

MASTERARBEIT / MASTER´S THESIS

Titel der Masterarbeit / Title of the Master‘s Thesis

„A Domain Integration Framework for

Business Process Modeling“

verfasst von / submitted by

Alexandra Birkmaier, BSc

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 13. Mai 2019 / Vienna, 13th of May 2019

Studienkennzahl lt. Studienblatt /

degree programme code as it appears on

the student record sheet:

A 066 915

Studienrichtung lt. Studienblatt /

degree programme as it appears on

the student record sheet:

Masterstudium Betriebswirtschaft

Master's degree program Business Administration

Betreut von / Supervisor:

o. Univ.-Prof. Dr. Dimitris Karagiannis

 I

Table of Contents

LIST OF ABBREVIATIONS ... III

LIST OF FIGURES .. V

LIST OF TABLES ... VIII

1 INTRODUCTION .. 1

1.1 PROBLEM STATEMENT ___ 1

1.2 RESEARCH OBJECTIVES ___ 3

1.3 RESEARCH APPROACH __ 4

1.4 OUTLINE AND FOCUS OF THE THESIS __ 8

2 STATE OF THE ART ... 10

2.1 BUSINESS PROCESS MODELING ___ 10

2.1.1 Concepts .. 10

2.1.2 Requirements ... 13

2.2 DOMAIN-SPECIFIC MODELING ___ 15

2.2.1 Degree of Domain-specificity .. 16

2.2.2 Frameworks .. 16

2.3 MODEL AND META-MODEL ___ 18

2.4 MODELING METHOD BUILDING BLOCKS _____________________________________ 20

2.4.1 Modeling Language .. 21

2.4.2 Modeling Procedure .. 22

2.4.3 Modeling Mechanisms & Algorithms.. 23

2.5 INTERIM CONCLUSION __ 24

3 ANALYSIS OF DSML ... 27

3.1 DOMAIN SPECIFICATION ___ 28

3.2 QUALITY EVALUATION __ 33

3.3 DS COMPONENT IDENTIFICATION __ 36

4 RESULTS – THE DOMAIN INTEGRATION FRAMEWORK (DIF) 39

4.1 DOMAIN-SPECIFIC DESIGN ___ 41

4.1.1 Domain Framework (DF) ... 41

4.1.2 Domain-specific User Stories .. 46

4.1.3 Meta-models of Modeling Method Building Blocks... 49

4.2 DOMAIN-SPECIFIC IMPLEMENTATION __ 53

4.2.1 Linguistic Matching Heuristic ... 54

 II

4.2.2 Domain-specific Modeling Tool ..55

4.3 DOMAIN-SPECIFIC MODELING __ 55

4.3.1 Quality Criteria Evaluation ...56

4.3.2 Adaptation Log ..59

5 PROOF OF CONCEPT – AUTOMOTIVE ASSEMBLY LINE CASE STUDY .. 60

5.1 DOMAIN-SPECIFIC DESIGN __ 61

5.1.1 Domain Specification ...61

5.1.2 Domain-specific Requirements ..69

5.1.3 Domain-specific Modeling Method ...74

5.2 DOMAIN-SPECIFIC IMPLEMENTATION _______________________________________ 83

5.2.1 Linguistic Matching Heuristic..83

5.2.2 Domain-specific Modeling Tool – Automotive Assembly Line DSL (AAL-DSL) ...86

5.3 DOMAIN-SPECIFIC MODELING __ 90

5.3.1 Models of the AAL-DSL ...90

5.3.2 Quality Criteria and New Requirements ... 102

5.4 LIMITATIONS OF THE PROOF OF CONCEPT __________________________________ 106

6 CONCLUSION AND FUTURE OUTLOOK ... 107

LITERATURE .. IX

APPENDIX A... XVII

APPENDIX B... XXII

APPENDIX C ...XXXVI

ABSTRACT .. XL

ZUSAMMENFASSUNG .. XLI

 III

List of Abbreviations

AAL-DSL – Automotive assembly line domain-specific language

AMME – Agile Modeling Method Engineering

APQC - American Productivity and Quality Center

BP – Business process

BPM(L) – Business process modeling (language)

DF – Domain Framework

DIF – Domain Integration Framework

DS(L) – Domain-specific (language)

DSBPM(L) – Domain-specific business process modeling (language)

DSM(L) – Domain-specific modeling (language)

DSMM – Domain-specific modeling method

DSRM – Design Science Research methodology by [88]

ER diagrams – Entity Relationship diagrams

FCML – Fundamental conceptual modeling languages by [54]

GP – General-purpose

GPM(L) – General-purpose modeling (language)

IS – Information systems

JIS – Just-in-sequence

JIT – Just-in-time

KPI – Key performance indicator

 IV

ML – Modeling language

MM – Modeling method

MP – Modeling procedure

OMiLAB – Open Models Initiative LABoratory

PCF® - Process Classification Framework by [7]

RE – Requirements engineering

UML – Unified Modeling Language

 V

List of Figures

FIGURE 1 DEGREE OF SOFTWARE CUSTOMIZATION ... 2

FIGURE 2 RESEARCH APPROACH ... 5

FIGURE 3 TAXONOMY OF LITERATURE REVIEWS .. 6

FIGURE 4 SEARCH-PROCESS DOCUMENTATION .. 7

FIGURE 5 INFORMATION SYSTEMS RESEARCH FRAMEWORK... 8

FIGURE 6 ELEMENTS OF A BUSINESS PROCESS ... 12

FIGURE 7 ROLES IN DOMAIN-SPECIFIC BPM ... 15

FIGURE 8 LANGUAGE-BASED META-MODEL CONCEPT .. 18

FIGURE 9 MODELING METHOD BUILDING BLOCKS .. 20

FIGURE 10 GENERIC META-MODEL OF MODELING LANGUAGE .. 22

FIGURE 11 GENERIC META-MODEL OF MODELING PROCEDURE 23

FIGURE 12 GENERIC META-MODEL OF MECHANISMS AND ALGORITHMS 24

FIGURE 13 LITERATURE-COLLECTION AND -ANALYSIS PROCEDURE 27

FIGURE 14 EXAMPLE OF A META-MODEL STRUCTURED ACCORDING TO ITS MODEL TYPES

 .. 36

FIGURE 15 THE DOMAIN INTEGRATION FRAMEWORK (DIF) ... 39

FIGURE 16 THE DOMAIN FRAMEWORK (DF) ... 41

FIGURE 17 CORRELATIONS BETWEEN THE THREE DIMENSIONS OF THE DF 42

FIGURE 18 OPTIONS OF MODELING METHOD DESIGN ... 50

FIGURE 19 DIF MODELING LANGUAGE .. 51

FIGURE 20 DIF MODELING PROCEDURE ... 52

FIGURE 21 DIF MODELING MECHANISMS & ALGORITHMS ... 53

FIGURE 22 MATCHING POSSIBILITIES ... 54

FIGURE 23 METRICS FOR COMPLEXITY ASSESSMENT .. 57

 VI

FIGURE 24 PORTFOLIO-DIAGRAM FOR THE EVALUATION OF MODELING LANGUAGE

CRITERIA .. 58

FIGURE 25 LINE ASSEMBLY ... 60

FIGURE 26 DOMAIN FRAMEWORK (DF) OF THE AAL-DSL .. 62

FIGURE 27 DF INDUSTRY SPECIFICATION OF THE AAL-DSL ... 63

FIGURE 28 DF MCS LEVEL SPECIFICATION OF THE AAL-DSL 63

FIGURE 29 THE PROCESS ARCHITECTURE OF THE AAL-DSL .. 64

FIGURE 30 DF GRANULARITY SPECIFICATION OF THE AAL-DSL 65

FIGURE 31 INTEGRATED GRANULARITY-LEVELS OF THE AAL-DSL 65

FIGURE 32 PROCESS LANDSCAPE META-MODEL OF THE AAL-DSL 75

FIGURE 33 PROCESS MODEL META-MODEL OF THE AAL-DSL 77

FIGURE 34 PRODUCT STRUCTURE META-MODEL OF THE AAL-DSL 78

FIGURE 35 WORKING ENVIRONMENT META-MODEL OF THE AAL-DSL 78

FIGURE 36 COMPLETE META-MODEL OF THE AAL-DSL.. 79

FIGURE 37 MODELING PROCEDURE META-MODEL OF THE AAL-DSL 81

FIGURE 38 MODELING MECHANISMS AND ALGORITHMS META-MODEL OF THE AAL-DSL 82

FIGURE 39 LINGUISTIC MATCHING HEURISTIC – CREATE ... 85

FIGURE 40 LINGUISTIC MATCHING HEURISTIC – EXTEND ... 86

FIGURE 41 LINGUISTIC MATCHING HEURISTIC – REDUCE ... 86

FIGURE 42 MODEL OVERVIEW ... 91

FIGURE 43 PROCESS LANDSCAPE L0 .. 92

FIGURE 44 PROCESS MODEL L1 ... 93

FIGURE 45 PROCESS MODEL L2 ... 94

FIGURE 46 PROCESS MODEL L3 ... 96

FIGURE 47 WORKING ENVIRONMENT MODEL ... 97

FIGURE 48 PRODUCT STRUCTURE MODEL .. 98

 VII

FIGURE 49 DEFINITION OF TASK PARAMETERS .. 99

FIGURE 50 QUERY RESULTS ..100

FIGURE 51 ANALYTIC EVALUATION RESULTS ...100

FIGURE 52 PATH ANALYSIS RESULTS ...101

FIGURE 53 SIMULATION RESULTS PATH ANALYSIS ...101

FIGURE 54 CAPACITY ANALYSIS RESULTS...102

FIGURE 55 QUERIES FOR COMPLEXITY ASSESSMENT ..103

FIGURE 56 COMPLEXITY ASSESSMENT OF THE AAL-DSL ...104

FIGURE 57 QUALITY ASSESSMENT PORTFOLIO-DIAGRAM OF THE AAL-DSL105

 VIII

List of Tables

TABLE 1 GENERAL-PURPOSE BPM APPROACHES .. 12

TABLE 2 REVELATIONS FROM THE LITERATURE REVIEW FOR THE FURTHER COURSE OF THE

THESIS ... 24

TABLE 3 DOMAIN CONTEXT OF DSML ... 28

TABLE 4 DOMAIN ANALYSIS OF DSML ... 30

TABLE 5 QUALITY EVALUATION OF DSML .. 34

TABLE 6 DOMAIN-SPECIFIC COMPONENT IDENTIFICATION ... 37

TABLE 7 USER STORIES FOR DOMAIN-SPECIFIC DESIGN .. 48

TABLE 8 QUALITY CRITERIA COLLECTED .. 56

TABLE 9 SUMMARY OF MODEL TYPES FOR THE AAL-DSL... 66

TABLE 10 ELEMENTS IDENTIFIED BY THE DF .. 68

TABLE 11 KEY FOR REQUIREMENTS ASSESSMENT .. 70

TABLE 12 COLLECTED, ASSESSED, AND CLUSTERED REQUIREMENTS 70

TABLE 13 ELEMENTS IDENTIFIED BY THE USER STORIES ... 73

TABLE 14 MATCHING HEURISTIC APPLIED .. 83

TABLE 15 CONCEPTS OF THE AAL-DSL .. 87

TABLE 16 COMPLEXITY ASSESSMENT OF THE AAL-DSL .. 103

1 Introduction

 1

1 Introduction

Business process modeling (BPM)1 can be seen as the major discipline within business

process management, as it is used to graphically describe the as-is business processes of a

company as well as the desired to-be business processes after a BP optimization initiative

[cf. 32]. According to [75], the business process management market is showing rapid

growth with an estimated compound annual growth rate of 14,2 % between 2016 and 2021.

Companies spend a considerable amount of resources to decide, which BPM language is the

most suitable for their specific company needs. Some argue for the need of general-purpose

(GP) BPM languages to save monetary resources by avoiding implementation efforts. Others

emphasize the necessity to have domain-specific (DS) BPM languages, which are tailored

to the requirements of a specific application area and are more likely to be accepted by the

users (cf. [57], [64]). Within an insurance company, for example, the domain of modeling

insurance processes requires concepts, which represent risks or insured objects like a car or

house. Within business process modeling, domain-specific modeling has experienced a

growing research interest, as it helps to raise the level of abstraction and uses the vocabulary

necessary to address the respective domain (cf. [60], [30]).

1.1 Problem Statement

General-purpose modeling (GPM) languages often fail to depict domain-specific concepts,

rules, and functionalities, which are needed to model the respective domain adequately [cf.

60]. GP and DS software solutions are freely available or offered by IT companies to be sold

to the general market or a specific market niche. Also, companies themselves produce their

own in-house solutions in order to fit their specific domain needs. Costs for customized IT-

solutions are high compared to solutions available on the market [cf. 121]. There is a trade-

off between solutions readily available on the market and solutions tailored to the specific

enterprise and application area needs (see Figure 1).

1 Within this thesis, abbreviations are written out the first time of their appearance. The short form is used in

the further course of the text.

1 Introduction

 2

Figure 1 Degree of software customization

- own representation based on [120]

Figure 1 shows the trade-offs between a low degree and a high degree of domain-

specificity, adapted from the analysis of software customization by [120]. Completely

customized, also called domain-specific, solutions tend to be more costly and their

implementation is more time-intensive. Yet, they are most suitable for the specific company

needs. This implies a need for solutions, which are domain-specific to the highest-possible

extent while making use of existing implementations to reduce time and costs.

If companies opt for choosing commercial DS language solutions, they often need to make

adaptations to the actual state of their processes in order to “make them fit” to the language

needs. This fact is taken into account by [76], who names organizational fit as a main risk

in the enterprise wide implementation of ERP projects. A specific risk factor of the

organizational fit is the failure to redesign business processes. Mitigating this risk by adding

regular re-evaluation and control mechanisms helps to keep the fit between the implemented

IT solution and the actual domain needs. Therefore, an approach to develop and manage

customized solutions, which accounts for regular re-evaluation mechanisms, is needed.

As of now, there is no satisfactory definition of what a domain is and how domains can be

differentiated from each other or categorized [cf. 54]. Throughout the literature about

modeling methods and languages, the terms domain-general or general-purpose and domain-

specific are recognized and used to distinguish between different degrees of applicability of

a modeling method in a specific application area. To name some examples, the Unified

Modeling Language (UML) is used mainly in the domain of software engineering and Entity

Relationship (ER) diagrams in data modeling. When a language for domain-specific

1 Introduction

 3

modeling is designed, two kinds of considerations are made by the method engineer [cf. 54].

First, existing languages and notations as well as experiences made with them are

considered. Second, modeling requirements are evaluated for the implementation of

necessary extensions or specifications. This situation leads to the conclusion that there exists

a need for a toolkit for modeling method development, which enables a flexible integration

of domain-specific requirements. Examples of such toolkits are the meta-modeling platforms

ADOxx, MetaEdit+, and Meta Object Facility (MOF), among others [cf. 56].

Moreover, there is no clear distinction between GP modeling (GPM) and DS modeling

(DSM). There exist different characteristics and criteria that enable to classify the quality of

modeling methods and languages. In the relevant literature, more inwards looking quality

criteria such as consistency, integrity, and performance are considered instead of outwards

quality criteria like usefulness, comprehensibility or end-user acceptance, and usability [cf.

52]. By this predominant approach, requirements of different stakeholder groups using the

modeling method in the respective domain are often neglected. Companies moving towards

higher abstraction levels face considerable advantages. The increased business value

described by [60] consists of a higher productivity, quality, way to leverage expertise, and

improved economics.

As a conclusion of the above statements, DSM can be seen as a suitable approach to model

the processes of a company in a way that is tailored to the specific company needs. In order

to obtain a valid graphical, domain-specific modeling tool no solution is known, which

combines a procedure for modeling method engineering with an approach to design,

implement, model, and re-evaluate the domain-specific solution. Most existing frameworks

either focus on domain analysis [cf. 96] or on DS solutions with the goal to generate code

[cf. 60]. The research objectives followed within this thesis arise as a consequence of the

previous sections and are described within the next chapter.

1.2 Research Objectives

The overall objective of this thesis is to provide a guideline to domain-specific modeling

method design and implementation in form of a life-cycle model. The Domain Integration

Framework (DIF) developed within this thesis serves as a procedure model, which provides

direction on approaching domain-specific BPM initiatives and recommends useful tools for

each phase. It provides assistance when classifying domains and helps to consider all

1 Introduction

 4

relevant requirements, which are influenced by a certain application. Moreover, it includes

chosen quality criteria, which describe the applicability of the designed modeling method in

the specific domain and also accounts for regular re-evaluation in order to adapt the language

to changing requirements.

The research questions answered within this thesis are summarized as follows:

1. Identify components, which make a language domain-specific, through the

analysis of existing domain-specific BPM languages

2. Derive a suitable categorization scheme for domains in the light of this thesis,

based on literature research

3. Construct a Domain Integration Framework (DIF) for systematic creation and

evaluation of modeling methods

4. Provide tools for the design, implementation, and modeling phase of the domain-

specific modeling method

5. Prove the validity of the DIF in the light of this thesis by conducting a case study

on automotive assembly line modeling

In order to provide a proof-of-concept for the DIF developed within this thesis, it is applied

on the domain of automotive assembly line modeling. The goal is to test the DIF in one

domain-context and prove its validity in the light of this thesis. In case any inconsistencies

or unconsidered aspects are identified, the DIF is re-evaluated. This iterative process follows

the Design Science Research methodology by [47] and [88]. The applicability of the DIF is

regarded as proven within this thesis, if the resulting modeling method fulfills the domain-

specific requirements.

1.3 Research Approach

In order to meet the solution objectives described above while taking into account the fact

that many domain-specific business processes are created inhouse and therefore not

necessarily documented in literature, the research approach has to consider both situations.

Figure 2 shows the exploratory research approach followed within this thesis. Exploratory

research aims at combining literature review as well as observation and evaluation of the

1 Introduction

 5

real modeling environment in order to derive findings [cf. 112]. By evaluating real-life

examples, relevant questions are identified. Important parameters are the practicality and

usefulness of the solution artifact, which is why specific situations are regarded in order to

generalize them in the DIF. The exploratory research methodology is useful, when the

objective is to “gain familiarity with a phenomenon or to achieve new insights into it” [65].

Figure 2 Research approach

– own representation

Figure 2 shows the research approach in a schematic way. As the aim of this thesis is to

develop an approach for designing domain-specific modeling methods, the first step is to

investigate the term domain. This includes a formal definition and classification of the term

as well as the evaluation of components, which make a DS language domain-specific.

Requirements, which are distinctive for a certain domain and important for the modeling

method to be developed, are investigated and specified. The modeling method as the output

of the DIF must have a domain-fit in all its building blocks in order to be applicable and

useful for the respective domain.

In order to allow for domain-specific implementation, a meta-modeling platform should

rather support a complete modeling method than a modeling language only. On the one hand

it should include model-driven functionality based on the requirements and on the other

hand, related to the modeling goals and needed functionality, provide guidelines and

constraints for modeling scenarios [cf. 54]. ADOxx [16] is used within this thesis as the

technology for implementing the DS modeling method.

For the purpose of this thesis, a suitable research method is a literature review to find and

analyze existing domain-specific modeling languages (DSML). Especially for the literature

1 Introduction

 6

review in the IS domain, the approach by [118] is followed, where a five-phase framework

is proposed.

Phase I: To define the scope of the literature review, the taxonomy of Cooper [24] is used,

which is comprised of six constituent characteristics (focus, goals, organization, perspective,

audience, coverage). Figure 3 shows the categories of these six characteristics used within

this thesis marked in blue.

Figure 3 Taxonomy of literature reviews

– own representation based on [24]

Phase II: This step aims to identify key issues by concept mapping and provide working

definitions to key terms [cf. 103, p. 36], which is done within the state of the art analysis in

chapter 2.

Phase III: The general literature search process involves database, keyword, backward, and

forward search, and an ongoing evaluation of sources. A focus is set on articles published in

scholarly journals or proceedings of renowned conferences. The search-process

documentation can be seen in Figure 4.

Phase IV: The literature is analyzed and synthesized in a concept matrix. Within this thesis,

this is done in chapter 3 – Analysis of DSM languages.

Phase V: The results of the DSM language analysis reveal language-components, which

contribute to a high extent to domain-specificity.

1 Introduction

 7

Figure 4 Search-process documentation

– own representation based on [24]

The Design Science Research methodology (DSRM) after [88] is used widely in

information systems research. Design is the “act of creating an explicitly applicable solution

to a problem” [88]. Design Science Research differs from other paradigms like theory

building and testing and interpretative research, in that the prototype designed can be “any

designed object with an embedded solution to an understood research problem” [88, p. 6].

As the above described exploratory research approach describes the way, in which

knowledge is gained throughout this thesis, the DSRM provides a whole framework with the

goal of developing a prototype. The exploratory research approach can be seen to stand

above the DSRM framework on a higher level. Within this thesis it is used as a

complementary approach for data collection and research design, which is manifested within

the DSRM framework. Figure 5 shows the integrated DSRM framework followed within

this thesis based on [46].

1 Introduction

 8

Figure 5 Information systems research framework

– own representation based on [46]

The information systems (IS) research framework provides an integrated view of the

environment and the knowledge base. The two main components of the IS research block

are develop/ build and justify/ evaluate. Within this thesis, the developed DIF represents the

artifact. The step of evaluation is done by the application of the DIF on a real instance, which

is achieved by conducting a case study.

1.4 Outline and Focus of the Thesis

In the previous chapters, the concept of domain-specific business process modeling

(DSBPM) was introduced to the reader of this thesis. For one, the importance and potential

of this notion within business process management was explained. After that, the research

objectives pursued within this paper were defined and explained in the context of DSBPM.

In order to answer the research objectives in a scientific and systematic way, the research

approaches Design Science Research and literature review in information systems were

introduced.

The succeeding chapters within this thesis are structured as follows. In chapter 2, the state

of the art regarding important concepts related to DSBPM is evaluated. Here, the focus lies

on more recent developments and the interpretation of their relevance in the light of this

thesis. Chapter 3 is dedicated to the analysis of several collected DSBPM languages. Here,

People

Organizations

Technology

Domain

concepts

rules

requirements

Foundations

Literature

review

DSLs

meta-models

Methodologies

Exploratory

Data comparison

Develop/ Build

Domain

Integration

Framework

(artifact)

Justify/ Evaluate

Case study

Environment IS Research Knowledge BaseRelevance Rigor

Business Needs Applicable

KnowledgeAssess

Refine

Additions to the

Knowledge Base

Application in the

appropriate environment

1 Introduction

 9

the insights gained throughout the state of the art are used to define focus areas, according

to which the DSBPM languages are analyzed. The goal of the analysis process is the

extraction of concepts, which significantly affect the domain-specificity of BPM languages.

The knowledge gained throughout the analysis is then abstracted in chapter 4, the results

section, into the Domain Integration Framework (DIF) as the artifact of this scientific work.

Following the Design Science Research methodology, the DIF is tested by conducting a case

study in chapter 5. The thesis concludes with chapter 6 by final remarks about the research

and implementation project, its opportunities and limitations in form of a SWOT analysis,

as well as an outlook for future research directions.

The focus of the work presented within this scientific paper lies on graphical modeling

languages as opposed to textual ones. Graphical modeling languages consist of a graphical

representation of their syntax [cf. 44]. Here, concepts (or classes) are represented by

symbols, and relationships between those symbols are represented by connecting lines.

Examples of graphical modeling languages are UML [105] or BPMN [86]. Textual modeling

languages, on the other hand, are computer-interpretable and are composed of keywords and

parameters [cf. 105]. Examples of textual modeling languages are OCL [85] or PlantUML

[101]. The context of modeling within this thesis is exclusively seen in the graphical

representation of business processes as language-oriented constructs. Therefore, it shall not

be confused with the concepts of textual, mathematical, or statistical modeling. The focus of

this thesis lies on the graphical value of DSBPM, not its translation into usable code.

2 State of the Art

 10

2 State of the Art

The goal of the following chapter is to provide the reader with an understanding of the

concepts and related work relevant in the context of this thesis. In the beginning, more

general concepts related to the research area of domain-specific business process modeling

(DSBPM) are shown and condensed throughout the chapter into more specific topics.

Advances in business process modeling (BPM) are shown in chapter 2.1 with a special focus

on newer developments of BPM concepts as well as requirements engineering. Approaches

towards domain-specific modeling (DSM) as well as categorization schemes of domains are

investigated in chapter 2.2. The concept of meta-modeling (chapter 2.3) is crucial when it

comes to describe a modeling language on a higher level by abstracting away unnecessary

details. Chapter 2.4 introduces the concept of a modeling method and shows existing

approaches to design it.

