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1. Introduction 
 

The basic task of humanitarian logistics includes acquiring and delivering 

requested supplies and services, at the places and times they are needed, while 

minimizing the cost. During natural disasters, these supplies cover items that are 

essential for survival, such as food, water, temporary shelter and medicine, as 

defined in [1].  

Many professional aid organizations only consider the total degree of 

demand satisfaction, but the concern that relief goods should be distributed as 

equally as possible among the affected area and people does often not find 

sufficient attention, as has been pointed out by some critical voices.  

In works on humanitarian logistics with the aim of minimizing cost under 

budget constraints, the question of equity or fairness is usually neglected, although 

equity plays a significant role for decision making. Following the ethical idea, that 

every person has equal rights, nobody should be limited by imbalances in the 

supply of urgent goods. 

This thesis on humanitarian logistics, builds on the recent article by Gutjahr 

and Fischer [3]. The authors used the deprivation cost concept by Holguín-Veras 

et al. [2] and modified this concept by a term proportional to the Gini inequity index 

in order to take into account equity. They performed the Particle Swarm 

Optimization metaheuristic for obtaining a solution.  

We adopt the model and the assumptions as they were discussed in [3]. 

Our aim is to solve the logistics model by a gradient-based method and then 

compare the results with the Particle Swarm Optimization (PSO) metaheuristic 

from [3].  

The main difficulty posed by the objective function is non-differentiability in a 

finite set of points due to the presence of absolute value. Because of this difficulty, 

we modified the component of the gradient in a suitable way in the present work. 

After that, the resulting nonlinear problem of the constrained minimization was 

solved by the Frank-Wolfe algorithm with two line search routines, the Bisection 

Method and the Harmonic Step Decrease.  

The main contribution of this thesis is to investigate the use of the gradient 

that can increase precision of numerical calculations. 
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The thesis is organized as follows: The second chapter offers overview of 

the presented model and its features. Firstly, the inequity-neutral part of the model 

is introduced. Secondly, the extended problem formulation considering equity is 

presented. In the third chapter, we derive a formula for the evaluation of the 

gradient of the objective function, and reformulate the problem into its canonical 

form. The fourth chapter presents all used methods to obtain the results – the 

Gradient Descent, the Frank-Wolfe Algorithm, the Bisection Method and the 

Harmonic Step Decrease. The fifth chapter describes an illustration case with data 

from the Nepal earthquake 2015 used for the method evaluation. In the sixth 

chapter, we compute the solutions for both the utilitarian and the inequity-averse 

case using the Frank-Wolfe Algorithm. In the inequity-averse case, we perform the 

numerical analysis from the initial symmetric solution. To improve a performance 

of the method, a randomized multistart was considered.  
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2. The Model 
 

The model is kept very simple and well-structured. We assume a single relief 

commodity. This also includes the case of a mix of different relief commodities for 

which the ratios between the requirements of each commodity are constant. It 

means that everyone gets the same package with food, water, medicine, etc. It 

also contains the “output” used to satisfy the nonmaterial needs, for example, 

medical services.   

A periodic delivery scheme was assumed, because it would not be realistic 

to suppose that the total demand can be covered in a single delivery. Some of the 

reasons for that are as follows: 

 

a) Vehicle capacities are limited. 

b) Perishable goods cannot be stored by the consumers long-term. 

c) Safe and sufficiently large local storage capacity may be lacking [3]. 

 

In this model, we consider relief commodities which need to be used within 

short time after supply. Such commodities are perishable food or medical help. 

Furthermore, if the relief commodity is not available, demand disappears and does 

not grow due to increased future supply. For example, if medication is not provided 

in one time unit, beneficiaries cannot get twice the amount of medication in the 

following time unit. 

In the model is K  the set of demand points k , that need to be served from 

a central place (“depot”). The number of receivers in each demand point k  is 

kw  k K .  The sum of the numbers of all receivers is denoted by k

k K

N w


 . It is 

supposed that the entire disaster response mission will take T  time units. The 

delivery interval k  is the time spent between two consecutive deliveries. It is 

assumed that every visit of demand point k  always fully satisfies the current 

demand in point k  at given time.  

The concept of deprivation costs with a deprivation intensity function  g t  

was used from Holguín-Veras et al. [2]. If it is considered that the commodity is 

food, the function  g t  characterizes the intensity of hunger increasing with 
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deprivation time t . It follows that the deprivation intensity function (DIF) is always a 

nondecreasing function.  This can easily be seen in the following example: 

Let us consider the function     2 t 0,p

kg t t    which will be defined in the 

interval  0, k  because of the assumption that the delivery is periodic and every 

visit completely covers the current demand. As a result, the function  g t  drops 

down to zero at kt  . We look at two different cases of the intervals with 1,2p  . 

The dashed curves in Figure 1 plot the case with the delivery interval 3k   which 

means that a delivery occurs every three days. The solid ones show the delivery 

interval 1k  . The different color of the curves demonstrates the function in 

dependence of the exponent p . The green curves display the case for 1p  , the 

blue ones for 2p  . As shown in Figure 1, if 1k   then the deprivation intensity 

(at instant) is decreasing function of p . On the contrary, if 1k   then the 

deprivation intensity (at instant) is increasing function of p . 

 

 

Figure 1: An example for the development of deprivation intensity over time for 

two different delivery intervals with p = 1, 2. 

 

From the example, it is clear that the deprivation cost until time k  is the 

cumulated value of the deprivation intensity  g t  in the interval  0, k . That can 



 

5 

be mathematically formulated by the integral  
0

k

g t



 , which is nothing but as an 

increase between two deliveries. So the average deprivation cost of an inhabitant 

of demand node k  per time unit can be defined as follows: 

 

 
0

1 k

k

k

g t dt






  . (1)        

The decision variable kx   indicates the average number of deliveries per time 

unit. In other words, it is the distribution frequency of aid for location k . After the 

setting 
1

k

k

x


 , the Equation (1) can be reformulated as: 

 

 
1/

0

kx

k kx g t dt   . (2)        

In addition to that, it is assumed that the cost to cover the demand in location k  is:  

  k k k kd c k K    , (3)        

where kc  are the fixed costs, and  k k   are the variable costs. Moreover, it is 

considered that the variable costs k  are a nondecreasing function of the number 

of receivers k  in location k .   

 

2.1 The Model Constraints 

 

At this point, it is easy to describe the delivery cost to demand location k  during 

the whole mission as k kd Tx , as well as the total logistics cost as k k

k K

T d x


 .  What is 

more, there is available budget B  per time unit. It means that the budget for 

logistic costs is BT . This produces the constraint:  

 
k k

k K

T d x BT


  (4)        

And dividing by T  we get a simplified expression: 

 
k k

k K

d x B


  (5)        
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2.2 The Objective Function of the Model 

 

The objective function of the problem is the following 

 (x)f     , (6)        

where  
1/

0

1 1 kx

k k k k

k K k K

x g t dt
N N

   
 

    , 2 G  , G  denotes the Gini Index of 

deprivation cost and   is the parameter penalizing for inequity. This formulation is 

analogous to [3]. In our case,   is measured in the units of the deprivation scope. 

The parameter   regulates the influence of fairness in the objective function and 

can be tuned between 0  and 1/ 2 . The boundary case 0   means that there will 

be no consideration of equity. Therefore, the penalty term will not be taken into 

account and we get the utilitarian optimization problem. The higher   is, the 

greater the consideration of the equity is.  

The Gini Index G  is a statistical measure of distribution. The coefficient 

ranges from 0  (or 0% ) to 1 (or 100% ), with 0  representing perfect equality 

(everyone has the same share of goods) and 1 representing perfect inequality 

(only one person accounts for all the consumption, and all the others have none).  

