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Figure 0.1: Photograph of the experimental setup done in the style of small
world photography. Using quantum mechanics, Florian Blaser and me are
able to execute several tasks at once. Copyright by Jonas Schmöle.



A B S T R A C T

The motion of an optically levitated dielectric nanosphere is well iso-
lated from the environment in ultra-high vacuum. For that reason,
it is a promising system to demonstrate quantum behavior at room
temperature. One route to achieve this is to couple the nanosphere
motion to an optical cavity field, i.e. levitated cavity optomechanics.
This thesis considers two very different cavity cooling schemes on the
path to demonstrate motional ground state cooling of a levitated na-
nosphere, which is a first step towards full quantum control at room
temperature.

In the first part of this thesis we present our experimental setup for
levitated cavity optomechanics. The nanosphere is trapped in an opti-
cal tweezer and positioned inside the optical cavity, with the tweezer
frequency far away from all cavity resonances. The cavity is driven
externally with a red-detuned laser, which controls (e.g. cools) the na-
nosphere motion along the cavity axis. In order to fully stabilize the
nanosphere motion in vacuum, the non-axial directions are cooled
with parametric feedback cooling. We characterize the optomechani-
cal coupling rates as well as mechanical and optical loss rates in order
to determine the optomechanical cooperativity. We demonstrate for
the first time stable cavity cooling in high vacuum (p ∼ 10−6 mbar).

The second part introduces a significantly improved cooling scheme
based on cavity-enhanced coherent scattering off the optical tweezer,
i.e. the initially empty optical cavity is driven only by the light scat-
tered off the nanosphere. Subsequently, for a tweezer red-detuned
with respect to a cavity resonance the motion along all directions is
strongly cooled. We demonstrate genuine three-dimensional cavity
cooling, which also allows for stable levitation in high vacuum with-
out active feedback control. In contrast to the dispersive regime in
conventional cavity optomechanics, coupling of the axial motion is
largest at the cavity node (intensity minimum of the cavity stand-
ing wave), which results in a strong suppression of the phase noise
heating (> 40 dB for our parameters). Our observed performance im-
plies that cavity cooling by coherent scattering should enable quan-
tum ground state cooling of levitated nanoparticles for background
pressures below 107 mbar and without additional laser noise filtering.
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Z U S A M M E N FA S S U N G

Die Bewegung eines optisch levitierten, dielektrischen Nanoteilchens
im Ultrahochvakuum ist gut von der Umgebung isoliert. Aus diesem
Grund ist es ein vielversprechendes System um Quantenverhalten
bei Raumtemperatur nachzuweisen. Ein Weg um dies zu erreichenist
die Bewegung des Nanoteilchens an ein optisches Resonator zu kop-
peln (levitated cavity optomechanics). In dieser Arbeit werden zwei
sehr unterschiedliche Methoden des Resonatorkühlens betrachtet die
einerseits notwendig sind um den Bewegungsgrundzustand eines
levitierten Nanoteilchens zu demonstrieren und andererseits den er-
sten Schritten zur totalen Quantenkontrolle bei Raumtemperatur dar-
stellen.

Im ersten Teil dieser Arbeit wird unser experimenteller Aufbau
für Optomechanik mit levitierten Nanoteilchen vorgestellt. Das Nan-
oteilchen ist in einer optischen Pinzette gefangen und in dem op-
tischen Resonator positioniert, wobei die Oszillationsfrequenzen in
der Pinzette weit von allen Resonanzen des optischen Resonators ent-
fernt sind. Der Resonator wird extern mit einem rotverstimmtem
Laser gepumpt, der die Bewegung des Nanoteilchens entlang der Res-
onatorachse steuert (z.B. kühlen). Um die Nanoteilchenbewegung im
Vakuum vollständig zu stabilisieren werden die nicht axialen Richtun-
gen mit parametrischer Rückkühlung gekühlt. Wir charakterisieren
die optomechanischen Kopplungsraten sowie die mechanischen und
optischen Verlustraten um die optomechanische Kooperativität zu
bestimmen. Wir demonstrieren erstmals stabiles Resonatorkühlen im
Hochvakuum (p ∼ 10−6 mbar).

Der zweite Teil beschäftigt sich mit einem deutlich verbessertem
Kühlschema, das auf einer resonatorverstärkten, kohärenten Streu-
ung der optischen Pinzette basiert, d.h. der zunächst leere optis-
che Resonator wird nur durch das von dem Nanoteilchen gestreuten
Licht gepumpt. Folglich wird mit einer Pinzette, die bezüglich der
Resonanz des optischen Resonators rotverstimmt ist, die Bewegung
in alle Richtungen stark gekühlt. Wir zeigen echtes, dreidimension-
ales Resonatorkühlen, das stabiles levitieren im Hochvakuum ohne
aktive Rückkühlung ermöglicht. Im Gegensatz zum dispersiven Re-
gime der konventionellen Cavityoptomechanik ist die Kopplung der
axialen Bewegung am Wellenknoten (Intensitätsminimum der Ste-
hwelle) am größten, was zu einer starken Unterdrückung des Heizens
durch Phasenrauschen führt (> 40 dB) für unsere Parameter). Un-
sere beobachtete Leistungsfähigkeit impliziert, dass Resonatorkühlen
durch kohärente Streuung die Kühlung von levitierten Nanoteilchen
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in den Grundzustand bei Hintergrunddrücken von unter 10−7 mbar
und ohne zusätzliche Laserrauschfilterung ermöglichen sollte.
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1
I N T R O D U C T I O N

The field of quantum cavity optomechanics, which focuses on the
mutual interaction between an optical cavity field and the motion of
a mechanical object via radiation pressure, has grown tremendously
in the past ten years [Aspelmeyer et al., 2013]. The cooling of the
motion of a mechanical object to its ground state [Teufel et al., 2011a,
Chan et al., 2011], strong coupling [Aoki et al., 2006, Teufel et al.,
2011b, Gröblacher et al., 2009], mechanical squeezing [Safavi-Naeini
et al., 2013b, Purdy et al., 2013] and (opto-)mechanical entanglement
[Palomaki et al., 2013, Riedinger et al., 2018] are important milestones
in this field. Objects under investigation cover many orders of mag-
nitude in mass, from atom clouds [Murch et al., 2008, Schleier-Smith
et al., 2011], over microtoroids [Schliesser et al., 2006] and membranes
[Thompson et al., 2008], to microscopic mirrors [Gigan et al., 2006, Ar-
cizet et al., 2006].

Figure 1.1: Schemes of the experiment with levitated nanoparticles from
[Chang et al., 2010] (left panel) and [Romero-Isart et al., 2010] (right panel).
While in the first case the particle was trapped by a cavity mode, the latter
setup proposes trapping with a focused external laser. However, both pro-
posals include an optical cavity to reach significant cooling and to realize
quantum protocols.

More recently, a system consisting of an optically levitated sub-
wavelength dielectric particle in an optical cavity was proposed (Fig-
ure 1.1) [Romero-Isart et al., 2010, Chang et al., 2010, Barker and
Shneider, 2010]. Due to no internal material losses the nanosphere
motion should reach high quality factors, which will mostly be lim-
ited by gas damping (quality factor Q ≈ 2× 108 at a pressure of p =

10−6 mbar). Partial decoupling from thermal environment should
lead to an experimental regime of room-temperature quantum op-
tomechanics. Realizing a quantum superposition of a nanosphere
[Romero-Isart et al., 2011] or teleportation of quantum state of light

1



2 introduction

to a nanosphere [Hofer et al., 2013] is an achievable goal with this sys-
tem, given large enough cooperativity C = 4g2/κΓ, a ratio of light-
particle coupling g to all decoherence mechanisms (κ: cavity decay
loss, Γ: motional heating). In contrast to majority of optomechanical
systems, by creating arbitrary potential shapes (for example, with a
spatial light modulator: SLM) we could obtain access to nonlinear po-
tentials and achieve unprecedented control over the mechanical mo-
tion.

Both levitated nanoparticles and atoms interact with light through
dipole interaction. Atoms driven with far detuned laser beams (such
that no internal transitions are excited) have been shown to couple
to an externally driven cavity mode [Horak et al., 1997, Vuletić and
Chu, 2000, Schleier-Smith et al., 2011, Purdy et al., 2010], as well as
by coherent scattering into an initially empty cavity mode [Vuletić
et al., 2001, Murr et al., 2006, Leibrandt et al., 2009, Hosseini et al.,
2017]. Conventional optomechanical interaction with nanoparticles is
readily explained by a position-dependent change of the cavity length
due to the presence of a nanoparticle with higher refractive index
in the cavity mode. On the other hand, coherent scattering off the
nanosphere into the cavity mode was not investigated in the past.

Early levitation experiments were conducted with microparticles.
Optical levitation of glass microspheres in air (diameter of 15− 25 µm)
was first realized by trapping in a single laser beam against gravity
[Ashkin and Dziedzic, 1971]. Follow-up experiments included a feed-
back stabilization of the levitated microsphere [Ashkin and Dziedzic,
1977] and achieved trapping in high vacuum down to 10−6 mbar
[Ashkin and Dziedzic, 1976]. Since the initial pioneering experiments
by Ashkin, optical levitation was used primarily for trapping molec-
ular and biological samples in liquids and has become an important
tool in atomic physics [Ashkin, 2006].

Figure 1.2: Levitated sub-micron particle (diameter of 254 nm) trapped in
an optical cavity (length L = 1.1 cm) [Kiesel et al., 2013]. The trapping
was realized with a resonant cavity mode, while a different, detuned cavity
mode was responsible for cavity cooling. c©Jonas Schmöle
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One of the main requirements for quantum control of a levitated
particle is to achieve stable levitation in high vacuum. Since the re-
vival of interest in optical levitation, this has been one of the main
challenges in the past years all around the world, where the actual
loss mechanism is not fully resolved yet. Series of results has gradu-
ally removed the major experimental obstacles: Feedback cooling of
the nanosphere motion was developed to levitate a particle in high
vacuum [Gieseler et al., 2012, Jain et al., 2016, Monteiro et al., 2018].
In order to place a single particle in the optical cavity, successful trans-
port of trapped nanoparticles over long distances was demonstrated
with a movable optical trap (MOBOT) [Mestres et al., 2015] and a hol-
lowcore fiber [Grass et al., 2016]. Cavity cooling of the particle motion
was first demonstrated at p ≈ 8 mbar by us in an experimental setup
preceding this thesis (Figure 1.2) [Kiesel et al., 2013], as well as with
freely propagating particles in high vacuum (10−8 mbar) [Asenbaum
et al., 2013]. In the case of our previous experiment, the axial par-
ticle motion was cooled from room temperature to ∼ 60 K, which
was limited only by the background pressure. However, to this day
no successful experimental combination of a stable trapping potential
with an optical cavity was realized, although overhanding of a parti-
cle to the cavity in vacuum (resulting in an almost instantaneous loss)
has been accomplished [Mestres et al., 2015].

The goal of this doctoral work was to develop a new experimental
setup which would allow us to achieve high optomechanical cooper-
ativity (C > 1) of the nanosphere motion, as this is a necessary pre-
condition to achieve quantum control of a nanosphere. In addition to
building a current state-of-the-art setup, we explain and demonstrate
genuine three-dimensional cavity cooling by coherent scattering.

1.1 overview of this thesis

This thesis investigates two paradigms of cavity cooling of a levitated
nanosphere. In Chapters 2, 3 and 4 we achieve optomechanical cou-
pling to a cavity driven by an external laser field. In Chapters 5 and
6 we focus on cavity cooling by coherently scattered light into an
initially empty cavity. Note that conventional optomechanical inter-
action can be explained also by coherent scattering of the externally
driven cavity mode, which we point out in Section 5.1.3 [Tanji-Suzuki
et al., 2011].

1.1.1 Levitated cavity optomechanics in high vacuum

Chapter 2: Starting from the dipole interaction of the nanosphere
with the tweezer and the externally driven cavity mode we introduce
the optomechanical interaction between the one-dimensional motion
of the nanosphere and the externally driven cavity mode. By assum-
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Figure 1.3: Two different paradigms of cavity cooling of the nanosphere
motion. (a) The nanosphere is initially trapped in an optical tweezer and
placed within an externally driven, far-detuned cavity mode. The nano-
sphere motion along the cavity axis is cooled when the external cavity drive
is red detuned with respect to the cavity resonance. (b) The tweezer opti-
cal frequency is now in the vicinity of an initially empty cavity mode. The
scattered light off the nanosphere is driving the cavity mode. Subsequently,
the nanosphere motion along both optical axes is cooled strongly, with a
possibility to add the cooling of the third dimension.

ing an arbitrary trapping position along the cavity axis, we consider
both linear and quadratic coupling. We then cover possible heating
mechanisms of the nanosphere motion and calculate the optomecha-
nical cooperativity including all relevant decoherence terms.

Chapter 3: We focus on the experimental setup, with an emphasis
on the tweezer and the optomechanical cavity. We describe the de-
tection schemes, particularly the homodyne detection and the detec-
tion of optomechanically induced transparency (OMIT). We present
a novel method to determine the nanosphere radius, which is based
solely on the linear and quadratic interaction with a cavity mode. We
subsequently discuss the observed optical trapping of both droplets
and nanospheres with a liquid shell.

Chapter 4: We use the three-dimensional feedback cooling to sta-
bilize the nanosphere motion in high vacuum (p = 4× 10−7 mbar).
We measure the heating rate with relaxation measurements as a func-
tion of pressure. The optomechanical coupling is obtained from the
OMIT measurements both at high and low pressures. From these we
calculate the optomechanical cooperativity C ≈ 0.01, a five orders
of magnitude improvement over previous experiments. We estimate
the limit imposed on the cooperativity by joint trapping. We further
explore strategies to achieve the strong cooperativity regime C > 1
and calculate the minimum achievable phonon number for sideband
cooling.

1.1.2 Cavity cooling of a levitated nanosphere by coherent scattering

Chapter 5: We show in theory how the tweezer light scattered off
the nanosphere can be used for three-dimensional cavity cooling of
the nanosphere motion. Based on previously achieved experimen-
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tal parameters we compare coupling rates and cooperativity of these
schemes.

Chapter 6: We demonstrate all of the predicted effects from Chap-
ter 5, including the unprecedented high coupling rates. The achieved
three-dimensional cavity cooling will be enough to stabilize the nano-
sphere motion even in high vacuum, removing the need for an active
feedback cooling scheme. Moreover, we show that the coupling of the
laser phase noise to the cavity is suppressed at the position of opti-
mal axial cooling. Due to much higher coupling and no noise limiting
the performance of cavity cooling, we conclude that the ground state
cooling is within reach. We provide an outlook for future experiments
operating deep in the quantum regime.





Part I

L E V I TAT E D C AV I T Y O P T O M E C H A N I C S I N
H I G H VA C U U M





2
O P T O M E C H A N I C S W I T H L E V I TAT E D
N A N O S P H E R E S

In this chapter we cover the theory of cavity optomechanics with
a levitated nanosphere. In contrast to previous work [Kiesel et al.,
2013, Millen et al., 2015, Fonseca et al., 2016] the nanosphere is held
in a tweezer generated with an external laser, which allows indepen-
dent positioning with respect to the optical cavity. The cavity mode is
used only to control the nanosphere motion. We focus on the dipole
interaction of the nanosphere with a cavity mode and investigate lin-
ear and quadratic coupling terms as a function of position. We gen-
erate and solve the Langevin equations of nanosphere motion and
light quadratures from the system Hamiltonian. All relevant heating
mechanisms are included in the system dynamics. We assume a red-
detuned cavity mode and calculate the resulting minimum phonon
occupation and the optomechanical cooperativity. Finally, we discuss
the detection of the nanosphere motion from the light quadratures,
which is an essential part in this experiment.

9
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2.1 dissecting the hamiltonian

Our optomechanical system comprises of three distinct driven optical
modes: tweezer, cavity probe and cavity control modes. The tweezer
mode creates a three-dimensional harmonic potential in which the
nanosphere is optically trapped. The weak probe mode is frequency-
locked to a cavity resonance and is used for detection of the nano-
sphere motion. The control mode is typically red-detuned and ad-
ditionally shifted in frequency space by a cavity free spectral range
(∆νFSR). The system Hamiltonian is split into the free (marked with
f ) and the interaction terms (marked with i), which exist only in the Ĥ f : Free

Hamiltonian

Ĥi: Interaction
Hamiltonian

presence of a nanosphere. We focus here on providing a detailed in-
sight into the relevant interactions and the effects which arise from it.
An important part of this study also comprises the loss channels of
both the nanosphere motion and the cavity mode.

2.1.1 Free Hamiltonian of the cavity mode

Here we follow a well known procedure to quantize a cavity mode
[Loudon, 1973]. The total electric field operator of a single cavity
mode ~Ecav(t) = ~E+(t) + ~E−(t) can be decomposed into:

~E+(t) =

√
h̄ωcav

2ε0Vcav
â f (~r)~epe−iωcavt

~E−(t) =

√
h̄ωcav

2ε0Vcav
â† f ∗(~r)~epeiωcavt, (2.1)

where ωcav is the frequency of an arbitrary cavity resonance, f (~r) is
the cavity mode function and Vcav is the cavity mode volume (See
Appendix A for more details on Vcav). Operators â and â† are the
annihilation and creation ladder operators, respectively. The mag-
netic field component is easy to attain from ~Bcav(t) = 1

ωcav
~k× ~Ecav(t).

The Hamiltonian of the total electromagnetic energy of a single cavity
mode is given by:

Ĥ f
cav =

1
2

∫
Vcav

(
ε0~E2

cav(t) + µ−1
0
~B2

cav(t)
)

d~r = h̄ωcav

(
â† â +

1
2

)
. (2.2)

For the sake of brevity, we omit the factor 1
2 h̄ωcav from future consid-

erations.

Input-output formalism

We drive a cavity mode by an external free mode through a partially
transmissive cavity mirror. In the case of a double-sided cavity, both
mirrors have certain transmission1 losses, such that the cavity mode 1 In general:

transmission,
absorption and
scattering losses
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can be driven from each side. Coupling between the external free
mode and a single cavity mode is given by:

Ĥd
f ree−cav = ih̄

∞∫
−∞

dω
√

κ(ω)
(

b̂(ω)â† − b̂†(ω)â
)

, (2.3)

where b̂ (b̂†) is the external field’s annihilation (creation) operator,
which satisfies the commutation relation [b̂(ω), b̂†(ω′)] = δ(ω − ω′),
and κ(ω) is the broadband coupling rate. Using the Markov ap-
proximation, κ(ω) is considered to be constant over all frequencies
ω and equal to the cavity linewidth κ

2π (full width at half maxi-
mum, FWHM). The external mode includes a strong coherent drive
Ed: b̂ → Ed + b̂, which acts as the cavity drive at the laser frequency
ωd. The coupling Hamiltonian hence becomes:

Ĥd
f ree−cav = ih̄Ed(â†e−iωdt − âeiωdt), (2.4)

where Ed =
√

Pinκin
h̄ωd

is the cavity drive in units of
√

photons/s and
κin is the input mirror coupling rate. The remaining fluctuation is an
input field operator on the input cavity side:

âIN = − 1√
2π

∞∫
−∞

dωe−iω(t−t0)b̂0(ω), (2.5)

with its commutation relation [âIN(t), â†
IN(t

′)] = δ(t− t′). The input-
output relation at the input mirror is:

âOUT(t) =
√

κin â(t)− âIN(t). (2.6)

Assuming a coherent drive applied only through a single cavity
mirror, the Hamiltonian describing the driven cavity mode is:

Ĥcav = h̄ωcav â† â + ih̄Ed(â†e−iωdt − âeiωdt). (2.7)

We are able to eliminate the time dependence by applying a unitary
operator eiωd â† ât, which puts the Hamiltonian in the frame rotating at
the drive laser frequency ωd. The annihilation operator is redefined
as â → âe−iωdt and −h̄ωd â† â is added to the Hamiltonian, which
results in the Hamiltonian in the rotating frame picture:

Ĥcav = h̄∆â† â + ih̄Ed(â† − â), (2.8)

where ∆ = ωcav − ωd is the laser detuning with respect to the cav-
ity mode. The Hamiltonian containing the incoherent part of the
external free modes is not explicitly written, but the input and out-
put operators will be taken into account when we explore the system
dynamics. In the following, we will also use a common helpful tech-
nique, where the cavity operators are displaced by the coherent drive
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â → α0 + â. The cavity amplitude α0 is related to the cavity drive
via α0 = Ed/(κ/2 + i∆) and provides the intracavity photon number
nphot = |α0|2. Neglecting the constant energy terms, the Hamiltonian
of the cavity mode is:

Ĥcav = h̄∆
(

α0(â† + â) + â† â
)
+ ih̄Ed(â† − â) (2.9)

More detail on the formalism presented above can be found in [Walls
and Milburn, 2008, Gardiner and Zoller, 2000].

2.1.2 Dipole interaction

nanosphere

E

r w
0

ε
s

ε
air

Figure 2.1: A silica nanosphere with radius r and dielectric constant εs is
placed within the laser beam with waist w0 � r (in this drawing the nano-
sphere is disproportionate with respect to the waist).

Consider a silica dielectric nanosphere with dielectric constant εs =

n2
s ≈ 2.1 placed in an arbitrary optical mode under normal air envi-

ronment εair ≈ 1 (Figure 2.1). The mode energy is perturbed due to
the presence of a nanosphere, specifically through an induced polar-
ization density. In the Rayleigh regime, where the nanosphere radius
is much smaller than the optical wavelength r � λ (in practice, this is
considered valid for r < λ/10), the polarization density is assumed
to have a linear dependence on the electric field: ~P = ε0χ~E, where
χ = 3 Re

(
εs−1
εs+2

)
is the electric susceptibility of the nanosphere. The

perturbation energy integrated over the volume of the induced dipole
is [Jackson, 1998]:

Ĥi
light−nano = −

1
2

∫
V

~P(~x)~E(~x)d~x = −1
2

ε0χ
∫
V

|~E(~x)|2d~x. (2.10)

In our system we work with optical fields that extend over ranges
much larger than the nanosphere radius (waist w0, λ � r). Thus
we assume that the electric field is uniform over the extent of the
nanosphere:

Ĥi
light−nano = −

1
2

α|~E|2, (2.11)
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where α = 3ε0V Re
(

εs−1
εs+2

)
is the nanosphere polarizability [Strat-

ton, 1941]. To obtain the interaction energy with larger nanospheres
(λ/10 < r . λ) it is required to use Mie calculus [Pflanzer et al., 2012]
(Appendix B). The optical forces on microspheres (r � λ) are fully
explained with ray optics.

ω ≈ ω
cav

ω
tw 

≠ ω
cav

MO cavity

nanosphere

E
cav

E
tw

E
free

Figure 2.2: Three different optical modes in our system. A silica nano-
sphere is trapped in a tweezer mode Etw formed with a microscope objec-
tive (MO). The nanosphere is placed in a cavity mode Ecav with resonant
frequency ωcav. Additionally, the nanosphere couples the tweezer and cav-
ity modes to the continuum of free modes E f ree.

In our experiment, the total electric field ~E = ~Ecav + ~Etw + ~E f ree

consists of three components: the cavity field(s) ~Ecav, the single-beam
trapping field (tweezer) ~Etw and the free optical modes ~E f ree of the
mode continuum (Figure 2.2). Terms of the type Hi

f ield−nano ∝ |~E f ield|2
contain the relevant light-nanosphere interaction, although we expect
that Hi

f ree−nano will have negligible interaction strength. The cross-

terms |~Ei~Ej 6=i| are a source of coupling between the different optical
modes. For example, the terms |~Ecav~E f ree| and |~Etw~E f ree| describe scat-
tering of photons from the cavity and tweezer modes into free space,
respectively. These processes provide an additional cavity decay rate
and the recoil heating of the nanosphere motion. The interaction
|~Ecav~Etw| can be suppressed both by orienting the tweezer polariza-
tion along the cavity axis to minimize the mode overlap and by tun-
ing the two lasers far apart in frequency space. This is fulfilled for
experiment in the first part of this thesis. In the following, we investi-
gate the common contributions to the system Hamiltonian.

Interaction with the tweezer field

We first explore the dipole interaction of the nanosphere in the tweezer
mode. We focus solely on the strong coherent drive of the tweezer
electric field Etw with intensity Itw(~r) = ε0c|~Etw(~r)|2/2. The dipole
interaction Hamiltonian is:

Ĥi
tw−nano = −

α

ε0c
Itw(~r). (2.12)
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The tweezer intensity can be expanded in Taylor series around the
focal point2. To a first approximation, the dipole interaction with a 2 Itw(~r) ≈

I0 − ∑
i=x,y,z

1
2

∂2 Itw
∂i2 i2Gaussian-shaped tweezer mode resembles a three-dimensional har-

monic potential for the nanosphere center-of-mass (COM) motion, i.e.
an optical trap. For more details on the complex electric field in the
tweezer focus, refer to Appendix C.

In the most general case, the trap is characterized by the three me-
chanical frequencies Ωx, Ωy and Ωz. As we are interested mostly in
the system Hamiltonian along the x-axis, from now on we neglect the
role of other directions of motion and simplify the Hamiltonian to the
potential energy of a harmonic oscillator:

Hi
tw−nano =

mΩ2
x x̂2

2
. (2.13)

Beyond the harmonic approximation to Equation (2.12), the higher-
order terms ∝ O(x̂4) effectively limit the depth of the potential well.
The nanosphere is able to experience these nonlinearities [Gieseler
et al., 2013], which is typically prevented by reducing the motional
amplitude, e.g. via feedback cooling schemes [Gieseler et al., 2012,
Mestres et al., 2015, Jain et al., 2016].

Interaction with the cavity mode

The interaction of the nanosphere with the quantized cavity mode
from Section 2.1.1 is described by:

Ĥi
cav−nano = −

1
2

α|~Ecav|2 = −h̄U(~x)â† â, (2.14)

where we make use of the rotating wave approximation (RWA) as
terms â† â† and ââ oscillate too fast. The total cavity Hamiltonian
h̄(ωcav −U(~x))â† â is modified to include the position-dependent cav-
ity frequency shift U(~x) (Figure 2.3):

U(~x) =
3ωcavV
2Vcav

Re
(

εs − 1
εs + 2

)
︸ ︷︷ ︸

U0

| f (~r)|2, (2.15)

with the cavity mode profile:

| f (x, y, z)|2 =
w2

0
w2(x)

cos2(kx)e
− 2y2

w2
0 e
− 2z2

w2
0 ,

where with x0 = 0 we mark the cavity waist. The interaction strength
depends on the nanosphere’s relative position in the cavity stand-
ing wave and reaches its maximal value h̄U0 in the cavity waist,
with a nanosphere-induced frequency shift to the cavity resonance
U0 [Nimmrichter et al., 2010, Monteiro et al., 2013]. | f (~r)|2 is the U0: frequency shift

cavity mode profile:
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ω ≈ ω
cav

0 Δx

L

w₀

x

Figure 2.3: A silica nanosphere in the optical cavity with cavity waist w0
and length L. The nanosphere is placed on the optical axis of the externally
driven cavity mode at a distance ∆x from the cavity center, resulting in a
frequency shift U(∆x) of the cavity resonance.

We focus on a special case where the nanosphere is positioned on
the cavity axis, rendering y0 = z0 = 0 while allowing for an arbitrary
x. Consequently, the cavity mode function is restricted to | f (~r)|2 =
1
2 (1− cos(kL) cos(2k∆x)), where ∆x is the distance from the cavity
center and L is the cavity length (Figure 2.3). The final expression
for the mode function depends on the boundary condition fb(k) =

cos(kL) = ±1, i.e. if the cavity standing wave has an odd or even
number of half-wavelengths between the cavity mirrors. Here we
have neglected the change of the mode waist as a function of x, as
the Rayleigh range of the cavity mode xR ≈ 5 mm is comparable
to L/2. Therefore, the waist changes insignificantly along the cavity
axis. Without a loss of generality, we choose cos(kL) = −1, which
is equivalent to having an intensity maximum at the cavity center.
Keep in mind that all Hamiltonians containing the interaction with a
cavity field are susceptible to a sign reversal in the opposite case of
cos(kL) = 1, as this corresponds to having an intensity minimum at
the cavity waist. Through trivial trigonometric identities and a Taylor
expansion of the nanosphere motion x̂ around the trap position x0,
we obtain:

cos2(k∆x) ≈ cos2(kx0)− sin(2kx0)kx̂− cos(2kx0)k2 x̂2 +O(x̂3).
(2.16)

The linear optomechanical interaction Hamiltonian with single-photon
coupling rate g0 = U0kxzp f and the zero point fluctuation xzp f =g0: linear coupling √

h̄
2mΩx

is:

Ĥi
cav−nano = h̄U0k sin(2kx0)â† âx̂ ≈ h̄g0|α0| sin(2kx0)(â† + â)(b̂† + b̂),

(2.17)
where the nanosphere motion is expressed as a quantum harmonic
oscillator x̂ = xzp f

(
b̂ + b̂†

)
. The cavity field operators are displaced

as â → α0 + â, where α0 is the amplitude of the light field. We sub-
sequently constrain the Hamiltonian only to the strongest interaction
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between the motional and cavity operators b̂ and â, respectively. This
results in the well-known interaction Hamiltonian for levitated cavity
optomechanics [Chang et al., 2010, Romero-Isart et al., 2010, Mon-
teiro et al., 2013]. The single-photon coupling g0 is often combined
with the strength of the coherent drive to give a total coupling rate
g = g0|α0|. g: total coupling

nonlinear contributions . There are several terms we have
not included in the considerations so far:

• Non-interaction term−h̄U0 cos2(kx0)â† â is combined with Equa-
tion (2.2) to give the total relative detuning between the cavity
resonance and the drive laser ∆ = ∆−U0 cos2(kx0).

• A constant force on the nanosphere h̄ g0
xzp f

sin(2kx0)|α0|2 x̂ is re-
sponsible for a displacement of the nanosphere position and is
typically neglected for weakly populated cavity modes (small
|α0|2).

• Terms quadratic in x̂ from Equation (2.16) provide higher-order
contributions to the Hamiltonian:

Harmonic potential: Ĥhp = h̄U0k2 cos(2kx0)|α0|2 x̂2 (2.18)

Quadratic coupling: Ĥqc = h̄
gqα0

x2
zp f

cos(2kx0)(â† + â)x̂2,

(2.19)

Tertiary coupling: Ĥcc = −h̄
gtα0

x3
zp f

sin(2kx0)(â† + â)x̂3,

(2.20)

with gq = U0k2x2
zp f and gt =

2
3U0k3x3

zp f . quadratic and
tertiary coupling
mechanical
frequency shift

The Hamiltonian Ĥhp adds to the tweezer harmonic potential and
induces a shift of the mechanical frequency:

(Ω′x)
2 = Ω2

x +
2h̄U0k2|α0|2

m
cos(2kx0). (2.21)

The effect can be both constructive and destructive depending on the
trap position x0 (see Section 3.3.2 for the experimental confirmation):
the nanosphere experiences an additional restoring force F = −kcavx
at the intensity maximum, where kcav = 2h̄U0k2|α0|2 is the spring
constant due to the cavity potential. At the intensity minimum of the
cavity standing wave, the nanosphere is exactly halfway between the
two intensity maxima, thus experiencing a pulling force F = kcavx
in each direction. This leads to a decrease in the trapping frequency.
For small perturbations of the frequency we can use a first-order ap-
proximation, which is a direct function of the quadratic coupling gq:

Ω′x ≈ Ωx + 2gq|α0|2 cos(2kx0). (2.22)
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Figure 2.4: Modified mechanical frequency due to co-trapping by the cav-
ity mode. We assume the nanosphere is positioned at the intensity max-
imum, where the largest frequency shift is observed. The exact solution
from Equation (2.21) (blue) is compared to the approximation from Equa-
tion (2.22) (red), where in both cases we assume an equal initial mechanical
frequency Ωx = 2π × 160 kHz. The dashed lines mark the case of equal
tweezer and cavity intensities.

This approximation is an overestimate to the full mechanical frequency,
which we see in Figure 2.4.

The second contribution (Ĥqc) describes the quadratic optomecha-
nical interaction, which can be used in quantum nondemolition mea-
surements of x̂2, quadratic cavity cooling as well as optomechanical
squeezing [Nunnenkamp et al., 2010]. The cubic interaction (Ĥcc)
leads to the detection of x̂3, at the same position along the cavity axis
where we directly detect the motion x̂.

Finally, at the cavity antinodes and nodes (maximum and mini-
mum intensity of the cavity standing wave) the nanosphere will expe-
rience exclusively the quadratic effects. Maximum linear coupling, on
the contrary, is featured at the largest intensity gradient of the stand-
ing wave, halfway between the intensity minimum and maximum.
We will investigate this behavior in Section 3.3.2.

coupling to the y- and z-motion. Under the constraints y0 =

z0 = 0, the Taylor expansion of the cavity mode function | f (~r)|2 re-
veals quadratic coupling of the y- and z-motion to the cavity mode:

| f (~r)|2
y0=z0=0
≈ cos2(kx0)

(
1− 2

ŷ2

w2(x0)
− 2

ẑ2

w2(x0)

)
. (2.23)

However, due to the large cavity waist the coupling rates are negligi-
ble compared to the optimal quadratic coupling gq to the x-motion:

gy,z
q

gq
=

2
k2w2(x0)

≈ 2
kL
∼ 10−4. (2.24)
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Here we used that the cavity waist of confocal cavities is approxi-
mately w0 =

√
L/k.

We now relax the condition on the nanosphere trap position and
let y0, z0 take arbitrary values (Figure 2.5):

| f (~r)|2 ≈ cos2(kx0)e
− 2(y2

0+z2
0)

w2(x0)

(
1− 4

y0

w2(x0)
ŷ
)(

1− 4
z0

w2(x0)
ẑ
)

.

(2.25)
The maximum linear coupling of the y- and z-motion is reached at
the maximum gradient of the Gaussian mode envelope, which is ap-
proximately at y0 = z0 ≈ w(x0):

gy,z
0
g0

=
4

kw(x0)
≈ 4√

kL
≈ 10−2. (2.26)

However, due to the displacement off-axis in both the z and y direc-
tion, the linear coupling of the x-motion decreases significantly by a
factor of e−4 ≈ 10−2, rendering this approach unsuitable for genuine
three-dimensional linear coupling. On the other hand, by rotating
the tweezer polarization we could achieve the coupling of both x-
and y-motion to the cavity mode due to a rotated trap potential (see
Appendix C). This comes with only a factor of

√
2 smaller coupling

compared to g0.

z

x

y

x₀

y₀
z₀

Figure 2.5: The nanosphere is placed at arbitrary coordinates (x0, y0, z0). For
example, the nanosphere displacement by z0 6= 0 from the cavity axis results
in the linear coupling of the z-motion to the cavity mode, as the nanosphere
is placed at the slope of the Gaussian mode envelope (shown to the right of
the cavity).

shift of the mechanical frequencies Ωy and Ωz . The
Gaussian intensity profile of the cavity mode along the y- and z-axis
provides an additional trapping potential for the nanosphere. For ex-
ample, to first order along the y-axis the cavity mode induces (always)
a positive frequency shift:

Ω′y = Ωy +
4h̄U0nphot

mw2
0

cos2(kx0). (2.27)
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Even for intracavity photon number as high as nphot = 1010 the fre-
quency shift is only ∼ 1kHz.

Interaction with the free electromagnetic modes

We have neglected the free electromagnetic modes ~E f ree so far. The
interaction with the tweezer (∝ ~Etw~E f ree) and the cavity modes (∝
~Ecav~E f ree) introduces losses into our system. The scattering of the cav-
ity mode into free space is a coupling mechanism of the cavity mode
to the free electromagnetic modes, hence it contributes to both the cav-
ity and mechanical losses. For example, each photon scattered elasti-
cally off the nanosphere will impact the nanosphere motion through
a momentum kick. The shot noise-governed photon scattering rate
will lead to recoil heating Γrec of the nanosphere motion. We investi-
gate here the recoil heating in short. A more detailed description can
be found in [Jain et al., 2016].