2.1 Business Process Modeling

Business process modeling (BPM) as a research discipline offers opportunities in a variety

of contexts, e.g. business management, industrial engineering, and information technology

[cf. 32]. Various authors stress the importance of business process modeling within the

company to be able to depict activities, roles, and process-dependencies, among others (cf.

[102], [102], [10]). Rosemann [102], for example, suggests that a company should establish

a business process management center of excellence and provides a portfolio of services to

be offered. Within this chapter on BPM, the first part (chapter 2.1.1) deals with the concepts

of BPM and sets a special focus on newer developments and research areas. Chapter 2.1.2

is dedicated to the fields specialized in the identification and categorization of requirements,

which are a preliminary for high-quality BPs.

2.1.1 Concepts

Throughout the past years, research was mainly focused on two fields. The first field being

the design of methods for BP modeling (cf. [110], [72]) and the second field engaging in

methods for BP reengineering (cf. [26], [42], [125], [19]). Attributable to the growing

complexity in today´s corporate environment, research towards more flexible and situation-

specific concepts is claimed (cf. [19], [10]).

2 State of the Art

 11

In the context of more flexible and agile business process modeling approaches, Becker

[10] argues to move from a functional orientation towards a process orientation. The author

states that the previous optimization of single functional areas or departments has only

brought marginal improvements. Instead, companies need to focus on cross-departmental

processes, which has started around the 1980s. In this context, research on situational models

(cf. [122], [107], [98]) and conceptual models (cf. [57], [25]) has emerged.

When it comes to the structuring and categorization of BPs, the emergence of different

viewpoints within literature can be observed. One of the originally used categorization

schemes of BPs is the differentiation between management and support processes by

Michael Porter [93]. Other authors add the instance of management processes (cf. [32],

[119]). E.g. Schmelzer et al. [108] add additional viewpoints in the form of a client

perspective and a perspective on different organizational functions. Also, a classification

according to process structure (ad-hoc processes, weakly-structured processes, structured

processes) is proposed by [108]. Melão and Pidd [78] propose a conceptual framework, in

which different business process views are organized according to four categories (BPs as

deterministic machines, interacting feedback loops, dynamic complex systems, social

constructs). Nastansky et al. [81] classify business processes according to their structure into

ad-hoc process, open team-process, integrated team-process, integrated cooperative activity,

ad-hoc exceptions, and well-structured processes. These classifications vary regarding their

degree of flexibility versus structure.

Due to the surging amount of BP languages and methods, evaluation methods have

emerged. One category builds BPM maturity models (cf. [27], [72], [41]). DeToro and

McCabe [29] propose five process condition ratings and five improvement paths,

respectively. Hammer [41], for example, proposes a Process and Enterprise Maturity Model.

In this context, certain quality criteria have been investigated within literature. Quality

criteria for BP metrics are investigated e.g. by [127], [32], and [52]. A framework, which

enables the evaluation of conceptual BPM languages is proposed by [72]. The authors use

the meta-models of seven BPM languages and compare them to their own generic meta-

model based on the four BP perspectives organizational, functional, informational, and

behavioral plus the additional perspective BP context [cf. 25].

2 State of the Art

 12

Curtis et al. [25] extract the most commonly used BP constructs as being agent, role, and

artifact. Junginger [51] defines BPs by four elements and their interrelations, which can be

seen in Figure 6.

Figure 6 Elements of a business process

- own representation based on [51]

Lu and Sadiq [74] conduct a comparative analysis of the two predominant business process

modeling approaches, namely graph-based approaches and rule-based approaches.

According to the authors, most graph-based modeling approaches originated in Petri Net

theory and its extensions. Different graph-based general-purpose modeling approaches are

shown in Table 1.

Table 1 General-purpose BPM approaches

– own representation

GP BPML Elements Model types

Entity-relationship

(ER) diagrams [21]

Entity, action, attribute,

cardinality, connecting line

Data model

Unified Modeling

Language (UML)

[105]

Element, relationship,

directed relationship, named

element, redefinable

element, type, feature,

instance and instance

specification, comment

Class diagram, package

diagram, object diagram,

component diagram, composite

structure diagram, deployment

diagram, activity diagram,

sequence diagram, use case

diagram, state diagram,

communication diagram,

interaction overview diagram,

timing diagram

Business

process

Activity Actor

Artefact Resource

uses for

editing

is edited

during

needs for

editing

carries out

edits

is edited

with

2 State of the Art

 13

Business Process

Model & Notation

(BPMN) [86]

Flow object, connecting

object, swim lane, artifact,

event, activity, gateway

Process model

Event-driven

Process Chain (EPC)

[59]

Function, event, gateways,

control flow, process

navigator, organizational

unit, information object,

information flow, link

between organizational units

Data model, process model, IT

system model, organizational

model, product model

Petri Nets [126] Places, transitions, arcs Process model

FlowMake [106] Task, coordinator, and

transition

Process model

EXPRESS [50] Datatype, entity-attribute,

supertypes and subtypes,

algorithmic constraints

Data model

2.1.2 Requirements

In order to allow for a working as well as accepted BPM approach, the right requirements

need to be fulfilled. In the field of requirements engineering (RE), different approaches to

identify, evaluate, and implement requirements are investigated. [84], [90], [69], for

example, provide an overview of RE in the field of information systems.

Within literature, there exist different approaches to categorize requirements. Pohl and

Rupp [91] categorize requirements into functional and quality requirements, and into

boundary conditions. Nuseibeh and Easterbrook [84] differentiate between five core RE-

activities, namely eliciting requirements, modeling and analyzing requirements,

communicating requirements, agreeing requirements, and evolving requirements. Eliciting

requirements as the relevant activity in the context of this thesis is composed of identifying

system boundaries, stakeholders, goals, and tasks by use-cases and scenarios [cf. 84]. It

should be noted, that the authors explicitly state the evolution of requirements within their

RE core-activities, which constitutes an integral part of the artifact developed within this

thesis, too. Buchmann and Karagiannis [20] emphasize the evolutionary nature of

requirements by categorizing modeling requirements into those originating from design-time

needs (directly) and those originating from run-time needs (indirectly) (cf. [52], [20]).

2 State of the Art

 14

Visic et al. [117] distinguish between primary, secondary, tertiary, and quaternary

requirements. The primary requirements (language requirements) are derived from the

application domain of the language. As already discussed in chapter 2.1.1, the four basic

constructs of class, relation class, attribute, and model-type build the foundation of the

syntax and semantics of the ML. In order to allow for needed extensions, extensibility is

considered as an additional key requirement. Another requirement is derived from the need

for a suitable notation, which has the ability to represent the specific application domain with

a set of expressive graphical symbols. Last but not least, further requirements are derived

from the modeling algorithms needed, for instance analysis and simulation functionalities.

Secondary requirements are derived from the respective meta-modeling platform the

solution shall be implemented on. Here, the functional as well as non-functional

requirements of meta-modeling platforms are considered. Tertiary requirements focus on

commonly accepted principles and best practices for the design of DSLs. Following

desirable features, adapted from [77], are proposed: user-expectation conformity, readable

and consistent syntax, small and orthogonal set of features, and error diagnosis. The

quaternary requirements refer to the possible evolution of the ML in the future due to

emerging technologies. On the one hand, the future development of meta-modeling

platforms has to be considered, and on the other hand, changes within the application

domain. Regarding the second point, minimum requirements are an extensible abstract

syntax, concrete syntax, and semantics, as well as an extensible execution engine. Non-

functional requirements are extensibility, interoperability, and scalability2.

Different approaches to identity requirements can be distinguished. Bortz and Döring [17]

name surveys as the most common method to collect data in social sciences. These can be

either oral by conducting interviews or in a written manner, e.g. by questionnaires. When it

comes to agile software development, e.g. in Scrum [111] and DSDM [1], requirements are

depicted by tasks in the product backlog, which are prioritized and realized throughout the

sprints. Those task items can be categorized into features, bugs, technical work, and

knowledge acquisition. The approach of collecting features is by stakeholder-centric user

2 For a detailed description of non-functional requirements the reader is referred to [117] N. Visic,

H.-G. Fill, R. A. Buchmann, and D. Karagiannis, "A domain-specific language for modeling method

definition: From requirements to grammar," in Research Challenges in Information Science (RCIS), 2015

IEEE 9th International Conference on, 2015, pp. 286-297: IEEE.

2 State of the Art

 15

stories. User stories can be defined by a given sequence of words with blank spaces in the

form: “As a (role) I want (something) so that (benefit)” [cf. 22].

2.2 Domain-specific Modeling

A challenge within domain-specific modeling (DSM) initiatives constitutes the

collaboration between three distinguishable roles (see Figure 7). Within literature, there exist

slightly different specifications of those roles (cf. [32], [40]).

Figure 7 Roles in domain-specific BPM

– own representation, icons from [63] and [31]

All three roles are responsible for different parts within the BPM initiative. Whereas the

method engineer designs the modeling method, the business process modeler is the person

with knowledge of the specific application domain. The tool developer constitutes the

connecting link, as he or she is responsible for implementing the designed modeling method.

There exists a knowledge gap regarding design and implementation and the expert

knowledge of the respective domain.

Within literature, different definitions of a domain can be found. In Collins [23], a domain

is defined as a “particular field of thought, activity, or interest, especially one over which

someone has control, influence, or rights”. Prieto-Díaz [96] provides a framework for

domain-analysis and defines a domain in the context of software engineering “as an

application area, a field for which software systems are developed” [96]. Karagiannis et al.

[54] state that there is no clear boundary between general-purpose and domain-specific and

that a domain might refer to a narrow application area as well as a whole business sector.

DOMAIN

KNOWLEDGE

METHOD

ENGINEERING

KNOWLEDGE

method engineer tool developer business process modeler

Knowledge gap

IMPLEMENTATION

KNOWLEDGE

2 State of the Art

 16

2.2.1 Degree of Domain-specificity

Within literature, a distinction is made between general-purpose modeling languages

(GPML) and domain-specific modeling languages (DSML). The word domain can refer to

a business sector, a community-driven paradigm, narrow application area, or a single

enterprise case [cf. 54]. In the context of this thesis, the focus is set on industries as well as

intra-company application areas. Karagiannis et al. [54] propose an approach to use different

domain-specific modeling languages within one tool without having the trade-off of

choosing between them. The underlying method is called Fundamental Conceptual

Modeling Languages (FCML). Application domains can be divided into verticals (financial

services, telecommunications, public administration, manufacturing) and horizontals

(business process modeling, application development, workflow management, knowledge

management) [cf. 56, p. 5].

Mernik et al. [79] divide the design of domain-specific modeling languages into the three

phases decision phase, analysis phase, and design- and implementation phase. Whereas the

three phases described by [79] constitute a possible starting point for the development of a

DSML, this procedure lacks the need that arises due to the dynamic nature of domains and

their environment. As requirements inevitably change in the course of time, the phases

should include a re-evaluation component. The artifact developed within this thesis aims to

explicitly address the need for change and re-evaluation. DSLs appear in the form of textual

or graphical languages3. The focus of this thesis is set on the design of graphical or visual

modeling languages.

Within literature, different approaches towards DSBPM can be found. The lowest degree

of domain-specificity is to use a GPML. Some authors use GPML and provide guidance on

how to adapt it to specific application domains (cf. [66], [45]). Other authors argue that only

a DSL can fully grasp the context of the domain [cf. 60].

2.2.2 Frameworks

There exist different acknowledged frameworks, which aim at providing a categorization

scheme for processes or application domains. Some of them are described in the following

3 For a comparison the reader is referred to [89] S. Pissierssens, "Revealing the scientific basis of

graphical representation design."

2 State of the Art

 17

and serve as a data source for the development of the Domain Framework (DF) as part of

the DIF within this thesis. The goal of this section is to show similarities and differences

between the varying categorization schemes and to provide an overview.

Heitkötter [45] proposes a framework for creating domain-specific process modeling

languages. The author´s argument is to generalize DSLs and introduces a transformation

mechanism to convert DSLs into the BPMN2.0 standard. DSLs4BPM builds on a minimal

set of common concepts, which is extended for specific domains. Kelly and Tolvanen [60]

describe a domain framework as an interface connecting the platform components with

generated code for the purpose of automation.

The American Productivity and Quality Center (APQC) [7] has developed the Process

Classification Framework® (PCF) for business process modeling and mapping. There exists

a cross-industry version of the PCF, which aims at being applicable to all kinds of enterprises

and can be used whenever no industry-specific PCF® is available. In order to allow for

industry specific representation, additional versions for 19 industries have been issued up to

now: aerospace and defense, airline, automotive, banking, broadcasting, city government,

consumer electronics, corrosion, consumer products, downstream petroleum, education,

health insurance payor, healthcare provider, insurance, pharmaceutical, retail,

telecommunications, upstream petroleum, and utilities. An example for a domain-specific

process classification is e.g. eTom [48], which is specifically known for telecom operations.

Aitken et al. [2] propose a process classification framework, which provides guidance on

finding the appropriate model types. The authors distinguish between the levels of

contextual, conceptual, logical, and physical and propose certain model types for each level

on the case of a health agency implementing an e-health initiative. Other process

classifications can be found, e.g. for change management [cf. 3] or strategic decision-making

[cf. 68]. APICS [6] offer frameworks for supply chain management specific subjects, like

the SCOR (supply chain operations reference), DCOR (design chain operations reference),

CCOR (customer chain operations reference), M4SC (managing for supply chain

performance), and PLCOR (product lifecycle operations reference model).

It is noticeable, that there exist different viewpoints on and degrees of domain-specificity

within literature. Different views on BPs or the use of different model types may account for

domain-specificity [cf. 2], or the creation of completely new DSBPM languages with an own

syntax, semantics, and notation.

2 State of the Art

 18

2.3 Model and Meta-model

Stachowiak [113] defines three fundamental model properties, namely mapping, reduction,

and pragmatism [cf. 113, p. 313]. The mapping property focuses on the original, which is

mapped by the model. The reduction property stresses the incompleteness of the model,

which shows only the relevant aspects of the specific viewpoint. Pragmatism is the property

specifying the usage aspect of the model for a certain application area within a specific time-

frame. Whereas different definitions of models exist (cf. [123], [104]), the model properties

by [113] are seen as relevant within the context of this thesis, as they complement the subject

of business process modeling.

Strahringer [114] defines a meta-model as a model of a model, which is a linguistic-

descriptive model describing the language of the subordinate model. The concept of

metaization is depicted in Figure 8, where the recursive nature of describing a model in a

meta-language is shown. The advantage of meta-modeling is the reduction of complexity by

abstraction (cf. [56], [114], [113]). As an example of this reduction of complexity in meta-

models, classes may represent the superordinate of activities of different kinds, or tasks carry

attributes like duration, costs, descriptions, or organizational assignments, among others [cf.

109]. Zacarias et al. [124] identify general business process concepts of BP meta-models,

namely the meta-elements process components, process connectors, process resources,

organizational features, and specific features.

Figure 8 Language-based meta-model concept

– own representation based on [114, p. 24]

level n modeling-languagesmodels

level 2

level 1

level 0

meta-meta-model

meta-model

model

world

meta-meta-language

meta-language

object-language

.

.

.
in

in

in

indirect model of

indirect model of

model of

direct model of

direct model of

2 State of the Art

 19

In the context of BPM, meta-modeling is a widely used concept for depicting BPs on a

higher abstraction level and to enable the comparison between different BPs (cf. [62], [55],

[58]). Karagiannis and Woitsch [58] emphasize the strong interrelation between BPM and

knowledge engineering and propose meta-modeling as an approach to integrate the two

disciplines. Other application fields of meta-models are design (in the sense of an inheritance

mechanism or reference structure) and integration (mapping of meta-models by the use of

the meta2 model) [cf. 55].

In recent developments, agile meta-modeling approaches are gaining more and more

momentum in order to address the complexity of BPM (cf. [124], [52], [115], [33]). For the

purpose of business process flexibility and agility in order to address the issue of changing

requirements, [124] propose a meta-model. Raschke [97] defines operational agility in the

context of BPM as a construct of the four components reconfigurability, responsiveness,

employee adaptability, and process-centric view. Thiemich and Puhlmann [115] provide a

meta-model for BPM, which is not by itself agile but based on agile software development

methods.

Enablers of flexible meta-modeling are meta-modeling platforms like e.g. ADOxx [16],

MetaEdit+ [80], or OpenPonk [116], which provide a meta2 structure and allow for the

design of modeling methods on the meta level. On the meta layer, concepts, notations,

semantics, and syntactic and semantic constraints are implemented. In this layer, also

domain-specific concepts are taken into account. The modeling layer depicts the concrete

model using a specific modeling language.

In the context of this thesis, the ADOxx [16] meta-modeling platform is used as an

implementation platform, as it includes all necessary concepts needed for meta-model

creation [cf. 34]. The meta-model builds the base for the implementation of domain-specific

concepts. In their work, [61] compare and analyze several meta-modeling languages by

comparing their meta-meta-models4. As the result of the investigation, several commonly

used notions were identified. All of the analyzed meta-meta-models have the elements

object, relationship, and attribute, whereas differences were found in structuring and reuse

capabilities of meta-model elements. In the ADOxx meta2 model, these elements are

represented by class (corresponding to the object element from above), relationship, and

4 In the general literature, meta-meta-model and meta2 model are used as equivalents

2 State of the Art

 20

attribute. The reuse and structuring capabilities are represented by the additional element

model-type. With these four notions, the syntax and semantics of the modeling language can

be defined [cf. 117].

2.4 Modeling Method Building Blocks

A modeling method can integrate several modeling languages (cf. [54], [36]), and can be

designed for specific needs of a certain domain. A modeling method enables the combination

of all concepts of the previous chapters into one framework, combining language, procedure,

and mechanisms & algorithms requirements (cf. [54], [34], [51], [36]).

Karagiannis and Kühn [56] define a modeling method by its components modeling

technique on the one side, and mechanisms and algorithms on the other side. The modeling

technique can further be divided into modeling language and modeling procedure. Figure 9

depicts these building blocks, and their components are shown in greater detail within the

subchapters. The colors emphasize, whether the components belong to the modeling

language (yellow), procedure (red), or functionality (green).

Figure 9 Modeling method building blocks

– own representation based on [56]

Whereas [56] provide the structure definition of a modeling method, [40] propose Agile

Modeling Method Engineering (AMME) as a methodology to develop a modeling method.

It builds the foundation of the OMiLAB environment, which promotes using metamodeling

modeling

method

mechanisms

& algorithms

generic

mechanisms

& algorithms

specific

mechanisms

& algorithms

hybrid

mechanisms

& algorithms

modeling

procedure

steps results

modeling

technique

modeling

language

notation syntax semantics

semantic

mapping

semantic

domain

< used for

< used in

delivers >
< defines way of language application

< defines meaning

< describes

meaning of

arranges

according to >

defines grammar ^

connects ^

defines visualization >

visualizes >

considers >

2 State of the Art

 21

for the design of DSLs [cf. 40]. It is domain-independent and focuses on the interaction

between modeling and machine-processing abilities of those models. The characteristics of

this methodology are based on changing requirements, namely adaptability, extensibility,

integrability, operability, and usability [cf. 52].

Within this thesis, the AMME approach is seen as the fundamental structure for modeling

method engineering. As it is conceptualized on the meta2 level (see chapter 2.3 for an

explanation of the different meta-modeling concepts), it is seen as a given orientation for

modeling method development and deployment.

Visic et al. [117] recognize the dynamic nature of modeling method engineering due to

changing requirements and therefore propose a domain-specific language for modeling

method engineering. The phases are inspired by the principles of agile software engineering

and based on the framework by the Open Model Initiative Laboratory [87].

2.4.1 Modeling Language

The modeling language (ML) (see Figure 9) constitutes the primary building block and is

further divided into syntax, semantics, and notation. The syntax of the ML establishes the

grammar by the definition of a set of rules. The semantics of the ML provides the syntax

with meaning. The notation gives the graphical representation of the ML by domain-specific

symbols [cf. 117].

Kelly and Tolvanen [60] propose several language definition guidelines in their book.

Following these guidelines to create a domain-specific ML significantly increases

acceptance and likelihood of usage within the company area where the DSL is deployed.

The language definition guidelines are as follows [cf. 60]:

• Use the same names and naming conventions already in use within the domain.

• Keep the language simple in order to allow a high level of abstraction. The goal

is to satisfy the identified needs first and if necessary, additional concepts can be

added at a later point.

• A precise definition of each modeling concept is key. Examples should show

alternative cases, concepts, and behavior.

• Language extension possibilities can be included by adding extension concepts,

e.g. an object, which can be connected to all other objects and has only one

2 State of the Art

 22

description property. This makes sense, if the modeling language is still

incomplete or the domain relatively new.

Figure 10 depicts the general concepts of a modeling language on the meta-level, as

proposed by [67].

Figure 10 Generic meta-model of modeling language

– own representation based on [67]

The generic meta-model shown in Figure 10 includes all possible elements, which can be

used within the language of a modeling method. It is noticeable, that not all of these elements

might be necessary within a certain domain.

2.4.2 Modeling Procedure

The modeling procedure is defined for the business process modeler and provides guidance

on how to produce a valid model. It formally describes the sequence in which certain model

types should be created and formulates the steps necessary to produce a coherent model [cf.

54]. The sequence, in which model types are used, can for instance range from generic to

specific (i.e. from modeling the process landscape to modeling single processes and sub-

processes).

composed type atomic type

attribute type

…

value range

regular

expression
facet

design pattern

relation type

attribute

profile

instance

attribute

attribute

graphical

notation
attribute filter…

class attribute

modeltypeview

metamodel

part

class

meta model

0…*

1…*

1…n

0…1

0…* 0…* 0…*

1…* 1…1

< has has >

1…* 0…*

1…1

0…*
1…*

is subclass >

1…1

0…*

1…1 1…1

1…1

< is from - class

< is to - class

1…*

1…1

0…*

0…*

0…*

0…*

1…1

2 State of the Art

 23

The generic meta-model of the modeling procedure after [67] is depicted in Figure 11. It

is an essential part of the modeling method as it serves as a guideline for business process

modeling within the specific domain. It makes the task of modeling more user friendly and

reduces the risk of producing false models.

Figure 11 Generic meta-model of modeling procedure

– own representation based on [67]

2.4.3 Modeling Mechanisms & Algorithms

The purpose of the mechanisms and algorithms building block (see Figure 9) is to provide

the modeling method with functionality. Here, [54] propose a generic-to-specific description

of the mechanisms & algorithms integrated within a modeling method. In the context of

DSMLs, authors commonly argue that the language must provide some kind of services or

functionality, like e.g. simulation features, debugging functions, or a compiler to some target

environment (cf. [9], [60]). Figure 12 depicts the general modeling concepts in the meta-

model of the mechanisms and algorithms building block.

procedure

construct

role

start

stepphase

result typeend

modeling

language

milestone

< performed in

0…1 1…*

0…1

1…*

v
< next step

0…*

0…*

performed by >
1…* 1…*

1…*1…*

0…* 0…*

v next step ^ next step

0…1 < next step 1…*

1…* 1…*

1

0 … 1
v produces

v modeler

2 State of the Art

 24

Figure 12 Generic meta-model of mechanisms and algorithms

– own representation based on [67]

2.5 Interim Conclusion

Within this chapter, relevant literature in the field of domain-specific business process

modeling has been collected, summarized, and analyzed in the light of its relevancy for the

further course of this thesis. The focus was set on the extraction of crucial concepts, which

are used in chapter 3 to analyze existing DSM languages and to derive a basis for the

development of the Domain Integration Framework in chapter 4 as the result of the analyses.

The relevant concepts within literature and their importance for the following chapters are

summarized in Table 2.

