day time window is interpreted as consisting of all the developers who have been

active within the last 295 days. Therefore, the variable MR(t) measures the team

size and roughly corresponds to the group size N in the agent-based model of the

previous section. The variable CR(t) measures the productivity of the team and

roughly corresponds to the contribution of the agents ci(t).

4The raw data was kindly provided by Ingo Scholtes with the permission of Frank Schweitzer.
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Variable

CR(t) Number of commits in time window [t− 7d, t] within repository R

MR(t) Number of active developers in time window [t− 295d, t] within
repository R

Table 3.2: Summary of the data set variables.
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Chapter 4

Results

4.1 Simulation Results

In the first part of the analysis, the behaviour of the variables from Tab.(3.1a)

is studied. In particular, it is investigated how these variables, as the simulation

unfolds, change over time and how their dynamics depends on the parameters from

Tab.(3.1b) with a focus on parameter N .

4.1.1 Increase of Knowledge Elements

As established in Section 3.1.1, the set of knowledge elements I(t) gradually grows

as the simulation progresses and new elements are added to the set through combi-

nation of existing elements. In this section, the dynamics of this growth is analysed

in detail. To do so, the simulation is run with particular choices of parameters

N,Q, Pf for a fixed number of time steps T . At each time step t the number of

knowledge elements, which corresponds to the size of the set of knowledge ele-

ments |I(t)|, is measured. This analysis is repeated for different N in order to get

a first impression of how the growth of I(t) is affected by the number of agents.

Furthermore, to test the stability of the behaviour of I(t), each simulation run is

repeated multiple times.

We see in Fig.(4.1a) that for N = 300 the set I(t) grows for all time steps. Fit-

ting the data with a power-law function f(x) = a xb shows that the growth is

approximately linear as b ≈ 1.

33



34 CHAPTER 4. RESULTS

(a) (b)

Figure 4.1: The size of the set of knowledge elements |I(t)| was measured each
time step with N = 100, 300, 500, 700, 900 and the other parameters fixed to Q = 4
and Pf = 0, 15 for all selections of N . Each simulation was run for T = 10000
time steps and for each choice of parameters the simulation was repeated 20 times
to test the probability of the behaviour of |I(t)|. All plots are in log-log scale. (a)
shows |I(t)| averaged over all repetitions for N = 300. The obtained trajectory
was fitted with a function f(x) = a xb. (b) shows all obtained trajectories of |I(t)|
for all sections of N .

This is not surprising as at each time step N pairs of agents are drawn for the

EXCH process. Therefore, it is not possible that more than N new knowledge

elements are produced in one time step. In other words, I(t) cannot grow by more

than N . We see in Fig.(4.1b) that for all observed values of N the set I(t) initially

grows linearly1. However, for N = 100, 300 we observe that I(t) continues to grow

for all further time steps whereas for N = 700, 900 the growth of I(t) slows down

at some point and eventually I(t) completely ceases to grow for all further time

steps. Furthermore, we observe that for both cases N = 100, 300 and N = 700, 900

the respective behaviour is consistent for all repeated simulation runs.

More precisely, Fig.(4.1b) shows that as N gets larger we can observe a transition

in the growth dynamics of I(t). We change from an innovation phase where the

trajectories of |I(t)| keep growing linearly for all t to a saturation phase where they

converge for all t. We also see in Fig.(4.1b) that for N = 500 and Q = 4, Pf = 0.15

we are at the edge of this transition as for some simulation runs I(t) diverges while

1Fitting the data over the first time steps yields exponents b ≈ 1 for all the observed N .
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for others it converges.

Figure 4.2: The order-parameter ONQPf was measured for different choices of N
with fixed parameters Q = 4 and Pf = 0.15. In order to obtain ONQPf for each
choice of N the simulation was repeated 20 times for 10000 time steps.

In order to further investigate the growth dynamics of I(t), again a system is

simulated with certain parameter choices for a fixed number of time steps and

each simulation run is repeated multiple times. The order-parameter ONQPf which

corresponds to the probability that I(t) grows linearly over time for a certain

choice of N,Q, Pf
2 is then computed. In Fig.(4.2), we already see the above-

mentioned transition in the trajectory of ONQPf , measured for different N with

the other parameters set to Q = 4, Pf = 0.15. To get a more detailed picture of

the transition, ONQPf is measured for various values of N,Q, Pf over sufficiently

large size ranges.

In Fig(4.3), we see two clearly separated regions for all plots where I(t) either

always diverges or converges. By increasing N , we observe a critical value above

which the transition from the innovation phase to the saturation phase takes place.

