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Abstract

Recent trends in technology, business and society like cloud and mobile computing lead to
increasingly distributed applications and processes requiring integration. Enterprise Application
Integration (EAI) offers integration capabilities using message passing in the form of integration
scenarios and constitute a centerpiece of current IT architectures. Due to the complex nature
of EAI, the integration scenario logic builds on abstractions derived by best practices, collected
as Enterprise Integration Patterns (EIPs), denoting the current foundation of developing and
modeling EAI logic and solutions.

However, due to increasing distribution, not only the number of communication partners, but
also the data volume and velocity requirements grow beyond processing capabilities of current
systems. Further, personal digitalization trends like social media computing introduce increasing
amounts of non-textual data beyond current variety capabilities and add trust requirements
into the functional correctness and reliability of technology that is now used by non-technical
users. These problems cannot be solved with current informally described integration pattern
foundations or implementations.

This thesis defines formal foundations for EAI that enable the responsible development of
integration solutions, help businesses to trust their correctness, and show how to build effective
and efficient integration solutions.

First, EAI foundations in the form of EIPs are revisited regarding their actuality and com-
prehensiveness in the context of emerging trends, and captured as an extended pattern catalog.
Patterns serve as a basis for the formalization of integration logic and their compositions as inte-
gration scenarios. Then the latter are studied for correctness-preserving optimization strategies,
ensuring the efficiency of integration logic on the composition level. A prototype realization allows
for the formal analysis of integration scenarios, thus addressing the trust challenge. To address
the volume, velocity and variety challenges more efficient pattern solutions are conceptually
developed using new technology trends and evaluated using a newly elaborated EIP benchmark.

In summary, this thesis builds a formal foundation for EAI and shows how this can be used
to meet the trust, volume, velocity and variety requirements of current integration systems.
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Kurzfassung

Technologische Fortschritte in den Bereichen Cloud und Mobile Computing haben nicht nur
einen großen Einfluss auf unser tägliches Leben, sondern auf Unternehmensanwendungen und
Geschäftsprozesse, die durch die fortschreitende Modularisierung und Verteilung immer mehr
Daten austauschen. Die Anwendungs- und Prozessintegration, engl. Enterprise Application
Integration (EAI), ermöglicht die Integration durch Nachrichtenaustausch und hat sich dadurch
zu einem zentralen IT Thema in Unternehmen entwickelt. Um die Komplexität der Entwicklung
von Integrationsszenarien handhabbar zu machen, wurden bewährte Vorgehensweisen als Integra-
tionsmuster gesammelt und stellen die Grundlage für die Entwicklung und Modellierung von EAI
Lösungen dar.

Durch die wachsende Verteilung hat sich jedoch nicht nur die Anzahl der Kommunikation-
spartner erhöht. Die aktuellen EAI Systeme kommen durch das gestiegene Datenvolumen und
steigenden Leistungsanforderungen an ihre Grenzen. Hinzu kommt die Digitalisierung des tägliches
Lebens vieler technisch unerfahrener NutzerInnen zum Beispiel durch Soziale Medien. Dadurch
gewinnen nicht nur heterogenere, Multimediadatenformate an Bedeutung, sondern das Vertrauen
in die Korrektheit und Verl̈sslichkeit der Technologie rückt in den Vordergrund. Diese Probleme
können weder durch die aktuell informell beschriebenen Integrationsmuster noch deren in die
Jahre gekommenen Implementierungen gelöst werden.

Im Rahmen dieser Arbeit werden die formalen Grundlagen der Anwendungsintegration
definiert, wodurch eine verantwortungsbewusste Entwicklung von Integrationslösungen möglich
wird. Das schafft nicht nur Vertrauen in deren Funktionsfähighkeit, sondern unterstützt bei der
Entwicklung effizienterer Lösungen.

Dafür werden die EAI Grundlagen in Form der Integrationsmuster bezüglich ihrer Aktu-
alität und Abdeckung im Rahmen der besprochenen Fortschritte untersucht und der aktuelle
Musterkatalog erweitert. Dieser bildet die Grundlage für die formale Definition von Integra-
tionsmustern und deren Komposition zu Integrationsszenarien. Durch die Formalisierung der
Integrationsszenarien können Optimierungsstrategien entwickelt werden, welche deren Korrektheit
nach der Verbesserung gewährleisten. Die prototypisch untersuchten Möglichkeiten der formalen
Analyse von Integrationsszenarien stellt eine Lösung für das Vertrauensproblem dar. Für die
besprochenen Datenverarbeitungsprobleme und die steigende Heterogenität der Datenformate
werden effizientere Integrationslösungen basierend auf den Mustern konzipiert und mit einem
eigens dafür entwickelten Benchmark analysiert.

Diese Arbeit entwickelt formale Grundlagen der Anwendungsintegration und zeigt wie dadurch
das Vertrauen in aktuelle Integrationssysteme gestärkt und deren Effizienz bezüglich des wach-
senden Datenvolumens und Leistungsanforderungen sowie heterogener Datenformate gesteigert
werden kann.
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.

In an increasingly digitalized and modularized world, the integration of applications, processes
and devices becomes more relevant for companies [GKRH13] as well as for non-technical users,
for whom digital innovations have become companions in their daily life [HPG+12]. Examples of
such integration scenarios include the flexible extension of existing applications by cloud offerings
through integration of Hybrid Applications (i.e., combined cloud and on-premise or company
internal application) [VT17, For16a], the incorporation of context-aware device data into cloud
applications and business networks [RH18], and the integration with social and multimedia
channels [AAB+17].

For traditional application systems and packaged applications (e.g., Enterprise Resource
Planning (ERP), Customer Relationship Management systems (CRM)) integration shall allow for
cases like secure and flexible extension and adaptation to changing requirements such as legal
regulations (e.g., for business trends like postmodern ERP [GKRH13]). In addition, the growing
number of communication partners and heterogeneity (e.g., of message formats) becomes critical for
integration through the advent of cloud applications [BBG11, FLR+14], companies collaborating
via business networks [FGH+98], mobile applications and computing (e.g., [Rot05]), and the
integration of devices or the Internet of Things (IoT) [AIM10] (e.g., vehicle logistics [WHL98],
predictive maintenance [Mob02]). Due to the integration of social media applications (e.g., smart
farming [BH15], social computing [Sch94, WCZM07]), the message format variety extends to non-
textual data (e.g., multimedia data) [AAB+17]. In aftermath, the increasing data workloads and
volume as well as integration qualities like velocity of message processing become more relevant
differentiators for integration vendors. Moreover, the resulting integration scenarios and solutions
become more complex compared to current on-premise integration, which makes a comprehensive
solution even more desirable. While most of the integration logic is now operated outside of its
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creator’s control (e.g., on edge or end-user devices, cloud platforms) [DWC10, KJM+11], it shall
be possible to handle exceptional cases and responsibly develop functionally correct integration
solutions. Enterprise Application Integration (EAI) [Lin00, Lin03, RMB02, Kel02] capabilities and
systems shall address these recent trends, and thus allow for the explicit definition of integration
semantics in a responsible manner for trust as well as efficient processing (cf. [FG13, AAB+17]).

However, for such a trustworthy EAI, comprehensive and sound application integration
foundations are required that allow for a formal definition and reasoning (e.g., through experimental
validation or formal verification) about integration scenarios and their improvements (e.g.,
optimization). Although EAI builds on a foundation in the form of Enterprise Integration Patterns
(EIPs) [Hoh02, WB02, HW04] that abstract from common, complex integration domain aspects,
the patterns are only informally described as best practices, as found in recent studies [FG13]
and acknowledged by the EIP authors [ZPHW16]. Unfortunately, that leaves integration systems
without an underlying formal foundation, and thus without formally defined integration patterns
(incl. execution semantics) and their compositions, essentially integration scenarios. In fact, while
the EIPs from 2004 are still relevant, they are by far not comprehensive and adapted to the new
trends, again acknowledged by the EIP authors [ZPHW16]. While present in most if not all of
the current integration system implementations (e.g., [IA10, SAP19a]), their informal description
neither allows to use them for modeling due to missing execution semantics, nor to validate or
even verify the correctness of current or new integration solutions [FG13]. Furthermore, the
formalization of compositions of integration patterns as integration scenarios is absent (as will be
shown in this thesis). Consequently, the user can neither check the functional correctness of an
integration scenario nor predict, whether an improvement (e.g., optimization strategy) preserves
correctness in advance. For trending deployments on edge devices, mobile phones and cloud
platforms, this can impact not only business applications and processes, but also non-technical
users that rely on the integration capabilities in their everyday lives.

In practice, vendors of classical EAI system (e.g., [Tib17, Sof17]) and more recently cloud
integration systems (e.g., [DEL17, IBM17, SAP19a]), henceforth simply referred to as integration
systems, have reacted with a plethora of vendor-specific and ad-hoc solutions for modeling
integration scenarios, which are not grounded on such a formal foundation. As a consequence, up to
now, none of the integration system vendors provides formally grounded analysis and optimization
techniques. Moreover, while related data-centric domains like database and data processing or
event processing already reacted to critical challenges from the discussed trends (volume, velocity
and variety [KWG13]), integration system vendors still struggle to provide solutions up to the
task. Ideally, it should be possible to specify functionally correct integration scenarios with
techniques for formal analysis and the definition of correctness-preserving improvements, as well
as instantiations into efficient runtime systems.

Thus, while business application vendors struggle to define their modular, but integrated core
of their intelligent enterprise (e.g., [Tha06]) and end-users rely on integration capabilities in their
daily lives, the underlying integration fabric is facing major problems that are currently unsolved.

1.1 Enterprise Application Integration

As a result of the mentioned technical, business and social trends, a transition from monolithic,
packaged applications to modular, distributed, heterogeneous applications takes place (e.g.,
postmodern ERP [GKRH13]). While classical EAI systems constitute a centerpiece of current IT
architectures [Lin00, HW04], the impact of these trends further increases the need for integration.
To better understand what the term integration means in the context of EAI, we classify current
integration approaches in Figure 1.1 by differentiating between several perspectives: application
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Figure 1.1: Different perspectives on integration (similar to [Böh11])

domain, data perspective, realization, and specification method, similar to [Böh11]. Thereby,
we explicitly exclude orthogonal integration aspects such as schema matching or master data
management, since these areas are typically not specifically designed for a certain integration
approach. Regarding the application domain in the context of the specification method, we
differentiate the user-interface-oriented GUI Integration, from message-oriented or application-tier
Process Integration (e.g., [EH06, Kle13]) and Application Integration (cf. EAI), and the more
database-tier, query-based Data Integration (e.g., [Len02, DHI12]) and Information Integration
(e.g., [And81]). The term message-oriented or messaging denotes a data exchange via messages,
and is thus different from other common integration styles such as remote procedure call, shared
database and file transfer (e.g., see classification by Hohpe and Woolf [HW04]). While EAI
systems are based on messaging, the latter two are predominantly found in data and information
integration. The data perspective allows for the separation of integration approaches with respect
to materialized and virtual data. The realization provides a concrete system aspect that represents
the different integration approaches (incl. EAI). Subsequently, the term integration is discussed
in the context of their specification methods.

GUI Integration denotes the integrated visualization of or access to heterogeneous and
distributed data sources (e.g., in the form of Portals [Dia01, Fir07]). In contrast Mashups (e.g.,
[AT08]) are dynamically composed web content for small applications that focus more on content
integration. Both approaches use a virtual, hierarchical network topology.

The categories Application Integration and Process Integration refer to a loosely coupled
integration type, where messaging is used to decouple sender and receiver endpoints. While
both approaches physically propagate and store — and thus materialize — data, application
integration refers to the integration of heterogeneous, non-compliant system or applications,
and process integration refers to a more business process oriented integration of homogeneous
services (e.g., Web services [ACKM04]). In other words, application integration is more data-
centric in terms of the efficient message routing and transformation, and process integration
is more focused on procedural aspects in the sense of controlling the overall business process.
In this context, there exist manifold realizations like ETL tools, Message-oriented Middleware
(e.g., message queuing, Publish-Subscribe) [BCSS99, Cur04, BJ87, EFGK03] and EAI systems
for application integration and Business Process Execution Language Engines (BPEL [Cor02]),
Web Service Management Systems (WSMS [SMWM06]) and Workflow Management Systems
(WfMS [GHS95, VDAVHvH04]), for process integration. Despite working on materialized data,
the latter has a strong focus on user-centric tasks and interaction, and is thus categorized as
user-interface oriented. Note that there were attempts to converge these system categories in the

3



past [Sto02, HAB+05], in the form of overlapping functionalities [Sto02]. For example, process
integration standards such as BPEL are also partially used to specify application integration tasks
(e.g., experimental evaluation by Scheibler et al. [SRL10]), however, that never gained practical
relevance, due to the different concepts and processing models.

Finally, Data and Information Integration refers to database-centric integration approaches,
where huge amounts of data are replicated and integrated, typically from one database to
another [Len02, And81]. In this integration area, the data can be either virtual or materialized
depending on its location [DD99]. Virtual integration denotes a (global) virtual view over
distributed data sources, for which the data is not physically consolidated. Examples for
virtual integration realizations are Virtual Database Management Systems (VDBMS) [KE11] and
Federated DBMS (FDBMS) [SL90, KE11], which both use a hierarchical topology together with
an event model of ad-hoc queries for dynamic integration. In contrast, materialized integration
realizations physically store or exchange data for synchronization or consolidation purposes.
An example for this integration type is Data Stream Management Systems (DSMS) [ACÇ+03,
GÖ03, MWA+03], which allow for complex, continuous queries over the data. The related data
integration via ETL tools [SHT+77, Vas09] follows a data-driven or time-based event model.
Although these approaches conceptually use hub-and-spoke or bus topologies, ETL tools often
use message-oriented data exchange and processing, and is thus categorized as such.

This thesis exclusively considers materializing, messaging integration approaches with a strong
focus on application integration and EAI systems. However, the proposed solutions are applicable
to process integration and partially information integration as well.

1.2 Challenges and Research Gap

Despite EAI being ubiquituous and of enourmous relevance for companies [Gar16, For16b], the
application integration foundations by means of EIPs, and EAI systems, have never fully been set
into context to current trends. We identify IT trends and application scenarios which emerged
after the collection of integration patterns by Hophe and Woolf [HW04] from 2004, and study
the performance of current EAI systems that implement the EIPs. Some of these trends, e.g.,
Cloud and Mobile computing, IoT, Microservices, and API Management , were even recently
acknowledged by the EIP authors [ZPHW16]. The subsequently discussed trends, challenges
and research gaps are analyzed in detail in Chapter 2 and the performance of current EIP
implementations, assessed in the pattern benchmark in Chapter 5. The identified user-facing
modeling aspects are briefly discussed, however, left for future work.

1.2.1 Emerging Application Integration

One major source for identifying new trends is the yearly published “Emerging Technologies Hype
Cycle” report between 2005 and 2017 by Gartner [Gar17]. We focused on the most relevant trends
for application integration today, i.e., we excluded trends like machine learning and analytics in
the analysis presented in this work. The results are depicted in Figure 1.2. Both our literature
review in Section 2.2.2 and our system review in Section 2.2.3 are consistent with the trends
identified by the Gartner reports because both academic research as well as concrete systems
address these trends.

Broadly speaking, the early years (2005 to 2007) are dominated by technology trends like
Service-oriented Architecture (SOA) and Event-driven Architecture (EDA) styles (cf. WSMS
and DSMS in the classification in Figure 1.1). Moreover related technologies like Microservices
are mentioned by Gartner in 2017 [Gar17], and API Management by Forrester for 2016 to
2018 [For16c].
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Figure 1.2: IT trends after 2004 in the context of application integration

The Cloud Computing trend became prominent in 2007 and subsequently led to trends like
Hybrid [VT17, For16a] and Multicloud [BRC10, Pet13] Computing, from 2013 to 2015 and the
move from B2B to cloud-based business networks. Early developments in the Internet of Things
(IoT) became influential even before 2006 to 2008 even though devices were not yet affordable
and widespread. However, with the advent of Mobile Computing in 2010, mobile and IoT devices
and applications (since 2012) started to play a role for application integration. As countless
devices and applications generated an increasing amount of data, Big Data (from 2011) became
influential and a challenge not only for integration systems. Finally, humans increasingly organized
themselves in social media with its momentum from 2008 to 2012, which evolves to personal
computing, supported by wearable and mobile devices and applications.

In Figure 1.3 we associate the trends mentioned in Figure 1.2 with aspects of application
integration. While some of the nodes represent the trends (i.e., without application and integration
system), the edges denote required interaction and (transitive) communication, which also gives
hints on existing as well as new integration scenarios for the different combinations. Node spanning
trends are denoted by dashed-line nodes.

It is noteworthy that for hybrid application integration both on-premise to cloud as well as
cloud to cloud communication become relevant, e.g., for migration of on-premise applications to
the cloud. This raises technical issues like security but also robustness in the presence of errors or
unavailable communication partners. Furthermore, cloud, on-premise and mobile applications
generate communication traffic of an ever increasing scale with respect to the amount of data
but also the number of communication partners. In this cloud setup organizations replace
the bilateral RPC-style communication by asynchronous, message-based interactions which are
mediated by integration systems. When the applications in an EAI scenario are partly hosted
by cloud providers, monitoring becomes more challenging because the interfaces available for
monitoring are often be limited. We also review these and other Non-Functional Aspects (NFAs)
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Figure 1.3: IT trends after 2004 an their relationship to application integration

in our literature review in Section 2.2.2, our system review in Section 2.2.3 and in the context of
real-world integration scenarios in Section 2.4.

1.2.2 New Challenges for Enterprise Application Integration

The classical EAI [Lin00, Lin03, RMB02, Kel02] grounded on EIPs [WB02, Hoh02, HW04]
provides solutions for challenges like the variety problem for textual message protocols until
2004 and beyond. As the EIP authors recently claimed, the patterns are still relevant, however,
do not address the new challenges stemming from recent trends discussed before [ZPHW16].
Subsequently, we discuss the new challenges (Cx) for application integration addressed in this
thesis in the order they are addressed in this thesis.

C1 (Actuality, Comprehensiveness) While the EIP authors claim the actuality of the existing
patterns [ZPHW16], they acknowledge missing pattern categories that recently arose through
the trends or gained importance. Missing pattern categories concern security, error handling
(incl. fault tolerance), multimedia data, conversations, storage, and composition, while
extensions of existing categories are necessary for processing and system management (i.e.,
monitoring). Therefore, an extensive and systematic study is needed that tests actuality
and strives for comprehensiveness through an extension of the EIP pattern language.

C2 (Formalization, Trust) Even with an actual and comprehensive pattern language, the pat-
terns and their execution semantics are still described by example. The current lack of
formally defined patterns, compositions and improvements prohibits formal analysis and
correctness guarantees (e.g., simulation, model checking) during specification or modeling
and optimization, and thus trust in integration solutions (cf. Fahland and Gierds [FG13]).
Moreover, the trending out-of-hand operation models (e.g., cloud, mobile / edge comput-
ing), demand a responsible development of integration solutions (e.g., [Sta14]). Therefore,
suitable formalisms have to be selected or developed, which allow a formal specification of
the patterns, compositions, and optimizations.

6



C3 (Optimization, Complexity) The trends lead to increasingly complex integration scenarios as
we will see on several occasions during this thesis. This is due to the growing number of
heterogeneous communication partners, new processing models (e.g., synchronous streaming,
persistent vs. asynchronous messaging), and evolving message formats. For the integration
scenarios to remain tractable, suitable optimization strategies have to be identified and
formalized that make the message processing more efficient and reduce the complexity of
the scenarios.

C4 (Justification) To judge the effect of a scenario improvement or a more efficient pattern
implementation or solution, a method of justification has to be defined (e.g., in the form of a
benchmark). However, currently no such method is available for measuring and comparing
integration pattern implementations. Therefore individual pattern semantics (microscaling)
have to be tested together with general aspects like increasing volume or concurrency
(macroscaling), and compared for characteristic EAI workloads.

C5 (Volocity) We conveniently combine the data-centric processing challenges of volume and
velocity to what we call “volocity”. Although fast and high volume message processing has
been a challenge and solutions have been proposed before (e.g., data reduction, parallelization
optimization strategies), the new trends fundamentally challenge these solutions. For
example, the conventional EAI system architectures on von Neumann architectures have
problems when routing and transforming data (cf. Chapter 5). Therefore, new pattern
solutions should be evaluated among the currently trending technologies for volocity cases,
as well as justified and compared using a pattern benchmark.

C6 (Variety) EAI addresses the requirement of integrating applications by solving the variety
problem for heterogeneous, textual message formats, however, not for multimedia data and
not for multimodal processing (combined textual and multimedia data). In this context a
uniform configuration of integration scenarios (between pattern foundation and configuration
or modeling level) is challenging. Therefore, the impact of multimedia data on EAI has to
be evaluated and a multimodal processing and configuration model has to be defined.

To make the challenges more tangible, they are set into context of an integration system
reference architecture composed from [Lin00, Lin03, RH15] depicted in Figure 1.4. The diagram
depicts the main aspects of an application integration system from Figure 1.3, along the main
challenges C1–C6 that arise in the context of the changes since 2004.

Challenge C1 (“Acuality, Comprehensiveness”) is at the center of Figure 1.4, since it addresses
the fundamental need of a comprehensive collection of patterns that are actually used. Such
a catalog can probably not be complete, since new trends and thus new challenges will come
up over time. Further, a comprehensive pattern catalog is required to approach challenge C2
(“Formalization, Trust”), which covers the formalization of patterns, their execution semantics
and compositions. Only with the multitude of pattern characteristics of a comprehensive catalog,
suitable formalisms can be selected, applied and evaluated. One application domain of such
formalism on composition level is the formal treatment and study of correctness-preserving (cf. C2)
optimization strategies, which are used to approach challenge C3 (“Optimization, Complexity”)
as well as improved processing of high volume and velocity from challenge C5. This concludes the
challenges with respect to the EAI foundation that denote kind of an intermediate layer between
the design and runtime.

The runtime challenges target the realization of integration patterns as pattern solutions.
There, a solution for challenge C4 (“Justification”) lays the ground for the evaluation of novel, more
efficient pattern solutions demanded in challenge C5 (“Volocity”), which go beyond composition
level improvements through optimization strategies. Finally, challenge C6 (“Variety”), i.e.,
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Figure 1.4: Conceptual EAI system overview with challenges

together with C5, constitutes a domain evolution of the classical EAI toward an emerged
application integration definition.

The language design (e.g., for modeling, configuration, monitoring) and the visualization in
suitable editors is out of scope of this thesis. However, Figure 1.4 illustrates that an attempt in
that direction will find a well-defined EAI foundation.

1.2.3 Research Gap

Fulfilling challenges C1–C6 is essential for a trustworthy and efficient Enterprise Application
Integration. However, the approaches presented in the EAI literature have disregarded these
aspects so far, which denotes the current research gap. The combined trend and literature
reviews show that for the trends and Non-Functional Aspects (NFAs) different solutions have been
proposed, mainly missing formal foundations (i.e., patterns, formalization), and modeling from
the literature study, as well as inefficient pattern solutions and missing justification capabilities.

Formal Foundations

Formal foundations in the form of formalized integration patterns and their compositions (essen-
tially integration scenarios), denote the basis for responsible development of integration solutions.

Patterns Patterns are the predominant solution proposed in literature (cf. Table 2.1 in Chap-
ter 2). Consequently, this work aims to close gaps by providing patterns for NFAs not present
so far (cf. C1). Still pattern descriptions would be necessary in the context of the following
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trends and NFAs. At first, multimedia functions are under-represented. Due to the access to
the end user, multimedia becomes more and more interesting for all kinds of applications (e.g.,
sentiment analysis, monitoring in different domains like medicine or agriculture). For application
integration, this targets the volume (cf. C5), variety and interoperability problems (cf. C6). The
resulting increase of heterogeneity of media formats and communication partners (e.g., cloud appli-
cations, mobile devices, camera phones) demands revisiting the EIPs in the context of multimedia
operations and their semantic aspects. Consequently, the increasing message sizes require the
evaluation of optimization techniques (e.g., message indexing), and more efficient processing styles
like streaming, which the EIP authors also acknowledge [ZPHW16], or data-aware integration
pattern solutions (e.g., [Rit15b]). In general, to address the Big Data challenges of volume
and velocity (cf. C5) requires corresponding benchmarks for pattern as well as for end-to-end
system implementations, which are currently missing (cf. C4). As additional NFAs, only few
of the conversation patterns are supported. For instance, Section 2.2.3 shows that conversation
patterns can provide alternatives to improve the current processing and might become useful
in more complex application or device interactions (e.g., device mesh [Gar17]). The monitoring
of integration scenarios across multiple platforms (e.g., mobile, on-premise, cloud) — including
aspects like raising indicators in case of an event — remains a challenge. This also hints on
further work required for Mobile Computing and IoT, e.g., standardized protocols, conversation or
interaction patterns (incl. data collection, device reconfiguration), and energy efficiency. Finally,
as new trends and NFAs might constantly arise, their analysis with respect to pattern support
becomes a continuous task (cf. C1).

Formalization Starting from the pattern view, formalization is an important step to pre-
cisely specify the semantics of the pattern realizations, as also acknowledged by Fahland and
Gierds [FG12, FG13], i.e., formalization constitutes an important step towards the implementation
and execution of the patterns in integration scenarios (cf. C2). As shown in Table 2.1 (on page
31) formalization approaches have been predominantly proposed in the context of Service-oriented
Architectures (SOA) for validating and optimizing compositions by, for example, mapping them to
Petri nets. Notably, a more formal definition of integration pattern compositions (also suggested
by the EIP authors [ZPHW16]) is required. This would allow for currently missing structural
validations, e.g., using Petri nets — as identified in Chapter 2, as well as semantic, runtime
validations and optimizations on static scenario as well as dynamic, workload data (cf. C3). First
work on the latter was conducted by Böhm et al. [BHP+11], however, it has to be revisited in the
context of the trends and NFAs as well as new technical capabilities (e.g., machine learning of /
for workload patterns, routing conditions, condition orderings). Furthermore, cloud, mobile and
device computing raise new questions about responsible development of integration scenarios and
correctness-preserving optimization strategies. In general, there is still an enormous potential for
elaborating formalizations for both trends and NFAs, specifically, as a non-comprehensive set of
patterns has been proposed by now. A follow-up research topic is how to implement patterns and
pattern compositions in solutions using formal models (cf. overlap of C2, C5–C6).

Modeling

Except few works in the SOA domain providing modeling support for compositions (e.g., [HA10]),
no attention has been paid to model integration-specific aspects so far. For compositions, business
process modeling notations such as Business Process Model and Notation (BPMN) can be used,
however, the integration-specific aspects exceed the modeling capabilities. Nevertheless, conveying
information on the integration scenarios to users is of utmost importance for, e.g., maintenance
and adaptations of these scenarios. Therefore, patterns might help to form the basis for different
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modeling and visualization proposals. It could be envisioned to base integration scenarios on
existing business process modeling languages (e.g., BPMN) in order to keep the mental map of
users, but to enhance them with integration-specific icons. In our recent work [RR15], a first idea
of equipping BPMN with integration icons is depicted for the SAP Cloud Integration eDocument
use case. In general, NFAs like security and multimedia have to be further analyzed. Therefore,
new visual configuration editors, e.g., allowing to “query by sketch” conditions, for integration
scenarios would provide a more adequate, non-textual configuration. In addition, editors and
visual data science (incl. machine learning) tools for scenario-based runtime monitoring, which are
capable of dealing with large amounts of data, could lead to smarter (cross-) integration platform
administration of integration scenarios. In this context, the development of visual modeling
notations, new editors together with extensive user studies become necessary.

Efficient Pattern Solutions

When considering performance measures like message throughput and processing latency (cf.
C5–C6), current integration systems show enormous weaknesses even in microscaling cases for
simple routing patterns (cf. results in Chapter 5, e.g., the content-based router’s route branching
and complex condition evaluation velocity) and macroscaling cases (e.g., increasing volume or
concurrent invocations). However, the required method for justification (e.g., pattern benchmark)
with configurable micro- and macroscaling, accounting for increasing volume and velocity as
well as growing number of communication partners, is currently missing (cf. C4). Finally, the
impact and challenges of multimedia data on EAI have not been studied so far (cf. C6). While
this will not be limited to efficient pattern solutions (cf. pattern research gap), it will make the
development of social media integration scenarios difficult.

Summary

In this thesis we aim to provide solutions for the research gap of a comprehensive pattern
collection (i.e., addressing challenge C1), a formal pattern foundation (i.e., C2–C3), more efficient
pattern solutions (i.e., C5–C6) and means for their justification (i.e., C4). The formal results of
this thesis — especially the pattern composition formalism — might serve as a foundation for
modeling approaches, however, we remind that design time aspects in terms of language design
and modeling are out of scope, and thus we leave the modeling gap for further research.

1.3 Research Questions and Methodology

The most important aspects of the research gap concern the foundations of application integration
in the form of patterns and their composition (incl. composition improvements by way of
optimizations), as well as the efficiency of runtime systems, called pattern solutions, and their
justification. Based on the pattern research gap, this thesis answers the following main research
questions (RQx ):

RQ1 To which extent are the current conceptual foundations of application integration in the
form of the EIPs still sufficient for the new challenges and how can they be updated?

RQ1-1 Are the patterns from 2004 still sufficient in the context of new trends and chal-
lenges?

RQ1-2 Does the existing patten language require extensions?
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Research question RQ1-1 addresses the actuality of the patterns in the context of recent trends,
and thus cover the claim of the EIP authors that the patterns are still valid today [ZPHW16]).
In case existing EIPs have to be adapted or new patterns are required for the trends, question
RQ1-2 targets a pattern identification and update process aiming to provide a comprehensive
pattern collection. Together they should give an answer to overarching question RQ1 regarding
the EAI foundation.

Assuming actual and comprehensive foundations as integration patterns, the formalization
research gap is approached by those research questions:

RQ2 How to formulate integration requirements and scenarios in a usable, expressive and
executable integration language?

RQ2-1 What is a suitable formalism for defining execution semantics of existing and new
patterns?

RQ2-2 What is a sound and comprehensive formal representation of integration patterns
that allows for formal validation of integration scenarios and reasoning?

RQ2-3 What are relevant optimization strategies, and how can they be formally defined on
pattern compositions?

To answer the general research question RQ2, sub-question RQ2-1 sets out to formalize these
foundations starting on a pattern level. Thereby a suitable formalization has to be selected and
used to formally define the execution semantics of all collected patterns. In the context of question
RQ2-2, which addresses the need for sound integration scenarios, formal analysis, simulation and
validation techniques have to be already considered on the pattern semantics level. Together, the
first two sub-questions allow for a responsible development of integration scenarios and solutions,
and build the ground for a formal definition and treatment of correctness-preserving optimization
strategies on the scenario level, addressed in RQ2-3. Thus, answers to RQ2 help to close the
formalization gap for EAI towards trustworthy application integration.

Finally, the efficient pattern solutions and justification gap is addressed by the following
research questions:

RQ3 Which related concepts and technology trends can be used to improve integration processing
and how can the resulting integration solutions be practically realized and compared?

RQ3-1 Which related concepts and technology trends can be used to improve integration
processing and how can this be practically realized?

RQ3-2 How can the benefits and improvements of pattern implementations be measured,
validated and compared?

Data volume, velocity and variety challenges in EAI are shared with related domains like database
management or data processing, and complex event or stream processing. Consequently, the
overarching question RQ3 intentionally includes related concepts and their solutions, which
answers to question RQ3-1 should consider. To assess specific solutions, the development of a
method of justification is targeted by RQ3-2.

More detailed sub-questions are presented later in different sections of the thesis.

The overall process of answering the stated research questions has been guided by a Design
Science Research approach (DSR) dating back to Simon [Sim96], which is tailored to research
in information systems [Wie14]. In contrast to the natural sciences, which describe and observe
natural objects and phenomena in order to understand reality, technology is conceptual as well,
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however, embodied as in implementations or artifacts. In this way, information technology is
the technology used to acquire and process information in support of human purposes, and thus
instantiated as complex organizations of hardware, software, procedures and data in an information
system [MS95]. While this targets questions like “does it work?” or “is it an improvement?”,
natural science is concerned with how and why things are [MS95]. Walls et al. [WWES92]
concluded that IS research builds on the behavioral science paradigm that has its roots in natural
science. That means, design science research can be used to develop and justify theories within
the context of information systems [HMPR04]. In design science research, the design process is
divided into the following iterative steps: awareness of problem (proposal), suggestion (tentative
design), development (artifact), evaluation (justification, performance measures) conclusion
(results) [PTRC07]. A DSR artifact (e.g., design concept, prototype) [HC10] has to be evaluated
in what is called deduction as part of the cognitive research process [VK15]. There, a tentative
design is performed (design process) as prototype, which is studied and measured during the
evaluation phase (design product) [HMPR04, WWES92].

Practically, these phases slightly differ in terms of research activities necessary within each
phase depending on the research question [KGM12]. For example, research questions like RQ1 (and
partially RQ3) that target a comprehensive study of the currently observable state and proposed
hypotheses, will have to combine deductive and inductive research methods. Deductive methods
are often subject to quantitative or exploratory research that targets a better understanding of or
familiarizing with a topic by building hypotheses from an already existing theory and tests it by
analyzing data [VK15]. With that, deductive actions allow for the derivation of more concrete
design decisions, activities which eventually lead to an instantiated artifact and finally methods
leading to a comprehensive evaluation concept allowing generalizations. In contrast, inductive
actions allow for conclusions about the underlying design principles and theories, and thus denote
rather qualitative research. A representative amount of data relevant to the topic or research
question is gathered (e.g., discover integration patterns), patterns in the data are identified, and
theories are developed that explain these patterns. This way, the inductive method fosters a
deeper understanding, produces new knowledge and allows for broad generalizations from specific
observations. Thus, deductive methods allow for testing of inductively generated theories.

This thesis pursues a mix of design science and in some cases explanatory research approaches.
While gaining an overview of the current state of EAI together with the research sub-questions
RQ1-1 and RQ1-2, as well as parts of RQ2-3 (i.e., relevance of existing optimization strategies) and
RQ3-1 (i.e., impact of multimedia on EAI) will require elements of quantitative or exploratory and
qualitative research methods, such as prototypes for the analysis and case studies (cf. [PRTV12]).
The other research questions can be answered through design science research methods like
design and evaluation of artifacts, again through instantiations in the form of prototypical
implementations (e.g., for formalized patterns, compositions, optimization, benchmark, solutions),
but also proofs (e.g., formal analysis), illustrative examples and case studies (e.g., real-world
cloud integration scenarios). Note that artifacts like the development of concepts and their
prototypical implementation in this thesis (e.g., for all aspects of questions RQ2 and RQ3) is in
fact a constructive creation of artificial artifacts (something inherent to design science research).

1.4 Contributions

The main outcomes of this thesis are several DSR artifacts, the majority of which have already
been presented in conference and journal papers. The following list presents these artifacts, the
chapter in which they are presented in this work, and where these results have been published. A
substantial portion of the contents in these chapters is based on the respective publications.
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1. Systematic literature review concerning the research gaps, open challenges, and state-of-the-
art in Enterprise Application Integration, denoting the overall related work (Section 1.2.3
and Chapter 2, respectively)

� Daniel Ritter, Norman May, and Stefanie Rinderle-Ma. Patterns for emerging applica-
tion integration scenarios: A survey. Information Systems, 67:36–57, 2017. [RMRM17]

Figures and tables from this paper are used similarly in Figures 1.2, 1.3, 1.5 and 2.7
and Table 2.1.

2. Assessment of the actuality of existing (answering research question RQ1-1) and identification
of new integration or messaging patterns (cf. question RQ1-2), mostly, but not limited
to integration adapters, exception handling, conversations and security as comprehensive
pattern catalog (cf. RQ1; Chapter 2)

� Daniel Ritter and Jan Sosulski. Modeling exception flows in integration systems. In
Proceedings of the 18th IEEE International Enterprise Distributed Object Computing
Conference (EDOC), pages 12–21. IEEE, 2014. [RS14]

� Daniel Ritter and Manuel Holzleitner. Integration adapter modeling. In Proceedings
of the 27th International Conference on Advanced Information Systems Engineering
(CAiSE), pages 468–482. Springer, 2015. [RH15]

Figures from this paper are used similarly in Figures 2.4 and 2.12

� Daniel Ritter and Stefanie Rinderle-Ma. Toward A collection of cloud integration
patterns. CoRR, abs/1511.09250, 2015. [RR15]

� Daniel Ritter and Jan Sosulski. Exception handling in message-based integration
systems and modeling using BPMN. International Journal of Cooperative Information
Systems, 25(02):1650004, 2016. [RS16]

� Daniel Ritter, Norman May, and Stefanie Rinderle-Ma. Patterns for emerging applica-
tion integration scenarios: A survey. Information Systems, 67:36–57, 2017. [RMRM17]
(also listed above)

Figures and tables from these paper are used similarly in Figures 2.8 to 2.11 and Ta-
bles 2.2 to 2.7.

3. Pattern formalization, formalized pattern catalog and prototype as foundation of application
integration systems (cf. RQ2-1; Section 3.1)

� Daniel Ritter and Stefanie Rinderle-Ma and Marco Montali and Andrey Rivkin and
Aman Sinha. Formalizing application integration patterns. In Proceedings of the 22nd
IEEE International Enterprise Distributed Object Computing Conference (EDOC),
pages 11–20. IEEE, 2018. [RRMM+18]

� Daniel Ritter, Stefanie Rinderle-Ma, Marco Montali, Andrey Rivkin, and Aman
Sinha. Catalog of formalized application integration patterns. CoRR, abs/1807.03197,
2018. [RRM+18]

Figures and tables from these papers are used similarly in Figures 3.2, 3.3, 3.7, 3.9(a),
3.10(a), 3.10(b), 3.17(a), 3.17(b), 3.23, 3.26 and 3.27 and Table 3.1.

The presented prototype was developed in collaboration with Marco Montali and Andrey
Rivkin from the University of Bozen-Bolzano.

4. Formalization of pattern compositions, representing integration scenarios (Section 3.2), and
prototype, identification of optimization strategies as catalog of optimization strategies and
their formalization (cf. RQ2-2 and RQ2-3; Chapter 4)
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� Daniel Ritter, Norman May, Fredrik Nordvall Forsberg, and Stefanie Rinderle-Ma.
Optimization strategies for integration pattern compositions. In Proceedings of the
12th ACM International Conference on Distributed and Event-based Systems (DEBS),
pages 88–99. ACM, 2018. [RMFR18]

� Daniel Ritter, Fredrik Nordvall Forsberg, Stefanie Rinderle-Ma, and Norman May.
Catalog of optimization strategies and realizations for composed integration patterns.
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Figures and tables from this paper are used similarly in Figures 6.33, 6.37 to 6.39
and 6.46 to 6.49 and Tables 6.6 to 6.9.

The main contributions of this thesis target the collection of new best-practices in EAI in
form of patterns, the sound and complete formalization of the foundations in form of patterns,
their compositions and improvements (Part I), and the study of pattern realizations as solutions
(Part II) shown in Figure 1.5. Together, these contributions build the first formal, trustworthy,
multimodal foundations of enterprise application and process integration that allow for responsible
development of efficient integration solutions.

Out of scope Except for the multimedia data variety problem [RRM17], we do not address
the currently vacant research field of application integration modeling and configuration (cf.
modeling research gap), which we leave for future work. We refer interested readers to first
solution attempts using process modeling [Rit14a, Rit14b, RS14, RH15, RS16], which we use in
this thesis for the illustration of example integration scenarios.

1.5 Outline of this Thesis

The structure of this thesis follows the conceptual layers of EAI in Figure 1.5.
In the first part of this thesis (Part I), Chapter 2 investigates and outlines the current EAI

foundations in the form of integration patterns, identifies, assesses and fills the gaps. The resulting
comprehensive collection of integration patterns is fundamental for this thesis.

Consequently, Chapter 3 uses the pattern catalog as knowledge base for the analysis of their
characteristics for the formalization of the patterns (cf. Section 3.1) and their compositions
(cf. Section 3.2). Towards a trustworthy EAI, the compositions are linked to the pattern formalism
to allow for a formal analysis on the overall execution semantics of integration scenarios. Leveraging
and practically applying these results, Chapter 4 comprehensively studies the applicability
of existing optimization and formalizes them compatible to the formalism used for pattern
compositions, thus gaining correctness-preserving improvements of such compositions.

The second part of this thesis (Part II), more practically targets an efficient implementation of
the formal results, called pattern solutions. Therefore, Chapter 5 provides means of justification
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of pattern solutions in the form of a pattern benchmark, grounded on the analyzed pattern
characteristics (called microscaling) and challenges from the general trends discussed in this thesis
(called macroscaling).

As a more efficient implementation of our formalized pattern prototype in Section 3.2,
Section 6.1 designs a pattern solution that approaches the data volume problem by an integration
vectorization technique close to the actual data (i.e., parallel, micro-batch processing in relational
databases). Then, Section 6.2 leverages modern hardware for high velocity messaging through a
specialization of EAI concepts close to the network. Finally, Section 6.3 studies the impact of
multimedia data on EAI overall (i.e., patterns, processing, configuration). Therefore the pattern
benchmark is extended by multimedia data and specifications. Together, the pattern solutions
show possible directions of the evolving EAI domain.

Chapter 7 summarizes the results of this thesis and gives an outlook on future work (e.g.,
modeling language based on formalized pattern compositions).

Note that the chapters follow a common structure of introduction (not shown), preliminaries,
analysis, solution, evaluation, related work and conclusion. However, for better understanding,
Chapters 3 and 4 deviate by moving the preliminaries closer to the corresponding solution, and
the related work in Chapters 3 and 6 is combined and moved to the end of the chapters. For the
latter, the chapters end with a discussion of the conclusions in their respective sections.
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The limits of my language mean the limits of my world.
Ludwig Wittgenstein, 1922 [Wit13]

In this chapter we study the impact of recent trends (e.g., technological, business and social)
on the existing foundations of Enterprise Application Integration (EAI). These foundations
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are embodied by the Enterprise Integration
Patterns (EIPs) from 2004 [Hoh02, WB02,
HW04] that were derived by EAI best prac-
tices at that time, and can be considered as
the buildings blocks, when implementing or
using an application integration system (e.g.,
by modeling integration scenarios) according
to Fahland and Gierds [FG13, p. 1] and the
EIP authors [ZPHW16, p. 18]. Inspired by the
influential work on architectural patterns by
Alexander [Ale77], one can argue that the disci-
pline of computer science started with the iden-
tification and adoption of timeless knowledge
from practical experiences in the form of pat-
terns (e.g., in software engineering [GHJV95],

software architecture [BMR+96, Fow02], and more recently service interaction [BDTH05], conver-
sations [Hoh06], and cloud computing [FLR+14]). These patterns capture the core of a solution
to a reoccurring problem (e.g., [Ale77, GHJV95, Fow02]).
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Similarly, the EIPs denote a structured documentation of abstract integration domain concepts
as a catalog of interrelated patterns, representing a pattern language [ZPHW16]. However,
considering Wittgenstein’s observation about “language limitations” [Wit13] and the influential
trends since 2004, the actuality of these fundamental building blocks as well as the need for
extensions have to be revisited. While the pattern authors recently claimed that the patterns are
still relevant, they acknowledged that contemporary concepts are missing (e.g., exception handling,
stateful conversations) [ZPHW16, p. 14, pp. 17–18]. The concern that recent best practices are
missing is also shared by Scheibler [Sch10, p. 28], and thus, we address the general sub-research
questions of RQ1 “To which extent are the current conceptual foundations of application integration
in the form of the EIPs still sufficient for the new challenges and how can they be updated?” for
pattern actuality and pattern identification, respectively:

RQ1-1: Are the patterns from 2004 still sufficient in the context of new trends and challenges?,

RQ1-2: Does the existing patten language require extensions?,

which we study driven by the following derived hypotheses (Hx ) in a Design Science Research
(DSR) methodology (see Section 1.3):

H1: The existing EIPs do not suffice for all application scenarios after 2004 (→ RQ1-1),

H2: Current system implementations support patterns beyond EIPs (→ argument in favor of
our study),

H3: Some trends are handled in an (yet) immature and ad-hoc fashion (→ premise / justification
for new patterns),

H4: Solutions not in EIPs can be found in real-world integration scenarios for the trends (→
RQ1-2).

More concretely, hypothesis H1 aims to answer question RQ1-1 and hypotheses H2 and H3 provide
arguments in favor of the study and justify the premise for new patterns, before hypothesis H4
settles an answer to RQ1-2. Answering these questions will not only help us to understand the
domain in the context of new trends and challenges (cf. research challenge C1 “Actuality, Com-
prehensiveness”), but also provide comprehensive foundations (with new focus areas), addressing
the pattern research gap in Section 1.2.

Therefore, the existing integration patterns from 2004 [Hoh02, WB02, HW04] are briefly
introduced, and a pattern identification, authoring and application process from the pattern
mining domain (e.g., [Har99, Han12, FBBL14]) is introduced in Section 2.1. Along this process, a
new pattern identification approach is developed in Section 2.2 that allows for several results from
the application integration domain since 2004: (a) research gap analysis, (b) systematic mining
of reoccurring solutions (i.e., best practices), and (c) assessment of the relevance of the existing
patterns. First, the research gap (a) results from a systematic literature study, which denotes the
deductive part of our new mining approach. It reviews approaches closely related to application
integration and integration patterns, which are set into context to the new trends since 2004. We
recall that some of the results were already discussed in Chapter 1 as research gaps. Then, the
results are combined with a systematic system review to inductively derive evidences for new
solutions (b). The system review focuses on Non-Functional Aspects or requirements (NFAs) —
related to the trends — identified during the literature review, thus leading to a list of potentially
missing functionality. At the same time, the system review allows for checking the usage of the
existing patterns in current systems (c). In the pattern authoring step in Section 2.3, the identified
solutions are again described as patterns that extend the existing pattern language. The resulting
extended pattern language is quantitatively evaluated with respect to its comprehensiveness,
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novelty and relevance in Section 2.4 through a study of real-world integration scenarios related to
the trends and their usage of the new patterns.

Henceforth, we refer to the EIPs from 2004 as original and the more recently identified
patterns as extended. Together they denote an integral part of the foundation of this thesis (cf.
chapter overview), since they are instrumental for the further formal definition of a comprehensive,
contemporary EAI foundation. As such, they serve as source of requirements for the formalization
of single patterns, their composition as well as application (e.g., in optimization strategies).
Moreover, a benchmark tailored to evaluating patterns as well as novel pattern implementations
and systems are built on top of these pattern foundations.

Parts of this chapter have previously been published in the proceedings of EDOC 2014 [RS14]
(new exception handling patterns), CAiSE 2015 [RH15] (new integration adapter patterns), a
technical report [RR15] (extended pattern language), and as articles in the IJCIS 2016 [RS16] (new
exception handling patterns) and IS 2017 [RMRM17] journals (pattern identification, authoring,
and evaluation).

2.1 Integration Patterns, Compositions and Mining

First, we briefly introduce the existing integration patterns and their basic composition capabilities.
Then we describe the pattern mining approach in the form of a pattern identification, authoring
and application process.

2.1.1 Integration Patterns

Today, the state-of-the-art foundations of EAI and its system implementations still date back to the
collection of EIPs by Hohpe and Woolf [HW04] in 2004. These patterns ground EAI on a message-
oriented integration style with the characteristics of decoupling senders from receivers, and solving
the connection and variety problems for textual message formats. More precisely, the message-
oriented foundations are based on the Pipes-and-Filters architecture style [PW92, BMR+96,
Meu95] (also known as dataflow), which became an architecture style [BMR+96] for the processing
and exchange of data, and later an integration pattern [HW04]. The enterprise integration pattern
catalog combines Hohpe’s and Woolf’s previous, independent work on “enterprise integration
patterns” [Hoh02] and “patterns of system integration with enterprise messaging” [WB02],
respectively, and actually denotes a pattern language1 (i.e., a matrix of connected patterns [Zdu07]),
which shall help a user during the decision process, when designing and building an integration
system, as recently acknowledged by the EIP authors [ZPHW16]. Thereby, the pattern descriptions
provide a practical, but structured documentation of expert knowledge according to a pattern
format (e.g., name, problem / driving question, forces, solution, related patterns) that can be
comprehensible for non-experts.