For losses na  assigned to single persons 1,..., Nn  , the Gini Index is 

defined as 

 

1 1

1

1

2

N N

n nN
n n

n

n

G a a

N a


 



 


. 
(7)        

In our case, where the losses are deprivation costs k , aggregation over the 

inhabitants of a demand point transforms the Gini Index (9) into 

 
k2

1

2
k k k

k K k K

G
N

   


 

 

   (8)        

The objective function (6) with Gini Index (10) takes the form  

     
1/ 1/ 1/

2

0 0 0

1 1
(x) 2

2

k k kx x x

k k k k k k

k K k K k K

f x g t dt x g t dt x g t dt
N N

    




 

  

              (9) 
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2.3 The Optimization Problem 

 

Combining the objective function (6) with constraint (5) and with non-negativity     

of x , results in a representation of the optimization problem: 

 min 2
x

G    

. . k k

k K

s t d x B


  

                           0kx k K    

( P )        

If 0  , then we obtain the minimization of the average deprivation costs per time 

unit without the consideration of the penalty term. It is also called the utilitarian 

optimization problem. It is given by the following nonlinear mathematical 

programme: 

 

 min
x

  

. . k k

k K

s t d x B


  

                              0kx k K    

 

( 0P ) 

 

2.4 Power Functions as Deprivation Functions 

 

We assume a special case of deprivation intensity functions 

   1

pg t g t , (10)        

where 0p  . Since     2

1 1 pg t g p p t     and 0t  , a deprivation intensity function 

given by (12) is convex if 1p   and concave if 0 1p  . The case 1p   produces 

the linear special case. Since for  g t  as above, 

 
 

 

1/ 1/

1
1 1

0 0
1

x x

p

p

g
g t dt g t dt

p x 
 

  , (11)        

and it is 

 

 
1

1
k p

k

g

p x
 


, (12)        
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 
1

1

k

p
k K k

g

N p x








  (13)        

and 

 
1

2
,

1 1

2 (p 1)
k k p p

k k K k k

g
G

N x x
 




 

 


 . (14)        

After omission of constant factors in the objective function, the utilitarian 

optimization problem becomes 

 min p

k k
x

k K

x 



  

. . k k

k K

s t d x B


  

                           0kx k K   . 

(15)        

This optimization problem can easily be solved by the Karush-Kuhn-Tucker 

conditions (see Appendix A).  
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3. Evaluation of the Gradient of the Objective Function 
 

In a closer analysis of the objective function, it has to be noted that the part with 

the Gini Index is not differentiable because of the absolute value, while the first 

part, the minimization of the average deprivation costs, is easy to differentiate. 

This means that it is not easy to find an optimal solution as in the case of the 

utilitarian problem.  

In this section, we will explain in detail how the absolute value is removed 

by using several reformulations and by introducing new auxiliary variable        

and  .  

Firstly, the objective function is divided into two parts:  

a) the average deprivation costs per time unit  differentiable 

 

 
1

1

k

p
k K k

g

N p x








           

b) the average deprivation costs per time unit multiplied by the Gini Index  

not differentiable 

 

 
1

2
,

1 1

2 1
k k p p

k k K k k

g
G

N p x x
   

 

 


           

We can replace the constraint (5) “smaller or equal” by “equal”, k k

k K

d x B


 . Thus, 

the optimal solution fully consumes the available budget. Inequity can be 

decreased by using the extra resources to satisfy the needs of the currently 

disadvantaged. Then, we apply the substitution using the new variable: : k
k k

d
y x

B
 , 

which transforms (5) into 1k

k K

y


 . Using this variable, optimization will be over 

the standard simplex. As a result, the total deprivation costs function looks like 

 

 
1

2
,2 1

p p

k k
k kp p p

k k K k k

d dg
G

N p B y y
   



 

 


 ,  (16)        

where  

 

 2
:

2 1
p

p

g
C

N p B



.  (17)        
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Further, we continue with the b) to remove the absolute value. We can see that 

there are two elements k  and k  , which belong to the set K . The set 2K  can be 

divided in three disjoint sets: 

   2: ,K k k K k k
     

   2: ,K k k K k k
     

   2: ,K k k K k k
     

When we consider double summation in (16), terms from the set 
0K  sum up to 

zero and terms from K  can be counted twice due to the symmetry between K  

and K , based on the property of the absolute values – evenness (the reflection 

symmetry of the graph). The remaining terms in the double summation can be 

divided into three subsets: 

  : , 0
p p

k k

p p

k k

d d
K k k K

y y

 





  
    

  
, 

  : , 0
p p

k k

p p

k k

d d
K k k K

y y

 





  
    

  
, 

  0 : , 0
p p

k k

p p

k k

d d
K k k K

y y







  
    

  
.  

When evaluating (16) in general, 0K  . If that is not the case, we need to 

change the current search point slightly. This is necessary for a simple reason: the 

case 0K   is not possible to differentiate.  

Moreover, we use the auxiliary function   to include the both cases of summation 

( ,K K  ) in b): 

 

 ,

2
p p

k k
p kk k k p p

k k K k k

d d
G C

y y
   




 

  

  ,          

where 

  

 

1, ,
:

1, ,
kk

k k K

k k K




 

 
 

 
.         
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After that, we compute the partial derivation of b) with respect to ly . We 

distinguish two different cases: 

 l k   

 l k   

 

   1 1 12 2 2p p p p p p
p p plk l k l l kl k l l l lk l k l l

k k k Kl

G
C d py C d py C d py

y


           

 

 


   


             

 

Finally, we define a new auxiliary function   to simplify the notation:  

 

 ,

: ,

0,

lk

lk kl

l k

l k

l k



 

 


 
 

.         
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4. Overviews of used Optimization Algorithms 
 

In this section, we give an overview of used optimization algorithms: 

 The Gradient Descent 

 The Frank-Wolfe Algorithm (FWA) 

 The Bisection Method 

 

4.1 The Gradient Descent 

 

One of the points of our thesis is the use of the gradient descent in the above 

mentioned problem. We try to find out the effect of the method on the results and 

its quality.  

The gradient method, also called the steepest descent method, is a method 

used in the numeric analysis to solve general unconstrained optimization 

problems. Moreover, the gradient descent is a first-order iterative optimization 

algorithm for finding the minimum of a function. The gradient descent algorithm 

can be applied for solving the following problem:  

  min f x  

nx  

(18)        

with a continuous differentiable function  f x .  

The gradient of the function  f x  will be denoted as    g x f x ,  k kg g x  

with the direction  k k ks f x g    , and the step length k . 

 

Inputs: - The objective function  f x   

  - The initial point 0x   

  - The tolerance constant 0tol    

  - Setting the iterator counter 0k    

 

Algorithm:   1) Test the accuracy. If  kf x tol  , stop. 

  2) Calculate the direction ks .  

  3) Compute the step length k .  

  4) Determine the new approximation 1k k k kx x s   .  

  5) Repeat the cycle : 1k k   and go to 1).    

https://en.wikipedia.org/wiki/Category:First_order_methods
https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Algorithm
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Now, we will consider the specific example with two variables and the optimal step 

length and use the previous steps from the algorithm.  

 

Inputs: - The function to minimize:    2 2, y 2 2 2f x x y x xy y       

  - Initial points:    0 2x   , 0 5y    

  - The tolerance constant:  0.1tol    

 

Application of the algorithm: 

1) Enumerate the norm of gradient  0 3.59f x   which is more than our 

0.1tol  . 

2) Calculate the direction  0 3.12, 1.78s  .  

3) Compute the step length 0 0.24  . 

4) Determine the next approximation  

     1 2, 5 0.24 3.12,1.78 -2.95,-3.34x      . 

5) Repeat the cycle : 1k   and go to 1).   

 

Iterations and contours of the objective function from the example above are 

shown in Figure 2. Note that gradients and level sets are perpendicular to each 

other.  
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Figure 2: Application of the gradient descent algorithm to the example with two 

variables. 

 

We have a nonlinear constrained optimization problem. Because of this fact, we 

will use the Frank-Wolfe algorithm, which includes the idea of the gradient 

descent.  

 

4.2 The Frank-Wolfe Algorithm (FWA) 

 

The Frank-Wolfe method was originally published by Marguerite Frank and Philip 

Wolfe [4] in the 1950´s. They applied the algorithm to solve the problem of 

minimization of a convex quadratic function under linear constraints.  

In general, it can be used for nonlinear constrained optimization. That is 

why the algorithm is appropriate - our objective function is nonlinear with linear 

constraints. The Frank-Wolfe is an iterative first-order optimization algorithm. First, 

there is an initial point 0x . Then, it constructs a sequence of estimates 1 2, ,..., nx x x  

that converges to the optimal solution. The algorithm can solve problems of the 

form 

  min f y  

. .s t y S ,  
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where : nf  is a continuously differentiable function, over a convex1 and 

compact2 set nS  . More information about why the function is defined in this 

way can be found in [5]. FWA approximates the objective function by first two 

terms of Taylor expansion around ky : 

        
T

k k kf f y f y y    .          

