
 
 

 

DISSERTATION / DOCTORAL THESIS 

Titel der Dissertation / Title of the Doctoral Thesis 

“Solution Techniques for Rich and Real-world  
Appointment and Staff Scheduling  

Problems in Health Care” 

 

verfasst von / submitted by 

Mag. Petra Vogl, B.Stat. MStat 
 

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of 

Doctor of Philosophy (PhD) 

 

 

 

Wien, 2019 / Vienna, 2019  

Studienkennzahl lt. Studienblatt /  
degree programme code as it appears on the student 
record sheet 

A 794 370 403 

Dissertationsgebiet lt. Studienblatt / 
field of study as it appears on the student record sheet 

Wirtschaftswissenschaften  

(Logistics and Operations Management) 

 

Betreut von / Supervisor: 

 

Univ.-Prof. Mag. Dr. Karl Franz Dörner, Privatdoz. 

 





Acknowledgments

First, I would like to thank my supervisor and advisor, Prof. Karl F. Dörner for
giving me the freedom to choose my research topic and guidance when I needed it.
I deeply acknowledge that Prof. Dörner encouraged me to return to the University
after I have paused my academic career for some years. He not only supported me
throughout the past four years with his scientific knowledge but the confidence he
had in my research was highly motivating and inspiring.

Additionally, I would like to express my profound gratitude to Dr. Roland
Braune, who played an important role in completing this thesis. Roland and I
spent hours and hours brainstorming research directions and he would always and
anytime lend an ear if I was stuck somewhere on the road to this thesis.

Walter Gutjahr guided and supervised me in addressing uncertainty in schedule
optimization. I would like to thank him for his patience, the valuable leads and his
open door even after he officially retired from University.

Moreover, I thank EBG MedAustron GmbH (Franz Coreth, Michael Pata and
their whole team) as well as the Austrian Red Cross Blood Donation Services (Lars
Eberhart and the whole team) for giving me insight into their planning problems
and for the fruitful collaboration.

I would like to thank the anonymous reviewers of my papers and the countless
feedback I received from the audience when I presented my work at international
conferences and when visiting other Universities. Special thanks go to Prof. Günther
Raidl, Johannes Maschler, and Martin Riedler, who accepted to work with us on
the topic of radiotherapy appointment scheduling.

Special thanks go to my parents, Christine and Josef, for believing in me.
Without their constant support, I would not have been able to finish (or even
begin) this thesis. I owe special thanks to Sebastian Lehner. He contributed to this
thesis more than he knows: By building me up in challenging times, by bringing
new ideas to light, and by celebrating achievements with me. Finally, I would like
to thank my friends – the ones who are near and the ones who are far – for their
support and friendship.

i





Affidavit

English
I hereby declare that I have authored this thesis independently, that I have not
used other than the declared sources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources.

German
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Abstract (German)

Termin- und Personaleinsatzplanungsprobleme sind allgegenwärtig im Gesund-
heitswesen: Einerseits müssen Patiententermine innerhalb vordefinierter Zeitfenster
so geplant werden, dass etwaige knappe Ressourcen möglichst effizient genutzt wer-
den können und gleichzeitig Patientenwartezeiten gering gehalten werden. Anderer-
seits sind im Gesundheitswesen eine Vielzahl an Mitarbeitern und Mitarbeiterinnen
mit unterschiedlicher Ausbildung und unterschiedlichen Vertragsmodellen tätig.
Die vorliegende Dissertation behandelt beide genannten Problemkategorien anhand
von Echtweltfragestellungen: (1) Die Patiententerminplanung von wiederkehrenden
Behandlungen in der (Ionen-)Radiotherapie sowie (2) die Personaleinsatzplanung
von Ärzten, Krankenschwestern und medizinischem Hilfspersonal im Blutspendewe-
sen, wo darüber hinaus auch eine Entscheidung getroffen werden muss, welche
Aktionen an welchem Tag stattfinden sollen.

Zu Beginn werden die genannten Probleme mathematisch modelliert und mittels
kommerziellen Optimierungstools exakt gelöst. Dabei stößt man allerdings bei
echtwelt-inspirierten Instanzgrößen rasch an die Grenze der Lösbarkeit. Daher
werden maßgeschneiderte Algorithmen entwickelt, welche auch große Instanzen
innerhalb geringer Rechenzeit in guter Qualität lösen können. Dabei werden un-
terschiedliche metaheuristische Verfahren – populationsbasierte Ansätze ebenso
wie lokale Suchverfahren sowie die Kombination beider Suchalgorithmen – ver-
glichen und intensiv getestet. Neben deterministischen Ansätzen wird unter an-
derem gezeigt, dass bei unsicheren Therapiedauern stochastische Methoden eine
deutliche Verringerung der Patientenwartezeit bei gleichzeitiger Minimierung der
Stillstandzeit teurer Ressourcen bewirken können. Dabei werden unterschiedliche
Ansätze zur Abschätzung von Wartezeiten vorgestellt und verglichen.
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Abstract (English)

In health care, scheduling and rostering problems are omnipresent: On the one
hand, patient appointments need to be scheduled within predefined time windows,
such that scarce resources are used as efficiently as possible while simultaneously
minimizing patient waiting times. On the other hand, health care facilities need to
schedule their employees, who typically feature different skills and contract types.
In this PhD thesis both mentioned optimization problem categories are addressed
by means of real-world problems: First, we schedule recurring appointments for
patients receiving radiotherapy for a newly built ion beam therapy center. Second,
for blood collection services that act in the field, skilled staff members need to be
scheduled to serve the chosen activities, where typically one needs to decide on
which activities should take place on which days additionally.

At first, we model all problems mathematically and use commercial optimization
tools to assess their complexity. This approach quickly reaches its limits with real-
world problem sizes. Hence, we develop tailor-made optimization algorithms, which
are capable of solving even large problem sizes in reasonable quality within short
running times. We compare and intensively test different metaheuristical approaches
– population-based strategies as well as local search techniques and combinations of
those approaches – to tackle the problems. In addition to addressing the problems
deterministically, the thesis points out that in case of uncertain appointment
durations stochastic methods yield a considerate decrease in patient waiting time
when simultaneously minimizing idle time of scarce resources. Here, we propose
different (stochastic) techniques to evaluate the quality of a baseline schedule in
matters of patient waiting time throughout the optimization.
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Chapter 1

Introduction

1.1 Scheduling in Health Care

Depleting resources and skilled labor shortage adds pressure to health care institu-
tions, which have been facing rapidly rising demand over the past centuries (Walters
[2019]). Cutting costs in health care, however, must not lead to a deterioration of
patient care (Lopez [2017]), for example in case of increased waiting time due to
tight appointment scheduling. According to Hall [2012], “waiting is the consequence
of a mismatch between the needs for service and the availability of resources to
provide the service”. He identifies two possible causes for this mismatch. Either
there are less resources available than are needed. Or a lack of synchronization
might cause health care systems to perform inefficiently. Matching resources such
as doctors, rooms and machines to needs of patients in health care is complicated
by various constraints such as sequences of treatments for patients and specialized
work spaces. Additionally, durations of procedures in health care are highly variable,
causing waiting times. Hall [2012] admonishes, that forcing patients to wait until a
treatment has highly undesired consequences: The patient might be in pain or the
patient’s condition might worsen during the waiting time.

The main goal in scheduling is to match patient needs and resources. In
general health care scheduling problems can be divided into two main classes:
(1) Staff scheduling problems and (2) patient appointment scheduling problems:
The classical problem within the first category is nurse scheduling, which has already
been intensively studied in the literature (De Causmaecker and Van Den Berghe
[2011]). Concerning the patient appointment scheduling problem, many different
practical applications are known such as appointment scheduling in primary or
specialty care clinics (e.g., Cayirli and Veral [2003]), operating room scheduling
(e.g., Cardoen et al. [2010]) or radiotherapy scheduling (see Section 4.2 for related
work on this topic). The home health care scheduling problem combines the two
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2 Chapter 1. Introduction

subproblems and simultaneously schedules nurses and appointments.
Patient-related scheduling problems are challenging since additional constraints

need to be considered. The following list should give a short impression on the
special characteristics of health care scheduling problems (see, e.g., Gupta and
Denton [2008]):

1. While some health care departments mainly deal with so-called elective (non-
emergency) patients and can, therefore, plan the patient appointments and
the corresponding capacities needed in advance, other disciplines face a high
number of emergency patients who have to be treated promptly.

2. However, even for planned appointments, the treatment duration may vary
considerably. For example, the patient could be in a more severe condition
than expected and which makes the planned treatment impossible, or the
ascertained diagnosis is vague and the concrete treatment might be chosen
on the fly.

3. Patient convenience is fundamental. Therefore, for most problems, the
patient waiting time should be minimized. This also applies to waiting time
in between multiple appointments on a given day. Further, in some cases like
emergency patients or critically ill patients, the waiting time to treatment
may highly correlate with the probability of recovery.

4. However, not only the time until the appointment is crucial. Especially when
treating chronically ill patients, the relationship between the doctor/nurse
and the patient is of utmost importance. Therefore so-called “continuity in
care” should be achieved. This also applies to the time of day the recurring
treatments take place, which should also remain stable.

5. Typically, only a fixed number of resources such as computer tomographies
(CTs) or operating rooms are available. Therefore, multiple patients compete
for these resources. We deal with this special problem in our first project,
where the particle beam of the radiotherapy facility is the bottleneck resource.
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1.2 Research Questions
The main focus of the proposed PhD-thesis lies in achieving close-to-optimal solu-
tions for NP-hard scheduling problems with applications in health care management.
The proposed projects cover both categories of scheduling problems in health care,
namely staff and patient appointment scheduling.

While in classical production scheduling problems the objective function is
mainly cost- or efficiency-related, different goals might be followed when scheduling
patient appointments or making staffing decisions. These objectives are either
present directly within the objective function, or they form new constraints that
assure a minimum/maximum level of patient/staff satisfaction. Furthermore, some
restrictions are either medically demanded (e.g., minimum of 4 treatments per week)
or required by law (e.g., maximum working hours per nurse). The planned projects
account for those special features of scheduling problems in health care. In addition,
the considered scheduling problems contain additional degrees of freedom which
make scheduling even more complex, i.e. for example optional patient appointments
in radiotherapy scheduling or flexible activity dates for the blood donation activity
staffing problem.

To understand the problems in more detail, a mathematical problem formulation
is essential. Therefore this step forms the first task of each subproject. However,
the majority of large-scale, real-world scheduling problems including high degrees
of freedom are hardly solvable using exact methods. Therefore, the aim of this
dissertation is to devise competitive heuristic algorithms to solve the proposed
rich scheduling problems. For example, (hybrid) genetic algorithms or local search
based heuristics deliver promising results for large-scale problems, as shown in the
results sections of the subprojects.

The following list summarizes the research questions:

1. Which objectives and constraints distinguish scheduling problems in health
care from classical scheduling problems?

2. Which methods/algorithms deliver good to even optimal results for the
proposed rich and real-world scheduling problems at a reasonable computation
time?
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1.3 Structure of the Thesis
This thesis is organized as follows: Chapter 2 gives a short introduction of the
optimization algorithms applied in this thesis and points to various specialized
books and book chapters.

Part I deals with the radiotherapy patient appointment scheduling problem,
which is already published (Vogl et al. [2018a,b]) or currently under revision
(Vogl et al. [2018c]). More precisely, Chapters 3 to 4 introduce the problem of
scheduling recurring appointments to patient receiving radiotherapy and solves the
deterministic variant of the planning problem (Vogl et al. [2018a,b]). Chapter 5
addresses a slightly modified version stochastically, focusing on the minimization
of patient waiting times in case of disruptions (Vogl et al. [2018c]). Chapter
6 concludes the first part and states possible directions for future research on
radiotherapy appointment scheduling (as in Vogl et al. [2018a,b,c]).

Part II is dedicated to a staff scheduling problem that arises for example at the
Austrian Red Cross blood donation services. Chapter 7 introduces the problem
formally and gives a general literature review on combined staff scheduling and
activity selection, part of which is available in Vogl and Braune [2018]. Then,
Chapter 8 proposes a solution method and states results of extensive computational
tests on real-world inspired problem instances. Chapter 9 concludes the second
part. A paper equivalent to Part II is currently in preparation for submission to
“Annals or Operations Research”, special issue for PATAT 2018 (planned submission
end of February 2019, the paper in preparation will be cited by Vogl and Braune
[2019]).



Chapter 2

Optimization Algorithms

To address complex optimization problems and to find good quality solutions, we
follow two main strategies throughout this dissertation. At first, we model and
formulate the problem mathematically as a mixed integer linear program (MIP),
which can then be solved using commercial tools like CPLEX or Gurobi. We give
a short introduction to the corresponding modeling technique in Section 2.1. Then,
Section 2.2 concentrates on heuristic search concepts as an alternative to exact
optimization approaches with the goal to find good quality solutions in considerably
shorter running time.

2.1 Mixed Integer Linear Programming
Linear programming was first proposed in 1947 by Dantzig (see Dantzig and Thapa
[1997]) as a method to solve complex optimization problems. Dantzig states in his
book (1997), that “Mathematical programming (or optimization theory) is that
branch of mathematics dealing with techniques for maximizing or minimizing an
objective function subject to linear, non-linear, and integer constraints on variables”
(Dantzig and Thapa [1997], p. 1). The word programming here is a synonym for
“planning” (Jensen and Bard [2003]). Hence, it is a method to formalize a planning
problem mathematically, and then solve the mathematical model using algorithms
tailored to the specific problem structure.

The terminology used in linear programming is as follows (Jensen and Bard
[2003], p. 24):

• Decision Variables Algebraic variables, typically denoted as x. An assign-
ment of a specific value to all variables is denoted a solution to the linear
program. A solution might be restricted to integer or even binary value for
some decision variables, leading to an integer linear program. In this thesis,
we mainly deal with (mixed) integer linear programs.

5



6 Chapter 2. Optimization Algorithms

• Objective Function An objective is a quantitative criterion, such as profit,
costs or utility. An objective needs to contain at least one variable, whose
value determines the size of the objective. The objective function can either
be maximized or minimized.

• Constraints Constraints are equality or inequality restrictions on decisions.
For example, a typical restriction in production planning is limited resources
or for staffing decisions, there might be constraints determined by labor law.
In a linear program, all constraints must be of a linear form, otherwise, we
are dealing with a non-linear problem.

A simple example of an integer linear program is (see Jensen and Bard [2003]):

Minimize z =
n∑
j=1

cjxj (2.1.1)

subject to
n∑
j=1

aij · xj ≥ bi ∀i = 1, ...,m (2.1.2)

xj ∈ N ∀j = 1, ..., n (2.1.3)

A possible interpretation for the above program might be, that we want to
minimize some costs associated with an assignment xj, where cj is some cost
coefficient (2.1.1). Constraints (2.1.2) might indicate some minimum required
reward bi (right-hand side of the inequality), while the left-hand side sums up
the actual assignments multiplied with some technological coefficient, for example.
Here, xj can only take positive integer values (Constraints (2.1.3)), leading to an
integer program.

Multiple tools exist to solve (mixed) integer linear programs that have been
formulated mathematically. The most prominent commercial tools are CPLEX
(the current version we used throughout this thesis is 12.7) and Gurobi (currently
in version 7.0.2), both of which apply variants of the well-known simplex algorithm
to solve linear programs. As we had access to both mentioned commercial linear
programming solvers through an academic license, CPLEX and Gurobi were the
tools of our choice when it came to exact solution approaches of the mathematical
modeling formulation of the health care scheduling optimization problems dealt with
in this thesis. However, as we will show in the upcoming chapters, mixed integer
linear programming solvers fail to find good quality (or even feasible) solutions in
reasonable running time for large scale, real-world optimization problems. Hence,
we will further focus on heuristic search concepts tailored to the specific planning
problems.
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2.2 (Meta)Heuristic Search Concepts
The algorithms applied throughout this thesis include Genetic Algorithms (GA),
Variable Neighborhood Descent (VND) and Iterated Local Search (ILS). The search
concepts will be shortly described in the upcoming sections:

2.2.1 Genetic Algorithms
2.2.1.1 Basic Scheme

Genetic Algorithms (GAs) are inspired by the biological evolution of species.
The key idea is, that within a population of individuals, new individuals appear
through recombination of existing ones (Garćıa-Mart́ınez et al. [2018], Reeves [2010],
Syswerda [1996], Zäpfel et al. [2010]). According to Darwin, natural selection will
result in the fittest individuals having better chances of surviving and breeding,
and less adapted individuals may not survive throughout the evolution process.
Algorithm 1 gives an overview of the basic GA scheme: Starting from an initial
population, P0, multiple succeeding populations Pi+1 are formed. The next genera-
tion i + 1 is built by best individuals of the previous population (elitism) and a
recombined version (crossover) of selected individuals from Pi. As in nature, some
individuals are subject to mutation of their genes. The best found solution of the
current population is then compared with the “fittest”, i.e., best-known individual
so far.

2.2.1.2 Design Decisions

Solution Representation In GAs, a solution – or individual – is represented by
a chromosome, which typically are simple binary or permutation vectors describing
a solution (Syswerda [1996]). Each possible chromosome must then be a legal
solution to the problem. In scheduling problems, the solution “encoding” then
needs to be “decoded” to receive the final schedule, this is sometimes also called
“chromosome interpretation”.

Initial Population The size of the (initial) population is an optimization pa-
rameter one must choose wisely. Garćıa-Mart́ınez et al. [2018] mention three
possibilities of building an initial GA population: Random solution, diverse solu-
tions and heuristic solutions. Diverse solutions bias random solutions such that
the diversity in the initial population is advanced, which is beneficial in searching
for optimal solutions using GAs. Heuristic initial solutions will most likely lead to
a better average objective in the initial population than pure random techniques.
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Algorithm 1: Genetic Algorithm, Basic Scheme (e.g., Garćıa-Mart́ınez
et al. [2018], Reeves [2010])
1 P0 ← CreateInitialPopulation();
2 sbest ← argminp∈P0(ObjVal(p));
3 i← 0;
4 repeat
5 Pi+1 ← GetElites(Pi);
6 while |Pi+1| < |Pi| do
7 p1 ← PerformSelection(Pi);
8 p2 ← PerformSelection(Pi);
9 c← Crossover(p1,p2);

10 c← Mutate(c);
11 Pi+1 ← Pi+1 ∪ {c};
12 end
13 if argminp∈Pi+1(ObjVal(p)) < ObjVal(sbest) then
14 sbest ← argminp∈Pi+1(ObjVal(p));
15 end
16 i← i+ 1;
17 until termination criterion met;

Throughout this thesis, we generate the initial GA population by means of a
combination of heuristic and random approaches.

Elitism When replacing a whole generation by a new one (“generational replace-
ment”), the risk of dismissing good quality solutions during the search is high.
Therefore, most GAs follow a concept called elitism (Zäpfel et al. [2010]). Here,
a given number n of best individuals of a population “survive” until the next
generation. We follow this strategy when applying genetic algorithms throughout
this thesis.

Selection Generally, selection of individuals should be related to their fitness
value. Well-known methods to incorporate the quality of the solution into the
selection process are (Reeves [2010]):

(a) Roulette Wheel Selection uses a selection probability per individual that
is proportional to its fitness. In the case of minimization, a transformation is
required.

(b) In Rank Selection the individuals of a given population are ranked according
to their fitness value, where the best out of N individuals gets rank N and the
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worst individual gets rank 1. The selection probability is then proportional
to the individual’s rank.

(c) Tournament Selection: Here, a set of individuals is chosen randomly,
among which the best one is selected. The size of the set is a parameter
which needs to be optimized.

We will later in this thesis concentrate on the rank selection operator, as prelim-
inary tests have shown its superiority in the setting of radiotherapy appointment
scheduling.

Crossover & Mutation The type of crossover and mutation operators used
within a GA is conditional to the solution representation on the one hand and
the constraints on the solution representation on the other. Werner [2013] gives a
broad overview of frequently used crossover and mutation operators both in the
case of a binary and a permutation representation. In Chapter 4, we will introduce
crossover (and mutation) operators that are tailored to the problem at hand.

Termination As mentioned in Reeves [2010]: “unlike simple neighborhood search
methods that terminate when a local optimum is reached, GAs are stochastic search
methods that could in principle run forever”. Hence, a termination criterion is
needed. Typically, a genetic algorithm could end after a given number of iterations
or when a population’s diversity falls below a given threshold (Reeves [2010]). This
thesis, however, focuses on the comparison of various search concepts and therefore
our termination criterion is a simple time limit (as in seconds).

2.2.1.3 Variants and Extensions

One major drawback of genetic algorithms is that the diversity of the population
might diminish resulting in a rather homogeneous population. This might cause the
algorithm to be stuck in a local minimum early during the optimization – also-called
“premature convergence”. To decelerate this effect, Affenzeller and Wagner [2004]
proposed a variant of the basic genetic algorithm scheme, in which they “control
genetic drift within the population by advantageous self-adaptive selection pressure
steering”.

Algorithm 2 gives an overview of this variant, which – as we will show later
throughout this thesis – is beneficial also in our problem setting. The main difference
to the basic GA scheme is, that we here force part of the new population to be
formed by children outperforming their parents Affenzeller et al. [2009], as a new
individual is only selected for the next generation if it is at least as fit as its worse
parent (reflected by a comparison factor of 0.0; a larger comparison factor would



10 Chapter 2. Optimization Algorithms

result in an even stricter criterion on the fitness of the children). Typically, one aims
at building a high percentage (in Algorithm 2, 70%) of the next generation with
such “good” children. However, the number of reproductive steps to achieve this
goal is limited (in Algorithm 2 to five times the population size) in each iteration.
If one has reached either the minimum required percentage of “good” children or
the maximum number of reproductive steps, the rest of the next generation is filled
up with “bad” children. Hence, the algorithm contains two sets of solutions: Pt
forms the current population during iteration t and CB contains children that did
not reach the success criterion of being better than at least their worst parent and
therefore do not immediately contribute to the next generation, where the latter
group is only potentially used to fill up the population.
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Algorithm 2: Genetic Algorithm with Offspring Selection (Affenzeller
and Wagner [2004])
1 P0 ← CreateInitialPopulation();
2 sbest ← argminp∈P0(ObjVal(p));
3 i← 0;
4 repeat
5 Pi+1 ← GetElites(Pi);
6 CB ← ∅;
7 while |Pi+1| < 0.7 · |Pi| ∧ |Pi+1|+ |CB| < 5 · |Pi| do
8 p1 ← PerformSelection(Pi);
9 p2 ← PerformSelection(Pi);

10 c← Crossover(p1,p2);
11 c← Mutate(c);
12 if ObjVal(c) < min(ObjVal(p1),ObjVal(p2)) then
13 Pi+1 ← Pi+1 ∪ {c};
14 else
15 CB ← CB ∪ {c};
16 end
17 end
18 while |Pi+1| < |Pi| do
19 c← ChooseRandomElement(CB);
20 Pi+1 ← Pi+1 ∪ {c};
21 CB ← CB \ {c};
22 end
23 if argminp∈Pi+1(ObjVal(p)) < ObjVal(sbest) then
24 sbest ← argminp∈Pi+1(ObjVal(p))
25 end
26 i← i+ 1;
27 until termination criterion met;
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2.2.2 Variable Neighborhood Descent, Local Search
2.2.2.1 Basic Scheme

Variable Neighborhood Descent (VND) is a local search routine that searches dif-
ferent neighborhood structures for improvements of the current solution, ultimately
reaching a local minimum at the end of a VND run (Duarte et al. [2018]). Once
more, the solution representation – as in the GA setting – plays an important role
when defining neighborhoods and neighbors. However, the benefit of VND is to
search for better solutions than the current best found solution in multiple, i.e.,
kmax neighborhoods. A final solution is then a local minimum with regard to all
kmax neighborhoods.

Algorithm 3 gives an overview of the basic VND version with “best improvement”
strategy. The algorithm starts from a single starting solution s, and consequently
the best found solution of the VND, s∗ equals s in the beginning. k defines the
neighborhood index. We repeatedly search the k-th neighborhood for the best
neighboring solution, s′ (line 4 in Alg. 3). In case the objective value of s′ improves
on the previous best objective (s∗), we accept the current solution as the new best
and continue searching from this solution in the first neighborhood (k ← 1). If we
did not find any improving neighboring solution, we continue the search within the
next neighborhood (k ← k + 1), until we reach the final neighborhood (k = kmax).

Algorithm 3: Variable Neighborhood Descent, Best Improvement (Hansen
et al. [2010, 2008])

Input : s
1 k ← 1;
2 s∗ ← s;
3 repeat
4 s′ ← argminy∈Nk(s∗) ObjVal(y);
5 if ObjVal(s′) < ObjVal(s∗) then
6 s∗ ← s′;
7 k ← 1;
8 end
9 else

10 k ← k + 1;
11 end
12 until k = kmax;
13 return s∗;
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As an alternative to the best improvement strategy, “first improvement” is
commonly applied in VNDs. Here, instead of evaluating every single neighboring
solution and consequently s′ being the best found neighbor, we accept the first found
neighboring solution s′ for which ObjVal(s′) < ObjVal(s∗) as our new best solution.
This speeds up the search per iteration but might lead to smaller improvement
steps. Hence, for each problem individually, preliminary tests must be done to
find the strategy to be favored. We will show a case in Chapter 4, were best
improvement was more beneficial than first improvement. The opposite is true for
the staff scheduling problem presented in Part II.

2.2.2.2 Design Decisions

Neighborhoods The types of neighborhoods searched for better solutions again
are highly problem-related and will be presented in more detail in the upcoming
chapters. Another important aspect is the determine the optimal number of
neighborhoods kmax. All chosen neighborhoods should contribute to the search
for better solutions (see Chapter 4 for further tests on the performance of the
individual neighborhoods).

Neighborhood Size The size of a neighborhood and therefore the number of
possible neighbors of a given starting solution might be vast and searching the
complete neighborhood might therefore be time-consuming. Hence, it is common
in practice to impose a limit on the number of evaluated neighbors in each iteration
of the VND. As we are dealing with highly complex and rich real-world problems in
this thesis, limiting the number of evaluated neighbors per iteration was necessary
every time we applied a VND.
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2.2.3 Iterated Local Search
2.2.3.1 Basic Scheme

Iterated Local Search (ILS) is a simple metaheuristic solution technique that
iteratively calls an improvement method, with a modified starting solution in each
iteration. The primary goal is to thereby run into several alternative local optima.
We present the pseudo code of ILS – as in Lourenço et al. [2010] – in Algorithm
4. First, an initial solution is generated as a starting point to the algorithm. A
local search approach is applied to this solution, such that the initial solution is
instantly improved upon. Then, until a predefined termination condition is met,
the current solution is slightly modified (“perturbed”), and the same local search
procedure is started on the latter solution, leading to a local optimum. Finally, an
acceptance criterion determines whether the currently found solution s∗′ replaces
the incumbent solution for the next iteration.

Algorithm 4: ILS, see Lourenço et al. [2010]
1 s0 ← GenerateInitialSolution;
2 s∗ ← LocalSearch(s0);
3 sbest ← s∗;
4 repeat
5 s′ ← Pertubation(s∗);
6 s∗′ ← LocalSearch(s′);
7 if ObjVal(s∗′)<ObjVal(sbest) then
8 sbest ← s∗′

9 end
10 s∗ ← AcceptanceCriterion(s∗, s∗′);
11 until termination condition met;

2.2.3.2 Design Decisions

Initial Solution The quality of the initial solution s0 can be important for the
performance of the ILS, especially if the goal is to find a high-quality solution as
quickly as possible as the local search procedure would then reach the local optimum
requiring fewer iterations (Lourenço et al. [2010], Stützle and Ruiz [2018]). Most
commonly, greedy construction heuristics lead to a reasonable starting solution,
but also random starting solutions are standard choices in practice. In Chapter
4, we apply a more advanced strategy and build a family of greedy, randomized
solutions, the best of which forms the starting point for the ILS.
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Local Search Stützle and Ruiz [2018] mention, that actually any improvement
method that “takes as input a complete candidate solution and returns a potentially
improved candidate solution upon completion could be used” here. In our studies,
we mainly apply VND as a local search procedure within ILS.

Perturbation Perturbation is required to escape from local optima during the
search process. Every time the local search gets stuck in a local minimum, a
perturbation of the current solution is performed, serving as a starting point for
the next local search application (Stützle and Ruiz [2018]). The intensity of a
perturbation highly affects the algorithm performance: A strong perturbation
might behave like a random restart and part of the structure and quality of the
previous incumbent might be lost. Perturbation that is too weak might result in
the algorithm reaching the same local minimum once more (Lourenço et al. [2010]).

The perturbation strategy is highly problem specific. In Chapter 4, we apply
two perturbation strategies iteratively: One with low perturbation strength and
another one with higher strength. In Chapter 8 we compare a classic perturbation
strategy with a random restart and a greedy restart approach. The latter two are
no perturbation strategies as such but correspond to a modified version of the ILS,
a (greedy or random) multi-start algorithm (Mart́ı et al. [2018]).

Acceptance Criterion The acceptance criterion determines whether solution
s∗′, found by the latest local search step, replaces the current incumbent solution
s∗. Lourenço et al. [2010] describe two extremes of acceptance criteria during ILS.
Either the new solution is accepted only if it improves s∗ (i.e., “better” acceptance
criterion), or it is accepted in any case (i.e., “random walk”). Between these
extremes, many intermediate acceptance criteria can be found in prior literature,
such as threshold-based or probabilistic ones (simulated annealing). Preliminary
results have shown that in our case, the better criterion outperforms all other
mentioned approaches.
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Chapter 3

Introduction to Radiotherapy
Appointment Scheduling

3.1 General Problem Setting

The worldwide number of patients diagnosed with cancer has steadily increased
over the past decade, from approximately 10 million cases (and 6 million deaths) in
2003 to around 14.1 million cases (8.2 million deaths) in 2012, reflecting an increase
of 40% in only 10 years (Steward and Wild [2014]). Projections for 2030 range
between 17.1 and 22.2 million cases, which equals an increase of 21.3% to 57.4% (see
Bray et al. [2012], World Health Organization [2012]). Radiation therapy, or short
radiotherapy, is commonly prescribed in addition to or instead of chemotherapy or
surgery. The goal is to deliver a maximum amount of radiation to kill the cancer
while sparing the healthy tissue surrounding the tumorous region (Washington and
Leaver [2016]). In classical photon radiotherapy, which is available in virtually
every hospital worldwide, radiation is delivered using a linear particle accelerator
(linac) that supplies x-rays. More advanced but less numerous ion beam centers
(only roughly 70 centers exist in the world, 48 of which have multiple treatment
rooms, see PTCOG [2017]) use protons and/or carbon ions to achieve superior
dose conformity and thereby lower the chances of patients developing secondary
tumors later in life (Ohno [2013]). However, because these ion beam centers also use
significantly larger particle accelerators, their operations are much more costly than
is classical radiotherapy using linacs, and the efficient usage of the beam resource
is crucial. Hence, throughout this part of the thesis, we focus on minimizing the
idle time on this costly resource as our primary objective.

In this part we analyze and solve a real-world radiotherapy appointment schedul-
ing problem arising in a recently opened, specialized ion beam center close to Vienna,
Austria, called MedAustron. Ion beam facilities are typically equipped with one
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Figure 3.1: Facility Plan of MedAustron, Wiener Neustadt, Austria.

particle beam that serves multiple treatment rooms. The center features three
different treatment rooms, equipped with (1) horizontally directed, (2) vertically
and horizontally directed and (3) 180-degree rotatable particle beams, as shown in
Figure 3.1. The particle beam – consisting of either protons or carbon ions – first
moves through a linear accelerator, followed by multiple circulations through the
synchrotron, where the beam gets accelerated to two-thirds of the speed of light,
until it finally moves to one of the three treatment rooms. The beam can only
serve one room at a time though, so we consider the particle beam the bottleneck
resource in the irradiation process. Switching between the two offered particle
types (protons and carbon ions) requires a set-up time of approximately 3 minutes.