We assume that the tweezer is polarized along the x-axis (cav-
ity optical axis). A photon scattered off the nanosphere under a
polar angle θ and an azimuth angle φ will experience a momen-
tum change, which can be projected along each motional axis as
∆~p = h̄k (cos θ, sin θ cos φ, sin θ sin φ). The dipole scattering pattern
s(θ) = 3

8π sin θ provides the scattering rate in a particular direction.
The resulting force on the nanosphere ~Frec(θ, φ) at time t is:

~Frec(θ, φ, t) =
√

s(θ)
Pscatt(t)

c
(cos θ, sin θ cos φ, sin θ sin φ) . (2.28)

This force has a white spectrum:

SFrecFrec =

∞∫
−∞

〈Frec(ω)Frec(ω
′)〉dω′ =

h̄ωl

c2 Pscatt

(
1
5

,
2
5

,
2
5

)
, (2.29)

where Pscatt = k4|α|2
6πε2

0
I0 is the total scattered power by a nanosphere

with polarizability α, I0 is the laser intensity and ωl is the laser fre-
quency. The spectrum will add to the total spectrum of the nano-
sphere motion and set limits on the lowest achievable motional tem-
perature. Note that the same result holds for the recoil heating by the
cavity mode, where the laser intensity has to be taken at the nano-
sphere position: I0 = Icav cos2 kx0.

As mentioned above, the coherent component of the electric field
Ecav (∝ α0) yields the recoil heating by the cavity mode Γcav

rec . The
coupling of the fluctuations (∝ â) to the free modes leads to an addi-
tional cavity decay loss rate κscatt of the cavity operators [Chang et al.,
2010, Pflanzer et al., 2012], as each interacting cavity photon scattered
out of the cavity mode contributes to information loss. As in recoil
heating, it is a position-dependent function:

κscatt =
1

6π
ω

k3V2

Vc
χ2 cos2 kx0. (2.30)
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Figure 2.6: Nanosphere induced cavity decay rate κscatt as a function of the
cavity waist w0. We assume the constant cavity length L = 1.07 cm and a
nanosphere with radius r = 71.5 nm. Even for a realistic cavity with a small
waist w0 = 8 µm we expect the loss to be less than a tenth of the total cavity
decay rate κ = 2π × 200 kHz.

Even for a nanosphere positioned at the intensity maximum and as
small cavity waists as w0 = 8 µm the scattering off the nanosphere
contributes a small loss rate κscatt/2π < 10 kHz compared to the total
cavity loss of our high-finesse cavity κ = 200 kHz (Figure 2.6).

2.1.3 Thermal mechanical oscillator

As seen in Section 2.1.2, a focused Gaussian laser beam provides a
strong three-dimensional optical trap for the nanosphere. The total
Hamiltonian associated with the nanosphere motion consists of the
free part Ĥ f

nano, i.e. the kinetic energy, and the tweezer harmonic
potential Ĥi

tw−nano. In addition, the cavity mode adds to the trapping
potential with Ĥhp:

Ĥnano = Ĥ f
nano + Ĥi

tw−nano + Ĥhp =
p̂2

2m
+

mΩ′2x x̂2

2
. (2.31)

Any extra cavity mode will lead to an additional trap potential adjust-
ment. As we are currently interested only in the harmonic oscillator
dynamics, we will neglect the co-trapping by the cavity modes and
use the fundamental trapping frequency Ωx at the moment.

Classical mechanics

Let us assume the dominant interaction of the nanosphere motion
with the environment is through collisions with the surrounding gas.
It is easy to obtain the differential equations for x̂ and p̂ from the
Hamiltonian in Equation (2.31):

ẋ = p/m

ṗ = −mΩ2
xx− γm p + Fth(t), (2.32)

where we added the gas-induced momentum dissipation rate γm and
a random thermal force Fth(t). Combining these two equations into a
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well-known differential equation of the Brownian harmonic oscillator
yields:

ẍ + γm ẋ + Ω2
xx =

Fth(t)
m

. (2.33)

Gas damping is isotropic and follows the empirical formula [Beres-
nev et al., 1990]:

γm =
6πηr

m
0.619

0.619 + Kn

(
1 +

0.31Kn
0.785 + 1.152Kn + Kn2

)
(2.34)

where Kn =
λmfp

r is the Knudsen number, η is the air viscosity, λmfp =
η
p

√
πRT

2Mgas
is the mean free path of air molecules with the molar mass

Mgas at a certain pressure p, and R is the gas constant. In the case of
a long mean free path (and high Knudsen number Kn � 1, valid at
low pressures p < 10 mbar), the gas damping is simplified to [Chang
et al., 2010, Gieseler et al., 2013]:

γm =
64
3

r2 p
mv̄gas

, (2.35)

where v̄gas =
√

8RT
πMgas

is the average velocity of the air molecules. We
take the textbook value for the molar mass of air Mgas = 0.028964 kg/mol.
In the high pressure regime the gas damping from Equation (2.34) re-
duces to the constant damping from the Stokes drag (Figure 2.7). The
relation between the damping rate γm and the thermal force Fth(t)
follows from the fluctuation-dissipation theorem [Kubo, 1966]:

Fth(t) =
√

2γmmkBTξ(t), (2.36)

where ξ is a white noise process with delta-peaked correlation func-
tion 〈ξ(t)ξ(t′)〉 = δ(t− t′).

In order to obtain the noise power spectrum (NPS) of the Brow-
nian harmonic oscillator, a Fourier transform is usually applied to
Equation (2.33):

x̃(ω) =
F̃th(ω)/m

Ω2
x −ω2 − iωγm

=
F̃th(ω)

m
χm(ω), (2.37)

where the harmonic oscillator’s response to the thermal force is de-
fined as the mechanical susceptibility χm(ω). The NPS follows from
[Hauer et al., 2015]:

Sth
xx(ω) =

∫
〈x̃(ω)x̃(ω′)〉dω′ =

∫ 〈F̃th(ω)F̃th(ω
′)〉

m2 χm(ω)χ∗m(ω
′)dω′,

(2.38)
which has the units m2/(rad s−1). Using the thermal force given by
Equation (2.36), the NPS is given by:

Sth
xx(ω) =

kBT
mΩ2

x

2γmΩ2
x

(Ω2
x −ω2)2 + ω2γ2

m
. (2.39)
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Figure 2.7: Gas damping in different pressure regimes. Gas damping γm
from Equation (2.34) (green line) is compared to the low pressure approxi-
mation (red line) and the damping from the Stokes drag (blue, dashed line).
We mostly keep in the regime below p = 10 mbar, well described by both
the empirical formula and its approximation.

The spectral peak value is Sth
xx(ω = Ωx) =

2
γm

kBT
mΩ2

x
, while the spectral

area is the variance of the nanosphere motion:

〈x2(t)〉 =
+∞∫
−∞

Sth
xx(ω)dω =

kBT
mΩ2

x
. (2.40)

The same result is obtained from the equipartition theorem, which
divides the total energy of the harmonic oscillator equally between
the potential and kinetic energy, thus leading to 1

2 mΩ2
x〈x2〉 = 1

2 kBT.
Note that we consistently use the one-sided power spectral density in
Sth

xx as a function of the angular frequency ω. However, the spectrum
analyzer detects the NPS in the ordinary frequency ν, where the area
of the spectrum is conveniently scaled as:

+∞∫
0

Sxx(ν)dν =

+∞∫
−∞

Sxx(ω)ω. (2.41)

Quantum mechanics

The Langevin equations obtained from the Hamiltonian in Equation
(2.31) do not preserve the commutation relation [x̂, p̂] = ih̄. Although
the solution discussed in [Jacobs et al., 1999] solves this issue, it does
so by introducing an additional noise term without a physical origin.
However, in [Giovannetti and Vitali, 2001] authors propose a model
of a thermal bath as an infinite series of independent harmonic os-
cillators. This approach leads to the non-Markovian dynamics of the
quantum Brownian motion, which satisfies the commutation of x̂ and
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p̂. The most important result is that the correlator of the thermal force
Fth(t) is not a Dirac delta function [Genes et al., 2008b]:

〈Fth(t)Fth(t′)〉 = h̄γmm
∫ dω

2π
e−iω(t−t′)ω

[
coth

(
h̄ω

2kBT

)
+ 1
]

. (2.42)

The classical case is recovered in the limit of a high bath temperature
T as coth

(
h̄ω

2kBT

)
+ 1 ≈ 2kBT

h̄ω :

〈Fth(t)Fth(t′)〉 = 2γmmkBTδ(t− t′). (2.43)

The bath occupation is defined as nth = kBT
h̄Ωx

, which is equal to the oc-

cupation n̄ = kBTeff
h̄Ωx

of the quantum harmonics oscillator (QHO) when
in the thermal equilibrium with the environment at the temperature
T. The noise power spectrum of the QHO position operator x̂ has an
analytic solution [Hauer et al., 2015]:

Sth
xx(ω) = γmx2

zp f

(
n̄

(ω + Ωx)2 + (γm/2)2 +
n̄ + 1

(ω−Ωx)2 + (γm/2)2

)
.

(2.44)
The contributions at ±Ωx are proportional to n̄ + 1 and n̄ as they
correspond to the creation and annihilation operators of QHO, re-
spectively. In the high temperature limit and assuming γm � Ωx, the
contributions are approximately equal n̄ + 1 ≈ n̄ and we obtain the
spectrum from Equation (2.39). Integration of the power spectrum
once again results in the variance of the position operator:

〈x̂2〉 = x2
zp f (2n̄ + 1)

n̄�1≈ kBT
mΩ2

x
, (2.45)

demonstrating the correspondence to classical mechanics for large
mechanical occupations n̄� 1.

The contributions in Equation (2.44) are associated with the cool-
ing processes (Anti-Stokes sideband at ω = −Ωx) and the heating
processes (Stokes sideband at ω = Ωx). Note that in the low tem-
perature limit (n̄ → 0), the contribution at ω = −Ωx is noticeably
suppressed with respect to the contribution at ω = Ωx (Figure 2.8(b)).
In the most extreme case of a harmonic oscillator in its ground state
only the heating sideband is visible, as the oscillator’s energy can
only increase. The ratio of the two sides of the spectrum is the ba-
sis of (Raman) sideband asymmetry thermometry, which provides an
absolute measurement of the occupation. One way to observe the
double-sided spectrum is with a heterodyne detection, which is de-
scribed in detail in Chapter 6.
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Figure 2.8: Correspondence between the descriptions of the harmonic os-
cillator in the classical and quantum mechanics. Noise power spectra of
the nanosphere x-motion in the formalism of the classical (blue) and the
quantum mechanics (red) are shown together. (a) The discrepancy between
the harmonic oscillator spectrum predicted by the classical and quantum
mechanics is non-existent in the vicinity of the mechanical frequency ±Ωx.
(b) The effect of the spectral asymmetry (Sxx(Ωx) > Sxx(−Ωx)) becomes
visible for the low occupation of QHO, where the classical mechanics does
not predict any asymmetry.

2.2 total system hamiltonian

We proceed by combining the Hamiltonians from the previous sec-
tions into the Hamiltonian of the total system. Let us assume that the
nanosphere is trapped in the tweezer and placed in an optical cavity
with the x-motion coupled to two cavity modes: the locking mode âl
and the control mode âc driven with rates El

d and Ec
d and the laser

frequencies ωl = ωcav,1 − ∆l and ωc = ωcav,2 − ∆c, respectively (Fig-
ure 2.9). The two frequencies are separated roughly by the cavity free
spectral range |ωc −ωl | ≈ 2π × ∆νFSR. The Hamiltonian is then:

Ĥtot = h̄∆l â†
l âl + h̄∆c â†

c âc + ih̄El
d(â†

l − âl) + ih̄Ec
d(â†

c − âc)

+
p̂2

2m
+

mΩ2
x x̂2

2

± h̄
g0

xzp f
sin(2klx0)â†

l âl x̂± h̄
gq

x2
zp f

cos(2klx0)â†
l âl x̂2

∓ h̄
g0

xzp f
sin(2kcx0)â†

c âc x̂∓ h̄
gq

x2
zp f

cos(2kcx0)â†
c âc x̂2.

Note the following:

1. Light operators are not displaced. We don’t use the displaced
operators â and â† here for conciseness. Therefore, the mechani-
cal frequency Ωx is still defined solely by the tweezer harmonic
potential.

2. Opposite signs of the linear and quadratic coupling for the
different cavity modes. As discussed previously, the two cavity
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Figure 2.9: Laser beams driving two cavity modes âc and âl . We assume
the locking mode is resonant to the cavity resonance with frequency ωcav,1,
while the control mode is detuned with respect to the adjacent cavity reso-
nance at a frequency of ωcav,2 − ∆, where ωcav,2 −ωcav,1 = 2π × ∆νFSR.

modes with a frequency difference 2π× ∆νFSR = 2π× c
2L expe-

rience the opposite boundary conditions at the cavity mirrors
as kcL = kl L + π. This leads to a sign flip of the cavity mode
function as fb(k) = cos(kL) = ±1 and the intensity profiles of
the two modes are exactly out of phase (Figure 2.10).- L
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Figure 2.10: Inten-
sity of the two suc-
cessive cavity reso-
nances around the
cavity waist.

3. Single photon coupling rate depends on the laser wavenumber
k, which we can safely assume to be equal for the two modes
kl = kc.

4. Total detuning. The laser driving the locking mode is always
resonant to the cavity, thus ∆̄l = 0. The control mode detuning
is set manually to the desired detuning ∆c by regularly measur-
ing the cavity resonance ωcav,2 to account for any drifts. Hence
we write ∆̄c ≈ ∆c from now on.

5. Modification to the mechanical frequency. Both cavity modes
add to the tweezer harmonic potential, resulting in the modified
mechanical frequency Ω′x:

Ω′2x = Ω2
x±

2h̄U0k2(nl
phot)

2

m
cos(2kx0)∓

2h̄U0k2(nc
phot)

2

m
cos(2kx0).

(2.46)
The locking mode is significantly weaker than the typical con-
trol mode

(
(nc

phot)
2 � (nl

phot)
2
)

. However, in the absence of the
control mode the locking mode still provides a small observable
shift of the mechanical frequency and is not neglected.

6. Optimal positions for linear optomechanics. In the proximity
of the cavity waist x0 ≈ 0 the coupling rates |gl

0| and |gc
0| are

exactly in phase as sin 2klx0 ≈ sin 2kcx0. Therefore, by maxi-
mizing the coupling to the locking mode, we simultaneously
optimize the interaction with the control mode.

7. Additional contributions. To keep things concise, we haven’t
included the mechanical and optical losses in Htot. However, we
will investigate them in the Langevin equations in the further
text.
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2.3 langevin equations in linear optomechanics

The system dynamics is contained in the Langevin equations of mo-

tion obtained from dÂ(t)
dt = i

h̄ [Ĥtot, Â]. Here we focus only on the
linear interaction in Ĥtot, now including all decay channels:

˙̂al = −κ

2
âl + El

d + i fb(kl)
g0

xzp f
sin(2kx0)âl x̂ +

√
κIN(âl,1

IN + âl,2
IN)

˙̂ac = −
(κ

2
+ i∆c

)
âc + Ec

d + i fb(kc)
g0

xzp f
sin(2kx0)âc x̂ +

√
κIN(âc,1

IN + âc,2
IN)

˙̂x =
p̂
m

˙̂p = −mΩ2
x x̂− γm p̂ + ∑

i=l,c
fb(ki)

h̄g0

xzp f
sin(2kx0)â†

i âi + ∑
s

Fs(t) (2.47)

Here, ∑
s

Fs(t) is a sum of all random forces acting on the nanosphere

motion, with s representing the source of the force (thermal force, re-
coil etc.). From the expectation value of the first two lines in Equation
(2.47) we are able to determine the coherent amplitudes of operators
âi:

αl
0 =

El
d

κ/2
, αc

0 =
Ec

d
κ/2 + i∆c

(2.48)

and the intracavity photon number ni
phot = |αi

0|2. We use the dis-
placed cavity mode operators throughout the rest of this text:

˙̂al = −κ

2
âl + i fb(kl)

g0αl
0

xzp f
sin(2kx0)x̂ +

√
κ

2
(âl,1

IN + âl,2
IN)

˙̂ac = −
(κ

2
+ i∆c

)
âc + i fb(kc)

g0αc
0

xzp f
sin(2kx0)x̂ +

√
κ

2
(âc,1

IN + âc,2
IN).

(2.49)

Note that we keep only the strongest interaction term ∝ g0αi
0 x̂ and

neglect the significantly weaker contributions ∝ g0 âi x̂. The last two
equations of Equation (2.47) describe the nanosphere motion. As de-
scribed in Section 2.1.3, merging the results in a single differential
equation of the nanosphere x-motion yields:

¨̂x + γm ˙̂x + Ω′2x x̂ = ∑
i=l,c

fb(ki)
h̄g0αi

0
xzp f m

sin(2kx0)(â†
i + âi) + ∑

s

Fs(t)
m

,

(2.50)
where we changed to the modified mechanical frequency Ω′x.
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2.3.1 Solving the Langevin equations

The usual method of solving a system of Langevin equations given
by Equation (2.49) and Equation (2.50) is applying a Fourier transfor-
mation to eliminate the time dependence:

x̃(ω)

χm(ω)
= ∑

i=l,c
fb(ki)

h̄g0αi
0

xzp f m
sin(2kx0)(ã†

i (ω) + ãi(ω)) + ∑
s

F̃s

m

ãl(ω) = χl(ω)

(
i fb(kl)

g0αl
0

xzp f
sin(2kx0)x̃ +

√
κIN(ãl,1

IN + ãl,2
IN)

)

ãc(ω) = χc(ω)

(
i fb(kc)

g0αc
0

xzp f
sin(2kx0)x̃ +

√
κIN(ãc,1

IN + ãc,2
IN)

)
.

(2.51)

The optical susceptibilities χl(ω) = 1
κ
2−iω and χc(ω) = 1

κ
2−i(ω−∆c)

are
the cavity response functions for the two modes. It is straightforward
to solve the system of equations given by Equation (2.51) and their
complex conjugated counterparts. The Fourier transform of the x̂-
motion is:

x̃(ω) =

(
F̃th(ω)

m
+

F̃tw
rec(ω)

m
+

F̃cav
rec (ω)

m
+ frp(ω)

)
χ′m(ω), (2.52)

where χ′m(ω) = 1/
(
(Ωeff

x )2 −ω2 − iγeff
m ω

)
is the modified mechani-

cal susceptibility:

χ′m(ω) =
1

Ω′2x −ω2 − iγmω−
4G2Ω′x∆c

(
( κ

2 )
2−ω2+∆2

c+iκω
)

(
( κ

2 )
2
+(ω+∆c)2

)(
( κ

2 )
2
+(ω−∆c)2

)
. (2.53)

due to the interaction with the detuned cavity mode. This results
in the effective mechanical frequency and damping, i.e. the optical
spring and damping effects, respectively (Figure 2.11):

Ωeff
x (ω) =

√√√√√Ω′2x −
4G2Ω′x∆c

((
κ
2

)2 −ω2 + ∆2
c

)
((

κ
2

)2
+ (ω + ∆c)2

) ((
κ
2

)2
+ (ω− ∆c)2

)
γeff

m (ω) = γm +
4G2Ω′x∆cκ((

κ
2

)2
+ (ω + ∆c)2

) ((
κ
2

)2
+ (ω− ∆c)2

) . (2.54)

Note the following effects from the modified mechanical suscepti-
bility:

1. The resonant locking cavity mode does not induce any opti-
cal spring and damping effects. As ∆l = 0, the optomechani-
cal modifications to the mechanical frequency and damping are
zero.
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Figure 2.11: Optical spring effect (left panel) and optical damping effect
(right panel) for different ratios of κ/Ωx. We assume a high quality factor
Ωx/γm = 2000 and a reasonable coupling rate g/Ωm = 1/4, which still
renders Ωeff

x and γeff
m as valid approximations.

2. Dependence on the Fourier frequency ω. The effective me-
chanical frequency and damping depend on the frequency ω

from the Fourier transform, which is not a physical parame-
ter. However, for high mechanical quality factors γm � Ω′x the
largest contribution to the spectrum is in the vicinity of the spec-
tral peak, i.e. ω ≈ Ω′x. If γm ∼ Ω′x, the full expressions from
Equation (2.54) have to be used.

3. Negative damping. The effective damping γeff
m (Ω′x) can become

negative for ∆c < 0, which leads to heating of the nanosphere
motion and subsequent loss of the nanosphere from the trap.
Hence, the control laser has to be red detuned with respect to
the cavity (∆c > 0).

Spectrum of the cooled harmonic oscillator

In analogy to the NPS of the harmonic oscillator in Equation 2.39,
the thermal noise spectrum of the cooled nanosphere motion is deter-
mined from the effective mechanical susceptibility:

Sth
xx(ω) =

kBT
mΩ2

x

2γmΩ2
x(

(Ωeff
x )

2 −ω2
)2

+ (γeff
m ω)

2
. (2.55)

The variance of the nanosphere motion from this contribution is:

〈x2〉th =

+∞∫
−∞

Sth
xx(ω)dω =

kBT
mΩ2

x

γm

γeff
m

, (2.56)

where Teff = T γm
γeff

m
is the effective temperature of the nanosphere mo-

tion. The variance can also be represented through the thermal oc-
cupation: 〈x2〉th = x2

zp f nth
γm
γeff

m
= x2

zp f n̄. For positive detuning ∆c (red-
detuned control cavity mode) the x-motion is effectively cooled as
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γeff
m > γm. For a total coupling rate g = 2π × 40 kHz we expect to

reach n̄ ≈ 1 at pressures below 10−7 mbar (Figure 2.12). However,
this estimate provides a lower bound as it only includes the mechan-
ical losses through the gas collisions and neglects effects of recoil or
laser phase noise heating.

10010-310-6
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103
106

p [mbar]

n
th

Figure 2.12: Ther-
mal occupation of
the quantum har-
monic oscillator as
a function of pres-
sure.

The intuition for cavity cooling is as follows: the nanosphere is
coupled to two different reservoirs: the thermal bath and the control
laser. The thermal bath at room temperature T results in the heating
rate Γm = γmnth. The reservoir created by the control cavity mode
counteracts with a cooling rate Γopt(≡ γeff

m − γm). The interaction
with the control mode is fully quantified by the Stokes (heating) and
Anti-Stokes (cooling) scattering rates Γ+ and Γ−, respectively:

Γ± =
g2κ/2

(κ/2)2 + (Ωx ∓ ∆c)2
, (2.57)

with a net cooling rate Γopt = Γ− − Γ+. The optimal cooling rate

is reached for ∆optimal
c =

√
Ω2

x + (κ/2)2. In the case of a sideband-
resolved regime (κ � Ωx), the final occupation of the harmonic oscil-
lator is simplified to:

n̄ ≈ κγmnth

4g2 (at ∆optimal
c ≈ Ωx). (2.58)

Spectrum of the recoil heating

The force of the photon recoil provides an additional component in
the mechanical spectrum:

Srec
xx (ω) =

1
5mc2

Pscatth̄ωl(
(Ωeff

x )
2 −ω2

)2
+ (γeff

m ω)
2

, (2.59)

where h̄ωl is the energy of the incoming photons. The contribution
to the occupation of the harmonic oscillator along the x axis is:

n̄rec = 〈x2〉rec
mΩ2

x
h̄Ωx

=
Γrec

γeff
m

=
κΓrec

4g2 , (2.60)

where the recoil heating rate is:

Γrec =
1
5

Pscatt

mc2
ωl

Ω0
. (2.61)

The trap intensity is in general higher than the intensity of any
cavity mode due to the discrepancy in the waists. Therefore, the
recoil heating due to tweezer photons will be the dominant source of
heating in the high vacuum.
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Figure 2.13: Heating of mechanical motion divided by contributions. Heat-
ing rate due to the gas collisions (blue, dashed) is significantly larger than
tweezer recoil heating rate (red, dashed) at pressures p > 10−6 mbar. Recoil
heating from the cavity mode (red, dotted) is significantly lower than other
heating rates (we assume an intracavity power Pcav = 40 W). All mentioned
contributions are jointly shown as a solid blue line.

Spectrum of the radiation pressure

The radiation pressure noise spectrum depends on the cavity input
noise ãi,j

IN:

Srp
xx(ω) = |χ′m(ω)|2x2

zp f

4Ω′2x κg2
((

κ
2

)2
+ ω2 + ∆2

c

)
((

κ
2

)2
+ (ω− ∆c)2

) ((
κ
2

)2
+ (ω + ∆c)2

) .

(2.62)
Assuming a small initial mechanical damping γm, such that the largest
spectral contribution is around ω ≈ Ωx, and the optimal detuning
∆c ∼ Ωx, we simplify Equation (2.62) to

Srp
xx(Ωx) ≈ |χ′m(Ωx)|2x2

zp f 16Ω2
xg2/κ. (2.63)

Spectrum of the phase noise

Every laser suffers from classical phase and intensity noise, which im-
pact the performance of cavity cooling [Schliesser et al., 2008, Jayich
et al., 2012, Safavi-Naeini et al., 2013a]. For example, due to non-zero
detuning of the cooling laser, phase noise is converted into ampli-
tude and intensity noise in the optomechanical cavity [Rabl et al.,
2009, Phelps and Meystre, 2011].

Phase noise is included into the calculations as a phase variation
of the driving field Ed → Edeiϕ(t) ≈ Ed(1 + iϕ(t)). Its impact on
the mechanical oscillator is proportional to |χc(ω) − χ∗c (−ω)| ∝ ∆,
hence only the phase noise of the detuned control mode will influence
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the nanosphere motion. The phase noise contribution to the position
spectrum Sphase

xx (ω) is:

Sphase
xx (ω) = |χ′m(ω)|2x2

zp f
16g2Ω′2x ω∆|Ed|2Sϕϕ(ω)((

κ
2

)2
+ (ω− ∆c)2

) ((
κ
2

)2
+ (ω + ∆c)2

) .

(2.64)
We assume a red detuned laser ∆ = Ωx and evaluate the spectrum
around ω = Ωx:

Sphase
xx (Ωx) = |χ′m(Ωx)|2x2

zp f

16g2Ω2
xSϕ̇ϕ̇(Ωx)n2

phot

κ2 , (2.65)

where we used |Ed|2 = nphot

((
κ
2

)2
+ ∆2

)
≈ nphotΩ2

x and substituted
the phase noise with the frequency noise:

Sϕ̇ϕ̇(ω) = ω2Sϕϕ(ω). (2.66)

The contribution to the phonon occupation is:

n̄phase =
Sphase

xx (Ωx)

Srp
xx(Ωx)

=
nphot

κ
Sϕ̇ϕ̇(Ωx), (2.67)

in perfect agreement with [Rabl et al., 2009]. In optomechanical se-
tups with low mechanical frequencies Ωx/2π < 1 MHz, it is there-
fore typically required to filter the laser phase noise before driving
the optical cavity.

Note that in [Safavi-Naeini et al., 2013a], the authors assume the
phase noise as part of the noise input âc,1

IN, which leads to Sphase
xx (ω) ∝

|χc(ω) + χ∗c (−ω)|. Therefore, a phase noise contribution exists even
at ∆ = 0, although it is expected to manifest only when the phase
noise is able to be converted into intracavity intensity noise.

optomechanical cooperativity The optomechanical cooper-
ativity C = 4g2/(κΓ) compares the interaction strength between the
nanosphere motion and the cavity mode (g2) to all loss rates in the
experiment (κ: optical loss rate, Γ: mechanical loss rate). In typi-
cal optomechanical setups only thermal noise and radiation pressure
noise need to be considered (see Equation (2.52)). However, for a lev-
itated nanosphere in ultra-high vacuum thermal coupling becomes
negligible and other noise terms, particularly due to photon recoil,
need to be taken into account.

The optomechanical cooperativity C is defined as a ratio of the
radiation pressure noise spectrum and other noise spectra, evaluated
at the mechanical frequency Ω′x:

C =
Srp

xx(Ω′x)
Sth

xx(Ω′x) + Srec
xx (Ω′x)

=
4g2

κ (γmnth + Γrec)
. (2.68)



2.3 langevin equations in linear optomechanics 33

If we compare Equation (2.68) with the phonon occupation in Equa-
tion (2.58) and Equation (2.60), we notice that the phonon occupation
is a function of the cooperativity:

n̄ =
Γ+

Γopt
+

γmnth + Γrec

Γopt
+ n̄phase =

(
κ

4Ωx

)2

+ C−1 + n̄phase. (2.69)
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Figure 2.14: Phonon occupation n̄ of the nanosphere x-motion as a func-
tion of the intracavity photon number nphot and the mechanical fre-
quency Ωx. We assume a pressure of p = 10−6 mbar, cavity linewidth
κ = 2π × 193 kHz and a silica nanosphere with a radius r = 71.5 nm.
We include the sideband resolution, the gas and recoil heating mechanisms
and the phase noise heating, where the phase noise has been extrapolated
for the laser used in the experiment. The black circle marks the experi-
mental parameters we reach in our setup (nphot = 1.5× 109 photons and
Ωx = 2π × 160 kHz). We are limited by the tweezer and the cavity drive
power, i.e. we can reach all points to the left and below of the circle. Ground
state cooling is impossible to reach without a strong suppression of the
phase noise.

We plot the phonon occupation as a function of the intracavity pho-
ton number nphot and the mechanical frequency Ωx in Figure 2.14. We
assume that the tweezer power can be changed arbitrarily and include
the respective optical power in the estimate of the tweezer recoil heat-
ing. We take a realistic pressure of p = 10−6 mbar, cavity linewidth of
κ = 2π × 193 kHz and a nanosphere radius of r = 71.5 nm. Without
phase noise, increasing the intracavity photon number in the control
mode will always lead to a lower phonon occupation. However, the
optimal photon number due to the balance between the cavity cooling

and phase noise heating is nphot =
√

Γκ2/(4g2
0Sϕ̇ϕ̇(Ωx)), for which we

obtain a minimal phonon occupation:

n̄x =

(
κ

4Ωx

)2

+ 2

√
γmnth + Γrec

4g2
0

Sϕ̇ϕ̇(Ωx) ≈ 40. (2.70)
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Filtering laser phase noise at the mechanical frequency Sϕ̇ϕ̇(Ωx) by at
least 32 dB allows us to increase the control mode power and achieve
ground state cooling of the x-motion in the current setup (Figure
2.15).
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Figure 2.15: Minimum phonon occupation with (red) and without (blue)
filtering of phase noise. For a harmonic motion with frequency Ωx =
2π× 160 kHz and current cavity parameters, the optimal intracavity photon
number depends on the balance between the cavity cooling and phase noise
heating, limiting the minimum phonon occupation far from the ground state
(black dashed line). However, by filtering the phase noise by at least 32 dB
we are allowed to increase the intracavity power and further decrease the
occupation below the ground state.

2.4 light quadratures ; detection

Knowing the spectrum of the nanosphere motion from Equation (2.52),
we are able to plug it back into the expression for the light operators
ãi(ω). We subsequently calculate the spectra of the phase quadrature
of the cavity mode Ỹi = (ã† − ã)/i

√
2 from Equation (2.51), which

contains the nanosphere motion:
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where Sdet
YY(ω) are the spectral contribution of the detection noise:
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T H E E X P E R I M E N TA L S E T U P

Since the first demonstration of cavity cooling of a levitated submi-
cron particle in our previous work [Kiesel et al., 2013], we focused
on the open question of stable levitation below the typical loss pres-
sure of ∼ 1 mbar. Based on the successful levitation with an optical
tweezer in high vacuum [Gieseler et al., 2012], we decided on com-
bining a high NA microscope objective with an optical cavity and
overhanding the trapping to the tweezer. We present the end design
in this chapter.

We start with an overview of the fundamental building blocks: the
optical dipole trap (tweezer) and the optomechanical cavity. We pro-
ceed with the detection schemes of the nanosphere motion: homo-
dyne detection of the locking cavity mode, detection from the Pound-
Drever-Hall (PDH) error signal and detection in the tweezer trans-
mission. We obtain the mass of the trapped nanosphere from the
ratio of the linear and quadratic coupling rates to the locking cav-
ity mode. In addition, we extract the optomechanical coupling rate
to the control cavity mode from the optomechanically induced trans-
parency (OMIT) signal. We conclude the chapter by analyzing and
distinguishing different trapped objects including silica nanospheres
and suspension droplets.
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3.1 building blocks

3.1.1 Optical dipole trap

The optical dipole trap for the nanospheres is created by focusing a
Gaussian laser beam with a microscope objective1. The optical force
of the focused laser on the nanosphere is typically split into the gradi-
ent force Fgrad, which creates a strong harmonic potential in all three
directions, and the scattering force Fscatt, which is a radiation pres-
sure force pushing the nanosphere away from the focus [Ashkin et al.,
1986, Jonáš and Zemánek, 2009]. For a nanosphere with polarizabil-
ity α = 3ε0V n2

s−1
n2

s+2 trapped by a laser polarized along the x-axis with

electric field Ex(x, y, z) = E0
zR

zR+iz exp(ikz) exp(ik(x2 + y2)/2(z− izR)),
the force components along the axial z-axis and a single transverse x-
axis are:

Fx
grad(x, y, z) =

α

4
∂|Ex|2

∂x
= −2αI0

ε0c
xW2

0
W4(z)

e
− 2(x2+y2)

W2(z)

Fz
grad(x, y, z) =

α

4
∂|Ex|2

∂z
= −4αI0

ε0c
z

k2W4(z)
e
− 2(x2+y2)

W2(z)

Fz
scatt(x, y, z) =

α2k3

12πε0
|Ex|2

∂φ

∂z
=

α2k4 I0

6πε2
0c

W2
0

W2(z)
e
− 2(x2+y2)

W2(z) , (3.1)

where I0 = ε0c|E0|2/2 is the laser focal intensity, W0 is the beam
waist at the focus, zR = W2

0 π/λ is the Rayleigh length and W(z) =

W0
√

1 + (z/zR)2 is the Gaussian beam waist at a distance z.
The scattering force displaces the trap potential minimum along

the optical axis by z0 ≈ αk6W4
0 /(24πε0) away from the focus (for

z� zR), where the displacement is independent of the laser intensity.
As the forces have a different dependency on the nanosphere volume
(Fgrad ∝ V, Fscatt ∝ V2), the scattering force will be always greater
than the axial gradient force for nanospheres with radius larger than

rmax = 3

√
3/
(

2k5W2
0

n2
s−1

n2
s+2

)
. The calculation so far includes the point-

like dipole interaction only, while for nanospheres larger than rmax

the Mie calculus has to be used [Jonáš and Zemánek, 2009].
As the scattering force along the z-axis is constant, the axial trap-

ping frequency is unaffected. The transverse mechanical frequencies
decrease, mostly due to lower laser intensity at the shifted trapping
position. For a small waist (W0 ∼ λ) the trap is elliptical in the trans-
verse direction due to weak focusing along the polarization axis (Ap-
pendix C), leading to non-degenerate transverse frequencies. Typ-
ical mechanical frequencies in our three-dimensional trap potential
are Ωx/2π = 160 kHz, Ωy/2π = 184 kHz and Ωz/2π = 40 kHz.

1Olympus LMPL 100x IR, working distance WD = 3.4 mm, NA = 0.8, focal
distance f = 1.8 mm
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From the ratio of the transverse frequencies Ωx and Ωy to the ax-
ial frequency Ωz we estimate our effective numerical aperture to be
NA = Ωz

√
2/Ωy ≈ 0.32. However, a more invested calculation in

Appendix C involves the difference of the transverse frequencies Ωy

and Ωx and shows that the numerical aperture is closer to NA ≈ 0.56.
The calculated waists of the elliptical dipole trap are Wx ≈ 0.77 µm
and Wy ≈ 0.67 µm.

The displacement from the laser focus z0 ≈ 0.17 µm is much smaller
than the Rayleigh length. The maximal nanosphere radius for stable
trapping conditions in the Rayleigh approximation is rmax ≈ 114 nm.
We typically use nanospheres with a radius of r = 71.5 nm, which
can still be considered a dipole particle. However, we successfully
trapped nanospheres with a radius of r = 127 nm, for which the
Rayleigh approximation breaks down (in this case r & λ/10). There-
fore, the limit on the nanosphere size rmax from the dipole approxima-
tion does not hold [Ashkin et al., 1986]. The mechanical frequencies
for these nanospheres are smaller by about 30%, which we explain
partially by a significant displacement from the laser focus.

LO

AOM

vacuum
chamber

PBSPBS
FA

2

2

22

to detection
z

x

y

Mephisto

Figure 3.1: Optical setup for trapping a nanosphere and feedback cooling
of its center-of-mass motion. A weak laser beam from a Mephisto laser is
amplified with a fiber amplifier (FA) and split on a polarizing beamsplit-
ter (PBS) with a 90 : 10 splitting ratio. A small part of the stronger, trap-
ping laser is sampled to be used as a local oscillator (LO) for the detection.
The weaker component (feedback laser) passes an acousto-optical modula-
tor (AOM), which is used to apply a feedback to cool the nanosphere mo-
tion. The two components are subsequently overlapped in the single mode
fiber, expanded and focused by the microscope objective. A collimation lens
collects the trapping and feedback laser in the trap transmission. The feed-
back laser is subsequently filtered on a polarization beamsplitter and the
trapping laser is used in detection.