Then, FWA searches for a solution of the approximated problem  

      min
T T

k k k kf y f y f y y


   

 . .s t y S  

  

 min
T

kf y


  

. .s t y S  

        

When the set S  is a polyhedron3, then each step of FWA is reduced to solve the 

linear programme.  

Inputs:         - The objective function  f y   

  - The set of feasible solutions y S  

  - The initial point 0y S   

  - The tolerance constant for the stopping criterion 0tol    

 

Algorithm:   1) Choose an initial solution 0y S . Let : 0k  . 

  2) Calculate a direction ks . 

 3) Perform the line search to find a step length k , such that 

    k k k kf y s f y  .         

 4) Determine a new iteration point: 1k k k ky y s   . 

5) Check the stopping criterion. If it is fulfilled  Stop! Otherwise, let 

: 1k k  , and go to 2).   
                                                           
1
 A set is called convex if one for which any segment between two points lies within the set. While 

the FW algorithm does not require the objective function f  to be convex, it does require the set of 

feasible solutions to be a convex. 
2
 For any subset A  of Euclidean space 

n
, A  is compact if and only if it is closed and bounded.  

3
 Definition of a polyhedron:  :nP x Ax b   , where A  is xm n   matrix and b  is the 

vector of length m .  
 

https://en.wikipedia.org/wiki/Subset
https://en.wikipedia.org/wiki/Euclidean_space
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4.2.1. Solution deprivation minimizing problem using FWA 

 

At this point, we apply the algorithm to our problem using [10]:  

  minimize 2f y G      

subject to y S  , 
        

where 

  1, 0,i iS y y y i K     .          

We can prove that the set of feasible solutions S  is polyhedron: 

  y 1, y 0,T

kS v y k K       1,1,...,1
T

where v            

  y 1 1, y 0,T T

kS v y v y k K          

  y 1 1, y 0,T T

kS v y v y k K          ,         

 
1

1

0

T

T

K K

v

S y v y

I

    
     

       
    

     

.         

1) Choose an initial solution 0y S . Let : 0k  . 

2) Calculate a search direction ks .  

The Frank-Wolfe algorithm approximates the objective function by the first 

two terms of Taylor expansion and search for a solution, ks , of 

approximated  

problem (19).  

  min
k

T

k kf y


  

ksubject to S   

(19)        

This is an LP problem. The solution of such a problem can be found using 

the Simplex Method [7]. The search direction is k k ks y  , that is, the 

vector from the feasible point ky  to the solution of partial problem (19). 

Observe that this is a feasible direction, because both ky , k  belong to 

S and S is convex. Since S  is unit simplex/polyhedron, the optimal solution 
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of (19) will be in one of the vertices of the form  0,...,0,1,0,...,0
T

ie  , where 

all components are equal to 0, except the ith, which is 1.  

Let  k j
f y    be the smallest element of  kf y the solution of 

approximated problem (19) will be je .  

3) Solve the line search problem to find a step length k , such that 

    k k k kf y s f y  .         

Here, we must limit the step length to be at most 1, because for 1 k   the 

solution becomes infeasible; the line search problem therefore has the form 

 
 

 
0,1

minimize
k

k k kf y s





  (20)        

a) We will solve (20) using the Bisection Method.  

b) As an alternative approach we can set 
2

k
k


 


 , where   is a 

constant. We will call this method the Harmonic Step Decrease. 

4) Determine a new iteration point: 1k k k ky y s   .  

5) If a stopping criterion is fulfilled  Stop! 1ky   is the approximation of the 

optimal solution. Otherwise, let : 1k k  , and go to 1).   

In our case, we select the following stopping criterion: 
2k ks tol  . This 

means if we move less than the given tolerance, then stop the algorithm. 

 

4.3 The Bisection Method 

 

In this part, we describe the Bisection Method and its features. The Bisection 

Method also called the interval halving method, the binary search method, or the 

dichotomy method, is a simple root finding method.  It reduces an interval that 

includes a roof of the function  f x . The method is based on the theorem called 

Bolzano’s theorem [9], which states that if the values of  f a  and  f b  have 

opposite signs, the interval must contain at least one root.  

 

Theorem (Bolzano): If a function  f x  is continuous on an interval  ,a b   and 

   * 0f a f b  , then a value  ,c a b  exist for which   0f c  . 

The proof can be found in [9]. 

https://en.wikipedia.org/wiki/Intermediate_value_theorem
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If  f a  and  f b  have different signs, then    * 0f a f b  . This means that one 

of them is above the x axis  and the other one below the x axis . In this case, if 

we sketch the  f x  function, at some point, it will cut the x-axis. The x  value, 

where the x axis  is cutting, is the root of the equation   0f x  . The Figure 3 

clarifies the one-step scheme of the Bisection. 

 

 

Figure 3: One step of the Bisection Method. 

 

Based on the above information, we can summarize the following: 
 

Inputs: - a , b  such that    * 0f a f b   

 

Algorithm:   1) Compute the midpoint c  of the given interval using formula: 

  / 2c a b    

  2) Determine the function value at the midpoint  f c . 

  3) Stop the algorithm if (c) 0f   and c is the root. 

  4) Set :a c  if    * 0f b f c  , and set :b c  if    * 0f b f c  . 

  5) Go to 1). 
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4.3.1 Performing the Bisection Method  

 

This method is easy to implement. It begins by calculating the midpoint, 

_
2

a b
x help


 , of the interval. The function is then evaluated at that point  f s . 

Recalling Bolzano’s theorem, if  f a  and  _f x help  have different signs, the 

method replaces b  with the calculated midpoint, or if  f b  and  _f x help  have 

different signs, a  is replaced by the midpoint. This step guarantees that there is 

still a root within the interval. The procedure then continues to the next iteration. 

The solution is found when the function is equal to 0  at  _f x help  or it is small 

enough to be sufficient.  

Before implementing this method into the programme MATLAB, it is 

necessary to determine the number of iterations in the Bisection Method. This can 

easily be deduced from the following inequality  
1

2

n

b a tolerance
 

  
 

, where n  

stands for the number of iteration.   

How close we will get to the real root depends on the value of the tolerance 

we set for the algorithm.  The disadvantage of this method is that it is relatively 

slow. 
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5. The Application Case: The Nepal Earthquake 2015 
 

As an application case we chose the same illustrative example as in [3]. The 

example is based on data from the Nepal earthquake of 2015. The selection is not 

random. Although the rescue teams responded immediately, it was criticized that 

the most supplied areas were the best accessible ones. This resulted in significant 

discrepancies of supplied amounts among affected regions. Johnsson [6] declares 

that “the material relief aid was distributed unevenly between the crisis-hit districts. 

The disproportionate distribution among districts was likely related to the 

geographic accessibility of the districts, as many of the districts that received 

comparably fewer relief items were mainly located in the mountainous regions of 

northern Nepal”. This indicates that the distribution of help was strongly influenced 

by geographical reachability. Therefore, Fischer and Gutjahr [3] decided to take 

into account the fairness using the Gini Index. They showed that in this way the 

results can be considerably improved and allows a fair distribution of aid. On the 

basis of their observation, we are trying to find out whether the use of the gradient 

descent method for the same problem will also produce favorable results or even 

better ones. 

On April 25, 2015, an earthquake of magnitude 7.8 (the main shock) hit 

large parts of Nepal. More than 8,800 people died and about 22,000 were hurt. 

Many houses were damaged and hundreds of thousands of people became 

homeless. Several days later, on May 12, 2015, the main shock was followed by a 

major aftershock of magnitude 7.3. The Figure 4 illustrates the map of Nepalese 

districts, and the epicenters. The rescue mission was established primarily by the 

Nepalese government and was operated by the Nepalese army. Furthermore, not 

only other countries, but also a lot of international non-governmental organizations 

provided support. Most rescue actions were organized from the capital of 

Kathmandu.  
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Figure 4: Map of Nepal Epicenters of the main earthquake (three circles) and of 

the major aftershock (two circles) [3]. 

 

5.1 Data 

 

In order to get a well-structured illustration example, we assume that mobile teams 

are created in the capital and are ready to go to support other affected districts 

according to a specific feature of the Nepal earthquake 2015. During the 

earthquake many public health facilities were destroyed or partially damaged. The 

teams visit the districts regularly, staying one day with district-specific frequencies 

kx , where k  is the index of district. During their visit in a district, they help not only 

in the central location and provide the health care, but also at home if necessary. 