MedAustron plans to treat approximately P = 1000 patients per year. A
radiation treatment of one patient p ∈ P consists of both a pre-treatment phase
and the irradiation phase – the actual treatment phase – itself. During the pre-
treatment phase, multiple examinations take place, followed by intensive treatment
planning, during which radio-oncologists (ROs), together with medical physicists,
determine the dose of one treatment appointment (called a “fraction”), the beam
direction (and therefore the required treatment room) and the number of recurring
daily treatment appointments a patient should receive. On average, patients need
to attend 20 daily treatments with an estimated average irradiation duration of 8
to 10 minutes, depending on the particle type. The planned irradiation duration is
calculated during the treatment planning. However, as we will show in Chapter
5, this duration is highly stochastic. Additionally, during the treatment planning,
medical physicists and doctors define the particle type used and develop a so-called
immobilization device, which helps the patient lie still during the treatment.

The second phase, the actual treatment phase, consists of the previously fixed
number of daily treatment activities (called DTs), imaging, and examination
appointments, all of which require multiple resources simultaneously. Each DT
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Figure 3.3: Example Schedule.

activity consists of three inseparable tasks: (1) a set-up time, or preparation
activity, in which the patient is prepared for the treatment inside the treatment
room, which means he/she is immobilized, fixed to the treatment bench and the
correct positioning of the patient is assured through imaging; (2) the irradiation
itself, which requires the use of both the beam resource and the treatment room;
and (3) a tear-down time, or exiting activity, during which the patient is released
from the treatment bench and finally the occupied treatment room is deallocated.
The three phases are depicted in Figure 3.2. Scheduling two patients that require
the same treatment room consecutively therefore causes extensive idle time on the
beam resource (tear-down time of the first patient and set-up time of the second
patient), so we prefer schedules that alternate between the treatment rooms. Figure
3.3 gives a first example of how a treatment schedule might look like.

Note, however, that the sum of the set-up and tear-down times equals an average
of 18 minutes, whereas a treatment takes on average 8 to 12 minutes, depending
on the particle type. Therefore, even alternating between two rooms might lead to
beam idle time. An ideal schedule would interleave the three rooms, as depicted
in Figure 3.3. Here, even though the proposed scheduling pattern applies in the
beginning and the corresponding schedule is considerably tight, idle time on the
beam resource between patient 4 and patient 5 is unavoidable, because patient 5
could not have started his set-up in room 2 earlier (the room was still blocked by
the tear-down of patient 2). The same applies to the idle time between patients
6 and 7. This situation makes it considerably harder to calculate a reasonable
lower bound for the minimum necessary idle time on our bottleneck resource (see
Maschler et al. [2017b], whose work is inspired by the same real-world problem).

Throughout this part of the thesis, we use the term “beam” in two ways. First,
it refers to an actual particle beam which supplies three unique treatment rooms,
each at different angles. The beam can only serve one room at a time. Second, we
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call our primary resource the “beam” in reference to the machine whose utilization
we seek to optimize. This version of the beam is not only the primary resource but
also the bottleneck resource in our problem setting.

The problem can be formalized as a complex job-shop scheduling problem with
multiple custom constraints that need to be considered. Assigning treatments to
days and scheduling the exact starting times of the activities to maximize facility
usage and thereby minimize patients’ waiting times before they start treatment is
of utmost importance.

3.2 Overview of Part I
Chapter 4 deals with the deterministic, long-term scheduling of appointments in an
ion beam radiotherapy facility. We introduce recurring optional appointments that,
to the best of our knowledge, have not been considered in radiotherapy treatment
scheduling before. Furthermore, we consider time windows between each activity
for a patient that guarantee stable start times during the treatment phase. As
solution techniques, we present three metaheuristics, namely, a genetic algorithm
and an iterated local search, whose operators are tailored to the problem at hand,
as well as a combination of these two approaches in a third algorithm. In doing so,
we achieve a highly effective method to solve the problem of scheduling recurring
radiotherapy appointments in the ion beam facility. The time horizon of real-world
problem instances reflects various weeks and contains up to 10,000 activities to be
scheduled.

Chapter 5 is dedicated to stochastic optimization of radiotherapy schedules, as
various disruptions may occur during the execution of a given schedule (e.g., room
unavailability for a longer period). We analyze data on past activity durations and
fit theoretical distributions to the data. During stochastic optimization, we add
patient waiting time to the objective function additional to the minimization of
beam idle time.

Finally, Chapter 6 concludes Part I.



Chapter 4

Deterministic Radiotherapy
Scheduling

This chapter is organized as follows: Section 4.1 presents the formal problem
statement of the radiotherapy patient scheduling problem (RPSP) and discusses
the constraints that arise at ion beam facilities in particular. Section 4.2 gives
insight into related work on the radiotherapy patient scheduling problem. Section
4.3 is devoted to the mathematical programming formulation of the underlying
scheduling problem. In Section 4.4, we discuss the three heuristical solution methods
– two stand-alone methods and one hybrid algorithm – the results of which are in
Section 4.5. Finally, Section 4.6 summarizes this chapter.

4.1 Problem Statement

4.1.1 General Constraints and Decisions
The treatment of one patient p ∈ P consists of a predefined number of recurring
(almost) daily irradiation appointments (daily treatments, [DTs]) with fixed duration
and resource requirements (e.g., treatment room, particle type, assigned RO). Some
patients need to attend regular, additional imaging appointments (positron emission
tomography [PET]) directly after the DTs to ensure the accuracy of the irradiation
treatment. Between DTs, patients regularly (i.e., once within a span of five
consecutive days during the treatment phase) see their assigned RO for a control
examination (weekly control examination [WCE]). The sequence of these activities
is fixed, as is shown by the “activity chain” in Figure 4.1, where “FDT” and “LDT”
denote the first and last DT, respectively. Note, that both PET and WCE can take
place after any DT (dashed boxes in Figure 4.1). These activities are optional in
the sense that they must take place once within every span of five consecutive days,
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DT WCEPET DT WCEPET LDTFDT WCEPET   ..

Figure 4.1: Activity Chain

but the optimization algorithm must determine which WCE and PET activities
should be scheduled and which ones can be skipped.

The FDT must be scheduled between the patient’s specific release date and
due date. As mentioned, the irradiation appointments then take place almost
every day, and only one DT can take place per day. Although the total number of
DTs, NDT

p , is fixed by the RO, the days to which the treatments are assigned may
vary slightly: starting from the FDT until the day of the LDT, patients need at
least four irradiation treatments within every span of five consecutive days. The
treatment phase then corresponds to the time period between the FDT and the
LDT.

The treatment activities within the activity chain of one patient are tied
together using minimum and maximum time-lags (“finish-start relations”). For
example, to deliver accurate results, a PET appointment must start no later than 15
minutes after the preceding DT irradiation has finished. To maximize the patient’s
convenience, the DT activities also should take place at approximately the same
time on every treatment day during a week. We therefore introduce a day time
window for each week a patient receives treatment, which is defined by its mid-point.
We call this mid-point the “stable starting time”, as the approximate time a patient
comes in for treatment on each day of the given week. Only deviations smaller
than 30 minutes from the defined stable starting time are accepted, creating an
even tighter time window for the DT activities. Furthermore, the stable starting
times of two consecutive weeks may only differ by a maximum of 4 hours, allowing
for changed approximate treatment times between weeks. Violations of the time
windows formed by both finish-start relations and stable starting times result in
penalties in the objective function.

Finally, some activities can be executed on alternative resource sets. For
example, it might be preferable for the patient’s assigned RO to perform the WCE,
but if he or she is busy, any other RO on duty can undertake the examination.
Each resource has a capacity of exactly one unit. Due to this unary resource
capacity, the problem constitutes a complex job shop scheduling problem with
custom constraints, alternative and preferred resource sets, recurring and partly
optional activities, time windows and stable activity starting times.

Scheduling the patient appointment then consists of the following tasks:

• Assigning treatment days to patients, considering the release day and due
day of the FDT and the minimum treatment pattern (four treatments in five
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consecutive days).

• Defining which of the optional activities should take place and which ones
can be skipped.

• Choosing which of the alternative resources should be used to operate the
activities (that are taking place).

• Defining a starting time for all activities that need to be scheduled.

The necessary conditions that constrain the problem are listed below in words
only. The corresponding mathematical modeling formulation is given in Section
4.3:

• Optional activities: During the treatment phase, starting from the FDT of a
patient p until his LDT, at least one WCE (and one PET if required for the
patient) need to be scheduled per week.

• Resources: Exactly one out the alternative resource sets needs to be chosen
for the execution of the activity (that is taking place). Additionally, each
resource can only perform one activity at a time (this also applies to the
beam resource). All resources of the chosen resource set need to start the
activity simultaneously and are occupied during the whole duration of the
activity plus additional set-up and tear-down time if required.

• Activity sequencing: For each patient, the activity chain defines the sequence
in which the activities need to take place. An activity needs to start within a
fixed time window after the end of the preceding activity. A delayed start
causes a penalty in the objective function (soft constraint).

• DT activities: For each patient, the predefined number of DTs needs to be
scheduled. A minimum of four DTs must be scheduled within every span of
five consecutive days, starting from the FDT.

• FDT start: For each patient, the FDT needs to be scheduled within the time
window indicated by the patient specific release day and due day.

• Stable activity starting times: The starting times of DT activities of one
patient may only vary from the patient’s stable time of the current week
by ± 30 minutes. Furthermore, the stable starting times of two consecutive
weeks may only differ by a maximum of 240 minutes for a given patient.
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4.1.2 Optimization Objective

We aim to minimize the total operation time of the beam resource which is used
during the second task of the DT – the irradiation. The total operation time consists
of the active time and the induced idle time as well as potential set-up time due to
particle switches which cause set-up time on the beam resource, while the actual
number of patients to be treated is determined by the doctors and is not part of
the optimization. We thereby produce tight schedules which allow for the machine
to be used for research in the field of medical physics and particle physics during
the times when no patients are treated (typically at night). Simultaneously, we
minimize penalties arising from the belated starting times of activities that violate
either general time window constraints or the patient-specific stable treatment
starting time per week. The mathematical formulation of the objective function
can be found in Section 4.3.

4.2 Related Work
Appointment scheduling problems in health care systems arise in different environ-
ments, such as operating room scheduling and outpatient scheduling (e.g., Gupta
and Denton [2008]). A literature review on multi-appointment scheduling problems,
such as recurring treatment appointments (as in radiotherapy scheduling), is given
in Marynissen and Demeulemeester [2019]. Radiotherapy scheduling in particular
has attracted the interest of research groups during the past two decades. It first
appeared in the literature in a review paper (Kapamara et al. [2008]), followed by
basic algorithms for radiotherapy treatment booking proposed in Petrovic et al.
[2006]. Various studies model this problem mathematically and solve it using
standard Mixed Integer Programming (MIP) solvers (Conforti et al. [2008, 2010,
2011], Burke et al. [2011]). The different heuristics applied to the problem vary
from pure constructive and hill climbing approaches (Kapamara and Petrovic
[2009]) to greedy randomized adaptive search procedures (GRASP, Petrovic and
Leite-Rocha [2008b]) and (multi-objective) genetic algorithm (GA) approaches
(Petrovic et al. [2009, 2011]). Some authors focus on scheduling activities within
the pre-treatment phase and use linear programming, simple dispatching rules, and
GAs to solve this appointment scheduling problem (Petrovic and Castro [2011],
Castro and Petrovic [2012]). In his PhD thesis, Leite-Rocha summarizes research
on radiotherapy scheduling prior to 2011 and proposes various extensions to their
mathematical models (Leite-Rocha [2011]).

More recent publications consider stochastic and dynamic attributes of the
radiotherapy scheduling problem. Sauré et al. [2012] formulate the model as
discounted infinite-horizon Markov decision process to identify good policies for
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allocating capacity to incoming demand and thereby minimizing patient waiting
times. Legrain et al. [2015] integrate stochastic patient arrival times into their
model and develop a hybrid stochastic and on-line optimization algorithm. Gocgun
[2018] also considers stochastic patient arrival times and introduces a simulation-
based approximate dynamic programming approach to solve the problem. The
PhD thesis by Men [2009] centers the analysis on the optimal mix of patients and
diagnoses for an ion beam facility, to maximize the throughput of patients. Lately,
Vieira et al. [2016] published a literature review on radiotherapy resource planning
and treatment scheduling and categorized the papers according to their hierarchy
level, methods used, the extent of implementation and the potential impact on
the performance. They conclude that future research could incorporate specialized
clinical pathways and additional devices such as PETs.

This mentioned research stream thus mainly focuses on scheduling treatments
for “classical” photon therapies, for which each treatment room is equipped with
a distinct linear accelerator. Sequencing patients per day and thereby scheduling
exact starting times for all patients is less crucial in these settings, and accordingly,
two main strategies for scheduling activities within the treatment phase dominate
prior literature:

1. Assign treatments to days. This approach incorporates an average resource
profile and does not schedule exact starting times on each day. Therefore,
it requires a second step, namely, patient sequencing per day (Petrovic and
Leite-Rocha [2008a], Men [2009], Conforti et al. [2010], Burke et al. [2011],
Sauré et al. [2012]).

2. Split the day into time slots of predefined lengths (e.g., 15 or 30 minutes) and
allocate the treatments to these time slots (i.e., “block scheduling”, Conforti
et al. [2008, 2011], Legrain et al. [2015]). This approach allows for the
immediate consideration of stable activity starting times, but it also assumes
that the treatment duration will be more or less equal to the length of the time
slot, which is not the case in ion beam therapy, for which treatment durations
vary substantially according to the diagnosis received by the patient.

This vast variation in treatment durations, as well as the bottleneck resource
“particle beam” that is shared among various treatment rooms, necessitates schedul-
ing exact (“to-the-minute”) starting times at ion beam facilities. Maschler et al.
[2016] propose a detailed scheduling approach using both a GRASP procedure
and an iterated greedy approach, which incorporates interconnected day and time
assignment phases. They extend the latter approach in a subsequent study and
yield even better results on a mid-term planning horizon (Maschler et al. [2017a]).
However, they do not incorporate optional activities, and they focus on schedul-
ing the core irradiation appointments. Using a surrogate model to estimate the
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Sets

Notation Description
P Set of all patients, index p ∈ {1, ..., P}.
Op Set of operations/activities of patient p.
R General set of resources, index r ∈ {1, ..., R}.
Kpi Set of resource requirements for patient p’s activity i.
Rpik Set of eligible resources for activity i and patient p, and resource

requirement k. If only one (compulsory) resource is available, then
|Rpik| = 1.

D Set of days in the planning horizon, index d ∈ {1, ..., D}.
W Set of weeks in the planning horizon,index w ∈ {1, ...,W}.
Φp Set of activities belonging to the subgroup of daily treatment activi-

ties for patient p.
Ψp Set of activities belonging to the subgroup of weekly control exami-

nation activities for patient p.
Ξp Set of activities belonging to the subgroup of PET activities for

patient p.

Table 4.1: Sets of the Mathematical Modeling Formulation

lower bound for the time the beam resource is required if the patients treated on
the specific day are known (i.e., the day assignment phase has already finished),
Maschler et al. [2017b] also apply this information iteratively to optimize the day
assignment.

4.3 Problem Formulation
The objective function and constraints described in Section 4.1 can be formulated
mathematically. Table 4.1 lists the symbols and sets used in the formulation of the
problem; Table 4.2 summarizes all necessary input information; and Table 4.3 gives
an overview of the decision variables of the mathematical modeling formulation.

4.3.1 Objective Function
The objective function minimizes the operation time and thereby the idle time
of the beam while simultaneously minimizing penalties arising from time window
violations of activity i of patient p and stable time violations for patient p and day
d. Here, fd denotes the operation time of the beam resource on day d, γ̃pd describes
penalty caused by violations of the stable starting time (see Eq. 4.3.19) and γ̂pi
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Input Parameters

Notation Description
upiqjr Set-up time between activity i for patient p and succeeding activity

j (patient q) on resource r.
vpir Set-up time of activity i for patient p on resource r.
wpir Tear-down time of activity i for patient p on resource r.
tpi Processing time of activity i of patient p on all resources.

FSminpi,p(i+δ) Minimum time from finish of activity i to start of activity i+ δ.
FSmaxpi,p(i+δ) Maximum time from finish of activity i to start of activity i+ δ.
dwd, dwd Begin and end of day-time window of day d.

α′ Maximum intra-week variation from the stable starting time.
α′′ Maximum inter-week variation from the stable starting time.
rp Release day for patient p’s FDT.
dp Due day for patient p’s FDT.
M Large number.

Table 4.2: Input Parameters to the Mathematical Modeling Formulation

accounts for general time window violations (see Eq. 4.3.11). All three parts of
the objective function are measured in time units (minutes), i.e., one minute of
extra beam duration accounts for one minute of delay for the patient (either time
window or stable time violation). As will be shown in Table 4.11 in Section 4.5.5,
the latter two parts of the objective function tend to almost disappear during the
optimization process.

minimize
∑
d∈D

fd +
∑
d∈D

∑
p∈P

γ̃pd +
∑
p∈P

∑
i∈Op

γ̂pi. (4.3.1)

The model’s constraints can be categorized into various subsections: resource
constraints, sequencing and optional activities, linking constraints, recurring activi-
ties, stable activity starting times, and general treatment start time constraints.

4.3.2 Resource Constraints
Each activity i requires Kpi resources simultaneously for every patient p. For some
resource requirements, there also exist multiple alternative resources r, defined by
the set of eligible resources for resource requirement k, namely, Rpik:∑

r∈Rpik

hpikr = opi ∀p ∈ P , i ∈ Op, k ∈ Kpi. (4.3.2)
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Decision Variables

Notation Description
hpikr Binary variable, set to 1 if activity i of patient p is assigned to

resource r for resource requirement k.
spir Starting time of activity i for patient p on resource r.
s̄pi Starting time of activity i for patient p.
ypiqjr Binary variable for immediate successor of activity i for patient p

(namely patient q’s activity j) on resource r.
opi Binary variable, indicating whether activity i for patient p takes

place or not.
πpid Binary variable, indicating whether activity i takes place on day d

or not (=1 if dwd ≤ s̄pi ≤ dwd)
ŝpd Starting time of treatment for patient p on day d (independent of

the activity i, time between the start of day-time window and the
scheduled starting time).

s̃pw Stable starting time of treatment for patient p in week w.
x̄pd Binary variable, indicating whether day d is within the treatment

phase of patient p.
z̄pw Binary variable, indicating whether week w contains the treatment

phase of patient p.
fd Finish time of last activity on the beam resource on day d.
γ̃pd Stable time violation on day d for patient p.
γ̂pi Time window violation for patient p’s activity i.

Table 4.3: Variables of the Mathematical Modeling Formulation
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Constraints (4.3.2) assure that for each required resource, one of the eligible
resources is chosen if the activity takes place (i.e., variable opi = 1). Then,

spir ≤ hpikr ·M ∀p ∈ P , i ∈ Op, k ∈ Kpi, r ∈ Rpik. (4.3.3)∑
r∈Rpik

spir = s̄pi ∀p ∈ P , i ∈ Op, k ∈ Kpi. (4.3.4)

Constraints (4.3.3) fix the starting times of non-chosen resources to 0. Constraints
(4.3.4) assign the exact same starting times s̄pi to all resources chosen for activity i
of patient p, as the sum over all starting times on all eligible resources has only one
positive entry per resource requirement k due to the previous constraint. In turn,

∑
i′∈Op

i′>i

ypipi′r +
∑

q∈P\{p}

∑
j∈Oq

ypiqjr = hpikr

∀p ∈ P , i ∈ Op, k ∈ Kpi, r ∈ Rpik.

(4.3.5)

∑
j′∈Oq

j′<j

yqj′qjr +
∑

p∈P\{q}

∑
i∈Op

ypiqjr = hqjkr

∀q ∈ P , j ∈ Oq, k ∈ Kqj, r ∈ Rqjk.

(4.3.6)

Constraints (4.3.5) and (4.3.6) thus give the immediate successor structure of
activities on resource r. Finally,

spir + tpi + upiqjr · ypiqjr − (1− ypiqjr) ·M ≤ sqjr

∀p ∈ P , i ∈ Op, q ∈ P , j ∈ Oq, r ∈ R.
(4.3.7)

spir + tpi + wpir · ypiqjr + vqjr · ypiqjr − (1− ypiqjr) ·M ≤ sqjr

∀p ∈ P , i ∈ Op, q ∈ P , j ∈ Oq, r ∈ R.
(4.3.8)

Constraints (4.3.7) and (4.3.8) confirm that both the sequence-dependent set-up
times and the non-sequence-dependent set-up and tear-down times are respected.
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DT1 WCEPET DT2

FSDT1,DT2

FSDT,WCE

FSPET,DT2

FSDT,PET FSPET,WCE FSWCE,DT2

Figure 4.2: Finish-Start Relations among Optional Activities.

4.3.3 Sequencing and Optional Activities

Each activity i of patient p is associated with a binary variable opi that indicates
whether the activity takes place or not. It is essential for optional activities (PETs
and WCEs); and for DTs, this variable must equal 1. The starting times of activities
that do not take place is then set to 0, using Constraints (4.3.9):

s̄pi ≤ opi ·M ∀p ∈ P , i ∈ Op. (4.3.9)

The problem of scheduling the activities of patient p considering the precedence
relations (finish-start, FS) is further complicated by the optional activities within
the activity chain, as shown in Figure 4.2. If, for example, a PET does not take
place, the DT and WCE need to be tied together using the corresponding FS.
However, if the PET is scheduled, the link between the DT and the WCE should
be deactivated. In Constraints (4.3.10) and (4.3.11), successive activities that
actually take place are connected using the minimum and maximum time lags
between them. Constraints (4.3.11) further quantify the time window violation
(belated scheduling) that is penalized within the objective function. Furthermore,
∆max denotes the maximum number of consecutive optional activities, in our case,
∆max = 2.

s̄p(i+δ) ≥ s̄pi + tpi + FSminpi,p(i+δ) −
j=i+δ∑
j=i

(M · (1− opj))

∀p ∈ P, i ∈ Op, δ ∈ {1, ...,∆max + 1}.

(4.3.10)

s̄p(i+δ) ≤ s̄pi + tpi + FSmaxpi,p(i+δ) +
j=i+δ∑
j=i

(M · (1− opj)) + γ̂pi

∀p ∈ P, i ∈ Op, δ ∈ {1, ...,∆max + 1}.

(4.3.11)
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4.3.4 Linking Constraints
Constraints (4.3.12) to (4.3.15) serve as linking constraints. If an activity starts
within a day-time window, the corresponding assignment variable πpid equals 1.
Constraints (4.3.13) also calculate the general daily starting time by subtracting
the day start from the scheduled starting time. The treatment phase (days between
FDT and LDT) of patient p can be calculated for both day d and week w using
Constraints (4.3.14) and (4.3.15). Note, that we display these constraints as non-
linear indicator constraints for better readability. The numeric tests in Section 5.6
use linearized versions of these constraints.

πpid = 1 ⇐⇒ dwd ≤ s̄pi ≤ dwd ∀p ∈ P , i ∈ Op, d ∈ D. (4.3.12)

ŝpd =
∑
i∈Φp

s̄pi · πpid − dwd ⇐⇒
∑
i∈Φp

πpid = 1 ∀p ∈ P , d ∈ D. (4.3.13)

x̄pd = 1 ⇐⇒
∑

0≤d′≤d

∑
i∈Op

πpid′ ≥ 1 ∧
∑

d≤d′≤D

∑
i∈Op

πpid ≥ 1

∀p ∈ P , d ∈ D.
(4.3.14)

z̄pw = 1 ⇐⇒
5·w∑

d=5·w−4
x̄pd ≥ 1 ∀p ∈ P , w ∈ W . (4.3.15)

4.3.5 Recurring Activities
Constraints (4.3.16) ensure that at least four daily treatments are scheduled on
five consecutive days within the treatment phase. Constraints (4.3.17) and (4.3.18)
guarantee that at least one WCE (PET) is performed within five consecutive days
during the treatment phase, respectively.

s+4∑
d=s

∑
i∈Φp

πpid +M · (1− x̄pd) ≥ 4 ∀p ∈ P , 1 ≤ s ≤ D − 4. (4.3.16)

s+4∑
d=s

∑
i∈Ψp

πpid +M · (1− x̄pd) ≥ 1 ∀p ∈ P , 1 ≤ s ≤ D − 4. (4.3.17)

s+4∑
d=s

∑
i∈Ξp

πpid +M · (1− x̄pd) ≥ 1 ∀p ∈ P , 1 ≤ s ≤ D − 4. (4.3.18)
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4.3.6 Stable Activity Starting Times
Inequalities (4.3.19) and (4.3.20) constrain the daily starting time for each patient
to the stable starting time of the corresponding week as well as the stable starting
times of two consecutive weeks, respectively:

|ŝpd − s̃pw| −M · (1−
∑
i∈Φp

πpid) ≤ α′ + γ̃pd

∀p ∈ P , w ∈ W , 5w − 4 ≤ d ≤ 5w.
(4.3.19)

|s̃pw − t̃p(w+1)| −M · (1− z̄pw)−M · (1− z̄p(w+1)) ≤ α′′

∀p ∈ P , w ∈ W .
(4.3.20)

4.3.7 Treatment Starting Time
No treatments can be assigned to patient p prior to his/her release day rp, so

∑
i∈Φp

rp−1∑
d=0

πpid = 0 ∀p ∈ P . (4.3.21)

However, there has to be at least one treatment scheduled for patient p between
his release day and due day, so

∑
i∈Φp

dp∑
d=rp

πpid ≥ 1 ∀p ∈ P . (4.3.22)

4.3.8 Active Time of Beam Resource
Finally, we calculate the active time of the beam according to Constraints (4.3.23):

fd ≥ ŝpd +
∑
i∈Φp

tpi · πpid ∀d ∈ D, p ∈ P . (4.3.23)
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4.4 Solution Methodology
In this section we present three metaheuristic approaches to the proposed radiother-
apy scheduling problem, to tackle the problem efficiently (as we show in Section
4.5, solving the exact MIP formulation, even for small to medium-sized problem
instances, is intractable). We compare two metaheuristic paradigms, namely a
population-based GA approach with a trajectory based local search heuristic and
combine the two to a simple hybrid algorithm. Both methods have successfully
been applied to related radiotherapy scheduling problems (e.g., GAs have been used
in Petrovic et al. [2009, 2011], while local search has been performed in Petrovic
and Leite-Rocha [2008b] and Kapamara and Petrovic [2009]).

Section 4.4.1 describes how we map the solution attributes to a multi-encoded
solution representation. Section 4.4.2 gives some insight into the complexity of
the problem and the proposed encoding scheme. In Section 4.4.3, we describe a
greedy randomized method for creating initial solutions to the problem, followed
by a detailed description of the decoding algorithm that transforms the solution
encoding into a schedule with exact starting times in Section 4.4.4. Finally, Sections
4.4.5 to 4.4.7 present the three distinct solution methods: a GA, an iterated local
search method (ILS), and a combination of the two approaches (combined GA and
ILS, briefly cGAILS).

4.4.1 Solution Representation

Figure 4.3: Solution Encoding, 15 Patients.

A solution to the RPSP is represented by a multi-encoded scheme which
represents various specific characteristics of the solution. It consists of a set of three
binary vectors of each patient p ∈ P and a list of patient indices. We distinguish
three parts of the solution representation: The first part – a binary vector named the
“DT assignment” – contains, for every patient p ∈ P , an assignment of treatments to
days. Days prior to the release time of the patient automatically remain unassigned.
Between the FDT and the LDT (i.e., treatment phase), at least four treatments
must be assigned to five consecutive days for the solution to be feasible. In the
second part, two binary vectors for each patient p ∈ P indicate, when (i.e., after
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which DT) a WCE and a PET is scheduled (“WCE/PET assignment”). An entry
at the ith position in these vectors implies that a WCE (PET) has been added
after the ith DT activity, so the sizes of those lists reflect the number of DTs to be
scheduled for the focal patient; that is, the sizes vary from patient to patient. We
must ensure a minimum of one WCE (PET) within each span of five consecutive
days, resulting in at least one entry in the binary encoding over four consecutive
DTs. Finally, the third part of the solution encoding consists of a vector of patient
indices that displays the sequence in which the patients should be scheduled on a
specific day (“patient sequence”).

Figure 4.3 illustrates a solution representation of an RPSP for 15 patients
(P = 15), where NDT

p denotes the patient-specific number of required DTs. The
bold frame within the DT assignment marks the treatment phase. The gray-shaded
cells indicate the release and due dates for the FDT. Out of space considerations,
we only display the WCE assignments; the PET assignments would reveal different
allocations but the same sizes (NDT

p of the patient p). In Figure 4.3, patient 1
starts his treatment on day 4. Directly after his first DT, a WCE is scheduled.
The patient sequence lists patient 1 in the fifth position, so all predecessors will be
scheduled prior to patient 1 on day d using the solution decoding algorithm (see
Section 4.4.4).

4.4.2 Excursus on Problem Complexity
The presented solution representation already gives insight into the complexity of
the underlying problem. The number of permutations of the DT assignment list
for one patient p depends strongly on the number of DTs to be scheduled for this
patient, namely NDT

p , and can be calculated using Equation (4.4.1) (assuming the
day of the FDT is fixed for patient p), with hmaxp denoting the maximum number of
unassigned days allowed during the treatment phase. Given the above information,
we define:

g(p) :=
hmax

p∑
r=0

(
NDT
p − 3 · r + 2

r

)
. (4.4.1)

On average, a radiotherapy treatment consists of 20 DTs, which allows a
maximum of 5 unassigned days during the treatment phase (hmaxp = 5) and a
total of 657 feasible DT-to-day assignments, given the day of the FDT is fixed.
A real-world instance would contain an average of 100 patients, each of which is
assigned to an individual permutation list of DT assignments. Additionally, for each
patient p, there exist on average four different “minimally occupied” WCE and PET
assignments and a multiplicity of “non-minimally occupied” assignments. Finally,
given P , or the number of patients to receive radiotherapy, P ! permutations of the
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patient sequence exist. We then calculate the number of possible permutations by
multiplying the three parts: P !×∏P

p=1 g(p)× 4P × 4P .
Therefore, instances including only five patients (P = 5) with 20 treatments each

(NDT
p = 20) and a fixed treatment start day already would imply P ! = 5! = 120

permutations of the patient sequence, for each patient 657 feasible DT-to-day
assignments, i.e., ∏5

p=1 657 = 1.22× 1014 possible assignments and both 45 = 1024
possible WCE and PET assignments. This results in a total of 1.54× 1022 solution
permutations.

4.4.3 Initial Solutions
Initial, partly randomized solutions can be created using simple construction rules.
We apply different strategies to the parts of the solution representation: For each
patient, we first randomly fix the day of his or her FDT, noting the release and
due days. Then the subsequent treatment days are fixed, with the premise that
four treatments must be scheduled within five consecutive days. The probability of
leaving one specific day d unscheduled (i.e., four prior days have a DT scheduled)
is rather small, ranging between 0% and 30%. The same strategy applies for the
WCE and PET assignments, where only one activity must be be assigned over four
consecutive DTs.

Building the patient sequence requires a more sophisticated method though.
We build a “global” patient sequence for all patients, in which we neglect the fact
that some patients by definition will not be treated on the same day (because their
release time will be later than other patient’s LDT day, resulting in non-overlapping
treatment phases). Using the assumption that all patients must be treated on a
fictitious day d∗, we choose a random patient, whom we add as the first patient in
the patient sequence. Then, we continuously add one more patient, who minimizes
the total idle time of the beam, due to either room unavailability (i.e., the tear-down
time of the previous patient is not yet finished when the set-up of the current
patient should start) or set-up time due to particle type switches (from proton
to carbon ion or vice versa). This strategy results in a starting solution where
only in rare cases are two patients requiring the same treatment room scheduled
successively.

4.4.4 Solution Decoding and Solution Evaluation
To decode the described solution representation into a schedule that provides
exact starting times and resource decisions for each activity, we first transform the
solution into a chronological (i.e., day-wise) prioritized activity list. We designed
two decoding algorithms: The first (decoder 0, or chronological decoder) schedules
activity starting times chronologically on a given day, according to the days and
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patient sequences assigned in the chromosome. The second algorithm (decoder 1,
or gap-filling decoder) permits deviations from the predefined patient sequence per
day, in the case that availability gaps of the beam resource (i.e., idle times resulting
from set-up and tear-down times in the rooms) might be reduced by inserting the
current activity. We show in a preliminary study (which was published in Vogl et al.
[2018a]) in Section 4.5.1, that decoder 1 is outperforming decoder 0, so we focus on
the so-called “gap-filling decoder” throughout the second part of our computational
study.