Table 2 Revelations from the literature review for the further course of the thesis

– own representation

Chapter in

state of the art

Revelation for this thesis Knowledge used within

which part

2.1.1 Enabling an integrated view of both

concepts, BP modeling and BP re-

engineering

DIF

input output asynchronous

trigger

synchronous

trigger

precondition

postcondition

mechanisms &

algorithms
trigger

specification &

description

implementation condition

generic

mechanism

specific

mechanism

hybrid

mechanism

natural

language

UML

pseudo code

…

script

DLL

EXE

…

0…*

1…*

go to v

1…*1…*

valid for >

1…* 1

< assures

0…*

0…*

described by >

described by >

1

1

1

1…*

^ specifies

0…*

0…*

< uses

1

1…*

^ specifies

1…*

1

< triggers

realized by >

1…*

1 1

1…*

^ restrict

2 State of the Art

 25

2.1.1 Concepts of GP BPM languages can

be useful for the design and re-use of

modeling languages

DIF, Case Study

2.1.1 Categorizing processes as

management, core, and support

processes

DIF

2.1.1 Crucial BP elements are activity,

artifact, actor, and resource

Case Study

2.1.2 Use of an agile and domain-centric

approach to engineer requirements,

i.e. by user stories

Case Study

2.1.2 Distinguish between different

categories of requirements, i.e.

stakeholder requirements, goal

requirements, boundary requirements

DIF, Case Study

2.1.2 Distinguish between requirements at

design-time and changing

requirements at usage-time

DIF, Case Study,

Analysis

2.2 Differentiation between domain

context (external view) and domain

analysis (internal view)

DIF

2.2.1 Focus on the visual value of

graphical models

Case Study, Analysis

2.2.1 Within different process levels, a

different degree of domain-specificity

can be considered

Case Study

2.2.2 For the domain context, industries,

the level of detail (granularity), and

the question whether the process is a

core, management, or support process

constitutes a good starting point

DIF, Case Study

2.2.2 For the domain analysis,

requirements as well as quality criteria

reveal insights into the processes

themselves and their evaluation

DIF, Case Study

2.3 Focus on meta-models, because

flexibility as well as domain-

specificity is enabled on the meta-

level

Analysis

2 State of the Art

 26

2.4 In order to provide guidance and

acceptance for usage, a whole

modeling method is needed

DIF, Case Study,

Analysis

Among the advantages of DSBPM languages, their functionalities for automatic code

generation are often mentioned (see chapter 2.2). The emphasis of this thesis, however, lies

in the value of the graphical representation of DSBPM rather than the production of code.

Nevertheless, this could constitute a starting point for considerations for automation e.g. in

the form of workflow engines or ERP systems. In the context of visual value of a model, the

semantics of a modeling language contribute to domain-specificity. For example, the symbol

of a steering wheel might be needed when defining business processes within the automotive

industry.

The Domain Integration Framework (DIF) developed within this thesis should not be

confused with the domain framework defined by [60]. The authors describe a domain

framework as a layer of code situated between the general components including the meta-

modeling platform, and the generated code. It serves as a means to avoid code repetition as

it resembles all elements, which are common to all applications within the domain. In

contrast to that, this thesis and the DIF developed within it shall provide a guided modeling

approach to help closing the gap between the knowledge of a method engineer and a domain

expert. Its contribution is the provision of a structured way to analyze the specific application

domain, such that no important domain-specific information is forgotten during the design

of the modeling method for business process modeling.

3 Analysis of DSML

 27

3 Analysis of DSML

The literature overview shown in chapter 2 revealed valuable insights for the categorization

and evaluation of DSM languages (DSML). In order to identify, what domain-specific in the

context of BPM means and to extract knowledge about domain-specific concepts, a

literature-collection and -analysis procedure is used (see Figure 13). Here, DSML within

literature are collected and analyzed in a structured manner in order to derive valuable

insights for the creation of new DSML.

Figure 13 Literature-collection and -analysis procedure

– own representation

The first step resembles a literature review process, where different DSML are collected

in the manner described in chapter 1.3. Secondly, the respective domain of each DSML is

specified. Every DSML is evaluated according to its quality, which in this case is the

availability of a meta-model of the ML, whether the requirements are fulfilled, and whether

it is supported by a complete modeling method. The goal of the procedure is to consolidate

the knowledge gained throughout the process within the last step - the evaluation of

components - which make a DSML domain-specific. By comparing differences and

similarities between the DSMLs, those components are identified and their respective

contribution to domain-specificity is elaborated.

A reference framework for the evaluation of BPMLs is offered by [36]. The authors

propose general requirements for modeling languages (formal, user-related, application-

oriented), requirements for BPM (fundamental requirements for modeling languages,

business and operational requirements, control structures, exceptions, integrity

requirements, support for the development of information systems, support of individual

adaptations, documentation, specification), and the embedding within a modeling method

(project specific roles and resources, modeling procedure) as criteria for evaluating and

3 Analysis of DSML

 28

selecting an appropriate modeling language or method. A further extension and

concretization of this evaluation method is proposed in [37]. Within this chapter, the

evaluation method by [37] is used to analyze DSML in a first step and to extract DS concepts

in a second step.

3.1 Domain Specification

To sum up the previous discussions, a domain within this thesis is defined as follows:

The following definition of a domain is derived from the findings of the

literature review (chapter 2) and shall provide a guideline for the

analysis of existing DSML within this chapter. A domain can be seen as

an area or focus of application. It can be analyzed on the one hand by

its context, i.e. its boundaries and dependencies to other domains and

the classification of its processes (see chapter 2.2.2). On the other

hand, inward looking characterizations or analysis can be made based

on the modeling needs of this respective domain (see chapters 2.1.2,

2.2.1).

The definition above implies, that there exists an external and an internal view of a domain.

With these two points of view, the analysis of several DSML was conducted and is therefore

divided into two parts – an external domain context part and an internal domain analysis

part.

Following Table 3 shows the results of the domain context analysis of the DSML.

Table 3 Domain context of DSML

– own representation

DSML Domain context

Industry MCS-level Pursued level

of detail

E-MEMO [35] Online, insurance Core process Abstraction

MPN BP [82] Banking Core process Abstraction

3 Analysis of DSML

 29

eGPM [18] Governmental,

insurance, car rental

Core process Abstraction

DSLs4BPM [45] Information

technology

NA Abstraction

PICTURE [12] Governmental,

banking

Management

process, core

process, support

process

Abstraction

3PL [13] Robotics Core process Detail

SIMchronization [94] Supply chain

management,

production, logistics,

maintenance

Core process Abstraction

ComVantage [53] Supply chain

management, plant

commissioning,

production,

maintenance

Core process Abstraction

State Social Insurance

Agency (SSIA) [14]

Social security Core process Abstraction

DSL for automation

systems [70]

Automation systems Management

process, core

process, support

process

Detail

PISCAS [95] Pisciculture

automation system

Core process Detail

Flight control domain-

specific language

(FCSL) [100]

Safety critical flight

control software

Core process Detail

GISMO [28] Development of

gestural interaction

applications

NA Abstraction

Tramway Control

Framework (TCF) [43]

Railway control

systems, tramway

control systems

Core process Detail

3 Analysis of DSML

 30

Integrating the

Healthcare Enterprise

(IHE) Framework [5]

Medical e-services Core process Abstraction

Project assessment

diagrams (PAD) [9]

Highlighting review

and assessment of

business processes

NA Abstraction

Industrial Business

Process Management

(IBPM) [15]

Industrial Management

process, core

process, support

process

Abstraction

It is notable, that many of the DSML are claimed to be valid in more than just one domain.

Only for very narrow domains, which also focus on system implementation like the robot

navigation language 3PL [13], no further application domains were named by the respective

authors. Moreover, most of the DSML focus on core processes and do not allow for the

integration within an organizational architecture. As to the pursued level of detail within

each language, it is differentiated between abstraction and detail. Languages that aim for

abstraction are more focused on reducing complexity by making use of a higher abstraction-

level and leaving out unnecessary details. Languages pursuing a high level of detail

specifically aim to address complex or detail-intensive issues.

Table 4 depicts the results of the domain analysis, applied on the DSMLs.

Table 4 Domain analysis of DSML

– own representation

DSML Domain analysis

Underlying

modeling

language (if

applicable)

Model types Elements

E-MEMO [35] Domain-

specific

Strategy network

model, business

process model

Process, decomposition

hierarchy, event, control

structure, exception, note,

organizational unit,

resource,

MPN BP [82] Modified

Petri Net

Organizational

structure model,

Activity, resource,

control, flow,

organizational structure

3 Analysis of DSML

 31

business process

model

eGPM [18] Domain-

specific

Cooperation view,

use-case diagram,

process landscape,

IT landscape,

conceptual model,

work environment

model

Actor, group, meeting,

object, business case,

aggregation, note, informs

with object, passes object,

edits object, initiates

DSLs4BPM [45] BPMN2.0 NA Process, organizational

element, subprocess,

variant, process building

block, PBB occurance,

derived DSL

PICTURE [12] Domain-

specific

Process landscape,

process model,

procedure model

Process block,

subprocess

3PL [13] Domain-

specific

Flow chart Configuration, flow,

gateway, connection

SIMchronization

[94]

Domain-

specific

Supply chain

network model,

resource model,

component model

resource, plan,

information object,

material flow object, item

ComVantage [53] Domain-

specific

Resource pool,

business and

organization

structure, value

structure, process

model, mobile IT-

support model,

orchestration model,

location structure,

information space

model, station

structure, machine

state model

Many elements,

combined into the structure

groups KPI, market,

mobile support, value

exchange flow, value

structure, business model,

orchestration, enterprise

structure, business

structure, location

structure, permission pool,

information space,

evaluation process,

requirements process,

business process,

interaction flow,

notification, navigation,

collaboration

3 Analysis of DSML

 32

State Social

Insurance

Agency (SSIA)

[14]

ProMod Business process

model, information

systems diagram,

customer service

diagram,

organizational

structure, regulations

and local instructions

diagram, information

artifacts, customer

services diagram

Activity, event, sequence

and message flows, data

objects

DSL for

automation systems

[70]

Domain-

specific

System model Automation domain

object, name, voltage,

output, input, in, out,

automation domain wire

connection

PISCAS [95] DSL for

automation

systems

Graphical

overview, wiring

plan, list of parts,

labels for wiring

closet

Pond, switch, aerator,

feeder, light, module, time

switch, twilight switch, PH

value, waterlevel,

temperature sensor,

muddiness sensor

Flight control

domain-specific

language (FCSL)

[100]

Domain-

specific

Fault model,

behavior model,

Data flow/ state flow

Processor, device,

interconnection network,

partition, process, task,

function element,

relationship

GISMO [28] Domain-

specific

Gestural interaction

model

Element, object state,

gesture type, interaction

controller, movement

direction, variable, state

variable

Tramway Control

Framework (TCF)

[43]

Domain-

specific

Tramway network

model, deterministic

sequential state

machine, safety

monitor state

machine, signal

setting table, point

position table, route

conflict table, route

definition table

Abstract signals, abstract

points, counters, abstract

sensors, route requests,

signal drivers, point

drivers, sensor drivers,

tram comm drivers, signal

type, point type, sensor

type, tram

3 Analysis of DSML

 33

Integrating the

Healthcare

Enterprise (IHE)

Framework [5]

UML,

BPEL

Sequence diagram,

activity diagram,

administrative

process flow, patient

registration

transaction, modality

worklist model

Actor, activity,

transaction, flow, patient

class, document, type,

variable, message,

correlation set, partner,

process, port type, service

link type

Project

assessment

diagrams (PAD)

[9]

ProMod NA Elements of UML

activity diagrams, elements

for controlling execution

duration (setTimer,

checkTimer), link between

system and editor

Industrial

Business Process

Management

(IBPM) [15]

BPMN2.0 Company map,

business process

diagram, document

model, working

environment model

Swimlane (vertical),

swimlane (horizontal),

process, performance,

actor, external partner,

aggregation, note, elements

of BPMN2.0, document,

organizational unit,

performer, role

From the table above can be seen, that DSMLs strongly vary in their size, recognizable by

the number of model types and elements. Moreover, DSMLs addressing similar domains use

similar model types and elements. This can be seen e.g. when comparing the ComVantage

[53] and the SIMchronization [94] modeling methods (MM). Even though the

SIMchronization MM focuses on a narrower application domain, both include models to

depict resources and supply-chain processes. Also, both DSMLs addressing the public

administration domain5 include a process landscape and elements enabling process

aggregation. It is also noticeable, that many DSMLs are based on GPMLs or include model

types, which enable the use of GPMLs (e.g. IBPM [15] uses BPMN2.0 in the business

process diagram model type).

3.2 Quality Evaluation

An extensive catalogue of questions providing a useful tool to evaluate the quality of

modeling methods is proposed by [37]. The evaluation questionnaire is systematically

5 i.e. eGPM [18] H. Breitling and S. Hofer, "Schwerpunkt-beispielhaft gut modelliert: Exemplarische

Geschäftsprozessmodellierung in der Praxis," Objekt Spektrum, no. 6, p. 8, 2012. and PICTURE [11] J.

Becker, D. Pfeiffer, and M. Räckers, "Domain specific process modelling in public administrations–the

PICTURE-approach," in International Conference on Electronic Government, 2007, pp. 68-79: Springer.

3 Analysis of DSML

 34

structured into different categories and used as a base within this thesis to evaluate the

collected DSML. Within this section, an adapted version of the question catalogue by [37]

is used, extended by categories which are seen as relevant in the context of this thesis. For

example, the section “BPM specific criteria” is changed to “Domain-specific criteria” for

the evaluation of DSMLs.

The DSMLs are assessed regarding general criteria and domain-specific criteria. The

general criteria encompass formal, user-oriented, and usage-oriented criteria. The domain-

specific criteria contain questions regarding the functionality, model types, concepts,

adaptability, documentation, meta-model support, and modeling method support. The

original questionnaire consists of 119 sub-questions, which are used for the evaluation within

this thesis as a guidance for the evaluation of the DSMLs. However, the results of the

evaluation are shown in an aggregated way, presenting the main points of the questionnaire.

The results of the evaluation are summarized in Table 5 and the complete evaluation sheet

is attached in Appendix A.

Table 5 Quality evaluation of DSML

– own representation

Evaluation

of DSML

General criteria Domain-specific criteria

F
o
rm

al
 c

ri
te

ri
a

U
se

r-
o
ri

en
te

d

cr
it

er
ia

U
sa

g
e-

o
ri

en
te

d

cr
it

er
ia

D
S

 f
u
n
ct

io
n
al

it
y

D
S

 m
o
d
el

 t
y
p
es

D
S

 c
o
n
ce

p
ts

A
d
ju

st
m

en
ts

 o
n

p
la

tf
o
rm

 l
ev

e
l

P
ro

v
id

ed

d
o
cu

m
en

ta
ti

o
n

M
et

a-
m

o
d
e
l

su
p
p
o
rt

M
L

 e
m

b
ed

d
ed

 i
n
to

a
M

M

E-MEMO

[35]

MPN BP

[82]

eGPM [18]

DSLs4BPM

[45]

PICTURE

[12]

3 Analysis of DSML

 35

3PL [13]

SIMchroniza

tion [94]

ComVantage

[53]

SSIA [14]

DSL for

automation

systems [70]

PISCAS [95]

FCSL [100]

GISMO [28]

TCF [43]

IHE

Framework [5]

PAD [9]

IBPM [114]

Table 5 summarizes the main findings of the quality evaluation of the investigated DSMLs.

It has to be stated that due to restrictive information, assumptions about categories were

made to the best of knowledge and no claim to completeness and correctness is made. The

table shows, to what extent different DSMLs fulfilled the criteria on a scale from one to four

(shown as quartered circles). The meta-models of the DSMLs from the OMiLAB platform

[87] all follow the modeling method approach described in chapter 2.4. This leads to

exceptionally good results in the quality assessment. An explanation for the high-quality

modeling methods from OMiLAB is the provision of a standardized scheme, which still

allows for flexibility on the meta-level. On the one hand by the modeling method approach

with its three components (see chapter 2.4), and on the other hand by making active use of

meta-modeling to depict dependencies not only generally but structured according to model

3 Analysis of DSML

 36

type building blocks. An example of structuring a meta-model according to its model types

can be seen in Figure 14.

Figure 14 Example of a meta-model structured according to its model types

– own representation

Figure 14 shows the representation of the meta-model of a modeling method structured

according to the model types it consists of. The main elements are the different classes,

which can consist of sub-classes. The classes are connected by relation classes, which might

be specific for groups of classes or just two classes. Each class and relation class can

furthermore inhere attributes, which are not shown here due to reasons of simplicity.

The previous analyses of domain-specific business process modeling languages regarding

their domain context, domain analysis, and quality revealed valuable insights. By comparing

their differences and similarities, patterns could be identified. Those patterns are listed in the

next chapter and their contribution to domain-specific BPM is estimated.

3.3 DS Component Identification

Reaching the end of this chapter, the first major phase of this thesis is accomplished.

Namely, to identify differences and similarities by analyzing DSML and to derive

3 Analysis of DSML

 37

components, which make the MLs domain-specific. Those components serve as the main

focus points of the Domain Integration Framework developed in the next chapter.

During the analysis of DSMLs, the different degrees of domain-specificity found in the

modeling languages were:

• General-purpose language applied within a specific domain

• General-purpose language extended by domain-specific concepts

• Completely domain-specific language

Table 6 shows the identified concepts, which contribute to domain-specificity of business

process modeling languages and methods.

Table 6 Domain-specific component identification

– own representation

Component Contribution to

domain-specificity

Explanation

Process framework

Process frameworks for specific domains

can provide useful information on the

vocabulary used within the process context.

Requirements

assessment method

There exist different assessment methods

(see chapter 2.2.1), which might be suitable

within different domains.

Meta-model

The meta-models of the DSMLs differed the

most throughout the analysis, including its

elements and midel types. This underlines the

hypothesis, that domain-specificity is located

on the meta-level of the language.

Model type

The model types of a DSML build a sub-

part of the language meta-model. Still, the

selection and combination of model types

itself contributes to domain-specificity to a

grat extent.

The process framework, which is part of the domain context analysis can provide useful

information regarding process steps, hierarchies, and domain-specific concepts. Especially

domain-specific process frameworks offer a commonly accepted vocabulary, which is

essential for the later acceptance of the DSMM to be developed. However, for its

contribution to domain-specificity it was rated with half a star, as several techniques for

3 Analysis of DSML

 38

extracting domain-specific knowledge exist, e.g. interviews with domain-experts or user

stories.

The requirements assessment method also contributes to domain-specificity, as it helps to

identify concepts and requirements specific to the respective domain. Formulating general

requirements for the DSMLs might be valid, but not sufficient to fulfill all existing needs.

The meta-model shows all the essential classes, relations, and attributes of a modeling

language and can be seen as the key concept of domain-specificity. Not only does it offer

the possibility to compare modeling languages with each other. It also provides the

opportunity to use specific blocks of the meta-model and integrate them into meta-models

of other languages, therefore enabling extension and re-usability. The domain analysis

conducted within this chapter revealed the tendency, that the better the meta-model of a

language, the better the quality of a language. The analysis has shown, that the model types

used vary considerably between the DSMLs. This indicates, that the model type contributes

to a great extent to domain-specificity and needs to build a central part of DSMM design.

Considerations about the right amount and the right kinds of model types have to be made.

To sum up the previous chapter, the components contributing to domain-specificity were

identified by a thorough and systematic analysis of seventeen business process modeling

languages with varying degrees of domain-specificity. Their external domain environment

as well as their internal domain-facets were analyzed, put into context, and compared to each

other. The DS components identified build the foundation for the Domain Integration

Framework, which is introduced in the following chapter.

4 Results – the Domain Integration Framework (DIF)

 39

4 Results – the Domain Integration Framework (DIF)

After the introduction of related concepts and literature in chapter 2 and the profound

analysis of DSMLs in chapter 3, implications are derived and put together in the heart of this

thesis – the Domain Integration Framework (DIF) for business process modeling. Whereas

the focus of the previous chapter was to show and categorize a variety of existing DSMLs

and identify DS components, the following chapter consolidates the gained information. The

resulting DIF is described and in the later course proven by applying it on the automotive

assembly line case study (see chapter 5).

Figure 15 The Domain Integration Framework (DIF)

- own representation

4 Results – the Domain Integration Framework (DIF)

 40

The DIF as a lifecycle model is shown in Figure 15. As the three main phases of the

framework, the domain-specific design, domain-specific implementation, and domain-

specific modeling build the base. At the beginning of the DIF procedure model stands a need

for a BPM initiative, which appears or is identified within a problem domain. Each phase of

the DIF is accompanied by tools, which help to develop the output of the respective phase.

During domain-specific design, the problem domain is analyzed in a first step by the use

of the DF described in chapter 4.1.1 in order to gain an understanding of the process

boundaries and dependencies. A careful analysis and consideration of the requirements

influences the usefulness, acceptance, and applicability of the modeling method to be

developed. Therefore, the tool “user stories” is used to identify those requirements.

Understanding the environment of the domain is vital to the success of the modeling method

to be developed. The requirements reveal, what has to be included into the modeling method.

The outputs of the design phase constitute the meta-models of the modeling language,

modeling procedure, and modeling mechanisms and algorithms. Those serve as the input for

the next phase.

The domain-specific implementation phase makes use of the “linguistic matching

heuristic” as a tool. It requires the knowledge of the method engineer about existing BPMLs

in order to build the DSBPML, as the word heuristic implies. Here, the previously designed

meta-models are converted to a domain-specific modeling tool. The modeling tool as the

output of this phase is ready-to-use for the next phase.

In the domain-specific modeling phase, the implemented tool is used, and models are

created based on the previous design and implementation phases. Throughout the course of

time, tools for quality evaluation need to be used in order to assess, whether the validity of

the DS modeling tool is still given. This is done by a quality criteria assessment in the form

of complexity of the model and usage of elements and model types. Needed changes or

points for re-assessment are documented in the adaptation log.

In the following sections, the three phases of the DIF, the tools used within them, and the

outputs of each phase are described in further detail.

4 Results – the Domain Integration Framework (DIF)

 41

4.1 Domain-specific Design

The goal of this chapter is to show, how requirements can be derived and a domain-specific

modeling method (DSMM), consisting of the meta-models of the DS modeling language,

DS modeling procedure, and DS mechanisms & algorithms, be designed. These constitute

the output of the DS design phase. In the process of designing a domain-specific modeling

method, a key intermediate deliverable is the modeling method specification [cf. 117].

Whether a domain-specific modeling language supports a certain application domain

depends on the fulfillment of domain requirements, properties, constructs, and grammar.

Keeping in mind the general structure of the ADOxx meta2 model, all domain-specific

concepts are declared as class, relation class, attribute, and model type [cf. 34]. Although

the meta2 model of ADOxx is seen as rigid, its high abstraction-level allows for enough

flexibility to declare domain-specific concepts on the meta level.

4.1.1 Domain Framework (DF)

The first step of the design phase is to identify the external boundaries and the internal

specifics of the application domain. In order to do so in a systematic way, the Domain

Framework (DF) is introduced as a tool (see Figure 16).

Figure 16 The Domain Framework (DF)

– own representation

4 Results – the Domain Integration Framework (DIF)

 42

The DF specifies two views of the domain, the domain context providing an external

classification of a domain within a three-dimensional space and the domain analysis for the

evaluation of internal domain-specifics. This integrated view allows for the identification of

domain boundaries and is a useful step to gain an understanding of the external and internal

particularities. The DF helps the modeling method engineer to systematically evaluate the

area of application, where the developed method should be used. For the success of a

modeling method in both, acceptance by the domain experts and the usefulness of the

provided functionalities, this step of understanding the application domain and its

connections to other domains is crucial.

4.1.1.1 Domain Context

The domain context´s purpose is to reveal the external context of the domain to the

modeling method engineer. The first dimension is the industry, in which the domain is

located. The second dimension is the MCS-level, where the specific process-domain is

classified into whether it is a management, core, or a support process. The third dimension

depicts the granularity-level (level of detail) of the domain-process to be designed.

According to [32], the granularity is structured from level 0 to level 3+, where level 0

constitutes the process landscape. In the following, the three dimensions specifying the

domain context are described in more detail and shall provide a foundation for the evaluation

case study in chapter 5.

Figure 17 shows the domain context within the three interrelated dimensions industry,

MCS level, and granularity.

Figure 17 Correlations between the three dimensions of the DF

– own representation

4 Results – the Domain Integration Framework (DIF)

 43

The modeling method engineer should consider the respective application domain to have

dependencies to each of those dimensions. The domain can be seen as a node within a

network with links to other domains. This fact can be considered manifold throughout the

modeling method design process: for collecting domain-specific requirements, for

determining links to other organizations or departments, for modeling business processes

and referencing them to related processes or models, to identify conceptual blocks for re-

use, and more.

Industry

In chapter 2.2.2, several possibilities to structure industry domains were presented. For

one, there exist process classification frameworks for general process representation, aiming

to achieve a “one size fits all” approach. For the other, domain-specific categorization

schemes have emerged and are constantly updated in order to integrate new process

concepts6. Using such frameworks to identify the industry of the domain at hand helps to

identify:

• Domain-specific concepts

Roles, necessary classes, and relations can be derived from the framework

descriptions (e.g. [94] used the SCOR framework by [6] to develop the

modeling method SIMchronization) to be included in the meta-model.

• Hierarchical structure

Most process frameworks are visualized in a hierarchical structure. This layout

allows to identify possible sub-processes and related processes. Finding links to

other domains or hierarchical levels helps to avoid errors in the course of

modeling method design and business process modeling itself.

• Re-usability opportunities

Certain processes may appear throughout different industries. This provides a

starting point for considerations, whether the modeling method or parts of it can

be re-used in a different company. Examples of such re-usable processes are

supply chain, maintenance, and finance, among others.