The attention is mainly focused on the 14 districts that the Nepalese government 

has stated to be the regions in the biggest need. On the one hand, some of the 

regions are easily accessible, but on the other hand there are several districts that 

are located in the mountain area and the access to them is very complicated. 

Figure 5 shows the variety of landscape as well as the 14 most severely affected 

districts.  
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Figure 5: Map of the 14 most severely affected districts according to the definition 

by the government of Nepal [3]. 

 

We will use the data from Johnsson [6]. We consider the following parameters: 

 K  is the set of the 14 selected districts. 

 k  (the number of beneficiaries) is equal to the number of the Health Centre 

fully or partially destroyed in the district k . 

 kd  are the costs to cover the demand in the district k  by a single visit: 

   1 tank k k kd c


     ,         

where k k basc c c   and it represents the distance. 

 kc  is equal to the distance between Kathmandu and the main city of the 

district k  in kilometers.   

 basc  is the base value which is added to the distance from/to the capital.  

 k  is the average geographical slope (in degrees) in the district k .  

   defines the variable costs per a destroyed Health Centre (in kilometers). 

   indicates a weighting factor for the increased costs of a home visit 

compared to the health care at the central location.  
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   describes the power factor of increasing unavailability for the tangent of 

the mean geographic slope k . 

The parameters basc ,  ,   and   are constant and in our model we suppose:  

 10basc  ,  

 2  , 

 200  , 

 3  .  

In terms of travel costs, this means that the base value of 10 kilometers is added 

to the distance from/to the capital. The variable costs to satisfy one Health Centre 

are equal to the round trip journey costs for 2 kilometers of distance. The 

inaccessibility of an region increases with the third power of the tangent of the 

slope. The cost effort for home visits is higher by 13.4%, if an average slope is 5° 

compared to an average slope of 0°. 

The values for k , kc  and k  according to Johnsson [6]: 

 

District

Bhaktapur 25 16 3.98 79.40

Dhading 106 90 10.79 605.50

Dolakha 83 183 13.86 857.70

Gorkha 79 144 15.70 1,013.80

Kathmandu 63 0 4.79 150.80

Kavrepalanchok 131 38 8.62 492.50

Lalitpur 39 7 8.12 140.30

Makwanpur 59 88 5.89 241.90

Nuwakot 99 61 10.39 513.10

Okhaldhunga 30 217 10.67 367.30

Ramechhap 66 154 11.14 497.60

Rasuwa 27 87 16.88 452.80

Sindhuli 59 134 5.57 283.90

Sindhupalchok 97 67 13.20 771.60

k kc k kd

 

Table 1: The number of beneficiaries k , the parameter kc  and  k , and the 

costs kd  for all 14 districts. 
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6. Numerical Experiments 
 

We use the programme MATLAB R2017b to get results for the utilitarian solution 

as well as results for the inequity-averse solution. The programme was started on 

the computer Lenovo T400 with processor Intel Core 2 Duo CPU P8400 and 4 GB 

RAM. All MATLAB´s codes are in the appendices.  

The Gradient Search (GS) has several parameters that can have a major 

impact on results, for example, the choice of the step calculation – the Bisection              

Method (GS-B) or the Harmonic Step Decrease (GS-HSD). The tolerance constant 

(tol) stands for a certain number of decimal numbers in results. Furthermore, the 

parameter maxit represents the maximum iteration count needed to stop the 

method if it does not find the solution earlier. And the constant   describes the 

starting step size for the GS-HSD. We will check them in a closer analysis in the 

case of the utilitarian solution as well as in the inequity-averse case.  

 Methods:  GS-B, GS-HSD. 

 tol:   tolerate the result for a certain number of decimal numbers. 

 maxit:  maximum iteration count. 

  :    starting step size for the GS-HSD. 

We set the parameter in the deprivation intensity function (12) as follows: 2g  . 

 

6.1 The Solution for the Utilitarian Case 

 

In this section, we will consider only the case 0  . It means that we minimize the 

average deprivation costs per time unit without the consideration of the penalty 

term. We can check the correctness of our results by comparing them with the 

results from [3]. Although two different methods are used (Gradient Descent, 

Particle Swarm Optimization), in this case both approaches should yield the same 

results. Our aim is to replicate the results from [3] concerning the exponent 2p  . 

We consider an initial solution y
K

0

1
, where 1  is a vector of 1, which 

means that the aid is distributed equally to each location. The value of 2   was 

used for calculations done by GS-HSD.  

Table 2 shows the overview of algorithm runs for both, GS-B and GS-HSD, 

with the tolerance set to 10-3 and 10-5. The k  stands for the number of iterations in 
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which the methods stops, the t  is an execution time of the algorithm, the |µF-µ| is 

the absolute difference between average deprivation costs F  from [3] and 

obtained   and the |µF-µ| /µF is the relative difference against F . 

When we compare both the methods, we can observe differences in 

performance. Using weak tolerance criteria applied, the results of the GS-B are 

much worse than those obtained with the GS-HSD. But if we toughen the 

tolerance, we can see that the GS-B is faster and matches the GS-HSD precision. 

It is interesting to note that the average iteration of the GS-B takes 125 times 

longer than iteration of the GS-HSD.  

 

GS-HSD tol = 10
-3

tol = 10
-5

tol = 10
-8

k 1,822 182,144 1,000,000

t [s] 0.4877 21.4637 114.2054

|µF-µ| 7.9782E+03 554.2328 553.9534

|µF-µ| /µF [%] 0.0311 0.0022 0.0022

GS-B tol = 10
-3

tol = 10
-5

tol = 10
-8

k 130 1,818 4,322

t [s] 1.1147 18.3737 61.4564

|µF-µ| 4.5741E+05 622.6194 553.9474

|µF-µ| /µF [%] 1.7847 0.0024 0.0022
 

Table 2: Comparison of G-HSD and G-B for the utilitarian solution. 

 

6.1.1 Qualitative Characteristics of the Utilitarian Solution 

 

The following Figure 6 displays two pictures. The left one describes the Gini Index 

of the deprivation costs (red) and the Gini Index of the visiting frequencies (blue) 

depending on the exponent p  of the deprivation intensity function (12). The right 

one shows the worst-off districts (upper), the best-off (lower) districts and the 

average deprivation costs (middle) scaled by average deprivation costs over the 

all 14 districts depending on p .  
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Figure 6: Gini Index and Relative Deprivation Cost in dependence of the 

exponent p of the DIF [3]. 

 

The red curve in the left picture demonstrates that the higher the exponent 

p , the higher the inequality of deprivation costs is. This phenomenon occurs if the 

goods to cover the basic human needs are lacking and the relief system and the 

local sources fail to supply them. In contrast to the effect of the red curve, the 

dashed blue curve drops with the increase of p . It means that the large curvature 

of the DIF causes less inequity among aid supply frequencies. In the right picture, 

we can see that this effect does not cover the increased sensibility of beneficiaries. 

A Gini Index in the range of 0.14 – 0.23 does not seem worrying, but in the case of 

humanitarian aid distribution it can be considered justifiable. 

The curves in the right picture show that the deprivation costs in the worst-

off locations grow with increasing p  values, and the deprivation costs in the best-

off locations decrease. As a result, residents of the worst-off locations suffer at 

least twice as much as those of the best-off locations. This state is, of course, 

unacceptable.  

As mentioned above, we use the gradient descent method to get the results 

for the utilitarian solution. Because of the iterative optimization process of the 

algorithm, the speed of obtaining the results depends on the number of iterations 

and the tolerance constant in the stopping criterion. 

We will present Figures 7-10, which plots numerically obtained Gini Index 

and Relative Deprivation Cost in dependence of the exponent p  of the DIF. On 

these Figures each point was calculated with prescribed tol and maxit value.  

https://en.wikipedia.org/wiki/Iterative_algorithm
https://en.wikipedia.org/wiki/Mathematical_optimization
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Figures 7, 8 show the results of the GS-B for three different values of the 

tolerance constant. We set the maximum of iterations in each case equal to 

10,000. This means that the programme takes 10,000 iterations if it does not find 

the solution matching the used tolerance constant. We change the tolerance 

constant in order to improve the results. Firstly, we set the tolerance to 10-3. That 

means the algorithm stops if the step size is less than 0.001. Then, we modify it to 

10-5, and finally, we change it to 10-8. We suppose that the results should improve 

with increasing tolerance. 