Algorithm 5 summarizes this gap-filling decoding algorithm, where we determine
the exact starting time and the resource set on which the activity should be
performed. We begin the search for a feasible starting time on the “preferred”
resource set (n = 1, e.g., the assigned radio-oncologist for the WCE). We use
function FindStartingTime(i, n, s̄pi, lpi) to determine the earliest starting time
for activity i on resource set n, with s̄pi as the earliest time to start and as lpi the
latest possible starting time. We first search all Npi-eligible resource sets for a
feasible starting time (i.e., a smaller than or equal to lpi). Hence, if no time feasible
position is available on the preferred resource set, the second desired resource set is
searched (e.g., any other radio-oncologist on duty), and so on. If no such starting
time arises from any resource set, the first non-feasible (i.e., belated) starting time
on the “preferred” resource set is accepted as the starting time for activity i, though
it results in a penalty within the objective function.

Note, that function FindStartingTime(i, n, s̄pi, lpi), which is depicted in
Algorithm 6, does not necessarily add activities to resources chronologically, but
allows activities to be scheduled to fill up “holes” in resources, such as might
occur if we were to schedule two treatment activities in the same treatment room
successively and therefore face idle time on the beam resource due to tear-down
and set-up times. We then would aim to schedule activities requiring any other
treatment room in between those activities to minimize the idle time on the beam
resource.

The sequential nature of the decoding algorithm requires a post-scheduling
evaluation of the treatment starting times to evaluate the stable time violations,
because the stable time for each patient p and each week w needs to be assigned
“globally” and not when scheduling the first activity of the week. Therefore, we
solve a small linear program for each patient p after the schedule construction has
finished to reveal stable time violations, as the stable time per week is a variable
itself, not an input to the optimization. This small linear model contains only
two variable types, namely, s̃w, the stable time of week w, and γd, the stable time
violations on day d. The daily starting time ŝd for the currently observed patient
p, the day assignment variable πd, and the weeks within the treatment phase W ′
have already been fixed during the solution decoding phase and are therefore input
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Algorithm 5: Solution Decoding Algorithm
1 repeat
2 Determine next activity i to be scheduled from the activity list;
3 n← 1;
4 s̄pi ←∞;
5 lpi ← latest feasible starting time of activity i;
6 while s̄pi > lpi ∧ n < Npi do
7 s̄pi ← earliest feasible starting time of activity i;
8 s̄pi ← FindStartingTime(i, n, s̄pi, lpi);
9 n← n+ 1;

10 end
11 if s̄pi > lpi then
12 s̄pi ← FindStartingTime(i, 1, lpi,∞);
13 end
14 Schedule activity i at the determined starting time s̄pi;
15 Update time windows of the successive activities;
16 until all activities scheduled;

parameters. Accordingly, for each patient, we solve

minimize
∑
d∈D

γd (4.4.2)

subject to:

|ŝd − s̃w| − γd −M · (1− πd) ≤ α′ ∀w ∈ W ′, 5w − 4 ≤ d ≤ 5w (4.4.3)
|s̃w − s̃w+1| ≤ α′′ ∀w ∈ W ′. (4.4.4)

The objective function is to minimize the sum of daily deviations from the
stable starting times. These deviations are calculated using Constraints (4.4.3).
Constraints (4.4.4) then assure that the inter-week stable time variation is smaller
than the maximum allowed deviation, namely α′′.

4.4.5 Genetic Algorithm
Genetic algorithms have been implemented successfully to solve the radiotherapy
patient scheduling problem (Petrovic et al. [2009, 2011]). Hence, we decided to also
apply a genetic algorithm to approach the radiotherapy appointment scheduling
problem. In order to preserve feasibility during the evolutionary process, we
introduce tailor-made and sophisticated crossover and mutation mechanisms.
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Algorithm 6: FindStartingTime(i, n, s̄pi, lpi)
1 while s̄pi < lpi do
2 for all required resources r of resource set n do
3 check availability of resource r for the time period of the processing

time tpi including set-up time vpir and tear-down time wpir:
[s̄pi − vpir, s̄pi + tpi + wpir];

4 if resource unavailable then
5 sr ← start of next idle time window of resource r;
6 if s̄pi < sr then
7 s̄pi ← sr;
8 end
9 end

10 end
11 end
12 return s̄pi;

Note, that in a preliminary study (see Section 4.5.1), we compared two genetic
evolution strategies: In a classical genetic algorithm, one generation consists of n
individuals, a small share of which survives until the next generation (“elitism”).
The rest of the population consists of children created through crossover (and
mutation) of two individuals of the parent population. The second strategy,
offspring selection (OS), forces part of the new population to be formed by “good”
children (Affenzeller et al. [2009]). A new individual is only selected for the next
generation if it is at least as fit as its worse parent (reflected by a comparison factor
of = 0.0). We aim at building 70% of the next generation with such “good” children.
However, the number of reproductive steps to achieve this goal is limited to five
times the population size in each iteration. As soon as we have reached either 70%
“good” children or the maximum number of reproductive steps, we complete the
rest of the child population with “bad” children. Hence, the algorithm contains
two sets of solutions: Pt forms the current population during iteration t and CB

contains children that did not reach the success criterion of being better than at
least their worst parent (see line 12 in Algorithm 2 on page 11) and therefore do not
immediately contribute to the next generation. The latter solutions are potentially
used if by producing five times the population’s size as offspring is not sufficient to
build the new population from successful children.

Algorithm 2 on page 11 gives an overview of the mentioned GA components.
We will now describe all problem specific GA components in more detail in the
following paragraphs:
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 r 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DT[patient 1] 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 DT[patient 1] 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0

DT[patient 2] 0 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 DT[patient 2] 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0

DT[patient 3] 1 1 1 1 0 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 1 DT[patient 3] 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 0 1 2 3 4 5 6 7 8 9 10 11 12 13

WCE[patient 1] 1 0 0 0 1 0 0 0 1 0 0 WCE[patient 1] 0 1 0 0 0 1 0 0 0 1

WCE[patient 2] 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 WCE[patient 2] 1 0 0 0 1 0 0 1 0 0 1 0 0 1

WCE[patient 3] 0 0 0 1 0 0 0 1 0 0 0 1 1 WCE[patient 3] 0 1 0 0 0 1 0 0 0 1 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

DT[patient 1] 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

DT[patient 2] 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 0

DT[patient 3] 0 1 1 1 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

WCE[patient 1] 1 0 0 0 1 0 0 0 1 0

WCE[patient 2] 0 1 0 0 1 0 0 0 1 0 0 0 1 0

WCE[patient 3] 0 1 0 0 0 1 0 0 0 1 0 0

P1 P2

C

Figure 4.4: Patient-Wise Crossover.

Crossover(p1,p2) The multi-encoded solution representation demands specific
crossover and mutation operators for the individuals to remain feasible throughout
the evolutionary process. We use two crossover operators:

(1) The patient-wise crossover operator, where the whole DT assignment as well
as the whole PET and WCE lists of one patient p is randomly inherited either by
the first or the second parent. Figure 4.4 illustrates this crossover operator. Here,
the child inherits the DT list for patient 1 from the first parent P1 (binary random
variable r = 0), and r equals 1 for the DT lists of patients 2 and 3, resulting in the
inheritance from the second parent’s (P2) chromosome. This simple crossover only
leads to limited variety in the binary encodings, because the combinations of the
initial population dominate the search.

So, (2) we developed a tailor-made, day-wise crossover operator for the DT
assignment part of the multi-encoded chromosome, illustrated in Figure 4.5. The
day-wise crossover chronologically compares entries of the parents on a specific day
d. If both parents have a DT assigned on day d, we naturally assign a treatment
on this day (white entries). The same applies for the cases in which no treatment
is planned on day d, observable by two “0” entries in the parent chromosomes.
Gray-shaded cells indicate days with different allocations among the parents. The
assignment of every yet undecided day d is fixed randomly, again defining the
allocations chronologically. We first have to determine if leaving day d unassigned
leads to an infeasible solution regarding the constraint of assigning four treatments
within every five consecutive days. If so, we assign a treatment to this day in any
case.

Otherwise, the probability of assigning a treatment to day d depends on the
number of still missing DTs for patient p, nmissing, and the number of undecided
days, nundecided: P (DTd) = nmissing

nundecided
. We call this crossover strategy the “day-wise

crossover operator.”
The day-wise crossover and patient-wise crossover then are chosen randomly
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DT[patient 1] - Parent #1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

DT[patient 1] - Parent #2 0 0 1 1 0 1 1 1 1 0 1 1 1 0 0

= = = = = = = = = = =

DT[patient 1] - Child 0 0 1 1 0 1 1 1 1 1 1 1 0 0 0

Figure 4.5: Day-wise Crossover.

Patient Sequence P1 10 7 12 14 3 4 9 11 1 15 8 6 2 5 13

Patient Sequence P2 4 9 14 15 8 11 2 6 13 1 5 3 12 7 10

PBX - Crossover

Patient Sequence child 10 4 12 9 14 15 2 11 13 1 8 6 5 3 7

Figure 4.6: Position-based Crossover Operator.

during the genetic evolution of the DT assignments with equal probabilities. The
WCE and PET assignments use only the patient-wise crossover operator. Finally,
the patient sequence resembles a classic mutation encoding, so crossover and
mutation operators known from genetic algorithm literature, such as the position-
based crossover operator (PBX) can be applied (Syswerda [1996]). This crossover
mechanism is displayed in Figure 4.6. Here, we choose positions randomly from the
patient sequence of parent P1 and copy the entries to the offspring. The missing
entries are then inserted to the yet empty positions according to the sequence in
parent P2.

Mutate(c) To enhance the search, we apply mutation operators to 10% of the
descendants in each generation. The DT assignment per patient is mutated by
inverting the list within the treatment phase. The WCE and PET assignments are
completely reversed, and the patient sequence is mutated using the well-known shift
mutation operator, such that one random patient p is removed from the current
sequence and reinserted at a random position within the sequence.

To choose individuals for reproduction (Perform Selection(Pi)), we employ
the rank selection operator. In addition, 1% of the offspring population is composed
of the best individuals of the parent population (GetElites(Pi)).

4.4.6 Iterated Local Search
As an alternative approach to the GA, we introduce an ILS to solve the RPSP, where
the local search step of the algorithm is formed by a variable neighborhood descent
(VND). Algorithm 4 on page 14 gives an overview of the classic ILS components as
in Lourenço et al. [2010], all of which are described in more detail in the following
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paragraphs:

GenerateInitialSolution The initial solution of the ILS is defined by the best
solution found within a pool of randomly generated solutions, which are constructed
using a partly greedy, partly random approach described in Section 4.4.3. The
pool size depends on the instance size with larger, real-world inspired instances in
Section 4.5 having a pool of 200 initial solutions to choose from. Hence, one could
imagine the initial solution to the ILS being the best solution among the initial
GA population.

LocalSearch The local search part of the algorithm is formed by a VND, which
operates on different parts of the solution representation in Section 4.4.1. Tradition-
ally, the VND contains various different neighborhoods with increasing degree of
disruptiveness, which allows the algorithm to leave potential local minima. Prelimi-
nary tests have shown that in our specific case, the following kd = 6 neighborhoods
contribute to the search for improvements to the solution fitness. (For details on
these preliminary tests please refer to Section 4.5.3.)

1. Perform a random shift of a patient within the patient sequence (N1).

2. Invert the DT assignment of a random patient (N2).

3. Invert both the WCE and PET assignments of a random patient (N3).

4. Swap two random patients within the patient sequence (N4).

5. Rebuild the DT, WCE, and PET vectors for a random patient from scratch
(random assignment, as in the starting solutions, (N5)).

6. Invert a random subsequence of a size between 2 and 5 of the patient sequence
(N6).

If a better solution is found, the VND continues its search within the first neigh-
borhood. In case no better solution can be found in any of the listed neighborhoods,
we reach a local minimum, leading to the termination of the VND. Because the
high complexity of the underlying problem leads to vast neighborhood sizes, we
impose a limit on the number of evaluated neighbors in each iteration of the VND
(see Section 4.5 for details). Experiments have shown that the best improvement
policy during the neighborhood search of the VND is beneficial, which is why we
follow this scheme.
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Perturbation If the local search gets stuck in a local minimum, a perturbation
of the current solution is performed, to leave the local minimum and restart the
local search phase from another starting point. We use two different perturbation
strategies, one less and one more invasive method. Every time a local minimum is
found that improves the global best, we use the less invasive perturbation method.
Otherwise, we alternate these approaches.

The less invasive method inverts the DT, WCE, and PET assignments of a
random patient, and it also inverts a random part of the patient sequence of size
P/7. The second perturbation strategy rebuilds a completely new assignment of
DTs, WCEs, and PETs for a random patient (as in neighborhood 5 of the VND)
and inverts a random part of the patient sequence of size P/5, with P denoting
the total number of patients.

AcceptanceCriterion The acceptance criterion determines whether solution s∗′,
found by the latest local search step, replaces the current incumbent solution s∗

(see Algorithm 4 on page 14). Two extremes of acceptance criteria during ILS are
described in Lourenço et al. [2010]. Either the new solution is accepted only if
it improves s∗ (i.e., “better” acceptance criterion), or it is accepted in any case
(i.e., “random walk”). Between these extremes, many intermediate acceptance
criteria can be found in prior literature, such as threshold-based or probabilistic
ones (simulated annealing). Preliminary results have shown that in our case, the
“better” criterion outperforms all other mentioned approaches.

4.4.7 Combined GA and ILS

Combinations of genetic algorithms and local search based algorithms, so-called
memetic algorithms or genetic local search metaheuristics, have proven to be
beneficial in the literature (see, e.g., Neri et al. [2012], who summarized work on
memetic algorithms or Vela et al. [2010], who successfully interleaved a GA with
a local search and called this hybrid form “genetic local search”). Because the
power of ILS in our case highly depends on the quality of the initial solution,
we investigated further into hybrids of the two presented approaches. However,
classic memetic approaches that perform a local search on children in the GA were
not competitive. Therefore, we present a simple but effective (see Section 4.5)
combination of the two described stand-alone metaheuristics in a way that we first
run the GA and afterwards, taking the best solution of the GA, we perform the
proposed ILS approach. The available CPU time is distributed equally among the
approaches.
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4.5 Computational Results
The computational results presented in this section represent findings from the two
deterministic radiotherapy appointment scheduling papers Vogl et al. [2018a,b]:
Section 4.5.1 focuses on the comparison of the GA variants with and without
offspring selection (OS) as well as the two decoding algorithms presented in Section
4.4.4 (see Vogl et al. [2018a]). The instance set used therein slightly differs from
the one used in the later paper, which is thoroughly described in Section 4.5.2. We
then discuss the preciseness of the neighborhoods within the iterated local search
algorithm in Section 4.5.3.

We analyze small, toy instances to assess the performance of the metaheuristic
solution approaches in comparison to the exact MIP formulation in Section 4.5.4.
Finally, we discuss the computational results for large and medium-sized problem
instances in Section 4.5.5 and compare the algorithms on various key figures
associated with the solutions. Results of statistical tests to prove the dominance of
one heuristic approach over the other are presented in Section 4.5.6. Sections 4.5.2
to 4.5.6 are published in Vogl et al. [2018b].

4.5.1 Preliminary Study I – Genetic Algorithm Variants
and Decoding Algorithms

We test the proposed GA on medium and large, real-world-inspired problem in-
stances, that slightly differ from the general experimental set-up used and described
in the upcoming sections. The number of patients to be treated varies from 25 to
200. The number of treatments per patient is equally distributed between 8 and
12 for smaller instances (25 to 75 patients) and between 10 and 18 treatments for
the larger ones (100 and 200 patients). All patients in the instances with 25 to
75 patients have release times and deadlines within the first week of the planning
horizon, but we simulate staggered release times for the instances that include
100 and 200 patients. Therefore 25 patients start the treatment the first week, 25
patients start their treatment in the second week, and so on. The population size
of the genetic algorithm is set to 100 for the 25 patients instance and to 200 for
the larger instances. Accordingly, the optimization time limit increases with the
instance size (see Table 4.4). The best 1% of the population survives until the next
generation of the algorithm (elitism), and individuals are chosen for reproduction
using the rank selection operator. Furthermore, 10% of the offspring are selected
for mutation, using the operators described in Section 4.4.5.

Table 4.4 lists the averages of 16 replications for all five instances and the
corresponding algorithmic settings (i.e., two decoding algorithms, with and without
OS). The column “P ” describes the number of patients to be scheduled, followed by
the corresponding number of activities to be scheduled in the second column “Act”.
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With “LB”, we denote a naive lower bound that consists of the sum of all activity
durations that require the beam resource. This lower bound neglects unavoidable
idle times of the beam, due to the set-up and tear-down times in the rooms as well
as beam type switches. Therefore, it can give a first but still weak impression of the
quality of the solution. In column “d”, we compare the two mentioned decoding
algorithms (d = 0 gives the pure chronological scheduling approach, d = 1 can fill
gaps). As already mentioned, we compare the classical genetic algorithm (without
OS) with a variant including offspring selection. The results of this comparison is
in the columns denoted “Without OS” and “With OS.” In the “Av. Fit.” columns,
we provide the average of best solution fitnesses after the time limit, followed by the
average of the corresponding penalty terms in the columns denoted by “Av. Pen.”
The bold values represent the best found average solution fitness for the instance
size.

Although the chronological decoding algorithm (d = 0) performs almost as well
as the gap-filling decoding algorithm (d = 1) for the smaller instances, permitting
the method to fill availability gaps is highly advantageous for larger instances.
Employing offspring selection also is beneficial in our problem setting: The best
found solution fitness significantly increases for almost all problem instances in
both decoding algorithms (“OS impr.”). p-values < 0.001 resulting from a two-sided
t-test are marked with “***”, p-values ≥ 0.05 are marked with “ns” (not significant).
Finally, the “Gap” column indicates the difference between the best found solution
for the instance and the naive lower bound.

Figure 4.7 depicts the evolutionary process of the 100 patients instance using
the second decoding algorithm (d = 1) with the mentioned offspring selection
procedure. Both the average population fitness and the best population fitness
ameliorate rapidly during the first 100 generations and slightly flatten out after
200 iterations. Figure 4.8 compares the final fitnesses of the 16 replications after
7,200 seconds of running time with and without OS. The worst case performance
with OS still outmatches the best case without OS. Furthermore, OS decreases the
variation in solution fitness across the replications.

Hence, we decided to use the gap-filling decoder and the genetic algorithm with
OS in all future runs of the algorithm.
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Figure 4.7: Genetic Algorithm Performance with OS, 100 Patients Instance, 16
Replications, d = 1.
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Figure 4.8: Comparison of Genetic Algorithm Performance with and without OS,
100 Patients Instance, 16 Replications, d = 1.
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Table 4.4: Preliminary study – GA variants and decoding algorithms, real-world inspired instances, 16 replications
per instance

Without OS With OS

P Act. LB d Time Av. Fit. Av. Pen. Av. Fit. Av. Pen. OS impr. p Gap

25 580 2,285
0 1,200 3,162.7 25.9 3,184.8 94.8 0.7% ns

31.2%1 1,200 2,997.6 1.5 2,997.1 1.7 0.0% ns

50 1,209 4,972
0 2,400 7,756.6 304.1 7,213.7 463.7 -7.0% ***

30.0%1 2,400 6,778.4 47.5 6,463.1 15.5 -4.7% ***

75 1,778 7,090
0 3,600 13,888.1 1,123.0 11,169.6 534.1 -19.6% ***

44.4%1 3,600 10,799.8 245.8 10,234.8 146.0 -5.2% ***

100 3,392 13,717
0 7,200 26,089.9 1,467.1 22,387.5 788.3 -14.2% ***

43.0%1 7,200 20,585.5 907.1 19,609.6 556.4 -4.7% ***

200 6,691 27,838
0 14,400 52,516.6 2,365.9 46,825.3 977.9 -10.8% ***

43.6%1 14,400 40,992.8 2,572.8 39,978.4 1,915.9 -2.5% ***
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4.5.2 General Experimental Set-up
The instances were generated using the knowledge of MedAustron staff about the
underlying distribution functions. Patient-specific random variables came from the
distributions summarized in Table 4.5. Small toy examples with 3 to 25 patients
are created to assess the quality of the heuristic methods in comparison with exact
solution methods; the larger, more realistic instances include 35 to 175 patients.

Additional instance settings are as follows:

upiqjr =

3, if p and q have different beam types and r is the beam
0, otherwise.

tpi =

30, if i ∈ Ξp

10, if i ∈ Ψp

α′ = 30 minutes

α′′ = 120 minutes

FSminpi,p(i+δ) =


0, if i ∈ Φp ∧ (i+ δ) ∈ Ξp

15, if i ∈ Φp ∧ (i+ δ) ∈ Ψp

15, if i ∈ Ξp ∧ (i+ δ) ∈ Ψp

FSmaxpi,p(i+δ) =


15, if i ∈ Φp ∧ (i+ δ) ∈ Ξp

60, if i ∈ Φp ∧ (i+ δ) ∈ Ψp

60, if i ∈ Ξp ∧ (i+ δ) ∈ Ψp

For instances with P ≥ 35, we acknowledge that several patients probably
have already started their treatment, prior to the beginning of the planning
horizon. According to our project partner, patients require an average of 20
treatments, resulting in the following scheme: For any day in the planning horizon,
approximately 1/4 of patients will be having their first week of treatments; another
quarter is within the second treatment week. Finally, 1/4 of patients has already
had two treatment weeks and is currently in the third week of treatments and the
last quarter of patients is finishing treatment after the current week. We follow this
systematic approach when generating our real-world inspired problem instances.
We therefore create 7 types of patients, as in Table 4.6. The first three categories
have already started their treatment prior to the beginning of the planning horizon
and have between 4 and 15 treatments left. Therefore, the release dates for these
patients is 0. For 20% of these patients, we assume that they could have a day off
on day 0, resulting in a due date of 1 instead of 0. In categories 4 to 7, patients
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Attribute Probabilities
Beam type P (BeamTypep = Proton) = 0.50

P (BeamTypep = Carbon Ion) = 0.50
Duration irradiation ∼ N (12, 5) ⇐⇒ BeamTypep = Proton
tpi ∀i ∈ Φp ∼ N (8, 5) ⇐⇒ BeamTypep = Carbon Ion

Room P (Room = 1) = 0.33
P (Room = 2) = 0.33
P (Room = 3) = 0.33

Duration in-room set-up P (vpir = 12) = 0.80
P (vpir = 22) = 0.20

Duration in-room teardown P (wpir = 3) = 0.70
P (wpir = 6) = 0.30

aRO P (aRO = 1) = P (aRO = 2) =
P (aRO = 3) = P (aRO = 4) = 0.25

PET P (PET = true) = 0.50

Table 4.5: Probability Distributions of Instance Specifics

start their treatment in weeks 0 to 3, respectively. Because we plan a total of 4
weeks, we assign only a limited number of DTs to these patients. The release and
due dates of these patients equal Monday to Tuesday of the given starting week
wFDT .

Instances with P ∈ {9, 15, 25} follow a similar pattern but use only 3, 5, and 5
categories and planning horizons of 10, 15, and 15 days, respectively. Patients in
instances with P ∈ {3, 4, 5} all have equal release dates (day 0) and due dates (day
1) and every patient needs the same number of DTs. The total number of DTs for
these instances is listed in the results Table 4.8.

cat. wFDT NDT
p rp dp

1 - ∼ U(4, 5) 0
P (dp = 0) = 0.8
P (dp = 1) = 0.22 - ∼ U(8, 10) 0

3 - ∼ U(12, 15) 0
4 0 ∼ U(16, 20) 0 1
5 1 ∼ U(12, 15) 5 6
6 2 ∼ U(8, 10) 10 11
7 3 ∼ U(4, 5) 15 16

Table 4.6: DT Specifics of Larger Instances
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The calculation of tight lower bounds is hardly possible for the RPSP, so we
manipulated the activity durations of the DTs of randomly generated instances such
that there exists an (optimal) solution to the problem for which no unavoidable
idle time of the beam resource is necessary. These optimal solutions also do not
contain time window violations. The optimal objective value then consists of the
total durations of the DTs, that is, the minimum time the beam is used in total.
For non-manipulated instances (see results in Table 4.10), we use the same measure
as a lower bound to the problem.

All algorithms have been implemented in C++. The MIP was solved using
Gurobi 7.0.2. The experiments have been carried out on the Vienna Scientific
Cluster (VSC3), whose compute nodes are equipped with two Intel Xeon E5-2650v2,
2.6 GHz, 8 core CPUs each.

4.5.3 Preliminary Study II – VND Neighborhood Evalua-
tion

We conducted preliminary experiments in order to assess the impact of all six
neighborhoods used within the VND part of the ILS. Therefore we formed multiple
subsets of the kd = 6 neighborhoods and performed randomized computational
tests on 10 problem instances including 35 to 175 patients. 5 instances are randomly
generated, while the remaining 5 are again “manipulated” instances with known
lower bound. Seven subsets have been chosen such that each subset still operates
on all three parts of the solution representation. These subsets are:

1. All kd = 6 neighborhoods N1, N2, N3, N4, N5, and N6

2. Neighborhoods N1, N2, and N3

3. Neighborhoods N1, and N5

4. Neighborhoods N4, and N5

5. Neighborhoods N5, and N6

6. Neighborhoods N2, N3, N4

7. Neighborhoods N2, N3, N6

We investigated two neighborhood sizes: The first, “small” approach evaluates√
N neighbors per iteration, with N denoting the total number of potential activities

to be scheduled, which we abbreviate to “SN.” The second approach allows us to
examine P neighbors of the current solution (denoted “LN”). On all 10 instances
and two neighborhood sizes (small, “SN” and large, “LN”), 16 replications of the
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Figure 4.9: Boxplot of seven subsets of neighborhoods containing ranked results
averages among 16 replications on 20 different instance-neighborhood size combina-
tions.

ILS were run, equaling 20×16 runs for each of the neighborhood subsets mentioned
above. Then, concerning the average results obtained by the 16 replications, the
rank of the neighborhood subset was calculated for each of the 10 problem instances
and the two neighborhood sizes. The best neighborhood subset obtained rank
1, while the worst one obtained rank 7 (see e.g., Hemmelmayr et al. [2012] for a
similar comparison of neighborhood subsets). Figure 4.9 depicts the results of the
ranking for all neighborhood subsets in form of box plots. The results show that for
some of the tested instances, a subset of the six neighborhoods, more specifically
the subset containing N1 and N5, performs best and is therefore ranked number 1.
However, averaged over all instances (see the bold line in the boxes representing
the median rank), the proposed version of the algorithm containing the full set of
neighborhoods, is clearly better than all the remaining subsets.
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P SN/LN N1 N2 N3 N4 N5 N6
35 SN 44% 31% 18% 17% 49% 32%
35 LN 44% 31% 18% 17% 50% 32%
70 SN 50% 32% 21% 19% 57% 45%
70 LN 52% 32% 21% 20% 59% 43%
105 SN 50% 40% 28% 18% 69% 57%
105 LN 53% 40% 29% 19% 73% 57%
140 SN 52% 40% 35% 19% 77% 64%
140 LN 56% 38% 36% 21% 81% 65%
175 SN 53% 36% 45% 20% 84% 73%
175 LN 58% 34% 48% 23% 86% 74%

Table 4.7: Success rates of each neighborhood during the optimization of five
instances and two algorithmic settings (small, large neighborhood) each.

Additionally, we analyzed the success rate of each neighborhood during the
optimization by dividing the number of times the neighborhood lead to a better
solution through the number of times the neighborhood was called during the
optimization, i.e., nsuccess/ncalled. The corresponding results are summarized in
Table 4.7. All six neighborhoods have considerable success rates, indicating once
more that all six neighborhoods contribute to the search of the best solution.
Furthermore, the success rate of each neighborhood apparently increases with the
instance size. Hence, larger instances seem to profit even more from the whole range
of neighborhoods, which is why we have chosen to include all six neighborhoods in
the more extensive experimental tests of small and large instances.



54 Chapter 4. Deterministic Radiotherapy Scheduling

4.5.4 Small Instances: Comparing Heuristics to the Exact
Approach

The initial tests entail small instances with known optimal solution (see Table 4.8,
column “opt.”). We compare results from two versions of the linearized variant
of the MIP model presented in Section 4.3: The full model contains all variables
and constraints described in Section 4.3, whereas in the reduced model, optional
activities are assigned prior to the optimization, thereby radically decreasing the
number of variables and constraints in the model (see Table 4.8, columns “vars” and
“cons”, respectively). The “time-to” column indicates the running time needed to
achieve the best found solution (and to prove the optimality of this solution), with
a maximum running time for both MIP versions of 24 hours. Furthermore, the two
basic versions of the GA and ILS (large neighborhood) are listed. The results show
that the optimal solution was found almost for all problem instances in a reasonable
time span by the GA and the ILS, with a small advantage for the latter method.
The smaller instances with NDT = ∑

pN
DT
p ≤ 36 also could be solved to optimality

by Gurobi (marked byˆ). However, Gurobi was only capable of proving optimality
for the two smallest instances (marked with *). Furthermore, the running time
to find (the optimal) solutions is already vast for the small instances; those with
45 or more DTs could not be solved to optimality by Gurobi. For instances with
15 and 25 patients, not even a single feasible solution was found after 24 hours of
running time. We therefore conclude, that solving the RPSP to optimality using
mathematical programming techniques is beyond the scope for larger problem
instances.
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Small Instances
MIP full MIP reduced Heuristics

P NDT Opt. Full Time-to (s) Vars Cons Reduced Time-to (s) Vars Cons GA ILS Time
3 12 184 *184 4 / 33 580 850 *184 2 / 13 358 508 184 184 60
4 16 240 *240 82 / 5797 923 1276 *240 1 / 122 623 812 240 240 60
5 20 248 ˆ248 7609 1226 1647 ˆ248 4369 876 1078 248 248 60
3 27 414 ˆ414 3326 2596 3818 ˆ414 1184 1359 1411 414 414 60
5 30 372 ˆ372 22432 3026 4416 376 1518 1745 1704 372 372 60
4 36 540 ˆ540 79853 4609 6862 ˆ540 54769 4148 6507 540 540 60
5 45 558 591 3173 6743 9736 563 26121 5567 7836 558 558 60
9 60 720 759 84633 13250 20364 - 86400 11201 17336 720 720 1800
15 135 1410 - 86400 57409 72971 - 86400 46785 59587 1414 1410 3600
25 225 2295 - 86400 156304 184960 - 86400 120699 140088 2353 2296 5400

Table 4.8: Results of Small Instances. * Gurobi has found the optimal solution and optimality was proven. ˆGurobi
has found the optimal solution but optimality could not be proven by the commercial solver.
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4.5.5 Medium and Large Instances:
Comparing the Heuristic Approaches

Tables 4.9 and 4.10 summarize the results of computational tests performed using
larger problem instances that include 35 to 175 patients. The combination of
the day assignment and the in-room set-up and tear-down times complicate the
calculation of a strict lower bound, because it makes assessing unavoidable idle
time on the beam resource virtually impossible. Therefore, we adopt two strategies
to evaluate the quality of the solutions. Table 4.9 lists five instances in which
we manually manipulated the proportion of time used for set-up, tear-down and
treatment so that there exists an optimal solution without idle time on the beam.
The calculated gaps for these manipulated instances can be interpreted as optimality
gaps. Then, Table 4.10 contains averages over 16 randomly generated instances.
Here, we compare the solution to a naive lower bound consisting of the total time
the beam is required within the planning horizon, equal to the sum of all irradiation
durations of all patients.

The “Initial” column lists the objective value of the best solution among the
initial GA population, which also serves as a starting solution to the ILS. The
“average” column reveals the average of best found solution fitnesses after the
time limit has been reached for all proposed methods. Note, that we limited the
number of evaluated neighbors within the local search of the ILS. We investigated
two neighborhood sizes: The first, “small” approach evaluates

√
N neighbors per

iteration, with N denoting the total number of potential activities to be scheduled,
which we abbreviate to “SN.” The second approach allows us to examine P neighbors
of the current solution (denoted “LN”, abbreviation of large neighborhood).