6 E.g. [6] APICS. (2018, 15.02.2019). Frameworks. Available: http://www.apics.org/apics-for-

business/frameworks update their SCOR framework in order to integrate new global standards, qualification

profiles, or best practices

4 Results – the Domain Integration Framework (DIF)

 44

In general, domain-specific process frameworks should be preferred over general process

frameworks, as they reveal DS concepts in the most accurate way. However, if DS process

frameworks are not available, general-purpose process frameworks can be used and

combined with methods to extract DS concepts (one method is described in chapter 4.1.2

and later used in the case study).

MCS level

In order to design a target-oriented modeling method, the hierarchical integration of the

focused business process has to be considered. This means, that depending on the specific

hierarchical level, different aspects of the modeling method can be of importance. Different

approaches towards structuring business processes in a hierarchical way were shown in

chapter 2.1.1. The distinctions made in the DF hierarchy within this thesis are [cf. 32]:

• Management process

Every process contributing to the strategic direction of a company can be

considered as a management process. This may include competitor analyses or

budgeting activities.

• Core process

A core process accounts for direct value creation of a company. This may either

be the production of certain goods or the offering of services, for which the

customer is ready to pay. Most of the DSM languages analyzed within chapter 3

focus on core processes. However, core processes within one company might be

a support processes of another, which creates opportunities for re-usability (e.g.

accounting processes).

• Support process

Those processes facilitate the execution of core processes. Examples are HR

management, IT, or technology development, which again are dependent on the

specific industry and may be core processes in another.

In order to design a consistent modeling method, all hierarchical levels should be

considered, and the processes structured accordingly. This helps to keep track of the process

importance and may serve as a guideline in the modeling procedure, e.g. to start with the

modeling of core processes first. As core processes build the foundation of the company´s

value creation, they should be modeled with priority.

4 Results – the Domain Integration Framework (DIF)

 45

Granularity level

The levels 0 to 3+ stand for an increasing granularity. Level 0 constitutes the process

landscape and depicts all processes on a high abstraction level within one model. Level 1 is

the value chain model of the domain-process. On level 2, the main processes are shown with

their basic steps and decisions. Levels 3 and more7 depict the respective sub-processes,

which reach until detailed task-level. As a general modeling guideline the modeling method

engineer should assure to hide complexity and that the domain is well restricted [cf. 60].

Therefore, high-quality processes are structured in a hierarchical way to depict only relevant

information of the specific level. The complexity is hidden by the use of sub-processes.

Between the different dimensions of the DF, dependencies do exist. Within certain

industries, the core processes might be the same, whereas in other cases support processes

(like e.g. IT) might be the core processes of other industries. The granularity dimension

should be regarded in an integrated way. Moreover, it should be considered, which degree

of detail is needed for the specific domain needs.

4.1.1.2 Domain Analysis

Whereas the domain context describes the external view of the domain, i.e. its location

among other domains, the domain analysis looks at the intra-domain facets. The goal of this

step is to gain insights into domain-specific concepts and to assess them in a structured way

such that they can already be mapped to the respective meta-model concepts.

The goal of designing a modeling method is to allow for re-use and modularity, which

contributes to the advantages of domain-specific modeling. The use of DSM rather than

GPM is shown to improve the productivity, quality, the leverage of expertise, and economics

within a company [cf. 60]. Therefore, domain analysis contributes to identifying domain-

specific model types and concepts, which provide the opportunity for re-use. In the domain

analysis, the modeling language consisting of classes and relation classes, and used model

types is investigated.

Modeling language

As discussed in chapter 2.2.1 and analyzed in chapter 3, there exist different levels of

domain-specificity. Some of the languages investigated are completely domain-specific,

7 Indicated by the + sign for each additional level

4 Results – the Domain Integration Framework (DIF)

 46

whereas others build on general-purpose modeling languages extended by domain-specific

concepts. Considerations for creating a DSBPML can be made on syntactical, semantical, or

notational level. For a certain domain, one domain-specific modeling method is created,

which can consist of several domain-specific modeling languages.

Model types

During the investigation of DSMLs, the use of different model types resulting from

requirements analyses was striking. DSMLs for similar domains often have similar model

types and concepts. This fact shows a significant potential for the re-use of DSML fragments

in the form of model types. Given a domain-specific modeling language, it can consist of

several different model types.

Elements

To collect the elements used within the DSML, the meta-models of the respective language

were investigated in chapter 3. The higher abstraction level of meta-models allows for an

overview of the classes and relation classes used within the language and makes them

comparable to other languages. An obstacle during the analysis was the absence or

incompleteness of meta-models, or different approaches towards their representation. It is

noteworthy to state, that DSMLs based on well-established meta-model standards were

easier to understand and with less time-efforts. The meta-modeling approaches based on

conceptual building blocks to represent different model types seem to be the most

comprehensive. A model type consists of several concepts or elements. Certain concepts can

be used by several model types at the same time.

4.1.2 Domain-specific User Stories

In chapter 3.3, requirements were identified as one of the influencing components of

domain-specificity. The requirements for developing an applicable and relevant modeling

method for the specific application domain are determined at design-time. As the analysis of

the application domain (see chapter 4.1.1) answers the question where, the requirements help

to specify the meta-models of the three building blocks of the modeling method (language,

procedure, mechanisms & algorithms) in a next step. Understanding the requirements

constitutes a necessity to build a modeling method, which will be accepted and is of value

to the underlying need. Whereas in chapter 2.1.2 several approaches towards requirements

4 Results – the Domain Integration Framework (DIF)

 47

engineering were shown, the most suitable in the light of this thesis are user stories, which

are complemented with the help of additional methods.

User stories are widely used in agile software development and offer several advantages

[cf. 99]:

• They deliver the highest value

Formulated correctly, user stories help to deliver small and immediate

deliverables. Compared to traditional approaches, where weeks or months are

spent to develop one feature, user stories are focused on delivering working

prototypes frequently.

• They enhance collaboration

Due to the minimalistic description of user needs on the story cards, those needs

have to be grasped in the most exact way. This encourages teams to work

closely with the customer and therefore avoids misunderstandings in the first

place.

• They allow for building blocks of the product

The incremental and frequent delivery of new features guarantees a constant

increase of the product value. A deliverable, which is built into the wrong

direction can be corrected in a timely manner and non-conforming features

easily omitted.

• They increase transparency

User stories, which are visible to everyone, enhance transparency within the

team and towards the stakeholders. This transparency leads to higher trust in the

product and depicts priorities and progress.

• They enhance a shared understanding

In contrast to traditional development approaches, where documents are handed

around and not visible to all team members, user stories openly show what is

expected and how the work is split between the team members. Therefore, the

focus shifts from a detail orientation to an integrated view of the whole product.

• They reduce risk

The risk of delivering a non-working or not accepted product reduces

considerably, as each sprint produces a working deliverable. The risk is further

4 Results – the Domain Integration Framework (DIF)

 48

reduced by the benefits named above, as e.g. collaboration with and

transparency towards all stakeholders prevent misunderstandings.

Table 7 shows considerations for writing user stories based on [4]. The annotations on the

right side of the table show, how these points are adapted to the use of domain-specific

business process modelling in the light of this thesis.

Table 7 User stories for domain-specific design

– own representation

Components of user stories based on

[4]

Adaptation to DSBPM

Written by the stakeholders This is an essential point when it comes to

formulating requirements for a domain-

specific business process modeling method,

as acceptance by the users of the modeling

method is essential. A focus on the customer

needs by active collaboration helps to stay

goal-oriented and design a valid solution.

“Keep it simple” is the policy when it

comes to the tool-choice

Index cards are regarded as the best choice,

as they have the right size to formulate a

feature without adding too many details.

Therefore, they guarantee to stay focused on

the solution.

Different types of requirements can be

addressed

Within this thesis, the requirements are first

collected and in a second step clustered

regarding their belonging. The clustering

follows the three building blocks of a

modeling method, namely modeling

language, modeling procedure, and modeling

mechanisms and algorithms.

Indication of the estimated size The estimation of size within this thesis is

done by the indication of working hours

needed to implement the respective

requirement. If for example a certain model

type needs to be designed and the workload

is estimated to be three hours, “3” is the

indication of estimated size.

Indication of priority Each requirement is rated with a priority. It

is differentiated between a “must have”,

“should have”, “could have”, and “won´t

have” requirement.

4 Results – the Domain Integration Framework (DIF)

 49

Inclusion of a unique identifier

(optional)

During the collection of user stories, a

continuous number is added to each new

requirement.

Within the DIF, requirements collection by user stories is regarded as the best method, as

it is user centric, deliverable-oriented, and based on agile methods. The requirements are

first collected and then clustered according to the three building blocks of a modeling

method. The results lead to the respective meta-model of each building block, including the

domain-specific concepts. Whenever necessary, the use of supplementary methods like e.g.

expert interviews can reveal additional concepts or identify missing requirements and should

be considered in the requirements engineering process.

4.1.3 Meta-models of Modeling Method Building Blocks

The collection and clustering of requirements described in the previous chapter builds the

base for designing the domain-specific modeling method. The clusters are tailored to the

three building blocks of a modeling method and provide the domain-specific concepts for

the meta-model of each block. Those meta-models are based on [67] and described in the

following. The components, which make a modeling language domain-specific to a high

extent (see chapter 3) are meta-model and model type. Within the meta-model, the elements

represent the domain-specific concepts in the form of classes, relation classes, and attributes.

The model types used were also identified to vary across different domains. Strictly

speaking, they are part of the meta-model and can be integrated within it but are regarded

separately due to their importance for domain-specificity.

For developing a DS modeling method, the modeling method engineer can consider three

options. The first option is to build a new modeling method from scratch, which fulfills the

requirements of the respective application domain as accurately as possible. The second

option is to make use of already existing modeling methods with a fit as high as possible and

to adapt them by adding or changing individual features. The third option constitutes the

most time and resource saving one: already fitting modeling methods can be applied to the

specific application domain without the need of change. This can be achieved as well by

combining the meta-models of model types. As this option needs the least monetary and time

resources, it constitutes the preferred one for companies aiming to select an appropriate BPM

method. Figure 18 depicts the previously described options.

4 Results – the Domain Integration Framework (DIF)

 50

Figure 18 Options of modeling method design

– own representation, icons from [39] and [38]

There exists a trade-off between the three options described above, which the modeling

method engineer has to balance in a suitable way. Ideally, as much reusable blocks of the

meta-models shall be combined in order to achieve a high domain fit.

4.1.3.1 DIF Modeling Language

The general modeling language building block was described in chapter 2.4.1 and is shown

here tailored to the needs of the DIF. The meta-model of the modeling language depicts all

concepts used within the language and domain-specific concepts are integrated on the meta-

level. Figure 19 shows the meta-model of the DIF modeling language including necessary

components for domain-specificity.

4 Results – the Domain Integration Framework (DIF)

 51

Figure 19 DIF modeling language

- own representation

The domain-specific classes identified during the requirements engineering phase are

integrated within the meta-model and their possible relations are described by relation

classes. Ideally, the concepts are clustered within distinct model types in order to increase

readability and comprehensibility. If not all domain-specific concepts are identified by the

user stories, they can be identified from product specifications, employee knowledge, used

vocabulary, architecture, existing products, patterns, expert knowledge, or used code, among

others [cf. 60]. If none of these sources exist, the definition of sample applications is useful.

The domain knowledge is located within the organization as well as individuals´ memory.

4.1.3.2 DIF Modeling Procedure

The modeling procedure defines the steps a process modeler should follow and the

sequence of model types he or she should use. The modeling procedure can be seen as a

systematic way to approach BPM and to avoid confusion or forget models. Several

approaches to proceed with modeling can be utilized:

• From generic to specific by first identifying the high-level processes and diving

into deeper detail with the help of sub-processes.

• From processes of a high hierarchical level to low-level processes.

4 Results – the Domain Integration Framework (DIF)

 52

• Starting from core processes, which limits the danger of forgetting crucial parts

and makes sure, that all other processes are aligned with the most valuable BPs

of the company.

The modeling procedure is also domain-specific, as different approaches towards modeling

might be necessary within different environments. This is shown in below Figure 20, which

constitutes the meta-model of the DIF procedure.

Figure 20 DIF modeling procedure

- own representation

4.1.3.3 DIF Modeling Mechanisms & Algorithms

The functionality needed within varying domains differs due to diverse key performance

indicators (KPIs), which are of importance within certain industries and process types.

Examples for model functionality are simulation, transformation, evaluation, and

visualization [cf. 57].

Identifying the needed mechanisms and algorithms requires a good understanding of the

BPM goal and the domain. A generic to specific functionality description of ADOxx is

provided in [57]:

4 Results – the Domain Integration Framework (DIF)

 53

• SQL generation mechanism and token-based simulations

• Path analysis, workload assessment, reasoning mechanisms

• Machine interpretable semantics

Resulting from the requirements engineering phase of the DIF, functionality needs in the

form of mechanisms and algorithms are extracted. Moreover, they should be described on a

meta-level in order to depict the dependencies of inputs and outputs and be understandable

to the model users. The domain-specific meta-model of the DIF is shown in Figure 21.

Figure 21 DIF modeling mechanisms & algorithms

- own representation

4.2 Domain-specific Implementation

In the previous section, the domain-specific design phase was shown including the domain

context and analysis by the use of the DF and the creation of a domain-specific modeling

method on the meta-layer by the use of DS user stories. The outputs of the previous phase,

the domain-specific meta-models, constitute the input for the following domain-specific

implementation phase.

4 Results – the Domain Integration Framework (DIF)

 54

4.2.1 Linguistic Matching Heuristic

The output of the previous chapter is a to-be domain-specific design including all needed

information about concepts and functionalities. Those are captured within the meta-models

and enable comparability to other meta-models due to the higher abstraction level. Within

this thesis, a “linguistic matching heuristic” is used to develop a ready-to-use modeling tool,

which constitutes the output of the implementation phase of the DIF. Expressed by the word

“linguistic”, the focus lies on the language meta-model with its classes and relation classes.

The goal is to identify synergies between the domain-specific modeling method and other,

already existing modeling methods. The different matching possibilities are shown in Figure

22 and explained in the following.

Figure 22 Matching possibilities

– own representation, icons from [39], [83], and [49]

The creation of a new modeling tool requires most time and money resources. The tool is

developed from scratch without using existing concepts. This involves a high effort as no

synergies are used. The second possibility is to extend an already existing modeling tool,

which contains all or almost all concepts required. Those existing meta-model elements are

then extended by the elements needed on top of the current solution in order to fulfill all

requirements. A third option is the reduction of existing modeling tools by the elements not

needed within the domain-specific solution. An already existing implementation could

include all needed elements but refer to a much wider domain. If the domain under

investigation is smaller, unnecessary elements have to be removed due to complexity and

redundancy reasons. In practice, a mixture of all three matching possibilities is required. The

process of domain-specific implementation can be described as a heuristic, because it

follows the previously described thought-pattern as a combination of modeling tool creation,

extension, and reduction. Another possibility is to use algorithmic pattern matching, which

CREATE

EXTEND

REDUCE

4 Results – the Domain Integration Framework (DIF)

 55

exceeds the focus of this thesis. It has to be noted, that the heuristic approach requires prior

knowledge of existing GP BPMLs and DSBPMLs in order to achieve a higher degree of re-

usability.

4.2.2 Domain-specific Modeling Tool

After building on the knowledge base about GPMLs and DSMLs and matching model

types, concepts, and functionalities, the domain-specific modeling tool has to be

implemented. As described in the previous chapters, the DIF within this thesis relies on the

ADOxx meta-modeling platform and its provided meta2 model [cf. 34]. The domain-specific

concepts identified within the design-phase are mapped to the elements of the ADOxx meta2

model. The major elements are model type, class, relation class, and attribute. For the

implementation, the extensive ADOxx documentation and tutorial resources provide the

instructions. The output of the domain-specific implementation phase is the ready-to-use

domain-specific modeling tool, which constitutes the input for the next step, the domain-

specific modeling phase.

4.3 Domain-specific Modeling

During the domain-specific design phase of the DIF, a collection and clustering of

requirements in the form of user stories led to the conceptualization of a domain-specific

modeling method on the meta level. This step constitutes a valuable deliverable, as it assures

visibility to the user groups and serves as a means of discussion and further refinement. Users

of the DSBPM solution should receive a training and a template specification as a guideline,

as they are usually non-programmers but domain experts. The modeling method meta-

models can serve as such a training instrument.

After finishing the DS implementation, the fit between the modeling method and the

respective target domain is the highest. This fit can get lost, as requirements might show to

be implemented with an incorrect priority or change over time, or domain-specific concepts

need to be adjusted in the meta-models. This might lead to a loss in acceptance of the

modeling method and discontent among the users of the DSBPM tool. Therefore, regular

checks need to be undertaken by a dedicated team in order to regenerate the fit between the

modeling method and the domain. This can be done by the mechanisms described in the

following chapters.

4 Results – the Domain Integration Framework (DIF)

 56

4.3.1 Quality Criteria Evaluation

After the initial design of the modeling method and implementation of the modeling tool,

the fit to the application domain is high. However, the primarily established fit gets lost in

the course of time and changing requirements. Therefore, regular re-evaluation is an

essential part of the DIF. This re-evaluation is made systematically by the assessment of the

criteria, stated in Table 8.

For the usage of a domain-specific modeling method it is important to regularly review its

applicability. The domain-specific requirements as well as the domain itself may change

over time, so mechanisms for regular quality checks have to be implemented into the

framework. How the quality of a model is perceived relates to the degree of fulfillment of

the underlying modeling requirements [cf. 54]. Following quality criteria build the

foundation for regular re-evaluation checks within the DIF:

Table 8 Quality criteria collected

– own representation

Quality criterion Description

Requirement re-evaluation In regular, predefined intervals, a re-evaluation

of requirements needs to be done in order to

assure the topicality of the modeling method.

Therefore, a dedicated team ideally consisting of

the modeling method engineer, the tool

developer, and the business process modeler

(user) should come together and take some time

to re-assess existing requirements and identify

new ones.

Usage of elements Elements, which are not used regularly or are

used ambiguously need to be revised or deleted.

This assures the relevancy and simplicity of the

meta-models and keeps acceptance of the model

users high.

Usage of model types Infrequent use of certain model types might

indicate, that they are obsolete. A re-investigation

based on the underlying requirements should be

conducted to find an alternative integration of

elements used within the model type.

Consistent use If it becomes visible that the modeling method

is used incorrectly over time, measures need to be

taken in order to find out the reasons for this

4 Results – the Domain Integration Framework (DIF)

 57

inconsistency. Adjustments of the modeling

method might need to be undertaken in order to

avoid misguiding use of the modeling method.

Complexity A measure for evaluating model complexity is

provided by [71] and described below.

Complexity can be a metric, which explains bad

user acceptance or ambiguous method use. In

general, complexity should be kept as low as

possible and as high as necessary, to fulfill the

specific domain requirements.

Service team A dedicated service team responsible for the

domain-specific modeling method is essential for

long-term success. Possible issues with the

DSBPM method can be sent to the service team,

questions answered, and trainings coordinated.

As indicated in Table 8, [71] propose metrics to assess the complexity of modeling method

components. The authors distinguish between the complexity of interfaces, elements, and

properties. Properties correspond to attributes in ADOxx and the modified formulas are

shown below.

Figure 23 Metrics for complexity assessment

- based on [71]

Frank and Van Laak [37] propose a framework for quality-evaluation of modeling

languages. Within their work, they distinguish regarding the degree of formality between

informal, semi-formal, and formal modeling languages. The use of each characteristic

depends on the domain and might differ. There exists a trade-off between the simplicity of

a modeling language and its level of detail. In their approach, [37] suggest the evaluation of

criteria in the light of the pursued modeling purpose. The evaluation is undertaken on the

one hand by making qualitative statements about the importance of the respective criterion

(very important, important, semi-important, less important, unimportant), and on the other

4 Results – the Domain Integration Framework (DIF)

 58

hand by assessing its degree of fulfillment (fully fulfilled, well fulfilled, semi-fulfilled, badly

fulfilled, not fulfilled). In order to visualize the criteria, the authors propose the portfolio-

diagram. Figure 24 depicts an adaptation of this portfolio diagram for the use within this

thesis.

Figure 24 Portfolio-diagram for the evaluation of modeling language criteria

– own representation based on [37]

The ellipses in Figure 24 depict the range of criteria fulfillment, e.g. the blue ellipse on the

right side of the figure shows that the criterion is fulfilled between good and fully. The more

an ellipse is located in within the red area in the upper left corner, the more the criterion is a

knock-out criterion, which makes the modeling language unusable. The different colors of

the ellipses stand for different modeling languages.

4 Results – the Domain Integration Framework (DIF)

 59

4.3.2 Adaptation Log

During the use of the DSMM, the requirements defined during design-time are likely to

change, so can the problem domain itself. But not only changing or new requirements lead

to a need for making adjustments in the DS design - also factors like an improved knowledge

of the specific domain, improved understanding while implementing and using the solution,

as well as feedback from other users of the DSMM can induce this need for change.

In order to confront the issue of changing requirements, the service team mentioned in the

previous chapter plays an essential role. Such a team should be available for the users of the

modeling method and be equipped with sufficient authority and expertise to carry out

changes. The output of the regularly scheduled quality assessment is the adaptation log,

which serves as an instrument for change request documentation and as a check list for

conducting the changes on the domain-specific meta-models and the domain-specific

modeling tool.

5 Proof of Concept – Automotive Assembly Line Case Study

 60

5 Proof of Concept – Automotive Assembly Line Case Study

Following the research approach described in chapter 1.3, the domain under investigation

is the automotive assembly line. Due to missing information about the detailed business

processes within a real automotive assembly line, several different sources about automobile

manufacturing in general and automobile assembly specifically were assessed. For the

assembly line and general production processes, [92] deliver the base for designing the

domain-specific assembly process. The goal is to go through all phases of the DIF and design

a modeling method, which is implemented in form of a modeling tool, the automotive

assembly line domain-specific language – AAL-DSL.

The final assembly in the automotive industry is in most of the cases just-in-sequence (JIS),

e.g. the car seats are provided in the correct order regarding the assembly steps for the

respective car type. The JIS as well as the just-in-time (JIT) concepts therefore require a

strong connection between the supplier and the manufacturer. The supplier plants are

therefore often within a distance of 30 km to the manufacturer [cf. 73, p.343]. Figure 25

shows the concept of a line assembly, which is the typical form present in the automotive

industry.

Figure 25 Line assembly

– own representation based on [73]

Typically, several work stations are aligned consecutively and are connected by a material

flow system. The core unit enters the system and gets attachments at every station of the

flow. Especially in the automotive industry, automation plays a central role. The work on

modern assembly lines is augmented more and more by the use of robots.

WA – work aisle

Conveyor belt

IR – industrial robot

WA 2 WA 5

WA 1 WA 3 WA 4 WA 6 WA 7

IR

5 Proof of Concept – Automotive Assembly Line Case Study

 61

Following the approach described within the previous chapters, the case study on the

automotive assembly line is structured as follows. As described in chapter 4.1, the first step

is to gain a profound understanding of the domain. Therefore, the domain context as well as

the domain analysis are conducted to identify process dependencies and boundaries, and to

gain an understanding of model types, concepts, and functionality, which might be needed.

Within the domain-specific design phase, domain-specific requirements are collected,

clustered, and analyzed, building the base for the domain-specific modeling method. The

second part (see chapter 4.2) constitutes the domain-specific implementation, where the

meta-models identified within the previous step, are implemented within the ADOxx

Development Environment. Here, the dynamic as well as the static libraries build the

foundation to provide needed model functionality. In the domain-specific modeling phase

(see chapter 4.3), the implemented modeling tool as well as the defined functionality are

used by the domain experts. Process models and other needed model types are modeled,

provided with data, and evaluated and simulated on a regular basis.

5.1 Domain-specific Design

Within this chapter, the domain of the automotive assembly line is analyzed as described

in chapter 4.1. This constitutes the first phase of the DIF and provides the necessary insights

for the domain-specific implementation phase. The goal is to extract all needed model types,

concepts, and functionality and specify them in meta-models of the modeling method

building blocks.

5.1.1 Domain Specification

Taking the example of an automotive assembly line, a domain-specific scenario is

described in the following. The final assembly line in the automotive industry still includes

highly manual tasks. A typical production layout for the automotive domain is a flow

production with just-in-sequence delivery (JIS) [cf. 92]. The assembly process constitutes a

core-process of every car manufacturer as it adds significant value to its business. The

integration of this application domain within the DF can be seen in Figure 26 and is described

in the following.