The original 61 messaging patterns from 2004 are listed and set into context to EAI system
domain-aspects in Figure 2.12, and thus attempting a first look into the “black box” integration
system from Figure 1.3 (on page 6). The pipes-and-filters style allows for the use of direct
communication as well as message queuing [HW04] for the wiring of the communication and
integration architecture. They are categorized according to the EAI system domain-aspects, for
which they provide an abstraction, by chronologically following the flow of a message and are
briefly introduced and described subsequently.

1We use the terms pattern catalog and pattern language synonymously, despite their subtle differences.
2©The EIP pattern icon, the pattern name, the problem and solution statements and the sketch are available

under Creative Commons Attribution license.
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Figure 2.1: The enterprise application integration patterns from 2004 [HW04]

Message Construction The messaging patterns are grounded in the messaging integration style
(e.g., in contrast to shared database) [RMB02, HW04], and thus the basic EAI domain-aspect is a
Message. This category describes the different types of messages, which are usually required by an
integration solution. A message is described as packets of data, which are exchanged via pipes (i.e.,
Message Channels) and processed by filters (i.e., Message Routing , Message Transformation). The
message types range from a simple Command Message without usable information, over an Event
Message with limited formats and data, to a Document Message with arbitrary, textual formats.
A message can contain additional information like a Return Address and a Correlation Identifier
(e.g., to identify the sender, the request in an asynchronous communication, respectively), or a
Message Sequence (e.g., to decompose large messages to smaller chunks), which might be required
during the message processing.

Message Endpoints The message exchange usually happens between abstract participants,
called Endpoints. As indicated in Figure 1.3 (on page 6), endpoints abstract from different kinds
of applications (e.g., business, cloud, mobile, social), services (e.g., SOA, EDA), and devices (e.g.,
mobile, sensor). The endpoints are connected to the communication channels, and thus act as
sender or receiver of messages, as shown in Figure 2.1.

Message Channels The Message Channels facilitate the exchange of messages between one to
many senders and one to many receivers (e.g., Point-to-Point Channel , Publish-Subscribe Channel).
These channels transport messages of certain format (e.g., Datatype Channel), guarantee certain
service qualities (e.g., best effort or at least once delivery [FLR+14, RH15]), and deal with delivery
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failures (e.g., Dead Letter Channel , Invalid Message Channel). In addition, even more abstract
concepts like Messaging Bridge (i.e., connecting multiple messaging systems) or meta concepts
like Message Bus (i.e., denoting a Message-oriented Middleware [BCSS99, Cur04]) are part of
this category.

Message Routing The routing patterns describe different ways to determine the recipient(s) of
a message. The sender does not need to know the actual receiver, which essentially denotes the
aspect of decoupling allowed by the patterns. Besides the simple structural routing from pipe to
filter, the routing requires access to the message’s data (e.g., Content-based Router, Recipient List)
or even changes the message for a correct routing (e.g., by decomposing one message into several
messages using a Splitter, or combining several, related messages to one with an Aggregator).

Message Transformation The variety and potential incompatibility of the textual formats of
heterogeneous endpoints require message transformations from the senders’ formats into formats
understood by the recipients of a message. The transformation patterns provide a solution to this
second decoupling aspect, allowing the endpoints to remain unchanged. Within the integration
system, the message processing patterns require a standardized access to the data (i.e., common
message format) in the form of a “lingua franca”, which is provided by the Canonical Data
Model, thus solving the variety problem for textual message formats. The solutions contain
changes to the data (e.g., Content Filter, Content Enricher), contextualization of the data (e.g.,
Envelope Wrapper) as well as transport of references with a claim to stored messages that can be
materialized using the claim (e.g., Claim Check).

System Management Loose coupling as well as distributed applications are more difficult to
administrate than a monolithic system. Therefore, a basic set of System Management patterns
allows for the monitoring (e.g., Control Bus, Wire Tap, Detour), tracing (e.g., Message History),
and testing of the system (e.g., Test Message).

2.1.2 Integration Pattern Composition

Most of the single patterns denote atomic building blocks to compose more complex integration
logic. Other patterns like Request-Reply or Composed Message Processor are compositions
of the atomic patterns [HW04]. The atomic and composed patterns can be wired by direct
communication links and Message Channels to integration scenarios in a pipes-and-filter style,
also called pattern compositions. As indicated in Figure 2.1, the filters are single patterns that
are visually represented by a dedicated, explanatory icon (e.g., Router, Translator, Control Bus).
The resulting basic pattern compositions denote an icon notation, introduced by [HW04], which
mainly represents the control flow of the pattern execution, however, with data flow indications
(e.g., message icons, channels).

Example 2.1. The synchronous communication between two endpoints can be realized by the
Request-Reply pattern, shown in Figure 2.2(a)3. A requesting participant constructs a request
message Request, which is transported by a Message Channel Request channel to a responding
participant, returning the corresponding Response message to the request via the reply channel.
The requesting participant does not need to wait for the reply, before continuing the processing.

While the Request-Reply pattern describes the (a)synchronous interaction of endpoints, by
combining messages and channels, Figure 2.2(b)3 shows a more complex composition of atomic
patterns representing a Composed Message Processor pattern. This message processor splits an
incoming message msg, into its parts and routes them individually to subsequent processors. Since
the concept of an arbitrary filter (e.g., user-defined function) does not exist in the original EIPs,

3© The EIP pattern icon, the pattern name, the problem and solution statements and the sketch are available
under Creative Commons Attribution license.
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Figure 2.2: Pattern composition in EIP icon notation (notation from [HW04])

these processors are indicated by unnamed filters. After the processing, the resulting and related
message parts are aggregated according to an aggregation strategy and based on a completion
condition (not shown). The output is a new message msg’. �

The two composed pattern examples in EIP icon notation illustrate the capabilities of
describing integration scenarios on an architecture documentation level. However, recent studies
by Fahland and Gierds [FG13, FG12] as well as this work (see Section 2.3) suggest that the EIPs
do not denote a modeling language. The pattern authors acknowledged that the EIPs rather
represent guidelines, when using an integration system [ZPHW16]. Due to only little and yet
insufficient work on a modeling language (e.g., with respect to execution semantics), we fall
back to one approach based on the Business Process Model and Notation (BPMN) [Gro10] to
illustrate the initial integration scenario examples in this work. The patterns [Rit14b] and their
compositions [Rit14a] are represented by BPMN Collaboration Diagrams, which allow for a more
detailed description of the control and data flows and other (novel) EAI concepts like those
developed in this work like integration adapters [RH15] and exception handling [RS14, RS16]
(see Section 2.3).

Example 2.2. Figure 2.3 shows the BPMN representation of the two patterns from Figure 2.2
in a more expressive way. Thereby, the Request-Reply pattern is denoted by Figure 2.3(a), by a
Requesting participant and a Responding participant. While the control flow is equally denoted
by BPMN Sequence Flows, the data flow uses a combination of BPMN Message Flow and Data
Object with Data Association elements that are grounded in BPMN data definitions unlike in
the EIP icon notation. The synchronous behavior is given by a BPMN Service Task, called
Synch. Call, which receives the request and forwards it to the receiver. The response message
is returned and any errors are handled by a BPMN Intermediate Error Event. Similarly, the
Composed Message Processor in Figure 2.3(b) allows for superior concepts compared to the
EIP icon notation like annotations for multiple-messages forwarded by the Splitter, conditional
and default Sequence Flows, and different BPMN Activity types like the BPMN Script Task.
Furthermore, the Aggregator is a complex pattern that can be abstracted as BPMN Call Activity,
denoting that more complex logic is linked. �

Despite the richer and seemingly suitable syntax of the BPMN-based approach (compared to
the EIP icon notation), the BPMN execution semantics differ from those of the patterns (e.g.,
in terms of message processing [Rit14a] and representation of integration adapters [RH15]). For
further details we refer to our previous work on modeling EIPs [Rit14a, RH15, RS14, RS16].
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Hence, in this work, the BPMN diagrams are used to illustrate certain integration scenarios and
their aspects, but cannot be seen as a sound and complete integration modeling language, and
thus left for future work.

2.1.3 Building Blocks of Integration System Architectures

The notion of the patterns as “building blocks” of integration systems is supported by Trowbridge
et al. [TRH+04], who describe how to design and build an integration architecture on integration
patterns. However, these architectural patterns (e.g., portal, process and data integration) are not
to be confused with the EIPs, on which most of the current integration system implementations
build on. For example, the open source integration system Apache Camel described by Ibsen and
Anstey [IA10] largely follows the patterns as building blocks, and similar to Scheibler [Sch10],
attempts to make the EIPs configurable and executable.

From these system implementations, a common integration system architecture was captured
in [RH15], which is set into context to the EIPs, where possible, in Figure 2.4. The message
endpoint patterns are depicted as sender systems and receiver systems that can engage in different
kinds of conversations (e.g., cf. conversation patterns by Hohpe [Hoh06]) and connect to the
integration system through integration adapters that are partially in the message construction
patterns. These adapters are differentiated by the direction of the data flow as consumer adapters
or producer adapters (vendor-specific variants in terminology possible). The tasks of the adapters
are physical Message Channel, protocol (e.g., HTTP, FTP, JMS) and security handling, and
format conversions (e.g., XML, JSON, CSV) from the external to the integration system internal
format, the Canonical Data Model [RH15]. For security and operations of the adapter (e.g.,
monitoring, scheduling), it has to access a secure / key store and operational database, respectively.
The constructed messages are distributed via a Point-to-Point Channel or Message Queuing
patterns, which require access to the operational database for monitoring and service quality
assurance. An integration runtime executes compositions of message routing and transformation
patterns, henceforth also referred to as message processors. The message processor compositions
are depicted as integration programs (also integration processes), while we call the end-to-end
integration scenario pattern composition, since it consists of patterns. A message processor
requires access to the operational resources according to their characteristics. A small amount of
these operational capabilities are in the System Management patterns.
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In contrast to patterns as a modeling language, the EIPs denote an approximation of practical
integration system implementations, and thus can be regarded as their building blocks or at
least conceptual guidelines, when implementing and using integration systems. However, logical
next questions with respect to the claim by the pattern authors that “the patterns are still
used” [ZPHW16] (actuality) and “whether further best practices arose after 2004” are left
unanswered. Therefore, a systematic study of existing and a mining of new patterns is required
(e.g., in the form of a pattern engineering process).

2.1.4 The Pattern Engineering Process

In the computer science “pattern community”, the pattern identification, authoring and application
processes are defined and discussed by communities like the “Pattern Languages of Programs”
(PLoP) conference, where the EIP authors presented their first pattern catalogs in 2002 [WB02,
Hoh02], as well as the “Transactions on Pattern Languages of Programming” (TPLoP) journal and
regional communities like “European Conference on Pattern Languages of Programs” (EuroPLoP).
Authoring denotes the process of describing and linking a pattern to others and application
stands for the implementation of a pattern in a certain context [FBBL14], this is also called
a pattern solution. Since the identification and authoring of patterns is by large a manual
process, common guidelines for a pattern engineering process (i.e., essentially mining patterns for
a domain) exist in these communities to ensure a continuous / iterative, systematic and rigorous
procedure (e.g., [Har99, Han12, FBBL14]). The resulting patterns are essentially structured
textual documents, describing abstract problem-solution pairs of design problems recurring in a
specific context [FBBL14].

Due to the existence of the EIP pattern catalog from 2004, this catalog is extended rather
than defining a new one. For the assessment of its actuality and potential extensions, we rely
on the continuous pattern engineering process of pattern identification, subsequent authoring
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Figure 2.5: Pattern engineering process (adapted from [Han12, FBBL14])

and application as shown in Figure 2.5. The process essentially constitutes an adaptation of the
procedures by Fehling et al. [FBBL14], used in the context of cloud computing patterns, and
more general work on pattern mining by Hanmer [Han12]. The distinct phases are subsequently
described from pattern identification over pattern authoring to pattern application.

Pattern Identification In the first phase, the relevant information of a domain is structured
and collected. In the domain definition step, the information sources are identified, which are
then constrained to a subset of only the relevant sources in the coverage considerations step. The
information from these sources are captured for found solutions in the information collection step
according to an information format, which are further refined and structured (not shown).

Pattern Authoring The information collected during the previous phase is used to identify
similarities between existing solutions. Based on these similarities, the patterns can be authored.
Therefore, in the pattern language design phase, a format for the pattern language has to be
specified. For example, we evolve the existing EIP language design by the results of a comparative
study of different pattern languages in computer science. The pattern format homogenizes the
information and allows for a structured access by its users. In the primitive definition step, the
descriptions of the pattern primitives are revised and extended. In our case, the existing patterns
are matched with respect to potential alternative usages and new aspects. Eventually, the patterns
are properly authored during the pattern writing step based on the captured knowledge from
the previous steps. In this step, we additionally assess the relevance of the existing patterns by
checking their coverage in the information sources. Then the consistency of the patterns within
the pattern language is revised (not shown).

Pattern Application The application of the patterns can be performed independently, done in
a later part of this work. The application phase starts with the pattern search step that helps to
find a suitable pattern for the task at hand. The solution design is tailored to the technological
domain in the design solution step, to which the resulting implementation of the pattern is
deployed in the instantiation of solution design step. The variance of these implementations
might provide additional information considered in the pattern identification phase.

Although it is unknown whether Hohpe and Woolf followed such a pattern engineering process,
when describing the EIPs, we apply the identification and authoring phases in the subsequent
sections, while the pattern application phase is performed in Chapter 6.
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Figure 2.6: Design science methodology used for systematic pattern identification

2.2 Pattern Identification: From Best Practices to Pat-
terns

This section focuses on the identification part of the introduced pattern engineering process and
focuses on the analysis of the research gap, the assessment of the relevance of the existing patterns
and the mining of new integration patterns following trends since 2004.

2.2.1 Pattern Identification Methodology

The proposed engineering approach relies on the design science methodology (see Section 1.3) as
a rigid method to collect and evaluate new trends mentioned above, to summarize research which
adds new patterns to the original EIPs, and to evaluate these new patterns in the context of
real world application scenarios. Figure 2.6 depicts the research method applied for a systematic
structuring and execution of the pattern identification phase.

Our fundamental theory and motivation for the pattern engineering is: The original EIPs from
2004 do not completely cover new trends in 2016 and beyond. From this we derive hypothesis
(H1), i.e., the existing EIPs do not suffice for all application scenarios after 2004. This hypothesis
is tested based on two observation artifacts, i.e., a systematic literature review in Section 2.2.2 and
a systematic system review in Section 2.2.3. Based on the literature review we analyze whether
new trends and application scenarios can be seen after 2004 and which solutions are provided.
The system review aims at analyzing available systems regarding their support for integration.
Interpreting the literature and system reviews then leads us to the tentative hypothesis (H2)
that current system implementations support patterns beyond EIPs which results in a strong
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demand for systematic description. In order to address the detected gaps we propose new pattern
categories and patterns. In hypothesis (H3) we argue that some trends are handled in an (yet)
immature and ad-hoc fashion, and thus require a structuring in the form of patterns. These
artifacts are then evaluated based on a quantitative analysis of several real-world integration
scenarios following the hypothesis (H4) solutions not in EIPs can be found in real-world
integration scenarios for the trends. Finally, resulting research directions are described.

2.2.2 Deductive Analysis: Literature Review

We conduct a literature review in order to evaluate the hypothesis H1: existing integration
foundations in the form of patterns do not suffice for all application scenarios as set out in
Figure 2.6. The hypothesis raises two questions to be investigated in the literature review, i.e., i)
“are there any topics after 2004 not yet covered by the original EIPs?” and if yes ii) “do existing
approaches provide solutions to these topics?”.

The literature review is based on the guidelines described by Kitchenham [Kit04]. The primary
selection of references was conducted using google scholar (scholar.google.com) on 2016-10-4.
The search string was

allintitle: integration patterns

excluding patents and citations. As a general baseline, only papers after 2004 are considered
as the main theory behind this study is that the EIPs from 2004 do not cover trends in 2016.
Hence the time range was set to 2005 – 2016. Overall this resulted in 525 hits. On these hits, the
following selection criteria were applied:

� relation to computer science, enterprise application integration, service integration, data
integration, system integration

� availability of the document

� written in English

� published in peer-reviewed venues

Altogether, 52 papers were selected as relevant. These 52 papers were further analyzed whether
they contribute as observations to the hypotheses. This resulted in removing 23 papers from
the primary literature list (for example, papers were excluded that focus on data integration).
Then a vertical search was conducted in forward and backward direction, resulting in 43 papers,
including one paper that was added based on expert knowledge. After analyzing these papers, 34
were included in the secondary literature list. Overall, this results in 63 papers for the secondary
literature list.

Processing of Selected Literature – Topics and Trends

At first, all papers from the secondary literature list were analyzed with respect to the topics
they mention. Comparing the harvested topics with the trends identified in the introduction
gives an answer to question i) “are there any topics after 2004 not yet covered by the EIPs?”.
In this first step it is sufficient that a topic is mentioned. It was not necessary that a solution
was provided. As the collected topics are very fine granular and spread widely, they were first
grouped according to the trends mentioned in the introduction.

Figure 2.7 depicts the distribution of topic mentions along trends over time. It can be seen
that SOA (i.e., RPC-style integration [HW04]) plays a dominant role, particularly in the years
2005 – 2013. During this period, some topics such as mashups, cloud, and EDA were occasionally
mentioned. In the last years, i.e., 2014 – 2016 the picture seems to change, turning away from
the strong focus on SOA towards topics such as cloud, hybrid, and IoT.
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Figure 2.7: Distribution of topics mentioned in literature over time

From Figure 2.7 it can be concluded that some of the trends occurred in the literature after
2004 with a dominant occurrence of SOA. Apparently, since 2014 SOA loses significance, and
other trends such as IoT and cloud seem to gain more attention. From the dominance of SOA we
also conclude that a more fine-grained analysis of the mentioned topics is meaningful. Hence, in
the following, summaries for the analyzed approaches are provided, ordered by the topics and
areas they work on. Subsequently, the list of trends will be complemented with Non-Functional
Aspects or requirements (NFAs) mentioned by literature that constitute further important topics
for EAI since 2005. Moreover, if approaches provide solutions with respect to the different topics,
the type of solution will be collected.

Literature Summaries

The approaches identified in the literature search are subsequently summarized. We organize
the summaries chronologically by following the timeline from Figure 1.2. In the context of EAI,
no work was found on the internet of things, social / personal computing, microservices, and
API management, which can be seen as successor of the Service-oriented Architecture trend.
In addition to the trends, for each approach we try to derive additional NFAs as well as the
proposed solutions. The harvested NFAs and solutions are summarized at the end of the section
in Table 2.1 and yield the input for the further analysis.

Service-oriented and Event-driven Architectures According to the timeline, the first
EAI solutions after 2005 were provided by Service-oriented and Event-driven Architectures
representing mostly RPC-style solutions (i.e., a post shared database and file sharing integration
style, compared to messaging like EIPs, according to [HW04]).

Service-oriented Architecture. Hentrich and Zdun present patterns that address data integra-
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Table 2.1: Solutions for trends and non-functional aspects (parentheses mean partial solution)
Trends Patterns [HW04] Formalization

[ZPHW16, PJGM12]
Modeling [Rit14a,
Rit15c, PJGM12]

Service-oriented Architec-
ture

[HZ06, HZ07, HZ09,
ZHVDA06, Zdu08,
ASPT15, GDP09,
KB12, FSLM06,
BDTH05, KH06],
security
[QYZL05, SP08]

[GDP09], adapters
[GMW12, SEG08,
KS08, JZGH11,
WDOV08], control
flow [OVVDA+07],
interact. [LMSW08]

[HA10]

Internet of Things
Event-driven Architecture [PSPP14, PPSP14]
Cloud computing [RR15, MSHP15],

(migration [AFP16])
B2B / Business Network (by example [Rit14a,

Rit15c])
Social / Personal Computing
Mobile Computing SOA device patterns

[MLK10]
Big Data
Hybrid Computing (migration

[AFP16, Man09])
API Management (for SOA [ASPT15])
Mashups [LLX+09, LLX+11],

SOA migration
[CAO+07]

NFAs with evidence

Asynch [HW04] EIPs [HW04], strate-
gies [GR11]

[FG12, FG13]

Security [ASPT15, SP08,
MSHP15, HOS+15,
RCVB10, HDX14]

(for SOA [QYZL05,
SP08])

Media [Gar17]
Synch / Streaming
[ZPHW16]
Conversations [ZPHW16],
[Gar17]

[Hoh06], (for SOA
[BDTH05])

(for SOA [UP06,
LMSW08])

Error Handling [ZPHW16,
MSHP15]

(EIPs [HW04,
Hoh05])

Monitoring [MSHP15,
MLZN09, MN10]

([HW04])
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tion issues such as incompatible data definitions, inconsistent data across the enterprise, data
redundancy, and update anomalies [HZ06]. It is described how to integrate the application-
specific business object models of various external systems into a consistent process-driven and
service-oriented architecture. In summary, the proposed solution combines SOA with patterns,
e.g., refactoring patterns. In [HZ07], the authors propose a pattern language for design issues
of business process-driven service orchestrations. The patterns illustrate how these types of
service invocation need to be reflected in process models in order to integrate processes with
services. Implications regarding the functional architecture are also captured by the patterns.
Specifically, the patterns reflect solutions for general business requirements that can be found in
SOA engagements. Overall, the paper proposes a solution, more precisely, a pattern language
covering, for example, Synchronous Service Activity, Fire Event Activity, and Asynchronous
Sub-process Service.

In subsequent work [HZ09] the authors present solutions to Process-driven SOA patterns in
the sense of a process integration architecture featuring patterns at Macro Flow (business process)
and Micro Flow level (transaction or human), as well as Integration Adapter, Configurable
Dispatcher, and Integration Adapter Repository. These patterns correspond to the ones proposed
in [HZ06]. Furthermore long-running business processes are distinguished from short-running
technical processes. Zdun et al. present a survey of technology-independent patterns that are
relevant for SOA and argue towards formalized pattern-based reference architecture model to
describe SOA concepts [ZHVDA06]. Finally, Zdun describes a federation model to control remote
objects and proposes a solution based on patterns, e.g., broker and software patterns [Zdu08].

Autili et al. discuss challenges posed by the heterogeneity of Future Internet services [ASPT15].
Modern service-oriented applications automatically compose and dynamically coordinate software
services through service choreographies described based on BPMN 2.0 Choreography Diagrams.
The authors state that currently composition and adaptation is often a manual task, hence, they
advocate towards the automatic synthesis of choreography-based systems and describes preliminary
steps towards exploiting Enterprise Integration Patterns to deal with a form of choreography
adaptation. Concretely, an adapter generator and prototype using spring integration is presented.
Example patterns comprise Message Routing Patterns, namely Message Filter, Aggregator,
Splitter, and Resequencer. Overall, this work bridges SOA to EAI using EIPs and protocol
adapters for services. Moreover, it is planned to integrate EIPs with security patterns and message
transformation as future work.

In Gacitua-Decar and Pahl an ontology-based approach to capture architecture and process
patterns is presented [GDP09]. Ontology techniques for pattern definition, extension and com-
position are developed and their applicability in business process-driven application integration
is demonstrated. The proposed solution is an architecture framework for SOA-based EAI as
well as an ontology-based notion of patterns to link business processes and service architectures.
This could be seen as a formalization approach. A SOA service integration framework with a
pattern-based modeling approach is presented by Heller and Allgaier [HA10]. It features con-
trolled extensibility of enterprise systems for unforeseen service integration and can be estimated
as similar to related B2B Integration and Enterprise Application Integration. The framework
leverages structural or behavioral interface mediation techniques. The modeling approach with
adaptation patterns and runtime support is demonstrated with a UI integration prototype in the
automotive domain. Overall, this work suggests pattern-based modeling as solution. Kaneshima
and Braga analyse whether EAI can be conducted by web services and SOA or DB sharing
[KB12]. Both solutions are being adopted by organizations, although they present advantages and
disadvantages that should be analyzed. This work documents these problems and solutions in the
form of patterns like access via Shared Database, direct RPC-style integration via web services,
Intermediate Duplication with access via DB or web services. Hence, the proposed solution is
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based on SOA and patterns.

Umapathy and Purao transform EIPs to web service implementations using a transformation
model called ceipXML [UP06]. The proposed solution comprises conversation models that may
be used to implement interactions among Web services as well as a methodology that generates
the design elements in the form of conversation policies for Web services. Current integration
approaches do not support the end user development requirements for infrequent, situational or
ad-hoc integration and collaboration as stated by Zheng et al. [ZCJ11]. The work differentiates
between UI, component, business logic, resource and data integration. Gierds et al. define an
approach for behavioral adapters based on domain-specific transformation rules that reflect the
elementary operations that adapters can perform; synthesize complex adapters that adhere to
these rules [GMW12]. The proposed solution comprises a formalization, specification of the
elementary activities to model domain knowledge, separating data from control, and a reduction
from adapter synthesis to controller synthesis. An adapter is generated to reconcile mismatches
(e.g., incompatible protocols) in Sequel et al. [SEG08]. The proposed solution is constituted
by a survey of protocol adapter generation (e.g., semi-automated protocol adapter generation).
Gudivada and Nandigam deal with EAI using extensible Web services [GN05]. A solution is
not directly proposed, but rather a practical implementation. Deng et al. combines SOA and
Web service technology to simplify EAI by studying the service-oriented software analyzing and
development characteristics [DYZ+08]. The approach distinguishes between vertical integration
within an enterprise while B2B emphasize on the horizontal integration. Again the paper presents
a more practical implementation.

SOA and Mobile Computing. Mauro et al. [MLK10] target design problems of SOA for mobile
devices with Service Oriented Device Architecture (SODA). For this SOA design patterns like
Enterprise Inventory are analyzed with respect to their applicability to SODA, and new pattern
candidates like Service Virtualization are identified. From these candidates new (device) patterns
including Auto-Publishing, Dynamical Adapter, Server Adapter, Integrated Adapter, External
Adapter are proposed as solutions.

SOA and Mashups. Liu et al. combine several common architecture integration patterns, namely
Pipes-and-Filters, Data Federation, and Model-View-Controller to compose enterprise mashups
[LLX+09]. Moreover, these patterns are customized for specific mashup needs. In [LLX+11]
enterprise architecture integration patterns (e.g., Pipes-and-Filter, Data Federation, Model-
View-Controller) are leveraged in order to compose reusable mashup components. The authors
also present a service oriented architecture that addresses reusability and integration needs for
building enterprise mashup applications. The proposed solutions focus on SOA and mashups,
but no solution to EIPs and new trends is provided. The work by Braga et al. addresses issues
of complexity of service compositions with adequate abstraction to give end users easy-to-use
development environments [BCDM08]. Abstract formalisms must be equipped with suitable
runtime environments capable of deriving executable service invocation strategies. The solution
tends towards mashups and modeling as users declaratively compose services in a drag-and-drop
fashion while low-level implementation details are hidden. However, the solution could not be
clearly identified and is hence not included in Table 2.1 (on page 31). Finally, Cetin et al. chart
a road map for migration of legacy software to pervasive service-oriented computing [CAO+07].
Integration takes place even at the presentation layer. No solution is provided for EIPs and trends,
however, mashups are used as migration strategy to SOA for the Web 2.0 integration challenge.

SOA Security. Qu et al. present six bilateral patterns (Binding, On-demand, Tailor, Composite,
Contract and Migration) and four multilateral patterns (Separated, Shared, Mediated and
Enhanced) as a solution for integrating new services with Grid security services [QYZL05]. For
each pattern, the authors discuss its intent, applicability, participants and consequences. Shah and
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Patel analyze the security requirements for global SOA [SP08]. For security concerns, dynamic
configuration of handlers, sequence, and identification of handlers is proposed as solution. Fisher
et al. provide practical implementations in Java and .NET for interoperable, synchronous, and
asynchronous integration [FSLM06]. Hence, the proposed solution consists of implementation
details for SOA, WS security examples, and best practices such as a secure object handler adding
custom interceptor logic for, e.g., adding digital signatures.

SOA and Business Processes. Ouyang et al. formalize process control flows into BPEL processes
by an intermediate translation to Petri nets [OVVDA+07]. From the same group, Wang et al.
construct and interface adaptation machine that sits between pairs of services and manipulates
the exchanged messages according to a repository of mapping rules. For both approaches, the
proposed solution is a formalization. Lohmann et al. analyze the interaction between WS-BPEL
processes using Petri nets [LMSW08]. Again the proposed solution is a formalization. With a
similar goal, Kumar and Shan aim at simplifying the pattern compatibility based on a matrix
and rules that enable the simplification of checking compatibility between two or more processes
because these prerequisite rules can be applied to each pattern separately [KS08]. The proposed
solution is an algorithm and can hence be subsumed as formalization. Mismatch patterns
that capture the possible differences between two service (business) protocols to adapt and
automatically generate BPEL adapters are presented by Jiang et al. [JZGH11]. They introduce
several dependencies such as transformation dependency (incl. message split), synchronization
dependency, choice dependency (choice among two ore more messages), and priority dependency.
The proposed solution is the formalization of mismatches. Barros et al. propose SOA process
interaction patterns including Send, Receive, Send/Receive, and Racing Incoming Messages
[BDTH05]. Patterns for synchronization problems in the area of process-driven architectures,
e.g., Waiting Activity or Timeout Handler, are introduced by Köllmann and Hentrich [KH06].
Vernadat looks at architectures and methods to build interoperable enterprise systems, advocating
a mixed service and process orientation and the classification of integration levels, physical system,
application, business integration, and enumerates SOA concepts [Ver07]. No specific solution is
proposed. Grossmann et al. derive integration configurations from underlying business processes,
e.g., activities [GSS07]. Future work names exception handling as a challenge, and thus no
solution provided.

Event-driven Architecture (EDA) and SOA. Taylor et al. address the SOA – EDA connection as
service network and provide a reference EDA manual [TYPM09]. As no solution is provided, the
approach is not included in Table 2.1 (on page 31). A theoretical framework for modeling events
and semantics of event processing is provided by Patri et al. [PSPP14]. The formal approach
enables modeling real-world entities and their interrelationships and specifies the process of
moving from data streams to event detection to event-based goal planning. Moreover, the model
links event detection to states, actions, and roles enabling event notification, filtering, context
awareness, and escalation. The proposed solution consists of events and formalization.

Cloud Computing, Business Networks, and Hybrid Applications The successor of grid
and cluster computing is cloud computing that extends B2B to business networks. Moreover,
the coexistence of applications on-premise and in several kinds of cloud platforms is extended
towards hybrid applications.

Cloud Computing. Asmus et al. focus on the migration of enterprise applications to the cloud
[AFP16]. Integration is considered a key factor influencing cloud deployment. Several migration
patterns are described as a basis for enabling enterprise cloud solutions. The following challenges
are named in the paper: data volume, network latency, identity and data security management,
interoperability (i.e., supporting the trends big data, security, and variety as in multimedia).
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Asmus et al. state that “integration pattern can be a starting point in deciding integration
options” [AFP16]. The key areas addressed in the approach include on premise, off-premise private
cloud, cloud integration, cloud service provider, and external users. The integration patterns
refer to process to process and data integration. Overall, the proposed solutions are “patterns
and processes-based” methods for an initial evaluation of the risk and effort required to move
new and existing applications to a cloud service. In our recent work, a collection of integration
patterns derived from requirements of hybrid and cloud applications is presented [RR15], thus
proposing a solution for the cloud and patterns. The main challenge described by Merkel et al.
is a secure integration [MSHP15]. The approach proceeds in a top-down manner by deriving
integration patterns from scenarios and in a bottom-up fashion by deriving patterns from case
study requirements. It identifies the need for security (access control, integrity, confidentiality) as
well as security constraints (e.g., EU Data Protection Directive) and presents an evaluation based
on an architecture with major focus on hybrid and multi-cloud setups. The described patterns
are cross-cloud ESB, usage of ESBs, as well as security patterns as architecture components
such as LDAP. The approach only works in private clouds. Merkel et al. propose future work
on public clouds that involves content encryption, key management, data splitting, computing
with encryption functions, anonymization, data masking, and encrypted virtual machines. They
mention Cross-Cloud Balancer, Cross-Cloud Data Distributor, and replication patterns as further
future work. Other challenges mentioned are cross-cloud monitoring and cloud management. In
summary, the proposed solution are new patterns for SaaS integration and centralized as well as
decentralized multi-cloud integration.

Business Network. Our recent work provides mappings of EIPs integration semantics and patterns
to BPMN-based models as well as an implementation of a business network scenario example
[Rit14a, Rit15c]. Both works do not directly propose a solution to the trends depicted in Figure 2.7
(on page 30), but introduce modeling as a possible solution in the context of EIPs, thus added as
a category to Table 2.1 (on page 31).

Hybrid Applications. A major challenge in hybrid applications is the decision where to host
parts of the application. In this regard, Mansor recommends to bear in mind the patterns in the
envisioned process [Man09]. The work addresses technical challenges when implementing a hybrid
architecture. The proposed solution refers to architectural patterns. A holistic approach for the
development of a service-oriented enterprise architecture with custom and standard software
packages is presented by Buckow et al. [BGP+10]. The system architecture to be developed
is often based on integration patterns for the physical integration of systems. No solution is
provided in the context of this work.

Internet of Things and Big data With affordable and widespread mobile sensors and devices
comes the Internet of Things and together with the immense amount of data from cloud and
mobile computing comes Big data.

Internet of Things (IoT). Heiss et al. collect challenges in cyber-physical systems such as
communication quality, interoperability, and massive amounts of data [HOS+15]. As interesting
requirements they state “placement” (of integration scenarios), e.g., cloud or on-device, the
demand for global optimization, more intelligent devices, networking and cloud and security
including data security and privacy etc., decoupling of layers vs. direct data access for on-top
applications. Rather than proposing a solution, the industrial and business perspectives on such
envisioned platforms are described.

Big data . Ritter and Bross suggest moving-up relational logic programming for implementing
the integration semantics within a standard integration system [RB14]. For this EIP semantics is
translated to relational logic. For declarative and more efficient middleware pipeline processing

35



(e.g., parallel execution, set-operations), the patterns are combined with Datalog. The expressive-
ness of the approach is discussed, and a practical realization by example is provided. Although
no direct solution to the trends is provided the approach directs to “data-aware” EIPs.

General EAI approaches From practical EIP implementations to ideas for new patterns,
formalization approaches, enabling techniques and domain-specific work, this section rounds off
the literature analysis with further EAI challenges.

Practical Aspects. Scheibler and Leymann present a framework for configuration capabilities of
EIPs, specifically for code generation based on a model-driven architecture [SL08]. In [SL05],
EIPs are implemented in IBM WebSphere. Again no solution for the trends is provided, but
a solution to the EIPs through implementation. Thullner et al. analyze EIP coverage in open
source tools and implement a sample scenario in Apache Camel and Mule [TSS08]. No solution
is provided.

EAI Patterns. [Hoh06] presents a pattern language for conversations between loosely coupled
services, i.e., patterns are suggested as a solution. Gonzales and Ruggia deal with response
time and service saturation issues (more requests than can be handled) using an adaptive ESB
infrastructure [GR11]. They propose solutions in the form of strategies, i.e., Delayer, Defer
Requests, Load Balancing, and Cache.

Formalization and Verification. Fahland and Gierds present a conceptual translation of EIPs
into Colored Petri nets, hence providing a formal model based on a system specification using
EIPs [FG12, FG13]. The Petri net based formalizations can be used to simulate and conduct
model checking of pattern compositions. Though the formalization can be understood as a
solution, it does not address any new trends beyond EIPs, thus this approach is not contained
in Table 2.1 (on page 31). A semantic representation of EIPs for automatic management of
messaging resources (e.g., Channels, Filters, Routers) is presented by Patri et al. [PPSP14]. The
application is to connect mobile customers to Smart Power Grid companies. Data is accessed in
the form of alerts from a complex event processing engine using SPARQL queries. The proposed
solution is a formalization for resource management of integration patterns. Basu and Bultan
focus on the interaction behavior in asynchronously communicating systems resulting in decidable
verification for a class of these systems [BB14]. As the proposed solution (formalization) is not in
the context of the trends, it is not included in Table 2.1. Mederly et al. generate a sequence of
processing steps needed to transform input message flow(s) to specified output message flow(s)
[MLZN09, MN10]. The work takes into account requirements such as throughput, availability,
service monitoring, message ordering, and message content and format conversions. Additionally,
it uses a set of conditions, input and output messages, and a set of configuration options. Control
flow ordering is formalized. The work is excluded from Table 2.1 because it provides no solution,
but rather creates parts of integration solutions from the description of what has to be achieved,
not how it should be done.

EAI enabling techniques. The following approaches address different enabling technologies.
However, neither are the presented approaches related to the trends, nor do they propose concrete
solutions. Hence they are not included in Table 2.1. Architectural patterns (e.g., Remote Process
Invocation, Batch Data Synchronization, SOA, Publish-Subscribe, P2P, Broker, Pipes-and-Filters,
Canonical Data model, Dynamic Router) are contributed by Kazman et al. [KSNK13]. This work
constitutes a guideline for IT architects that combines existing patterns. Land et al. integrate the
existing software after restructuring or merger, i.e., address the question of how to carry out the
integration process [LCL05]. Multiple case studies and recurring patterns for vision processes and
an integration process are provided as well. Basic concepts of enterprise architectures including
integration and interoperability are summarized by Chen et al. [CDV08].
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Domain-specific Approaches. Cranefield and Ranathunga integrate agents with a variety of
external resources and services using Apache Camel and the EIP endpoint concept [CR13]. e-
Learning as a growing and expanding area with huge number of disparate applications and services
is addressed by Rajam et al. [RCVB10]. The approach redefines the Model-View-Controller
pattern. It can be further enriched to encapsulate certain non-functional and integration activities
such as security, reliability, scalability, and routing of request. As all these approaches do not
propose a solution directly connected to EIPs and the trends, they are not included in Table 2.1
(on page 31).

EAI Challenges. A survey to motivate some more challenges in the area of enterprise application
integration and to link back to the trends is presented by He and Xu [HDX14]. Further this work
examines the architectures and technologies for integrating distributed enterprise applications,
illustrates their strengths and weaknesses, and identifies research trends and opportunities for
horizontal and vertical integration. Though no solution is proposed, the discovered trends are
strengthened, for example, SOA, personal, mobile, and IoT. The survey also addresses NFAs,
e.g., security, which are collected and serve as input for Table 2.1. Another survey by Panetto
et al. discusses trends and NFAs in enterprise integration [PJGM12]. Moreover, modeling and
formalization (formal methods such as verification) are proposed as challenges, but no concrete
solution provided.

Synthesis and Discussion of Non-functional Aspects

The second aspect of our analysis of trends are topics that were named by Gartner [Gar17] and
Zimmermann et al. [ZPHW16] as relevant or that were identified during the literature review.
However, these topics have a more cross-cutting quality (i.e., relevant for several trends). We call
them NFAs, which we appended to Table 2.1 together with the references that supported them
as challenges as evidence. They are set into context to important aspects, when working with
integration scenarios, namely patterns, formalization and modeling. The focus on patterns comes
from the EIPs [HW04] and supported by many related domains, that capture knowledge and best
practices in the form of patterns (e.g., SOA, Cloud Computing). Panetto et al. [PJGM12] bring
up the formalization (supported by [ZPHW16]) and modeling (supported by [Rit14a, Rit15c])
as additional relevant topics. We now set these topics into context with the references from the
literature analysis in Table 2.1.

For the EIPs, we added asynchronous message processing as Asynch to cover the solutions
in this space, e.g., by [HW04, GR11]. For the NFAs, solutions in the area of formalizations
are proposed by [FG12, FG13] for the validation of pattern composition and business processes.
Another NFA is Security, which was seen as challenge at least by Gartner [Gar17] and in the
literature by [SP08, HOS+15, RCVB10] (in general), by [HDX14] (performance concerns, real-
time integration), and by [MSHP15] (e.g., safe integration, indications that content encryption,
key management and more is missing). Autili et al. [ASPT15] mention the need for security
integration patterns. The solutions for patterns are limited to SOA with patterns like Secure
Service Consumption or Security Handler Information Exchange [QYZL05, SP08].

According to Gartner, multimedia format handling and processing can be seen as a non-
functional requirement [Gar17]. This includes image, video and text image formats, which are
increasingly produced through mobile devices and, e.g., interacted on social media, becoming of
increasing interest for (business) applications.

In the context of the big data challenges of integration systems (from Gartner; e.g., volume,
velocity, stability), (synchronous) streaming protocols are seen as one possible solution. The
authors of [ZPHW16] mention that patterns as well protocols are currently missing in EAI.

With more and more communication partners that result from the trends in Section 1.2.2,
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(stateful) conversational protocols might be required, according to [ZPHW16] and also Gartner
(e.g., device meshes). First ideas have been sketched by [Hoh06] with an initial collection of
conversation patterns, which should be extended [ZPHW16]. For SOA web service conversation
policies [UP06] and interaction patterns [BDTH05] solutions were provided. Formalizations have
been proposed in [LMSW08] for the SOA domain with focus on the controllability of a process.
The proposed solutions for SOA might be transfered to integration processes as starting point for
more general conversation patterns.

To handle erroneous situations during message processing, escalate them and make systems
more fault-tolerant, error handling is seen as a major aspect [ZPHW16, MSHP15]. Hohpe
et al. [HW04, Hoh05] do only cover Dead Letter Channel as solution and sketch some ideas
about the topic. Overall, in the literature, the topic is neither addressed from a pattern,
formalization, nor modeling perspective. While [ZPHW16] mentions missing patterns and
formalization, Merkel et al. [MSHP15] lists Balancing and Distribution, as well as [HDX14]
mentions Fault-tolerance and Message Scheduling as missing aspects. Similarly, the insight into
the current state of affairs, called monitoring, for services and cross-cloud are seen as important
topics in [MSHP15, MLZN09, MN10].

The monitoring of integration processes as well as cross platform monitoring were only
mentioned, however, no solution was provided. The Control Bus, a Wire Tap and the Message
History patterns in Hohpe et al. [HW04] denote partial solutions, which can be used to build a
monitoring solution on integration process level.

2.2.3 Inductive Analysis: System Review

This section reports on the results of a system review to evaluate hypotheses H2 Current system
implementations support patterns beyond EIPs, and H3 Some trends are handled in an (yet)
immature and ad-hoc fashion as set out in Figure 2.6 (on page 28). The system review is based on
the guidelines described in [Kit04] for a horizontal search including “well-established” commercial
application integration systems, more experimental systems from startups, open source systems
and public knowledge in the form of a Wikipedia search. The selection of systems was conducted
on 2016-10-04, and the results of the horizontal search are summarized in Table 2.2. The NFAs
are used to focus the search in those systems.

First, out of 12 systems, seven commercial systems were collected by taking the systems listed
in both the Gartner (Leaders, Visionaries, Challengers) [Gar16] and the Forrester (Application
Integration) IPaaS list [For16b], leading to the following systems: Dell Boomi [DEL17], IBM Cast
Iron [IBM17], Informatica [Inf17], Jitterbit Harmony Cloud Integration [Jit17], Microsoft BizTalk
[Mic17], SAP Cloud Platform Integration [SAP19a], and Oracle Cloud Integration [Ora17]. We
excluded MuleSoft due to its similarity to Apache Camel [IA10], which we selected as an expert
addition from Wikipedia (discussed later).

In addition, two startup systems from the top 20 overall systems were selected due to their
number of followers on angel.co4, namely Tray.io [Tra17] and Zapier [Zap17]. While the former
is striving to build an “Integration Marketplace” for enterprise applications, Zapier is a cloud
integration startup.

Out of 13 open source systems of the Github Hadoop Ecosystem5, we selected Apache Flume
[Apa17a] and Nifi [Apa17b] as data ingestion systems according to the selection criteria (cf
Table 2.2). We excluded the application integration systems Talend (also listed as a commercial
system), Spring Integration and MuleESB for their similarity to Apache Camel as well as Apache
Beam, Apache Sqoop and Spring XD for their similarity to Apache Flume.

4Angel.co, visited 02/2017: https://angel.co/data-integration
5Hadoop Ecosystem on Github, visited 02/2017: https://hadoopecosystemtable.github.io/
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Table 2.2: System review — horizontal search
Category hits selected Selection criteria Selected Systems

Commercial 12 7 Gartner and Forrester
IPaaS Quadrants

Dell Boomi [DEL17], IBM Cast Iron
[IBM17], Informatica [Inf17], Jitterbit
[Jit17], MS BizTalk [Mic17], SAP Cloud
Platform Integration [SAP19a], Oracle
[Ora17]

Startup 20 2 cloud/data integra-
tion, B2B, API,
#followers

Tray.io [Tra17], Zapier [Zap17]

Open Source 13 2 application integra-
tion, data ingestion

Apache Flume [Apa17a], Apache Nifi
[Apa17b]

Wikipedia 34 1 enterprise applica-
tion integration;
non-duplicates

Apache Camel [IA10]

Added Sys-
tems

n/a 3 expert knowledge Cloudpipes [Clo17] (startup), Tibco
[Tib17], WebMethods [Sof17] (commercial)

Removed Sys-
tems

- -

Overall 74 15

The open source integration system Apache Camel [IA10] does not appear in the open source
list, however, it was the only non-duplicate from the other lists that has to be selected, since it
implements the existing EIPs from [Hoh05] and is a role model for many systems like Spring
Integration, or Red Hat’s FuseESB.

The software systems of Tibco [Tib17] and Software AG [Sof17] are wide-spread and influential
integration systems for on-premise with a cloud integration offering and are listed among the
top for wide integration and deep integration for traditional on-premise by Forrester6. Hence we
add them as expert selected additions. We add Cloudpipes [Clo17] from the startup list as cloud
integration system.

That leaves us in total with 15 systems with a good mix of well-established commercial and
startup products, as well as community projects. Since the main focus lies on commercial systems
that are known to be less well accessible for a systematic analysis of their features, we focus on
the publicly available material (i.e., without registration or login) and try to get more information
from underlying open source systems, where possible.

Processing of Selected Systems

EIP Solutions used in System Implementations We start our system review with an
analysis of all selected systems with respect to their implementation of EIP solutions. The EIPs
describe six pattern categories, namely, Messaging Channels, Message Construction, Message
Routing, Message Transformation, Messaging Endpoints and System Management. We focus
the analysis on the two pattern categories of message routing and transformation, since they
represent the core aspects of integration systems. Furthermore we leave out composed patterns
(e.g., composed message processor, scatter-gather), when their single parts are already in the
selection. Table 2.3 (from Boomi to Flume) and Table 2.4 (from Nifi to Webmethods) depict
the solutions found in the system implementations that could be associated to the routing and

6The Forrester Wave: Hybrid2Integration, Q1 2014
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Table 2.3: Original EIPs used in systems (Boomi to Apache Flume)
Pattern Boomi IBM Informatica Jitterbit BizTalk SAP Oracle Flume

Content-based Router
√ √

- -
√ √ √

(
√

)
Message Filter -

√
- -

√
- -

√

Dynamic Router - - - -
√

- - (
√

)
Recipient List - - - - - - - -
Splitter

√ √
(
√

)
√ √ √ √ √

Resequencer - - - - - -
√

-
Routing Slip - - - - - - - -
Aggregator - - (

√
) -

√ √
(
√

) (
√

)

Envelope Wrapper (
√

) (
√

) (
√

) (
√

) - - - -
Content Enricher (

√
) - - (

√
) (

√
)

√
- (

√
)

Content Filter (
√

) - - (
√

) (
√

)
√

- (
√

)
Claim Check (

√
) - - (

√
) - (

√
) - -

Normalizer (
√

) - (
√

)
√

(
√

) (
√

) - (
√

)
Message Translator

√
- (

√
)

√ √ √
- (

√
)

supported
√

, partial (
√

), unknown/not supported −.

transformation patterns.