The optical setup to create a stable trap for nanospheres is shown
in Figure 3.13. A Mephisto laser2 is amplified with a fiber amplifier3

and split on a polarizing beamsplitter (PBS) with a ratio of 90 : 10 into

2Mephisto, wavelength 1064 nm, output power 2 W
3Nufern, 1064 nm, 5 W
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the trapping and feedback laser, respectively. A small part of the trap-
ping laser bypasses the vacuum chamber and is used as a local oscil-
lator (LO) for detection of the nanosphere motion. The feedback laser
passes through an acousto-optical modulator (AOM, RF frequency 80
MHz), which is used for parametric feedback cooling by modulating
the total trap intensity. We use the first order of the AOM shifted
by 80 MHz from the trapping laser, which allows for a separation in
frequency space. The two lasers are recombined on another polariz-
ing beamsplitter and subsequently coupled into a single mode fiber
to overlap the modes. The laser is magnified at the fiber output and
focused by the microscope objective to form an optical trap. The two
beams are separated in the trap transmission on a Glan-Thompson
polarizer. The trapping laser is used for detection of the nanosphere
motion (see Section 3.2 for more details on the detection).

Parametric feedback cooling

Cooling of the three-dimensional motion of the nanosphere is needed
to stabilize the nanosphere at low pressures. The trap created by the
microscope objective is deep enough to keep the nanosphere even at
10−5 mbar, albeit the nanosphere’s energy increases significantly at
such low pressures. To prevent a loss of the nanosphere, we typi-
cally start cooling the nanosphere motion at pressures reached after
prepumping (p = 4× 10−2 mbar).

We employ parametric feedback cooling as a method to cool the na-
nosphere motion in all directions [Gieseler et al., 2012, Mestres et al.,
2015, Jain et al., 2016]. It is implemented with a phase-locked loop
(PLL, Zurich Instruments HF2LI) which creates a feedback signal that
is applied to the nanosphere. The PLL detects the mechanical fre-
quency by locking an internal oscillator to the nanosphere motion.
The oscillator is then doubled in frequency, shifted in phase and ap-
plied to an AOM as an intensity modulation to the trapping laser.
The feedback modulates the trap potential such that it stiffens any-
time the nanosphere moves away from the equilibrium trap position.
For more details see the PhD thesis by David Grass [Grass, 2018].

3.1.2 Optomechanical cavity

The central part of our experiment is a near-confocal cavity constructed
of two identical cavity mirrors with a high reflection coating (Lay-
ertec) with a transmission per mirror of 20 ppm (T1 = T2 = 20× 10−6)
and estimated losses per mirror L1 = L2 = 30× 10−6. The mirrors
have radius of curvature (RoC) RoC1 = RoC2 = 10 mm and a sepa-
ration of L = c

2∆νFSR
≈ 10.7 mm, which we obtain from the measure-

ment of the cavity free spectral range ∆νFSR. The cavity length L al-
lows us to calculate the cavity waist of the TEM00 mode w0 ≈ 41.1 µm
from Equation (A.6).
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Figure 3.2: Measurement of the cavity energy decay rate κ. We took 26

scans of the same cavity resonance over the course of a month at pressures
around 1 mbar (blue points). As the cavity length drifts over time, the indi-
vidual scans are shifted in frequency to overlap them. The joint fit over all
data points gives an average cavity decay rate κ = 2π× (193± 1) kHz, while
the average value of the free spectral range is ∆νFSR ≈ 14.0192 GHz. Indi-
vidual measurements of ∆νFSR (red points) demonstrate an average cavity
length stability better than λ/2.

We stabilize the laser to cavity resonance at ωc (explained in de-
tail in Section 3.1.3) and create a sideband3 with an electro-optical3 In fact, we create

both upper and
lower sideband at

ωc ±ωsdb, while the
carrier is suppressed

but not eradicated.
See Section 3.1.5.

modulator (EOM) at frequency ωc + ωsdb. We use the sideband to
scan over an adjacent cavity resonance ωc + 2π × ∆νFSR and mea-
sure an average free spectral range ∆νFSR ≈ 14.0192 GHz and cavity
full-width-at-half-maximum (FWHM) linewidth κ = 2π × (193± 1)
kHz (Figure 3.2). From the spread of measured values of ∆νFSR we
conclude that the cavity length changes less than ±0.2 µm from the
average value, demonstrating a length stability over the course of a
month of better than λ/2.

Naturally, ∆νFSR changes as the pressure is decreased from 1 mbar
to high vacuum, which is explained by the relative change of the re-
fractive index of air. As it approaches a vacuum value of nair = 1
the effective cavity length decreases, thus increasing the free spectral
range ∆νFSR = c

2nair L . We first lock the cavity at high pressure, where
the refractive index of air is nair(1 mbar) ≈ 1 + 2 × 10−6 [Owens,
1967]. Once in vacuum, the free spectral range will differ by ∼ 28
kHz, which agrees with an observed shift of around 20 − 30 kHz.
Based on this, we estimate that the resonance frequency experiences
a substantial shift by more than 500 MHz, which can lead to a mode
hop of the laser and a subsequent loss of the cavity lock during the
pumping process. Therefore, we lock the cavity only when the pres-
sure in the vacuum chamber is around 10−5 mbar, from where the
cavity lock is stable.
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a) b)

c)

I

II

Figure 3.3: (a) End mirror is obtained after a cutting process where a 4
mm wide strip is created from its original circular profile with 12.7 mm
diameter. (b) Microscope objective (I) and cavity (II) mounted together. The
cavity holder is not shown for clarity. The microscope objective is mounted
on a triaxial nanopositioner, which is used to position the nanosphere in
the cavity mode. (c) Aluminum cavity holder with mirrors glued in. The
screws seen in foreground are used to hold the mirrors at a fixed position
while the glue is being cured and are removed subsequently. The hole (in
this picture below the mirrors) is designed to approach the cavity with a
collimation lens to collect the trapping light for detection.

The large numerical aperture and short working distance (WD) re-
quire sufficiently narrow cavity mirrors, which is not the case with
the standard off-the-shelf mirror substrates with the radius d/2 =

6.35 mm > WD. We therefore cut the substrates into 4 mm wide
strips (Figure 3.3 (a)), which is done in collaboration with the group
of Martin Weitz (particularly Tobias Damm) at the University of Bonn.
A layer of First Contact4 polymer, typically used for protecting and
cleaning of optics, is coated on the inner mirror surface with the high
finesse coating before cutting. Rhe cavity finesse remains unaffected
after cutting the mirrors.

Frequently, the cavity mirrors are isolated from external acoustic
vibrations by designing a minimal number of contact points with the
cavity holder. Now, with a rectangular cross-section, the mirrors are

4Manufactured by Photonic Cleaning Technologies
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Figure 3.4: Power spectral density of the locking error signal. We see a
distinctive drop in the power spectral density above 100 kHz before (blue)
and after gluing (red) the cavity mirrors to the cavity holder. The flat noise
response above 200 kHz in the red spectrum is due to electronic noise. We
are subsequently able to reduce the lock bandwidth and optimize the lock
parameters, further improving the response to external vibrations.

in contact with the aluminum holder on all sides (Figure 3.3 (c)) and
susceptible to vibrations over a broad frequency range. The coupling
of external vibrations to the cavity is reduced by gluing the cavity
mirrors with a thin layer of soft UV glue5. This immediately dampens
all the vibrations above 100 kHz (Figure 3.4). Together with further
optimization of the lock parameters, the locked cavity is insensitive
to noises such as closing the lab door or touching the optical table.
Finally, we note that the vibration isolation is improved by mounting
the cavity holder on top of a massive aluminum block (green surface
on Figure 3.3 (b)), which is isolated from the chamber bottom by a 3
mm thick layer of viton. The vacuum chamber itself is set on a 3 mm
thick layer of viton.

Loading of a nanosphere in the trap is a dirty process which can
ruin the cavity finesse (see Section 3.5 for more details on trapping).
Therefore, the cavity holder is designed to be small and easy to re-
move from the vacuum chamber until we trap a nanosphere in the
tweezer. We then mount the holder by sliding it on top of a massive
aluminum block. A possible clean alternative could be to deliver a
single nanosphere into the trap with a hollowcore fiber [Grass et al.,
2016].

5Norland Optic NOA65
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3.1.3 Cavity locking schemes

The cavity resonance drifts over time and on different time scales. For
example, significant length changes due to thermal expansion of cav-
ity holders happen on slow time scales, from 0 to 100 Hz, while acous-
tic disturbances still have a large impact at frequencies well above 10
kHz. In order to stabilize the laser to the cavity, we employ diverse
locking techniques such as side-of-fringe (used for the filter cavity)
and Pound-Drever-Hall (PDH, used for the optomechanical cavity)
[Drever et al., 1983]. In the following text we focus on the advantages
and disadvantages of each technique.

Side-of-fringe locking

Let us assume perfect mode matching between a laser with frequency
ωl driving a cavity mode with resonance ωcav = ωl + ∆, where the
cavity has a FWHM linewidth of κ. Depending on the detuning ∆, the
transmitted laser power is attenuated by the cavity transfer function

T(∆) = (κ/2)2

(κ/2)2+∆2 . Therefore, we can detect relative frequency fluctu-

ations between the cavity resonance and the laser by measuring the
transmitted power (Figure 3.5). However, this method confines lock-
ing to frequencies away from the resonance, where the first derivative
of the cavity transfer function is a linear function of the detuning:

dT(∆)
d∆

= −
2
(

κ
2

)2 ∆((
κ
2

)2
+ ∆2

)2 . (3.2)

As the method locks the laser away from the cavity resonance, this
locking scheme is called side-of-fringe.

Figure 3.5: Side-of-fringe locking setup. The optical power transmitted
through the cavity is detected with a photodiode. At the cavity resonance,
change in relative frequency ωl − ωcav will always result in a decrease of
the transmitted power, hence we can only extract the information about
the absolute frequency difference. However, the transmitted power is a
monotonous function of the relative frequency fluctuations at a non-zero
detuning. The PID lock uses the transmitted power as the error signal and
modifies either the laser frequency or the cavity resonance, e.g. by changing
the cavity length with a piezo element.
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Figure 3.6: Side-of-fringe locking in frequency space. Side-of-fringe lock-
ing will turn frequency fluctuations ∆ω into relative intensity fluctuations
∆I
I . Shown in red, the detuning of ∆0 gives us the highest sensitivity to

these fluctuations, as well as the best error signal for locking. Equal fre-
quency variation at the detuning of κ results in a smaller change of relative
intensity, shown here in green.

Side-of-fringe locking should be avoided when the following two
things are important:

1. Desired set point changes regularly. The error signal dT(∆0)/d∆
strongly depends on the set point ∆0. Therefore, any change of
the set point will have to be followed by an optimization of the
lock parameters.

2. Cavity decay rate κ is small. Fluctuations of the laser frequency
∆ωl(t) around the set point ∆0

4 will be converted into fluctua-4 Maximum effect
will be around

∆0 = κ
2
√

3

tions of the relative intracavity intensity (Figure 3.6):

ε(t) =
∆I(t)

Ī
= −T′(∆0)∆ωl(t). (3.3)

Assuming a nanosphere is trapped by the cavity standing wave,
we can estimate the heating rate imposed on the nanosphere
motion by this noise [Gehm et al., 1998]:

γω =
(ω0

2

)2 (
T′(∆0)

)2 Sϕ̇ϕ̇

(
2

Ω0

2π

)
, (3.4)

where Sϕ̇ϕ̇

(
2 Ω0

2π

)
is the laser frequency noise at twice the me-

chanical frequency (parametric heating). The evolution of the
motional energy is exponential, i.e. Ė = γωE. Therefore, the
heating rate γω is better understood as negative damping. For
a cavity linewidth κ/2π = 193 kHz, a mechanical frequency
Ω0/2π = 160 kHz and laser frequency noise6 Sϕ̇ϕ̇ (2Ω0/2π) ≈

6Mephisto Laser Specification Sheet
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10−2 Hz2/Hz, we expect a heating rate γω ∼ 0.04 Hz, equal
to the gas damping at pressures below p ∼ 10−5 mbar. With-
out an additional feedback cooling mechanism, the energy of
the nanosphere motion would increase until the nanosphere is
lost. For a nanosphere placed at the largest intensity gradient5, 5 There is no

parametric heating
at this position as
the intensity is a
linear function of the
nanosphere position.

laser frequency fluctuations will lead to a heating mechanism
as described in Section 2.3.1.

The side-of-fringe lock can still be used on a cavity with large
linewidth κ, such as the cavity mentioned in Section 3.1.5. For such a
cavity with κFC/2π = 80 MHz, any additional intensity noise created
by the frequency fluctuations will be negligible.

Pound-Drever-Hall locking

Instead of the side-of-fringe locking, we use the more elaborate Pound-
Drever-Hall (PDH) locking scheme for the optomechanical cavity (Fig-
ure 3.7) [Drever et al., 1983, Black, 2001]. The principle behind this
scheme is: The principal laser (carrier) at frequency ωl and two weak
sidebands at ±ωs � κ are driving the cavity mode at frequency
ωcav, to which we wish to stabilize the laser. As the sidebands are
far detuned from the resonance (in our case: ωs = 2π × 20 MHz,
κ = 2π× 193 kHz), they are rejected by the cavity with a ±π/2 phase
shift. On the other hand, the reflected part of the principal laser picks
up a phase ϕd proportional to the frequency difference ∆ = ωl −ωcav.
Mixing the carrier with the completely reflected sidebands results in
a beatnote at ωs, which we detect with a photodiode. A change of
the cavity resonance is thus detected as a fluctuation of the relative
phase between the carrier and its sidebands π/2− ϕd. This produces
an error signal around the cavity resonance. In essence, the PDH lock
is a detection of the cavity phase quadrature, i.e. it can be used to
read out the nanosphere motion.

We assume that we have a symmetric Fabry-Perot cavity, i.e. a
cavity with equal mirror reflectivities r2

1 = r2
2 = R and transmit-

tivities t2
1 = t2

2 = T with R + T 6= 1 in the most general case of
non-zero losses. The laser outputs light at a frequency ωl with a
narrow linewidth, commonly described as a monochromatic source
Ed = E0eiωl t. The electric field reflected from the cavity is Eref =

EdF(∆)eiωl t, where function F(∆) is the cavity response in reflection:

F(∆) =

√
R ·
(

ei ∆
∆νFSR − 1

)
1− Rei ∆

∆νFSR

. (3.5)

Sidebands are created from a phase modulation on the carrier done
by an electric-optic modulator (EOM):

Ed = E0ei(ωl t+β sin ωst)

≈ E0

[
J0(β)eiωl t + J1(β)ei(ωl+ωs)t − J1(β)ei(ωl−ωs)t

]
, (3.6)
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Figure 3.7: Setup for Pound-Drever-Hall locking technique. A dual out-
put function generator (FG, Keysight 33522A) generates two synchronized
20 MHz drive tones, with one tone used to create sidebands on the laser
carrier by driving a resonant electro-optical modulator (EOM, New Focus
4001). The carrier and sidebands pass through a quarter waveplate nested in
between two polarization beamsplitters (PBS), such that half of the optical
power is lost in both directions. This allows for some of the light reflected
by the cavity to end up on the detector photodiode (DET). The signal is fil-
tered with a high-pass filter (HP) with a cut-off frequency around 200 kHz
and mixed with the other FG drive tone in order to create an error signal.
The FG allows for a relative phase ϕs between the drive tones, which is nec-
essary to optimize the error signal (see the main text for details). The laser
frequency is locked to the cavity resonance with a PID lock (Toptica PID
110) actuating on the laser piezo.

where β is the modulation depth, ωs is the sideband frequency and
J0, J1 are the Bessel functions. The total power reflected off the cavity
and detected on the PDH detector is:

Pref = Pc |F(∆)|2 + Ps

(
|F(∆ + ωs)|2 + |F(∆−ωs)|2

)
+ 2

√
PcPs Re [F(∆)F∗(∆ + ωs)− F∗(∆)F(∆−ωs)] cos ωst

− 2
√

PcPs Im [F(∆)F∗(∆ + ωs)− F∗(∆)F(∆−ωs)] sin ωst,

(3.7)

where Pc = |E0|2 J2
0(β) and Ps = |E0|2 J2

1(β). The real and imag-
inary part of the modulated signal χ(∆, ωs) = F(∆)F∗(∆ + ωs) −
F∗(∆)F(∆ − ωs) represent the in- and out-of-phase components of
the error signal, respectively. Oscillations at the second harmonic 2ωs

and higher frequencies were neglected as the modulation depth is
assumed small.

The first line of Equation (3.7) is the optical power of the reflected
carrier and its sidebands, which is minimal when the laser frequency
is resonant to the cavity. If we drive the cavity weakly and scan the
laser frequency over the resonance slowly, we can use this signal to
determine the cavity linewidth. The second and the third line contain
the mixed signal at the PDH frequency, which is used to lock the
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laser to the cavity. We demodulate this signal with a local oscillator
∝ cos(ωst + θ), which gives us a cavity response at low frequencies:

Err(∆)√
PcPs

= −Re [χ(∆, ωs)] cos ϕs − Im [χ(∆, ωs)] sin ϕs,

while we filter out the contribution at the higher frequency 2ωs.

-30 -20 -10 0 10 20 30

Frequency l [MHz]

Figure 3.8: In-phase (red) and out-of-phase (blue) components of the error
signal. The error signal depends on the relative phase ϕs between the de-
tected beatnote at ωs and the demodulation signal from the function gener-
ator, also at ωs. The in-phase (out-of-phase) response is obtained for ϕs = 0
(π/2). The out-of-phase response shows a stronger dependence on the laser
frequency ωl , which is why the optimal phase for creating the error signal
is ϕs = π/2.

An obvious choice for an error signal would be the imaginary part
of χ(∆, ωs) as it crosses 0 at ∆ = 0 (Figure 3.8). We will observe
it for ϕs = π

2 . This error signal is what can be used to lock the
laser frequency ωl to the cavity resonant frequency ωcav, which is an
integer multiple of ∆νFSR. By choosing the lock set point, we can
choose the detuning between drive and cavity frequency. We lock
at ωl = ωcav, where Err(∆) = 0 and Err is linear in the frequency
difference ∆:

Err(∆) = −4
√

PcPs
∆

∆νFSR(1− r2)
. ∆� κ (3.8)

3.1.4 Initial alignment of the tweezer trap to the cavity mode

After a nanosphere is trapped in the tweezer and the laser is locked
to the optomechanical cavity, we place the nanosphere in the cavity
mode. The microscope objective is set on a three-dimensional nanopo-
sitioner7, which is used to move the nanosphere. In the following we
present two distinct methods which were used to reach a successful
alignment.

7Mechonics MX35
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Figure 3.9: Rough alignment of the trapped nanosphere (circled in red)
to the cavity mode (circled in blue) using a camera in the cavity trans-
mission. The camera is placed behind the cavity mirror, with the field of
view including both the microscope objective (marked in red) and the cav-
ity mirror (marked in yellow). The arrows show the direction in which the
nanosphere was moved compared to a previous image. (a) The laser fre-
quency is scanned around the cavity resonance in order to see the cavity
mode in transmission. The nanosphere is seen at the edge of the cavity mir-
ror, scattering light in the camera direction. (b) We move the nanosphere
up by moving the microscope objective with a nanopositioner. (c) We stop
moving at level with the cavity mode. (d) Laser frequency is not close to
the cavity resonance anymore, so the light is lost in the transmission. (e) We
lock the laser to the cavity resonance, hence the cavity transmission blinds
the camera. However, scattered light off the trapping laser is still clearly
observed. (f) We move the nanosphere toward the cavity mode. As soon
as it is behind cavity mirror, the scattered light is dimmer. However, the
nanosphere is still seen and can now be moved into the cavity mode. As
soon as the nanosphere disappears behind the bright cavity mode, the final
alignment is done by optimizing the detection of the nanosphere motion the
homodyne detection of the locking mode. The final alignment is reached

We set the trapping laser polarization orthogonal to the cavity axis,
thus maximizing the light scattering in the direction of the cavity
mirrors. Furthermore, the trapping laser frequency is always kept
far detuned with respect to the cavity resonance in order to avoid
coupling of the scattered light to the cavity mode. We set up a camera
in the cavity transmission, which helps us to see a large area between
the microscope objective and the cavity mirror, as well as the whole
cavity mirror. The nanosphere is initially in the space between the
objective and the mirror (Figure 3.9(a)), seen as a bright spot on the
camera (red circle in Figure 3.9 points to the nanosphere position).
We scan the laser frequency over the cavity resonance in order to
provide a guideline on where the nanosphere should be placed (blue
circle in Figure 3.9 points to the transmitted light of the driven cavity
mode). We subsequently lock the laser to the cavity (Figure 3.9(e))
and move the particle into the area between the cavity mirrors until
it disappears on the camera in the cavity light. From this point on
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we resort to the homodyne detection in the cavity transmission to
optimize the coupling of the nanosphere motion to the cavity mode,
which we describe in detail in Section 3.3.2.

The previous method has a limited precision as the transmitted cav-
ity light blinds the camera once the laser is locked (Figure 3.9(e)). An
alternative method improves the precision with which we are able to
place the nanosphere into the cavity mode. Instead of driving the
cavity mode with an external laser, we now scan the frequency of the
trapping laser close to a cavity resonance. Although a thorough ex-
planation involves the theory from Chapter 5, we briefly comment on
the method here: We place the nanosphere somewhere in between the
cavity mirrors and start scanning the trapping laser frequency. Light
scattered in the direction of the cavity mirrors bounces off the mirrors
many times due to their high reflectivity. If a resonance condition is
met, i.e. the trapping laser frequency is resonant to an arbitrary trans-
verse cavity mode, a constructive interference of the scattered light in
the cavity leads to an observable mode shape on the camera in the
cavity transmission. The closer we are to the cavity center, the more
the mode size converges toward the fundamental TEM00 mode, pro-
viding us with a way to align the nanosphere to the cavity axis within
a couple of cavity waists. In practice, once we stop distinguishing
mode features due to the image resolution, we lock the laser to the
cavity. We are able to immediately observe the nanosphere motion
in the homodyne detection. We have used both alignment methods
intermittently.

3.1.5 Generation of the control cavity mode

The laser frequency is locked to a cavity resonance at frequency ωcav

via the PDH method. In order to achieve cavity cooling of the nano-
sphere motion, a laser (control laser) has to drive the cavity detuned
with respect to the cavity resonance. We choose a detuning with
respect to either of the adjacent longitudinal cavity resonances at fre-
quencies ωcav ± 2π × ∆νFSR in order to separate it from the locking
mode. The control laser is created by shifting the laser frequency with
an electro-optical modulator (EOM) since its broad frequency range
allows large frequency shift by ∆νFSR. An alternative would be to di-
rectly lock a detuned laser directly to the cavity resonance [Yam et al.,
2015], which would simplify the setup to a single cavity mode.

A part of the laser that is already locked to a cavity resonance at
ωcav passes through an EOM, which generates sidebands at ωcav ±
2π × ∆νFSR. We find approximately 38% of optical power in each of
those sidebands, with the remaining optical power being distributed
between the carrier (around 20%) and the higher-order sidebands at
ωc ± 2π× k× ∆νFSR, k ≥ 2. We construct a filtering cavity (sFC) with
a designed cavity FWHM linewidth κFC = 2π × 80 MHz, intended
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Figure 3.10: Setup to create the control cavity mode. We assume the princi-
pal laser at ωl is already locked to a cavity resonance and a part of the light
is split off into a fiber EOM. We apply a phase modulation at a free spectral
range frequency ∆νFSR ∼ 14 GHz, which to first order creates sidebands
at ±∆νFSR. We lock a filtering cavity (sFC) with a side-of-fringe lock to
transmit only one of the created sidebands. The error signal is either taken
directly in the transmission (detected by DET1) or in the transmission of
the optomechanical cavity (monitored by DET2), with the latter effectively
stabilizing the intracavity power of the control mode.

to transmit only one of the first-order sidebands, while reducing the
carrier power in transmission by a factor of ∼ 105. The cavity mirrors
(diameter d = 12.7 mm, radius of curvature RoC = 25 mm and cavity
length LFC ∼ 8 mm) are mounted in two separate lens tubes8, which
are then glued to a cylindrical piezo placed in between. This way of
mounting cavity mirrors allows for an easy exchange or cleaning of
the mirrors, although they are already enclosed in such a way that
no new dust can fall in between. We focus the laser with a 200 mm
lens to mode match it to the cavity TEM00 mode. We confirm that
the cavity linewidth is as expected and measure a transmission of
roughly 80% at the filtering cavity resonance. Due to a small im-
perfection in the laser alignment, we still drive higher-order spatial
modes TEM10/TEM01, which are suppressed well below 1% of the
power in TEM00 mode.

We use two different detectors intermittently to lock the filtering
cavity to the laser with a side-of-fringe lock. Less than 1% of the
transmitted power is picked off immediately after the filtering cav-
ity, which stabilizes the optical power of the control laser before the
optomechanical cavity (cavity drive Ed). This lock is used before we
set the desired detuning. The second detector is in the transmission
of the optomechanical cavity, which stabilizes the intracavity power
of the control laser independent of the chosen detuning (intracavity

photon number nphot =
E2

d
|κ/2+i∆|2 ).

8Thorlabs SM05M05
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3.1.6 Vacuum system

We use a scroll pump (Edwards nXDS6i) and a turbomolecular pump
(Edwards nEXT300D) to reach high vacuum (∼ 10−6 mbar) in the
vacuum chamber. Using only the scroll pump with the gate valve
to the turbomolecular pump (Gate valve 2) closed (Figure 3.11) we
are able to reach a prepump pressure of 4× 10−2 mbar. In the next
stage we close the gate valve to the scroll pump (Gate valve 1) and
open Gate valve 2 to start pumping with a turbomolecular pump.
Although we suppress the turbo pump vibrations with a CF63 bellow,
the cavity lock is disturbed while the pump is speeding up, probably
due to hitting a particular mechanical resonance of the experimental
setup. In order to stay clear of such resonances, we keep the turbo
pump continuously running once the cavity is locked.

Gate valve 2

CF63 bellow

KF25 bellow

Gate valve 1

Turbo pump
Diaphragm

valve 

Gauge 1

Scroll
pump

Vacuum
chamber

Gauge 2

QAD

Figure 3.11: Vacuum system. We use a scroll pump and turbomolecular
pump to pump down to the base pressure of the chamber at ∼ 10−6 mbar.
The vacuum chamber has a cross CF63 piece connecting it to a pressure
gauge (Gauge 1), directly to the scroll pump through Gate valve 1 and the
turbo pump through Gate valve 2. We use a CF63 bellow to isolate the
chamber from the vibrations of the turbo pump. A second pressure gauge
is mounted directly onto the vacuum chamber (Gauge 2). Vacuum chamber
features a Quick Access Door (QAD) which we use to retrieve and return
the cavity.

A commonly used pressure gauge9 is a two-part gauge with Pirani
(operates above 10−4 mbar) and cold cathode gauges (operates below
10−2 mbar) with an overlapping operating region. We expect around
30% imprecision in measuring the pressure in either operational re-

9Pfeiffer Vacuum MPT 200
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Figure 3.12: Pressure measurements of two pressure gauges. The points
are defined by the pressures measured by two pressure gauges. The line
represents a case of two pressure gauges measuring exactly the same val-
ues. The gauges are well calibrated at high pressures (p > 10−2 mbar).
However, starting at the overlapping operating regime, the gauges show a
huge pressure difference. The sudden strong deviation between the mea-
sured values can be explained by opening Gate valve 2 to start pumping
with the turbomolecular pump. In this case, the pressure probably didn’t
reach an equilibrium value in the whole vacuum system. The pressures at
low pressures (p < 10−5) have stabilized after hours of pumping and show
a moderate disagreement of around 30%.

gime10. We mount one pressure gauge directly to the vacuum cham-
ber and a second one in front of the gate valves leading to the pumps.
The gauges show a difference of ∼ 30% in the pressure readout in
high vacuum (Figure 3.12), which confirms that we will have a signif-
icant unknown in the estimate of the gas damping.

No leaks were observed with a helium leak tester. Still, pressure
increases fast when we heat the vacuum chamber with a reflector
lamp (shone through a large window on Quick Access Door: QAD).
However, the rate of the pressure increase is slower after several days
of pumping, which confirms that contamination (as a result of the
trapping process) is the main reason for the slow pumping down to
vacuum. Base pressure of the vacuum chamber is around 4× 10−7

mbar after a night of pumping. Reasons for not being able to reach
lower pressures might be the following:

• improperly cleaned viton (used for vibration isolation),

• frequent spraying of liquid and nanospheres for trapping and
venting of the vacuum chamber to put the cavity inside,

• rubber O-rings at the quick access door (QAD), which is regu-
larly used to move the cavity in and out of the vacuum chamber

10Operating manual
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3.2 detection of the nanosphere motion with the trap-
ping laser

The nanosphere scatters a part of the trapping laser electric field
E0 exp(iωtt) following the dipole radiation pattern. The light trans-
mitted through the optical trap and collimated by a collection lens
(NA= 0.2) can be described as a superposition of the forward scat-
tered field En exp(iωtt + iϕn) and the electric field Et exp(iωtt + iϕt),
Et ≈ E0. A single photodiode will detect an interference of the two
fields with a constant phase relation of ϕt − ϕn = π/2 due to the
Gouy phase of the transmitted trapping laser [Gieseler et al., 2012].
Therefore, the detection with a single photodiode is sensitive to the
phase of the scattered field, i.e. to the nanosphere motion, with the
highest sensitivity to the motion along the z-axis. In order to enhance
the detection of the transverse motion (x- and y-motion) we use a
split detection scheme (Figure 3.13).

BS
BS

LO

trap  
vacuum
chamber

D

D
DETz

DETx

DETy

z

x
y

Figure 3.13: Detection of the nanosphere motion with the trapping laser.
The feedback laser (fb) is separated in the trap transmission on a polarizing
beamsplitter. The trapping laser is split into three paths with each path
leading to a different detector to monitor a single axis of the nanosphere
motion. A part of the trapping laser is split off before the vacuum chamber
and used as a local oscillator (LO) for the detection of the z-motion (detZ).
D-shaped mirrors are used to split the trapping laser along the x- and y-
axis, which send the halves to the balanced photodetectors DETy and DETx
in order to detect the y- and x-motion, respectively.

Let us analyze the split detection of the x-motion (DETx) as a spe-
cific example. We use a D-shaped mirror to split the laser mode along
the vertical axis into left and right semicircles. Their respective pow-
ers are then subtracted from each other on a balanced detector (Thor-
labs PDB-425C-AC). As both y- and z-motion show up with equal
amplitudes in each detector photodiode, the sensitivity to these mo-
tions is suppressed. In practice, we show a total elimination of the
y-motion and some suppression of the z-motion (Figure 3.14). We ex-
plain this by imperfectly aligning the collection lens along the optical
axis of the transmitted light.
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Figure 3.14: Noise power spectrum of signals obtained in DETz (blue),
DETx (green) and DETy (red). All three directions of motion are observed
as spectral peaks at frequencies Ωz, Ωx and Ωy in DETz, however the de-
tection is most sensitive to the z-motion. DETx (DETy) is used to detect
the x-motion (y-motion) while the y-motion (x-motion) is suppressed to the
noise level. The z-motion, although still observed in DETx and DETy, is suffi-
ciently far away in frequency space to be efficiently filtered out by electronic
bandpass filters.

The signal is further amplified by 10 dB with a voltage amplifier
(Femto DHPVA). Half of the signal passes through a buffer (to ac-
count for the difference between the voltage amplifier input impedance
of 50 Ω and the acquisition card input impedance of 1MΩ) and pro-
cessed with an acquisition card (pico Technology PicoScope 5442B).
The second half is used for parametric feedback cooling with a phase-
locked loop (PLL, Zurich Instruments HF2LI). The PLL locks an in-
ternal oscillator to the dominant harmonic oscillation in the signal
within a certain bandwidth. Still, a larger oscillation out of the given
range limits the PLL input voltage range. This would result in an
effectively smaller desired oscillation and is the main reason behind
suppressing other oscillations in our detection scheme. The internal
oscillator is squared in amplitude and applied as an amplitude mod-
ulation to the AOM, which increases the trap stiffness to stabilize the
nanosphere motion. For more details about the trapping part of the
setup, see the PhD thesis by David Grass [Grass, 2018].

3.3 homodyne detection of the locking mode

The phase quadrature of the cavity output holds information about
the nanosphere motion (see Equation (2.71)). We are usually inter-
ested in detection of the motion along the cavity axis x̂. Provided
we levitate a nanosphere with the tweezer laser, we can move it with
respect to the cavity standing wave, which is useful to optimize the
linear coupling g0 sin(2kx0) and to scan the cavity mode profile. At
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an arbitrary position, the homodyne spectrum is a complex combina-
tion of peaks at motional frequencies and their combinations. In the
following we develop a full theory of the homodyne detection in this
scenario.

3.3.1 Modeling of the homodyne detection spectrum

The homodyne measurement of the locking mode realizes an ampli-
fied detection of its phase quadrature. In a classical picture, the cavity
output of the locking cavity mode Ep,oute−iωpt is combined with an or-
thogonally polarized strong local oscillator (LO) mode ELOe−i(ωpt+ϕ)

on a polarizing beamsplitter PBS1 (Figure 3.15). The two modes are
brought to interference on a second beamsplitter PBS2 and detected
by a balanced photodetector11, yielding an output voltage propor-
tional to an intensity difference:

v(t) = ηdet
ε0cGd

2
×∫

A

(∣∣∣Ep,out~nx + ELO~nye−iϕ
∣∣∣2 − ∣∣∣Ep,out~nx − ELO~nye−iϕ

∣∣∣2) dA.

(3.9)

The gain Gd of converting the laser intensity into electrical voltage
is given by the detector specification, while ηdet is the detection effi-
ciency of the photodiodes. It is important to include an integration
over the photodiode area A in order to account for the mode over-
lap of the two fields. In general, this integral can be exchanged by a
single value of detection visibility V , which we maximize in order to
achieve the most efficient detection of the phase quadrature6. Precise 6 V can be measured

when PLO ≈ Pp,out
[Bachor and Ralph,
2004].

balancing of the two detectors is necessary to suppress terms propor-
tional to |ELO|2 and |Ep,out|2, such that Equation (3.9) contains only
the cross-terms:

v(t) = 2ηdetVGd A
ε0c
2

(
ELOE∗p,oute

−iϕ + E∗LOEp,outeiϕ
)

. (3.10)

Taking ELO = E∗LO (in essence, considering ELO � Ep,out) and

Ep,out =
√

2h̄ωp
Aε0c

(√
κIN

(
α

p
0 + âp

)
+ âp,2

IN

)
from cavity input-output the-

ory (see Chapter 2), the optimal phase difference for detection of
the phase quadrature is clearly ϕ = π/2. The strong coherent part
of the signal is typically used to lock the detection quadrature as
vDC ∝

√
PLO|α

p
0 | cos ϕ, from which we see that the locking set point

must be at vDC = 0. The rest of the signal v(t) contains the phase
quadrature of the fluctuations of the locking mode:

v(t) = 2ηdetVGd
√

PLO

√
h̄ωpκIN

(
âp − â†

p

)
. (3.11)

11Thorlabs PDB420C-AC
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Figure 3.15: Setup for the homodyne measurement. The transmitted lock-
ing cavity field (Pout,p ≈ 7µW) is mixed with an orthogonally polarized local
oscillator (LO) laser (PLO ≈ 1 mW) on a polarizing beamsplitter (PBS1). The
two lasers are split 50:50 between the reflection and transmission of the
following polarizing beamsplitter (PBS2), after which we focus the mixed
lasers on the two photodiodes of a balanced photodetector. The low-pass fil-
tered signal is used for locking of the relative phase between the LO and the
locking beam via applying the PID generated feedback signal to the piezo
driven mirror. This mirror is placed orthogonal to the LO propagation in
order to minimize beam pointing errors due to the piezo length change.
The high-pass filtered signal can be either digitized and stored for further
evaluation or immediately turned into a power spectrum with a spectrum
analyzer.