When we take a look at the results, we can really see a significant 

difference between the three cases. While the curves in Figure 7(b) are very 

rugged, the ones in Figures 7(c)-(d) are smoother. This indicates that our 

hypothesis is right and the tolerance constant has a considerable effect on the 

results.  

 

 

Figure 7: (a) Left upper picture: Gini Index in dependence of the exponent p of 

the DIF solved by PSO [3]. (b) Right upper picture: GS-B with tol = 10
-3

 and  

maxit = 10,000. (c) Left lower picture: GS-B with tol = 10
-5

 and maxit = 10,000. 

(d) Right lower picture: GS-B with tol = 10
-8

 and maxit = 10,000. 
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Figure 8: (a) Left upper picture: Relative Deprivation Cost in dependence of the 

exponent p of the DIF solved by PSO [3]. (b) Right upper picture: GS-B with      

tol = 10
-3

 and maxit = 10,000. (c) Left lower picture: GS-B with tol = 10
-5

 and 

maxit = 10,000. (d) Right lower picture: GS-B with tol = 10
-8

 and maxit = 10,000. 

 

Figures 9 and 10, on the other hand, display the results of the GS-HSD also 

in three cases. The maximum of iterations is set in the first two cases to 10,000 

and in the last one to 100,000. Again we will change the tolerance constant as 

mentioned above. Using the GS-HSD confirmed that the results are better with the 

increasing tolerance. 
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Figure 9: (a) Left upper picture: Gini Index in dependence of the exponent p of 

the DIF solved by PSO [3]. (b) Right upper picture: GS-HSD with tol = 10
-3

 and 

maxit = 10,000. (c) Left lower picture: GS-HSD with tol = 10
-5

 and maxit = 10,000. 

(d) Right lower picture: GS-HSD with tol = 10
-8

 and maxit = 100,000. 
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Figure 10: (a) Left upper picture: Relative Deprivation Cost in dependence of the 

exponent  p of the DIF solved by PSO [3]. (b) Right upper picture: GS-HSD with          

tol = 10
-3

 and maxit = 10,000. (c) Left lower picture: GS-HSD with tol = 10
-5

 and      

maxit = 10,000. (d) Right lower picture: GS-HSD with tol = 10
-8

 and               

maxit = 100,000. 

 

6.2 The Inequity-Averse Solution 

 

In this part of our thesis we will examine the problem ( P ), where the objective 

function is the minimization of the average deprivation cost with Gini´s Mean 

Absolute Difference. Our aim is to solve this problem by gradient based method 

and then compare the results with the Particle Swarm Optimization (PSO) 

metaheuristic from [3].  

The difficulties posed by the objective function are non-convexity as noted 

by [3] and non-differentiability in finite many points due to the presence of absolute 

value in the Gini Index term. The non-convexity implies the possibility of multiple 

local optima. We addressed the problem of non-differentiability by using several 

reformulations and introducing new help functions   and   in the subsection 2.3.  
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Our intent is to compare our results for the inequity-averse solution with the 

results from [3]. We analyze the behavior of the gradient search on the Nepal test 

case. We will use the data from the Nepal test case as well as problem defining 

parameters as in the subsection 6.1. Additionally, we consider  0,0.5  uniformly 

discretized with the step of 0.05 . Note that 0   correspondents to the utilitarian 

solution. We will implement two choices of the initial solution: 

 The Symmetric Initial Solution: y
K

0

1
.  

 Randomized Multistart: a list of initial solutions that are uniformly distributed 

on the unit simplex.   

The value of 2   was used for calculations done by GS-HSD.  

 

6.2.1 The Symmetric Initial Solution  

 

First of all, we obtain the results of both methods – GS-B and GS-HSD, where the 

tolerance is equal to 10-8 and the maximum of iteration is set to 10,000. Table 3 

describes the numerical results by comparing with the results of PSO from [3]. It is 

clear from the results that both methods do not achieve as good results as PSO 

metaheuristic. If we take a look at the numerical result in Table 3, we can observe 

that GS-HSD returns much better results than the GS-B. The values  f x  of    

GS-HSD are very close to the values of PSO. For all values of  , 10,000 iterations 

of GS-HSD were used. This indicates that number of iterations is insufficient for 

GS-HSD. On the other hand, the GS-B stopped at the 36th iteration for 0.5  . 

This fact suggests changing the stopping criterion. The allt  stands for the total time 

in seconds consuming by the algorithm.  
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tol 

maxit 

λ μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

0.00 2.5631 0.1908 2.5631 2.5631 0.1899 2.5631 2.5630 0.1898 2.5630

0.05 2.5657 0.1689 2.6090 2.5658 0.1686 2.6091 2.5657 0.1686 2.6090

0.10 2.5733 0.1481 2.6495 2.5739 0.1470 2.6496 2.5739 0.1470 2.6496

0.15 2.5863 0.1268 2.6847 2.6120 0.1503 2.7298 2.5977 0.1249 2.6950

0.20 2.6044 0.1054 2.7142 2.6674 0.1476 2.8249 2.6081 0.1016 2.7141

0.25 2.6262 0.0854 2.7383 2.7257 0.1517 2.9325 2.6348 0.0781 2.7377

0.30 2.6473 0.0690 2.7569 2.7354 0.1509 2.9831 2.6658 0.0560 2.7554

0.35 2.6590 0.0608 2.7722 2.7709 0.1477 3.0573 2.6953 0.0385 2.7679

0.40 2.6722 0.0523 2.7840 2.8169 0.1490 3.1526 2.7206 0.0225 2.7696

0.45 2.6834 0.0456 2.7935 2.8261 0.1486 3.2040 2.7422 0.0161 2.7819

0.50 2.6938 0.0398 2.8010 2.9261 0.1700 3.4236 2.7605 0.0089 2.7851

tall [s]

GS-HSD

10
-8

10,000

13.47415

The Particle Swarm 

Optimization (PSO) 

Metaheuristics

GS-B

10
-8

10,000

202.26778
 

Table 3: Numerical comparison of GS-HSD and GS-B with PSO for the inequity-

averse case, where tol = 10
-8

 and maxit = 10,000. 

 

So, we decrease the tolerance constant to 10-10 for the GS-B and the 

maximum of iteration will be set to 200,000 for GS-HSD to see, whether we get 

better results. This changing results in clearly improvement for GS-HSD shown in 

Table 4.  The results for   smaller than 0.3 , have the relative error smaller than 

0.01 . As above, all 200,000 iterations were used for GS-HSD. The results of the 

GS-B remain still unsatisfactory and algorithm broke at the 68th iteration for 

0.5  .   
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tol 

maxit 

λ μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

0.00 2.5631 0.1899 2.5631 2.5631 0.1899 2.5631 2.5630 0.1898 2.5630

0.05 2.5657 0.1686 2.6090 2.5658 0.1686 2.6090 2.5657 0.1686 2.6090

0.10 2.5739 0.1470 2.6496 2.5733 0.1501 2.6505 2.5739 0.1470 2.6496

0.15 2.5874 0.1253 2.6847 2.6000 0.1380 2.7076 2.5977 0.1249 2.6950

0.20 2.6063 0.1035 2.7142 2.6591 0.1508 2.8195 2.6081 0.1016 2.7141

0.25 2.6286 0.0832 2.7379 2.7196 0.1457 2.9178 2.6348 0.0781 2.7377

0.30 2.6559 0.0627 2.7558 2.7663 0.1519 3.0184 2.6658 0.0560 2.7554

0.35 2.6660 0.0559 2.7703 2.8066 0.1571 3.1152 2.6953 0.0385 2.7679

0.40 2.6762 0.0495 2.7822 2.8000 0.1731 3.1878 2.7206 0.0225 2.7696

0.45 2.6863 0.0435 2.7915 2.8118 0.1455 3.1801 2.7422 0.0161 2.7819

0.50 2.6963 0.0380 2.7988 2.8164 0.1477 3.2324 2.7605 0.0089 2.7851

tall [s]

GS-HSD

10
-8

200,000

250.18

The Particle Swarm 

Optimization (PSO) 

Metaheuristics

GS-B

10
-10

10,000

242.97
 

Table 4: Numerical comparison of GS-HSD and GS-B with PSO for the inequity-

averse case, where tol = 10
-8

 and maxit = 200,000. 