The Apache Camel system seems to be specifically designed around the EIPs, thus supports
nearly all EIPs and sticks to the original EIPs naming for the respective solutions, which makes
it a benchmark for the others. Most notable deviations are the Envelope Wrapper (i.e., wrap
application data inside an envelope, compliant with the messaging infrastructure) and Message
Translator patterns (i.e., translate one data format into another one; not in transformation
patterns). None of them is directly represented in Camel, however, can be implemented using
UDFs (i.e., user-defined functions like Camel Processor) or scripting (e.g., Camel Script), therefore
marked as partially covered.

The most common routing pattern solutions are the Content-based Router, the Splitter and
the Aggregator. Since the Message Filter is a special case of the Content-based Router and
filter can be used to construct the latter, not all systems provide implementations for both of
them. The Splitter is sometimes implemented according to the description in the EIPs, however,
some vendors decomposed it to its iterative core functionality (e.g., For Each in IBM, Oracle,
Cloudpipes). The Aggregator shows many partial solutions that require user-defined functions
(e.g., Informatica, Oracle, Tray.io), while only few provide its EIP functionality (e.g., Aggregator
in BizTalk, SAP Cloud Platform Integration, Tibco or ContentMerge in Apache Nifi).

The transformation patterns seem to play a major role in the analyzed systems, since most of
them are broadly supported. However, there seems to be a tendency to provide UDF capabilities
and leave the burden to the user to deal with the semantics.

Finally, the dynamic routing patterns (e.g., Dynamic Router), those patterns that contain the
recipient in their content (e.g., Recipient List, Routing Slip), and the Message Resequencer, e.g.,
used for the exactly-once-in-order service quality [RH15], were sparsely implemented. This leaves
the question on their relevance or other components that take over their function.

Summary While some of the EIPs like Content-based Routing or Message Filter, Splitter and
Content Enricher can be found in most of the systems, others are rarely implemented (e.g.,
Resequencer, Routing Slip, Dynamic Router). The analysis of these patterns and their relevance
are left for future work, and thus not analyzed further.
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Table 2.4: Original EIPs used in systems (Apache Nifi to Webmethods)
Pattern Nifi Camel Tray.io Zapier Cloudpipes Tibco Webmethods

Content-based Router
√ √ √

-
√ √ √

Message Filter -
√

-
√ √

- -
Dynamic Router -

√
- - - - -

Recipient List
√ √

- - - - -
Splitter

√ √
-

√ √ √
-

Resequencer -
√

- - - - -
Routing Slip -

√
- - - - -

Aggregator
√ √

(
√

) - -
√

-

Envelope Wrapper - (
√

) - - - - -
Content Enricher

√ √ √
(
√

) (
√

)
√ √

Content Filter
√ √

(
√

) (
√

) (
√

)
√ √

Claim Check -
√

- - - (
√

) -
Normalizer -

√
(
√

) (
√

) (
√

)
√ √

Message Translator
√

(
√

)
√

(
√

) (
√

)
√ √

supported
√

, partial (
√

), unknown/not supported −.

New Solutions not covered by System Implementations We now analyze the collected
systems with respect to their functionalities according to the harvested NFAs from Section 2.2.2,
namely security, media, streaming or more abstract “processing”, conversations, error handling,
and monitoring. Comparing the NFAs with the collected system functionalities, while neglecting
functionalities covered by the EIPs, gives an answer to the question which topics are required
and used in addition. The system functionalities represent an implemented solution as part of an
actual integration system.

Figure 2.8 depicts found solutions not covered by the EIPs by NFAs and system vendor.
During the analysis new NFAs were identified — not mentioned by Gartner, the EIP authors,
or the literature — that seem to play a role in practical terms: stateful integration processes
using storage, (pattern) composition (mentioned in Zimmermann et al. [ZPHW16]), and system
operations. These three new NFAs were included into the analysis of the other systems as well.
All non-related topics are collected as miscellaneous (Misc).

Notably, all identified NFAs are at least partially covered by system implementations, indicating
that solutions in the form of conceptual definitions are required (e.g., as patterns). According to
Mulesoft [Mul19], the major challenges in cloud integration systems are security and management.
The management includes error handling and monitoring, which allow to control the behaviour of
the integration scenarios.

The classic application integration addresses the variety problem for textual message formats
[Lin00]. With the availability of integration systems for “everybody” (e.g., in the form of a cloud
integration system) non-textual formats gain importance.

The trade-off between stateful and stateless message processing is represented by storage capa-
bilities in integration systems, for which nearly all vendors propose a solution and conversations.
The stateful approaches could be represented by conversational protocols, which allow to move
the state from the integration systems to the communication partners (idea sketched in [Hoh06]).
Most of the service qualities (e.g., at-least-once, exactly-once processing) [HW04, RH15] require
stateful integration processes. Consequently, this would require changes in the applications.
Current systems provide only rudimentary support, if at all.

Finally, a broad variety of miscellaneous topics was collected, e.g., sentiment analysis, natural
language translators, but also more general functions like sort, loops, as well as explicit format
handling, i.e., marshalling and type conversion.
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Figure 2.8: Solutions for NFAs not covered by the EIPs by system vendor.

Summary Notably, security and error handling (and monitoring) capabilities are predominantly
found. They address the challenges of security and management. Furthermore, solutions for the
increasing variety of message formats (cf. multimedia) as well as the volume and velocity handling
can be found in the systems are part of new processing types. The storage of data and message
semantics like quality of service are relevant for integration scenarios. This leads to the trade-off
between stateful vs. stateless integration processes, which briefly address in Section 2.3.2. The
(stateful) conversations, which could be part of a solution, are currently under-represented.

System Summaries along NFAs

Security The aspect of confidentiality or message privacy is solved on transport, message and
storage levels. The transport level channel encryption can mostly be specified in the inbound and
outbound adapters in the form of the transport protocol (e.g., HTTPS, SFTP) and guarantees that
the message cannot be read during transmission (e.g., Jitterbit’s Transmission Protection). Once
the message is received by the inbound adapter and handed to the subsequent operation in the
integration process, message privacy can be applied or reversed. Therefore many vendors provide
explicit message encryptors and decryptors (e.g., PGP Encrypt and Decrypt from Dell Boomi,
AES ENCRYPT from Informatica or Encrypt / Decrypt in Apache Nifi), or encrypting adapters
(e.g., FileProcessorConnector in Informatica, FileChannel in Apache Flume, WSSProvider in
Tibco). The encrypted storage of messages helps to protect the message’s privacy in the store,
e.g., can be configured in SAP’s DBStorage and Persist operations. The configuration of the
message privacy solutions mostly include encryption algorithms, key lengths and certificates.
Similarly, the integrity and authenticity of a message can be ensured on the different levels.
Most of the vendors provide configurations for safe and authenticated transport (e.g., using user
and password, certificate or token-based authentication). The transport is considered safe if
changes of the message can be recognized by the receiver and the authenticity guarantees that
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the sender is the expected one. For instance, most of social media endpoints like Twitter and
Facebook use token-based OAuth authentication. In addition, many vendors provide explicit
message signers and signature verifiers (e.g., Digest / Hash function in IBM, Signer and Verifier
in SAP Cloud Platform Integration) as well as safe message storage, e.g., by Jitterbit or SAP
Cloud Platform Integration. For the storage, the authenticity seems to be implied, since the
cloud platform message or data store is used. The availability of integration scenarios is not only
a stability, but also a security concern. Therefore some vendors like IBM, SAP Cloud Platform
Integration provide implicit countermeasures, e.g., redundant message stores with high availability
and disaster recovery, as well as Apache Flume with explicit MorphlineSolrSinks and Kafka
Channel configurations. Finally, changes to the message are tracked for auditing purposes. This
is made explicit as Audit Trails in Jitterbit and Oracle or Service Auditing in WebMethods.

Media The literature review in Table 2.1 (on page 31) shows that there are no solutions for
multimedia processing in application integration or related domains (e.g., SOA, EDA). The system
analysis does only provide few, superficial solutions. For instance, textual representation of binary
content is explicitly configurable in most of the systems (e.g., Base64 Encode / Decode in Dell
Boomi and IBM, Encoder / Decoder in SAP Cloud Platform Integration). These encodings play
a major role when communicating with remote applications, but also when calling services (e.g.,
user-defined operations) using textual message protocols. In addition, most of the vendors allow
user-defined operations in the form of scripting capabilities (e.g., Script, Processor in Apache
Camel, Expressions in Informatica). With that, more complex operations can be performed
like the compression of — usually bigger — multimedia messages. Despite that, pre-defined
compression operators can be found in, e.g., Dell Boomi, Jitterbit, Apache Nifi, which allow to
configure the compression type (e.g., zip). The explicit support of scripting seems to be a general
trend, when representing transformation patterns (see Section 2.2.3). This could either mean that
the implementations are too diverse to formulate a general solution or indicate that the topic was
not considered yet. The support of explicit image processing operations seems to be limited to
Nifi’s ResizeImage and ExtractImageMetadata functions as well as IBM’s Read MIME activity.
The only real multimedia operation is the image resizing, since the metadata simply provide a
format specific capture of the defined image’s meta tags.

Processing While the literature review does not show solutions for message processing, es-
pecially not for “data-aware” or Big Data processing, the systems implement solutions. The
canonical solution for processing larger amounts of data is to scale-out to multiple processing
units, constituting parallel subprocesses. The parallel processing of one message in subprocesses
using a broadcast can be done, e.g., in BizTalk with Create concurrent flows, SAP Cloud Platform
Integration Gateways, or Apache Camel Multicast. Furthermore, the explicit configuration of
parallel processing within an integration process (i.e., not process parallelization) is supported
by, e.g., Dell Boomi using the Flow Control properties, Jitterbit Parallel Processing, Tibco
Non-inline subprocesses and Critical Section as BizTalk Scope batch property. Alternatively, a
more data-centric approach, however, impacting the latency of the process, is micro-batching
[Rit15b]. Vendors like Dell Boomi and Jitterbit also support batch processing of messages using
the Flow Control properties or Chunking configurations. The processing of message streams
allows the system to handle larger amounts of data than the integration system resources would
allow. This more connection oriented approach was identified by Zimmermann et al. [ZPHW16]
as a missing pattern category in the context of synchronous message processing. An explicit
streaming support is provided, e.g., by Jitterbit Streaming Transformation and Apache Camel.
However, not all integration operations or adapters are (conceptually) capable of streaming.
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Conversations Gartner [Gar17] as well as Zimmermann et al. [ZPHW16] mention the impor-
tance of conversations for messaging. These conversations are similar, however, stand in contrast
to the choreography (e.g., [Pel03, ASPT15]) and interaction patterns for services [BDTH05] in
SOA because they denote more complex tasks than sending and receiving data or messages. They
target complex (stateful) conversations as partially covered in [Hoh06]. Some of the systems
allow a timed redelivery of messages in a non-error case (e.g., SAP Cloud Platform Integration,
Apache Camel). This feature is similar to the Contingent Requests pattern in [BDTH05]. For
a conversation, an acknowledgement mechanism would be required similar to [Hoh06]. One
technique of reducing the number of requests to an endpoint is request caching. In Tibco, request
caching can be configured by specifying time slices and operations in the Caching Stage. The SAP
Cloud Platform Integration system allows to map synchronous to asynchronous communications
and vice versa. This becomes necessary when the endpoints’ message exchange mechanisms do
not fit.

Error Handling Error handling is a crucial aspect of integration scenarios [ZPHW16] for the
control and fault tolerance aspects. In the literature we found solution attempts [HW04, Hoh05]
like the Dead Letter Channel pattern for the collection of failing messages, while the systems
implement various, more sophisticated solutions. The fundamental topic for dealing with errors
in integration scenarios is the handling of exceptions. Therefore, most of the systems provide a
“catch-all” capability (e.g., Catch All in IBM), which sometimes even come with an exception
subprocess for more advanced handling (e.g., Exception Subprocess in SAP Cloud Platform
Integration). In addition, vendors like Dell Boomi, IBM, SAP Cloud Platform Integration and
Tibco provide more fine-granular scoping of exception handlers, e.g., down to the single operation.
More advanced topics include escalation, fault-tolerance and eventually prevention techniques.
Most notably, the systems support escalation mechanism like (partial) abortion of complex
processes (e.g., incl. parallel processing) and raising indicators for alerting, as well as message
redelivery on exception for tolerance, and message validation, load balancing (see [GR11]) and flow
control to prevent errors. More recent work [RS14, RS16] — not found in the literature review —
covers all of the found system solutions as patterns and shows their composition. Furthermore, it
introduces the concept of compensations (e.g., for undo operations), which was not found within
the reviewed system implementations.

Monitoring The monitoring of integration scenarios gains importance especially within in-
tegration platforms hosted by a third party and across those platforms in cloud and mobile
computing. The major monitoring aspects found in the systems can be distinguished into UI
components that show important aspects of the system, called monitors, and a rather event-based
registration on the instance level. For example, Dell Boomi supports message change events by
Find Changes, which can be extended to Field Tracking. Oracle supports the latter with Business
Identifiers. That means, user-defined events on technical and business level can be tracked via
conditional events. Examples for monitors can be found in most of the systems across all parts of
an integration scenario (i.e., from adapter or channel, over component, down to message monitors).
The monitors can be fed by built-in and user-defined message interceptors (e.g., in Apache Flume
and Camel), which allow scenario specific monitoring. When integrating hybrid applications,
most systems provide central, cloud monitors instead of local ones.

Storage An integration system requires persistent stores and queues to be operable, e.g., for
System Management and monitoring. In addition, message delivery semantics (e.g., reliable
messaging like “exactly-once-in-order”) [RH15], secure messaging, and legal aspects (e.g., “Which
messages were received and processed?”) must be ensured. In the literature only simple
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messaging related storage are mentioned like the Message Store [HW04], for storing messages
during processing, and the Claim Check [HW04] to store (parts of) the message during processing
and re-claim them later. Consequently, several system vendors identified the need for additional
storage capabilities, summarized as data stores and their access (e.g., DB Update in Jitterbit,
DBStorage in SAP Cloud Platform Integration), as well as memoization and caching during one
instance of a scenario or between them (e.g., Add to Cache in Dell Boomi, Shared Variables in
Tibco, Global Variables in Jitterbit). For secure messaging, security related storage like the Key
Store (e.g., in Apache Flume, Camel and SAP Cloud Platform Integration), for storing certificates
and secure key material, and the Secure Store (e.g., in SAP Cloud Platform Integration), for
storing secure tokens, users, and passwords, can be found.

Composition In Zimmermann et al. [ZPHW16] the composition of EIPs is mentioned as one
of the missing pieces. Many system vendors, e.g., Dell Boomi, IBM, BizTalk, SAP Cloud Platform
Integration, allow subprocess modeling as well as delegation from the main integration process.
One important solution are integration process templates, which are configurable re-use processes.
Many of the vendors support them, however, under different names, e.g., Template integration
process in IBM, Snapshot of Jitterpack in Jitterbit, Blueprint in Cloudpipes.

Miscellaneous The most notable, specific features are explicit or implicit loops, keyword search
and replace as well as content sort and format handling. The implicit loop configurations include
While Loop activity, e.g., in IBM, Looping in BizTalk, and the Loop Collection connector in
Tray.io. Explicit loops are possible in most of the systems by back-references in the process.
Dedicated search and replace functionality is provided, e.g., in Dell Boomi, Jitterbit, and Apache
Nifi. While most type converters are implicit in most systems, marshalling support is made
explicit, e.g., in Jitterbit, SAP Cloud Platform Integration, and Apache Nifi. More “exotic”
functions are text sentiment analysis in Cloudpipes, an Archiving activity in IBM, and a Yandex
language translator in Apache Nifi.

2.3 Pattern Authoring and a Pattern Catalog

This section considers the information collected in the pattern identification phase, defines an
extended pattern format based on the one used for the EIPs and accordingly structures the
information as pattern descriptions. Since the new patterns reference existing ones and build on
each other, they extend the existing EIP pattern catalog. During the execution of the process we
loosely followed the best practices on writing pattern documents by Wellhausen and Fießer [WF12]
and Meszaros and Doble [MD97].

2.3.1 Design of a Pattern Catalog

This section summarizes the findings of the literature and system reviews in the form of a pattern
catalog, capturing and describing the found ad-hoc solutions and functionalities as new patterns.
These patterns can be seen as the starting point of a continuation of the EIPs, but also recent
trends to express domain knowledge as patterns [FLR+14]. In doing so, hypothesis H3 “Some
trends are handled in an (yet) immature and ad-hoc fashion” is targeted. The design goals for
the pattern catalog are:

1. Comprehensiveness, i.e., coverage of system implementations that are not in the literature

2. Novelty, i.e., literature coverage of the missing or only partial pattern definitions for NFAs
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The proposed pattern catalog is summarized in Tables 2.5 and 2.6, categorizing the patterns by
NFAs as Category. The patterns in column Pattern Name are further grouped by sub-categories
as Scope. The descriptions of all patterns contained in the catalog are provided in [RR15] and
two of them are introduced in detail in Section 2.3.2.

Goal 1 (Comprehensiveness): System Implementation Coverage

In detail, comprehensiveness is evaluated by comparing the coverage of patterns with the NFAs
that are not or only partly covered by patterns in the literature, represented by the Scope in
relation to a given Category. The coverage of system implementations reflected by column System
Examples was chosen in order to provide pattern definitions referring to examples (but not all) of
the corresponding system implementations (if at least one vendor supported them). Subsequently,
we refer only to the categories that have relevant for the comprehensiveness of our analysis.

Security Take, for example, NFA Security in relation to scope Confidentiality (see Table 2.5),
for which no comprehensive pattern is provided in the literature on the one side, but system
implementations by, for example, Dell Boomi [DEL17], Informatica [Inf17], or Apache Nifi
[Apa17b] exist. Addressing design goals 1) and 2) led to the set of suggested patterns Message
Encryptor, Message Decryptor and Encrypting Endpoint. Message Encryptor, for example, covers
the system implementations PGP Encrypt / Decrypt, AES ENCRYPT, and Encrypt / Decrypt.

Media Besides formatting patterns for structured message content, the media specific patterns
for unstructured content are under-represented in current system implementations, since there is
only one pattern with direct relation to multimedia processing (e.g., Image Resizer [Apa17b]).
Although there are functionalities for the work on the structured multimedia metadata (e.g.,
Metadata Extractor), further research should target the unstructured multimedia data and
processing (e.g., in the context of synchronous, streaming protocols).

Summary – Comprehensiveness With the pattern catalog we address 94.74% of the NFA
scopes or subcategories (i.e., all but 1 out of 19) derived from system implementations. A
synchronous / streaming pattern elicitation — as also mentioned by [ZPHW16] — was not
conducted in the context of this work, since the system review did not lead to pattern changes
or new patterns, but only adds an additional processing style. However, we consider this an
interesting topic especially in the context of the Media and Big Data trends, and propose a
separate study for this current gap in the future.

Goal 2 (Novelty): Literature Coverage

Now, we set the pattern findings from the literature review for the NFAs — summarized in
Table 2.1 — into context with the new pattern proposals derived from the system analysis. We
exclude the solutions from the original EIPs [HW04], and Media, Synchronous / Streaming
and Composition (not in NFAs, however, came up during system analysis and mentioned in
[ZPHW16]), for which no solutions were found in the literature. In addition, we excluded Error
Handling, since it is comprehensively covered from a pattern perspective and compared to system
implementations in prior work [RS14, RS16] (not found in the literature review).

Security Although some security patterns were proposed in the SOA domain [QYZL05, SP08],
they only provide partial solutions with respect to the NFAs and no solution in the context of
the system review.
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Table 2.5: New integration patterns for NFAs in the context of system implementations from
security to processing without pattern solutions already covered by literature

Category Scope Pattern Name System Examples

Security Confidentiality,
Privacy

Message Encryptor,
Message Decryptor,
Encrypted Message

PGP Encrypt / Decrypt [DEL17],
AES ENCRYPT [Inf17], Encrypt /
Decrypt [Apa17b]

Encrypting Endpoint
/ Adapter

FileProcessorConnector [Inf17], FileChan-
nel [Apa17a], WSSProvider [Tib17]

Authenticity,
Identity

Message Signer,
Signature Verifier,
Signed / Verified
Message

Digest/Hash [IBM17], Signer, Verifier
[SAP19a]

Storage Encrypted / Encrypt-
ing Store

DBStorage, Persist [SAP19a]

Safe Store Most of the vendors
Redundant Store MorphlineSolrSinks [Apa17a], implicit

[IBM17, SAP19a]
Transmission Encrypted Channel Transmission Protection [Jit17]

Safe, Authenticated
Channel

Password, certificate, token-based (Most of
the vendors)

Audit Logl Audit Trails [Jit17, Ora17], Service Audit-
ing [Sof17]

Media Format Type Converterl Type Converterl [IA10, Tra17, Zap17]
Encoder, Decoder Base64 Encode / Decode [DEL17, IBM17],

Encoder / Decoder [SAP19a]
Marshaller, Unmarshaller “Data Format” [IA10], “ConvertJSON-

ToSQL” [Apa17b], “JsonXMLConverter”
[SAP19a]

Compress Content,
Decompress Content

implicit [DEL17, Jit17], Compress Content
[Apa17b]

Custom Script Script, Processor [IA10], Expression [Inf17]
Metadata Extractor Read MIME activity [IBM17], Extrac-

tImageMetadata, ExtractMediaMetadata
[Apa17b]

Unstructured Image Resizer Image Resizer [Apa17b]

Processing Synchronous /
Streaming

- Streaming transformations [Jit17], partially
[SAP19a], streaming [IA10]

Parallel Parallel Multi-
cast, Sequen-
tial Multicast

[Mic17, Sof17, SAP19a]

Join Router implicit [IA10], join [SAP19a]
Other Delegate Process Call [SAP19a], Direct-VM [IA10]

Loop Loop Activity [IBM17], Looping [Mic17]
Find and Replace Search/Replace [DEL17], Control Charac-

ter Replacer [Jit17], Scan Content [Apa17b]
Content Sort Sort [IA10]
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Table 2.6: New integration patterns for NFAs in the context of system implementations from
conversations to composition without pattern solutions already covered by literature

Category Scope Pattern Name System Examples

Conversations Endpoint Commutative Re-
ceiver

-

Timed Redelivery un-
til Acknowledge

-

Fault tolerant Timeout synchronous
request

-

Failover Request Handler Failover Client [Apa17a]
Resources Request Collapsing -

Request Partitioning -

Monitoring Processing Message Cancellation [Mic17, Apa17b]
Usage Statistics [SAP19a, Ora17]

Immediate In-
sights

Raise Indicator [DEL17, Jit17, Mic17, SAP19a]

Detect [Mic17, Apa17b]
Message Interceptor [Apa17a, IA10], implicit [SAP19a]

Monitors Component Monitor [SAP19a, Clo17]
Channel Monitor [SAP19a, Ora17, Zap17, Clo17, Tib17]
Message Monitor [SAP19a, Ora17, Tra17]
Resource Monitor [SAP19a, Tib17]
Circuit Breaker [IA10]
Hybrid Monitor [SAP19a]

Storage Data, Variable Data Store [IBM17, Jit17, SAP19a]
Store Accessor DB Update [Jit17], DBStorage

[SAP19a]
Transient Store Add to Cache [DEL17], Shared Vari-

ables [Tib17], Global Variables [Jit17]
Security Key Store, Trust

Store, Secure Store
[Apa17a, IA10, SAP19a]

Composition Integration Subprocess [DEL17, IBM17, Mic17, SAP19a]
Integration
Subprocess
Template

Template Integration Process [IBM17],
Snapshot [Jit17], Blueprint [Clo17]
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Conversations, Processing In terms of conversation patterns, the system implementations
only showed basic support (see Table 2.6), however, some more can be found in the literature,
showing that this is an area for integration systems to add more features. Although, Barros
et al. [BDTH05] mostly reiterate the original EIPs, there are few patterns that are new in the
context of the system implementations. In the category of multi-lateral communication, the
One-from-many pattern [BDTH05] is a special case of our more general Join Router that we
found in the system implementations (e.g., Apache Camel, SAP Cloud Platform Integration).
The One-to-many send pattern [BDTH05] is similar to the (parallel) Multicast, found in the
systems (e.g., Apache Camel, SAP Cloud Platform Integration), however, some systems have
variants that we captured as Sequential Multicast, which routes messages of the same type to
multiple receivers in sequence to guarantee the successful delivery to all recipients.

Summary – Novelty From the functionality required by system implementations, 59 distinct,
new patterns are derived that were not found in the analyzed literature. However, for 5 out of 7
NFAs (compare to Table 2.1), the literature indicates missing patterns as a research challenge
(see Section 2.2.2), thus supporting the extension of the integration pattern catalog for security
([ASPT15, SP08, MSHP15, HOS+15, RCVB10, HDX14]), multimedia ([Gar17]), synchronous /
streaming ([ZPHW16]), conversations ([ZPHW16], [Gar17]), monitoring ([MSHP15, MLZN09,
MN10]), and pattern composition (from system review Section 2.2.3, [ZPHW16]). In addition,
the system review raises a demand for storage patterns that was not mentioned in the literature.

Solutions for Future Challenges

We propose several new conversation patterns, of which none was found in the system implemen-
tations. The proposed endpoint-specific patterns Commutative Receiver and Timed Redelivery
Until Acknowledgment (similar to the Contingent Requests pattern in [BDTH05, Hoh06]) — that
together denote a solution for a critical trade-off for scalability inspired by [FLR+14] — are
discussed in detail in Section 2.3.2. The other patterns are further discussed in [RR15], and target
the additional conversation scopes: Fault tolerance and Resources. The multi-tenant processing,
conversation patterns (e.g., Cross Scenario and Cross Tenant), patterns that are mostly required
in hybrid and cloud computing setups, are already covered by prior work [RH15], thus not shown.

Toward a more stable system, the Timeout Synchronous Request and Failover Request Handler
patterns are improving the fault-tolerance of the messaging. Especially in the Big Data context,
the resources of an integration scenario or platform become crucial for their stability. Therefore,
the Request Collapsing pattern reduces the number of requests within a conversation. In addition,
the Request Caching reduces the amount of duplicate requests to the same endpoint, while
Request Partitioning optimizes requests to endpoints and confines errors to one request aspect.
Together with other patterns from the literature review and the proposed patterns in this work, we
see clear evidence for required further research. Since none of the patterns was found during the
system review this indicates potential for current application integration system and application
endpoint implementations.

The monitoring of integration scenarios reaches from real-time, scenario-specific processing
to near-real time monitors. One further challenge — also identified by [MSHP15] and partially
covered by the systems with mixed on-premise and cloud integration — is the monitoring across
different platforms (e.g., cross-cloud, across on-premise and cloud).
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2.3.2 Example Integration Pattern Authoring

As an example from the catalog, we selected patterns related to the non-trivial trade-off between
stateful and stateless integration processes (inspired by cloud computing challenges [FLR+14]).
Especially the system review shows that all vendors provide extensive storage capabilities beyond
the EIPs, leading to stateful processes. However, the under-represented conversation patterns
could offer an alternative, thus allowing for stateless processes. While stateless processes have
scalability benefits, they come with some drawbacks that have to be considered. We selected this
trade-off due to its relevance in the context of Big Data, its relevance for Cloud Computing, and
because it addresses one well-represented (i.e., storage) and the currently under-represented, but
important area of (stateful) conversations. Subsequently, we describe the trade-off as problem
description, discuss a suitable pattern format and conclude with two pattern descriptions and
their realization.

Problem Description: Stateful vs. Stateless Integration Scenarios

Operating an integration system requires persistent stores and queues, e.g., monitoring, key or
secure store to achieve security, or auditing for legal reasons. In addition, transactional message
processing (e.g., Aggregator pattern) as well as message delivery semantics (e.g., reliable messaging
like exactly-once-in-order) [RH15] require some persistent state. While the system operability
avoids influencing the message processing by not using shared states between integration scenario
instances, the transactional processing and message delivery semantics of the stateful message
processors (i.e., patterns) usually require shared state. For example, when a stateful Aggregator—
as part of a scenario instance — processes a sequence of messages, a second scenario instance could
be used to distribute the load. However, in the absence of “process stickiness” (i.e., messages
of one sequence are only sent to one instance), the stateful Aggregator in the second instance
has to be able to complete a sequence the other instance started, thus sharing state. Hence,
the shared state imply complex state handling across integration processes in compute clusters
or cloud environments, and this may have a negative impact on their scalability. Alternatively

— following the ideas on (stateful) conversation patterns from Hohpe [Hoh06] — some of the
discussed messaging related storage and message delivery semantics could be moved to “smart”
message endpoints (i.e., applications), which already have a persistent state, thus making the
integration processes stateless.

For example, Figure 2.9 illustrates the trade-off between Exactly-once In Order (EOIO) delivery
semantics within the integration scenario (i.e., requires a stateful Message Store, Resequencer
and Idempotent Receiver [HW04], and transactional Message Redelivery on Exception [RS16])
in Figure 2.9(a) and as a (stateful) conversational approach in Figure 2.9(b). The integration
processes are represented in BPMN 2.0 similar to the notation used in [Rit14a]. An EOIO delivery
requires a transactional redelivery in case of an exception, a message ordering step according to a
sequence of messages in the form of a Resequencer and an Idempotent Receiver, which is able to
deduplicate the messages. Figure 2.9(a) depicts the instance spanning state for the retry and
the resequencing. To avoid a stateful integration process, both capabilities can be moved to the
endpoints (see Figure 2.9(b)). While this will not work for legacy, packaged applications, it results
into an improved scalability within the integration process and moves the resequencing decision
to the receiver. To eventually stop sending, the sender — redelivering the message periodically —
requires a stop event (i.e., an acknowledgment) from the receiver.

The solution’s trade-off are the several messages that are sent by the receiver until an
acknowledgment is received, while being able to process all messages in parallel using stateless
integration process instances. That means, the performance improvements gained through better
scalability and lower latency of the conversational approach — by not waiting for the failure of a
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Figure 2.9: Conversational approach for Exactly-Once-in-Order (EOIO) messaging

sent message — is contrasted by the more resources overall required in case of many failures.

Patterns and Pattern Formats

To formalize the new challenges and the resulting, required capabilities within an integration
system, thus coming to less immature and ad-hoc solutions (cf. H3), we propose to express
them as patterns. Similarly, expert knowledge and best practices were already collected for
software design by Gamma et al. [GHJV95], EIPs by Hohpe et al. [HW04], and recently for
cloud computing patterns by Fehling et al. [FLR+14]. For a suitable pattern representation, we
compare their pattern formats in Table 2.7, and select common categories for our proposal.

Table 2.7: Common pattern formats: Enterprise Integration Patterns (EIPs) [HW04], Cloud
Computing Patterns (CCP) [FLR+14], Design Patterns (DP) [GHJV95]

Categories Description EIPs CCP DP

Name pattern identifier
√ √ √

Icon visual representation
√ √

-
Problem / Driving Question /
Motivation

difficulty as question
√ √ √

Intent statement about design issue - -
√

Also known as other pattern names - -
√

Context / Motivation introduces problem domain
√ √ √

Forces, Applicability problem constraints
√

-
√

Solution how to solve the problem
√ √

-
Sketch, Structure illustrate solution

√
-

√

Participants, Collaborations participants, responsibilities - -
√

Results / Consequences how to apply the solution
√ √ √

Next / Related Patterns related patterns, differences
√

-
√

Sidebars / Implementation / Code pattern variations
√

-
√

Examples / Known Uses real system examples
√ √ √
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From the analysis of several known pattern formats in Table 2.7, we selected: name, icon,
driving question, context, solution, results, and known uses to round-off the description. We leave
out the separate categories of forces (i.e., problem constraints) and implementation (i.e., pattern
variants), which we include into the selected context and known uses categories, respectively. The
pattern descriptions in [RR15], add a Data Aspects category (not further discussed here), which
gives even more insight into the configuration of the pattern solutions.

Pattern Examples and Realization

From the problem description we take three capabilities that are required to represent an EOIO,
while keeping the integration processes stateless. We summarize the capabilities to the following
two patterns, for which we explain the realization: Commutative Receiver and Timed Redelivery
until Acknowledge. In addition, we require the Quick Acknowledgment pattern from [Hoh06].

Commutative Receiver The commutative receiver accounts for two tasks: message dedu-
plication and out-of-order handling. Therefore, the application’s state is re-used, hence no
additional state in the integration process is required.

How to ensure idempotent, in-order message processing without
intermediate state in the form of persistent integration scenarios?

(Icon: the icon uses the icon notation from [HW04], combining the in-order sequencing as
well as the idempotent storage.)
Context: Out-of-order communication with endpoints / applications.
Solution: Guarantee that endpoint / application handle arriving out-of-order messages will
be stored within their sequence and only then processed, if the sequence is (partially) complete
and in the correct order.
Result: This solution handles out of order messages and applies them in-order within the
application endpoint.
Relations to other patterns: This pattern is an extension of the Idempotent Receiver from
[HW04] with additional Message Sequence handling.
Known uses: not found in literature or system review, however, Microsoft advices developers
to implement commutative endpoints in the context of micro servicesa.

aMicrosoft application architecture guide – designing service applications, visited 5/2019: https://msdn.

microsoft.com/en-us/library/ee658114.aspx.
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Timed Redelivery until Acknowledge The commutative receiver moves the message re-
delivery on exception from the integration process to the sender application, while conducting
an asynchronous communication. Hence, no exceptions are propagated back to the sender,
however, the redeliveries are stopped by asynchronously received Acknowledgments from the
receiver (via the integration system). Until then, the messages are resent with increasing delay
to reduce the load of duplicate messages.

How to ensure that a message will be received without intermediate
storage, e.g., in the form of Redelivery on Exception [RS16]?

(Icon: the icon uses the icon notation from [HW04], combining delayed message send with
asynchronous reception of acknowledgments using a transactional store.)
Context: This pattern is used for asynchronous communication with message delivery guar-
antees.
Solution: Instead of relying on intermediate storage and retry within the integration system,
the application sends multiple instances of the same message with configurable timings until
the actual receiver endpoint acknowledgments (e.g., Quick Acknowledgment [Hoh06]) reach
the sender. Requires an Idempotent [HW04] or Commutative Receiver for certain message
delivery semantics [RH15].
Result: Send copies of the same message asynchronously until the receiver’s acknowledgment
reaches the sender.
Relations to other patterns: This pattern is an extension of the Retry pattern in [Hoh06],
and related to the Redelivery on Exception pattern in [RS16].
Known uses: – (not found in literature or system review).

Solution Summary As an extension of the existing pattern catalog a Timed Redelivery until
Acknowledge pattern would be required that makes multiple attempts to deliver a message
(potentially with exponential back-off delay). That might result in duplicate message instances,
sent to the receiver. Assuming a stateless integration process, an idempotent receiver [HW04] is
required to detect and handle the duplicates. The sketched conversation works fine for exactly-once
processing semantics [RH15]. However, for ensuring in-order message processing (e.g., create sales
order, before update), it would not be sufficient. A stateless integration process cannot reliably
re-order the incoming messages, delegating this task to the receiver application. The receiving
application has to handle incoming messages in an associative and commutative way (e.g., handle
update, before create). An implementation of this Commutative Receiver pattern can be found in
the microservice context (e.g., service applications). When the receiver has received all messages
belonging to one message sequence (i.e., without duplicates), it sends an acknowledgment that
is asynchronously processed by the sender, which stops the sender redelivering corresponding
messages immediately.
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2.4 Quantitative Analysis

In this section we conduct a quantitative analysis of integration scenarios to study the usage
of original EIPs and the new patterns from the pattern catalog in Section 2.3. We selected the
SAP Cloud Platform Integration system from the review (see Section 2.2.3), for which we found
“real-world” examples of all scenarios from Figure 1.3 (on page 6). With over 5, 000 customers
and several hundred integration scenarios delivered as standard content SAP Cloud Platform
Integration represents a cloud integration system for application and data integration. The
analysis targets the claim “The original EIPs of the 2004 book are all widely used in praxis”
and hypothesis “H4: Solutions not in EIPs can be found in real-world integration scenarios for
the trends”. Therefore, we firstly select several scenarios along the identified trends and briefly
describe them. Secondly, we evaluate found original EIPs and new solutions.

2.4.1 Integration Scenarios

Originally, EAI focused on the integration of applications within a single organization. However,
as hosting (parts of) applications in the cloud becomes increasingly popular, EAI also needs
to address scenarios where applications that are hosted in the cloud or on-premise (i.e., within
company networks) need to be integrated. We refer to such scenarios as hybrid applications,
following Forrester [For16a]. Especially hybrid applications require a stronger decoupling to
integrate on-premise with cloud applications, and consequently, hybrid applications prefer to
use (asynchronous) message-based communication patterns, while RPC-style integration is still
quite common for EAI in on-premise setups. Most of the current research focuses on RPC-style
Service-oriented Architecture (SOA). The new trends — set into context denoted by edges via
the integration system node in Figure 1.3 — can be summarized as integration scenario domains:

� On-Premise to Cloud: Most organizations productively run on packaged, on-premise
applications. They need to connect these applications with cloud applications for various
reasons, e.g., extensions for legal reasons or new functionality, to connect with business
partners. This integration domain is called hybrid integration [For16a].

� Cloud to Cloud or Business Network (including social): Native cloud applications or cloud
integrated on-premise applications interact with business partners in business networks
(e.g., payment, financial, supplier relationships), connect to social networks (e.g., social
marketing) or consume cloud services (e.g., machine learning).

� Device to Cloud (including mobile and personal computing): What starts with business
applications on “bring your own device” for mobility, extends to intelligence brought to
machines (e.g., sensors and actuators in smart logistics or production) and eventually comes
down to sensors and devices for personal computing.

We left out the conventional On-Premise to On-Premise application integration and other
variations due to our focus on new trends. For the quantitative analysis, we selected one application
integration solution for each of the new scenario domains, and we added one for cloud to cloud
and business networks due to the slight focus on these domains. The solutions can be visited as
SAP Cloud Platform Integration standard content [SAP18a].

SAP Cloud for Customer (C4C) The C4C solutions for the communication with on-
premise Enterprise Resource Planning (ERP) and Customer Relationship Management (CRM)
applications, abbreviated c4c-erp and c4c-crm, can be considered a typical hybrid corporate to
cloud application integration [SAP18a]. The dominant integration styles — according to the
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Figure 2.10: Scenarios using original EIPs

classification in [Lin00] — are process invocation and data movement. The state changes (e.g.,
create, update) of business objects (e.g., business partner, opportunity, activity) as well as master
data in the cloud or corporate applications (e.g., ERP, CRM) are exchanged with each other.

SAP Financial Services Network (FSN) In contrast to C4C, FSN [SAP18b], abbreviated
fsn, is a cloud-based, business network that connects banks and other financial institutes with
their corporate customers (e.g., for payments, bank account management). The predominant
integration style is process invocation [Lin00], and besides reliability, the major focus lies on
secure message exchange.

SAP Cloud Platform Integration eDocument/Electronic Invoicing (eDocument) The
SAP Cloud Platform Integration eDocument/Electronic Invoicing is a solution for country-specific
electronic document management [SAP18a]. The edocuments solution helps cooperations to
interact with legal authorities (e.g., implement the new EU Data Protection Regulation7).

SAP Predictive Maintenance and Service (PdMS) In PdMS [SAP18a], machine data is
collected using an Internet of Things (IoT) platform and enriched with business information
coming from, e.g., SAP Business Suite. This allows real time monitoring of the machine that
triggers alerts resulting in service tickets in SAP CRM or ERP. Based on that any unusual trends
or behavior becomes visible and appropriate action, potentially avoiding unnecessary service costs,
can be taken.

7EU – General Data Protection Regulation, visited 5/2019: https://eur-lex.europa.eu/legal-content/EN/

TXT/?uri=CELEX%3A52012PC0011.
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Figure 2.11: New capability categorization

2.4.2 Scenario Analysis

For the analysis of the SAP delivered standard content in this paper, we prototypically implemented
data discovery and mining capabilities into the SAP Cloud Platform Integration system, which
identified a total of 154 distinct integration scenarios (c4c-erp: 42, c4c-crm: 37, fsn: 56, edocument:
13, pdms: 6).

The total number of patterns for all scenarios is 1501 (without adapters, endpoints). For the
more “classical” integration scenarios in c4c-erp and c4c-crm nearly all integration patterns could
be covered by original EIPs from [HW04] (apart from second level configuration on monitoring
and exception handling). For the cloud integration scenarios fsn and eDocument as well as for the
pdms IoT scenario, 466 new requirements (and 597 complementing, second level configurations)
were needed in total, out of which 66% are covered by existing EIPs (i.e., 1025 capabilities in
total). This means that for these integration scenarios approximately 1

3 of the required patterns
are not covered by the original EIPs.

Pattern Solutions covered by the EIPs The distribution of patterns covered by original
EIPs is depicted in Figure 2.10. Not all EIPs were required in the scenarios of the integration
solutions, however, nearly all of them facilitate the tasks of (i) Message Construction: solu-
tions Document Message and Request-Reply; (ii) Messaging Channels: solution P2P Channel ;
(iii) Message Routing: solutions Content-based Router, Splitter, and Aggregator; (iv) Message
Transformation: solutions Content Enricher, Content Filter, and Message Translator.

New Pattern Solutions Additional pattern solutions are covered by integration capabilities,
depicted in Figure 2.11. We grouped the new solutions according to the pattern catalog from
Section 2.3 and added the corresponding pattern proposals for each of them. While approximately
half of the new patterns from the catalog are used in the real-world scenarios, the new conversation
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patterns, are not yet used in any of the scenarios. For example, the confidentiality requirements
covered message confidentiality or privacy patterns (Message Encryptor, Message Decryptor,
Encrypted Message, Encrypting Endpoint, Encrypting Adapter) are called Msg. Privacy, and
the authenticity and integrity requirements (Message Signer, Signature Verifier, Signed / Verified
Message) are summarized to message authenticity (Msg. Auth.). The message confidentiality
is exclusively required for the communication within the FSN business network, while message
authenticity is also used for exchanging eDocuments with the legal authorities and for PdMS.

In the category multimedia, currently no real media format handlers (Type Converter, Encoder,
Decoder) are used (e.g., image, video). However, we grouped the used functionality into three
patterns. The Encoder and Decoder patterns represent the handling of binary message content,
exclusively used in FSN and eDocument scenarios. This is due to the various communication
partners using different encodings, as well as third party services (e.g., financial document mapping
engines), which requires special encodings. The Custom Script allows to add versatile User-defined
Functions, which are mostly used as auxiliary in FSN scenarios. The compression algorithms
(Compress Content, Decompress Content), which would be immensely relevant in real multimedia
scenarios, are used in FSN scenarios due to larger messages sizes (e.g., aggregated FSN payment
details). Finally, marshalling (Marshaller, Unmarshaller) support is required in FSN scenarios,
since some communication partners require JSON to XML conversion and vice versa.

The processing of messages is mostly done by moving messages through the pipeline. However,
especially the FSN and CRM integration require streaming and parallel processing. This is
again due to scenarios with larger messages to be processed (e.g., IDoc segments in CRM) and
stream-based splitting in PdMS. The Multicast pattern is used as Sequential Multicast in FSN to
allow guaranteed rollback for all branches in case of an error and as Parallel Multicast in PdMS
for parallel processing purpose.

This behaviour is complemented by a Stop All setting in the FSN, PdMS and partially
CRM scenarios, consequently stopping the message processing in all parallel instances of the
integration scenario. Another error handling functionality is the Rethrow, which allows to (re-)
throw exceptions. The Rethrow is mainly used in eDocument, FSN, PdMS and CRM scenarios to
indicate that a situation is still unresolved. Especially in FSN, PdMS and eDocument scenarios,
it is important to inform a business expert or administrator about erroneous situations. The
Raise Indicator is used for this purpose. To prevent unconrollable behaviour and to customize the
information returned in case of an error in synchronous scenarios, a Catch-all exception process
(with several steps) is used in FSN and eDocument scenarios.

To remember parts of a message or additional information generated by adapters or message
processors, a Transient Store (cf. [GR11]) is used in FSN. The Store Accessor, used by FSN and
eDocument, is mostly used for stateful pattern compositions and for legal reasons (Data Store,
Audit Log). Especially in FSN, most of the message stores are encrypting (Encrypting Store),
which means that the messages are stored confidentially.

The composition in terms of the Integration Subprocess pattern (excluding the exception
sub-processes) indicates complex processing logic, which can mostly be found in FSN, PdMS and
eDocument scenarios. Sometimes composition is used for re-usable process parts.

In summary, the analysis shows the need for new patterns and solutions as seen in the system
review. While the hybrid integration scenarios simply extend the on-premise integration into the
cloud relying on transport level security, all other new integration scenario domains require more
on security and control over the message processing in the form of error handling. This becomes
more obvious, the more exclusively the integration scenarios are running in the cloud. For example,
the small amount of device integration scenarios still relies on integration logic on the devices, thus
show only few security, error handling and processing capabilities. The scenarios are less complex
compared to the cloud to cloud cases, hence require limited composition options. Moreover, with
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novel pattern categories (blue)

increasing cloud focus, the trade-off between more complex, but expressive, stateful and simpler,
better scalable, stateless message processing seems to lean towards the interaction with storage.
The conversation patterns — including stateful conversations — are still mostly unexplored. The
same is true for the increasingly important topic of multimedia processing, which will give a new
edge to the variety and interoperability problems in EAI [Lin00].

2.5 Conclusions

The literature and the quantitative analysis of real-world integration scenarios (see Figure 2.10)
show that some of the EIPs described by [HW04] in 2004 are still widely used, thus denote best-
practices in the area of application integration. This supports the assumption of the EIP authors
that the patterns are still practically relevant [ZPHW16]. The literature and system reviews also
reveal that since 2005 several Non-Functional Aspects (NFAs) for enterprise application integration
have appeared that are not covered by the EIPs from 2004. Literature as well as systems partly
offer solutions to these new trends and NFAs where the systems provide a more comprehensive
support. Solutions mentioned in the literature comprise patterns, formalization, and modeling,
covering the spectrum from a more abstract description as patterns (see Section 2.3.2) to the
implementation and execution as well as towards the user’s point of view. For this reason, patterns
are regarded as the “glue” for which a comprehensive description is required first. Hence, this
analysis (together with the pattern language [RR15]) aimed at filling the gaps in existing patterns
for new integration trends and NFAs (see Section 2.3.2): e.g., security, (ideas on) conversations,
monitoring, storage. Figure 2.12 summarizes extended and novel pattern categories in the context
of the integration system architecture from Figure 2.4 (on page 26). Therefore, the new patterns
were assigned to existing pattern categories, where possible, marked as extended. The remaining
new patterns that do not fit to these categories, were assigned to novel pattern categories:
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security, storage, exception handling and fault tolerance, media processing, conversations and
composition patterns. Some of the existing categories were extended by fitting new sub-categories:
message construction and (integration) adapter, and system management and monitoring patterns.
Notably, none of the existing categories remain unaltered and the architecture, denoting the EAI
domain concepts, is now more comprehensively covered by patterns.

The results in this chapter denote contributions in the form of DSR artifacts:

� A systematic literature review of the trends, e.g., cloud and hybrid application integration
approaches (7→ H1), and an analysis of the most influential system implementations of this
domain ( 7→ H2).

We found for H1 that additional patterns are required to suffice for application scenarios
after 2004, and for H2 that they were (mostly) found in current system implementations.

� An extended pattern template plus an example based on descriptions of cross-concern
technical qualities (e.g., (stateful) conversation, streaming, security) for a comprehensive
coverage of new requirements ( 7→ H3).

For H3, our study showed that some trends are handled in an immature and ad-hoc fashion.

� A comprehensive pattern catalog, documented in [RR15], and the evaluation of the found
patterns as part of integration scenarios in a well-established cloud integration system in
the form of a quantitative analysis based on new monitoring patterns (7→ H4),

H4 was affirmed by the study of current, real-world integration scenarios.

This validates all stated hypotheses, and thus fulfills research challenge C1 “Actuality, Compre-
hensiveness” and addresses the pattern research gap in Section 1.2 by providing a comprehensive
foundation for the subsequent formalization of patterns and their composition. Nonetheless, the
different reviews and analyzes conducted in this work indicate open research challenges. These
are subsequently summarized and discussed.