The power spectrum of v(t) is proportional to the spectrum of the
locking mode phase quadrature:

SVV(ω) = 4η2
detV2 G2

d
RLOAD

PLOh̄ωpκINSp
YY(ω). (3.12)

Note that Sp
YY(ω) is proportional to Sxx(ω), which we showed in

Equation (2.71) in Chapter 2.
So far we assumed a noiseless local oscillator, i.e. a laser without

any classical phase and intensity noise. Let us now consider the most
general case of local oscillator ELO(t) = ELO(1 + αLO(t))e−iϕLO(t) with
phase noise ϕLO(t) and amplitude noise αLO(t), but still a clean cavity
mode. Assuming that any the locking mode fluctuation âp is small
compared to its coherent amplitude αp, the main modification to v(t)
is:

vlo(t) = 4iηdetVGd

√
PLOh̄ωpκINα

p
0 ϕ(t). (3.13)

In the case of no correlation between the phase noise ϕ(t) and fluctu-
ations âp, the total spectrum will be modified by:

SLO
VV(ω) = 16η2

detV2 G2
d

RLOAD
PLOh̄ωpκIN |αp

0 |
2Sϕϕ(ω) (3.14)
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Since the same laser is used both for driving the cavity and as a
local oscillator, the same phase noise will be present in both fields.
Accounting for a cavity response we obtain a spectrum for the cross-
contribution:

SLO−p
VV (ω) = 8η2

detV2 G2
d

RLOAD
PLOh̄ωp

2κIN(
κ
2

)2
+ ω2

|Ep
d |

2Sϕϕ(ω). (3.15)

SLO
VV(ω) and SLO−p

VV (ω) will ultimately limit the signal to noise perfor-
mance of the homodyne detection.

Experimental spectrum with a nanosphere

Figure 3.16 shows a measured homodyne spectrum SVV(ω) of the
nanosphere motion (red) and the noise background (blue). In order
to eliminate the noise from the homodyne spectrum, we subtract a
homodyne spectrum obtained without a trapped nanosphere Sbg

VV(ω)

(blue) from spectra obtained with the nanosphere signal SVV(ω) (red).
In the next step, we divide the difference by

(
κ
2

)2 |χp(ω) + χ∗p(ω)|2 =

( κ
2 )

2

( κ
2 )

2
+ω2

to account for the cavity response to the mechanical spectrum

Sxx(ω). Thus obtained "processed" spectrum (green) is compared to
a theoretical spectrum ccal × Sxx(ω) (green line) assuming only the
thermal noise contribution to Sl

YY from Equation (2.71) and without
any fit parameters.

The calibration constant ccal was obtained from independent mea-
surements (V = 0.92, PLO ≈ 0.2 mW, κ = 2π × 193 kHz) and, where
no measurements could be performed, from detector specifications
(GV/W = 250× 103 V/W, ηdet ≈ 0.7). We detect the peak at Ωx =

2π × 169.5 kHz and calculate the damping rate γm = 2π × 2.85 kHz
from the measured pressure p = 2.39 mbar. We assume a nano-
sphere of nominal radius, yielding a single photon coupling rate
g0 ≈ 2π × 0.3 Hz. The total coupling from the extracted intracav-
ity photon number |αp

0 |2 ∝ Pout,p = 6.9 µW is g = 2π× 3.46 kHz. The
theoretical line matches the measured spectrum around Sxx(Ωx) well.
We conclude that we can convert spectra from V2/Hz into nm2/Hz
with great confidence.

Once we place a nanosphere in the cavity locking mode, we detect
several peaks besides the expected harmonics of Ωx/2π. By compar-
ison with the tweezer readout, we know that some peaks correspond
to the nanosphere motion along z-axis (harmonics of Ωz/2π ∼ 40
kHz), while some peaks are mixed terms of the x and the z-motion.
Coupling to the motion along the y axis is suppressed by optimizing
the tweezer laser polarization such that this motion is completely or-
thogonal to the cavity axis. However, the fact that we see the z-motion
shows that the propagation of the tweezer laser is not fully orthogo-
nal to the cavity axis. Instead, we assume that the oscillation plane
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Figure 3.16: Extraction of the mechanical spectrum Sxx(ω) from the mea-
sured homodyne spectrum. The background homodyne spectrum without
a nanosphere coupled to the cavity locking mode (blue) is subtracted from
the measured homodyne spectrum (with the nanosphere maximally linearly
coupled to the cavity mode, red) and corrected for the cavity response, thus
obtaining a spectrum representing the mechanical spectrum Sxx(ω) (green).
Thermal contribution to the spectrum with a separately calibrated detection
sensitivity included (green line) is compared to it. We see an almost perfect
match, such that we can with certainty convert this homodyne spectrum
from V2/Hz into nm2/Hz.

given by the x and z axes is rotated by a small angle φ around the
y-axis (Figure 3.17). Both the x and z-motion are projected onto the
cavity axis such that:

g0 x̂ → g0(x̂ cos φ + ẑ sin φ)

gq x̂2 → gq(x̂ cos φ + ẑ sin φ)2

= gq(x̂2 cos2 φ + ẑ2 sin2 φ +
1
2

sin 2φ(x̂ẑ + ẑx̂))

gc x̂3 → gc(x̂ cos φ + ẑ sin φ)3. (3.16)

The coupling rate gx
0 to the x-motion is decreased by a factor of cos φ,

which for a small angle φ is approximately unity. However, a non-
zero angle allows for a coupling to the z-motion with linear and
quadratic rates gz

0 and gz
q, respectively. Other cross-terms that appear

in an actual measurement (Figure 3.18) are:

• x̂ẑ: Sidebands of Sxx generated by the first harmonic of z;

• x̂ẑ2: Sidebands of Sxx generated by the second harmonic of z;

• x̂2ẑ: Sidebands of Sx2x2 generated by the first harmonic of z.

We fit all of the peaks in the measured homodyne spectrum jointly:

S(xizj)(xizj)(ω) = axi±zj
(i + j)γm(iΩx ± jΩz)2

((iΩx ± jΩz)2 −ω2)2 + (i + j)2γ2
mω2 , (3.17)
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Figure 3.17: The camera image of a nanosphere levitated in optical tweez-
ers (objective). Blue overlay is a eye-guide which schematically represents
the trapping laser propagation. The white arrows show the x and z mo-
tional axes as defined by the tweezer trap. The Cavity is placed roughly
orthogonal to the tweezer laser, with the cavity x- and z-axes along black
arrows. As the tweezer polarization is oriented along the x-axis, most of the
scattered light from nanosphere is scattered along the z and y axes (into the
direction of the camera), thus we see it bright in this image. Small rotation
by the angle φ between these two coordinate systems is a source of coupling
of the nanosphere’s z-motion to the cavity mode.
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Figure 3.18: Joint fit of the mechanical spectrum read out from the cavity
phase quadrature. Fit of the homodyne spectrum is obtained by jointly fit-
ting the spectra of the x- and z-motion with all mixed contributions arising
from coupling to the z-motion. This particular spectrum was taken with
a nanosphere placed along the cavity axis in a way suited to observe the
largest number of peaks contributing. The measured spectrum in the inter-
val (400− 480) kHz, below 20 kHz and above 520 kHz is not used for the fit
as the signal-to-noise ratio is basically 0, as also shown in Figure 3.16.
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with each peak’s linewidth and central frequency defined by (i + j)γ
and Ωpeak = iΩx ± jΩz, respectively. The sign change in Ωpeak is
related to the existence of upper and lower sidebands for each peak
at iΩx. The peak amplitudes axi±zj are taken to be independent of
each other, although some relation is expected:

• The ratio of the peak amplitudes ax = Sxx(Ωx) and az = Szz(Ωz)

depends on the angle φ, which we can use to extract φ:

φ = arctan
(√

az

ax

Ωz

Ωx

)
≈ 8.4◦. (3.18)

We estimate that the single photon coupling rate to the z-motion
is gz

0/2π ≈ 0.091 Hz, which is smaller than g0 by a factor of ∼ 3.

• The peak amplitudes axi+zj and axi−zj are expected to be of equal
size as they origin from the same cross-contribution xizj. The
ratios axi /axi+zj and axi /axi−zj depend on the angle φ as well
and can be used to extract the particular value (Figure 3.19).

• The peak amplitudes axi+zj and axi−zj also depends on the nano-
sphere position and exhibit a phase shift π/2− iφ and π/2+ iφ
with respect to axi (Figure 3.19).
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Figure 3.19: Spectral amplitude of sidebands at Ωx−z and Ωx+z as a func-
tion of the nanosphere position in comparison to the amplitude of Sxx.
The mixing sidebands S(xz)(xz) show up out-of-phase with respect to the
main spectral contribution Sxx. The two sidebands have a relative phase dif-
ference of 2φ due to the tilting of the tweezer axis by an angle φ. The dashed
lines show the position of the largest intensity gradient (x0 ≈ 200 nm),
which features the best detection of Sxx, and the positions of best detection
of S(xz)(xz), which occur close to the cavity node or antinode at x0 ≈ 75 nm.

3.3.2 Moving a nanosphere along the cavity standing wave

Our experimental setup allows for positioning the nanosphere with
respect to the cavity at sub-wavelength precision. In the following
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we analyze the position-dependent coupling between nanosphere mo-
tion and the cavity mode in detail. We move the nanosphere along
the cavity standing wave in single steps (given by the nanopositioner
step size ∼ 8 nm) and record a homodyne spectrum at each position.
Each spectrum is fit as described earlier. The total moving distance is
less than 1 µm, which would insignificantly displace the nanosphere
∼ 10 nm away from the cavity axis, assuming the angle φ = 8.4◦

measured above.
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Figure 3.20: Two homodyne spectra taken at the positions of maximum
linear and quadratic couplings. Homodyne measurement detects the phase
quadrature of cavity field operators. Depending on the nanosphere position
along the cavity standing wave, we can have the optimal linear (blue) or
quadratic coupling (red). The linear coupling corresponds to the optimal
detection of Sxx and the quadratic coupling enables the detection of Sx2x2 .
Shown as well are the fits of the full homodyne spectrum, which we use to
extract information about the nanosphere motion.

The possibility to scan the nanosphere position along the standing
wave means that we can set the interaction from an optimized readout
of x̂ (at the intensity slope, Equation 2.17) to a readout which is most
sensitive to x̂2 (at the intensity minimum and maximum, Equation
2.19):

g0(x0) = g0 sin 2kx0, gq(x0) = gq cos 2kx0. (3.19)

We notice that gq and g0 are exactly out of phase with respect to each
other. The detected spectrum of the cavity phase quadrature SYY
from Equation (2.71), which now allows for the nanosphere to be at
an arbitrary trap position x0, is:

SYY(ω) ∝
(

g0 sin(2kx0)

xzp f

)2

Sxx(ω)+

(
gq cos(2kx0)

x2
zp f

)2

Sx2x2(ω)+ · · · ,

(3.20)
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where the high-Q limit (γ� Ωx) is assumed for the spectrum of Sx2x2

[Hauer et al., 2015]:

Sx2x2(ω) =
64γmΩ2

x
(ω2 + γ2

m)((ω
2 − (2Ωx)2)2 + 4ω2γ2

m)

(
kBT
mΩ2

x

)2

. (3.21)

The power spectral density Sx2x2 has three roots at frequencies ω =

0,±Ωx with FWHM linewidth of 2γm.
We encounter a slight experimental problem while we move the

nanosphere along the standing wave: the nanopositioner uses slip
stick motion. It is known that slip stick motion creates a position-
dependent friction, which leads to an unequal microstep size with
an average of around 8 nm12. In fact, the microstep size increases
with increasing translation along one direction. The cavity stand-
ing wave has a set periodicity of λ/2, so any deviations in coupling
dependence from Equation (3.19) can be attributed to this inaccu-
rate positioning. To correct for it we fit the x-scale with 2kx0 →
2kx0(1+ sf× x0), where the scaling factor sf allows for a linear change
in step size in the course of about 560 nm. We obtain a good fit to
experimental data with step sizes from 6 nm (initial microstep) to
11 nm (final microstep), therefore showing that the calibration of the
nanopositioner x-axis by the cavity standing wave works. From this
point on, we plot the x-axis rescaled to the cavity standing wave.

Relation between the linear and quadratic coupling

Detection at positions of the maximum linear (sin 2kx0 = 1) and
quadratic coupling (cos 2kx0 = 1) in SYY gives us the ratio of the
two contributions from the respective peak amplitudes ax and ax2 :

ax2 |sin 2kx0=1

ax|cos 2kx0=1
=

g2
qSx2x2(2Ωx)

g2
0x2

zp f Sxx(Ωx)
= k2x2

zp f
nth

2
. (3.22)

Thus, if we assume that the bath temperature is T ∼ 293 K (which is
reasonable at pressures p > 1 mbar) all parameters are known, hence
we can extract the nanosphere mass as:

m =
k2kBT
4Ω2

x

ax|cos 2kx0=1

ax2 |sin 2kx0=1
. (3.23)

Note that this is a relative measurement of two spectral peaks, i.e. it
is not necessary to have a fully calibrated spectrum.

In the actual measurement, we move the nanosphere along the cav-
ity standing wave (x-axis) and record the homodyne spectrum of the
locking mode (Figure 3.20) at each position x0. We fit all peaks jointly
in SYY(ω) and obtain the peak amplitudes ax(x0) and ax2(x0). We
plot them against the position x0 and fit them with sin2(2kx0) and

12Mechonics, private communication
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Figure 3.21: Absolute magnitudes of the linear coupling (blue), quadratic
coupling (red) and cubic coupling (green) as a function of the trap posi-
tion along the cavity standing wave. The quadratic coupling is seen out-of-
phase with the linear and cubic coupling, as expected from Equation (3.19).
The ratio between the maximum values of the linear and quadratic coupling
is used to extract the nanosphere mass (and the radius). The vertical dashed
lines mark the positions of the cavity node (λ/4) and the cavity antinode (0),
as well as the positions of optimal linear coupling (λ/8 and 3λ/8, halfway
between the cavity node and antinode). As we actually measure the squared
coupling rates (SYY ∝ (gx

0)
2, (gx

q )
2), we are not able to distinguish between

a node and an antinode, hence we plot the absolute coupling rates. How-
ever, it will be possible to make a distinction from the sign of the frequency
change.

cos2(2kx0) in order to extract the maximum values of ax and ax2 , re-
spectively. From the ratio of these values we obtain a nanosphere
mass of m = 2.86(4) fg using Equation (3.23), extremely close to the
calculated expected mass of m = 2.83 fg (density: ρ = 1850 kg/m3

and radius: r = 71.5 nm, both specified by producer). For compari-
son, there are two other reports on measuring the mass of a charged
nano- [Ricci et al., 2018] and microsphere [Blakemore et al., 2019] by
applying an electric force. In the former case, the precise measure-
ment of mass differs by ∼ 16% from the expected value, while in the
latter case both mass and radius are measured with great precision.
However, the calculated density (ρ ≈ 1550 kg/m3) is significantly
smaller from both the producer specified value (ρ = 2000 kg/m3) and
the density of amorphous silica (ρ = 2200 kg/m3), probably because
pores make up a big part of the microsphere volume.

For the producer-specified density ρ = 1850 kg/m3 we estimate the
nanosphere radius of r = (71.8± 0.9) nm, which fits extremely well
to the nominal radius r = (71.5± 2) nm. We use the ratio between
the quadratic and cubic coupling:

m =

(
2
3

)2 k2kBT
4Ω2

x

a2
x
∣∣
sin 2kx0=1

ax3 |cos 2kx0=1
. (3.24)
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to calculate the nanosphere radius as well, albeit with a larger error:
r = (71.5 ± 1.5) nm. The calculated single photon coupling at the
optimal cavity position is g0 = 2π × 0.3 Hz.

Change in the spring constant

The same series of homodyne measurements can be used to extract
the mechanical frequencies Ωx and Ωz. Due to the presence of a
cavity trapping potential, all trap frequencies should be modulated
according to Equation (2.21) or Equation (2.22), depending on the in-
tracavity photon number. Note that the tweezer trap along the y and
z axis is orders of magnitude stronger compared to the trap induced
by the cavity mode, as the cavity waist is ∼ 40 times larger than the
tweezer focus. Hence, we don’t expect to see a significant change in
Ωz (see the estimate in Equation (2.27)). This is confirmed by our
measurements. The confinement of the standing wave along the cav-
ity axis however can become comparable in strength to the tweezer
trap, thus even for modest intracavity powers we expect to see a mod-
ulation in Ωx. In the case of a strong cavity mode, the nanosphere
can be pulled away from the tweezer trap as far as λ/4 = 256 nm
(when the trap position is at the cavity intensity minimum). In that
case, the cavity standing wave is the stronger trap along the x-axis,
but the tweezer trap is still dominant along the y- and z-axis.

Figure 3.22: Modulation of the mechanical frequency in the combined trap
of the cavity and the tweezer. Cavity provides an additional confinement
with the nanosphere at the position of maximum cavity intensity (at x0 = 0),
while it lowers the overall trap stiffness at the minimum cavity intensity (at
x0 = λ/4). Magnitude of the frequency change is used to determine the
intracavity photon number.

The position-dependence of Ωx extracted from the homodyne spec-
tra of the locking mode, shown in Figure 3.22, exhibits a clear period-
icity along the cavity standing wave. Based on the magnitude of trap
frequency modulation and the earlier determined nanosphere radius,
we calculate the intracavity photon number of the locking mode to be
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|αp
0 |2 = 1.23× 108 photons. We extract the photon number from the

measured cavity output power Pp
out = 6.9 µW as well:

|αp
0 |

2 =
Pp

out
h̄ωl

κ2 ≈ 1.32× 108, (3.25)

where κ2 = ∆νFSRT2 is the cavity loss rate due to the transmission of
the output mirror T2 = 20 ppm. The two obtained values match well.

3.3.3 Measurement of the cavity waist

Following the scan along the cavity standing wave, we now move
the nanosphere orthogonally to the cavity axis to probe the cavity
Gaussian envelope. We move our nanosphere along the y-axis (z-axis)
in steps of ∆y ≈ 2.4 µm (∆z ≈ 4.2 µm) and optimize the position x0

along the cavity to always reach the maximal linear coupling of the
x-motion. ∆y and ∆z were chosen to be a multiple of 64 microsteps as
we have found that this gives a constant step size. At each position we
extract the peak amplitude ax from the homodyne spectrum, which
is proportional to the coupling rate (gx

0(z0, y0))2 (Equation (3.20)).
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Figure 3.23: Stability of the mechanical frequency Ω0 = Ωx as we move the
nanosphere along the z- (blue) and y-axis (red). Although a small scatter
in the measured values is noticeable, it is still well below the frequency
change induced by the cavity co-trapping. This confirms that we take the
homodyne spectra in the vicinity of the maximum intensity gradient as we
move the nanosphere as explained in the main text.

Due to the angle φ ≈ 8.4◦ between tweezer propagation and cav-
ity optical axis, the nanosphere moves diagonally across the cavity
axis. For example, we estimate that with each step ∆y = 2.4 µm, the
nanosphere moves ∆y sin φ ≈ 300 nm further along the cavity axis,
which results in a modified coupling to the x-motion. Therefore, af-
ter each step we correct the nanosphere position along the cavity axis
to achieve the highest linear coupling. At this position the interac-
tion is purely linear and we don’t expect to see an influence on the
mechanical frequency, which is confirmed in Figure 3.23.
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Figure 3.24: Linear coupling gx
0 as we move the nanosphere along the z-

and y-axis. The single photon coupling rates are calibrated to gx
0 = 2π ×

0.3 Hz, as expected based on the calculated nanosphere radius. We fit a
Gaussian envelope from Equation (3.26) to determine the cavity waist in
each direction. The obtained Gaussian profiles overlap extremely well.

As we scan the nanosphere position across the cavity axis (Figure
3.24), the linear coupling gx

0 follows:

gx
0(z0, y0) = gx

0(0, 0)e
− z2

0
(wz

0)
2 e
− y2

0
(wy

0 )
2 (3.26)

We calibrate the coupling rates to the expected maximum single pho-
ton coupling gx

0 ≈ 2π × 0.3 Hz, calculated from our previous mea-
surement of the nanosphere radius in Section 3.3.2. The fit from Equa-
tion (3.26) provides the cavity mode waist in both radial directions:

wz
0 ≈ (42.7± 0.2) µm, wy

0 ≈ (41.3± 0.3) µm (3.27)

which are close to the theoretical value of w0 = 41.1 µm.

3.4 detection of the cavity control laser : optomechan-
ically induced transparency

In analogy to electromagnetically induced transparency (EIT) in ato-
mic physics, the presence of an object with a (mechanical) resonance
in an optical cavity can induce a "transparency" window. This op-
tomechanically induced transparency (OMIT) has been demonstrated
first with toroids and photonic crystal nanocavities [Weis et al., 2010,
Safavi-Naeini et al., 2011]. Two driving fields with different frequen-
cies are needed to demonstrate OMIT. The control laser, as defined in
previous chapters, is used with a constant detuning during the mea-
surement. For the second mode we add a weak probe laser with vari-
able frequency ωp which is scanned over the cavity resonance. When
the frequency difference between the two lasers ωc − ωp is close to
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the nanosphere motional frequency Ωx, a destructive interference be-
tween the control and probe mode modifies the cavity reflection and
transmission response. The response can be used to extract the cou-
pling between the control laser and the nanosphere motion, as well
as the cavity decay rate κ and the control laser detuning ∆.

Figure 3.25: Detection of the optomechanically induced transparency
(OMIT). The control laser is created in the same way as before, using an
EOM which is driven with a function generator at a frequency of ∆νFSR
(GHz FG). We further modulate the phase of the drive at a frequency of ωp
(generated by the Network analyzer), which generates the necessary probe
laser to be used for OMIT. Only the desired control laser with sidebands at
±ωp is transmitted through the filtering cavity (Filt. Cav.). The three modes
experience a different cavity response by the optomechanical cavity (OM
Cav.) and the beating between the components is recorded on a detector
(Det). The detected signal with the dominant frequency component at a fre-
quency ωp is sent to the Network analyzer for a lock-in type measurement
to extract the OMIT signal.

We set up a simple OMIT setup which creates additional sidebands
of the control laser at a frequency ±ωp, generated by a network an-
alyzer (Figure 3.25). The sideband at a higher frequency is scanned
over the cavity resonance and destructively interferes with the Anti-
Stokes scattered photons from the nanosphere, which we observe on
a single photodiode. We cannot neglect the sideband at the lower
frequency in our analysis due to the mechanical frequency being on
the order of the cavity decay rate Ωx ∼ κ. Therefore, both sidebands
will contribute to the OMIT and the detection. In comparison to other
work on OMIT, we don’t use a local oscillator to increase the signal-to-
noise as we have limited power in the control laser, which we use only
to drive the cavity. We discuss the theory of OMIT in the following.

3.4.1 Theory of OMIT

Transmission of the probe mode

We assume the control beam has already been created with a fre-
quency ωc, detuned by ∆ with respect to the cavity resonant fre-
quency ωl − 2π × ∆νFSR. We generate sidebands of this mode at the
frequencies ωc ± ωp by applying a small phase modulation ϕ(t) =

β sin(ωpt) at a variable frequency ωp. We use the fact that the mod-
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Figure 3.26: Light and mechanical modes in the OMIT measurement. We
set the control laser (red) detuning ωcav − ωc = ∆ = Ωx, such that the
Anti-Stokes sideband is resonant with the cavity (blue). We scan the cavity
resonance with the probe laser (green), which destructively interferes with
the Stokes and Anti-Stokes sidebands when ωprobe ∼ Ωx. We observe the
optomechanical interaction in the cavity transmission and use it to obtain
the coupling rate to the control laser.

ulation is small and keep the terms only up to the first order in β:

Ein
d (t) = Ede−iωct−iβ sin(ωpt) ≈ Ed

(
1 + iβe−iωpt + iβeiωpt

)
. (3.28)

The carrier and its sidebands will experience a different cavity re-
sponse as they are transmitted through the optomechanical cavity:

Eout
d (t) = Edtc

+ Edi
β

2
tus(ωp) exp−iωpt−iϕ(ωp)

+ Edi
β

2
tls(ωp) expiωpt+iϕ(ωp) . (3.29)

The functions tc, tus and tls are the transmissions of the carrier, the up-
per and the lower sideband, respectively. These three modes together
generate a signal on a photodiode proportional to

∣∣Eout
d

∣∣2, which will
have components at frequencies 0, ωp and 2ωp. We are interested
only in the components oscillating at the probe frequency ωp:

tωp = −β Re
(

itct∗use
iωpt+iϕ(ωp)

)
− β Re

(
itct∗lse

−iωpt−iϕ(ωp)
)

. (3.30)

In the experiment, a signal sin(ωpt) is created with a network an-
alyzer and applied as a phase modulation to the function generator.
The signal obtained in cavity transmission is fed to the network an-
alyzer, which works as a lock-in amplifier and extracts components
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oscillating with sin(ωpt) and cos(ωpt). For example, the extracted
in-phase and out-of-phase components for the upper sideband are:

tin
ωp

= −β
[
Re(itct∗us) sin(ϕ(ωp)) + Im(itct∗us) cos(ϕ(ωp))

]
tout
ωp

= −β
[
Re(itct∗us) cos(ϕ(ωp))− Im(itct∗us) sin(ϕ(ωp))

]
. (3.31)

The phase ϕ(ωp) =
dϕ
dω ωp + ϕ0 is a frequency-dependent phase differ-

ence accumulated during multiple passes through the optical cavity.
It thus also depends on the cavity decay rate through dϕ

dω = − (2π)2

2κ . It
is easy to see that the magnitude of the response is independent of
the phase ϕ(ωp) as:

tamp
ωp =

√
(tin

ωp
)2 + (tout

ωp
)2 = 2β|itct∗us|. (3.32)

Optomechanics with the probe mode

We focus here on the transmission amplitudes tus and tls, which we
obtain by applying the small modulation from Equation (3.28) to the
cavity drive in Langevin equations (2.47) such that the intracavity
field amplitude is:

α0 → α0 + α−e−iωpt + α+e+iωpt. (3.33)

Similarly, the nanosphere motion x̂ will be modified as:

x̂ → x̂ + Xe−iωpt + X∗eiωpt. (3.34)

Implementing the modulations in Equations (2.47), we obtain a sys-
tem of equations for α−, α+ and X:(κ

2
− i(∆ + ω)

)
α− = −i

g
xzp f

X + βEd(κ

2
+ i(∆−ω)

)
α∗+ = i

g
xzp f

X + βEd

m(Ω2
x −ω2 − iγmω)X = − h̄g

xzp f
(α− + α∗+). (3.35)

The solution for the upper sideband tus(ωp) ≡ α+/βEd and the lower
sideband tls(ωp) ≡ α−/βEd is:

α± = βEd
1 + i f (∓ωp)

−i(∆∓ωp) +
κ
2 + 2∆ f (∓ωp)

, (3.36)

where f (ω) = g2χm(ω)/(i(∆−ω) + κ/2). These can then be used in
Equation (3.31) to write the detected signal in terms of the transmitted
probe modes.

Typically, the optomechanical cavity is either driven with only one
sideband or the system is sideband resolved, thus including only the
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upper sideband response. We operate the system in the weak side-
band resolved regime (∆ ∼ κ), hence we have to take both probes
into consideration. The discrepancy to the single probe approach is
clearly seen in Figure 3.27, where a simple cavity response is overlaid
with the OMIT response.
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Figure 3.27: Absolute signal of OMIT response with both lower and upper
sideband accounted for (blue), compared to the case of taking only the
upper sideband (red). We take the real experimental parameters (κ/2π =
193 kHz, Ωx/2π = 160 kHz) and see that the lower sideband significantly
impacts the OMIT amplitude response. Red dashed line shows the cavity

transfer function ∝
√

(κ/2)2

(κ/2)2+(ω+∆)2 .

3.4.2 OMIT in experiment

In order to improve the signal-to-noise ratio, we average the OMIT
response for over 10 scans. This approach can lead to a broadening
of the OMIT peak if the mechanical frequency is unstable during the
averaging. However, the broadening doesn’t influence the measured
coupling, which we primarily extract from the total dip area. If we fo-
cus only on the upper sideband α+ and assume a flat cavity response
in the proximity of the dip ωp ≈ ∆ ≈ Ωx, the amplitude of the OMIT
signal is (Equation (3.32)):

tamp
ωp ∝ |α+| ≈

∣∣∣∣∣1 + i
2G2

κ

Ωx

Ω2
x −ω2

p − iωpγm

∣∣∣∣∣ . (3.37)

The integrated dip area over a sufficiently large frequency range
around the dip (Ωx − δω, Ωx + δω), δω � γm, yields:

Ωx+δω∫
Ωx−δω

tamp
ωp dωp ∝

Ωx+δω∫
Ωx−δω

(
−2G2

κ

Ω2
xγm

(Ω2
x −ω2

p)
2 + ω2

pγ2
m

)
dωp

≈ −2G2

κ
. (3.38)
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This confirms that the mechanical response to the probe mode is in-
dependent of the mechanical damping γm. However, the dip depth
tamp
ωOMIT (Ωx) ∝ 1− 2G2

κγm
is a function of γm. Therefore, for different cou-

pling rates the dip shape is changed but the total area remains the
same. We demonstrate this in Figure 3.28 for three distinct cases of
the coupling g and damping γm: g = 2π× 8 kHz, γm = 2π× 10 kHz
(blue); g = 2π × 16 kHz, γm = 2π × 10 kHz (red) and g = 2π × 8
kHz, γm = 2π × 5 kHz (green).
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G=8 kHz, m=5 kHz
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Figure 3.28: OMIT dip feature for different total coupling rates g and me-
chanical dampings γm. Note that a change of the mechanical damping
without a modified coupling doesn’t influence the total dip area (blue to
green). On the other side, increasing the coupling rate extends the dip fur-
ther down and increases the overall area (blue to red).
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Figure 3.29: An example of observed amplitude of OMIT response. Due
to an interaction of the nanosphere with the probe mode, dip is present
at the mechanical frequency Ωx = 2π × 155.5 kHz. We fit the dip feature
jointly with the cavity response in order to extract the detuning ∆, the total
optomechanical coupling g, the mechanical frequency Ωx and the damping
γeff

m . This measurement is taken at the pressure p = 0.56 mbar and used to
extract the coupling rate g = 2π × 12.6 kHz.
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The network analyzer measures separately the in-phase and out-of-
phase contributions, which we combine into the amplitude response
tamp
ωp , thus eliminating the dependence on the accumulated phase

ϕ(ωp). We remove the cavity decay rate κ from the fit as we know it
exactly from independent measurements. From the fit of the ampli-
tude response we obtain other optomechanical parameters: the con-
trol laser detuning ∆, the total coupling g, the mechanical frequency
Ωx and damping γeff

m . Although the effective damping γeff
m is a func-

tion of coupling g as well, we discard this dependence in the fit in
favor of allowing for some linewidth broadening. An example of the
detected OMIT response with the fitted theoretical function is shown
in Figure 3.29. We will discuss more about OMIT in Chapter 4, where
we regularly use it to obtain the coupling rate and calculate the opto-
mechanical cooperativity.

3.5 trapping of nanospheres

The silica nanospheres used for the experiments described in this
thesis are all part of the same batch (Microparticles GmbH) with a
nominal radius r = (71.5 ± 2) nm, density ρ = 1850 kg/m3 and
a refractive index ns =

√
εs = 1.449 (value based on amorphous

silica). They arrive suspended in a p = 5 wt.% (percentage of weight)
aqueous solution. We mix a 5 µl sample of this solution with 5 ml
of isopropanol (ρIPA = 786 kg/m3, Sigma-Aldrich). Out of the 5 µl
sample, the total volume occupied by the silica nanospheres is:

Vsam =
ρwater × 5× 10−9m3

1−0.01×p
0.01p ρ + ρwater

≈ 1.383× 10−10 m3, (3.39)

while the remaining volume Vrest ≈ 4.86 × 10−9 m3 contains only
water. In order to get the nanospheres airborne, we spray this solu-
tion for a short time using a nebulizer13, which sprays droplets with
radius rdrop = 2.1 µm and volume Vdrop = 4

3 πr3
drop

7. Each droplet con-7 In fact, rdrop is the
median value of the

droplets mass
distribution, given
as a droplet radius

("Mass Median
Aerodynamic

Diameter"). Note
that this just

provides a rough
estimate of the

nanosphere
concentration.

tains nper−drop nanospheres of volume V = 4
3 πr3 and mass m = ρV

on average:

nper−drop =
Vsam

V
Vdrop

5× 10−6 m3 ≈ 0.7, (3.40)

thus we suppose that only single nanospheres will be trapped, with
possible events of trapping only droplets of isopropanol or water,
which have similar refractive indices. We don’t observe an agglomer-
ate of two or more nanospheres.

The nebulizer is placed within a self-constructed container which
is connected to the vacuum chamber by a long (∼ 0.5 m) tube with
an inner diameter of 6 mm. Flow through the tube is controlled by
a manual valve at its end, which we open for about half a second

13Omron MicroAIR U22
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a couple of times in succession to let the nanospheres through. The
vacuum chamber is previously pumped down to about 1 mbar, after
which pumping is stopped. After opening the valve leading to the
nebulizer container several times, the pressure increases to well above
100 mbar. The correct value is unknown as the pressure gauge is not
accurate in the high pressure regime and with liquid contamination
in the chamber. We expect that the majority of the droplets evaporates
over the path from the nebulizer container to the vacuum chamber.
The remaining objects are free to diffuse in the vacuum chamber until
one gets trapped with the help of the friction of the surrounding gas.

valve: closed

MO

nebulizer vacuum chamber

(a) (b)

p=1 mbar

valve: open

MO

nebulizer vacuum chamber

p=200 mbar

Figure 3.30: Trapping of a nanosphere. (a) We use a nebulizer to spray the
nanospheres in a separate container at room pressure, while the vacuum
chamber is kept at ∼ 1 mbar. (b) We open the manual valve for half a
second to allow the nanospheres to be sucked into the vacuum chamber.
We repeat the procedure for up to 5 times, after which the pressure gauge
shows about 200 mbar. At this pressure the gas friction is strong enough to
slow down the nanospheres until eventually a single nanosphere is trapped
in the focused laser beam.

The droplets and nanospheres moving in the chamber pose a dan-
ger to the cavity finesse as they could contaminate the cavity mirrors.
Small objects such as nanospheres are hard to clean off the mirror
surface with the typical methods (acetone, FirstContact etc.). There-
fore, we do not want the cavity in the vacuum chamber during the
loading process. Hence we have constructed a cavity holder which is
easy to remove and to put back by sliding it in and out of a massive
aluminum holder. The cavity holder design has been described in
Section 3.1.2.

The nanosphere solutions are stable for a couple of days, during
which we see repeatable loading into the trap within a minute from
the initial spraying. After a couple of days, we mostly see events of
trapping an "empty" isopropanol droplet. We assume this is caused
by agglomeration of nanospheres in the solution, which might result
in an unstable trap due to a stronger scattering force for larger parti-
cles (see Section 3.1.1).
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Material ρ
[

kg
m3

]
n/ε

Silica 185014 1.44915/2.1
Water 1000 1.32616/1.758

Isopropanol 78617 1.3718/1.877

Table 1: Table of most important properties of the three materials present in
solution used in spraying.