 

Due to unsatisfactory results of the GS-B, we consider relaxing the stopping 

criterion and compute 10,000 iterations for GS-B, 100,000 for GS-HSD and for 

each value  . Table 5 summarizes those results. We can see that both methods 

return much better results with increased amount of iterations. When we compare 

the values of the objective function for 0.5  , we can observe that the relative 

difference between the result obtained by GS-B and PSO is only 0.5% . These 

findings indicate that it is desirable to modify the stopping criterion.  
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maxit 

λ μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

0.00 2.5631 0.1899 2.5631 2.5631 0.1910 2.5631 2.5630 0.1898 2.5630

0.05 2.5657 0.1687 2.6090 2.5654 0.1705 2.6091 2.5657 0.1686 2.6090

0.10 2.5738 0.1471 2.6495 2.5726 0.1498 2.6497 2.5739 0.1470 2.6496

0.15 2.5873 0.1254 2.6846 2.5863 0.1269 2.6848 2.5977 0.1249 2.6950

0.20 2.6062 0.1035 2.7141 2.6013 0.1087 2.7144 2.6081 0.1016 2.7141

0.25 2.6284 0.0834 2.7380 2.6262 0.0856 2.7386 2.6348 0.0781 2.7377

0.30 2.6557 0.0629 2.7559 2.6505 0.0669 2.7569 2.6658 0.0560 2.7554

0.35 2.6658 0.0561 2.7705 2.6617 0.0596 2.7727 2.6953 0.0385 2.7679

0.40 2.6759 0.0497 2.7823 2.6763 0.0507 2.7849 2.7206 0.0225 2.7696

0.45 2.6861 0.0437 2.7917 2.6968 0.0391 2.7917 2.7422 0.0161 2.7819

0.50 2.6962 0.0381 2.7989 2.7116 0.0324 2.7995 2.7605 0.0089 2.7851

tall [s]

GS-HSD

100,000

125.6830

The Particle Swarm 

Optimization (PSO) 

Metaheuristics

GS-B

10,000

747.4324
 

Table 5: Numerical comparison of GS-HSD and GS-B with PSO for the inequity-

averse case without stopping criterion. 

 

6.2.1.1. Detecting Local Minimum 

 

In order to find out, why the GS-B returns unsatisfying results, it is interesting to 

examine the drop of the objective function during the iterative process. From this 

behavior, we can identify whether the algorithm is stuck at the local optimum. 

Figure 11 displays two possible courses of the iterative process, the left picture 

with the tolerance equal to 10-3 and with the maximum of iteration set to 1,000, 

and the right one with the strengthen tolerance and the maximum number of 

iterations, tol = 10-8 and maxit = 10,000, respectively. It is obvious from the figure 

that the significant change comes somewhere in the range of 0-100 iterations. 

Then the drop of the objective function is almost zero. Note, we only present the 

results for the value 0.5  . 
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Figure 11: (a) Left picture: The Objective Function in dependence of the number 

of iterations with tol = 10
-3

 and maxit = 1,000. (b) Right picture: The Objective 

Function in dependence of the number of iterations with tol = 10
-8

 and           

maxit = 10,000, where λ = 0.5. 

 

We consider the drop of the objective function between two consecutive 

iterations. The drop of the objective function is plotted on Figure 12 with tol = 10-4,  

maxit = 10,000 and 0.5  . If the tolerance is set to 0.0001, then the GS-B will be 

stopped near to 30th iteration, but as it shows there can still some progress be 

made. This indicates that our actual stopping criterion is not appropriate because 

of the fact that there are some step sizes which could have significant effect on the 

solution, if the algorithm continued despite the stopping criterion. Our present 

stopping criterion is as follows: 

1 2k kx x tol    
 

 

Figure 12: (a) Left picture: Changes of two consecutive iterations with tol = 10
-4

 

and maxit = 10,000, where λ = 0.5. (b) Right picture: The same changes of two 

consecutive iterations in detail. 
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6.2.2. Sensitivity Analysis of η 

 

We show how the constant   in GS-HSD method affects the results by using the 

symmetric initial solution. Furthermore, we relax the stopping criterion. 

It is interesting to check the influence of the constant   in GS-HSD. We 

limit our inquiry to the case 0.5  . Based on Figure 13, we can deduce the 

following: the value of the objective function depends on   if the number of 

iterations is small. On the other hand, it depends less on   if the number of 

iterations is higher. In case, the maximum of iterations is equal to 4,000, the value 

of the objective function is almost constant, starting from 0.5  . This observation 

confirms our decision to set 2  .  

 

 

Figure 13: The influence of the constant   in Harmonic Step Decrease with λ = 

0.5 without stopping criterion. 

 

6.2.3. Randomized Multistart 

 

In this section, we consider multistart for both GS-B and GS-HSD. The initial 

solution is uniformly distributed on unit simplex. We set the number of replications 

equal to 100. Additionally, according to the observation in the subsection 6.2.1.1, 

we try to get better results using another stopping criterion. The following code 

shows how another stopping criterion works: 
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    if (norm(alpha(k)*S(:,k)) < tol) 

        k_max = k_max+1; %in case it is under the tolerance 

    else 

        k_max = 0; %in case it is above the tolerance 

    end 

    if k_max == 10 %if k_max is equal to 10 than stop the function opt_search 

        break 

    end 
 

If 1 2k kx x tol    is satisfied k_max times consecutively, then break the algorithm.  

Firstly, we obtain the results for both methods, where  
 

 the tolerance is set to 10-3, 

 the maximum number of iteration is equal to 10,000,  

 the k_max = 10.  

 

Table 6 shows that the results of the GS-HSD Method are very similar to 

the PSO, even a little better for all values   except 0.5  . On the other hand, the 

GS-B returns a bit worse results than GS-HSD, but shows much better results 

than using the symmetric initial solution. Note that for 0.5  , GS-HSD stopped at 

1,996th iteration and GS-B at 184th. Furthermore, we can see that the GS-B takes 

again more time than GS-HSD.   

 

tol 

maxit 

λ μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

0.00 2.5631 0.1883 2.5631 2.5638 0.1870 2.5638 2.5630 0.1898 2.5630

0.05 2.5648 0.1674 2.6078 2.5653 0.1666 2.6081 2.5657 0.1686 2.6090

0.10 2.5706 0.1460 2.6457 2.5708 0.1445 2.6451 2.5739 0.1470 2.6496

0.15 2.5813 0.1253 2.6783 2.5792 0.1241 2.6752 2.5977 0.1249 2.6950

0.20 2.5961 0.1031 2.7031 2.5924 0.1000 2.6961 2.6081 0.1016 2.7141

0.25 2.6130 0.0844 2.7233 2.6043 0.0811 2.7100 2.6348 0.0781 2.7377

0.30 2.6296 0.0709 2.7414 2.6171 0.0703 2.7274 2.6658 0.0560 2.7554

0.35 2.6433 0.0633 2.7603 2.6324 0.0601 2.7432 2.6953 0.0385 2.7679

0.40 2.6524 0.0543 2.7675 2.6503 0.0649 2.7880 2.7206 0.0225 2.7696

0.45 2.6629 0.0476 2.7770 2.6623 0.0575 2.8001 2.7422 0.0161 2.7819

0.50 2.6745 0.0417 2.7860 2.6684 0.0656 2.8435 2.7605 0.0089 2.7851

t [s]

GS-HSD

10
-3

10,000

264.1742

The Particle Swarm 

Optimization (PSO) 

Metaheuristics

GS-B

10
-3

10,000

2,527.5
 

Table 6: Numerical comparison of GS-HSD and the GS-B with PSO for the 

inequity-averse case for randomized multistart, where k_max = 10. 
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Secondly, we increase the statement k_max following: 

 the k_max = 100, 

 the tol = 10-3,  

 the maxit = 10,000. 

 

We can summarize some interesting findings from Table 7. If we look at the 

values of the objective function, it is clear that the GS-B returns better results than 

PSO for all  . On the other hand, GS-HSD shows the lowest values of the  f x  

for 0.05 0.35   . Figure 14 clearly demonstrates this observation. In addition, this 

phenomenon implies the existence of multiple local optima.  