Limitations Limitations of the approach concern the literature and the system review. Both
searches were led by the selection of keywords and criteria due to the vast amount of existing
work and in order to not lose focus of this study. Nonetheless, further vertical searches and expert
additions that were not found based on the keywords could be included in the analysis. The
selection of representative systems is supposed to reflect the current system offering. Different
types of systems (open source, commercial, and startup) were considered. In summary, both
reviews were envisioned to be comprehensive, but not complete. The quantitative analysis aims
at covering a broad range of applications based on five use cases. One might argue that the use
cases are all provided by the same organization. However, SAP’s customers are diverse, and thus
cover all relevant application integration scenario domains related to the trends. This provides
the chance to analyze real-world scenarios instead of toy examples.

Impact The impact of a continuous analysis of integration trends and NFAs on research and
practice is enormous. The impact on research is reflected in the open research challenges stated
in Section 1.2.3. In order to address these challenges, a plethora of new approaches is necessary.
The importance of the topic from a practical perspective is already paramount as the system
and scenario analyzes of this chapter show. Facing new trends that often stem from practice will
perpetuate the importance of this work in the future. Putting the focus on the human aspect in
addition to a more technical treatment of the topic will also lead to a multitude of new research
questions and practical implications. While the original EIPs from 2004 are still relevant for many
of the new trends in 2016 and beyond, new capabilities are required to address requirements (e.g.,
non-functional aspects) resulting from these trends (see hypothesis H1).
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[..] people who write software should have a clear sense of
responsibility for its reliable operation and resistance to

compromise and error.
About “responsible programming” by Vinton Cerf, 2014 [Sta14]

In this chapter, we build on the extended integration pattern catalog and develop trustwor-
thy integration foundations that allow for a responsible development of integration solutions.
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We recall from Chapter 2 that integration pat-
terns are still relevant and their compositions
denote integration scenarios that run at the
core of many organizations. Due to the iden-
tified challenges like the increasing complexity
of integration scenarios or the reduced con-
trol over integration solutions as part of the
trending cloud and mobile / edge computing
operation models (cf. Section 1.2), trust into
productive integration solutions becomes even
more essential. For example, current EAI sys-
tem vendors use integration pattern composi-
tions as part of their proprietary integration
scenario modeling languages (cf. Chapter 2).
Since the integration patterns are only infor-

mally described, these languages are not grounded on any formalism and, hence, might produce
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models that are subject to design flaws (e.g., functional errors). Due to the missing formal
definition, currently the detection and analysis of these flaws are by large performed manually.
This results in huge effort and potentially in mistakes. Moreover, the integration solutions
developed on the foundation of the patterns are not exclusively used (and tested) by technical
users anymore. The provided solutions are used in (so far) completely non-technical fields and
areas of human life [Sta14, Gol18]. Hence deep technical understanding (e.g., when using it in
the context-aware health or entertainment applications on a mobile phone [RH18]) should not be
required of users, for whom the desired behavior and functional correctness is essential, users
should not be asked to deal with flaws.

This, in turn, requires the means for a responsible development of integration solutions (cf.
“responsible programming” [Sta14]) in order to avoid design flaws such as functional errors or
incomplete functionality, starting with the integration patterns. Therefore, the expected behavior
of the single patterns in the form of execution semantics has to be formally defined and their
composition to integration scenarios has to fulfill compositional and functional correctness criteria.
Such a formalism would allow for an automatic analysis of integration solutions like verification
(model-checking), validation and simulation to assess the functional correctness when composing
patterns, as well as identification of more efficient pattern compositions (i.e., optimization of
integration scenarios).

However, as found in our study in Chapter 2 and also acknowledged by the pattern au-
thors [ZPHW16, p. 16] and recent other studies [FG12, FG13], these formal foundations are
missing (cf. formalization research gap in Section 1.2). Hence, we address the general sub-research
questions of RQ2 “How to formulate integration requirements and scenarios in a usable, expressive
and executable integration language?” for single pattern formalization and pattern compositions:

RQ2-1 What is a suitable formalism for defining execution semantics of existing and new patterns?

RQ2-2 What is a sound and comprehensive formal representation of integration patterns that
allows for formal validation of integration scenarios and reasoning?

The resulting formalized pattern compositions (grounded on formally defined patterns) not only
provide the first comprehensive formal foundation of application integration, but will allow for
the specification of correctness-preserving optimization strategies and the definition of a suitable
benchmark and sound practical solutions in the remainder of this work.

Parts of this chapter have previously been published in the proceedings of EDOC 2018 [RRMM+18]
(pattern formalization), DEBS 2018 [RMFR18] (pattern composition formalization) and a technical
report [RRM+18] (catalog formalized patterns).

3.1 Formal Pattern Semantics

The extended integration pattern catalog in Chapter 2 describes typical concepts in designing
messaging systems as used for EAI (e.g., the communication between applications), and thus an
abstraction of the application integration domain. However, due to the informally described EIPs
models may be produced that are subject to design flaws such as functional errors, missing or
incomplete functionalities. Currently, detection and analysis of these flaws are by large performed
manually, as also recently found by Fahland and Gierds [FG13]. Hence, EIPs can rather be
considered as a set of informal design solutions than a formal language for modeling and verifying
correctness of integration patterns, thus leaving the EAI vendors with their own proprietary
semantics, which also hinders compatibility between their implementations. The following
example illustrates the current description of the Aggregator pattern from [HW04], which we use
as running example during the definition of our formalism. For a better understanding we added
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further information, which we extracted from the original description. After these introductory
explanations, the pattern is structured in the integration pattern format from Section 2.3.2.

Example 3.1. The subsequent representation of the Aggregator from [HW04] describes the
Aggregator as a pattern that combines multiple related incoming messages to one outgoing message.
The incoming messages are persistently stored until the sequence of messages is complete. In the
implementation details that are given as unstructured text (not shown) [HW04, pp. 270–274], a
timeout is mentioned, which completes a sequence of related messages and considers only those
available within the time limit.

Aggregator (excerpts taken from [HW04, pp. 268–282]) The Aggregator is a special Filter
that receives a stream of messages and identifies messages that are correlated. Once a complete set of
messages has been received (more on how to decide when a set is “complete” below), the Aggregator
collects information from each correlated message and publishes a single, aggregated message to the
output channel for further processing.

How do we combine the results of individual, but related messages so
that they can be processed as a whole?

(Icon:a The icon is from the EIP icon notation [HW04].)
Context: A Splitter is useful to break out a single message into a sequence of sub-messages that can
be processed individually. [..] In most of these scenarios, the further processing depends on successful
processing of the sub-messages. For example, we want to select the best bid from a number of vendor
responses or we want to bill the client for an order after all items have been pulled from the warehouse.
Solution: Use a stateful filter, an Aggregator, to collect and store individual messages until a
complete set of related messages has been received. Then, the Aggregator publishes a single message
distilled from the individual messages.
Result: Several related messages are combined into one new message.
Relations to other patterns: Correlation Identifier, Message Sequence.

a©The EIP pattern icon, the pattern name, the problem and solution statements and the sketch are
available under Creative Commons Attribution license.

�

While the description in the example might help when building an integration system or
using one, a formalism is required that allows for analysis according to the following objectives
or design choices for a suitable formalization: (i) realization of EIPs as well as (ii) simulation
of the EIP realizations, (iii) the validation and verification of their functional correctness, and
(iv) composability to integration scenarios. The objectives target (i) a responsible definition of
integration patterns, which means that the patterns and their execution semantics can be (ii,iii)
formally analyzed for correctness and (iv) allows for composition of formalized patterns. In other
words, this gives users creating an integration scenario or solution a “clear sense for its reliable
operation and resistance to compromise and error”, according to Cerf [Sta14]. We develop and
study such a formalism driven by the following detailed sub-questions of RQ2-1:

(a) What are relevant EAI requirements for the formal definition of EIPs?

(b) Which formalism allows to specify, simulate and verify EIPs under extracted requirements?

(c) How to realize the EIPs and real-world integration scenarios?

To address these questions, a responsible development of integration solutions, i.e., solutions
that can be thoroughly tested for their correctness at design time, requires the formalization of
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its pattern foundations. We follow a responsible pattern formalization process — similar to the
pattern engineering process Figure 2.5 (on page 27; see also [Han12, FBBL14]) — that allows
for the objectives. Figure 3.1 shows this process with its three main steps that we subsequently
discuss: pattern formalization, pattern implementation, pattern correctness.

Formalization The formalization of a pattern starts with capturing and defining its semantics
(cf. question RQ2-1(a)). With a thorough understanding of the pattern and its variations,
it can be formally represented (cf. question RQ2-1(b)). The resulting formal pattern model
can be analyzed and verified (i.e., model checking). With model checking capabilities, errors
in patterns can be found and either their semantics or formal representation is revisited.

Implementations If model checking is not possible or difficult, the formal patterns can be imple-
mented, configured and simulated in a suitable tool (cf. question RQ2-1(c)). The simulation
not only bridges the model to implementation gap, but allows for an experimental validation
of a pattern.

Correctness The correctness of a pattern can be decided according to its semantics, when put into
the context of a dedicated, scenario-specific configuration, a test design, which specifies the
desired properties like the expected output of a pattern simulation, for a given input. This
test design is instantiated and checked during the simulation of the pattern (cf. question
RQ2-1(b)). Any flaws found during this step can results in another round of formal or
implementation adjustment.

We argue that existing approaches do not fully support a responsible development and hence
the following research questions are formulated to guide the design and development of an EIP
formalization living up to objectives (i)–(iv). Our analysis in Chapter 2 identified only one
attempt towards a formalization of EIPs using Coloured Petri Nets (CPNs) by Fahland and
Gierds [FG13]. Although the CPN colors abstractly stand for data types and CPNs support the
control flow through control threads (i.e., tokens) progressing through the net, carrying data
conforming to colors, they cannot be used to model, query, update, and reason about requirements
inherent to the extended EIPs from Chapter 2, such as persistent data or timings.

Along the responsible pattern formalization process, we systematically harvest pattern re-
quirements from Chapter 2 (i.e., catalogs with 166 integration patterns) in a quantitative analysis
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(addressing RQ2-1(a)) in Section 3.1.1. The resulting list of requirements is used to identify
a suitable formalism, compliant with the objectives (i)–(iv), which leverages the existing CPN
approach [FG13] by adding persistent data and time, consecutively deriving the timed db-net
formalism, for which we also study decidability of reachability (cf. RQ2-1(b)) in Section 3.1.2.
Therefore we briefly introduce background information on the used formalisms, namely db-nets
and TAPNs that fulfill the requirements and are compliant with the objectives (i)–(iii) for single
patterns close to where they are used. Several of the patterns are then realized using timed
db-net in the form of an instructive pattern catalog (i.e., formalizing representatives patterns
to instruct the formalization of similar patterns). Then we present means to validate their
correctness (all in Section 3.1.2), before we elaborate on the comprehensiveness of the formalism
in a quantitative study. We further show a prototypical db-net realization for testing correctness,
and discuss the general applicability of PNs and, in particular, timed db-nets for the composition
of integration patterns (cf. objective (iv) and research question RQ2-1(c)) in a real-world example
(all in Section 3.1.3).

3.1.1 Formalization Requirements Analysis and Design Choices

We collect the EAI requirements relevant for the formalization of the EIPs by analyzing the
pattern catalogs [HW04, RMRM17, RS16] (cf. RQ2-1(a)), and briefly discuss which of them can
be represented by the means of prior work on CPNs, and which require further extensions. Then
we discuss design choices based on the requirements.

Pattern Analysis and Categories The EIP formalization requirements are derived by an
analysis of the pattern descriptions based on the integration pattern catalogs from 2004 [HW04] (as
original) and recent extensions in Chapter 2 and [RMRM17, RS16, RR15, RH15] (as extended)
that consider emerging EAI scenarios (e.g., cloud, mobile and internet of things). Together the
catalogs describe 166 integration patterns, of which we consider 139 due to their relevance for
this work (e.g., excluding abstract concepts like Canonical Data Model or Messaging System.
During the analysis, we manually collected characteristics from the textual pattern descriptions
(e.g., data, time) and created new categories, if not existent.

The reoccurring characteristics found in this work allow for a categorization of patterns as
summarized in Figure 3.2 to systematically pinpoint relevant EAI requirements into general
categories (with more than one pattern). Most of the patterns require (combinations of) Data
flow, Control (Crtl.) flow, and (Transacted) Resource ((Tx.) Res.) access. While the control flow
denotes the routing of a message from pattern to pattern via channels (i.e., ordered execution), the
data flow describes the access of the actual message by patterns (incl. message content, headers,
attachments). Notably, most of the patterns can be classified as control (Crtl.-only; e.g., Wire Tap)
and data only (Data-only; e.g., Splitte) or as their combination (Data-Crtl.; e.g., Message Filter),
which stresses on the importance of data-aspects of the routing and transformation patterns. In
addition, resources denote data from an external service not in the message (e.g., Data Store
from Chapter 2). The EIP extensions add new categories like combinations of data and {time,
resources} (Data-Time like Message Expiration [HW04, RMRM17], Data-Res. like Encryptor
from Chapter 2) and control and time (Crtl.-Time; e.g., Throttler from Chapter 2). For instance,
our motivating Aggregator pattern example in Figure 3.3 (on page 68) for the formalization is
classified as Data-Tx.-Res.-Time. The different categories are disjoint with respect to patterns.

From Categories to Requirements The first requirement is a formal representation and
analysis capabilities on the control flow REQ-0 “Control flow”, which is inherently covered
by any PN approach, and thus in CPN. However, there are two particularities in the routing

65



0

5

10

15

20

25
O
cc
u
rr
en

ce
s

Categories

original extended

Figure 3.2: EIP requirement categories (with control (crtl.), resource (res.), transaction (tx.))

patterns that we capture in requirement REQ-1 “Msg. channel priority, order”: (a) the
ordered evaluation of Msg. channel conditions or prioritized evaluation of guards of sibling PN
transitions, required for the Content-based Router pattern, (b) the enablement or firing of a PN
transition according to a ratio for the realization of a Load Balancer (cf. Chapter 2). In both
cases, neither execution priorities nor ratios are trivially in CPN.

Furthermore, there are 77 patterns in the catalogs with data and 10 with message format
aspects, which require an expressive CPN token representation (e.g., for encodings, security,
complex message protocols), for which we add as a second requirement REQ-2 “data, format”
that has to allow for the formal analysis of the data. Although CPNs have to be severely restricted
(e.g., finite color domains, pre-defined number of elements) for that, we require a formalism that
promises a relational representation that can be formally analyzed.

We capture the 11 patterns with time-related requirements as REQ-3 “time”: First, (a)
a timeout is required that allows for the numerical representation of fixed, relative time (no
global time). An expiry date (b) must be defined, denoting a discrete point in time according to
a global time (i.e., based on existing message content). Moreover, the specification of a delay
(c) is required that is a numerical, fixed value time to wait or pause until continued (e.g., also
often used in a redelivery policy). Finally, patterns like the Throttler, require (d) message/time
ratio processing, which specifies the number of messages that are sent during a period of time.
Consequently, a quantified, fixed time delay or duration semantics is required.

The 49 patterns with resources REQ-4 “(external) resources” require: (a) create, retrieve,
update, delete (CRUD) access to external services or resources, and (b) transaction semantics on
a pattern level. Similarly, exception semantics are present in 28 patterns as REQ-5 “exceptions”,
which require compensations and other post-error actions. Consequently, a PN definition that
allows for reasoning over these timing and structured (persistent) data access is required.

Requirements Summary and Design Choices Table 3.1 summarizes the formalization
requirements, comparing with the coverage of the CPN [FG13]. While CPNs provide a solid
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Table 3.1: Formalization requirements
ID Requirement Example pattern CPN

REQ-0 Control flow (pipes and filter) Multicast
√

REQ-1 (a) Message channel priority Content-based
Router

(
√

)

(b) Message channel distribution Load Balancer -
REQ-2 Data, format incl. message protocol with encod-

ing, security
Encoder (

√
)

REQ-3 (a) Timeout on message, operation Pause Operation -
(b) Expiry date on message Message Expiry -
(c) Delay of message, operation Delayer -
(d) Message/time ratio Throttler -

REQ-4 (a) Create, Retrive, Update, Delete
(CRUD) operations on (external) resources

Content Enricher -

(b) Transaction semantics on (external) re-
sources (incl. roll-back)

Aggregator -

REQ-5 Exception handling, compensation (similar
to roll-back in REQ-4 for transactional resources)

Catch All, Selective -

covered
√

, partially (
√

), not -.

foundation for control (cf. REQ-0) and a simple data flow representation (cf. REQ-2), more
complex data structures are not supported, e.g., message protocols in our case (cf. REQ2) and
corresponding CRUD operations (cf. REQ-4(a)), transactional semantics (cf. REQ-4(b)), and
exception handling (cf. REQ-5), suitable for working with external, transactional resources.
In CPNs, message channel distributions cannot be represented and priorities require explicit
modeling, leading to complex models. For a comprehensive coverage of all requirements we
subsequently discuss alternative formalisms from the PN domain and motivate our choices.

Data, Transacted Resources and Compensation. When facing the problem of formalizing multi-
perspective models that suitably account for the dynamics of a system (i.e., the process perspective)
and how it interacts with data (i.e., the data perspective), several design choices can be made.
In the Petri net tradition, the vast majority of formal models striving for this integration
approaches the problem by enriching execution threads (i.e., tokens) with complex data. Notable
examples within this tradition are data nets [Las16] and ν-nets [RVdFE11], Petri nets with nested
terms [TS16], nested relations [H+08], and XML documents [BHM15]. While all of the approaches
treat data subsidiary to the control-flow dimension, the EIPs require data elements attached to
tokens being connected to each other by explicitly represented global data models. Consequently,
they do not allow for reasoning on persistent, relational data such as tree or graph structured
message formats [Rit17a]. We select db-nets [MR17] as a foundation of timed db-nets due to their
ability to represent relational data (cf. REQ-2), and the built-in support for transactional CRUD
operations (cf. REQ-4) as well as exception handling that require compensations (cf. REQ-5), as
set into context to the requirements in Table 3.1. Moreover, since db-nets are based on CPNs, it
is possible to leverage existing simulation techniques of the latter [MR17].

Time. While the implicit temporal support in PNs (i.e., adding places representing the current time)
is rather counterintuitive [vdA93], the temporal semantics of adding timestamps to tokens [vdA93],
timed places [Sif80], arcs [JJMS11] and transitions [Zub87] are well studied and naturally capture
different facets of time in dynamic systems. The temporal requirements in REQ-3 demand a
quantified, fixed or discrete time representation by timed transitions or places, representing the
delay induced by a transition enablement or firing. This is currently missing in db-nets. So, in
the spectrum of timed extensions to PNs, we select temporal semantics similar to Timed-arc Petri
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Figure 3.3: Aggregator pattern variant as a timed db-net

Nets (TAPNs) [Bol90, Han93].

In summary, we build upon the CPN approach with more comprehensive support of data and
transacted resource requirements (cf. REQ-1, REQ-2, REQ-4 and REQ-5) through the selection
of db-nets that we complement with temporal semantics similar to TAPNs for time-related
requirements (cf. REQ-3(a)–(d)). With that, we further provide (less complex) realizations
for message channel priority execution (cf. REQ-1(a)) and load balancing (cf. REQ-1(b)), as
compared to CPNs.

3.1.2 Petri Nets with Time and Transactional Data

We use the list of requirements for the formalization of the patterns to select a suitable formalism
according to the objectives (i)–(iv) as additional criteria: formalization, simulation for validation,
verification and composability. A further criterion for the selection is the principle rooted in DSR
to build on existing design science research artifacts. In this case, the only existing approach
to formalize integration patterns that we found in Chapter 2 is based on CPNs [FG12, FG13].
Since a Petri net (PN) based approach complies with all of our selection criteria, we ground the
formalization of the integration patterns on extended PNs. The selection of the particular PN
extensions along the identified requirements are motivated and defined subsequently, using the
formalized form of the Aggregator in Figure 3.3 as a running example.

Example 3.2. Figure 3.3 defines the semantics of a commonly used stateful Aggregator pat-
tern [HW04]. The Aggregator collects messages in a persistent storage that is accessed via a
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Figure 3.4: Db-net layers (similar to [MR17])

special view place chp, and then aggregates them based either on the completion condition (e.g.,
sequence status is complete, modeled via Aggregate transition) or on time-out of 30 time units
(e.g., sequence status is expired, modeled via transition T3 ). To collect messages and assign
them to correct sequences, the net correlates every incoming msg token to those in place chp,
that, in turn, stores pairs of sequences and lists of messages that have already been collected.
If the message is the first in a sequence, new entries, one containing information about the
message and another containing data about the referenced sequence, are added to tables called
Messages and Sequences, respectively. This is achieved by firing transition T1 and executing
action CreateSeq attached to it. Otherwise, a message is inserted into Messages by firing T2
and executing UpdateSeq. However, the update by UpdateSeq fails, if a message is already in the
database or a referenced sequence has already been aggregated due to a timeout (i.e., status is
expired). In this case the net switches to an alternative roll-back flow (a directed arc from T2 to
chin) and puts the message back to the message channel chin. The sequence completion logic
is defined depending on a specific pattern application scenario and must always be realized in
transition T4 that executes an update that changes a given sequence state. �

Through the selection of db-nets as foundation of our formalism, all data and transacted
resource requirements are covered (cf. REQ-1, REQ-2, REQ-4 and REQ-5). We call this formalism
a timed db-net that leverages db-nets [MR17], essentially a database-centric extension of CPNs
(incl. atomic transactions), and Timed-arc Petri Nets (TAPNs) [JJMS11].

Data, Transacted Resources and Compensation

The recent work on db-nets by Montali and Rivkin [MR17] strives to combine business processes
and transactional data by connecting CPNs with relational databases, separating the (database)
persistence layer P from the PN control layer N as illustrated in Figure 3.4. This is realized by
an intermediate data logic layer P that mediates between the two by supporting the control layer
with queries and database operations (e.g., trigger, update, read, bind). The queries bind to

database queries by a new type of place, called view place Pv (denoted by ), and read arc,
which continuously executes the defined queries. The CPN transitions are extended to execute
actions on the database (e.g., insert, update, delete) and additional roll-back arcs (represented
as ) represent compensation tasks. The subsequent formal introduction of db-nets is based
on [MR17].

Definition 3.3 (Db-Net [MR17]). A db-net is a tuple 〈D,P,L,N〉, where:
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� D is a type domain — a finite set of data types D = 〈∆D,ΓD〉, with value domains ∆D

and a finite set ΓD of predicate symbols;

� P is a D-typed persistence layer, i.e., a pair 〈R, E〉, where R is a D-typed database
schema, and E is a finite set of first-order FO(D) constraints over R;

� L is a D-typed data logic layer over P , i.e., a pair 〈Q,A〉, where Q is a finite set of FO(D)
queries over P, and A is a finite set of actions over P;

� N is a D-typed control layer L, i.e., a tuple (P, T, Fin, Fout, color, query, guard, act),
where:

– P = Pc ] Pv is a finite set of places partitioned into control Pc and view places Pv;

– T is a finite set of transitions;

– Fin is an input flow from P to T ;

– Fout and Frb are respectively an output and roll-back flow from T to Pc;

– color is a color assignment over P (mapping P to a Cartesian product of data types);

– query is a query assignment from Pv to Q (mapping the results of queries in Q as
tokens of places Pv);

– guard is a transition guard assignment over T (mapping each transition to a formula
over its input inscriptions); and

– act is an action assignment from T to A (mapping transitions to actions triggering
updates over the persistence layer). �

Input and output / roll-back flows contain inscriptions that match the components of colored
tokens present in the input and output / roll-back places of a transition. Such inscriptions
consist of tuples of (typed) variables, which then can be mentioned in the transition guard as
well as in the action assignment (to bind the updates induced by the action to the values chosen
to match the inscriptions), and also, in case of the output flow, the inscriptions may contain
rigid predicates. Specifically, given a transition t, we denote by InVars(t) the set of variables
mentioned in its input flows, by OutVars(t) the set of variables mentioned in its output flows, and
by Vars(t) = InVars(t)∪OutVars(t) the set of variables occurring in the action assignment of t (if
any). Fresh variables FreshVars(t) = OutVars(t)\InVars(t) denote those output variables that do
not match any corresponding input variables, and are consequently interpreted as external inputs.
While input inscriptions are used to match tokens from the input places to InVars(t), the output
expressions that involve rigid predicates operate over OutVars(t). In case of numerical types,
these expressions can be used to compare values, or to arithmetically operate over them. We call
a db-net plain, if it employs matching output inscriptions only (i.e., does not use expressions).

Intuitively, each view place is used to expose a portion of the persistence layer in the control
layer, so that each token represents one of the answers produced by the query attached to the
place. Such tokens are not directly consumed, but only read by transitions, so as to match
the input inscriptions with query answers. A transition in the control layer may bind its input
inscriptions to the parameters of data logic action attached to the transition itself, thus providing
a mechanism to trigger a database update upon transition firing (and consequently indirectly
change also the content of view places). If the induced update commits correctly, the transition
emits tokens through its output arcs, whereas if the update rolls back, the transition emits tokens
through its rollback arcs.

The terms message and (db-net, CPN) token will be used synonymously hereinafter.

Execution Semantics Briefly, the execution semantics of a db-net in Definition 3.3 accounts
for the progression of a database instance compliant with the persistence layer P and the evolution
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of a marking over the control layer N , mediated by the data logic layer L. The markings of the
control layer N are defined in Definition 3.4.

Definition 3.4 (Marking [MR17]). A marking of a D-typed control layer (P, T, Fin, Fout, color,
query, guard, action) is a function m : P → Ω⊕D mapping each place p ∈ P to a corresponding
multiset of p-compatible tuples using data values from D. A tuple 〈o1, ..., on〉 is p-compatible,
if color(p) is of the form 〈D1, ..., Dn〉, and for every i ∈ {1, ..., n}, we have oi ∈ ∆Di , with the
value domain ∆D. Given a database instance I, we say that m is aligned to I via query, if the
tuples it assigns to view places exactly correspond to the answers of their corresponding queries
over I: for every view place v ∈ P and every v-compatible tuple

→
o , we have that

→
o ∈ m(v), if

and only if
→
o ∈ ans(query(v), I), with the set of answers ans(Q, I) to a query Q in I.

A marking over the control layer determines the transitions to be fired, and triggers updates
of the database instance. In particular, the distributed tokens have to carry data compatible with
the color of the places and the marking of a view place Pv must correspond to the associated
queries over the underlying database instance. The markings follow the active domain semantics of
database systems (i.e., D-active domain, with D ∈ D) [MR17]. Furthermore, the db-net persistence
and control layers are stateful. During the execution, in each moment (called snapshot) the
persistence layer is associated to a database instance I, and the control layer is associated to
a marking m aligned with I via query (for what concerns the content of view places). The
corresponding snapshot is then simply the pair 〈I,m〉. The enablement of a db-net transition is
specified in Definition 3.5.

Definition 3.5 (Enablement [MR17]). Let B be a db-net 〈D,P,L,N〉. Furthermore, let σ be a
binding for t, i.e., a substitution σ : Vars(t)→ ∆D, where Vars(t) = InVars(t) ∪OutVars(t). A
transition t ∈ T is enabled in a B-snapshot 〈I,m〉 with binding σ, if:

� for every place p ∈ P, m(p) provides enough tokens matching those required by inscription
w = Fin(〈p, t〉), once w is grounded by σ, i.e., σ⊕(w) ⊆ m(p);

� The instantiated guard guard(t)σ evaluates to true;

� σ is injective over FreshVars(t), thus guaranteeing that fresh variables are assigned to
pairwise distinct values of σ, and for every fresh variable v ∈ FreshVars(t), σ(v) 6∈
(Adomtype(v)(I) ∪ Adomtype(v)(m)).1 �

Similar to CPNs, the firing of a transition t in a snapshot is defined in Definition 3.6 by a
binding that maps the value domains of the different layers, under certain conditions, e.g., the
guard attached to t is satisfied.

Definition 3.6 (Firing [MR17]). Let B be a db-net 〈D,P,L,N〉, and s1 = 〈I1,m1〉, s2 = 〈I2,m2〉
be two B-snapshots. Fix a transition t of N and a binding σ such that t is enabled in s1 with σ
(cf. Definition 3.5). Let I3 = apply(actionσ(t), I1) be the database instance resulting from the
application of the action attached to t on database instance I1 with binding σ for the action
parameters. For a control place p, let win(p, t) = Fin(〈p, t〉), and wout(p, t) = Fout(〈p, t〉) if I3 is
compliant with P, or wout(p, t) = Frb(〈p, t〉) otherwise. We say that t fires in s1 with binding σ
producing s2, written s1[t, σ〉s2, if:

• if I3 is compliant with P, then I2=I3, otherwise I2=I1;

• for each control place p, m2 corresponds to m1 with the following changes: σ⊕(win(p, t))
tokens are removed from p, and σ⊕(wout(p, t)) are added to p. In formulae: m2(pc) =
(m1(pc)− σ⊕(win(p, t))) + σ⊕(wout(p, t)) �
1AdomD(X) is the set of values of type D explicitly contained in X.
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Figure 3.5: Db-net taxi booking process example (similar to [MR17])

This fires the transition, which then has the following effects: all matching tokens in control
places Pc are consumed; then the action instance action — induced by the firing — is applied
on the current database instance in an atomic transaction (and rolled-back, if not successful);
and accordingly, tokens on output places Fout or roll-back places Frb (i.e., those connected via
roll-back flow) are produced. Details are given in [MR17].

Example 3.7. Figure 3.5 denotes a taxi booking process in db-net taken from [MR17] and
annotates it with the three db-net layers for a better understanding: the process logic in the
control layer, the data logic layer with actions that are executed on the database, and the
persistence layer with a full-fledged view on the relational database (incl. constraints). Briefly, the
different control places are typed as in a CPN and the only control place FreeDrivers accesses the
underlying Taxi table to check for free taxis (not shown), when the read-arc associated with the
Create Booking transition is fired. Whenever this transition fires, the Reserve action is triggered,
which sets the isFree property of this taxi to false (i.e., the taxi is pre-booked from now on). If
no taxi is free, the transition cannot fire. Similarly, when the Finalize Booking transition fires,
the AddBooking action inserts all booking-related data into the corresponding database tables
Phone, PickupData, and Booking. Should an action violate database constraints like primary or
foreign key relations, the transaction is rolled-back, which can be modeled by adding a roll-back
arc (not shown). �

All in all, the complete execution semantics of a db-net is captured by an infinite-state
labeled transition systems (LTS) where each transition represents the firing of a transition in
the control layer of the net with a given binding, and each state is a snapshot. Formally, given a
db-net B = 〈D,P,L,N〉 with N = (P, T, Fin, Fout, color, query, guard, action), and an initial
snapshot s0 over B, the LTS ΓBs0 = 〈S, s0,→〉 starting from s0 is given by:

� S is a possibly infinite set of B-snapshots;

� →⊆ S × T × S is a transition relation over states, labeled by transitions T ;
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� S and → are defined by simultaneous induction as the smallest sets s.t.

– s0 ∈ S;

– given a B-snapshot s ∈ S, for every transition t ∈ T , binding σ, and B-snapshot s′, if

s[t, σ〉s′ then s′ ∈ S and s
t−→ s′.

Notably, due to the presence of unbounded colors and of the underlying persistence layer, the
transition system may contain infinitely many different states even if the control layer is bounded
in the classical Petri net sense. However, this infinity can be tamed using faithful abstraction
techniques [MR17].

While the following example gives a first intuition on our solution, the different aspects of
timed db-net will be explained subsequently by the Aggregator as running example.

Example 3.8. The Aggregator in Figure 3.3 (on page 68) is naturally implemented using a view

place chp (denoted by ) for storing and updating the message sequences as well as roll-back
arc (T2, chin) to manage compensation tasks (represented as ). The graphical notation is in
line with [MR17]. �

Extending Db-Nets with Time

We now extend the db-net model so as to account for an explicit notion of time. In the spectrum
of timed extensions to PNs, we subsequently extend the db-net control layer N with a temporal
semantics similar to TAPNs that achieves a suitable trade-off: it is expressive enough to capture
the requirements in REQ-3, and at the same time it allows us to transfer the existing technical
results on the verification of db-nets to the timed extension.

The Timed-arc Petri Nets (TAPNs) by Bolognesi et al. and Hanish [Bol90, Han93] denote
an extension of classical P/T nets with continuous time. Other temporal models like timed
transitions add time durations for delayed firing (e.g., Ramchandani [Ram73] and Zuberek et
al. [Zub87]) or Time petri nets (TPNs) that associate transitions with time intervals denoting
earliest and latest firing time of transition after enablement (e.g., Merlin et al. [Mer74, MF76]).
In contrast, in TAPNs not the transitions, but tokens carry temporal information in the form
of an age value. While in a place, the tokens age and the arcs between places and transitions
are labeled with time intervals that enable transitions, when the age is within the interval. The
subsequent, formal introduction of TAPN syntax and execution semantics is mostly based on the
work of Jacobsen et al. [JJMS11].

Let I be a set of well-formed intervals

I ⊆ {[a, b] | a, b ∈ R, b ≥ a} ∪ {[a, b) | a, b ∈ R, b > a} ∪ {(a, b] | a, b ∈ R, b > a}
∪ {[a,∞) | a ∈ R} ∪ {(a,∞) | a ∈ R} .

A predicate r ∈ Int is defined for r ∈ R≥0 and Int ∈ I.

Definition 3.9 (TAPN [JJMS11]). A TAPN is a 5-tuple 〈P, T, IA,OA, Inv〉, where:

� P is a finite set of places;

� T is a finite set of transitions s.t. P ∩ T = ∅;
� IA ⊆ T × I × P is a finite set of input arcs s.t.

((p, Int, t) ∈ IA ∧ (p, Int′, t) ∈ IA) =⇒ Int = Int′;

� OA ⊆ T × P is a finite set of output arcs;

73



� Inv : P → T inv is a function assigning age invariants to places. �

Note that multiple parallel arcs are not allowed according to [JJMS11]. The preset of a
transition t ∈ T is specified as •t = {p ∈ P | (p, Int, t) ∈ IA}, and the postset is t• = {p ∈
P | (t, p) ∈ OA}.

Execution Semantics The TAPN semantics for enabledness and firing require the definition
of a marking M (cf. Definition 3.10), which is a function assigning a finite multiset of nonnegative
real numbers to each place (all such finite multisets are denoted by R≥0). The real numbers
represent the age of tokens at a given place. Moreover, the age of every token must respect the
age invariant of the place where the token is located.

Definition 3.10 (Marking [JJMS11]). Let N = (P, T, IA,OA, Inv) be a TAPN. A marking M
on N is a function M : P → R≥0, where for every place p ∈ P and every token x ∈M(p) we have
x ∈ Inv(p). The set of all markings over N is denoted by M(N). �

For simplicity, we use the notation (p, x) to refer to a token in the place p of age x ∈ R≥0.
The multiset of a marking with n tokens located in places pi and age xi, for 1 ≤ i ≤ n is denoted
by M = {(p1, x1), (p2, x2), .., (pn, xn)}. A marked TAPN is a pair (N,M0) where N is a TAPN
and M0 is an initial marking on N where all tokens have age 0. With that, a TAPN transition is
enabled as specified by Definition 3.11, when for all input arcs there is a token in the input place
with an age satisfying the age guard of the respective arc. The age of the output token is 0 for all
output arcs.

Definition 3.11 (Enabledness [JJMS11]). Let N = (P, T, IA,OA, Inv) be a TAPN. A transition
t ∈ T is enabled in a marking M by tokens In = {(p, xp) | p ∈ •t} ⊆ M and Out =
{(p′, xp′)|p′ ∈ t•} if there is (p, Int, t) ∈ I with xp ∈ Int. �

On enablement, a TAPN transition fires according to Definition 3.12, which essentially denotes
an immediate firing.

Definition 3.12 (Firing [JJMS11]). Let N = (P, T, IA,OA, Inv) be a TAPN, M a marking on
N and t ∈ T a transition. If t is enabled in the marking M by tokens In and Out, then it can
fire and produce a marking M ′ defined as

M ′ = (M \ In) ∪Out,

where \ and ∪ are operations on multisets. �

The actual time delay is introduced by Definition 3.13.

Definition 3.13 (Time delay [JJMS11]). Let N = (P, T, IA,OA, Inv) be a TAPN, M a marking
on N . A time delay d ∈ R≥0 is allowed in M , if (x+ d) ∈ Inv(p) for all p ∈ P and all x ∈M(p),
i.e., by delaying d time units no token violates any of the age invariants. When delaying d time
units in M , we reach a marking M ′ defined as

M ′(p) = {x+ d | ∈M(p)}

for all p ∈ P . �

Example 3.14. Figure 3.6(a) illustrates the syntax and execution semantics of a basic TAPN.
The tokens (age) in the places p1–p3 carry an age information that is set to 0.0, when entering a
place. Further the corresponding arcs are annotated by time intervals Int restricting the age of
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Figure 3.6: Timed-arc Petri net example

tokens available for transition firing. Initially, only transition t1 is enabled due to the implicit
default time interval [0.0,∞). That allows t1 to fire and move the token from p1 to the places p4
and p5 by resetting their age to 0.0, shown in Figure 3.6(b). The transition t2 remains disabled
for at least four time units of 1.0 due to time interval [4.0, 5.0] on its second input arc, until it
becomes enabled and fires. �

A general timed transition system (TTS), according to [JJMS11], is a pair T = (S,−→), where
S is a set of states (or processes) and −→⊆ (S × S) ∪ (S × R≥0 × S) is a transition relation. For

discrete transitions (s, s′) ∈−→ we write s −→ s′ and s
d−→ s′ for delay transitions (s, d, s′), for

which we write s =⇒ s′. A TTS should satisfy all of the standard axioms (e.g., time additivity) for
delay transitions from [BPV06]. Now, a TAPN N defines a timed transition system (M(N),−→),

where states are markings of N , and for two markings M and M ′ we have M
d−→M ′, if by delaying

d time units in M we reach the marking M ′. Thereby N′ and R≥0 denote the sets of non-negative
integers and non-negative real numbers, respectively. The marking M ′ is reachable from marking
M , if M =⇒∗ M ′, with =⇒∗ denoting the reflexive and transitive closure of =⇒.

Based on the introduced db-nets and TAPNs, we start by explaining the intuition behind the
approach, and then provide the corresponding formalization. We assume that there is a global,
continuous notion of time. The firing of a transition is instantaneous, but can only occur in
certain moments of time, while it is inhibited in others, even in presence of the required input
tokens. Every control token, that is, token assigned to a control place, carries a (local) age,
indicating how much time the token is spending in that control place. This means that when a
token enters into a place, it is assigned an age of 0. The age then increments as the time flows
and the token stays in the same place. View places continuously access the underlying persistence
layer, and consequently their (virtual) tokens do not age. Each transition is assigned to a pair
of non-negative (possibly identical) rational numbers, respectively describing the minimum and
maximum age that input tokens should have when they are selected for firing the transition.
Thus, such numbers identify a relative time window that expresses a delay and a deadline on the
possibility of firing.

Definition 3.15. A timed db-net is a tuple 〈D,P,L,N , τ〉 where 〈D,P,L,N〉 is a db-net with
transitions T, and τ : T → R≥0. × (R≥0. ∪ {∞}) is a timed transition guard mapping each
transition t ∈ T to a pair of values τ(t) = 〈v1, v2〉, such that:

� v1 is a non-negative rational number;
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� v2 is either a non-negative rational number equal or greater than v1, or the special constant
∞.

The default choice for τ is to map transitions to the pair 〈0,∞〉, which corresponds to a
standard db-net transition.

Given a transition t, we adopt the following graphical conventions:

� if τ(t) = 〈0,∞〉, then no temporal label is shown for t;

� if τ(t) is of the form 〈v, v〉, we attach label “@〈v〉” to t;

� if τ(t) is of the form 〈v1, v2〉 with v1 6= v2, we attach label “@〈v1, v2〉” to t.

Example 3.16. The Aggregator in Figure 3.3 (on page 68) defines a timed transition T3, that
can be fired precisely after 30 time units (here seconds) from the moment when a new sequence seq
has been created. Upon firing, T3 enables the Aggregate transition, by updating the sequence’s
status on the database to expired using the TimeoutSeq action. �

Execution semantics The execution semantics of timed db-net builds on the one for standard
db-nets, extended with additional conditions on the flow of time and the temporal enablement of
transitions in Definition 3.17. The management of bindings, guards, and database updates via
actions, is kept unaltered. What changes is that, in a snapshot, each token now comes with a
corresponding age, represented as a number in R≥0. More formally, a marking is now a function
m : P → Ω′⊕D , where Ω′⊕D consists of multisets of tuples 〈y, o〉 with y ∈ R≥0 and o ∈ ∆D.

Definition 3.17 (Transition Enablement). Let B be a timed db-net 〈D,P,L,N , τ〉, and t a
transition in N with τ(t) = 〈v1, v2〉. Let σ be a binding for t, i.e., a substitution σ : Vars(t)→ ∆D.
A transition t ∈ T is enabled in a B-snapshot 〈I,m〉 with binding σ, if:
• For every place p ∈ P, m(p) provides enough tokens matching those required by inscription
w = Fin(〈p, t〉), once w is grounded by σ, i.e., σ ⊆ m(p);
• the guard guard(t)σ evaluates to true;
• for every xa ∈ InVars(t), v1 ≤ σ(xa) ≤ v2, where τ(t) = 〈v1, v2〉;
• σ is injective over FreshVars(t), thus guaranteeing that fresh variables are assigned to pairwise

distinct values of σ, and for every fresh variable v ∈ FreshVars(t), σ(v) 6∈ (Adomtype(v)(I) ∪
Adomtype(v)(m)).2

• For each age variable ya ∈ (OutVars(t) \ InVars(t)), we have that σ(ya) = 0 (i.e., newly
produced tokens get an age of 0). �

As customary in several temporal extensions of Petri nets, we consider two types of evolution
steps. The first type deals with time lapses : it indicates that a certain amount of time has elapsed
with the net being quiescent, i.e., not firing any transition. This results in incrementing the age
of all tokens according to the specified amount of time.

The second type deals with transition firing, which refines that of db-nets by checking that
the chosen binding selects tokens whose corresponding ages are within the delay window attached
to the transition (cf. Definition 3.17). Specifically, let B be a timed db-net 〈D,P,L,N , τ〉, t a
transition in N with τ(t) = 〈v1, v2〉, and σ a binding for t. We say that t is enabled in a given B
snapshot with binding σ if it is so according to Definition 3.5 (on page 71) and, in addition, all
the tokens selected by σ have an age that is between v1 and v2. Firing an enabled transition is
identical to the case of standard db-nets (cf. Definition 3.6), with the only addition that for each
produced token, its age is set to 0 (properly reconstructing the fact that it is entering into the
corresponding place).

2AdomD(X) is the set of values of type D explicitly contained in X;
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The execution semantics of a timed db-net then follows the standard construction (using the
refined notions of enablement and firing), with the addition that each snapshot may be subject
to an arbitrary time lapse. This is done by imposing that every B-snapshot 〈I,m〉 is connected
to every B-snapshot of the form 〈I ′,m′〉 where:

� I ′ = I (i.e., the database instances are identical);

� m′ is identical to m except for the ages of tokens, which all get incremented by the same,
fixed amount x ∈ Q of time.

Given two B-snapshots s and s′, we say that s directly leads to s′, written s→ s′, if there exists
a direct transition from s to s′ in the transition system that captures the execution semantics of
B. This means that s′ results from s because of a transition firing or a certain time lapse. We
extend this notion to finite execution traces s0 → . . .→ sn. We also write s

∗−→ s′ if s directly or
indirectly leads to s′. If this is the case, we say that s′ reachable from s.

Example 3.18. To complete the Aggregator, when the persisted sequence in the Aggregator is
complete or the sequence times out, the enabled Aggregate transition fires by reading the sequence
number seq and snapshot of the sequence messages, and moving an aggregate msg′ to chout.
Notably, the Aggregate transition is invariant to which of the two causes led to the completion of
the sequence. �

Checking Reachability over Timed Db-nets

Checking fundamental correctness properties such as safety / reachability is of particular im-
portance for timed db-nets, in the light of the subsequent correctness testing discussions in
Sections 3.1.2 and 3.1.3 on reachable goal states. We consider here, in particular, the following
relevant reach-template problem:
Input: (i) a timed db-net B with set Pc of control places, (ii) an initial B-snapshot s0, (iii) a

set Pempty ⊆ Pc of empty control places, (iv) a set Pfilled ⊆ Pc of nonempty control places
such that Pempty ∩ Pfilled = ∅.

Output: yes if and only if there exists a finite sequence of B-snapshots of the form s0 → . . .→
sn = 〈In,mn〉 such that for every place pe ∈ Pempty, we have |mn(pe)| = 0, and for every
place pf ∈ Pfilled, we have |mn(pf )| > 0.

Checking the emptiness of places in the target snapshot is especially relevant in the presence
of timed transitions, so as to predicate over runs of the systems were tokens are consumed within
the corresponding temporal guards. For example, by considering transition T3 in Figure 3.3
(on page 68), asking for the chtimer place to be empty guarantees that T3 is indeed triggered
whenever enabled.

Since timed db-nets build on db-nets, reachability is highly undecidable, even for nets that
do not employ timed transitions, have empty data logic and persistence layers, and only employ
simple string colors. As pointed out in [MR17], this setting is in fact already expressive enough
to capture ν-nets [Las16, RVdFE11], for which reachability is undecidable. Similar undecidability
results can be obtained by restricting the control layer even more, but allowing for the insertion
and deletion of arbitrarily many tuples in the underlying persistence layer.

However, when controlling the size of information maintained by the control and persis-
tence layers in each single snapshot, reachability and also more sophisticated forms of temporal
model checking become decidable for db-nets using string and real data types (without arith-
metics) [MR17].

In particular, decidability has been shown for bounded, plain db-nets. Technically, a db-net B
with initial snapshot s0 is:
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� width-bounded if there is b ∈ N s.t., for every B-snapshot 〈I,m〉, if s0
∗−→ 〈I,m〉, then

the number of distinct data values assigned by m to the tokens residing in the places of B
is bounded by b;

� depth-bounded if there is b ∈ N s.t., for every B-snapshot 〈I,m〉, if s0
∗−→ 〈I,m〉, then the

number of appearances of each distinct token assigned by m to the places of B is bounded
by b;

� state-bounded if there is b ∈ N s.t., for every B-snapshot 〈I,m〉, if s0
∗−→ 〈I,m〉, we have

| ∪D∈D AdomD(I)| ≤ b.

We say that a db-net is bounded, if it is at once width-, depth-, and state-bounded. Intuitively, a
db-net is bounded if it does not accumulate unboundedly many tokens in a place, and guarantees
that the number of data objects used in each database instance does not exceed a pre-defined
bound. Additionally, for bounded timed db-nets, we assume time-boundedness over the fixed
timed transitions (i.e., fixed time intervals), and thus restricting the ages in the tokens.

The decidability of reachability for bounded db-nets does not imply decidability of reachability
for bounded timed db-nets. In fact, ages in timed db-nets are subject to comparison and (global)
increment operations that are not expressible in db-nets. However, we can prove decidability by
resorting to a separation argument: the two dimensions of infinity respectively related to the
infinity of the data domains and of the flow of time can in fact be tamed orthogonally to each
other. In particular, we get the following.

Theorem 3.19. The reach-template problem is decidable for bounded and plain timed db-nets
with initial snapshot.

Proof sketch. Consider a bounded timed db-net B with initial snapshot s0, empty control places
Pempty , and filled control places Pfilled . Using the faithful data abstraction techniques presented
in [MR17, Thm 2], one obtains a corresponding timed db-net B′ enjoying two key properties.