Decreasing Pf increases the critical value of N . However, no matter how small Pf

is chosen, there is always a critical N .

2See Appendix A for a detailed definition.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.3: The order-parameter ONQPf was measured for different choices of
N,Pf with Q fixed; (a) Q = 3 (b) Q = 4 (c) Q = 5 (d) Q = 6 (e) Q = 7.
In order to get ONQPf for each choice of parameters N,Q, Pf the simulation was
repeated 20 times for 10000 time steps. The obtained values for ONQPf are plotted
as heat-maps. (f) The boundary curves of the transitions fitted with f(x) = a xb

using the algorithm of [50].
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In Fig.(4.3f), we see that by increasing Q the boundary of that phase transition

moves further to the top right. So we observe that the size of the system acts

as a critical parameter that allows us to separate the innovation phase from the

saturation phase. Where this transition takes place depends significantly on the

parameters Q,Pf .

4.1.2 Contribution per Agent

The next variable that is studied, is the contribution of an agent ci(t). As es-

tablished in Section 3.1.2, in the EXCH process two agents can either innovate,

update or the communication between them fails. Depending on this outcome,

their individual contribution ci(t), reflecting their activity, is increased or not. To

investigate the activity of the whole set of agents, the contribution of all agents

at time t is computed as ctot(t) =
∑N

i=1 ci(t) and to get the average contribution

per agent crel(t) = ctot/N is computed. In order to measure how the dynamics of

crel(t) depends on the parameter N , the simulation is run with particular choices

of parameters N,Q, Pf for a fixed number of time steps T and crel(T ) is measured

after each run. This way, crel(T ) is computed for different choices of N , with Q,Pf

fixed. Each simulation run is repeated several times to test the stability of the

behaviour of crel(T ).

In Fig.(4.4a), we observe that for Q = 4, Pf = 0.15 the trajectories of 〈crel〉 plotted

against N generally decline for a growing N . We furthermore observe that choosing

a larger value for the parameter T shifts the trajectory upwards on the y-axis, as

more time has passed and the agents have had more possibilities to exchange

knowledge, thus increasing their ci(t). However, a more detailed inspection reveals

that the choice of T has a more significant impact on the trajectory of 〈crel〉.
In Fig.(4.4a), we discover for T = 1000 that around N = 700 there is a sharp

transition where 〈crel〉 converges to a constant value. This is in accordance with

Fig.(4.2) and Fig.(4.3b), where we see a corresponding transition in |I(t)| changing

from diverging to converging around the same value for N and the same choices

for Q,Pf . When I(t) converges this means that no new knowledge elements are

created by the agents, which results in a stagnation in the contribution per agent.

For smaller values of T = 10, 100 we do not see this sharp transition in Fig.(4.4a).
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From this one can conclude that the transition we have observed in the previous

section only happens after the simulation has run for a sufficiently long time. This

indicates that the creation of new knowledge elements by the agents is stable in the

short run, whereas in the long run the productivity of a larger number of agents

reaches a steady state.

(a) (b)

(c)

Figure 4.4: The contribution per agent 〈crel(T )〉 was measured after T =
10, 100, 1000 time steps for different selections of N and with (a) Q = 4, Pf = 0.15,
(b) Q = 6, Pf = 0.14, (c) Q = 4, Pf = 0.05. The averages were taken over 20
repetitions. The standard deviation was taken as error. Due to the error bars
being of the dimension of the point size they are not shown in the plots. All plots
are in log-log scale.

We furthermore see in Fig.(4.4b) and Fig.(4.4c) that 〈crel〉 is declining with N , but
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there is no sharp transition for all choices of T . If we compare these results with

Fig.(4.3), we see that we are in the region where I(t) is diverging. So we observe

that regardless of whether I(t) converges or diverges, the contribution per agent

declines with a larger number of agents. Furthermore, the choices of simulation

parameters Q,Pf as well as T change the shape of the function crel(T ) vs. N .

4.1.3 Change of Abundances of Knowledge Elements

The next variable that is studied, is the abundance of the knowledge elements

nl(t). As established in Section 3.1, the agents change their knowledge states

through the EXCH- and DISC process to other elements from I(t). Therefore,

the abundance nl(t) of a particular knowledge element l is not constant but rather

changes over the time of the simulation. The dynamics of nl(t) is investigated by

letting the simulation run with fixed parameters N,Q, Pf for a certain number of

time steps and measuring nl at each time step t for every l ∈ I(t). Plotting nl(t)

against l gives the frequency distributions of knowledge elements at time t. The

set I(t) is the domain of this distribution, which, as shown in Fig.(4.1b), grows

with t. As established in Section 3.1.1, the magnitude of l indicates the sequence

of appearance for a knowledge element. Therefore, the x-axis of the distribution

shows the knowledge elements from oldest (low valued l) to novel (high valued l)3.

