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Abstract
In recent years, the investigation of impurities in solids and strong correlation effects
that appear in such systems are of great interest in computational material science.
Therefore, this work focuses on the full configuration interaction method (FCI) and
its implementation. The full configuration interaction method is probably the most
interesting correlation consistent method, because it is exact within a given basis
set. Although conceptually a rather simple method, FCI scales exponentially with
the number of orbitals and number of electrons. This limitation thwarted the
further developments of full configuration interaction until the full configuration
quantum Monte Carlo method appeared (FCIQMC). FCIQMC has enabled
calculations of the CI wave function on substantially larger systems than it was
possible with standard methods based on iterative diagonalization procedures. The
implementation of both full configuration interaction methods will be the main focus
of this work. The prerequisite for CI calculation is the implementation of one- and
two-electron integrals over Gaussian basis and the Hartree-Fock method. In the end,
the implemented methods will be adjusted to be used with VASP directly. The code
will be applied for standard molecular systems and one application in solids will be
presented. One hopes that in the future the code will be used as impurity solver in
dynamical mean field theory (DMFT) or density matrix embedding theory (DMET).

Zusammenfassung
In den letzten Jahren spielt die Untersuchung von Verunreinigungen in Feststoffen
sowie das Studium von starken Korrelationseffekten, die in solchen Systemen
auftreten, eine große Rolle in den rechnergestützten Materialwissenschaften. Diese
Arbeit konzentriert sich auf die Methode der vollständigne
Konfigurationsinteraktion (FCI) und deren Implementierung. Die Methode der
vollständigen Konfigurationsinteraktion ist wahrscheinlich die interessanteste
korrelationskonsistente Methode, da sie innerhalb eines gegebenen Basissatzes exakt
ist. Obwohl konzeptionell eine eher einfache Methode, skaliert FCI exponentiell mit
der Anzahl der Orbitale und der Anzahl der Elektronen. Diese Einschränkung
verhinderte die Weiterentwicklung der vollständigen Konfigurationsinteraktion, bis
die vollständige Konfigurationsinteraktions quantum Monte Carlo-Methode
(FCIQMC) erschien. FCIQMC hat die Berechnungen der CI-Wellenfunktion für
wesentlich größere Systeme ermöglicht, als es mit Standardmethoden auf Grundlage
von iterativen Diagonalisierungsverfahren möglich war. Die Implementierung beider
Methoden steht im Mittelpunkt dieser Arbeit. Voraussetzung für die CI-Berechnung
ist die Implementierung von Ein- und Zweielektronenintegralen in der Gaußschen
Basis sowie die Implementierung der Hartree-Fock Methode. Schlußendlich sollen
die implementierten Methoden so angepasst werden, dass sie direkt in VASP
verwendet werden können. Hier wird der Code für Molekularsysteme sowie auf
einfache Feststoffe angewendet. Man hofft, dass der Code in Zukunft als Impurity
solver in DMFT und DMET Methoden verwendet werden kann.
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Chapter 1

Introduction

The concurrent development of quantum physics and supercomputers in 20th
century has enabled the appearance of computational methods that were capable to
solve the Schrödinger equation for many-body problems. Two well-known methods
were developed: on the one hand Hartree-Fock theory (Douglas Rayner Hartree and
Vladimir Fock) [3], suitable for atoms and molecular systems and on the other hand
Density Functional theory - DFT (Walter Kohn and Pierre Hohenberg) that was
more suitable for periodic structures. Altough DFT is in general computationally
quite cheap, it uses appropriate approximations to include exchange and correlation
contributions. On the other side, HF theory includes exact exchange effects, but it
neglects electron correlation contributions. At the same time, Hartree-Fock
calculations are much more expensive compared to DFT calculations.

The above mentioned methods are ”standard” calculations in electronic structure
theory, but for some materials, these calculations are simply not accurate enough.
In such systems, the correlation effects can not be neglected and if the correlation
energy is not included, the electronic structure calculations fail and they can not
predict real properties in such strongly correlated systems. Therefore, more accurate
methods, able to retrieve at least a fraction of exact correlation energy, are needed.
The most famous methods, capable of doing that are: Møller-Plesset perturbation
theory (MP), coupled-cluster approximation (CCA), configuration interaction (CI),
random-phase approximation (RPA), etc. The first three methods are based on
Hartree-Fock ground state calculations, while the latter three are more appropriate
for density functional background calculations. In this work, the Møller-Plesset
perturbation theory will be briefly discussed (see chapter 5), but most attention will
be given to CI calculations. While MP and CC theories are capable of retrieving
only a fraction of the correlation energy, the configuration interaction method is
exact within a given basis set. For this specific reason many scientists are interested
in CI calculations. At the same time, CI is very expensive and it is applicable only
for modest system sizes.

The main goal of this work is the implementation of standard CI calculation - direct
full configuration interaction (see chapter 6) and stochastic CI method - full
configuration interaction quantum Monte-Carlo (FCIQMC, see chapter 7) that is
capable of calculating correlation effects in some solids, too. The purpose of this
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1 – Introduction

thesis is to develop the code that can be used with VASP (Vienna ab initio
simulation package). VASP is density functional theory based code, but it was
mentioned that CI is a post Hartree-Fock method. The approach to overcome these
difficulties will be discussed in chapters 3,4.

1.1 Organization of the Work

In order to make this thesis more readable, a brief organization of work is presented
in this section. General background about the many-body Schrödinger equation is
presented in the beginning of the text. It is followed by the second quantization and
its application in occupation number basis. The Gaussian basis sets, used to obtain
solutions of the many-body problem, will be briefly presented in chapter 3. When
the basis sets have been introduced, the molecular integrals over Gaussian basis
functions will be evaluated. Because it is well-known that VASP and all other
density functional codes use plane waves instead of Gauss-like functions, the
extrapolation of the Hamiltonian matrix elements from VASP will be briefly
explained at the end of that chapter. Once all ingredients for the first electronic
structure calculation have been introduced, the theoretical background and practical
implementation of a closed-shell Hartree-Fock code will be presented in chapter 4.
How to obtain Hartree-Fock ground state using hybrid functionals in density
functional theory will be described at the end of the fourth chapter. The next step
is to include correlation effects in the current electronic structure calculation. In
chapter 5, probably the simplest way to do that is presented - Rayleigh-Schrödinger
perturbation theory and its descendant, Møller-Plesset perturbation theory. After
the MP theory is presented, the main chapters about configuration interaction will
be introduced. The classical implementation of CI, with iterative diagonalization
procedure, originally introduced by Roos and Siegbahn [29] and later developed by
Handy and Knowles [30–33] in 1980’s will be discussed in chapter 6. In 2009, the
new stochastic Monte Carlo-like CI calculation in the manner of diffuse Monte Carlo
method was proposed by Alavi and co-workers. The implementation of this
quantum Monte Carlo configuration interaction method and its extensions, initiator
quantum Monte Carlo configuration interaction method, will be explained in more
details in chapter 7.

All implementations and corresponding results will be presented at the end of each
section. For all implementations, the following calculations will be reported:

• Calculations on He atom for different basis sets;

• H2 molecule to study dissociation effects on different approximation levels;

• BeH2 as a multi nuclei system and H2O, if it is required. In the end, the
correlation effects of the Helium in fcc lattice will be studied on the CI level as
an extra example of the application to solids.
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Chapter 2

Many-Electron Wave Function and
Second Quantization

In this chapter, the basics of quantum physics needed for the understanding of
underlying physics is introduced. The structure of the many-body wave function
and corresponding Hamiltonian are considered. The concept of antisymmetry of the
N-electron wave function and Slater determinants are explained. The chapter begins
with a brief discussion of the many-body electronic problem and the most general
time-independent Schrödinger equation. After that, the first approximation, used in
all many-body electronic structure methods, known as Born-Oppenheimer
approximation is discussed. In the section 2.3 one-electron wave function - spatial
and spin orbitals are introduced and the way to construct N-electron wave function
from them (Hartree product and Slater determinant). The standard form of
one-electron and two-electron operators are given in section 2.5. A more elegant way
to express these operators in the sense of the second quantization is introduced in
section 2.7. The second quantization is one of the most important concepts that will
be used in all chapters of this work. Therefore, the familiarity with the concept will
be a prerequisite for understanding of this work.

2.1 Non-Relativistic Time-Independent

Schrödinger Equation

In the 20th century, all physicists were striving to solve the Schrödinger equation. It
was noticed very soon that only the smallest systems can be solved analytically (H
atom or quantum oscillator). For all other complex systems, a set of good
approximations is necessary to obtain solutions numerically. Let us begin with the
most general time-dependent form of the Schroödinger equation:

i~
∂Ψ

∂t
= ĤΨ, (2.1)

where Ψ denotes the wave function of the system and Ĥ is the corresponding
Hamiltonian operator of the given system. In the cases where the Hamiltonian of
the system depends only on spatial (and spin) coordinates, the whole wave function
can be factorized in spatial- and time-dependent parts. After this factorization, the

3



2 – Many-Electron Wave Function and Second Quantization

time-dependent Schrödinger equation decouples to the time-independent eigenvalue
problem

ĤΨ0 = EΨ0 (2.2)

and the time evolution of the previous stationary eigenvalue problem

Ψ(t) = e−iĤ(t−0)Ψ(t = 0) = Û(t, 0)Ψ0. (2.3)

For more detailed derivation of the time-independent Schrödinger equation, see [1].

Let us have a closer look at the Hamiltonian operator of the corresponding many-body
problem. Consider M nuclei with coordinates RA and N electrons with coordinates
ri. Denote further RAB = |RA −RB| as the distance between two nuclei A and B,
riA = |ri −RA| the distance between electron i and nuclei A and lastly the distance
between two electrons i and j as rij = |ri−rj|. After the notation has been introduced,
the whole Hamiltonian of the system in atomic units is

Ĥ =
M∑
A

− 1

2MA

∇2
A+

N∑
i

− 1

2mi

∇2
i +

M∑
A=1

M∑
B>A

ZAZB
RAB

+
N∑
i=1

N∑
j>i

1

rij
−

N∑
i=1

M∑
A=1

ZA
riA

, (2.4)

where ∇2
i are Laplace operators corresponding to i-th electron (same for ions), ZA is

the atomic number of the corresponding nucleus A, and MA and mi are nuclei and
electron mass, respectively. The first two terms describe kinetic energy of ions and
electrons, respectively. The next two terms correspond to the Coulomb repulsion
between positively charged ions and electrons, respectively. The last term describes
the attractive Coulomb interaction between ions and electrons. This can be
represented succinctly as

Ĥ = T̂N + T̂e + V̂N-N + V̂e-e + V̂N-e. (2.5)

The summation limits in the third and the fourth term of the equation (2.4) are limited
to B > A and j > i to avoid double counting because the order of the particles does
not play a significant role. In other words, interaction between i-th and j-th electron
is the same as interaction between j-th and i-th electron. Note that these restrictions
in limits of summations do not appear in the last term of the equation, because it is
not summed up by the same kind of particles.

2.2 The Born-Oppenheimer Approximation

After the total Hamiltonian operator of the many-body problem has been introduced
in the last section, the first approximation, used in all following electronic structure
problems, will be introduced. Consider the motion of N electrons in the space of
much more massive M positively charged ions. It is clear that electrons move much
faster than nuclei. Therefore, the equation (2.2) can be further decoupled to the
electronic part and nuclear part. It means that for each set of nuclear coordinates RA

the electronic problem can be solved separately involving only the set of electronic
coordinates ri. In other words, it can be said that electrons move in the fixed field ofM
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2 – Many-Electron Wave Function and Second Quantization

nuclei. This decoupling in Born-Oppenheimer adiabatic approximation is presented
by the following equations:

Ψ0({ri,RA}) = Ψel({ri}; {RA})×ΨN({RA})
Ĥel = T̂e + V̂e-e + V̂N-e

ĤN = T̂N + V̂N-N.

(2.6)

It has to be noted, before proceeding to the next step, that the electronic part of
the wave function depends on electronic coordinates directly and on nuclear positions
parametrically. It remains now to solve two Schrödinger equations of smaller size, one
for electrons and one for nuclei:

ĤelΨel = Eel({RA})Ψel

(ĤN + Eel({RA}))ΨN = EtotΨN,
(2.7)

where Eel denotes the energy of the electrons and Etot the total energy of the system.
In most cases, one is interested only in the electronic part of the Schrödinger equation
and the nuclear part is treated in the classical way by using Newton’s laws of motion.
In this picture, the exact total energy of a system (within the Born-Oppenheimer
approximation) can be calculated as

Etot = Eel({RA})) +
M∑
A=1

M∑
B>A

ZAZB
RAB

+
M∑
A=1

MA

2

(
ṘA

)2

= Eel + EN + TN. (2.8)

In this section, the Born-Oppenheimer approximation, introduced by Max Born and
J. Robert Oppenheimer is discussed only qualitatively. For its derivation and more
details, see [2].

2.3 One-Electron Wave Function - Spatial and

Spin Orbitals

The solutions of the one-electron Schrödinger equation are functions, known as
orbitals. If it is assumed that an orbital depends only on spatial coordinates, then
one calls it a spatial orbital, denoted as ψ(r). For one-electron systems, these
orbitals are defined as solutions of the corresponding Schrödinger equation (2.2)
with a one-electron Hamiltonian operator that contains the kinetic energy of that
electron and the potential energy. As a solution of the eigenvalue problem, the set of
spatial orbitals ψi forms an orthonormal set, i.e.

〈ψi|ψj〉 =

∫
d3r1d3r2 ψ

∗
i (r1)ψj(r2) = δij. (2.9)

This set is also complete, so that any function f(r) that depends only on spatial
coordinates, can be expanded in this basis. The term |ψi(r)|2 represents the
probability of finding an electron in the infinitesimally small volume element dr
about r. Detailed analysis of spatial orbitals will be given in chapter 3.
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2 – Many-Electron Wave Function and Second Quantization

To complete a description of an electronic wave function, the spin of the electron
must be added to the wave function. It is well known that the electron is a fermion
particle with a spin S = 1/2. That corresponds to two different spin states: spin up
(Ms = 1/2) and spin down (Ms = −1/2). These states are eigenstates of the spin
operators Ŝ2 and Ŝz. Therefore, two orthogonal functions α(ω) and β(ω) depend on
a new variable, the spin variable ω, are added with the following properties:

〈α|α〉 = 〈β|β〉 = 1

〈α|β〉 = 〈β|α〉 = 0.
(2.10)

Having spin functions defined, one can add this additional degree of freedom to the
description of the one-electron wave function to build the so-called spin orbitals.
Consider a system of P orthonormal spatial orbitals {ψi|i = 1, 2, ..., P}. One builds
the set of 2P spin orbitals from them in the following way:

χ2i−1(x) = ψi(r)α(ω)

χ2i(x) = ψi(r)β(ω)

}
for i = 1, 2, ..., P. (2.11)

Such a set of spin orbitals, where two electrons always share the same spatial orbital
and differ only by a spin function, is called restricted spin orbitals (more about this in
section 4.3). In the previous equation, a new variable x was introduced, which unifies
spatial coordinates and the spin variable:

x = (r, ω). (2.12)

It is important to note that if the set of spatial orbitals is orthonormal, then the set
of spin orbitals built from them is orthonormal, too. To avoid misunderstanding, the
notation |i〉 is completely identical to |χi〉 ≡ χi.

2.4 Many-Electron Wave Function - Slater

Determinants

Once the orbitals are introduced, an appropriate machinery is needed to describe a
system of N electrons. In general, a one-electron wave function can be chosen as
a linear combination of spatial orbitals. Analogously, the N -electron wave function
could be represented in the most general way as:

Ψ(x1,x2, · · · ,xN) =
N∑
i

N∑
j

· · · ci,j,···χi(x1)χj(x2) · · · , (2.13)

where ci,j,... denotes the N -dimensional array of expansion coefficients. However, well
intuitive, but very approximate solution to represent an N -electron wave function
would be to build a product of one-electron spin orbitals. This form of the wave
function is called the Hartree product. For a system of N electrons, the Hartree
product is

ΨHP(x1,x2, · · · ,xN) = χi(x1)χj(x2) · · ·χk(xN). (2.14)

6



2 – Many-Electron Wave Function and Second Quantization

It can also be shown that a wave function is not only intuitive, but if the total
Hamiltonian is defined as the sum of one-electron Hamiltonians ĥ(i), whose eigenstates
are spatial orbitals χi(x) (formal definition of the one-electron Hamiltonian in section
2.5), then the Hartree product is the eigenstate of the total Hamiltonian operator with
an eigenvalue that corresponds to the sum of one-electron Hamiltonian eigenvalues
(for the derivation, see [3]):

Ĥ =
N∑
i=1

ĥ(i) =⇒ ĤΨHP =

(
N∑
i=1

εi

)
ΨHP. (2.15)

Although the Hartree product seems to be a natural way to express the N -electron
wave function, it suffers from two drawbacks, that can not be ignored. The first one
is related to the probability of finding electron one in dx1 around x1. It follows from
the definition of the Hartree product (2.14) that this probability is independent of the
positions of the other electrons in the system, although it is well known that these
electrons repel each other, avoiding the space regions occupied by other electrons.
Expressed in a formula:

|ΨHP|2 = |χi(x1)|2|χj(x2)|2 · · · |χk(xN)|2. (2.16)

In other words, this wave function is said to be uncorrelated. The second drawback
is the fact, that the Hartree product wave function ΨHP does not fulfill the Pauli
exclusion principle. Pauli principle tells that two identical Fermions can not occupy
the same quantum state within a system. For the wave function that means it must
be antisymmetric with respect to interchange of two particle coordinates. From the
definition of the Hartree product wave function (2.14), it is clear it is not
antisymmetric. In order to overcome this problem, a new form of the wave function,
namely the Slater determinant, is introduced. The Slater determinants lift up listed
drawbacks of the Hartree product wave function and they also fulfill the eigenvalue
problem, given in equation (2.15). The formal definition of the Slater determinant
wave function is

ΨSD(x1,x2 · · ·xN) = (N !)−1/2

∣∣∣∣∣∣∣∣∣
χi(x1) χj(x1) · · · χk(x1)
χi(x2) χj(x2) · · · χk(x2)

...
...

...
...

χi(xN) χj(xN) · · · χk(xN)

∣∣∣∣∣∣∣∣∣ , (2.17)

where the pre-factor (N !)−1/2 is a normalization factor. This wave function denotes
N electrons in N spin orbitals but without specification which electron in which
spin orbital. It has to be noted that each column of Slater determinant labels one
specific spin orbital and each row labels one electron. Note that the interchange of
two electrons means the interchange of two rows of a Slater determinant, which leads
to the sign change. This property automatically includes the fulfillment of the Pauli
exclusion principle. Summarized in the equation, it can be written as

ΨSD(· · ·xi · · ·xj · · · ) = −ΨSD(· · ·xj · · ·xi · · · ). (2.18)

In the case when two electron coordinates xi are identical, the determinant would
contain two identical rows and would be zero. This is also the consequence of the
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2 – Many-Electron Wave Function and Second Quantization

Pauli principle (two Fermions in the same quantum state are not allowed). The
notation for the Slater determinant given in equation (2.17) is not very legible, so the
new shorthand notation will be used in the rest of the work (the superscript ”SD”
for Slater determinants will be dropped out, because the many-electron wave function
will be always expressed in terms of Slater determinants, unless otherwise indicated)

Ψ(x1,x2 · · ·xN) = |χi(x1)χj(x2) · · ·χk(xN)〉 . (2.19)

This shorthand notation includes the normalization factor implicitly. The last
advantage of the Slater determinant mentioned in this section is the inclusion of
exchange effects. It means that the motion of electrons with parallel spin is
correlated, but the motion of electrons with different spin remains uncorrelated. For
more details, see [3].

For a given set of 2P spin orbitals, the simplest wave function describing an N -electron
system would be the single Slater determinant with N occupied spin orbitals χi (with
the lowest energies εi). The remaining 2P −N spin orbitals are called unoccupied or
virtual orbitals. Such a wave function will be denoted as |Ψ0〉 and can be represented
as

|Ψ0〉 = |χ1χ2 · · ·χaχb · · ·χN〉 . (2.20)

Additionally, the Hartree-Fock ground state wave function is depicted in figure 2.1-
a. This method is called Hartree-Fock approximation and the corresponding energy
value is the Harree-Fock ground state energy E0 = 〈Ψ0|Ĥ|Ψ0〉. More details about
the Hartree-Fock method will be presented in chapter 4. Clearly, Ψ0 is only one of
many possible Slater determinants that can be constructed from the set of 2P spin
orbitals. Adding more Slater Determinants to the description of the wave function
will make the approximation more accurate. A convenient way to introduce other
Slater determinants is to take one determinant as the reference state (Hartree-Fock
determinant for example) and the others can be described by how they differ from
this reference state. Therefore, they are marked as excited determinants. The most
interesting excitations are singly excited and doubly excited Slater determinants. In
a singly excited determinant, one occupied electron from spin orbital χa is promoted
to an unoccupied orbital χr. This excitation is depicted in figure 2.1-b and it can be
written as follows:

|Ψr
a〉 = |χ1χ2 · · ·χrχb · · ·χN〉 . (2.21)

In a double excitation, an additional electron from χb is promoted to the virtual orbital
χs. This situation is shown in figure 2.1-c. A double excitation can be represented as

|Ψrs
ab〉 = |χ1χ2 · · ·χrχs · · ·χN〉 . (2.22)

In conclusion, let us make the following convention: the Hartree-Fock ground state
wave function will be denoted as |Ψ0〉 and the exact wave function of the system as
|Φ0〉. This distinction will be very important for the next chapters.
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2 – Many-Electron Wave Function and Second Quantization

Figure 2.1: Three wave functions represented as single Slater determinants; a) Hartree-Fock ground
state wave function Ψ0; b) Singly excited Slater determinant Ψr

a - an electron from spin orbital χa
is promoted to χr; c) doubly excited Slater determinant Ψrs

ab - additionally the second electron from
spin orbital χb is promoted to the spin orbital χs.

2.5 One-Electron and Two-Electron Operators

Let us return to the electronic Hamiltonian operator defined in equation (2.6). It is a
convention to separate this Hamiltonian in one-electron and two-electron parts. The
first term contains contributions where only one electron arises, and the second term
contributions where two electrons appear explicitly. It can be concluded that two-
electron operator contains the interaction term between electrons (V̂e-e from equation
(2.5)). The one-electron operator Ô1 is simply the sum of one-electron Hamiltonians
ĥ(i) , known as core Hamiltonian. This core Hamiltonian includes the kinetic energy
of the corresponding electron and the potential energy with respect to fixed nuclei
(see section 2.2). Thus, it can be written as

Ô1 =
N∑
i=1

ĥ(i) ; ĥ(i) = −1

2
∇2
i −

M∑
A=1

r−1
iA . (2.23)

On the other hand, the two-electron operator contains only the repulsion between
electrons

Ô2 =
N∑
i=1

N∑
j>i

r−1
ij =

1

2

N∑
i 6=j

r−1
ij . (2.24)

Quantum chemists are interested in the evaluation of the matrix elements of one-
and two-electron operators in the basis of Slater determinants. These values can be
represented as 〈Ψ1|Ô|Ψ2〉, where Ô denote one- or two-electron operator.

9



2 – Many-Electron Wave Function and Second Quantization

One-Electron Integrals

The matrix elements of the core Hamiltonian ĥ in the basis of spin orbitals are called
one-electron integrals. These values are denoted as 〈i|ĥ|j〉. The formal definition of
these integrals is

〈i|ĥ|j〉 = 〈χi|ĥ|χj〉 = hij =

∫
dx1 χ

∗
i (x1)ĥ(r1)χj(x1), (2.25)

where the condition 〈i|ĥ|j〉 = 〈j|ĥ|i〉
∗

follows immediately. The total number of one-
electron integrals is equal to P 2, where P denotes the number of spatial orbitals (in
the case of the restricted set of spin orbitals). If the spin orbitals are additionally
real, all one-electron integrals are also real. In this case, the expression in the previous
equation becomes symmetrical, so that the following symmetry relation is valid

〈i|ĥ|j〉 = 〈j|ĥ|i〉 (2.26)

and the number of one-electron integrals that need to be calculated is halved. In
the case where the orbitals are complex, the complex conjugation appears in the
previous relation, but the number of integrals that should be calculated and stored
in memory is still halved (compared to the total number of one-electron integrals
P 2). The notation used here 〈i|ĥ|j〉 is denoted as Dirac bra-ket (physicist’s) notation.
Very often, the other notation, chemist’s notation, is used. For one-electron integrals,
it looks the same as the bra-ket notation, except that the square brackets are used
instead of angles: 〈i|ĥ|j〉 = [i|ĥ|j].
The reason why the other notation is introduced will be clear after the two-electron
integrals are defined. In the end, let us find expressions for one-electron integrals over
spatial orbitals. To do that the spin variable within a spin orbital must be integrated
out. This discussion will focus on the restricted spin orbitals defined in (2.11). Recall
the definition of the restricted spin orbitals and extend it to:

χ2i−1(x) ≡ ψi(x) = ψi(r)α(ω)

χ2i(x) ≡ ψ̄i(x) = ψi(r)β(ω)

}
i = 1, 2, ..., P. (2.27)

Because of the spin orthogonality (2.10) only the terms with the same spin (both with
or without bar) survive. It can be summarized as

〈i|ĥ|j〉 = 〈̄i|ĥ|j̄〉 = (i|ĥ|j)
〈i|ĥ|j̄〉 = 〈̄i|ĥ|j〉 = 0.

(2.28)

Note that the parentheses in previous equation involve the integration over spatial
orbitals only.

Two-Electron Integrals

Similar as for one-electron integrals, two-electron integrals are matrix elements of the
Coulomb operator r−1

ij in the basis of spin orbitals. The formal definition in bra-ket
notation looks like

〈ij|kl〉 =

∫
dx1dx2 χ

∗
i (x1)χ∗j(x2)r−1

12 χk(x1)χl(x2). (2.29)

10



2 – Many-Electron Wave Function and Second Quantization

From the last equation, it is clear that the following relation holds

〈ij|kl〉 = 〈kl|ij〉∗ . (2.30)

In the previous subsection it was mentioned that the chemist’s notation is of particular
importance for two-electron integrals. Using this notation, the two-electron integral
is defined as follows:

[ij|kl] =

∫
dx1dx2 χ

∗
i (x1)χj(x1)r−1

12 χ
∗
k(x2)χl(x2) = 〈ik|jl〉 . (2.31)

Because it occurs very often in the evaluation of matrix elements over Slater
determinants, the antisymmetric Coulomb integral is introduced:

〈ij||kl〉 = 〈ij|kl〉 − 〈ij|lk〉 = [ik|jl]− [il|jk]. (2.32)

The meaning of this expression will be clear after the Hartree-Fock approximation is
introduced. Until now, one can notice that this term satisfies identical conditions as
(2.30), i.e. :

〈ij||kl〉 = 〈kl||ij〉∗ . (2.33)

Assuming all spin orbitals are real functions, it can be concluded that the following
symmetry relations are fulfilled:

[ij|kl] = [kl|ij]
[ij|kl] = [ij|lk] = [ji|kl] = [ji|lk],

(2.34)

so that the number of two-electron integrals is reduced by factor 8. Additionally, if the
spin variable is integrated out, all terms with different spin on the same side of the
rectangular brackets will disappear. The remaining non-zero two-electron integrals
are

[ij|kl] = [̄ij̄|kl] = [ij|k̄l̄] = [̄ij̄|k̄l̄] = (ij|kl). (2.35)

The practical evaluation of one- and two-electron integrals in a given set of orbitals
will be discussed in the next chapter.

2.6 Slater-Condon Rules

Once the one- and two-electron integrals have been introduced, it remains to
establish the rules for the evaluation of the Hamiltonian matrix elements in a Slater
space. They are named Slater-Condon rules after Slater and Condon, respectively.
In this section, only the results will be shown. For the complete derivation, see [4,5].
For the corresponding Slater determinants, the notation defined in equations
(2.20-2.22) will be used. The reference determinant will be |Ψ0〉, determinant that
differs by one spin orbital from the reference state, i.e. single excitation |Ψr

a〉 and the
determinant that differs by two electrons, i.e. double excitation |Ψrs

ab〉.