First, B′ is bisimilar to B, with a data-aware notion of bisimulation that takes into account
both the dynamics induced by the timed db-net, as well as the correspondence between data
elements. Such a notion of bisimulation captures reachability as defined above, and consequently
reach-template(B,s0,Pempty ,Pfilled) returns yes if and only if reach-template(B′,s0,Pempty ,Pfilled)
does so.

Second, the only source of infinity, when characterizing the execution semantics of B′, comes
from the temporal aspects, and in particular the unboundedness of token ages. This means that
B′ can be considered as a “standard” temporal variant of a CPN with bounded colors that, in
turn, boils down to a temporal variant of an (uncolored) P/T net. In particular, one can easily
see that B′ corresponds to a specific type of bounded TAPN [JJMS11], where:

� whenever B′ contains a transition t with τ(t) = 〈v1, v2〉, its corresponding TAPN labels
each arc entering in t with the same interval [v1, v2];

� each transition-place arc is labeled with the interval [0, 0].

Consequently, the infinity of B′ can be tamed using standard techniques known for bounded
TAPNs, which indeed enjoy decidability of reachability for the queries tackled by reach-template
[BD91, AGH16]. In particular, notice that reach-template does not explicitly express constraints
on the expected token ages when reaching the final state.

It is interesting to notice that TAPNs have a more expressive mechanism to specify temporal
guards in the net (cf. [JJMS11]). In fact, TAPNs attach temporal guards to arcs, not transitions,
and can therefore express different age requirements for different places, as well as produce
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Figure 3.7: Load balancer realization as a timed db-net

tokens with an age nondeterministically picked from a specified interval. Hence, this more refined
temporal semantics can be seamlessly introduced in our timed db-net model without compromising
Theorem 3.19.

Pattern Realizations

A pattern realization denotes a representation of a pattern as a timed db-net (e.g., the Aggregator
in Figure 3.3, on page 68). In this section we discuss (formal) pattern realizations using timed
db-nets. Due to the high number of patterns, the formalization and corresponding in-detail
description of all of them seems impractical. However, thanks to the fact that patterns can be
classified into disjoint categories (see the requirement categories in Section 3.1.1), it suffices to
discuss the most representative ones from each of such categories that serve as examples on how to
construct the others. We call this an instructive pattern formalization, which strives to formalize
the patterns and, at the same time, offers modeling guidelines for other patterns of the respective
categories using the provided examples.

Control Flow: Load Balancer To demonstrate the control flow only pattern (cf. REQ-0
in Table 3.1, on page 67), we have chosen the Load Balancer pattern (cf. Chapter 2). Interestingly,
this pattern also covers the message channel distribution requirement (cf. REQ-1(b) in Table 3.1)
and thus can be considered as a relevant candidate of this category as well.

In a nutshell, the balancer distributes the incoming messages to a number of receivers based on
a criterion that uses some probability distribution or ratio defined on the sent messages. To realize
the former one could resort to stochastic PNs [Zen85, Bal01] or extend the db-net transition
guards definition with an ability to sample probability values from a probability distribution (e.g.,
[HSS07]). While the latter would extend the db-net persistence layer, it is unclear whether the
decidability results discussed in the previous section will still hold. Hence, we opted for the ratio
criterion that, as shown in Figure 3.7, is realized using a persistence storage and transition guards
with a simple balancing scheme. Specifically, a message msg in channel chin leads to a lookup of
the current ratio by accessing the current message counts per output channel in the database and
evaluating guards assigned to one of the two transitions based on the extracted values. The ratio
criterion is set up with two (generic) guards ϕ(toCh1, toCh2) and ¬ϕ(toCh1, toCh2) respectively
assigned to T1 and T2. If one of the guards holds, the corresponding transition fires by moving
the message to its output place as well as updating the table by incrementing the corresponding
channel count. The latter is done by consecutively performing Inc Chi·del = {CountChi(x)}
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and Inc Chi·add = {NumberChi(x+ 1)} (for i ∈ {1, 2}).

Data Flow: Message Translator, Splitter The stateless Message Translator, shown in Fig-
ure 3.8, is the canonical example of a data flow only pattern (cf. [HW04]). The translator works
on the data representation level, by transforming an incoming message of type TYPE1 from
chin using a subnet that starts by firing start translate and finishes by firing end translate, and
that produces a new message of type TYPE2 into the receiver place chout. Note that for the
representation of a subnet we use a cloud symbol, which denotes a configurable model part in the
form of a subnet.

The (iterative) Splitter is an example of a non-message transformation data flow only pattern,
which is also required for a case study scenario in Section 3.1.3. The pattern itself represents
a complex routing mechanism that, given an iterable collection of input messages it together
with two objects pre and post, is able to construct for each of its elements a new message of the
form [〈pre〉]〈it : msgi〉[〈post〉] with optional pre and post parts. As shown in Figure 3.9(a), the
splitter can be fully realized in CPN under certain restrictions assumed for the type of the iterable
collection at hand. The entering message payloads in ch0 are separated into its parts: pre, post
and it. While the first two are remembered during the processing, the iterable it is iteratively
split into parts according to some criterion realized in the split subnet, which represents a custom
split logic and thus is intentionally left unspecified (indicated by a cloud symbol in Figure 3.9(a)).

Example 3.20. The split subnet can be adapted to the message format and the requirements
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Figure 3.10: Content-based router and content enricher realization as a timed db-net

of a specific scenario. Figure 3.9(b) demonstrates a possible implementation of the subnet. Here,
functions get and drop are used to read and remove the n-th element of an iterable object. In our
case, we alternate their applications to the iterable object it from place ch1 in order to extract
and delete its first element that is then placed into ch2. Such a procedure is repeated until it is
empty (i.e., it is NULL). �

Each of extracted elements from it, together with the information about pre and post, is then
used to create a new message (by calling function genMsg) that is passed to the output channel
chout (Figure 3.9(b)).

Data and Control Flow: Content-based Router The Content-based Router pattern
is the canonical candidate for data and control flow patterns. The realization of the router
with conditions ϕ1, ϕ2 that have to be evaluated strictly in-order (cf. REQ-1(a)) is shown
in Figure 3.10(a). Although the router could be realized more elegantly by using priority functions
similarly to [Zen85], we explicitly realized them with pair-wise negated timed db-net transition
guards. A message from incoming channel chin is first evaluated against condition ϕ1. Based on
the evaluation result, the message is moved either to ch1 or ch2. In case it has been moved to
ch2, the net proceeds with the subsequent evaluation of other conditions using the same pattern.
When none of the guards can be evaluated, a non-guarded, low-priority default transition fires
(not shown). This explicit realization covers the router’s semantics, however, requires (k × 2) + 1
transitions (i.e., condition, negation, and only one default), with the number of conditions k.

Data Flow with Transacted Resources: Content Enricher, Resequencer The first
pattern chosen for this category such that it includes a data flow with transacted resources is the
Content Enricher. It requires accessing external resources (e.g., relational database) based on
data from an incoming message. Such data are then used to enrich the content of the message. As
one can see in Figure 3.10(b), the pattern uses request-reply transitions T1 and T2 to direct the
net flow towards extracting message-relevant data from an external resource. The extraction is
performed by matching a message identifier key with the one in the storage. While the stateless
enriching part is essentially a coloured Petri net, in order to access a stateful resource in ch3
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Figure 3.11: Resquencer realization as a timed db-net

one requires to use db-nets so as to specify and perform queries on the external storage (cf.
REQ-4(a,b)).

The stateful Resequencer is a pattern that ensures a certain order imposed on messages in
(asynchronous) communication [HW04]. Figure 3.11 shows how the resequencer can be represented
in db-nets. The incoming message msg contains information about its sequence seq, some order
information ord and is persisted in the database. The information about stored messages can be
accessed through the view place chp. For the first incoming message in a sequence, a corresponding
sequence entry with a unique identifier value bound to sid3 will be created in the persistent
storage (sequences can be accessed in the view place ms), whereas for all subsequent messages of
the same sequence, the messages are simply stored. As soon as the sequence is complete, i.e.,
all messages of that sequence have arrived, the messages of this sequence are queried from the
database in ascending order of their ord component (see the view place chp′ and its corresponding
query). The query result is represented as a list that is forwarded to chout. Note that, similarly
to the Aggregator in Figure 3.3, the completion condition can be extended by a custom logic in
T3 (e.g., a condition on the number of message to be aggregated).

Control Flow with Transacted Resource and Time: Circuit Breaker To demonstrate a
family of patterns that are based on a control flow with transacted resources and time, we selected
as its representative the Circuit Breaker pattern (see Chapter 2). It addresses failing or hang up
remote communication, which impacts the control flow of the Request-Reply pattern by using
transacted access to external resources. Figure 3.12 shows a representation of the request-reply

3Note that since sid is not bound to variables in the input flow of Ti (i ∈ {1, 2, 3}), it can be treated as a fresh
variable that, whenever the transition is executed, gets a unique value of a corresponding type assigned to it.
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Figure 3.12: Circuit breaker realization as a timed db-net

pattern in timed db-nets, extended by a circuit breaker “wrapper” that protects the remote call.
At the beginning, every (endpoint-dedicated) circuit4 in the circuit breaker is closed (that is,
its status in table Circuit is initially set to closed), thus allowing for the communication via the
Request-Reply pattern part. If the request-reply pattern executes normally, the resulting message
is placed in chout. Otherwise, in the case when an exception has been raised, the information
about the failed endpoint is stored both in the Endpoints table of the persistent storage and a
special place ch exec. Such a table contains all endpoints together with the number of failures
that happened at them. If the number of failures reaches a certain limit (e.g., num > 5), the
circuit trips and updates its status in the corresponding entry of the Circuit relation to open.
This in turn immediately blocks the communication process that, however, can be resumed (i.e.,
the circuit is again set to open and the failure count is set to 0) after 40 time units have been
passed. Note that whenever at least one circuit remains closed, the messages from chin will be
immediately redirected to ch exec.

Control Flow with Time: Throttler, Delayer The representative patterns of this group
mostly require control flow and time aspects, and thus can be represented using timed CPNs. The
first pattern is the Throttler. It helps to ensure that a specific receiver does not get overloaded by

4For simplicity, every endpoint is identified with a unique number EPID.
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Netcolset strList = list STRING; 
var e: UNIT;   
var msgs: strList;  
var msg: STRING; 
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Netvar msg: STRING; 
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msg
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Figure 3.13: Throttler and delayer realizations as a timed db-net

regulating the number of transferred messages. Figure 3.13(a) shows the realization of a throttler
that emits at most n messages (here n is the number of “simple”, black tokens assigned with an
initial marking to place cap) per 60 time units to the receiving place chout.

A slightly different pattern of this category is the Delayer that uses a timer to reduce the
frequency of messages sent to the receiving place chout. As shown in Figure 3.13(b), the sent
message is delayed by 60 time units.

Data Flow with transacted Resources Time: Aggregator The combination of data,
transacted resources and time aspects in patterns makes them the semantically most complex
ones. For example, Figure 3.3 (on page 68) specifies the semantics of a commonly used stateful
Aggregator pattern. The Aggregator persistently collects messages, that can be seen in a dedicated
view place chp, and aggregates them using the Aggregate transition based on a completion condition
(i.e., a sequence that the message is related to is complete) or on a sequence completion timeout.
For this an incoming message msg is correlated to an existing sequence based on a sequence
label seq attached to it. If the message is first in a sequence, a new sequence is created in the
Sequences table and the message together with a reference to this sequence is recorded in the
persistent storage using the Messages table. If a message correlates to an existing sequence
seq, which has been aggregated due to a timeout, the update fails. This results in the roll-back
behavior: the database instance is restored to the previous, while the net uses the roll-back arc
to put the message back to the message channel chin. This message can be then added as the
first one to another newly created sequence seq.

Discussion The db-net foundation implicitly covers REQs-2,4 in the form of a relational
formalization with database transactions. Together with the realizations of the Content-based
Router, Load Balancer (cf. REQ-1(a), (b)) and Aggregator inFigure 3.3 (cf. REQs-3(a), REQ-4
and REQ-5) we showed realizations for all of the requirements from Section 3.1.1. The expiry of
tokens, depending on time information within the message, can be represented using CPNs and
db-nets by modeling it as part of the token’s color set and transition guards (similar to [vdA93]).
Nevertheless, to model the transition timeouts (cf. REQ-3(a)) and delays (cf. REQ-3(c)) one
needs to resort to more refined functionality realized in timed transitions provided by the timed
extension of db-nets. Similarly, the message / time ratio (cf. REQ-3(d)) can be represented (see
Throttler pattern in Figure 3.13(a)).

The categorization of patterns according to their characteristics allows for an instructive
formalization based on candidates of these categories and shows that even complex patterns
can be defined in timed db-nets. This, in turn, allowed us not to discuss candidates of all the
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categories from Figure 3.2 (on page 66), since they can be seamlessly derived by the introduced
patterns from other categories. For example, control and data with resource patterns do not
require transacted resources, and can thus be realized similar to their transacted resource cases by
substituting view places with normal ones. The building blocks for the realization of transacted
resource as well as data flow with time patterns can be derived from, e.g., the Resequencer or
Aggregator patterns. Finally, the data flow with format patterns can be represented using CPNs,
and thus are not further discussed here.

Thanks to our model checking result presented in the previous section and those derived from
db-net (e.g., liveness property from [MR17][Theorem 2] based on the argument on µ-calculus for
data-centric dynamic systems [MR16] that enjoy a liveness property due to proof in [BHCDG+13]),
the correctness of the realization of each pattern can be formally verified. However, due to the
absence of a model checker for (timed) db-nets, the formal analysis (cf. [MR17]) of such cannot
currently be automatically performed. Nevertheless, as an alternative to the model checking
approach, it is possible to perform the correctness testing using the experimental validation via
(repeated) simulation of db-net models. We discuss this approach in the following section.

Correctness Testing

The correctness of an integration pattern realization represented in timed db-nets can be validated
by evaluating the execution traces of such models (e.g., similar to the state-oriented testing scheme
by Zu and He [ZH02]), where at each step, an execution trace contains a B-snapshot representing
a current state of the persistence layer together with a control layer marking. According to
the timed db-net execution semantics (see Section 3.1.2), a consecutive, finite enactment of a
pattern model starting from an initial B-snapshot s1 = 〈I1,m1〉 produces several B-snapshots
s = 〈I,m〉 that, depending on the number of enactment steps, generates a finite execution trace
s1 → . . .→ sn+1 for some n ∈ N.

Example 3.21. Consider a Content-based Router model B from Figure 3.10(a) (on page 81)
with an initial B-snapshot s1 containing markings for messages of two employees with their age
(Jane, 23), and (Paul, 65). Since the router has no persistence, the database snapshot is empty.
Figure 3.14(a) shows a possible, finite execution of B starting from s1. In order to reach s2 from
s1, transition T1 with routing condition [age ≤ 25] has to be fired. The resulting marking only
contains the message of Jane that has satisfied the condition, while the message of Paul has not
been forwarded. �

In the router example, given the initial marking {(Jane, 23), (Paul, 65)} analyzed against the
guard of T1, the marking sexpected (cf. (Jane, 23) in Figure 3.14(a)) denotes the only allowed final
state s2 for a properly working router. More generally this is defined in Definition 3.22, which
allows for a configurable, correctness criterion definition over finite traces induced by integration
pattern models.

Definition 3.22 (Correctness Criterion). Let s1 → . . . → sn+1 be a finite execution trace of
some pattern model M and C = {c1, .., cn+1} be a set of reference B-snapshots that define a
set of correct, desired states. We say that a pattern execution is correct, if exists ci ∈ C such
that ci ∼ si holds, for i ∈ {1, .., n + 1}. The operator ∼ typically denotes equality, but can
also correspond to more sophisticated comparison operators (e.g., distributions, time spans) for
relating reached and desired snapshots. �

Note that the definition still captures the situation where target snapshots are enumerated
explicitly. Other forms of validation (e.g., based on statistical goals formulated over the exhibited
behaviors of the system) would require a more fine-grained approach able to aggregate snapshots
and traces. This is matter of future work.
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Figure 3.14: A finite db-net execution of a content-based router (empl short for employee) and a
finite execution trace of a load balancer in timed db-net. Here we use empl to define an input
place with employees and count as a function that counts a number of tokens in marking m.

Next we discuss the application of this correctness criterion for three different requirement
categories from our analysis: control flow, data flow together with format and (transacted)
resource, and timed patterns.

Control Flow Patterns To test control flow patterns for correctness, the operator ∼ can
be defined so as to compare the number of tokens in the correct, final snapshot. Nevertheless,
there are control flow patterns whose correctness testing puts additional requirements on ∼.
For example, the load balancer pattern (cf. REQ-1) denotes a special case, since it requires a
sequence of input tokens, which then have to produce data entries in the output instances that fit
the probability values and distribution of the balancer (e.g., Kolmogorov-Smirnov test [Kol33]).
Therefore, the ∼ operator has to check whether the number of tokens in the desirable states
follows a probability distribution. Note that the subsequent example shows two snapshots for
simplicity, however, actually a larger sample size of snapshots is required.

Example 3.23. Consider a load balancer in timed db-net B from Figure 3.7 (on page 79) with an
initial B−snapshot s1 containing a marking m with several messages composed of employee names
and ages m = {(Jane, 23), (Lisa, 35), (Joe, 47), (Paul, 65)}. In the example shown in Figure 3.14(b),
three of the tokens have already been distributed. This means that the current, observable
snapshot si has a database instance with two tuples CountCh1(1) and CountCh2(2), and a
marking with one token in the input state m(chin) = {(Jane, 23)}, one token in the first channel
m(ch1) = {(Lisa, 35)} and two tokens in the second channel m(ch2) = {(Joe, 47), (Paul, 65)}.
Assuming that in the current state ϕ1 holds, we can fire transition T1. This, in turn, generates a
new state si+1. In order to check whether si+1 is an expected state, we run a correctness test
that is performed on the number of messages sent to the channels. Such a test allows us to see
whether a final, desired message ratio is produced by the model. For example, knowing that the
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Figure 3.15: A partial execution of a content enricher timed db-net. For simplicity we omit the
view place marking in si+1 and sexpected and a partial execution of a delayer timed db-net

bandwidth of the second channel is considerably greater than the one of the first channel, we
may expect that the final ratio of ch1

ch2
is not greater than 0.7. Our ∼ operator can be accordingly

adopted to perform such a test. �

The example shows that, even though the correctness testing of control flow patterns is feasible,
there are cases in which such tasks may require extra workload, mainly on the configuration of
the testing setup.

Data Flow and (transacted) Resource Patterns In order to test the correctness of patterns
that meet requirements REQ-2 and REQ-4 (cf. Table 3.1, on page 67), one needs to consider
testing not only the marking, as it is done in the case of control flow patterns, but also to compare
states of the persistent storage. Specifically, for a given initial snapshot s1 with an instance I1,
either an expected state sn with an instance In or an expected error state sj must be produced
by the pattern. Otherwise the pattern is considered incorrect.

Example 3.24. Let us consider a timed db-net B for the content enricher in Figure 3.10(b)
(on page 81) with an initial B-snapshot s1 that contains a marking m with a message composed
of an employee name and age such that m(chin) = (Jane, 23). In Figure 3.15(a) the database of
the content enricher model stores information about employees and their positions in a relation
called Empl. To reach the final state si+1 from si, we need to fire T2. The fact that we have si
with a marking containing two tokens (one with the employee’s name and age, and another one
with the same name and position) shows that, a few steps before, the employee token (Jane, 23)
was matched to the corresponding entry in the persistent storage and extra information about her
position was extracted. If it was not the case, the execution trace, which is partially represented
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in Figure 3.15(a), would not contain such two tokens that, in turn, would mean that the transition
used for accessing the view-place could not fire since no matches were found. �

Note that, however, in this example the internal database state does not play the main
role when testing the correctness. The correctness checking is done on the markings which are
populated from the database based on the matching condition assigned to the transition inspecting
the view place.

Timed Patterns Finally, a timed pattern can be validated by extending database schemas
with extra attributes for storing timestamps (as “on-insert timestamps” in actual databases)
or by adding such timestamps to tokens, indicating the token creation time. This allows for
checking delays, e.g., by comparing the insert timestamps time(I1), time(In) of data to instance
I1 and those of the final instance In, or the timestamps in the tokens, respectively. With this,
a numeric delay interval d = (d1, d2] can be checked, with d1 = τ being the delay configured in
the pattern and d2 = τ + avg(tp) + var(tp), the average time tp and the variance the pattern
requires for the internal transition firings without the configured delay. Since the delay τ is an
interval itself, its upper value is taken for the application of the correctness criterion. More
formally, we define the correctness criterion ∼ from Definition 3.22 (on page 85) as relation ∼k,
with (x, t) ∼k (x′, t′)⇐⇒ x = x′, t ∈ (t′, t′ + k].

Example 3.25. Consider a timed db-net B for the delayer in Figure 3.13(b) (on page 84) with
an initial B-snapshot s1 that has a marking m wit a message composed of an employee’s name
and age m(chin) = (Jane, 23). In Figure 3.15(b) transition T2 fires with a time delay of 60 time
units. Since the delayer does not require a database state, the correctness of the timestamps is
checked on the markings. In this example, we assume the average time avg(tdelayer) is 10.0 and
the variance var(tdelayer) is 5.0 without the delay. This results in a desirable marking (Jane, 23, t)
in sexpected with t ∈ (60, 75] that, in turn, can be checked against the one in s3 using ∼k with
k = 15 that, on top of comparing the states by equality, also compares whether the time stamp
belongs to a desired time interval. �

Erroneous Patterns The main sources of error during the responsible pattern formalization
process in Figure 3.1 (on page 64) are the conceptual work on defining the formal representation of
a pattern, as well as the model to implementation step, in which the formal model is implemented
and configured. Subsequently, we briefly describe these types of errors by example.

Pattern Description to Model Errors. The formal representation of a pattern depends on different
challenging factors concerning the quality and comprehensiveness of the pattern description as
well as the clarity of its variations, and the complexity of the formalism. Consequently, the
process of formalizing a pattern can introduce flaws prone due to understanding of the complex
task at hand.

Example 3.26 (Content-based Router). While the Content-based Router in Figure 3.10(a)
(on page 81) represents the pattern correctly, one could go wrong with the ordered execution (cf.
REQ-1(a)), e.g., through transition guards at T1 and T ′1. If these transition guards were set with
overlapping conditions, then several tokens would be produced in different output places, i.e.,
m(chout1) = {(Paul, 65)}), m(chout2 = {(Paul, 65)}, which does not match the desired state in
the example in Figure 3.14(a). �

Pattern Model to Implementation Errors. The model to implementation gap specifies the difficulties
that can arise during the implementation of a formalize pattern. With the model on one side
and the tool-specificities on the other, errors can occur during the translation and configuration.
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Figure 3.16: Sample translation subnet realization

While translation-related errors target particularities of the chosen tool or language, configuration
errors can occur in user-defined subnets.

Example 3.27 (Message Translator). The Message Translator in Figure 3.8 (on page 80) allows
for the configuration of a user-defined subnet that translates an input message msg of type
TYPE1 an output message of TYPE2 using a special casting function cast. In case of an expected
final state m(chout) = {(Paul, 65, London)} for an input state m(chout) = {(Paul, 65, EC4M)},
a configuration of the subnet as shown in Figure 3.16 might not suffice, due to the resulting final
state m(chout) = {(Paul, EC4M)}, which indicates structural or configuration issues (e.g., in
the cast function). �

3.1.3 Evaluation: Comprehensiveness, Correctness, and Case Studies

We quantitatively evaluate the comprehensiveness of the timed db-net formalism against the
real-world integration scenarios (including pattern composition cases), show the correctness of the
formal pattern realizations for the requirements discussed in Section 3.1.1 via the simulation, and
discuss the application of our formalization approach to one hybrid integration (i.e., “on-premise
to cloud” (OP2C)) and one internet of things integration scenario (i.e., “device to cloud” (D2C))
(cf. research question RQ2-1(c)).

Comprehensiveness of Timed Db-nets

The comprehensiveness of timed db-nets is evaluated with respect to the coverage of the patterns
in the catalogs depicted in Figure 3.17(a). Here we compare the applicability of the existing
CPN-based formalization [FG13] (Current-CPN ), coloured Petri nets in general (CPN (general))
and timed db-nets (timed db-net). While the formalization proposed in [FG13] covers only some
of the EIP from [HW04], many more EIPs as well as the recently extended patterns can be
represented by coloured Petri nets. Now, as we have indicated in the previous sections, one can
formalize all but one of the EIPs using timed db-nets. The only exception is one pattern, namely
Dynamic Router, whose requirements cannot be represented using Petri net classes discussed in
this work. In fact, in order to represent such a pattern one would need to employ a formalism that,
on the one hand, subsumes db-nets and thus covers all the requirements discussed in Table 3.1
(on page 67) and, on the other hand, supports extra requirements (i.e., dynamically added or
removed channels during runtime [FG13]) that, in turn, extend the expressiveness of the formalism
with the ability to generate arbitrary topologies. To allow for such a functionality one might opt
for an approach similar to the one in [FL01], where the authors enrich classical Petri nets with
tokens carrying Linear Logic formulas that allows for dynamic re-configurations of a net based on
those formulas. This, however, would require further investigations.
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Figure 3.17: Timed db-net comprehensiveness

After having analyzed the pattern coverage per formalism, we now consider the relevance of
such formalisms against real-world integration scenarios. For this we implemented a Content
Monitor pattern (see Chapter 2), which allows for the analysis of the actually deployed integration
scenarios that are, for example, running on SAP Cloud Platform Integration (SAP CPI) [SAP19a].
Figure 3.17(b) shows the coverage of the formalisms grouped by the following integration scenario
domains, taken from Chapter 2: On-Premise to Cloud (short OP2C, also known as hybrid
integration), Cloud to Cloud or Business Network (native cloud applications C2C, B2B), and
Device to Cloud (D2C, including Mobile, IoT and Personal Computing) integration. The results
show that the current approach by Fahland and Gierds [FG13] is only partially sufficient to cover
the OP2C, C2C and B2B scenarios. With CPNs in general, more than 70% of more conventional
OP2C communication patterns can be covered. The more recent and complex cloud, business
network and device integration requires timed db-nets to a larger extend, which covers all analyzed
scenarios. Note that the Dynamic Router with arbitrary topologies was not practically required
for these scenarios, and thus seems to be rather of theoretical relevance.

Conclusions (1) timed db-nets are sufficient to represent most of the EIPs; (2) EIPs that are
generating arbitrary topologies are not covered by considered PN classes; (3) hybrid integration
requires less complex semantics and thus is largely in CPN; (4) timed db-nets cover all of the
current integration scenarios in SAP CPI.

Simulation: Pattern Correctness Testing

We prototypically implemented the db-net formalism so as to experimentally test the correctness
of the pattern realizations via simulation, following the idea described in Section 3.1.2. In order to
test the correctness, we simply generate a finite execution trace, starting in an initial B-snapshot
s1 and finishing in sn, using the prototype and inspect the generated marking together with the
database instance. If sn corresponds to an expected state according to Definition 3.22 (on page
85), then the test is considered to be successful. Since the inner workings of a pattern can differ
between various pattern implementations (e.g., the implementation generates some intermediate
states, which are not related to the actual pattern model, but are used, for example, for collecting
statistics), the correctness can be also checked at any step of such pattern’s finite execution trace.

Prototype In this work we have chosen CPN Tools v4.0 [JKW07] (CPN Tools, visited 5/2019:
cpntools.org) for the modeling and simulation. As compared to other PN tools like Renew
v2.5 (Renew, visited 5/2019: http://www.renew.de), CPN tools supports third-party extensions
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Figure 3.18: Message translator as a timed db-net (in CPN Tools)
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Figure 3.19: Splitter as a timed db-net (CPN Tools)

that can address the persistence and data logic layers of db-nets. Moreover, CPN Tools handles
sophisticated simulation tasks over models that use the deployed extensions. To support db-nets,
our extension5 adds support for defining view places together with corresponding SQL queries
and actions, and realizes the full execution semantics of db-nets using a PostgreSQL database.

Simulation We illustrate the correctness for the majority of the formalized patterns from Sec-
tion 3.1.2 using the simulation in our CPN Tool extension. We focus on the following case studies:
Message Translator, Splitter, Content Enricher and Aggregator. In addition, we discuss the case
of a flawed example of the Content-based Router pattern from Section 3.1.2. Together, these
patterns denote the most frequently used patterns in practice according to Chapter 5 and cover
patterns from five out of seven categories discussed in Section 3.1.2 (excluding “control flow only”
and “control flow with transacted resources”).

Message Translator, Splitter. The realization of a variant of the message translator from Figure 3.8
(on page 80) is shown in Figure 3.18. Here, as input, the pattern receives a delimiter-separated
string and translates it into a list of strings using a special function StrToList defined in CPN
Tools. The final marking of the net shows the expected state sexpected = 〈Iexp,mexp〉 in which
the database instance is empty (thus not shown) and the net is having only CH2 marked such
that mexp(CH2) = {(“msg1”), (“msg2”), (“msg3”)}.

The splitter from Figure 3.9(a) (on page 80) is implemented as shown in Figure 3.19. In this

5CPN Tools extension for timed db-net and pattern models available for download, visited 5/2019:
https://github.com/dritter-hd/db-net-eip-patterns.
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connectDB("Content_Enricher_Connection",9001)
disconnectDB("Content_Enricher_Connection")

view_place : content_enricher.db: SELECT Masterdata.id, Masterdata.value FROM Material_replicate_scenario.Masterdata;

ch2

KEY

db

STORAGE

ch3

EDATA

ch0

MSG

1`(13,"msg1") ++
1`(17,"msg2") ++
1`(2,"msg3")

ch1
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EMSG
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1 1`(13,"appid-13")

1 1 1`(13,"msg1")

11`(17,"msg2","appid-17")

Figure 3.20: Content enricher as a timed db-net (in CPN Tools)

model, we have two input messages ([“M1”, “M2”, “M3”],A,B) and ([“M4”, “M5”, “M6”],A,B)
consisting of iterable objects of size three each as well as pre and post data values A and B. These
two messages are then split into six single objects of a shape (A, “Mi”,B), for i ∈ 1, . . . , 6. The
partial execution of the splitter in Figure 3.19 demonstrates the second message to be already
split (see the three output messages in place CH3), whereas the first message is ready to be split
(i.e., the split transition is enabled6). Note that the current marking of the net can be already
intermediately tested against the expected state sexpected = 〈Iexp,mexp〉 in which the database
instance is empty and the marking is having only CH3 marked such that mexp(CH3) =

{(A, “M1”,B), (A, “M2”,B), (A, “M3”,B),

(A, “M4”,B), (A, “M5”,B), (A, “M6”,B)}.

Indeed, it is easy to see that m(CH3) ∼ mexp \ {(A, “M1”,B), (A, “M2”,B), (A, “M3”,B)},
indicating that elements of the second message have been correctly processed, by duly adding
pre and post data values. The correctness of the splitter implementation, as it is defined
in Definition 3.22, naturally follows.

Content Enricher. The content enricher from Figure 3.10(b) (on page 81) can be realized as shown
in Figure 3.20. The demonstrated net has three messages (namely, (13, “msg1′′), (17, “msg2′′)
and (2, “msg3′′)) in its initial marking and in its current state has already enriched message
msg2 by adding to a corresponding token an extra data value “appid-17” from the storage (see
place ch4), that is accessed through the view place called db. The data in db is stored in a
shape of key-value pairs which are then matched with messages by their keys (that is, first
components of the pairs). One can see that the net is ready to enrich msg1: the enrich msg
transition is already enabled and the data from the storage that match the key of the token
carrying msg1 had been fetched from db and placed in ch3. While the type of data used in
different applications might require to reconfigure the query on the storage layer as well as to
use a different enrichment function, the topology of the net representing the enricher remains
the same. To test the correctness, we assume an expected state with a partial marking only.
Specifically, we are interested in mexp(ch4) =

{(13, “msg1”, “appid-13”), (17, “msg2”, “appid-17”), (2, “msg3”, “appid-2”)}.
6Graphically, enabled transitions are highlighted by a green frame, indicating that they are ready to fire.
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connectDB("Aggregator_Connection",9001)

disconnectDB("Aggregator_Connection")

view_place : aggregator.Test_Messages : SELECT "MSG_ID","SEQ","DATA" FROM Aggregator.Test_Messages;

view_place : aggregator.IsFirstInSequence : 
SELECT DISTINCT Sequences.SEQ, 
NOT EXISTS(SELECT 1 
FROM Aggregator.Messages 
WHERE Aggregator.Messages.SEQ = 
Aggregator.Sequences.SEQ) 
FROM Aggregator.Sequences;

view_place : aggregator.Sequences : 
SELECT Sequences.SEQ,Sequences.STATUS FROM Aggregator.Sequences;

view_place : aggregator.CompleteSequences: SELECT DISTINCT Sequences.seq 
FROM Aggregator.Sequences WHERE NOT EXISTS(SELECT 1 
FROM Aggregator.Test_Messages 
WHERE Aggregator.Test_Messages."SEQ" = Aggregator.Sequences.seq);

CH_in

MESSAGE

Test_Messages

MESSAGE

IsFirstInSequence

SEQUENCE_COUNT

Sequences

SEQUENCE

CH_out

STRING

CompleteSequences

INT

Append
Message

[isFirst=false]

input (msg_id,seq_id,data);
output ();
action
let
in
ADD_MSG(msg_id,seq_id,data);
DEL_MSG(msg_id)
end;

Aggregate
Message

[status="completed"]

input (seq_id);
output (concat_msg);
action
let
val concat_msg = getAggregatedMsg("Aggregator_Connection",seq_id)
in
concat_msg
end;

Load
Message

CreateFirst
Message

[isFirst=true]

input (msg_id,seq_id,data);
output ();
action
let
in
ADD_MSG(msg_id,seq_id,data);
DEL_MSG(msg_id)
end;

Update
Sequence

Status

input (seq_id);
output ();
action
let
in
CHANGE_SEQ_STATUS(seq_id,"completed");
()
end;

(msg_id,seq_id,data)

msg

(seq_id,isFirst)

(msg_id,seq_id,data) (seq_id,isFirst)

(seq_id,status) concat_msg

seq_id

msg

2 1`(1,false) ++ 1`(2,false)

2
1`(2,"completed") ++ 1`(1,"complete
d")

1 1`"text-3|text-1"
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Figure 3.21: Aggregator as a timed db-net (in CPN Tools)

Given that the current net demonstrates the enricher being in its intermediate state and having
processed only message one out of three, with its current marking in ch4 we have that m(ch4) ∼
mexp \ {(13, “msg1”, “appid-13”), (2, “msg3”, “appid-2”)}, and thus can conjecture that the given
pattern realization works as expected.

Aggregator. The Aggregator pattern in Figure 3.3 (on page 68) can be realized using our CPN
Tool extension as it is shown in Figure 3.21. Here we neglect the timed completion condition
due to the differing temporal semantics in the tool. For the ease of simulation, we added a table
Test Messages containing four test messages (1, 1, “text-1′′), (2, 2, “text-2′′), (3, 1, “text-3′′),
(4, 2, “text-4)”, with ids from {1, . . . , 4}, two sequences {1, 2} and a textual payload. The
completion condition is configured to aggregate after two messages of the same sequence and the
aggregation function concatenates the message payloads separated by ’|’. The expected result in
the output place CH out for the first sequence is one message with both payloads aggregated
(1, “text-3—text-1′′).

Now, when establishing a connection to the database and to the CPN Tools extension server,
the data from the connected database tables are queried and the net is initialized with the data
from the database in place CH in. We simulated the Aggregator realization in Figure 3.21
for the two test sequences, until one sequence was complete. The intermediate marking in
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Figure 3.22: Flawed content-based router (in CPN Tools)

m(CH out) ∼ mexp \ {(“text-4”|“text-2”)}, for mexp(CH out) =

{(“text-3”|“text-1”), (“text-4”|“text-2”)},

will eventually result to the expected outcome in CH out and the database.

Flawed Content-based Router. While the previously discussed pattern implementations are correct,
we added a flawed implementation of a content-based router, which is not required for the
subsequent case studies, so as to demonstrate how the simulation could be used to detect an
erroneous design. A Content-based Router, is a pattern that takes one input message and
passes it to exactly one receiver without changing its content. This is done by evaluating a
condition per recipient on the content of the message. Figure 3.22(a) shows one out of many
router implementations, which may look correct, but, however, its process layer violates the
correct design. For the evaluation we use the aforementioned method for “data and (transacted)
resource-bound patterns”, which is based on the reachability of a correct database state. Such a
correct state would be a database instance with one entry in table Channel1 and an empty table
Channel2. This should happen due to the fact that the logical expressions on the arcs outgoing
from T are expected to be disjoint. Now, let us explore the inner workings of the flawed pattern
realization. In Figure 3.22(a), transition T reads the token in place I and then conditionally
inserts it to the two subsequent places. Since the value of the token matches all conditions,
both output places O1 and O2 receive a copy of the token as it is shown in Figure 3.22(b). In
terms of application integration, this could mean that two companies receive a payment request
or a sales order that was actually meant for only one of them. In the net, the two subsequent
transitions push1 and push2 are enabled and fire by executing the database inserts defined in the
ADD TO CHANNEL(i, x) function, where i is being an index of one of the Channel tables and
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Figure 3.23: Replicate material from SAP Business Suite (a hybrid integration scenario in BPMN)

x is a data value to be inserted. From the net alone (i.e., in the initial state in Figure 3.22(a)),
the pattern realization seems to be correct. However, after its execution, we can see that no
correct state has been reached. Indeed, after the tokens have been processed on the timed db-net
control layer, the database instance contains two entries (not shown), one in each table, that, in
turn, would mean that the logical expressions that are meant to guard two different outputs are
not disjoint, and by executing T we populated both O1 and O2 (instead of generating a token in
only one of them).

Note that, when assuming one input token in I and a precedence of push1 over push2, and
considering that Iexp = {Channel1(8)}, the final database instance I(Channel1) comes out to be
as expected (that is, I(Channel1) ∼ I(Channel1)exp), whereas I(Channel2) 6∼ Iexp(Channel2). It
is easy to see that knowing the control-flow and data aspects a given timed db-net allows for
detecting flaws in a pattern realizations as well as provide richer information for fixing them.

Conclusions (5) The CPN Tools extension allows for EIP simulation and correctness testing;
(6) model checking implementations beyond correctness testing are desirable.

Applicability: Case Studies

The single patterns can be composed to represent integration scenarios, for which we study the
formalism with respect to its applicability to two scenarios from the analysis: one hybrid OP2C
and one D2C scenario.

Hybrid Integration: Replicate Material Many organizations have started to connect their
on-premise applications such as Customer Relationship Management (CRM) systems with cloud
applications such as SAP Cloud for Customer (COD) using integration processes similar to the one
shown in Figure 3.23. A CRM Material is sent from the CRM system via EDI (more precisely SAP
IDOC transport protocol) to an integration process running on SAP Cloud Platform Integration
(SAP CPI) [SAP18a]. The integration process enriches the message header (MSG.HDR) with
additional information based on a document number for reliable messaging (i.e., AppID), which
allows redelivery of the message in an exactly-once service quality [RS16]. The IDOC structure is
then mapped to the COD service description and sent to the COD receiver.

Formalization For this study, we manually encoded the BPMN scenario into a timed db-net
as shown in Figure 3.24. While the message translator is close to the current CPN solution
in [FG13], the Content Enricher (incl. the query on the machine’s state) should be represented as
timed db-nets. Consequently, the enricher is a pattern not covered before, for which soundness
could not be checked. Hybrid integration usually denotes data movement between on-premise
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Figure 3.25: Pattern composition as hierarchical timed db-net (in CPN Tools)

and cloud applications, which do not require complex integration logic (cf. Chapter 2. For these
less complex hybrid integration scenarios the timed db-net representation gives richer insight into
the data stored in the database as well as its manipulation (as opposed to, for example, BPMN),
while the models remain still intuitively understandable.

Simulation The replicate material scenario in a timed db-net (cf. Figure 3.24) is implemented
as a hierarchical net with our CPN Tools extension in Figure 3.25, which references the pattern
implementations of the enricher from Figure 3.20 and translator from Figure 3.18, annotated
with enricher and translator, respectively. In the hierarchical model representing this scenario,
the MSG message from the ERP system is enriched with master data. The derived enriched
message of type EMSG is then sent to the translator that maps the intermediate message format
to the one understood by the COD system, thus generating a new message of type OUTPUT .
Note that in this case the arc inscriptions abstractly account for messages without revealing their
concrete structure.

In order to check the correctness of the given scenario, one has to keep in mind that, in general,
the composition of the single patterns as timed db-nets requires a careful, manual alignment
of the “shared” control places (e.g., ch0, ch4 and ch5) with respect to the exchanged data and
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the characteristics of the neighboring patterns. Thus it is required to carefully consider various
pattern characteristics together with input and output message types to ensure its correctness.
Assume that that the expected marking in out case is mexp(COD) =

{(13, “DOC-1”, “PROD-1”, “appid-13”),

(17, “DOC-2”, “PROD-1”, “appid-17”),

(2, “DOC-3”, “PROD-2”, “appid-2”)}.

Then, given the intermediate marking in COD, we can see that m(COD) ∼ mexp\{(13, “DOC-1”,
“PROD-1”, “appid-13”)}(2, “DOC-3”, “PROD-2”, “appid-2”) and thus conjecture that the scenario
is correct. Note that, while the composition in Figure 3.25 denotes a correct implementation of
the replicate material scenario, the general question of composition correctness remains open.

Conclusions (7) timed db-net representations allow for an understandable, sound and com-
prehensive representation of single patterns and their compositions; (8) the correctness of the
compositions requires further considerations.

Internet of Things: Predictive Maintenance and Service (PDMS) In the context of
digital transformation, an automated maintenance of industrial machinery is imperative and
requires the communication between the machines, the machine controller and ERP systems
that orchestrate maintenance and service tasks. Integrated maintenance is realized by one of the
analyzed D2C scenarios in Section 3.1.3, which helps to avoid production outages and to track
the maintenance progress. Thereby, notifications are usually issued in a PDMS solution as shown
in Figure 3.26 from SAP CPI, represented in BPMN according to [RS16].

Although we simplified the scenario, the relevant aspects are preserved. Industrial manufac-
turing machines, denoted by Machine, measure their own states and observe their environment
with sensors in a high frequency. When they detect an unexpected situation (e.g., parameter
crosses threshold), they send an incident to a local endpoint (e.g., IoT edge system), the PDMS,
indicating that a follow-on action is required. The PDMS system creates alerts for the different
machines and forwards them to a mediator, connecting the PDMS to the ERP system. To throttle
the possibly high frequent alerts, several incidents are collected (not shown) and sent as list of
alerts. Before the ERP notification can be created, additional data from the machines are queried
based on the split and single alerts, and then enriched with information that adds the feature
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type. The information of the single alerts is used to predict the impact by value and machine
type, and then gets aggregated to be sent to ERP. In case the notification has been created
successfully in ERP, the PDMS gets notified including the service task identifier and thus stops
sending the alert (not shown).

Formalization Again, we manually translated the BPMN scenario into a timed db-net as shown
in Figure 3.27. While the splitter from Figure 3.9(a) (on page 80) is an extension of the current
CPN solution in [FG13] and configured by the split condition from Figure 3.9(b), the content
enricher (incl. the query on the machine’s state) and Aggregator require the functionality of
timed db-nets. Note that alerts in the PDMS system are created based on query Qalert that
returns the device id and the critical value act val. The additional feature type feat type is
provided by query Qget, using the content enricher from Figure 3.10(b). Finally, the Aggregator
from Figure 3.3 (on page 68) is configured to concatenate the machine names.

Simulation The predictive maintenance scenario in timed db-nets (cf. Figure 3.26) is implemented
as hierarchical net with our CPN Tools extension in Figure 3.29, which references the pattern
implementations of the enricher from Figure 3.20 and translator from Figure 3.21, annotated with
enricher, Aggregator, respectively. In the original scenario, the PDMS sends lists of incidents to
the integration system to reduce the number of requests as shown in Figure 3.28. The incidents
have an incident ID, a machine ID, and the actual critical incident value (e.g., (101, 1, 76)).
Unfortunately, due to the fact that CPN Tools does not support third party extensions with
complex data types like lists, it was decide to make the PDMS component emit single messages.
Consequently, the splitter is not required for separating the single incidents, but the incident
messages of type REPORT are immediately enriched by the enricher. After master data has
been added to the message, a new one of type E REPORT has been produced. The net then
immediately proceeds with predicting the impact using transition predict, which usually assesses
the probability of a timely machine error based on previous experiences with the particular
machine type. Here, for simplicity, the prediction is always set to true and the results are
placed into prediction result. Tokens in this place are then used to aggregate several incidents by
machine, where, for simplicity, we use machine identifiers to identify Aggregator’s sequences. The
aggregated incident messages are then sent to the ERP system. With the final marking in m(ERP )
and mexp(ERP ) = {“Assembly Robot”, “Engine Robot”|“Engine Robot”|“Engine Robot”}, for
the three incidents from machine Engine Robot and one from Assembly Robot, we can see that
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Figure 3.28: Create notification pattern composition as hierarchical timed db-net before simulation
(in CPN Tools)

m(ERP ) ∼ mexp and thus conjecture that the scenario is correct.
Although the resulting timed db-net provides so far unmatched insights into the different

aspects of integration scenarios, the complexity of the composed patterns increased even, when
using hierarchical nets.

Conclusions (9) timed db-net representations allow for an explicit modeling of all data aspects in
complex data-aware scenarios (e.g., roll-back, queries); (10) the formalism’s technical complexity
might prevent non-technical users from using it on a regular basis.

Discussion

With the timed db-net formalization, it is possible to model and reason about EAI requirements
like data, transacted resources and time (cf. conclusions (1), (5)), going beyond the simple hybrid
integration scenarios (cf. conclusion (3)). Thereby the pattern realizations are self-contained,
can be composed into complex integration scenarios (e.g., Figure 3.27; cf. conclusion (7)) and
analyzed (cf. conclusions (4)), while leaving the extension of our tool prototype to model checking
as well as a formal treatment of pattern compositions as future work (cf. conclusions (6), (8),
respectively). The composition is facilitated manually through carefully defining “sharing” control
places, preventing unwanted side-effects between patterns.

However, there are some limitations that we briefly discuss next. PN classes considered in
this work fall short when it comes to generation of places, transitions or arcs (cf. conclusion (2)).
For example, Dynamic Router requires a proper representation of dynamically added or removed
channels. Further, the deep insights into data-aware patterns and scenarios lead to the trade-off
between sufficient information and model complexity (cf. conclusion (9)). The complexity of PN
models compared to their BPMN counterparts in Figure 3.26 might not allow for modeling by
non-technical users (cf. conclusion (10)). Hence, we propose modeling in a less technical modeling
notation, which can be then encoded into PN models, e.g., for verification. Further, while the PN
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Figure 3.29: Create notification pattern composition as hierarchical timed db-net after simulation
(in CPN Tools)

formalism closes the conceptual vs. implementation gap by simulation, we leave a translation of
existing EIP implementations to timed db-nets for verification as future work.

In summary, timed db-nets allow to represent patterns not covered before (e.g., the stateful
Aggregator with a timeout or the Content Enricher with external resources) and check their
soundness and correctness. Note that for more complex scenarios the timed db-net representation
might become very complex, e.g., compared to a BPMN representation, and thus might be more
suitable as formalism and not as modeling language for users (e.g., integration developers).

3.1.4 Conclusions

To formalize the EIPs as the foundations of current EAI systems, we collected relevant EAI
requirements (cf. RQ-1), selected and combined existing PN approaches as timed db-nets (cf.
RQ-2), and realized selected EIPs using the formalism, and briefly sketched how to assess their
correctness (cf. RQ-3). Table 3.2 illustrates our journey from a requirements perspective from the
related work based on CPNs, over the selected db-net and temporal formalisms to timed db-nets.
Notably, CPNs already address the control as well as simple data aspects (cf. requirements
REQ-0 to REQ-2), however, with certain limitations discussed in Section 3.1.1. Db-nets provide
a broader coverage of data and database related aspects than plain CPNs (cf. REQ-2, REQ-4
and REQ-5). With the temporal extensions (cf. REQ-4), all requirements and objectives (i)–(iv)
are addressed by timed db-nets.