5 Proof of Concept – Automotive Assembly Line Case Study

 62

Figure 26 Domain Framework (DF) of the AAL-DSL

– own representation

The above figure summarizes the output of the domain specification after the external and

internal analysis of the domain. The single steps are described in more detail within the

following chapters.

5.1.1.1 Domain Context

For the domain-specification, the Automotive Process Classification Framework® by [8]

is used. It uses domain-specific concepts of the automotive industry and provides

information about management, core, and support processes specific to the automotive

sector.

Industry

The industry can be classified as automotive, as the name of the application domain already

suggests. Its main business goal is the production of different car models, which consist of

varying combinations of components and raw materials. Figure 27 shows the industry

specification within the DF.

5 Proof of Concept – Automotive Assembly Line Case Study

 63

Figure 27 DF industry specification of the AAL-DSL

– own representation

MCS-level

The automobile assembly, which is the domain under investigation, constitutes a core

process of automobile manufacturers. In Figure 28, this fact is depicted.

Figure 28 DF MCS level specification of the AAL-DSL

– own representation

Figure 29 resembles a collection of management, core, and support processes, which were

identified as relevant throughout the investigation of the automotive domain. The processes

are derived from the domain-specific PCF® for the automotive industry. Whereas the PCF®

only categorizes core and support processes, a further distinction is made to also highlight

the management processes.

DOMAIN

M
C

S
 L

E
V

E
L

G
RA

N
U

LA
RIT

Y

L1

L2

L3+

… Legal Automotive Governmental …

M
an

ag
em

en
t

C
o
re

 S

u
p
p
o
rt INDUSTRY

G
RA

N
U

LA
RIT

Y

L1

L2

L3+

… Legal Automotive Governmental …

M
an

ag
em

en
t

C

o
re

S
u

p
p
o
rt

INDUSTRY

M
C

S

 L
E

V
E

L

DOMAIN

5 Proof of Concept – Automotive Assembly Line Case Study

 64

Figure 29 The process architecture of the AAL-DSL

– own representation

The main process under investigation, the assembly process, is included within point 4.0

Deliver physical products, depicted in bold letters within the figure.

Granularity-level

Including the level 0 process landscape, 4 levels of granularity are needed in order to depict

the assembly process. The arrow shows the integrated view of all granularity levels, which

is achieved by the usage of referenced subprocesses. This is shown in Figure 30.

5 Proof of Concept – Automotive Assembly Line Case Study

 65

Figure 30 DF granularity specification of the AAL-DSL

- own representation

Figure 31 depicts the above described granularity of the assembly process in a more

detailed view. This figure constitutes a first schematic overview of the assembly line process,

which is investigated in greater detail within the further course of this chapter.

Figure 31 Integrated granularity-levels of the AAL-DSL

– own representation

The process landscape constitutes level 0. The referenced process of 4.0 Deliver physical

products is the process on level 1. Level 2 shows the major production steps, the automobile

undergoes. The detailed assembly process itself is situated on level 3 within the process

hierarchy as one of the sub-processes of the production of automobiles.

G
RA

N
U

LA
RIT

Y

L1

L2

L3+

… Legal Automotive Governmental …

M
an

ag
em

en
t

C

o
re

S
u
p
p
o
rt INDUSTRY

M
C

S

 L

E
V

E
L

DOMAIN

5 Proof of Concept – Automotive Assembly Line Case Study

 66

5.1.1.2 Domain Analysis

As described in chapter 4.1.1.2, the domain analysis aims at investigating the internal

specificities of the domain. The main goal is to collect needed domain-specific constructs

within the process, to identify appropriate model types and to find suitable model

functionality. When it comes to the assembly line process of a car manufacturer, following

process characteristics are identified in a first brainstorming session.

Model types

Following the description of the assembly line process and the structure defined by the

PCF®, an idea about needed model types can be formed. In order to design a well-

understandable modeling method for this respective domain, a process model is

indispensable. The BPMN2.0 language could be considered a good starting point, but a mere

sequence flow not sufficient, as elements representing material flow are needed as well.

BPMN2.0 also offers the possibility to form sub-processes, which enables the reduction of

complexity within the extensive processes of automobile production.

Another essential model type is the process landscape, in which management, core, and

support processes are depicted as an overview. This should be enhanced further by a working

environment model type in order to depict the departments as well as roles and performers

within the company.

As automobile manufacturers usually assemble several different products, a product

structure model is needed. Here, the different car models are structured by their peculiar

components and differences and similarities are shown.

The previously described model types, which are needed to depict the automotive assembly

line domain, are summarized in following Table 9.

Table 9 Summary of model types for the AAL-DSL

– own representation

Need derived from domain

analysis

Collected model types

for the automotive

assembly line domain

ADOxx applicable

library

Need for modeling the

sequence of activities within

Process model Dynamic library

5 Proof of Concept – Automotive Assembly Line Case Study

 67

the automotive assembly

process

Need to have an overview of

all processes and their

relations

Process landscape Dynamic library

Need to view related

departments and roles

involved in the processes

Working environment

model

Static library

Need to see the components,

the product consists of

Product structure model Dynamic library

Elements

Stakeholders are an integral part of the assembly line process as well as its interconnected

processes. External partners constitute for example suppliers of the car components and the

clients of the automobile manufacturer. Important internal roles are the assembly line

workers, who manufacture the product, and the quality managers checking for correctness

and quality criteria.

For handling, transportation, and carrying out difficult tasks, machines and tools are used

within the process. For one, robots assist humans and carry out activities like painting or

screwing. For the other, a handling unit is used to transport the heavy product across the

factory.

Also, elements representing the evolving car and its components including the storage they

are kept in are needed. A relation dedicated to material flows increases the understandability

of the domain-specific modeling language.

Last but not least, different types of locations are helpful to describe the assembly line

process, which is done in the form of swim lanes. Departments involved within the process

can be depicted, e.g. the procurement, quality, and logistics department.

Throughout the first domain description, the elements summarized in Table 10 are

identified. In the third column, the mapping to the concepts inherent in the ADOxx meta2

model is depicted.

5 Proof of Concept – Automotive Assembly Line Case Study

 68

Table 10 Elements identified by the DF

– own representation

Concept

identified

Description Mapping to

ADOxx meta2

model

Mapping to

model type(s)

Task Tasks resemble the

sequential steps taken within

the automotive assembly line

process, sub-class of

“__Activity__”

Class Process model

Subsequent The order, in which the tasks

are completed, already

provided in the ADOxx meta-

model

Relation

class

Process model

Department Part of the organization,

which is responsible for a

specific area and to which

employees belong to, sub-class

of “__S_group__”

Class Working

environment model

Performer Is an employee fulfilling a

specific type of task, sub-class

of “__S_person__”

Class Working

environment model

Role Is a collection of employees

fulfilling a specific type of

task, sub-class of

“__S_group__”

Class Working

environment model

External

partner

Is the generic term for

business partners outside the

organization

Abstract

class

Process landscape

Robot Different from a human role,

but carries out certain tasks

within the process

Class Process model

Storage A place where raw materials,

intermediate, and final

products are stored

Class Process model,

product structure

Machine Needed to conduct tasks

beyond human capabilities

Class Process model

Tool Used by a role to fulfill a

certain task

Class Process model

5 Proof of Concept – Automotive Assembly Line Case Study

 69

Material

flow

Sequence in which

components and raw materials

are added to the process

Relation

class

Process model

Information

flow

Shows the flow of

information exchange within

the process

Relation

class

Process model

Swim lane Helps to differentiate

between different areas or

departments, where tasks take

place, also for general

structure

Class Process model,

process landscape

Product Is the final product, i.e. the

finished car at the end of the

process

Class Product structure

model

Component E.g. car body, headlights,

motor

Class Product structure

model, process

model

Raw

material

E.g. paint or screws Class Product structure

model, process

model

5.1.2 Domain-specific Requirements

In chapter 5.1.1, the foundation for the following section was built by specifying the

domain context and conducting the domain analysis. As the collection of elements and model

types within the previous chapter was done by the description of the assembly line process

in a brainstorming manner, the next step is a profound analysis of requirements. From those

requirements, the design of the modeling method is derived by specifying the meta-models

of the modeling language, procedure, and mechanisms and algorithms.

In the way described in chapter 4.1.2, requirements are collected by formulating user

stories. The advantages comprise their stakeholder focus, shortness, and the possibility to

quantify and prioritize them. The requirements collected for the purpose of this case study

can be seen in Table 12. Table 11 gives an overview of the concepts used to structure,

quantify, prioritize, and cluster the user stories.

5 Proof of Concept – Automotive Assembly Line Case Study

 70

Table 11 Key for requirements assessment

– own representation

Structure of user stories WHO WHAT WHY

Point scale for effort (in

hours)

1, 2, 3, 4, 5

Priority scale Must have (M), Should have (S), Could have (C),

Won´t have (W)

Cluster Modeling

language

(ML)

Modeling

procedure

(MP)

Modeling

mechanisms &

algorithms

(MM&A)

The basic structure for the user-story formulation is the specification of requirements by

the words “who”, “what”, and “why”. User stories are explained more profoundly in chapter

4.1.2. The effort of implementing the respective requirement is quantified by numbers from

1 to 5, corresponding to the estimated duration in hours. The priority scale helps to rank the

requirements according to their importance for the project. The requirements are clustered

regarding their belonging to the modeling language (ML), modeling procedure (MP), and

modeling mechanisms and algorithms (MM&A) building block. Requirements, which do

not specifically belong to one block and are of a general nature, are described by MM for

“Modeling Method”.

Table 12 Collected, assessed, and clustered requirements

– own representation

ID Requirement / Story Effort Priority Cluster

1 As a business process modeler, I want to use

BPMN2.0, because I am used to the language

and it is easy

2 S ML

2 As a business process modeler, I want to have

an adaptable modeling tool, because

requirements are likely to change over time

1 M MM

3 As the production manager, I want to have an

overview of the processes in an understandable

way, because I need to react fast

3 C

MP,

MA

5 Proof of Concept – Automotive Assembly Line Case Study

 71

4 As the production manager, I want to have

relevant KPIs integrated, because I need a means

for fast decision-making

4 M MM&

A

5 As a domain expert, I want the modeling

method to have different abstraction-levels, so

that complexity is reduced

2 M ML

6 As a domain expert, I want to see the process

flow of the assembly line, so that the sequence of

steps is clear

3 M ML

7 As a domain expert, I want to see the material

flow of the assembly line, so that it is clear,

which components are needed in which part of

the process

4 M ML

8 As a business process modeler, I want to have

an instruction for implementing the modeling

method, so that nothing is forgotten within the

procedure

3 M MP

9 As the production manager, I want to have a

process simulation mechanism, so that I can

make better decisions

5 S MM&

A

10 As a quality engineer, I want to have a product

and component overview, so that I can assess

product quality more easily

3 C ML

11 As a business process modeler, I want to work

in phases with milestones, so that the progress is

visible to everyone

1 S MP

12 As a domain expert, I want to have a language

representing the concepts I know, so that I do not

use it ambiguously

2 S ML

13 As a domain expert, I want to specify

quantities and times, so that I can run

simulations based on that information

3 M MM&

A

14 As a method engineer, I want an intuitive

platform, so that I can manage the modeling

method

1 M MM

15 As a business process modeler, I want to know

who is responsible for modeling which parts of

the process, so that the workload is separated

equally

1 W MP

5 Proof of Concept – Automotive Assembly Line Case Study

 72

16 As a method engineer, I want a flexible

platform, so that I can adapt the modeling

method to changes

1 M MM

17 As a business process modeler, I do not want

unnecessary elements, because they are out of

scope and confusing

2 S MM

18 As a modeling method engineer, I do not want

to design a modeling method from scratch but

build on a fitting solution, so that

implementation efforts stay as low as possible

3 S MM

19 As a modeling method engineer, I want to be

able to adjust attributes of different classes

easily, so that I do not need to re-implement the

whole class

1 S MM

20 As a business process modeler, I want to select

between different modeling views, so that I have

a predefined set of symbols for different

purposes

2 S ML

21 As a domain expert, I want to have a accessible

customer service, so that I can get my questions

answered fast

4 M MP

22 As a business process modeler, I want to get

regular trainings, so that I use the modeling

method correctly

3 S MP

23 As a production manager, I want to assign

roles to tasks, so that I can oversee

responsibilities and employee capacities

4 M ML

24 As a domain expert, I want an appropriate

graphical representation, so that the domain-

specific concepts I know are used

5 S ML

25 As a method engineer, I want the possibility to

hierarchically structure classes, so that several

sub-classes can belong to one class

4 M ML

26 As a production manager, I want to specify

pre- and post-conditions, so that special

mechanisms and algorithms are triggered in

certain situations

4 C MM&

A

5 Proof of Concept – Automotive Assembly Line Case Study

 73

27 As a business process modeler, I want to be

able to include text annotations, so that I can

explain parts of the models in natural language to

the model users

2 M MM&

A

28 As a business process modeler, I want the

modeling method to be intuitive and relevant, so

that it is accepted by the domain experts

2 M MM

29 As a process analyst, I want to be able to

conduct a path analysis

5 M MM&

A

30 As a process analyst, I want to be able to

conduct a capacity analysis

5 M MM&

A

The above table gives an overview of the aspects, which need to be implemented or

considered in the modeling method design phase. They serve as a foundation for the

modeling method design. The following table gives an overview of the concepts, which were

identified by the user stories in addition to the previous elements from Table 10.

Table 13 Elements identified by the user stories

– own representation

Concept

identified

Description Mapping

to ADOxx

meta2

model

Mapping to

model type(s)

Value block Depicts the value chain in the

process landscape

Class Process landscape

Supplier A sub-class of “external

partner”

Class Process landscape

Client A sub-class of “external

partner”

Class Process landscape

Parallel

gateway

A sub-class of “__Parallelity__”

to show parallel sequences of

tasks

Class Process model

Exclusive

gateway

A sub-class of “__Decision__”

to show exclusive sequences of

tasks

Class Process model

5 Proof of Concept – Automotive Assembly Line Case Study

 74

Start A sub-class of “__Start__”,

showing the beginning of the

process

Class Process model

End A sub-class of “__D_End__”,

showing the end of the process

Class Process model

Merging

gateway

A sub-class of “__Merging__”,

showing the merging after an

exclusive or parallel process flow

Class Process model

Random

generator

A sub-class of

“__D_random_generator__”, to

describe the distribution

probability of exclusive gateways

Class Process model

Variable A sub-class of

“__D_variable__”, to describe the

type and scope of the distribution

Class Process model

Tool flow Shows, which tools and

machines contribute to which

tasks

Relation

class

Process model

Association Shows connections between

process steps and external

partners

Relation

class

Process landscape

Sets variable Needed for variable setting Relation

class

Process landscape

Sets Needed for setting the random

generator

Relation

class

Process landscape

Is

component of

To show, which components

and raw materials a final product

consists of

Relation

class

Product structure

Has role To show the connection

between roles and performers

Relation

class

Working

environment model

Belongs to To show the connection

between performers and

departments

Relation

class

Working

environment model

5.1.3 Domain-specific Modeling Method

The modeling method for domain-specific business process modeling of the automotive

assembly line of a car manufacturer is shown and explained within this chapter. It consists

5 Proof of Concept – Automotive Assembly Line Case Study

 75

of the meta-models of the modeling method building blocks modeling language, modeling

procedure, and modeling mechanisms & algorithms. It is based on the analysis techniques

from above, which helped to derive insights on how the method needs to be built and which

components are essential for its acceptance by the domain experts as its users. As outlined

in chapter 2.4, a highly qualitative modeling method does not only consist of a modeling

language. It is complemented with functionality in the form of mechanisms and algorithms

on the one hand and its implementation steps are specified in the modeling procedure on the

other hand. The meta-models for each building block are shown in the following.

5.1.3.1 Modeling Language

The meta-model elements for the modeling language building block were derived from the

Domain Framework as well as the requirements collection and analysis phase. The task of

clustering the requirements revealed implications for needed classes and relation classes

within the meta-model. Moreover, the model types required by different stakeholders of the

modeling method initiative were identified. The meta-models are shown for each model type

separately and in the end consolidated within one overall meta-model of the modeling

language building block. Within the single model type meta-models, the elements identified

within chapter 5.1.1, the domain specification by the DF, are shown in orange. The additional

elements identified throughout the requirements engineering phase in chapter 5.1.2 are

depicted in green. This stresses the integrative and evolving nature of the domain-specific

design phase.

Figure 32 depicts the meta-model of the model type process landscape.

Figure 32 Process landscape meta-model of the AAL-DSL

- own representation

5 Proof of Concept – Automotive Assembly Line Case Study

 76

The goal of the process landscape model in Figure 32 is to provide an overview of the

high-level processes, to which the automotive assembly line process belongs to. Moreover,

the process hierarchy shows the external partners contributing to the respective processes.

Management, core, and support processes are shown by the concept swim lane, which

contains the value blocks, which represent the high-level processes. The abstract concept

external partner is comprised of the supplier and client concepts. Those can be connected to

the value blocks by the relation class association in order to depict deliveries from the

supplier to the value block or from the value block to the client.

Figure 33 shows the process model meta-model of the AAL-DSL. The process model

shows all necessary tasks between the process-start until the process-end in order to

assemble the automobile. For each granularity level, there exists an own process model,

which can be referenced from a subprocess. The tasks can be placed in swim lanes in order

to show their belonging to certain departments or to provide structure. The process sequence

is shown by the relation class subsequent, which connects the tasks and other process

concepts like the exclusive and parallel gateways. The concepts random generator and

variable enable the use of probabilities in case of exclusive paths. This is also valuable for

the use of the simulation functionalities of the language.

5 Proof of Concept – Automotive Assembly Line Case Study

 77

Figure 33 Process model meta-model of the AAL-DSL

- own representation

The process model (Figure 33) also enables the visualization of machinery and equipment,

which is used within the process. Here, the concepts of robot, machine, and tool can be

connected by the relation class tool flow to the process tasks. Each task can send messages

to the storage, where components and raw materials are stored. This is depicted by the

relation class information flow, whereas the sending of the materials from the storage to the

respective task is depicted by a material flow relation. Performers are the human resources

responsible for executing the tasks.

The product structure meta-model is shown in Figure 34. As several car types can be

assembled by the same manufacturer on the same assembly line, a product structure model

is needed. It shows the raw materials and components, of which the respective car types

consist of. This is denoted by the relation class is component of. Furthermore, the storage

5 Proof of Concept – Automotive Assembly Line Case Study

 78

location of the materials can be stated, which is connected by a material flow to the

components and raw materials.

Figure 34 Product structure meta-model of the AAL-DSL

 – own representation

In order to be able to assign tasks to certain performers in the process model, a working

environment model is needed (see Figure 35). It shows the distinct departments and which

performers are associated to them by the relation class belongs to. Moreover, several

performers can share roles, which is denoted by the relation class has role within the working

environment model.

Figure 35 Working environment meta-model of the AAL-DSL

- own representation

Figure 36 depicts the complete domain-specific meta-model of the modeling language

building block. It includes all identified concepts, which are needed in order to model the

automotive assembly line and its surrounding processes in a suitable way.

5 Proof of Concept – Automotive Assembly Line Case Study

 79

Figure 36 Complete meta-model of the AAL-DSL

- own representation

5 Proof of Concept – Automotive Assembly Line Case Study

 80

The color-scheme of Figure 36 helps to show the distinct model types. Concepts, which

exclusively belong to the process model are depicted in yellow, those belonging to the

working environment model in blue, the ones of the process landscape model in green, and

concepts of the product structure model in red. The concepts, which appear in more than just

one model type, are colored in orange. Dependencies and connections between the model

types are shown by dotted lines, e.g. the inter-model reference between the concept value

block and task and the association executes between the performer and the task.

5.1.3.2 Modeling Procedure

The modeling procedure specifies the phases and steps, which need to be undertaken, from

the starting need for a BPM initiative to the DS modeling tool. In this case, it shows the

views and responsibilities of the distinct roles within the DIF process and the respective

tasks, they fulfill.

The modeling procedure meta-model is depicted in Figure 37. The modeling method

engineer designs the DS modeling method, consisting of the language, procedure, and

mechanisms & algorithms. The design of the DS modeling method by the modeling method

engineer constitutes the first phase of the procedure. The modeling method itself consists of

the three modeling method building blocks, which need to be designed consecutively. The

language consists of the DS model types, which further consist of two concepts, namely

classes and relation classes. For the mechanisms & algorithms part, simulation as well as

analysis functionalities have to be evaluated, which fulfill the domain needs. The tool

developer makes use of the developed modeling method and creates the DS modeling tool

by implementing all concepts and functionalities of the modeling method. For the

implementation, the ADOxx Development Toolkit is used by the tool developer. After

successful implementation, the business process modeler, which is the language user of the

tool, can work with the models and depict the steps and dependencies within the automotive

assembly line process. Moreover, time, human, and material resources are added to the

processes in order to enable working mechanisms and algorithms.

5 Proof of Concept – Automotive Assembly Line Case Study

 81

Figure 37 Modeling procedure meta-model of the AAL-DSL

– own representation

5 Proof of Concept – Automotive Assembly Line Case Study

 82

5.1.3.3 Modeling Mechanisms & Algorithms

The meta-model of the modeling mechanisms and algorithms building block of the method

demonstrates the relationships between inputs, the analysis and simulation functionalities,

and the outputs, as depicted in Figure 38.

Figure 38 Modeling mechanisms and algorithms meta-model of the AAL-DSL

– own representation

The functionalities needed within the domain-specific BPM method for automotive

assembly line modeling comprise analysis and simulation capabilities. Necessary inputs, like

time, costs, and probability are defined within the simulatable process. Those inputs are used

for the path analysis, capacity analysis, analytical evaluation, and queries. After running

through the algorithmic functionalities, valuable outputs for management and operations are

generated. For example, the total cycle time for different time units (week, month, year) can

be assessed and costs for single workers, roles, or departments evaluated.

5 Proof of Concept – Automotive Assembly Line Case Study

 83

5.2 Domain-specific Implementation

This chapter showcases, how the meta-models of the modeling method from the previous

chapter are implemented. The result of the implementation phase is a ready-to use modeling

tool, namely the automotive assembly line domain-specific language (AAL-DSL).

5.2.1 Linguistic Matching Heuristic

The linguistic matching heuristic described in chapter 4.2.1 is used on the automotive

assembly line domain within this chapter. The output of the domain-specific design phase,

the modeling language meta-models of the different model types, is translated into the

domain-specific modeling tool by using the linguistic matching heuristic. Aiming at

identifying synergies and reusable parts, already existing meta-model concepts of general-

purpose as well as domain-specific modeling languages are mapped to the concepts of the

automotive assembly line language.

Table 14 Matching heuristic applied

– own representation

Model type Concept Matching BPML Matching concept

Process

landscape

Value block IBPM Process

Process

landscape

Supplier - -

Process

landscape

Client - -

Process

landscape

Association UML Association

Process

landscape

External partner IBPM External partner

Process

landscape,

process model

Swim lane BPMN2.0 Swim lane

Process model Task BPMN2.0 Task

Process model Tool SIMchronization Equipment

5 Proof of Concept – Automotive Assembly Line Case Study

 84

Process model Robot - -

Process model Machine IBPM Machines & tools

Process model Parallel gateway BPMN2.0 Parallel gateway

Process model Merging

gateway

- -

Process model Exclusive

gateway

BPMN2.0 Exclusive gateway

Process model Start event BPMN2.0 Start event

Process model End event BPMN2.0 End event

Process model Variable IBPM Variable

Process model Random

generator

IBPM Random generator

Process model Subprocess BPMN2.0 Subprocess

Process model Subsequent BPMN2.0 Sequence flow

Process model Sets variable IBPM Sets variable

Process model Sets IBPM Sets

Process model Information flow BPMN2.0 Message flow

Process model Tool flow - -

Process model Material flow IBPM Parts flow

Process model,

product structure

model

Component SIMchronization Component

Process model,

product structure

model

Raw material - -

Process model,

product structure

model

Storage IBPM Buffer

Product

structure model

Product SIMchronization Item

5 Proof of Concept – Automotive Assembly Line Case Study

 85

Product

structure model

Is component of UML Generalization

Working

environment

model

Performer IBPM Performer

Working

environment

model

Department IBPM Organizational unit

Working

environment

model

Role IBPM Role

Working

environment

model

Has role IBPM Has role

Working

environment

model

Belongs to IBPM Belongs to

An example for the use of each linguistic matching heuristic is given in the following.

Concepts, which could not be identified in other existing modeling languages, need to be

created. An example is the class “Robot” and the heuristic matching depicted in Figure 39.

Figure 39 Linguistic matching heuristic – create

- own representation, icon from [39]

An example for the extend matching heuristic is the need for a material flow in addition to

the standard BPMN2.0 process model. This is depicted in Figure 40.