• Let us begin with the identity operator - scalar product between two Slater
determinants:

〈Ψ0|Ψ0〉 = 1

〈Ψ0|Ψr
a〉 = 0

〈Ψ0|Ψrs
ab〉 = 0

(2.36)

11



2 – Many-Electron Wave Function and Second Quantization

• Operator Ô1 (2.23):

〈Ψ0|Ô1|Ψ0〉 =
N∑
i

〈i|ĥ|i〉 = 2

N/2∑
i

(i|ĥ|i)

〈Ψ0|Ô1|Ψr
a〉 = 〈a|ĥ|r〉 = (a|ĥ|r)
〈Ψ0|Ô1|Ψrs

ab〉 = 0

(2.37)

• Operator Ô2 (2.24):

〈Ψ0|Ô2|Ψ0〉 =
1

2

N∑
ij

〈ij||ij〉 =

N/2∑
i,j

2(ii|jj)− (ij|ji)

〈Ψ0|Ô2|Ψr
a〉 =

N∑
i

〈ai||ri〉 =

N/2∑
i

2(ar|ii)− (ai|ir)

〈Ψ0|Ô2|Ψrs
ab〉 = 〈ab||rs〉 = (ar|bs)− δσa,σb(as|br)

(2.38)

Notice, by the transition from spin orbitals to the spatial orbitals, the sum over spin
orbitals is symbolically split into

N∑
i=1

χi =

N/2∑
i=1

ψi +

N/2∑
i=1

ψ̄i. (2.39)

If the Slater determinants differ by more than two spin orbitals, all matrix elements
are zero. To apply Slater-Condon rules, the two determinants must be in the state of
maximum coincidence. That means, the spin orbitals that differ in two determinants
must have the same place in a Slater determinant. When the ascending order is used
for the Slater space, the total number of electron interchanges P , that have to be
done to get the state of the maximum coincidence, must be counted in the process
of the evaluation of the matrix elements. After the Slater-Condon rules are applied,
this matrix element is additionally multiplied by the factor −1P . This factor ensures
the maximum coincidence between two Slater determinants and it was mentioned
that the factor -1 arises each time when two spin orbitals within a determinant are
interchanged. In the second quantization formalism, this factor will be
automatically counted by anticommutation relation of creation and annihilation
operators. Therefore, let us discuss the second quantization in more details.

2.7 Second Quantization

Second quantization is a powerful formalism in which not only the observables are
represented by linear operators, but also the wave function itself. From the algebra of
those operators, the wave function fulfills the antisymmetry principle automatically.
For a strict mathematical derivation of the second quantization, see [6, 7]. In this
chapter the application of the second quantization in the many-body problem will be
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presented [8,9]. A Slater determinant can be represented in the spirit of the equation
(2.19) as

|Ψ〉 = |n1, n2, · · · , ni, · · ·n2P 〉 ,

{
ni = 1, if χi occupied

ni = 0, if χi unoccupied
(2.40)

where in comparison with (2.19) not only the occupied orbitals are labeled, but also
the unoccupied ones. The numbers ni are called occupation numbers and this
representation refers to occupation number representation. Note that this
representation allows states with a variable number of electrons. A very special case
is the state without any electrons, the so-called true vacuum state, denoted as:

|0〉 = |vac〉 = |01, 02, · · · , 02P 〉 , with 〈0|0〉 = 1. (2.41)

It raises the question, what kind of machinery is responsible for this variation of the
number of electrons in a wave function. The answer is creation and annihilation
operators.

2.7.1 Creation, Annihilation and Excitation Operators

The creation and annihilation operators play the central role in second quantization.
The wave function and all quantum mechanical operators can be represented in terms
of those operators. The creation operator â†i , as its name already implies, creates an
electron in spin orbital χi. The formal definition can be written as

â†i |n1, n2, · · · , ni, · · · , n2P 〉 = δni0Γi |n1, n2, · · · , 1i, · · · , n2P 〉 . (2.42)

From this definition it follows, the wave function survives only if the occupation
number ni satisfies ni = 0 before the creation operator acts on the wave function.
The factor Γi is defined as

Γi =
i−1∏
j=1

(−1)nj = (−1)
∑i−1
j=1nj. (2.43)

and it is equal to 1 if the number of electrons in spin orbitals with j < i is even, and
-1 if the number of electrons in these orbitals is odd. From this definition, it is clear
that each Slater determinant can be expressed as the pure product of the creation
operators:

|Ψ〉 =

(
2P∏
i=1

(â†i )
ni

)
|0〉 =

(
â†1

)n1
(
â†2

)n2

· · ·
(
â†2P

)n2P

|0〉 . (2.44)

Similarly, the annihilation operator âi destroys an electron in the orbital χi:

âi |n1, n2, · · · , ni, · · · , n2P 〉 = δni1Γi |n1, n2, · · · , 0i, · · · , n2P 〉 . (2.45)

Opposite to the creation operator, the annihilation operator âi destroys the state if
ni = 0, before the action of the operator. It is actually only the adjoint of the creation
operator

(â†i )
† = âi. (2.46)
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2 – Many-Electron Wave Function and Second Quantization

Additionally, the set of Fermion-anticommutation relations, that these operators
satisfy is

{â†i , â
†
j} = {âi, âj} = 0

{â†i , âj} = δij.
(2.47)

In the end of this subsection, one particularly important operator should be
mentioned. That operator is the excitation operator Êij defined as

Êij = â†i âj , with [Êij, Êkl] = δkjÊil − δilÊkj. (2.48)

The excitation operator is the number-conserving operator and in the case i = j, it
reduces to the occupation-number operator [8,9]. The meaning of this operator is the
promotion of the electron from the spin orbital χj to the spin orbital χi. According
to (2.48) the commutation relation disappears if all four indices differ.

2.7.2 Hamiltonian Operator in Second Quantization

Recall the definitions of one- and two-electron operators (2.23, 2.24) and rewrite them
in the spirit of second quantization in both notations (physicist’s and chemist’s one):

Ô1 =
2P∑
ij

〈i|ĥ|j〉 â†i âj =
2P∑
ij

[i|ĥ|j] â†i âj

Ô2 =
1

2

2P∑
ijkl

〈ij|kl〉 â†i â
†
j âlâk =

1

2

2P∑
ijkl

[ij|kl] â†i â
†
kâlâj,

(2.49)

where the sum runs over 2P spin orbitals. Of particular interest is to rewrite the
previous equations, so that the sum runs only over P spatial orbitals. In other words,
the equations must be integrated over spin variable. To achieve that, one uses the
sum splitting (2.39) and the fact that the creation and annihilation operators split
in two irreducible representations: one for spin up |α〉 and one for spin down |β〉.
According to this, the excitation operator (2.48) must be rewritten as

Êij = Êα
ij + Êβ

ij = â†iαâjα + â†iβâjβ. (2.50)

Although derivations of equations will be avoided in this work, this particular case
will be written out step by step, because the resulting Hamiltonian operator will
be the central concept for all CI calculations carried out in this thesis. With these
considerations, the one-electron operator (2.49) becomes:

Ô1 =
2P∑
ij

[i|ĥ|j]â†i âj =
P∑
ij

[i|ĥ|j]â†iαâjα+
P∑
ij

[i|ĥ|j̄]â†iαâjβ+
P∑
ij

[̄i|ĥ|j]â†iβâjα+
P∑
ij

[̄i|ĥ|j̄]â†iβâjβ.

(2.51)
Applying spin orthogonalization rules for one-electron integrals listed in (2.28):

Ô1 =
P∑
ij

(i|ĥ|j)
[
â†iαâjα + â†iβâjβ

]
=

P∑
ij

(i|ĥ|j)Êij. (2.52)
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2 – Many-Electron Wave Function and Second Quantization

Analogously, the two-electron operator can be rewritten in the same way. After spin
integration, only 4 of 16 two-electron integrals survive (2.35), and the two-electron
operator looks like:

Ô2 =
1

2

P∑
ijkl

[ij|kl]
[
â†iαâ

†
kαâlαâjα + â†iαâ

†
kβâlβâjα + â†iβâ

†
kαâlαâjβ + â†iβâ

†
kβâlβâjβ

]
.

(2.53)
Using anticommutation relations (2.47) to transfer annihilation operator labeled with
s to the second place, yields:

Ô2 =
1

2

P∑
ijkl

(ij|kl){â†iαâjαâ
†
kαâlα + â†iαâjαâ

†
kβâlβ + â†iβâjβâ

†
kαâlα + â†iβâjβâ

†
kβâlβ

−δjα,kαâ†iαâlα − δjα,kβâ
†
iαâlβ − δjβ,kαâ

†
iβâlα − δjβ,kβâ

†
iβâlβ}.

(2.54)

Note that the first four terms from the previous equation are the product of two
excitation operators (2.50). Additionally the delta-Kronecker symbols with different
spins reduce to 0, while δjα,kα and δjβ,kβ reduce to δjk. With these results, the two-
electron operator in the end becomes:

Ô2 =
1

2

P∑
ijkl

(ij|kl)
[
ÊijÊkl − δjkÊil

]
. (2.55)

For the full derivation of the previous equations, see [10]. In the end of this chapter,
the entire Hamiltonian for spatial orbitals in second quantization looks like:

Ĥ =
P∑
ij

(i|ĥ|j)Êij +
1

2

P∑
ijkl

(ij|kl)
[
ÊijÊkl − δjkÊil

]
. (2.56)
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Chapter 3

Gaussian Basis Sets and Molecular
Integral Evaluation

In the previous chapter, the basic quantum physics needed to solve the many-body
Schrödinger equation was presented. In the section 2.3, the properties of spatial and
spin orbitals were discussed. They are needed for the construction of the
many-electron wave function. The main goal of this chapter is to introduce the
initial set of orbitals - the basis set. These are simple mathematical functions that
satisfy basic conditions proposed by abstract orbitals defined in quantum physics. In
other words, the basis functions must have large amplitudes in regions where the
probability of finding an electron is high and they have to be normalized. Although
the exact solution of the Schrödinger equation requires an infinite basis set, in
reality, one is limited by computational resources to a rather small and finite, but
complete basis sets. Therefore, the basis set has to be chosen carefully, because the
basis set will determine the quality of the solution. The goal is to get the best
possible results with as few basis functions as possible.

The Slater-type orbitals (section 3.1) seem to be the most natural choice of the
atomic orbitals, because of their convergence behavior for r → ∞, that corresponds
to the exact solution of the Schrödinger equation for the hydrogen atom. However,
the evaluation of the molecular integrals (one- and two-electron integrals, see section
2.5) is a rather complex task, especially for Slater-type orbitals. The molecular
integrals for Slater orbitals can not be determined analytically and various numerical
methods must be applied. Francis S. Boys recommended the use of Gaussian basis
sets (Gaussian like functions, see section 3.3). The evaluation of molecular integrals
in this basis set is still tedious, but rather straightforward, as it will be seen in
section 3.4. The various types of Gaussian basis sets will be discussed here: STO-LG
basis sets - known as minimal basis sets, split-valence basis sets (X-YZG) and the
largest, but also the most important correlation-consistent basis sets with notation
(aug-)cc-PVXZ. At the end of the chapter, additionally, the delocalized plane waves
basis set, together with its localized counterpart - localized Wannier functions are
introduced. They are important for the extrapolation of Hartree-Fock Hamiltonian
from density-functional theory via hybrid functionals, implemented in VASP.

Before the discussion of various basis functions begins, it should be noted that each
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3 – Gaussian Basis Sets and Molecular Integral Evaluation

Table 3.1: The names of the most used shells in electronic structure theory calculations. The shell
is entirely determined by the quantum numbers n and l. The number of members within a shell is
2l + 1.

n l 2l + 1 Name

1 0 1 1s
2 0 1 2s
2 1 3 2p
3 2 5 3d
4 3 7 4f

basis function χnlm(r, θ, ϕ) can be split in a radial and angular part as

χnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ), (3.1)

where n, l,m are main quantum number, angular momentum quantum number and
magnetic quantum number, respectively. The term Rnl(r) denotes the radial part of
the function and Ylm(θ, ϕ) its angular part. The angular part has an identical form
for all basis functions and it is given by the spherical harmonics:

Ylm(θ, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Pm
l (cos θ)eimϕ, (3.2)

where Pm
l (x) are associated Legendre polynomials. The spherical harmonics are the

eigenfunctions of the angular momentum operators L̂2 and L̂z and they are described
by two quantum numbers - l and m. The restrictions obeyed by all three quantum
numbers are:

n > 0

0 ≤ l < n

|m| ≤ l.

(3.3)

From these restrictions, it can be concluded that for a particular l one can build 2l+1
different spherical harmonics and for each n one has n2 different orthogonal spherical
harmonics. All orbitals that have the same main and angular momentum quantum
number belong to one shell. The usual names of specific shells are given in table 3.1.
Note that the number of orbitals within a shell is 2l + 1.

3.1 Slater-Type Basis Functions

Slater-type functions (STOs) were introduced by Slater [12]. As it was mentioned at
the beginning of this chapter, the angular part of the Slater-type orbitals is given by
spherical harmonics Ylm(θ, ϕ), while the radial part is given by

φSTO
nlm (r, θ, ϕ) = Snlm(ζ) =

(2ζ)3/2√
Γ(2n+ 1)

(2ζr)n−1e−ζr Ylm(θ, ϕ), (3.4)

where ζ denotes a Slater exponent and Γ(n) is the gamma function, the extension of
the factorial. For a fixed ζ value, the set of Slater orbitals with different quantum
numbers builds a complete set of functions. The advantage of Slater orbitals lies in the
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fact that their radial part decays the same as the exact solutions of the Schrödinger
equation for the hydrogen atom. On the other side, the evaluation of molecular
integrals with Slater-type orbitals can not be done analytically. Therefore, various
numerical methods have been developed to solve this problem. Those numerical
methods are out of scope of this work. They are considered in more details in [13].
Because of these difficulties in evaluating the molecular integrals, Francis S. Boys
suggested the Gaussian orbitals. In the next section, they will be introduced, together
with a method for molecular integral evaluation.

Figure 3.1: The radial part of normalized 1s Slater (red) and Gaussian (black) orbitals.

3.2 Gaussian orbitals

Analogously to the the Slater-type orbitals, Gaussian orbitals (GTO-s) are defined as

φGTO
lm (r, θ, ϕ, α) = Glm(r, θ, ϕ, α) =

2(2α)3/4

π1/4

√
2l

(2l + 1)!!

(√
2αr

)l
exp(−αr2) Ylm(θ, ϕ),

(3.5)
where α is an orbital exponent and !! is a double factorial. However, for most
applications real spherical harmonics Slm are used instead of complex spherical
harmonics, and they are related to the spherical harmonics as:

Sl0 =

√
4π

2l + 1
Yl0

Slm + iSl,−m = (−1)m
√

8π

2l + 1
rlYlm , m > 0

(3.6)

so that the usual form of the Gaussian function is simply

φGTO
lm = NGTO

αlm Slm(x, y, z) exp(−αr2), (3.7)
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with a normalization constant NGTO
αlm . Gaussian orbitals defined in such a way are

called spherical-harmonic GTOs. For the purpose of the molecular integral evaluation,
the Cartesian and the Hermite Gaussians will be introduced in the section 3.4. The
radial shape of the Gaussian orbitals is not as good as one of the Slater orbitals. They
have the wrong decay for r →∞ (e−r

2
instead of e−r) and the wrong slope at r → 0

(zero slope instead of the finite one). In the figure 3.1 the radial shapes of φGTO
00 and

φSTO
100 for unity exponents are depicted. Therefore, to achieve the same accuracy, more

Gaussians than Slater orbitals must be included in the calculation. But this will be
compensated with much faster evaluation of molecular integrals. In order to recover
the radial shape of the Slater-type orbitals, a linear combination of Gaussians are used
to represent one basis function. This type of a basis function is called a contraction.
Let us discuss the most common used Gaussian basis sets and the way how they are
constructed in the next section.

3.3 Gaussian Basis Sets

Contracted Gaussian type orbitals are introduced in this section, followed by a short
overview of Gaussian basis sets.

3.3.1 Contracted Gaussians

In order to minimize the number of basis functions in a basis set, each basis function
will contain more primitive Gaussians. Such a basis function is called simply the
contraction. The contraction can be written as

φCGF
µ =

L∑
ν=1

dµνφ
GTO
ν , (3.8)

where L is a contraction length and dµν are contraction coefficients. The final basis
function is denoted as the contracted Gaussian function - CGF. In calculations, the
contraction of basis functions should be performed as soon as possible, to reduce the
number of one- and two-electron integrals.

3.3.2 STO-LG Basis set

The most commonly used basis set, whose functions are the contractions of a constant
length L (L ranges from 1 to 6) is called minimal basis set and is is denoted as STO-
LG. These basis sets are often used for Hartree-Fock type calculations. The first row
elements (H, He) are described only by one Gaussian contraction, while the second
row elements (Li-Ne) are described by 1s shell and 2sp shells (5 basis functions in
total). sp shell denotes one s and one p shell with the same main quantum number
and it will be considered as one single shell. For atoms from the third and fourth row,
new sp shells are added, but in the minimal basis set, the functions with l > 1 do not
appear. Commonly used basis sets from this group are STO-3G and STO-6G.
Each function of the STO-LG basis set is a contraction of L spherical-harmonics
Gaussian functions, that try to approximate a real STO function and its radial part.
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3 – Gaussian Basis Sets and Molecular Integral Evaluation

This is achieved by the least square minimization of the following integral

∆STO−LG
µ = ‖φSTO

µ (ζ = 1)−
L∑
ν=1

dµνφ
GTO
ν (αν)‖2. (3.9)

Note that in the previous equation only a Slater orbital with unity exponent ζ is
approximated by optimized contraction coefficients dµν and orbital exponents αν . In
order to approximate Slater orbitals with different ζ values, only the Gaussian orbital
exponents αν have to be scaled, while the contraction coefficients remain unchanged:

αν(ζ) = ζ2 αν(ζ = 1). (3.10)

It should be noted that all basis functions within a shell share the same exponent and
contraction coefficients, because of computational efficiency. The best contraction
coefficients and exponents, as well as the fact why the scaling factor ζ2 arises and
what are the scaling exponents ζ for various atoms, can be found in a paper by Pople
and Hehre [14], where STO-LG basis sets were originally introduced. The radial part
of a 1s basis function with a Slater exponent ζ = 1 in STO-3G and STO-6G basis sets
are represented together with a normalized 1s Slater-type orbital in the figure 3.2.
One can notice that visible improvement is achieved with STO-3G and STO-6G basis
sets in comparison with STO-1G. In the end, it should be mentioned, the STO-LG
basis sets are used only for molecules in the first-row.

Figure 3.2: The approximation of a normalized 1s Slater orbital with unity exponent ζ = 1 within
STO-LG basis sets for L = 1, 3, 6. Obviously, the drastic improvement is achieved with increasing
L.

3.3.3 Split-Valence Basis Sets

The split-valence basis set is the first improvement of the minimal basis set. It is
recognized here that valence electrons are responsible for most properties of
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molecules and therefore, one uses more basis functions to describe valence orbitals.
The inner shells contribute very little to the ground state energy and even less to
other chemical properties. Therefore, they are represented as a single contracted
Gaussian. Let us introduce the notation for split-valence basis sets - X-YZG. X
denotes the contraction length for the inner shell orbitals. The number of following
letters determines how many Gaussian basis functions are used to describe valence
orbitals. Each letter (Y,Z,...) is a contraction length of corresponding split valence
orbital. In the split-valence basis sets, Gaussian exponents are obtained by the
Hartree-Fock ground state solution of the corresponding atom, rather than by
approximation with a Slater-type orbitals. The usually used split-valence basis sets
were introduced by Pople and coworkers [15,16]. The well-known members from this
group of basis sets are: split-valence double-zeta basis sets ( 4-31G, 6-31G, 6-31G*,
6-31+G*) and split-valence triple-zeta basis sets (6-311G, 6-311G*, 6-311+G*). The
sign * (+) denotes additional polarization (diffuse) d or f valence orbitals on heavy
atoms and the sign **(++) adds also the polarization (diffuse) p orbitals on the
hydrogen atom. The polarization functions are added when the polarization effects
are present, for example the polarization of hydrogen electron density in the electric
field. They have higher angular momentum than occupied atomic-like orbitals, for
example 2p orbitals for the H atom or 3d orbitals for the second row elements. The
same applies for the diffuse functions, which are added in cases where valence
electrons play an important role for the ground state. As the name already implies,
these diffuse functions are ”wider” than normal Gaussians and they describe very
well the electrons that are far away from the nucleus.

3.3.4 Correlation Consistent Basis Sets

In order to recover a significant part of the correlation energy, virtual-space orbitals
have to be included in the description of the basis set to ensure more flexibility for
the construction of a wave function. The most of attention is directed to the
correlation of valence electrons, while the core electrons are treated as before with
single or double contracted Gaussian functions. The widest used
correlation-consistent basis sets were introduced by Dunning and coworkers [17–19],
and they are the so-called cc-pVXZ basis sets, where cc stands for
correlation-consistent, p for the polarized, V for valence and the number X is the
cardinal number. If X=2 then the basis set is of the same quality as double-zeta
basis set. For X=3, it is similar to the triple-zeta basis set and so on. The optimal
contraction coefficients and exponents are obtained from very accurate Hartree-Fock
calculations on atoms. The most commonly used basis sets in this group are:
cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pV5Z basis sets. As it was mentioned previously,
these basis sets are assigned to describe correlation effects in the valence shell. If a
more accurate solution is desired, basis sets could be further extended with
functions that describe core electron correlation effects. These are denoted as
cc-pCVXZ basis sets, where CV represents core-valence. On the other hand, each of
the previously mentioned basis sets can be further augmented with diffuse functions
that try to improve the description of outer valence-electron regions. In this way,
one obtains aug-cc-pVXZ and aug-cc-pCVXZ basis sets.
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In the end of this section, the table with the most used Gaussian basis sets is presented
(table 3.2). In this table, the name and the content of the basis set, as well as the
total number of orbitals within a basis set, can be found. The content shows what
are the primitve GTOs and how they are contracted. The simple example would be
three s GTOs contracted in one CGF function, denoted as (3s)/[1s] contraction.

Table 3.2: The most commonly used Gaussian basis sets. In the table the number of uncontracted
shells is given in parentheses, while the number of contracted shells is given in angle brackets. The
last number denotes the total number of basis functions within a corresponding basis set.

Name H-He Li-Ne
STO-3G (3s)/[1s]; 1 (6s, 3p)/[2s, 1p]; 5
STO-6G (6s)/[1s]; 1 (12s, 6p)/[2s, 1p]; 5
6-31G (4s)/[2s]; 2 (10s, 4p)/[3s, 2p]; 9
6-311G (5s)/[3s]; 3 (11s, 5p)/[4s, 3p]; 13

cc-pVDZ (4s, 1p)/[2s, 1p]; 5 (9s, 4p, 1d)/[3s, 2p, 1d]; 14
cc-pVTZ (5s, 2p, 1d)/[3s, 2p, 1d]; 14 (11s, 5p, 2d, 1f)/[4s, 3p, 2d, 1f ]; 30
cc-pvQZ (6s, 3p, 2d, 1f)/[4s, 3p, 2d, 1f ]; 32 (12s, 6p, 3d, 2f, 1g)/[5s, 4p, 3d, 2f, 1g]; 55

aug-cc-pVDZ (5s, 2p)/[3s, 2p]; 9 (10s, 5p, 2d)/[4s, 3p, 2d]; 23
aug-cc-pVTZ (6s, 3p, 2d)/[4s, 3p, 2d]; 23 (12s, 6p, 3d, 2f)/[5s, 4p, 3d, 2f ]; 46
aug-cc-pVQZ (7s, 4p, 3d, 2f)/[5s, 4p, 3d, 2f ]; 46 (13s, 7p, 4d, 3f, 2g)/[6s, 5p, 4d, 3f, 2g]; 80

3.4 Molecular Integral Evaluation

The last piece of the electronic-structure mosaic needed to be able to perform the first
calculations, is the evaluation of molecular integrals over a chosen basis set. As it was
discussed in the last section, the Gaussian orbitals turn out to be the best choice for
this problem. Short overview of Gaussian functions follows. Thereafter, the so-called
McMurchie-Davidson scheme for the analytic evaluation of molecular integrals will be
presented.

3.4.1 Primitive Cartesian Gaussians

The equation (3.7) rewritten in Cartesian coordinates gives the primitive Cartesian
Gauss functions (PGFs). The primitive Cartesian Gaussian with an exponent α
centered on nucleus at position A = (Ax,Ay,Az) is defined relative to the site A as

Gijk(r, α,A) = xiAy
j
Az

k
A exp(−αr2

A), (3.11)

where i, j, k are Cartesian quantum numbers. The total angular momentum is given
as a sum of Cartesian quantum numbers l = i+ j + k. The term rA stands for

rA = ‖rA‖ = ‖r−A‖ =

∣∣∣∣∣∣
∣∣∣∣∣∣
 x− Ax

y − Ay
z − Az

∣∣∣∣∣∣
∣∣∣∣∣∣ . (3.12)

xA, yA and zA are defined in the similar way. The number of primitive Gaussians
within a shell (they all share the same quantum number l and exponent α) is given
as

NC
l =

(l + 1)(l + 2)

2
. (3.13)
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The main advantage of primitive Cartesian functions is the fact that they are separable
in each coordinate:

Gijk(r, α,A) = Gi(x, α,Ax) ·Gj(y, α,Ay) ·Gk(z, α,Az) , with

Gi(x, α,Ax) = (x− Ax)
i exp(−α(x− Ax)

2) = xiA exp(−αx2
A).

(3.14)

The product of two Gaussian functions is often called overlap distribution function.
If the Cartesian Gaussians are used, then one obtains Cartesian overlap distributions:

Ωij = Gi(x, α,Ax) ·Gj(x, β,Bx). (3.15)

As it will later be seen, the possibility to factorize Cartesian Gaussian facilitates the
evaluation of integrals. In the following text, primitive Gaussians will be referred
as PGFs and denoted with Gijk, while the spherical-harmonics Gaussians are usually
labeled as GTOs (Gauss-type orbitals) and the notation Glm or φGTO

lm is used for them.
Additionally, if a Gaussian is labeled with CGF, thus it means, it is a contraction of
spherical-harmonics Gaussian functions.

3.4.2 Spherical-Harmonics Gaussians

The spherical-harmonics Gaussians are defined in (3.7). For their description, real
solid-harmonics Slm are used. Table 3.3 shows all solid-harmonics with l ≤ 3. From
the form of the real solid-harmonics, it is easy to conclude that they can be written
as a sum of Cartesian Gaussian functions. In a shell of GTOs, they all share the
same l. As it was mentioned at the beginning of this chapter, the shell described with
quantum numbers l and m contains

NS
l = 2l + 1 (3.16)

functions. Comparing this number with the number of Cartesian Gaussians, one can
notice that the condition NS

l ≤ NC
l is true for all l. This difference becomes even

more drastic with growing l. For that reason, the spherical-harmonics are always
a better choice than the primitive Cartesian functions, because a smaller number of
basis functions means a smaller number of molecular integrals, too. On the other side,
the evaluation of molecular integrals is much easier in terms of Cartesian Gasussians.
Therefore, the linear transformation from Cartesian to spherical-harmonics Gaussians
should be done as early as possible, but at least before the integrals are calculated.
To demonstrate this discrepancy, consider a single f shell. The number of different
two-electron integrals evaluated over spherical-harmonics is roughly 300, while this
number for the Cartesian Gaussians is 1250.

3.4.3 Gaussian Product Rule

The main advantage of Gaussians is the so-called Gaussian product rule, that applies
for spherical Gaussians (l = 0). It suggests that the product of two spherical Gaussians
can be written as one single Gauss function. Consider two one-dimensional spherical
Gaussians centered on sites A and B respectively. Using the Gaussian product rule,
it becomes:

exp(−αx2
A) exp(−βx2

B) = exp(−µX2
AB) exp(−px2

P), (3.17)
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Table 3.3: The real-valued solid harmonics for l ≤ 3 and |m| ≤ 3, where r2 = x2 + y2 + z2.

l
m

0 1 2 3

3 1
2

√
5
2 (x2 − 3y2)x

2 1
2

√
3(x2 − y2) 1

2

√
15(x2 − y2)z

1 x
√

3xz 1
2

√
3
2 (5z2 − r2)x

0 1 z 1
2 (3z2 − r2) 1

2 (5z2 − 3r2)y

-1 y
√

3yz 1
2

√
3
2 (5z2 − r2)y

-2
√

3xy
√

15xyz

-3 1
2

√
5
2 (3x2 − y2)y

where new exponents p , µ are introduced. They are defined as

p = α + β

1

µ
=

1

α
+

1

β
.

(3.18)

The center P of the new Gaussian can be found as

P =
αA + βB

p
. (3.19)

The term XAB in the first exponential factor on the right side is simply the x distance
between the two centers A and B. Therefore, this first exponential factor is only a
constant, because it does not depend on electronic coordinate x. It is usually called
pre-exponential factor and it is denoted as Kx

αβ.

3.4.4 Hermite Gaussians

The last step, before the discussion of the McMurchie-Davidson scheme for the
evaluation of integrals can begin, is to introduce the Hermite Gaussians. A Hermite
Gaussian centered on the site P with the orbital exponent p is given as

Λtuv(r, p,P) =

(
∂

∂Px

)t(
∂

∂Py

)u(
∂

∂Pz

)v
exp(−pr2

P). (3.20)

Similarly as Cartesian Gaussians, the Hermite Gaussians are separable, too:

Λtuv(r, p,P) = Λt(x, p,Px)Λu(y, p,Py)Λv(z, p,Pz) , where

Λt(x, p,Px) =

(
∂

∂Px

)t
exp(−px2

P).
(3.21)

The big advantage of Hermite Gaussian is the fact, that the integration over Hermite
Gaussian is very simple and it is non-zero only for t = 0∫ ∞

−∞
dx Λt(x) = δt0

√
π

p
. (3.22)

The Hermite Gaussians are used in McMurchie-Davidson scheme as expansion factors
(see section 3.4.5). Although it is possible to use Hermite Gaussians as the basis
function, they will be used only as intermediate states for the integral calculations
over the Cartesian Gaussians.
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3.4.5 McMurchie-Davidson Scheme

Introducing Hermite Gaussians, the McMurchie-Davidson scheme can be considered.
In this scheme, the Cartesian overlap distribution (3.15) is expanded in terms of
Hermite Gaussians. More details about this scheme can be found in [9, 20]. If one
is interested only in the evaluation of integrals over spherical Gaussians (l = 0), a
good implementation is given in [21]. In order to keep the notation as simple as
possible, three-dimensional Cartesian Gaussian will be denoted as Gα or Gβ, while
one-dimensional Cartesian Gaussians are given as Gi , Gj and so on. The following
notation will be used in this section:

Gα(r, α,A) = Gi(x, α,Ax) ·Gk(y, α,Ay) ·Gm(z, α,Az)

Gβ(r, β,B) = Gj(x, β,Bx) ·Gl(y, β,By) ·Gn(z, β,Bz)

Ωαβ = Gα ·Gβ = Ωij · Ωkl · Ωmn.