The evaluation results in several interesting conclusions, e.g., the suitability of our approach
for EIPs and their compositions (cf. conclusions (1), (3)–(5), (7)), a model complexity trade-off (cf.
conclusion (8)), and desirable extensions. Among these extensions are a concept and development
of a prototype for model checking (cf. conclusion (6)) as well as further investigations of the
implementation gap and model complexity trade-off through an automatic translation between
user-friendly modeling environments and PNs.

While timed db-nets allow for a comprehensive formalization, validation through simulation
and verification (cf. objectives (i)–(iii)), the selection of a PN-based approach is beneficial
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Table 3.2: Formalization requirements (summary)
ID Requirement CPN db-net timed db-net

REQ-0 Control flow (pipes and filter)
√ √ √

REQ-1 (a) Message channel priority (
√

) (
√

) (
√

)
(b) Message channel distribution - (

√
) (

√
)

REQ-2 Data, format incl. message protocol with encod-
ing, security

(
√

)
√ √

REQ-3 (a) Timeout on message, operation - -
√

(b) Expiry date on message - -
√

(c) Delay of message, operation - -
√

(d) Message/time ratio - -
√

REQ-4 (a) Create, Retrive, Update, Delete
(CRUD) operations on (external) resources

-
√ √

(b) Transaction semantics on (external) re-
sources (incl. roll-back)

-
√ √

REQ-5 Exception handling, compensation (similar
to roll-back in REQ-4 for transactional resources)

-
√ √

covered
√

, partially (
√

), not -.

for the composition of the single, timed db-net patterns (cf. objective (iv)), and thus more
abstract representations (e.g., for the application of optimizations). This denotes the basis for
structurally and semantically correct pattern compositions as well as subsequently introduced
correctness-preserving optimizations.

3.2 Composing Patterns

With the formalization of the integration patterns, the fundamental EAI building blocks can
be experimentally validated through simulation and formally analyzed, and thus, e.g., verified
for functional correctness. However, the formal treatment of integration solutions and their
improvements requires compositions of patterns. A pattern composition is a combination of
several patterns (i.e., filters) that are connected by message channels (i.e., pipes) in a pipes-and-
filter style (cf. Section 2.1.2). Already the EIPs describe a few compositions as composite patterns
like Composite Message Processor in Figure 2.2(b) (on page 24; essentially a combination of
Splitter, Content-based Router, and Aggregator patterns), which indicates that the integration
patterns are actually meant to be composed to represent integration logic that connects several
endpoints in an integration scenario.

While the composite patterns denote best-practices of pattern compositions known in 2004,
the example scenarios in Section 3.1.3 represent more elaborate, real-world integration scenarios.
The evaluation of these pattern compositions formalized as a timed db-nets essentially resulted in
the following observations, which essentially denote a trade-off between (i) a comprehensible and
simple modeling of integration scenarios, and (ii) an expressive and comprehensive coverage of
the execution semantics of integration patterns and compositions that allows for the analysis of
their correctness. First, (i) while the PN grounding of timed db-nets allows for a composition of
the single pattern formalizations into a graph of timed db-net patterns as hierarchical PNs, the
complexity of the solution through its fine granularity (i.e., PN places and transitions) results
in a decline in its comprehensibility and accessibility even for integration experts, and blurs
the boundaries of the single, self-contained patterns. Since the patterns’ internal logic is not
expected to change often, after a correct pattern is developed, the question is raised, whether the
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Figure 3.30: Responsible pattern composition process (process-perspective)

user needs to deal with the pattern logic explicitly. While being more explicit, the pattern logic
complexity limits the creation of newly formalized pattern compositions, the comprehension of
existing solutions and their adaptation or extensibility (e.g., [FG13]). This can be easily seen in
the example scenarios in Section 3.1.3, in which the single, self-contained patterns are graphically
identifiable only through their dashed boundaries, while the token exchange is facilitated through
places that are visible for the neighboring patterns. We argue that a suitable formalism should be
directly represented by a higher-level graph structure that does not require the user to understand
the construction of a pattern on a lower level timed db-net. To formally ground such a graph
representation (e.g., with respect to execution semantics), a translation from the graph to its
executable timed db-net representation is mandatory. Second, (ii) the correctness of these
compositions is not guaranteed. The resulting concerns about the correctness of a composition as
well the identification and application of improvements such as optimizations, require a further
sophistication of timed db-nets towards a formal composition model, which we study driven by
the following sub-questions of RQ2-2 “What is a sound and comprehensive formal representation
of integration patterns that allows for formal validation of integration scenarios and reasoning?”:

(a) How can pattern compositions be suitably formalized for compositional correctness?

(b) How to assess and guarantee the correctness of composed, formalized patterns?

(c) How to realize formalized pattern compositions in real-world integration scenarios?

To address these questions, we follow a responsible pattern composition process in Figure 3.30,
similar to the process for the pattern formalization (cf. Figure 2.5 (on page 27)). In the composition
formalization and formal representation steps the composition formalization is addressed (cf.
research question RQ2-2(a)). Intuitively, the single patterns and their boundaries become
more prominent, when acknowledging the timed db-net control layer as a graph (i.e., without
persistence and data logic layers), applying a pattern-oriented condensation mechanism [CLRS09]
(i.e., patterns denote strongly connected components in that sense), and visually highlighting
the patterns (containing PN places and transitions) as boxes and overlaying the “shared” PN
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Figure 3.31: Condensation based on pattern boundaries of example from Figure 3.26

places by arrows, giving the direction of the data exchange. The resulting condensed overlay
graph for the predictive maintenance composition from Figure 3.26 is shown in Figure 3.31. Such
a graph-based representation of pattern compositions makes them more comprehensible and
accessible. Hence, for a simpler definition of scenarios in step compose patterns, we assume the
patterns are composed in a graph-like manner to additionally make an abstract definition of
improvements (e.g., composition-level optimizations) more tractable (i.e., define identification
of optimizations and rewritings on graphs and not PNs). This essentially targets to solve the
identified complexity problem in Section 3.1.3 (cf. observation (i)).

For the considerations on the yet unsolved correctness of pattern boundaries (cf. observation
(ii)) and correctness guarantees (cf. research question RQ2-2(b)), we differentiate between struc-
tural and semantic composition criteria, which we address in separate steps, “check composition
structure” and “check composition semantics”, respectively. Ideally, the structural correctness
criteria is built-in the pattern composition formalism (i.e., the higher-level graph representation),
and can thus be immediately decided on the graph level in the form of composition contracts that
do not allow for structurally incorrect compositions. The structural correctness could thus be
checked without translation to an executable representation, such as timed db-net. The semantic
correctness, however, requires more elaborate validation or verification on the timed db-nets
pattern level, for which we embed the responsible pattern formalization process into the overall
composition process. Note that the define semantics step is not required, since we assume that
the patterns are already defined. However, similar to the contracts on the graph level, the timed
db-net patterns require constructs — called boundaries — that allow for the formal analysis when
they are composed. Hence, the contract graphs are directly translated into timed db-nets with
such boundaries, verified or configured and then validated through simulation. If the composition
is not structurally or semantically correct, it can be adjusted in the compose patterns step. We
argue that this way correct real-world integration scenarios (cf. research question RQ2-2(c))
can be developed. The separation of higher-level graphs that can be translated to executable
lower-level timed db-nets addresses observations (i) and (ii): the graph structure abstracts from
the patterns inner workings as well as their boundaries in the technical PN representation, and
thus is more comprehensible for a user and allows for faster modeling of integration scenarios
and subsequently for a less complex definition of optimization strategies. The translation to
the lower-level timed db-nets with boundaries allows for semantic correctness checks of the
execution semantics, while a translation mechanism abstracts from the technical peculiarities of
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Figure 3.32: From pattern contract graphs to timed db-nets with boundaries (methodological)

the underlying PN. A translation from the lower-level PN to the graphs is not required and might
only be useful, when new patterns are developed, which we leave as future work.

Methodologically, this is summarized in Figure 3.32, illustrating the outline of this section.
First, we analyze the structural properties of current integration patterns in Section 3.2.1,
which provides constraints on the structure of pattern composition graphs. Based on these
structural properties and pattern characteristics — representing semantic pattern aspects —
pattern compositions are formally defined using control flow graphs and extending them with
data flow within and between integration patterns in Section 3.2.2 (cf. (1) Graph def.), which we
call Integration Pattern Contract Graph (IPCG). The structural correctness of these compositions
is defined through contracts between patterns, and thus the name integration pattern contract
graphs. For the semantic correctness, timed db-nets are extended with boundaries (i.e., matching
the contracts on the graph level) in Section 3.2.3. For such compositional contracts in the PN
domain, Open Nets [BBGM15, BM18] are usually considered. In our case, open nets allow for
the definition of pattern boundaries (cf. (2) Boundary def.) in the form of PN constructs (e.g.,
place, transition) that are necessary to send the data to a subsequent pattern or read from the
predecessor (i.e., arrows in Figure 3.31), which is in line with the pipes-and-filter composition
(cf. Section 2.1.2). In particular, such a boundary constitutes the contract between two or
more patterns (e.g., PN token colors correspond to those of the PN places), and thus allows for
an assessment of the correctness of a pattern composition. Then structural pattern contract
graphs are translated to boundary-aware timed db-nets in Section 3.2.4 (cf. (3) Transl.). The
replicate material scenario in Figure 3.23 is used as running example throughout the formal
sections. The applicability and soundness of our approach are evaluated by revisiting the replicate
material and predictive maintenance scenarios in case studies in Section 3.2.5, before we conclude
in Section 3.2.6.

3.2.1 Structural Pattern Analysis

Besides the pattern characteristics, collected in Section 3.1.1 (e.g., control and data flow, time),
the structural property of channel cardinality is relevant for the definition of a pattern composition.
The channel cardinality denotes the number of input and output message channels of a pattern
including (transactional) access to external resources (e.g., databases). A message channel
signifies a message-based transport of a message as for pipes in pipes-and-filters. For example,
the Aggregator in Figure 3.3 and the Splitter in Figure 3.9(a) each have one input and one
output channel, and thus has a channel cardinality of one-to-one. And, while the Content-based
Router in Figure 3.10(a) has one input and several conditional output channels (i.e., conditional
one-to-many or fork), the Load Balancer in Figure 3.7 denotes an unconditional fork pattern.

More systematically, from the extended pattern catalog in Chapter 2, we manually identified
102 out of the 166 integration patterns with structural significance (i.e., excluding abstract
concepts like Canonical Data Model or Messaging System) and structurally classified them.
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(b) One-to-zero: End
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( )| ( )|dout1 pi

(c) One-to-one: Message Pro-
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pattern   pi

( )| ( )|din1 pi
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pattern   pi

( )| ( )|. . . | ( )|din1 pi dink pi

( )| ( )|dout1 pi

(e) Many-to-one: Join

Figure 3.33: Structural integration pattern categories: Start, end, message processor, fork, join

Figure 3.33 show all but one of the resulting pattern categories: Start, End, Message Processor,
(conditional) Fork, and Join, which we subsequently discuss.

From the perspective of an integration pattern composition, the message endpoint patterns
(e.g., Message Endpoint, Idempotent Receiver, Commutative Receiver) denote patterns with
unknown input or output. A message sending endpoint pi is specified as in Figure 3.33(a) by one
output channel with data cardinality |dout1(pi)| and a message receiving endpoint pj is shown
in Figure 3.33(b) with one input channel and data cardinality |din1(pj)|. The data cardinalities
denote arbitrary data sets within the exchanged messages. The majority of the patterns belongs
to the one-to-one category, shown in Figure 3.33(c), which we call Message Processor. Prominent
examples from the routing patterns are the Aggregator and Splitter as well as most of the
transformation patterns like Message Translator and Content Filter.

The category of (conditional) fork patterns have one incoming, but several outgoing message
channels, as depicted in Figure 3.33(d). While the unconditional fork patterns (e.g., Multicast,
Content Enricher) use all of their message channels every time they are called, the conditional
fork patterns (e.g., Content-based Router, Detour) effectively use only some of the outgoing
channels, which are selected based on a (routing) condition.

The structural antipode of a fork is a many-to-one pattern that we call join. The join
structurally combines several incoming message channels to one as shown in Figure 3.33(e). The
incoming data is not changed, but forwarded to a single channel, assuming that the data format
of the incoming message complies with the outgoing channel.

Since only one pattern can be regarded as many-to-many (i.e., Control Bus) and this category
can be represented by a subsequent join and fork, it is not shown.

Subsequently, an identified structural integration pattern categories are relevant for the
definition of structurally correct pattern compositions and server as templates during the definition
and the translation to corresponding timed db-nets with boundaries.
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3.2.2 Graph-based Pattern Compositions

With the results from the semantic (cf. Section 3.1.1) and structural pattern analyses, we
step-wise define graph-based, structurally correct pattern compositions. As motivated before,
such a formalization is needed in order to verify the compositional correctness or talk about
composition-level optimizations more rigorously.

First, we subsequently define an Integration Pattern Typed Graph (IPTG) based on the
structural pattern categories from Section 3.2.1 as an extended, acyclic Control Flow Graph (cf.
Prosser [Pro59] and Allen [All70]), as also used for optimizing compilers (e.g., Offner [Off13]).
Informally speaking, a control flow graph is a directed graph of a program, where the nodes
denote a set of program instructions that are executed in an ordered way. Similar to the program
instructions, the integration patterns have to be executed in order, and thus denote nodes in
our graph. More formally, control flow graphs denote a special case of labeled graphs, where the
definition of a labeled graph requires a label alphabet as in Definition 3.28 according to Taentzer
et al. [EEPT06], Ehrig et al. [ERK99].

Definition 3.28 (Labeled graph). A label alphabet C = (CV ) comprises a set CV of node labels.
A graph over a label alphabet C is a system G = (VG, EG, sG, tG, lG) comprising a finite set

VG of nodes, a finite set EG of edges, source and target functions sG, tG : EG → VG, and a partial
node labeling function lG : VG → CV . A graph G is empty, if VG = ∅. A graph G is totally
labeled, if lG is a total function. �

Subsequently, we write G = (P,E) for a labeled graph G, where the set P denote a set
of program instruction representing a pattern as nodes, with the set of edges and source and
target functions represented by a relation E. We specify the node labeling function lG separately.
Consequently, we think of pattern types as sets of program instructions. For example, pattern
types like the conditional fork is “a set of program instructions”, and thus a node referred to
as condition. In addition to the structurally separated patterns types, the complex external
call (actually a fork) and merge (actually a message processor) are added as separate pattern
types. Let us first fix some notation: a directed graph is given by a set of nodes P and a set of
edges E ⊆ P × P . For a node p ∈ P , we write •p = {p′ ∈ P | (p′, p) ∈ E} for the set of direct
predecessors of p, and p• = {p′′ ∈ P | (p, p′′) ∈ E} for the set of direct successors of p.

Definition 3.29 (Integration pattern type graph). An integration pattern typed graph (IPTG)
is a directed graph with set of nodes P and set of edges E ⊆ P × P , together with a function
type : P → T , where T = {start, end, message processor, fork, structural join, condition, merge,
external call}. An IPTG (P,E, type) is correct if

� ∃ p1, p2 ∈ P with type(p1) = start and type(p2) = end;

� if type(p) ∈ {fork, condition} then | • p| = 1 and |p • | = n, and if type(p) = join then
| • p| = n and |p • | = 1;

� if type(p) ∈ {message processor, merge} then | • p| = 1 and |p • | = 1;

� if type(p) ∈ {external call} then | • p| = 1 and |p • | = 2;

� The graph (P,E) is connected and acyclic. �

In the definition, we think of P as a set of extended EIPs that are connected by message
channels in E, as in a pipes-and-filters architecture. The function type records what type of
pattern each node represents. The first correctness condition says that an integration pattern
has at least one source and one target, while the next three states the cardinality of the involved
patterns coincide with the in- and out-degrees of the nodes in the graph representing them. The
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last condition states that the graph represents one integration pattern, not multiple unrelated
ones, and that messages do not loop back to previous patterns. Although the structural pattern
categories would allow for cycles, neither the current patterns nor the analyzed integration
scenarios require them, and thus we leave cyclic compositions for future work.

Second, to represent the data flow, i.e., the basis for the optimizations, the control flow has to
be enhanced with (a) the data that is processed by each pattern, and (b) the data exchanged
between the patterns in the composition. The data processed by each pattern (a) is described as
a set of pattern characteristics, formally defined as follows:

Definition 3.30 (Pattern characteristic). A pattern characteristic assignment for an IPTG
(P,E, type) is a function char : P → 2PC , assigning to each pattern a subset of the set

PC = ({MC} × N× N) ∪
({ACC} × {ro, rw}) ∪
({MG} × B) ∪
({CND} × 2BExp) ∪
({PRG} × Exp× (Q≥0 × (Q≥0 ∪ {∞}))) ,

where B is the set of Booleans, BExp the set of Boolean expressions, Exp the set of program
expressions, and MC, CHG, MG, CND, PRG some distinct symbols. �

The property and value domains in Definition 3.30 are based on the pattern descriptions
in [HW04, RMRM17], and could be extended if further analysis required it. We briefly explain the
intuition behind the characteristics: the characteristic (MC, n, k) represents a message cardinality
of n:k, (ACC, x) the message access, depending on if x is read-only (ro) or read-write (rw), and
the characteristic (MG, y) represents whether the pattern is message generating depending on the
Boolean y. Finally (CND, {c1, ..., cn}) represents the conditions c1, . . . , cn used by the pattern
to route messages, (PRG, (p, (v, v′))) the program used by the pattern for message translations,
together with its timing window. The characteristics determine a node labelling function lG for
the graph.

Example 3.31. The characteristics of a Content-based Router CBR is char(CBR) ={(MC,
1:1), (ACC, ro), (MG, false), (CND,{cnd1, . . . , cndn−1})}, because of the workflow of the router:
it receives exactly one message, then evaluates up to n− 1 routing conditions cnd1 up to cndn−1
(one for each outgoing channel), until a condition matches. The original message is then rerouted
read-only (in other words, the router is not message generating) on the selected output channel,
or forwarded to the default channel, if no condition matches. �

The data exchange between the patterns (b) is based on input and output contracts (similar
to data parallelization contracts in [BEH+10]). These contracts specify how the data is exchanged
in terms of required message properties of a pattern during the data exchange, formally defined
as follows:

Definition 3.32. A pattern contract assignment for an IPTG (P,E, type) is a function contr :
P → CPT × 2EL, assigning to each pattern a function of type

CPT = {signed, encrypted, encoded} → {yes,no, any}

and a subset of the set

EL = MS × 2D

107



where MS = {HDR,PL,ATTCH}, and D is a set of data elements (the concrete elements of D
are not important, and will vary with the application domain). We represent the function of type
CPT by its graph, leaving out the attributes that are sent to any, when convenient. �

Each pattern will have an inbound and an outbound pattern contract, describing the format
of the data it is able to receive and send respectively — the role of pattern contracts is to make
sure that adjacent inbound and outbound contracts match. The set CPT in a contract represents
integration concepts, while the set EL represents data elements and the structure of the message:
its headers (HDR, H), its payload (PL, Y ) and its attachments (ATTCH, A). The contracts
determine a node labelling function lG for the graph.

Example 3.33. A content-based router is not able to process encrypted messages. Recall that its
pattern characteristics included a collection of routing conditions: these might require read-only
access to message elements such as certain headers h1 or payload elements e1, e2. Hence the
input contract for a router mentioning these message elements is

inContr(CBR) = ({(encrypted,no)}, {(HDR, {h1}), (PL, {e1, e2})}) .

Since the Content-based Router forwards the original message, the output contract is the same
as the input contract. �

Definition 3.34. Let (C,E) ∈ 2CPT × 2EL be a pattern contract, and X ⊆ CPT × 2EL a set of
pattern contracts. Write XCPT = {C ′ | (∃E′) (C ′, E′) ∈ X} and XEL = {E′ | (∃C ′) (C ′, E′) ∈ X}.
We say that(C,E) matches X, in symbols match((C,E), X), if the following condition holds:

(∀(p, x) ∈ C)
(
x = any ∨ (∀C ′ ∈ XCPT )(∃(p′, y) ∈ C ′)(

p = p′ ∧ (y = any ∨ y = x)
))
∧

(∀(m,Z) ∈ E)
(
Z =

⋃
(m,Z′)∈∪XEL

Z ′
)
.

�

We are interested in an inbound contract Kin matching the outbound contracts K1, . . . ,Kn

of its predecessors. In words, this is the case if (i) for all integration concepts that are important
to Kin, all contracts Ki either agree, or at least one of Kin or Ki accepts any value (concept
correctness); and (ii) together, K1, . . . ,Kn supply all the message elements that Kin needs (data
element correctness).

Since pattern contracts can refer to arbitrary message elements, a formalization of an inte-
gration pattern can be quite precise. On the other hand, unless care is taken, the formalization
can easily become specific to a particular pattern composition. In practice, it is often possible to
restrict attention to a small number of important message elements (see examples below), which
makes the formalization manageable.

Putting everything together, we formalize pattern compositions as integration pattern typed
graphs with pattern characteristics and inbound and outbound pattern contracts for each pattern:

Definition 3.35. An integration pattern contract graph (IPCG) is a tuple

(P,E, type, char , inContr , outContr) ,

where (P,E, type) is an IPTG, char : P → 2PC is a pattern characteristics assignment, and
inContr :

∏
p∈P (2CPT × 2EL)|•p| and outContr :

∏
p∈P (2CPT × 2EL)|p•| are pattern contract

assignments — one for each incoming and outgoing edge of the pattern, respectively — called the
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inContr(MT) = ({(ENCR,no)}, {(PL,       
                    {DOCNUM})}
outContr(MT) = ({(ENCR,no), (SIG,no)},
                  {(PL,{MatID, RcvID}),

(HDR,{AppID})})

outContr(ADPTs) = ({(ENCR,no)},{(PL,{DOCNUM})})

Figure 3.34: IPCG from the material replication scenario

inbound and outbound contract assignment respectively. It is correct, if the underlying IPTG
(P,E, type) is correct, and inbound contracts match the outbound contracts of the patterns’
predecessors, i.e.

(∀p)
(
p = start ∨match(inContr(p), {outContr(p′) | p′ ∈ •p})

)
.

Two IPCGs are isomorphic if there is a bijective function between their patterns that preserves
edges, types, characteristics and contracts. �

Example 3.36. Figure 3.34 shows the IPCG representing the material replication scenario
from Figure 3.23 with a focus on the pattern contracts. The input contract inContr(CE) of the
content enricher pattern CE requires a non-encrypted message and a payload element DOCNUM.
The content enricher makes a query to get an application ID AppID from the message, and appends
it to the message header. Hence the output contract outContr(CE) contains (HDR, {AppID}).
The content enricher then emits a message that is not encrypted or signed. A subsequent message
translator MT requires the same message payload, but does not care about the appended header.
It adds another payload RcvID to the message. Comparing inbound and outbound pattern
contracts for adjacent patterns, we see that this is a correct IPCG. �

3.2.3 Timed Db-Nets with Boundaries and Synchronization

The definition of integration pattern contract graphs allows for a structurally correct composition
of patterns in the form of abstracting the low-level pattern logic by high-level graphs, in which
each pattern denotes a node in the graph. The pattern contracts are implicitly represented by
the edges, which enforce the correct composition of adjacent patterns. While the graph approach
conveniently abstracts from the internal pattern logic, and thus from unnecessary complexity
from a user perspective, the semantic correctness is not yet covered. As motivated before, for the
problem of formalizing pattern compositions, we propose a solution grounded on timed db-nets.

109



Pattern contracts are represented as what we call boundaries. Similar to the contracts in IPCGs,
these boundaries encode pattern characteristics for correct compositions, however, only this time
accounting for the inner pattern semantics.

In the PN domain, Open Nets [BBGM15, BM18] are usually considered for compositional
contracts, and thus taken up in the workflow (e.g., [vDA02, KMR00]) and service interaction
(e.g., [vDALM+10]) domains. These approaches focus on the composition of the control flow
and correctness, e.g., in the sense of the accordance of private and public views in an interac-
tion [vDA02]. In case of the integration patterns, not only the data flow, but also the identified
structural and semantic pattern characteristics have to be taken into account, when formalizing
compositions and checking their correctness. For that, we selected the work by Sobociński [Sob10]
on nets with boundaries – essentially a sufficiently expressive variant of open nets — for our case.
Subsequently, we discuss the background on nets with boundaries for better understandability
close to our contribution, timed db-nets with boundaries or open timed db-nets, which follow
immediately afterwards.

Nets with Boundaries

The composition of PNs of the same type (e.g., timed db-nets) can be facilitated by “ports” or “open
boundaries” for communicating with each other (e.g., [BBGM15, BM18]). Thereby PN tokens
can progress from one PN to another through these ports, which can have a structural boundary
configuration that allows for their correctness checking, called synchronization [Sob10, Fon16].
The subsequently introduced nets are mostly based on [Sob10].

Let k, l,m, n range over finite ordinals n = {0, 1, ..., n − 1}. Intuitively, the notion of a left
•– and a right –• boundary is introduced in Definition 3.37 that extends the already known
predecessor and successor relations, here made explicit by ◦−, −◦, respectively. Being explicit
about these relations allows for a differentiated visualization of the different conventional control
and new boundary places.

Definition 3.37 (Net with boundaries [Sob10]). Let m,n ∈ N. A (finite) net with boundaries
N : m→ n, is a sextuple (P, T, ◦−, −◦, •–, –•) where:

� P is a set of places;

� T is a set of transitions;

�
◦–, –◦ : T → 2P are predecessor and successor functions;

�
•− : T → 2m, −• : T → 2n are boundary functions. �

We say that m and n denote the left and right boundaries of N , respectively. Further, a
homomorphism f : N →M between two nets with equal boundaries N,M : m→ n is a pair of
functions fT : TN → TM , fP : PN → PM , s.t. ◦–N ; 2fP = fT ; ◦–M , –

◦
M ; –◦M , •–N = fT ; –•M and

•–N = fT ; –•M . If its two components are bijections, a homomorphism is an isomorphism. We
write N ∼= M , if there is an isomorphism from N to M .

For contract situations, Sobcinski [Sob10] introduces an independence of transitions, i.e.,
transitions t, u are independent, if ◦t ∩◦ u = ∅. Moreover, for some transition t, a place p can be
both in ◦t and t◦. We extend the notion of independence of transitions to nets with boundaries
by: t, u ∈ T are independent, if:

◦t ∩ ◦u = ∅, t◦ ∩ u◦ = ∅, •t ∩ •u = ∅ and t• ∩ u• = ∅.

To define composition along the boundary of two nets M : l→ m and N : m→ n, we introduce
the concept of a synchronization: a pair (U, V ), with U ⊆ TM and V ⊆ TN mutually independent
sets of transitions U• = {u•|u ∈ U} and •V = {•v|v ∈ V }, s.t.:
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Figure 3.35: Example net with boundaries

� U ∪ V 6= ∅;
� U• = •V .

A set of synchronisations inherits an ordering from the subset relation, i.e., (U ′, V ′) ⊆ (U, V ), if
U ′ ⊆ U and V ′ ⊆ V . The synchronization is minimal, if it is minimal with respect to this order:

TM ;N
def
= {(U, V )|U ⊆ TM , V ⊆ TN , (U, V ) a minimal synchronization}.

Notably, any transition t in M (or N) that is not connected to a shared boundary m denotes a
minimal synchronization ({t}, ∅).

We define ◦−, −◦ : TM ;N → 2PMtPN , with the disjoint union t, by ◦(U, V ) = ◦U∪ ◦V, (U, V )◦

= U◦ ∪ V ◦, as well as •− : TM ;N → 2l by •(U, V ) = •Uand −• : TM ;N → 2n by (U, V )• = V •.
Consequently, the composition of M and N is written M ;N : l→ n with:

� set of transitions TM ;N ;

� set of places PM t PN ;

�
◦−,−◦ : TM ;N → 2PMtPN , •− : TM ;N → 2l

Proposition 3.38.

� Let M,M ′ : k → n and N,N ′ : n → m be nets with M ∼= M ′ and N ∼= N ′, then
M ;N ∼= M ′;N ′;

� Let L : k → l,M : l→ m,N : m→ n be nets, then (L;M);N ∼= L; (M ;N).

Further we define the tensor product as another binary operation on nets with boundaries.
For nets M : k → l and N : m→ n the resulting tensor product is the net that results from their
parallel composition. More precisely, M ⊗N : k tm→ l t n in the net with:

� set of transitions TM t TN ;

� set of places PM t PN ;

�
◦−, −◦, •–, –• defined in the obvious way.

Example 3.39. The composition N ;M of a nets with boundaries M : 1 → 2 and N : 2 → 1
is shown in Figure 3.35. Thereby, TN = {t0, t1, α1, α2}, TM = {β1} and PN = {P1, .., P4},
PM = {P5}. The non-empty values of ◦− and −◦ are: t◦0 = {P1}, ◦t1 = {P1}, t◦1 = {P2, P3, P4},
◦α1 = {P2, P4}, ◦α2 = {P3}, and β◦1 = {P5}; and the non-empty values of •−, −•: α•1, •β1 = {0},
α•2,

•β1 = {1}. �
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Timed DB-Nets with Boundaries

We recall timed db-nets from Section 3.1 and describe them as nets that are open, in the sense
that they have “ports” or “open boundaries” for communicating with the outside world: tokens
can be received and sent on these ports [Fon16, Sob10]. Similar to nets with boundaries [Sob10],
we define a boundary configuration that records what we expect from the external world for the
net to be functioning. This is not the most general notion of open timed db-nets, but it is general
enough for our purposes.

The boundary configurations so far only concerned the number of “ports” [Fon16, Sob10]
for the synchronization of nets. Hence in Definition 3.40, we define a boundary configuration
considering the number of ports, but also the data exchanged between nets.

Definition 3.40 (Boundary configuration). Let D be a type domain and L = (Q,A) a data
layer over it. A boundary configuration over (D,L) is an ordered finite list of colors

c ∈ {D1 × . . .×Dm | Di ∈ D}

We write such a list as c1 ⊗ . . .⊗ cn, and I for the empty list. �

The length of a boundary configuration list gives the number of “open ports” of the bound-
ary [Fon16, Sob10]. Each color c in the list describes the type of the data to be sent/received
on the port. An open timed db-net has a left and a right boundary (similar to inbound and
outbound contracts of a pattern in IPCG), both described by boundary configurations.

The boundary configurations allow for the extension of the timed db-net definition in Defini-
tion 3.15 with boundaries concerning the data exchange to timed db-nets with boundaries given
in Definition 3.41.

Definition 3.41 (Timed db-net with boundaries). Let D, P, and L be a type domain, a
persistence layer and a data layer respectively, and let ⊗i<mci and ⊗i<nc′i be boundaries over D,
L. A control layer with left boundary ⊗i<mci and right boundary ⊗i<nc′i is a tuple

(P, T, Fin, Fout, Frb, color, query, guard, action)

which is a control layer over L, except that Fin is a flow from P ] {1, . . .m} to T , and Fout and
Frb are flows from T to Pc ] {1, . . . , n}, i.e.,

� P = Pc ] Pv is a finite set of places partitioned into control places Pc and view places Pv,

� T is a finite set of transitions,

� Fin is an input flow from P ] {1, . . .m} to T (where we assume color(i) = ci),

� Fout and Frb are respectively an output and roll-back flow from T to P ] {1, . . . , n} (where
we assume color(j) = c′j),

� color is a color assignment over P (mapping P to a Cartesian product of data types),

� query is a query assignment from Pv to Q (mapping the results of Q as tokens of Pv),

� guard is a transition guard assignment over T (mapping each transition to a formula over
its input inscriptions), and

� action is an action assignment from T to A (mapping transitions to actions triggering
updates over the persistence layer).

We write (D,P,L,N , τ) : ⊗i<mci → ⊗i<nc′i for timed db-nets with control layers with the given
boundaries, and call such a tuple a timed db-net with boundaries. �
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Note that the boundaries are carefully incorporated into the timed db-net definition by solely
concerning the exchanged data elements, and thus in particular that a timed db-net with empty
boundaries is by definition a timed db-net. We can extend the ⊗ operation on colors to nets, by
defining N ⊗N ′ : ~c⊗ ~c′ → ~d⊗ ~d′ for N : ~c→ ~d and N : ~c′ → ~d′ to be the two nets N and N ′ next
to each other — this gives a tensor product or “parallel” composition of nets. The point of being
explicit about the boundaries of nets is to enable also a “sequential” composition of nets, whenever
the boundaries are compatible. In Definition 3.42, we use the notation X ] Y for the disjoint
union of X and Y , with injections inX : X → X ] Y and inY : Y → X ] Y . For f : X → Z
and g : Y → Z, we write [f, g] : X ] Y → X ′ for the function with [f, g](inX(x)) = f(x) and
[f, g](inY (y)) = g(y).

Definition 3.42 (Synchronization). Let (D,P,L,N , τ) : ⊗i<mci → ⊗i<nc′i and (D′,P ′,L′,N ′, τ ′) :
⊗i<nc′i → ⊗i<kc′′i be two timed db-nets with boundaries. We define their composition as

(D ∪D′,P ∪ P ′,L ∪ L′,N ′′, τ ′′) : ⊗i<mci → ⊗i<kc′′i

(where union of tuples is pointwise) with

N ′′ = (P ′′, T ′′, F ′′in, F
′′
out, F

′′
rb, color

′′, query′′, guard′′, action′′)

where

P ′′ = P ] P ′ ] {x1, . . . , xn}
T ′′ = T ] T ′

F ′′in(x, y) =


Fin(p, t) if (x, y) = (inP (p), inT (t))

F ′in(p′, t′) if (x, y) = (inP ′(p
′), inT ′(t

′))

F ′in(j, t′) if (x, y) = (xj , inT ′(t
′))

∅ otherwise

F ′′out(x, y) =


Fout(p, t) if (x, y) = (inP (p), inT (t))

F ′out(p
′, t′) if (x, y) = (inP ′(p

′), inT ′(t
′))

Fout(j, t) if (x, y) = (xj , inT (t))

∅ otherwise

F ′′rb(x, y) =


Frb(p, t) if (x, y) = (inP (p), inT (t))

F ′rb(p
′, t′) if (x, y) = (inP ′(p

′), inT ′(t
′))

Frb(j, t) if (x, y) = (xj , inT (t))

∅ otherwise

color′′ = [color, color′, xi 7→ ci]

query′′ = [query, query′]

guard′′(inT (t)) = guard(t)

guard′′(inT ′(t
′)) = guard′(t′)

action′′ = [action, action′]

τ ′′ = [τ, τ ′].

�

The composed net consists of the two constituent nets, as well as n new control places xi for
communicating between the nets. These places take their color from the shared boundary.
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Remark We only use nets with boundaries to plug together open nets. In other words, we
only consider the execution semantics of nets with no boundary, and since these are literally
ordinary timed db-nets, we inherit their execution semantics from those. Consequently, the
resulting nets preserve essential properties like liveness (cf. [MR17][Theorem 2]) or reachability
(cf. Section 3.1.2).

Composition of nets behaves as expected: it is associative, and there is an “identity” net which
is a unit for composition. All in all, this means that nets with boundaries are the morphisms of a
strict monoidal category [Sel11]:

Lemma 3.43. For any timed db-nets N , M , K with compatible boundaries, we have N ◦ (M ◦
K) = (N ◦M) ◦K, and for each boundary configuration c1 ⊗ . . .⊗ cn, there is an identity net
idc : c1 ⊗ . . .⊗ cn → c1 ⊗ . . .⊗ cn such that idc ◦N = N and idc ◦M = M for every M , N with
compatible boundaries. Furthermore, for every N , M , K, we have N ⊗ (M ⊗K) = (N ⊗M)⊗K.

Proof. Associativity for both ◦ and ⊗ is obvious. The identity net for c1 ⊗ . . . ⊗ cn is the net
with exactly n places x1, . . . , xn, with color(xi) = ci.

In particular, the lemma implies that we can use a graphical language (e.g., “string dia-
grams” [Sel11]) to define nets and their compositions (cf. [KMS12]). Moreover, the composition
of two open nets results in an open net again (e.g., [vDA02]).

3.2.4 Translating Contract Graphs to Timed DB-nets with Boundaries

The integration pattern contract graphs, denoting a more abstract composition of patterns, and
timed db-nets with boundaries both allow for ensuring compatible boundaries. We now specify
a translation from the pattern graphs to the nets in a stepwise approach. First, we define how
to translate single nodes of a pattern graph to patterns in timed db-net with boundaries using
a template approach based on the pattern categories, before we extend the translation for the
edges. Finally, we show the correct synchronization of these compositions and the correctness of
the translation.

Translating Single Patterns

We first assign a timed db-net with boundaries JpK for every node p in a integration pattern
contract graph. Which timed db-net with boundaries we construct depends on type(p). If
the cardinality of p is k : m, then the timed db-net with boundaries will be of the form
JpK :

⊗k
i=1 colorin(p)i →

⊗m
j=1 colorout(p)j where the colors colorin(p)i and colorout(p)j are

defined depending on the input and output contracts of the pattern respectively:

colorin(p)i =
∏

(k,X)∈inContri(p)EL

(k,
∏
x∈X

x)

colorout(p)j =
∏

(m,X)∈outContrj(p)EL

(m,
∏
x∈X

x)

This incorporates the data elements of the input and output contracts into the boundary
of the timed db-net, since these are essential for the dataflow of the net. In Section 3.2.4, we
will also incorporate the remaining concepts from the contracts such as signatures, encryption
and encodings into the translation as well as the pattern characteristics. More precisely, the
concrete characteristics required for the translation of type type(p) and pattern category p
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from Definition 3.29 (on page 106) are

type(p) =



start‖end {}
fork {}
condition { (CND,{ cnd1, ..., cndn }) }
join {}
merge { (CND,{cndcr, cndcc}), (PRG, prgagg, (v1, v2)) }
ext.call { (PRG,prg1, ) }
mp { (CND,{ cnd1, ..., cndm}), (PRG, prg1, (v1, v2))) }

otherwise.

Since the pattern categories subsume all relevant patterns into pattern types of similar patterns,
we define the translation for each pattern category. We specify timed db-net with boundary
templates for each of the pattern categories with their configurable values.

Start and End Pattern Types We translate a start pattern pstart into a timed db-net with
boundary JpstartK : I → colorout(pstart) as shown in Figure 3.36(a). Similarily, Figure 3.36(b) shows
the translation of an end pattern pend into a timed db-net with boundary JpendK : colorin(pend) → I.
The boundary PN places are denoted by dashed lines, and output places annotated with B for
the right boundary and input places by A for the left boundary, respectively.

Non-conditional Fork Pattern Types We translate a non-conditional fork pattern pfork with
cardinality 1:n to the timed db-net with boundaries JpforkK : colorin(pfork)→

⊗n
j=1 colorout(pfork)j

shown in Figure 3.37(a). The output channel cardinality is adapted according to the IPCG node’s
outgoing edge cardinality.

Non-conditional Join Pattern Types We translate a non-conditional join pattern pjoin with
cardinality n:1 to the timed db-net with boundaries JpjoinK :

⊗n
j=1 colorin(pjoin)j → colorout(pjoin)

shown in Figure 3.37(b). As for the fork pattern template, the cardinality is adapted according
to the IPCG.

Conditional Fork Pattern Types We translate a conditional fork pattern pcfork of cardi-
nality 1:n with conditions cond1, . . . , condn−1 to the timed db-net with boundaries JpcforkK :

�ℎ���

DB	schema

Net Actions

Queries

�

(a) Start

�ℎ��

DB	schema

Net Actions

Queries

�

(b) End

Figure 3.36: Translation templates for the start and end pattern categories
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Net
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 chin T1
 chout1

colset  ..; 
var msg: ..; 

msg msg

 chout
n

msgmsg

Queries DB schema

A B1

Bn

(a) Unconditional fork

Net

 chin1
T1  chout

colset  ..; 
var   ms , . . . ,ms ;g1 gm

msg1

 chin
n

Actions Queries DB schema

Tn

msgm

msg1

ms
gmA1 B

An

(b) Unconditional join

Figure 3.37: Translation templates of unconditional for and join pattern categories

colorin(pcfork) →
⊗n

j=1 colorout(pcfork)j shown in Figure 3.38. Note that net is constructed so
that the conditions are evaluated in order — the transition corresponding to condition k will only
fire if condition k is true, and conditions 1, . . . , k − 1 are false. The last transition will fire if
all conditions evaluate to false. The conditions {cond1, ..., condn−1} are assigned from the IPCG
CND characteristic.

Message Processor Pattern Types We translate a message processor pattern pmp with
persistent state DB and processor function f to the timed db-net with boundaries JpmpK :
colorin(pmp) → colorout(pmp) shown in Figure 3.39. with parameter function g : 〈EL〉 → 〈TY PE〉,
filter condition h(msg), time interval [τs, τe], and with hd the head and tl the tail of a list in
CPNs, and INS the insert list function, all parameters in tuple 〈〉. We argue that this template
covers a wide range of one-to-one patterns like control-only, control-resources, control-time.

Merge Pattern Types We translate a merge pattern pmerge with aggregation function f and
timeout τ to the timed db-net with boundaries JpmergeK : colorin(pmerge) → colorout(pmerge) shown
in Figure 3.40. Briefly, the net works as follows: the first message in a sequence makes transition
T1 fire, which creates a new database record for the sequence, and starts a timer. Each subsequent
message from the same sequence gets stored in the database using transition T2, until the age
of the sequence token is in the time interval [τ1, τ2], which will fire transition T3. Alternatively,
the action associated to T4 will make the condition for the Aggregate transition true, which
will retrieve all messages msgs and then put f(msgs) in the output place of the net. Thereby,
the characteristics {({cndcr, cndcc}), (PRG, prgagg, (v1, v2))} from the IPCG are assigned to net
template: (v1, v2)→ @〈τ1, τ2〉, prgagg → f(msgs). Moreover, the correlation condition cndcr →
g(msg,msgs) and the completion condition cndcc → complCount are configured accordingly.

External Call Pattern Types We translate an external call pattern pcall to the timed db-net
with boundaries JpcallK : colorin(pcall) → colorout(pcall)1 ⊗ colorout(pcall)2 shown in Figure 3.41.
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Figure 3.38: Translation of an conditional fork pattern category

 chin

msg
<f>(msg,
value)

T1

var msg, xs; 
var value: list<type>; 
fun hd(xs) = .., tl(xs) = ..; 

Qds(obj):  
     SELECT value 
     FROM DataSource as ds
     WHERE ds.msg EQ obj;
 
Qget(id,msg):
     SELECT msg
     FROM DataSource as ds
     WHERE ds.msg.id = id; 

Update(id,value)= 
<DEL {DataSource(id,old)}, 
ADD {DataSource(id, INS(old,value)}>; 

chout

DataSource
MSG: <EL> VALUE: LIST<TYPE>

Qds(msg)

value

xs

xs

hd(xs)

tl(xs)

[ List.null(xs)]¬

[ List.null(xs)]¬

[<h>(msg)
   ∧ (< @⟨ , ⟩ >)]τs τe

Update(msg, 
<g>(msg))

Net Actions

Queries

DB schema

A B

Qget(id,msg)
DataSource DataSource

Figure 3.39: Translation of a message processor pattern category

Translating Integration Pattern Contract Graphs

We now show how to translate not just individual nodes from an integration pattern contract
graph, but how to also take the edges into account. We first enrich the translations of the single
patterns with transitions and guards enabling and enforcing the concepts from the output and
input contract respectively, and then prove that composing the translations of individual patterns
according to how they are connected in the graph gives rise to a well-formed timed db-net.

Taking Contract Concepts into Account Recall that a pattern contract also represents
properties of the exchanged data, e.g., if a pattern is able to process or produce signed, encrypted
or encoded data. A message can only be sent from one pattern to another if their contracts
match, i.e., if they agree on these properties. To reflect this in the timed db-nets semantics, we
enrich all colorsets to also keep track of this information: given a place P with colorset C, we
construct the colorset C × {yes, no}3, where the color (x, bsign, bencr, benc) is intended to mean
that the data value x is respectively signed, encrypted and encoded or not according to the yes/no
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� �
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Figure 3.40: Translation of a merge pattern category
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Figure 3.41: Translation of an external call pattern category
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values bsign, bencr, and benc. To enforce the contracts, we also make sure that every token entering
an input place cin is guarded according to the input contract by creating a new place ch′in and a
new transition from ch′in to chin, which conditionally copies tokens whose properties match the
contract in the form of transition guards. The new place ch′in replaces chin as an input place.
Similarly, for each output place chout we create a new place ch′out and a new transition from
chout to ch′out which ensures that all tokens satisfy the output contract. The new place ch′out
replaces chout as an output place. Formally, the construction is as follows:

Definition 3.44 (Construction of contract guards). Let X = (D,P,L,N , τ) : ⊗i<mci → ⊗i<nc′i
be a timed db-net with boundaries and ~C = IC0, . . . , ICm−1, OC0, . . . , OCn−1) ∈ CPT . Define
the timed db-net with boundaries XCPT(~C) = (D,P,L,N ′, τ) : ⊗i<m(ci×{yes, no}3)→ ⊗i<n(c′i×
{yes, no}3) with

N ′ = (P ′, T ′, F ′in, F
′
out, F

′
rb, color

′, query, guard′, action′)

where

P ′ = P ] {x′1, . . . , x′m} ] {y′1, . . . , y′n}
T ′ = T ] {t1, . . . , tm} ] {t′1, . . . , t′n}

color′ = [color′′, x′i 7→ color′′(xi), y
′
j 7→ color′′(yj)]

where color′′(x) = color(x)× {yes, no}3with message x

F ′in(a, b) =


Fin(p, t) if (a, b) = (inP (p), inT (t))

{(x, bsign, bencr, benc)} if (a, b) ∈ {(x′i, ti), (y′j , (t′j))}
∅ otherwise

F ′out(a, b) =



Fout(p, t) if (a, b) = (inP (p), inT (t))

{(x, bsign, bencr, benc)} if (a, b) = (x′i, ti)

{(x, bsign, bencr, benc) |
(∀p)(OCj)CPT (p) ∈ {bp, any}} if (a, b) = (y′j , (t

′
j))

∅ otherwise

F ′rb(a, b) =

{
Frb(p, t) if (a, b) = (inP (p), inT (t))

∅ otherwise

guard′ = [guard, ti 7→
∧

{p | (ICi)CPT (p) 6=any}

yp = (ICi)CPT (p), t′j 7→ >]

action′ = [action, ti 7→ −, t′j 7→ −]

τ ′ = [τ, ti 7→ [0,∞], t′j 7→ [0,∞]]

�

Intuitively, each message x is annotated in the output flow of a pattern Fout with information
about the content of x, which can be signed sign, encrypted encr, or encoded enc, according to
the output contract OC of a pattern, indicated by values yes or no. For a subsequent pattern, a
transition is created for Fin with a guard that is defined according to the input contract IC.

In practice, the pattern contract construction in Definition 3.44, can be realized as template
translation on an inter pattern level. The templates in Figure 3.42 and Figure 3.43) denote
the translation scheme for the construction of a one-to-one message processor, and a many-to-
many pattern category, respectively. In case of the message processor, a token (x, p, q, r) of
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Figure 3.42: 1:1 pattern contract construction

color (x, bsign, bencr, benc) with the actual data x and the signed p, encrypted q, and encoded r
information are in the boundary place ch′in and consumed by the boundary transition T ′, if the
guard φ on (p, q, r) is satisfied that is configured precisely according to the contracts of the IPCG
pattern. On firing, the transition removes this meta information and emits the actual message
x→ msg to the actual pattern. After the unaltered pattern processing, the boundary transitions
T1, ..., Tk (i.e., depending on the Any-logic), supply (p,q,r) information specific for the pattern.
The resulting token φ′out are then the input for the subsequent pattern. Similarly, the outbound
message of the many-to-many category is encoded for each of the o outgoing chout, ch

2
out, .., ch

o
out

as well as the l incoming message channels chin, ch
2
in, .., ch

l
in. The templates for zero-to-one,

one-to-zero, one-to-many and many-to-zero boundaries follow the same construction mechanism.
The following lemma is immediate:

Lemma 3.45. If X :
⊗m

i=1 ci →
⊗n

j=1 c
′
j then XCPT(~C) :

⊗m
i=1 ci →

⊗n
j=1 c

′
j for every choice

of contracts ~C. �

Example 3.46. Let us consider two examples to gain an understanding of the construction.