All three components in the solution (silica nanospheres, water, iso-
propanol: properties listed in Table 1) might be present in the ini-
tially caught object. We assume that the trapped object will be either
a spherical particle or a droplet, which assumes a spherical shape
due to surface tension. We aim to compare all trapped objects to a
case when we levitate a single nanosphere, which we confirm from
the mass measurement using the optomechanical cavity in Section
3.3.2. Using this method, we have observed that only pure silica na-
nospheres remain trapped at typical minimum prepump pressure of
p = 4× 10−2 mbar. Any remaining liquid (trapped with the nano-
sphere) has evaporated under these vacuum conditions, hence it is
beneficial to decrease pressure in the vacuum chamber immediately
after trapping an object. In the region from 10−1 to 0.5 mbar we some-
times see a sudden decrease in the mechanical frequency and power
of the scattered light, which we attribute to a loss of liquid compo-
nents from the object. This effect occurs only once and is irreversible
when cycling the pressure. After this "calibration" of our measure-
ments, we are able to analyze all further objects by observing some
or all of the following quantities:

1. Absolute measurement of mass. The mass of the trapped object
will be a sum of the masses of the individual constituents:

mt = m + ρIPAVIPA + ρH2OVH2O. (3.41)

Through a measurement of the linear and quadratic coupling to
the cavity locking mode (Section 3.3.2) we are able to determine
the mass of the trapped object. By repeating the same mea-
surement at different pressures, we might follow the evolution
of the object’s mass by decreasing the pressure in steps, until
we are left with a silica nanosphere or nothing. The calculated
mass of a single nanosphere was shown to be as expected, so
from this point on we use the specified mass:

m = 2.83× 10−18 kg.
14Density of amorphous silica as specified by the producer
15Optical constants of silica
16Optical constants of water
17Chemical properties of isopropanol
18Optical constants of isopropanol

https://microparticles.de/en/properties.html
https://refractiveindex.info/?shelf=main&book=SiO2&page=Malitson
https://refractiveindex.info/?shelf=main&book=H2O&page=Hale
https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8854102.htm
https://refractiveindex.info/?shelf=organic&book=propanol&page=Sani-formula
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2. Mechanical frequency. The mechanical frequency of the levi-
tated object originates from the harmonic approximation to the
dipole interaction potential energy:

mΩ2
t x2

2
= −1

2
α

∂2|E(x)|2
∂x2

∣∣∣∣
x0

x2,

which shows its dependence on the object’s mass m and po-
larizability α, i.e. its index of refraction. So far we have only
discussed a case of a polarizable object of a uniform index of re-
fraction (α = ε0Vχ). However, a case of a core-shell nanosphere
system can be solved analytically to give the polarizability of a
composite object [van de Hulst, 1957]:

αt(q, εsh) = 3ε0V
εsh − 1
εsh + 2

1 + q3 2εsh+1
εsh−1

εs−εsh
εs+2εsh

1 + q3 2εsh−2
εsh+2

εs−εsh
εs+2εsh

, (3.42)

where q = r
rt

and εsh are the ratio of the object’s radius to the sil-
ica nanosphere radius and the relative permittivity of the shell
material, respectively (Figure 3.31). Therefore, the mechanical
frequency of the trapped object compared to the fundamental
mechanical frequency of a silica nanosphere is:

Ωt
x,y,z

Ωx,y,z
=

√
αt

α

m
mt

. (3.43)

r
r

t

ε
s

ε
sh

Figure 3.31: Silica nanosphere with a liquid shell. The nanosphere of ra-
dius r and dielectric permitivitty εs is enveloped in a liquid shell with di-
electric permitivitty εsh, resulting in a object with a radius rt.

We distinguish between two special cases:

• q = 1: object is a silica nanosphere with typical mechanical
frequencies8

(
Ωz, Ωx, Ωy

)
/2π ≈ (60, 262, 290) kHz. 8 The optical power

used for trapping
was larger for these
measurements

• q = 0: object is a droplet of IPA or water with polarizability
αdrop = 3ε0VχIPA/H2O. Trap frequencies of an IPA and wa-

ter droplet are expected to be
(

ΩIPA
z , ΩIPA

x , ΩIPA
y

)
/2π ≈

(85, 372, 411) kHz and
(

Ωw
z , Ωw

x , Ωw
y

)
/2π ≈ (71, 309, 342)
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kHz, respectively. The mechanical frequency is significantly
increased due to the droplet’s density being larger than the
density of silica.

Any object with 0 < q < 1 will have frequencies in between
these two extreme cases.

3. Scattered light intensity. We detect the nanosphere motion
from the transmitted trapping laser (see Section 3.2), where the
detector current is proportional to the electric field of the for-
ward scattered light:

i(t) ∝ EscattEtw · z(t) ∝ αtz(t). (3.44)

Therefore, the power spectrum of the detector signal is a func-
tion of both the object’s polarizability αt and the mass mt:

Sii(ω) ∝ α2
t

kBT
mtΩ2

z
. (3.45)

From the Breit-Winger fit (Equation (3.17)) to the spectrum of
the direct detection we obtain a single proportionality constant:

at ∝
α2

t
mt

. (3.46)

Note that this is essentially a different dependence from Equa-
tion (3.43), so by combining the two we are able to extract the
object’s mass and the polarizability. For an object made of
only one material, the relation in Equation (3.46) simplifies to
at ∝ χ2V/ρ.

4. Mechanical damping. Gas damping is simplified to γm ∝ r2/m
for pressures below 10 mbar, as seen from Equation (2.33). As
the pressure gauge might give inaccurate values by up to 30%,
the measurement of the gas damping is not as accurate as other
measurements.

We now discuss how we determine the composition of the trapped
object. There are three possible cases of what we trap initially: a
silica nanosphere, a droplet of isopropanol or water, or a nanosphere
with a liquid shell around it. Droplets evaporate in moderate vacuum
conditions, while liquid shells remain almost until we reach the pre-
pump pressure. Regardless of initially trapping a nanosphere with or
without a shell, only a silica nanosphere can remain in high vacuum.

3.5.1 Single silica nanosphere

We have described a measurement of the mass and radius of a single
silica nanosphere extensively in Section 3.3.2. Note that we have ac-
tually characterized several nanospheres so far and have calculated
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radii in the range of 71− 72 nm. Hence, we decide to compare all
trapped objects to a nanosphere with a nominal radius of r = 71.5
nm.

3.5.2 Liquid trapped object

For simplicity, let’s assume we have trapped an object which contains
only isopropanol and forms a nanosphere of radius rIPA. As in the
case of silica nanospheres, the mechanical frequencies will depend on
density, but not on radius. Hence we can compare the two frequencies
easily:

ΩIPA
x,y,z

Ωx,y,z
=

√
ρ

ρIPA

χIPA

χ
, (3.47)

where χIPA = 3 εIPA−1
εIPA+2 . In case of isopropanol (water) we get that

the mechanical frequencies will be higher by a factor of 1.42 (1.18).
Droplets evaporate as we decrease the pressure, therefore we can
already distinguish between silica nanospheres and liquid objects.
Large frequency difference for the two liquids allows us to addition-
ally distinguish between an isopropanol an a water droplet.
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Figure 3.32: Mechanical frequency Ωt
z of a trapped object as a function

of pressure. We extract the mechanical frequency of the z-motion from
the spectrum of the nanosphere motion as we decrease the pressure from 17
mbar to around 2.5 mbar, at which point the object is lost. With an exception
of the outlier at the highest pressure, all other points are around the average
frequency (dashed line). As the frequency directly depends on the object’s
density, we conclude that the trapped object was made of a single liquid
constituent.

The measurements of the trapped objects were conducted over the
course of a couple of days, during which the trapping intensity does
not significantly change and we can therefore compare the object’s
frequency to the frequency of a silica nanosphere.

Figure 3.32 shows a frequency measurement on a trapped IPA
droplet. The average axial mechanical frequency Ωt

z/2π = 83.2 kHz
from our measurement in Figure 3.32 fits well to the expected trap fre-
quency of an isopropanol droplet of ΩIPA

z /2π = 85 kHz. Assuming
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Figure 3.33: IPA Droplet radius evaluated from the intensity of the scat-
tered light (blue) and the mechanical damping (red). Data obtained in
former manner is overlaid with data measured in latter approach in such a
way that values are overlapping in the lower pressure regime, where pres-
sure measurements and spectral fits are more trustworthy. Dashed line is
an average of 8 data points at pressures p > 5 mbar, before the IPA droplet
starts to decrease in size.

a material density equal to isopropanol, we can extract the droplet’s
radius in two ways (Figure 3.33). First we use the gas damping to
calculate the nanosphere radius (red dots), which shows a constant
drop in radius as we decrease the pressure. A second measurement is
using the scattered light intensity (blue dots), i.e. the variance of the
object z-motion deduced from the trapping laser, which shows that
the radius is stable at all pressures p > 5 mbar. Below this pressure
both measurements exhibit the same behavior, hence we calibrate rt

using the former measurement in such a way to obtain a perfect over-
lap. This procedure is repeated for all observed droplets and results
in approximately the same calibration constant. A discrepancy be-
tween the two methods appears above ∼ 8 mbar, which we attribute
to an imperfect fitting of a Lorentzian function to a spectral peak with
large mechanical damping. The droplet’s initial radius rt = 59 nm is
obtained as an average radius at the higher pressures, based on the
estimate from the light scattering. The droplet’s radius just before the
complete evaporation was ∼ 45 nm.

3.5.3 Silica nanosphere with a liquid shell

Occasionally we trap an object with mechanical frequency less than
10 % higher than the frequency of a sole silica nanosphere, which can-
not be explained by trapping a droplet. We observe that the object’s
frequency drops instantaneously during the pumping process around
10−1 mbar. After this singular event the object’s frequency stays con-
stant and is equal to the typical nanosphere frequency. Therefore, we
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argue that the initial object was a silica nanosphere with an additional
liquid shell. To demonstrate a loss of material, we record a spectrum
of the object’s z-motion before and after the pumping process, both
roughly at p ≈ 10 mbar (Figure 3.34).
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Figure 3.34: Power spectra of the nanosphere motion before (blue) and
after the evaporation of the water shell (red) at p ≈ 10−1 mbar. The spec-
tra were taken at equal pressures p ∼ 10 mbar. The mechanical frequency
clearly demonstrates that the object’s average density increased after the
evaporation. As the resulting object is confirmed to be a silica nanosphere,
the shell material then must have a density smaller than the density of silica.
The spectral peak decreases due to a large drop in the scattered power (com-
ing from the smaller polarizability of a silica nanosphere). Inset: Here we
show the object of radius rt before the evaporation of the water shell (blue)
and the remaining silica nanosphere with radius r (red).

In order to check whether we indeed trap a composite nanosphere-
liquid object, we combine the relations from Equation (3.43) and Equa-
tion (3.46) to obtain the mass mt of the initially trapped object:

mt

m
=

at

a

(
Ωz

Ωt
z

)4

≈ 2.25, (3.48)

where m is the mass of a silica nanosphere. Following this result
we calculate the object’s radius, assuming either an isopropanol or a
water shell:

rIPA
t = 3

√
r3 +

3
4π

mt −m
ρIPA

≈ 112.9 nm, rH2O
t ≈ 106.5nm. (3.49)

It is hard to conclude what the material is based just on this calcula-
tion. A more extensive method includes calculating the radius from
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Equation (3.43) and Equation (3.46) separately and obtaining two dif-
ferent values of rt. As shown in Table 2, the radii obtained in the
three different ways are clearly more consistent with the case of a
water shell. Therefore, we conclude that the initial object was a nano-
sphere with a water shell with a thickness of around 30 nm. This also
makes sense as nanospheres arrive suspended in an aqueous solution,
such that water sticks to the nanosphere surface layer even before we
mix them with isopropanol [Costa et al., 2003].

Material rt from (i) [nm] rt from (ii) [nm] rt from (iii) [nm]

Water 104.2(3) 106.0 106.5(3)
IPA 83.8(2) 97.9 112.9(3)

Table 2: Radii of the trapped object assuming either a water or an isopropa-
nol shell, as determined from (i) frequency change, (ii) variance change and
(iii) change in mass calculated by combining (i) and (ii). More consistent
values are obtained in the case of a water shell.

In conclusion, we observed several cases in which we trapped iso-
propanol droplets and none where we trap water. We explain this by
the fact that water is chemically bonded with silica through silanol
groups, which are stable at high pressures and room temperature
[Costa et al., 2003]. All droplets start to evaporate at p ≈ 5 mbar and
are fully gone before reaching p ≈ 2 mbar, although the vapor pres-
sure of isopropanol at room temperature is pIPA ≈ 50 mbar19. The
question of isopropanol evaporation at such low pressures might be
resolved by continuously following the droplet’s dynamics and in-
cluding the cavity for a periodic measurement of the droplet’s mass.
On the other hand, we occasionally trap silica nanospheres with a
shell, which evaporates at a slightly lower pressure ∼ 10−1 mbar.
From two separate measurements we deduce that the material com-
position matches water, which again fits to the hydrophilic property
of the silica nanospheres.

Due to the weak trapping potentials and detection methods which
require strong light scattering by the object, the condensation and
evaporation of single aerosol droplets was investigated so far only
for microparticles with radii r > 0.5 µm [Knox, 2011, Rothfuss et al.,
2018], while studies on nucleation were conducted on a cloud of
nanoparticles with radii ∼ 10 nm [Pichelstorfer et al., 2018]. Here
we presented methods to follow the aerosol dynamics in the inter-
mediate region of radii 30-110 nm, which might be useful in aerosol
physics, particularly to determine the accommodation coefficients of
the liquids under examination.

19CRC Handbook of Chemistry and Physics 44th ed.
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C AV I T Y O P T O M E C H A N I C S I N H I G H VA C U U M

In Chapter 2 we defined quantum optomechanical cooperativity as
C = 4g2

κΓ , where g is the coupling of the nanosphere motion to a
cavity mode, κ is the cavity decay rate and Γ is the heating of the
nanosphere motion. Cooperativity is a single parameter describing
the system’s capacity to enter the quantum regime of light-matter
interaction, e.g. Equation (2.69) shows that the minimum phonon
occupation is n̄ = (κ/4Ωx)2 + C−1. In our previous work on the cav-
ity cooling of particles we were trapping particles with the locking
cavity mode [Kiesel et al., 2013]. There, the cooperativity C ≈ 10−7

was mostly limited by the particle loss at modest vacuum pressures
p ≈ 1 mbar. Still, the coupling rates were sufficiently strong to expect
strong cooperativity C > 1 at pressures below 10−7 mbar.

In the current setup a stable trap is realized in an optical tweezer,
which limits the cooperativity by recoil heating of the trapping laser.
We characterize the setup fully by measuring the total coupling to
the control mode from OMIT and the heating rate through relaxation
measurements. Furthermore, we discuss the setup limitations and
possible improvements by the level of complexity. The work pre-
sented in this chapter is also part of our recent paper "Levitated cavity
optomechanics in high vacuum" [Delić et al., 2019a].
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4.1 optomechanical coupling rate g

We extract the total coupling g of the axial nanosphere motion to the
control cavity mode from the OMIT signal. The response of the opto-
mechanical system depends on the effective mechanical frequency
Ωeff

x and damping γeff
m , as well as the cavity decay rate κ and the con-

trol laser detuning ∆. As shown in Section 3.4.1, the size of the trans-
parency window depends only on the coupling ∝ g2, while the width
of the transparency window is the effective damping γeff

m = γm + Γopt,
where Γopt ≈ 4g2/κ in the case of a sideband resolved regime. In
reality, fitting of the full response in the OMIT measurement is de-
manding as there is a multitude of fit parameters. Therefore, we fix
the value of the cavity decay rate κ = 2π × 193 kHz (determined
in Section 3.1.2) and we fit the frequency Ωx = Ωeff

x and damping
γm = γeff

m as constants, i.e. independent of other parameters. We
examine the mechanical damping in Section 4.1.1.

(a) (b)

Figure 4.1: Optomechanical coupling extracted from OMIT measurements.
(a) Total linear coupling g = g0

√nphot as a function of the intracavity pho-
ton number nphot of the control laser at the pressure p = 0.56 mbar (blue
and green points). The coupling at p = 4.3 × 10−6 mbar (red point) is
comparable to achieved coupling at higher pressures, demonstrating repro-
ducible alignment over several orders of magnitude in pressure. (b) We
calculate coupling from the measurements of the optomechanically induced
transparency (OMIT). Shown here are two measurements at the pressures
of p = 0.56 mbar (green) and p = 4.3× 10−6 mbar (red) executed for equal
intracavity photon number nphot = 0.9× 109. We drive the cavity with the
control laser with a fixed detuning ∆ and two sidebands with relative de-
tuning ±ωp with respect to the control laser. Response at broad frequencies
is given by the cavity transmission shape as a function of the cavity decay
rate κ and ∆, where both drive sidebands have to be taken into account. A
dip is present at ωp = Ωx ≈ 2π× 155 kHz due to a destructive interference
between the nanosphere motion and the drive sidebands. Inset: The me-
chanical dip is shown in greater detail. We extract the total coupling g from
the dip area.

We characterize the total coupling by taking OMIT signals for dif-
ferent intracavity photon numbers at high pressure p = 0.56 mbar
(Figure 4.1). The intracavity photon number nphot was calculated
from the optical power leaking from the cavity, accounting for all
transmission coefficients. The solid line is a function g = g0

√nphot,
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where we assume a single photon coupling g0/2π = 0.3 Hz. The
nanosphere motion is stable at this pressure and feedback cooling
was not employed. Three-dimensional feedback cooling is turned on
at the prepump pressure p = 4 × 10−2 mbar, before pumping the
vacuum chamber into high vacuum.

In high vacuum we repeat the OMIT measurement for a photon
number nphot = 0.9× 109. The nanosphere position along the cavity
standing wave changes during the pumping process. We optimize
the linear coupling to the cavity control mode once the pressure has
stabilized in high vacuum. We subsequently turn off the feedback
cooling along the x-axis as the motion is stabilized by the cavity cool-
ing. However, the feedback cooling is still needed to stabilize the na-
nosphere motion along the y- and z-axis. The measured coupling rate
g = 2π × 9.6 kHz is equal to the value obtained at higher pressure,
demonstrating a repeatable coupling over many orders of magnitude
in pressure. We compare the OMIT signals for the same photon num-
ber nphot at two different pressures in Figure 4.1(b). The inset focuses
on the transparency window. The linewidth of the feature is larger at
the lower pressure, probably due to a fluctuation of the mechanical
frequency. However, the total area remains approximately the same,
as the area is a function of the coupling rate and not the damping
(Section 3.4.1).

4.1.1 Mechanical damping
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Figure 4.2: Effective damping γeff
m obtained from the OMIT measurements

at a pressure p = 0.56 mbar as a function of the intracavity photon number
nphot. The line is a theoretical estimate based on the gas damping γm at this
pressure, the cavity decay rate κ and the single photon coupling g0.

Although we fit the mechanical damping γeff
m in the OMIT as a

constant, we expect it to depend on the coupling g as γeff
m ≈ γm +

4g2/κ. Assuming a gas damping rate of γm = 2π × 0.73 kHz at
p = 0.56 mbar and the single photon coupling g0 = 2π × 0.3 Hz, the
measured damping matches the theory well (Figure 4.2).
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4.2 heating rate Γ

In a deep sideband resolution limit κ � Ωx, the occupation of the
mechanical oscillator is given by the balance of the cooling rate Γopt

and the heating by the environment Γ. The heating rate Γ consists of
two distinct heating mechanisms: the heating by gas collisions Γm =

γmnth and recoil heating Γrec, which is further split into the different
sources of recoil heating, e.g. the tweezer laser and the control cavity
mode:

Γ = γmnth + Γtw
rec + Γcav

rec . (4.1)

The gas induced heating is the dominant heating rate at pressures
p > 10−7 mbar. Below this pressure recoil heating from the tweezer
laser will become the leading contribution. Recoil heating due to the
cavity mode can always be neglected, as mentioned in Section 2.3.1.

Figure 4.3: Incorrect mechanical damping due to the broadening of the
spectral peak. We continuously acquire spectra of the nanosphere motion
as we increase the pressure from 0.3 mbar to 10 mbar. We fit a Breit-Wigner
function to the spectrum and extract the mechanical damping. At pressures
p < 2 mbar we observe a broadening of the spectral line, which gives a
higher value than expected. The solid line is a theoretical curve for a nano-
sphere with nominal radius and density. Inset: We compare the spectrum
of the x-motion at p ≈ 5 mbar (red) to the spectrum at p ≈ 0.3 mbar (blue),
where the extracted mechanical dampings are marked in the main part of
the figure with their respective colors. The fit at the lower pressure is clearly
not following the data as well as the fit at the higher pressure.

At pressures p ≥ 2 mbar we estimate the heating rate from a Breit-
Wigner fit to the spectrum of the nanosphere motion, from which
we extract the damping γm. We assume that the nanosphere mo-
tion is in equilibrium with the environment, such that the thermal
occupation nth = kBT0/(h̄Ωx) ≈ 3.8× 107 is given by the room tem-
perature T0 ≈ 293 K. The mechanical frequency changes significantly
during a single measurement, which is manifested by an inhomo-
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geneous broadening of the spectral peak at pressures p ≤ 2 mbar.
Therefore, the fit gives a higher value for mechanical damping than
expected (Figure 4.3), which leads to an overestimate of the heating
rate. One possible solution would be to obtain time traces instead of
spectra, which can be used to eliminate the impact of the mechani-
cal frequency in post-processing. The solution we pursue here is to
measure the heating rate by relaxation measurements.

The energy of the nanosphere motion is initially decreased with
feedback cooling. We switch the feedback off and monitor the vari-
ance of its motion over time [Jain et al., 2016]. A single evolution is
not enough to detect an overall, monotonous increase of the variance
as this is a stochastic process. Therefore, repeat the measurement
and conduct an ensemble average of the calculated variances. During
the relaxation process, the averaged energy increases exponentially in
time:

〈E〉 = Eeq + (Ecool − Eeq)e−γt, (4.2)

where Eeq and Ecool are the energy in an equilibrium with the environ-
ment and the energy of the cooled nanosphere, respectively, and 〈·〉
denotes the ensemble average. The rate γ is the total coupling to the
environment, dominated by gas damping γm and radiation damping
γrad [Novotny, 2017]. During the ring-down time (feedback cooling
is switched on), the energy evolves as:

〈E〉 = Ecool + (Eeq − Ecool)e−(γ+γ f b)t, (4.3)

where γ f b is the damping added by the feedback cooling.
At pressures between 4× 10−2 mbar and 2 mbar it takes t ∼ 1/γm <

10 ms for the nanosphere motion to fully relax. From the fit of Equa-
tion (4.2) to the calculated ensemble average we obtain the mechanical
damping γm (Figure 4.4(b)). At lower pressures we need to cool the
nanosphere motion to keep it trapped, therefore we cannot allow for
a full relaxation. However, on short time scales the energy increases
linearly (Figure 4.4(c)):

〈E〉 = Ecool + (Eeq − Ecool)γt ≈ Ecool + Eeqγt, (4.4)

where we assumed that the motion is initially strongly cooled Eeq �
Ecool . The steady state energy of the uncooled nanosphere motion is
given as the ratio of the heating and the cooling rate E∞

h̄Ωx
= Γ

γ , such
that the linear evolution provides us directly with the heating rate:

〈E〉 = Ecool + h̄ΩxΓt. (4.5)

The heating rate along all three motional axes as a function of
pressure is shown in Figure 4.4(a). The circles and diamonds show
the heating rate obtained in the absence of the cavity from relax-
ation and spectral measurements, respectively. The minimum heat-
ing rate is Γ = 2π × 28 kHz, which was measured at a pressure
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p = 4 × 10−7 mbar. The two crosses denote measurements in the
presence of the control cavity mode at p = 4.3 × 10−6 mbar, right
after the OMIT measurement. The control mode detuning was set to
zero in order to eliminate the phase noise heating, while the intracav-
ity photon number was set to nphot = 0.9× 109 again. The heating
rate in this case is Γ = 2π × 175 kHz, which we will use to calculate
the optomechanical cooperativity. All heating rates can be explained
just by the collisions with the gas (red shaded area).

Figure 4.4: Heating rate Γ at different pressures. a): Mechanical losses
Γx/2π of a levitated particle motion along the cavity axis (x) as a function of
pressure (red symbols). We measure the mechanical losses either via energy
relaxation (circles and dots) at low pressures or via a spectral method (dia-
monds) at higher pressures. Note that the axis Γ/2π in units of [W] applies
for all spatial directions compared to the Γx/2π axis. The red shaded area
is a theory curve accounting for the uncertainties during the measurement
for the x-direction. The two crosses mark relaxation measurements while
the particle motion was coupled to the cavity. b) and c): Energy relaxation
measurement: The particle is prepared in a low energy state with feedback
cooling (yellow shaded area). After switching feedback cooling off, the par-
ticle relaxes towards thermal equilibrium. At a pressure of p ≈ 0.5 mbar
(b), the full relaxation to thermal equilibrium is observed, while for lower
pressures, i.e. p = 4× 10−7 mbar (c) only the linear part of the relaxation
can be observed.

4.3 optomechanical cooperativity

We measured the total coupling g = 2π × 9.6 kHz and the heating
rate Γ = 2π × 175 kHz at a pressure of p = 4.3× 10−6 mbar. This
leads to optomechanical cooperativity of C ≈ 0.01. In the following
we will discuss the current limitations to the cooperativity and pro-
vide ideas on how to increase it to the strong cooperativity regime
C > 1.
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4.3.1 Co-trapping with the tweezer and the cavity standing wave

The cavity mode provides a restoring force for the nanosphere, which
for large nphot is comparable to the trapping force of the tweezer. As
a consequence, the nanosphere position along the cavity axis was op-
timized after every change of the control laser power in the OMIT
measurements in Section 4.1. The principle behind the optimization
is presented in Figure 4.5. The nanosphere is trapped in a combina-
tion of the potentials created by the control and the trapping laser.
We consider here only the influence of the cavity potential along the
cavity axis, as the restoring force along the cavity transverse axes is
significantly smaller due to the large cavity waist (w0 = 41.1 µm).
The cavity standing wave potential moves the nanosphere away from
the largest intensity gradient (optimal position for linear interaction
with the cavity mode) towards the intensity maximum of the stand-
ing wave (Figure 4.5, left panel). The optimization works only until
the tweezer restoring force is comparable to the restoring force of the
cavity standing wave. In the following text we estimate the maximum
attainable total coupling based on the given trapping potential. We
first model the full trap potential and calculate the equilibrium trap
position.

-0.2 0 0.2 0.4

Trap position x0 [× ]

-0.2 0 0.2 0.4

Trap position x0 [× ]

Figure 4.5: Positioning the nanosphere to optimize the linear coupling to
the cavity mode. Shown are optical trapping potentials of the tweezer
(blue, solid) and the cavity control mode (red, solid) together with the joint
potential (green, solid). Adding a strong cavity control mode influences the
intended nanosphere trap position (blue, dashed) given by the tweezer po-
tential. The combined potential (green, solid) presents a joint trap position
(green, dashed). Left panel: Original trap position is at the intensity slope of
the cavity control mode, ideal for cavity optomechanics. Joint trap position
is unfortunately moved toward the potential minimum of the control mode
(to the right in this case). Right panel: We reposition the tweezer focus away
from the potential minimum of the control mode (in the left direction), such
that the joint potential has a minimum at the cavity intensity slope.
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Optimizing the trap position

The nanosphere is initially trapped in the tweezer potential at a posi-
tion x0 with a mechanical frequency Ωx = 2π× 160 kHz. We add the
cavity standing wave potential to it, generating a joint trap potential:

U(x) =
mΩ2

x(x− x0)2

2
+

α

ε0c
2Pcav

w2
0π

cos2(kx), (4.6)

where Pcav is the intracavity power, w0 is the cavity waist and α is
the nanosphere polarizability. The cavity standing wave trap depth is
Ucav = α

ε0c
2Pcav
w2

0π
. The nanosphere attains a new trap position xj defined

by ∂U(x)
∂x

∣∣∣
xj
= 0:

mΩ2
x(xj − x0) = Ucavk sin(2kxj), (4.7)

which we numerically solve for an arbitrary initial trap position x0.
The joint trap position xj for an intracavity photon number nphot =
Pcav
h̄ωl

2L
c = 7.6× 109 is shown in Figure 4.6 as a function of the initial

trap position x0.
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Figure 4.6: Joint trap position xj as a function of the tweezer trap posi-
tion x0. For a strong control mode with nphot = 7.6× 109 photons, the
nanosphere is trapped in the combined minimum of the tweezer and the
cavity potential. The horizontal red dashed line represent the position of
maximum linear coupling, i.e. the desired position for the nanosphere. The
vertical blue dashed lines show the required position of the tweezer focus
in order to reach an optimal coupling to the cavity mode. For comparison,
the diagonal blue dashed line xj = x0 is in the case of nphot = 0.

The positions of maximum linear coupling are defined by
sin(2kxj) = ±1 (see Equation (2.17)), hence the final trap position
has to be at xj = λ/8 + lλ/4, l ∈ Z . In the case of xj = λ/8, the
trapping laser should initially be focused at:

x0 =
λ

8
− Ucavk

mΩ2
x

, (4.8)
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with a limit x0 ≥ 0. The maximal number of photons in the control
mode is nmax

phot ≈ 1.5× 1010 (Figure 4.7) with the total coupling g ≈
2π × 38 kHz. For photon numbers close to nmax

phot we create a double-
well potential. To avoid jumping of the nanosphere from one well to
the other, the trap depth of a single well has to be larger than the
energy of the nanosphere motion :

∆U = U(0)−U(xj) ≈
Ucav

2

(
1− Ucavk2

mΩ2
x

)
≈ 2kBT0. (4.9)

Once the nanosphere motion is cooled with the cavity mode, the trap
is certainly deep enough to localize the nanosphere in the desired
well.

Figure 4.7: The optimal tweezer position to reach the maximum linear cou-
pling to the cavity mode as a function of the intracavity photon number.
As we increase the intracavity photon number, the initial tweezer position
has to be moved away from the optimal position for linear optomechan-
ics xj = λ/8. The optimization for an uncooled nanosphere motion can
definitely be done for up to nmax

phot ≈ 1.5× 1010 photons in the cavity mode.
Inset: In the case of a strongly driven cavity (dashed vertical line in the main
graph) the cavity (red) and the tweezer potential (blue) create a double-well
potential (black). The horizontal black line shows the energy of the nano-
sphere motion at room temperature in such a trap, which is about two times
smaller than the trap depth of the right trap.

Phase noise heating

Note that the heating due to phase noise is proportional to the intra-
cavity photon number, which for nmax

phot already results in an added
phonon number n̄phase ≈ 250. Laser phase noise is readily decreased
with a filtering cavity with small linewidth κFC � Ωx. In principle,
reducing laser phase noise with a filtering cavity of κFC/2π = 75 kHz
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in a double pass configuration would be enough to reach the ground
state of the x-motion [Hoelscher-Obermaier, 2017]:

n̄phase, f ilt =

( ( κFC
2

)2( κFC
2

)2
+ Ω2

x

)2

n̄phase ≈ 0.7. (4.10)

4.3.2 Limitations to the cooperativity

We determined the optomechanical cooperativity C ≈ 0.01 at a pres-
sure p = 4.3× 10−6 mbar.

We list here the improvements towards C > 1 in increasing order
of complexity:

1. Immediate effect

(a) Base pressure of the vacuum chamber. We measured a
heating rate Γ = 2π × 28 kHz at a pressure of p = 4 ×
10−7 mbar and a total coupling of up to g ≈ 2π × 14 kHz
at a pressure p = 0.56 mbar. Combining these two values
would result in a cooperativity of C ≈ 0.14.

(b) Increased coupling by better nanosphere positioning. By
moving the tweezer position to compensate for the ad-
ditional restoring force of the cavity standing wave, we
would be able to realize a coupling rate of g = 2π× 38 kHz
and a cooperativity of C = 1 at the base pressure of the
vacuum chamber.

2. Improving the current setup

(a) Going to the recoil heating limit. We could reach lower
pressures by baking out the vacuum chamber, where the
recoil heating of the trapping laser becomes the dominant
heating source with a rate Γ ≈ 2π × 6.5 kHz. The coopera-
tivity would be C ≈ 4.6.

(b) Larger power of the trapping laser. In reality, we are lim-
ited by the drive power of the optical cavity, which at this
moment is not enough to reach the required g = 2π × 38
kHz. The current bottleneck are the large losses in the
EOM used to generate the sidebands at ∼ ∆νFSR. A pos-
sible solution is to reverse the role of the locking and the
control laser, as there are no optical elements restricting
the optical power in the locking laser path.

3. Exchanging the system hardware

(a) Higher cavity finesse F . The optomechanical cooperativ-
ity is directly proportional to the cavity finesse as C ∝
κ−1 ∝ F . We expect to achieve a finesse of C = 200.000
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with better mirror coatings, which is an increase by a fac-
tor of ∼ 3.

(b) Smaller cavity waist w0. The smaller the cavity waist, the
larger the coupling rate as g0 ∝ V−1

cav ∝ w−2
0 . However, this

requires a completely different cavity design.

4.4 conclusion and outlook

We have presented here and in previous chapters the state-of-the-art
setup for levitated optomechanics in the dispersive regime with the
full supporting theory. Using an external trapping laser, we are able
to position the nanosphere along the cavity standing wave with sub-
wavelength precision. We use this to fully characterize the cavity
mode and the nanosphere, which results in an accurate mass mea-
surement of a silica nanosphere. We successfully levitate a nano-
sphere in high vacuum (down to pressures of p ≈ 4 × 10−7 mbar)
using three-dimensional feedback cooling and measure a stable and
reproducible coupling rate of up to g/2π ≈ 15 kHz using optome-
chanically induced transparency. We identify the most important
heating sources of the nanosphere motion and measure the total heat-
ing rate Γ as a function of pressure, which is still dominated only
by gas collisions. We use this to obtain an optomechanical cooper-
ativity C ≈ 0.01. At the end we identify co-trapping by the cavity
standing wave and phase noise heating as current limitations of this
setup. We present some possible experimental improvements, which
would allow us to achieve the strong cooperativity regime. In the fol-
lowing chapters we will present a different route, which immediately
improves the cooling performance without any changes to the basic
experimental setup.
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C AV I T Y C O O L I N G B Y C O H E R E N T S C AT T E R I N G :
T H E O RY

In the previous chapters we considered the tweezer and the cavity
modes to be mutually non-interacting due to a difference in both po-
larization and optical frequency. In particular, the tweezer polariza-
tion was oriented along the cavity axis, thus minimizing the dipole
scattering off the nanosphere into the cavity mode. By rotating the
polarization and tuning the tweezer frequency close to a cavity reso-
nance, we can drive the cavity mode with only the dipole scattering.
This is the mechanism behind Purcell enhancement [Purcell et al.,
1946, Motsch et al., 2010], as well as cavity cooling by coherent scat-
tering [Vuletić et al., 2001, Hosseini et al., 2017].

ω
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cav

ω ≈ ω
cav

ω
tw 

≠ ω
cav

MOMO

cavity nanosphere

(a) (b)

Figure 5.1: Different paradigms for cavity cooling of a levitated nano-
sphere. (a) Cavity cooling by coherent scattering is based on dipole radi-
ation being emitted into an empty cavity mode. The cavity is not driven by
an external laser, but through the scattering of the tweezer laser, which is
tuned close to the cavity resonance. (b) In standard dispersive optomechan-
ics an external laser drives the cavity through one of the cavity mirrors. The
tweezer is used only for trapping of the nanosphere, where the frequency
is far detuned from the resonance and the scattering into the cavity is mini-
mized by aligning the polarization along the cavity axis.

In this Chapter, we show that we can drive the optical cavity by
coherent scattering off the nanosphere, which can be perceived as an
input mirror. The astonishing consequence is that we reach a new
regime in optomechanics by linearly coupling the center-of-mass mo-
tion along the cavity axis to the cavity electric field (and not cavity
intensity) with larger coupling rates than in the standard optome-
chanics. A major prerequisite for this is to have the stability in posi-
tioning a nanosphere along the cavity standing wave, something we
demonstrated in Chapter 3.

95
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The Chapter is organized as follows: We start with the classical pic-
ture of dipole radiation into a cavity mode, where the cavity enhances
the scattered light (Purcell effect). The quantum picture is shown in
Section 5.2, where we arrive at three-dimensional cavity cooling start-
ing from the dipole interaction Hamiltonian. If the reader is inter-
ested in the comparison of the resulting optomechanical effects with
the dispersive regime, it is recommended to jump to the conclusion
in Section 5.3.

The theoretical work in this chapter was mostly done during a sec-
ondment in the group of Prof. Vladan Vuletić at the Massachusetts
Institute of Technology. The research stay has been co-sponsored by
the Doctoral program "Complex Quantum Systems" (CoQuS) and the
Austrian Marshall Plan Foundation. Some of the results presented
here and in the following chapter are in our work "Cavity cooling of
a levitated nanosphere by coherent scattering" [Delić et al., 2019b].
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5.1 classical description of scattering into a cavity

mode

When we couple a laser to a cavity through an input cavity mirror,
we usually assume perfect mode matching, i.e. the driving laser has
the same spatial properties as the driven cavity mode. Owing to be-
ing smaller than the laser wavelength, the nanosphere scatters light
according to a dipole radiation pattern. As it doesn’t conform to a
single Hermite-Gaussian mode, only some photons scattered by the
nanosphere will couple to a particular TEM cavity mode with an over-
all mode matching β � 1. The overlap of the scattered light and the
cavity mode in frequency space gives rise to a Purcell enhancement
of the dipole radiation, which will be the topic of this section. The for-
malism has already been described for atoms in [Tanji-Suzuki et al.,
2011], which we will use in order to obtain a classical picture of the
coherent scattering off a nanosphere.