The results show a slight advantage of the GA and cGAILS for the manipulated
instances in Table 4.9. The corresponding gaps from the optimal values increase
slightly with the instance size and the underlying problem complexity for the
manipulated instances. The randomly generated instances in Table 4.10 clearly
show the benefits of combining GA and ILS, which for all problem sizes delivers
the best solutions. For the real-world, non-manipulated instances, the gap from
the lower bound remains more or less stable, even with increasing problem size.



4.5.
C

om
putationalResults

57
Large Instances

Initial GA ILS cGAILS

P Av. NDT Opt. Time Average Gap Average Gap Av. SN Av. LN Gap Average GapLimit
35 400 3920.0 7200 5143.0 31.2% 4153.9 6.0% 4065.3 4068.2 3.7% 4097.8 4.5%
70 800 7580.0 14400 10515.8 38.7% 8143.6 7.4% 8209.3 8196.4 8.1% 8163.3 7.7%
105 1200 11240.0 21600 14463.8 28.7% 12279.2 9.2% 12507.1 12457.9 10.8% 12252.0 9.0%
140 1600 14900.0 28800 20309.6 36.3% 16426.7 10.2% 16792.3 16630.8 11.6% 16490.1 10.7%
175 2000 18560.0 36000 27057.9 45.8% 20631.7 11.2% 21104.4 20956.6 12.9% 20686.4 11.5%

Table 4.9: Results of Large, Manipulated Instances (one instance per P with 16 replications each). Best found
solutions over all solution methods are in bold.

Large Instances
Initial GA ILS cGAILS

P Av. NDT LB Time Average Gap Average Gap Av. SN Av. LN Gap Average GapLimit
35 400 3717.6 7200 5145.7 38.4% 4544.2 22.2% 4476.2 4473.3 20.3% 4459.6 20.0%
70 800 7107.4 14400 10522.0 48.0% 8638.9 21.5% 8577.7 8572.0 20.6% 8520.6 19.9%
105 1200 10603.0 21600 14442.9 36.1% 13070.1 23.3% 12995.2 12997.9 22.6% 12820.4 20.9%
140 1600 13976.7 28800 20315.3 45.4% 17212.8 23.2% 17267.1 17369.9 23.5% 16930.7 21.1%
175 2000 17734.8 36000 27016.5 52.3% 22205.6 25.2% 22288.7 22422.1 25.7% 21946.5 23.7%

Table 4.10: Results of Large, Real-World-Inspired Instances (16 instances per P with 16 replications each). Best
found solutions over all solution methods are in bold.
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Figure 4.10 compares the empirical cumulative distribution functions (ECDF) of
the four methods: GA, ILS with small neighborhood, ILS with large neighborhood,
and cGAILS for one specific instance including 175 patients. For these functions,
all 16 replications per solution method were sorted according to their objective
value. The graph displays the percentage of solutions (y-axis) among these 16
replications per method that lie below a given objective value (x-axis), i.e., the
midpoint of the y-axis gives the median performance of the algorithms, whereas
the upper line gives the worst case and the lower line the best case performances.
According to this analysis, cGAILS performs better for all percentiles of the ECDF.
Although GA and ILS-small depict comparable median performance, both the best
and the worst solutions of the GA are weaker than the best/worst of the ILS with
small neighborhood. Furthermore, ILS with large neighborhood does not yield
comparable results for this specific instance, which is also evident for instances
with 140 to 175 patients in Table 4.10.

Table 4.11 gives an overview of some attributes of the achieved solutions by the
three metaheuristic approaches for the 175 patients instances (last row in Table
4.10). The “Av. Fit.” column denotes the average fitness of the solutions, with
“Av. Pen.” indicating the penalty term of the fitnesses. The “Av. Holes” column
lists the total number of unassigned days over all patients, and “Av. PS” sums
the particle switches that cause sequence-dependent set-up on the beam resource.
Furthermore, “Av. SR2” indicates how often the same room is required for a DT
consecutively, leading to immediate idle time on the beam during the in-room
set-up and tear-down times. Finally, “Av. SR1b” counts cases in which it was
not possible to iterate through all rooms, so only a switch between two rooms
occurred (e.g., room 1, room 2, and again room 1, with only one patient treated in
a different room between the two times in the same room). We aim to minimize
key figures Av. PS to Av. SR1b to achieve solutions with less idle time. A low
number of unassigned days (“holes” within a patient’s treatment plan) does not
necessarily lead to better solutions; instead, we anticipate some “optimal” number
of unassigned days for each instance.

Comparing the three methods according to the key figures gives an initial
impression of the advantages and drawbacks of each method. The average GA
solution includes only small time window penalties and particle switches, but the
same room is more often used consecutively, leading to higher idle time on the beam.
In contrast, ILS results in a higher number of particle switches, simultaneously
reducing Av. SR2 to only 27.8. Then cGAILS can further shorten this number to
25.6, at the same time accepting somewhat more particle switches than the GA
solutions. However, particle switches cause beam idle time of 3 minutes, whereas
using the same room twice consecutively, on average, leads to an idle time of 17.9
minutes. Therefore, if idle time is unavoidable, we would rather switch beam types
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Method Av. Fit. Av. Pen. Av. Holes Av. PS Av. SR2 Av. SR1b
GA 22205.6 28.1 44.9 134.4 33.4 509.2

ILS-small 22288.7 37.4 48.3 305.5 27.8 564.9
cGAILS 21946.5 26.0 54.3 179.7 25.6 535.2

Table 4.11: Key Figures of 175-Patient Instances

than use the same room twice in a row. Finally, the average number of holes
within the best found solution is significantly higher in cGAILS than in GA and
ILS. Accordingly, we conclude that the optimal number of unassigned days over all
patients lies between 50 and 60 for the 175-patient instances.

4.5.6 Statistical Tests
To prove the superiority of the hybrid method cGAILS relative to the stand-alone
methods GA, ILS with small neighborhood, and ILS with larger neighborhood,
we conducted various statistical tests, the results of which are presented in the
following tables. We performed both t-tests (two-sided) and Wilcoxon Rank tests
and obtained comparable results, as both tests support the hypothesis that the
hybrid method achieves significantly better outcomes. ***, **, and * denote p-
values ≤ 0.001, ≤ 0.01, and ≤ 0.05, respectively, whereas “ns” indicates cases with
p-value > 0.05. For each of the 5× 16 = 80 instances, 16 replications were run.

The dominance of the hybrid method over the stand-alone methods, for all 5×
16 = 80 real-world-inspired instances, can hence be verified statistically. Specifically,
these tests yield significantly better results for almost all instances: cGAILS
produces significantly superior results (p-value ≤ 0.01) to GA in at least 78 of the
80 instances. Furthermore, the combined method performs significantly better than
ILS with small neighborhood in 61 and better than ILS with large neighborhood
in 62 cases.
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t-Test (two-sided)
cGAILS vs. GA cGAILS vs. ILS-SN cGAILS vs. ILS-LN

P *** ** * ns *** ** * ns *** ** * ns
35 16 16 16 0 2 5 6 10 1 2 5 11
70 16 16 16 0 4 9 13 3 4 10 12 4
105 16 16 16 0 12 14 15 1 12 12 14 2
140 15 16 16 0 15 16 16 0 16 16 16 0
175 4 11 14 2 9 11 11 5 12 14 15 1∑
P 67 75 78 2 42 55 61 19 45 54 62 18

Table 4.12: Results of t-Tests of 80 Instances, Batched by Number of Patients P
per Instance.

Wilcoxon Rank test
cGAILS vs. GA cGAILS vs. ILS-SN cGAILS vs. ILS-LN

P *** ** * ns *** ** * ns *** ** * ns
35 16 16 16 0 2 4 6 10 0 2 4 12
70 15 16 16 0 3 8 12 4 4 8 12 4
105 16 16 16 0 9 13 16 0 12 12 15 1
140 13 16 16 0 14 16 16 0 16 16 16 0
175 4 8 15 1 9 10 11 5 12 14 15 1∑
P 64 72 79 1 37 51 61 19 44 52 62 18

Table 4.13: Results of Wilcoxon Rank Tests of 80 instances, Batched by Number
of Patients P per Instance.
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4.6 Summary
Scheduling recurring radiotherapy treatment appointments in ion beam facilities
in which multiple rooms share one particle beam represents a complex job shop
scheduling problem with custom constraints. We have introduced the specific
problem setting and formulated the problem mathematically. However, in realizing
that solving the MIP for real-world instances is intractable, we developed a GA and
an ILS approach, both of which build on a multi-encoded solution representation
and a chronological decoding algorithm. The GA contains tailor-made, feasibility-
preserving, crossover operators and an offspring selection strategy. The local search
within the ILS is composed of a VND that operates on six different neighborhoods
of the incumbent solution.

We have shown that the two stand-alone metaheuristic approaches lead to
excellent solutions for small problem instances, even highly dominating the MIP
approach with regard to running times and solution quality. For larger instances,
the combination of the population-based GA and the individual-based ILS leads
to significantly better results than each of the approaches achieves individually,
yielding solutions that perform soundly on all measured key figures.



Chapter 5

Stochastic Radiotherapy
Scheduling

5.1 Motivation

In general, radiotherapy treatment appointments are planned a few days or weeks
in advance and emergency patients who need to receive treatment immediately
are rare. Nevertheless, real-world data uncovers high uncertainty in treatment
durations for radiotherapy appointments, even though medical physicists are able to
accurately estimate the planned irradiation duration during the intense treatment
planning process. Uncertainty is a key challenge in any appointment scheduling
process (Gupta and Denton [2008]), but the underlying uncertainty in radiotherapy
treatment durations has not yet been considered in the radiotherapy appointment
scheduling literature (see Section 4.2).

Even though waiting time to the first treatment appointment (i.e., the start
of the recurring treatment process) has been addressed as a crucial objective in
many academic papers on radiotherapy appointment scheduling, daily waiting time
between the planned treatment start and the actual time treatment is performed has
not been considered so far. However, a small waiting time is especially important to
chronically ill people, who must undergo not just one treatment appointment but
several, consecutive appointments. For example, patients receiving radiotherapy
experience multiple irradiation treatments on consecutive days. As many patients
are treated consecutively in a treatment facility, typically a delay of one single
patient affects the starting times of various successive patients and in the worst
case causes waiting time for all upcoming patients on a given day. Practitioners,
however, tend to focus on the optimization of resource usage solely as was the case
in Chapter 4, due to high fixed costs associated with machines and staff, such that
they prefer tight schedules and may underestimate actual treatment durations. But

63
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uncertainty in appointment durations might cause resource-use conflicts as well,
and this effect tends to increase for tighter schedules (Gupta and Denton [2008]).

Therefore, to enhance patient satisfaction and wellbeing, we strive to find a
method that optimizes patient waiting time and resource usage simultaneously, and
increases robustness in the baseline schedules while also considering the stochasticity
of the appointment durations. We show that for the highly constrained and
stochastic problem of radiotherapy appointment scheduling in special ion beam
facilities where mostly only one beam resource is available, it is beneficial to
insert activity time buffers. Our newly proposed buffer concept is suitable for any
distribution function of the treatment durations and features a buffer parameter
using percentiles of the distribution to determine the actual planned activity
duration. Then, after optimizing this buffer parameter for our specific distribution
functions and patient mix, we compare three algorithmic approaches: a deterministic
variant, a stochastic variant, and a quasi-deterministic variant. Each is advantageous
in different circumstances.

This chapter is organized as follows: Section 5.2 presents the problem statement
of the stochastic radiotherapy appointment scheduling problem and discusses the
constraints and objectives, as well as the estimation of the underlying probability
distributions of the activity durations. Section 5.3 continues with the mathematical
modeling formulation of the described short-term problem. Section 5.4 reviews
related work on stochastic appointment scheduling, and general strategies to deal
with uncertainty. Section 5.5 is dedicated to the methodology used: We describe
the buffer concept in detail and explain the genetic algorithm we used to find good
baseline solutions, the variants of evaluating the solution, and the reactive procedure
that mimics everyday decisions by human decision makers in pre- or postponing
activity starting times in response to deviations from the baseline schedule. The
results of our intensive computational tests are in Section 5.6. Finally, Section 5.7
concludes and proposes some possible directions for further research.

5.2 Detailed Problem Description

5.2.1 Baseline Constraints
The current research problem is highly related to the one described in Chapter 4,
but multiple assumptions differ. First, we consider a short-term problem with a
planning horizon of only D = 5 days, corresponding to a week from Monday to
Friday. Second, we do not consider optional appointments and third, we assume the
resources required for the appointments to be known beforehand so no alternative
resources are available.

During the five days, patients p ∈ P must attend a predefined number of
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irradiation treatments. The treatment pattern, determined by the days of treatment
and days without treatment, depends on the type of patient. We map those
treatment patterns to binary vectors of length 5, where a vector component with
value 1 indicates a treatment day and a value of 0 indicates a day without treatment.
Accordingly,

1. Patients finishing treatment in the given week have between 2 and 5 irradiation
treatments left. They must engage in treatment activity on each day starting
on Monday until the number of missing treatments is met such that a patient
with 3 missing irradiations follows the pattern (1, 1, 1, 0, 0).

2. Patients starting their treatment in the given week need to schedule between 3
and 5 treatments. Their forced treatment activity starts backward on Friday,
until the number of planned treatments is reached. A patient with 3 planned
treatments thus starts treatment on Wednesday, followed by treatments on
Thursday and Friday, and the corresponding treatment pattern is (0, 0, 1, 1, 1).

3. All other patients have either 4 or 5 treatments scheduled in the current week.
If a patient has 4 treatments scheduled, the earliest weekday on which a
treatment break is allowed must be established too. Fore example, a patient
with an earliest break on Wednesday could follow one of the following patterns:
(1, 1, 0, 1, 1), (1, 1, 1, 0, 1), or (1, 1, 1, 1, 0). The earliest break is mostly defined
by the previous week’s schedule, in that within a span of five consecutive
days, a patient needs to receive at least four irradiation treatments.

Therefore, the treatment pattern is predefined for patients starting or finishing
treatment, as well as for patients with treatments in the given week and patients for
which the earliest possible break day is Friday. For patients with 4 treatments to
be scheduled and the earliest possible day off treatment being Thursday or before,
the optimization algorithm needs to determine the treatment pattern and which of
the possible weekdays should be the one without treatment.

Again, a daily treatment (DT) consists of three inseparable sub-activities, which
we here schedule independently: in-room preparation of the patient, irradiation,
and post-irradiation exiting. As mentioned before, two patients who need the same
treatment room should not be scheduled consecutively, because doing so leaves
unavoidable idle time for the particle beam while patient 1 exits and patient 2 gets
prepared. Therefore, schedules alternating between treatment rooms are preferable,
though not always possible, because patients are not evenly distributed among
treatment rooms. The starting time of the NDT

p treatments to be scheduled for
patient p also is now constrained by the patient’s preferences: Each patient has a
predefined time window, defined by his or her individual daily release times and due
times, abbreviated by rp and dp, respectively, during which the irradiation should
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take place. Deviations from this time window, including premature or belated
starting times, lead to a penalty in the objective function.

5.2.2 Stochasticity and Estimating the Probability Distri-
butions

The duration of radiotherapy activities is highly stochastic:

• The in-room preparation might take considerably longer than expected if the
positioning of the patient fails and a second attempt is necessary. Furthermore,
patients are sometimes less mobile and need additional help when entering
the room.

• If a patient moves during the irradiation or needs a break, the irradiation
needs to be either interrupted or even aborted. An interruption leads to an
extension of the planned activity duration; aborting the irradiation leads to
a shorter than planned activity.

• Machine error or room unavailability might cause an activity to take longer
than expected. For example, a room might need to be cleaned after a patient
exit, which delays the start of the next patient’s treatment in the same room.

To estimate the underlying probability distributions of the three radiotherapy
activities we analyzed real-world data from 113 patients and 2,270 irradiation
appointments. The data were collected in a newly opened ion-beam therapy center
MedAustron in Wiener Neustadt, Austria, among patients treated in 2017. Actual
activity durations were recorded for these patients, so we can fit a distribution
function to the data. We use Easyfit 5.6, which allows for automated fit of many
distributions to the data and an easy and fast comparison of different models.1

We assume that the preparation and exiting activities of all patients follow the
same distribution, as in Figure 5.1. The best fitting distribution function for these
two types of activities is of the family of Burr distributions, with the probability
density function

f(x) = a · k · (x
b

)a−1 · 1
b · (1 + (x

b
)a)k+1 (5.2.1)

and the parameters in Table 5.1. Here, b is a scale, and a and k are the shape
parameters. For the irradiation activities, we clustered the patients into four groups
according to treatment complexity and planned activity durations, as in Figure

1http://www.mathwave.com/easyfit-distribution-fitting.html
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Figure 5.1: Distribution of Duration of Preparation and Exiting Activities.

5.2. In this case, Dagum distributions fit the data best. Again, the distribution
parameters are to be found in Table 5.1. The corresponding density function is:

f(x) = a · k · (x
b

)a·k−1 · 1
b · (1 + (x

b
)a)k+1 . (5.2.2)

King [2017] provides details on the family of Burr (and Dagum) distribution
functions. All distributions are asymmetric and right skewed, reflecting the compa-
rably large probability of outliers that exhibit considerably higher duration than
the expected values.

To assess the quality of the distribution fitting, we here depict the empirical
cumulative distribution functions (ECDF) in comparison to the fitted, theoretical
distribution functions listed in Table 5.1. The poor fit for irradiation group 4 results
from the low number of observations in this group (162 irradiation durations) and
high number of outliers. Nevertheless we chose to fit a Dagum distribution also for
group 4 as we did for groups 1, 2 and 3.

5.2.3 Schedule Execution and Objectives
The constraints listed above need to be respected when constructing a baseline
schedule including planned starting times which will be communicated to the pa-
tients. However, the actual schedule and corresponding actual appointment starting
times are revealed only after the outcome of the random variables. Then, a reactive
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Act. Dist Group %P k a b mean stdev CV 25% 50% 75%
Pre Burr - 100% 0.2 13.4 10.3 15.1 8.9 0.6 11.0 12.9 16.3
Irr Dagum 1 43% 1.4 4.1 10.0 12.3 5.8 0.5 8.8 11.1 14.3
Irr Dagum 2 29% 1.3 7.7 14.5 15.6 3.7 0.2 13.3 15.2 17.4
Irr Dagum 3 22% 0.6 10.1 21.6 20.3 4.4 0.2 17.6 20.2 22.8
Irr Dagum 4 6% 1.5 3.8 21.4 27.7 14.1 0.5 19.3 24.7 32.3
Ex Burr - 100% 0.6 5.3 3.9 5.2 3.2 0.6 3.6 4.5 5.9

Table 5.1: Properties of fitted distributions for preparation (Pre), irradiation (Irr),
and exiting (Ex) activities. “Act.” gives the activity type, “Dist” describes the
distribution family, “Group” is the patient group and, “%” is the corresponding
probability of a patient belonging to the given group according to estimates by
the facility. Whereas “k,” “a,” and “b” are the distribution parameters, “mean,”
“stdev,” and “CV” the mean, standard deviation, and coefficient of variation of
the distribution, respectively. The columns “25%,” “50%,” and “75%” include the
quartiles of the distribution.



5.2. Detailed Problem Description 69

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Minutes

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y

(a) Preparation Activity
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(b) Exiting Activity
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(c) Irradiation Group 1
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(d) Irradiation Group 2
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(e) Irratiation Group 3
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(f) Irradiation Group 4

Figure 5.3: Comparison of Empirical Cumulative Distribution Functions (ECDFs)
(dots) and Theoretical Distribution Functions (lines) for the Activities and Fitted
Distributions from Table 5.1.
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procedure can determine how to respond to deviations from the planned schedule.
This reactive procedure mimics the human planner’s behavior, as described in
detail in Section 5.5.5.

The objective is formed by three highly correlated parts that are weighted
by the parameters λ1, λ2 and λ3. All three objective function components are
measured in minutes and need to be be minimized, including

1. The actual beam active time for each day d, which is defined by the finish
time of day d’s last activity on the beam resource, denoted by fd.

2. The time window violations, denoted by γpd, which are treatment appoint-
ments that are scheduled past their latest starting time dp on day d.

3. The actual waiting time of all patients p ∈ P .
The patient waiting time consists of two main parts: pre-preparation waiting
time, reflecting any delay in the start of the preparation activity, abbreviated with
δhpd and, pre-beam waiting time, or the time span between the completion of the
in-room preparation activity and the actual start of the irradiation activity (ωhpd).
The latter is particularly important, because during the in-room preparation, the
immobilized and positioned patient is waiting for the irradiation treatment to start
in a sometimes uncomfortable position. Minimizing this time span is crucial.

Evaluating the objective analytically is intractable, so we approximate the
objective function by the average objective of H scenarios as in (5.2.3), using fhd to
denote the actual beam finish time in scenario h and Fh abbreviating the objective
function of a single random scenario h as in (5.2.4):

minimize 1
H
·
H∑
h=1

Fh (5.2.3)

Fh = λ1 ·
D∑
d=1

fhd + λ2 ·
D∑
d=1

P∑
p=1

γpd + λ3 ·
D∑
d=1

P∑
p=1

(δhpd + ωhpd) (5.2.4)

The two types of waiting times are visualized in Figure 5.4: Patient P1’s
irradiation treatment took longer than expected, which delayed P2’s irradiation
activity. However, when P2 started the in-room preparation, the delay of P1 was not
foreseeable, and P2 had to wait for the start of the irradiation activity. In addition,
P1’s exit was extended. Therefore, P4 could not enter room 1 on time, leading to a
delayed start of P4’s preparation activity. Note, that P3’s preparation started later
than expected as well, considering P3 was supposed to start preparation by the
time P1 finished the irradiation. The delay of P1’s irradiation finish has a direct
impact on P3’s preparation starting time. Section 5.5.5 details different reactions
to deviations from the baseline schedule.
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Figure 5.4: Exemplary Planned Schedule and Actually Executed Schedule (white:
preparation times; dark gray: irradiation times; medium gray: exiting times); light
gray: pre-beam waiting times.

5.3 Mathematical Modeling Formulation
The objective function and constraints described in Section 5.2 can be formulated
mathematically. Here, we distinguish between the deterministic variant of the
problem, where activity durations are assumed to be known in advance, and the
stochastic counterpart. Table 5.2 lists the symbols and sets used in the formulation
of the problem, Table 5.3 summarizes all necessary input information and Table
5.4 gives an overview of the decision variables of the mathematical modeling
formulation.
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Sets

Notation Description
P Set of all patients, p ∈ {1, ..., P}.
D Set of days in the planning horizon, d ∈ {1, ..., D}.
I Set of activities, i ∈ {1, 2, 3}.
R General set of resources, index r ∈ {1, ..., R}.
Rpi Set of required resources for activity i and patient p.
RRoom Set of room resources.
RBeam Set of beam resource.
H Set of scenarios, h ∈ {1, ..., H}.

Table 5.2: Sets of the Mathematical Modeling Formulation

Inputs

Notation Description
tip Planned duration of activity i of patient p including possible buffer.
θ
i(h)
pd Actual duration of activity i of patient p on day d (in scenario h).
upqr Set-up time between patient p and patient q on resource r.
NDT
p Number of daily treatment sessions for patient p in the planning

horizon.
Apd Forced treatment day for patient p on day d – binary.
M Very large number.

λ1, λ2, λ3 Objective function weights for beam time, stable time penalties and
waiting time, respectively.

rp Daily release time of patient p.
dp Daily due time for patient p.

Table 5.3: Inputs to the Mathematical Modeling Formulation
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Variables

Notation Description
sipdr Planned starting time for patient p’s activity i on day d at resource

r.
s̄ipd Planned starting time for patient p’s activity i on day d.
σipdr Actual starting time for patient p’s activity i on day d at resource r.
σ̄ipd Actual starting time for patient p’s activity i on day d.
ypqrd Binary variable for immediate successor of patient p, namely patient

q on machine r on day d.
apd Binary variable indicating, whether a daily-treatment activity takes

place on day d or not for patient p, i.e., if s̄2
pd > 0, then apd = 1, else

apd = 0.
fd Planned finish time of last activity on the beam resource on d.
f

(h)
d Actual finish time of last activity on the beam resource on d (in

scenario h).
γpd Stable time violation for patient p on day d.
δ

(h)
pd Pre-preparation waiting time for patient p on day d (in scenario h).
ω

(h)
pd Pre-irradiation waiting time for patient p on day d (in scenario h).
Ih Random outcomes of the appointment durations for scenario h.
Fh Objective function given scenario h and the corresponding random

numbers Ih.

Table 5.4: Variables of the Mathematical Modeling Formulation
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5.3.1 Deterministic Variant

minimize λ1 ·
D∑
d=0

fd + λ2 ·
D∑
d=0

P∑
p=0

γpd (5.3.1)

Subject to:

fd ≥ s̄2
pd + t2p ∀p ∈ P , d ∈ D (5.3.2)

apd ≥ Apd ∀p ∈ P , d ∈ D (5.3.3)
D∑
d=0

apd ≥ NDT
p ∀p ∈ P (5.3.4)

s̄ipd = sipdr ∀i ∈ I, p ∈ P , d ∈ D, r ∈ Rpi (5.3.5)
s̄i+1
pd = s̄ipd + tip ∀i ∈ {1, 2}, p ∈ P , d ∈ D (5.3.6)

s̄ipd ≥ apd ∀i ∈ I, p ∈ P , d ∈ D (5.3.7)
s̄ipd ≤ apd ·M ∀i ∈ I, p ∈ P , d ∈ D (5.3.8)
γpd ≥ rp − s̄1

pd ∀p ∈ P , d ∈ D (5.3.9)
γpd ≥ s̄1

pd − dp ∀p ∈ P , d ∈ D (5.3.10)
P∑
q=0

ypqrd = apd ∀p ∈ P , r ∈ R, d ∈ D (5.3.11)

P∑
p=0

ypqrd = aqd ∀q ∈ P , r ∈ R, d ∈ D (5.3.12)

s1
qdr ≥ s3

pdr + t3p − (1− ypqrd) ·M
∀r ∈ RRoom, p, q ∈ P , d ∈ D

(5.3.13)

s2
qdr ≥ s2

pdr + t2p + upqr · ypqrd − (1− ypqrd) ·M
∀r ∈ RBeam, p, q ∈ P , d ∈ D

(5.3.14)

The deterministic objective function (5.3.1) minimizes the operation time and
thereby the idle time of the beam while simultaneously minimizing penalties arising
from stable time violations for patient p and day d. As in the deterministic variant
the extent of waiting time is not known, it is neglected in the objective.

The active time of the beam is calculated according to Constraints (5.3.2).
Constraints (5.3.3) assure that a forced treatment for patient p takes place on day
d, while Constraints (5.3.4) guarantee that the minimum number of treatments
per patient is respected. Constraints (5.3.5) assigns the exact same starting times
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s̄ipd to all resources required for activity i of patient p. All activities 1 to 3 of one
patient need to be scheduled tightly together. Therefore, the start of activity i+ 1
must equal the finish of activity i of a given patient p on day d, as depicted in
Constraints (5.3.6). Constraints (5.3.7) and (5.3.8) assign a starting time larger
than zero for days d on which a treatment for patient p is planned (i.e., apd = 1),
and starting time of zero to days d on which there is no treatment scheduled for
patient p (i.e., apd = 0).

Inequalities (5.3.9) and (5.3.10) constrain the daily starting time for each patient
to his/her individual time window, i.e., the time between his/her release time rp
and due time dp, considering also possible time window violations, γpd. Constraints
(5.3.11) and (5.3.12) give the immediate successor structure of activities on resource
r. Finally, inequalities (5.3.13) and (5.3.14) constrain the starting of successive
activities on the room and beam resources, respectively, and confirm that the
sequence-dependent set-up times are respected.

5.3.2 Stochastic Variant
The stochastic variant reflects the scenario-based approach discussed in Section
5.2.3:

minimize 1
H

H∑
h=0
·
[
λ1 ·

D∑
d=0

fhd + λ2 ·
D∑
d=0

P∑
p=0

γpd

+λ3 ·
D∑
d=0

P∑
p=0

(δhpd + ωhpd)
] (5.3.15)

Subject to:
Constraints (5.3.3) to (5.3.14) are added to the stochastic model as they appear
above. Additionally, the following constraints are adjoined:

fhd ≥ σ̄2h
pd + θ2h

p ∀p ∈ P , d ∈ D, h ∈ H (5.3.16)
δhpd = max(σ̄1h

pd − s̄1
pd, 0) ∀p ∈ P , d ∈ D, h ∈ H (5.3.17)

ωhpd = max(σ̄2h
pd − (σ̄1h

pd + θ1h
pd), 0) ∀p ∈ P , d ∈ D, h ∈ H (5.3.18)

σ̄1h
pd ≥ s̄1

pd − 15 ∀p ∈ P , d ∈ D, h ∈ H (5.3.19)

σ̄ihpd = σihpdr ∀i ∈ I, p ∈ P , d ∈ D, r ∈ Rpi, h ∈ H (5.3.20)
σ̄i+1,h
pd ≥ σ̄ihpd + θihp ∀i ∈ {1, 2}, p ∈ P , d ∈ D, h ∈ H (5.3.21)

σ̄ihpd ≥ apd ∀i ∈ I, p ∈ P , d ∈ D, h ∈ H (5.3.22)
σ̄ihpd ≤ apd ·M ∀i ∈ I, p ∈ P , d ∈ D, h ∈ H (5.3.23)
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σ1h
qdr ≥ σ3h

pdr + θ3h
p − (1− ypqrd) ·M

∀r ∈ RRoom, p, q ∈ P , d ∈ D, h ∈ H
(5.3.24)

σ2h
qdr ≥ σ2h

pdr + θ2h
p + upqr · ypqrd − (1− ypqrd) ·M

∀r ∈ RBeam, p, q ∈ P , d ∈ D, h ∈ H
(5.3.25)

The stochastic objective function (5.3.15) additionally considers patient waiting
time, i.e., pre-preparation waiting time, δhpd and pre-beam waiting time, ωhpd, respec-
tively and optimizes the average over H scenarios. The actual beam active time
fd is now constrained by the actual starting times of all patients and their actual
durations, as displayed in Constraints (5.3.16). Constraints (5.3.17) calculate the
pre-preparation waiting time as the difference between the actual starting time
and the planned starting time of a patient. Consequently, Constraints (5.3.18)
portray the calculation of the pre-beam waiting time as the difference between the
actual starting time of the irradiation activity and the actual finish time of the
preparation activity of patient p. The maximum possible amount of preponement
is fixed to 15 minutes, which is reflected in Constraints (5.3.19).

The subsequent Constraints (5.3.20) to (5.3.25) mirror the deterministic con-
straints, but for the actual starting times σ̄ihpd and σihpdr instead of the planned
starting times s̄ipd and sipdr.

5.4 Related Work
This section complements Section 4.2. There, we summarized literature on radio-
therapy scheduling, which was dominated by deterministic scheduling approaches.
Uncertainty in relation to radiotherapy scheduling is addressed by two papers:
Sauré et al. [2012] identify effective policies for allocating demand to still unknown
patients using a Markov decision process in an effort to minimize the time patients
must wait before the treatment starts. Legrain et al. [2015] also address uncertainty
related to the arrival of patients to radiotherapy facilities and develop a hybrid
online stochastic optimization algorithm to overcome the unknown. However, to
the best of our knowledge, all prior studies of radiotherapy appointment consider
activity duration as deterministic.

Various articles on more general appointment scheduling problems in health care
have successfully integrated uncertainty into their scheduling algorithms. Hence,
we here summarize approaches mentioned in classical appointment scheduling
literature, followed by a short overview of methodological approaches to address
stochasticity in scheduling problems in general.
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5.4.1 Stochastic Appointment Scheduling Problems

Stochasticity in appointment scheduling problems can be twofold: First, the
patients to be treated might not be known in advance and instead get dynamically
revealed during the planning horizon. For example, emergency patients need to be
immediately treated, and planned patients do not show up for their appointments.
Second, the appointment duration may be subject to uncertainty (Gupta and
Denton [2008]). We concentrate on the latter aspect of the stochastic appointment
durations. Ahmadi-Javid et al. [2017] review optimization studies that consider
random appointment durations (or “service times”). For the special problem of
operating room scheduling, Cardoen et al. [2010] consider studies that incorporate
uncertain procedure durations. A more recent review by Samudra et al. [2016]
includes a section dedicated to uncertainty.