Message Translator. Figure 3.44 shows MTCPT(ENCR=no,...) for a message translator pattern MT
with input contract {(ENC, any), (ENCR,no), (SIGN, any)} and output contract {(ENC,no),
(ENCR,no), (SIGN, no)}. The input transition T ′ hence checks the guard [encr = no], and if it
matches, the token is forwarded to the actual message translator. After the transformation, the
resulting message msg′ is not encrypted, the signing is invalid, and not encoded, and thus emits
(x, no, no, no).

Join Router. The join router structurally combines many incoming to one outgoing message
channel without accessing the data (cf. {(MC, 1 : 1), (ACC, ro), (MG, false), (CND, ∅)}). While
the data format (i.e., the data elements EL) has to be checked during the composition of the
boundary, the runtime perspective of the boundary (x,p,q,r) is any for x, p, q in the input and
output. Figure 3.45 shows the resulting boundary construction for the join router. The input
boundary does not enforce CPT constraints, and thus no guards are defined for the transitions.
The output boundary, however, has to deal with the three CPT properties p, q, r set to {yes,no},
resulting in six different permutations. �

Synchronising Pattern Compositions and Correctness of the Translation We are now
in a position to define the full translation of a correct integration pattern contract graph G. For
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Figure 3.43: l:o pattern contract construction

the translation to be well-defined, we need only data element correctness of the graph. Concept
correctness is used to show that in the nets in the image of the translation, tokens can always
flow from the translation of the start node to the translation of the end node.

Theorem 3.47. Let a correct integration pattern contract graph G be given. For each node p,
consider the timed db-net

JpKCPT(inContr(p),outContr(p)) :

k⊗
i=1

colorin(p)i →
m⊗
j=1

colorout(p)j

Use the graphical language [Sel11] enabled by Lemma 3.43 (on page 114) to compose these nets
according to the edges of the graph. The resulting timed db-net is then well-defined, and has the
option to complete, i.e., from each marking reachable from a marking with a token in some input
place, it is possible to reach a marking with a token in an output place.

Proof. Since the graph is assumed to be correct, all input contracts match the output contracts
of the nets composed with it, which by data element correctness means that the boundary
configurations match, so that the result is well-defined.

To see that the constructed net also has the option to complete, first note that the interpreta-
tions of basic patterns in Section 3.2.4 do (in particular, one transition is always enabled in the
translation of a conditional fork pattern in Figure 3.38, and the aggregate transition will always
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be enabled after the timeout in the translation of a merge pattern in Figure 3.40). By the way
the interpretation is defined, all that remains to show is that if N and N ′ have the option to
complete, then so does NCPT(~C) ◦N

′
CPT( ~C′)

, if the contracts ~C and ~C ′ match. Assume a marking

with a token in an input place of N ′. Since N ′ has the option to complete, a marking with a
token in an output place of N ′ is reachable, and since the contracts match, this token will satisfy
the guard imposed by the NCPT(~C) construction. Hence a marking with a token in an input place

of N is reachable, and the statement follows, as N has the option to complete.

3.2.5 Evaluation: Case Studies

We evaluate the translation in two case studies of real-world integration scenarios: the replicate
material scenario from Figure 3.23, and the predictive machine maintenance scenario from Fig-
ure 3.26. The former is an example of hybrid integration, and the latter of IoT device integration.
Our aim is to observe different aspects of the following hypotheses (according to RQ2-2(c)).

H1 The integration pattern contract graphs allow for structurally correct compositions.

H2 The execution semantics of the translated timed db-net with boundaries is consistent.

For each of the scenarios, we give an integration pattern contract graph with matching contracts
(→ H1), translate it to a timed db-net with boundaries, and show how its execution can be
simulated (→ H2). The scenarios are both taken from the SAP Cloud Platform Integration
solution catalog of reference integration scenarios, and are frequently used by customers [SAP18a].
For the simulation we use the CPN Tools timed db-net prototype from Section 3.1.3 with the
extension for hierarchical PN composition. In CPN Tools hierarchies, the patterns can be
represented as sub-groups and pages with explicit in- and out-port type definitions [JKW07],
which we use as part of the boundaries defined in Definition 3.41. Thereby the synchronization is
checked based on the CPN color sets of the port types. The other boundary checks are performed
during the simulation according to the constructed boundaries (see construction mechanism
in Definition 3.44).
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Hybrid Integration: Replicate Material

An IPCG representing an integration process for the replication of material from an enterprise
resource planning or customer relationship management system to a cloud system was given in
Figure 3.34 (on page 109). We now add slightly more data in the form of the pattern characteristics,
which provides sufficient information for the translation to timed db-nets with boundaries.
Figure 3.46 depicts the enriched IPCG. The adapters are actually message processors, however, for
simplicity they are represented as start and end pattern types, ADPTs denoting erp and ADPTr
representing cod. The characteristics of the CE node includes the tuple (PRG, (prg1, [0,∞))),
with enrichment function prg1 which assigns the DOCNUM payload to the new header field
AppID. Similarly, the characteristics of the MT nodes includes a tuple (PRG, (prg2, )) with
mapping program prg2, which maps the EDI DC40-DOCNUM payload to the MMRR-BMH-ID
field (the Basic Message Header ID of the Material Mass Replication Request structure), and the
EPM-PRODUCT ID payload to the MMRR-MAT-ID field (the Material ID of the Material Mass
Replication Request structure). The pattern composition is correct according to Definition 3.35
(on page 108) also with these refined pattern characteristics, which shows that hypothesis H1 is
fulfilled for the material replicate scenario.

Translation to a Timed DB-Nets with Boundaries First we translate each single pattern
from Figure 3.46 according to the construction in Section 3.2.4. The integrati on adapter
nodes ADPTs and ADPTr are translated as the start and end patterns in Figure 3.36(a) and
Figure 3.36(b), respectively. The content enricher CE node and message translator MT node are
message processors without storage, and hence translated as in Figure 3.39 with < f >CE= prg1
and < f >MT= prg2 (no database values are required). Since no database table updates are
needed for either translation, the database update function parameter < g > can be chosen to be
the identity function in both cases.

In the second step, we refine the timed db-net with boundaries to also take contract concepts
into account by the construction in Definition 3.44. The resulting net is shown in Figure 3.47.
This ensures the correctness of the types of data exchanged between patterns, and follows directly
from the correctness of the corresponding IPCG. Other contract properties such as encryption
encr, encodings enc, and signatures sign are checked through transition guards.
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Figure 3.46: Complete integration pattern contract graph of the replicate material scenario

Simulation We test the correctness of the composition construction of the material replicate
scenario in Figure 3.47 through simulation in the form of a hierarchical timed db-net model,
shown in Figure 3.48. Thereby, the Content Enricher and Message Translator patterns are
represented by CPN Tool Subpage elements that are annotated with subpage tags enricher,
translator, respectively.

On arrival of the request msg from the ERP system, the boundary configuration is appended to
the message in place erpToCe. In the replicate material scenario the data is received unencrypted,
uncoded and unsigned, leading to a boundary (msg,no,no,no), or in our prototype encoded as
(msg,false,false,false). The extended message erp msg is then moved to the boundary place ch0 by
transition CheckCeBoundary, if the [encr=false] guard holds, and thus ensures the correctness of
the data exchange between patterns. Subsequently only the actual message without the boundary
data is moved to place ch0, that is linked to the input place ch0 of the enricher, as in Figure 3.25.
We recall, that the in port type ensures that the synchronization on the CPN color set level
are correct. After the enricher processing, the out port type ensures the correctness of the
synchronization on the CPN color set level and the resulting message emsg is moved to the linked
output place ch4. The constructed outbound boundary, represented by transition SetCeBoundary
sets the boundary properties of the enricher to (msg,false,false,false) for the following pattern.
On the input boundary side of the translator, transition CheckMtBoundary evaluates its guard,
before moving the message without the boundary data to the boundary place ch5, which proceeds
similar to the enricher.

Note that our boundary construction mechanism from Definition 3.44 generated the input
boundary, e.g., denoted by place erpToCe and transition CheckCeBoundary, as well as the
output boundary, e.g., transition SetCeBoundary and place ceToMt, including the transition
guards, colorsets, variables, and port type configurations, for the validation by simulation from
Section 3.1.2.

Discussion Notably, constructing an IPCG requires less technical knowledge such as particu-
larities of timed db-nets but still enables correct pattern compositions on an abstract level. While
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Figure 3.47: Material replicate scenario as a timed db-nets with boundaries

the CPT part of the pattern contracts (e.g., encrypted, signed) could be derived and translated
automatically from a scenario in a yet to be defined modeling language, many aspects like their
elements EL as well as the configuration of the characteristics by enrichment and mapping
programs requires a technical understanding of IPCGs and the underlying scenarios. As such
IPCGs can be considered a suitable intermediate representation of pattern compositions. The user
might still prefer a more appealing graphical modeling language on top of IPCGs. The simulation
capabilities of the constructed timed db-net with boundaries allow for the experimental validation
of the composition correctness of real-world pattern compositions. However, the complexity of
the construction highlights the importance of an automation of the construction.

Conclusions. (1) IPCG and timed db-net with boundaries are correct with respect to composition
and execution semantics (→ H1, H2); (2) timed db-net with boundaries are even more complex
than timed db-net; (3) IPCGs are more comprehensible than timed db-net, and expressive enough
for current integration scenarios.

Internet of Things: Predictive Maintenance and Service (PDMS)

The IPCG representing the predictive maintenance create notification scenario that connects ma-
chines with enterprise resource planning (ERP) and PDMS systems was given in Figure 3.27. We
add all pattern characteristics and data, which provides sufficient information for the translation
to timed db-nets with boundaries. Figure 3.49 depicts the corresponding IPCG. The charac-
teristics of the CE1 node includes an enrichment function prg1 that adds further information
about the machine in the form of the FeatureType to the message that contains machine ID
and UpperThresholdWarningValue. This data is leveraged by the UDF1 predict node, which
uses a prediction function prg2 about the need for maintenance and adds the result into the
MaintenanceRequestById field. Before the data is forwarded to the ERP system (simplified by an
End), the single machine predictions are combined into one message by the AGG1 node with
correlation cndcr and completion cndcc conditions as well as the aggregation function prg3 and
completion timeout (v1, v2) as pattern characteristics {({cndcr, cndcc}), (PRG, prg4, (v1, v2))}.
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Figure 3.48: Material replicate scenario simulation

The pattern composition is correct according to Definition 3.35 also with these refined pattern
characteristics, which shows that hypothesis H1 is fulfilled for the material replicate scenario.

Translation to Timed DB-Nets with Boundaries Again, we translate each single pattern
from Figure 3.49 according to the construction in Section 3.2.4. The Start and End nodes are
translated as the start and end pattern in Figure 3.36(a) and Figure 3.36(b) respectively. The
Content Enricher CE1 and user-defined function UDF1 nodes are message processors, and hence
translated as in Figure 3.39 with < f >CE1

= prg1 and < f >UDF1
= prg2. Since no table updates

are needed for either translation, the database update function parameter < g > can be chosen
to be the identity function in all cases. The Aggregator AGG1 node is a merge pattern type,
and thus translated as in Figure 3.40 with (v1, v2)→ [τ1, τ2], prgagg → f(msgs). Moreover, the
correlation condition cndcr → g(msg,msgs) and the completion condition cndcc → complCount.

In the second step, we refine the timed db-net with boundaries to also take contract concepts
into account by the construction in Definition 3.44. The resulting net is shown in Figure 3.50.
This ensures the correctness of the types of data exchanged between patterns, and follows directly
from the correctness of the corresponding IPCG. Other contract properties such as encryption,
signatures, and encodings are checked through the transition guards.

Simulation We illustrate the correctness of the composition construction of the predictive
maintenance scenario in Figure 3.50 through simulation in the form of a hierarchical timed db-net
model, shown in Figure 3.51. Again, all timed db-net patterns are hierarchically represented by
CPN Tool Subpage elements that are annotated with subpage tags enricher, message aggregator,
respectively, and the user-defined function predict is denoted by a transition. The boundaries are
constructed from Figure 3.50 by inserting SetPdmsBoundary and pdmsToCe as output boundary
of get report, which matches the input boundary of the subsequent enricher, denoted by the
CheckCeBoundary transition. Transition SetCeBoundary and place ceToPredict represent the
output boundary of the enricher, which again match the input boundary of the predict user-defined
function pattern through transition CheckPredictBoundary. Finally, the output boundary of the
predict step is ensured by transition SetPredictBoundary and place predictToAgg. Again, it can
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Figure 3.49: Integration pattern contract graph of the predictive maintenance scenario

be easily seen that the input boundary of the aggregator in the form of the CheckAggBoundary
transition matches, and thus the overall composition is correct. Consequently, the simulation of
the timed db-net with these boundaries in Figure 3.51 results in the same, correct output with
the timed db-nets without boundaries in Figure 3.29.

Discussion In this slightly more complex scenario, it becomes more obvious that the constructed
IPCGs are quite technical as well and require a careful construction of pattern characteristics and
contracts. While this seems to be an ideal representation for checking the structural correctness
of compositions, this should be no manual task for a user. Especially for more complex scenarios,
we found that the re-configurable pattern type-based translation works well. However, the
construction of the timed db-nets with boundaries corresponding to an IPCG would benefit from
an automatic translation (e.g., through tool support).

Conclusions. (4) IPCGs are still quite technical, especially for more complex scenarios; (5) a tool
support for automatic construction and translation is preferable.

3.2.6 Conclusions

To formalize pattern compositions as the foundations of current EAI scenarios, we followed the
approach in Figure 3.32 (on page 104). We considered the structural and semantic pattern
characteristics to specify an Integration Pattern Typed Graph (IPTG), representing the pattern’s
internal data flow, and extended the IPTG by inter-pattern composition correctness criteria
based on the inter-pattern data flow, called Integration Pattern Contract Graph (IPCG). The
contract graphs provide a rich composition context, which might help the user when composing
patterns. Moreover, the contract graphs have built-in structural composition correctness checking
capabilities based on matching pattern contracts (cf. research question RQ2-2(a): “How can
pattern compositions be suitably formalized for compositional correctness?”).
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Figure 3.50: Predictive maintenance scenario as a timed db-nets with boundaries

The execution semantics of these compositions are given in the form of timed db-nets, which
we extended to timed db-nets with boundaries, that allow checking the compositional correctness
through a synchronization of their boundaries (similar to the contracts). With a two-step
template-based translation mechanism for single patterns and then for their compositions, we
defined a translation from IPCGs to timed db-nets with boundaries and showed the correctness
of the translation (cf. RQ2-2(b): “How can the formalized compositions be translated to composed,
formalized patterns?”). Finally, we studied the formalization and translation for real-world
pattern compositions and their simulation (cf. RQ2-2(c) “How to realize formalized pattern
compositions in real-world integration scenarios?”.

The separation of a higher-level graph structure for a more comprehensible representation
of integration scenarios, a lower-level, executable timed db-net with boundary formalism, and a
translation from the graphs to the PNs balance the observed trade-off between comprehensible
and simple modeling of integration scenarios on one side and expressiveness and comprehensive
coverage of the execution semantics on the other side.
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Figure 3.51: Predictive maintenance scenario simulation

The evaluation results into several interesting conclusions, i.e., the suitability of our approach
for pattern compositions (cf. conclusions (1,3)), model complexity considerations (cf. conclusions
(2,4)) and desirable extensions like automatic translation (cf. conclusion (5)). In particular, with
conclusions (1,3), we showed that hypotheses H1 and H2 are fulfilled: “The integration pattern
contract graphs allow for structurally correct compositions” and “The execution semantics
of the translated timed db-net with boundaries is consistent”. That means, while IPCGs
based on timed db-nets with boundaries denote the first comprehensive definition of application
integration scenarios with built-in functional correctness and compositional correctness validation
and verification, it does not give an appealing modeling language for (non-technical) users (cf.
conclusions (2,4)). We envision a novel modeling language and tool support that facilitates a
translation from that language to IPCGs (cf. conclusion (5)), which we consider as future work.
Based on such a language infrastructure, more advanced compositional aspects like modeling
guidelines on the different layers (i.e., language, intermediate IPCG, and simulation timed db-net
with boundaries) could be studied. In summary, contract graphs rather denote an intermediate
language that abstracts from the underlying, technical formalism, while preserving its semantics,
and thus allows for manifold applications like the specification of composition-level optimizations
with correctness guarantees.

3.3 Related Work

In this section we set the formalization of patterns and their compositions into the context of
related work.
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3.3.1 Pattern Formalization

We found in Chapter 2 that the only existing formalization of EIPs is provided in [FG13] using
CPNs. In particular, Fahland and Gierds [FG13] define messages as colored tokens and uses PN
transition guards as conditions. However, this does not cover all requirements we singled out
in Table 3.1. The requirements REQ-x from Section 3.1.1 are referenced during the subsequent
discussion, where appropriate.

Petri Net Formalizations

The Reasoning about database transitions in timed db-nets is done similar to van Hee et
al. [VHSV09], who define an alternative approach for representing and reasoning on database
transactions using special token vectors with identifiers and inhibitor nets. While the latter could
also be used similar to db-nets, we build our formalism on db-nets due to their more comprehensive
focus on (relational) data, operations, and persistent storage. A slightly different and only loosely
related approach to storage of data in PNs is introduced by Baldan et al. [BBC+18], who define
persistent places, from which tokens can be used several times. However, neither (relational)
transactional semantics, nor database operations are covered.

There exists a large body of work for representing temporal semantics in PNs, which cannot
be covered completely in this work. In Section 3.1.2 we already discussed the suitability of the
implicit temporal support in PNs (i.e., adding places representing the current time) [vdA93], as
well as the the temporal semantics of adding timestamps to tokens [vdA93], timed places [Sif80],
TAPNs [JJMS11] and transitions [Ram73, Zub87], out of which we decided on using TAPNs due
to their semantic compatibility to db-nets, e.g., with respect to interleaving concurrency, and
well-behaved formal analysis. Although this does not mean that none of the other temporal
formalism could be applied for the EIP requirements, their application would require significant
adaptations of db-net, e.g., for the simplest timed transition approach by [Ram73, Zub87] this
would mean dealing with true concurrency and adapting the db-net LTS to transition firing delays.
While ITCPN [vdA93] appear to be too restricted by time intervals with a single global time, the
work on stochastic PNs (e.g., [Zen85]) might be additionally of interest for the representation of
ordering in REQ-1(a) through priority functions, but it can hardly be used for practical reasoning,
due to the inherent non-determinism of stochastic models. However, the study of these approaches
helped during the specification of timed db-net.

Service-oriented Architecture and Interaction

In the related service-oriented architecture domain, service interactions and service interaction
patterns were formalized. The work on service interactions largely targets formalizations on
service orchestration and choreographies (i.e., similar to compositions of patterns), e.g., for web
services [BCPV04, GGL05, BGG+05], which are all based on process algebras that account for
our time requirements, however, lack database transaction semantics (cf. REQ-4). The same is
true for π-calculus approaches (e.g., by Decker et al. [DPW06]) and similarly in the workflow
domain by Puhlmann et al. [PW05].

Architecture Patterns

The approaches to formalize object-oriented, architectural patterns, or component-based systems
(e.g., Alencar et al. [ACL96], Allen et al. [All97]) focus on pattern descriptions up to runtime
instantiation, however, do not cover, e.g., time, compensation / transaction and execution
semantics (cf. REQ-3, REQ-4).
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3.3.2 Pattern Composition Formalization

We now situate our work within the context of other formalizations, beyond the already discussed
BPMN and PN approaches (cf. Open Nets [BBGM15, BM18]).

Enterprise Application Integration

Similar to the BPMN and PN notations, several domain-specific languages (DSLs) have been
developed that describe integration scenarios. Apart from the EIP icon notation [HW04], there is
also the Java-based Apache Camel DSL [IA10], and the UML-based Guaraná DSL [FRQC11].
However, none of these languages aim to be optimization-friendly formal integration scenario
representations. Conversely, we do not strive to build another integration DSL. Instead we claim
that all of the integration scenarios expressed in such languages can be formally represented in
our formalism, so that optimizations can be determined that can be used to rewrite the scenarios.

For the verification of service-oriented manufacturing systems, Mendes et al. [MLCR12] uses
“high-level” Petri nets as a language instead of integration patterns, similar to the approach of
Fahland and Gierds [FG13].

The work by Böhm and Kanne [BK09], specifies a declarative, data-aware language for
describing distributed applications and their communication based on message queues. While
this approach incorporates data aspects down to the (XML) database level, it does not specify
a composition language for integration patterns and does not give verification results for the
resulting integration programs.

Pattern Languages

The work on structural pattern composition by Hammouda and Koskimies [HK07] recognize
the composition of patterns as relevant for the adoption of pattern languages and systems, and
provide a tool for correctness checking [Ham04]. They propose the concept of role-based pattern
composition based on the structural relationships and constraints of patterns in a UML-style
extension, called role diagram, when instantiating patterns for building a system. While the
constraints might be comparable to the pattern contracts, they are limited to structural properties
and do not take data or other relevant integration pattern characteristics into account.

The approaches based on reasoning over first-order logic by Zhu and Bayley [ZB10, BZ10]
and temporal logic by Taibi et al. [TN03, Tai06] give a formal definition of patterns and their
compositions based on UML static class diagrams and dynamic sequence diagrams. While both
approaches take dynamic, temporal aspects of the patterns into account, they do not consider other
integration characteristics, which is probably due to their focus on the GoF patterns [GHJV95].

Porter, Coplien and Winn [PCW05] address the problem of composing patterns from different
languages in a single system by sequences (i.e., similar to pipes and filter composition) and
temporal ordering. Again important aspects for EAI like data and (transacted) storage or
execution semantics are not considered.

Business Process Management and Service Composition

Early algorithmic work by Sadiq and Orlowska [SO00] applied reduction rules to workflow graphs
for the visual identification of structural conflicts (e.g., deadlocks) in business processes. Compared
to process control graphs, we use a similar base representation, which we extend by pattern
characteristics and data contracts. Furthermore, we use graph rewriting for optimization purposes
in the next chapter. In Cabanillas et al. [CRRCA11], the structural aspects are extended by a
data-centered view of the process that allows to analyze the lifecycle of an object, and check
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data compliance rules. Although this adds a view on the required data, it does not propose
optimizations for the extended EIPs. The main focus is rather on the object lifecycle analysis of
the process.

In the intersection of business process execution and service interaction, languages like the
Web Service Business Process Execution Language (WS-BPEL) [Cor02] deal with the execution
of business process and service engines. Although Scheibler et al. [SRL10] experimentally showed
that pipes and filter processing can be simulated by business process execution engines like BPEL.
However, to the best of our knowledge, none of the current integration system implementations
builds on BPEL, and thus it does not seem to have any practical relevance, to our knowledge.
Further, with its focus on the implementation perspective, formalisms for correctness arguments
on BPEL flows were not built-in [TBBG07, CRP14] (e.g., in contrast to our approach), and were
added later. For example, Ouyang et al. [OVVDA+07] specified some of the BPEL semantics at
that time using Petri nets, and Fares et al. [FBF11] provided temporal constraints using LTL or
WSDL-temporal by [BBM12]. Notably, these extensions mainly target the control flow and do
not provide reasoning about data, CRUD operations or database transactions as also found in a
survey by Ter Beek et al. [TBBG07].

In the workflow interaction domain, workflow nets and workflow modules are used, e.g., by
van der Aalst and Weske [vdAW01], and Martens [Mar05], respectively. Furthermore, service
interaction patterns are formalized using the composition capabilities of Petri nets provided by
open nets (e.g., by van der Aalst et al. [vdAMSW09] or as open workflow nets by Massuthe et
al [MRS05]). Similar to our approach, van der Aalst et al. and Kindler et al. [vDA02, KMR00] use
Open Nets [BBGM15, BM18] to represent and formally study the control flow in inter-operable
workflows. Although their work does not consider the data flow and characteristics of integration
patterns, it strengthens our design choice to use open nets for integration pattern compositions.
Similarly, targeting the representation of service interactions as Petri nets, van der Aalst et
al. [vDALM+10] use open nets to formally represent compositions. However, the main focus of
that work lies on interactions of public and private services and whether the complete interaction
is actually implemented by all parties (i.e., called weak termination of the overall process as
actually implemented).

Miscellaneous

For the documentation of architectural decisions, when combining patterns, That et al. [TSOB13]
propose a description language, which shares the idea of composing patterns in a pipes-and-filters
style as also in [HW04].

Since patterns are employed during the design phase of a system, their composition also
plays a role during the requirements engineering process. Therefore, Zlatev, Daneva, and
Wieringa [ZDW05] propose an approach for the composition of patterns on an abstract level to
support this process, but this is only remotely related to our approach.

3.4 Discussion

The comprehensive pattern language from Chapter 2 denotes a DSR artifact in the form of a
valuable knowledge base that we leverage for the formalization of the integration patterns and
their composition. We studied the structured pattern descriptions from different perspectives to
extract the essential properties and characteristics to answer the stated research questions for
the formalization of the execution semantics of single patterns (cf. RQ2-1: “What is a suitable
formalism for defining execution semantics of existing and new patterns?”) as well as their
composition (cf. RQ2-2: “What is a sound and comprehensive formal representation of integration
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patterns that allows for formal validation or integration scenarios and reasoning?”). These
questions are answered by the formalization results in this chapter that denote contributions in
the form of DSR artifacts for single patterns:

� A list of integration pattern formalization requirements;

� a comprehensive formalism for defining single integration patterns (incl. formal analysis
results; → RQ2-1);

� an instructive catalog of formalized integration patterns;

� an instantiation of the formalized patterns in the form of a prototype (for simulation);

and pattern compositions:

� An abstract formalization of pattern compositions with built-in structural composition
correctness guarantees based on pattern contracts, denoting an intermediate representation
of integration scenarios;

� a formal specification of these contracts as boundaries as extension of the pattern formaliza-
tion for the formal assessment of semantic correctness;

� a method (algorithm) for translating structurally correct compositions to semantically
correct pattern formalism (incl. correctness proofs; → RQ2-2);

� an instantiation of the formalized pattern compositions (translated to timed db-nets with
boundaries) in the form of a prototype (for simulation).

Together they give answers to the stated research questions, and thus provide the first compre-
hensive formalism in EAI with built-in structural and semantic correctness guarantees as well
as the means for an end-to-end formal analysis. This will allow for responsible programming of
integration scenarios and applications, and denotes the foundation for various application areas
such as the correctness-preserving, composition-level optimization. The formally defined pattern
compositions denotes an intermediate model, e.g., for the development of an integration modeling
language or scenario improvements in terms of optimizations.

Nonetheless, the different evaluations indicate limitations and open research challenges. These
are subsequently summarized and discussed.

Limitations The limitations concern the assumption of a comprehensive foundation for the
formalization in the form of the pattern language. We consider the pattern language comprehen-
siveness in terms of the current knowledge assembled in this work, which might be incomplete.
For example, due to new trends new patterns or variations of existing patterns might be added.
Would the proposed formalization still be valid for these patterns? We argue that the number of
new concepts (e.g., data, time) will not grow in the same way as the number of new patterns.
This is shown by the analysis in Section 3.1.1, which illustrates the addition of twice as many new
patterns, however, no new concepts and only three new requirement categories. Consequently,
adding new patterns yet again will contribute to existing concepts and requirements, which are
already covered by the current formalism. Only the addition of new categories would require a
further extension of the formalism, similar to our journey from CPNs to timed db-nets. Since
the composition specification is mostly orthogonal to the particular pattern concepts, only minor
extensions might be necessary, if at all.

Notably, while the presented formalisms denote an important milestone toward formal foun-
dations in EAI, neither the timed db-net formalism nor the more abstract pattern contract
graphs can be considered a suitable modeling language for (non-technical) users. They rather
denote a well-defined logical or intermediate representation for a new type of integration modeling
language with correctness guarantees. Similarly, while the PN formalism closes the conceptual vs.

133



implementation gap by simulation, the translation of existing modeling languages and system
implementations into our formalisms would make the results accessible in practice. Moreover, to
leverage the formal analysis results (beyond validation through simulation), the development of a
model checking tool for this new class of data-centric dynamic systems is a logical next step.

The instantiation of our formalism in the form of a prototype allows for simulation, how-
ever, does not denote a practically usable pattern solution that would perform well (e.g., in a
pattern benchmark for message throughput and processing latency), and thus more efficient
implementations have to be constructed, for which we make initial contributions in Chapter 6.

Impact The impact of the formalizations on current research and practice might be enormous,
but will take time. The first results of this work are already taken up by industry (e.g., in SAP
Cloud Platform Integration [SAP19a]) to eventually allow for “responsible programming” [Sta14]
when connecting applications and devices, for instance by grounding current modeling approaches
on formal structures such as integration pattern contract graphs. However, the deeper rooted
theme of trust in computer science artifacts used in the everyday lives of (non-technical) users in
the process of the digital transformation of the society, only just reached academia and industry
(e.g., trustworthy, reliable systems [Eng18] or trust in services and data [IBM18]).
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[...] premature optimization is the root of all evil [...] in
programming.

Donald Knuth, 1974 [Knu74]

In this chapter, we build on pattern compositions specified by Integration Pattern Contract
Graphs (IPCGs), and we study improvements on the integration scenario-level in the form of
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pattern solution research gaps). Through the identified trends, the need to integrate a growing
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number of distributed applications and increasingly complex, data-aware integration scenarios
emerges, while scenario improvements are often vendor-specific, informal and ad-hoc. In this
context the term data-aware stands for integration scenarios that have to process increasingly
higher volumes of data (cf. research challenge C5 “Volocity”: volume and velocity in Section 1.2.2).
Moreover, it remains unclear, whether an optimization preserves the functional correctness of
the improved scenario, potentially resulting in more efficient, but flawed processing. In practice,
optimizing such scenarios under the premise of retaining its functional correctness is required, but
hard. However, not considering integration scenario improvements will eventually lead to even
more complex, non-comprehensible integration scenarios as well as performance degradations
during processing, and to overloaded and unavailable EAI systems.

A more efficient execution can either be achieved through (i) scenario-level improvements with
a focus on processing latency or message throughput, which we approach in this chapter, or (ii) the
development of more efficient pattern solutions (e.g., by leveraging new technologies to improve the
message processing), for which we refer to Part II of this thesis (cf. Chapters 5 and 6). Although
we identified several approaches that address improvements of data-aware processing in related
domains (e.g., workflows and business processes [VTM08, KG14], data integration [BWHL08],
distributed applications [Böh10, BK11]), none of them considers structural and semantic equiva-
lence of integration pattern compositions before and after the improvement. We call this desirable
property of an optimization correctness-preserving and argue that non-trustworthy optimizations
(i.e., not having this property) will compromise the functional correctness of a pattern composition.
In other words, if the optimized pattern composition has the same functional behavior as the
original composition, the optimization preserves correctness. Therefore, the ability to reason
about and verify the correctness of optimizations is required, which in turn must be grounded on
a formalization of optimizations that fits to that of the composition (e.g., integration pattern
contract graphs). Since a “premature optimization” might be problematic without considering the
complete solution as stated by Knuth [Knu74], we target improvements of the whole integration
scenario, instead of single patterns, and thus on scenarios represented by IPCGs. Moreover, since
high-level improvements target the whole scenario and not the actual runtime, their results can be
leveraged (e.g., by backporting) in current implementations. The subsequent example illustrates
such an improvement that preserves the structural correctness of the original scenario and its
semantic correctness.

Example 4.1. As a concrete motivation for a formal framework, we recall the material replication
scenario from Figure 3.23 (on page 95) with its corresponding IPCG in Figure 3.34 (on page
109). Due to the data-independence of the Message Translator MT and Content Enricher CE,
the processing of these patterns could be executed in parallel. To achieve this, a read-only
unconditional fork with channel cardinality 1:n in the form of a Multicast MC pattern has been
added. The inbound and outbound contracts of MC are adapted to fit into the composition. After
the concurrent execution of CE and MT , a join router JR brings the messages back together
again and feeds the result into an Aggregator AGG that restores the format that integration
adapter ADPTr expects. We see that the improved IPCG, shown in Figure 4.1, is still structurally
correct, due to the matching pattern contracts (cf. Definition 3.34 (on page 108)), so this would
be a sound optimization. �

Already in this simple scenario an obvious improvement can be applied. This insight would
perhaps not be obvious without the data flow in the model, and leads to questions like “are
there other optimizations that could also be applied?”, or “are the optimized compositions
correct?”, and ultimately to our more general research question RQ2-3: “What are relevant
optimization strategies, and how can they be formally defined on pattern compositions?”. So far,
these questions could not be answered, since approaches for verification and static analysis of
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Figure 4.1: IPCG from the material replicate scenario in Figure 3.34 after a “sequence to parallel”
optimization

“realistic” data-aware business and integration scenarios like those in Chapter 3 were missing,
as recent surveys on event data [AAB+17, EGJW17], workflow management [KG14], and in
particular application integration in Chapter 2 report. Hence, we aim to fill this gap driven by
the following sub-questions of RQ2-3:

(a) What are relevant optimization techniques for EAI pattern compositions?

(b) How can optimization strategies be formally defined?

(c) How can the application of optimization strategies preserve the compositional correctness?

To answer these questions we follow the responsible pattern composition process (from Figure 3.30
(on page 102), which we extend to correctness-preserving optimizations in Figure 4.2 that
allows for the formal analysis for pattern compositions during the optimization process. In
the analyze improvements step, relevant optimization strategies for EAI pattern compositions
are identified (cf. research question RQ2-3(a)). We focus on the common EAI optimization
objectives, e.g., mentioned in [HW04]: message throughput (on experimental runtime benchmarks),
pattern processing latency (on an abstract cost model), and also runtime independent model
complexity [SGGM+10] from the process modeling domain. Then, in the define rewrite rule
step, the distinct optimizations are formalized into what we call rewrite rule (cf. RQ2-3(b)).
These rules are executed iteratively in a combined match & apply rewrite rules step, in which an
optimization rule is applicable in a scenario, if match rewrite rule holds and the compositional
correctness is preserved. The compositional correctness that is assumed for the original scenario is
preserved through the already introduced responsible pattern composition process (cf. RQ2-3(c)).
If the resulting composition is not correct, the improvement is not applied. We stress that we
use the word “optimization” here in the sense of, e.g., an optimizing compiler: a process which
iteratively improves compositions, but gives no guarantee of optimality.
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Figure 4.2: Responsible pattern composition optimization process (process-perspective)

Methodologically we first collect existing optimization techniques in related domains, classify
single, recurring optimizations as optimization strategies and transfer them to EAI in Section 4.1.
For the formalization of optimization strategies, we recall that pattern compositions are formally
specified in Integration Pattern Contract Graphs (IPCGs). Based on the analysis and the
composition formalism, we select a suitable formal representation for the specification of rewrite
rules, and formally specify the optimizations per strategy in Section 4.2. Although the IPCGs
can be checked for structural and semantic correctness, the correctness-preserving property
has to be considered during the definition and shown for each distinct optimization. Together,
these formalisms allow for the realization of a correctness-preserving application of optimization
strategies to pattern compositions, which we evaluate quantitatively and in case studies according
to our objectives in Section 4.3. In Section 4.4 we discuss related work, before we conclude
in Section 4.5.

The resulting verification and analysis framework for applying and reasoning about optimiza-
tions of data-aware integration scenarios does not only allow to show that all optimizations are
improving certain aspects of an integration scenario, but that they preserve their correctness down
to the execution semantics. A responsible programming is essential for the subsequent design of
new pattern solutions and further studies on the applicability of the optimization strategies.

Parts of this chapter have previously been published in the proceedings of DEBS 2018 [RMFR18]
(formalizing optimizations) together with parts of the pattern composition formalism in Section 3.2
and a technical report [RFRM19] (collection of optimization strategies).

138



Table 4.1: Optimizations in related domains — horizontal search
Keyword hits selected Selection criteria Selected Papers

Business Process
Optimization

159 3 data-aware processes survey [VTM08], optimization pat-
terns [NRM11, NS11]

Workflow Opti-
mization

396 6 data-aware processes instance scheduling [ABMR10, BM11,
TULA13], scheduling and partitioning
for interaction [ALR+14], scheduling
and placement [BCN+12], operator
merge [HAMR13]

Data Integration
Optimization

61 2 data-aware processes
optimization, (no
schema-matching)

instance scheduling, parallelization
[ZHZW12], ordering, materialization,
arguments, algebraic [Get11]

Added n/a 8 expert knowledge business process [VSS+07], workflow
survey [KG14, KGS17], data integra-
tion [BWHL08], distributed applications
[Böh10, BK11], EAI [RDMRM17, Rit17a]

Removed - 1 classification only [VTM08]

Overall 616 18

4.1 Optimization Strategies and Design Choices

We survey recent attempts to optimize integration pattern compositions, in order to motivate the
need to formalize their semantics. As a result, we derive three so far unexplored prerequisites
R1–R3 for optimizing compositions of integration patterns, for which we discuss design choices.

4.1.1 Identifying Optimization Strategies

Since a formalization of the EAI foundations in the form of integration patterns for static
optimization of data-aware integration scenarios is missing (cf. Chapter 2), we conducted a
horizontal literature search [Kit04] to identify optimization techniques in related domains. For
EAI, the domains of business processes, workflow management and data integration are of
particular interest. The results of our analysis are summarized in Table 4.1. Out of the resulting
616 hits, we selected 18 papers according to the search criteria “data-aware processes”, and
excluded work on unrelated aspects. Table 4.2 lists the optimization techniques, already mapped
to EAI, and skipping those techniques that do not provide solutions for our optimization objectives
or within an integration process. This resulted in the seven papers cited in the table. The mapping
of techniques from related domains to application integration was done by for instance taking the
idea of projection push-downs [BHP+11, Get11, HAMR13, NRM11, VSS+07] and deriving the
early-filter or early-mapping technique in EAI. We categorized the techniques according to their
impact (e.g., structural or process, data-flow) in context of the objectives for which they provide
solutions.

In the following subsections, we now briefly discuss the optimization strategies listed in
Table 4.2, in order to derive prerequisites needed for optimizing compositions of integration
patterns. To relate to their practical relevance and coverage so far (in the form of evaluations on
real-world integration scenarios), we also discuss existing data-aware message processing solutions
for each group of strategies.
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Table 4.2: Optimization strategies in context of the objectives
Strategy Optimization Throughput Latency Complexity Practical Studies

OS-1:
Process
Simplification

Redundant Sub-process Re-
moval [BHP+11]

+/- + + -

Combine Sibling Patterns
[BHP+11, HAMR13]

+/- + + (Section 6.2 )

Unnecessary conditional fork
[BHP+11, VSS+07]

(+) + + -

OS-2:
Data
Reduction

Early-Filter [BHP+11,
Get11, HAMR13, NRM11,
VSS+07]

+ +/- +/- Section 6.2

Early-Mapping
[BHP+11, Get11, HAMR13]

+ +/- +/- Sections 6.2
and 6.3

Early-Aggregation [BHP+11,
Get11, HAMR13]

+ +/- +/- Section 6.3

Early Claim Check [BHP+11,
Get11]

+ +/- - -

Early-Split [RDMRM17] + +/- - Sections 6.2
and 6.3

OS-3:
Paral-
lelization

Sequence to parallel
[BHP+11, NRM11, VSS+07,
ZHZW12]

+ +/- - [Rit15b],
Sections 6.1
and 6.2

Merge parallel sub-processes
[BHP+11, NRM11, VSS+07,
ZHZW12]

+/- + + Section 6.2

+ = improvement, - = deterioration, +/- = no effect, (+) = slight improvement, (-) = slight
deterioration.

4.1.2 Process Simplification

We grouped together all techniques whose main goal is reducing model complexity (i.e., the
number of patterns) under the heading of process simplification. The cost reduction of these
techniques can be measured by pattern processing time (latency, i.e., time required per operation)
and model complexity metrics [SGGM+10]. Process simplification can be achieved by removing
redundant patterns like Redundant Subprocess Removal (e.g., remove one of two identical sub-
flows), Combine Sibling Patterns (e.g., remove one of two identical patterns), or Unnecessary
Conditional Fork (e.g., remove redundant branching). As far as we know, the only practical
study of combining sibling patterns can be found in Ritter et al. (cf. Section 6.2), showing
moderate throughput improvements. The simplifications require a formalization of patterns
as a control graph structure (requirement R1), which help to identify and deal with the
structural change representation. Previous work targeting process simplification include Böhm et
al. [BHP+11] and Habib, Anjum and Rana [HAMR13], who use evolutionary search approaches
on workflow graphs, and Vrhovnik et al. [VSS+07], who use a rule formalization on query graphs.

4.1.3 Data Reduction

The reduction of data can be facilitated by pattern push-down optimizations of message-element-
cardinality-reducing patterns, which we call Early-Filter (for data; e.g., remove elements from
the message content), Early-Mapping (e.g., apply message transformations), as well as message-
reducing optimization patterns like Early-Filter (for messages; e.g., remove messages), Early-
Aggregation (e.g., combine multiple messages to fewer ones), Early-Claim Check (e.g., store
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content and claim later without passing it through the pipeline), and Early-Split (e.g., cut
one large message into several smaller ones). Measuring data reduction requires a cost model
based on the characteristics of the patterns, as well as the data and element cardinalities. For
example, the practical realizations for multimedia (cf. Section 6.3) and hardware streaming
(cf. Section 6.2) show improvements especially for early-filter, split and aggregation, as well as
moderate improvements for early-mapping. This requires a formalization that is able to represent
data or element flow (requirement R2). Data reduction optimizations target message
throughput improvements (i.e., processed messages per time unit), however, some have a negative
impact on the model complexity. Previous work on data reduction include Getta [Get11], who
targets optimization techniques on relational algebra expressions, and Niedermann, Radeschütz
and Mitschang [NRM11], who define optimizations algorithmically for a graph-based model.

4.1.4 Parallelization

Parallelization of processes can be facilitated through transformations such as Sequence to
Parallel (e.g., duplicate pattern or sequence of pattern processing), or, if not beneficial, reverted,
e.g., by Merge Parallel. For example, good practical results have been shown for vectorization
(cf. Section 6.1) and hardware parallelization (cf. Section 6.2). Therefore, again, a control
graph structure (R1) is required. Although the main focus of parallelization is message
throughput, heterogeneous variants also improve latency. In both cases, parallelization requires
adding patterns, which negatively impacts the model complexity. The opposite optimization of
merging parallel processes mainly improves the model complexity and latency. Previous work on
pattern parallelization include Zhang et al. [ZHZW12], who define a service composition model,
to which algorithmically defined optimizations are applied.

4.1.5 Discussion and Design Choices

Due to our objectives and our focus on optimizations within an integration scenario, the collection
of optimizations in Table 4.2 is not complete. For instance, we have not treated pattern placement
optimizations (pushing patterns to message endpoints, i.e., sender and receiver applications), or
optimizations that reduce interaction (helping to stabilize the scenario through making it less
dependent). Besides control flow (as used in most of the related domains), a suitable formalization
must be able to represent the control graph structure (R1) (including reachability and con-
nectedness properties) and the data element flow (R2) between patterns (not within a pattern).
Furthermore, the formalization must allow verification of correctness (requirement R3) on
a pattern-compositional level (i.e., each optimization produces a correct pattern composition),
taking the inter-pattern data exchange semantics into account.

We recall that formalization requirements (R1) and (R2) as well as compositional correctness
are inherent to IPCGs defined in Section 3.2. With IPCGs as the underlying formalism that can
be translated to timed db-nets with boundaries for checking semantic correctness, optimizations
are naturally expressed as rewrite rules on the IPCG. Hence, similar to the work by Balogh and
Varró [BV06], who use graph transformation techniques (e.g., [EEPT06, ERK99]) for the process
of composing design patterns, we formally define optimization strategies in an algebraic graph
rewriting framework. In other words, each optimization will be defined as a graph transformation
or rewrite rule. Note that a formal framework provides base guarantees that are desirable in
our case (e.g., no dangling nodes or edges after rewriting [EPS73, CMR+97]). The resulting
algebraically grounded rewritings of the IPCGs can be formally analyzed with respect to their
compositional and functional correctness (cf. Chapter 3), which makes them correctness-preserving
optimizations in the form of IPCG rewritings, and thus fulfilling requirement (R3).
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4.2 Optimization Strategy Formalization

We formally define the optimizations from the different strategies identified in Table 4.2 using a
rule-based graph rewriting system. This gives a formal framework, in which different optimizations
can be compared. We first introduce the graph rewriting framework and then subsequently define
the optimizations.

Graph rewriting or transformation provides a visual framework for transforming graphs in
a rule-based fashion, which we subsequently describe based on the monograph by Taentzer et
al. [EEPT06] and the handbook from Ehrig et al. [ERK99]). We recall that IPCGs are defined as
labeled, control flow graphs (cf. Definition 3.28 (on page 106)). To be able to relate graphs in a
formal way, we use structure-preserving graph morphisms from nodes and edges of one graph to
another one, given in Definition 4.2.

Definition 4.2 (Graph morphism). Given graphs G,H over a label alphabet C, a graph morphism
f : G → H is a pair of mappings (fV : VG → VH , fE : EG → EH) that preserve the sources,
targets, and labels, i.e., sH ◦fE = fV ◦sG, tH ◦fE = fV ◦tG,mH ◦fE = mG, and lH(fV (v)) = lG(v)
for all nodes v for which lG(v) is defined (with function composition ◦).

Given graph morphisms f : F → G and g : G→ H, the composition g ◦ f : F → H is defined
as g ◦ f = 〈gV ◦ fV , gE ◦ fE〉. �

We denote injective morphisms f : G→ H by a hooked arrow f : G ↪→ H. A graph morphism
f is injective (surjective), if both fV and fE are injective (surjective).

A graph rewriting rule is given by two embeddings of graphs L←↩ K ↪→ R, where L represents
the left hand side of the rewrite rule, R the right hand side, and K their intersection (the parts
of the graph that should be preserved by the rule) as defined in Definition 4.3.

Definition 4.3 (Graph rule). A rule r : 〈L ←↩ K ↪→ R〉 over a label alphabet C comprises
partially labeled graphs L,K,R ∈ G(C), and inclusions K ↪→ L and K ↪→ R. Then L denotes
the left hand side, R the right hand side, and K the interface of the rule r. �

A rewrite rule can be applied to a graph G after a match of L in G has been given as an
embedding L ↪→ G; applying the rule replaces the match of L in G by R. The application of a
rule is potentially non-deterministic: several distinct matches can be possible [EEPT06]. Visually,
we represent a rewrite rule by a left hand side and a right hand side graph colored green and red:
green parts are shared and represent K, while the red parts are to be deleted in the left hand
side, and inserted in the right hand side respectively.

Example 4.4. The following rewrite rule moves the node P1 past a fork by making a copy in
each branch of a labeled graph based on the graph morphism, changing its label from c to c′ in
the process:

Fc
P1

F
c'

c'
P1

P'1

P2

P3

P2

P3

�

Formally, the rewritten graph is constructed using a double-pushout (DPO) [EPS73, CMR+97]
from category theory. We use DPO rewriting since rule applications are side-effect free (e.g., no
“dangling” edges) and local (i.e., all graph changes are described by the rules). Given rule r and a
partially labeled graph G, an injective graph morphism g : L ↪→ G is a match for r, if it satisfies
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the dangling condition in Definition 4.5, which intuitively means that if r deletes a node in the
match, then all edges incident to it are also in the match and would be deleted by r. We write
g(G) for the component-wise image (gV (V ), gE(E)) of a graph morphism g = (gV , gE) to a graph
G = (V,E).