(3.23)

For the evaluation of the electronic Hamiltonian (2.23, 2.24), the kinetic energy
integrals Tαβ , one-electron attractive Coulomb integrals Vαβ and the two-electron
repulsive Coulomb integrals [GαGβ|GγGδ] = [αβ|γδ] need to be calculated. The sum

of the first two terms leads to the ordinary one-electron integrals 〈Gα|ĥ|Gβ〉 defined
in (2.25). Additionally, because the Gaussian orbitals do not form an orthonormal
set, the overlap integrals Sαβ = 〈Gα|Gβ〉 need to be calculated, too.

Overlap Integrals

Let us start with the simplest integrals. The overlap integral between two three-
dimensional Cartesian Gaussians is:

Sαβ = 〈Gα|Gβ〉 =

∫
IR3

d3r Ωαβ. (3.24)

Using the separation rule for Cartesian Gaussians ( 3.14, 3.15), the previous equation
can be rewritten as:

Sαβ = Sij · Skl · Smn , with

Sij =

∫ ∞
−∞

dx Ωij.
(3.25)

The Hermite Gaussians play the main role now, because the overlap distribution is
simply a Gaussian of the exponent i+ j and can be expanded as a linear combination
of Hermite Gaussians

Ωij =

i+j∑
t=0

Eij
t Λt. (3.26)

One obtains the expansion coefficients from McMurchie-Davidson recurrence relations,
but they will not be derived here:

E00
0 = Kx

αβ

Eij
t = 0 for t < 0 or t > i+ j

Ei+1,j
t =

1

2p
Eij
t−1 +XPAE

ij
t + (t+ 1)Eij

t+1

Ei,j+1
t =

1

2p
Eij
t−1 +XPBE

ij
t + (t+ 1)Eij

t+1.

(3.27)
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Inserting (3.26) in (3.25) and using the equation (3.22) gives the simple relation for
Sij

Sij =

∫
dx Ωij =

i+j∑
t=0

Eij
t

∫
dx Λt = Eij

0

√
π

p
. (3.28)

From the last equation, the total overlap between two three-dimensional Gaussians
can be written as follows:

Sαβ = Eij
0 E

kl
0 E

mn
0

(
π

p

)3/2

, (3.29)

where the coefficients Eij
0 , Ekl

0 , Emn
0 can be calculated from McMurchie-Davidson

recurrence relations (3.27). These three factors belong to two Cartesian Gaussians
with exponents α and β, so that the product of these factors can be written shortly
as Eαβ

000, giving the final relation

Sαβ = Eαβ
000

(
π

p

)3/2

. (3.30)

Kinetic Energy Integrals

Kinetic energy integrals are defined similarly to overlap integrals as follows:

Tαβ = 〈Gα| −
1

2
∇2|Gβ〉 . (3.31)

Using the fact that the Laplace operator can be written as a sum of second
derivatives over the Cartesian directions, one gets the following relation for kinetic
energy integrals

Tαβ = TijSklSmn + SijTklSmn + SijSklTmn, (3.32)

where Sij are overlap integrals defined in (3.28) and the derivation of the term Tij is
given in [9]. The result can be written in terms of overlap integrals as follows:

Tij = −2β2Si,j+2 + (2j + 1)βSij −
1

2
j(j + 1)Si,j−2. (3.33)

With these previous two equations, kinetic energy integrals can be very efficiently
calculated from overlap integrals.

One-Electron Coulomb Integrals

To describe electronic interaction with nuclei, one-electron Coulomb integrals are
needed. They are formally defined as

V C
αβ = 〈Gα|r̂−1

C |Gβ〉 =

∫
IR3

d3r Ωαβ(r)r−1
C , (3.34)

where C is the center of the nucleus. Equivalently, one-electron Coulomb integrals
could be defined over Hermite Gaussians and that leads to Vtuv:

V C
tuv =

∫
IR3

d3r Λtuv(r)r−1
C =

2π

p

(
∂

∂Px

)t(
∂

∂Py

)u(
∂

∂Pz

)v
F0(pR2

PC) =
2π

p
Rtuv(p,RPC),

(3.35)
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where the definition of Hermite Gaussians (3.20) is used. The function F0(x) is the
so-called Boys function of order 0, that will be discussed in next section 3.5. The
term RPC indicates the distance between nucleus site C and the center of the Hermite
Gaussian given by (3.19). Rtuv defined in this way, are known as Hermite Coulomb
integrals. Expanding the overlap distribution over the Hermite Gaussians in (3.34)
and using the definition of Hermite Coulomb integrals (3.35), one obtains

V C
αβ =

∫
IR3

d3r

i+j,k+l,m+n∑
tuv

Eαβ
tuvΛtuv(r)r−1

C =
2π

p

i+j,k+l,m+n∑
tuv

Eαβ
tuvRtuv(p,RPC). (3.36)

While the expansion coefficients Eαβ
tuv can be calculated with recurrence relations

(3.27), the Hermite Coulomb integrals Rtuv are still unknown. To be able to evaluate
them, the auxiliary integrals Rn

tuv are introduced by McMurchie and Davidson [20]

Rn
tuv(p,RPC) =

(
∂

∂Px

)t(
∂

∂Py

)u(
∂

∂Pz

)v
Rn

000(p,RPC) , with

Rn
000 = (−2p)nFn(pR2

PC).

(3.37)

In the previous equation, the term Fn(x) indicates the n-th Boys function (see section
3.5). They have also evaluated the recurrence relations for the calculations of Hermite
Coulomb integrals R0

tuv as a linear combination of the auxiliary integrals Rn
000. The

derivation of these recurrence relations can be found in the work of McMurchie and
Davidson [20] or the electronic structure book from Helgaker [9]. Here, only the final
results will be listed:

Rn
t+1,u,v(p,RPC) = tRn+1

t−1,u,v(p,RPC) +XPC Rn+1
t,u,v(p,RPC)

Rn
t,u+1,v(p,RPC) = uRn+1

t,u−1,v(p,RPC) + YPC Rn+1
t,u,v(p,RPC)

Rn
t,u,v+1(p,RPC) = vRn+1

t,u,v−1(p,RPC) + ZPC Rn+1
t,u,v(p,RPC)

Rn
000(p,RPC) = (−2p)nFn(pR2

PC)

Rn
tuv(p,RPC) = 0 if t, u, v < 0.

(3.38)

In order to get the total contribution to the one-electron Coulomb integrals, they
must be summed up over all nuclei centers, so that the entire one-electron Coulomb
integral is

Vαβ =
M∑
A=1

V CA
αβ =

2π

p

M∑
i=1

i+j,k+l,m+n∑
tuv

Eαβ
tuvRtuv(p,RPCA). (3.39)

Two-Electron Coulomb Integrals

In the end, it remains to explain the evaluation of two-electron Coulomb integrals.
They are defined as follows:

[αβ|γδ] =

∫
IR3

∫
IR3

d3r1d3r2
Ωαβ(r1)Ωγδ(r2)

r12

. (3.40)

Similarly as for one-electron Coulomb integrals, two-electron Coulomb integrals can
also be expanded in terms of Hermite Gaussians, but in this case with two Hermite
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Gaussians centered on two sites P and Q

Vtuv,τνφ =

∫
IR3

∫
IR3

d3r1d3r2
Λtuv(r1)Λτνφ(r2)

r12

. (3.41)

Using the properties of the Boys functions and the definition of the Hermite Gaussians
(3.20), the previous relation can be simplified and it leads to

Vtuv,τνφ = (−1)τ+ν+φ 2π5/2

pq
√
p+ q

(
∂

∂Px

)t+τ (
∂

∂Py

)u+ν (
∂

∂Pz

)v+φ

F0(pR2
PQ), (3.42)

where RPQ is the distance between the centers P and Q of Hermite Gaussians given
by the relation (3.19). Recognizing the definition of Hermite Coulomb integrals (3.35)
and using the expansion of Hermite Coulomb integrals, like in the equation (3.36) for
one-electron Coulomb integrals, a similar relation for two-electron Coulomb integrals
can be obtained:

[αβ|γδ] =
2π5/2

pq
√
p+ q

∑
tuv

Eαβ
tuv

∑
τνφ

(−1)τ+ν+φEγδ
τνφRt+τ,u+ν,v+φ(α,RPQ). (3.43)

From the last equation, it should be noted that two-electron Coulomb integrals (3.43)
can be calculated in the same manner as one-electron Coulomb integrals (3.36). To be
able to evaluate them, it is necessary to discuss how to obtain the set of Boys functions
Fn(x) needed for the evaluation of Hermite Coulomb integrals. As a summary of this
section, the whole McMurchie-Davidson procedure for the calculation of molecular
integrals is depicted on figure 3.3.

3.5 The Boys Functions

The Boys functions were introduced by S. F. Boys [22]. The n-th order Boys function
Fn(x) for x ≥ 0 is defined as

Fn(x) =

∫ 1

0

dt exp(−xt2)t2n. (3.44)

They are strictly decreasing positive functions with limits

0 < Fn(x) ≤ 1

2n+ 1
. (3.45)

Integrating the Boys functions by the part, one arrives to the following recurrence
relations that can be very useful for their evaluation. The upward recursion is given
as

Fn+1(x) =
(2n+ 1)Fn(x)− exp(−x)

2x
, (3.46)

and the downward recursion is

Fn(x) =
2xFn+1(x) + exp(−x)

2n+ 1
. (3.47)
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Figure 3.3: Representation of a Gaussian basis set and McMurchie-Davidson scheme for the
calculation of molecular integrals over Gaussians.

The upward recursion (3.46) suffers from numerical instability, because the
denominator can be very small, leading to singularities. On the other hand, the
downward recursion (3.47) is numerically very stable, but it requires the knowledge
of the Boys function of the highest order.

The zero-order Boys function can be related to the error function as:

F0(x) =

√
π

4

erf(
√
x)√
x

(3.48)

and it can be evaluated for arbitrary large or small x values. The error function is
the intrinsic FORTRAN function (ERF). Extremely useful is also the relation between
the incomplete gamma function and the n-th order Boys function:

Fn(x) =
γ(n+ 1

2
, x)

2xn+1/2
, where

γ(n, x) = Γ(n) ·
∫ x

0

dt exp(−t)tn−1.

(3.49)

Knowing the incomplete gamma function (there are various implementations of it in
FORTRAN), each Boys function can be calculated. However, the problem remains
for small or large x values, where the incomplete gamma function can not be
calculated. Since these values are necessary for the precise evaluation of molecular
integrals, additional approximations of the Boys functions for small and large x
values are needed. Accuracy of roughly 10−9 is needed to get the accuracy of 10−6 in
the calculation of molecular integrals. Especially the x values in the range
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x ∈ [10−9, 10] with the resolution 10−9 are needed to fulfill this accuracy condition.
For large x values, the integrand goes to zero, because of the exponential decay
(3.44). Thus, large value approximation is obtained by extending the integrals
limits:

Fn(x) ≈
∫ ∞

0

dt exp(−xt2)t2n =
Γ(n+ 1

2
)

2n+1
, for large x, (3.50)

where Γ(n) is the ordinary Gamma function, also an intrinsic FORTRAN function
(GAMMA). For small x values, on the other hand, the Boys function could be
approximated by a Taylor expansion around x = 0 as

Fn(x) =
∞∑
p=0

(−x)p

(2(n+ p)− 1)p!
for small x. (3.51)

The sum is truncated at p = 10 and with these two approximations, one obtains an
accuracy of the order 10−10 for regions x < 0.5 and x > 20.0 for the first 25 Boys
functions. The incomplete Gamma function covers the remaining region for all n
values between 0 and 24. Note that the highest order Boys function needed for the
evaluation of molecular integrals over s, p, d, f, g shells is of the order 24, so that the
desired accuracy of the molecular integrals is ensured.

3.6 Wannier Basis Set

Until now, only the basis sets for small systems like atoms and molecules were
considered. However, as it was mentioned at the beginning, the goal of this thesis is
to extend the CI calculation to the application in solids. For this purpose, a
localized basis set is needed, obtained from a set of delocalized eigenfunctions of a
crystalline Hamiltonian. From Bloch’s theorem [23], it is known that the
eigenfunctions of a Hamiltonian are the plane waves multiplied by the periodic
function u(r), with the same periodicity as a crystal lattice. These functions are
called Bloch waves:

ψk(r) = u(r) eik·r. (3.52)

Including the fact that there are many Bloch waves for the same wave vector k, the
new index n, the so-called band index, is introduced. In this way, one obtains a whole
set of delocalized Bloch waves ψnk. Wannier [24] has shown that the Fourier like
linear transformation of Bloch waves leads to a complete set of orthogonal functions,
called Wannier functions. One Wannier function [24–26] can be represented through
a Fourier series as

φnR(r) = φn(r−R) =
V

(2π)3

∫
BZ

d3k e−ik·Rψnk(r), (3.53)

with a formal back transformation:

ψnk(r) =
∑
R

eik·Rφnk(r), (3.54)

where BZ denotes the first Brillouin zone. The set of Wannier functions is orthogonal,
but it suffers from the fact that they are not uniquely defined. This arbitrariness
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comes from a k-dependent phase factor that in general can be written as a unitary
transformation U

(k)
mn. Its role is to mix N Bloch bands at wave vector k. Therefore,

the set of general Wannier functions is given as follows:

φnR(r) =
V

(2π)3

∫
BZ

d3k
N∑
m=1

U (k)
mne

−ik·Rψmk(r). (3.55)

Choosing a quadratic spread as a localization criterion (see [25, 26]), a unique set of
Wannier basis functions is obtained by minimizing this quadratic spread. Such a
Wannier basis set is referred to as maximally localized Wannier functions. The
standard implementation of MLWFs was developed by Marzari, Vanderbilt and
coworkers. The program is called WANNIER90 and VASP provides an interface to
WANNIER90.

3.7 Implementation Details - Calculation and

Storing of Molecular Integrals

In this short section, it will be shown that not all integrals have to be calculated
explicitly. Because of simplicity, all integrals are stored in arrays - one-electron
integrals in a two-dimensional array and two-electron integrals in a four-dimensional
arrays. Having 2P spin orbitals, the calculation contains P 2 one-electron and P 4

two-electron integrals (for restricted set of orbitals). For real-valued orbitals (such as
Gaussians or Hartree-Fock) the symmetry rules (2.26,2.34) could be applied. With
this rule, the calculation of one-electron integrals is reduced by factor 2, and the
calculation of two-electron integrals is reduced by factor 8. All these integrals are
calculated in nested loops, and to use symmetry rules, one needs only to keep track
of the limits of the summations. In other words, if two summation indices i and j
can interchange, then the restriction i < j can be applied. For two-electron integrals,
the situation becomes more complicated, but still the same rules apply. For more
details, see [21]. A short listing of the FORTRAN pseudocode for the efficient
calculations of molecular integrals is shown in the listing 3.1.
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1 DO j = 1, P
2 DO i = 1, j − 1
3 CALC(h(i, j))
4 ENDDO
5 ENDDO
6

7 ! use symmetry [ i | h | j ] = [ j | h | i ]
8 h = h + TRANSPOSE(h)
9

10 ! add d iagona l elements , too
11 DO j = 1, P
12 CALC(h(j, j))
13 ENDDO
14

1 DO l = 1, P
2 DO k = 1, l
3 DO j = 1, l − 1
4 DO i = 1, j
5 CALC((ij|kl))
6 ! apply symmetry
7 ( i j | k l ) = ( k l | i j )
8 ( i j | k l ) = ( j i | k l ) = ( i j | l k ) = ( j i | l k )
9 ENDDO

10 ENDDO
11

12 j = l
13 DO i = 1, k
14 CALC((ij|kl))
15 ! apply symmetry
16 ( i j | k l ) = ( k l | i j )
17 ( i j | k l ) = ( j i | k l ) = ( i j | l k ) = ( j i | l k )
18 ENDDO
19 ENDDO
20 ENDDO
21

Listing 3.1: Fortran pseudocode for the efficient calculation of one- and two-electron integrals.
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Chapter 4

Hartree-Fock Approximation

Hartree-Fock approximation is the first electronic structure calculation that will be
introduced in this thesis. In the Hartree-Fock formalism, electrons occupy specific
orbitals. This is a very natural description of reality, but still an approximation.
Therefore, the Hartree-Fock wave function is simply a single Slater determinant, where
electrons occupy the lowest-energy orbitals - the Hartree-Fock determinant. Beginning
with an initial basis set, the orbitals will be optimized by iterative minimization of the
total ground state energy. As it was shortly discussed in the introduction, Hartree-
Fock includes exchange effects exactly (consequence of Slater determinants), and it
neglects correlation effects completely. However, the Hartree-Fock approximation is
still used often, because it is a good starting point for more accurate methods that will
be discussed in the next chapters. Therefore, it can be understood that this chapter
is the first stepping stone into the configuration interaction calculations.
At the beginning, the formal Hartree-Fock equations will be presented together with
definitions of Coulomb, exchange and Fock operators (see section 4.1). After the
Hartree-Fock equations are introduced, the general aspects and properties of these
equations will be investigated in section 4.2. Thereafter, the Hartree-Fock equations
will be applied for the set of restricted spin orbitals (2.27), leading to the famous
Roothan equations (section 4.3). The self-consistent field theory (SCF) will be further
discussed as a way to solve Roothaan equations. UHF and ROHF methods will be
briefly described in section 4.5, followed by results in section 4.7. As it has been the
case so far, only the most important equations and results will be derived.

4.1 Integro-Differential Hartree-Fock Equation

Knowing only that the Hartree-Fock is a single determinant approximation and
requiring that the set of Hartree-Fock orbitals remains orthonormal, the so-called
integro-differential Hartree-Fock equation can be derived from variational theorem.
Following the procedure of Appendix A and minimizing the single determinant
energy, obtained via Slater-Condon rules (2.36-2.38), the Lagrange function looks
like

L[{|i〉}] = E0[{|i〉}]−
∑
ij

εji(〈i|j〉 − δij), (4.1)
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4 – Hartree-Fock Approximation

where E0 is the determinantal energy and εji are Lagrange multipliers. Because the
energy is a real number and using the properties of scalar products, the following
constraint on Lagrange multipliers is obtained:

〈i|j〉 = 〈j|i〉∗ =⇒ εji = ε∗ij. (4.2)

Splitting the energy term E0 in terms that come from one-electron and two-electron
integrals as E0 = E

(1)
0 + E

(2)
0 , the variation of the Lagrange function can be simply

written as the sum of variations of all terms on the right side of (4.1). Let us look at
the variation of the constraint term first:

δ
∑
ij

εji(〈i|j〉 − δij) =
∑
ij

εji 〈δi|j〉+
∑
ij

εji 〈i|δj〉

=
∑
ij

εji 〈δi|j〉+
∑
ij

εij 〈j|δi〉

=
∑
ij

εji 〈δi|j〉+
∑
ij

ε∗ji 〈δi|j〉
∗

=
∑
ij

εji 〈δi|j〉+ c.c.

(4.3)

In the previous derivation, the condition (4.2) was used and also the fact that the
indices i and j can interchange. In the next step, one considers the variation of energy
contribution from one-electron integrals:

δE
(1)
0 =

∑
i

〈δi|ĥ|i〉+
∑
i

〈i|ĥ|δi〉

=
∑
i

〈δi|ĥ|i〉+
∑
i

〈δi|ĥ|i〉
∗

=
∑
i

〈δi|ĥ|i〉+ c.c.

(4.4)

The last and the most complicated term is a variation of two-electron contributions
to the determinantal energy:

δE
(2)
0 =

1

2

∑
ij

〈δij||ij〉+ 〈iδj||ij〉+ 〈ij||δij〉+ 〈ij||δij〉 . (4.5)

Using the relation (2.33), one arrives at:

δE
(2)
0 =

1

2

∑
ij

〈δij||ij〉+
1

2

∑
ij

〈iδj||ij〉+ c.c.

=
1

2

∑
ij

〈δij||ij〉+
1

2

∑
ij

〈δij||ij〉+ c.c.

=
∑
ij

〈δij||ij〉+ c.c.,

(4.6)

where the fact was used that the summation indices can interchange, as well as dummy
variables in two-electron integrals (〈ij||kl〉 = 〈ji||lk〉). Summing up all variations of
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Lagrange function, the following expression is obtained:

N∑
i

∫
dx1 δχ

∗
i (1)

{
ĥ(1)χi(1) +

N∑
j

∫
dx2
‖χj(2)‖2

r12

χi(1)−

N∑
j

∫
dx2

χ∗j(2)χi(2)

r12

χj(1)−
N∑
j

εjiχj(1)

}
= 0.

(4.7)

Because the variations δχi are arbitrary functions, the sum in curly braces must be
zero for each i. The first sum in braces represents a total Coulomb potential of all spin
orbitals averaged over the whole space. Because of this interpretation, the Coulomb
operator acting on the spin orbital χj is defined as

Ĵj(1)χi(1) =

[∫
dx2

‖χj(2)‖2

r12

]
χi(1). (4.8)

Similarly, the second sum in the braces of (4.7) denotes the exchange effects and it does
not have a simple classical physical interpretation, but it arises from the antisymmetric
nature of the Slater determinant and it reduces the probability of finding two electrons
with parallel spins at the same position in space. Therefore, the exchange operator,
acting on the spin orbital χi has a peculiar form:

K̂j(1)χi(1) =

[∫
dx2

χ∗j(2)χi(2)

r12

]
χj(1). (4.9)

From the definition (4.9), one can note that the action of the operator K̂(1) on the
spin orbital χi requires the exchange of the electrons 1 and 2 among spin orbitals χi
and χj. The expectation values of these two operators for an electron occupying the
spin orbital χi are:

〈χi(1)|Ĵj(1)|χi(1)〉 = 〈ij|ij〉 = [ii|jj] = Jij

〈χi(1)|K̂j(1)|χi(1)〉 = 〈ij|ji〉 = [ij|ji] = Kij.
(4.10)

The integrals appearing in the last equations are called Coulomb integrals and
exchange integrals, respectively. After these considerations, the equation (4.7) can
be rewritten as follows:[

ĥ(1) +
N∑
j

(
Ĵj(1)− K̂j(1)

)]
χi(1) =

[
ĥ(1) + Ĵ(1)− K̂(1)

]
χi(1)

= f̂(1)χi(1) =
N∑
j

εjiχj(1),

(4.11)

where the term in angle brackets is denoted as the Fock operator f̂ , and Ĵ(1) and K̂(1)
represent the total Coulomb and exchange interaction acting on electron 1 respectively.
The Fock operator is the sum of the core Hamiltonian (kinetic energy and attractive
Coulomb potential) and the averaged electron-electron interaction, given as a sum of
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the Coulomb and exchange operators over all spin orbitals. The last equation has still
a certain degree of flexibility reflected in the fact that a mixing among spin orbitals
{χi} does not change the determinantal energy. To show that, consider that the
mixing among spin orbitals in general can be described by a unitary transformation
U (UU † = 1). Let us write a set of spin orbitals as a vector χ̃. The transformation
to another set of spin orbitals χ can be written as

χ̃→ χ = Uχ̃. (4.12)

By a complex conjugation of the previous equation, the transformation behaviour of
χ̃† can be obtained:

χ̃† −→ χ† = χ̃†U †. (4.13)

Further, from the requirement that the trace of the Fock operator is independent of
the basis choice

Tr(f̂) = Tr( ˆ̃f) −→ χ̃† ˆ̃fχ̃ = χ̃†U †f̂Uχ̃, (4.14)

the transformation law for the Fock operator becomes

ˆ̃f −→ f̂ = U ˆ̃fU †. (4.15)

This transformation low can be explicitly proven by showing that the core Hamiltonian
ĥ as well as the Coulomb operator Ĵ and the exchange operator K̂ from the equation
(4.11) transform like (4.15). Showing that for the core Hamiltonian is trivial, but to
show the same for the Coulomb and exchange operators the additional invariance of
the density matrix χχ† under any unitary transformation must be used, which follows
immediately from the fact that UU † = U †U = 1. Now, when transformation laws
are known, the first form of Hartree-Fock equation (4.11) can be transformed using
relations (4.12-4.15)

ˆ̃fχ̃ = εχ̃ −→ Uf̂U †Uχ = εUχ. (4.16)

Further, using the unitarity of the matrix U , one arrives at

f̂χ = U †εUχ. (4.17)

On the right side of the last equation the term U †εU appears and because ε is a
Hermitian matrix, U can be chosen in such a way that diagonalizes the matrix of
Lagrange coefficients ε. Choosing U in this way, the so-called canonical Hartree-Fock
equations are obtained

f̂χi = εiχi, (4.18)

or in bra-ket notation rewritten as:

f̂ |i〉 = εi |i〉 , (4.19)

where εi are eigenvalues of the Fock operator. It should be noted, that all sets of spin
orbitals posses the same set of eigenvalues and there is no physical distinction between
them. Some of them are more localized, some of them are completely delocalized, but
none of them own superior physical meaning.
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4.2 Interpretation of Hartree-Fock Equations

Before it is shown how to solve Hartree-Fock equations on a computer, i.e. how to
translate the equation (4.19) into a matrix equation, the general aspects of Hartree-
Fock theory should be discussed. Let us begin with a general matrix element of the
Fock operator in a basis of spin orbitals {χi}. It is defined as:

fij = 〈i|f̂ |j〉 = 〈i|ĥ|j〉+
N∑
k

〈ik||jk〉 . (4.20)

This result follows immediately from (4.11). Inspecting general Fock matrix elements,
it is straightforward to show with the help of equations (2.26) and (2.30) that the
Fock operator is Hermitian. The expectation value of the Fock operator is given
by the same equation, with the additional condition j = i. In the basis of spin
orbital eigenfunctions, the matrix representation of the Fock matrix is diagonal, with
corresponding eigenvalues on the diagonal:

fij = 〈i|f̂ |j〉 = εj 〈i|j〉 = εjδij. (4.21)

From the last result, it follows that the eigenvalue of the Fock matrix is given as

εi = 〈i|ĥ|i〉+
N∑
k

〈ik||ik〉 . (4.22)

If the spin orbital χa is already occupied, then the eigenvalue εa represents the ”energy
of an electron” in χa. The self-interaction term will be automatically removed, because
of the condition 〈aa||aa〉 = 0. On the other side, if the spin orbital χr is empty, then
the eigenvalue εr denotes the interaction with all other N electrons from the system,
so that the eigenvalue in that case can be interpreted as the energy of an additional
electron added to the state χr. Note that indices a, b, c... will be used for occupied
and r, s, t.. for unoccupied orbitals.
In this way, one can approximate the ionization potential, where the electron leaves
the orbital χa with a negative orbital energy −εa, by assumption that eigenstates do
not change during the ionization. In a similar way, electron affinity to produce the
state with an extra electron in the spin orbital χr is equal to the negative orbital
energy −εr. These results are known as Koopman’s theorem. The derivation of
Koopman’s theorem is straightforward, but it will be skipped here. For more details,
see [3]. Symbolically, the Koopman’s theorem can be written as

|NΨ0〉 −→ |N−1Ψa〉 =⇒ IP = −εa
|NΨ0〉 −→ |N+1Ψr〉 =⇒ EA = −εr,

(4.23)

where the state |N−1Ψa〉 (|N+1Ψr〉) is obtained by removing (adding) an electron in
the spin orbital χa(χr). Discarding the relaxation of orbitals in N ± 1 states leads to
ionization potential values (IP) which are too positive and too negative values for the
electron affinity (EA). In general, the Koopman’s theorem can be used as the first
approximation for the ionization potential, but the values for the electron affinity tend
to be inaccurate.
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Consider now that the solution of (4.18) gives an orthonormal set of spin orbitals
χi. N electrons fulfill the N lowest energy spin orbitals and make the Hartree-Fock
determinant |Ψ0〉. The rest of spin orbitals are virtual orbitals. The second important
consequence of the Hartree-Fock equations is that there is no mixing between Hartree-
Fock determinant and single excited determinants |Ψr

a〉 = a†raa |Ψ0〉, i.e.

〈Ψ0|Ĥ|Ψr
a〉 = 0. (4.24)

This statement is called the Brillouin theorem. It will be extremely useful for beyond
Hartree-Fock methods. Using Slater-Condon rules (2.37, 2.38) to write Hamiltonian
matrix element 〈Ψ0|Ĥ|Ψr

a〉 and using (4.20), one obtains:

〈Ψ0|Ĥ|Ψr
a〉 = 〈a|ĥ|r〉+

N∑
i

〈ai||ri〉 = far = εrδar = 0. (4.25)

Because a is one of the occupied orbitals and r is an unoccupied one, the term δar is
0 in any case.