5.1.1 Mode overlap of the dipole radiation pattern and a single cavity
TEM00 mode

Let us assume that the incident electric field Ein is polarized along the
y-axis, such that the dipole scattering is maximized towards the cavity
mirrors. As a first step, we calculate the ratio of the incident laser that
is scattered off the nanosphere into a free space TEM00 defined by the
cavity mode. We obtain the mode overlap as ratio from the TEM00

mode profile with the dipole radiation pattern.
The electric field of the dipole scattering at a distance R from the

nanosphere is given by:

Erad(R, θ) =
k2 sin θ

4πε0

eikR

R
αEin, (5.1)

where θ is the angle between the polarization vector of the incident
field Ein and the direction along which the radiated field Erad prop-
agates. The radiation field is effectively zero along the polarization
axes of the incident field Ein. The incident field is polarized orthogo-
nal to the cavity axis (θ = π/2) in order to maximize dipole scattering
toward the cavity mirrors. The electric field of the TEM00 spatial cav-
ity mode at a position x along the cavity axis and a distance ρ away
from the cavity axis is:

E00 = E0
w0

w[x]
e
− ρ2

w2 [x] e−ikx− ikρ2
2x , (5.2)

where w(x) = w0
√

1 + (x/xR)2 is the waist along the cavity axis and
xR is the Rayleigh range.

The fraction of the scattered photons into a cavity mode is quanti-
fied by the mode overlap between a single TEM00 cavity mode and
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the dipole radiation pattern. We assume that the fundamental cavity
mode has a waist w0 at the cavity center and the waist w1 = w(L/2) at
the cavity mirror, where L is the cavity length. The nanosphere is ide-
ally placed at the cavity center, where the strongest interaction with
the cavity mode is expected. The mode overlap is calculated at the
cavity mirrors where R � λ. Therefore, we can use the far-field ap-
proximation of the dipole radiation pattern eikR/R = eikx+ikρ2/(2x)/x,
where x is the distance from the nanosphere to the cavity mirror along
the cavity axis. The amount of photons scattered under a small angle
δθ = π/2− θ with respect to the cavity axis is ∝ sin θ = cos δθ ≈
1− (2w1/L)2 ≈ 1, hence we assume sin θ ≡ 1.

The overlap of the two modes is:

1
EinE0

2π∫
0

∞∫
0

E00Eradρdρdϕ =
k2α

2ε0

w0

w[x]x

∞∫
0

e
− ρ2

w2 [x] ρdρ =

k2α

2ε0

w0

x
−w[x]

2

∞∫
0

e
− ρ2

w2 [x] d
(
− ρ2

w[x]2

)
=

k2α

2ε0

−w0w[x]
2x

e
− ρ2

w2 [x]

∣∣∣∣∣
∞

0

=

k2α

2ε0

−w0w[x]
2x

(
lim
ρ→∞

e
− ρ2

w2 [x] − e
− 0

w2 [x]

)
=

k2αw0

4ε0

w[x]
x

. (5.3)

At distances x greater than the Rayleigh range xR, the mode over-
lap normalized over an effective mode area of the cavity mode A =

πw2
0/2 is:

β =
1
A

1
EinE0

2π∫
0

∞∫
0

E00Eradρdρdϕ =
kα

ε0w2
0π

. (5.4)

It is compelling to see if there is a significant mode overlap when
the incident field Ein is polarized along the cavity axis, i.e. θ ≈ 0.
For small angle θ we approximate sin θ ≈ tan θ = ρ

L/2 and obtain a
non-zero mode overlap:

βmin =
α

ε0w3
0
√

π
. (5.5)

In the case of a near-confocal cavity of waist w0 ≈ 41µm, the mode
overlap is smaller by a factor of β

βmin
∼ 100 when compared to the

maximum overlap. Therefore, the power scattered into a single cav-
ity mode Pscatt ∝ |β|2 is decreased by a factor of 104 by fine-tuning the
polarization of the incident electric field. In reality, a small angular de-
viation φ = 8.4◦ from a perfectly straight angle between the tweezer
and cavity axes leads to a constant offset θ ≈ φ + ρ

L/2 , which modifies
the mode overlap β ≈ βmin + β sin φ. This results in a higher scattered
power ∝ |β|2 sin2(φ) ≈ 2× 10−2|β|2 than expected only from βmin.

The electric field of the scattered light into one half of the cavity
mode, e.g. toward the right:

EM = iβEin, (5.6)
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where |Ein|2 = 2Iin
ε0c is the electric field of the incident laser with inten-

sity Iin. The imaginary unit i is added due to the Gouy phase π/2 of
the cavity mode at large distances x � xR. It is important to note that
Equation (5.6) holds for any incident electric field irrespective of its
mode cross-section. Even for a tightly focused incident laser we as-
sume the mode waist of Ein is still larger than the nanosphere radius
W0 � r such that the incident field is resembling a plane wave.

The laser power scattered into the mode EM is PM = |β|2 Iinw2
0π/2 ≈

1 nW for our typical system parameters (r = 71.5 nm, Iin ≈ 2 ×
1011 W

m2 ). The total power emitted by the dipole into free space P4π is
obtained by an integration of the radiated intensity Irad = ε0c|Erad|2/2
over the surface of a sphere with an arbitrary radius R:

P4π =
ck4

12πε0
|αEin|2 =

k2w4
0π

6
|β|2 Iin. (5.7)

The ratio of the power scattered into both modes EM and the power
scattered into free space is called free space cooperativity:

ηfs =
2PM

P4π
=

6
k2w2

0
. (5.8)

We doubled the power PM in order to account for the scattering into
both directions of the cavity. The cavity collects the light scattered
into the solid angle ηfs.

5.1.2 Enhanced scattering by the cavity

The light scattered into the mode EM is reflected many times by the
cavity mirrors, which leads to an interference of the scattered photons.
For example, the scattered electric field EM toward the mirror M1 will
reflect once and interfere with the electric field EM scattered in the
opposite direction (toward mirror M2) (Figure 5.2). A weak built-up
right-traveling cavity electric field Ec,r (Ec,r � Ein) reaches a steady-
state amplitude depending on the relative phase shift between the
scattered fields:

Ec,r = EM + r1eik(L+2∆x)EM + r1r2e2ikLEc,r, (5.9)

where r2
1 and r2

2 is the reflectivity of the mirrors M1 and M2, respec-
tively. ∆x is the nanosphere position along the cavity axis, relative
to the cavity center. EM is the electric field scattered toward mirror
M2, while r1eik(L+2∆x)EM is the field scattered in the opposite direc-
tion and subsequently reflected from mirror M1. Note that we have
assumed a positive sign next to the accumulated phase shift ikL for
the right-traveling wave. As we will see later, the choice of the sign
coincides with the phase and direction of a quantized cavity mode.

Our cavity is designed to be double-sided, hence we assume equiv-
alent transmittivities |t1|2 = |t2|2. Still, we continue using an arbitrary
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Figure 5.2: Coherent enhancement of the dipole radiation by the cavity.
The nanosphere scatters the incident field Ein into the cavity mode (out-
lined by the dashed lines). The scattered electric field EM is reflected from
the mirror M1 and interferes with the component EM scattered toward the
mirror M2, creating the right-traveling electric field Ec,r. The interference
can be destructive or constructive, depending on the nanosphere position
∆x.

|r1|2 and |r2|2 as we might have some additional losses. The steady-
state amplitude of the right-traveling cavity electric field Ec,r is:

Ec,r = iβEin
1 + r1eikLe2ik∆x

1− r1r2e2ikL . (5.10)

Let us consider a simple case of a resonant incident laser ωtw =

ωcav, such that the accumulated phase shift during one cavity circu-
lation is e2ikL = 1. Without a loss in generality we assume eikL = 1,
i.e. the cavity standing wave has an intensity maximum at the cavity
center. The cavity electric field is:

Ec,r = iβEin(1 + r1e2ik∆x)
F
π

, (5.11)

where we used the definition of the cavity finesse (1− r1r2)−1 ≡ F/π.
The power of the right-traveling cavity electric field is:

Pc,r =
|Ec,r|2
2ε0c

w2
0π

2
= Iin

w2
0π

2
|β|2

(
F
π

)2 (
1 + r2

1 + 2r1 cos(2k∆x)
)

,

(5.12)
where ∆x is the nanosphere position with respect to the cavity center.
In general, ∆x is a combination of the steady-state trap position x0

and the nanosphere motion along the cavity axis x(t), which we ne-
glect at the moment. For a nanosphere trapped at the position of the
intensity maximum (cos 2kx0 = 1) and assuming |r1|2 ≈ 1, the power
of the right-traveling field is:

Pc,r = 2Iinw2
0π|β|2

(
F
π

)2

. (5.13)
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In conclusion, although a small fraction of the incident laser ∝ |β|2Pin
is scattered into the cavity mode, the intracavity power is enhanced
by the cavity finesse

(F
π

)2
.

detuned tweezer laser . In the case of a detuned incident laser
ωtw = ωcav − ∆, the accumulated phase shift of the traveling field is
approximately e2ikL = e−i∆/∆νFSR :

1
|1− r1r2e2ikL|2 ≈

1∣∣∣1− r1r2 cos ∆
∆νFSR

+ ir1r2 sin ∆
∆νFSR

∣∣∣2 ≈
(F/π)2 ( κ

2

)2(
κ
2

)2
+ ∆2

.

Hence, the cavity enhancement is modified by the cavity response at
the detuned frequency.

purcell factor . A fraction of the right-traveling laser leaks out
of the cavity through the mirror M2 with power P2 = |t2|2Pc,r. In case
of no additional losses, the transmission through mirror M2 attributes
for one half of the cavity photon losses:

P2 = 2Iinw2
0|β|2

(
F
π

)2

|t2|2. (5.14)

A double-sided cavity without absorption and scattering losses has a
cavity finesse Fmax = π/|t2|2. The finesse of a cavity with additional
losses is F < Fmax, hence P2 = 2Iinw2

0|β|2 Fπ
F
Fmax

. For the optimal case
F = Fmax, the ratio of the total power leaked through the cavity mir-
rors P1 + P2 to the power emitted into the whole space P4π in absence
of a cavity is commonly referred to the Purcell factor of enhancement
η [Purcell et al., 1946]:

η =
P1 + P2

P4π
= 4
F
π

ηfs =
24F/π

k2w2
0

. (5.15)

Therefore, although the cavity collects only a small solid angle of the
whole dipole radiation, it stimulates radiation into the cavity. This
results in an overall enhancement of the scattered power. As shown in
[Tanji-Suzuki et al., 2011], the Purcell factor of the dipole interaction
is equivalent to the atomic cooperativity obtained from the quantum
treatment.

5.1.3 Modified enhanced scattering into the cavity

The scattered electric field EM is strongly amplified in a high finesse
cavity. In this case the coherent scattering of the built-up intracavity
fields Ec,r and Ec,l has to be taken into account, such that the total
scattered electric field is:

EM = iβ(Ein + Ec,r + Ec,l). (5.16)
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The left- and right-traveling electric fields Ec,l and Ec,r are related by
a phase Ec,le−ik(L−2∆x) ≈ Ec,r ≡ Ec. We use this to eliminate the left-
traveling electric field:

Ec = r1r2e2ikLEc + iβ
(

Ein + Ec

(
1 + r2eik(L−2∆x)

)) (
1 + r1eik(L+2∆x)

)
.

(5.17)
We assume an arbitrary detuning of the incident laser, an intensity
maximum of the cavity field at the cavity center (eikL ≈ 1) and near
to unity reflectivities |r1|2, |r2|2 ≈ 1:

Ec =
iβEin

(
1 + e2ik∆x)

1− r1r2 + i ∆
∆νFSR

− i4β cos2 k∆x

=
iβ∆νFSREin

(
1 + e2ik∆x)

κ′
2 + i∆′

. (5.18)

We introduced the modified cavity energy decay rate κ′ and the mod-
ified detuning ∆′ as:

κ′ = κ + 8 Im(β)∆νFSR cos2 k∆x,

∆′ = ∆− 4 Re(β)∆νFSR cos2 k∆x.

The modification to the detuning ∆′ is a recurring factor 4 Re(β)∆νFSR =

U0, where U0 is the nanosphere-induced frequency shift defined in
Equation (2.15). Note the following effects from Equation (5.18):

1. Modified cavity energy decay rate. The nanosphere scatters
light out of the cavity, hence the total cavity decay rate is modi-
fied by a position-dependent κscatt = 8 Im(β)∆νFSR cos2 kx0. The
scattering rate is a function of the imaginary part of the mode
overlap Im(β) ∝ Im(α). The nanosphere polarizability obeys
the Kramers-Kroenig relation Im(α) = 6πε0

k3 |α|2:

Im(β) = |β|2 1
η f s

=

(
k|α|

ε0w2
0π

)2 k2w2
0

6
∝ r6. (5.19)

Furthermore, this is a confirmation that the scattering into the
cavity |β|2 is a fraction η f s of the scattering into the whole space
Im(β).

2. Modified detuning by the nanosphere. The nanosphere has a
different refractive index compared to the environment, thus it
changes the cavity resonance frequency by U(x) = U0 cos2 kx0.

3. Linear optomechanical coupling to the cavity mode. The na-
nosphere motion induces a position-dependent frequency shift
to the cavity resonance with a rate U0:

∂ωcav

∂x
= −U0k sin 2kx0 =

g0

xzp f
sin 2kx0. (5.20)
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4. Position-dependent drive of the cavity mode. The amplitude
of the created cavity electric field Ec depends on the nanosphere
position ∆x = x0 + x(t), which is an observable effect only with
atoms and dipole scatterers. This leads to a different coupling
mechanism of the cavity mode to the nanosphere motion when
compared to standard optomechanics. We will explore this in
detail in the following chapter.

The first three points mentioned above exist also in standard optome-
chanics theory, as shown in Chapter 2. Before we examine the fourth
point in detail, we apply the formalism of coherent scattering to a case
when the cavity is driven through an input mirror. We compare the
results to the theory from Chapter 2 to demonstrate that the coherent
scattering picture is applicable.

Cavity driven through the cavity mirror

Let us consider a case of an external laser driving the cavity mode
through the input mirror M1 [Horak et al., 1997, Vuletić and Chu,
2000]. We apply the formalism of coherent scattering in order to
calculate the right-traveling cavity field. Only a fraction of the input
field t1β1EM1

in is transmitted through the input mirror. We assume a
perfect mode matching of the input field EM1

in and the driven cavity
mode Ec,r, i.e. β1 = 1. Including the coherently scattered light fields,
the steady-state cavity electric field satisfies the following relation at
the nanosphere position ∆x:

Ec,r = r1r2e2ikLEc,r + t1EM1
in eik( L

2 +∆x)

+ iβEc,r

(
1 + r2eik(L−2∆x)

) (
1 + r1eik(L+2∆x)

)
. (5.21)

We include a phase eik( L
2 +∆x) to account for the phase that the right-

traveling field accumulates between the input mirror and the nano-
sphere position. This is important in order to later implement a
proper quantization of the cavity field Ec,r. Comparing Equations
(5.21) and (5.17), we conclude that the nanosphere acts as an in-
put mirror for the trapping laser with a transmission |β|. Although
β � t1, the incident intensity Iin is typically orders of magnitude
higher than the typical IM1

in , both due to a tighter focus and the larger
powers needed to levitate a nanosphere.

Without any loss in generality we set eikL ≈ 1 and |r1|2, |r2|2 ≈ 1.
Instead of quantizing the cavity standing wave, we use the notation
of quantized traveling fields. However, we still keep the boundary
conditions that the cavity mirrors set on the created cavity standing
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wave. The right- and left-traveling fields are quantized as [Clerk et al.,
2010]:

Er ∝ i

√
h̄ωl

2ε0Vcav

(
âeikxe−iωl t − â†e−ikxeiωl t

)
El ∝ −i

√
h̄ωl

2ε0Vcav

(
âe−ikxe−iωl t − â†eikxeiωl t

)
.

The earlier notation of the accumulated phase with a positive sign
leads to the component Er ∝ â. By keeping a convention of negative
phase shifts e−ikx, we arrive at the equation governing the dynamics of
the creation operator â†. Note that the total electric field is Et = Er +

El ∝ 2
(
âe−iωl t + â†eiωl t

)
sin kx, in agreement with the usual cavity

mode quantization.
It is important to choose a correct coordinate system for the prop-

agation of the traveling fields, which is commonly chosen to be at
the input cavity mirror. Therefore, we displace the calculated elec-
tric field Ec,r by eil( L

2 +∆x) in order to obtain the classical analogue of
Er. Although it seems like an unnecessary trick, this is an important
step in dealing with the quantization of the electric field generated by
coherent scattering. The quantum Langevin equation for the annihi-
lation operator â is:

˙̂a = −
(

κ′

2
+ i∆

)
â + Ed − iU0kâx̂ sin 2kx0, (5.22)

where Ed = t1Ein∆νFSR

√
2ε0Vcav

h̄ωl
=
√

Pinκ1
h̄ωl

is the cavity driving field9.9 κ1 = |t1|2∆νFSR

This equation is in agreement with the Langevin equation (2.47) from
Chapter 2. Therefore, using the classical picture of coherent scattering
we are able to reach a quantum description, with the quantization of
the scattered light done as the final step. We now return to the case
of coherent scattering of the trapping laser.

5.1.4 Quantum Langevin equations of motion for coherent scattering

The cavity electric field Ec in Equation (5.18) is the right-traveling
field at the nanosphere position ∆x = x0 + x̂. In order to implement
the quantization correctly, we need to calculate the electric field at the
cavity center10 which serves as a coordinate system origin:10 We conduct this

by shifting
1 + e2ik∆x →

e−ik∆x + e−ik∆x =
2 cos k∆x

˙̂a = −
(

κ′

2
+ i∆′

)
â+ iEd cos(kx0)− iEdk sin(kx0)x̂− i

g
xzp f

sin(2kx0)x̂.

(5.23)
Figure 5.3 demonstrates the position dependence of the different cou-
pling rates, in comparison to the dispersive coupling for an exter-
nally driven cavity. The dispersive coupling with the cavity driven by
coherent scattering g sin 2kx0 is the optomechanical coupling to the
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intensity of the cavity mode, which is created by the coherently scat-
tered light. The additional coupling rate g′ sin kx0 = Edkxzp f sin kx0

describes a coupling of the nanosphere motion to the cavity electric
field and is intrinsically linearized. This is a yet unexplored inter-
action for macroscopic mechanical objects, although it was already
demonstrated in atomic systems. Cooling of the atomic motion by
coherent scattering was both shown in the sideband-resolved regime
[Leibrandt et al., 2009] and in the sideband-unresolved regime [Hos-
seini et al., 2017].
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Figure 5.3: Optomechanical coupling rates from different coupling mech-
anisms. The nanosphere motion is coupled to the intensity profile of an
externally driven cavity in the dispersive regime (green solid) and to the
electric field in the case of coherent scattering (red). For a cavity driven by
coherent scattering, the residual dispersive coupling exhibits a tilt toward
the intensity maximum (green dashed). The cavity standing wave inten-
sity profile Icav is plotted for reference (blue dashed line). Maximum of the
coupling through coherent scattering |g′| is observed at the cavity nodes,
in contrast to the dispersive coupling |g|, which is the strongest halfway
between the node and the antinode.

In analogy to the cavity drive with an external laser in Section 2.1.1,
coherently scattered photons drive the cavity with a photon rate Ed =√

P′inκnano
h̄ωl

. The nanosphere acts as an input mirror with the position-
dependent input rate κnano:

κnano(x0) = 4|β|2∆νFSR cos2(kx0). (5.24)

P′in = Iinw2
0π/2 is the power of the trapping laser rescaled to the

cavity mode area and Iin is the intensity of the trapping laser. The
relation between the input rate κnano and the loss rate into free space
κmax

scatt = 8 Im(β)∆νFSR is:

κnano =
κscatt

2
ηfs. (5.25)
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The scattering rate of the trapping laser into the cavity mode is η f sκscatt,
consistent with the definition of ηfs from above. After a linearization
of the cavity mode operators (â→ α0 + â) we obtain:

˙̂a = −â
(

κ′

2
+ i∆

)
− i

g(x0) + g′(x0)

xzp f
x̂

+
√

κIN(â1
IN + â2

IN) +
√

κscatt cos2(kx0)ânano, (5.26)

where we added the loss channels of the mirrors â1,2
IN and the nano-

sphere ânano.
We assume that there is no additional cavity drive through the cav-

ity mirrors. The intracavity photon number then depends only on the
nanosphere position x0 and the laser detuning ∆:

nphot = |α0|2 =
E2

d cos2(kx0)(
κ′
2

)2
+ ∆2

. (5.27)

As the coupling rate to the cavity standing wave contains a position-
dependent photon number

g(x0) = g0
√

nphot sin 2kx0 = g0
Ed√(

κ′
2

)2
+ ∆2

cos kx0 sin 2kx0, (5.28)

the optimal position for this coupling is at x0 = 1
k arctan(1/

√
2) with

an amplitude max(g) = U0kxzp f Ed√(
κ′
2

)2
+∆2

4
3
√

3
. The ratio of the coupling rates

max(g′) and max(g) is:

max(g′)
max(g)

=
Edkxzp f

U0kxzp f Ed√(
κ′
2

)2
+∆2

4
3
√

3

≈ 1.3

√(
κ′
2

)2
+ ∆2

U0
, (5.29)

which depends only on the cavity linewidth κ, the trapping laser de-
tuning ∆ and the nanosphere-induced frequency shift U0. For an
optimally detuned trapping laser in the resolved-sideband regime
(κ/2 � Ωx), the ratio is ∼ Ωx/U0 � 1, which shows that we can ne-
glect the standard optomechanical interaction with the cavity mode
driven by coherent scattering. This will change for an increased U0,
e.g. in the case of a smaller cavity mode volume or a larger nano-
sphere.

We now compare the coupling rates in the case of driving the cavity
through the input mirror with EM1

d and with the coherent scattering
off the nanosphere with Ecoh

d :

g′

g
=

Ecoh
d kxzp f

U0kxzp f EM1
d√(

κ′
2

)2
+∆2

∆=0
=

κ

2U0

Ecoh
d

EM1
d
∼
√

Iin

Icav
, (5.30)
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which is a ratio of the trapping laser intensity Iin and the created in-
tracavity intensity Icav for an externally driven cavity. In principle, the
former is higher due to a smaller waist of the trapping laser compared
to the cavity waist W0 � w0, i.e. a smaller interaction cross-section.
Note that a significantly smaller cavity drive Ecoh

d can be used to reach
the same coupling rates g′ = g as κ � U0.

Previous calculations show an increased strength of the optomecha-
nical interaction. We focus on the system Hamiltonian in the further
text, which will provide us with the full dynamics of the nanosphere
motion and the cavity mode operators.

5.2 quantum description of coherent scattering

Note that in Chapter 2 we dismissed the Hamiltonian containing the
interference between the trapping laser Etw and the cavity mode Ecav

as they are orthogonally polarized and driven at different frequencies.
We relax these constraints in order to allow for coherent scattering of
the trapping laser into the cavity. Hence, we now expect to have an
interference term ∝ EtwEcav, which we investigate here in detail. The
aim is to reproduce the effects seen in the classical formalism pre-
sented earlier in this chapter, as well as to gather a full understanding
of the different optomechanical interactions.

5.2.1 Interference between the tweezer and the cavity mode

The full dipole interaction between the nanosphere and available light
fields is given by the Hamiltonian:

Ĥi
light−nano = −

1
2

α
∣∣∣~E∣∣∣2 = −1

2
α
∣∣∣~Ecav + ~Etw

∣∣∣2 ,

where we neglected the free modes. Keep in mind that − 1
2 α
∣∣∣~Etw

∣∣∣2
and − 1

2 α
∣∣∣~Ecav

∣∣∣2 lead to the harmonic potential and the linearized
optomechanical interaction, respectively. We now allow for interfer-
ence between the tweezer and the cavity field:

Ĥi
cav−tw = −1

2
α (EtwE∗cav + E∗twEcav) .

Although we assume a quantized cavity mode, we still presume a
strong, coherent trapping laser:

Ĥi
cav−tw = −1

2
αεEtw

(
â† f ∗(~r) ft(~r)e−i(ωtw−ωcav)t + â f (~r) f ∗t (~r)e

i(ωtw−ωcav)t
)

,
(5.31)

where ε =
√

h̄ωc
2ε0Vcav

is the cavity electric field-per-photon, while f (~r)
and ft(~r) are the electric field profiles of the cavity mode and the trap-
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ping laser, respectively. Equation (5.31) resembles the Hamiltonian of
the cavity drive in Equation (2.4) with the drive photon rate:

Ed = αεEtw/2h̄. (5.32)

In contrast to (2.4), the cavity drive depends on the position of the
input mirror, i.e. the nanosphere. To keep things simple, we assume
that the nanosphere is positioned on the cavity axis (y0 = z0 = 0)
at an arbitrary position ∆x = x0 + x(t), such that the cavity mode
function is to first order f (~r) = cos k(x0 + x(t)). The interaction Ha-
miltonian in the rotating frame picture is:

Ĥi
l−n

h̄
= −U0 cos2 k∆xâ† â︸ ︷︷ ︸

from |Ecav|2

− Ed cos k∆x
(

â† + â
)

︸ ︷︷ ︸
from EcavE∗tw

− ∑
j=x,y,z

mΩ2
j ĵ2

2h̄︸ ︷︷ ︸
from |Etw|2

,

(5.33)
with the total system Hamiltonian Ĥ = h̄∆â† â + Ĥi

l−n. Due to the
coherent scattering driving the cavity mode, we assume that the cav-
ity operators â contain a coherent and a fluctuating component â →
α0 + â. Neglecting the fundamental trapping potential in Equation
(5.33), we obtain the other two terms:

• After linearization of the cavity operators, U0 cos2 k∆xâ† â leads
to the standard optomechanical interaction

Ĥ1
OM = h̄U0k|α0| sin(2kx0)x̂

(
â† + â

)
(5.34)

and the shift of the cavity frequency ∆′ = ∆−U0 cos2 kx0.

• The cavity drive Ed cos k∆x
(
â† + â

)
is also the source of the pre-

viously suppressed optomechanical interaction

Ĥ2
OM = h̄Edk sin(kx0)x̂

(
â† + â

)
. (5.35)

This interaction is intrinsically linear as it is proportional to the
cavity electric field Ecav.

The two interaction Hamiltonians Ĥ1
OM and Ĥ2

OM have a fundamen-
tally different dependence on the nanosphere position x0. Due to the
coupling of the nanosphere motion to the cavity intensity, the Hamil-
tonian Ĥ1

OM has the periodicity of the cavity standing wave, while the
Hamiltonian Ĥ2

OM expresses the coupling to the cavity electric field
at half of the standing wave periodicity.

As shown in the previous section, the cavity is weakly populated
by the coherently scattered light due to a large ratio between cavity
waist and tweezer waist, w0/W0. Therefore, the interaction Ĥ2

OM is
significantly stronger than the interaction Ĥ1

OM. Although the cavity
amplitude |α0| can be significantly increased by driving the cavity
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through the cavity mirrors, we focus solely on driving through the
nanosphere as it’s encouraging to explore the effects in this simple
case. Therefore, from this point on we neglect Ĥ1

OM.
With the purpose of motivating the study of coherent scattering, we

have investigated only the interaction with the cavity mode profile.
In the following we assume the following trapping laser and cavity
mode profiles:

ft(x, y, z) =
1√

1 +
(

z
zR

)2
eik(z+x sin φ)e−iϕG(z)e

− y2+x2

W2
0

f (x, y, z) = cos k(x0 + x + z sin φ)e
− y2+z2

w2
0 , (5.36)

which we will use to extract all contributions to the optomechanical
interaction. Note that we included the interaction with the x- and
z-motion due to a small tilting angle φ of the trapping laser, while
assuming cos φ ≈ 1.

5.2.2 Interaction with the x-motion

The dominant linear and quadratic interaction is from the cavity mode
profile:

h̄(â† + â)

(
gx sin kx0

x̂
xzp f

+ gx,q cos kx0

(
x̂

xzp f

)2
)

, (5.37)

where gx = Edkxzp f (for our parameters: gx/2π ≈ 66 kHz) and gx,q =

Edk2x2
zp f /2 are the linear and quadratic coupling rate. Note that the

maximum linear (quadratic) coupling is at the cavity node (antinode).
Additional smaller contributions are:

• Linear coupling due to the tilt φ of the trapping laser:

ih̄(â† − â) Edkxzp f sin φ︸ ︷︷ ︸
g(1)x

cos kx0
x̂

xzp f
(5.38)

The coupling rate g(1)x is a factor of 1/ sin φ ∼ 9 smaller com-
pared to gx. The interaction is of a different type compared to
the dominant linear interaction, with the maximum coupling
at the cavity antinode. Therefore, we will not include it in the
linear interaction, but we will compare it to the quadratic inter-
action at this position in Section 5.2.6.

• Quadratic coupling due to the Gaussian envelope of the trap-
ping laser:

−h̄(â† + â)
Edx2

zp f

W2
0︸ ︷︷ ︸

g(1)x,q

cos kx0

(
x̂

xzp f

)2

. (5.39)
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The coupling rate g(1)x,q is a factor of q = k2W2
0 /2 ∼ 8.54 smaller

compared to gx,q, but is still a sizable contribution due to the
small focus of the trapping laser. The total quadratic coupling
is ḡx,q = Edx2

zp f (k
2 − 1/W2

0 ).

We focus only on the linear interaction with the x-motion in the
Langevin equations:

˙̂p = −mΩ2
x x̂− γm p̂− h̄

gx

xzp f
sin kx0

(
â† + â

)
+ Fth(t)

˙̂x =
p̂
m

˙̂a = −
(κ

2
+ i∆′

)
â + iEd cos kx0 − i

gx

xzp f
sin kx0 x̂ +

+
√

κnano(x0)âtw +
√

κin

(
â1

IN + â2
IN

)
. (5.40)

The cavity is driven by the coherently scattered light with a rate
Ed cos kx0. As a result, the cavity operators include a coherent am-
plitude α0 as â→ α0 + â, where:

α0(x0) =
iEd cos kx0

κ
2 + i∆′

, nphot = |α0|2. (5.41)

Here we see how the cavity field is created from the scattering of
the trapping laser into the cavity mode. Interestingly, the maximum
coupling is reached for sin kx0 = ±1, which implies that the cavity
mode remains empty nphot ∝ cos kx0 = 0. We will investigate later
how this impacts the heating by the phase noise.

After the operator displacement and only up to first order in the
operators, the Langevin equations become:

â = −
(κ

2
+ i∆′

)
â− i

g(x0)

xzp f
x̂ +
√

κnano âtw +
√

κin

(
â1

IN + â2
IN

)
¨̂x = −γm ˙̂x−Ω2

0 x̂ +
h̄g(x0)

xzp f

(
â† + â

)
+ fth(t). (5.42)

The procedure to solve the system of equations shown above was ex-
plained in detail in Chapter 2. In conclusion, the coherently scattered
light into the cavity mode leads to cavity cooling of the nanosphere
x-motion for a trapping laser red-detuned with respect to the cavity
resonance.

5.2.3 Interaction with the z-motion

The dominant interaction with the z-motion arises from the trapping
laser phase kz + ϕG(z), where ϕG(z) = − arctan(z/zR) is the Gouy
phase shift. For a tightly focused laser both the plane-wave phase
shift kz and the Gouy phase have to be taken into account as they are
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of comparable magnitudes11. In the Lamb-Dicke regime (for small11 The ratio of the
two contributions is

kzR = q
nanosphere motion k

√
〈z2〉 � 1), the trapping laser electric field is

approximately:

Etw(x, y, z) = Etw

[
1 + i

(
k− 1

zR

)
ẑ− (k− 1/zR)

2

2
ẑ2 +O(ẑ3)

]
.

(5.43)
The linear and quadratic rates are then gz = Ed(k − 1/zR)zzp f (for
our parameters: gx/2π ≈ 130 kHz) and gz,q = Ed(k− 1/zR)

2z2
zp f /2,

respectively. The optomechanical interaction to both ẑ and ẑ2 is max-
imum at the cavity antinode:

h̄

[(
Ed +

gz,q

z2
zp f

ẑ2

)(
â† + â

)
+ i

gz

zzp f
ẑ
(

â† − â
)]

cos kx0. (5.44)

Additional coupling rates are:

• Linear coupling from the tilt φ of the trapping laser:

h̄(â† + â) Edkzzp f sin φ︸ ︷︷ ︸
g(1)z

sin kx0
ẑ

zzp f
(5.45)

• Quadratic coupling due to the waist function of the trapping
laser:

−h̄(â† + â) Ed
z2

zp f

2z2
R︸ ︷︷ ︸

g(1)z,q

cos kx0
ẑ2

z2
zp f

(5.46)

• Quadratic coupling from the Gaussian envelope of the cavity
mode is neglected as the cavity waist w−1

0 �W−1
0 , k.

The system dynamics including the z-motion is well described by
the following equations:

â = −
(κ

2
+ i∆′

)
â− iEdk sin kx0 x̂− Edk cos kx0 ẑ

+
√

κnano âtw +
√

κin

(
â1

IN + â2
IN

)
¨̂z = −γm ˙̂z−Ω2

z ẑ + i
h̄Edk

m
cos kx0

(
â† − â

)
+ f z

th(t). (5.47)

The cavity cooling of the z-motion is maximal for the nanosphere
positioned at cos kx0 = ±1 (intensity maximum), in the contrast to
the optimal position for the cavity cooling of the x motion (intensity
minimum) [Leibrandt et al., 2009]. At the intensity maximum, the
coupling to the x motion is intrinsically quadratic, which we will
demonstrate in the following.

The nanosphere z-motion is:

z̃
(
(Ωz

0)
2 −ω2 + iγmω− i

h̄(Edk)2

m
(χ∗c (−ω)− χc(ω))

)
= f̃ z

th, (5.48)
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which leads to cavity cooling for the red-detuned trapping laser. For a
nanosphere positioned somewhere between the intensity maximum
and minimum, it is expected to have cavity cooling of both x- and
z-motion.

5.2.4 Coupling to the motion along the y-axis

A rotation of the linear polarization of the trapping laser by an angle
α/2 leads to a rotation of the trapping potential by α, while the funda-
mental mechanical frequencies are unchanged (Appendix C). We de-
fine the motion along the potential semi-major and semi-minor axes
as u(t) and v(t) with the mechanical frequencies Ωx and Ωy, respec-
tively. The projections of the motion onto the x- and y-axis (defined
by the cavity axis in case α = 0):

x = u cos α + v sin α, y = u sin α− v cos α. (5.49)

Rotation by an angle α = 45◦ allows for an equal coupling of both u-
and v-motion to the cavity mode. Due to the optomechanical inter-
action being originally along the cavity axis, only the projections of
these motions to the cavity axis will be cooled.

Let us assume the optimal position of sin kx0 = 1 for cavity cooling
of the motion along the x-axis. The Hamiltonian Ĥ2

OM of the interac-
tion with the u- and v-motion projected onto the cavity axis is:

Ĥ2
OM =

h̄Edk√
2

(û + v̂)
(

â† + â
)

, (5.50)

with the system dynamics described by the following Langevin equa-
tions:

¨̂u + γm ˙̂u + Ω2
xû− h̄Edk√

2m

(
â† + â

)
= f u

th

¨̂v + γm ˙̂v + Ω2
yv̂− h̄Edk√

2m

(
â† + â

)
= f v

th

˙̂a +
(κ

2
+ i∆

)
â− i

Edk√
2
(û + v̂) ≈ 0. (5.51)

The sum and the difference of the first two equations yields:

ẍ︷ ︸︸ ︷
( ¨̂u + ¨̂v) +γm

ẋ︷ ︸︸ ︷
( ˙̂u + ˙̂v) +(Ω2

xû + Ω2
yv̂)− 2

h̄Edk√
2m

(
â† + â

)
= f u

th + f v
th

ÿ︷ ︸︸ ︷
( ¨̂u− ¨̂v) +γm

ẏ︷ ︸︸ ︷
( ˙̂u− ˙̂v) +(Ω2

xû−Ω2
yv̂) = f u

th − f v
th.