Furthermore, nl is the number of agents with state σi(t) = l. As a consequence,

nl(t) plotted against l at a certain time t shows the distribution of agents over the

existing knowledge elements, from novel to old.

In Fig.(4.5a), we see that for N = 300, Q = 4 and Pf = 0.15 at t = 50 the

distribution has two distinct modes. The first one is located around the smallest

values of I(t) while the second mode is around the maximum value of I(t). This

bi-modal structure remains the same for all observed time steps apart from local

fluctuations in the frequencies of some elements. We always observe one mode

around the smallest and one mode around the largest values of I(t). As this set is

expanding with t, we see that the maximum value of I(t) and with it the second

mode gradually moves further to the right.

3The terms low and high valued, respectively old and novel, for an element l are in relation to
the time t as the domain of the distribution I(t) expands: an element l can be of high value
compared to all elements of I(t1) but of low value compared to I(t2), t2 > t1.
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(a)

(b)

Figure 4.5: The abundance of a knowledge element nl was measured for each
l ∈ I(t) at selected time steps t = 50, 100, 150, 200 with fixed parameters Q = 4
and Pf = 0, 15 and with (a) N = 300 and (b) N = 700; the dashed line marks the
highest valued knowledge element of I(t) at the current time step t.
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The behaviour of the second mode is similar to a pulse train of signals that is

moving to the right of the distribution.

In Fig.(4.5b), we see for N = 700, Q = 4 and Pf = 0.15 initially a similar bi-

modal behaviour of the distribution where one mode is always around the smallest

values of I(t) while the other one is always around the maximum value of I(t) and

gradually moves to the right.

At later time steps we observe that I(t) ceases to grow and the second mode of

the distribution vanishes. For all further time steps only the first mode occupying

the smallest values of I(t) remains.

The observations in Fig.(4.5) are in agreement with what we see in Fig.(4.1b)

where the growth of I(t) diverges for N = 300 or converges for N = 700 (with

Q = 4 and Pf = 0.15 for both). In other words, the disappearance of the second

mode of the distribution and the convergence of the growth of I(t) are two aspects

of the same phenomenon.

If we look back to the definition of the EXCH process in Section 3.1.2, we see

that when two random agents are selected, there are three possible outcomes for

this process: the states of both agents are knowledge elements from the second

mode of the distribution. As these elements have just recently been added to the

system they are probably not saturated yet, i.e. their record is not full, and it

is unlikely that there is already a production rule involving both elements. For

this reason, the EXCH process will probably result in an innovation event and

a new knowledge element is created by the agents, compare Fig.(3.1a). On the

other hand, the states of both agents can be knowledge elements from the first

mode of the distribution. As these knowledge elements have been present in the

system for a longer time, both elements are probably already saturated, and it is

very likely that there exists a production rule involving both elements. Therefore,

the EXCH process will probably result in an update event, compare Fig.(3.1b).

Finally, the state of one agent can be an element from the first mode and the state

of the other one an element from the second mode. The knowledge element of the

first mode is again probably saturated and it is very unlikely that there exists a

production rule involving both elements. Consequently, the EXCH process will

probably result in a case of failed communication, compare Fig.(3.1c).

This tells us about the significant role of the second mode of the distribution in
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the production of innovations. This part of the distribution is therefore named

the Innovation Train (IT) for further references. As we also see that the bulk of

agents is in knowledge states from the first mode, this part of the distribution is

named Bulk Mode (BM) for further references. Based on the results in Fig.(4.1b),

Fig(4.3) and Fig(4.5), one can conclude that a system being either in the innovation

or the saturation phase depends on the IT continuing to exist for all time steps or

disappearing at some point.

4.1.4 Further Investigation of the Innovation Train

The size of the IT is defined as as the number of agents whose states at time t

are knowledge elements from this mode of the distribution and it is denoted as

Ntrain(t)4. To further investigate the IT, it is studied how the trajectory of Ntrain(t)

changes over time with a focus on cases where the IT either remains in the system

or eventually disappears. To do this, the simulation is run with particular choices of

parameters N,Q, Pf for a fixed number of time steps T . Ntrain(t) is then measured

at each time step t. Each simulation run is again repeated several times to test

the stability of the behaviour of Ntrain(t) vs. t.