4.3 Roothaan Equations

This section shows how to formulate the matrix equations from the Hartree-Fock
equation (4.19). To do that, the form of the spin orbitals has to be specified. In this
work, mainly restricted orbitals (2.27) will be considered. They are built in such a
way that spin up and spin down electrons share the same spatial part of the orbital.
Additionally, systems with doubly occupied orbitals will be handled, while open-shell
systems will be shortly discussed in the section 4.5. This method is therefore referred
to as closed-shell restricted Hartree-Fock (RHF). On the other side, there are open-
shell unrestricted Hartree-Fock (UHF) or even more complicated open-shell restricted
Hartree-Fock (ROHF) calculations (see section 4.5). In this work, restricted closed-
shell Hartree-Fock will be discussed in more details with appropriate derivations of
corresponding equations, while UHF and ROHF models will be briefly presented. In
the RHF method, calculations will be constrained on systems with even number of
electrons N , where N/2 is the number of spatial orbitals. The ground state Hartree-
Fock wave function is therefore given as

|Ψ0〉 = |ψ1ψ̄1ψ2ψ̄2 · · ·ψN/2ψ̄N/2〉 . (4.26)

As the first step towards a matrix representation of RHF, the spin variable w in (4.19)
must be integrated out. For this purpose, the splitting of a sum over spin orbitals
will be used (2.39). The actual derivation is similar to the one performed in Slater-
Condon rules by the transition from spin to spatial orbitals (2.37, 2.38). The Coulomb
interaction will be doubled, because of the sum over parallel and antiparallel spins,
but the exchange interaction will survive only for electrons with parallel spin. This
behavior is a direct consequence of spin orthogonality (see equations 2.28 and 2.35).
After these considerations, the restricted closed-shell Hartree-Fock equation looks likeĥ(1) +

N/2∑
j=1

2Ĵj(1)− K̂j(1)

ψi(1) = f̂(1)ψi(1) = εiψi(1). (4.27)
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It should be noted that calligraphic letters are used to emphasize the closed-shell
operators and that integration is done only over spatial orbitals. In other words, they
can be written as

Ĵj(1)ψi(1) =

[∫
d3r2

‖ψj(2)‖2

r12

]
ψi(1)

K̂j(1)ψi(1) =

[∫
d3r2

ψ∗j (2)ψi(2)

r12

]
ψj(1),

(4.28)

with expectation values that correspond to two-electron integrals over spatial orbitals:

〈ψi(1)|Ĵj(1)|ψi(1)〉 = (ii|jj) = Jij
〈ψi(1)|K̂j(1)|ψi(1)〉 = (ij|ji) = Kij.

(4.29)

Before the introduction of the concrete set of basis functions, the results for the ground
state energy and for the orbital energy will be emphasized within a RHF theory:

E0 = 〈Ψ0|Ĥ|Ψ0〉 =

N/2∑
i=1

2(i|ĥ|i) +

N/2∑
i,j

2(ii|jj)− (ij|ji)

εi = (i|h|i) +

N/2∑
j

2(ii|jj)− (ij|ji).

(4.30)

From the previous equation, it is clear that the simple sum of orbital energies does
not give the ground state energy, because the electron-electron interaction is double-
counted. Let us now introduce a basis set of P basis functions (P ≥ N):

ψµ =
P∑
j=1

Cjµ φj ; µ = 1, 2, · · · , P, (4.31)

so that each spatial orbital can be represented as a linear combination of those
functions. In this way, one constructs P spatial orbitals (2P spin orbitals) and the
Hartree-Fock problem simplifies to the finding of optimal coefficients Cjµ. Note that
the alphabet letters i,j,· · · will stand for the basis functions, while the Greek letters
µ,ν,... will stand for actual spin orbitals. Because of technical limitations, one is
always restricted to a finite and incomplete set of basis functions. The standard
basis used for Hartree-Fock theory are Gaussian basis sets, discussed in the previous
chapter 3. Integrating the restricted closed-shell integro-differential Hartree-Fock
equation (4.27) over basis functions φ∗i , one obtains

P∑
j=1

Cjµ

∫
d3r φ∗i f̂φj = εµ

P∑
j=1

Cjµ

∫
d3r φ∗iφj (4.32)

The integral appearing on the right side of the previous equation was already
introduced in the last chapter (see section 3.4.5). It is a general element of the
overlap matrix S

Sij = 〈i|j〉 =

∫
d3r φ∗iφj. (4.33)
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The overlap matrix is in general Hermitian, but because the Gaussian basis sets are
always real, the overlap matrix is a real symmetric P × P matrix in most cases.
Diagonal elements always have the value of 1, because the basis functions are
normalized. The off-diagonal elements are always less than 1. Because the overlap
matrix is symmetric, there always exists a unitary matrix that diagonalizes overlap.
On the other side of the equation (4.33) appears the integral that defines the Fock
matrix F

Fij = 〈i|f̂ |j〉 =

∫
d3r φ∗i f̂φj. (4.34)

This matrix is also Hermitian, because it was shown that the Fock operator is
Hermitian. For the set of real basis functions, the Fock matrix is a real symmetric
P × P matrix. With these two matrices, the final version of the restricted closed
shell Hartree-Fock equation is

FC = SCε. (4.35)

This equation is known as the Roothaan equation and it is actually generalized
eigenvalue problem. There are many LAPACK routines, which could be used to
solve this equation. The last step before the diagonalization can be performed is to
find a formal expression of the Fock matrix. Using the definition of the Fock
operator (4.27), one obtains

Fij = 〈i|f̂ |j〉 = 〈i|ĥ|j〉+

N/2∑
µ=1

2 〈i|Ĵµ|j〉 − 〈i|K̂µ|j〉 = (i|ĥ|j) +

N/2∑
µ=1

2(ij|µµ)− (iµ|µj).

(4.36)
The first term represents a matrix of one-electron integrals - core electron matrix
Hcore, which includes the kinetic energy integrals T and attractive Coulomb potential
V (see section 3.4.5):

Hcore
ij = Tij + Vij = (i|ĥ|j). (4.37)

The second term of (4.36) is more complicated, because it contains the spin orbitals
χµ that must be expanded in the basis with actual coefficients C:

Fij = (i|ĥ|j) +

N/2∑
µ=1

2

(
ij

∣∣∣∣∣
P∑
k=1

C∗kµφ
∗
k

P∑
l=1

Clνφl

)
−

(
i

P∑
l=1

Clνφl

∣∣∣∣∣
P∑
k=1

C∗kµφ
∗
k j

)

= (i|ĥ|j) +

N/2∑
µ=1

P∑
k,l=1

C∗kµClν [2(ij|kl)− (il|kj)]

= Hcore
ij +Gij,

(4.38)

where the matrix G is simply the part of Fock matrix that describes the two-electron
interactions. From this equation, it can be concluded that the Fock matrix depends
on an actual set of coefficients C, leading to a set of nonlinear equations

F (C)C = SCε, (4.39)

that must be solved in an iterative way. It should be mentioned that the matrices S
and Hcore depend only on the basis functions, while the Fock matrix F , specifically
its part G, depends on the actual coefficients C. Therefore, the first two mentioned
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matrices have to be calculated only once during the Hartree-Fock calculation.
Before presenting the whole procedure of solving the Hartree-Fock equations, the
final simplification of the Roothaan equations should be done. This simplification
reflects in the orthogonalization of the basis. Because S is a symmetric matrix, it
can be diagonalized by the unitary matrix U . The transformation matrix
X = Us−1/2, where s is a diagonal matrix whose elements are the square roots of the
eigenvalues of the overlap matrix S, will orthogonalize the basis, because:

X†SX = s−1/2U †SUs−1/2 = s−1/2ss−1/2 = 1. (4.40)

Defining the new set of coefficients C̃ through

C = XC̃ (4.41)

and inserting it in Roothan equation (4.35) and multiplying with X† from the left
side, one obtains:

X†FXC̃ = X†SXC̃ε

X†FXC̃ = C̃ε

F̃ C̃ = C̃ε,

(4.42)

with transformed Fock matrix F̃ = X†FX. In this way, the Roothan equations
become a simple eigenvalue problem.

4.4 The Self-Consistent Field Procedure

Self-consistent field, or SCF, is simply the second name for the Hartree-Fock
procedure. This section provides a summary of all the facts and results discussed
before, needed to obtain Hartree-Fock ground state wave function of a molecular
system. As the first step, input data, coordinates of atoms and the basis set, should
be defined. Gaussians are the most commonly used basis functions for self-consistent
field calculations on molecular systems. The next step is the calculation of one- and
two-electron integrals over Gaussian functions described in section 3.4.5. Overlap
integrals also need to be calculated, because the Gaussian functions are normalized,
but not orthogonalized. For this purpose, one orthogonalization method is used.
There is a symmetric orthogonalization method, or even better canonical
orthogonalization, discussed in section 4.3. Once the transformation matrix X is
obtained, an initial guess is needed for the expansion of spin orbitals over the
Gaussian basis set. There are many possibilities to choose the initial spin orbitals in
a clever way, but in most cases a simple choice suffices. For example, a random
number generator can be used for the initial guess, or even simpler, all coefficients
could be taken as 0. That actually means that the whole Hartree-Fock Hamiltonian
is approximated only by the one-electron Hamiltonian ĥ. Finally, the SCF loop can
start. In this loop, the Fock matrix is updated with actual expansion coefficients,
transformed according to equation (4.42) and diagonalized. From the
diagonalization procedure, a new set of transformed coefficients has been obtained,
and transformed back via equation (4.41). After the updated set of expansion
coefficients is obtained, the SCF convergence criterion is checked. There are many
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possibilities to choose one criterion, for example the absolute change of the total
ground state energy is probably the most natural choice, but not the cheapest one.
Therefore, in this implementation the absolute change of the lowest Hartree-Fock
eigenvalue is used as convergence criterion. It is found that the eigenvalue accuracy
of 10−4 normally ensures the accuracy of 10−6 in the ground state energy. Once the
SCF loop converges, all other properties of the system can be investigated. With
this SCF procedure, the solution of the electronic Hamiltonian (2.7), within a
Born-Oppenheimer approximation, is obtained. The total energy of the molecule is
then obtained by relation (2.8), that depends on nuclear positions, too. In this way,
it is possible to calculate total energies of the system for different configuration of
nuclei and to find out the optimal geometry of the system. The simple optimization
of the molecular geometry will be discussed in section 4.7.

Figure 4.1: The SCF algorithm.

4.5 Open-Shell Hartree-Fock Calculations

As it was already discussed above, most attention is given to the description and
derivation of the RHF model and the Roothan equations. However, problems arise
for systems where the ground state is not a singlet spin state, i.e. for spin-polarized
systems. Such situations appear often in solids where vacancies are considered. The
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closed-shell calculations fail for those systems and the ground state can not be
described correctly. More involved post Hartee-Fock calculations based on those
closed-shell ground state calculations will also not be able to correct the already
incorrect description of the system in the mean-field calculation. Therefore, the
calculation will be extended to open-shell model, which is able to handle systems
with an odd number of electrons, i.e. spin-polarized systems in general. The first
and the most straightforward extension will be to introduce an unrestricted set of
orbitals where different spatial orbitals are used for spin-up and spin-down channels.
This model will relate to unrestricted Hartree-Fock theory, the so-called UHF
model. On the other side, the restricted orbitals can also be used for open-shell
calculations, but two different shells must be considered separately: doubly occupied
closed-shell with occupation number fD = 2 and singly occupied open-shell with
occupation number fS = 1. In such systems intra-shell and inter-shell interaction
must be treated separately. More details about this procedure are presented in the
section 4.5.2. The main difference between those two systems is presented in the
figure 4.2. Before proceeding to the actual implementation, the (dis)advantages of
both methods will be presented. Although the UHF model is just a simple extension
of the already proposed RHF method, the number of basis functions will be doubled
and, as a result, two sets of one-electron integrals (hαij and hβij), and three sets of

two-electron integrals ((ij|kl)αα, (ij|kl)ββ and (ij|kl)αβ) are obtained. Such a
situation is highly undesirable, because of the large number of integrals and it
should be avoided, if possible. The ROHF model provides a solution where only one
set of one-electron and two-electron integrals is needed. Additionally, the
many-electron wave functions (Slater determinants) obtained in ROHF model are
eigenfunctions of the spin operator Ŝ2 . The ROHF model is also computationally
cheaper than UHF model. However, the actual implementation of ROHF model is
methodically more involved, and the main disadvantage is the remaining set of
degrees of freedom which results in a non-unique set of eigenvalues. However, the
actual form of orbitals and the total energy of system stay invariant.

Figure 4.2: Orbital models of various Hartree-Fock methods: restricted closed-shell RHF method,
unrestricted Hartree-Fock UHF method and restricted open-shel Hartree-Fock ROHF method.
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4.5.1 Unrestricted Open-Shell Hartee-Fock Model - UHF

In this model, a set of unrestricted orbitals is introduced:

ψαµ =
P∑
j=1

Cα
jµφj , j = 1, 2, ..., P

ψβµ =
P∑
j=1

Cβ
jµφj , j = 1, 2, ..., P.

(4.43)

In this model the Hartree-Fock determinant becomes

|ΨUHF〉 = |ψα1 ψ̄
β
1 · · ·ψαN/2ψ̄

β
N/2〉 . (4.44)

Applying Slater-Condon rules (2.37, 2.38) in this example gives the expression for the
total energy:

E0 =
Nα∑
i=1

hαii+

Nβ∑
i=1

hβii+
1

2

Nα∑
i,j=1

(
Jααij −Kαα

ij

)
+

1

2

Nβ∑
i,j=1

(
Jββij −K

ββ
ij

)
+

Nα∑
i=1

Nβ∑
j=1

Jαβij , (4.45)

where the definition of Coulomb and exchange matrix elements is taken from (4.10),
but this time with explicit notation of spins. Note that the last term from the previous
expression counts only the Coulomb interaction between antiparallel spins and the
exchange contributions disappear. From this total energy expression, Fock matrices
can be derived similarly as in RHF theory with the significant difference that two
different Fock matrices are obtained in the UHF model:

Fα
ij = hij +

Nα∑
µ=1

P∑
k,l=1

Cα
kµC

α
lµ [(ij|kl)− (ik|lj)] +

Nβ∑
µ=1

P∑
k,l=1

Cβ
kµC

β
lµ(ij|kl)

F β
ij = hij +

Nβ∑
µ=1

P∑
k,l=1

Cβ
kµC

β
lµ [(ij|kl)− (ik|lj)] +

Nα∑
µ=1

P∑
k,l=1

Cα
kµC

α
lµ(ij|kl).

(4.46)

The indices i, j, k and l refer to basis functions (Gaussian basis functions in this
work) and the same basis set is used for both spin channels. Therefore, there are no
indices in notation for one-electron integrals hij and two-electron integrals (ij|kl). The
actual distinction comes from coefficients Cα and Cβ. With those Fock matrices, the
counterpart of the Hartree-Fock equations, the Pople-Nesbet equations are obtained:

FαCα = SCαεα

F βCβ = SCβεβ.
(4.47)

It must be noted that those two equations are not independent of each other, there
is a mixing given in (4.46), because Fα and F β depend on both sets of coefficients
Cα and Cβ. This mixing is exactly the Coulomb interaction between antiparallel
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spins. Without this interaction, the Pople-Nesbet equations would be equivalent to
two sets of Roothan equations. Therefore, those two equations must be diagonalized
simultaneously, and in order to form new Fock matrices, both sets of actual coefficients
Cα and Cβ are needed. Additionally, it is worth to mention that the orthogonalization
procedure stays the same, like in the RHF case. The matrix X = Us−1/2 can be used
to transform the Pople-Nesbet equations to an orthogonalized basis. Unrestricted
solutions obtained in this way will be equal to RHF solutions, if Nα = Nβ. For
this reasons, the UHF model will usually be used only for spin-polarized systems.
However, it turns out that there is a second unrestricted solution, if the calculation
is started with a distinct set of coefficients Cα and Cβ. These solutions will be useful
for the description of dissociation effects in closed-shell molecules and they will be
discussed in more details below.

4.5.2 Restricted Open-Shell Hartree-Fock Model - ROHF

In the restricted open-shell Hartree-Fock method, a set of restricted orbitals is used
as it was the case in RHF model. To be able to describe spin-polarization effects,
electrons are divided in two shells: doubly occupied shell D with occupation fD = 2
and singly occupied shell S with occupation fS = 1. The expression for the total
energy of the system is then given by

E = 2

{∑
i∈D

hii +
1

2

∑
i,j∈D

[2(ii|jj)− (ij|ji)]

}
+
∑
k∈S

hkk +
1

2

∑
k,l∈S

[(kk|ll)− (kl|lk)]

+
∑
i∈D

∑
k∈S

[2(ii|kk)− (ik|ki)],

(4.48)

where indices i and j denote orbitals from the doubly occupied shell D and indices k
and l correspond to orbitals from singly occupied shell S. Using variational calculus
(see A), two Fock matrices can be defined (one matrix per shell)

FD = h+ J(2RD +RS)− 1

2
K(2RD +RS)

FS = h+K(2RD +RS)−K(RD +RS).
(4.49)

In the previous expression, the Hartee-Fock density matrix R is introduced in order
to keep the notation as simple as possible. The density matrix of a shell is simply
defined as

RShell
ij =

∑
k∈Shell

C∗ikCjk ≡
(
CShellCShell †)

ij
, (4.50)

where the summation is done over orbitals that belong to the corresponding shell
and the notation CShell stands for expansion coefficients of orbitals in a given shell.
Once the density matrix is introduced, the notation for the Coulomb-matrix J and
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the exchange matrix K can be rewritten as

J(R) =
N∑

i,j=1

Rij(ii|jj)

K(R) =
N∑

i,j=1

Rij(ij|ji).

(4.51)

Once the notation used for Fock matrices is introduced, it can be proceeded to the
corresponding Hartree-Fock equations, which are obviously more complicated than in
the UHF or RHF case:

FTC
T −

2∑
U=1

CUε = 0

CT † (fTFT − fUFU)CU = 0,

(4.52)

where indices T and U run over shells S and D. To solve the previous equation
simultaneously, the single effective Fock matrix F̄ is defined:

F̄ = RZdZR
Z +RDdDR

D +RSdSR
S + a1R

ZFDR
D

+a2R
ZFSR

S + a3R
D (2FD − FS)RS.

(4.53)

The index Z stands for the additional empty shell that corresponds to unoccupied
orbitals and matrices dZ ,dD and dS are arbitrarily chosen Hermitian matrices. The
coefficients a1,a2 and a3 are also arbitrarily chosen parameters. Because of those
degrees of freedoms, the eigenvalues in ROHF method are not unique, but the
expansion set of coefficients C is invariant under the choice of those degrees of
freedom as long as the iterative procedure converges. The obvious choice of matrices
is dD = FD, dS = FS and dZ = 2FD − FS and they will be used for the
implementation. It is worth to mention that the orthogonalization procedure in
ROHF method slightly differs from the RHF method. Because the effective Fock
matrix is of the form F̄ ∝ RFR, the transformation from the non-orthogonal to the
orthogonal basis is given by the matrix X = Us1/2. For more details about
restricted open-shell Hartree-Fock method and its derivation, see [1].

4.6 Extrapolation of the Hartree-Fock

Hamiltonian via Density Functional Theory

Beyond Hartree-Fock methods described in this work should be connected with VASP.
Because VASP is based on DFT and all beyond Hartree-Fock methods require the
Hartee-Fock ground state, one has to be able to export the Hartree-Fock Hamiltonian
from VASP. The brief discussion of the density functional theory can be found in
appendix B. To obtain the Hartree-Fock Hamiltonian via DFT, hybrid potential must
be used. In this way, the exact non-local Hartee-Fock exchange can be included.
Therefore, the local exchange-functional has to be replaced by non-local exchange,
which is defined as

Ex[n] = −e
2

2

∑
ik

∑
jq

fikfjq

∫ ∫
d3r d3r′

ψ∗ik(r)ψ∗jq(r′)ψik(r′)ψjq(r)

|r− r′|
, (4.54)
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where the summation is done over the set of Bloch-states {ψik} and the corresponding
set of occupation numbers {fik}. The indices i, j run over all bands and sums over k
and q run over all k-points used to sample the first Brillouin zone. The corresponding
exchange potential is given by

Vx(r, r′) = −e
2

2

∑
ik

fik
ψ∗ik(r′)ψik(r)

|r− r′|
. (4.55)

Using the Bloch decomposition of Bloch states

ψik(r) =
1

Ω

∑
G

Ciq(G)ei(q+G)·r (4.56)

the exchange potential can be written as

Vx(r, r′) =
∑
k

∑
GG′

ei(k+G)·rVk(G,G′)ei(k+G′)·r′ , (4.57)

where

Vk(G,G′) = −4πe2

Ω

∑
iq

fiq
∑
G′′

C∗iq(G′ −G′′)Ciq(G′ −G′′)

|k− q + G′′|2
(4.58)

is the Fourier representation of exchange potential. In this way, the non-local exchange
potential is calculated in VASP. The standard Hartree-Fock type calculation in VASP
has the following input file:

1 ISTART = 1
2 LHFCALC = .TRUE.
3 AEXX = 1.0
4 NBANDS = number o f occupied bands
5 ALGO = Al l ; TIME = 0.4
6 PRECFOCK = Fast

Listing 4.1: The INCAR file of the standard Hartree-Fock type calculation for insulators and
semiconductors.

The flag LHFCALC includes hybrid potential and the flag AEXX replaces the local
exchange-corelation functional by the non-local exchange defined in (4.54). The
derivation of non-local exchange potential in Fourier representation and the
standard input file are taken from [27]. Once the Hartree-Fock calculation is
performed in VASP, a set of localized orbitals can be obtained by Wannier
extrapolation of Bloch states (see section 3.6). Based on that set of the localized
Wannier orbitals, one- and two-electron integrals can be calculated.

4.7 Examples of Hartree-Fock Calculation

Total Energy Convergence

In this section, the first results obtained using the developed code will be presented.
In the restricted Hartree-Fock calculations, the most common observable that can be
obtained is the total energy of the system (4.30). Although the absolute energy value
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does not have a significant meaning for the physics of the system, the convergence of
the energies due to the choice of the basis set can be considered (table 4.1). From
these results, it is obvious that one is very near to the Hartree-Fock limit with large
basis sets as cc-pVTZ or aug-cc-pVTZ. For small systems (like the He atom or the
H2 molecule), the Hartree-Fock limit is already approached with pp-cVTZ basis set,
but reasonably, for heavier atoms and less symmetric systems, larger basis sets are
needed.

Table 4.1: The restricted Hartree-Fock energies obtained at the equilibrium geometry of the system
for different basis sets with numerical accuracy of 10−4 a.u. (Hartree).

Basis Set
System STO-3G 6-31G++ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ HF Limit [3]

He -2.808 -2.855 -2.855 -2.856 -2.866 -2.866 -2.866
H2 -1.116 -1.131 -1.129 -1.129 -1.133 -1.133 -1.134

BeH2 -15.560 -15.767 -15.767 -15.769 -15.772 -15.772 -15.773
H2O -74.963 -76.023 -76.027 -76.041 -76.057 -76.061 -76.065
FH -98.571 -100.010 -100.019 -100.034 -100.058 -100.061 -100.071
N2 -107.496 -108.942 -108.954 -108.961 -108.984 -108.985 -108.997

Ionization Potential

In the section 4.2, it was mentioned that the energy affinities can not be even
qualitatively described via the Hartree-Fock method, because the unoccupied
manifold is very inaccurate in the Hartree-Fock theory. However, the ionization
potential, equal to the negative value of the orbital energy εi (Koopman’s theorem)
gives a reasonable approximation to the exact one. In this section, one considers the
first ionization potential of two dimer molecules: H2 and N2. Corresponding results
are listed in table 4.2. As it can be seen, the results for the molecule H2 agree
reasonably well with experimental values. The reason why the result for H2 is
surprisingly good is mostly accidental. Namely, the correlation effects are missing in
H2 (Hartree-Fock completely neglects all correaltion effects) and the energy of the
ionized H+

2 is lowered due to relaxation effects, but the correlation energy is 0,
because it is a one-electron system. These two contributions cancel each other. In
the case of the N2 molecule, the results agree reasonably with experimental values,
too. However, there is a problem that results become worse with larger basis sets.
This error lies in the fact that the Hartree-Fock theory is only an approximation and
it does not describe the molecular picture of the orbitals in a correct way, and
therefore, the ionization potential values fail completely.

Table 4.2: The Ionization potentials of H2 and N2 calculated via Koopman’s theorem within a
Hartree-Fock theory.

Basis Set
System STO-3G 6-31G++ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ Experiment [3]

H2 0.578 0.595 0.592 0.593 0.594 0.594 0.584
N2 0.539 0.611 0.608 0.616 0.612 0.615 0.510
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Eqilibrium Geometries

At this moment, it is appropriate to present equilibrium experimental geometries of
all molecules that will be used in this thesis (table 4.3).

Table 4.3: Experimental geometries of molecules considered in this thesis.

Molecule Bond length (a.u.) Bond angle (o)
H2 1.40
N2 2.07
FH 1.73

BeH2 2.52
H2O 1.81 104.52

As it was already mentioned, the absolute values of the total energies do not give
any physical meaning, but they can be useful for the geometry optimization of some
systems. Sometimes, this task can be very difficult, because of many degrees of
freedom that can vary in the configurational space. Therefore, one will make a
restriction to the systems where only one degree of freedom is varied. For example,
in dimers, only the bond length will be varied. In some non-linear systems, like the
water molecule, the bond angle will be kept constant, while the bond length O-H
will be equal for both H atoms for symmetry reasons. After these considerations,
one is left with only one degree of freedom that can be varied - the O-H bond
length. The main goal for this section is to see where are the limits of the
Hartree-Fock approximation.
One finds that the H2 dimer is already an interesting example to present the main
trends. In figure 4.3-a, the dissociation energy curve of the H2 molecule is plotted
for different basis sets. In this case, there is no need to plot potential curves for
augmented correlation consistent basis sets, because they do not improve the situation
in comparison with their standard counterparts (see total energy values in table 4.1).
Observing these potential curves, it is obvious that the Hartree-Fock theory fails to
describe the correct dissociation behaviour in the H2 molecule. At large distances,
the interaction between two H atoms is very weak and they can be considered as two
non-interacting H atoms and the dissociation energy should be zero. However, the
plot shows that all basis sets end with positive values for the dissociation energy. The
reason for that lies in the approximation, as restricted closed-shell orbitals are used to
describe states in the H2 molecule. Therefore, one is not able to describe the half-filled
states in the H atom that appear for large internuclear distances. The situation goes
especially wrong for the minimal basis set (STO-3G). On the other side, energies near
to the optimal geometry are in much better agreement with experimental values. All
basis sets are able to provide a qualitatively good estimation of the bond length. In
figure 4.3-b total energies near to the equilibrium bond length are plotted (dots) and
the optimal bond length is determined from a quadratic fit (corresponding solid lines)
. The equilibrium bond lengths for each basis set can be found in table 4.4. At the
aug-cc-pVTZ level, the relative error of the estimated bond length is already within
1%, in comparison to the experimental ones (table 4.3).
To summarize, the restricted closed-shell Hartree-Fock theory gives very good total
energies of systems at configurations near to the equilibrium state. For stretched
configurations, RHF theory fails completely and it is not able to predict even the
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Table 4.4: The optimal distance between two H atoms in H2 molecule for different basis sets in
RHF.

STO-3G 6-31G++ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ Experiment [3]
1.346(4) 1.388(3) 1.417(4) 1.418(5) 1.392(3) 1.392(3) 1.40

(a) (b)

Figure 4.3: (a) The dissociation energies of H2 molecule for different basis sets at the level of the
restricted closed-shell Hartree-Fock theory; (b) The total energies of the H2 molecule near to the
equilibrium geometry and quadratic fit of simulation data.

correct qualitative behaviour of systems. Via Koopman’s theorem, the ionization
potential can be qualitatively estimated, but electron affinities in RHF are completely
wrong.