Belien and Demeulemeester [2004] propose models for building robust cyclic
surgery schedules when the procedure duration is stochastic. Robustness also plays
an important role in the work of Hans et al. [2008], who use advanced optimization
techniques combined with historical data on surgery durations to improve capacity
utilization. Denton et al. [2007] also conclude that sequencing patients according to
the expected variance of their activity duration achieves the best results when the
scheduling involves a single server. However, following this strategy might not be
beneficial in highly constrained settings; this concern represents the open problem,
we address here. Kaandorp and Koole [2007] propose a local search procedure to
optimize a weighted average of patient waiting time and doctor idle time. They
assume the activity duration to be exponentially distributed. Their objective
function looks similar to our setting, yet our problem is much more constrained.

Klassen and Yoogalingam [2009] question the “dome” concept (i.e., short ap-
pointment intervals in the beginning, gradually increasing to the middle of the
day, then gradually decreasing). Using simulation optimization, they show that
stochastic appointment durations are sometimes handled more robustly using a
plateau-dome that extends the middle section. Koeleman and Koole [2012] show
that different service time distributions lead to diverse optimal baseline schedules
when they use a local search algorithm and consider emergency arrivals. Begen
et al. [2012] propose a sampling based approach to address the problem of discrete
random appointment durations, which produces a near-optimal solution with high
probability in polynomial time. Erdogan and Denton [2013] present two stochastic
models considering uncertain durations, as well as no-shows. Tancrez et al. [2013]
consider stochasticity in operating rooms in a more strategic decision-making level
and present a Markov process which allows to evaluate the impact of stochasticity
on various performance measures. Kemper et al. [2014]’s approach to schedule
patients for any convex loss function and any service time distribution indicates
that customers should be scheduled in non-decreasing order of their scale parameter.
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Finally, Berg et al. [2014] propose three solution methods to address the two-stage
stochastic problem of scheduling patient appointments on a single stochastic server,
extending work by Denton et al. [2007].

5.4.2 Methodological Approaches to Address Stochasticity
in Scheduling Problems

Many approaches deal with uncertainty in project and appointment scheduling, as
summarized by Herroelen and Leus [2005] in their overview of literature pertaining
to reactive, stochastic, fuzzy, and proactive scheduling approaches. Van De Vonder
et al. [2005] thoroughly analyze the impact of buffers in project management, and
this research group also has considered various combinations of proactive and
reactive approaches (e.g., Van De Vonder et al. [2006, 2007], Demeulemeester et al.
[2008], Davari and Demeulemeester [2017]). We adopt a proactive approach too,
relying on activity buffers. The reactive policy is then to mimic the decision maker
and pre- or postpone the activity starting time according to deviations known at
the time and predicted impacts of those deviations in the future.

The classical approach to stochastic combinatorial optimization problems
(SCOP) is based on (two-stage) mathematical programming or dynamic program-
ming. However, for most real-world problems, these methods are infeasible due
to their size and the limited running time. Metaheuristics then offer good alter-
natives for solving problems marked by uncertainty. A survey of metaheuristics
for solving SCOPs (Bianchi et al. [2009]), lists three possible ways to compute
objective functions for SCOPs: (1) if closed-form expressions for expected values
are available, compute the objective function exactly; (2) if closed-form expressions
are not available or their repeated evaluation is too time consuming, use ad hoc,
fast approximations; and (3) if the problem is too complex in terms of dependencies,
estimate the objective function by simulation. We consider the latter two variants,
because we address a highly constrained problem with extensive probabilistic de-
pendencies. The last variant also is known as “sample average approximation” and
was applied successfully to SCOPs by Kleywegt et al. [2002] and Mancilla and
Storer [2012]. Finally, Juan et al. [2015] review simheuristics and identify multiple
subcategories of this term, depending on how much time is spent on simulation and
optimization. Their general scheme for solving SCOPs includes a fast simulation
process and few replications to estimate the quality of the solution during the
optimization (Bianchi et al. [2009]).

The present chapter deals with stochastic appointment durations in the setting of
radiotherapy appointment scheduling with the goal to enhance patient satisfaction
and increase schedule robustness. We combine various approaches known from
stochastic (appointment) scheduling herein. Specifically, we introduce activity
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Figure 5.5: Overview of the Solution Method.

buffers to create robust baseline schedules proactively. When evaluating the quality
of a solution, we apply a reactive procedure to a sample of scenarios or else use a
fast approximation approach.

5.5 Solution Methodology
In this section, we first introduce and define a time buffer to create more robust
baseline schedules in Section 5.5.1. Initially, we assume this buffer to be given
(see Section 5.6.2 for details on buffer determination). Then we define the formal
representation of a solution in Section 5.5.2 and we also discuss how to create an
initial solution by applying a simple greedy algorithm. Section 5.5.3 details how
we get from the solution representation to a baseline schedule, including planned
starting times. In Section 5.5.4, we outline different approaches to evaluating
a single solution, followed by a detailed description of the reactive procedure in
Section 5.5.5. Finally, in Section 5.5.6 we describe the optimization algorithm we
used to find reasonably good baseline schedules.

The methodology described in this paper consists of multiple components, which
are depicted in Figure 5.5. First, a pool of initial solutions is generated. Then,
we apply a genetic algorithm (GA) metaheuristic to enhance the search for good
quality solutions. A solution here is represented by the solution encoding displayed
in Figure 5.7. To evaluate the quality of a solution, we first decode the solution
representation to a schedule including planned appointment starting times. Then,
one out of three possible evaluation methods is applied, some of which require a
reactive procedure to estimate the expected objective function. The final solution,
i.e., the best among all GA solutions after the predefined time limit is reached, is
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then evaluated more intensively within the final evaluation procedure, which again
uses the same reactive procedure.

5.5.1 Buffer Concept
We strive to create more robust baseline schedules that offer some degree of
protection against disruptions during schedule execution. Therefore, we introduce
time buffers (Van De Vonder et al. [2005]) to the planned activity durations.
The planned activity duration is equivalent to the 50th percentile or median,
of the underlying distribution functions (see Table 5.1) for the different activity
types. The activity duration including the time buffer then reflects a global buffer
parameter 0.5 ≤ β < 1.0, which depends on the corresponding percentile of the
distribution. For example, if β = 0.75, using the Burr-distributed preparation
time with parameters from Table 5.1, we create a baseline schedule that features
an in-room preparation duration of 16.3 minutes (75% of the Burr(0.2, 13.4, 10.3)
distribution) instead of the original 12.9 minutes, resulting in a buffer of 3.4 minutes.
In this baseline schedule, the activity durations are longer than expected and can
be “eaten up” by activities that take more time than the initially planned 50th
percentile of the distribution function.

We chose the distribution percentile as the parameter to determine the planned
activity duration, because this value is independent of the distribution. The planned
activity duration of activity i for patient p, tip, given the buffer parameter β (i.e.,
the percentile) can be written as P (θip ≤ tip) = β, where θip is the actual (random)
activity duration. The probability that the actual activity duration exceeds the
planned duration is 1− β. Section 5.6.2 details how we find the optimal parameter
β for a given objective function.

Figure 5.6 displays the planned activity durations of various buffer parameters
β for the different activity types and patient groups. Equal steps of the buffer
parameter do not correspond to steady buffer increases whereas for constant
increments of the buffer parameter, the resulting increments of the buffer (in
minutes) grow, as clearly displayed by the irradiation activity of group 4: An
increase from β = 50% to β = 60% raises the planned activity duration by 2.5
minutes (from 24.7 to 27.2 minutes). Increasing β from 60% to 70% leads to an
increase in the planned activity duration of 3.1 minutes (from 27.2 to 30.3 minutes),
and an increase from 70% to 80% in the buffer parameter prompts the planned
activity duration to grow by 4.4 minutes (from 30.3 to 34.7 minutes). Such a trend
is typical for percentiles of unimodal distribution functions, such as those displayed
in Figures 5.1 and 5.2: If the distribution is unimodal, the probability density
function is decreasing for values larger than the mode. Accordingly, the distribution
function becomes concave as soon as the mode value is exceeded, which occurs in
this case, because the buffer size results from the buffer parameter, through the
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Figure 5.6: Percentiles and Corresponding Planned Activity Durations.

application of the inverse of the distribution function.

5.5.2 Solution Representation and Initial Solutions
Similar to Chapter 4, we establish a multi-encoded solution representation with
two major parts: (1) the treatment pattern on a planning horizon of five days for
each patient and (2) a vector that displays the sequence by which patients should
be decoded on a specific day. The former is the treatment assignment; the latter is
the patient sequence, as in Figure 5.7.

For the genetic algorithm we use later in this chapter (see Section 5.5.6), we need
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Figure 5.7: Solution Encoding, 15 Patients.
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to create several initial baseline schedules (genetic algorithm initial population),
generated in a greedy fashion. For each patient we choose a random treatment
assignment vector from among the possible treatment patterns. The flexibility in
treatment patterns is limited for most patients. Only patients with four treatments
in the current week and the earliest break possibility on Thursday or before have
multiple patterns from which to choose.

The patient sequence then can be selected in four different heuristic ways to
generate a diverse initial genetic algorithm population:

• Sort patients according to their daily due date and try to minimize penalties
arising from time window violations. This approach leads to a single patient
sequence.

• Ignore time windows and create a pure random starting sequence (9% of
initial solutions).

• Ignore time windows and create a starting sequence that avoids treating
successive patients in the list in the same treatment room, which causes idle
time on the beam resource (10% of initial solutions).

• Sort patients according to their daily due date, which produces a sequence
that we call lst (latest starting time sequence). Choose a random patient
from the top 10% of lst, add this patient to the actual patient sequence, and
delete the entry from lst. Continue this process until the patient sequence is
complete and lst is empty (80% of initial solutions).

Diversification in the initial “population” of the algorithm enhances the search and
is therefore beneficial for the chosen algorithmic setting.

5.5.3 Solution Decoding
Each solution generated in the genetic algorithm is decoded to a baseline schedule,
including the planned activity starting times, using a modified version of the
algorithm presented in Section 4.4.4 as the current decoding algorithm does not
consider optional activities and alternative resource settings. For each day, we
generate a prioritized patient list from the global patient sequence that reflects the
order in which we chronologically insert patients into the daily baseline schedule.
The sequence of patients in this daily list is the same as in the global patient
sequence from the solution representation, except that any patients who do not
have a planned treatment on that specific day get removed from the daily list. The
planned starting times of the activities, s̄ipd, are determined according to Algorithm
7. The three appointment phases (in-room preparation, irradiation, and exiting)
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Algorithm 7: Solution Decoding Algorithm.
1 repeat
2 Determine next patient p to be scheduled from the patient list of day d;
3 s̄1

pd ← rp;
4 feasible← false;
5 while feasible == false do
6 if s̄1

pd is a feasible starting time for all phases and all resources then
7 feasible← true
8 end
9 if feasible == false then

10 s̄1
pd ← s̄1

pd + 1
11 end
12 end
13 Schedule patient p at the determined starting time s̄1

pd;
14 if s̄1

pd > dp then
15 γpd ← s̄1

pd − dp
16 end
17 until all activities scheduled;

need to be scheduled without idle time when constructing the baseline schedule.
That is, we can fix the starting time of the preparation activity and deduce the other
starting times from that value. The earliest the activity can start is at the beginning
of the patient-specific time window [rp, dp], which depends on the release time rp
on each day d (i.e., no scheduling earlier than rp is allowed). Next, we examine
if rp is a feasible starting time across all required resources over all appointment
phases. If so, we fix the starting time and block the resources accordingly. If not,
we increment the planned starting time until we find a feasible insertion position.
If the final starting time for patient p is greater than the corresponding due time
dp, we face a penalty γpd in the objective function.

This approach differs from pure chronological scheduling in that we can fill
“holes” in the schedule. Holes might occur if a patient with a later release time
appears early in the patient list or two patients are assigned successively to the
same treatment room, creating idle time for the beam resource. In this second
scenario, we might schedule another patient who requires a different treatment
room in the interim and thereby minimize beam idle time.
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Algorithm 8: StochasticEvaluation(S,H)
input : a baseline schedule S and # of scenarios H
output : estimate for the expected objective function value

1 for h← 1 to H do
2 draw random scenario Ih;
3 apply reactive procedure to S using Ih;
4 calculate objective value Fh;
5 end
6 return 1/H ·∑H

h=1 Fh

5.5.4 Solution Evaluation
We distinguish two solution evaluations: The intermediate evaluation established
during the execution of the optimization algorithm, occurs multiple times on several
baseline solutions. The final evaluation instead assesses a single, final baseline
schedule at the very end of the optimization procedure. The former needs to be
fast, whereas the latter may be computationally more expensive. The need for two
evaluations comes from the stochastic nature of our model, in which the objective
function is a mathematical expectation of a random variable resulting from the
actual realization of all random durations. We cannot evaluate this expectation
analytically but must resort to a sample average to approximate it. Depending
on the sample size, the precision of this estimate can vary. The corresponding
mathematical formulation is in Equation (5.2.4). A pseudo code of the stochastic
evaluation scheme (STO) is in Algorithm 8.

The final evaluation procedure assesses the quality of the solution by drawing
H = 1, 000, 000 random scenarios from the distribution functions listed in Table
5.1. To derive an actual schedule from an encoded solution plus a current random
scenario, we introduce a reactive procedure that we apply if the actual activity
durations deviate from the planned ones (see Section 5.5.5).

For the intermediate evaluation, we adopt a similar strategy but with fewer
random scenarios per solution evaluation. Preliminary tests show, that if the
running time is short (e.g., 1 hour), drawing H = 100 random scenarios yields
a good compromise between evaluation accuracy and running time limits. For
longer CPU times, we evaluate H = 1, 000 random scenarios for each solution. As
this stochastic evaluation strategy is computationally expensive, we compare this
strategy with two other approaches:

• A deterministic approach (DET) to the problem approximates actual beam
active time by the deterministic beam active time of the baseline schedule;
it disregards the actual waiting time of the patients. With the optimization
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algorithm, we then evaluate each solution:

minimize λ1 ·
D∑
d=0

fd + λ2 ·
D∑
d=0

P∑
p=0

γpd , (5.5.1)

where fd is the beam active time of the baseline schedule.

• A quasi-deterministic variant approximates actual beam active time by the
deterministic beam active time of the baseline schedule fd. To estimate actual
waiting time, we leverage the observed correlation between idle time on the
beam resource (excluding set-up time to particle type switches) and actual
patient waiting time. Using this correlation, we can estimate patient waiting
time by fitting a linear regression line of the form,

waiting time = A+B × schedule idle time. (5.5.2)

The data for this regression are gathered during the optimization by drawing
random scenarios for intermediate schedules created by the optimization
algorithm given a fixed buffer parameter β, then evaluating those scenarios
in detail. The regression gets updated regularly during the execution of the
algorithm. This approach constitutes a waiting time estimation strategy
(WTE). Figure 5.8 depicts the relationship between the actual patient waiting
time and the beam idle time for a random instance with 100 patients and
a buffer parameter β = 0.8. The corresponding regression function to
estimate the actual patient waiting time is waiting time = 2110.1− 0.3082×
schedule idle time.

5.5.5 Reactive Procedure
The reactive procedure is called for every randomly drawn scenario which needs
to be evaluated in detail during the stochastic intermediate or final evaluation. It
mimics the human decision maker by pre- or postponing activity starting times
when deviations from the baseline schedule occur. The general patient sequence
on all resources is retained; only starting times are shifted. All resource related
constraints from the baseline schedule need to be met also in the reactive procedure
(e.g., each resource still has a maximum capacity of one).

The actual starting time of an activity i of patient p depends on two main
factors: the type of activity i, whether preparation, irradiation or exiting, and the
starting times of the activities prior to the current activity on the same resource
set Rpi ⊂ R, where R is the total set of resources, and Rpi is the set of resources
required for activity i of patient p. We denote the actual starting time of activity
i for patient p on day d as σ̄ipd. The reactive procedure then is based on three
principles:
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Results.

• If the current activity i of patient p on day d is exiting (i = 3) and patient
p’s irradiation activity (i = 2) has already finished, start the exiting activ-
ity directly after the irradiation activity has finished. The actual starting
time then is the sum of the actual irradiation starting time and the actual
irradiation duration: σ̄3

pd = σ̄2
pd + θ2

pd.

• If the current activity i of patient p on day d is irradiation (i = 2), and
patient p’s in-room preparation activity (i = 1) has already finished, start
the irradiation activity as soon as the previously irradiated patient q has
finished the irradiation plus some additional set-up time in case the beam
type needs to be switched from patient q to patient p. The actual starting
time of the irradiation of patient p is the maximum of the preparation finish
time (sum of the actual preparation starting time and actual preparation
duration) and the irradiation finish time of the previous patient q (sum of
q’s actual irradiation starting time plus q’s actual irradiation duration and
some potential set-up time uqpr): σ̄2

pd = max(σ̄2
qd + θ2

qd + uqpr, σ̄
1
pd + θ1

pd). If
σ̄2
qd + θ2

qd + uqpr > σ̄1
pd + θ1

pd, then p’s preparation has finished earlier than the
beam is available for treatment, and patient p thus faces pre-beam waiting
time. Otherwise, we confront beam idle time.

• If the current activity i of patient p on day d is in-room preparation (i = 1),
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then consider multiple possible cases:

1. If p’s preparation activity can only start later than planned, because
the room resource is not available at the planned starting time, the
preparation shall start as soon as possible.

2. If p’s preparation activity might start earlier, we distinguish three
scenarios, in which patient q is the patient using the beam resource
previous to patient p (but not necessarily in the same room).
(a) If patient q’s irradiation activity started earlier than planned (σ̄2

qd <
s̄2
qd) and patient p’s planned preparation starting time is greater

than q’s actual irradiation starting time (s̄1
pd > σ̄2

qd), it makes sense
to prepone p’s preparation. The actual starting time is then the
maximum among three choices: (i) the earliest room availability;
(ii) the patient availability, where we assume a maximum negative
deviation from the planned starting time of 15 minutes, before which
we assume the patient is not present yet at the facility; and (iii) the
planned preparation start minus the earliness of q’s beam activity,
σ̄1
pd ≥ s̄1

pd − (s̄2
qd − σ̄2

qd).
(b) If scenario (a) does not apply because patient p’s preparation starts

earlier than patient q’s irradiation activity but patient q started
preparation earlier than planned (i.e., σ̄1

qd < s̄1
qd), it still makes

sense to prepone p’s preparation, even if the estimator of optimal
earliness is more insecure in this case. The actual starting time of p’s
preparation activity is the maximum among the three options: (i) the
earliest room availability; (ii) the patient availability (σ̄1

pd ≥ s̄1
pd−15);

and (iii) the planned preparation start minus the earliness of q’s
preparation, σ̄1

pd ≥ s̄1
pd − (s̄1

qd − σ̄1
qd).

(c) Otherwise, start the preparation of patient p at the planned starting
time, s̄1

pd.

Figure 5.9 depicts the decision process of the reactive procedure using an example
that reflects Case 2. Patient P1’s preparation takes less time than scheduled, so
P1 starts irradiation as early as possible. For patient P2, Case 2(a) applies: We
prepone P2’s preparation activity by the same amount that P1’s irradiation is
preponed (here, 5 minutes). The same strategy applies to P3. The decision about
the potential preponement of P4 is more difficult though, because by the time P4’s
preparation could start, P3’s preparation is still ongoing. However, P3 started
preparation 5 minutes early, so we suggest preponing P4’s preparation by the
same amount (Case 2(b)). Finally, P2’s exiting activity took longer than expected.
Therefore P5’s preparation is delayed by 5 minutes (Case 1).
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Figure 5.9: Visualization of Reactive Procedure. Top: Baseline schedule including
planned activity starting times. Bottom: Actual executed schedule with activity
durations and starting times. White: preparation times; dark gray: irradiation
times; medium gray: exiting times.

In practice, preponing patients by more than 15 minutes is rarely possible,
because they are unlikely to have arrived at the facility so early. Therefore, the
sequence of patients cannot be changed without causing some waiting time or
stress.

5.5.6 Optimization Algorithm
We once more apply a GA metaheuristic. The main difference to the algorithm
applied in Chapter 4 is the different solution representation which contains only 5
days in the planning horizon and does not consider optional activities (see Section
5.5.2). We again use the GA variant published by Affenzeller and Wagner [2004],
which includes an offspring selection process that favors individuals that outperform
the fitness of at least one of their parents. The main components of the algorithm
are as follows (see Algorithm 2 on page 11 for details):

• CreateInitialPopulation (Section 5.5.2): P0 describes the initial pop-
ulation, and Pi denotes the population during iteration i. In general, our
population size is 100.

• GetElites: A fixed percentage (here 1%) of the previous population’s best
individuals is directly transferred to the next population.
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• CB: Set of children that do not meet the success criterion. The success
criterion in our case is that the fitness of a child needs to be at least as good
as the fitness of the worse parent.

• {|Pi+1| < 0.7 · |Pi| ∧ |Pi+1|+ |CB| < 5 · |Pi|}: We aim to build 70% of the new
population from children who meet the success criterion. However, the number
of reproductive steps is limited to five times the population size. If we fail in
building a new population within this limit, we fill up the population with
“bad children” from set CB using function ChooseRandomElement(CB).

• PerformSelection(Pi): With the rank selection operator, we rank individ-
uals according to their fitness and randomly choose an element, considering
the rank-weighted probabilities.

• Crossover(p1,p2): We create new individuals by crossing over two parent
chromosomes. For the patient sequence, we use the well-known position-based
crossover. The treatment assignments are randomly inherited by either parent
#1 or parent #2.

• Mutate(c): To create more diverse descendants, we apply a mutation
operator to 10% of the offspring. A mutation affects both parts of the
chromosome; a randomly chosen patient shifts to a random new position
in the patient sequence, and the treatment assignment of a single random
patient is reset and newly generated.

5.6 Computational Results
This section is dedicated to the results of extensive computational tests on randomly
generated problem instances of varying sizes. We begin with a brief description of
the instances, optimization parameters, and environment used for the computational
study in Section 5.6.1. Then, Section 5.6.2 addresses the problem of determining
the optimal buffer parameter β as a strategic decision, and Section 5.6.3 thoroughly
compares the solution evaluation procedures from Section 5.5.4 on the different
buffer parameters β and objective function weights.

5.6.1 Experimental Set-up
To generate instances for the computational tests, we use data from a newly opened
ion-beam therapy center, MedAustron in Wiener Neustadt, Austria. As we noted
previously, the data set contains appointment durations for 2,270 appointments
collected from 113 patients. Patients in our randomized instances were randomly
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Instances
Class NDT

p Pattern 1–8 9–16
1 5 (1, 1, 1, 1, 1) 44% 20%
2 3 (0, 0, 1, 1, 1) 4% 7%
3 2 (1, 1, 0, 0, 0) 6% 6%
4 3 (1, 1, 1, 0, 0) 6% 6%
5 4 (1, 1, 1, 1, 0) 4% 8%
6 4 earliest break Thursday 6% 10%
7 4 earliest break Wednesday 8% 12%
8 4 earliest break Tuesday 10% 14%
9 4 earliest break Monday 12% 16%

Table 5.5: Classes of Patients and Corresponding Treatment Patterns.

assigned to groups according to the following rule: 43% of patients belong to group
1, 29% to group 2, 22% are part of group 3, and the rest (6%) constitute group
4. We consider a sequence-dependent set-up time of 3 minutes if two patients
with different beam types (protons or carbon ions) are scheduled sequentially on
the beam resource. We randomly assign the beam type to patients, such that
50% receive proton therapy and the other 50% are irradiated with carbon ions.
The distribution of patients among the three treatment rooms is assumed to be
balanced, with a probability of 33% for each room.

For number of treatments and corresponding treatment pattern, we distinguish
nine patient classes. The treatment pattern of the first five classes is predefined and
can be displayed using a pattern vector with five entries from Monday to Friday,
where 1 indicates a treatment day and 0 indicates a day without treatment. The
remaining classes all have four treatments to be scheduled, and the patterns depend
on the earliest possible break day. The probability of a patient belonging to the
classes is in Table 5.5. We generated 16 random instances, such that those with
index 1–8 use the first-class probabilities, whereas instances 9–16 draw random
classes from taking the second probabilities.

The instance size varies from 30 to 100 patients. The release times for the daily
treatments and the time window length are chosen randomly, though the average
length of the time window slightly increases with the release time, allowing for more
flexibility at the end of each day. Thus the average time window length for the first
half of the day is 276 minutes, but it increases to 360 minutes for the second half of
the daily planning horizon. Furthermore, we assume that 20% of patients do not
have time window preferences and therefore have maximum flexibility for scheduling
their treatment start. We test multiple combinations of the objective function
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weights λ1, λ2, λ3 for the actual beam active time, the time window violations,
and the actual patient waiting time, respectively, including the balanced case
λ1 = λ2 = λ3 = 1.0 and two cases favoring utilized beam capacity over the patient-
centered waiting time and time window violations, namely, λ1 = 1.0, λ2 = λ3 = 0.5
and λ1 = 1.0, λ2 = λ3 = 0.1.

For the GA from Section 5.5.6, we use the following parameters which have
proven to be beneficial in preliminary tests as well as in the deterministic setting
of the optimization (see Chapter 4): The population size is 100, the mutation
rate is 10%, and the elite segment is 1% of the population. All algorithms were
implemented in C++, and the experiments were carried out on the Vienna Scientific
Cluster (VSC3) equipped with compute nodes with two Intel Xeon E5-2650v2, 2.6
GHz, and 8 core CPUs each. The running time for tests in phase 1 was P/10 hours,
where P indicates the number of patients in that instance. The CPU time in phase
2 was 3600 seconds.

5.6.2 Phase 1: Optimal Buffer Determination
So far we have taken the buffer parameter β as given input information, but the
size of β has an immediate influence on the components of the objective function:
When β is greater, both the waiting time and the deviation of the actual beam
active time from the planned beam active time are smaller, yet the average beam
active time generally is greater. We seek the optimal buffer parameter β∗ for a
given patient mix and the various objective function weights, which we use as input
for the short-term optimization of the appointment schedule, given the actual data
for a specific week.

To determine the optimal buffer parameter, we run a slightly different version of
the optimization algorithm, in which the solution representation also contains the
buffer parameter, which is initially randomly chosen between 0.5 and 0.99. A new
individual in the GA inherits β from one of its parents. The mutation operator also
modifies β of an individual by multiplying its current value by a random number
between 0.75 and 1.25. To evaluate an individual’s fitness during phase 1, we draw
1,000 random scenarios (STO evaluation strategy), simulate the actual starting
times by applying the reactive procedure, and compare individuals according to
the corresponding average objective function.

The determination of the optimal buffer parameter in phase 1 represents a
strategic decision. Therefore, the algorithm running times are considerably extended.
We run the modified version of the GA three, five, seven, and ten hours for the
different instance sizes (i.e., 30, 50, 70, and 100 patients). Table 5.6 summarizes
the findings for the previously noted average patient mix. For a given objective
function weight of the waiting time λ3, only small differences emerge among the
different instance sizes. For each line, we find clear outliers in both the minimum
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λ3 P mean min 25% 50% 75% max
0.1

30 0.69 0.52 0.68 0.70 0.71 0.74
50 0.67 0.52 0.66 0.68 0.70 0.73
70 0.67 0.50 0.64 0.68 0.70 0.75
100 0.66 0.58 0.64 0.66 0.69 0.73

0.5
30 0.80 0.76 0.79 0.80 0.81 0.84
50 0.79 0.74 0.79 0.80 0.80 0.83
70 0.79 0.74 0.78 0.79 0.80 0.81
100 0.78 0.71 0.77 0.79 0.79 0.82

1.0
30 0.83 0.78 0.82 0.83 0.84 0.86
50 0.82 0.75 0.82 0.82 0.83 0.85
70 0.81 0.75 0.80 0.82 0.82 0.85
100 0.80 0.72 0.79 0.80 0.81 0.84

Table 5.6: Statistics of optimized buffer parameters β∗ for 16 random instances
with patient mix probabilities {43%, 29%, 22%, 6%}; 16 replications per instance.

and maximum optimized buffer parameter, which are also visible in the boxplot in
Figure 5.10. Yet the inter-quartile range is generally small, leading us to conclude
that the optimal buffer sizes are approximately 0.66 to 0.70 for λ3 = 0.1, 0.78 to
0.80 for λ3 = 0.5, and 0.80 to 0.83 for λ3 = 1.0.

Figure 5.10 provides a boxplot of the optimized buffer parameters for the largest
instance group with 100 patients. Once more we can see, that the optimal buffer
size highly depends on the objective function weight. The greater the weight of the
waiting time in the objective function, the higher the optimal buffer parameter will
be. We also observe less variance in the optimal buffer parameter as λ3 increases.
This phenomenon is caused by our buffer definition, that is, as the percentile of the
fitted distributions. The main driver of the objective function is beam active time,
quantified in minutes. The larger the buffer already is, the greater the impact of
a further increased buffer parameter on the planned activity duration in minutes
and the total beam active time required. Take, for example, the distribution of
the irradiation duration of patients in group 1. The median duration (β = 50%) is
11.1. A buffer parameter of 60% would result in a planned duration of 12.2 minutes
(+1.1 min), β = 70% lets the planned duration increase to 13.5 minutes (+1.3
minutes compared to 60% buffer parameter), and a β of 80% leads to a planned
duration of 15.3 minutes (+1.8 minutes compared to 70% buffer parameter). For
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larger buffer parameters, the planned durations and beam active time within the
objective function thus are more sensitive to changes to β, leading to a more narrow
boxplot for larger buffer parameters.

To investigate the dependence of the optimal buffer parameters on the patient
mix, we also generated instances with arbitrary patient mixes. Again, each instance
ran 16 times with different random seeds. Table 5.7 presents the average optimized
buffer parameters for different patient mixes and instance sizes. The instances with
solely patients from groups 3 ({0%, 0%, 100%, 0%}) and 4 ({0%, 0%, 0%, 100%})
– which feature the greatest variance and simultaneously the highest expected
appointment durations – result in the lowest optimal buffers. Especially for patient
group 4, beam active time increases drastically with a higher buffer percentile.
This effect gets smaller as λ3, the weight of waiting time in the objective function,
increases and the importance of the beam active time simultaneously diminishes.

The optimized buffer parameters β∗ of the other arbitrarily chosen patient
mixes only slightly deviate from the optimized buffers that result from the patient
mix we observed in the real-world data sets.
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Figure 5.10: Boxplot of Optimal Buffer Parameters for Different Weights of Waiting
Time in the Objective Function λ3. Results from 16 randomly generated instances
with 100 patients. The patient mix is chosen randomly according to the group
probabilities {43%, 29%, 22%, 6%}. We use 16 genetic algorithm replications for
each instance.
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patient mix [%] λ3 = 0.1 λ3 = 0.5 λ3 = 1.0
30 50 70 100 30 50 70 100 30 50 70 100

{100, 0, 0, 0} 0.73 0.71 0.72 0.70 0.81 0.80 0.77 0.76 0.84 0.82 0.77 0.76
{0, 100, 0, 0} 0.71 0.72 0.70 0.72 0.82 0.80 0.80 0.79 0.84 0.84 0.82 0.82
{0, 0, 100, 0} 0.59 0.61 0.52 0.51 0.82 0.82 0.79 0.61 0.86 0.85 0.83 0.63
{0, 0, 0, 100} 0.54 0.61 0.59 0.58 0.70 0.72 0.69 0.62 0.77 0.77 0.70 0.61
{25, 25, 25, 25} 0.64 0.63 0.62 0.62 0.78 0.78 0.78 0.73 0.81 0.81 0.80 0.73
{40, 20, 20, 20} 0.69 0.59 0.69 0.64 0.79 0.79 0.76 0.73 0.83 0.82 0.78 0.74
{20, 40, 20, 20} 0.56 0.65 0.64 0.64 0.78 0.79 0.78 0.73 0.82 0.82 0.81 0.75
{20, 20, 40, 20} 0.60 0.59 0.51 0.61 0.79 0.79 0.76 0.69 0.82 0.82 0.80 0.70
{20, 20, 20, 40} 0.66 0.66 0.61 0.64 0.77 0.78 0.75 0.68 0.81 0.81 0.79 0.68

Table 5.7: Optimal buffer parameters of arbitrary patient mixes for instances including 30, 50, 70 and 100 patients.
16 replications per instance.
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5.6.3 Phase 2: Schedule Optimization
The second phase of our computational study focuses on the comparison of the
different solution evaluation approaches (DET, STO, WTE) from Section 5.5.4. We
evaluate the resulting three baseline schedules on 1,000,000 random scenarios for the
activity durations. Tables 5.8 to 5.10 list the average results for overall fitness (i.e.,
weighted objective), beam active duration, waiting times, and penalties for time
window violations, across different objective function weights λ3 ∈ {0.1, 0.5, 1.0}.
We vary the buffer parameters β from 0.5 to 0.9 and include the optimal buffer
parameters from phase 2. Some general patterns can be observed.