We see in Fig.(4.6a) that, in the long run, for N = 300 the IT settles down to a

constant size, apart from minor fluctuations. On the other hand, for N = 700, we

see that NT converges to zero in the long run, in accordance with Fig.(4.5b). We

also observe in Fig.(4.6b) that Ntrain(t) is not settling to a constant value before

eventually decreasing but rather Ntrain(t) is “strictly” decreasing to zero. For

N = 500, we see that for some simulation runs Ntrain(t) settles to a constant size

while for others it decreases to zero. This is in accordance with Fig.(4.1b), where

we observe that for some simulation runs |I(t)| diverges (the IT remains) while

for others |I(t)| converges (the IT disappears) for the same number of agents with

the same choices for Q,Pf . To continue the analysis of the IT, the dependence

of Ntrain(t) on the parameter N itself is investigated. In order to do this, the

simulation is run with particular choices of parameters N,Q, Pf for a fixed number

of time steps T and Ntrain(T ) is measured after each run (a sufficiently large T is

chosen). Each simulation run is repeated several times and the average 〈Ntrain(T )〉

4For a detailed definition of Ntrain(t) and how to properly measure it see Appendix B.
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is taken over all runs. 〈Ntrain(T )〉 is computed this way for different choices of N .

In Fig.(4.6c), we see that as N is increased, 〈Ntrain(T )〉 grows and reaches a max-

imum value around N = 300 from where it decreases again until it converges to

zero around N = 600. If we compare these results with Fig.(4.2) and Fig.(4.3b),

we see that for this choice of parameters Q = 4 and Pf = 0.15 for N ≤ 300, we

(a)

(b) (c)

Figure 4.6: The size of the IT Ntrain was measured at each time step for N =
300, 500, 700 with fixed parameters Q = 4 and Pf = 0, 15, and a fixed time frame of
10000 simulation steps, for each choice of parameters the simulation was repeated
20 times. (a) shows the long run of Ntrain(t) for all 10000 time steps (b) shows the
short run of Ntrain(t) for the first 200 time steps. (c) Main Plot: 〈Ntrain(T )〉 was
measured after 1000 time steps for different choices for N with fixed parameters
Q = 4 and Pf = 0, 15. The average was taken over 100 repetitions. The error bars
show the standard error of the average. Inset: 〈Ntrain(T )〉/N was measured with
the results from the Main-Plot.
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are in the innovation phase where the IT always remains. 〈Ntrain(T )〉 grows with

N because when there are more agents in the system, more of them can potentially

gather in the IT. For 300 < N ≤ 600 we are in the transition phase where the IT

disappears in some cases while in others it remains, as we observed in Fig.(4.6a) for

N = 500. This means, in some repetitions of the simulation one has Ntrain(T ) 6= 0

while in others one has Ntrain(T ) = 0, which ultimately causes the average size

of the IT to decline, as the proportion of trajectories where the IT “survives”

becomes smaller. We observes that in Fig.(4.6c) the error bars are larger in this

region of N . Finally, for N > 600 we are completely in the saturation phase where

the IT always disappears and thus 〈Ntrain(T )〉 becomes zero.

The inset of Fig.(4.6c) shows 〈Ntrain(T )〉/N the fraction the IT has on the whole

system. We see that the trajectory of 〈Ntrain(T )〉/N vs. N is strictly decreasing

towards zero. We especially see that in the case of very small numbers of agents

(N = 5− 10) the size of the IT might be small compared to systems with a higher

number of agents. However, its relative size is almost one, meaning the innovation-

train encompasses almost the whole system. In other words, almost all agents take

part in the innovation process.

4.2 Open-Source-Software Projects Results

The analysis is continued in this section by looking at the data set described in

Section 3.2 in order to find empirical evidence for the influence of the Ringelmann

effect, or in the context of OSS projects, Brooks’ law. The data analysis in this

section mainly follows the one in [24]. The results obtained from the data set are

then compared to the results from the computer model of the previous section.