UHF Method as a Solution of the Dissociation Problem

In this section the open-shell calculation will be applied in order to recover the correct
dissociation behavior of the H2 molecule. In the RHF model, the problem arose
on stretched configurations, where the dissociation energy was positive. As it was
explained in the previous section, the RHF model tries to describe one closed-shell
orbital with the same spatial distribution for both electrons. This description must fail
because the system behaves as two individual hydrogen atoms at large bond lengths.
Unrestricted Hartree-Fock theory is capable of retrieving this second unrestricted
solution of two individual atoms. It is worth to mention that two unrestricted solutions
exist at all bond lengths, but for small bond lengths the restricted closed-shell solution
is favorable, while at large internuclear distances the unrestricted solution of two
individual atoms is favorable. In the end, it must be noted that in order to obtain
unrestricted solutions for the two individual atoms, the initial guess for the expansion
coefficients for spin up Cα must differ from the coefficients for spin down Cβ. If the
coefficients are equal for both spin channels and the number of electrons in the system
is even, the Pople-Nesbet equations will be equivalent to the Roothan equations. The
dissociation energy in H2 molecule in RHF and UHF theory using the cc-pVTZ basis
set is shown in the figure 4.4. As explained, the UHF dissociation energy tends to 0
at large internuclear distances so that the dissociation of the H2 molecule is described
correctly.
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Figure 4.4: Dissociation energies in RHF and UHF theory at cc-pVTZ level.
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Chapter 5

Møller-Plesset Perturbation
Theory

Probably the simplest method to go beyond the Hartree-Fock theory and to include
a certain portion of the correlation energy is the many-body perturbation theory
(MBPT), also known as Rayleigh-Schrödinger perturbation theory (RSPT). In the
first section 5.1 of this chapter, general aspects of the Rayleigh-Schrödinger
perturbation theory will be discussed. As it will be seen, it is applicable to all
quantum-mechanical systems, where the exact Hamiltonian Ĥ is approximated by a
simpler one Ĥ0, as it was the case in mean field HF description (see chapter 2). The
remaining part of the Hamiltonian is hopefully very small and it is called the
perturbation V̂ . The corrections are usually given in terms of the matrix elements of
the operator V̂ and all terms that involve the product of n such matrix elements
make the so-called n-th order perturbation energy. If the choice of the approximate
Hamiltonian is the Hartree-Fock Hamiltonian, then the perturbation theory is called
Møller-Plesset perturbation theory - MPPT. The MPPT will be discussed in section
5.2, and the main focus will be the second order perturbation energy (MP2). The
size-extensivity of perturbation energies is shown in section 5.3. At the end of the
chapter, results obtained using the Hartree-Fock approach will be improved with
MP2 theory and presented in section 5.4.
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5.1 Rayleigh-Schrödinger Perturbation Theory

The consistent derivation of RSPT is given in the paper [28] by Per-Olov Lödwin.
A good introduction to the perturbation theory can be found in the book by Szabo
and Ostlund [3]. In this section, the main results needed for the understanding of the
perturbation theory will be presented. As already mentioned, the exact Hamiltonian
of the system Ĥ is approximated by Ĥ0. Therefore, the Hamiltonian is partitioned as

Ĥ = Ĥ0 + V̂ , (5.1)

where V̂ is called the perturbation term. The goal of the perturbation theory is to
solve the eigenvalue problem

Ĥ |Φi〉 = εi |Φi〉 , (5.2)

where the set of states {|Φi〉} are exact eigenstates of the Hamiltonian Ĥ with
corresponding eigenvalues εi. Unfortunately, one is able to solve the Schrödinger
equation exactly only for approximated Hamiltonians Ĥ0, and to obtain an
approximated set of eigenstates |i〉 with corresponding eigenvalues E

(0)
i

Ĥ0 |i〉 = E
(0)
i |i〉 . (5.3)

In order to find the procedure, where the eigenstates can be improved systematically,
the scaling parameter λ is introduced, so that the Hamiltonian is rewritten as

Ĥ = Ĥ0 + λV̂ . (5.4)

According to this scaling parameter, the exact eigenvalues and exact eigenstates could
be expanded as

εi = E
(0)
i + λE

(1)
i + λ2E

(2)
i + · · ·

|Φi〉 = |i〉+ λ |Ψ(1)
i 〉+ λ2 |Ψ(2)

i 〉+ · · · ,
(5.5)

where the terms E
(n)
i are the n-th order perturbation energies and |Ψ(n)

i 〉 are the n-th
order corrections of the corresponding eigenstate. The set of approximated states is
orthonormal and by choosing the so-called intermediate normalization 〈Φi|i〉 = 1, one
obtains the following relation:

〈i|Ψ(n)
i 〉 = 0 , for n ≥ 1. (5.6)

The corrections of the eigenstates can be further expanded in a set of approximated
eigenstates {|i〉} as

|Ψ(n)
i 〉 =

∑
j

c
(n)
ij |j〉 , (5.7)

where n ≥ 1 represents the order of the perturbation and the indices i and j run over
the number of states. The coefficients c

(n)
ij are simply given by

c
(n)
ij = 〈j|Ψ(n)

i 〉 . (5.8)
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The 0th order perturbation energy values are simply the eigenvalues E
(0)
i of the

Hamiltonian Ĥ0 and all higher-order energy corrections can be obtained by

E
(n)
i = 〈i|V̂ |Ψ(n)

i 〉 . (5.9)

At the end of the section, the first three order perturbation energy values will be given
in terms of the matrix elements of V̂ and the eigenvalues E

(0)
i :

E
(1)
i = 〈i|V̂ |i〉 ;

E
(2)
i =

∑
j 6=i

〈i|V̂ |j〉 〈j|V̂ |i〉
E

(0)
i − E

(0)
j

=
∑
j 6=i

|〈i|V̂ |j〉|2

E
(0)
i − E

(0)
j

;

E
(3)
i =

∑
j,k 6=i

〈i|V̂ |j〉 〈j|V̂ |k〉 〈k|V̂ |i〉
(E

(0)
i − E0

j )(E
(0)
i − E

(0)
k )
− E(1)

i

∑
j 6=i

|〈i|V̂ |j〉|2

(E
(0)
i − E

(0)
j )2

.

(5.10)

5.2 Møller-Plesset Perturbation Theory

If the results of the previous section are applied on the Hartree-Fock Hamiltonian

Ĥ0 =
∑
i

f(i) =
∑
i

(
ĥ(i) + vHF(i)

)
, (5.11)

one arrives at Møller-Plesset perturbation theory. Comparing the Hartee-Fock
Hamiltonian with the exact many-body Hamiltonian (2.6), the perturbation is given
by

V̂ = Ô2 −
∑
i

v̂HF(i) =
∑
i<j

r−1
ij −

∑
ij

(
Ĵj(i)− K̂j(i)

)
. (5.12)

As already mentioned, the 0th order energy term is simply the eigenvalue of the
Hartree-Fock Hamiltonian or the sum of Fock eigenvalues:

E
(0)
0 = 〈Ψ0|Ĥ0|Ψ0〉 =

∑
i

εi =
∑
i

〈i|ĥ|i〉+
∑
ij

〈ij||ij〉 . (5.13)

Applying the equation (5.10), the first order energy term in Møller-Plesset
perturbation theory is given by

E
(1)
0 = 〈Ψ0|Ô2|Ψ0〉 −

∑
i

〈Ψ0|v̂HF|Ψ0〉 . (5.14)

Using Slater-Condon rule 2.38 and the definition of the averaged Hartree-Fock
potential the first order energy is finally given by the following relation:

E
(1)
0 =

1

2

∑
ij

〈ij||ij〉 −
∑
ij

〈ij||ij〉

= −1

2

∑
ij

〈ij||ij〉 .
(5.15)
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After these considerations, adding the first two energy terms (equations 5.13, 5.15)
one obtains the Hartree-Fock ground state energy

EHF
0 = E

(0)
0 + E

(1)
0 =

∑
i

〈i|ĥ|i〉 − 1

2

∑
ij

〈ij||ij〉 , (5.16)

that is exactly the energy of the Hartree-Fock determinant given by Slater-Condon
rules (equations 2.37, 2.38). From these considerations, the first improvement of the
Hartree-Fock energy is given by the second-order energy term, the so-called MP2
energy. Recall the equation for the general second-order perturbation energy (5.10).
Because one is interested in the perturbation of the ground state energy, the state
|i〉 is given by Hartree-Fock determinant |Ψ0〉. The choice of states |j〉 should be
carefully determined. Triple and higher excitations do not mix with a Hartree-Fock
determinant, because of two-electron nature of the many-body Hamiltonian.
Therefore, they can be immediately discarded. As shown in the section 4.2, single
excitations |Ψr

i 〉 do not mix with a Hartree-Fock determinant (Brillouin theorem)
and they will not be considered, either. In the end, only double excitations |Ψrs

ij 〉
will appear in the MP2 energy as states, over which the summation needs to be
done. To be able to sum over all double excitations exactly once, the sum should be
restricted to i < j and r < s. Since the double excitations are also eigenstates of the
Hartree-Fock Hamiltonian

Ĥ0 |Ψrs
ij 〉 = (E

(0)
0 − εi − εj + εr + εs) |Ψrs

ij 〉 , (5.17)

the general expression for the second-order energy can be rewritten as

E
(2)
0 =

N∑
i<j

∑
r<s

‖〈ij||rs〉‖2

εi + εj − εr − εs
, (5.18)

where indices i and j run over occupied orbitals and indices r and s over unoccupied
ones. The equation can be further adjusted for the evaluation over restricted spin
orbitals (2.39):

E
(2)
0 = 8

N/2∑
i<j

∑
r<s

〈ij|rs〉 〈rs|ij〉
εi + εj − εr − εs

− 4

N/2∑
i<j

∑
r<s

〈ij|rs〉 〈sr|ij〉
εi + εj − εr − εs

. (5.19)

In a similar way, higher order energy terms can be expressed. In this work, only
MP2 energy will be considered, because it is the cheapest one for the calculation, but
simultaneously the MP2 energy recovers in average 70-90 % of the total correlation
energy. Such a dominance of MP2 energy is expected, because it was seen that the
MP2 energy contains only contributions due to double excitations, which monitoring
the correlation energy.

5.3 Size-Extensivity of MP Energies

From its perturbative nature, it is clear that MP energies are not variational, i.e. the
MP energy is not the lowest energy that can be obtained from the actual set of orbitals
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that approximate the electronic wave function. To get a better insight, the first two
MP energy terms should be considered. Although the set of Hartree-Fock orbitals
is improved by the first-order corrections |Ψ(1)

i 〉, the sum of these first two energy
terms is exactly the Hartree-Fock energy that was obtained by the optimization of
Hartree-Fock orbitals only. On the other side, the MP energies are size-extensive at
each order of approximation. Consider a system of N independent non-interacting
particles. If the method is size-extensive, then the total energy of the system is given
simply as the sum of all particle energies. In this section, it will be explicitly shown,
that MP0, MP1 and MP2 energies are size-extensive. It is a very demanding task to
prove the size-extensivity at an arbitrary level of the perturbation. A simple way to do
it, is to use Feynman diagrams to represent the perturbation theory, where the size-
extensivity is the direct consequence of the famous linked-cluster theorem. However,
the diagrammatic representation is out of scope of this work. For more details, it is
recommended to consider [3, 7]. Let us return now to our first three Møller-Plesset
energies. Consider the two non-interacting systems A and B with corresponding
Hamiltonian operators ĤA and ĤB and let us assume that the Hamiltonian of the
whole system is simply the sum of these two Hamiltonians ĤAB = ĤA + ĤB. In a
similar way, the unperturbed Hamiltonians and perturbations are defined as Ĥ0,AB =

Ĥ0,A + Ĥ0,B and V̂AB = V̂A + V̂B. Because the Hamiltonians are additively separable,

the ground state wave function must be multiplicatively separable, so that |0(0)
AB〉 =

|0(0)
A 0

(0)
B 〉. From this knowledge, the zero-order energy is given by

E
(0)
0,AB = 〈0(0)

AB|Ĥ0,AB|0(0)
AB〉 = 〈0(0)

A |Ĥ0,A|0(0)
A 〉 〈0

(0)
B |0

(0)
B 〉+ 〈0(0)

A |0
(0)
A 〉 〈0

(0)
B |Ĥ0,B|0(0)

B 〉

E
(0)
0,AB = E

(0)
0,A + E

(0)
0,B,

(5.20)
where it is explicitly shown, that the energy is size-extensive. The same process is
applied for the first order perturbation energy:

E
(1)
0,AB = 〈0(0)

AB|V̂0,AB|0(0)
AB〉 = 〈0(0)

A |V̂0,A|0(0)
A 〉 〈0

(0)
B |0

(0)
B 〉+ 〈0(0)

A |0
(0)
A 〉 〈0

(0)
B |V̂0,B|0(0)

B 〉

E
(1)
0,AB = E

(1)
0,A + E

(1)
0,B.

(5.21)
To prove the same for the MP2 energy, the first-order MP wave function is needed.
If the exact Schrödinger equation is truncated at first-order (equations 5.2, 5.5)(

Ĥ0 + V̂
) (
|0(0)〉+ |0(1)〉

)
=
(
E

(0)
0 + E

(1)
0

) (
|0(0)〉+ |0(1)〉

)
(5.22)

the following closed-form relation for the first-order wave function is obtained:

|0(1)〉 = −
(
Ĥ0 − E(0)

0

)−1 (
V̂ − E(1)

0

)
|0(0)〉 . (5.23)

By introducing operators K̂ = Ĥ0 − E
(0)
0 and L̂ = V̂ − E

(1)
0 , the first-order wave

function for the composed system can be written as

|0(1)
AB〉 = −

(
K̂A + K̂B

)−1 (
L̂A + L̂B

)
|0(0)
AB〉 . (5.24)

The last equation can be seen as a sum of two terms and therefore, let us consider
one term and use operator identity(

K̂A + K̂B

)−1

= K̂−1
A −

(
K̂A + K̂B

)−1

K̂BK̂
−1
A (5.25)

56



5 – Møller-Plesset Perturbation Theory

to obtain

−
(
K̂A + K̂B

)−1

L̂A |0(0)
AB〉 = −K̂−1

A L̂A |0(0)
A 0

(0)
B 〉+

(
K̂A + K̂B

)−1

K̂BK̂
−1
A L̂A |0(0)

A 0
(0)
B 〉

= −K̂−1
A L̂A |0(0)

A 0
(0)
B 〉 = |0(1)

A 0
(0)
B 〉 ,

(5.26)

where one has used that K̂B commutes with K̂−1
A L̂A and K̂B |0(0)

B 〉 = 0 were
used.Considering both terms from (5.24) the outcome is

|0(1)
AB〉 = |0(1)

A 0
(0)
B 〉+ |0(0)

A 0
(1)
B 〉 . (5.27)

With this result the MP2 energy can be written as

E
(2)
0,AB = 〈0(0)

AB|V̂AB|0
(1)
AB〉 = 〈0(0)

A |V̂A|0
(1)
A 〉 〈0

(0)
B |0

(0)
B 〉+ 〈0(0)

A |0
(0)
A 〉 〈0

(0)
B |V̂B|0

(1)
B 〉

= E
(2)
0,A + E

(2)
0,B,

(5.28)

where the size-extensivity of the MP2 energy is proven. For more details about size-
extensivity of various electronic structure methods, see Helgaker [9].

5.4 Examples of MP2 Calculations

In the subsequent result sections, results from section 4.7 will be appropriately
updated and discussed. At the MP2 level, as it was already mentioned, only the
total energy is improved, but the wave function remains of the same quality as in
RHF theory. Therefore, let us consider total energies in MP2 theory.

Total Energies

Results for molecules considered in table 4.1 can be found in table 5.1. From those
results, it is obvious that larger basis sets are needed to retrieve significant
correlation contributions. The minimal basis set does not suffice for correlation
consistent calculations and therefore, it will not be used for other correlation
consistent calculations. On the other hand, one can notice that the correlation
contributions become surprisingly large for systems like H2O or the nitrogen
molecule N2. In the case of the last one, the correlation energy of −0.409 Hartrees is
obtained, i.e. −11.137 eV on the MP2 level. In the cases of the He atom and the H2

molecule, where the exact results are known [3, 21], the MP2 energy retrieves more
than 99% of the total correlation energy (at aug-cc-pVTZ level). Clearly, for larger
systems the MP2 will become worse and the larger discrepancies between exact
results and MP2 values are expected.

Equilibrium Geometries

In this section, the potential energy curve of the H2 molecule will be examined
again. Let us first see how the situation changes near the optimal geometry. The
bond length was already well estimated on the level of Hartree-Fock theory. Here,
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Table 5.1: MP2 total energies at the equilibrium geometries of the considered molecules for different
basis sets.

Basis Set
System STO-3G 6-31G++ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ Exact

He -2.808 -2.881 -2.881 -2.883 -2.894 -2.895 -2.903 [21]
H2 -1.130 -1.158 -1.155 -1.156 -1.165 -1.165 -1.175 [3]

BeH2 -15.583 -15.817 -15.819 -15.823 -15.840 -15.848
H2O -74.998 -76.219 -76.231 -76.263 -76.332 -76.344 -76.435 [3]
FH -98.588 -100.194 -100.223 -100.258 -100.343 -100.355
N2 -107.650 -109.251 -109.265 -109.283 -109.383 -109.394

(a) (b)

Figure 5.1: (a) The energy potential curve of molecule H2 for different basis sets at MP2 level;
(b) The MP2 total energies of H2 molecule near to the equilibrium geometry and quadratic fit of
simulation data.

improvements are expected, because MP2 is quite accurate at the equilibrium
geometry. The estimated bond lengths for various basis sets can be found in table
5.2. At the aug-cc-pVTZ level, the optimal bond length differs only by 0.2% from
the experimental one (a relative error of 1% was obtained for the RHF theory).

Table 5.2: The estimated bond length in the H2 molecule at the MP2 level for different basis sets.

STO-3G 6-31G++ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ Experiment [3]
1.370(5) 1.391(6) 1.429(4) 1.430(4) 1.398(3) 1.398(3) 1.40

The quadratic fit of the simulation data is depicted in figure 5.1-b. In 5.1-a, the whole
potential curves for various basis sets are plotted. Comparing these curves with the
previous ones (figure 4.3-a), a clear improvement of the dissociation problem can be
noticed. However, the problem is still not solved. Although the intersection with
x-axis has shifted to the right, the dissociation energy still becomes positive for large
bond lengths.
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Chapter 6

Direct Full Configuration
Interaction Method - FCI

In this chapter, the major subject of this thesis is discussed. It is the famous
configuration interaction method, which optimizes the N -electron wave function
within a Slater space. With configuration interaction, it is theoretically possible to
obtain the exact correlation energy Ecorr, that is defined as the difference between
the exact non-relativistic electronic Hamiltonian eigenvalue (2.7) and the
Hartree-Fock energy, obtained in the limit of the complete basis set

Ecorr = E0 − EHF
0 . (6.1)

Because of the importance of this term, the correlation energy will be discussed here
in more details. As it was seen in chapter 2, certain approximations are applied to
be able to solve the non-relativistic Schrödinger equation within the
Born-Oppenheimer approximation (see section 2.2). All small effects that can not be
treated exactly are called correlation effects. Although the Hartree-Fock method and
similar simple methods give about 99% of the ground state energy in most cases, the
rest is sometimes needed in order to obtain some properties of the system correctly
(excited states, dipole moments, dissociation of molecules, relative energies between
phases, atomization energies and others). The correlation energy can be divided into
two parts - static correlation energy and dynamic correlation energy. Static
correlation energy comes from the degeneracy of the bonding and anti-bonding
configuration. In such systems, these configurations have to be treated together.
Especially, the description of molecule dissociation requires more configurations to
describe the ground state properly, because the bonding and anti-bonding states
become nearly degenerated at non-equilibrium distances. For these reasons, the
single-determinant methods fails. The simplest method to solve this problem is to
include the most important configurations for the ground state calculation, i.e. the
so-called multi-configurational self-consistent field or MCSCF. The dynamic
correlation effects arise from the fact that the exact electron-electron Coulomb
repulsion is approximated by the movement of the electron in the potential of other
electrons. The dynamic correlation of electrons due to instantaneous Coulomb
repulsion can be resolved by inclusion of many Slater determinants. The method
that includes all possible Slater determinants is referred to as full configuration
interaction FCI. Although the FCI approach provides a way to systematically retain
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correlation energy, this method scales exponentially with the number of electrons N
and, in all realistic cases, except the modest ones, one is limited to a small fraction
of the Slater space that can be included in the calculations. In this chapter,
deterministic and exact procedures to obtain the CI energy via iterative
diagonalization procedures will be considered, while the next chapter gives an
insight into stochastic Quantum Monte-Carlo methods, which are able to sample the
most important part of the Slater space in an efficient way. The chapter starts with
general aspects of configuration interaction theory (section 6.1). In the section 6.2,
the discussion about size-extensivity of the full configuration interaction method is
given, followed by the section where the first concrete CI implementation is
discussed. To be able to perform a CI calculation with a meaningful number of
Slater determinants, efficient methods for the storage of Slater determinants (section
6.4) and an efficient method for the matrix-diagonalization are needed (section 6.5).

6.1 Introduction to CI

So far, the Hartree-Fock theory and Møller-Plesset Perturbation theory were
discussed. All these methods are single-determinant methods. In other words, the
N -electron wave function is approximated by only one Slater determinant - the
Hartree-Fock determinant. In the Hartree-Fock theory, one finds the set of 2P
optimal spin orbitals and constructs a Slater determinant from them. In a
configuration interaction method, this set of optimized spin orbitals will remain
unchanged and they will be used for the construction of other Slater determinants.
Consider the N electrons and 2P spin orbitals, then the number of Slater
determinants that can be constructed is

Ndet =

(
2P

N

)
. (6.2)

Assuming the fact that electrons have either spin up (α) or spin down (β) and that the
spin of the electron can not be changed, the number of possible Slater determinants
is restricted to

Ndet =

(
P

Nα

)
·
(
P

Nβ

)
, (6.3)

where Nα and Nβ are the number of spin up and spin down electrons, respectively.
If all Slater determinants are included in the CI expansion, one refers to the full
configuration interaction or FCI method. The FCI wave function can be written in
the intermediate normalized state as

|ΦFCI〉 = |Ψ0〉+
∑
ir

cri |Ψr
i 〉+

∑
i<j
r<s

crsij |Ψrs
ij 〉+

∑
i<j<k
r<s<t

crstijk |Ψrst
ijk〉+ · · · (6.4)

where |Ψ0〉 is reference Hartree-Fock determinant, |Ψr
i 〉 denotes single excitations,

|Ψrs
ij 〉 denotes doubly excited determinants and so on. The FCI procedure reflects in

the calculation of optimal coefficients that minimize the total energy. This procedure
corresponds to the variational problem (see appendix A), i.e. to the diagonalization of
the corresponding Hamiltonian. The so-called CI matrix (Hamiltonian matrix within
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a Slater space) has a strong block form (figure 6.1), because all Hamiltonian matrix
elements 〈Ψ1|Ĥ|Ψ2〉, where two Slater determinants differ by more than two spin
orbitals, are equal to zero. All non-zero Hamiltonian matrix elements are obtained
via Slater-Condon rules (equations 2.37, 2.38). The lowest eigenvalue of the CI matrix
gives the upper bound of the ground state energy

ECI
corr = ECI

0 − EHF
0 , (6.5)

where ECI
corr is called basis set correlation energy. The first element of this matrix

〈Ψ0|Ĥ|Ψ0〉, i.e. the Hartree-Fock energy is the most negative value in the matrix.
The second important fact to notice is that the single excitations |Ψr

i 〉 do not mix
with the Hartree-Fock determinant, because of the Brillouin theorem (section 4.2).
However, the single excitations still have a small effect on the ground state, because
they mix indirectly via double and triple excitations. After these considerations, it is
expected that double excitations play a dominant role in the CI ground state (after the
Hartree-Fock determinant, of course), because they are the only ones that mix with the
reference state directly. The FCI procedure is very attractive for physicists, because
the FCI energy is both variational and size-extensive and it also produces the exact
correlation within a basis set. The size-extensivity of the FCI wave function will be
derived in the section 6.2. From the relation (6.3), it can be concluded that the Slater
space grows exponentially with number of electrons, i.e. the number of spin orbitals.
Therefore, the FCI procedure is possible only for the smallest systems and for larger
systems the CI wave function usually needs to be truncated. The simplest way to
truncate the CI wave function is to include all excitations of Hartree-Fock determinant
up to the k-th order, because one expects the following behavior: the higher the level
of excitation, the smaller its effect on the ground state is. CAS - complete active
space and RAS - restricted active space are also very popular expansion methods,
but they will not be discussed in detail here, because the FCI procedure is of main
interest for this work. On the other hand, the CAS method will be shortly discussed
in the next chapter, because it is needed for an efficient sampling of the Slater space
in stochastic CI methods.

6.2 Size-Extensivity of the CI Wave Function

As it was shown for Møller-Plesset perturbation theory, one wants to show that the
the full configuration interaction is also size-extensive. In this section, the
size-extensivity of the wave function will be shown in general for the linear
variational problem, discussed in appendix A. Let us introduce an optimized wave
function for two subsystems:

|0A〉 =
∑
i

CiA |iA〉

|0B〉 =
∑
i

CiB |iB〉 ,
(6.6)
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Figure 6.1: The strong sparse form of the CI matrix: red color denotes the matrix elements that
disappear because of Brillouin theorem, while the intensity of grey areas shows the importance of
the corresponding matrix elements on the ground state. Note, only the upper triangular part of the
CI matrix is shown, because the matrix is Hermitian.

so that the ground state energy of each subsystem can be expressed as

EA =
〈0A|ĤA|0A〉
〈0A|0A〉

EB =
〈0B|ĤB|0B〉
〈0B|0B〉

,

(6.7)

where HA and HB are Hamiltonian operators of subsystems A and B, respectively.
For the supersystem AB, the optimized wave function is a linear combination of direct
product states

|0AB〉 =
∑
ij

CiA,jB |iA jB〉 = |0A 0B〉 ≡ |0A〉 |0B〉 , (6.8)

and equivalent as for subsystems, the total energy of a supersystem is given by

EAB =
〈0AB|ĤAB|0AB〉
〈0AB|0AB〉

. (6.9)

Using the fact that the Hamiltonian of the composed system is simply the sum of
subsystem’s Hamiltonians ĤAB = ĤA + ĤB and the fact that two subsystems do not
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interact, one obtains

EAB =
〈0AB|ĤA + ĤB|0AB〉

〈0AB|0AB〉
=
〈0A|ĤA|0A〉 〈0B|0B〉
〈0A|0A〉 〈0B|0B〉

+
〈0A|0A〉 〈0B|ĤB|0B〉
〈0A|0A〉 〈0B|0B〉

=
〈0A|ĤA|0A〉
〈0A|0A〉

+
〈0B|ĤB|0B〉
〈0B|0B〉

= EA + EB,

(6.10)

which proves the size-extensivity of linear variational problem. As the configuration
interaction method and the Hartree-Fock approximation are based on the linear
variational problem, the size-extensivity holds for CI and Hartree-Fock
approximations, too. Note that there is an additional condition for the
size-extensivity. If the system A is expanded in the space of size SA and the system
B in space of size SB, then the supersystem must be expanded over the whole
product space SA ⊗ SB. The important consequence of this condition is that the
truncated CI wave function is not size-extensive anymore. To make it clearer,
consider the CI expansion of fragments A,B, where only single and double
excitations are included - CISD. To be size-extensive, the expansion of the composed
wave function also has to contain triples and quadruples that arise as composition of
singles/doubles from two fragments A and B. Therefore, the size-extensivity holds
only for the full configuration interaction FCI, where all possible configurations are
included. In the end, note that the FCI correlation energy defined by (6.5) is also
size extensive, because both FCI and Hartree-Fock energies are size-extensive.