First, the waiting time is smallest for the stochastic optimization variant, as
expected. The deterministic (DET) and waiting time estimation methods (WTE)
indicate extremely large waiting times, especially when the buffer parameter β is
small. The advantage of the stochastic optimization diminishes with an increasing
buffer parameter β, as might be expected. The greater the buffer parameter, the
longer the planned activity duration, and the smaller the probability that a patient
will take longer than the planned duration. For a buffer parameter of β = 0.50,
50% (i.e., 1 − β) of patients will not finish their treatment within the planned
duration.

Second, the beam active time increases with a rising buffer parameter β yet
the increase is astonishing small. Take for example the stochastic results of the
100 patients instances in Table 5.8. Increasing the buffer parameter from 0.50 to
0.60 leads to an increase in beam active time of 73 minutes (from 7980 to 8053),
or 15 minutes per day on average. Simultaneously, the sum of all waiting times
decreases by 1831 minutes (from 8570 to 6739), for a total reduction of 3.7 minutes
per patient per day, given 100 patients and five days. Third, the penalty term is
almost negligible for most instances. However, for very large buffer parameters,
the total planned waiting time becomes so large that the time windows preferred
by the patients cannot be respected anymore, leading to a significant penalty in
the objective function. A buffer parameter of 0.90 or larger would only be optimal
if the waiting time weight in the objective function were extremely high, which is
not the case in practice.

When analyzing the behavior of the three solution approaches, we also can
identify different patterns for the different buffer parameters β. First, for small β,
the stochastic optimization algorithm has a clear advantage, in that it considers the
waiting time of the patients directly by using sample average approximation. This
effect gets stronger with a greater waiting time weight in the objective function
(Tables 5.8 to 5.10).
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Av. Fitness Av. Beam, λ1 = 1.0 Av. Wait, λ3 = 0.1 Av. Penalty, λ2 = 0.1

P β DET STO WTE DET STO WTE DET STO WTE DET STO WTE

30 0.50 2778 2694 2781 2396 2453 2399 3817 2392 3812 6 16 7
30 0.60 2676 2657 2674 2419 2466 2419 2557 1904 2554 7 9 5
30 0.66 2633 2635 2631 2445 2474 2447 1872 1597 1839 10 9 7
30 0.68 2623 2630 2622 2459 2484 2459 1638 1443 1623 5 9 8
30 0.70 2619 2627 2616 2474 2497 2473 1439 1295 1425 9 10 8
30 0.80 2678 2700 2681 2610 2634 2612 657 626 649 27 28 33
30 0.90 3049 3077 3051 2996 3025 2999 317 305 314 214 208 208

50 0.50 4709 4315 4704 3809 3890 3808 8984 4200 8934 19 57 18
50 0.60 4396 4259 4391 3827 3919 3831 5660 3348 5575 32 49 27
50 0.66 4247 4228 4248 3861 3940 3867 3814 2818 3767 53 62 43
50 0.68 4221 4220 4216 3888 3956 3890 3275 2571 3210 54 69 49
50 0.70 4195 4212 4192 3914 3978 3915 2750 2266 2717 61 80 60
50 0.80 4273 4320 4276 4152 4204 4156 1057 1009 1047 155 150 149
50 0.90 4908 4988 4917 4794 4873 4802 475 450 471 674 693 672

70 0.50 7125 6146 7089 5427 5534 5452 16968 5983 16358 6 133 7
70 0.60 6463 6049 6449 5449 5578 5465 10120 4631 9825 16 81 18
70 0.66 6156 6020 6144 5512 5615 5511 6408 4000 6306 24 52 23
70 0.68 6082 6022 6067 5544 5640 5542 5341 3767 5211 35 50 33
70 0.70 6023 6009 6013 5579 5664 5579 4402 3396 4309 37 57 38
70 0.80 6127 6198 6134 5964 6040 5973 1468 1398 1453 158 177 163
70 0.90 7137 7298 7150 6908 7048 6920 628 588 623 1661 1912 1671

100 0.50 10878 8860 10681 7891 7980 7940 29865 8570 27398 2 227 5
100 0.60 9574 8736 9498 7863 8053 7901 17108 6739 15964 10 89 10
100 0.66 8965 8648 8944 7926 8086 7952 10374 5570 9904 14 54 14
100 0.68 8825 8671 8815 7990 8139 8013 8327 5282 8000 19 43 18
100 0.70 8722 8664 8711 8055 8181 8068 6644 4776 6403 27 52 32
100 0.80 8883 8975 8892 8646 8733 8658 2032 1951 2012 345 461 322
100 0.90 10624 10939 10645 10002 10169 10019 843 798 838 5370 6905 5421

Table 5.8: Average results of 16 randomly generated instances and 16 replications for each instance. λ3 = 0.1,
optimization time limit of one hour. Bold numbers represent the best solutions per line. Lines with optimal buffer
parameters are in gray.
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Av. Fitness Av. Beam, λ1 = 1.0 Av. Wait, λ3 = 0.1 Av. Penalty, λ2 = 0.5

P β DET STO WTE DET STO WTE DET STO WTE DET STO WTE

30 0.50 4300 3447 4243 2400 2572 2483 3800 1740 3520 0 11 1
30 0.60 3700 3252 3679 2419 2591 2428 2562 1317 2501 0 5 0
30 0.70 3198 3081 3184 2478 2599 2481 1440 960 1405 1 4 0
30 0.78 2968 2974 2964 2580 2633 2580 774 675 765 3 7 4
30 0.80 2946 2958 2941 2615 2657 2615 654 593 645 6 9 6
30 0.83 2960 2975 2955 2697 2727 2697 512 479 501 15 17 15
30 0.90 3237 3265 3240 3019 3049 3022 312 295 307 125 138 128

50 0.50 8289 5653 7928 3819 4052 4219 8939 3138 7411 3 64 7
50 0.60 6670 5272 6536 3835 4102 4043 5663 2299 4979 7 41 8
50 0.70 5305 4979 5266 3926 4136 3953 2726 1633 2595 32 53 31
50 0.78 4785 4807 4774 4113 4218 4119 1262 1086 1227 82 93 82
50 0.80 4747 4788 4743 4168 4252 4172 1051 953 1035 108 119 107
50 0.83 4778 4830 4776 4298 4373 4301 803 748 790 156 165 160
50 0.90 5320 5407 5323 4833 4917 4844 467 438 460 507 543 499

70 0.50 13890 8214 12405 5438 5753 6007 16903 4764 12779 1 158 18
70 0.60 10505 7521 9857 5467 5834 5913 10071 3283 7878 5 92 9
70 0.70 7778 7091 7679 5594 5900 5666 4351 2336 4010 16 45 15
70 0.78 6827 6864 6808 5911 6060 5918 1769 1520 1721 65 86 59
70 0.80 6763 6825 6756 5990 6112 6002 1454 1315 1419 92 112 90
70 0.83 6810 6902 6809 6191 6302 6199 1087 1012 1066 151 188 156
70 0.90 7931 8245 7947 6966 7104 6975 613 571 608 1316 1710 1336

100 0.50 22637 11922 19351 7899 8275 8886 29475 7042 20898 0 252 32
100 0.60 16295 10963 14715 7888 8400 8730 16812 5030 11956 1 96 15
100 0.70 11363 10220 11134 8108 8506 8325 6508 3395 5614 3 34 3
100 0.78 9850 9928 9846 8580 8754 8609 2450 2135 2366 90 213 109
100 0.80 9793 9952 9778 8690 8854 8709 2010 1823 1961 196 372 179
100 0.83 9953 10140 9948 8995 9136 9013 1481 1395 1451 436 613 420
100 0.90 12937 13796 12961 10070 10241 10087 830 785 822 4904 6326 4927

Table 5.9: Average results of 16 randomly generated instances and 16 replications for each instance. λ3 = 0.5,
optimization time limit of one hour. Bold numbers represent the best solutions per line. Lines with optimal buffer
parameters are in gray.
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Av. Fitness Av. Beam, λ1 = 1.0 Av. Wait, λ3 = 0.1 Av. Penalty, λ2 = 1.0

P β DET STO WTE DET STO WTE DET STO WTE DET STO WTE

30 0.50 6209 4265 5866 2399 2616 2696 3809 1636 3167 0 13 2
30 0.60 4983 3874 4838 2422 2654 2660 2561 1211 2177 0 9 1
30 0.70 3915 3509 3889 2478 2679 2557 1437 826 1332 0 4 0
30 0.78 3356 3296 3338 2580 2696 2583 774 596 753 2 4 2
30 0.80 3275 3252 3262 2616 2701 2618 654 545 639 5 7 5
30 0.83 3220 3220 3212 2698 2756 2700 510 450 498 12 15 14
30 0.90 3456 3483 3451 3026 3068 3029 310 284 304 120 130 118

50 0.50 12743 7207 11239 3815 4109 4484 8927 3031 6746 1 68 9
50 0.60 9520 6376 8617 3846 4186 4455 5670 2141 4151 5 49 11
50 0.70 6684 5716 6529 3929 4247 4176 2725 1423 2323 29 46 30
50 0.78 5453 5374 5412 4115 4300 4137 1258 984 1195 80 90 80
50 0.80 5327 5306 5298 4178 4310 4185 1042 886 1009 106 110 105
50 0.83 5263 5296 5250 4304 4416 4316 801 715 775 158 166 158
50 0.90 5803 5895 5789 4851 4938 4852 462 428 456 490 529 481

70 0.50 22369 10605 18078 5439 5813 6376 16928 4619 11664 1 173 38
70 0.60 15490 9150 13232 5467 5925 6341 10020 3132 6872 4 93 19
70 0.70 9941 8185 9531 5602 6037 6106 4325 2096 3410 14 51 15
70 0.78 7729 7632 7682 5918 6147 5949 1757 1409 1676 55 76 57
70 0.80 7529 7530 7488 5999 6192 6017 1448 1229 1392 83 110 79
70 0.83 7419 7508 7398 6199 6355 6210 1082 975 1050 138 178 138
70 0.90 8861 9334 8884 6978 7129 6998 611 563 601 1273 1642 1286

100 0.50 37421 15382 28795 7899 8372 9071 29522 6778 19666 0 232 58
100 0.60 24600 13428 20141 7898 8532 9078 16702 4782 11031 0 113 32
100 0.70 14576 11801 13699 8123 8681 8844 6451 3083 4849 2 37 6
100 0.78 11125 11055 11024 8594 8887 8660 2440 1971 2281 91 197 82
100 0.80 10880 10989 10830 8712 8946 8746 1989 1727 1905 179 316 180
100 0.83 10871 11142 10852 9019 9193 9035 1469 1357 1428 384 592 389
100 0.90 15607 17397 15783 10088 10275 10111 828 780 819 4692 6342 4853

Table 5.10: Average results of 16 randomly generated instances and 16 replications for each instance. λ3 = 1.0,
optimization time limit of one hour. Bold numbers represent the best solutions per line. Lines with optimal buffer
parameters are in gray.
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To assess the quality of the three approaches, we also performed statistical
tests, namely, Wilcoxon-Mann-Whitney (WMW) tests on combinations of patient
size, buffers, objective function weights, and instances. The sample size per test
for each method (DET, STO and WTE) is 16 (different seeds), and we performed
pairwise tests. We chose a significance level of α = 0.05. Table 5.11 shows the
results of the significance tests for 100 patients. The values in the table indicate
the number of instances in which one of the methods is better, or else the tests
reveal no significant difference among methods.

For the comparison of STO, and DET, the statistical tests confirm the previously
identified trend: For small β, STO is clearly better than DET, but as β increases,
it becomes more beneficial to use the deterministic approach. A similar result
emerges from the comparison of STO and WTE over all λ3. Comparing WTE to
DET we conclude, that on average, WTE gives better results than DET for small
values of β. Hence, if the scenario approach is computationally too expensive, the
waiting time estimation approach should be favored. For large values of β the
statistical tests indicate only for a few instances a difference between the results of
DET and WTE.

Using the buffer parameter sizes optimized in phase 2, the picture changes
slightly, and all solution approaches lead to good results. A small advantage accrues
to the WTE approach, which performs slightly better than DET on average, followed
by STO. However, the differences among the three approaches are rarely statistically
significant (Wilcoxon-Mann-Whitney Test) for the optimized buffer sizes. Finally, a
higher than optimal β favors DET over all other approaches (though not statistically
significantly, as Table 5.11 shows). Note, that although STO usually does not
provide superior results for operational (weekly) planning problems for optimized
buffer sizes relative to the two other approaches DET and WTE, it is required to
solve the strategic problem of determining the optimal buffer parameter itself. For
this purpose, it cannot be replaced by the other approaches.

Figure 5.11 shows the evolution of waiting times and beam active times, depend-
ing on the buffer parameter β. Again, we see that the different solution approaches
DET, STO, and WTE differ substantially in the waiting times for small β. The
larger the buffer parameter, the more similar the results.
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STO vs. DET STO vs. WTE WTE vs. DET

λ3 β STO DET equal STO WTE equal WTE DET equal

0.1
0.50 16 0 0 16 0 0 12 0 4
0.60 16 0 0 16 0 0 7 0 9
0.66 16 0 0 16 0 0 2 0 14
0.68 15 0 1 14 0 2 1 0 15
0.70 10 0 6 10 0 6 2 0 14
0.78 0 13 3 0 11 5 0 1 15
0.80 0 13 3 0 13 3 0 2 14
0.83 0 15 1 0 14 2 0 0 16
0.90 0 16 0 0 16 0 0 2 14

0.5
0.50 16 0 0 16 0 0 12 0 4
0.60 16 0 0 16 0 0 14 0 2
0.66 16 0 0 16 0 0 13 0 3
0.68 16 0 0 16 0 0 13 0 3
0.70 16 0 0 16 0 0 11 0 5
0.78 1 5 10 1 9 6 4 1 11
0.80 0 14 2 0 14 2 1 1 14
0.83 0 16 0 0 16 0 0 0 16
0.90 0 16 0 0 16 0 0 0 16

1.0
0.50 16 0 0 16 0 0 15 0 1
0.60 16 0 0 16 0 0 15 0 1
0.66 16 0 0 16 0 0 16 0 0
0.68 16 0 0 16 0 0 15 0 1
0.70 16 0 0 16 0 0 14 0 2
0.78 14 2 0 10 2 4 12 0 4
0.80 8 4 4 1 8 7 12 0 4
0.83 0 12 4 0 16 0 8 0 8
0.90 0 16 0 0 16 0 0 1 15

Table 5.11: Wilcoxon-Mann-Whitney test to pairwise compare methods STO, DET
and WTE for 16 random instances with 100 patients. 16 replications per run.
Significance level is α = 0.05. Entries show – for different λ3 and β – the number
of instances where either of the two pairwise compared methods is significantly
better than the other method. Column “equal” lists the number of instances, where
neither of the methods performed better than the other. Lines with optimal buffer
parameters in gray.
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Figure 5.11: Average Results for 100 Patients from Table 5.10, Graphically.

5.7 Summary
We reconfirm with this chapter that appointment duration is highly stochastic,
even in the case of radiotherapy, where the treatment and its duration are planned
in detail beforehand. The best fitting distribution relies on the Burr and Dagum
families of solutions for the pre-/post-treatment phase and for the treatment
itself, respectively. To deal with this stochasticity, we modified an algorithm that
has been applied to the deterministic variant of the highly constrained problem
of radiotherapy appointment scheduling. To account for possible variations in
appointment durations, we introduce a buffer parameter, the percentile of the fitted
distribution, to extend the planned activity durations.

Depending on the weight λ3 of patient waiting time, relative to the beam active
time weight λ1, the optimal buffer percentile of the underlying distribution function
varies. The higher waiting time is weighted in the objective function, the higher the
optimal buffer parameter is. For example, the balanced scenario with λ1 = λ3 = 1.0
requires β∗ ∈ [0.80, 0.83] while for λ1 = 1.0 and λ3 = 0.1, β∗ ∈ [0.66, 0.68]. The
strategic decision about how much buffer should be added to the initially planned
(or median) appointment duration is therefore highly dependent on the importance
that management assigns to patient waiting time relative to machine usage.

The determination of the optimal buffer size itself demands stochastic sampling.
However, we also compare different options for evaluating a solution during the
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optimization procedure to the stochastic method STO, namely the deterministic
variant DET that completely ignores waiting time during the optimization and a
quasi-deterministic variant WTE, which estimates the expected waiting time of a
schedule through regression. We highlight the importance of stochastic sampling
techniques, especially when the buffer parameter is smaller than optimal. For
example, in case β = 0.5 and λ3 = 0.1, the deterministic algorithm leads to
approximately four times the patient waiting time than the stochastic counterpart.
Furthermore, even a slight increase in the planned activity duration, through an
increase in the buffer parameter, can reduce patient waiting time drastically and
causes only a minor increase in beam active time. For example, increasing the buffer
parameter from β = 0.5 to β = 0.6 scales down patient waiting time by 20-30%
and causes an increase in machine uptime of only 1-2% in the case of stochastic
optimization. By investing a little extra time on the resources, the facility can exert
an enormous impact on patient’s waiting time and satisfaction. We also show, that
for the optimal buffer size, the advantage of the stochastic optimization diminishes
and the WTE method is favored.





Chapter 6

Conclusions to Part I

Scheduling recurring radiotherapy appointments is a complex problem, which can
only be solved by hand up to a very limited size. Hence, optimization algorithms are
necessary to achieve good quality solutions, which typically strive to optimize the
usage of the bottleneck resource, which is the particle beam. The specific problem
dealt with in this thesis occurs in ion beam facilities, which are equipped with
only one ion beam which can be directed to multiple treatment rooms. Additional
constraints such as optional activities or alternative resources further complicate
the optimization problem.

We have solved the long-term radiotherapy appointment scheduling problem
deterministically, considering – besides the already mentioned constraints – so-
called “stable starting times”, meaning that we assigned treatment start times to
the same patient which only vary slightly from day to day. We have shown, that
solving this type of scheduling problem exactly is intractable already for small
instances. Therefore, we address the optimization problem by developing multiple
alternative heuristical methods tailored to the problem at hand. We conclude, that
a simple combination of population-based and individual-based heuristics performs
best for most instances.

However, in realizing that appointment durations are highly stochastic, we aim
for a solution method, which – besides maximizing beam usage – also focuses on
patient waiting time, which tends to accumulate from patient to patient on one day.
To do so, we thoroughly analyzed data gathered at an ion beam center in Wiener
Neustadt/Austria and fitted theoretical distributions to the data. Then, we define
the βth percentile of those distributions as a buffer parameter to the optimization,
where we use the corresponding percentile activity durations instead of the expected
durations when creating a baseline schedule. As an optimization algorithm, we use
the genetic algorithm proven to be successful in the deterministic setting and apply
three different strategies to evaluate the quality of intermediate solutions (i.e., an
estimate of the actual beam usage and the actual patient waiting time) during the
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optimization procedure: While the deterministic estimation strategy ignores patient
waiting time when building a baseline schedule, the stochastic estimation variant
draws random scenarios from the fitted distributions and evaluates the quality of
a solution according to the average scenario solution, using a reactive procedure
which mimics the human decision maker every time the actual schedule deviates
from the baseline (i.e., the planned) schedule. Additionally, we have presented an
estimation based evaluation strategy, which builds upon the deterministic variant,
but benefits from the correlation between beam idle time and patient waiting time.

Computational results show, that the optimal buffer parameter in the latter
problem highly depends on the weight of patient waiting time compared to the beam
usage weight in the objective function. Nevertheless, for any objective function
weight, already a small increase in the buffer parameter from e.g. β = 0.5 to
β = 0.6 has a tremendous effect on patient waiting time while beam usage remains
almost unchanged. For small (i.e., lower than optimal) buffer parameters, it is
also highly recommended to follow the stochastic evaluation scheme, as this results
in dramatically lower patient waiting time but comparably low beam usage in
contrast to the deterministic variant. Additionally, the waiting time estimation
strategy is favored over the deterministic setting for many optimal buffer sizes β∗.
We conclude, that even though patient waiting time is not yet on the optimization
agenda of many radiotherapy centers, we recommend to include a comparable figure
into the objective function when building baseline schedules, such as to increase
patient well-being and satisfaction during the fight against cancer.



Part II

Integrated Activity Selection and
Staff Scheduling at the Red Cross

Blood Donation Services
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Chapter 7

Integrated Activity Selection and
Skilled Staff Scheduling

The second project of the PhD-thesis deals with scheduling doctors, nurses and
medical auxiliary personnel working for the blood donation department of the
Austrian Red Cross in Vienna, Lower Austria and Burgenland. While the Red
Cross runs a fixed blood donation center in Vienna with regular opening hours
from Monday to Friday, the vast majority of blood donations is collected during
so-called mobile blood donation operations (80%). For these operations, skilled
staff is needed for different work stages of the blood collection process. The staff
scheduling problem is constrained by maximum working hours per week and per day
as well as rest times required by law. Furthermore, employees offer different skills.
The costs involved with each working hour, however, might not only depend on the
skills of the employee but also on his/her contract type. Additionally, employees
have a special agreement concerning available weekdays. For example, an employee
might only be available from Monday to Friday, while another employee might
only work on weekends. Finally, since the blood donation operations could take
place also in the rural area of Austria, driving from the home base in Vienna to
the blood donation location and back also adds up to the working hours.

Additional degree of freedom is added to the model by allowing for flexible
blood donation operation dates: For example, one operation should take place
between 3rd and 5th of January, but the exact date is flexible and should be fixed
during the optimization procedure. This could further improve the quality of the
solution since we could then circumvent some of the hard constraints of the model
such as minimum rest time if we postponed/preponed the operation.

The upcoming chapters and sections address this real-world problem scientifi-
cally.
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7.1 Introduction
Staff scheduling or rostering is one of the most difficult planning problems companies
face (De Bruecker et al. [2015]) and is specifically important for companies operating
in either high-wage countries and/or the service sector, which typically faces high
labor intensity on the one hand and cost pressure on the other hand (Felberbauer
et al. [2018], Heimerl and Kolisch [2010]). Additionally, staff preferences become
more and more important and are reflected by different contract types, working
hour agreements and availabilities. Staff members might additionally possess
different skills, typically leading to a highly heterogeneous set of employees (De
Bruecker et al. [2015]). Working time regulations and labor law further increase the
complexity of staff scheduling problems. For example, between two working days
a minimum rest time needs to be assured or a maximum number of consecutive
working days needs adhere (Van Den Bergh et al. [2013]). This complex planning
problem has been widely studied in the literature, mostly taking the staff demand
on each day as given. But as Heimerl and Kolisch [2010] state, the staffing decision
is only the last of multiple interleaved planning phases. Typically the resource
requirements are fixed before the assignment of human resources to work packages
is done, leading to possibly sub-optimal solutions.

In this study, we address a real-world inspired combination of activity selection,
activity scheduling, and corresponding staff assignment to serve the selected ac-
tivities. A comparable planning problem arises at the Austrian Red Cross Blood
Donation Services, for example. We strive to minimize internal and potentially
external labor costs. The key questions include which of the potential activities
should be operated on which days and which human resources should be assigned
to those activity-day combinations.

This part of the thesis is organized as follows: Section 7.2 gives insight into
related work on employee scheduling and activity selection. Section 7.3 presents the
formal problem statement of the integrated activity selection and staff scheduling
problem. Section 7.4 is devoted to the mathematical programming formulation of
the proposed problem. In Section 8.1 we present a hierarchical solution approach.
Section 8.2 is dedicated to intensive computational tests of different variants of
the presented solution approach as well as a comparison to exact solvers. Finally,
Section 9 concludes this part and proposes some possible future research extensions.
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7.2 Related Work
Employee scheduling problems are studied intensively in the literature and multiple
review papers are available on this topic: Van Den Bergh et al. [2013] give a general
overview of constraints and solution methods to this category of optimization
problems and in total summarize more than 300 papers in this field. They list
time-related constraints like a maximum number of consecutive working days or
a minimum number of consecutive days off, many of which are also relevant for
the staffing decision in this paper. The second review by De Bruecker et al. [2015]
focuses specifically on workforce planning problems that incorporate skills. They
list multiple application areas of skilled staff scheduling problems, ranging from
health care to maintenance, call center, and transportation services as well as
classical production and manufacturing planning. The nurse rostering problem as
a special type of workforce planning problem is categorized in De Causmaecker
and Van Den Berghe [2011]. Among the many interesting papers listed in those
review articles, we would like to mention a view in more detail (without this list
being exhaustive).

Bard and Purnomo [2005] propose a preference based nurse scheduling problem
and strive for elaborating more flexible arrangements for working hours and working
days by softening the classical shift structure. They try to accommodate individual
nurse preferences in terms of specific days off requests or general weekly working
times. Naudin et al. [2012] present three mathematical models to solve a highly
constrained staff rostering problem, where understaffing is generally allowed but
penalized in the objective function. They consider weekly work duration, day-off,
and minimum daily rest duration constraints, among others. Firat and Hurkens
[2012] provide a mixed integer programming (MIP) based approach for the multi-
skill workforce scheduling problem, in which they assign tasks to technician teams.
They consider availabilities of technicians as well as outsourcing possibilities but
assume skills to be hierarchical. They propose a flexible matching model which
works especially well for rare skills. In a more recent paper, Dahmen and Rekik
[2015] develop and present a hybrid heuristic which combines branch-and-bound
and tabu search to solve a multi-activity, multi-day shift scheduling problem.

An interesting application area of staff scheduling is crew rostering in the airline
industry, which is addressed by Maenhout and Vanhoucke [2010], for example. The
authors strive for minimizing operational costs, consisting of both a combination
of overtime and external staff costs and maximizing the social quality of the
schedules, where crew members may express preferred working days. Maenhout
and Vanhoucke [2010] present multiple different metaheuristic algorithms and
improvement principles and compare their results with results obtained by exact
MIP solvers.

The combination of scheduling and staffing of projects is addressed in Heimerl



112 Chapter 7. Integrated Activity Selection and Skilled Staff Scheduling

and Kolisch [2010], who propose a mixed integer programming model to solve their
research problem and compare the results with simple heuristics. They show, that
in their specific formulation, commercial MIP solvers like CPLEX can find a (near)
optimal solution within a few seconds and investigate the influence of parameter
changes on personnel costs. In Kolisch and Heimerl [2012] the authors develop a
hybrid metaheuristic approach to address the same problem, which is efficient also
for larger problem sizes. Felberbauer et al. [2018] build upon those results but also
consider stochastic work package processing times. They decompose the problem
into a project scheduling and a staffing subproblem, solving the first subproblem
using an iterated local search heuristic. A similar approach is followed in Gutjahr
and Froeschl [2013], who decompose their problem into portfolio determination
and staffing. Another way to address the combination of task scheduling and
employee assignment is suggested by Drezet and Billaut [2008], who consider staff
resources in a project scheduling environment but still respect skills and legal
labor constraints during their optimization. Their focus, however, is to minimize
maximal lateness of projects and they solve their problem using tabu search. More
recently, Smet et al. [2016] present an integrated task and employee scheduling
problem with multi-skilled workforce where tasks need to be assigned to shifts and
then employees are assigned to the task-shift combinations. The authors propose
various constructive heuristics and a very large neighborhood search heuristic to
address the two highly intertwined subproblems.

7.3 Problem Statement
The current problem is motivated by the specific planning problem blood donation
organizations face. In Austria, blood is donated by volunteers in the field. A blood
donation team consisting of doctors, nurses, and medical assistants travels to an
agreed location and welcomes participants from the surrounding area. For example,
such a location might be a school, university, city hall or a company inviting the
blood donation service to conduct the blood donation activity in their premises.
Furthermore, the Austrian blood donation service is part of the Austrian Red Cross,
which across the country has its own facilities which are mainly used for ambulance
services but are also home to blood donation activities on a regular basis.

We are given a set of jobs (or in our terminology activities) with known daily
start and end times, duration, employee requirements in terms of skills, a set
possible execution days, and a reward. Among the set of eligible activities, we
select a subset of activities to take place, such that a minimum reward is achieved.
Typically, the set of eligible activities is considerably larger than the set of chosen
activities, resulting in extensive flexibility in the activity selection phase.

For each chosen activity, we furthermore select a realization date among the
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set of eligible days per activity. Each activity can only take place on one of the
possible days, non-chosen activities do not have an assigned date. We call the
results of these two decisions the “activity-day-combination”.

The required skills of all activities taking place are preferably fulfilled by
contracted employees, which are summarized in a set of internal employees. Each
employee has signed a contract with the company, indicating available weekdays
from Monday to Sunday, contractual working hours per week and month, minimum
and maximum working hours per day as well as acquired non-hierarchical skills. In
our specific problem setting, we deal with seven different skills and three profession
groups, namely doctors, nurses, and medical assistants. Doctors exclusively have a
minimum of one out of two possible skills, nurses have one or two specific skills
that doctors do not have and finally, medical assistants might have a combination
of up to three exclusive skills, that neither doctors nor nurses possess.

When assigning an employee to a set of activities that should be served, the
following constraints and regulations need to be respected:

• Employees can only work on one activity per day.

• Employees can only be assigned to activities that meet their minimum/
maximum working hours per day.

• Employees can only be assigned to activities taking place on their available
weekdays.

• Employees can only work in acquired skills.

• Between two consecutive days, employees must have a minimum rest time
of 11 hours. Hence, an activity finishing at 9 pm on day 1 and an activity
starting at 7 am on day 2 cannot be served by the same employee, as the rest
time would only be 10 hours.

• Employees must have two consecutive days off per week (where one week is
assumed to be the time span from Monday to Sunday).

• Employees can work on maximum nine consecutive days.

• Employees who do not have a specific “weekend contract” must have one
weekend off per month (a month in our case is equivalent to a time span of 4
consecutive weeks, which also is the planning horizon of our problem).

• Regular working time is limited by the employee’s contract. Employees can
work overtime though, however, overtime is limited to 25% of the employee’s
regular working time per month.
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Figure 7.1: Step Functions of Overtime and Weekend Costs for a given Profession,
e.g., Doctors.

In choosing the activity-day-combinations and assigning employees to activities,
we strive to minimize costs arising from overtime hours worked, weekend hours
worked (by employees who cause costs when working on Saturdays or Sundays),
and penalties arising from unserved positions, in case required skills for a specific
activity are not met. Here, we consider for each employee e specific overtime costs
per overtime hour worked and weekend costs per weekend hour worked, cote and cwee ,
respectively. In our setting, for each profession, there are two cost rates, one for
employees who signed their labor contract before an amendment took place receiving
a higher wage for overtime and weekend hours worked and one for employees who
signed their contract past those modifications. We will call these contract types
“high” and “standard” contracts. When sorting the employees according to their
overtime and weekend costs, cote and cwee form a step function, as depicted in Figure
7.1. θot and θwe describe the number of overtime and weekend hours worked,
respectively. Then, the bottom part of Figure 7.1 depicts the approximate increase
in overtime and weekend costs for higher required overtime and weekend hours,
respectively. The costs per profession and contract type (“standard” and “high”)
are summarized in Table 7.1. Note, that these figures do not reflect real personnel
costs due to privacy reasons. Hence, we distorted the real-world cost factors using
a constant factor.
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Overtime, cote Weekend, cwee
Profession high standard high standard

Doctor 10.35 6.45 6.90 0.0
Nurse 4.35 3.45 2.90 0.0

Med. Ass. 3.15 2.85 2.10 0.0

Table 7.1: Cost Factors cote and cwee for the Different Professions.

Sets

Notation Description
J Set of jobs (= blood donation activities), indices j ∈ {1, ..., J}.
E Set of employees, indices e ∈ {1, ..., E}.
E ′ Subset of employees who do not have a weekend contract.
D Set of days, indices d ∈ {1, ..., D}.