5 Proof of Concept – Automotive Assembly Line Case Study

 86

Figure 40 Linguistic matching heuristic – extend

- own representation, icon from [83]

In above Table 14, quite often similarities to concepts from the modeling language IBPM

[15] were identified. However, the IBPM language is far too extensive for the purpose of

modeling the automotive assembly line. Therefore, reduction is applied as can be seen in

Figure 41.

Figure 41 Linguistic matching heuristic – reduce

- own representation, icon from [49]

Because this process is a heuristic and requires prior knowledge of the problem domain,

some elements might not be identified within existing languages. The goal is to find as many

fitting concepts as possible.

5.2.2 Domain-specific Modeling Tool – Automotive Assembly Line DSL

(AAL-DSL)

The automotive assembly line domain-specific language (AAL-DSL) was implemented in

the ADOxx Development Environment following the analysis of the previous chapters.

Table 15 shows the graphical representation and the associated attributes of each concept.

The detailed tree structure exported from ADOxx is not shown here due to the extensive text

length. The tree structure of the dynamic library is listed in Appendix B. Appendix C shows

the tree structure of the static library.

5 Proof of Concept – Automotive Assembly Line Case Study

 87

Table 15 Concepts of the AAL-DSL

– own representation

Model type Concept Graphical

representation

Attributes

Process

landscape

Value block

Name, referenced

process, display name

and reference, order

Process

landscape

Supplier

Name, description

Process

landscape

Client

Name, description

Process

landscape

Association Name

Process

landscape

External partner Abstract class None

Process

landscape,

process model

Swim lane

Name, color,

alignment

Process model Task

Name, execution

time, waiting time,

resting time, transport

time, costs, performer

Process model Tool

Name

Process model Robot

Name

5 Proof of Concept – Automotive Assembly Line Case Study

 88

Process model Machine

Name

Process model Parallel gateway

Name

Process model Merging

gateway

Name

Process model Exclusive

gateway

Name

Process model Start event

Name, quantity, time

period, process

calendar, tolerance

waiting time, abandon

after tolerance waiting

time

Process model End event

Name

Process model Variable

Name, variable time,

variable scope

Process model Random

generator

Name, value

Process model Subprocess

Name, referenced

subprocess, order,

description,

aggregated execution

time, aggregated

waiting time,

aggregated resting

time, aggregated

transport time,

aggregated costs

5 Proof of Concept – Automotive Assembly Line Case Study

 89

Process model Subsequent Transition condition,

transition probability,

visualized values,

comment

Process model Sets variable

None

Process model Sets None

Process model Information flow Name

Process model Tool flow Name

Process model Material flow Name

Process model,

product structure

model

Component

Name

Process model,

product structure

model

Raw material

Name

Process model,

product structure

model

Storage

Name

Product

structure model

Product

Name

Product

structure model

Is component of None

Working

environment

model

Performer

Name, hourly wages,

personnel costs,

availability, calendar,

capacity, workload,

info on results

5 Proof of Concept – Automotive Assembly Line Case Study

 90

Working

environment

model

Department

Name

Working

environment

model

Role

Name

Working

environment

model

Has role None

Working

environment

model

Belongs to None

5.3 Domain-specific Modeling

After successful completion of the implementation phase, this chapter deals with the

modeling of all needed processes and the usage of the developed AAL-DSL. This phase is

usually done by the domain experts – the users of the DS modeling tool. Here, the previous

work enters the test phase and it gets clear, whether all needed concepts and functionalities

were considered.

5.3.1 Models of the AAL-DSL

In the following, the models of the automotive assembly line domain-specific language are

shown and described. Moreover, results of the DS analysis and simulation are shown. Figure

42 depicts an overview of all models, which were implemented by using the AAL-DSL. The

green circles show the process landscape on level 0 and the process models on the granularity

levels from 1 to 3. These process models are linked to each other by process references

within each model, which lead to the next, more detailed process level. The orange circles

show the product structure model (PS) as well as the working environment models (WE). In

the further course of this chapter, all model types are depicted and described separately and

in greater detail.

5 Proof of Concept – Automotive Assembly Line Case Study

 91

Figure 42 Model overview

- own representation

5 Proof of Concept – Automotive Assembly Line Case Study

 92

The process landscape model of the AAL-DSL is shown in Figure 43. The structure is

derived from the industry-specific PCF ® for the automotive industry [8]. The numbers in

front of the process steps signify the sequence of the value blocks as proposed within the

PCF®.

Figure 43 Process landscape L0

- own representation, process based on PCF® [8]

5 Proof of Concept – Automotive Assembly Line Case Study

 93

The swim lanes within Figure 43 structure the process value blocks into management, core,

and support processes. Management processes within the automotive industry are strategy

development, asset and risk management, and the management of financial resources and

business capabilities. The core processes resemble all activities, which directly create value

for the company and are essential for its financial success. This includes the development of

new products, their marketing, production, and delivery to the clients. Also, services offered

in this context are considered as core processes. Support processes of a car manufacturer are

customer service, human resource management, IT, and partner management. As the focus

within this proof of concept lies in the core process of modeling the automotive assembly

line, the inter-model reference can be seen from the value block 4.0 Deliver physical

products. Here, also associations to external partners of this process step are shown. On the

left hand-side, three suppliers of the car manufacturer are depicted, which deliver

components for the process. On the right hand-side the car seller as the client, to which the

final product is delivered, is shown.

Figure 44 shows the level 1 process model, which is referenced by the value block 4.0

Deliver physical products in the process landscape. It shows the three major tasks of parts

and materials procurement, production, and sales & distribution. The departments, in which

these tasks are undertaken are depicted by swim lanes. A referenced sub-process is

graphically symbolized by the plus sign of the step production.

Figure 44 Process Model L1

- own representation, process based on [92]

5 Proof of Concept – Automotive Assembly Line Case Study

 94

Referenced in the level 1 process Production, the process model on level 2 is shown in

Figure 45.

Figure 45 Process Model L2

- own representation, process based on [92]

5 Proof of Concept – Automotive Assembly Line Case Study

 95

Figure 45 shows the process of producing an automobile, as described in [92]. The swim

lanes in the model help to structure the components of the process. The swim lane, in which

the process steps take place, is the production department of the car manufacturer. Here, the

subsequent tasks from start until the end are shown. The steady process flow indicates, that

the car manufacturer uses a production line, in which the components are delivered JIS.

Component and raw material delivery for the respective process tasks are shown by the swim

lane components & materials in combination with material flow relations. A third swim lane

is used to show the equipment & machinery, which is needed within the different production

steps of the automobile. For the purpose of a good process-overview, the tool flow is

illustrated, too. It shows, in which process tasks the respective machines, robots, and tools

of the car manufacturer come to use. The assembly process is referenced in the next level,

as indicated by the plus sign in the graphical representation if the task assembly.

Following the process reference from the previous level 2 process, the assembly process

of the automobile is presented in greater detail in Figure 46. The focus is set on this process,

as this constitutes the domain of interest within this thesis. Due to two different car models

being produced within the company, an exclusive gateway resembles the discrete

distribution of cars with a sunroof versus cars with a panoramic roof. Around 70% of the

cars are built with a panoramic roof, whereas around 30% are built with a sun roof. As in the

previous model, a swim lane is used to depict the assembly process. By using the attribute

definition in the notebook of each task, information about the execution, waiting, resting,

and transport time as well as the associated costs of the task are fed into the process.

Moreover, the performer of the respective task is referenced from the working environment

model. By providing this information, the analysis and simulation functionality of the AAL-

DSL is enabled. The performers referenced within the tasks of the automotive assembly line

process are assisted by an assembly robot. It is placed in the machinery & equipment swim

lane and connected to the respective tasks by a tool flow relation. The components and raw

materials are added to the tasks JIT. This fact is indicated by the blue material flow, which

connects the components & materials swim lane to the process steps. Furthermore, the

warehouse swim lane shows the storage, from which the respective materials are delivered

in-house. As within this process, all materials are semi-finished, they come from the storage

for A-category components.

5 Proof of Concept – Automotive Assembly Line Case Study

 96

Figure 46 Process Model L3

 - own representation, process based on [92]

5 Proof of Concept – Automotive Assembly Line Case Study

 97

Figure 47 shows the working environment associated with the process 4.0 Deliver physical

products. It shows the departments involved, which were shown as swim lanes in Figure 44.

The performers, which are referenced in the process tasks of Figure 46, are connected to the

respective department by a belongs to relation. What is more, the notebooks of the

performers allow to add working times, wages, and availability by the attribute definition

within the implementation phase of the AAL-DSL. The provision of this information is also

needed in order to permit the simulation and analysis functionalities of the language. Roles,

which can be shared by several performers, are connected by the relation has role.

Figure 47 Working Environment Model

- own representation

Within the automotive assembly process, two distinct products are produced, one being a

convertible and the other one a car with a panoramic roof. These are shown in the product

structure model in Figure 48. As the car manufacturer uses as many synergies as possible,

most of the parts are the same for both product types. The only difference is the roof, as the

convertible needs a sun roof, whereas the panoramic car needs a panoramic roof. There exist

three types of storages at the car manufacturer, which are divided into A-category

components, B-category components, and C-category components.

5 Proof of Concept – Automotive Assembly Line Case Study

 98

Figure 48 Product Structure Model

- own representation

5 Proof of Concept – Automotive Assembly Line Case Study

 99

In order to enable the simulation and analysis of the processes, the activity times and costs,

as well as the performing role in the working environment have to be defined within the

notebook of each process step. Figure 49 shows the task procurement as an example. The

mere execution time for all procurement activities is assumed to be approximately 10 days.

The waiting time, which results from awaiting replies and document handover tasks is stated

with around 20 days. Resting time specifies the time, the task is ready to be proceeded but

delayed in the responsibility of the own performers. The transport time is assumed to be 8

days. The costs for the whole procurement process are assumed to be € 12.000. It has to be

stated, that due to restricted domain-knowledge and information sources, the times and costs

are of an indicative nature and are not exhaustive.

Figure 49 Definition of task parameters

– own representation

As part of the analysis, the query enables the collection and overview of selected objects

and processes. The result of a query collecting all objects of class “Task” of all models can

be seen in Figure 50. As the query was executed on the level 1 process 4.0 Deliver physical

products, all elements of class task are shown in a hierarchical manner.

5 Proof of Concept – Automotive Assembly Line Case Study

 100

Figure 50 Query results

- own representation

The analytical evaluation results of the automotive assembly line process are shown in

Figure 51. With 170 workdays per year and 8 working hours per day, the execution time in

working days and the cycle time is calculated. For the overall process 4.0 Deliver physical

products, the total cycle time amounts to around 84 days and costs of approximately € 22.100

per produced unit.

Figure 51 Analytic evaluation results

- own representation

Figure 52 depicts the path analysis results for path number 1 (sun roof car variant) and path

number 2 (panoramic roof car variant). The path probability resembles the ratio of the

product convertible and the product panoramic to total car production, respectively. 30% of

5 Proof of Concept – Automotive Assembly Line Case Study

 101

the cars are of type convertible and need to be built with a sun roof, whereas 70% are

panoramic cars, which need a panoramic roof. The path analysis shows the resulting

probability with 1.000 simulations as well as the expected times and costs for each path.

Figure 52 Path analysis results

- own representation

Figure 53 shows the overall expected value of the execution time, waiting time, resting

time, transport time, cycle time, and costs after running 1.000 simulations.

Figure 53 Simulation results path analysis

- own representation

5 Proof of Concept – Automotive Assembly Line Case Study

 102

The capacity analysis results are shown in Figure 54. It shows the work-capacity per

assigned worker per task and gives an overview of their respective workload.

Figure 54 Capacity analysis results

- own representation

The above shown and described model types and functionalities aim at giving an overview

of the AAL-DSL to the reader. The domain-specific modeling tool fulfills the requirements

derived within the domain-specific design part of this proof-of-concept. It can be used to

further define the processes within a car manufacturing company and depict and simulate

times and costs in order to identify process bottlenecks and introduce optimization

initiatives.

5.3.2 Quality Criteria and New Requirements

The fit between the modeling method and the domain of automotive assembly process

modeling is the highest at completion of the DS implementation phase. At this point, a

regular re-evaluation needs to be scheduled in order to keep the modeling method and tool

up-to-date and to retain its usability and acceptance by the domain experts as its users. The

quality criteria defined in chapter 4.3.1 are a useful tool for guiding the re-evaluation.

When it comes to complexity assessment of the AAL-DSL, Table 16 summarizes the key

findings for the respective model types. For the assessment, the formulas by [71] were

modified as explained in chapter 4.3.1. The complexity within the table is denoted by the

letter C. Interface represents the number of relations and constraints, but as there are no

constraints defined within the AAL-DSL, merely the relations are counted. Element

complexity is derived by the number of modeled elements within the respective model and

5 Proof of Concept – Automotive Assembly Line Case Study

 103

attribute complexity by the sum of attributes, which specify the elements and relations. The

overall complexity is the sum of the three previous metrics.

Table 16 Complexity assessment of the AAL-DSL

– own representation

Model type 𝑪𝒊𝒏𝒕𝒆𝒓𝒇𝒂𝒄𝒆 𝑪𝒆𝒍𝒆𝒎𝒆𝒏𝒕 𝑪𝒂𝒕𝒕𝒓𝒊𝒃𝒖𝒕𝒆𝒔 𝑪𝒐𝒗𝒆𝒓𝒂𝒍𝒍

Process landscape 4 21 68 93

L1 process model 4 8 37 49

L2 process model 23 27 74 124

L3 process model 50 30 92 172

Working

environment model

11 12 32 55

Product structure

model

36 26 26 88

For counting the relations, elements, and attributes of the respective model types, the query

functionality of the AAL-DSL was of use, as shown in Figure 55.

Figure 55 Queries for complexity assessment

- own representation

In the query dialogue, information on relations, elements, and attributes can be selected,

either in combination or alone. The selection is then displayed in the results window, as on

5 Proof of Concept – Automotive Assembly Line Case Study

 104

the right side of Figure 55. The data collected in Table 16 can be seen in Figure 56 as a

graphical representation.

Figure 56 Complexity assessment of the AAL-DSL

- own representation

The figure reveals the overall complexity of each model type by the absolute height of the

bar. C(interface) consists only of the number of relations within the model, as no constraints

are defined. It can be seen, that the attribute complexity has the highest share within each

model.

These analyses taken in isolation do not reveal insights into a rating of the AAL-DSL. An

assessment gets possible in the presence of another DSBPM language, when complexity can

be compared. Or, if changes are applied to the AAL-DSL in the course of time, the change

in complexity can be evaluated.

Based on the requirements assessment by user stories (see chapter 5.1.2) and the resulting

clusters modeling language, modeling procedure, modeling mechanisms & algorithms, and

modeling method, Figure 57 shows a portfolio-diagram for quality assessment of the AAL-

DSL.

5 Proof of Concept – Automotive Assembly Line Case Study

 105

Figure 57 Quality assessment portfolio-diagram of the AAL-DSL

– own representation based on [37]

The portfolio-diagram represents a qualitative grading of the four clusters regarding their

importance and degree of fulfillment. The concepts of the modeling language including

classes, relation classes, and attributes are seen to be very important and well fulfilled in the

light of the requirements. The modeling method in general, including non-functional

language requirements and requirements concerning the meta-modeling platform is also seen

to be located in the green area of the diagram. Modeling mechanisms & algorithms are

capable of expansion, as the main functionality at the moment comprises the analysis and

simulation of times, costs, and capacities. As an extension, the addition of material usage

and availability could constitute a valuable functionality. The modeling procedure is not seen

as important as the other clusters due to the existence of only four model types. In case of a

language extension, the modeling procedure might gain importance.

It is emphasized, that the establishment of a service center dedicated to managing and

adjusting the modeling method is a crucial quality criterion. What is more, is the specifically

expressed user-need for a service center, as communicated within the user stories of the

requirements elicitation part (see chapter 5.1.2). This service center plays a central role

within the re-evaluation of the modeling method. Of importance is, that regular points of re-

5 Proof of Concept – Automotive Assembly Line Case Study

 106

evaluation are scheduled on the one hand, and demand-based changes within the modeling

method are enabled on the other hand.

5.4 Limitations of the Proof of Concept

In the previous chapters of the proof of concept section of this thesis, a domain-specific

business process modeling method for automotive assembly line modeling was designed,

implemented, and used. Following the Design Science Research approach introduced in

chapter 1.3, the case study constitutes the proof of the DIF artifact. By completing this

approach, the practical validity of the DIF is proven within the context of this thesis. The

goal to derive a suitable modeling tool by applying the DIF was achieved. However, some

final annotations regarding possible limitations of the proof of concept are stated in the

following:

• Limited domain knowledge

Due to the restricted scope of this thesis regarding time and effort, it is not

possible to grasp the exhaustive complexity of an automotive assembly line. In a

complete project, several human resources would be required, and the

involvement of domain-experts would be indisputable. The goal within this

thesis was, to gain sufficient domain knowledge throughout the analysis phase in

order to be able to demonstrate the DIF in a meaningful way.

• Limited data

The domain-specific data for the knowledge base within this thesis was collected

from freely accessible resources. Among those were books, papers, websites of

car manufacturers, and common knowledge of the author. However, especially

the automotive industry is a highly protected one when it comes to best practices

and process organization. Therefore, company-specific information was not

readily accessible and could not be included.

• Limited time

Another limitation of the proof of concept is the timeframe within this thesis,

which was possible for the implementation. As the proof of concept constitutes

only one part within this master´s thesis, the time-resources allowed a fast and

sufficiently precise solution. This fact builds on the principles of agile software

engineering, to build a working solution with every increment. The current state

of the modeling tool can hence be seen as an interim result of the full solution.

6 Conclusion and Future Outlook

 107

6 Conclusion and Future Outlook

The work at hand contributes to the research field of domain-specific business process

modeling. Based on a profound literature review, analysis techniques, and the Design

Science Research methodology, the Domain Integration Framework (DIF) was developed.

The DIF serves as a life-cycle model for systematic development of domain-specific

business process modeling methods. In contrast to general-purpose business process

modeling languages, domain-specific approaches require a profound understanding of the

respective application domain in order to integrate domain-specific concepts into the BPM

method. Even though this implies more work in the design phase, the resulting BPM tool is

more likely to express the concepts specific to that domain and therefore increases

acceptance among the language users.

The following SWOT analysis summarizes the internal strengths and weaknesses of the

DIF as well as its external opportunities and threats. The analysis reflects the key learnings

of deploying the DIF throughout the case study part of this thesis. The focus is set on the

research objectives of this thesis (see chapter 1.2).

Strengths

Meta-modeling platforms like ADOxx enable flexible BPM language definition and

maintenance and therefore constitute a powerful tool for domain-specific BPM. The DIF

constitutes an artifact developed by following the Design Science Research methodology.

Its applicability was tested on a case study on an automotive assembly line. A focus was set

specifically on the use of agile methods in the field of IS. Examples of agile methods used

within the DIF are the AMME approach and the formulation of user stories for requirements

elicitation, as they are used in agile software development. The DIF can be seen as a life-

cycle model for the creation of DSBPM languages as it shows a possible way to approach a

modeling method design initiative for a specific application domain. Moreover, it includes

the dynamic aspects of changing requirements and proposes quality criteria for testing the

actuality of the modeling method. It serves as an orientation for the modeling method

engineer on how to approach a DSBPM initiative. Throughout its different phases, it

proposes methods and highlights focus points.

6 Conclusion and Future Outlook

 108

Weaknesses

Although the DIF can serve as a valuable guideline for domain-specific modeling method

design and maintenance, it does not claim to have universal validity. This is due to its

restricted proof of concept, which was done only for one domain application. Further

application-tests are necessary to find out under which circumstances the DIF is valid and to

examine its boundaries. Even though the DIF contributed to design a valid DSBPM method,

a lack of real data and consultation possibilities with domain experts resemble a weakness.

In order to improve the significance of the DIF, the cooperation with a real company would

help to test its applicability within a real project.

Opportunities

The DIF can contribute to the business process modeling community as a life-cycle model,

which provides guidance and a set of tools in order to include domain-specific concepts into

the modeling language. Moreover, it can serve as a starting point for further investigation.

Due to its modular structure, the tools within the phases could be modified or replaced by

other methods, for instance the user-stories could be replaced with another method for

requirements engineering. Moreover, the linguistic matching heuristic offers a potential for

a more automated approach. A collection of existing language concepts could be provided

for different domain applications, which would simplify the matching process.

Threats

Upon completion of this thesis, there also exist threats relating to the DIF. For one, the

framework itself and the proof-of-concept are platform dependent, as all design-

considerations and implementations were done on the ADOxx meta-modeling platform. The

re-use potential of the DIF on other platforms is therefore questionable. Also, several

literature sources regarding domain-specific language design exist, which are not tailored to

BPM but provide their own design and implementation schemes. The DIF has to be

positioned clearly as an instrument for DSBPM. What is more, the analysis of DSM

languages as well as the linguistic matching heuristic are of a qualitative nature and highly

rely on the knowledge and assumptions of the author.

To sum up the previous points, the DIF made a contribution towards a common

understanding of domain-specific business process modeling and discloses a possibility to

6 Conclusion and Future Outlook

 109

approach design, implementation, modeling, and maintenance of DSBPM in a systematic

way.

Future research in the scientific field of DSBPM is promising, as domain-specific

approaches enable the inclusion of concepts, rules, and functionalities, which are valuable

for a more adequate representation of the respective domain. This is enabled by meta-

modeling, which lifts language definition to a higher level of abstraction. Here, future

research can further investigate the opportunities of defining and integrating domain-

specificity on the meta-layer. The work at hand has provided a first step towards

considerations on that topic. Another focus of this research field is an analysis of further re-

usability potential. Within this thesis, re-usability potential is seen in the model types as well

as concepts of existing DSM languages. Further research can be done on the boundaries of

this re-usability and a concept of a systematic approach towards it.

 IX

Literature

[1] Agile Business Consortium. (2019, 06.02.2019). DSDM. Available:

https://www.agilebusiness.org/what-is-dsdm

[2] C. Aitken, C. Stephenson, and R. Brinkworth, "Process Classification Frameworks," in

Handbook on Business Process Management 2: Strategic Alignment, Governance, People and

Culture, J. vom Brocke and M. Rosemann, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010,

pp. 73-92.

[3] J. Al-Marzougi, "Change Management: Process Classification Framework and Best Practices,"

Available at SSRN 2328978, 2013.

[4] S. W. Ambler. (2018, 24.02.2019). Agile Modeling. Available:

http://www.agilemodeling.com/artifacts/userStory.htm

[5] R. Anzböck and S. Dustdar, "Modeling Medical E-services," in Business Process

Management, Berlin, Heidelberg, 2004, pp. 49-65: Springer Berlin Heidelberg.

[6] APICS. (2018, 15.02.2019). Frameworks. Available: http://www.apics.org/apics-for-

business/frameworks

[7] APQC, "APQC Process Classification Framework (PCF) - Cross Industry - PDF Version

7.2.0," p. 33, 2018.

[8] APQC, "Automotive Process Classification Framework," vol. PCF® v7.0.5, 2018.

[9] J. Barzdins et al., "Domain specific languages for business process management: a case

study," in Proceedings of DSM, 2009, vol. 9, pp. 34-40.

[10] J. Becker, Prozessmanagement, 7., 7. korr. und erw. Aufl. 2013 Aufl. 2012 ed. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2012, pp. XXVI, 687 S.

[11] J. Becker, D. Pfeiffer, and M. Räckers, "Domain specific process modelling in public

administrations–the PICTURE-approach," in International Conference on Electronic Government,

2007, pp. 68-79: Springer.

[12] J. Becker, B. Weiss, and A. Winkelman, "Developing a business process modeling language

for the banking sector-a design science approach," AMCIS 2009 Proceedings, p. 709, 2009.

[13] A. Berg et al., PG 582-Industrial Programming by Example. Universitätsbibliothek

Dortmund, 2015.

[14] J. Bicevskis, J. Cerina-Berzina, G. Karnitis, L. Lace, I. Medvedis, and S. Nesterovs, "Domain

Specific Business Process Modeling in Practice," in Proceedings of the 9th International Baltic

Conference on Databases and Information Systems (Baltic B&IS ‘2010), Riga, Latvia, 2010, pp. 5-7.

[15] BOC Asset Management GMbH. (17.04.2019). Industrial Business Process Management.