6.3 Determinant-Based Direct CI Method

The first implementations of CI appeared together with Hartree-Fock calculations, but
they were able to include only very few Slater determinants or configurational state
functions CSFs. Because Slater determinants in general are not eigenfunctions of the
spin operator Ŝ2, appropriate linear combinations are constructed in such a way that
they satisfy this condition. Such functions are called confiugrational state functions,
i.e CSFs. In terms of CSFs, the size of the CI matrix is smaller than in terms of
Slater determinants, and they ensure correct physical properties of the ground state
wave function, which is not the case with Slater determinants. Therefore, in the first
implementations of configuration interaction, CSFs were used more often than Slater
determinants. In these first implementations, the CI matrix was explicitly calculated
and stored on a disc or a magnetic tape and at each iteration of the CI procedure, all
matrix elements had to be loaded. The new epoch, which has enabled CI calculations
on drastically larger systems was introduced by Roos and Siegbahn [29]. In this
method the CI matrix is not calculated explicitly anymore, but the evaluation of the
contraction

σ = HC, (6.11)

where C is a CI vector (the coefficients of the CI expansion from equation (6.4)), is
done at each iteration of CI procedure on the fly. In this process, some iterative
diagonalization procedure is used to find the converged CI vector that approximates
the ground state. Iterative diagonalization procedures are very important in CI
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calculations, and they will be discussed later in section 6.5. After these
considerations, the main task in the CI procedure is the efficient evaluation of the
matrix multiplication (6.11). For this purpose, the concept of alpha (beta) strings
was introduced by Handy [30]. An alpha (beta) string is simply the ordered product
of creation operators with the α spin (β spin). Consider the Slater determinant

|I〉 = |χ1αχ2αχ3αχ1βχ4βχ5β〉 (6.12)

then the alpha and beta strings are

Iα = χ1αχ2αχ3α = a†1αa
†
2αa
†
3α

Iβ = χ1βχ4βχ5β = a†1βa
†
4βa
†
5β

, (6.13)

so that the Slater determinant can be rewritten as

|I〉 = |IαIβ〉 ≡ |Iα〉 |Iβ〉 . (6.14)

The number of alpha strings Nα
str, and beta strings Nβ

str, respectively are given in
equation (6.3) by the first and the second factor, respectively. The first task in an CI
implementation is the construction of all alpha (beta) strings by distributing Nα (Nβ)
electrons among P spin orbitals. Because each Slater determinant can be constructed
by combining one alpha and one beta string, the natural choice for the representation
of the CI vector is a matrix of dimensions Nα

str×N
β
str, where the row index points to the

alpha string and the column index points to the beta string. Therefore, the names
CI vector and CI matrix will be used interchangeably. Recall now the many-body
Hamiltonian in second quantization, derived in the section 2.7

Ĥ =
P∑
ij

(i|ĥ|j)Êij +
1

2

P∑
ijkl

(ij|kl)
[
ÊijÊkl − δjkÊil

]
(6.15)

and insert it into (6.11) to obtain

σIαIβ =
∑
Jα,Jβ

〈IβIα
∣∣∑

ij

(i|ĥ|j)Êij +
1

2

∑
ijkl

(ij|kl)(ÊijÊkl − δjkÊil)
∣∣JαJβ〉CJαJβ . (6.16)

The first direct and efficient implementation of the latter equation was done by Olsen
[31] and this implementation is appropriate for full CI calculations. The equation
(6.16) can be further simplified. In the first step, the Hamiltonian can be rewritten in
such a way that the two-electron Hamiltonian part with the single excitation operator
Êil can be added to the one-electron part of the Hamiltonian

Ĥ =
∑
ij

(i|ĥ|j)Êij +
1

2

∑
ijkl

(ij|kl)
[
ÊijÊkl − δjkÊil

]
=
∑
ij

(i|ĥ|j)Êij −
1

2

∑
ijl

(ij|jl)Êil +
1

2

∑
ijkl

(ij|kl)ÊijÊkl

=
∑
ij

[
(i|ĥ|j)− 1

2

∑
k

(ik|kj)
]
Êij +

1

2

∑
ijkl

(ij|kl)ÊijÊkl

=
∑
ij

h̃ijÊij +
1

2

∑
ijkl

(ij|kl)ÊijÊkl,

(6.17)
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where the modified one-electron integrals h̃ij are defined as

h̃ij = (i|ĥ|j)− 1

2

∑
k

(ik|kj). (6.18)

This transformation of the one-electron integrals should be performed before the
actual full CI calculations start. In this moment, it is appropriate to note that one-
and two-electron integrals used in CI programs are the molecular integrals over
canonical spin orbitals and they substantially differ from the molecular integrals
over Gaussian basis functions that were discussed in chapter 3. Therefore, after the
SCF calculation is performed and HF spin orbitals are obtained, the transformation
of molecular integrals over Gaussian functions to integrals over Hartree-Fock orbitals
must be performed. Because this task is often computationally more demanding
than the entire Hartree-Fock calculation, it will be discussed separately in appendix
C. The next simplification noticed first by Handy and Knowles [32,33] reflects in the
following fact: differ two alpha strings Iα and Jα by two spin orbitals, then the
contribution to the sigma vector is independent of the beta strings. Recall the
definition of the total excitation operator (2.50) and inserting it into (6.16), the
sigma vector can be split into three terms

σIαIβ ≡ σ(Iα, Iβ) = σ1(Iα, Iβ) + σ2(Iα, Iβ) + σ3(Iα, Iβ), (6.19)

where σ1 depends only on the alpha strings, σ2 on the beta strings only and the third
term σ3, computationally the most demanding one, depends on both - alpha and beta
strings. In the σ1 part, all excitation operators belong to alpha electrons, so that the
beta strings Iβ and Jβ have to be identical Iβ = Jβ. Therefore, the term σ1 is given
by

σ1(Iα, Iβ) =
∑
Jα

〈Iα
∣∣∑

ij

h̃ijÊ
α
ij +

1

2

∑
ijkl

(ij|kl)
(
Êα
ijÊ

α
kl

) ∣∣Jα〉C(JαIβ). (6.20)

In a similar way, the analogous expression containing only beta excitations is given
by

σ2(Iα, Iβ) =
∑
Jβ

〈Iβ
∣∣∑

ij

h̃ijÊ
β
ij +

1

2

∑
ijkl

(ij|kl)
(
Êβ
ijÊ

β
kl

) ∣∣Jβ〉C(IαJβ). (6.21)

The last term, containing alpha and beta excitations simultaneously, is given by the
following relation

σ3(Iα, Iβ) =
∑
JαJβ

∑
ijkl

〈Iα|Êα
ij|Jα〉 〈Iβ|Ê

β
kl|Jβ〉 (ij|kl)C(JαJβ). (6.22)

Further simplifications are due to spin symmetry and they are very important for the
minimization of the computational time for the FCI algorithm. For this purpose, the
spin projection MS should be considered. This value is given via

MS =
1

2
(Nα −Nβ). (6.23)
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If MS = 0 (number of electrons with spin up equal to the number of electrons with
spin down), terms σ1 and σ2 are connected via the following relation

σ2(Iα, Iβ) = (−1)Sσ1(Iβ, Iα), (6.24)

where S is the total spin number. The relation was implemented for the first time
by Olsen and coworkers [31]. For singlet states (S = 0), the CI matrix C(Iα, Iβ) is
symmetric. The symmetry can also be applied for σ3, where the ijkl-th component
of σ3 is directly connected with klij-th component of σ3 by

σijkl3 (Iα, Iβ) = (−1)Sσklij3 (Iβ, Iα). (6.25)

This equation introduces the restriction (ij) ≥ (kl). To exploit this restriction in an
efficient way, the term σ3 (6.22) is rewritten as

σ3(Iα, Iβ) =
∑

(ij)≥(kl)

σijkl3 (Iα, Iβ) +
∑

(ij)<(kl)

(−1)Sσklij3 (Iβ, Iα). (6.26)

Defining

σ̃3(Iα, Iβ) =
∑

(ij)≥(kl)

σijkl3 (Iα, Iβ) · (1 + δ(ij),(kl))
−1, (6.27)

the term σ3 is finally given by

σ3(Iα, Iβ) = σ̃3(Iα, Iβ) + (−1)Sσ̃3(Iβ, Iα). (6.28)

Note that the second pair of parentheses in (6.27) prevents the double counting of
terms with i = k and j = l. Summarized, for systems with MS = 0, the term σ2 is
obtained by the cost of matrix transpose of σ1 and the calculation of σ3 is replaced by
the calculation of σ̃3 (6.27). The whole sigma step is therefore given by the following
relation:

σ(Iα, Iβ) = σ1(Iα, Iβ) + σ̃3(Iα, Iβ) + (−1)S [σ1(Iβ, Iα) + σ̃3(Iβ, Iα)] . (6.29)

Let us have a closer look at the formal implementation methods for the latter relation.
From a historical point of view, two slightly different methods have been developed:
the string driven approach and the integral driven approach [34]. In the string driven
approach, one loops over all alpha (beta) strings and obtains all allowed excitations
by applying excitation operator Êij. Once the excitation operator is applied

Êα
ij |Iα〉 = Γij(Iα) |I ′α〉 , (6.30)

the new string is obtained and the phase factor Γij(Iα) = ±1 must be calculated, too.
This phase factor arises from the antisymmetrical nature of the wave function (see
section 2.7). Recall the definition of the factor Γi (2.43) and rewrite the factor Γij
simply as

Γij(Iα) = ΓiΓj = (−1)
∑i−1
k=1 nk+

∑j−1
l=1 nl = (−1)pi+pj = (−1)pj−pi , (6.31)

where pj−pi denotes the number of electrons in orbitals between the orbital i+1 and
the orbital j − 1. The simplest algorithm for the calculation of the term σ1 is given
in listing 6.1.
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1 DO loop over |Iα〉
2 DO loop over k, l

3 |Jα〉 = Γkl(Iα) · Êαkl |Iα〉
4 ! add one−e l e c t r o n c o n t r i b u t i o n s
5 DO loop over |Iβ〉
6 σ1(Iα, Iβ) += Γkl(Iα) · h̃kl C(Jα, Iβ)
7 END loop |Iβ〉
8

9 DO loop over j, i

10 |Kα〉 = Γij(Jα) · Êαij |Jα〉
11 ! add two−e l e c t r o n c o n t r i b u t i o n s
12 DO loop over |Iβ〉
13 σ1(Iα, Iβ) += 1

2Γij(Jα)Γkl(Iα) · (ij|kl) C(Kα, Iβ)
14 END loop |Iβ〉
15 END loop i, j
16 END loop l, k
17 END loop |Iα〉

Listing 6.1: The simple algorithm for the evaluation of σ1.

In modern computational architectures, because of the non-uniform memory access,
temporal and spatial locality of data should be used in order to implement an
efficient algorithm. Because of these considerations, the latter listing could be
straightforwardly vectorized. The vectorized algorithm is represented in listing 6.2.
The two algorithms will be compared in section 6.6. Returning now to the
implementation of σ3, where excitations over both spins are presented. This
implementation is computationally more demanding than the algorithm described in
listings 6.1 and 6.2. The simplest version of a string driven algorithm is presented in
listing 6.3.

1 DO loop over |Iα〉
2 F (:) = 0.0
3 DO loop over k, l

4 |Jα〉 = Γkl(Iα) · Êαkl |Iα〉
5 ! add one−e l e c t r o n c o n t r i b u t i o n s

6 F (Jα) += Γkl(Iα) · h̃kl
7

8 DO loop over j, i

9 |Kα〉 = Γij(Jα) · Êαij |Jα〉
10 ! add two−e l e c t r o n c o n t r i b u t i o n s

11 F (Kα) += 1
2Γij(Jα)Γkl(Iα) · (ij|kl)

12 END loop i, j
13 END loop l, k
14 σ1(Iα, :) +=

∑
Jα
C(Jα, :) · F (Jα)

15 END loop |Iα〉
Listing 6.2: The vectorized algorithm for the evaluation of σ1.

1 DO loop over |Iα〉
2 DO loop over l, k

3 |Jα〉 = Γkl(Iα) · Êαkl |Iα〉
4 DO loop over |Iβ〉
5 DO loop over j, i

6 |Jβ〉 = Γij(Iβ) · Êβij |Iβ〉
7 σ(Iα, Iβ) += Γij(Iβ)Γkl(Iα) · (ij|kl) C(Jα, Jβ)
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8 END loop i, j
9 END loop |Iβ〉

10 END loop k, l
11 END loop |Iα〉

Listing 6.3: The pure string driven algorithm for the evaluation of σ3.

The vectorization of the algorithm for the calculation of σ3 is not so simple as for
the σ1. To be able to vectorize the σ3 term, the string driven and integral driven
approaches must be combined. In the integral driven approach, one loops over orbital
indices i and j, and forms a sublist M of strings that do not disappear under the
action of the excitation operator Êij and the sublist of new strings N , created as

N = ÊijM. Additionally, the array of phase factors Γij(M) has to be calculated.
This combined vectorized algorithm is shown in listing 6.4.

1 ! i n t e g r a l dr iven part
2 DO loop over l, k
3 s e t up M , N and Γij(M) by
4 DO loop over |Iα〉
5 |N (Iα)〉 = Γkl(M(Iα)) · Êαkl |M(Iα)〉
6 C ′(Iα, :) = C(N (Iα), :) · Γkl(M(Iα))
7 END loop over |Iα〉
8

9 ! s t r i n g dr iven part
10 DO loop over |Iβ〉
11 F (:) = 0.0
12 DO loop over j, i

13 |Jβ〉 = Γij(Iβ) · Êβij |Iβ〉
14 F (Jβ) += Γij(Iβ) · (ij|kl)
15 END loop i, j
16

17 V = C ′F
18 σ(:, Iβ) += V
19 END loop |Iβ〉
20 END loop k, l

Listing 6.4: The vectorized string-integral driven algorithm for the implementation of σ3.

6.4 Graphical Representation of Slater

Determinants

The essential part of each CI implementation is the computer implementation of
Slater determinants and fast addressing scheme for them. Each Slater determinant
is decomposed into two strings as mentioned in (6.14). Each string is represented by
a 4-byte or 8-byte integer depending on the number of orbitals, where the bitwise
representation of an integer represents the occupation of a specific orbital in the given
string. The i-th bit of an integer tells whether i-th orbital of a string is occupied or
not. Consider a system with 5 spin-up electrons in 7 orbitals, then the integer 31 will
represent the following string:

|31〉 ≡ 1·20+1·21+1·22+1·23+1·24+0·25+0·26 ≡ |1111100〉 = a†1a
†
2a
†
3a
†
4a
†
5 |0〉 . (6.32)
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In this way, each string is represented by an integer smaller than 2P , where P
represents the total number of spatial orbitals. It has to be noted that this bit
representation of a string is not unique. Consider the following case

a†1a
†
2a
†
3a
†
4a
†
5 |0〉 = |1111100〉 ≡ |31〉

a†2a
†
1a
†
3a
†
4a
†
5 |0〉 = |1111100〉 ≡ |31〉 .

(6.33)

It is clear that these two strings differ by a minus sign because of the anticommutation
relation (2.47), but they have an identical bit representation. Therefore, in order
to avoid ambiguity, a fixed ordering of the creation operators in a string must be
established. The normal ordering will be used. In the normal ordering, the creation
operator with a larger orbital index within a string comes to the right side and beta
string comes to the right side of alpha string, as it is in the case (6.14). Because the
bit representation does not fulfill operator algebra, one needs to take care of the minus
sign each time one string is perturbed. In the case of excitations, the phase factor is
calculated via (6.31), as it was explained in the last section. The last thing to note
is the fact that if one manipulates strings via electron excitations only (operator Êij
(2.48)), one needs to take care of the minus sign only within a string and not within
the whole Slater determinant. In other words, one can write

Êα
ijÊ

β
kl |IαIβ〉 = (−1)2NαÊα

ij |Iα〉 Ê
β
kl |Iβ〉 = Γij(Iα)Γkl(Iβ) |JαJβ〉 , (6.34)

where Nα is the number of electrons with spin α and the action of operator Êβ
kl does

not change the sign of a determinant crossing the alpha string |Iα〉. Summarized, each
Slater determinant is represented by two integers and two indices are needed to access
a specific determinant. In order to obtain an efficient addressing scheme for Slater
determinants, a graph representation of the alpha (beta) strings will be introduced
[9, 10, 36]. Separately for each spin, one graph representing all possible strings will
be constructed. Because the graphs are constructed in an identical way for both
spins, spin indices will be discarded in the rest of this section. The Graph G(P : N)
consisting of vertices and vertical and diagonal arcs has the head at (e = 0, o = 0) and
the tail of a graph is given by a vertex (e = N, o = P ). Each walk in a graph, starting
from a head and ending in a tail, represents one string. To specify the occupation of
a string, one defines that each diagonal arc starting in a vertex (e, o) and ending in
(e + 1, o + 1) indicates that orbital o + 1 is occupied and each vertical arc starting
in (e, o) and ending in (e, o + 1) represents an unoccupied orbital o + 1. Consider
again a system of 5 electrons in 7 orbitals, which requires a graph G(7 : 5) depicted in
figure 6.2. The blue walk in a graph, denoted by |31〉 is a state in (6.32). In a similar
way, the red walk denoted by |115〉 corresponds to a string |1100111〉. In order to
determine a unique address for each Slater determinant, the weights are assigned to
each vertex and each arc. The vertex weights are defined by the following recursion:

W (e = 0, o = 0) = 1

W (e, o) = W (e, o− 1) +W (e− 1, o− 1).
(6.35)

In a graph (figure 6.2) all vertex weights are shown. From Vertex weights, arc weights
can be defined, too. They are given by the following rules:

Y 0(e, o) = 0

Y 1(e, o) = W (e+ 1, o+ 1)−W (e, o) = W (e+ 1, o),
(6.36)
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where Y 0(e, o) is a weight of a vertical arc starting at (e, o) and Y 1(e, o) is a weight of
diagonal arc starting at vertex (e, o). Each walk from head to tail can be represented
as a union of vertical and diagonal arcs and the address I of a given string is simply
the sum of all arc weights contained in that string. The relation for the calculation
of a string address can be written as

I = 1 +
P∑
i=1

Y ei−ei−1(ei, i), (6.37)

where ei − ei−1 denotes whether the actual orbital is occupied or not, i.e. whether
the actual arc is diagonal or vertical. Considering a string (6.32), it is visible that the
address of that particular string is 1. It makes sense, because the string |31〉 represents
the lowest-lying state. By calculating the address for the string represented by the blue
line, the address 16 is obtained in a similar fashion. For a string |124〉 ≡ |0011111〉 =
a†3a

†
4a
†
5a
†
5a
†
6a
†
7 |0〉, the address 21 is obtained, and it is equal to the total number of

strings
(

7
5

)
. Similarly, one can list all strings and prove that their addresses are all

integers in the range 1 − 21. The last step that remains to be done, is the explicit
construction of all strings, i.e. the construction of an array of integers, where a bit
representation of each integer corresponds to one string. Additionally, this array has
to be sorted with respect to the addressing scheme, as explained above. There are
also methods to adapt graphs to be able to use advantages of symmetry point group
or to adapt graphs for RAS CI calculation, but they will be out of scope of this work.
For more details, see [36].

6.5 Iterative Diagoanalization Procedures -

Davidson Method

To be able to perform CI calculations for big systems (106 Slater determinants or
more), an efficient iterative diagonalization procedure is needed. LAPACK related
diagonalization routines based on Givens rotations and Householder transformations
can be used for matrices of maximal dimension 104 − 105. Therefore, one needs an
alternative iterative methods to do that. In section 6.3, the method for the contraction
σ = HC was introduced to avoid the explicit construction and storage of the full CI
matrix. The next step is to provide a good diagonalization method, which can retrieve
a specific eigenvalue and corresponding eigenstate from CI vectors only. Because
all these methods have iterative nature, a good initial state must be provided. In
configuration interaction related methods, the obvious choice is simply the Hartree-
Fock determinant (2.20), because the Hartree-Fock determinant usually dominates the
exact ground state. The Hartee-Fock determinant could be a bad choice in systems
with strong static correlation that causes multi-configurational ground state, but such
systems are beyond the scope of this thesis. The simplest iterative procedure satisfying
these conditions is the steepest descent method, in which a residual vector is calculated
as

r = (H − E1)C, (6.38)
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Figure 6.2: Graphical representation of Slater determinants. Each walk in a graph corresponds to
one string. For example, the red line represents the string |115〉 = |1100111〉 and has an address 16.
Each walk represents uniquely one string and the associated address is also unique. Note, weights
of all vertical arcs are equal to 0 and therefore, they are not denoted explicitly in a graph.

where E is the approximate eigenvalue E = 〈C|Ĥ|C〉 / 〈C|C〉. The old eigenvector is
then updated according to

Ci +=
ri

E −Hii

. (6.39)

Although this method is rather simple and requires the storage of only two vectors
of the dimension of the CI matrix (trial vector and residual vector), it is unstable
and requires a large number of iterations to achieve reasonable convergence.
Therefore, a more robust schemes would be greatly appreciated. The requirement
that only contractions of the form HC are used for the determination of the
eigenstate could be an instantaneous reminder of Krylov subspace related
methods [37]. In the spirit of Lanczos algorithm, E.R. Davidson has developed a
robust algorithm able to compute the lowest eigenvalue and corresponding
eigenstate of a system. Liu had improved the method to be able to calculate a few
of the lowest eigenvalues and corresponding eigenvectors simultaneously. A good
overview of original papers and further implementations and applications can be
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found in [38–41]. The Davidson algorithm will be explained in more detail, because
of its wide application in electronic structure methods. The complete algorithm is
represented in listing 6.5.

1 Def ine s t a r t i n g vec to r u1 = Ctrial

2 U0 = []
3 Σ0 = []
4

5 DO i =1,NMAX
6 σi = Hui

7 Ui = [Ui−1, u
i]

8 Σi = [Σi−1, σ
i]

9

10 DO j =1, i

11 H̄(j, i) = 〈uj |σi〉 = 〈uj |Ĥ|ui〉
12 H̄(i, j) = H̄(j, i)
13 ENDDO
14

15 (θ ,s) = DIAG(H̄ )
16 C = Ui s
17 r = (H − θ1)C = (Σi − θUi)s
18 r = (DH − θ1)−1r

19 r = r − UjU†Jr
20 IF (‖r‖ <eps ) EXIT
21 uj+1 = r/‖r‖
22 ENDDO

Listing 6.5: Davidson algortihm.

The algorithm starts with choosing the trial eigenvector u1 - simply the coefficient 1
on the Hartree-Fock determinant and 0 otherwise. In the spirit of Krylov subspace
methods, the contraction σi = Hui is generated and both vectors are stored in
matrices U and Σ, which become larger by one column in each iteration. Then, the
Hamilton matrix H̄ in a defined subspace U is calculated and its lowest eigenvalue θ
and the corresponding eigenvector s are calculated (step 15 in listing 6.5). Because
the matrix H̄ is very small, the diagonalization is done via LAPACK routines for
symmetric matrices. The new approximated CI solution is given in step 16. From
this approximated solution the residual vector is calculated in the same way as in
the steepest descent algorithm (the matrix DH is the diagonal part of the Hamilton
matrix H). Before the residual vector is added to the Krylov subspace, it needs to
be Gram-Schmidt orthogonalized with respect to the entire current Krylov subspace
(step 19). If the norm of the new subspace vector is smaller than some threshold
value, the procedure is converged and the ground state eigenvalue is approximated
by θ and the corresponding eigenstate is simply given by Us. The Davidson method
is much more robust compared to the steepest-descent algorithm. Although the cost
of one iteration is approximately equal for both methods, the number of iterations
to achieve convergence decreases significantly in the Davidson algorithm, especially
for larger systems. However, the price must be paid in the form of higher memory
consumption. For an efficient implementation of the Davidson algorithm, the
matrices Ui and Σi must be stored in memory. If the subspace in step 17 of the
algorithm is not stored, then it must be recomputed as contraction HC and that
means two contractions of the form HC per iteration. This situation is undesirable
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for large FCI problems. The generalization of the Davidson algorithm for
simultaneous computation of a few lowest-lying eigenvalues is straightforward. In
the so-called Davidson-Liu algorithm, in order to compute N eigenstates, N initial
trial vectors are needed. In each iteration, the subspace is expanded by N vectors,
and N residual vectors are calculated. Each residual vector with the norm larger
than some threshold value is accepted and Gram-Schmidt orthogonalized with
respect to the entire subspace U . For more details of this version of the algorithm,
see [40, 41]. In the Davidson-Liu algorithm, the subspace grows very fast and it can
not fit into main memory anymore. In this case, the deflation of space can help. The
deflation represents the extraction of the N optimal eigenstates from the current
Krylov subspace and in the next step the size of the Krylov subspace is again N .
Generally deflation does not show good performance and it should be avoided, if
possible. Therefore, it was not implemented in this thesis.

6.6 Examples of CI Calculations

With a full configuration interaction method, we are able to calculate the total energies
of systems with exact correlation energies within a given basis set. One hopes, the
dissociation problem that remained unsolved will be described exactly within the FCI
theory.

Total Energies

Although the correlation energies that will be presented in this section are ”exact”,
one is restricted to modest systems and basis sets, because of the exponential scaling.
In the cases of the He atom or molecule H2, the FCI calculation will be possible
for all available basis sets, because the corresponding Slater space is still very small
(about 5 · 103 Slater determinants for aug-cc-pVQZ basis set). On the other hand,
for the BeH2 molecule, it is possible to calculate FCI wave function on the 6-31G++
level and cc-pVDZ level (about 4 · 106 Slater determinants). As soon as the cc-pVTZ
level is reached, the dimension of the corresponding Slater space is 109 and this is
not possible for standard CI calculations. The results obtained for those systems are
given in table 6.1. Altough all FCI results are available for the minimal basis set,
they will not be presented here, because it was already mentioned in section 5.4 that
they are not useful for the accurate calculation of physical properties.

Table 6.1: FCI correlation energies obtained at equilibrium geometries for different basis sets.

Basis Set
System 6-31G++ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ aug-cc-pVQZ Exact

He -2.887 -2.888 -2.890 -2.900 -2.901 -2.903 -2.903 [21]
H2 -1.165 -1.163 -1.165 -1.172 -1.173 -1.175 -1.175 [3]

BeH2 -15.831 -15.836

Equilibrium Geometry

In this section, the full configuration interaction method will be used to describe the
dissociation of the H2 molecule. Let us start again with results near to the equilibrium
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Table 6.2: The estimated bond length of H2 molecule at the FCI level for different basis sets.

STO-3G 6-31G++ cc-pVDZ aug-cc-pVDZ cc-pVTZ aug-cc-pVTZ Experiment [3]
1.390(3) 1.397(4) 1.437(4) 1.438(5) 1.403(3) 1.403(3) 1.40

(a) (b)

Figure 6.3: (a) The dissociation energy curve of the H2 molecule for different basis sets at FCI
level; (b) the dissociation curve of the H2 molecule for all three calculation methods with cc-pVTZ
basis set.

bond length. Nothing interesting can be obtained, since very accurate results were
already obtained in the MP2 approximation. The optimal bond lengths for various
basis sets are given in table 6.2. Significant improvements in comparison with MP2
are not obtained, but the bond length predictions were already very good on the MP2
level. Let us now turn to the interesting part. In figure 6.3-a, the potential energy
curve of the H2 molecule is depicted. It is clear that the dissociation energy converges
to zero at large distances and it does not become positive anymore. Such a behaviour
does not depend on the quality of the basis set, because already at the STO-3G level,
the qualitative description of dissociation in the H2 molecule is correct. For more
quantitative results (especially for larger systems), larger basis sets have to be used.
All three methods (RHF, MP2 and FCI) are shown together in figure 6.3-b, where one
can notice that all three potential energy curves are quite similar (i.e. parallel) near
to the equilibrium bond length, but at stretched configurations only full configuration
interaction is capable of describing the situation correctly.

Ground State and the First Excited State of H2 Molecule

This section presents an application of excited CI states and the application of the
Davidson-Liu algorithm described in section 6.5. The electronic structure of the
ground state and the first excited state are shown in 6.4. The ground state is clearly
a singlet wave function (S = 0) and the first excited state is a triplet state (S = 1).
To be able to obtain triplet states, the FCI calculation must be extended to different
Sz sectors and the 2 lowest eigenstates must be obtained simultaneously. The ground
state is already shown in the previous section in figure 6.3. In the ground state, both
electrons occupy the bonding symmetric σ orbital and for this reason an antisymmetric
spin function must be expected in order to fulfill the Pauli exclusion principle - an
antisymmetric wave function. This situation is fulfilled when both electrons have
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antiparallel spins - singlet spin state (S = 0, MS = 0). It is clear that the ground
state is a bonding state with bond length R = 1.403(3) at the cc-pVTZ level. The
first excited state corresponds to one electron in the bonding symmetric σ state, and
one electron in the anti-bonding antisymmetric state σ∗. To obtain an antisymmetric
two-electron wave function, the spin function must be symmetric, because the spatial
part is already antisymmetric. Therefore, the spins must be parallel and the excited
state is a tripet state (S = 1,MS = 1). The triplet state is a non-bonding state and
the energy of the state in dependence of the bond length is depicted in figure 6.5.
It must also be clear that the described molecular picture is only an approximation
of the exact FCI states, but as expected, the single Slater determinants described in
figure 6.4 have a dominant role in the corresponding FCI states.

Figure 6.4: Electronic structure of two lowest lying states in the H2 molecule - singlet spin state
on the left and the triplet state on the right side.

Figure 6.5: Two lowest-lying energy states of the H2 molecule at various bond lengths.

Correlation Energy in fcc Helium

The first application of the developed code in solids will be presented in this section.
Helium in an fcc lattice will be considered. The goal is to show that the correlation

75



6 – Direct Full Configuration Interaction Method - FCI

energy in fcc Helium is approximately additive. In other words, the correlation
energy per site does not depend on the size of the system. For this purpose, a
supercell of 8 He atoms will be used. The DFT ground state is calculated in VASP
for that supercell. Thereafter, the Hartee-Fock ground state (see section 4.6) is
calculated and a set of localized Wannier orbitals is obtained as it was explained in
section 3.6. A slight complications arises because only the occupied manifold is
accurately described in the Hartree-Fock calculation. To resolve this issue, the RPA
density matrix and the RPA natural orbitals are used to obtain a more accurate set
of unoccupied orbitals which are correlation consistent. On the set of occupied HF
orbitals and the RPA natural orbitals, one- and two-electron integrals are calculated
in VASP. Once the integrals have been obtained, CI calculation can be performed.

The described procedure is performed on He clusters of different size. At the
beginning, only one He atom is considered. Thereafter, two neighboring atoms are
correlated together. This procedure is repeated, until a maximum cluster size of 4
atoms (out of 8) is achieved. For each cluster size, the corresponding set of integrals
are calculated and the CI calculations are performed. Maximal cluster size is chosen
to be 4. Each helium site is described with five orbitals: one doubly occupied 1s
orbital and 4 unoccupied orbitals in the second shell (one 2s and three 2p orbitals).
The correlation energy per site is listed in the table 6.3. From these results, it can
be concluded that the correlation energy does not depend significantly on the cluster
size, i.e. the entire correlation contributions come from the correlation between
electrons on one site. However, there is a small inter-atom contribution, which is
Van der Waals like. Therefore, the correlation energy per site increases slightly with
cluster size.

Table 6.3: Correlation energy per site and corresponding Slater space sizes of He clusters of different
size.