DMo,DSa Subsets of weekdays on Mondays and Saturdays, respectively.
Dwe Subset of weekend-days.
Dj Subset of possible days for activity j.
J d Subset of possible activities on working day d.
S Set of skills, indices s ∈ {1, ..., S}.
P Set of professions p ∈ {1, ..., P}.
Ep Set of employees belonging to profession p.
Sp Set of skills belonging to profession p.

Table 7.2: Sets of the Mathematical Modeling Formulation.

7.4 Problem Formulation
The objective function and constraints described in Section 7.3 can be formulated
mathematically. We denote activities by index j ∈ J ; employees are in set e ∈ E .
Table 7.2 lists the symbols and sets used in the formulation of the problem. All
necessary input information is summarized in Table 7.3. The main decision variable
of the mathematical model is xejsd, describing whether employee e is assigned to
perform skill s ∈ S in activity j on day d ∈ Dj ; the latter set consists of all eligible
days for activity j. Table 7.4 gives an overview of all decision variables of the
mathematical modeling formulation.

minimize
∑
e∈E

ue · cote +
∑
e∈E

∑
d∈Dwe

zed · cwee +
∑
j∈J

∑
s∈S

pjs · Pen (7.4.1)
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Input Parameters

Notation Description
cwee Costs arising for each hour employee e works on the weekend (i.e.,

on Saturday or Sunday).
hme Contractual working hours for employee e (4 weeks).
cote Costs arising for each overtime hour employee e works, i.e., the

hours exceeding hme .
aejd Binary variable, indicating whether employee e can work at activity

j if it takes place on day d due to his contract (weekday availability,
duration constraints).

ces Binary variable, indicating whether employee e has skill s (“capabil-
ity”).

fjdj′d′ Binary variable, indicating whether both activities j and j′ can be
served by the same employee (due to rest time constraints) if they
take place on days d and d′, respectively.

rjs Resource requirements of skill s at activity j.
tj Duration of activity j.
bj Expected reward (number of blood donations) at activity j.

Bmin Minimum reward (number of blood donations) needed during the
planning horizon.

Pen Penalty of external staff.
M Very large number.

Table 7.3: Input Parameters to the Mathematical Modeling Formulation.
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Decision Variables

Notation Description
xejsd Binary variable indicating whether employee e is working at activity

j in skill s on day d.
pjs Variable indicating the number of skills of activity j that are fulfilled

using external staff.
yed Binary variable indicating whether worker e is active on day d.
wed Binary variable indicating whether worker e is active on day pair

(d, d+ 1).
zed Total working time of employee e on day d.
ue Overtime hours worked by employee e.
vj Binary variable indicating, whether activity j is taking place or not.
ϕjd Binary variable indicating, whether activity j takes place on day d

or not.

Table 7.4: Variables of the Mathematical Modeling Formulation.

Subject to: ∑
j∈J d

∑
s∈S

xejsd = yed ∀e ∈ E , d ∈ D (7.4.2)

xejsd ≤ yed ∀e ∈ E , j ∈ J , s ∈ S, d ∈ Dj (7.4.3)
wed ≥ yed ∀e ∈ E , d ∈ D (7.4.4)

wed ≥ ye(d+1) ∀e ∈ E , d ∈ D \ {D} (7.4.5)
wed ≤ yed + ye(d+1) ∀e ∈ E , d ∈ D \ {D} (7.4.6)∑

e∈E

∑
d∈Dj

xejsd + pjs ≥ rjs · vj ∀j ∈ J , s ∈ S (7.4.7)
∑
s∈S

xejsd ≤ aejd ∀e ∈ E , j ∈ J , d ∈ Dj (7.4.8)∑
j∈J

∑
d∈Dj

xejsd ≤ ces ·M ∀e ∈ E , s ∈ S (7.4.9)
∑
s

xejsd +
∑
s

xej′sd ≤ 1 ∀e, j, j′ 6= j, d ∈ Dj, d ∈ Dj′ (7.4.10)∑
s

xejsd +
∑
s

xej′sd′ ≤ fjj′ + 1 ∀e, j, j′ 6= j, d ∈ Dj, d′ ∈ Dj′ (7.4.11)

d′+5∑
d=d′

wed ≤ 5 ∀e ∈ E , d′ ∈ DMo (7.4.12)∑
d∈DSa

wed ≤ 3 ∀e ∈ E ′ (7.4.13)
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d′+Fmax∑
d=d′

yed ≤ Fmax ∀e ∈ E , d′ ∈ D \ {D − Fmax − 1, ..., D} (7.4.14)

zed =
∑
j∈J d

∑
s∈S

tj · xejsd ∀e ∈ E , d ∈ D (7.4.15)
∑
d∈D

zed ≤ hme + ue ∀e ∈ E (7.4.16)

ue ≤ hme · 0.25 ∀e ∈ E (7.4.17)∑
j∈J

vj · bj ≥ Bmin (7.4.18)
∑
d∈Dj

ϕjd = vj ∀j ∈ J (7.4.19)
∑
e∈E

∑
s∈S

xejsd ≤ ϕjd ·M ∀j ∈ J , d ∈ Dj (7.4.20)

The objective function (7.4.1) minimizes costs arising from overtime hours per
employee, weekend hours per employee and weekend day, and penalties costs caused
by unserved positions for all activities and skills.

The proposed model variables xejsd, yed and wed are highly interrelated. Their
relationship is displayed in Constraints (7.4.2) to (7.4.6).

The required number of employees for each skill in each activity needs to be
fulfilled (7.4.7) either through internal or external staff, where the latter is causing
a penalty pjs in the objective. However, employee e can only be assigned to activity
j, if the assignment is allowed by (7.4.8). This constraints also ensure that each
employee is only assigned to a maximum of one skill per activity. Constraints
(7.4.9) guarantee, that employee e has the required skills for working in job j and
skill s. Two activities j on day d and j′ on day d′ can only be assigned to the same
worker, if this is allowed by fjdj′d′ in Constraints (7.4.11).

The possible working day patterns for all employees have already been proposed
in the above problem description. Each employee needs to have two consecutive
days off per week, starting from Mondays, see Constraints (7.4.12). Furthermore,
all employees who do not have a weekend contract (summarized in set E ′), need to
have at least one weekend off per span of four weeks, as in Constraints (7.4.13).
The maximum number of consecutive working days is Fmax (Constraints (7.4.14)).
These last constraints are necessary because Constraints (7.4.12) would not prohibit
an employee from working from Wednesday in week 1 to Friday in week 2, which
would be ten consecutive working days. However, in our case Fmax = 9.

We then calculate the daily working time zed for each employee e and day d
using Constraints (7.4.15) as an intermediate step. We consider overtime per month
(where a month consists of four consecutive weeks in our case) using variable ue
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for each employee e (see Constraints (7.4.16)). Overtime is limited to 25% of the
regular working hours (Constraints (7.4.17)).

One important constraint in our model is to collect a minimum reward or number
of blood donations from the selected activities. This is achieved by Constraint
(7.4.18). Then, Constraints (7.4.19) guarantee that only one day d for activity j is
chosen from the set of eligible days, Dj. Finally, Constraints (7.4.20) make sure
that assignments xejsd are only done for chosen days ϕjd.





Chapter 8

Solution Approach and
Computational Results

8.1 Solution Approach
Preliminary experiments have shown that solving the monolithic MIP presented in
Section 7.4 in short running time is intractable. Therefore, this section is dedicated
to a hierarchical solution method to address the problem formulated in Section 7.4.
Section 8.1.1 introduces the problem decomposition and gives some insight into
solution evaluation strategies. In Sections 8.1.2 and 8.1.3, we propose two different
algorithm variants to address the integrated activity selection and staff scheduling
problem.

8.1.1 General Problem Decomposition
We adopt a two-level hierarchical decomposition approach, involving a high-level
master problem and a low-level subproblem, as visualized in Figure 8.1. The master
problem consists of the job-day selection, i.e., we choose activities which should
take place and select a day among the set of eligible days Dj for each chosen activity
in the master problem. We denote the set of chosen jobs in the master problem
to JM and the corresponding chosen day for job j is abbreviated to dMj . From
the mixed integer formulation, this would reflect the decisions for variables vj and
ϕjd. Additionally, we fix for all employees e ∈ E the pattern of potential working
days and days off duty, respecting Constraints (7.4.12) to (7.4.14) as well as the
employee specific availability weekdays. Hence, for each employee e, the master
solution contains a binary vector of size D, where an entry 1 at the d-th position
indicates that the employee is available to be assigned to activities on day d.

The actual employee-to-activity assignment is done in the subproblem, where
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match employees e 

to jobs j  and skills s

choose day d 

on which chosen jobs 
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choose jobs j 

which should be executed 

MASTER PROBLEM

SUB PROBLEM

fix potential working days 

for employees e

Figure 8.1: Problem Decomposition – Overview.

the final costs of the assignment are revealed. The subproblem formulation can
be found in Section 8.1.2.5. Note, that the master problem assigns fixed days off
and potential working days to each employee e. It is not before the subproblem is
solved that the actual working days of the employees are revealed, which form a
subset of the potential working days from the master problem.

The objective function consists of three cost types: overtime costs, weekend
costs and penalty costs, as depicted in Figure 8.2. While the exact costs are finally
revealed when solving the subproblem, we will estimate a staffing cost (weekend
and overtime) lower bound based on a relaxation of the master problem already
when constructing the master problem, as solving the subproblem exactly is time-
consuming (see 8.1.2.4). In addition, we later propose a method to assess penalty
costs by solving a modified version of the subproblem that simply optimizes on
penalties and neglects other staffing costs, which we call the “penalty MIP”.

8.1.2 Algorithm Variant 1: Lower Bound Based Search
plus Repair

This section is dedicated to algorithm variant 1 (abbreviated to A1). Algorithm
9 gives an overview of the respective principles we follow. Here, s corresponds to
a master solution, while with currentobj and bestobj we abbreviate the objective
function of the incumbent solution s and the best found solution, respectively.

The method begins with an initial master solution, which is improved immedi-
ately by reducing master level objective function penalties. Those penalties arise if
on a given day d the number of required employees per profession p exceeds the
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Figure 8.2: Overview of Objective Parts, Corresponding Exact Evaluation and
Lower Bound Estimation Approaches.

number of potentially available employees. Afterward, the corresponding subprob-
lem to the initial master problem is solved and the corresponding objective value is
calculated, serving as a starting point for the further search. Then, the algorithm
repeatedly strives to reduce master level staffing costs through an estimation based
variant of a variable neighborhood descent (VND) algorithm proposed by Hansen
et al. [2010, 2008] to find better master solutions. Here, the actual objective value
of the subproblem is approximated using a lower bound to the true objective value,
where potential penalties that might be revealed when solving the subproblem
are neglected. The subproblem at the VND local minimum is then solved and
evaluated using the procedure solveSubProblemMIP(s), revealing the real
overtime and weekend costs as well as penalties arising from unserved positions.
In case of penalties, we try to repair the current master problem by replacing or
modifying jobs causing penalties, followed by a re-evaluation of the corresponding
subproblem. Anytime the incumbent master solution revealed a lower objective
than the best known master problem (i.e., currentobj < bestobj), the best found
objective is replaced by the current. Finally, after the current iteration is finished,
we permute the incumbent solution and repeat the search procedure.

The methods used in the pseudo codes are described in more detail in the
upcoming Sections 8.1.2.1 to 8.1.2.7.

8.1.2.1 BuildMasterSolution()

Initially, we create a greedy randomized solution to the master problem using simple
construction rules. We apply different strategies to the parts of the master problem
representation, namely the job-day selection and the initial potential employee
schedules.

The initial potential working days and days off for each employee e are assigned
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Algorithm 9: A1 – Estimation Based VND plus Repair
1 s← buildMasterSolution();
2 s← reduceMasterLevelPenalties(s);
3 bestobj ← solveSubProblemMIP(s);
4 repeat
5 s← reduceMasterLevelStaffingCosts(s);
6 currentobj ← solveSubProblemMIP(s);
7 try ← 0;
8 while currentobj.penalty > 0 ∧ try < 10 do
9 s← repairPenaltiesFromSubProblemMIP(s);

10 currentobj ← solveSubProblemMIP(s);
11 try ← try + 1;
12 end
13 if currentobj < bestobj then
14 bestobj ← currentobj;
15 end
16 s← permute(s);
17 until termination criterion met;

randomly, according to the following strategy: Employees with weekend contracts
(e /∈ E ′) potentially work on any of their available days as all relevant constraints
adhere automatically for those employees. The potential schedule of all other
employees e ∈ E ′ is generated in a two-stage procedure:

1. First, for every week in the planning horizon, we select two consecutive days
and mark them as days off duty. If none of the hereby chosen day-pairs is a
complete weekend, we select a random week within the planning horizon and
replace the currently chosen non-working day pair of the given week by the
corresponding weekend. Hence, we guarantee to respect Constraints (7.4.12)
and (7.4.13). The thereby chosen pattern would, however, violate Constraints
(7.4.14), for example, if an employee has two consecutive working days off on
Monday and Tuesday in the first week and on Saturday and Sunday in the
second week, resulting in overall 10 consecutive potential working days. If
this is the case, a correction mechanism is applied that iteratively updates
the day-pair off for the conflicting weeks until the conflict is resolved.

2. Then, all remaining, yet undecided days, are fixed according to the weekday
availability of the employee. For example, if an employee is available on all
weekdays but Monday and we fixed days off duty in the given week to be
Saturday and Sunday, the employee schedule of the current week corresponds
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Tuesday to Friday.

The initial selected job-day combinations are determined as follows: First, we
calculate for all jobs the required employee hours, i.e., ∑s rjs · tj. We sort all jobs
according to the fraction of demanded hours per unit of reward ∑

s rjs · tj/bj in
non-decreasing order. We then choose the activities from the head of the sorted
list of jobs to take place until the minimum reward is reached. The corresponding
days on which the selected activities will take place are then chosen according to
the following strategy: If either all possible days Dj are non-weekend days or all
eligible days are weekend days, we choose the day purely randomly. If the set of
possible days consists of at least one weekend and non-weekend day, then we choose
the day randomly among the subset of non-weekend days to avoid costly weekend
hours for employees.

8.1.2.2 ReduceMasterLevelPenalties(s)

Master level penalties arise if on a specific day d there are fewer employees of a
profession p potentially available than are required to fulfill the chosen jobs on the
same day. We estimate these penalties in the master problem by comparing the
number of required employees per profession to the number of available employees
per profession on a given day d. The required employees per profession per day
can be calculated by Rd

p = ∑
j∈JM

d

∑
s∈Sp rjs with JM

d the set of chosen jobs on day
d from the master problem M . The total number of employees on duty per day d
is assumed to be Ed

p . If the number of demanded employees per profession on a
given day d is larger than the number of employees on duty on the same day, a
penalty cost of Pen occurs. Then, Cpen

LB = ∑
p∈P

∑
d∈D C

pen
pd forms a lower bound to

the penalties of the overall objective, where

Cpen
pd = Pen ·max(Rd

p − Ed
p , 0) (8.1.1)

Every time we create a new master solution during the optimization procedure,
we evaluate its penalty lower bound like this. In case the current solution includes
any master level penalties, we try to repair the solution using a variable neighbor-
hood descent variant, where the objective function to be minimized is formed by
Cpen
LB . The VND then either stops at a local minimum with Cpen

LB > 0, or ideally
finds a solution with Cpen

LB = 0. This strategy drastically reduces the number of
master solutions to be evaluated by a priori removing solutions which would result
in high overall objectives due to high penalties. Algorithm 10 summarizes this
VND procedure. The calculation of Cpen

LB for a master solution s is abbreviated to
calculateMasterLevelPenalties(s).
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Algorithm 10: ReduceMasterLevelPenalties(s)
1 k ← 1 ;
2 s∗ ← s;
3 penalty∗ ← calculateMasterLevelPenalties(s);
4 repeat
5 n← 0;
6 while n < N do
7 s′ ← Nk(s);
8 penalty ← calculateMasterLevelPenalties(s′);
9 if penalty < penalty∗ then

10 penalty∗ ← penalty;
11 s∗ ← s′;
12 n← 0;
13 k ← 1;
14 end
15 end
16 k ← k + 1;
17 until k = kmax;
18 return s∗

The VND procedure searches three different neighborhoods for improvements to
the incumbent solution s, each of which operates on a different part of the master
solution representation. A neighbor in the k-th neighborhood is denoted by Nk(s).
The three neighborhoods are:

1. SwitchRandomJob(s): Randomly select a chosen job j (i.e., j ∈ JM)
and replace this job by various yet unchosen, random jobs j′ (i.e., currently
j′ /∈ JM), such that the total reward remains above the given minimum
reward Bmin.

2. SwitchDayOfRandomJob(s): Randomly select a chosen job j ∈ JM

with multiple possible day options (i.e., |Dj| > 1) and replace the currently
chosen day by a random entry from set Dj.

3. RebuildEmployeeSchedule(s): Randomly select an employee e and
rebuild the corresponding activity pattern (potential days on duty, fixed days
off) for this employee, considering his/her availabilities and day-off constraints.
When rebuilding the employee activity pattern, we follow the same strategy
as when we initially built an employee schedule, see Section 8.1.2.1.
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k Neighborhood Type Nk(s)
1 SwitchRandomJob(s)
2 SwitchDayOfRandomJob(s)
3 RebuildEmployeeSchedule(s)

Table 8.1: Neighborhoods k searched within the VND.

Table 8.1 summarizes those neighborhoods. The search starts with the first
neighborhood applying the first improvement strategy, which has shown to be more
beneficial than the best improvement strategy in preliminary tests. Due to the
high complexity and vast neighborhood size, we impose a limit on the number of
evaluated neighbors in each iteration of the VND, abbreviated to N . Here, we
fix N = 500. If no better solution has been found among N randomly selected
neighbors in a given neighborhood, we continue the search in the next neighborhood
(k ← k + 1, line 16 in Alg. 10). Every time a better solution is found, the VND
continues the search in the first neighborhood (k ← 1, line 13). A local minimum is
reached, when none of the neighborhoods k ∈ {1, 2, 3} is able to yield an improving
solution. This terminates the VND procedure and we return the best found solution
during the VND run (s∗).

8.1.2.3 ReduceMasterLevelStaffingCosts(s)

Algorithmic variant A1 contains a local search procedure, named ReduceMaster-
LevelStaffingCosts(s), for finding “good” master solutions; Algorithm 11
gives the corresponding pseudo code. Here, our primary optimization objective
is the lower bound of overtime and weekend costs, which can be calculated using
procedure computeStaffingCostLB(s′). Note, that an exact evaluation of the
actual subproblem staffing costs is time-consuming, thereby we stick to the lower
bound at this point. As before in ReduceMasterLevelPenalties(s), we try
to find better solutions in the neighborhoods listed in Table 8.1, once more limiting
the maximum number of evaluated neighbors per iteration to N = 500.
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Algorithm 11: ReduceMasterLevelStaffingCosts(s)
1 k ← 1 ;
2 s∗ ← s;
3 bestobj ← s.costs;
4 repeat
5 n← 0;
6 while n < N do
7 s′ ← Nk(s∗);
8 s′ ← reduceMasterLevelPenalties(s′);
9 currentobj ← computeStaffingCostLB(s′);

10 if currentobj < bestobj then
11 bestobj ← currentobj;
12 s∗ ← s′;
13 n← 0;
14 k ← 1;
15 end
16 end
17 k ← k + 1;
18 until k = kmax;
19 return s∗

8.1.2.4 ComputeStaffingCostLB(s′)

We calculate a lower bound on the staffing costs (i.e., overtime and weekend costs)
by comparing the required employee hours of the current master problem’s job-day
assignment to the available employee hours per profession. Let p be the profession
(i.e., doctors, nurses, and medical assistants) and let Ẽp and Êp be the set of
employees of profession p who have a high and standard contract, respectively.
Additionally, let Sp bet the set of skills of profession p and let JM be the set of
chosen jobs from the master problem.

Overtime Costs The minimum number of required total employee hours can
be calculated by summing up all required employee-hours of the chosen jobs, i.e.,
H tot
p = ∑

j∈JM

∑
s∈Sp

rjs · tj . The supplied hours per profession p belong to different
categories: λ̃p = ∑

e∈Ẽp
hmaxe is the number of supplied hours per month of employees

with “high” contracts working in regular working time and λ̂p = ∑
e∈Êp

hmaxe is
the corresponding number of total supplied regular working hours by employees
with a “standard” contract. As all regular working hours do not cause additional
costs, the total number of hours at no charge is then λp = λ̃p + λ̂p. Furthermore,
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λ̃+
p = λ̃p ·0.25 and λ̂+

p = λ̂ ·0.25 describe the maximum number of supplied overtime
hours for both contract types. Hence, we can calculate a lower bound on overtime
costs by comparing the required employee hours with the supplied hours:

Cot
LB,p =



0 ⇐⇒ H tot
p ≤ λp

(H tot
p − λp) · ĉotp ⇐⇒ λp < H tot

p ≤ λp + λ̂+
p

λ̂+
p · ĉotp + (H tot

p

− λp − λ̂+
p ) · c̃otp

⇐⇒ λp + λ̂+
p < H tot

p ≤ λp + λ̂+
p + λ̃+

p

λ̂+
p · ĉotp + λ̃+

p · c̃otp ⇐⇒ H tot
p ≥ λp + λ̂+

p + λ̃+
p .

(8.1.2)

Weekend Costs The total number of demanded employees per profession p on
a weekend day d ∈ Dwe can be calculated by summing up all required employees of
jobs chosen on weekend day d: Rd

p = ∑
j∈JM

d

∑
s∈Sp

rjs where JM
d denotes the set

of chosen jobs on day d from the master problem. Let Êd
p and Ẽd

p be the number
of employees belonging to profession p who are available on day d ∈ Dwe with
“standard” and “high” contracts, respectively. Then, Cwe

LB,p = ∑
d∈Dwe Cwe

pd and

Cwe
pd =

0 ⇐⇒ Rd
p ≤ Êd

p∑Rd
p−Êd

p

i=1 gipd · c̃wep ⇐⇒ Êd
p < Rd

p ≤ Êd
p + Ẽd

p

(8.1.3)

with gpd a non-decreasingly sorted vector containing for each profession p and
for all jobs j taking place on a weekend day d ∈ Dwe and for each required skill s
rjs entries of the job duration, tj. Thereby we make sure that only the minimum
number of weekend hours is assigned to employees with “high” contracts.

8.1.2.5 SolveSubProblemMIP(s)

The subproblem can be solved using commercial MIP solvers such as CPLEX. This
section is dedicated to the mathematical formulation of the subproblem. Here,
we slightly change the notation from Tables 7.2 to 7.4: aej is a binary variable,
simply indicating whether employee e can work in activity j. In addition to general
weekday availabilities and job durations, this input parameter also contains the
master decision of an employee being available on a given day d combined with
the knowledge of day dMj job j will take place. fjj′ is a binary input indicating
whether two activities j and j′ can be served by the same employee, considering
minimum rest time and activities that take place on the same day. xejs corresponds
to the reduced version of variable xejsd from the full model and describes whether
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employee e is working in activity j and skill s (index d is no longer needed in the
subproblem).

minimize
∑
e∈E

ue · cote +
∑
e∈E

∑
d∈Dwe

zed · cwee +
∑
j∈J

∑
s∈S

pjs · Pen (8.1.4)

Subject to:

(
∑
e

xejs) + pjs ≥ rjs ∀j ∈ J , s ∈ S (8.1.5)∑
s

xejs ≤ aej ∀e ∈ E , j ∈ J , d ∈ Dj (8.1.6)

xejs ≤ ces ∀e ∈ E , j ∈ J , s ∈ S (8.1.7)∑
s

xejs +
∑
s

xej′s ≤ fjj′ + 1 ∀e ∈ E , j, j′ ∈ J , j′ 6= j (8.1.8)

zed =
∑
j∈J d

∑
s

tj · xejs ∀e ∈ E (8.1.9)
∑
j

∑
s

tj · xejs ≤ hme + ue ∀e ∈ E (8.1.10)

ue ≤ hme · 0.25 ∀e ∈ E (8.1.11)

The objective function (8.1.4) remains unchanged to the full MIP (7.4.1).
Constraints (8.1.5) make sure enough employees with the required skills are assigned
to each activity, where unfilled positions are assigned to pjs (penalty). Constraints
(8.1.6) ensure that employees are only assigned to possible activities. Constraints
(8.1.7) assign employees to work in their acquired skills only. In Constraints (8.1.8)
we check whether two activities j and j′ can be supplied by the same employee.
Constraints (8.1.9) calculate the daily working time per employee per day. This
figure is later used in Constraints (8.1.10), where the required overtime per employee
is calculated. Constraints (8.1.11) limit the overtime per employee to 25% of his
regular working time.

8.1.2.6 RepairRenaltiesFromSubProblemMIP(s)

During our search we have put effort in minimizing master level penalties. Nev-
ertheless, in evaluating the master solution exactly by solving the subproblem,
multiple constraints might lead to additional penalties through not filled positions:

• The master level assumes unlimited overtime of employees, as it simply
compares the potentially working employees to the required employees when
evaluating master level penalties. In the subproblem, however, overtime is
limited to 25% of the regular working time in Constraints (8.1.11).
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• The master level assumes each member of a profession p has all relevant skills
s ∈ Sp. The subproblem assignment might, however, reveal missing skills on
some days.

• The master level compares available employees to required employees for
each day d of the planning horizon separately. Discrepancies between jobs on
consecutive days as in Constraints (8.1.8) are neglected.

• The master level does not consider minimum/maximum working time regula-
tions per day for each employee e, as is considered in Constraints (8.1.6).

In case solving the subproblem has revealed penalties, we strive to repair them
by slightly modifying the master problem directly at the positions that induce
the penalties. We identify from the subproblem solution all jobs j with unserved
positions, i.e., jobs with pjs > 0. If the concerned job might take place on multiple
days, i.e., |Dj| > 1, we replace the current day d by a random day from Dj.
Otherwise, if the job cannot take place on multiple days, we replace the current
job j by various yet unchosen, random jobs j′ (i.e., currently j′ /∈ JM), such that
the total reward remains above the given minimum reward. Note, that the number
of attempted repairs is limited to 10.

8.1.2.7 Permute(s)

After each iteration of the algorithm, a permutation strategy needs to be applied
such that the next iteration starts the search from a modified master solution. We
intensively tested various perturbation variants, namely greedy (G), random (R),
and shaking (S). The first two variants correspond to a multi-start local search
(Mart́ı et al. [2018]), whereas permutation of the latter type is usually applied in
Iterated Local Searches (ILS, Stützle and Ruiz [2018]).

• Greedy (G): The new starting solution of the next iteration is built using the
method BuildMasterSolution().

• Random (R): The job-day assignment of the starting solution for the next
iteration is selected completely randomly. The employee working patterns
are chosen as in BuildMasterSolution().

• Shaking (S): The currently best found master solution undergoes a larger mod-
ification, which means it is perturbed by applying methods SwitchRandom-
Job(s) and SwitchDayOfRandomJob(s) known from neighborhood
search various times. The number of perturbation steps is an input pa-
rameter to the optimization. Preliminary tests have shown, that perturbing
the best found solution 10 times gives good overall results.
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Algorithm 12: A2 – Penalty MIP and Lower Bound Based Search
1 s← buildMasterSolution();
2 s← reduceMasterLevelPenalties(s);
3 bestobj ← solveSubProblemMIP(s);
4 repeat
5 s← penaltyMIPbasedVND(s);
6 currentobj ← solveSubProblemMIP(s);
7 if currentobj < bestobj then
8 bestobj ← currentobj;
9 end

10 s← permute(s);
11 until termination criterion met;

8.1.3 Algorithm Variant 2: Penalty MIP and Lower Bound
Based Search

As an alternative approach to algorithm variant 1 (A1), we propose a second
variant, abbreviated to A2, which differs from the previous approach in the way
the VND procedure looks for better solutions. Algorithm 12 gives an overview of
this second method; the main difference to Algorithm 9 is in line 5:

Once more, overtime and weekend costs are estimated based on lower bounds.
The penalties, however, are revealed by solving a simplified version of the subprob-
lem, where the objective is minimizing the number of unserved positions and hence
the penalty costs instead of the overall costs of overtime, weekend and penalty
costs. We call this simplified version of the subproblem the “penalty MIP”. Solving
the penalty MIP is considerably faster than solving the whole subproblem, hence,
we keep on estimating overtime and weekend costs by their lower bounds.

8.1.3.1 PenaltyMIPBasedVND(s)

As in method ReduceMasterLevelStaffingCosts(s), we once more apply a
classical VND procedure to find better solutions in algorithmic variant 2 through
procedure PenaltyMIPBasedVND(s). The overtime and weekend costs are
estimated by their lower bound as was done in the first variant. This version of the
algorithm, however, rather calculates penalties arising when solving the subproblem
exactly including the reduced objective function:

minimize
∑
j∈JM

∑
s∈S

pjs · Pen (8.1.12)
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Algorithm 13: PenaltyMIPBasedVND(s)
1 k ← 1 ;
2 s∗ ← s;
3 bestobj ← s.costs;
4 repeat
5 n← 0;
6 while n < N do
7 s′ ← Nk(s∗);
8 s′ ← reduceMasterLevelPenalties(s′);
9 currentobj ← computeStaffingCostLB(s′) +

solvePenaltyMIP(s′);
10 if currentobj < bestobj then
11 bestobj ← currentobj;
12 s∗ ← s′;
13 n← 0;
14 k ← 1;
15 end
16 end
17 k ← k + 1;
18 until k = kmax;
19 return s∗

This reduced subproblem is solved every time we evaluate the quality of a
neighboring solution in the VND. Due to the fact that solving this “penalty
MIP” is time-consuming the number of evaluated neighbors N per iteration in
PenaltyMIPBasedVND(s) is drastically reduced to only 10 neighbors. Note,
that solving the reduced objective MIP is of course much less time-consuming than
solving the subproblem including costs of overtime and weekend hours. Thus, we
continue estimating the latter cost aspects by their lower bounds.
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Profession Monday Tuesday Wednesday Thursday Friday Saturday Sunday
Doctors 9 10 11 11 13 14 14
Nurses 20 20 20 25 30 30 30

Med. Ass. 57 57 57 57 57 56 56

Table 8.2: Availability of employees during a week from Monday to Sunday.

8.2 Computational Results
The described solution approaches have been implemented and tested with a set of
real-world inspired random instances of various sizes and difficulties. We begin with
a brief description of the instances and environment used for the computational
study (Section 8.2.1). Then, we discuss results of those computational experiments
in Section 8.2.2 and present some statistical tests in Section 8.2.3.

8.2.1 Experimental Set-up
The instances were generated using real-world employee and activity characteristics
available from the Red Cross Blood Donation Services in Vienna/Austria.

The set of available employees is fixed and consists in total of 101 employees.
This set is divided into three professions, namely doctors (14 employees), nurses
(31) and medical assistants (56). Three doctors and ten nurses have a special
weekend contract, meaning that they are only available from Thursday or Friday
to Sunday and the constraint of a minimum of one weekend off per four week
time period is not required for those employees. On average, doctors have 24.6
contracted working hours per week and are available on 5.9 days per week; nurses
have 25.5 contracted working hours per week and are available on 5.8 days per
week and medical assistants have 30.6 contracted working hours per week and
are available on 7.0 days per week on average. Doctors possess on average 1.9
skills, nurses have on average 1.8 skills and medical assistants on average have 2.3
skills out of a total set of seven different skills. 79% of doctors have a standard
contract; within the group of nurses, 63% have a standard contract and finally,
among medical assistants, only 35% have a standard contract. Employees with a
40-hour contract per week additionally can only work in jobs with minimum and
maximum duration of 7 and 9 hours, respectively. For all other employees, there is
no minimum or maximum daily active time.