4.2.1 Contribution per Developer

The aim of this section is to observe how, within a team of software developers

affiliated to a certain GitHub project, the commits of the developers depend on

the team size. In order to do this, the variables CR(t), the number of commits

within a time window of 7 days in a repository R, and MR(t), the number of active

developers within a time window of 295 days in a repository R, are measured. As
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in [24], the entire commit history of a repository R is split into intervals of 7

days, which gives us intervals of [t0, t1], [t1, t2], . . . (note that one has [ti−1, ti] =

[ti − 7d, ti]). CR(t) is then measured as the number of commits that have been

done in a time-interval [ti−1, ti] for this repository. Moreover, for each interval

[ti−1, ti], the number of all developers that have been active within a time-interval

[ti − 295d, ti] is measured, in order to obtain MR(t). This quantity characterizes

the size of the developer team that is responsible for the commits within the time

window [ti−1, ti] and roughly corresponds to the parameter N , the number of agents

in, the model.

(a) (b)

Figure 4.7: (a) The average number of commits per team member CR
rel(t) plotted

against the team size MR(t) measured for all repositories (b) 〈CR
rel(t)〉 vs. MR(t)

compared to the results of 〈crel(T )〉 vs. N . The values for crel(T ) where computed
for Q = 4, Pf = 0.15 and T = 10. The obtained results where re-scaled by taking
〈crel〉/k with k = 5. Each simulation run was repeated 20 times to obtain 〈crel(T )〉.
All plots are in log-log scale.

For all 58 repositories of the data set the cumulative results for CR(t) and MR(t)

are collected. Then, by dividing CR(t)/MR(t), the mean number of commits per

team member CR
rel(t) is obtained which characterizes the activity of the developers

and roughly corresponds to the variable crel(t), the mean contribution per agent,

in the model.

We see in Fig.(4.7a) that as the size of a team of software developers grows the

mean number of commits per team member declines. For a final analysis this result

is compared to the results of the computer model by comparing the behaviour of
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CR
rel(t) and MR(t) with their corresponding variables from the model. We have

seen in Fig.(4.4) that crel declines as well, with a growing number of agents N .

To better compare the results of Fig.(4.7a) with Fig.(4.4), the average 〈CR
rel(t)〉 of

all values of CR
rel(t) that correspond to the same team size MR(t) is taken. crel is

computed as in Fig.(4.4) and averaged over several simulation runs in order to get

〈crel〉. The parameters of the simulation are chosen to make sure that the function

〈crel〉 vs. N matches the averaged results of Fig.(4.7a).

In Fig.(4.7b) we see 〈crel〉 vs. N for Q = 4, Pf = 0.15 and T = 10. The resulting

curve for this choice of simulation parameters shows a similar shape as the mean

number of commits per team member, but the results of the simulation show a

larger offset on the y-axis. There is, however, not a one-to-one correspondence

between a file access in an OSS project and an innovation event in the agent-based

model, for instance it could be the case that a comparable innovation in an OSS

projects requires multiple commits by the developers. Thus, the results of 〈crel〉
can be re-scaled by dividing them through a constant k. Choosing k = 5 the

trajectory of 〈crel〉/k can be fitted to 〈CR
rel(t)〉 vs. 〈MR(t)〉.

This demonstrates that there is a significant size dependence of the activity of a

developer team on its size, confirming the emergence of the Ringelmann-effect, or

more specific Brooks’-law, within OSS projects. Furthermore, comparable results

to those from this empirical data set have been obtained in a simple computer

model.
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Discussion

To summarize this project: a simple agent-based model that replicates how new

knowledge is created via pairwise exchange and recombination of existing knowl-

edge has been implemented. By investigating how several of the variables within

this model behave, the emergence of the Ringelmann effect in the creation of new,

innovative knowledge by “teams” of agents has been tested. Secondly, data from

OSS projects has been taken and it was investigated whether the influence of

Brooks’ law (the Ringelmann effect in the context of OSS projects) on the produc-

tivity of software developer teams could be observed. Finally, the results obtained

from the data set have been compared with the results from the agent-based model.

5.1 Analysis of the Results

Results of the Agent-Based Model

The agent-based model shows that a larger number of agents eventually slows down

the innovation process and in extreme cases even brings it to a complete halt. It

becomes obvious that in the model the innovation train (IT) is the main driving

force in the process of creating new, innovative knowledge elements. Fig.(4.1b)

shows that the convergence or divergence of the set of knowledge elements I(t)

depends on whether the IT disappears or not. However, it remains somewhat

unclear why the disappearance of the IT happens exactly.

As established in Section 4.1.3, in the EXCH process of the model selecting two
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agents from the IT most probably results in a new knowledge element being pro-

duced. However, as we saw in Fig.(4.6c) the fraction of agents that take part in

the IT Ntrain/N becomes smaller for larger N . Thus, the probability to select two

agents from the IT becomes smaller and it is more likely to select two agents from

the so-called bulk mode (BM) or one agent from the IT and one from the BM.