Cluster size 1 2 3 4
EFCI

corr (eV) -0.860 -0.861 -0.862 -0.863
S 25 2025 2 · 105 24 · 106
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Chapter 7

Full Configuration Interaction
Quantum Monte Carlo - FCIQMC

7.1 Algorithm Description

In the last section, the deterministic CI method was explained, where the solution of
the many-body problem is obtained by an iterative diagonalization procedure. The
main issues with those methods are the memory requirements needed to store the CI
vectors and also the CPU time for the evaluation of the contractions HC, where the
vector C has a dimension of the underlying Slater space. With those methods, one is
able to manipulate Slater spaces of a maximal dimension 109 − 1010. To be able to
work on larger Slater spaces, approximations must be introduced - complete active
space CI (CAS CI), restricted active space CI (RAS CI), truncated CI and other
related methods. However, when those approximations are applied, all the unique
properties of the FCI method deteriorate and they are often not much better than
coupled cluster methods. Therefore, in this chapter the deterministic CI method with
explicit iterative diagonalization is discarded and more recent stochastic algorithms
are introduced. In the group of A. Alavi, the stochastic method based on the long-
time integration of the imaginary-time Schrödinger equation in a discrete Slater space
was recently introduced. This method borrows basic concepts from diffusion quantum
Monte Carlo (DMC) [42] and Green’s function Monte Carlo methods (GFMC) [43].
The origins of the algorithm can be found in [44, 45], and various extensions and
applications have appeared, too [46–54]. As it was mentioned in (6.4), the FCI wave
function is simply a linear combination of all Slater determinants

|Φ〉 =
∑
i

Ci |Ψi〉 , (7.1)

where Ci is a weight of the corresponding determinant |Ψi〉 in the exact wave function.
From the time-independent Schrödinger equation, one obtains the matrix eigenvalue
problem that the coefficients Ci satisfy∑

j

HijCj =
∑
j

〈Ψi|Ĥ|Ψj〉Cj = EFCI
0 Ci, (7.2)

where 〈Ψi|Ĥ|Ψj〉 are the CI matrix elements defined via Slater-Condon rules
(2.37, 2.38). Introducing the imaginary time τ = it, the time-dependent Schrödinger
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equation (2.1) becomes
∂Φ

∂τ
= −ĤΦ. (7.3)

From a formal solution, and with a given starting wave function Ψ(τ = 0) = Ψ0, the
exact wave function in the limit of long time is given by

Φ = lim
τ→∞

e−τ(Ĥ−EFCI0 )Ψ0. (7.4)

In most cases, the Hartree-Fock determinant Ψ0 will be used as the starting point.
The main problem of the FCIQMC method is to find a method to integrate equation
(7.3) in a Slater space and to obtain (7.4). For this reason, the following modified
Hamiltonian matrix H̄ with matrix elements is defined:

H̄ij = Hij − EHFδij = 〈Ψi|Ĥ|Ψj〉 − EHFδij, (7.5)

where EHF is Hartree-Fock energy. In this way, the spectrum of the Hamiltonian
matrix is shifted and the lowest eigenvalue of the matrix H̄ corresponds to the
correlation energy EFCI

corr . Inserting (7.1) into (7.3), the following set of coupled
first-order differential equations for the coefficients Ci is obtained:

−dCi
dτ

=
∑
j

HijCj − ECi, (7.6)

where E is an arbitrary energy shift introduced to control the time evolution of the
coefficients Ci. It can be immediately seen that having coefficients satisfying the
eigenvalue equation

∑
j HijCj = ECi leads to the stationary solution dCi/dτ = 0 if

E = EFCI
0 . Inserting H̄ (7.5) in the place of H in the previous equation leads to

−dCi
dτ

=
∑
j

(H̄ij − Sδij)Cj = (H̄ii − S)Ci +
∑
j 6=i

H̄ijCj, (7.7)

with a new energy shift S = E −EHF. As the coefficients Ci approach the stationary
solution, the shift S becomes the eigenvalue of H̄, i.e. the correlation energy EFCI

corr . The
last equation is the essence of the quantum Monte Carlo full configuration interaction
method. The next step is to provide efficient and smart numerical algorithm for
sampling of (7.7). As it was seen in the previous chapter, the need to store all CI
coefficients in main memory was a limiting factor in the direct CI method. Therefore,
one wants to be able to store only the most important contributions to the FCI
solution, but in such a way that the developed algorithm finds that part of Slater
space by itself. For this purpose, a population of walkers is introduced. The walker
ω is located on a specific Slater determinant |Ψ〉 and holds a sign sω = ±1. The
coefficient Ci is said to be proportional to the signed sum of walkers Ni on that
particular determinant |Ψi〉

Ci ∝ Ni =
∑
ω

sωδi,iω , (7.8)

where iω is the index of the Slater determinant corresponding to the walker ω. Because
of sω, Ni can be both positive or negative, but the total number of walkers Nw must
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be positive and it can be written simply as the sum of the absolute values of all signed
sums on each determinant

Nw =
∑
i

|Ni|. (7.9)

Having the population defined, rules for the evolution of the population are needed.
The equation (7.7) can be adopted for the walker population and for the time
evolution and Euler’s forward method can be used for time integration of the
differential equation (7.7).

Ni(τ + δτ) =
[
1− δτ(H̄ii − S)

]
Ni(τ)− δτ

[∑
j 6=i

H̄ijNj(τ)

]
, (7.10)

The time evolution can be divided into three independent steps: spawning step
(reflects the last term on the right hand side of the previous equation), diagonal
death/cloning step (middle term on the right hand side in the previous equation)
and the annihilation step. All three steps are performed at each time step τ of a
simulation and in the order in which they are explained below.

1. The Spawning Step
For each existing walker ω on a determinant |Ψiω〉, the coupled determinant
(either single or double excitation) |Ψj〉 is chosen with a normalized probability
pgen(j|iω). One attempts to spawn a new walker on that determinant with a
normalized signed probability

ps(j|iω) = − δτ |H̄iωj|
pgen(j|iω)

. (7.11)

If ps is larger than a random number from a uniform distribution, the spawning
is successful. If ps > 1, then bpsc walkers are spawned with a probability 1 and
one additional walker with probability ps − bpsc. The sign of the new spawned
walker is determined in the following way: if H̄iωj < 0, then the sign of the new
spawned walker is the same as the sign of its parent, and opposite to the parent
sign if H̄iωj > 0. It should be noted that the total number of newly spawned
walkers should be much smaller than the actual number of parent walkers.

2. The Diagonal Death/Cloning Step
In each time step, for each determinant the probability

pd(iω) = δτCiω(H̄iωiω − S) (7.12)

is computed. If pd > 0, then bpdc walkers die immediately and one additional
walker dies with probability pd − bpdc, and otherwise b|pd|c walkers are cloned
and one additional walker is cloned with probability |pd|−b|pd|c. Death/Cloning
is an immediate process and such walkers are removed/added in the simulation
immediately. From the fact that all diagonal elements of a matrix H̄ are positive
and from the fact that S tends to be negative (approaches the correlation energy
that is always negative), the computed probability pd is always positive, i.e.
only death events can happen. Only if S > 0 and for determinants |Ψi〉, where
H̄ii < S the cloning events are allowed. Therefore, the cloning is very rare and
it happens only for positive values of the energy shift S. The cloning can be
used for fast growth of the walker population.
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3. The Annihilation Step
After the spawning and death/cloning steps, all walkers (parent walkers, newly
spawned walkers and eventually cloned walkers) are merged together in one list.
If two walkers of opposite sign are found to be on the same determinant, they
will be annihilated, i.e. they will be removed from the simulation. The way
how to do all these steps in memory efficient manner will be discussed later in
section 7.6. The additional annihilation step does not have the origin in (7.10),
but it is needed to partially overcome the problems related to the Fermion sign
problem [55]. The Fermion sign problem will be discussed later in the chapter,
because that is one of the best-known unsolved problems in many-body quantum
physics.

The flowchart of the entire FCIQMC procedure is presented in the figure 7.1. This
version corresponds to the original version of code [44]. Significant performance
improvements are obtained using the initiator method extension - called initiator
quantum Monte Carlo configuration interaction method iFCIQMC [45], which will
be discussed in section 7.5. A semi-stochastic approach [46] was also developed, in
which an important part of Slater space is treated in a deterministic fashion with
iterative-like diagonalization procedures and the rest of the space is treated as
explained above. However, this approach did not become widely adopted as the
initiator approach and therefore, it will not be discussed in more details in this
thesis. Although the FCIQMC method is designed for the calculation of ground
states only, there are extensions based on the stochastic sampling of reduced
one-particle and two-particle density matrices, that allow computations of the
excited energy states [47–49].

7.2 Simulation Modes and Energy Estimators

Two simulation modes in the FCIQMC method are possible. The first one is the
constant S mode and each simulation starts in this mode. The shift is fixed on
some value - for example 0 should be a reasonable choice and the simulation starts
with only one walker - usually on the Hartree-Fock determinant. During this period,
the spawning events dominate death events and an exponential growth of the walker
population is obtained. If even faster initial growth of the walker population is desired,
positive values for the energy shift can be adopted. For positive values of S, cloning
events occur on determinants |Ψi〉, where S > H̄ii. However, if this is not needed,
positive values for the energy shift S should be avoided. After some time, one should
notice that the rate of deaths and annihilations becomes equal to the rate of spawning
steps and the total number of walkers stabilizes on some system specific value N . The
parameter γ = N /NFCI, where NFCI is the size of the full Slater space (6.3), can be
defined and it is an indicator of how many walkers are needed to sample the exact
wave function. Small values of the factor γ are greatly desired, because in those cases
the FCIQMC method shows significant advantage in comparison to the direct FCI
method. For γ values near to unity, the whole Slater space is populated and the
advantage of the FCIQMC algorithm disappears. It turns out that the parameter γ
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Figure 7.1: The flowchart of the FCIQMC algorithm. Spawning, death and annihilation steps are
shown separately.

is system dependent and it will be discussed in more detail in the results section 7.9.
Once the plateau in the number of walkers is reached, the simulation mode can be
switched to the constant N mode. In this mode, the number of walkers should be
kept constant and the energy shift S is allowed to vary by the following rule

S(τ) = S(τ − Tδτ)− ξ

Tδτ
ln

Nw(τ)

Nw(τ − Tδτ)
, (7.13)

where ξ is a damping parameter, which is introduced to avoid large fluctuations in
S. The damping factor has typical values of ξ ∈ [0.05, 0.5]. The integer value T in
the previous equation indicates after how many time steps the energy shift S is
updated. The usual value of this parameter is T ∈ [1, 10]. Note, if the current
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number of walkers Nw(τ) decreases in comparison to Nw(τ − Tδτ), the energy shift
S(τ) will increase compared to the old value S(τ − Tδτ). Increased energy shift
values will cause a decrease of the overall death probability and one expects a
growth of the number of walkers. If the number of walkers increases the shift will
become more negative and the overall death probability will increase, causing again
a stabilization of the total number of walkers Nw.

Clearly, the total energy of a system is the most important observable, obtainable
in the FCIQMC simulation. Therefore, one needs to develop clever methods for the
calculation of the total energy. As it was already mentioned in the last section, the
energy shift S should stabilize on the value of the correlation energy for the exact
coefficients Ci. Knowing the Hartee-Fock energy, the total energy can be computed,
too. The correlation energy is obtained by the averaged S value during the constant
Nw simulation mode. After each T steps, a new S value is added to the average. Our
analysis procedure to obtain averages in the FCIQMC simulation will be discussed in
the section 7.8 of this chapter. Although the energy shift provides a good measure
of the total energy, one would highly appreciate other energy estimator that will
converge to approximately the same value as the energy shift. In the spirit of statistical
quantum mechanics, the energy expectation value of the exact ground state (7.1) could
be written as

〈Φ|Ĥe−τĤ |Φ〉
〈Φ|e−τĤ |Φ〉

=
Ee−τE 〈Φ|Φ〉
e−τE 〈Φ|Φ〉

= EFCI. (7.14)

It is easy to see that the same energy value is obtained, if the energy is projected out
onto the Hartree-Fock wave function instead of the exact FCI wave function:

〈Ψ0|Ĥe−τĤ |Φ〉
〈Ψ0|e−τĤ |Φ〉

=
Ee−τE 〈Ψ0|Φ〉
e−τE 〈Ψ0|Φ〉

= EFCI. (7.15)

Inserting (7.1) in the previous equation, the following energy expression is obtained
for the current approximate solution |Φ(τ)〉

E(τ) =
〈Ψ0|Ĥe−τĤ |Φ(τ)〉
〈Ψ0|e−τĤ |Φ(τ)〉

=
〈Ψ0|Ĥ|Φ(τ)〉
〈Ψ0|Φ(τ)〉

=

∑
iCi(τ) 〈Ψ0|Ĥ|Ψi〉∑
j Cj(τ) 〈Ψ0|Ψj〉

=
∑
i

〈Ψ0|Ĥ|Ψi〉
Ci(τ)

C0(τ)
.

(7.16)
In order to adopt the obtained expression for the FCIQMC algorithm, equation (7.8)
is used further to replace the coefficients Ci(τ). It can also be noted that the coupling
matrix elements 〈Ψ0|Ĥ|Ψi〉 are non-zero only if the determinant |Ψi〉 is equal to the
reference state |Ψ0〉 or single or double excitations. The final version of the second
energy estimator is therefore given by

E(τ) = EHF +
∑

i∈{S,D}

〈Ψ0|Ĥ|Ψi〉
Ni(τ)

N0(τ)
= EHF +

∑
i∈{S,D}

H̄0i
Ni(τ)

N0(τ)
. (7.17)

It is clear that if |Φ(τ)〉 approaches the exact FCI wave function |Φ〉, then E(τ)
approaches the exact FCI energy EFCI. The two energy estimators S and E(τ) are
independent of each other, especially for large Slater spaces. This independence
arises from the fact that E(τ) is completely determined by a very small part of the
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Slater space coupled to the Hartree-Fock determinant |Ψ0〉 and the energy shift S is
a property of the total number of walkers and of the distribution of walkers over the
whole Slater space.

7.3 Stability Criteria

In this section, the errors due to the imaginary time steps δτ will be discussed.
From the Euler-forward method that is used for the discretization of the Schrödinger
equation, the equation (7.10) can be recast in vector notation as

N(τ + δτ) =
(
1− δτ(H̄ − S1)

)
N(τ), (7.18)

where the amplification matrix G can be read of immediately

G = 1− δτ(H̄ − S1). (7.19)

To ensure the stability of the numerical algorithm, the spectrum of the amplification
matrix must have absolute values smaller than 1. This condition is simply given by

−1 ≤ λG = 1− δτ(λH̄ − S) ≤ 1, (7.20)

where λA denotes the eigenvalue of corresponding matrix A. Taking into account that
the minimal eigenvalue of the matrix H̄ is EFCI

corr and let the largest eigenvalue be Ēmax,
the previous condition can be rewritten in a simpler form

δτ ≤ 2

Ēmax − EFCI
corr

(7.21)

Because the true eigenvalues are not known, in the first approximation EFCI
corr can be

replaced by S or the energy estimator E(τ) and the best approximation of Ēmax

would be the largest diagonal value of H̄.
The obtained restriction on the time step is a direct consequence of applying a
simple integration method for the initial value problem. There is also the second
restriction, arising from the algorithmic rules explained in 7.1. Namely, if the
spawning probability (7.11) is much larger than 1, multiple walkers are spawned on
certain determinants with a probability of 100% and that could lead to inefficient
sampling of the Slater space. Therefore, the time step should be chosen in such a
way that ps is near unity most of the time. Reported values of δτ lie in the range of
[10−4 − 10−3]a.u. [44]. Of course, for larger Slater spaces, smaller time steps must be
used in order to converge to the exact ground state. It will become obvious in
section 7.9 that the value of the correlation energy is not influenced by the value of
the time step, as long as they are in the above mentioned range. More details will be
provided in the result section.

7.4 Sampling Rules

As it was mentioned in the description of the algorithm, to be able to calculate
spawning probability between two connected Slater determinants, the generation
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probability of the excited state |Ψj〉 from the reference state |Ψi〉 is needed.
Assuming at the beginning that one starts with |Ψi〉 and ends with the singly
excited state |Ψj〉 = â†qâp |Ψi〉, where it is clear that both operators have to belong
to the same spin, the generation probability can be written in the form

pσgen(j|i) = p1 p
σ
gen(q|p) pgen(p), (7.22)

where p1 reflects the ratio between the number of single and double excitation. In most
cases, the number of single excitations is quite small in comparison to the number of
double excitations and p1 should be a small number near to 0 and then the probability
to draw a double excitation is simply p2 = 1− p1. Probabilities p1 and p2 could also
be chosen in an approximate way, and it will suffice, as long as the sum of these two
probabilities is 1. It is found that the FCIQMC algorithm converges for a wide range
of chosen p1, but with longer simulation time needed for larger p1. The probability
pgen(p) is simply the reciprocal value of the total number of electrons

pgen(p) =

(
Ne

1

)−1

=
1

Ne

, (7.23)

but the conditional probability pσgen(q|p) is already restricted to certain orbitals by
the choice of p. The spin of the orbital q must be equal to the spin of the orbital
p and if the point group symmetry of the underlying system is exploited, then the
irreducible representation of both orbitals must be equal, i.e Γq = Γp. The conditional
probability pgen(q|p) is then simply given as the reciprocal value of the number of
available orbitals with predetermined spin σ and irreducible representation Γp. If the
point group symmetry is not exploited, the generation probability simplifies to

pσgen(j|i) = p1 ·
(
Ne

1

)−1(
P −Nσ

1

)−1

, (7.24)

where Nσ is the number of electrons with particular spin σ.
Let us now turn to the double excitations. From the reference state |Ψi〉 one can
create doubly excited states |Ψj〉 = â†râ

†
sâqâp |Ψi〉. The generic expression for the

generation probability of double excitations is given by

pσσ
′

gen(j|i) = p2 p
σσ′

gen(r, s|p, q) pgen(p, q), (7.25)

where pgen(p, q) is the probability to draw two orbitals p and q and it is given by

pgen(p, q) =

(
Ne

2

)−1

. (7.26)

The remaining part can be calculated from the following relation:

pgen(r, s|p, q) = pgen(r|s, p, q)pgen(s|p, q) + pgen(s|r, p, q)pgen(r|p, q), (7.27)

which is adopted for the exploitation of point group symmetry. In this relation,
the order in which orbitals r and s are drawn is important. The first term gives
the probability that s is drawn before r and vice versa. The probability pgen(r|p, q) is
simply the reciprocal number of the available orbitals with the spin equal to one of the
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orbitals p or q. The spin of the last orbital r that has to be drawn is already determined
and the irreducible representation of the orbital r is given by Γr = Γs ⊗ Γq ⊗ Γp.
The conditional probability pgen(r|s, p, q) is then given by the reciprocal value of the
number of orbitals with predetermined spin and irreducible representation Γr. In
case when symmetry information is used, the summands from the last equation are
in general not equal, but if the point group symmetry is not exploited, the generation
probability simplifies to

pσσ
′

gen(j|i) = p2 ·
(
Ne

2

)−1
[
δσσ′

(
P −Nσ

2

)−1

+ (1− δσσ′)
(
P −Nσ

1

)−1(
P −Nσ′

1

)−1
]
,

(7.28)
where two different terms arise because of two spin possibilities - same and opposite
spins. The probabilities chosen in this way have to be normalized, i.e.∑

i

pgen,i ·Ni = 1, (7.29)

where the number Ni denotes the total number of possible excitations with
corresponding probabilities pgen,i.

7.5 Initiator Quantum Monte Carlo Configuration

Interaction - iFCIQMC

In the initiator approach, one tries to find a method which will be able to reduce the
required number of walkers but to keep the accuracy of the simulation unchanged.
The so-called initiator approach was a simple and successful extension of the original
method that was able to achieve this goal. In the initiator method, only certain
determinants are able to spawn walkers on the still unpopulated determinants and
they are called initiators. That means that all non-initiator determinants are only
able to spawn walkers on already populated determinants. Effectively, this extension
of the code restricts the Slater space to the space of initiators and their single and
double excitations. In this sense, the initiator approach is the approximation of the
FCIQMC method, equivalent to the CAS and RAS extensions of the deterministic
counterparts with iterative diagonalization procedures. The advantage of the initiator
method is that the initiator space is allowed to grow dynamically. At the beginning of
the simulation, initiators are the only determinants for which one knows in advance
that they will have large amplitudes Ci in the final wave function. In most cases,
the starting initiator space is chosen as CAS space (n,m). In the CAS method, the
Hilbert space is partitioned into three groups:

• Frozen Core: consisting of Ne − n electrons doubly occupied in Ne−n
2

lowest
lying orbitals, assumed to be strongly bound and exhibits little fluctuations.

• Active Space: Additional n electrons distributed over the next m orbitals.

• Virtual Space: The remaining P −m unoccupied orbitals.
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The dynamic of the initiator space is achieved with an additional rule, which states
that each non-initiator determinant becomes an initiator, if the number of walkers
on this determinant exceeds a predetermined number na. In this way, the initiator
approach is fully defined with parameters (n,m)na . In the case (n,m)na→0 all
determinants will become initiators and the initiator FCIQMC will approach the
exact FCIQMC method. The interesting situation is also (n,m)na→∞, where the
initiator space will remain constant during the whole simulation and only initiators
and their excitations would be populated with walkers. To summarize, all rules of
the initiator approach are listed below:

• Initial initiator space: CAS space (n,m) with n electrons distributed over m
orbitals.

• Spawning rule: Initiator determinants are able to spawn walkers on all
determinants as it was the case in the original FCIQMC algorithm.
Non-initiators can spawn walkers on other determinants, only if those
determinants are already populated.

• Spawning rule - extension: If two non-initiators try to spawn walkers of the
same sign on the same unpopulated determinant, this spawning event will be
accepted, because this is assumed to be a sign coherent event.

• Initiator space enlargement: Each non-initiator determinant will become
initiator, if the number of walkers exceeds predefined number na.

7.6 Technical Details of FCIQMC Algorithm

All newly developed algorithms must be implemented in such a way that modern
computer architectures are exploited in an efficient manner. The two most
important properties are efficient memory usage and high parallelization of the
algorithm. As it was already discussed in the previous chapter, the Slater space for
all but the most modest systems is enormous, and therefore, all CI simulations can
easily run out of memory. If the algorithm is performed in such a way that one
M -byte integer is reserved for each Slater determinant, this is highly undesirable
because the memory requirements in this case are Ndet ·M bytes. In the case of the
H2O molecule (Ne = 10) in the cc-pVDZ basis set, the total memory required to
store all information about walkers would be 6.74 Gb of RAM memory. Although
this can be achieved with today’s computers, the situation changes for the cc-pVTZ
basis set, where 58 orbitals are used to describe a water molecule, where the total
memory requirements amount to 76.4 Tb of RAM and this number exceeds the
RAM memory capacity of most today’s computer architectures. Therefore, the
algorithm must be implemented in a way that variables are initialized only for the
determinants where walkers are already populated. Here, the system defined
parameter γ introduced in section 7.2 plays a significant role, because memory
requirements are reduced by a factor γ. The initiator method is important exactly
for these reasons, because it contributes to the reduction of the γ parameter.
The second property that becomes progressively important with modern computer
architectures is the parallelization of the numerical algorithms. The FCIQMC
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algorithm is very suitable for the parallelization with MPI and OpenMP, like all
Monte Carlo algorithms. The two algorithmic steps described in 7.1 can be realized
independently from other walkers, i.e. the parallelization can be done without
communication overhead. The third step of the algorithm, walker list merging and
the annihilation, is the only part that must be done with communication overhead.
To summarize, the most efficient way to perform FCIQMC is to use dynamical
variables and to use 2-byte integers for the initial initiator space and 1-byte integers
for other populated determinants. In this way, the most efficient memory usage is
achieved. To be able to have efficient parallelization, all cores should have fast
access to all two-electron integrals (pq|rs), but at the same time the replication of
integrals on all cores is undesirable. The walker list is on the other hand distributed
among cores and the cores communicate with each other in the annihilation step.

7.7 Fermion Sign Problem in FCIQMC

The Fermion sign problem arises from Pauli exclusion principle and causes exponential
growth of statistical errors in Monte Carlo sampling methods. In a quantum system
with Hamiltonian operator Ĥ, the expectation value of some observable Ô is then
given by

〈Ô〉 =
1

Z
Tr[Ô exp(−βĤ)] ; Z = Tr[exp(−βĤ)]. (7.30)

where Z is the partition function. In order to evaluate the last expression, the Taylor
expansion of the exponential function is needed to obtain

Z =
∞∑
n=0

∑
i1···n

(−β)n

n!
〈i1|Ĥ|i2〉 · · · 〈in|Ĥ|i1〉 =

∑
j

p(j). (7.31)

Analogously, the expression for the expectation value of an observable becomes

〈Ô〉 =
1

Z

∑
j

p(j)Ô(j) =

∑
j p(j)Ô(j)∑

j p(j)
, (7.32)

where j stands for one configuration of the system (i1, i2 · · · in) and the corresponding
sum run over all configurations, where M is the number of configurations. If two
configurations j1 = (i1 · · · ip · · · iq · · · in) and j2 = (i1 · · · iq · · · ip · · · in) interchange
paritcles ip and iq, the corresponding weights p(j1) and p(j2) differ by sign. Therefore,
the standard Monte Carlo methods can not be applied. The alternative way to treat
this expectation is to introduce a sign for the configuration s(j) = sign[p(j)] and,
thus, one obtains

〈Ô〉 =

∑
j Ô(j)s(j)|p(j)|∑

j s(j)|p(j)|
=
〈Ôs〉

′

〈s〉′
, (7.33)

where ′ stands for the expectation value with respect to weights |p(j)|, i.e. with
respect to the partition function Z ′ =

∑
j|p(j)|. Note that the ratio between two

partition functions can be written in terms of the free energy difference as Z/Z ′ =
exp(−βN∆f). However, at the same time, applying the relation (7.33), one finds
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that 〈s〉 =
∑

j s(j)|p(j)|/
∑

j|p(j)| = Z/Z ′. The relative error of the sign variable s
is at the end

∆s

〈s〉
=

√
〈s2〉−〈s〉2

M

〈s〉
=

√
1− 〈s〉2
√
M 〈s〉

∝ 1√
M 〈s〉

=
eβN∆f

√
M

. (7.34)

The last expression exactly expresses the Fermion sign problem, where one notes that
the relative error of the expectation value grows exponentially with the number of
particles and with temperature. Let us now turn to the manifestation of the Fermion
sign problem in the FCIQMC algorithm. From the equation for the evolution of the
walker population (7.10,7.18), the transition matrix can be defined and divided into
positive and negative parts as

Tij = −(H̄ij − Sδij) = T+
ij − T−ij , (7.35)

with T+
ij = max(Tij, 0) and T−ij = |min(Tij, 0)|. After that, the change of walker

distribution in one timestep δτ can be recast in two parts

∆N+
i = δτ

∑
j

(T+
ijN

+
j + T−ijN

−
j ),

∆N−i = δτ
∑
j

(T−ijN
+
j + T+

ijN
−
j ).

(7.36)

Adding and subtracting the latter equations, the following result can be obtained:

∆(N+
i +N−i ) = δτ

∑
j

(T+
ij + T−ij )(N+

j +N−j ),

∆(N+
i −N−i ) = δτ

∑
j

(T+
ij − T−ij )(N+

j −N−j ).
(7.37)

Through this last transformation, a set of two independent linear differential equations
is obtained for the two variables N+ and N−. The stationary solutions of these
equations are simply the lowest lying eigenvalues of the corresponding projection
operators

P+ = 1 + (T+ + T−),

P− = 1 + (T+ − T−) = 1− (H̄ − S1).
(7.38)

Note that the eigenvalue of the projector P− is exactly the same as the amplification
matrix of the FCIQMC algorithm (7.19), and therefore, the eigenstate of the operator
P− is exactly the desired solution of the FCIQMC problem. For this reason, the
algorithm should follow the evolution of the variable N+ − N−, which is achieved
by introducing the annihilation step in the algorithm, where walkers with opposite
sign on the same determinant are removed from the simulation (see section 7.1). The
Fermionic sign problem arises from the fact that λ+ ≥ λ− (lowest lying eigenvalues
of projectors P+ and P− respectively). This is proven by Spencer [56], where more
details about this derivation and Fermion sign problem in FCIQMC can be found.
Thus, if the annihilation is not performed, the population of N+ + N− will become

88



7 – Full Configuration Interaction Quantum Monte Carlo - FCIQMC

exponentially larger than N+ − N− and the latter variable will be totally lost in
the statistical noise of the former one. To summarize, the Fermionic problem in
the FCIQMC method arises as a consequence of the relation λ+ ≥ λ−, where the
desired solution corresponds to λ− (walker growth of N+±N− is proportional to λ±).
Systems with a larger gap between λ+ and λ− become progressively more difficult
to be simulated using the FCIQMC algorithm, because a larger number of walkers is
needed to be able to perform annihilation.