The availability of the three professions on the weekdays from Monday to
Sunday is summarized in Table 8.2. As can be seen, the number of available doctors
and nurses increases during the week and is highest on the weekend, while the
number of available medical assistants slightly decreases during the weekend.
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The jobs per instance have been drawn randomly from a set of total 1453
activities. The average activity duration within this set was 8.2 hours (min: 2.8,
max: 12.3 hours), which includes the actual activity time as well as the travel time.
The average reward per activity is 94.5 (min: 15, max: 350); the average reward
per activity hour is 11.4 (min: 2.7, max: 37.7). On average, an activity requires
8 employees, 66 employee-hours or 0.7 employee-hours per unit of reward (min:
0.3, max: 1.8 employee-hours/reward unit). The available days per activity are
assigned randomly to the activities, where we assume that 1/3 of activities are pure
weekend activities, so they can only take place on Saturdays and Sundays. The
average number of available days per activity varies between 2 and 5, depending
on the instance size and complexity.

The costs per profession and contract type are listed in Table 7.1. Additionally,
we consider penalty costs during the optimization phase, where each unassigned
position causes penalties of Pen = 1 = 000, no matter which skill is unassigned.
As we strive to minimize costs, finding solutions without unassigned positions is of
utmost importance.

All algorithms have been implemented in C++. The MIP was solved using
CPLEX 12.7. The experiments have been carried out on the Vienna Scientific
Cluster (VSC3), whose compute nodes are equipped with two Intel Xeon E5-2650v2,
2.6 GHz, 8 core CPUs each.

8.2.2 Results of Computational Experiments
Tables 8.3 to 8.7 summarize the results of computational tests performed on 28 real-
world inspired problem instances. The instances are described by three numbers.
The first number indicates the number of eligible activities J . The second figure
depicts the average number of possible days for activities j, |Dj|. Finally, the
third number describes the workload as the minimum rewards needed (Bmin). For
example, 150-3-11500 denotes an instance including 150 activities, which on average
can take place on three eligible days, and the minimum required blood donations
(reward) is 11500. Columns “Comp.” specify the complexity of the instance, as the
product of jobs to choose from times the average number of days per job. Columns
“Bound” give the best-known lower bound for each instance. Note, that we split
the 28 instances into two groups: (1) instances with best lower bound of 0 and (2)
instances with best lower bound larger than zero. We sort the instances within
those groups according to their complexity.

We compare the two proposed algorithmic variants – lower bound based search
plus repair (A1) and the penalty MIP and lower bound based search (A2) – to a
CPLEX optimization run. For each algorithmic variant, we test multiple restart
strategies, namely a greedy restart (G) a random restart (R) and a perturbation-
based restart (P), as described in Section 8.1.2.7. We conducted tests considering
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time limits of 10, 60, 120 and 600 minutes.
The results show the superiority of all algorithmic variants against the com-

mercial solver, especially for small running times. For example, five of the six
algorithmic variants have found the optimal solution with objective function 0 for
instance 200-3-12000 (third line in Table 8.3) within 10 minutes, while the exact
approach achieved a result of 153000 given the same time limit. Another example
is instance 150-3-12500, for which algorithmic variants A1 find solutions close to
the lower bound within 10 minutes, while CPLEX obtains an integer solution
with an objective value of 120348 given the same running time. After 60 and
120 minutes (Tables 8.4 and 8.5), the commercial solver catches up only in a few
instances but still fails to find reasonable results for most challenging instances
with higher complexity. Finally, we report the results of an extensive running
time of 600 minutes in Table 8.6. Here, the exact approach using CPLEX seems
to outmatch the proposed methods in many instances. Nevertheless, there exist
multiple instances for which the exact solver could not outperform the heuristic
approach after 10 hours of running time. Note, that for none of the instances in the
second group (i.e., those with bound larger than 0), CPLEX could achieve a proven
to be optimal solution. When comparing algorithm variants A1 and A2, we see that
the first algorithm outperforms the second approach on average. We conclude, that
investing in a more detailed evaluation of penalties within the subproblem is not
beneficial as it is too time-consuming compared to the pure estimation approach
which repairs penalties in case they are observed.

The further analysis focuses on algorithmic variant “A1G”, as this method
seems to be the most promising among the tested variants. Table 8.7 directly
compares the proposed variant with CPLEX given the mentioned time limits. The
bold numbers indicate the best found solution up until the current time limit.
After 10 minutes of running time, A1G already found reasonable results for all
instances, while the commercial solver seems to have trouble finding solutions not
containing penalties for unserved positions (reflected by the high objective values).
This picture only changes slightly for problems with less complexity after running
times of 60 and 120 minutes. It is worth mentioning that without statistical testing,
we cannot assess which method works better for extensive running times of 10
hours. However, from Table 8.7 we can see, that in those cases, where CPLEX is
better than A1G, the difference among the objective values is considerably smaller
than for the opposite cases where A1G performs better than the commercial solver.

Figure 8.3 gives further insight into the algorithmic performance of the proposed
heuristic A1G against CPLEX over time. Subfigure (a) contains a solution with
lower bound 0. This best solution was found by the heuristic method within a few
seconds, while CPLEX reaches this solution only after 470 minutes. The same lower
bound of 0 is visible also in Subfigure (b). However, this bound can be obtained by
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Instance Comp. Bound CPLEX A1R A1G A1S A2R A2G A2S
150-3-11500 450 0 1062 0 0 4 12 7 916
150-3-12000 450 0 123000 85 79 90 124 128 145
200-3-12000 600 0 153000 0 0 0 0 0 2115
200-3-12500 600 0 146085 0 0 0 0 0 2570
200-3-13000 600 0 149000 0 0 0 2 0 2261
200-3-13500 600 0 2879 36 23 50 117 88 70
300-2-15000 600 0 137007 116 131 131 756 642 1965
150-5-12000 750 0 1247720 0 0 2 4 0 2577
150-5-12500 750 0 30228 15 7 35 57 41 1521
250-3-13000 750 0 1147 0 0 0 0 0 1228
250-3-13500 750 0 14261 0 0 1 3 0 2076
250-3-14000 750 0 11116 29 10 28 136 36 47
250-3-14500 750 0 1978720 89 84 96 659 512 877
150-3-12500 450 343 120348 390 391 387 439 435 765
150-3-13000 450 735 125697 817 808 803 838 838 1762
200-3-14000 600 42 1573720 334 300 306 751 644 646
200-3-14500 600 791 153117 1099 1130 1053 1550 1541 2366
200-3-15000 600 1753 176055 2201 2221 2152 2580 2610 3318
300-2-15500 600 215 121035 665 697 715 1571 1228 2509
300-2-16000 600 805 20941 1355 1314 1338 2549 2305 5774
300-2-16500 600 1458 134321 2169 2177 2171 10326 5850 8817
300-2-17000 600 2353 2416720 3768 3809 4198 14908 14909 14489
150-5-13000 750 101 1247720 186 190 202 291 285 1219
150-5-13500 750 659 1247720 828 806 803 986 983 3341
150-5-14000 750 1512 1247720 1690 1678 1666 1790 1794 2151
150-5-14500 750 2438 1247720 2756 2786 2759 2874 2832 3698
250-3-15000 750 277 1978720 637 567 640 1445 1189 1255
250-3-15500 750 958 1978720 1299 1334 1336 2233 2078 2592

Table 8.3: Run time 10 minutes: Results of 28 instances with varying complexity.
“Bound” gives the best-known lower bound to the problem objective. “CPLEX”
gives results of exact optimization using MIP Solver CPLEX. Columns “A1R” to
“A2S” give average results of 16 random replications for each proposed method.
Bold numbers represent the best solution per line.
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Instance Comp. Bound CPLEX A1R A1G A1S A2R A2G A2S
150-3-11500 450 0 0 0 0 0 0 0 916
150-3-12000 450 0 15 65 65 76 98 107 120
200-3-12000 600 0 0 0 0 0 0 0 1990
200-3-12500 600 0 3013 0 0 0 0 0 2570
200-3-13000 600 0 1430 0 0 0 0 0 2261
200-3-13500 600 0 263 18 13 30 38 34 45
300-2-15000 600 0 2365 73 79 92 647 501 1822
150-5-12000 750 0 1645 0 0 0 0 0 2577
150-5-12500 750 0 363 3 0 17 22 13 1520
250-3-13000 750 0 155 0 0 0 0 0 1224
250-3-13500 750 0 489 0 0 0 1 0 2076
250-3-14000 750 0 7432 16 3 11 41 11 35
250-3-14500 750 0 8198 63 58 79 536 389 473
150-3-12500 450 343 374 376 378 376 418 414 758
150-3-13000 450 735 863 778 786 779 815 814 1157
200-3-14000 600 42 16567 273 255 273 627 563 605
200-3-14500 600 791 12921 1008 1004 983 1444 1384 1448
200-3-15000 600 1753 18418 2018 2029 2008 2440 2434 2764
300-2-15500 600 215 12849 578 565 589 1242 1089 1180
300-2-16000 600 805 5271 1203 1191 1201 2062 1836 2322
300-2-16500 600 1458 12697 1947 2007 1921 3073 2761 5293
300-2-17000 600 2353 64057 3005 2970 2961 9283 7325 14071
150-5-13000 750 101 20338 169 162 313 243 250 678
150-5-13500 750 659 242377 748 750 740 918 913 2319
150-5-14000 750 1512 253664 1641 1633 1616 1743 1729 1808
150-5-14500 750 2438 109672 2674 2681 2644 2732 2743 3487
250-3-15000 750 277 5820 552 513 555 1172 1052 1202
250-3-15500 750 958 45195 1229 1202 1244 2005 1866 2012

Table 8.4: Run time 60 minutes: Results of 28 instances with varying complexity.
“Bound” gives the best-known lower bound to the problem objective. “CPLEX”
gives results of exact optimization using MIP Solver CPLEX. Columns “A1R” to
“A2S” give average results of 16 random replications for each proposed method.
Bold numbers represent the best solution per line.



8.2. Computational Results 139

Instance Comp. Bound CPLEX A1R A1G A1S A2R A2G A2S
150-3-11500 450 0 0 0 0 0 0 0 916
150-3-12000 450 0 15 62 55 69 89 93 114
200-3-12000 600 0 0 0 0 0 0 0 1990
200-3-12500 600 0 0 0 0 0 0 0 2570
200-3-13000 600 0 47 0 0 0 0 0 2261
200-3-13500 600 0 109 17 9 24 32 20 42
300-2-15000 600 0 0 67 68 84 593 463 524
150-5-12000 750 0 0 0 0 0 0 0 2577
150-5-12500 750 0 0 0 0 14 15 7 1520
250-3-13000 750 0 0 0 0 0 0 0 1161
250-3-13500 750 0 96 0 0 0 1 0 2076
250-3-14000 750 0 7432 13 1 8 36 7 30
250-3-14500 750 0 1382 53 51 70 493 375 428
150-3-12500 450 343 363 372 374 372 413 409 430
150-3-13000 450 735 836 776 782 773 810 813 825
200-3-14000 600 42 1038 256 248 256 580 527 586
200-3-14500 600 791 977 993 985 968 1394 1358 1421
200-3-15000 600 1753 18418 1986 1996 1998 2409 2366 2755
300-2-15500 600 215 2688 547 550 559 1212 1052 1126
300-2-16000 600 805 1375 1171 1174 1194 1992 1774 1886
300-2-16500 600 1458 2118 1905 1931 1888 2960 2734 3263
300-2-17000 600 2353 5618 2913 2891 2873 6912 5325 13683
150-5-13000 750 101 14311 162 161 163 229 221 411
150-5-13500 750 659 8861 744 745 722 904 898 2000
150-5-14000 750 1512 253664 1625 1619 1602 1729 1726 1786
150-5-14500 750 2438 109672 2655 2651 2618 2707 2730 3285
250-3-15000 750 277 1492 507 506 535 1128 1022 1153
250-3-15500 750 958 16433 1209 1188 1231 1971 1818 1984

Table 8.5: Run time 2 hours: Results of 28 instances with varying complexity.
“Bound” gives the best-known lower bound to the problem objective. “CPLEX”
gives results of exact optimization using MIP Solver CPLEX. Columns “A1R” to
“A2S” give average results of 16 random replications for each proposed method.
Bold numbers represent the best solution per line.
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Instance Comp. Bound CPLEX A1R A1G A1S A2R A2G A2S
150-3-11500 450 0 0 0 0 0 0 0 916
150-3-12000 450 0 15 48 49 59 76 76 106
200-3-12000 600 0 0 0 0 0 0 0 1600
200-3-12500 600 0 0 0 0 0 0 0 2453
200-3-13000 600 0 0 0 0 0 0 0 2261
200-3-13500 600 0 109 8 3 14 21 9 40
300-2-15000 600 0 0 43 50 65 495 404 449
150-5-12000 750 0 0 0 0 0 0 0 2577
150-5-12500 750 0 0 0 0 10 1 0 1520
250-3-13000 750 0 0 0 0 0 0 0 1161
250-3-13500 750 0 0 0 0 0 1 0 1945
250-3-14000 750 0 45 5 0 4 19 2 28
250-3-14500 750 0 28 40 34 55 404 323 390
150-3-12500 450 343 360 367 368 367 402 400 411
150-3-13000 450 735 740 771 770 767 802 799 813
200-3-14000 600 42 311 226 226 240 514 470 539
200-3-14500 600 791 904 969 959 940 1326 1284 1370
200-3-15000 600 1753 2205 1951 1956 1953 2316 2284 2394
300-2-15500 600 215 462 507 505 532 1097 997 1064
300-2-16000 600 805 1046 1133 1129 1161 1819 1674 1818
300-2-16500 600 1458 1924 1840 1825 1839 2806 2584 2638
300-2-17000 600 2353 2640 2819 2781 2756 5130 4040 13463
150-5-13000 750 101 267 146 149 151 200 191 394
150-5-13500 750 659 689 729 720 704 861 860 953
150-5-14000 750 1512 1519 1588 1603 1579 1692 1680 1745
150-5-14500 750 2438 2504 2607 2605 2583 2659 2683 2721
250-3-15000 750 277 1068 487 481 507 1052 948 1036
250-3-15500 750 958 1638 1183 1161 1197 1854 1763 1877

Table 8.6: Run time 10 hours: Results of 28 instances with varying complexity.
“Bound” gives the best-known lower bound to the problem objective. “CPLEX”
gives results of exact optimization using MIP Solver CPLEX. Columns “A1R” to
“A2S” give average results of 16 random replications for each proposed method.
Bold numbers represent the best solution per line.
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10 minutes 60 minutes 2 hours 10 hours

Instance Comp. Bound CPLEX A1G CPLEX A1G CPLEX A1G CPLEX A1G

150-3-11500 450 0 1062 0 0 0 0 0 0 0
150-3-12000 450 0 123000 79 15 65 15 55 15 49
200-3-12000 600 0 153000 0 0 0 0 0 0 0
200-3-12500 600 0 146085 0 3013 0 0 0 0 0
200-3-13000 600 0 149000 0 1430 0 47 0 0 0
200-3-13500 600 0 2879 23 263 13 109 9 109 3
300-2-15000 600 0 137007 131 2365 79 0 68 0 50
150-5-12000 750 0 1247720 0 1645 0 0 0 0 0
150-5-12500 750 0 30228 7 363 0 0 0 0 0
250-3-13000 750 0 1147 0 155 0 0 0 0 0
250-3-13500 750 0 14261 0 489 0 96 0 0 0
250-3-14000 750 0 11116 10 7432 3 7432 1 45 0
250-3-14500 750 0 1978720 84 8198 58 1382 51 28 34

150-3-12500 450 343 120348 391 374 378 363 374 360 368
150-3-13000 450 735 125697 808 863 786 836 782 740 770
200-3-14000 600 42 1573720 300 16567 255 1038 248 311 226
200-3-14500 600 791 153117 1130 12921 1004 977 985 904 959
200-3-15000 600 1753 176055 2221 18418 2029 18418 1996 2205 1956
300-2-15500 600 215 121035 697 12849 565 2688 550 462 505
300-2-16000 600 805 20941 1314 5271 1191 1375 1174 1046 1129
300-2-16500 600 1458 134321 2177 12697 2007 2118 1931 1924 1825
300-2-17000 600 2353 2416720 3809 64057 2970 5618 2891 2640 2781
150-5-13000 750 101 1247720 190 20338 162 14311 161 267 149
150-5-13500 750 659 1247720 806 242377 750 8861 745 689 720
150-5-14000 750 1512 1247720 1678 253664 1633 253664 1619 1519 1603
150-5-14500 750 2438 1247720 2786 109672 2681 109672 2651 2504 2605
250-3-15000 750 277 1978720 567 5820 513 1492 506 1068 481
250-3-15500 750 958 1978720 1334 45195 1202 16433 1188 1638 1161

Table 8.7: Direct comparison of method A1G to CPLEX for 28 instances after
running times of 10 minutes, 60 minutes, 2 hours, and 10 hours. Columns “A1G”
give average results of 16 random replications of proposed approach A1G.
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Figure 8.3: Algorithmic performance of 16 runs of A1G (gray lines) and average
among those 16 runs (black line) compared to CPLEX performance (dashed line)
and the best-known lower bound (dotted line). Evolution of results for running
times between 0 and 600 minutes.

neither the heuristic nor the exact approach, with a clear advantage of the heuristic
method which reaches an acceptable objective level quite rapidly. Subfigure (c)
shows a slightly different picture: Even though the heuristic method outperforms
CPLEX during the first two hours, the commercial solver finds a superior objective
value to the average heuristic solution afterward. Subfigure (d) displays one more
instance for which the commercial solver is clearly not competitive to the proposed
solution approach, neither for shorter nor for longer running times.
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8.2.3 Statistical Tests
To assess the quality of the different approaches, we performed statistical tests. One-
sample Wilcoxon-Mann-Whitney (WMW) tests have been conducted for pairwise
comparing samples including 16 random runs of the heuristic algorithms to the
CPLEX results after multiple time steps (i.e., 10, 60, 120 and 600 minutes), see Table
8.8. Two-sample WMW tests were computed to contrast the heuristic approaches,
where we focus on the pair-wise comparison of the best found algorithm A1G to
the other mentioned approaches, as shown in Table 8.9. The values in the tables
indicate the number of instances for which either method revealed significantly
better results than the other or there is no statistically significant difference among
the results of the compared methods given α = 0.05, indicated by “eq.”.

Table 8.8 once more confirms the superiority of the six heuristic approaches
compared to CPLEX specifically for low running times. For example, in case
running time is limited to 10 minutes, all instances can be solved significantly
better using algorithmic variants A1G, A1R, A1S, A2G, and A2R. For variant A2S
this holds at least for 26 out of the 28 tested instances. Even for larger running
times, algorithm variants A1 outperform the commercial solver in 8 instances.

Finally, the statistical tests comparing variant A1G to the other tested ap-
proaches strongly supports the theory of this approach being the best among the
tested heuristic algorithms. While the tests reveal that A1G and A1R perform
equally well on many instances (23 to 25 instances, depending on the running time),
A1G approaches between two and five instances significantly better than A1R. The
opposite is only true for one single instance. When comparing A1G to the other
variants, results are even more considerable in favor of A1G, as shown in Table 8.9.
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A1G vs. CPLEX A1R vs. CPLEX A1S vs. CPLEX
time A1G eq. CPLEX A1R eq. CPLEX A1S eq. CPLEX
10 28 0 0 28 0 0 28 0 0
60 24 2 2 24 3 1 24 3 1
120 18 7 3 18 6 4 18 6 4
600 8 9 11 8 8 12 8 7 13

A2G vs. CPLEX A2R vs. CPLEX A2S vs. CPLEX
time A2G eq. CPLEX A2R eq. CPLEX A2S eq. CPLEX
10 28 0 0 28 0 0 26 2 0
60 24 2 2 24 2 2 18 4 6
120 15 6 7 15 5 8 12 1 15
600 4 8 16 3 9 16 2 2 24

Table 8.8: Results of one-sample Wilcoxon-Mann-Whitney tests of the heuristic
variants A1G, A1R, A1S, A2G, A2R, and A2S versus CPLEX. 28 instances with
16 random replications of the heuristic algorithm are tested against the best found
intermediate solution by CPLEX after limited running time. Values indicate
the number of instances falling into one of the three categories: (1) Heuristic is
significantly better (method abbreviation as column header), (2) no significant
difference among the results of the heuristics and CPLEX (“eq.”), (3) CPLEX is
performing significantly better (“CPLEX”).

A1G vs. A1R A1G vs. A1S A1G vs. A2G A1G vs. A2R A1G vs. A2S
time A1G eq. A1R A1G eq. A1S A1G eq. A2G A1G eq. A2R A1G eq. A2S
10 4 24 0 6 21 1 21 7 0 23 5 0 28 0 0
60 2 25 1 7 18 3 21 7 0 21 7 0 28 0 0
120 2 25 1 7 17 4 21 7 0 21 7 0 28 0 0
600 4 23 1 10 14 4 19 9 0 20 8 0 28 0 0

Table 8.9: Results of two-sample Wilcoxon-Mann-Whitney tests of the best per-
forming heuristic variant A1G versus the other proposed variants A1R, A1S, A2G,
A2R, and A2S. 28 instances with 16 random replications of each heuristic algorithm
are tested. Values indicate the number of instances falling into one of the three
categories: (1) A1G is significantly better (“A1G”), (2) no significant difference
between A1G and the other method (“eq.”), (3) the heuristic method tested against
is significantly better (method abbreviation as column header).



Chapter 9

Conclusions to Part II

The integrated activity selection and staff scheduling problem is a highly complex
optimization problem that for example arises for blood donation services, that need
to select activities to take place from a set of potential activities on various eligible
days and then assign skilled employees to the chosen activity-day combinations. In
realizing that solving the corresponding MIP for real-world inspired instances is
inefficient and time-consuming, we developed a problem decomposition approach,
where the master problem is solved using local search techniques that make use of an
approximation of the lower bound to the subproblem. In contrast, the subproblem
is solved exactly using the MIP solver CPLEX. We summarize, that the proposed
algorithmic variants clearly outperform the exact solution approach of the full
problem especially for low running times. After a running time of 10 minutes, our
heuristic A1G returns for all 28 real-world inspired instances considerably lower
costs than the commercial solver. After running time of 10 hours, A1G could still
improve on the solution found by CPLEX in 8 instances and returns the same
solution in 9 instances. Hence, the proposed algorithm is still competitive even for
running times of multiple hours.

Future research on the combination of activity and staff scheduling will be
dedicated to accelerated techniques for solving the subproblem, for example by
enhancing the model or solving the subproblem using alternative approaches
like constraint programming or a fast metaheuristic. Additionally, we strive to
solve the full model optimally using exact decomposition approaches like Bender’s
decomposition.
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Chapter 10

Summary and Outlook

This work focuses on solution techniques for rich and real-world scheduling problems
in health care. We present two real-world scheduling problems: A patient appoint-
ment scheduling problem for patients receiving recurring radiotherapy treatments
and an integrated activity selection and staff scheduling problem that arises for
example in the case of blood donation services.

We address the radiotherapy patient appointment scheduling problem both
deterministically for a long-term planning horizon and stochastically for short-term
planning horizons. While the former approach mainly focuses on optimizing the
usage of the primary resource – the particle beam – the latter approach also
considers the minimization of patient waiting time as an optimization goal. We
formulate the problems mathematically, but reason from preliminary tests, that
solving the problems exactly is intractable. Hence, we develop (meta)heuristic
solution approaches, namely a genetic algorithm and an iterated local search
variant to search for good solutions in reasonable running times. We conclude that
a combination of the proposed approaches is beneficial in the long-term planning.

For the stochastic, short-term optimization we deploy a proactive-reactive
approach. Here, we strive to find baseline schedules which are robust to real-time
changes in activity durations. We introduce a buffer parameter as the percentile of
the activity duration distribution and find the optimal buffer parameters depending
on different objective function weights. Results of intensive computational tests
indicate, that adding buffers to the planned activity durations is highly beneficial in
terms of minimizing patient waiting time and only slightly increase beam active time
(i.e., the second objective). We conclude that stochastic optimization strategies
are particularly beneficial in case of low time buffers. For larger buffer sizes, an
estimation-based variant of patient waiting time as well as the deterministic variant
of the algorithm both show comparable results.

We follow a similar methodological strategy when embracing the second real-
world problem. When formulating the problem mathematically and solving it
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using a commercial solver, we realize, that the running time to reach solutions
of reasonable quality is extensive. Hence, we develop heuristic decomposition
approaches which divide the problem into a master problem and a subproblem.
The former consists of the selection of activities to take place among a set of eligible
activities, the determination of the activity’s dates and the potential working days
of the employees. The subproblem then determines the assignment of employees to
activities and skills, given the master level decisions. As solving the subproblem is
time-consuming, we strive to find good quality master solutions applying a lower
bound estimation of the subproblem. Only in case we reach a good quality master
solution using a local search based strategy, we solve the subproblem using an
exact solver. Through computational tests on real-world inspired problem instances
we conclude, that our optimization algorithms clearly outperform the commercial
solver especially for low running times of a few minutes or a few hours. In the case
of increased running times, the best among the proposed algorithms still delivers
results comparable to those of the exact approach.

Scheduling problems in health care are highly interesting from a researcher’s
perspective. There exist multiple possibilities for future research on this topic.
Specifically, patient waiting time as an objective to scheduling problems has
not been addressed widely, while many authors point to the importance of low
patient waiting time for their recovery and well-being (e.g., Hall [2012]). The
general assumption of patients arriving for their appointments punctually is also
questionable. A comparable difficulty arises in case staff members call in sick and
have to be replaced by colleagues on duty in staff scheduling problems. Hence, a
future research might focus on the uncertainty of scheduling problems in health care,
where multiple different strategies can be applied, such as stochastic programming
or proactive/reactive scheduling.
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C. Garćıa-Mart́ınez, F. J. Rodriguez, and M. Lozano. Genetic Algorithms. In
R. Mart́ı, P. M. Pardalos, and M. G. C. Resende, editors, Handbook of Heuristics,
chapter 15, pages 431–464. Springer International Publishing, 1st edition, 2018.

Y. Gocgun. Simulation-based approximate policy iteration for dynamic resource-
constrained project scheduling. Health Care Management Science, 21(3):317–325,
2018. doi: 10.1007/s10729-016-9388-9.



152 Bibliography

D. Gupta and B. Denton. Appointment scheduling in health care: Challenges and
opportunities. IIE Transactions, 40:800–819, 2008.

W. J. Gutjahr and K. A. Froeschl. Project portfolio selection under uncertainty
with outsourcing opportunities. Flexible Services and Manufacturing Journal,
25:255–281, 2013. ISSN 03772217. doi: 10.1109/TEVC.2011.2132725.

R. Hall. Matching Healthcare Resources and Patient Needs. In R. Hall, editor,
Handbook of Healthcare System Scheduling, chapter 1, pages 1–9. Springer, New
York Dordrecht Heidelberg London, 1st edition, 2012.

E. Hans, G. Wullink, M. Van Houdenhoven, and G. Kazemier. Robust surgery
loading. European Journal of Operational Research, 185:1038–1050, 2008. doi:
10.1016/j.ejor.2006.08.022.

P. Hansen, N. Mladenovic, and J. A. Moreno Perez. Variable neighbourhood
search: methods and applications. 4OR, 6:319–360, 2008. ISSN 02545330. doi:
10.1007/s10479-009-0657-6.

P. Hansen, N. Mladenovic, J. Brimberg, and J. A. Moreno Perez. Variable Neigh-
borhood Search. In M. Gendreau and J.-Y. Potvin, editors, Handbook of Meta-
heuristics, chapter 3, pages 61–86. Springer, New York Dordrecht Heidelberg
London, 2nd edition, 2010.

C. Heimerl and R. Kolisch. Scheduling and staffing multiple projects with a multi-
skilled workforce. OR Spectrum, 32(2):343–368, 2010. ISSN 01716468. doi:
10.1007/s00291-009-0169-4.

V. Hemmelmayr, V. Schmid, and C. Blum. Variable neighbourhood search for
the variable sized bin packing problem. Computers and Operations Research,
39(5):1097–1108, 2012. ISSN 03050548. doi: 10.1016/j.cor.2011.07.003. URL
http://dx.doi.org/10.1016/j.cor.2011.07.003.

W. Herroelen and R. Leus. Project scheduling under uncertainty: Survey and
research potentials. European Journal of Operational Research, 165(2):289–306,
2005. ISSN 03772217. doi: 10.1016/j.ejor.2004.04.002.

P. A. Jensen and J. F. Bard. Operations Research Models and Methods. John Wiley
& Sohns, Inc., Hoboken, 2003.

A. A. Juan, J. Faulin, S. E. Grasman, M. Rabe, and G. Figueira. A review of
simheuristics: Extending metaheuristics to deal with stochastic combinatorial
optimization problems. Operations Research Perspectives, 2:62–72, 2015. ISSN
22147160. doi: 10.1016/j.orp.2015.03.001. URL http://dx.doi.org/10.1016/
j.orp.2015.03.001.



Bibliography 153

G. C. Kaandorp and G. Koole. Optimal outpatient appointment scheduling.
Health Care Management Science, 10(3):217–229, 2007. ISSN 13869620. doi:
10.1007/s10729-007-9015-x.

T. Kapamara and D. Petrovic. A heuristics and steepest hill climbing method to
scheduling radiotherapy patients. In Proceedings of the International Conference
on Operational Research Applied to Health Services (ORAHS), Catholic University
of Leuven, Leuven, Belgium, 2009.

T. Kapamara, K. Sheibani, O. Haas, D. Petrovic, and C. Reeves. A review of
scheduling problems in radiotherapy. In Proceedings of the International Control
Systems Engineering Conference (ICSE), pages 207–211, 2008.

B. Kemper, C. A. J. Klaassen, and M. Mandjes. Optimized appointment scheduling.
European Journal of Operational Research, 239(1):243–255, 2014. ISSN 03772217.
doi: 10.1016/j.ejor.2014.05.027. URL http://dx.doi.org/10.1016/j.ejor.
2014.05.027.

M. King. Statistics for process control engineers: A practical approach. Wiley, 2017.
ISBN 9781119383536. doi: 10.1002/9781119383536.

K. J. Klassen and R. Yoogalingam. Improving performance in outpatient ap-
pointment services with a simulation optimization approach. Production
and Operations Management, 18(4):447–458, 2009. ISSN 10591478. doi:
10.1111/j.1937-5956.2009.01021.x.

A. J. Kleywegt, A. Shapiro, and T. Homem-de Mello. The sample average approxi-
mation method for stochastic discrete optimization. SIAM Journal on Optimiza-
tion, 12(2):479–502, 2002. ISSN 1052-6234. doi: 10.1137/S1052623499363220.
URL http://epubs.siam.org/doi/10.1137/S1052623499363220.

P. M. Koeleman and G. M. Koole. Optimal outpatient appointment scheduling with
emergency arrivals and general service times. IIE Transactions on Healthcare
Systems Engineering, 2(1):14–30, 2012. ISSN 19488319. doi: 10.1080/19488300.
2012.665154.

R. Kolisch and C. Heimerl. An Efficient Metaheuristic for Integrated Scheduling
and Staffing IT Projects Based on a Generalized Minimum Cost Flow Network.
Naval Research Logistics, 59(2):111–127, 2012. doi: 10.1002/nav.

A. Legrain, M. A. Fortin, N. Lahrichi, and L. M. Rousseau. Online stochastic
optimization of radiotherapy patient scheduling. Health Care Management
Science, 18:110–123, 2015.



154 Bibliography

P. Leite-Rocha. Novel approaches to radiotherapy treatment scheduling. PhD thesis,
University of Nottingham, 2011.

E. Lopez. Healthcare supply chains are shifting as cost pres-
sure rise, 2017. URL https://www.supplychaindive.com/news/
hospital-supply-chain-cost-pressure-change/512721/. Accessed
2019-01-21.

H. R. Lourenço, O. C. Martin, and T. Stützle. Iterated Local Search: Framework
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A. Sauré, J. Patrick, S. Tyldesley, and M. L. Puterman. Dynamic multi-appointment
patient scheduling for radiation therapy. European Journal of Operational
Research, 223:573–584, 2012.

P. Smet, A. T. Ernst, and G. Van den Berghe. Heuristic decomposition approaches
for an integrated task scheduling and personnel rostering problem. Computers
and Operation Research, 76:60–72, 2016. ISSN 0305-0548. doi: 10.1016/j.cor.
2016.05.016. URL http://dx.doi.org/10.1016/j.cor.2016.05.016.

B. W. Steward and C. P. Wild. World Cancer Report 2014. Technical report,
World Health Organization, International Agency for Research on Cancer, 2014.
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