Both of the latter cases are unlikely to result in an innovation. This means that in

a system with a larger number of agents, many pairings of agents for the EXCH

process yield neither an update nor an innovation event. Thus, the IT moves for-

ward more slowly. Moreover, one has to consider the DISC process that causes

agents to discard their current knowledge state in favour of a previous (older) one,

with probability Pf . If an agent that is part of the IT is selected for this process

it might change its state to a smaller valued knowledge element that is already

saturated but not yet part of the BM of the distribution. One can see these agents

whose states are intermediate knowledge elements as small spikes between the two

modes in Fig.(4.5). There are two possibilities for such an agent to become part

of the IT again: either through the update case of the EXCH process, when the

resulting knowledge element to which the agent changes its state is part of the

IT again. The second possibility is through an innovation event as the resulting

knowledge element is new, thus not saturated, which automatically makes it part

of the IT.

Yet, in a larger system the fraction of agents in the BM is greater than the fraction

of agents in the IT. Therefore, if an agent in an intermediate knowledge state is

selected for the EXCH process, it is more likely that the second agent that is

selected is from the BM of the distribution. It is then unlikely that the EXCH

process results in an update of knowledge as there probably does not exist a

production rule involving the knowledge elements of both agents. It is also unlikely

that an innovation event takes place as the agent from the BM is likely to be in a

saturated knowledge state. Thus, the agent remains in the intermediate knowledge

state. It might happen that this agent is again selected for the DISC process until

its state is a knowledge element from the BM. If the process outlined above occurs

to all agents from the IT, it eventually vanishes. As we saw in Fig.(4.3) the

number of agents N is not the only parameter that might have an influence on

whether the IT disappears or not. The saturation parameter Q determines how
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many times a knowledge element can be represented in a production rule. The

value of Q therefore determines whether there is a higher or lower chance that

the EXCH process results in an innovation or update case. Likewise, choosing a

smaller or larger Pf decreases or increases the probability that agents whose states

are elements of the IT change their states to intermediate knowledge elements

thereby falling behind the IT.

Nevertheless, the disappearance of the innovation train is in principle a combi-

natorial problem as a large N means that there is a greater number of possi-

ble pairs of agents, but only a pair of agents where both are from the IT can

surely create new knowledge elements. The probability for selecting such a pair is(
Ntrain

2

)
/
(
N
2

)
∼
(
Ntrain
N

)2
which gets smaller for larger N , as we saw in Fig.(4.6c)

that Ntrain/N declines with N . The probability that two agents, which according

to the EXCH process could produce an innovation together, “meet”, therefore

declines with the number of agents. In other words: the larger number of pos-

sible communication channels between the agents hinders successful exchange of

knowledge and as a consequence the creation of innovations. This is, in principle,

exactly what is commonly referred to as a communication overhead among the

agents.

Results of the Open-Source-Software Projects

The data of the OSS projects have revealed that a larger number of developers

eventually slows down the innovation process, in the sense that the commits per

developers decline. To further investigate this effect, one can look at the co-editing

network between the software developers and observe that in a larger developer

team the number of communication links increases significantly [24]. Thus, the

conclusion is that in the same way as in the agent-based model this increase of

communication overhead is exactly why one observes a decline in the productivity

of larger developer teams. When comparing the results of the computer model to

the results of the OSS projects, we see that in Fig.(4.7b) one needs to choose the

parameter T relatively small in order to fit the data. Fig.(4.5b) and Fig.(4.6b)

show that at such small time scales even in larger systems the IT has not disap-

peared yet. From this it can be concluded that “real” innovation trains are most
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probably rather short-lived. The team of collaborating developers reaches their

respective goals before the increasing communication overhead causes a complete

breakdown of knowledge exchange. Nevertheless, it can still be observed that the

larger number of communication links between the developers causes a decline in

productivity. The same way we saw in Fig.(4.5b) that even as long as the IT

existed, it moved much more slowly compared to a system with a smaller number

of agents.