Note that the values of  G   in different local minima differ substantially. For 

example, if we compare values for 0.5  , we can see that the relative error of the 

 
0.5

f x  for GS-B is smaller than 1%  against PSO and the relative error of the 0.5  

is 2.5%  smaller in favor of GS-B. On the other hand, the value of the  
0.5

G   is up 

to 62%  smaller for PSO by comparing with GS-B. Figure 15 illustrates the 

differences in the  G   for all   values by comparing all three methods. 

An especially interesting finding is that the  
0.5

f x  of GS-B obtains a lower 

value for cases 0.25 0.45    as it was obtained at the particular  , therefore the 

solution 0.5   is better approximation of the optimal solution than ones obtained 

for   in 0.25 0.45 . For example: 

       0.5 0.5 0.25 0.252.7242 1 2*0.25* 1 2*0.25* 2.7298x G x G               
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tol 

maxit 

λ μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

μ*10
-7

G (δ) f(x)*10
-7

0.00 2.5631 0.1898 2.5631 2.5631 0.1899 2.5631 2.5630 0.1898 2.5630

0.05 2.5648 0.1665 2.6075 2.5649 0.1686 2.6082 2.5657 0.1686 2.6090

0.10 2.5709 0.1473 2.6467 2.5712 0.1485 2.6476 2.5739 0.1470 2.6496

0.15 2.5799 0.1270 2.6781 2.5834 0.1251 2.6803 2.5977 0.1249 2.6950

0.20 2.5957 0.1046 2.7043 2.6007 0.1040 2.7089 2.6081 0.1016 2.7141

0.25 2.6126 0.0872 2.7265 2.6204 0.0835 2.7298 2.6348 0.0781 2.7377

0.30 2.6264 0.0719 2.7397 2.6409 0.0656 2.7449 2.6658 0.0560 2.7554

0.35 2.6390 0.0598 2.7495 2.6498 0.0545 2.7509 2.6953 0.0385 2.7679

0.40 2.6532 0.0545 2.7690 2.6673 0.0438 2.7609 2.7206 0.0225 2.7696

0.45 2.6641 0.0490 2.7815 2.6849 0.0307 2.7591 2.7422 0.0161 2.7819

0.50 2.6752 0.0418 2.7871 2.6919 0.0240 2.7565 2.7605 0.0089 2.7851

t [s]

GS-HSD

10
-3

10,000

281.5193

The Particle Swarm 

Optimization (PSO) 

Metaheuristics

GS-B

10
-3

10,000

44,660  

Table 7: Numerical comparison of GS-HSD and GS-B with PSO for the inequity-

averse case for randomized multistart, where k_max = 100. Note that for λ = 0.5, 

GS-HSD stopped at 2,159
th

 iteration and GS-B at 10,000
th

. 

 

 

 

Figure 14: Tradeoff between μ and G(δ) for all three methods. 
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Figure 15: Tradeoff between λ and G(δ) for all three methods. 
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7. Conclusion 
 

Gutjahr and Fischer [3] have shown that a model of the humanitarian logistics with 

penalization for inequity allows a fairer distribution of relief aid. We have shown 

that the use of the Gradient Search method with multistart improves numerical 

accuracy. It was challenging to implement the Gradient Search approach because 

of the fact that the objective function is non-differentiable.  

The solution of this problem is presented in the third chapter, where we 

derived a formula for the evaluation of the derivative of the non-differentiable 

objective function. In the fourth chapter, we adopted the Frank-Wolfe Algorithm for 

the problem  P . The structure of the linear program to be solved in each iteration 

allows a solution without using the LP solving procedure. We considered two 

different step sizes, the optimal step size calculated by the Bisection Method and 

fast heuristic approach HSD. In the sixth chapter, we solved the logistics model by 

gradient based method with step choices, GS-B and GS-HSD. We confirmed the 

existence of multiple local optima in the subsection 6.2.1.1. Moreover, we showed 

that the Gini Index of the deprivation costs,  G  , can be substantially different in 

distinct local optima. Further, we can identify significant differences between both 

methods. By the using the GS-HSD, we got prompt satisfactory results. On the 

other hand, the slow convergence due to the non-differentiability of the objective 

function is probably the main reason for the low efficiency of the   GS-B. The 

important finding is that the presented algorithms could achieve the improvement 

of the numerical accuracy by selecting randomized multistart comparing to the 

PSO.  

We believe that it is possible to decrease the processing time of the GS-B 

or implement approximate step size like the Barzilai-Borwein. However, further 

algorithmic improvements of this kind are outside the scope of this thesis. 
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Appendix  
 

A The Solution of the problem (15) using Karush-Kuhn-Tucker 
Conditions 
 

The Lagrange Function :
K

L x   is defined as:  

 , p

k k k k

k K k K

L x u x u d x B 

 

 
   

 
   . 

Karush-Kuhn-Tucker Conditions: 

 1 0p

i i i

i

L
p x ud i K

x
  

     


, (KKT1)        

 0k k

k K

d x B


  , (KKT2)        

 
0k k

k K

u d x B


 
  

 
 , (KKT3)        

 0u  . (KKT4)        

We can consider two possible cases: 

 0u        1 0 0p

i i ip x d        contradiction 

 0u       0k k

k K

d x B


      

We use the (KKT1) to solve for ix  to get: 
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.  

Now, we substitute the value of ix  into (KKT3): 
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The value of the Lagrange multiplier u  is: 

 1

1

1

p

p
k

k

k K k

B
u

d
d

p

 







 
 
 

  
  
   

  


.  

Finally, we express ix : 

 1
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where  
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B MATLAB Code 
 

The Objective Function 
 

function [ZFval] = ZF(g1,p,w,d,B,lambda,y)  %declaration of the obj. function 

N = sum(w);       %the sum of all receivers 

Cp = g1/(2*N*N*(p+1)*B^p); 

m = length(y);      %the number of cities 

total = 0;  
 

for i = 1:m      

    for j = 1:m 

        total = total + w(i)*w(j)*abs((d(i)/y(i))^p - ((d(j)/y(j))^p));  

    end 

end 
 

miG = Cp*total;   %the average deprivation cost multiplied by Gini Index 

mi = (g1/(B^p*N*(p+1)))*sum(w.*d.^p./y.^p);  %average deprivation cost 

ZFval = mi+2*lambda*miG;    %the value of the objective function 

end 
 
 

The Derivation of the Objective Function 
 

function [DZFval] = DZF(g1,p,w,d,B,lambda,y)  %declaration of the derivation 

N = sum(w);       %the sum of all receivers 

Cp = g1/(2*N*N*(p+1)*B^p); 

m = length(y);      %the number of cities 

total = zeros(m,1);  

d_mi = w.*(d.^p).*y.^(-p-1)*((-p*g1)/(N*(p+1)*B^p)); %the derivation of the deprivation 

costs 

D = (d./y).^p;      %the definition of the general help vector 
 

for l = 1:m   

    for k = 1:m   

        total(l)=total(l)+sigma(l,k,D(k),D(l))*w(l)*w(k)*d(l)^p*y(l)^(-p-1);  

    end 

end 
 

d_miG = 2*Cp*p*total;  %the derivation of the avg. depriv. cost and Gini Index 

DZFval = d_mi + 2*lambda*d_miG;  %the derivation of the objective function 

end 

 
 

The Sigma Bar 
 

function [sigma] = sigma(l,k,Dk,Dl)  %the declaration of the sigma bar 
 

Dk = dk/yk; 

Dl = dl/yl; 

sigma = 0;      %the case, where l==k
 

%A: the case, where l==k´; k==k 

if (l > k)  

    if ((dk/yk)^p > (dl/yl)^p)    %the case for K
+ 

         sigma = 1; 

    else 
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         sigma = -1; 

    end 

end 

%B: the case, where l==k; k==k´ 

if (l < k)  

    if ((dl/yl)^p > (dk/yk)^p)    %the case for K
-
 

         sigma = -1; 

    else 

         sigma = 1; 

    end 

end 

end 
 
 

The Gini Index 
 

function [G] = GINI(w,z)    %the declaration of the Gini Index
 

weight = w/sum(w);     %the share of receivers in each demand point  

m = length(z); 

mi = sum(z.*weight);  

total = 0;      %the new variable 
 

for i = 1:m      

    for j = 1:m 

        total = total + weight(i)*weight(j)*abs(z(i) - z(j));  

    end 

end 
 

G = 1/(2*mi)*total;     %the definition of the Gini Index 

end 

 
 