This shows that two-dimensional cooling is possible only in the case
of non-degenerate frequencies Ωx 6= Ωy. Otherwise, the projected
dynamics along the y-axis remains unaffected by the cavity mode.
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5.2.5 Phase noise heating

The phase noise contributes to the heating of the nanosphere motion,
as shown in Section 2.3.1. It is commonly included as a small phase
modulation ϕ(t) of the cavity drive, which in this case leads to the
most general electric field of the trapping laser Etw → Etweiϕ(t)eikẑ.
From Equation (2.67) the minimum phonon occupation due to phase
noise heating is:

n̄phase =
nphot

κ
Sϕ̇ϕ̇(Ω0), (5.52)

where Ω0 is the relevant mechanical frequency and nphot =
E2

d cos2(kx0)

(κ/2)2+∆2

is the intracavity photon number from the coherently scattered light,
which depends on the nanosphere position x0.

We calculate the expected cavity drive Ed/2π ≈ 2.9× 109 Hz from
our current parameters (Pin = 0.17 W, W0 ≈ 0.7 µm, r = 71.5 nm).
For a drive resonant to the cavity and the nanosphere positioned at
the cavity antinode (cos kx0 = 1), the coherently scattered light will
be enhanced to nphot ≈ 8.8× 108 photons in the cavity mode. This is
smaller than the maximum intracavity photon number with the con-
ventional cavity drive (nphot ≈ 1.9× 109) that we reached in Chapter
4.

The phase noise heating of the x-motion depends on how well the
nanosphere is positioned in the vicinity of the cavity node. In princi-
ple, for a nanosphere placed precisely at the cavity node (cos(kx0) ≡
0) no phase noise heating will occur. In practice, we can position the
nanosphere with the nanopositioner (average step size of ∼ 8 nm)
within 4 nm from the cavity node, resulting in a contribution to the
phonon occupation from the phase noise heating of:

n̄phase
x =

E2
d cos2 (k (λ

4 + 4 nm
))

κ
((

κ
2

)2
+ Ω2

x

) Sϕ̇ϕ̇(Ωx)︸ ︷︷ ︸
0.0023 Hz2/Hz

≈ 2× 10−3. (5.53)

This shows that for a sufficiently stable setup we don’t expect the
phase noise heating to have a strong effect on the nanosphere x-
motion. On the other side, the cavity mode is coupled to the na-
nosphere z-motion at the cavity antinode. There, the phase noise
heating of an unfiltered solid state laser will provide a hard limit on
the phonon occupation of the z-motion:

n̄phase
z =

E2
d

κ
((

κ
2

)2
+ Ω2

z

) Sϕ̇ϕ̇(Ωz)︸ ︷︷ ︸
0.05 Hz2/Hz

∼ 102. (5.54)

5.2.6 Quadratic cavity cooling of the x-motion

The quadratic coupling of the x-motion has already been discussed
in the case of standard optomechanics in Chapter 2 and the single
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photon quadratic coupling rate gq/2π ≈ 8 µHz was measured in
Chapter 3. With a total coupling of around gq

t = gq
√nphot/2π ≈ 0.25

Hz, cavity cooling via the quadratic optomechanical coupling will be
considerably weak.

Cavity cooling by coherent scattering provides a 10 times stronger
quadratic coupling rate of the x-motion with gq

t /2π ≈ 2.4 Hz. It is
still too small to achieve an appreciable cooling rate:

Γq
− = (gq

t )
2κ

∣∣∣∣ 1
κ
2 − i(−2Ωm + ∆)

∣∣∣∣2 ∆=2Ωm≈ 2π × 10−4 Hz. (5.55)

For comparison, the recoil heating rate is on the order of 104 Hz.
However, in a special case of γm � Γq

−nth a change of phonon distri-
bution results in an effective cooling of the nanosphere motion [Nun-
nenkamp et al., 2010]. In this case, the mean phonon number of the
cooled state is:

n̄ =

√
γmnthκ

π(gq
t )

2
. (5.56)

The effect is valid already for γm/2π < 4 kHz, which is satisfied at
pressures below p = 4 mbar. In high vacuum (p = 10−6 mbar) we
expect a mean phonon occupation of n̄ ≈ 2× 104, which is cooling
by around a factor of 103 from the thermal occupation nth with only
quadratic coupling.

5.2.7 Impact of the cavity birefringence on the cavity cooling

Induced by stress or by manufacturing imprecisions, Fabry-Pérot cav-
ities frequently exhibit birefringence. Birefringence is usually recog-
nized by two different resonance frequencies ωcav depending on the
laser polarization. Furthermore, depending on the direction of the
applied stress and the mirror symmetry, the polarization axes of the
non-degenerate cavity modes are in general a combination of the ver-
tical and the horizontal polarization defined in the laboratory frame:

V → sin Φ H + cos Φ V H → cos Φ H− sin Φ V, (5.57)

where Φ is the angle of the polarization plane rotation.
In order to maximize the dipole scattering into the cavity in our

current geometry, the trapping laser has to be polarized vertically,
i.e. along the y-axis. In principle, the scattered light could drive
both birefringent cavity modes. Therefore, the birefringence angle
and the splitting of the cavity resonances ω1

cav − ω2
cav are crucial for

a successful and strong cavity cooling. For example, in the case of a
non-zero birefringence angle Φ 6= 0, the trapping laser has to be red-
detuned from both cavity modes, as the cavity drive with frequency
in between the resonances at ω1

cav and ω2
cav could lead to a net heat-

ing of the nanosphere motion. Therefore, we characterize the cavity
birefringence in Section 6.1.1.
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5.2.8 Optomechanical cooperativity

At sufficiently low pressures (p < 10−7 mbar), heating of the nano-
sphere motion is given by the recoil heating of the trapping laser:

Γtw
rec =

4
5

ωl

Ωx

Iin

mc2
k4|α|2
6πε2

0
=

2
15

k2w2
0

∆νFSR
E2

dk2x2
zp f︸ ︷︷ ︸

g2
x

, (5.58)

where Iin is the trapping laser intensity. As it turns out, the optome-
chanical cooperativity C = 4g2

x
κΓtw

rec
depends only on the cavity finesse

and the waist:

C =
30F/π

k2w2
0

=
5
4

η, (5.59)

where η is the Purcell factor. The limit to the cavity cooling is then
given only by the Purcell factor as well as n̄ = (κ/4Ωx)2 + C−1 =

(κ/4Ωx)2 + 5/(4η). Already for the current cavity with the finesse
F = 73, 000 and waist w0 = 41.1µm we calculate C ≈ 11, a significant
improvement over the cooperativity reached in the dispersive regime.

5.3 conclusion

5.3.1 Benefits of the coherent scattering in comparison to the standard op-
tomechanics

Here we compile a list of the benefits of cavity cooling by coherent
scattering compared to the dispersive regime from Chapter 2. We
focus only on the nanosphere x-motion if not explicitly mentioned
otherwise.

1. Each photon that scatters into the cavity mode has to interact
with the nanosphere. The direct consequence of this is that
we expect a clean detection of the cavity photons. For exam-
ple, in the heterodyne detection of the scattered photons we
will observe only the Stokes and anti-Stokes photons, without
a contribution at the trapping laser frequency. In the dispersive
regime we are limited in detection by the non-interacting cavity
photons, which add classical- and shot noise into the detection.

2. Increased coupling rate. In the dispersive regime, the optome-
chanical interaction is given by the cavity mode area at the na-
nosphere position, i.e. g ∝ w−2

0 . For coherent scattering the trap-
ping laser is focused onto a much smaller waist W0 < w0, such
that the interaction is effectively increased to g ∝ (w0W0)−1. For
example, the cavity drive required to reach equal coupling rates
in the dispersive regime is Edisp

d /2π ≈ 4× 1010 Hz, an order of
magnitude higher compared to the drive by coherent scattering.
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3. Coupling to the electric field of the cavity mode. Due to this,
the optimal position for cavity cooling of the motion along the
cavity axis is at the cavity node. This has several beneficial
consequences for the system dynamics:

• The Cavity is not populated by the coherently scattered
light, i.e. it remains empty.

• As the cavity is empty, there is no co-trapping of the nano-
sphere with the cavity. Therefore, the nanosphere position
doesn’t have to be optimized if we change the cavity drive
Ed.

• The laser phase noise doesn’t couple to the cavity as the
cavity is empty. In principle, it is possible to completely
suppress the heating of the nanosphere x-motion by the
phase noise, while it provides an ultimate limit of the pho-
non occupation in standard optomechanics as the cavity is
strongly driven.

4. Multi-dimensional cavity cooling. The scattering process hap-
pens in a plane defined by the x- and z-axis, therefore the cavity
cools the nanosphere motion along both axes. In principle, we
can extend the scheme to a genuine three-dimensional cavity
cooling by rotating the trap.

5.3.2 Summary of the position-dependent optomechanical effects

In this section we aim to provide an overview of the optomechanical
effects depending on the nanosphere position.

1. Cavity node or intensity minimum.

• Strong cavity cooling of the x-motion (and y-motion).

• Weak cavity cooling of the z-motion.

• Intracavity photon number nphot is zero.

• No heating of the x-motion due to phase noise.

2. Cavity antinode or intensity maximum.

• Weak cavity cooling of the x-motion (and y-motion).

• Strong cavity cooling of the z-motion.

• Intracavity photon number nphot is maximum.

• Strong heating of the z-motion due to phase noise.

In contrast, in the dispersive regime the highest coupling rate to the
x-motion is for a nanosphere positioned at the maximum intensity
gradient, i.e. halfway between a cavity node and an antinode. The
z-motion can be coupled to the cavity mode as well by tilting the
trapping axis, albeit with a significantly smaller coupling rate.
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C AV I T Y C O O L I N G B Y C O H E R E N T S C AT T E R I N G :
E X P E R I M E N T

Cavity cooling by coherent scattering promises many advantages over
optomechanics in the dispersive regime. To name a few: higher cou-
pling rates, three-dimensional cavity cooling and the suppression of
phase noise heating are all extremely encouraging. Here we demon-
strate all the predicted behavior from the previous Chapter. We first
focus on the applied modifications to the experimental setup and the
four different detection schemes employed to follow the nanosphere
dynamics. We investigate in particular the position-dependent and
polarization-dependent cavity cooling by coherent scattering, confirm-
ing all theoretical predictions. We estimate the phase noise suppres-
sion based on the determined cavity drive and nanosphere position.
We end the chapter with a brief outlook on interesting future experi-
ments.

117
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6.1 experimental setup
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Figure 6.1: The experimental setup for cavity cooling by coherent scatter-
ing. A laser (Mephisto, frequency ω1) is focused with a microscope objec-
tive and used for trapping of a nanosphere. We set the direction of the
dipole scattering by changing the linear polarization of the trapping laser
with a half waveplate (λ/2). The trapping laser is sampled in the trap trans-
mission to detect the three-dimensional nanosphere motion (twD). A part of
the principal laser is polarized horizontally and shifted in frequency with an
electro-optical modulator (EOM) to ω2 = ω1 + 2π × ∆νFSR + ∆ and locked
to a cavity resonance by directly changing the laser frequency ω1. The phase
quadrature of the locking cavity mode, which is coupled to the nanosphere
axial motion through conventional optomechanics, is detected in the cavity
transmission with a homodyne detection (homD). The intracavity power of
the enhanced coherent scattering is monitored on a single photodiode in the
transmission of one of the cavity mirrors (powD). The coherently scattered
light leaked through the other cavity mirror is modulated with a far detuned
laser at ωhet. The resulting signal is detected with a balanced photodetector
and forms a heterodyne measurement of the nanosphere motion (hetD).

6.1.1 Optical driving scheme

In Section 3.1.5 we described the preparation of the control laser. It
is detuned by a free spectral range ∆νFSR from the principal laser fre-
quency ω1, which is already locked to a cavity resonance at ω

(1)
cav. The

control laser at ω2 passes a filter cavity, which is locked to transmit
only the desired laser mode. Instead of driving the cavity, we could
amplify it and use as the trapping laser. However, a sudden loss of
the filter cavity lock can result in a shutdown of the fiber amplifier
and the subsequent loss of the trapped nanosphere. Therefore, we
decided on using the detuned mode to lock the laser to the cavity
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(Figure 6.1). The principle laser doesn’t pass any frequency modify-
ing elements, which makes it ideal to be used as the trapping laser.
We describe the setup in the following.

Let us assume that the laser frequency ω1 is in the vicinity of a
cavity resonance at frequency ω

(1)
cav. As before, we detune the laser

frequency from the principal laser by ω2 − ω1 = 2π × ∆νFSR + ∆
with an EOM, close to the adjacent longitudinal cavity resonance at
frequency of ω

(2)
cav. The EOM also creates the PDH sidebands at ±6

MHz, well within the linewidth of the filter cavity κFC. The selected
modes (the carrier mode at ω2 with the PDH sidebands) drive the
optomechanical cavity. In the cavity reflection we set up a PDH detec-
tor, which provides an error signal used to stabilize the laser directly
to the cavity.

The locking works as follows: The lock reacts to a variation in
the cavity resonance frequency by following with the principal laser
frequency ω1. Let’s assume we manually change the detuning ∆ by
δω, upon which the lock changes the laser frequency to ω1 − δω to
compensate. Consequently, the detuning of the principal laser mode
with respect to its cavity resonance (at ω

(1)
cav) is effectively changed by

the amount −δω. The frequency deviation δω must not be large or
the lock won’t be able to follow the change due to the slower response
of the filtering cavity. In practice, jumps in detuning below 10 MHz
are fine.

We split off a part of the principal laser and amplify it in order to
use it as the trapping laser. Although, the trapping and the control
laser are the same in this setup, we still separate the optical paths by
referring to the trapping laser as the "driving mode" and to the cavity
mode populated by the scattered photons as the "scattering mode".

Cavity birefringence

In Section 5.2.7 we mentioned that a birefringent cavity might have
polarization axes that don’t conform to the horizontally and vertically
polarized light in the laboratory frame. This would lead to subopti-
mal coherent scattering as the scattered light would drive two cavity
modes with different polarizations. We devise a setup to character-
ize the linearly polarized light leaking out of the cavity (Figure 6.2).
We first place a half-wave plate ( λ

2 ) in front of the cavity input mir-
ror to set a particular linear polarization of the driving laser. We use
the PDH detector in the cavity reflection to optimize the polarization
such that we drive and lock to the horizontally polarized cavity reso-
nance.

In cavity transmission we have a polarizing beamsplitter (PBS) with
detectors DET1 and DET2 monitoring the beamsplitter transmission
and reflection outputs, respectively. The distribution of laser power
between the two arms is proportional to the ratio of the horizontal
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Figure 6.2: The experimental setup to characterize the cavity polarization
axes. The optical cavity can experience birefringence, which is typically
observed as the presence of two distinct cavity resonances with orthogonal
polarizations. We use a half-wave plate ( λ

2 ) in front of the cavity input
mirror to drive only one of the birefringent cavity modes with polarization
"pol.1". In the cavity transmission we set up a polarizing beamsplitter (PBS)
and detectors DET1 and DET2, which we use to measure the ratio of the
horizontal and vertical polarization in the locked cavity mode. A rotatable
half-wave plate in cavity transmission is used to scan the full range of linear
polarizations in detection.

and vertical polarization in the cavity resonance. In addition, we set
up a rotatable half-wave plate such that we can detect all linear polar-
izations and calibrate the detection for fully horizontal and vertical
polarizations. In Figure 6.3 we present the measurement of the cav-
ity mode polarization from the optical powers detected by DET1 and
DET2. A "scan" measurement is done by rotating the half-wave plate
in cavity transmission, while a "pure" measurement shows that the
examined cavity mode is horizontally polarized, i.e. that the symme-
try axes of the cavity birefringence are aligned with horizontal and
vertical in the laboratory frame. We might have expected this, as the
mirror circular symmetry is broken by cutting the mirrors into strips.
Additionally, we set the mirrors into place with a single screw apply-
ing pressure (and stress) along the vertical axis from the top. This is
the optimal configuration for the cavity polarization axes, as the light
scattered off the vertically polarized driving mode will be collected
in a single, vertically polarized cavity mode.

We then check the frequency difference between the birefringent
modes. As done in Chapter 3 we lock the laser with frequency ω1 at
an arbitrary polarization (horizontal or vertical) to a cavity resonance
at ω

(1)
cav. An orthogonally polarized laser at ω2 is detuned by roughly

the free spectral range ∆νFSR and is driving the adjacent longitudinal
cavity resonance at ω

(2)
cav. By scanning the detuning over the cavity

resonance ω
(2)
cav we are able to deduce the detuning ∼ ∆νFSR between

the two longitudinal cavity modes. For example, if the lock mode
is vertically polarized, the measured frequency will be ∆νFSR + νb f ,
where νb f is the cavity birefringence frequency, i.e. the separation
of a split longitudinal mode (Figure 6.4). In the other case of initial
polarizations, reached by rotating the half-wave plate in front of the
cavity, we will measure ∆νFSR − νb f . We calculate the birefringence
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Figure 6.3: Measurement of the cavity polarization axes. We rotate the half-
wave plate in the cavity transmission to scan the whole range of linear po-
larizations in the detection (blue data in the lower and upper panels), with
minimum and maximum detector voltage recalibrated to 0 and 1, respec-
tively. Upon removing the tunable half-wave plate in the cavity transmis-
sion, we are able to characterize the pure polarization of the locked cavity
mode. We detect all the optical power in the PBS transmission (green, lower
panel) and no power in the PBS reflection (red, upper panel), proving that
the examined cavity mode is horizontally polarized. The cavity birefrin-
gence thus splits a longitudinal mode into the horizontally and vertically
polarized cavity modes.

Δν
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Δν
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Figure 6.4: Measurement of the cavity birefringence frequency. The free
spectral range frequency is always measured as a spacing of orthogonally
polarized successive cavity resonances. Cavity resonances are split by the
birefringence frequency νb f , which modifies the real free spectral range by
±νb f . By rotation of the half-wave plate in front of the cavity input, we are
able to choose the locking mode polarization and extract the birefringence
frequency from the difference of two orthogonally polarized drive modes.

frequency νb f ≈ 200 kHz from the free spectral range measurements.
Additionally, we determine that the vertically polarized mode has
the lower resonance frequency, as shown in Figure 6.4. Hence, a



6.1 experimental setup 123

laser resonant to the vertically polarized mode (required for coherent
scattering) will be red detuned from the horizontally polarized mode.
The reverse configuration might lead to heating of the nanosphere
motion if the scattered mode is not purely vertically polarized.

6.1.2 Overview of the detection schemes

We operate four distinct detection schemes in order to follow the full
system dynamics:

1. Detection of the trapping laser (twD). This detection is ideal
to measure the relative change of the motional temperature as
the detection sensitivity is independent of the nanosphere posi-
tion along the cavity axis x0. The detection of the nanosphere
z-motion from the trapping laser is unmodified compared to
the setup described in Section 3.2. The detection schemes used
to detect the x- and y-motion are slightly modified to attain a
separate detection of the two-dimensional motion even in a ro-
tated trap potential. This is achieved by placing the D-shaped
mirror, used to split the laser mode, on a rotation stage.

2. Homodyne detection of the locking mode (homD). We use ho-
modyne detection to monitor the phase quadrature of the lock-
ing mode, as described in Section 3.3. For that purpose, we split
off a part of the control laser immediately after the filter cavity
and use it as a local oscillator (Figure 6.1). The best detection
of the nanosphere motion is at the largest intensity gradient as
Shom ∝ g2

lock ∝ sin2(2kx0).

3. Heterodyne detection of the scattered mode (hetD). A spec-
trally resolved detection of the scattered photons (heterodyne
detection) is used to distinguish between the Stokes (heating)
and Anti-Stokes (cooling) photons, which are attenuated and
amplified by the cavity response, respectively. The detected
spectrum is of the following form:

Shet(ω) ∝ g2
z cos2 kx0Szz(ω) + g2

x sin2 kx0Sxx(ω). (6.1)

4. Direct detection of the scattered photons (powD). The optical
power of the photons leaking through one of the cavity mirrors
is detected with a photodiode. From it we can extract the built-
up intracavity power Pcav and deduce the nanosphere position
along the cavity axis as:

Pcav ∝ cos2 kx0. (6.2)

In the following sections we focus on the last two detection schemes.
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6.1.3 Heterodyne detection

Theoretical description

A frequency shifted local oscillator at a frequency ωhet + ω1 is used
to amplify the cavity signal in the heterodyne detection scheme. It is
important that ωhet � Ωx,y,z in order to observe both motional side-
bands generated by the optomechanical interaction. Note that, com-
pared to the homodyne detection, the phase in the heterodyne detec-
tion is constantly oscillating with the same frequency ωhet. Therefore,
this detection is sensitive to both phase and amplitude quadratures
of the cavity mode, albeit with a twice lower sensitivity due to averag-
ing the quadratures over time. As a result, the heterodyne detection
is able to detect both x- and z-motion as they are coupled to the cavity
phase and amplitude quadrature, respectively (Chapter 5). The spec-
trum of the heterodyne detection involving only the linear interaction
is:

Shet(ω) ∝ |χc(ω)|2
[(

gx

xzp f

)2

Sxx(ω) +

(
gz

zzp f

)2

Szz(ω)

]
, (6.3)

where χc(ω) = 1/(κ/2 + i(ω − ∆)) is the detuning-dependent sus-
ceptibility of the cavity mode.

Experimental realization

We split off some of the principal laser mode directly after the laser
to create a local oscillator for the heterodyne detection. Two AOMs
change the laser frequency by their difference in RF drive frequency:
The first AOM initially changes the frequency by ∼ −190 MHz, while
the second one applies a positive frequency shift by ∼ 210 MHz. As
a result, the local oscillator (Phet

LO ≈ 200 µW) will be detuned by the
heterodyne frequency ωhet/2π ≈ 20 MHz from the frequency of the
scattered light. The cutoff of the balanced heterodyne detector (Thor-
labs PDB425-AC) is at 75 MHz, well above the heterodyne frequency.
The local oscillator and the scattered mode leaking through one of
the cavity mirrors are mixed in a fiber beamsplitter with the splitting
ratio of roughly 50:50. The heterodyne signal is the difference of the
power in both output arms.

In an ideal case, the noise floor of the heterodyne detection should
be defined entirely by the local oscillator shot noise (shot noise lim-
ited in detection) [Bachor and Ralph, 2004]. However, we expect the
AOM drivers to add a substantial amount of intensity noise. We check
the total noise of the local oscillator by completely blocking the scat-
tered mode and the optical path to one of the detector photodiodes,
allowing us to obtain the intensity noise of just the local oscillator. We
notice that the driver-induced intensity noise is the dominant noise
component in the band 0-10 MHz (Figure 6.5). We repeat the mea-
surement after unblocking the optical path to the second photodiode
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Figure 6.5: Laser intensity noise induced by AOMs. The AOM drivers
introduce a large noise contribution to the laser intensity noise in the band-
width 0− 10 MHz (blue). The intensity noise is decreased in the balanced
detection by ∼ 10 dB (red), limited by the beamsplitter ratio.

and measure a suppression of ∼ 10 dB of the intensity noise due to
common-mode rejection of the balanced detector. The low suppres-
sion is due to the actual measured beamsplitter ratio of 47.6:52.4, far
from the ideal 50:50.

We then check that the detection is shot noise limited in the range
around the designated heterodyne frequency ωhet/2π ≈ 20 MHz. For
this purpose, we measure the spectrum of the balanced detection in
the range 15-25 MHz with only the local oscillator (Figure 6.6(a)). The
integrated spectral power is changing linearly with the local oscillator
power (Figure 6.6(b)), such that the shot noise limit in detection is
confirmed.
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Figure 6.6: Characterization of the shot noise around the heterodyne cen-
ter frequency in the heterodyne detection. (a) Spectra of the heterodyne
detection normalized to the power of the local oscillator PLO. Calibrated
spectra for different PLO overlap, demonstrating that the noise background
is the shot noise. (b) The integrated unnormalized measured power spec-
trum shows a linear dependence on the power of the local oscillator, as we
would expect from the shot noise.
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6.1.4 Direct detection of the coherently scattered light

The coherently scattered light that is transmitted through the left
mirror in Figure 6.1 is collected on a single photodiode (Thorlabs,
SM05PD4A) with the signal current amplified by a transimpedance
amplifier (Femto DHPCA). We detect the power of the cavity-enhanced
scattered light on this detector, which is useful to optimize the nano-
sphere position along the cavity axis. For example, we know from
Chapter 5 that the destructive (constructive) interference of the co-
herent scattering occurs for a nanosphere placed at the cavity node
(antinode). Note that we neglect the Stokes and Anti-Stokes pho-
tons as we use a low pass filter to isolate only the cavity-enhanced
light at the driving laser frequency. However, this optical path can
be combined with the existing heterodyne detection in order to use
all available information about the motion, effectively doubling our
detection efficiency.

6.2 experimental results

6.2.1 Polarization dependent cavity cooling

Due to the directionality of the dipole radiation, both the cavity drive
and the cavity cooling can be modified by changing the tweezer polar-
ization θ. For example, for a tweezer polarized along the cavity axis
(θ = 0), we expect a suppression of coherently scattered light by a
factor of |βmin|2 ≈ 104. As discussed in Section 5.1.1, due to the tilted
tweezer axis by an angle φ the signal will be suppressed by a factor
sin−2 φ ≈ 102 (compared to the case of optimal coherent scattering
for θ = π/2).

We directly observe the polarization-dependent suppression of co-
herent scattering in the heterodyne detection (Figure 6.7). We detune
the trapping laser by ∆ = 2π × 4 MHz to avoid affecting the nano-
sphere motion. We compare the heterodyne spectra for maximum
(θ = π/2) and minimum scattering (θ = 0) into the cavity mode (Fig.
6.7) while keeping the nanosphere at the same trapping position. We
observe that the overall spectrum is attenuated by a factor of ∼ 100,
from which we calculate a tweezer tilting angle φ ≈ 5.7◦. From the
ratio of the overall transduction factors in the homodyne detection
(see Section 3.3 for the details about the method) we obtain a similar
value φ ≈ 6.3◦, confirming that the seen suppression is consistent
with the non-orthogonal tweezer and cavity axes12.12 In Section 3.3 we

determined a
slightly larger angle
φ ≈ 8.4◦. The setup

has been realigned
since, resulting in a

smaller tilting angle.

Cavity cooling

In Section 5.2 we discussed a possibility to conduct three-dimensional
cavity cooling of the nanosphere motion by positioning of the na-
nosphere to the largest intensity gradient (x0 = λ/8) and rotating
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Figure 6.7: Suppression of coherent scattering by polarization control
Overlapped heterodyne measurements for trap laser polarization θ = 0
and θ = π/2. Heterodyne measurements are acquired for trap laser far
detuned by ∆ = 2π× 4 MHz to avoid affecting the nanosphere motion. The
nanosphere is positioned halfway between a cavity node and an antinode
(x0 = λ/8). The heterodyne spectrum in the case of θ = 0 has been mul-
tiplied by a factor of 100 to overlap it with the spectrum from θ = π/2.
Note that, due to the rotation of the trap axes by θ = π/2, we couple the
x(y)-motion for θ = π/2 (θ = 0).

the tweezer polarization (and the elliptical trap) to θ = π/4. The
driving mode is initially far detuned by ∆/2π = 4 MHz to obtain
a measurement of the nanosphere motion at room temperature. For
cooling we detune the driving mode closer to the resonance with
∆ = 2π × 300 kHz. At the beginning the tweezer polarization is set
to θ = 0 and the scattering into the cavity mode is suppressed. No
significant cavity cooling is observed (Figure 6.8 (a)).

We turn the polarization to θ = π/4 in order to couple both x-
and y-motion to the cavity, while at the same time scattering some
light into the cavity mode. Both transverse motions are detected
as spectral peaks at frequencies Ωx and Ωy in the heterodyne de-
tection of the scattered mode, as well as in the homodyne detection
of the locking mode13. The quadrant-type direct detection is rotated 13 Remember that

we have the best
linear coupling of
the x-motion to the
locking mode at the
intensity slope.

by the same angle θ to follow the trap rotation. By doing this, we
again optimize the detection of the rotated motional axes in the de-
tectors previously used for detecting the x- and y-motion. The motion
along the rotated trap axes is again well separated in the noise power
spectrum in Figure 6.8 (b). The signature of strong, genuine three-
dimensional cavity cooling is a reduced area and increased linewidth
of all peaks compared to the case of far detuned tweezer laser, which
we use to extract the coupling rates (gx, gy, gz)/2π = (20, 30, 71) kHz.
The realization of three-dimensional cavity cooling is also providing
a fully passive stabilization scheme of the nanosphere motion. As a
note, we were able to keep the nanosphere trapped at a pressure of
p = 4× 10−6 mbar without additional active feedback.
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Figure 6.8: Polarization dependent cavity cooling. Polarization dependent
cavity cooling. Shown are noise power spectra (NPS) measured for a par-
ticle located at x0 = λ/8 away from a cavity antinode and for three differ-
ent polarizations of the optical tweezer as illustrated on the right panel.
The red arrow indicates the polarization. The sketch also indicates the
transverse optical tweezer potential (grey ellipse) and the dipole emission
(red ellipses), both of which are locked to the tweezer polarization. Noise
power spectra in each panel have been obtained along the tweezer axis (z,
blue) and in its transverse directions (x, red; y, green). Cooling measure-
ments are performed with a tweezer detuning close to the mechanical fre-
quency (∆ = 2π × 300 kHz, bright color). Measurements at large detuning
(∆ = 2π × 4 MHz, dark color), where scattering into the cavity mode is
negligible, serve as reference for no cooling. The nanoparticle was always
positioned halfway between the cavity node and antinode to couple all three
directions of motion. (a) At θ = 0 no cooling is observed, because polariza-
tion along the cavity axis suppresses scattering into the cavity. Imperfect
alignment between tweezer and cavity axes results in residual cooling along
y-z direction. (b) At θ = λ/4 full 3D cavity cooling by coherent scattering is
observed, since the cavity axis does not coincide with a principal axis of the
optical tweezer. Cooling both broadens the spectra and reduces the overall
area. The shift in center frequency is due to the additional optical spring
generated by the cavity field. (c) For θ = π/2 scattering into the cavity is
maximal, as is the cooling along the cavity axis (x) and the tweezer axis
(z). Almost no photons are scattered in the third direction (y), resulting in
negligible cooling.

Finally, we set the tweezer polarization to θ = π/2, which cou-
ples predominantly the x- and z-motion to the cavity mode with
rates (gx, gy, gz)/2π = (42, 16, 94) kHz. Therefore, we observe even
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stronger cooling of these two motions (Figure 6.8 (c)). The y-motion
is cooled much weaker, but still exhibits residual coupling to the cav-
ity mode. We explain this by a presence of a circularly polarized
component of the laser beam (See Appendix C for the mechanical fre-
quencies in the circularly polarized trap laser). This is confirmed by a
smaller frequency difference Ωx −Ωy when compared to the case of
θ = 0. In detail, the largest frequency difference is expected for a case
of perfect linear polarization. Perfectly circular polarization will re-
sult in a round trap potential and degenerate mechanical frequencies
(See Appendix C for the calculations).

6.2.2 Position-dependent cavity cooling

Cavity cooling by coherent scattering is inherently dependent on the
nanosphere position along the cavity axis. We expect maximum cool-
ing of the x-motion (z-motion) to be at the cavity node (antinode).
We can set the respective position using the nanopositioner with step
size of ∼ 8 nm. We move the nanosphere along the cavity axis and
monitor the nanosphere dynamics in all three dimensions.

Positioning of the nanosphere along the cavity axis

100 200 300 400 500 600 700

0

1

Node Antinode Node

0

1

Position [nm]

g
x2

g
lo
ck

2

P
sc
at
t/
P
0

Figure 6.9: Positioning of the particle based on different detection schemes.
We extract the coupling of the x-motion to the locking cavity mode g2

lock from
the homodyne measurement (blue), demonstrating the standard optomecha-
nical periodicity glock ∝ sin(2kx0). Coupling to the cavity mode populated
by coherent scattering gx ∝ sin kx0 is derived from the heterodyne detection
(green), where we keep the trap laser far detuned from the cavity resonance
by ∆ = 2π × 4 MHz in order not to disturb the particle motion. Further-
more, the power scattered out of the cavity (red) is seen out-of-phase with
gx. We are able to reconstruct the nodes and antinodes of the cavity mode
used for cavity cooling by coherent scattering.

In order to determine the nanosphere position along the cavity axis,
we monitor the power of the scattered light, as well as the coupling
to the x- and z-motion through the heterodyne and homodyne detec-
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tions. As mentioned earlier, the three detections show the following
position dependence:

scattered light : Pscatt ∝ cos2 kx0

heterodyne : (ghet
x )2 ∝ sin2 kx0, (ghet

z )2 ∝ cos2 kx0

homodyne : (ghom
x,lock)

2 ∝ sin2 2kx0, (ghom
z,lock)

2 ∝ sin2 2kx0,

(6.4)

allowing us to accurately determine the nanosphere position. An ex-
ample of the measurements is shown in Figure 6.9, where we plot
the different detector signals as a function of the position. For ex-
ample, to achieve the cooling of both x/y- and z-motion, we maxi-
mize the g2

lock, i.e. we optimize the peak height of the x-motion in
the homodyne detection of the locking cavity mode. In this measure-
ment we intentionally keep the detuning far away from the resonance
(∆ = 2π × 4 MHz) in order to avoid cooling of any motion.

Position-dependent cavity cooling

We now set the polarization angle θ = π/2 to maximize the scattering
into the cavity mode. The cooling performance is measured at a de-
tuning of ∆/2π = 400 kHz. We move the particle in steps of ∼ 20 nm
along the cavity axis at pressures of p = 4 mbar (Fig. 6.10(a-c)) and
p = 0.06 mbar (Fig. 6.10(d-f)). The particle position is deduced from
the scattered power (Fig. 6.10(a),(d)) and independently confirmed by
homodyne and heterodyne detection, as described in Section 6.2.2.

The maximal effective damping γx
eff (γz

eff) of the nanosphere motion
is observed at the cavity node (antinode), in agreement with the the-
ory predictions (Fig. 6.10(b),(e)). We fit the mechanical damping by
a simple model γ

x[z]
eff = γmin + (γmax − γmin) sin2 kx0[cos2 kx0], yield-

ing the optical linear damping rate (γ
x[z]
max − γgas)/2π = 10[6.2] kHz.

From this we extract the maximal coupling rates gx = 2π × 60 kHz
and gz = 2π × 120 kHz for the respective optimal nanosphere posi-
tions, yielding a cavity drive Ed/2π = 2.5× 109 Hz. The expected
cavity drive (calculated from the tweezer power Pin = 0.17 W and
the calculated trap waists) Ed/2π ≈ 2.8× 109 Hz matches the deter-
mined value well. For comparison, the cavity drive required to reach
the same coupling rate gx in the dispersive regime is Edisp

d /2π =

4.2× 1010 Hz, which corresponds to an intracavity photon number
that is larger by a factor of (Edisp

d /Ed)
2 ≈ 280.

We obtain the effective mode temperatures of the x- and z-motion
Tx

eff and Tz
eff from the area underneath the noise power spectra from di-

rect detection and normalized to the bath temperature T0 (Fig. 6.10(c),(f)).
At p = 0.06 mbar we observe temperatures below T0 even where
no cooling is expected through purely linear interaction. For the x-
motion, including a quadratic interaction with an average tempera-
ture Tx

eff/Tx
0 |quad = 0.11 [Nunnenkamp et al., 2010] yields good agree-
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Figure 6.10: Position dependent cavity cooling. Shown are relative coherent
scattering powers P/P0 (top), mechanical damping rates γeff

m (middle) and
inverse cooling factors Teff/T0 (bottom) for different particle positions x0
along the cavity axis and at background pressures of p = 4 mbar (left) and
6× 10−2 mbar (right). (top panel; (a),(d)) Coherent scattering into the cavity
mode. The black line is a fit to the data following the expected sinusoidal be-
havior with periodicity λ/2. The scattering is minimal (maximal) for a parti-
cle placed at the node x0 = λ/4 (antinode x0 = 0) of the cavity field. (middle
panel; (b),(e)) The damping γeff

m of the nanoparticle motion is obtained via
the width (FWHM) of the mechanical noise power spectra for the x-axis (red)
and z-axis (blue). Bright colors indicate measurements with cavity cooling
(∆ = 2π × 400 kHz), dark colors without cooling (∆ = 2π × 4 MHz). The
grey line shows the theoretically predicted gas damping γgas by the environ-
ment, which agrees with the observed damping in the absence of cooling.
As expected, maximal damping along the x (z)-direction is obtained for min-
imal (maximal) coherent scattering powers at x0 = λ

4 (x0 = 0), as predicted
by our theoretical model (solid line). Bottom panel ((c),(f)): The effective
mode temperatures Teff are obtained by NPS integration. As expected for
both directions, maximum damping implies maximal cooling. Purely linear
coupling would result in a maximum temperature of Teff/T0 = 1 (grey line).
A theoretical model that also includes quadratic coupling matches the data
very well without free parameters (dashed lines).

ment with the experimental data. The strong cooling of the z-motion
is mostly due to a small angle between the tweezer axis and the zcav-
axis, resulting in a projection of the z-motion onto the cavity axis. For
comparison, the dashed line in Fig. 6.10(c),(f) is based on a theoretical
model that includes the linear and, in case of the x-motion, quadratic
interaction:

Tx
eff

T0
=

1
T0

1
sin2 kx0

Tx
lin

+ cos2 kx0
Tx

quad

Tz
eff

T0
=

γgas

γz
min sin2 kx0 + γz

max cos2 kx0
. (6.5)
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It is entirely parametrized by the minimum and maximum tempera-
tures Tx

eff, lin = T0γgas/γeff and Tx
eff, quad and the observed mechanical

dampings γz
min/max.