5.2 Limitations

Within the agent-based model that has been implemented and explored in this

work, simplifications and a priori assumptions that are crucially for its dynamics

were made. As the phenomenon this model explores is rather complex, some of

these simplifications might have limited the capacity of the model to properly re-

produce all important aspects of it. One such simplification concerns the saturation

parameter Q that is assumed constant for all time steps as well as equally affecting

all knowledge elements. This is a quite harsh constraint on the system. One could

soften this constraint by implementing a variation of the initial model that assigns

each knowledge element l an individual saturation value Ql drawn from a discrete

random distribution. Such a variation has actually been implemented and it was

initially observed that one still sees a transition as in Fig.(4.3). However, it is

more washed out and not as sharp as the one we have seen in the base model. For

future work one should investigate in detail how this variation affects the rest of

the observed dynamics of the model. Further variations that should be considered

as well, for building up on this thesis project, are for example: representing the

states of the agents as vectors, in order to capture the knowledge of each agent

more realistically. Each entry of a state vector could then either represent their

knowledge on different topics or serve as memory about past knowledge. Another

variation could be to implement additional types of interactions among the agents,

e.g. in addition to exchanging and recombining knowledge, an agent could just

copy the knowledge state of another agent, or agents from the IT could directly

communicate their knowledge to agents that are still in the BM.

Further limitations to the results of this thesis concern the analysis of the OSS
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projects data. One has to take into consideration that in [24] it is argued that

the pure number of commits is not quite enough to capture the productivity of a

developer team as each change made to a file has a different impact on the project,

depending on how significant the changes are. The authors therefore analyse the

activity of the software developers by weighting each commit according to how

significantly a file was edited. Furthermore, for the time slice analysis of the

data set, the number of active developers and commits was measured by using

fixed time windows that represent the average activity time of the developers of

all repositories. The results in Fig.(4.7a) are then the cumulative results of the

time slice analysis for all repositories. A team of developers in one repository

might achieve the same output within a certain time window, whereas a team in

a different repository achieves it in a much smaller time window. In other words,

within a project the speed with which the developers work might be significantly

different from those of other projects. Thus, for a more detailed analysis of the

OSS-project data one should not only weight the commits but also measure the

active developers and number of commits within characteristic time windows for

each repository.

Nevertheless, for the simple computer model of this thesis, the significance of

knowledge exchanges between the agents is not weighted and each possible inno-

vation has the same value. One merely investigates whether it is possible for the

agents to exchange knowledge or not. Therefore, it is sufficient to compare the

model to the pure number of commits of the software developers. Moreover, an

extension of the time sliced analysis of the OSS-project data by using individual

time windows should be considered, but as this would exceed the scope of a master

thesis it is as well left open for future work.
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Chapter 6

Conclusion

In this thesis, a simple agent-based model as well as data on OSS projects obtained

from the platform GitHub has been extensively investigated. In both instances

there is significant evidence that, as a group of collaborators grows in size, the

increasing communication overhead reduces the rate of successful communications

among the collaborators, which ultimately leads to a decline in the production of

new, innovative knowledge.

Nevertheless, there are still open questions to be dealt with for future projects.

On the one hand, one could try to modify the agent-based model such that it cap-

tures interactions among collaborators more realistically by either softening the

constraints on the simulation parameters or by implementing more types of inter-

actions among the agents. On the other hand, one could extend the investigation

of empirical data by repeating the time sliced analysis of the GitHub projects with

time windows that better reflect the individual activity time of each project. Fur-

thermore, one could try to investigate further empirical data sets for the influence

of the Ringelmann-effect.

In conclusion, it can be said that despite the problems that can arise through the

increasing communication overhead, team-work and cooperation are still impor-

tant for the creation of knowledge and a large number of collaborators, especially

from different backgrounds, is, in principle, not a disadvantage. Therefore, one

should not react to the negative effects of the Ringelmann-effect by only support-

ing small groups of collaborators, but rather restructure larger groups in such a
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way that communication among the group members can be more effective. One

such approach would be to compartmentalize a group into smaller sub-groups.

Exchange of knowledge can then take place within those sub-groups unobstructed

by any communication overhead. However, this comes with the risk of creating

information flow barriers through the creation of communication “silos”. Addition-

ally, there is the possibility of knowledge exchange between individuals of different

sub-groups.

One can already observe such processes occurring naturally in the way research

groups within universities are organized. A study of 2010 showed that universities

tend to have a large number of research groups where each group itself is rather

small. This way, communication and knowledge exchange happens among mem-

bers of a research group on a regular basis without coordination problems and

from time to time members from two or more different research groups can col-

laborate with each other. These cases of intergroup communications are essential

for research, as it involves exchanging knowledge from various backgrounds which

can result in groundbreaking new ideas (e.g. the collaboration of biologists and

chemists which lead to the interdisciplinary field of biochemistry). It turns out that

this compartmentalized structure of universities is the most effective way to orga-

nize research [51]. In other words: compartmentalization is a direct consequence

in order to minimize communication overhead.
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Appendix