The Bisection Method  
 

function [result,N] = bisection(A,B,f,tol)  %the declaration of the bisection   
 

N = ceil(log(tol/(B-A))/log(0.5));   %number of iteration 
 

for i = 1:N 

    if f(A)*f(B) < 0     %if the root is within the interval [A,B]              

      x_help = (A+B)/2;   %reduce the interval to half and set a new x_help                       

      if f(x_help)*f(A) < 0   %if the root is within the interval [x_help,A] 

          B = x_help;    %then the new boundary will be set to B            

      else 

          A = x_help;    %otherwise the new boundary will be set to A            

      end 

    else 

       disp ('Wrong Initial Interval!')  %for case f(A)*f(B) > 0 

      return 

    end 

end 
 

result = (A+B)/2;    %the final result of the bisection method  

end 
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The Opt_Search (Frank-Wolfe Algorithm) 
 

function[Y,S,k,alpha] = opt_search(g1,p,w,d,B,lambda,y0,tol,alpha_mode,maxit) %the 

declaration of the opt_search function 

n = length(y0);   %the number of cities 

Y = zeros(n,maxit+1);  %new matrix for results in each iteration 

S = zeros(n,maxit+1);  %new matrix for the direction  

alpha = zeros(1,maxit+1);  %new vector for the step size 

Y(:,1) = y0;     %the initial solutions will be stored in the first row  

stop = 0;  %new variable for number of times we have been under the tolerance 
 

for k = 1:maxit   %the for-loop for the whole opt_search procedure 
 

    % STEP 1: find direction S 

    [minimum,index] = min(DZF(g1,p,w,d,B,lambda,Y(:,k))); %find the minimum value of 

the DZF and its position in DZF  

    xi = zeros(n,1);   %new vector for the decision variable in DZF 

    xi(index) = 1;   %assign 1 on index at the vector xi 

    S(:,k) = xi-Y(:,k);   %the formula for calculating the direction 
     

    % STEP 2: find the size alpha 

    switch alpha_mode          

        case  'HSD'   %calculate the result using HSD where η = 2 

            alpha(k) = 2/(2+k);  

        case  'bisection'   %calculate the bisection method 

          f=@(alpha)S(:,k)'*DZF(g1,p,w,d,B,lambda,Y(:,k)+alpha*S(:,k)); 

         [alpha(k),N] = bisection(0,0.999999999999,f,tol); %calculate the result using the 

bisection method 
 

    % STEP 3: update the solution 

    Y(:,k+1) = Y(:,k)+alpha(k)*S(:,k);  %calculate new iteration point 
 

    % STEP 4: check the optimality 

    %THE FIRST STOPPING CRITERION 

    %if (norm(alpha(k)*S(:,k))<tol) 

        %break                           

    %end    

    %THE SECOND STOPPING CRITERION 

    if (norm(alpha(k)*S(:,k))<tol) 

        k_max = k_max+1;  %in the case, it is under the tolerance 

    else 

        k_max = 0;   %in the case, it is above the tolerance 

    end 

    if k_max == 10   %if k_max is equal to 0 than stop the function opt_search 

        break 

    end 

end 

end 

 
 



 

48 

The Results for the Inequity-Averse Case: Randomized Multistart 
 

g1 = 2;          

d = 1000*[0.0794; 0.6055; 0.8577; 1.0138; 0.1508; 0.4925; 0.1403; 0.2419; 0.5131; 

0.3673; 0.4976; 0.4528; 0.2839; 0.7716];     

w = [25; 106; 83; 79; 63; 131; 39; 59; 99; 30; 66; 27; 59; 97];      

p = 2;          

B = 1;          

tic     %measures the processing time of the algorithm 
 

for j = 1: lambdaN   %the for-loop for the all λ values 

lambda = lambda_vec(j);   

lambda_vec = 0:0.05:0.5;  %stores 11 values of λ 

lambdaN = length (lambda_vec);  %the number of λ 

avg_dep_vec = zeros(1,lambdaN);  %stores 11 values of the average deprivation cost 

G_DELTA_vec = zeros(1,lambdaN); %stores 11 values of the Gini of deprivation cost 

result_vec = zeros(1,lambdaN);  %stores 11 values of the object. function ZF 

alpha_mode = 'bisection'; 

%alpha_mode = 'HSD'; 

tol = 10^(-3); 

num_replication = 100;   %the number of the replications 

s = rng('default');%a function that returns a seed for the generating pseudorandom numbers       

y = rand(14,num_replication);  %Randomized Multistart 

y = y./sum(y);     

result = zeros(num_replication,1);  

G_DELTA = zeros(num_replication,1);  

avg_dep = zeros(num_replication,1);  

k_number = zeros(num_replication,1);  

for i = 1:num_replication   %the for-loop for the number of the replication 

y0 = y(:,i);   

maxit = 10000; 

[Y, S, k, alpha] = opt_search(g1,p,w,d,B,lambda,y0,tol, alpha_mode,maxit); 

x = Y(:,k+1)./d*B;  

q = 1/(p+1); 

C = B/(sum(d.^(1-q).*(p*w).^q)); 

x_C = x/C;    

delta = 2./((p + 1)*x.^p);    

delta_C = delta*C^p;       

G_DELTA(i) = GINI(w,delta);  

avg_dep(i) = w'*delta/sum(w); 

k_number(i) = k; 

result(i) = ZF(g1,p,w,d,B,lambda,Y(:,k+1));   

end 

avg_dep_vec(j) = min(avg_dep); %find the minimum in the vector of the average 

deprivation costs for each value of λ 

G_DELTA_vec(j) = min(G_DELTA); %find the minimum in the vector of the Gini of 

deprivation costs for each value of λ 

result_vec(j) = min(result); %find the minimum in the vector of the values of the objective 

function for each value of λ 

end 

time = toc  %measures the processing time of the algorithm 
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Abstrakt 

Es wird ein Modell betrachtet, das die humanitären Operationen in der 

Responsephase nach einer Katastrophe in Hinblick auf Verteilungsgerechtigkeit 

beschreibt. Einer der neueren methodischen Fortschritte in der Humanitären 

Logistik ist das von Holguín-Veras et al., eingeführtes Konzept der Deprivation 

Costs. In einem kürzlich erschienenen Artikel wurde dieses Konzept von Gutjahr 

und Fischer in Hinblick auf den Fairnessaspekt erweitert. In ihrer Analyse wurden 

die mittleren Deprivation Costs durch Ginis mittlere absolute Abweichung der 

Deprivation Costs ergänzt um den Fairnessaspekt in Betracht zu ziehen. Dieses 

Optimierungsproblem wurde mittels einer Metaheuristik, Particle Swarm 

Optimization, gelöst. Das Ziel dieser Arbeit besteht darin, eine Lösung des 

Optimierungsproblems von Gutjahr und Fischer mit Hilfe der 

Gradientensuchmethode zu versuchen. Es werden zwei Verfahren benutzt, das 

Bisektionsverfahren  und der Harmonic Step Decrease.  Die nummerische Lösung 

wird mit der Lösung von Gutjahr und Fischer anhand eines Anwendungsbeispiels 

mit Daten aus dem Erdbeben in Nepal 2015 verglichen.  

 

Abstract 

We consider the model describing humanitarian logistics in the response phase 

after a disaster with respect to equity. One of the fundamental advances in 

humanitarian logistics is the deprivation cost concept introduced by Holguín-Veras 

et al.. In recent article, Gutjahr and Fischer reconsidered this concept additionally, 

pointed out the equity issue. In their analysis, they modified the deprivation cost 

objective by a term proportional to Gini index for quantifying inequity and 

performed the Particle Swarm Optimization metaheuristic. The purpose of this 

thesis is to investigate the use of the Gradient based search on the same logistics 

model as Gutjahr and Fischer. We implement the Gradient Search approach with 

two line search routines, the Bisection Method and the Harmonic Step Decrease. 

The numeric solution is compared with the Gutjahr and Fischer metaheuristic on 

illustration case with data from the 2015 Nepal earthquake. It is shown that the use 

of the Gradient Search method with multistart improves numerical accuracy. 
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