7.8 Statistical Error Analysis in FICQMC

Algorithm

As in all Monte Carlo simulations, the expectation values of the observables and their
statistical errors are very important. In the FCIQMC algorithm, one is interested in
obtaining precise statistical errors of the energy shift S and of the projected energy
E(τ) (see section 7.2). Assume, in general, that some function f is evaluated for each
random variable xi (f(xi) ≡ fi), which is drawn from the distribution ρ(x). Then,
the estimator of the mean value of f is given by

f̄ =
1

N

N∑
i=1

fi (7.39)

If the ergodicity is assumed, then

lim
n→∞

f̄ = 〈f〉 , where 〈f〉 =

∫
dx ρ(x)f(x) (7.40)

the estimator (7.39) becomes a true ensemble average in the limit of large sampling
data. For finite numbers n, there is some statistical error of f̄ denoted as σ, which is
estimated as the standard deviation of f̄

σ =

√
〈f̄ 2〉 − 〈f̄〉2. (7.41)

Combining equations (7.39) and (7.41) and introducing the correlation function

γij ≡ γ|i−j| = γt = 〈fifj〉 − 〈fi〉 〈fj〉 , (7.42)

one arrives to the following expression for the statistical error of f̄ :

σ2 =
γ0

N
+

2

N2

N−1∑
t=1

(N − t)γt (7.43)

For uncorrelated data sets γt = 0 ,∀t 6= 0, the previous expression simplifies to
σ =

√
γ0/N , but in FCIQMC method, the data sets are strongly correlated and the

correlation function can not be neglected. In these situations, one performs either
the Flyvbjerg-Petersen error analysis [57, 58] or the block averaging [58, 59]. Both
methods will be explained below, especially because the statistical error of S is most
easily calculated by Flyvbjerg-Petersen analysis, while the block averaging is far more

89



7 – Full Configuration Interaction Quantum Monte Carlo - FCIQMC

suited for the error analysis of the projection approximation E(τ). In the Flyvbjerg-
Petersen analysis, one starts with a set of values {S1, S2 · · ·SN}. This set of data is
then transformed according to the following linear transformation

S
(m)
i =

1

2
(S

(m−1)
2i−1 + S

(m−1)
2i );

N (m) =
1

2
N (m−1) =

1

2m
N.

(7.44)

What is special about the last equations is the fact the mean value and the variance
are invariant under this transformation (S̄(m) = S̄(m−1), σ

(m)

S̄
= σ

(m−1)

S̄
). In this

way, the data set is halved in each iteration and therefore, the correlation between
data becomes smaller and the estimator of variance γ

(m)
0 /N (m) becomes larger in each

iteration and converges to some value. This value is then taken as an estimator for
the statistical error of the energy shift and the result from the simulations is then
S = S̄ ± σS̄, with

S̄ =
1

N

N∑
i=1

Si and

σS̄ =
γ

(m)
0√
N (m)

=
γ

(m)
0√
N/2m

.

(7.45)

In the case of the projection energy (7.17), the situation is more complicated. This
problem arises, because the projected energy depends on two random variables Hτ

and wτ :

E(τ) ≡ Eτ =

∑
i∈{S,D}H0iN

(τ)
i

N
(τ)
0

≡ H(τ)

wτ
. (7.46)

Therefore, the mean value of the projected energy is given by the following expression

Ēτ =
H̄

w̄
=

1
N

∑N
i Hi

1
N

∑N
i wi

=

∑N
i Hi∑N
i wi

, (7.47)

where N = τ/δτ . Therefore, the Flyvbjerg-Petersen analysis can not be applied in
its original form as it was presented above. The second method is used instead. The
set of N data points {H1, H1 · · ·HN} is divided in chunks of size b, so that n = N/b.
After the data has been divided in blocks, the mean value can be computed for each
block

H̄i =
1

b

ib∑
j=(i−1)b+1

Hj , i = 1, 2 · · ·n, (7.48)

and similarly w̄i can be calculated. Then, the mean value of the energy can be
rewritten as

Ēτ =
1

n

n∑
i

H̄i

w̄i
+ δb, (7.49)

where the error δb is small and decreases further with increasing blocksize b and
therefore, when the fluctuations of δb become smaller than the fluctuations of Ēτ ,
the set of data {H̄1/w̄1 · · · H̄n/w̄n} can be treated as single stochastic variable. The
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error estimator can be found as the standard deviation of the above mentioned set of
data. It should be noted that the error of the projection energy in this case increases
with blocksize b, and the final value is taken from the blocksize where the standard
deviation stabilizes.

7.9 Calculations with FCIQMC Method

The goal of this section is not a repetition of the results obtained in the previous
chapter using the direct FCI method, but rather the systematic investigation of the
FCIQMC code. For this purpose, the BeH2 molecule at cc-pVTZ level will be
considered.

First, the convergence of the FCIQMC procedure due to the timestep δτ will be
considered. Corresponding results are shown in table 7.1. It is obvious that the
CPU time depends strongly on the value of timestep. Too small values must be
avoided, because the time evolution is slow. The optimal value of the timestep is
found to be δτ = 0.01, where the convergence is obtained in less than 1h. For too
large values of δτ , the sampling becomes incorrect leading to the wrong total
energies. For timesteps chosen in this series of calculations, total energies converge
to the correct value which was already obtained with direct CI in the section 6.6.

Table 7.1: Results of FCIQMC method obtained for various timesteps δτ . The values γ = 0.05
and p1 = 0.1 were used.

δτ 0.0005 0.001 0.002 0.005 0.01 0.02
EFCI

corr (10−2a.u.) -6.908 -6.904 -6.907 -6.908 -6.909 -6.909
CPU time (h) 9.5 5.1 2.4 1.4 1.0 2.4

Direct FCI correlation energy EFCI
corr = −6.908 · 10−2 a.u.

Probably the most important parameter for the FCIQMC procedure, the γ value,
will now be considered. This parameter determines the number of walkers needed
for obtain the exact FCI ground state. This value is system dependent and small
values are highly desirable. The FCIQMC energies of the BeH2 molecule in
dependence on different γ values are presented in the table 7.2. Note that for
γ = 0.0001 the procedure did not converge and reasonable results can not be
obtained. However, this could be expected, because the total number of walkers in
the simulation was roughly 400, and these 400 walkers must be distributed on 4 · 106

determinants. In this mode, there is also a high probability that the Hartree-Fock
determinant remains without walkers and then the total energy can not be obtained
from (7.17) anymore. Furthermore, no weight on the Hartree-Fock determinant is
totally unreasonable. With increasing γ, the correlation energy becomes more
precise, but the CPU time increases at the same time. At γ = 0.05, the correlation
energy did not differ significantly from the value obtained with the direct FCI
method. 2.4 h were needed to converge on this particular value. Therefore, it can be
concluded that γ = 0.05 for the BeH2 molecule, or in other words, 2 · 105 walkers
were needed to predict the exact FCI ground state. It is worth to mention that,
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already at γ = 0.005, the correlation energy differ only by 0.4% from the exact value
and the CPU time needed to obtain that result was only 20 minutes.

Table 7.2: FCIQMC results for various γ values. The values δτ = 0.002 and p1 = 0.1 were used.

γ 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5 1.0 2.0
EFCI

corr (10−2a.u.) - -6.922 -6.872 -6.933 -6.914 -6.907 -6.907 -6.909 -6.908 -6.908
CPU time (h) - 0.05 0.10 0.34 0.58 2.4 5.2 9.0 7.1 16.9

Direct FCI correlation energy EFCI
corr = −6.908 · 10−2 a.u.

Furthermore, the total energy and the CPU time needed for the convergence of the
FCIQMC algorithm in dependence of the parameter p1 will be considered. For this
purpose, a series of simulations with different parameters p1 were executed. The
timestep δτ = 0.002 and the parameter γ = 0.05 will be used in these calculations.
The results are presented in the table 7.3. It is obvious that all calculations converge
to the same energy value and it does not depend on the parameter p1 as long as the
condition p1 + p2 = 1 is fulfilled. For these calculations, the CPU time does not
depend significantly on the parameter p1. However, larger values of the parameter p1

show better statistics. Such a behavior is also mentioned in other publications [58].
To make these time measurements significant, it must be noted that all calculations
are executed on a single core (lx-AMD64).

Table 7.3: Total FCI energies and CPU time needed for the convergence of the FCIQMC algorithm
for various p1 values for the example of the BeH2 molecule at cc-pVTZ level. The simulations are
done for γ = 0.05 and δτ = 0.002. Note that the first value of the p1 parameter is the ratio between
the number of single excitations and total number of excitations.

p1 0.0235 0.1 0.3 0.5 0.7 0.9
EFCI

corr (10−2a.u.) -6.905 -6.907 -6.909 -6.909 -6.907 -6.909
CPU time (h) 2.8 2.4 3.4 3.0 2.6 2.4

Direct FCI correlation energy EFCI
corr = −6.908 · 10−2 a.u.

In the end, the total energies obtained with FCIQMC on BeH2 molecule for various
basis sets and corresponding Slater space sizes are listed (table 7.4).

Table 7.4: Total FCIQMC energies and corresponding Slater space sizes of BeH2 for different basis
sets.

6-31G++ cc-pVDZ aug-cc-pVDZ
EFCI (a.u.) -15.831 -15.836 -15.840

S 4 · 106 4 · 106 9 · 109
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Chapter 8

Conclusion

The main goal of this thesis was the implementation of the configuration interaction
method, which gives one the ability to calculate exact correlation effects within a
given basis set. In order to be able to test FCI calculations on molecular systems,
Gaussian basis functions as well as calculation of one- and two-electron integrals
were implemented. McMurchie scheme was used for the integral evaluation. After
the integrals were obtained, the Hartree-Fock method was implemented as a starting
point for FCI calculation. Three different models of the Hartree-Fock theory were
implemented: restricted closed-shell Hartree-Fock (RHF), unrestricted open-shell
Hartree-Fock (UHF) and restricted open-shell Hartree-Fock ROHF. Based on these
ground state calculations, FCI calculations can be performed. First, the direct
configuration interaction method with an iterative diagonalization procedure was
implemented, which is able to handle systems up to 108 Slater determinants and to
calculate not only the ground state of the system, but the excited states, too. On
the other hand, the full configuration quantum Monte Carlo method (FCIQMC) was
implemented. It allows calculations on larger systems (up to 1010 Slater
determinants). The main disadvantageous is that the FCIQMC method does not
allow the calculation of excited states. There are density matrix extensions of
FCIQMC code that allow the calculations of excited states, too. However, they were
not considered in this work. Using the code, it is possible to calculate one- and
two-electron FCI density matrices and thereby one is capable of calculating natural
orbitals, too. The possibility of density matrix calculations provides an opportunity
of applying the code in density matrix embedding theory (DMET). The code could
also be applied as impurity solver in dynamical mean field theory (DMFT) or it can
be simply used for direct calculations in small molecular or solid systems.

In this work, all implementations were tested on small molecular systems showing
the limits of success of the corresponding methods. RHF theory provides reasonable
results for total energy of systems, especially at equilibrium geometries. Due to the
statical correlation effects on stretched configurations, RHF theory fails totally in
the description of the dissociation of molecules. For the simplest systems, UHF
solution can solve the problem of dissociation, but it does not provide a systematic
solution of the problem. The orbital energy levels obtained on the Hartree-Fock
level can be used as a qualitative description. However, for the accurate quantitative
results of excitation energies, more accurate methods are needed. Additionally,
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Koopman’s theorem provides a reasonable prediction of ionization energies, but
simultaneously it gives totally incorrect results for electron affinity values. MP2
theory improves the total energy values by retrieving a fraction of the correlation
energy, but it does not provide substantially better wave functions. On the other
hand, configuration interaction provides exact correlation energies and it can be
used to predict correct dissociation effects, as well as better estimation of the
ionization potential and the electron affinities. The same results were obtained using
FCIQMC method, as with the direct CI method with the additional advantage of
the possibility for handling larger systems. Instead of repeating all the results that
were obtained using the direct CI method, properties of the FCIQMC method were
systematically studied on the example of the BeH2 molecule.

In the end, there is a lot of work to be done in the future until the code is ready
to be implemented in VASP. Further development of the FCIQMC method, as well
as parallelization of the code will be greatly appreciated. In order to proceed with
investigations on solids, the DMET or DMFT loop should also be implemented. Such
implementations will be subject of further work.
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Appendix A

Variatonal Theorem

The variational problem is one of the most popular theorems in physics. For a given
Hamiltonian Ĥ and for a set of basis functions |Ψi〉, it gives the best possible
approximation of a ground state. Denote an energy functional E[Φ] that is defined
as an expectation value of the corresponding Hamiltonian

E[Φ] = 〈Φ|Ĥ|Φ〉 . (A.1)

To find the best possible approximation for Φ, one requires that the variation of the
functional disappears:

δE = δ 〈Φ|Ĥ|Φ〉 = 〈δΦ|Ĥ|Φ〉+ 〈Φ|Ĥ|δΦ〉 = 0. (A.2)

In a given basis the best linear approximation is

|Φ〉 =
∑
i

ci |Ψi〉 , (A.3)

With an additional constraint, that the wave function is normalized 〈Φ|Φ〉 = 1, one
uses the method of Lagrange multipliers in order to minimize the total energy. The
Lagrange function is

L = 〈Φ|Ĥ|Φ〉 − E(〈Φ|Φ〉 − 1)

=
∑
ij

c∗i cj 〈Ψi|Ĥ|Ψj〉 − E

(∑
ij

c∗i cj 〈Ψi|Ψj〉

)
,

(A.4)

where E is the total energy of a system, i.e. the Lagrange multiplier. To find the best
coefficients ci, the variation of the Lagrange function has to be zero.

δL =
∑
ij

(δc∗i cj + c∗i δcj) 〈Ψi|Ĥ|Ψj〉 − E
∑
ij

(δc∗i cj + c∗i δcj) 〈Ψi|Ψj〉 = 0. (A.5)

Assuming the energy E is real and the Hamiltonian is a Hermitian operator, collecting
terms with δc∗i with the fact that indices i and j are interchangeable, yields to:

∑
i

δc∗i

(∑
j

〈Ψi|Ĥ|Ψj〉 cj − E
∑
j

〈Ψi|Ψj〉 cj

)
+ c.c. = 0 (A.6)
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Defining the Hamiltonian and overlap matrix as usual

〈Ψi|Ĥ|Ψj〉 = Hij , 〈Ψi|Ψj〉 = Sij, (A.7)

yields a system of linear equations, that can be written as∑
j

Hijcj = E
∑
j

Sijcj, (A.8)

or even simpler in the matrix notation as

Hc = ESc. (A.9)

The vector c is simply the vector of coefficients ci. The previous equation is simply
a generalized eigenvalue problem and its lowest eigenvalue is the best approximation
and the upper limit of the true Hamiltonian eigenvalue E0 in the space spanned by
the basis |Ψi〉:

E =
〈Φ|Ĥ|Φ〉
〈Φ|Φ〉

≥ E0. (A.10)

In a similar way, higher eigenvalues of the equation (A.9) are upper limits of the
corresponding exact eigenvalues of the Hamiltonian. For an orthonormal set of orbitals
|Ψi〉, the overlap matrix is just δij, so that the equation (A.9) becomes a simple
eigenvalue problem

Hc = Ec. (A.11)

One additional fact, that should be made clear, is that the variation of |Φ〉 and 〈Φ| can
be done separately (see equation (A.6)), because of the complex nature of the wave
function, but essentially the same informations are obtained from both variations.
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Density Functional Theory

After Schrödinger proposed his quantum wave mechanics at the beginning of the
20th century, all physicist were concerned to solve this problem for many-body
systems of N electrons. One of the first theories was the Hartree-Fock theory, that
solves N independent one-electron Schrödinger equations and uses a single
Slater-determinant to approximate the exact antisymmetric wave function.
Although this theory includes exact exchange effects, it is expensive and applicable
only to the modest system sizes, such as atoms and molecules. In 1930s, L.H.
Thomas and E. Fermi proposed a model to describe the ground state of a system by
the electron density only. This was a brilliant idea, because it simplifies the
equations from 3N variables of the N -electron wave function |Ψ(r1, r2, · · · , rN)〉 to 3
variables of electron density n(r). The so-called Thomas-Fermi model is a very
crude approximation, because the electronic density is approximated by a uniform
density of N electrons in the total volume of the system. Therefore, the
Thomas-Fermi model provides reasonably good results only for metals, but for the
more complex systems this model is completely wrong, because the actual orbital
structure of electrons is not included at all. A more accurate method, which is also
based on the fact that the ground state can be described only by density, is
proposed by W. Kohn and L.J. Sham [60] - density functional theory. DFT is based
on two Hohenberg-Kohn theorems (P. Hohenberg, W. Kohn). The first one states:

Hohenberg-Kohn 1: In a system of N interacting particles in an external
potential Vext(r), the potential is uniquely defined by the ground state density n0(r).

From this theorem, it can be concluded that all properties of a system can be
described only by the density n0(r). The second theorem states:

Hohenberg-Kohn 2: There exists a functional F [n], depending only on the
density n(r) for each external potential Vext(r). From the variational principle (see
appendix A) the minimum of that functional corresponds to the ground state of the
system, so that the density, which minimizes the functional F [n] is exactly the
ground state density n0(r).

Although these theorems are very useful, they do not give any practical way to
compute the ground state density and other properties of a system. Therefore, the
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Kohn-Sham scheme is developed to overcome this problem. In this scheme, one
replaces the full interacting system with a fictitious non interacting system of N
electrons in an effective local one-particle potential Veff(r). Therefore, the energy
functional can be written as

E[n] = T [n] + U [n] + Vext[n], (B.1)

where T [n] is the kinetic energy functional, U [n] the electron-electron interaction and
Vext[n] is the attractive Coulomb potential of the nuclei. A short overview of these
terms will be given below.
Let us start with the kinetic energy term. Within DFT, the kinetic energy functional is
decomposed into the kinetic energy of N non-interacting electrons and the remainder
that is assigned to correlation effects.

T [n] = Ts[n] + Tc[n], where

Ts[n] = −1

2

N∑
i=1

∫
d3r φ∗i (r)∇2φi(r).

(B.2)

Note that the term Ts[n] depends implicitly on the electron density, because the one-
electron orbitals are functions of the density, i.e. φi[n].
The second term is the electron-electron interaction U [n]. It is approximated by the
Hartree term, that has exactly the same form as the Coulomb repulsion in Hartree-
Fock theory

U [n] ≈ UH[n] =
1

2

∫ ∫
d3r d3r′

n(r)n(r′)

|r− r′|
. (B.3)

The external potential is handled in a classical way within a Born-Oppenheimer
approximation (see section 2.2), as it is the case in the Hartree-Fock theory. The
rest can be described formally by an additional functional, called
exchange-correlation energy functional, defined as

Exc[n] = Tc[n] + U [N ]− UH[n]. (B.4)

It is clear that this term contains the exchange effects that are completely neglected in
the description of U [n] and the correlation effects. Correlation effects emphasize all the
many-body quantum effects that can not be described by these simple approximations.
Therefore, the exchange-correlation functional could be split into exchange effects and
correlation effects, like

Exc[n] = Ex[n] + Ec[n], (B.5)

To finally obtain the famous Kohn-Sham equations, the variational theorem is applied
to the energy functional:

E[n] = Ts[n] + UH[n] + Vext[n] + Exc[n]. (B.6)

Defining corresponding potentials to the energy functionals VI = δEI
δn(r)

, one arrives to:[
−1

2
∇2 + VH(r) + Vext(r) + Vxc(r)

]
φi =

[
−1

2
∇2 + Veff(r)

]
φi = εiφi[

−1

2
∇2 +

∫
d3r′

n(r′)

|r− r′|
−

M∑
A

ZA
|r− rA|

+ Vxc(r)

]
φi = εiφi.

(B.7)
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The latter equations are called Kohn-Sham eigenvalue equations with corresponding
Kohn-Sham eigenvalues εi and eigenstates φi. The Kohn-Sham eigenfunctions φi do
not have any specific physical meaning, they are introduced only as a tool to describe
the charge density

n(r) =
N∑
i=1

|φi(r)|2. (B.8)

The total energy of a system is given by the equation (B.1), or alternatively by the
following equation:

E =
N∑
i=1

εi −
1

2

∫ ∫
d3r d3r′

n(r′)

|r− r′|
+ Exc[n]−

∫
d3r Vxc[n]n(r) (B.9)

So far, DFT is an exact theory, but the term Exc i.e. Vxc is unknown. Therefore,
good approximations are needed for this term. Over a long period of time, different
methods for the approximation of exchange-correlation effects were developed. The
most important and the widest used methods are discussed below.

Local-Density Approximation - LDA

In this class of approximations, the exchange-correlation energy depends on the charge
density at each point in space

ELDA
xc [n] =

∫
d3r n(r)εxc(n). (B.10)

The leading problem is now to construct the exchange-correlation density εxc. Note
that in the LDA schemes

Vxc[n] = εxc[n] + n(r)
∂εxc[n(r)]

∂n(r)
. (B.11)

The exchange and correlation effects are normally treated separately in LDA. The
most successful description of the exchange density εx is based on homogeneous
electronic gas, like as it is done in Thomas-Fermi theory. The exchange density
within this approximation looks like

εx = −3e2

4

(
3

π

)1/3 ∫
d3r n(r)1/3. (B.12)

On the other side, there are no simple analytical expressions for correlation effects.
The correlation energy density is usually calculated from quantum Monte-Carlo
simulations for simple reference systems (jellium) and parametrized as a function of
the charge density. The most famous parameterizations are:

• Ceperley-Alder, Phys. Rev. Lett 45, 566 (1980).

• Pedrew-Zunger (PZ81), Phys. Rev. B 23, 5048 (1981).

• Cole-Pedrew (CP). Phys. Rev. A 25, 1265 (1982).

• Pedrew-Wang (PW92), Phys. Rev. B 45, 13244 (1992).
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Generalized Gradient Approximation - GGA

In GGA approximations, one considers not only the charge density at each point in
space, but also the change of the density at each point. That can be written as

EGGA
xc [n] =

∫
d3r f(n(r),∇n(r)). (B.13)

The most commonly used implementation of GGA is currently the Pedrew-Burke-
Ernzerhof functional [Phys. Rev. Lett 77, 3865 (1996)].

Hybrid Functionals

From the fact that pure DFT calculations (within LDA or GGA) underestimate the
band gap of materials and that all Hartree-Fock calculations overestimate the band
gap, a portion of the exact non-local Hartree-Fock exchange potential is added to DFT
calculations with the hope of achieving better band gap estimations. The non-local
exchange functional in DFT is given by (4.54). The well-known hybrid functionals
are:

• PBE0 [Pedrew J.P., Ernzerhof M., J. Chem. Phys. 105 (22), 9982 (1996)]

• B3LYP [Becke A.D., Phys. Rev. A 38 (6), 3098 (1988) and Lee C., Yang W.,
Parr R.m Phys. Rev. B 37 (2), 785 (1988)]

• HSE [Jochen H., Scuseria G., Ernzerhog M., J. Chem. Phys. 118 (18), 8207
(2003)].

Plane Wave Implementation of DFT

After the exchange-correlation has been treated in the approximate way with one of
the methods described above, one needs a basis set for the translation of equations in
algebraical matrix equations. For this purpose, plane waves are often used in periodic
DFT calculations. From the Bloch theorem (4.56), it is known that the electron wave
function can be represented as a superposition of plane waves for periodic crystal
potentials. Therefore, the plane wave method is particularly suitable for solids and
periodic structures. Additionally, plane waves offer a complete basis set that treats
the entire space equally. Transforming the Kohn-Sham equation into Fourier space,
one obtains∑
G′

[
1

2
|k + G|2δG,G′ + ṼH(G−G′) + Ṽext(G−G′) + Ṽxc(G−G′)

]
Ci,k+G′ = εiCi,k+G,

(B.14)
where all Ṽ terms represent the corresponding potentials in Fourier space. This
equation can be simply solved by diagonalization of the Hamiltonian matrix in Fourier
space given in brackets of the previous equation. The exact solution is obtained for
the infinite-dimensional set of plane waves. However, one is always restricted to a
finite-dimensional set. Relying on the fact that the plane waves with lower kinetic
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energy contribute more than plane waves with higher energy, a cutoff energy Ecut

defined by
1

2
|k + G|2 ≤ Ecut (B.15)

can be introduced. In this way, the calculational accuracy can be improved by
increasing the value of the cutoff energy. The main disadvantage of this method is
that the electronic wave function oscillates in regions near the core, because of
divergent long-range nature of the Coulomb potential. These oscillations for core
electrons can not be accurately described by a reasonable number of plane waves.
For this reason, the pseudopotential method is adopted. The pseudopotential
replaces the divergent ionic potential within a cutoff radius by a weaker one to avoid
the oscillation effects. Outside the cutoff radius, the ionic potential as well as the
wave function is unchanged. Only core electrons are affected by the pseudopotential
approximation and, therefore, it could be assumed this approximation would not
change the accuracy of results because the valence electrons are mostly responsible
for the determination of the materials properties. The next and the last
approximation discussed here is the evaluation of integrals over the first Brillouin
zone. These integrals are very important, because many physical properties are
calculated in this way. Because of the fact that the electron wave function does not
change too rapidly for small distances in Fourier space, the integrals over the
Brillouin zone can be replaced by a summation over a finite number of k-points.
This approximation is given by∫

BZ

d3k f̃(k) ≈ 1

Ω

∑
i

wif̃(ki), (B.16)

where the integral of the function f(r) is desired. The function f̃(k) is the
corresponding Fourier transformation and wi are appropriate weights. The set of
k-points used in the calculation is homogeneously distributed over the Brillouin zone

k =
3∑
i=1

ni
Ni

bi , with ni = 0, ..., Ni − 1. (B.17)

The numbers Ni denote the density of the k-mesh for each reciprocal direction. A
sufficiently dense k-mesh should always be chosen in such a way that the total
energy of the system converges to the desired accuracy.
The plane-wave pseudopotential implementation is the most widely used
implementation for DFT theory. This method is also implemented in VASP [61].
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Appendix C

Transformation of Molecular
Integrals

In this appendix, the transformation of molecular integrals will be considered. As
described in chapter 3, the molecular integrals can be exactly analytically evaluated
over Gaussian orbitals. This set of integrals is given by

(pq|rs) = (φpφq|φrφs) =

∫
d3r d3r′ φ∗p(r)φq(r)r−1

12 φ
∗
r(r
′)φs(r

′) for p, q, r, s = 1, 2, ..., P

(C.1)
After the Hartree-Fock calculation (chapter 4) has been performed, a set of P optimal
Hartree-Fock orbitals

ψi =
P∑
p=1

Cpiφp , for i = 1, 2, ..., P (C.2)

is obtained. Note, ψi is only the spatial part of the Hartree-Fock orbital. In this
appendix, one uses indices p, q, r, s for Gaussian orbitals and two-electron integrals
over Gaussians, while indices i, j, k, l are used for Hartree-Fock orbitals.
Two-electron integrals evaluated over Hartree-Fock orbitals are necessary for the
evaluation of Slater-Condon rules (2.37, 2.38) and for all post Hartree-Fock methods
(Møller-Plesset perturbation theory, Coupled Cluster approximation, configuration
interaction). Similarly as integrals over Gaussians, integrals over Hartree-Fock
orbitals are given as

(ij|kl) = (ψiψj|ψkψl) =

∫
d3r d3r′ ψ∗i (r)ψj(r)r−1

12 ψ
∗
k(r
′)ψl(r

′) for i, j, k, l = 1, 2, ..., P.

(C.3)
The number of those integrals is equal to P 4. Including the eight-fold symmetry of
the integrals for real orbitals, the number of unique two-electron integrals is equal to
P 4/8. The simplest way to store all those integrals is a four-dimensional array. There
are also methods that allow the storage of only P 4/8 unique integrals, but in this case,
the implementation of the function to access an integral from four indices is necessary.
In this work, one needs fast access of integrals and therefore, all P 4 integrals will be
stored in a four-dimensional array. To obtain transformation rules for the integrals,
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the equation (C.2) is inserted in the equation (C.3):

(ij|kl) = (ψiψj|ψkψl) =
P∑

p,q,r,s

(Cpiφp Cqjφq|Crkφr Cslφs) =
P∑

p,q,r,s

CpiCqjCrkCsl(pq|rs).

(C.4)
The naive implementation of this transformation would have four loops for the
summation (indices p, q, r, s) and four DO loops to store all transformed integrals
(indices i, j, k, l). This results in an algorithm that scales as P 8. For larger basis
sets, this becomes a computationally very demanding task. Therefore, one needs
more efficient algorithm that will be presented here. For this purpose, the equation
(C.4) is rewritten as

(ij|kl) =
∑
p

Cpi

(∑
q

Cqj

(∑
r

Crk
(∑

s

Csl(pq|rs)
)))

. (C.5)

To evaluate the latter equation, each sum is evaluated separately. In this way, one
transforms each pair of indices separately. The whole procedure contains four such
transformations (s → l , r → k, q → j and p → i). The cost of this algorithm
is P 5 and thus much more efficient than the naive algorithm P 8. The algorithm is
sketched in listing C.1. Further speed up of this algorithm could be gained through
the parallelization, which is very straightforward in this particular case. However, the
parallelization of the code is out of scope of this work.

1 DO loop over l, s, r, q, p = 1, P
2 (pq|rl) += Csl(pq|rs)
3 END loop p, q, r, s, l
4

5 DO k = 1, P loop over k, l, r, q, p = 1, P
6 (pq|kl) += Crk(pq|rl)
7 END loop p, q, r, l, k
8

9 DO j, k, l, q, p = 1, P
10 (pj|kl) += Cqj(pq|kl)
11 END loop p, q, l, k, j
12

13 DO i, j, k, l, p = 1, P
14 (ij|kl) += Cpi(pj|kl)
15 END loop over p, l, k, j, i

Listing C.1: The efficient algorithm for the transformation of two-electron molecular integrals. The
cost of the algorithm is P 5 where P denotes the number of Gaussian (i.e. Hartree-Fock) orbitals.
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