A. Definition of the Order Parameter

The order parameter ONQPf is defined as the probability that for a choice of

parameters N,Q, Pf the growth of the set I(t) diverges. On further inspection of

Fig.(4.1b), we see that the transition between the innovation- and saturation phase

can be characterized by the slope of |I(t)| for t→∞ changing from lim
t→∞

d|I(t)|
dt

> 1

to lim
t→∞

d|I(t)|
dt

= 0. Therefore, to obtain the order-parameter ONQPf , the simulation

is repeated m-times with the same selection of N,Q, Pf . For each i−th repetition

|I(t)|i is measured in order to compute the limiting slope:

D
NQPf
i = lim

t→∞

d|I(t)|i
dt

ONQPf is then obtained as the fraction of cases where the limiting slope of |I(t)

is larger than zero. However, as the slope never converges completely to zero, we

introduce the threshold h and set it sufficiently small. The order parameter is then

the fraction of cases where we have D
NQPf
i > h:

ONQPf =

∑m
i=1 Θ(D

NQPf
i − h)

m
, where Θ(D

NQPf
i − h) =

0, DNQPf < h

1, DNQPf ≥ h

which gives the probability that for a choice of parameters N,Q, Pf the growth of

the set I(t) diverges.
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B. Definition of the Size of the Innovation Train

The size of the IT, denoted as NT (t), is defined as the number of agents whose

states at time t are knowledge elements from this specific mode of the distribution

seen in Fig.(4.5). As the knowledge elements from the IT have just recently been

added to the system, they are most likely not saturated yet, i.e. their record is

not full. Therefore, in order to get NT (t), the number of agents whose states at

t are non-saturated knowledge elements is measured. To do this, the abundance

nl(t) of each knowledge element l ∈ I(t) (defined as the number of agents whose

state is σi(t) = l) is taken as well as the record rl(t). NT (t) is then computed as:

NT (t) =
∑
l∈I(t)

nl(t) Θ(Q− rl(t)), where Θ(Q− rl(t)) =

0, rl(t) > Q

1, rl(t) ≤ Q
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C. Source Code

#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
function forgetmod(N::Int64 , Q::Int64 , P_f::Float64 , T::Int64)

#------------------------------------------
innov = 1
pair = [1,1]

sigma = ones(Int64 ,N)
distr = [N]
record = [0]
I_t = Vector{Int64}[ [1,1,1] ]
I_max = [1]

S = Dict{Array{Int64 ,1},Int64 }()

# size innov -train
N_T = [N]

# contribution of each agent
contrib = zeros(N)
#------------------------------------------

#------------------------------------------
for t = 1:T
#------------------------------------------
for n = 1:N
# 1.)-----Pick Pair and try to innovate/update --
i = rand (1:N)
j = rand (1:N)
while(i == j)
j = rand (1:N)

end
if ( sigma[i] <= sigma[j] )
pair [1] = sigma[i]
pair [2] = sigma[j]

else
pair [1] = sigma[j]
pair [2] = sigma[i]

end

#------------------------------------------
if !haskey(S, pair)
#------------------------------------------
if ( record[pair [1]] < Q && record[pair [2]] < Q )

inov = I_t[end ][1]+1
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sigma[i] = inov
sigma[j] = inov
S[pair [:]] = inov

record[pair [1]] += 1
record[pair [2]] += sign(pair[1]-pair [2])^2

distr[pair [1]] -= 1
distr[pair [2]] -= 1

push!(record ,0)
push!(distr ,2)
push!(I_t ,[inov ,pair[1],pair [2]])

# increase contribution of agents i,j
contribute[i] += 1.0
contribute[j] += 1.0

end
#------------------------------------------

#------------------------------------------
else

sigma[i] = S[pair]
sigma[j] = S[pair]

distr[S[pair]] += 2
distr[pair [1]] -= 1
distr[pair [2]] -= 1

# partially increase contribution of agents i,j
contribute[i] += 0.5
contribute[j] += 0.5

end
#------------------------------------------

# 2.)-----Pick Agent and discrad with P_f --
if ( rand() <= P_f )

i = rand (1:N)
id_old = sigma[i]
id_new = Int( I_t[id_old ][1+ rand (1:2)] )
sigma[i] = id_new
distr[id_old] -= 1
distr[id_new] += 1

end
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#------------------------------------------
end
#------------------------------------------
push!(I_max ,I_t[end ][1])

# measure size of innov -train
push!(N_T ,sum(record[sigma ].!=Q))

end
#------------------------------------------

return I_max ,contrib ,distr ,N_T

end
#<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
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