Available: https://www.adoxx.org/live/web/disrupt/industrial-business-process-management

[16] BOC Asset Management GmbH. (2018, 13.05.2019). ADOxx—official website. Available:

https://www.adoxx.org/live/home

https://www.agilebusiness.org/what-is-dsdm
http://www.agilemodeling.com/artifacts/userStory.htm
http://www.apics.org/apics-for-business/frameworks
http://www.apics.org/apics-for-business/frameworks
https://www.adoxx.org/live/web/disrupt/industrial-business-process-management
https://www.adoxx.org/live/home

 X

[17] J. Bortz and N. Döring, Forschungsmethoden und Evaluation, Zweite, vollständig

überarbeitete und aktualisierte Auflage ed. (Springer-Lehrbuch). Berlin Heidelberg New York [NY]:

Springer, 1995, pp. XV, 768 Seiten.

[18] H. Breitling and S. Hofer, "Schwerpunkt-beispielhaft gut modelliert: Exemplarische

Geschäftsprozessmodellierung in der Praxis," Objekt Spektrum, no. 6, p. 8, 2012.

[19] T. Bucher and R. Winter, "Taxonomy of business process management approaches," in

Handbook on Business Process Management 2: Springer, 2010, pp. 93-114.

[20] R. A. Buchmann and D. Karagiannis, "Agile Modelling Method Engineering: Lessons

Learned in the ComVantage Research Project," in The Practice of Enterprise Modeling: 8th IFIP WG

8.1. Working Conference, PoEM 2015, Valencia, Spain, November 10-12, 2015, Proceedings, 2015,

vol. 235, p. 356: Springer.

[21] P. P.-S. Chen, "The entity-relationship model—toward a unified view of data," ACM

Transactions on Database Systems (TODS), vol. 1, no. 1, pp. 9-36, 1976.

[22] M. Cohn, User stories applied: For agile software development. Addison-Wesley

Professional, 2004.

[23] Collins English Dictionary. (2019, 13.04.2019). Definition of 'domain'. Available:

https://www.collinsdictionary.com/dictionary/english/domain

[24] H. M. Cooper, "Organizing knowledge syntheses: A taxonomy of literature reviews,"

Knowledge in society, vol. 1, no. 1, p. 104, 1988.

[25] B. Curtis, M. I. Kellner, and J. Over, "Process modeling," Communications of the ACM, vol.

35, no. 9, pp. 75-90, 1992.

[26] T. H. Davenport and J. E. Short, "The new industrial engineering: information technology and

business process redesign," 1990.

[27] T. De Bruin and M. Rosemann, "Towards a business process management maturity model,"

2005.

[28] R. Deshayes, B. Meyers, T. Mens, and H. Vangheluwe, "ProMoBox in Practice: A Case Study

on the GISMO Domain-Specific Modelling Language," in MPM@ MoDELS, 2014, pp. 21-30:

Citeseer.

[29] I. DeToro and T. McCabe, "How to stay flexible and elude fads," Quality Progress, vol. 30,

no. 3, p. 55, 1997.

[30] A. v. Deursen, P. Klint, and J. Visser, "Domain-specific languages: an annotated

bibliography," SIGPLAN Not., vol. 35, no. 6, pp. 26-36, 2000.

[31] Dreamstime. (2019, 12.05.2019). Developer, application, programming icon vector image.

Available: https://www.dreamstime.com/stock-illustration-software-developer-application-

programming-icon-vector-image-can-also-be-used-development-suitable-use-web-apps-mobile-

image78730067

[32] M. Dumas, M. La Rosa, J. Mendling, and H. A. Reijers, Fundamentals of business process

management. Heidelberg: Springer, 2013.

https://www.collinsdictionary.com/dictionary/english/domain
https://www.dreamstime.com/stock-illustration-software-developer-application-programming-icon-vector-image-can-also-be-used-development-suitable-use-web-apps-mobile-image78730067
https://www.dreamstime.com/stock-illustration-software-developer-application-programming-icon-vector-image-can-also-be-used-development-suitable-use-web-apps-mobile-image78730067
https://www.dreamstime.com/stock-illustration-software-developer-application-programming-icon-vector-image-can-also-be-used-development-suitable-use-web-apps-mobile-image78730067

 XI

[33] G. Engels, J. H. Hausmann, R. Heckel, and S. Sauer, "Dynamic meta modeling: A graphical

approach to the operational semantics of behavioral diagrams in UML," in International Conference

on the Unified Modeling Language, 2000, pp. 323-337: Springer.

[34] H.-G. Fill and D. Karagiannis, "On the conceptualisation of modelling methods using the

ADOxx meta modelling platform," Enterprise Modelling and Information Systems Architectures–

International Journal of Conceptual Modeling, vol. 8, no. 1, pp. 4-25, 2013.

[35] U. Frank and C. Lange, "E-MEMO: a method to support the development of customized

electronic commerce systems," Information Systems and E-Business Management, vol. 5, no. 2, pp.

93-116, 2007.

[36] U. Frank and B. van Laak, "Anforderungen an Sprachen zur Modellierung von

Geschäftsprozessen," Arbeitsberichte des Instituts für Wirtschaftsinformatik, 2003.

[37] U. Frank and B. Van Laak, "Ein Bezugsrahmen zur Evaluation von Sprachen zur

Modellierung von Geschäftsprozessen," Arbeitsberichte des Instituts für Wirtschaftsinformatik

Universität Koblenz-Landau (2003), H, vol. 36, 2003.

[38] Free Icons. (2019, 12.05.2019). Copy - Free Web Icon. Available:

https://icons8.com/icon/29/copy

[39] Free Icons Library. (2019, 12.05.2019). Create Icon #228973. Available:

http://chittagongit.com/icon/create-icon-14.html

[40] D. Götzinger, E.-T. Miron, and F. Staffel, "OMiLAB: an open collaborative environment for

modeling method engineering," in Domain-Specific Conceptual Modeling: Springer, 2016, pp. 55-76.

[41] M. Hammer, "The process audit," Harvard business review, vol. 85, no. 4, pp. 111-9, 122-3,

142, 2007.

[42] M. Hammer and S. Stanton, "The reengineering revolution," HARPER BUSINESS1995.

[43] A. E. Haxthausen and J. Peleska, "A domain specific language for railway control systems," in

Proceedings of the sixth biennial world conference on integrated design and process

technology,(IDPT2002), Pasadena, California, 2002, pp. 23-28.

[44] X. He, Z. Ma, W. Shao, and G. Li, "A metamodel for the notation of graphical modeling

languages," in 31st Annual International Computer Software and Applications Conference

(COMPSAC 2007), 2007, vol. 1, pp. 219-224: IEEE.

[45] H. Heitkötter, "A Framework for Creating Domain-specific Process Modeling Languages," in

ICSOFT, 2012, pp. 127-136.

[46] A. R. Hevner, S. T. March, J. Park, and S. Ram, "Design science in information systems

research," Management Information Systems Quarterly, vol. 28, no. 1, pp. 57-106, 2004.

[47] A. R. Hevner, S. T. March, J. Park, and S. Ram, "Design science in information systems

research," Management Information Systems Quarterly, vol. 28, no. 1, p. 6, 2008.

[48] IBM Knowledge Center. (2011, 13.02.2019). eTOM process classification framework.

Available:

https://www.ibm.com/support/knowledgecenter/en/SSFTDH_7.5.0/com.ibm.ws.icp.telopr.doc/tel/opr/

opdev/concept/ci/indstd/c_capmdl_etom.html

https://icons8.com/icon/29/copy
http://chittagongit.com/icon/create-icon-14.html
https://www.ibm.com/support/knowledgecenter/en/SSFTDH_7.5.0/com.ibm.ws.icp.telopr.doc/tel/opr/opdev/concept/ci/indstd/c_capmdl_etom.html
https://www.ibm.com/support/knowledgecenter/en/SSFTDH_7.5.0/com.ibm.ws.icp.telopr.doc/tel/opr/opdev/concept/ci/indstd/c_capmdl_etom.html

 XII

[49] Icon Shop. (2019, 12.05.2019). Filter Icon Outline. Available:

http://freeiconshop.com/icon/filter-icon-outline/

[50] International Standards Association. (1994, 14.04.2019). Industrial automation systems and

integration - Product data representation and exchange - Part 11: Description methods: The

EXPRESS language reference manual (ISO 10303-11:2004 ed.). Available:

https://www.iso.org/standard/38047.html

[51] S. Junginger, "Modellierung von Geschäftsprozessen - State-of-the-Art, neuere Entwicklungen

und Forschungspotenziale," in "BPMS-Bericht," University of Vienna2000.

[52] D. Karagiannis, "Agile modeling method engineering," presented at the Proceedings of the

19th Panhellenic Conference on Informatics, 2015.

[53] D. Karagiannis, R. Buchmann, P. Burzynski, and J. Brakmic, "D3. 1.2—specification of

modelling method including conceptualisation outline, comvantage public deliverables," ed.

[54] D. Karagiannis, R. A. Buchmann, P. Burzynski, U. Reimer, and M. Walch, "Fundamental

conceptual modeling languages in OMiLAB," in Domain-Specific Conceptual Modeling: Concepts,

Methods and Tools, 2016, pp. 3-30.

[55] D. Karagiannis and P. Höfferer, "Metamodeling as an integration concept," in International

Conference on Software and Data Technologies, 2006, pp. 37-50: Springer.

[56] D. Karagiannis and H. Kühn, "Metamodelling platforms," in EC-Web, 2002, vol. 2455, p. 182.

[57] D. Karagiannis, H. C. Mayr, and J. P. Mylopoulos, Domain-specific conceptual modeling

concepts, methods and tools. Cham: Springer International Publishing AG, 2016, pp. xii, 594 Seiten.

[58] D. Karagiannis and R. Woitsch, "Knowledge engineering in business process management," in

Handbook on Business Process Management 2: Springer, 2010, pp. 463-485.

[59] G. Keller, A.-W. Scheer, and M. Nüttgens, Semantische Prozeßmodellierung auf der

Grundlage" Ereignisgesteuerter Prozeßketten (EPK)". Inst. für Wirtschaftsinformatik, 1992.

[60] S. Kelly and J.-P. Tolvanen, Domain-specific modeling: enabling full code generation. John

Wiley & Sons, 2008.

[61] H. Kern, A. Hummel, S. K, #252, and hne, "Towards a comparative analysis of meta-

metamodels," presented at the Proceedings of the compilation of the co-located workshops on

DSM'11, TMC'11, AGERE! 2011, AOOPES'11, NEAT'11, & VMIL'11, Portland, Oregon, USA,

2011.

[62] E. Kindler, B. Axenath, and V. Rubin, "AMFIBIA: a meta-model for the integration of

business process modelling aspects," in Dagstuhl Seminar Proceedings, 2006: Schloss Dagstuhl-

Leibniz-Zentrum für Informatik.

[63] kisspng. (2019, 12.05.2019). Mechanical Engineering, Engineering, Computer Icons, Black,
Black And White PNG. Available: https://www.kisspng.com/png-mechanical-engineering-clip-art-

computer-icons-col-5998537/

[64] A. Kleppe, Software language engineering: creating domain-specific languages using

metamodels. Pearson Education, 2008.

[65] C. R. Kothari, Research methodology: Methods and techniques. New Age International, 2004.

http://freeiconshop.com/icon/filter-icon-outline/
https://www.iso.org/standard/38047.html
https://www.kisspng.com/png-mechanical-engineering-clip-art-computer-icons-col-5998537/
https://www.kisspng.com/png-mechanical-engineering-clip-art-computer-icons-col-5998537/

 XIII

[66] D. Kühn and J. Neubauer, "Guided domain-specific tailoring of jABC4," in International

Symposium on Leveraging Applications of Formal Methods, 2016, pp. 113-127: Springer.

[67] H. Kühn, Methodenintegration im Business Engineering. 2004.

[68] S. Laghrabli, L. Benabbou, and A. Berrado, "Strategic decision processes classification

framework using UTADIS," in 2016 11th International Conference on Intelligent Systems: Theories

and Applications (SITA), 2016, pp. 1-6.

[69] A. Lapouchnian, "Goal-oriented requirements engineering: An overview of the current

research," University of Toronto, vol. 32, 2005.

[70] A. Leitner, C. Preschern, and C. Kreiner, "Effective development of automation systems

through domain-specific modeling in a small enterprise context," Software & Systems Modeling, 2014,

Vol.13(1), pp.35-54, p. 35.

[71] A. Leitner, R. Weiß, and C. Kreiner, "Analyzing the complexity of domain model
representations," in Engineering of Computer Based Systems (ECBS), 2012 IEEE 19th International

Conference and Workshops on, 2012, pp. 242-248: IEEE.

[72] B. List and B. Korherr, "An evaluation of conceptual business process modelling languages,"

in Proceedings of the 2006 ACM symposium on Applied computing, 2006, pp. 1532-1539: ACM.

[73] B. Lotter and H.-P. Wiendahl, "Montage in der industriellen Produktion. Ein Handbuch für die

Praxis. 2., Aufl," ed: Berlin: Springer Berlin (VDI-Buch), 2012.

[74] R. Lu and S. Sadiq, "A survey of comparative business process modeling approaches," in

International Conference on Business Information Systems, 2007, pp. 82-94: Springer.

[75] Markets and Markets. (2016, 13.05.2019). Business Process Management Market. Available:

https://www.marketsandmarkets.com/Market-Reports/business-process-management-market-

157890056.html

[76] S. Mary, "Risk factors in enterprise-wide/ERP projects," Journal of Information Technology,

vol. 15, no. 4, p. 317, 2000.

[77] L. McIver and D. Conway, "Seven deadly sins of introductory programming language design,"

in seep, 1996, p. 309: IEEE.

[78] N. Melão and M. Pidd, "A conceptual framework for understanding business processes and

business process modelling," Information systems journal, vol. 10, no. 2, pp. 105-129, 2000.

[79] M. Mernik, J. Heering, and A. M. Sloane, "When and how to develop domain-specific

languages," ACM computing surveys (CSUR), vol. 37, no. 4, pp. 316-344, 2005.

[80] MetaCase. (2019, 07.02.2019). MetaEdit+. Available:

https://www.metacase.com/products.html

[81] L. H. Nastansky, W.; Ott, M.; Riempp, G., "Die Produktivität von Groupware-basierten

Anwendungen: Geschäftsprozeßorientierte Modellierung & Workflow Management," Information

Management, Workgroup Computing, Office Systems1995.

[82] M. Nikolaidou, D. Anagnostopoulos, and A. Tsalgatidou, Business processes modelling and

automation in the banking sector: A case study. 2008.

https://www.marketsandmarkets.com/Market-Reports/business-process-management-market-157890056.html
https://www.marketsandmarkets.com/Market-Reports/business-process-management-market-157890056.html
https://www.metacase.com/products.html

 XIV

[83] Noun Project Inc. (2019, 12.05.2019). Extend icon. Available:

https://thenounproject.com/term/extend/424331/

[84] B. Nuseibeh and S. Easterbrook, "Requirements engineering: a roadmap," in Proceedings of

the Conference on the Future of Software Engineering, 2000, pp. 35-46: ACM.

[85] OMG. (2014, 09.04.2019). About the Object Constraint Language Specification Version 2.4.

Available: https://www.omg.org/spec/OCL/About-OCL/

[86] OMG. (2019, 09.04.2019). Business Process Model and Notation. Available:

http://www.bpmn.org

[87] OMiLAB Europe. (2018, 20.10.2018). Ideas and objective. Available:

http://austria.omilab.org/psm/about

[88] K. Peffers, T. Tuunanen, M. A. Rothenberger, and S. Chatterjee, "A design science research

methodology for information systems research," Journal of management information systems, vol. 24,

no. 3, pp. 45-77, 2007.

[89] S. Pissierssens, "Revealing the scientific basis of graphical representation design."

[90] K. Pohl, Requirements Engineering: Fundamentals, Principles, and Techniques. Springer

Publishing Company, Incorporated, 2010, p. 813.

[91] K. Pohl and C. Rupp, Basiswissen Requirements Engineering: Aus-und Weiterbildung nach

IREB-Standard zum Certified Professional for Requirements Engineering Foundation Level. dpunkt.

verlag, 2015.

[92] Porsche Leipzig GmbH. (2018, 28.10.2018). Die Montage. Available: https://www.porsche-

leipzig.com/produktion/montage/

[93] M. E. Porter, "Competitive advantage: creating and sustaining superior performance. 1985,"

New York: FreePress, vol. 43, p. 214, 1985.

[94] C. Prackwieser, "SIMchronization: a method supporting the synchronisation of information

and material flows," in Proceedings of the Winter Simulation Conference, 2012, p. 355: Winter

Simulation Conference.

[95] C. Preschern, "PISCAS-A Pisciculture Automation System Product Line," 2011.

[96] R. Prieto-Díaz, "Domain analysis: An introduction," ACM SIGSOFT Software Engineering

Notes, vol. 15, no. 2, pp. 47-54, 1990.

[97] R. L. Raschke, "Process-based view of agility: The value contribution of IT and the effects on

process outcomes," International Journal of Accounting Information Systems, vol. 11, no. 4, pp. 297-

313, 2010.

[98] P. Ravesteyn and S. Jansen, "A situational implementation method for business process

management systems," AMCIS 2009 Proceedings, p. 632, 2009.

[99] K. Ravlani. (2017, 24.02.2019). Agile for Growth. Available:

http://agileforgrowth.com/blog/userstory-benefits/

[100] S. Ray, G. Karsai, and K. M. McNeill, "Model-based adaptation of flight-critical systems," in

2009 IEEE/AIAA 28th Digital Avionics Systems Conference, 2009, pp. 6.B.6-1-6.B.6-16.

https://thenounproject.com/term/extend/424331/
https://www.omg.org/spec/OCL/About-OCL/
http://www.bpmn.org/
http://austria.omilab.org/psm/about
https://www.porsche-leipzig.com/produktion/montage/
https://www.porsche-leipzig.com/produktion/montage/
http://agileforgrowth.com/blog/userstory-benefits/

 XV

[101] A. Roques. (2012, 09.04.2019). PlantUML in a nutshell. Available: http://plantuml.com/index

[102] M. Rosemann, "The service portfolio of a BPM center of excellence," in Handbook on

Business Process Management 2: Springer, 2010, pp. 267-284.

[103] J. Rowley and F. Slack, "Conducting a literature review," Management research news, vol. 27,

no. 6, pp. 31-39, 2004.

[104] A. Ruffner, "Wissenschaftstheoretische Überlegungen zur Betriebswirtschaftlichen

Organisationslehre," Dlugos, G. ua, Hrsg., Wissenschaftstheorie und Betriebswirtschaftslehre,

Düsseldorf, pp. 185-207, 1972.

[105] J. Rumbaugh, I. Jacobson, and G. Booch, Unified modeling language reference manual, the.

Pearson Higher Education, 2004.

[106] W. Sadiq and M. E. Orlowska, "On capturing process requirements of workflow based

business information systems," in BIS’99: Springer, 1999, pp. 281-294.

[107] O. Saidani and S. Nurcan, "Towards Situational Business Process Meta-Modelling," in CAiSE

Forum, 2008, pp. 93-96.

[108] H. J. Schmelzer and W. Sesselmann, "Geschäftsprozessmanagement in der Praxis," Kunden

zufrieden stellen-Produktivität steigern-Wert erhöhen, vol. 6, pp. 1-2, 2008.

[109] A. Schoknecht, A. Vetter, H.-G. Fill, and A. Oberweis, "Using the Horus Method for

Succeeding in Business Process Engineering Projects," in Domain-Specific Conceptual Modeling:

Springer, 2016, pp. 127-147.

[110] B. Scholz-Reiter, A. Nethe, and H. Stahlmann, "Process Modelling," 1999.

[111] Scrum.org. (2019, 06.02.2019). The home of Scrum. Available: https://www.scrum.org/

[112] P. M. Shields and N. Rangarajan, A playbook for research methods: Integrating conceptual

frameworks and project management. New Forums Press, 2013.

[113] H. Stachowiak, "Allgemeine modelltheorie," 1973.

[114] S. Strahringer, "Metamodellierung als Instrument des Methodenvergleichs: Eine Evaluierung

am Beispiel objektorientierter Analysenmethoden," Darmstadt Technical University, Department of

Business Administration, Economics and Law, Institute for Business Studies (BWL)1996.

[115] C. Thiemich and F. Puhlmann, "An agile BPM project methodology," in Business Process

Management: Springer, 2013, pp. 291-306.

[116] P. Uhnak. (2018, 07.02.2019). OpenPonk (meta)modeling platform. Available:

https://modeling-languages.com/openponk-metamodeling-platform/

[117] N. Visic, H.-G. Fill, R. A. Buchmann, and D. Karagiannis, "A domain-specific language for

modeling method definition: From requirements to grammar," in Research Challenges in Information

Science (RCIS), 2015 IEEE 9th International Conference on, 2015, pp. 286-297: IEEE.

[118] J. Vom Brocke, A. Simons, B. Niehaves, K. Riemer, R. Plattfaut, and A. Cleven,

"Reconstructing the giant: On the importance of rigour in documenting the literature search process,"

in Ecis, 2009, vol. 9, pp. 2206-2217.

http://plantuml.com/index
https://www.scrum.org/
https://modeling-languages.com/openponk-metamodeling-platform/

 XVI

[119] M. von Rosing, N. Kemp, M. Hove, and J. W. Ross, "Process Tagging-A Process

Classification and Categorization Concept," ed, 2015.

[120] B. Webster, "Buy vs. build software applications: The eternal dilemma," 2008.

[121] B. Webster. (2008, 13.05.2019). Buy vs. build software applications: The eternal dilemma.

Available: http://www.baselinemag.com/c/a/Application-Development/Buy-vs-Build-Software-

Applications-The-Eternal-Dilemma

[122] R. Winter, "Design solution analysis for the construction of situational design methods," in

Engineering Methods in the Service-Oriented Context: Springer, 2011, pp. 19-33.

[123] G. Wolters, "Jürgen Mittelstrass (Hrsg.): Enzyklopädie Philosophie und Wissenschatstheorie.

1984."

[124] M. Zacarias, P. V. Martins, and A. Gonçalves, "An Agile Business Process and Practice Meta-

model," Procedia Computer Science, vol. 121, pp. 170-177, 2017.

[125] M. Zairi and D. Sinclair, "Business process re-engineering and process management: a survey

of current practice and future trends in integrated management," Business Process Re-engineering &

Management Journal, vol. 1, no. 1, pp. 8-30, 1995.

[126] M. D. Zisman, "Representation, Specification and automation of office procedures," 1977.