6.2.3 Suppression of the phase noise

Phase noise fed into the cavity can be characterized even in the ab-
sence of a nanosphere. We drive the cavity through the input mirror
with a control laser with an arbitrary detuning ∆ and photon rate Ed
(as in Chapter 2) and monitor the heterodyne spectrum in the cavity
transmission, which is:

Shet ∝
E2

d(
κ
2

)2
+ (ω + ∆)2

Sϕ̇ϕ̇(ω). (6.6)

The spectrum of the nanosphere motion will be added on top of the
phase noise from Equation (6.6). Note that the expression on its right
hand side is almost equal to the phonon occupation added by the
phase noise heating from Equation (5.52). Therefore, to compare
different optomechanical setups it is enough to compare the phase
noise contribution in the heterodyne detection. Furthermore, to get
a reasonable measure of the phase noise heating suppression, we as-
sume cavity drives that yield equal coupling rates for the two cooling
schemes.

The phonon occupations and the respective coupling rates in the
two regimes are:

n̄phase,disp
x =

(Edisp
d )2

κ
((

κ
2

)2
+ Ω2

x

)Sφ̇φ̇(Ωx), gdisp
x = g0

Edisp
d√(

κ
2

)2
+ Ω2

x

n̄phase,coh
x =

E2
d cos2 kx0

κ
((

κ
2

)2
+ Ω2

x

)Sφ̇φ̇(Ωx), gcoh
x = Edkxzp f , (6.7)

where g0 = 2π × 0.3 Hz is the dispersive single photon coupling of
the x-motion to the cavity mode. Assuming gdisp

x = gcoh
x in the two

coupling scenarios, the required cavity drive in the dispersive regime
is Edisp

d /2π ≈ 4.2× 1010 Hz. The ratio of added phonon occupations
due to phase noise heating is:

n̄phase,coh
x

∣∣∣
node

n̄phase,disp
x

=
E2

d cos2 kx0(
Edisp

d

)2 =
g2

0 cos2 k(λ/4 + δx)

k2x2
zp f

((
κ
2

)2
+ Ω2

x

) , (6.8)

where δx is the distance from the particle position to the cavity node.
In the experiment we positioned the particle within δx ≈ 20 nm and
observed 50 times less intracavity photons nphot compared to the cav-
ity antinode position (Figure 6.10(a),(d)), resulting in a decrease of
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the phase noise heating by a factor of ∼ 1.5 × 104. More precise
positioning will allow even further improvement in the phase noise
suppression.

In the case of three-dimensional cavity cooling, the particle is lo-
cated at the largest intensity gradient (cos2 kx0 = 1/2) with the mea-
sured coupling rate gx = 2π × 20 kHz, which is the optimal position
for the dispersive coupling. There, the required cavity drive in the
dispersive regime would be Edisp

d /2π = 1.3× 1010 Hz. Even in this
case, the phase noise heating would be suppressed by:

n̄phase,coh
x

∣∣∣
gradient

n̄phase,disp
x

≈ 1
60

. (6.9)

In conclusion, the proximity to the intensity minimum (optimal
position for the cavity cooling of the x-motion) results in minimal
coupling of the phase noise into the cavity. Furthermore, compared
to the dispersive regime we achieve the same coupling rate with a
lower cavity drive in the case of coherent scattering, which addition-
ally decreases the constraint on phase noise.

6.3 conclusion and outlook

Let us assume a case of one-dimensional cavity cooling by coherent
scattering of the x-motion with the nanosphere positioned at the cav-
ity node. The observed high coupling rate gx = 2π × 60 kHz will al-
low to reach a lower phonon occupation then in the dispersive regime
(Chapter 2). Assuming a weak locking mode, the minimum phonon
number is limited by the sideband resolution and the tweezer recoil
heating to:

n̄x =

(
κ

4Ωx

)2

+
κΓrec

4g2
x
≈ 0.16.

As discussed above, and in stark contrast to the dispersive scheme,
phase noise heating will add only n̄phase

x ≈ 0.01 to the total occu-
pation, rendering it negligible. In conclusion, given sufficiently low
pressures there are no major obstacles for ground state cooling of
the x-motion. For a nanosphere at the largest intensity gradient,
we expect to significantly cool all three directions to (n̄x, n̄y, n̄z) =

(1, 0.29, 2.2) phonons with additional occupation due to phase noise
heating (n̄phase

x , n̄phase
y , n̄phase

z ) = (0.22, 0.27, 18.5). In the case of opti-
mal cooling of the z-motion at the cavity antinode, the total phonon
occupation will be n̄z ≈ 150, with the largest contribution coming
from the phase noise with n̄phase

z ≈ 148 phonons.
The optomechanical cooperativity in the case of coherent scatter-

ing is given only by the cavity waist w0 and the finesse F . The cavity
waist is small in many cavity configurations (see Appendix A), but
the cavity can be unstable (near-concentric cavity) or too short to
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allow an external laser to pass through the cavity (near-planar, mi-
crocavity). The best of both (long and stable) is reached with a ge-
ometrically asymmetric cavity ("quasi-confocal" cavity), with waists
as low as 8 µm [Kawasaki et al., 2018]. On the other side, mirrors
with highly reflective coatings at 1064 nm have been used to create
cavities with high finesses F > 200, 000. Therefore, we may expect
that by a careful design one can reach the cooperativity as high as
C = 30F/π

k2w2
0

> 1000.
On the other hand, without any significant changes to the cavity

the coupling rates can still be boosted by increasing the nanosphere
radius or the trap laser power. Note that the co-trapping by the cavity
mode is evaded as the cavity remains empty for a nanosphere placed
at the node. For example, trapping a nanosphere with a radius of
r = 100 nm would lead to a significantly increased coupling rate
gx/2π ≈ 115 kHz. Assuming equal mechanical frequencies for a
larger nanosphere (yet to be demonstrated), the system will enter
the ultra-strong coupling regime (g/Ωx ≈ 0.64) [Frisk Kockum et al.,
2019]. This opens up a domain of unexplored optomechanics, such
as the entanglement with a red detuned driving laser due to breaking
of the rotating wave approximation [Genes et al., 2008a, Hofer, 2015].
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Cavity cooling of an optically levitated submicron particle

Kiesel, N., Blaser, F., Delić, U., Grass, D., Kaltenbaek, R. and As-
pelmeyer, M., Cavity cooling of an optically levitated submicron particle,
PNAS 110, 35, p.14180-14185 (2013)

This is proof-of-principle paper on cavity cooling of a levitated par-
ticle. We used a strong locking cavity mode to levitate a particle in
the cavity standing wave and an additional, detuned control mode
to cool the particle motion along the cavity axis. All of the measure-
ments were done at a relatively high pressure of 8 mbar.

Cavity cooling of a levitated nanosphere by coherent scattering

Delić, U., Reisenbauer, M., Grass, D.,Kiesel, N., Vuletić, V. and As-
pelmeyer, M., Cavity cooling of a levitated nanosphere by coherent scatter-
ing, Phys.Rev.Lett. 122, 123602 (2019), Editors’ Suggestion

This paper contains a first demonstration of the cavity cooling by
coherent scattering, as expected from the theory of Chapter 5. The
experimental measurements are presented in Chapter 6.

Levitated cavity optomechanics in high vacuum

Delić, U., Grass, D., Reisenbauer, M., Damm, T., Weitz, M. ,Kiesel,
N. and Aspelmeyer, M., Levitated cavity optomechanics in high vacuum,
arXiv:1902.06605 (2019)

Here we present the results of Chapter 4 together with the results
of the cavity scan from Section 3.3.2.

Other publications

Magrini, L., Norte, R., Riedinger, R., Marinković, I., Grass, D., Delić,
U., Gröblacher, S., Hong, S. and Aspelmeyer, M., Near-field coupling of
a levitated nanoparticle to a photonic crystal cavity, Optica Vol. 5, Issue
12, pp. 1597-1602 (2018)
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A
G A U S S I A N B E A M O P T I C S

In the course of my PhD studies I spent a lot of time learning a great
deal about optical cavities and Gaussian beams. In a hope that future
PhD students (at least of this group) won’t have to spend as much
time as I had, I compile a list of interesting relations in the following.

a.1 gaussian beam

A freely propagating focused Gaussian beam is defined by a single
parameter: the (minimum) waist w0, which is sometimes referred to
as the beam radius. Properties of the Gaussian beam are:

• Rayleigh range xR: The distance from the cavity waist at which
the mode radius is

√
2w0:

xR =
w2

0π

λ
. (A.1)

The beam radius at a distance x is:

w(x) = w0

√
1 +

(
x

xR

)2

, (A.2)

which is simplified to w(x) ≈ w0x
xR

for x � xR.

• Radius of curvature is a function of position x as well:

RoC(x) = x
[

1 +
( xR

x

)2
]

. (A.3)

It has a minimum value RoC = 2xR at x = xR. At x = 0 the
Gaussian beam behaves as a plane wave.

• In the limit of x � xR, the beam divergence for slowly spread-
ing beams is:

θ ≈ λ

w0π
(A.4)

• Complex beam parameter q(x) = x + ixR is used in the ray
transfer matrix analysis to calculate the beam propagation through
a system of lenses and other optical elements. The alternative
definition is:

1
q(x)

=
1

RoC(x)
− i

λ

πw2(x)
(A.5)
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Figure A.1: Focused Gaussian beam around its waist. The waist of a Gaus-
sian beam is defined as the smallest beam radius, which we position here at
x = 0. The beam waist function follows a Gaussian beam envelope, which
for large distances x asymptotically approaches a line (dashed).

a.2 cavity waist

Imagine a Gaussian beam confined between two cavity mirrors po-
sitioned at coordinates L1 and L2 and with radii of curvature RoC1

and RoC2, respectively. The boundary condition for a stable cavity
mode is given by the mode radius of curvature at the cavity mirrors:
RoC(L1) = RoC1 and RoC(L2) = RoC2. The resulting waist of the
cavity mode is:

w2
0 =

λ

π

√
L(RoC1 − L)(RoC2 − L)(RoC1 + RoC2 − L)

(RoC1 + RoC2 − 2L)2 . (A.6)

Mode waists at the cavity mirrors are:

w1 =

√√√√λRoC1

π

√
L(RoC2 − L)

RoC1 + RoC2 − L
(RoC1 − L) (A.7)

w2 =

√√√√λRoC2

π

√
L(RoC1 − L)

RoC1 + RoC2 − L
(RoC2 − L) (A.8)

Simplifications are possible for a specific cavity configuration.

a.3 cavity mode volume

In some books on resonator optics [Hodgson and Weber, 2005], the
cavity mode volume is defined as space occupied by the waist func-
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tion w(x) = w0

√
1 +

(
x

xR

)2
, where w0 is the cavity waist and xR =

w2
0π
λ is the Rayleigh length:

Vwaist
c =

L2∫
L1

w2(x)πdx. (A.9)

Apparently, this expression assumes that all of the electric field at
certain position x is uniform along the radial axes and equal to 0 at
distances greater than w(x). Thusly determined cavity mode volume

of a confocal cavity is Vwaist
c =

4w2
0πL
3 .

However, the light field is not located only within the waist func-
tion. The easiest way to see that is in the quantization of the electric

field, which gives E−, E+ ∝
√

h̄ωL
2ε0Vc

. The cavity mode volume is de-
fined here as the space the electric field occupies. Integrated intensity
of the cavity mode I(r, z) = I0

1+(x/xR)2 exp(− 2r2

w2(x) ) cos2(kx) ∝ E+E−

divided by the intensity at the cavity waist I0 yields the mode vol-
ume Vc:

Vc =

2π∫
0

dφ

L/2∫
−L/2

dz
∞∫

0

I(r, z)
I0

rdr. (A.10)

The resulting cavity mode volume Vc = w2
0πL/4 is independent of

the cavity configuration.

a.4 cavity configurations

Through the course of this thesis we have mentioned (near-)confocal
cavities, where the cavity length is close to the mirror’s radius of cur-
vature L ∼ RoC2 = RoC1. This is the most stable cavity configuration
as it is insensitive to a small translational and rotational motion of the
mirrors. However, it comes at a price that the cavity waist is big:

w0 =

√
Lλ

2π
, (A.11)

which is simplified from Equation (A.6). For a ∼ 1cm long cavity
the cavity waist is w0 ≈ 41.1 µm. The nanospheres are significantly
smaller than the cavity waist, resulting in a weak interaction between
the nanosphere motion and the cavity mode. We cover cavity config-
urations with smaller cavity waists in the following.

A stable laser amplification between the two mirrors occurs only if
the stability criterion is satisfied:

0 ≤ g1g2 ≤ 1, stability parameter: gi = 1− L
Ri

. (A.12)

This is often represented graphically as a region between two hyper-
bolas and the horizontal and vertical axes (Figure A.2). We overlay
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Figure A.2: Contour plot of the cavity waist as a function of the stability
parameters g1 and g2. The relevant stable cavity configurations are given by
the condition 0 ≤ g1g2 ≤ 1. Cavity configurations mentioned in the main
text are shown here as points in the plot.

the stability region with the contour plot of the cavity waist, calcu-
lated in the case of RoC1 = 10 mm and arbitrary L and RoC2. An-
other stability criterion is given by the overlap of the mirrors’ foci,
where the cavity is resistant to length changes on the order of δL =

RoC1 + RoC2 − L.

1. In symmetric cavities the cavity mirrors have equivalent radii
of curvature RoC1 = RoC2 = RoC, with a stable cavity oper-
ating in the range 0 < L < 2RoC. Around L ≈ RoC (near-
confocal cavity) the cavity waist changes little with a cavity
length change.

• Confocal cavity is the most stable configuration in terms
of length drifts and tilts. Small cavity misalignments don’t
result in a change of the cavity waist, hence a precise tun-
ing of the cavity length is unnecessary (δL ≈ L). The cavity
used in the course of this thesis is a near-confocal cavity, i.e.
L ≈ RoC.

• Near-concentric cavity is constructed when the two cen-
ters of mirror curvatures overlap at the cavity center, i.e.
L = 2RoC− ∆L with ∆L→ 0. This is a highly unstable de-
sign, as even the smallest tilt of cavity change could result
in a loss of the cavity mode (δL = ∆L).
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• Quasi-planar is given by L → 0, i.e. when the two cavity
mirrors are extremely close to each other. This configura-
tion is unsuitable for our experiment as the trapping laser
will be cut by the cavity mirrors.

2. Asymmetric cavities relax the condition on the radii of curva-
ture: RoC1 6= RoC2. There are two common cavity designs:

• Hemispheric cavity is created from the mirrors with RoC1 =

L, RoC2 = ∞.

• Quasi-confocal cavity is created from the mirrors with
RoC1 � RoC2, L ≈ RoC2

2 + RoC1. Cavity mirrors with
small radius of curvature RoC2 � 1 mm (mirrors) typi-
cally have a depth of several microns, therefore the cavity
waist will be far away from the surface of the micromirror.
As δL ≈ RoC2

2 and RoC2 � ∆L (from the concentric cavity),
this design is extremely resistant to length changes.



B
M I E S C AT T E R I N G T H E O RY

Here we give a brief overview of the origin of the light-nanosphere
interaction for an arbitrary nanosphere size. There are several books
[Bohren and Huffman, 1983], which gives extensive introduction into
the generalized Mie scattering theory.

b.1 electric field of the dipole scattering

Assuming a spherical particle, it is appropriate to expand the intrin-
sic plane-wave light field into spherical harmonics. Without loss of
generality, the incident light is assumed linearly polarized along the
y-axis. The incident electric field as a sum of spherical harmonics is:

Eiθ =
cos ϕ

ρ

∞

∑
n=1

En(ψnπn − iψ′nτn)

Eiϕ =
sin ϕ

ρ

∞

∑
n=1

En(ψ
′
nπn − iψnτn), (B.1)

where En = inE0
2n+1

n(n+1) depends on the intrinsic electric field E0. ψn(ρ) =

ρjn(ρ) is the Riccatti-Bessel function, while πn(θ) =
P1

n (cosθ)
sin θ and τn(θ) =

dP1
n (cosθ)

dθ are helpful angle-dependent functions. The scattered electric
field is obtained from a boundary condition on the nanosphere sur-
face:

Esθ =
cos ϕ

ρ

∞

∑
n=1

En(ianξ ′nτn − bnξnπn)

Esϕ =
sin ϕ

ρ

∞

∑
n=1

En(bnξnτn − ianξ ′nπn), (B.2)

where ξn(ρ) = ρh(1)n (ρ) is also a Riccatti-Bessel function. The scatter-
ing amplitudes from the previous equation are:

an(x) =
nsψn(nsx)ψ′n(x)− ψn(x)ψ′n(nsx)
nsψn(nsx)ξ ′n(x)− ξn(x)ψ′n(nsx)

bn(x) =
ψn(nsx)ψ′n(x)− nsψn(x)ψ′n(nsx)
ψn(nsx)ξ ′n(x)− nsξn(x)ψ′n(nsx)

. (B.3)
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We will first investigate the light scattering in the forward direction
(θ = 0) for which τn(0) = πn(0) = 1. For small nanospheres (nskr �
1) we have to the smallest order in ρ:

b1 ≈ − i
45

(n2
s − 1)x5 +O(x7)

b2 ≈ O(x7)

a1 ≈ −2i
3

n2
s − 1

n2
s + 2

x3 − 2
5
(n2

s − 1)(n2
s − 2)

(n2
s + 2)2 x5 +O(x6)

a2 ≈ − i
15

n2
s − 1

2n2
s + 3

x5 +O(x7). (B.4)

We keep only the terms up to x3 such that the largest contributions
to the electric fields Esϕ and Esθ are:

Esϕ = E0
i sin ϕ

ρ2
n2

s − 1
n2

s + 2
x3 =

En=1
iϕ

ρ2
n2

s − 1
n2

s + 2
x3. (B.5)

This expression is reminiscent of the dipole scattering:

Esϕ =
k3α

4πε0

En=1
iϕ

r2 , (B.6)

which provides the definition of the particle polarizability α = 3ε0V n2
s−1

n2
s+2 .



C
S I N G L E - B E A M D I P O L E T R A P O F A N A R B I T R A R I LY
P O L A R I Z E D I N C I D E N T L A S E R B E A M

The path on how to calculate the trapping potential of a linearly po-
larized, tightly focused laser is shown in [Novotny and Hecht, 2012].
Here we assume an arbitrary laser polarization and determine the
resulting potential. Let us assume the following electric field of the
trapping laser:

Einc = Ex
incnx + Ey

incny, (C.1)

where Ex
inc ∝ Ex = cos(α)(cos2(β) + i sin2(β)) and Ey

inc ∝ Ey =

sin(α)(1− i) sin(β) cos(β) are the electric field components along the
polarization axes ~nx and ~ny, respectively. The laser is propagating
along the z-axis. The angle α/2 (β) is the linear (circular) polariza-
tion angle as applied with a half-wave plate (quarter-wave plate). For
α = β = 0 the laser is polarized along the x-axis.

The electric field just after passing through the microscope objective
is:

E∞(θ, φ) =

Einc(θ, φ) ·

− sin φ

cos φ

0

 ·
− sin φ

cos φ

0

√cos θ

+

Einc(θ, φ) ·

cos φ

sin φ

0

 ·
− cos φ cos θ

sin φ cos θ

− sin θ

√cos θ

The electric field at the focus is determined from the electric field at
the objective E∞:

E(ρ, ϕ, z) ∝
θmax∫
0

2π∫
0

E∞(θ, φ)eikz cos θeikρ sin θ cos(φ−ϕ) sin θdφdθ, (C.2)
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146 single-beam dipole trap of an arbitrarily polarized incident laser beam

where the following coordinate transformation was used: x = ρ cos ϕ,
y = ρ sin ϕ, while θmax = arcsin(NA). The integral in Equation (C.2)
is simplified by using the helping functions I00, I01 and I02:

I00 =

θmax∫
0

fw(θ)
√

cos θ sin θ(1 + cos θ)J0(kρ sin θ)eikz cos θdθ

I01 =

θmax∫
0

fw(θ)
√

cos θ sin2 θ J1(kρ sin θ)eikz cos θdθ

I02 =

θmax∫
0

fw(θ)
√

cos θ sin θ(1− cos θ)J2(kρ sin θ)eikz cos θdθ.(C.3)

final expression for the electric field at the focus E(ρ, ϕ, z):

E(ρ, ϕ, z) =
ik f
2

E0e−ik f ×

I00Ex + I02Ex cos 2ϕ + I02Ey sin 2ϕ

I00Ey − I02Ey cos 2ϕ + I02Ex sin 2ϕ

−2iI01(Ex cos ϕ + Ey sin ϕ)

 .

(C.4)

In principle, we have to numerically integrate functions I0n for all
ρ and z. However, the nanosphere experiences only a small central
part of the focus. We use a Taylor expansion of the Bessel functions
up to the second order14 in ρ and z. Therefore, we can evaluate only14 In principle, the

Bessel functions can
be expanded to an

abritrary order in ρ

and z, which might
be useful in the full
characterization of

the combined
tweezer and cavity

potentials.

a couple of important integrals once:

i00 =

θmax∫
0

fw(θ)
√

cos θ sin θ(1 + cos θ)dθ

iρ
00 = −

θmax∫
0

fw(θ)
√

cos θ sin θ(1 + cos θ)

(
k sin θ

2

)2

dθ

iz
00 =

θmax∫
0

fw(θ)
√

cos θ sin θ(1 + cos θ)ik cos θdθ

iz2
00 = −

θmax∫
0

fw(θ)
√

cos θ sin θ(1 + cos θ)(k cos θ)2dθ

iρ
01 =

θmax∫
0

fw(θ)
√

cos θ sin2 θ
k sin θ

2
dθ

iρ
02 =

θmax∫
0

fw(θ)
√

cos θ sin θ(1− cos θ)
1
2

(
k sin θ

2

)2

dθ.
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With the help of the integrals above, the electric field at the focus is
expressed as:

E(ρ, ϕ, z) =
ik f
2

E0e−ik f ×i00Ex + iρ
00Exρ2 + iρ

02(Ex cos 2ϕ + Ey sin 2ϕ)ρ2 + iz
00Exz + iz2

00Exz2

i00Ey + iρ
00Eyρ2 − iρ

02(Ey cos 2ϕ− Ex sin 2ϕ)ρ2 + iz
00Eyz + iz2

00Eyz2

−2i× iρ
01(Ex cos ϕ + Ey sin ϕ)ρ

 .

Note that for ρ 6= 0 the component of the electric field along the
trapping laser is not zero.

The radial and axial mechanical frequencies are obtained from the
dipole interaction in the focused electric field:

mΩ2
zz2

2
+

mΩ2
xx2

2
+

mΩ2
yy2

2
= −α

2 ∑
j=x,y,z

∂2|E|2
∂j2

∣∣∣∣
j=0

j2, (C.5)

while keeping only the terms up to the second order in x, y and z on
the right-hand side of the equation. The incident laser electric field is
given by the optical power |E0|2 = 4P0

ε0cW2
0 π

. Note that the waist W0 =

f0× f ×NA depends on the numerical aperture and the filling factor
f0 of the objective, therefore the electric field ~E ∝ f /W0 = 1/( f0NA)

doesn’t depend on the focal length f and the waist W0.

c.1 validity of the approximation of small ρ , z

The harmonic potential is an approximation to the full potential land-
scape defined by the tightly focused laser (Figure C.1). Root-mean-
square amplitude of the harmonic motion of the nanosphere with a
radius of r = 71.5 nm along the x-axis is:

xrms =

√
kBT
mΩ2

x
≈ 38nm, (C.6)

where we assume room temperature T = 293 K, the nanosphere mass
m = 2.8× 10−18 kg and the mechanical frequency Ωx = 2π× 160 kHz.
For a nanosphere displaced by xrms from the potential minimum, the
discrepancy between the harmonic and the full potential is only ∼
0.1% of the full potential. Therefore, we assume the potential is well
estimated by the harmonic approximation.

c.2 linearly polarized laser along the x -axis

Let us assume a laser polarized along the x-axis (Ex = 1, Ey = 0). In
order to calculate the axial mechanical frequency, we set ρ = 0 and
calculate |~E|2:

|E|2 =

(
k f
2

)2

E2
0

(
i2
00 + (|iz

00|2 + 2i00iz2
00)z

2 +O(z4)
)

. (C.7)
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(a) Potential along the x- and the y-
axis
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Figure C.1: Validity of the approximation of small ρ and z. Starting from
the initially linearly polarized laser along the x-axis, we calculate the precise
(dashed lines) and the approximate (solid lines) trap potentials up to the sec-
ond order in ρ. (a) Potential along the x-axis (blue) and the y-axis (orange)
(b) Potential along the z-axis. For motional amplitudes below 100 nm the
approximation of the harmonic potential is within a 1% of the full potential.

The axial frequency is:

Ωz =

√(
k

2 f0 ×NA

)2 2αP0

ε0c
−(|iz

00|2 + 2i00iz2
00)

m
, (C.8)

We set z = 0 in order to calculate the transverse frequencies, which
gives |E|2 ∝ aρ2 + bρ2 cos2 ϕ + cρ2 sin2 ϕ. The transverse frequencies
are determined when we transform back into Cartesian coordinates
with x = ρ cos ϕ and y = ρ sin ϕ:

Ωx =

√(
k

2 f0 ×NA

)2 2αP0

ε0c
−(2i00(i

ρ
00 + iρ

02) + 4(iρ
01)

2)

m

Ωy =

√(
k

2 f0 ×NA

)2 2αP0

ε0c
−(2i00(i

ρ
00 − iρ

02))

m
. (C.9)

We determine the filling factor f0 = 0.7 and the optical power P0 =

0.17 W from the well known mechanical frequencies (Ωz, Ωx, Ωy)/2π ≈
(39, 160, 184) kHz,

c.3 arbitrary linear polarization of the trapping laser

We set the angle of the circular polarization β = 0. The mechanical
frequencies Ωx and Ωy are independent of the angle of the linear po-
larization α. However, the axes of the respective motions are rotating
with an angle α such that we always define them as x = ρ cos(ϕ− α)

and y = ρ sin(ϕ− α).
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c.4 arbitrary circular polarization of the trapping laser

We set α = 0 and allow for an arbitrary angle of the circular polariza-
tion β. Similarly to the case of linear polarization, the motional axes
rotate by an angle β, i.e. the new axes are defined as x = ρ cos(ϕ− β)

and y = ρ sin(ϕ − β). In addition, the mechanical frequencies are
modified as well (Figure C.2):

Ωx =

√(
k

2 f0 ×NA

)2 2αP0

ε0c
−2i00(i

ρ
00 + iρ

02 cos(2β) + 4(iρ
01 cos(β))2)

ρd

Ωy =

√(
k

2 f0 ×NA

)2 2αP0

ε0c
−2i00(i

ρ
00 − iρ

02 cos(2β)) + 4(iρ
01 sin(β))2

ρd
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Figure C.2: Impact of rotating a QWP on radial mechanical frequencies in
a tweezer trap. Motional frequencies Ωx (blue) and Ωy (orange) depending
on QWP angle β. Realistic parameters have been chosen ( f0 = 0.8, P0 = 0.75
W).
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G E N E R AT I O N O F H I G H E R O R D E R C AV I T Y M O D E S

The higher-order cavity modes TEM01 and TEM10 can be used for
three-dimensional cavity cooling in the resolved sideband case [Yin
et al., 2011] or for feedback cooling of the nanosphere motion trans-
verse to the cavity axis [Kubanek et al., 2011]. In our previous work
we used the cavity to levitate zhe particle with small transverse fre-
quencies Ωy, Ωz � κ/2 [Kiesel et al., 2013]. Hence, feedback cool-
ing was the only viable mechanism to be combined with axial cavity
cooling in order to have three-dimensional cooling of the nanosphere
motion.
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Figure D.1: The resonance scans of the TEM01 (blue) and TEM10 (red) cavity
modes compared to the resonance scan of the TEM00 mode. Note that the
TEM00 mode is shifted in frequency in order to present it jointly with the
higher order modes. The separation between the higher order modes has
been left as is. The cavity FWHM linewidth of the TEM01 and TEM10 modes
is twice as large as the linewidth of TEM00 mode, which we explain by the
larger mode waist at the cavity mirrors.

Driving a higher-order mode is achievable in many ways. Optimal
methods would be to use a spatial light modulator (SLM), a digital
mirror device (DMD) [Papageorge et al., 2016] or a phase plate to
create a higher-order free space mode, thus achieving a good mode
matching with higher-order cavity mode. In comparison, driving the
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TEM01 or TEM10 cavity modes with the free space TEM00 mode re-
sults in a mode overlap:

+∞∫
−∞

dz
+∞∫
−∞

dy f00(x = 0, y + y0, z) f01(x = 0, y, z), (D.1)

where we can achieve around ∼ 70% mode matching at best (Figure
D.2). This mode matching can be achieved by driving a single lobe of

0 w0 2w0 3w0

0.0

0.2

0.4

0.6

Figure D.2: Mode
overlap of the
TEM00 and TEM01
modes as a
function of the
displacement of
the TEM00 mode
from the center of
the cavity mirror.

the higher-order mode with the laser TEM00 mode. Designing a non-
confocal cavity results in transverse modes which are distinguishable
by resonant frequencies. In general, the resonance of an arbitrary
TEMmn cavity mode with a longitudinal number q is expressed as:

νqmn =
c

2L

[
q +

(m + n + 1) arccos(g1g2)

π

]
, (D.2)

where gi = 1 − L
RoCi

is the stability parameter for the i-th mirror.
The estimated frequency separation for the cavity in this thesis is
νq01 − νq00 ≈ 7 GHz. Although Equation (D.2) predicts degenerate
frequencies for the same family of transverse modes with m + n =

const, cavity birefringence induces a splitting between the TEM01 and
TEM10 modes, as also seen in Figure D.1. It is about twice as large as
the splitting observed between the two orthogonally polarized TEM00

modes in Section 6.1.1.
We construct a setup which uses both an EOM and an AOM to

create the higher-order modes (Figure D.3). The EOM is needed to
generate a laser sideband in the ballpark of the TEM01 and TEM10

cavity resonances at ν
01/10

−ωc/2π ≈ 7 GHz. Additionally, we apply
a phase modulation at 10 MHz to create sidebands for PDH locking.
We use a fiber Bragg grating (FBG) to transmit only one of the GHz
sidebands. The additional frequency shift to match the cavity reso-
nance is applied with the AOM (RF drive frequency 200 MHz, total
shift ∼ ±400MHz). The AOMs are set up in a double pass configura-
tion to minimize beam pointing noise. PDH locking to the TEM01 and
TEM10 cavity resonances is done by applying a frequency modulation
to the AOM drivers. On the other hand, the amplitude modulation
is used to change the cavity drive or apply feedback cooling to the
transverse nanosphere motion. We drive the TEM01 and TEM10. In
the reflection, we set up a detector in each output arm of a 50 : 50
beamsplitter. In order to suppress for example the TEM01 mode from
the photodiode meant to measure TEM10, we create paper masks to
filter the modes spatially. The detected signal is used in PDH locking
(bandwidth: 0 − 20 Hz) and the detection of the transverse nano-
sphere motion.
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Figure D.3: A part of laser is coupled into an electro-optical modulator
(EOM), which is used to generate sidebands at ∼ νq01 − νq00 = 7 GHz.
Additional sidebands are created at ±10 MHz to be used in a PDH lock. We
lock a fiber Bragg grating (FBG) to select only one of the GHz sidebands.
We subsequently amplify the laser with a fiber amplifier (Keopsys, 2W).
The laser is subsequently split in two paths, with either passing an acousto-
optical modulator (AOM) in a double pass configuration. The AOM shifts
the laser beams by ∼ 400 MHz, in addition to changing the laser frequency
to lock to the cavity resonance. The reflection from the input cavity mirror
changes its polarization upon returning through the Faraday isolator (ISO)
and a halfwave plate (λ/2) such that it goes to the detection arm. There,
the reflected laser containing both TEM01 and TEM10 modes is split equally
between two arms, each one containing a spatial mask to filter the light driv-
ing only one spatial mode. Each mode is locked with a separate PDH lock
acting back on the AOMs.
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The discussion in Section 7 showed that the existence of an angle
between the cavity and the tweezer optical axes can explain the com-
plex shape of the homodyne spectrum. Furthermore, we generate
homodyne spectra via a two-dimensional simulation of the system.
Although we take the two-dimensional nanosphere motion into ac-
count, the equations of motion are still fully separable. The field
of numerical simulation contains numerous methods to simulate the
motion of a driven damped harmonic oscillator. Yet, it is hard to do it
efficient and fast in Mathematica. Shown in Figure E.1 is our program
which showed extraordinary speed-up compared to simpler versions:

In[ ]:= (*x motion*)

dt = 1* 10-9; (*Time step [s]*)

radius = 71.5 * 10-9; (*Radius [m]*)ρ = 1850; (*Density in kgm3*)

mass = ρ*
4

3
π*(radius)3; (*Nanosphere mass*)

v0 = 2
kB* T0

mass
; (*Initial condition for velocity [m/s] at temperature T0=290 K*)

(*Damping [Hz] for typical nanosphere at pressure p=2.6 mbar:*)

γ0 =
ΓB[radius, 2.6* 100, ρ]

2 π

ω0x = 169 000; (*Oscillation frequency [Hz]*)

(*Matrix describing the system of differential equations of LHO:*)

mat = {1, dt}, -4 π
2
ω0x2 × dt, 1 - 2 π*γ0× dt;

NT = 2 000 000* 20; (*Number of steps to do, 20 averages of 2 million points*)

n =
2 kB* T0

mass
* 2 π*γ0; (*Magnitude of a single kick:*)

(*Generating kicks from a normal distribution:*)

Timing[wn = Sqrt[dt] Sqrt[n] RandomVariate[NormalDistribution[0, 1], NT];]

simulate[x_, w_] := mat.x + {{0}, {1}} w; (*Function that simulates motion*)

x0 = {{0}, {v0}}; (*Initial condition for position and velocity*)

xn = FoldList[simulate, x0, wn]; (*Actual simulation happens with FoldList*)

time = Range[NT + 1]* dt* 103; (*List of time points*)

(*Data to export: time as x-axis, position as y-axis*)

datax = Transposetime, xn[[All, 1, 1]]* 109;

Figure E.1: Code for simulation of a one-dimensional motion of the linear
harmonic oscillator

Using this program, we are able to simulate the x- and z-motion in-
dependently and use the generated time traces to create a simulated
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Figure E.2: Comparison of the simulated (blue) and the measured spec-
trum (red) at a particular position x0. Correspondence is apparent ev-
erywhere except at Ωx ± Ωz, as we don’t expect the existence of addi-
tional peaks at this position. We used a rounded up mechanical frequency
Ωx/2π = 169.2 kHz for the simulation instead of the exact fit value, hence
we notice an obvious frequency difference between the simulated and the
real peak at the spectral frequency 3Ωx/2π.

homodyne spectrum for different angles φ. We show an experimen-
tally obtained spectrum overlaid with the homodyne spectrum of the
simulated motion in Figure E.2, calculated at the exact nanosphere
position. The significant overlap confirms that the non-zero angle φ

leads to mixing of the spectral contributions.
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