[127] M. zur Muehlen and R. Shapiro, "Business process analytics," in Handbook on Business

Process Management 2: Springer, 2010, pp. 137-157.

http://www.baselinemag.com/c/a/Application-Development/Buy-vs-Build-Software-Applications-The-Eternal-Dilemma
http://www.baselinemag.com/c/a/Application-Development/Buy-vs-Build-Software-Applications-The-Eternal-Dilemma

 XVII

Appendix A

The quality criteria suggested by [37] are the following:

Criterion Manifestation

General criteria

Formal criteria

Correctness and completeness Syntactically unambiguous identification of incorrect models

 Semantically unambiguous identification of incorrect models

 It is possible to model all needed models with the existing language

resources

Uniformity and non-redundancy Similar representation of similar concepts within the language

 Information does not need to be filed redundantly within the model

Re-usability and maintainability Processes can be combined into classes

 Ability to hide information

 Generalization and specialization is possible

User-oriented criteria

Simplicity The model is not overloaded, i.e. is uses exactly the needed number

of symbols

 Little rules are sufficient for language-use

Comprehensibility and clarity The terminology used within the ML corresponds to the domain-

specific concepts of the application domain

Usage-oriented criteria

Powerfulness and adequacy All relevant aspects are depictable with the ML in a sufficiently

detailed way

 The user is not forced to model or read unnecessary information

Operationalization The ML uses concepts relevant to the software context, e.g. object-

orientation

 Ability to generate workflow-schemes from the model

 Possibility to annotate data relevant to the business context

 The language provides concepts for the creation of simulation models

BPM-specific criteria

General criteria for BPML

Abstraction-levels Single process- and resource- instances can be distinguished

 Process-types can be modeled (intentional class-concept)

 Different process-instances can be summarized into sets (extensional

class-concept)

Flexibility and adaptability The language can be extended by stereotypes

 An amount of process-types is already provided

 New language elements can be added via meta-language

Support of different views Processes can be decomposed and the decomposition can be depicted

graphically

 Relations between process-types can be depicted

 XVIII

 Processes are depictable in different degrees of detail

General concepts for BPM

Processes Criteria affecting the process-start can be modeled

 Results existing after the process-end can be modeled

 The run-time duration of the process can be defined

 Costs can be mapped to the process

 If a process is not further decomposable, text annotations for

sufficient description can be added

 Formal specification of a non-decomposable process function is

possible

 Critical success-factors can be mapped to the process

 Processes can be aggregated and the cardinality specified in this

context

 Through a “used”-relation it can be shown, which processes are

needed for a correct processing of a certain process

 Similarity-relations are used to identify similar processes

 There exists a concept for identification of process-instances

Events The concept of “event” is supported by the ML

 There is a predefined number of event-types, e.g. different temporal

events

 Different events can be connected logically to each other

 There can be specialized relationships between event- types

 Like with processes, similarity-relations can be depicted

 Additional annotations to event-types are allowed (formal, semi-

formal, non-formal). For formal annotations, an appropriate language

is available

Modeling of business concepts

Goal-modeling Goals can be mapped to processes in a natural way

 Process-goals are specifiable also semi-formally

 Different goal-typed are predefined and accessible via goal-

categorization

 Goal-types can be user-defined

 Relations between goals can be specified, e.g. independency,

concurrency, complementarity, contradiction, and “is upper-level

goal”

 Relations between goals can be defined according to the context

 Goals can have a state (degree of goal attainment), for which a

calculated function can be defined

Resource modeling From the process-model associations are possible to the resource-

model

 Different categories of resources are alredy defined

 Resource-types can be user-defined

 Costs resulting from resource-usage can be mapped to the resource in

different ways, e.g. per time-unit, per unit of material

 Resources can have correlating relations, e.g. substitutional, usage,

specialization, aggregation

Modeling of the static

organization

The static organization can be modeled in the ML

 XIX

 There exist different relationship-types between organizational

entities, e.g. “is entitled to issue instructions”, “is part of”

 Relations between entities cannot only be depicted 1:1and 1:n, but

also n:m

 Single posts can be described via profiles

 There exist pre-defined types of organizational entities, e.g. main

department, department, group, post

 The graphical representation of the organization corresponds to the

official organigrams

Modeling of roles Complementary to organizational-units, executing roles can be

mapped to processes

 Roles can be associated to organizational entities of the static

organizational model

Interorganizational processes Sub-processes, which are undertaken by external entities, can be

labeled as such

 The PML enables the modeling of interfaces and protocols

 Standard interfaces and protocols already exist

 For logistical processes, the means of transportation can be defined

 Specific exceptions can be modeled and processes for exception-

handling be defined, e.g. breakdown of a communication link

Control structures

Sequence Any number of process parts can be arranged in a linear order. Their

succession is represented by appropriate graphical representation, e.g.

arrows

Conditions and rules The language allows to depict process procedures by the definition of

“if, then” rules

 For the definition of conditions, a formal language can be used

Alternative sequences A process can be split into any number of alternative paths

 To each alternative path, probabilities can be added in order to

specify the probability, with which the alternative is taken within the

process

Parallelism Real-parallel sequences can be defined within the process

Concurrency Concurrent processes can be defined within the process

 There is an explicit distinction between parallelism and concurrency

Abstraction of sequences A sequence of sub-processes can but does not have to be defined.

Instead, it is allowed to name several sub-processes, of which one or

any number can run in any sequence

Repetitions Process-parts can be run repetitively (iteration)

 The number of iterations can be set by a number

 The number of iterations can be set by rules

Synchronization of processes It can be defined that a process can only start once one or several

other processes are completed

 It can be defined whether the still running processes in the above case

terminate or not

Transactions A process can be labelled as a transaction

 XX

Exceptions

Processes can be associated with

exceptions

To every exception-type, a

counter-measure can be

associated, e.g. in the form of

another process

Integrity conditions

Cardinalities For all relations within the model, cardinalities can be defined

 For depicting cardinalities, a min-max-notation is used

Pre-conditions The language allows a specification of pre-conditions, which have to

be fulfilled in order to start the process

 An exception-type can be added

Post-conditions Post-conditions state, which conditions have to be fulfilled after the

completion of the process

 An exception-type can be added

Process-type invariants The language allows a definition of process-type invariants

 An exception-type can be added

Support of the development of information systems

Integration with IT abstractions Entities of an associated data model can be referenced from the

process model

 Objects, classes, attributes, and methods from an associated object-

model can be referenced from the process model

Support of the usage of WfMS Software applications and editable data are allocated to the individual

processes as needed

 The process-specification should be exportable in a format, which

can be read by WfMS

Support of individual adjustments

The symbols used within the

language are exchangeable

Libraries of domain-specific

symbols exist

Criteria for the evaluation of

learnability of the BPML

Documentation

General criteria The ML is prepared in a didactically appropriate way

 The documentation contains all language-symbols as well as all

possible syntactical constructions

 The use of the language is demonstrated by examples

Differentiation between different

user-groups

There exist different pieces of documentation for different user-

groups, e.g. software engineers, organizers

 For each user-group, goals are specified, which can be reached by the

use of the language

 Also disadvantages and exemplary problem-cases are demonstrated

 The style of the specific user-group documentation corresponds to the

linguistic style of this user-group

Specification

 XXI

Specification of semantics and

abstract syntax

The abstract syntax of a language is formally described either by

specifying a grammar or a meta-model

Specification of notation The used symbols precisely match the concepts, which the language

uses

 A number of conventions for the naming of identifiers and the usage

of additional textual elements is formally specified

Embedding of a ML into a MM

General The ML is embedded in a MM

Project-specific roles and

resources

The method provides a commented list of roles and requirement-

profiles

 The method includes propositions for communication-relations

within the modeling project

 The method provides a catalogue of quality assurance measures

 The method includes a component for the management of project-

resources

Procedure model A procedure model structures the project into manageable sub-tasks

 For each sub-task, critical success-factors, roles involved,

communication relations, and expected outcomes are defined

 Depending on the modeling-purpose, the procedure model contains

several variants

 The usage of the procedure model is demonstrated by examples

 XXII

Appendix B

__D-construct__ (Metamodel)

 __D_event__ (Metamodel)

 __D_variable_assignment_object__ (Metamodel)

 __Neutral_element__ (Metamodel)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __Start__ (Metamodel)

 Start event

 Abandon after tolerance waiting time (Metamodel) ENUMERATION (Enumeration)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Info on results STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Process calendar (Metamodel) LONGSTRING (Long string)

 Quantity (Metamodel) EXPRESSION (Expression)

 Time period (Metamodel) ENUMERATION (Enumeration)

 Tolerance waiting time (Metamodel) TIME (Time)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Abandon after tolerance waiting time (Metamodel) ENUMERATION (Enumeration)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Process calendar (Metamodel) LONGSTRING (Long string)

 Quantity (Metamodel) EXPRESSION (Expression)

 Time period (Metamodel) ENUMERATION (Enumeration)

 Tolerance waiting time (Metamodel) TIME (Time)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __Subgraph__ (Metamodel)

 XXIII

 Sub-Process

 __Conversion__ LONGSTRING (Long string)

 Aggregated costs EXPRESSION (Expression)

 Aggregated execution time EXPRESSION (Expression)

 Aggregated resting time EXPRESSION (Expression)

 Aggregated transport time EXPRESSION (Expression)

 Aggregated waiting time EXPRESSION (Expression)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 Description STRING (Short string)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Order INTEGER (Integer)

 Position (Metamodel) STRING (Short string)

 Referenced subprocess (Metamodel) INTERREF (Inter-model reference)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)
 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Referenced subprocess (Metamodel) INTERREF (Inter-model reference)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __Activity__ (Metamodel)

 Task

 Aggregated costs DOUBLE (Floating-point number)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Average number of participants (Metamodel) INTEGER (Integer)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 Continuous execution (Metamodel) ENUMERATION (Enumeration)

 Cooperation mode (Metamodel) ENUMERATION (Enumeration)

 Cooperative (Metamodel) ENUMERATION (Enumeration)

 Costs DOUBLE (Floating-point number)

 Done by (Metamodel) STRING (Short string)

 Execution interruptable (Metamodel) ENUMERATION (Enumeration)

 Execution time (Metamodel) TIME (Time)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Max. resource waiting time (Metamodel) TIME (Time)

 Max. start period (Metamodel) TIME (Time)

 Min. quota of presence (Metamodel) INTEGER (Integer)

 XXIV

 Model pointer (Metamodel) STRING (Short string)

 Number DOUBLE (Floating-point number)

 Order CLOB (Character Large Object)

 Performer (Metamodel) EXPRESSION (Expression)

 Position (Metamodel) STRING (Short string)

 Priority (Metamodel) INTEGER (Integer)

 Resting time (Metamodel) TIME (Time)

 Show name ENUMERATION (Enumeration)

 Task stack (Metamodel) ENUMERATION (Enumeration)

 Transport time (Metamodel) TIME (Time)

 VisibleAttrs (Metamodel) STRING (Short string)

 Waiting time (Metamodel) TIME (Time)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Average number of participants (Metamodel) INTEGER (Integer)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 Continuous execution (Metamodel) ENUMERATION (Enumeration)

 Cooperation mode (Metamodel) ENUMERATION (Enumeration)

 Cooperative (Metamodel) ENUMERATION (Enumeration)

 Done by (Metamodel) STRING (Short string)

 Execution interruptable (Metamodel) ENUMERATION (Enumeration)
 Execution time (Metamodel) TIME (Time)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Max. resource waiting time (Metamodel) TIME (Time)

 Max. start period (Metamodel) TIME (Time)

 Min. quota of presence (Metamodel) INTEGER (Integer)

 Model pointer (Metamodel) STRING (Short string)

 Performer (Metamodel) EXPRESSION (Expression)

 Position (Metamodel) STRING (Short string)

 Priority (Metamodel) INTEGER (Integer)

 Resting time (Metamodel) TIME (Time)

 Task stack (Metamodel) ENUMERATION (Enumeration)

 Transport time (Metamodel) TIME (Time)

 VisibleAttrs (Metamodel) STRING (Short string)

 Waiting time (Metamodel) TIME (Time)

 WF_Trans (Metamodel) STRING (Short string)

 __Decision__ (Metamodel)

 Exclusive gateway

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Variable name (Metamodel) STRING (Short string)

 Variable scope (Metamodel) ENUMERATION (Enumeration)

 Variable type (Metamodel) ENUMERATION (Enumeration)

 Variable value (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 XXV

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Variable name (Metamodel) STRING (Short string)

 Variable scope (Metamodel) ENUMERATION (Enumeration)

 Variable type (Metamodel) ENUMERATION (Enumeration)

 Variable value (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __Parallelity__ (Metamodel)

 Parallel gateway

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)
 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __Merging__ (Metamodel)

 Merging gateway

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 XXVI

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)
 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __D_end__ (Metamodel)

 End event

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Type (Metamodel) ENUMERATION (Enumeration)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Type (Metamodel) ENUMERATION (Enumeration)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 XXVII

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __D_variable__ (Metamodel)

 Variable

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Variable scope (Metamodel) ENUMERATION (Enumeration)

 Variable type (Metamodel) ENUMERATION (Enumeration)
 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Variable scope (Metamodel) ENUMERATION (Enumeration)

 Variable type (Metamodel) ENUMERATION (Enumeration)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __D_random_generator__ (Metamodel)

 Random generator

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Value (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 XXVIII

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Value (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __D_resource__ (Metamodel)

 Machine

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)
 Selection (Metamodel) EXPRESSION (Expression)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Robot

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Selection (Metamodel) EXPRESSION (Expression)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Tool

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Selection (Metamodel) EXPRESSION (Expression)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 XXIX

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Selection (Metamodel) EXPRESSION (Expression)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __D_container__ (Metamodel)

 __D_swimlane__ (Metamodel)

 Swimlane

 Alignment ENUMERATION (Enumeration)

 Allowed objects (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 Color STRING (Short string)

 Display water marks ENUMERATION (Enumeration)
 External tool coupling (Metamodel) STRING (Short string)

 Fontcolor EXPRESSION (Expression)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Allowed objects (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __D_aggregation__ (Metamodel)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 XXX

 WF_Trans (Metamodel) STRING (Short string)

 Storage

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)
 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __D_agent__ (Metamodel)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Calendar (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 Format (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Information text (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Scope (Metamodel) STRING (Short string)

 Visible (Metamodel) ENUMERATION (Enumeration)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __LibraryMetaData__

 __APListChangeCounter__ INTEGER (Integer)

 __ModelListChangeCounter__ INTEGER (Integer)

 __UserListChangeCounter__ INTEGER (Integer)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 XXXI

 homedir STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __ModelTypeMetaData__

 __GfxThumb__ LONGSTRING (Long string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 process-landscape-construct

 external-partner

 Supplier

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)
 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 Description STRING (Short string)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Client

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 Description STRING (Short string)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 XXXII

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Value block

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 Display name and reference ENUMERATION (Enumeration)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Order INTEGER (Integer)

 Position (Metamodel) STRING (Short string)

 Referenced process INTERREF (Inter-model reference)

 Subprocessname EXPRESSION (Expression)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)
 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 product-structure-construct

 Product

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Component

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 XXXIII

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Raw material

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)
 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

Relation classes

 Is inside (Metamodel) __D-construct__ --> __D_container__

 AutoConnect (Metamodel) STRING (Short string)

 Subsequent (Metamodel) __D_event__ --> __D_event__

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) STRING (Short string)

 Comment (Metamodel) STRING (Short string)

 Connector number (Metamodel) INTEGER (Integer)

 GraphRep (Metamodel) STRING (Short string)

 HlpTxt (Metamodel) STRING (Short string)

 Positions (Metamodel) STRING (Short string)

 Transition condition (Metamodel) STRING (Short string)

 Transition probability (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 Visualization (Metamodel) ENUMERATION (Enumeration)

 XXXIV

 Visualized values (Metamodel) ENUMERATION (Enumeration)

 Sets variable (Metamodel) __D_random_generator__ --> __D_variable__

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) STRING (Short string)

 Connector number (Metamodel) INTEGER (Integer)

 GraphRep (Metamodel) STRING (Short string)

 HlpTxt (Metamodel) STRING (Short string)

 Positions (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 Visualization (Metamodel) ENUMERATION (Enumeration)

 Sets (Metamodel) __D_random_generator__ --> __D_variable_assignment_object__

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) STRING (Short string)

 Connector number (Metamodel) INTEGER (Integer)

 GraphRep (Metamodel) STRING (Short string)

 HlpTxt (Metamodel) STRING (Short string)

 Positions (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 Visualization (Metamodel) ENUMERATION (Enumeration)

 Parameter (Metamodel) __D_variable__ --> __Start__

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) STRING (Short string)

 Connector number (Metamodel) INTEGER (Integer)

 GraphRep (Metamodel) STRING (Short string)

 HlpTxt (Metamodel) STRING (Short string)
 Index (Metamodel) INTEGER (Integer)

 Positions (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 Visualization (Metamodel) ENUMERATION (Enumeration)

 Call parameter (Metamodel) __Subgraph__ --> __D_variable__

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) STRING (Short string)

 Connector number (Metamodel) INTEGER (Integer)

 GraphRep (Metamodel) STRING (Short string)

 HlpTxt (Metamodel) STRING (Short string)

 Index (Metamodel) INTEGER (Integer)

 Positions (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 Visualization (Metamodel) ENUMERATION (Enumeration)

 Uses (Metamodel) __Activity__ --> __D_resource__

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) STRING (Short string)

 Connector number (Metamodel) INTEGER (Integer)

 GraphRep (Metamodel) STRING (Short string)

 HlpTxt (Metamodel) STRING (Short string)

 Positions (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 Visualization (Metamodel) ENUMERATION (Enumeration)

 Is component of _product-structure-construct_ --> _product-structure-construct_

 AttrRep STRING (Short string)

 GraphRep STRING (Short string)

 Name STRING (Short string)

 Positions STRING (Short string)

 association __D-construct__ --> __D-construct__

 AttrRep STRING (Short string)

 GraphRep STRING (Short string)

 Name STRING (Short string)

 Positions STRING (Short string)

 material flow __D-construct__ --> __D-construct__

 AttrRep STRING (Short string)

 XXXV

 GraphRep STRING (Short string)

 Name STRING (Short string)

 Positions STRING (Short string)

 tool flow __D_resource__ --> __D_event__

 AttrRep STRING (Short string)

 GraphRep STRING (Short string)

 Name STRING (Short string)

 Positions STRING (Short string)

 information flow Task --> Storage

 AttrRep STRING (Short string)

 GraphRep STRING (Short string)

 Name STRING (Short string)

 Positions STRING (Short string)

 XXXVI

Appendix C

__S-construct__ (Metamodel)

 __S_group__ (Metamodel)

 __S_container__ (Metamodel)

 __S_swimlane__ (Metamodel)

 Allowed objects (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __S_aggregation__ (Metamodel)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Department

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 XXXVII

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Role

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)
 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __S_person__ (Metamodel)

 Performer

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Availability (Metamodel) EXPRESSION (Expression)

 Calendar (Metamodel) LONGSTRING (Long string)

 Capacity DOUBLE (Floating-point number)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Hourly wages (Metamodel) DOUBLE (Floating-point number)

 Info on results DOUBLE (Floating-point number)

 Model pointer (Metamodel) STRING (Short string)

 Personnel costs DOUBLE (Floating-point number)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 Workload DOUBLE (Floating-point number)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Availability (Metamodel) EXPRESSION (Expression)

 Calendar (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 XXXVIII

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Hourly wages (Metamodel) DOUBLE (Floating-point number)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __S_resource__ (Metamodel)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Hourly wages (Metamodel) DOUBLE (Floating-point number)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 __S_agent__ (Metamodel)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)
 Calendar (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 Format (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Information text (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 Scope (Metamodel) STRING (Short string)

 Visible (Metamodel) ENUMERATION (Enumeration)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

 AnimRep (Metamodel) STRING (Short string)

 AttrRep (Metamodel) LONGSTRING (Long string)

 Class cardinality (Metamodel) STRING (Short string)

 ClassAbstract INTEGER (Integer)

 ClassName STRING (Short string)

 ClassVisible INTEGER (Integer)

 External tool coupling (Metamodel) STRING (Short string)

 GraphRep (Metamodel) LONGSTRING (Long string)

 HlpTxt (Metamodel) STRING (Short string)

 Model pointer (Metamodel) STRING (Short string)

 Position (Metamodel) STRING (Short string)

 VisibleAttrs (Metamodel) STRING (Short string)

 WF_Trans (Metamodel) STRING (Short string)

Relation classes

 Is inside (Metamodel) __S-construct__ --> __S_container__

 AutoConnect (Metamodel) STRING (Short string)

 Is manager Performer --> Department

 AttrRep STRING (Short string)

 GraphRep STRING (Short string)

 XXXIX

 Positions STRING (Short string)

 Has role Performer --> Role

 AttrRep STRING (Short string)

 GraphRep STRING (Short string)

 Positions STRING (Short string)

 Has cross-reference __S-construct__ --> __S-construct__

 AttrRep STRING (Short string)

 GraphRep STRING (Short string)

 Positions STRING (Short string)

 Belongs to Performer --> Department

 AttrRep STRING (Short string)

 GraphRep STRING (Short string)

 Positions STRING (Short string)

 XL

Abstract

Business process modeling (BPM) is a core discipline in today´s business process

management activities. It aims at graphically describing the ever-more complex and

interdependent processes within a company. Many general-purpose BPM languages often fail

to address the specific needs of the respective application domain. Here, the concept of domain-

specific modeling helps to bridge this gap by increasing the level of abstraction of BPM and

enabling the inclusion of domain-specific concepts, rules, and functionality.

When it comes to domain-specific BPM method design, there is no approach so far, which

considers the design, implementation, and modeling phase specifically in the light of the

domain. This thesis presents a life-cycle framework for domain-specific BPM, which focuses

on the systematic evaluation of the domain in order to extract domain-specific concepts, rules,

and functionality. The framework builds on the well-established modeling method engineering

approach, which uses the concept of meta-modeling. It is implemented by using the technology

of meta-modeling platforms.

The hypothesis, that domain-specificity is located on the meta-level of the language, is proven

within this thesis by a literature analysis of existing domain-specific modeling languages. As a

methodology, the Design Science Research approach is used for the development of the Domain

Integration Framework (DIF) as the artifact. The DIF is applied and evaluated in a case study

on the development of a domain-specific BPM tool for modeling an automotive assembly line

process.

Keywords: Business Process Modeling, Domain-specific, Modeling Method Engineering,

Modeling Tool

 XLI

Zusammenfassung

Geschäftsprozessmodellierung (GPM) ist eine Hauptaktivität im heutigen Umfeld des

Geschäftsprozessmanagements. Ihr Ziel ist es, die zunehmend komplexen und voneinander

abhängigen Prozesse eines Unternehmens grafisch darzustellen. Viele allgemeingültige GPM

Sprachen sind oftmals nicht in der Lage, die spezifischen Bedürfnisse der jeweiligen

Anwendungsdomäne darzustellen. Hier hilft das Konzept der domänenspezifischen

Modellierung dabei, diese Lücke zu schließen, indem das Abstraktionsniveau der GPM auf ein

höheres Level gehoben wird, um domänenspezifische Konzepte, Regeln und Funktionalitäten

einzubeziehen.

Wenn es darum geht, domänenspezifische GPM Methoden zu entwickeln, gibt es bis dato

keinen Ansatz, der die Entwicklungs-, Implementierungs- und Modellierungsphase speziell mit

Fokus auf die Domäne betrachtet. Diese Arbeit stellt ein Lebenszyklus-Framework für

domänenspezifische GPM vor, welche sich auf die systematische Evaluation der Domäne

fokussiert, um domänenspezifische Konzepte, Regeln und Funktionalitäten zu extrahieren. Das

Framework baut auf dem bewährten Ansatz des Modellierungsmethoden Engineerings auf,

welcher das Konzept der Metamodellierung verwendet. Die Technologie für die

Implementierung bilden Metamodellierungs-Plattformen.

Die Hypothese, dass Domänenspezifität auf der Meta-Ebene der Sprache angesiedelt ist, wird

innerhalb dieser Arbeit durch eine Literaturanalyse bereits existierender domänenspezifischer

Modellierungssprachen bewiesen. Als Methodik wird der Design Science Research Ansatz

verwendet, um das Domain Integration Framework (DIF) als das Artefakt zu entwickeln. Das

DIF wird im Zuge dieser Arbeit am Beispiel der Entwicklung eines domänenspezifischen

GPM-Tools für die Modellierung eines Automobil-Montageprozesses angewendet und

evaluiert.

Stichworte: Geschäftsprozessmodellierung, Domänenspezifisch, Modellierungsmethoden

Engineering, Modellierungs-Tool

	List of Abbreviations
	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem Statement
	1.2 Research Objectives
	1.3 Research Approach
	1.4 Outline and Focus of the Thesis

	2 State of the Art
	2.1 Business Process Modeling
	2.1.1 Concepts
	2.1.2 Requirements

	2.2 Domain-specific Modeling
	2.2.1 Degree of Domain-specificity
	2.2.2 Frameworks

	2.3 Model and Meta-model
	2.4 Modeling Method Building Blocks
	2.4.1 Modeling Language
	2.4.2 Modeling Procedure
	2.4.3 Modeling Mechanisms & Algorithms

	2.5 Interim Conclusion

	3 Analysis of DSML
	3.1 Domain Specification
	3.2 Quality Evaluation
	3.3 DS Component Identification

	4 Results – the Domain Integration Framework (DIF)
	4.1 Domain-specific Design
	4.1.1 Domain Framework (DF)
	4.1.1.1 Domain Context
	4.1.1.2 Domain Analysis

	4.1.2 Domain-specific User Stories
	4.1.3 Meta-models of Modeling Method Building Blocks
	4.1.3.1 DIF Modeling Language
	4.1.3.2 DIF Modeling Procedure
	4.1.3.3 DIF Modeling Mechanisms & Algorithms

	4.2 Domain-specific Implementation
	4.2.1 Linguistic Matching Heuristic
	4.2.2 Domain-specific Modeling Tool

	4.3 Domain-specific Modeling
	4.3.1 Quality Criteria Evaluation
	4.3.2 Adaptation Log

	5 Proof of Concept – Automotive Assembly Line Case Study
	5.1 Domain-specific Design
	5.1.1 Domain Specification
	5.1.1.1 Domain Context
	5.1.1.2 Domain Analysis

	5.1.2 Domain-specific Requirements
	5.1.3 Domain-specific Modeling Method
	5.1.3.1 Modeling Language
	5.1.3.2 Modeling Procedure
	5.1.3.3 Modeling Mechanisms & Algorithms

	5.2 Domain-specific Implementation
	5.2.1 Linguistic Matching Heuristic
	5.2.2 Domain-specific Modeling Tool – Automotive Assembly Line DSL (AAL-DSL)

	5.3 Domain-specific Modeling
	5.3.1 Models of the AAL-DSL
	5.3.2 Quality Criteria and New Requirements

	5.4 Limitations of the Proof of Concept

	6 Conclusion and Future Outlook
	Literature
	Appendix A
	Appendix B
	Appendix C
	Abstract
	Zusammenfassung