Definition 4.5 (Dangling condition; match). Let r : 〈L←↩ K ↪→ R〉 be a rule, G a labeled graph,
and g : L ↪→ G an injective graph morphism. The embedding g : L ↪→ G is a match for r, if it
satisfies the dangling condition: no edge in G− g(L) is incident to any node in g(L−K). �

The application of a rule is given in Definition 4.6, which describes the deletion of everything
in the match that does not preserve the interface, and eventually adding everything in R that is
not in the interface.

Definition 4.6 (Rule application). With a rule r : 〈L ←↩ K ↪→ R〉 and a match g : L ↪→ G is
constructed from G as follows:

� Remove all nodes and edges in g(L)− g(K), obtaining a graph D;

� Add disjointly to D all nodes and edges from R−K retaining their labels, obtaining a graph
H. For e ∈ ER − EK , sH(e) = sR(e), if sR(e) ∈ VR − VK , otherwise sH(e) = gV (sR(e));

� Analogously target functions are defined.

We write G⇒r,g M , if applying rule r to match s in g results in M . �

The rather operationally defined rule application with steps as well as individual nodes
and edges mapped by a match should be sufficient for the understanding of our approach.
Alternatively, the underlying abstract, algebraic characterisation of the DPO approach, which
treats the graphs as algebras and models the rule application as two pushouts can be further studied
in [EPS73, CMR+97]. We additionally use Habel and Plump’s relabeling DPO extension [HP02]
to facilitate the relabeling of nodes in partially labeled graphs (cf. node relabeling in Example 4.4).
This allows for changing the node labels during the transformation of the graph as part of the
DPO. Essentially, the node labels in the graph on the right hand side are preserved, else taken
from the left hand side of the rule (e.g., shown in Examples 4.4 and 4.7). For more details we refer
to [HP02]. In our motivating example in Figure 4.1, we showed contracts and characteristics in
dashed boxes, but in the rules that follow, we will represent them as (schematic) labels inside the
nodes for space reasons. We also consider rewrite rules parameterized by graphs, where we draw

the parameter graph as a labeled cloud
label

(see e.g., Example 4.7 for an applied example). A
cloud represents any graph, sometimes with some side-conditions that are stated together with the
rule. When looking for a match in a given graph G, it is of course sufficient to instantiate clouds
with subgraphs of G — this way, we can reduce the infinite number of rules that a parameterized
rewrite rule represents to a finite number. Parameterized rewrite rules can formally be represented
using substitution of hypergraphs [PH94] or by !-boxes in open graphs [DD09, KMS12].

Example 4.7. With a labeled “cloud”, the rewrite rule in Example 4.4 can be written as
subsequently depicted. Still the rule moves the node P1 past a fork by making a copy in each
branch of a labeled graph based on the graph morphism, changing its label from c to c′ in the
process. However, this time the unconditional fork pattern node F is replaced by an arbitrary
subgraph SGF , which is moved instead for F .

c
P1

c'

c'
P1

P'1

P2

P3

P2

P3

SGF
SGF
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In the same way, several nodes can be grouped to subgraph nodes. Note that SGF can be
instantiated to F to recover the previous example. �

Since graph rewriting is naturally applicable to IPCGs and important base properties of such
rewritings (e.g., no dangling nodes or edges), we subsequently formally define all optimizations
by rewrite rules. Methodologically, the rules are specified by pre-conditions, change primitives,
post-conditions and an optimization effect, where the pre- and post-conditions are implicit in
the applicability and result of the rewriting rule. Note that the optimization effects denote
an intermediate discussion of when the optimization is beneficial. Moreover, since pre- and
post-conditions are implicit in the rule, we only discuss the more complicated change primitives
and the resulting effects in more detail.

Remark 4.8. In Example 4.4 the pre-conditions are denoted by the left hand side and the
post-condition by the right hand side of the rule. In other words, if and only if the left hand
side matches, the rule is executed and produces the right hand side, which denotes the desired
outcome of the rewriting. The change primitives are represented by the whole rule. �

4.2.1 OS-1: Process Simplification

We first consider the process simplification strategies from Section 4.1 OS-1 that mainly strive to
reduce the model complexity and latency.

Redundant Sub-Process

This optimization removes redundant copies of the same sub-process within an IPCG.

Change primitives: The rewriting is depicted by the rule in Figure 4.31, where SG1 and SG2
are isomorphic pattern graphs with in-degree n and out-degree m, which is depicted by 1, .., n
preceding patterns i of SG1 and the same number of preceding patterns j of SG2. Similarly, this is

CECE
SG1 CBR

...

...

SG2

...

...

SG'1

...

... CBR

i1 in j1 jn

o1om k1 km o1 om k1 km
CF CF CFCF

... ...i1 in j1 jn

CE
...

...

CE

...

Figure 4.3: Redundant sub-process rule

illustrated for the 1, ..,m succeeding patterns o of SG1 and k of SG2. The Content Enricher (CE)
node is a message processor pattern from Figure 3.39 (on page 117) with a pattern characteristic
(PRG, (addCtxt, [0,∞))) for an enrichment program addCtxt (not shown) which is used to add
content to the message, helping to answer the question “does the message come from any pattern
i1, ..in from the left or j1, .., jn from the right subgraph?”. Similarly, the Content Filter (CF) is a
message processor, with a pattern characteristic (PRG, (removeCtxt, [0,∞))) for an enrichment

1We briefly repeat the notation for a better understanding: nodes denote patterns (i1, .., in, j1, .., jn, o1, .., om,
k1, .., km) and node clouds stand for subgraphs of several nodes (SG1, SG2). Edges represent message channels.
The coloring depicts the interface or intersection of the left and right hand sides of the rule: red elements change,
green elements remain unchanged.
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program removeCtxt which is used to remove the added content from the message again. Note
that the additional Content Enricher and Content Filter patterns are required to construct the
optimization rule. Moreover, the Content-based Router (CBR) node is a conditional fork pattern
from Figure 3.38 with a pattern characteristic (CND, {fromLeft}) for a condition fromLeft which
is used to route messages depending on their added context. In the right hand side of the rule,
the CE nodes add the context of the predecessor node to the message in the form of a content
enricher pattern, and the CBR nodes are content-based routers that route the message to the
correct recipient based on the context introduced by CE. The graph SG′1 is the same as SG1,
but with the context introduced by CE copied along everywhere, and thus a copy of SG1 with
the context as additional element in the message. This context is stripped off the message by a
content filter CF .

Effect: The optimization is beneficial for model complexity when the isomorphic subgraphs
contain more than n+m nodes, where n is the in-degree and m the out-degree of the isomorphic
subgraphs. The latency reduction is by that of the subgraphs minus the latency introduced by
the n extra nodes CE, m extra nodes CBR and k extra nodes CF .

Combine Sibling Patterns

Sibling patterns have the same parent node in the pattern graph (e.g., they follow a non-conditional
forking pattern) with channel cardinality of 1:1. Combining them means that only one copy of a
message is traveling through the graph instead of two — for this transformation to be correct in
general, the siblings also need to be side-effect free, i.e., no external calls.

Change primitives: The rule is given in Figure 4.4, where SG1 and SG2 are isomorphic
pattern subgraphs, and F is a fork. After the execution of the rewrite rule, one of the redundant
subgraphs — in this case SG1 — is moved between pattern P1 and the fork F , while the latter is
now connected directly to the subsequent patterns P2 and P3.

F

F
P2 P3 P2 P3

SG1 SG2

SG1

P1 P1

Figure 4.4: Combine sibling patterns rule

Effect: The model complexity and latency are reduced by the model complexity and latency of
SG2, which also saves processing resources.

4.2.2 OS-2: Data Reduction

Now, we consider data reduction optimization strategies, which mainly target improvements of
the message throughput (incl. reducing element cardinalities). These optimizations require that
pattern input and output contracts are regularly updated with snapshots of element data sets
ELin and ELout (cf. Definition 3.32 (on page 107)) from live systems (cf. abstract cost model
Section 4.3.1 (on page 153)), e.g., from experimental measurements through pattern benchmarks
(cf. Chapter 5).
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Early-Filter

A filter pattern can be moved to or inserted prior to some of its successors to reduce the data to
be processed. The following types of filters have to be differentiated:

� A message filter removes messages with invalid or incomplete content. It can be used to
prevent exceptional situations, and thus improves stability.

� A content filter removes elements from messages, thus reduces the amount of data passed
to subsequent patterns.

Both patterns are message processors in the sense of Figure 3.39 (on page 117). The Content
Filter (CF) is a message processor, with a pattern characteristic (PRG, (prg, [0,∞))) for some
filter function prg that removes elements from a message, while the Message Filter (MF) is a
pattern with characteristic (CND, {c1}) for some filter condition c1 (not shown).

P2

C/M F

P2

P1 P1
P3

(a) Early-Filter

MT

SG2
P1

MT SG2

CF

P1

P3
P4P4

P3

P5

(b) Early-Mapping

Figure 4.5: Rules for early-filter and early-mapping

Change primitives: The rule is provided in Figure 4.5(a), where P3 (C/MF ) is either a content
or message filter matching the output contracts of P1 and the input contract of P2, removing
the data not used by P2. More precisely, if there are message elements in the output contract
of pattern P1 that are not needed in the input contract of pattern P2 (or any other subsequent
pattern), then a filter pattern P3 can be inserted that removes these elements, and thus avoid the
transport of unnecessary data.

Effect: The message throughput increases by the ratio of the number of reduced data elements
that are processed per second, unless limited by the throughput of the additional pattern.

Early-Mapping

A mapping that reduces the number of elements in a message can increase the message throughput.

Change primitives: The rule is given in Figure 4.5(b), where P3 is an element reducing message
mapping compatible with both SG2, P4, and P1, SG2, and where P4 does not modify the
elements mentioned in the output contract of P3. Furthermore P5 is a content filter, which
ensures that the input contract of P4 is satisfied (i.e., bridging from SG2 to P4, if necessary).
The Message Translator (MT) node is a message processor pattern from Figure 3.39 (on page
117) with a pattern characteristic (PRG, (prg, [0,∞))) for some mapping program prg which is
used to transform the message. The subgraph SG2 is changed after the rule execution, since it is
moved behind P3 and its data exchange is adjusted according to the filtered elements, formally
represented by the output contract of P3 (not shown).

Effect: The message throughput for the subgraph subsequent to the mapping increases by the
ratio of the number of unnecessary data elements processed.
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Early-Aggregation

A micro-batch processing region is a subgraph which contains patterns that are able to process
multiple messages combined to a multi-message (cf. Chapter 5) or one message with multiple
segments with an increased message throughput. The optimal number of aggregated messages
is determined by the highest batch-size for the throughput ratio of the pattern with the lowest
throughput, if latency is not considered.

SG2 SG'2

SP

AG
P1

P2

P0

P3

P0

P3

(a) Early-Aggregation

SG2 SG2

CE

CC
P1

P2

(b) Early-Claim Check

Figure 4.6: Rules for early-aggregation and early-claim check

Change primitives: The rule is given in Figure 4.6(a), where SG2 is a micro-batch processing
region, P1 an Aggregator, P2 a Splitter which separates the batch entries to distinct messages
to reverse the aggregation, and finally SG2 is rewritten to SG′2, which processes the aggregated
messages. The Aggregator (AG) node is a merge pattern from Figure 3.40 (on page 118) with
a pattern characteristic {(CND, {cndcr, cndcc}), (PRG, prgagg, (v1, v2))} for some correlation
condition cndcr, completion condition cndcc, aggregation function prgagg, and timeout interval
(v1, v2) which is used to aggregate messages. The Splitter (SP) node is a message processor
from Figure 3.39 (on page 117) with a pattern characteristic (PRG, (prg, [0,∞))) for some split
function prg which is used to split the message into several ones.

Effect: The message throughput is the minimal pattern throughput of all patterns in the micro-
batch processing region. If the region is followed by patterns with less throughput, only the
overall latency might be improved.

Early-Claim Check

If a subgraph does not contain a pattern with message access, the message payload can be stored
intermediately persistently or transiently (depending on the quality of service level) and not moved
through the subgraph. For instance, this applies to subgraphs consisting of data independent
control-flow logic only, or those that operate entirely on the message header (e.g., header routing).

Change primitives: The rule is given in Figure 4.6(b), where SG2 is a message access-free
subgraph, P1 a claim check that stores the message payload and adds a claim to the message
properties (and possibly routing information to the message header), and P2 a content enricher
that adds the original payload to the message. The Claim Check (CC) node is a message processor
from Figure 3.39 (on page 117) with a pattern characteristic (PRG, ( , [0,∞))), which stores the
message for later retrieval.

Effect: The main memory consumption and CPU load decreases, which could increase the
message throughput of SG2, if the claim check and content enricher pattern throughput is greater
than or equal to the improved throughput of each of the patterns in the subgraph.
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Early-Split

Messages with many segments can be reduced to several messages with fewer segments, and
thereby reducing the processing required per message. A segment is an iterable part of a message
like a list of elements. When such a message grows bigger, the message throughput of a set of
adjacent patterns might decrease, compared the expected performance for a single segment. We
call this a segment bottleneck sub-sequence. Algorithmically, these bottlenecks could be found,
e.g., using max flow-min cut techniques based on workload statistics of a scenario.

SSQ1
SSQ1

SP

SP

P1

P'1

P0

P2

P0

P2

(a) Early Split

SSQ1 SSQ1

SP

AG

P1

P2

P0

P3

P0

P3

(b) Early Split (inserted)

Figure 4.7: Rules for early-split

Change primitives: The splitter (SP) node is a message processor from Figure 3.39 (on page
117) with a pattern characteristic (PRG, (prg, [0,∞))), for some split program prg. The rule
is given in Figure 4.7, where SSQ1 is a segment bottleneck sub-sequence. If SSQ1 already has
an adjacent splitter, Figure 4.7(a) applies, otherwise Figure 4.7(b). In the latter case, SP is a
splitter and P2 is an aggregator that re-builds the required segments for the successor in SG2.
For an already existing splitter P1 in Figure 4.7(a), the split condition has to be adjusted to the
elements required by the input contract of the subsequent pattern in SSQ1. In both cases we
assume that the patterns in SSQ1 deal with single- and multi-segment messages; otherwise all
patterns have to be adjusted as well.

Effect: The message throughput increases by the ratio of increased throughput on less message
segments, if the throughput of the moved or added splitter (and aggregator) ≥ message throughput
of each of the patterns in the segment bottleneck sub-sequence after the segment reduction.

Note that the Early-Split optimization can be similarly used to reduce the allocated main
memory per message during processing in SSQ1, which might help to avoid memory allocation
errors for larger messages.

4.2.3 OS-3: Parallelization

Parallelization optimization strategies increase message throughput. Again, these optimiza-
tions require experimentally measured message throughput statistics, e.g., from benchmarks
(cf. Chapter 5).

Sequence to Parallel

A bottleneck sub-sequence with channel cardinality 1:1 can also be handled by distributing its
input and replicating its logic. The parallelization factor is the average message throughput of
the predecessor and successor of the sequence divided by two, which denotes the improvement
potential of the bottleneck sub-sequence. The goal is to not overachieve the mean of predecessor
and successor throughput with the improvement to avoid iterative re-optimization. Hence the
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optimization is only executed, if the parallel sub-sequence reaches lower throughput than their
minimum. In other words, the parallelization factor n should be chosen such that the throughput
improves sufficiently (e.g., according to Amdahl’s law).

P1P1

SSQ1

SSQ'1

F
SSQ'n

JR
P2

P3 ...

P2

P4

(a) Sequence to parallel

P1 P1

SSQ1

SSQ'1

F
SSQ'n

JR
P2

P3 ...

P2

P4

(b) Merge parallel

Figure 4.8: Rules for sequence to parallel variants

Change primitives: The rule is given in Figure 4.8(a), where SSQ1 is a bottleneck sub-
sequence, P2 a fork node, P3 a join router, and each SSQ′k is a copy of SSQ1, for 1 ≤ k ≤ n.
The parallelization factor n is a parameter of the rule.

Effect: The message throughput improvement rate depends on the parallelization factor n, and
the message throughput of the balancing fork and join router on the runtime. For a measured
throughput t of the bottleneck sub-sequences, the throughput can be improved to n× t ≤ average
of the sums of the predecessor and successor throughput, while limited by the upper boundary of
the balancing fork or join router.

Merge Parallel

The balancing fork and join router realizations can limit the throughput in some runtime systems,
so that a parallelization decreases the throughput. This is called a limiting parallelization, and
is defined as when a fork or a join has smaller throughput than a pattern in the following
sub-sequence.

Change primitives: The rule is given in Figure 4.8(b), where P3 and P4 limit the message
throughput of each of the n sub-sequence copies SSQ′1, . . . , SSQ′n of SSQ1.

Effect: The model complexity is reduced by (n−1)k−2, where each SSQ′i contains k nodes. The
message throughput might improve, since the transformation lifts the limiting upper boundary of
a badly performing balancing fork or join router implementations to the lowest pattern throughput
in the bottleneck sub-sequence.

Heterogeneous Parallelization

A heterogeneous parallelization consists of parallel sub-sequences that are not isomorphic. In
general, two subsequent patterns Pi and Pj can be parallelized, if the predecessor pattern of Pi
fulfills the input contract of Pj , Pi behaves read-only with respect to the data element set of
Pj , and the combined outbound contracts of Pi and Pj fulfill the input contract of the successor
pattern of Pj .

Change primitives: The rule is given in Figure 4.9, where the sequential sub-sequence parts
SSQ1, .., SSQn can be parallelized, P3 is a parallel fork, P4 is a join router, and P5 is an aggregator
that waits for messages from all sub-sequence part branches before emitting a combined message
that fulfills the input contract of P2.
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P4

P5

P1 P1
F

JRAG

P3

SSQ1

SSQn

... SSQn...

SSQ1

P2 P2

Figure 4.9: Heterogeneous sequence to parallel

Effect: Synchronization latency can be improved, but the model complexity increases by 3. The
latency improves from the sum of the sequential pattern latencies to the maximal latency of all
sub-sequence parts plus the fork, join, and Aggregator latencies.

In summary, since we describe optimization strategies as graph rewrite rules, we can be
flexible with when and in what order we apply the strategies. We apply the rules repeatedly
until a fixed point is reached, i.e., when no further changes are possible, making the process
idempotent. Nevertheless, the rules can be stratified according to their effects for the application
(i.e., “simplification before parallelization” and “structure before data”). Each rule application
preserves IPCG correctness in the sense of Definition 3.35 (on page 108), because input contracts
do not get more specific, and output contracts remain the same. That means that only rewrite rules
are allowed which lead to correct compositions on the right hand side, thus preserving the structural
correctness of the composition. The semantic correctness requires more elaborate considerations,
which we subsequently discuss more formally for each of the formalized optimizations.

4.2.4 Optimization Correctness

We now show that the optimizations do not change the input-output behaviour of the pattern
graphs in the timed db-nets semantics, i.e., if we have a rewrite rule from graph G to graph G′ as
G⇒r,g G

′ (cf. Definition 4.6 (on page 143)), then the constructed timed db-net with boundaries
JGK has the same observable behaviour as that of JG′K (cf. Section 3.2.4). More formally, having
the “same input-output behavior” requires that the transition systems of the original and the
rewritten graphs are bisimilar in a certain sense (cf. timed db-net transition system based on
db-net in Sections 3.1.2 and 3.2.3), as more formally defined in Definition 4.9. For being bisimilar,
it is required that the left hand side of a rewrite can simulate the right hand side, and vice versa.

Definition 4.9 (Bisimulation). Let ΓBs0 = 〈S, s0,→〉 and ΓB
′

s0 = 〈S′, s′0,→′〉 be the associated
labelled transition systems of two timed db-nets B and B′ with the same boundaries from Sec-
tions 3.1.2 and 3.2.3, respectively. We say that a B-snapshot (I,m) is functionally equivalent to
a B′-snapshot (I ′,m′), (I,m) ≈ (I ′,m′), if I = I ′, and m and m′ agree on output places, i.e., for
every output place p with m(p) = (α, γ, age) and m′(p) = (α′, γ′, age′), we have α = α′, for the
elements that are in the message α, and those that are not required by any endpoint γ (usually
γ = ∅), and age is the timed db-net age information.

Further we say that ΓBs0 is functionally equivalent to ΓB
′

s0 , ΓBs0 ∼ ΓB
′

s0 , if whenever s0 →∗ (I,m)

then there is (I ′,m′) such that s′0 →′∗ (I ′,m′) and (I,m) ≈ (I ′,m′) and ΓB(I,m) ∼ ΓB
′

(I′,m′), and

whenever s′0 →∗ (I ′,m′) then there is (I,m) such that s0 →∗ (I,m) and (I ′,m′) ≈ (I,m). �

Note that this bisimulation definition neglects the unused fields γ as well as the age of the
tokens age, since γ is used for deciding on the efficiency of a data reducing optimization only and

150



SG1

P1 F

\( P2

P3

SG2

var	msg,	msg':	INT	 	STRING;×

msg

msg

msg

msg′

msg′msg

msgmsg

msg

msg msg

Net

(a) Before applying the rewrite rule

SG1

P1 \(

P2

P3

var	msg,	msg':	INT	 	STRING;×

msg

msg′

msg F

msg′

msg′ msg′msg

Ts2

Ts1Ps1

Ps2msg′

msg′
msg′

msg′

synch
Net

(b) After applying the rewrite rule

Figure 4.10: Timed db-net translation of IPCGs before and after applying the “combine sibling
patterns” rewrite rule

the age information is anyway reset when moved to a new place (cf. Section 3.1.2). Let us discuss
an explanatory example of bisimulation.

Example 4.10. Figure 4.10 shows the interpretation of a simple IPCG as a timed db-net before
and after applying the rewrite rule for the combining sibling patterns from Figure 4.4 (for simplicity
without boundaries). The improvement of the optimization is to move SG1 (isomorphic to SG2)
in front of the forking pattern F and leave out SG2, which reduces the modeling complexity on
the right hand side (cf. Figure 4.10(b)). The synchronization subnet synch is required to show
bisimilarity between the original and the resulting net, since tokens might be moved independently
in SG1 and SG2 before applying the optimisation. The subnet (essentially transitions Ts1, Ts2)
compensates for that to ensure that places P2 and P3 can be reached independently as well. Hence
according to Definition 4.9, the timed db-net B representing Figure 4.10(a) and B′ Figure 4.10(b)
are bisimilar ΓB(I,m) ∼ ΓB

′

(I,m′) for any database instance I, and any markings m and m′ with

m(P1) = m′(P1) and m(p) = {∅}, m′(p) = {∅} for all other p. �

With the following congruence relation for the composition, we subsequently show the correct-
ness of the optimizations by discussing the bisimilarity of the right and left hand sides of the
respective optimization rules (first left to right, then right to left).

Lemma 4.11. The relation ∼ is the congruence relation with respect to composition of timed

db-nets with boundaries, i.e., it is reflexive, symmetric and transitive. If ΓB1
s0 ∼ Γ

B′1
s0 , ΓB2

s0 ∼ Γ
B′2
s0

for all s0 on the shared boundary of B1 and B2, then ΓB1◦B2
s0 ∼ Γ

B′1◦B
′
2

s0 . �
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Lemma 4.12. Let G and G′ be IPCGs. If G⇒r,g G
′ for an optimisation r, then JGK and JG′K

have the same boundary.

Theorem 4.13 (Optimization Correctness). With Lemma 4.12, let s0 = (I0,m0) be a snapshot
for its timed db-net with boundaries JGK, and s′0 = (I ′0,m

′
0) a snapshot for JG′K, such that I0 = I ′0,

and m0(p) = m′0(p) for all places p on the (shared) boundary of JGK and JG′K, with m0 and m′0
otherwise empty. If G⇒r,g G

′ for some optimization r and match g, then Γ
JGK
s0 is equivalent to

Γ
JG′K
s′0

.

Proof. In each step, the rewriting modifies certain nodes. By Lemma 4.11, it is enough to show
that the affected parts of the interpretation of the graphs are equivalent, which is done for each
optimization subsequently.

Redundant Sub-Processes. Each move on the left hand side of the optimization rule in Figure 4.3
(on page 144) either moves tokens into a cloud, out of a cloud, or inside a cloud. In the first
two cases, this can be simulated by the right hand side by moving the token through the CE or
CBR and CF respectively followed by a move into or out of the cloud, while in the latter case the
corresponding token can be moved in SG′1 up to the isomorphism between SG′1 and the cloud on
the left.

Similarly, a move on the right hand side into or out of the cloud can easily be simulated on
the left hand side. Suppose a transition fires in SG′1. Since all guards in SG′1 have been modified
to require all messages to come from the same enriched context, the corresponding transition can
either be fired in SG1 or SG2.

Combining Sibling Patterns. Suppose the left hand side of Figure 4.4 (on page 145) takes a finite
number of steps and ends up with m(P2) tokens in P2 and m(P3) tokens in P3. There are three
possibilities: (i) there are tokens of the same color in both P2 and P3; or (ii) there is a token
in P2 with no matching token in P3; or (iii) there is a token in P3 with no matching token in
P2. For the first case, the right hand side can simulate the situation by emulating the steps of
the token ending up in P2, and forking it in the end. For the second case, the right hand side
can simulate the situation by emulating the steps of the token ending up in P2, then forking it,
but not moving one copy of the token across the boundary layer in the interpretation of the fork
pattern. The third case is similar, using that SG2 is isomorphic to SG1.

The right hand side can easily be simulated by copying all moves in SG1 into simultaneous
moves in SG1 and the isomorphic SG2.

Early-Filter. By construction, the filter removes the data not used by P2, so if the left hand side
of Figure 4.5(a) (on page 146) moves a token to P2, then the same token can be moved to P2 on
the right hand side and vice versa.

Early-Mapping. Suppose the left hand side of Figure 4.5(b) (on page 146) moves a token to P4.
The same transitions can then move the corresponding token to P4 on the right hand side, with
the same payload, by construction. Similarly, the right hand side can be simulated by the left
hand side.

Early-Aggregation. The interpretation of the subgraph SG2 is equivalent to the interpretation of
P1 followed by SG′2 followed by P3, by construction in Figure 4.6(a) (on page 147), hence the left
hand side and the right hand side are equivalent.

Early Claim Check. Since the claim check CC + CE in Figure 4.6(b) (on page 147) simply stores
the data and then adds it back to the message in the CE step, both sides can simulate each other.

Early-Split. By assumption, P1 followed by SSQ1 (P1 followed by SSQ1 followed by P2 for the
inserted early split in Figure 4.7(a) (on page 148)) is equivalent to SSQ1 followed by P1, from
which the claim immediately follows.
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pattern   pi

( )| ( )|. . . | ( )|din1 pi dini
pi

( )| ( )|. . . | ( )|dout1 pi doutj
pi

( )| ( )|dr pi

Figure 4.11: Data inputs, outputs and external resources of a pattern

Sequence to Parallel. The left hand side of Figure 4.8(a) (on page 149) can be simulated by the
right hand side by copying each move in SSQ1 by a move each in SSQ′1 to SSQ′n. If the right
hand side moves a token to an output place, it must move a token through SSQ′1, and the same
moves can move a token through SSQ1 in the left hand side.

Merge Parallel. When left hand side of Figure 4.8(b) moves a token to the output place, it must
move a token through SSQ′1, and the same moves can move a token through SSQ1 in the right
hand side. The right hand side can be simulated by the left hand side by copying each move in
SSQ1 by a move each in SSQ′1 to SSQ′n.

Heterogeneous Sequence to Parallel. We assume side-effect free sub-sequences SSQ1 to SSQn for
the rest of the proof. The right hand side of Figure 4.9 (on page 150) can simulate the left hand
side as follows: if the left hand side moves a token to an output place, it must move it through
all of SSQ1 to SSQn. The right hand side can make the same moves in the same order. For
the other direction, the left hand side can reorder the moves of the right hand side to first do
all moves in SSQ1, then in SSQ2 and so on. This is still a valid sequence of steps because of
side-effect-freeness.

Note that for each new optimization to be correctness-preserving, the optimization itself has
to be correct, and thus has to be proven according to Definition 4.9 (on page 150).

4.3 Evaluation

For the evaluation we define an abstract cost model, apply the optimizations to integration
scenarios from a commercial cloud integration system in a quantitative analysis, and exemplify
the results by two real-world case studies.

4.3.1 Abstract Cost Model

In order to decide if an optimization is an improvement or not, we want to associate abstract
costs to integration patterns. We do this on the pattern level (cf. structural and data properties
in Figure 3.33 (on page 105)), similar to the work on data integration operators [BHLW09].
The cost of the overall integration pattern can then be computed as the sum of the cost of its
constituent patterns. Costs are considered parametrized by the cardinality of data inputs |dini |
(1 ≤ i ≤ n, if the pattern has in-degree n), data outputs |doutj | (1 ≤ j ≤ m, if the pattern has
out-degree m), and external resource data sets |dr|, as illustrated in Figure 4.11 and specified
in Definition 4.14. The costs can also refer to the pattern characteristics.
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Definition 4.14 (Cost model). A cost assignment for an IPCG (P,E, type, char , inContr , outContr)
is an function cost(p) : Nn × Nk × Nr → Q for each p ∈ P , where p has in-degree n, out-degree k
and r external connections. The cost cost(G) : NN × NK × NR → Q of an IPCG pattern graph
G = (P,E, type, pc, ic, oc) with a cost assignment, where N is the sum of the in-degrees of its
patterns, K the sum of their out-degrees, and R the sum of their external connections, is defined
to be the sum of the costs of its constituent patterns:

cost(G)(din, dout, dr) =
∑
p∈P

cost(p)(|din(p)|, |dout(p)|, |dr(p)|)

where we suggestively have written |din(p)| for the projection from the tuple din corresponding to
p, similarly for |dout(p)| and |dr(p)|. �

We have defined the abstract costs of the patterns discussed in this work in Table 4.3 — these
will be used in the subsequent evaluation. We now explain the reasoning behind them. Routing
patterns such as content based routers, message filters and aggregators mostly operate on the
input message, and thus have an abstract cost related to its element cardinality |din|. For example,

the abstract cost of the Content-based Router is cost(CBR) =
∑n−1
i=0 |din,i|

2 , since it evaluates on
average n−1

2 routing conditions on the input message. More complex routing patterns such as
aggregators evaluate correlation and completion conditions, as well as an aggregation function
on the input message, and also on sequences of messages of a certain length from an external

resource. Hence the cost of an aggregator is cost(AGG) = 2× |din|+ |din|+|dr|
avg(len(seq)) , where len(seq)

denotes the length of a Message Sequence [HW04] as for example used by an Aggregator pattern.
In contrast, message transformation patterns like content filters and enrichers mainly construct an
output message, hence their costs are determined by the output cardinality |dout|. For example,
content enrichers create a request message from the input message with cost |din|, conducts an
optional resource query |dr|, and creates and enriches the response with cost |dout|. Finally, the
cost of message creation patterns such as external calls, receivers, and senders arise from costs for
transport, protocol handling, and format conversion, as well as decompression. Hence the cost
depends on the element cardinalities of input and output messages |din|, |dout|.

Example 4.15. We return to the claimed improved composition in Example 3.36 (on page
109). The latency of the composition G1 in Figure 3.34, calculated from the constituent pattern
latencies, is cost(G1) = tCE + tMT with latency tp and pattern p. The latency improvement
potential given by switching to the composition G2 in Figure 4.1 (on page 137) is given by
cost(G2) = max(tCE , tMT ) + tMC + tJR + tAGG. Obviously it is only beneficial to switch if
cost(G2) < cost(G1), and this condition depends on the concrete values involved. At the same
time, the model complexity increases by three nodes and edges. �

4.3.2 Quantitative Analysis

We applied the optimization strategies OS-1–3 to 627 integration scenarios from the 2017 standard
content of the SAP CPI (called ds17 below), and compared with 275 scenarios from 2015 (called
ds15). Our goal is to show the applicability of our approach to real-world integration scenarios,
as well as the scope and trade-offs of the optimization strategies. The comparison with a previous
content version features a practical study on content evolution. To analyze the difference between
different scenario domains, we grouped the scenarios into the following categories according
to Chapter 2: On-Premise to Cloud (OP2C), Cloud to Cloud (C2C), and Business to Business
(B2B). Since hybrid integration scenarios such as OP2C target the extension or synchronization
of business data objects, they are usually less complex. In contrast native cloud application
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Table 4.3: Abstract costs of relevant patterns
Pattern p Abstract Cost cost(p) Factors

Content-based Router [HW04]
∑n−1
i=0 |din,i|

2
n=#channel conditions, half
of them evaluated on average

Message Filter [HW04] |din| input data condition |din|
Aggregator [HW04] 2× |din|+ |din|+|dr|

avg(len(seq))
correlation, and completion
conditions |din|, aggrega-

tion function |din|+|dr|
avg(len(seq))

and length of a sequence
length(seq)>= 2, and (trans-
acted) resource dr

Claim Check [HW04] 2× |dr| resource insert and get |dr|
Splitter [HW04] |dout| output data condition |dout|
Multicast, Join Router [RMRM17]

∑n
i=0 cost(procuniti) costs of processing units

cost(procuniti), e.g., thread-
ing in software, for n chan-
nels

Content Filter [HW04] |dout| output data creation |dout|
Mapping [HW04] |din|+ |dout| output data creation |dout|

from input data |din|
Content Enricher [HW04] |din|+|dr|+|dout| request message creation on

|din|, resource query |dr|, re-
sponse data enrich |dout|

External
Call [RMRM17]

|dout|+ |din| request |dout| and reply data
|din|

Receive [HW04] |din| input data |din|
Send [HW04] |dout| output data |dout|

scenarios such as C2C or B2B mediate between several endpoints, and thus involve more complex
integration logic [RMRM17]. The process catalog also contained a small number of simple Device
to Cloud scenarios; none of them could be improved by our approach, due to their simplicity.

Setup: Construction and analysis of IPCGs For the analysis, we constructed an IPCG
for each integration scenario following the workflow sketched in Figure 4.12. The integration
scenarios are stored as process models in a BPMN-like notation similar to Figure 3.23 (on page
95). The process models reference data specifications (short ds) such as schemas (e.g., XSD,
WSDL), mapping programs, selectors (e.g., XPath) and configuration files. For every pattern
used in the process models, runtime statistics are available from benchmarks (cf. Chapter 5).
The data specifications are picked up from the 2015 content archive and from the current 2017
content catalog, while the runtime benchmarks are collected using the open-source integration
system Apache Camel [IA10] as used in SAP CPI [SAP19a]. All measurements were conducted
on a HP Z600 workstation, equipped with two Intel X5650 processors clocked at 2.67GHz with a
12 cores, 24GB of main memory, running a 64-bit Windows 7 SP1 and a JDK version 1.7.0, with
2GB heap space. The mapping and schema information is automatically mined and added to
the patterns as contracts, and the rest of the collected data as pattern characteristics. For each
integration scenario and each optimization strategy, we determine if the strategy applies, and if
so, if the cost is improved. We continue until no further strategy applies. This analysis runs in
about two minutes in total for all 902 scenarios on our workstation.

We now discuss the improvements for the different kinds of optimization strategies identified
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Figure 4.12: Pattern composition evaluation pipeline
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Figure 4.13: Pattern reduction per scenario

in Section 4.1.

Improved Model Complexity: Process Simplification (OS-1). The relevant metric for
the process simplification strategies from OS-1 is the model complexity, i.e. the average number
of pattern reductions per scenario, shown in Figure 4.13.

Results. Although all scenarios were implemented by integration experts, who are familiar with
the modeling notation and the underlying runtime semantics, there is still a small amount of
patterns per scenario that could be removed without changing the execution semantics. On
average, the content reduction for the content from 2015 and 2017 was 1.47 and 2.72 patterns /
IPCG, respectively, with significantly higher numbers in the OP2C domain.

Conclusions. (1) Even simple process simplifications are not always obvious to integration experts
in scenarios represented in a control-flow-centric notation (e.g., current SAP CPI does not use
BPMN Data Objects to visualize the data flow); and (2) the need for process simplification does
not seem to diminish as integration experts gain more experience.

Improved Bandwidth: Data Reduction (OS-2). Data reduction impacts the overall band-
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Figure 4.14: Unused elements in integration scenarios

width and message throughput (cf. Section 6.2). To evaluate data reduction strategies from OS-2,
we leverage the data element information attached to the IPCG contracts and characteristics,
and follow their usages along edges in the graph, similar to “ray tracing” algorithms [Gla89]. We
collect the data elements that are used or not used, where possible — we do not have sufficient
design time data to do this for user-defined functions or some of the message construction patterns,
such as request-reply. Based on the resulting data element usages, we calculate two metrics: the
comparison of used vs. unused elements in Figure 4.14(a), and the savings in abstract costs on
unused data elements in Figure 4.14(b).

Results. There is a large amount of unused data elements per scenario for the OP2C scenarios;
these are mainly web service communication and message mappings, for which most of the data
flow can be reconstructed. This is because the predominantly used EDI and SOA interfaces (e.g.,
SAP IDOC, SOAP) for interoperable communication with on-premise applications define a large
set of data structures and elements, which are not required by the cloud applications, and vice
versa. In contrast, C2C scenarios are usually more complex, and mostly use user-defined functions
to transform data, which means that only a limited analysis of the data element usage is possible.

When calculating the abstract costs for the scenarios with unused fields, there is an immense
cost reduction potential for the OP2C scenarios as shown in Figure 4.14(b). This is achieved by
adding a content filter to the beginning of the scenario, which removes unused fields. This results
in a cost increase |din| = #unused elements for the content filter, but reduces the cost of each
subsequent pattern.

Conclusions. (3) Data flows can best be reconstructed when design time data based on inter-
operability standards is available; and (4) a high number of unused data elements per scenario
indicates where bandwidth reductions are possible.

Improved Latency: Parallelization (OS-3). For the sequence-to-parallel optimization strate-
gies from OS-3, the relevant metric is the processing latency of the integration scenario. Because
of the uncertainty in determining whether a parallelization optimization would be beneficial, we
first report on the classification of parallelization candidates in Figure 4.15. We then report both
the improvements according to our cost model in Figure 4.16(a), as well as the actual latency
improvement in Figure 4.16(b).

Results. Based on the data element level, we classify scenario candidates as parallel, definitely
non parallel, or potentially parallel in Figure 4.15. The uncertainty is due to the incom-
plete data flow information available for these scenarios. From the 2015 catalog, 81% of the
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Figure 4.16: “Sequence to parallel” optimization candidates on (a) integration flows, (b) opti-
mization selection based on abstract cost model, and (3) actual latency improvements

scenarios are classified as parallel, or potentially parallel, while the number for the 2017
catalog is 53%. In both cases, the OP2C and B2B scenarios show the most improvement potential.
Figure 4.16(a) shows the selection based on our cost model, which supports the pre-selection of
all of these optimization candidates. The actual, average improvements per impacted scenario
are shown in Figure 4.16(b). The average improvements of up to 230 milliseconds per scenario
must be understood in the context of the average runtime per scenario, which is 1.79 seconds.
We make two observations: (a) the costs of the additional fork and join constructs in Java are
high compared to those implemented in hardware (cf. Section 6.2), and the improvements could
thus be even better, and (b) the length of the parallelized pattern sequence is usually short: on
average 2.3 patterns in our scenario catalog.

Conclusions. (5) The parallelization requires low cost fork and join pattern implementations;
and (6) better runtime improvements might be achieved for scenarios with longer parallelizable
pattern sequences.

4.3.3 Case Studies

We apply, analyze and discuss the proposed optimization strategies in the context of two case
studies: the Replicate Material on-premise to cloud scenario from Figure 3.23 (on page 95), as well
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as an SAP eDocument invoicing cloud to cloud scenario. These scenarios are part of the SAP CPI
standard, and thus many users (i.e., SAP’s customers) benefit immediately from improvements.
For instance, we additionally implemented a content monitor pattern (cf. Chapter 2) that allowed
analysis of the SAP CPI content. This showed the Material Replicate scenario was used by 546
distinct customers in 710 integration processes copied from the standard into their workspace —
each one of these users is affected by the improvement.

Replicate Material (revisited). Recall the Replicate Material scenario is concerned with
enriching and translating messages coming from a CRM before passing them on to a Cloud for
Customer service, as in Figure 3.23. As already discussed, the content enricher and the message
translator can be parallelized according to the sequence to parallel optimization from OS-3. The
original and resulting IPCGs are shown in Figures 3.34 and 4.1 (on page 109 and page 137,
respectively). No throughput optimizations apply.

Latency improvements. The application of this optimization can be considered, if the latency of
the resulting parallelized process is smaller than the latency of the original process, i.e. if

cost(MC) + max(cost(CE), cost(MT )) + cost(JR) + cost(AGG)

< cost(CE) + cost(MT )

Subtracting max(cost(CE), cost(MT )) from both sides of the inequality, we are left with

cost(MC) + cost(JR) + cost(AGG) < min(cost(CE), cost(MT ))

If we assume that the content enricher does not need to make an external call, its abstract
cost becomes cost(CE)(|din|, |dr|) = |din|, and plugging in experimental values from a pattern
benchmark (cf. Chapter 5), we arrive at the inequality (with latency costs in seconds)

0.01 + 0.002 + 0.005 6< min(0.005, 0.27)

which tells us that the optimization is not beneficial in this case — the additional overhead is larger
than the saving. However, if the content enricher does use a remote call, cost(CE)(|din|, |dr|) =
|din|+ |dr|, and the experimental values now say cost(CE) = 0.021. Hence the optimization is
worthwhile, as

0.01 + 0.002 + 0.005 < min(0.021, 0.27) .

Model Complexity. Following Sánchez-González et al. [SGGM+10], we measure the model
complexity as the node count. Hence, in this case, the optimization increases the complexity by
three (nodes).

Conclusions. (7) The pattern characteristics are important when deciding if an optimization
strategy should be applied (e.g., local vs. remote enrichment); and (8) there are goal conflicts
between the different objectives, as illustrated by the trade-off between latency reduction and
increasing model complexity.

eDocuments: Italy Invoicing. The Italian government accepts electronic invoices from
companies, as long as they follow regulations — they have to be correctly formatted, signed,
and not be sent in duplicate. Furthermore, these regulations are subject to change. This can
lead to an ad-hoc integration process such as in Figure 4.17 (simplified). Briefly, the companies’
Fattura Electronica is used to generate a factorapa document with special header fields (e.g.,
Paese, IdCodice), then the message is signed and sent to the authorities, if it has not been sent
previously. The multiple authorities respond with standard Coglienza, Risposta acknowledgments,
that are transformed to a SendInvoiceResponse. We transformed the BPMN model to an IPCG,
tried to apply optimizations, and created a BPMN model again from the optimized IPCG.
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Figure 4.17: Country-specific invoicing (potential improvements as BPMN Group)

Our heuristics for deciding in which order to try to apply different strategies are “simplification
before parallelization” and “structure before data”, since this seems to enable the largest number
of optimizations. Hence we first try to apply OS-1 strategies: the combine siblings rule matches
the sibling Message Signers and Idempotent Receivers, since the preceding Content-based Router
is a fork. Next we try OS-3 strategies. Although heterogeneous parallelization matches for the
CE and the Message Encoder, it is not applied since

cost(MC) + cost(JR) + cost(AGG) 6< min(cost(CE), cost(ME)),

i.e., the overhead is too high, due to the low-latency, local CE. Finally, the early-filter strategy
from OS-2 is applied for the Content Filter, inserting it between the Content Enricher and
the Message Encoder. No further strategies can be applied. The resulting integration process
translated back from IPCTG to BPMN is shown in Figure 4.18.

Conclusions. (9) The application order OS-1, OS-3, OS-2 seems most beneficial (“simplification
before parallelization”, “structure before data”); (10) an automatic translation from IPCGs to
concepts like BPMN could be beneficial for connecting with existing solutions.

4.4 Related Work

We presented related optimization techniques in Section 4.1 and adapted them to application
integration. These techniques mostly consider correctness on a structural level, e.g., using data
dependency constraints [BHP+11, KG14, KGS17] that are somewhat comparable to contract
graphs. While most of them used a (direct acyclic) graph representation, as in our case, none of
them specifies execution semantics and shows guarantees down to the execution level. Subsequently,
we compare our approach to related work on correctness, (data) dependency techniques and
graph transformation in the context of processes.

There is work on formal representations of integration patterns, e.g., Mederly et al. [MLZN09]
represents messages as first-order formulas and patterns as operations that add and delete formulas,
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Figure 4.18: Invoice processing from Figure 4.17 after application of strategies OS-1–3

and then applies AI planning to find an process with a minimal number of components. While
this approach shares the model complexity objective, our approach applies to a broader set of
objectives and optimization strategies.

Semantic Program Correctness The semantic correctness plays a bigger role in the com-
piler construction and analysis domain, for optimizing compilers as in our work. For example,
Muchnick [Muc97] provides an exhaustive catalog of optimizing transformations and states that
the proof of the correctness of rewritings must be based on the (execution) semantics. For
semantics-based program manipulation, the more theoretical work on abstract interpretation
by Cousot and Cousot [CC77] and the more pragmatic by Aho et al. [ALSU06], e.g., by Lacey
et al. [LJVWF04] using temporal logic to perform and analyze optimizing transformations like
dead code elimination on imperative programs. For a semantics-based transformation correctness
Nielson [Nie81] provides semantic correctness proofs using data-flow analysis (e.g., for constant
folding) and Cousot [CC02] provides a general framework for designing program transformations
analyzing abstract interpretations. While our contract graphs and optimizations are far sim-
pler than those more general programming language transformations, our translation of IPCGs
to timed db-nets with boundaries can be seen as a concretization in the sense of an abstract
interpretation, and thus giving a similar notion of semantic correctness.

Analysis and Optimization Structures Transformation techniques for optimization have been
employed by compiler construction, e.g., for parallel [KMC72] or pipeline processing [KKLW80].
Thereby dependence graph representations became especially useful. For example, Kuck et
al. [KKP+81] construct dependence graphs with (data) output-, anti-, and flow-dependencies
of a program as a foundation for the optimizing transformations. These kind of dependence
graphs were also used by [BHP+11], however, are “linearized” in form of our pattern contracts.
This makes the decision of the optimization “local” and does not require dependence graph
abstractions like intervals [Coc70] or scoping [ZB74]. More recently these techniques have been
applied for business process optimization by Sadiq [SO00], Niedermann et al. [NRM11, NS11] or
reductions to process tree structures [VVK09] with incremental transformations [HFKV08]. In
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our case the scope of the analysis is a local match of pattern contracts.

Graph Transformations Similar to our approach, graph transformations have been used in
related domains, e.g., formalizing parts of the BPMN semantics by Dijkman et al. [DG10], who
specify the execution semantics as graph rewrites. Conformance is checked experimentally and
verification is left for future work. For the optimizations, we use the same visual notation and
double-pushout rule application approach. However, our execution semantics are given as timed
db-net and can be verified.

4.5 Conclusions

For correctness-preserving optimizations of integration scenarios (cf. RQ2-3: “What are relevant
optimization strategies and how can they formally defined on pattern compositions?”), we started
according to sub-question RQ2-3(a): What are relevant optimization techniques for EAI pattern
compositions? with a compilation of optimizations from the literature that we mapped to
application integration and categorized by their impact to optimization strategies: complexity
(cf. OS-1: process simplification), message throughput through reduced element cardinalities (cf.
OS-2: data reduction), as well as throughput and processing latency (cf. OS-3: parallelization).
We then developed a formalization of optimizations that we base on the pattern composition
formalism DSR artifact from Chapter 3 in order to precisely define optimization for sub-question
RQ2-3(b): How can optimization strategies be formally defined?. Due to the selected algebraic
optimization formalism as well as the formal foundations (down to execution semantics), the
optimizations preserve the correctness of a pattern composition (cf. RQ2-3(c): “How can the
application of optimization strategies preserve the compositional correctness?”). In summary,
these questions are answered by the formalization of optimization strategies in this chapter that
denote contributions in form of DSR artifacts:

� A catalog of optimization strategies, documented in [RFRM19] (→ RQ2-3(a)),

� A formalism for defining and applying correctness-preserving optimizations (incl. proofs; →
RQ2-3(b) and RQ2-3(c)),

� An instantiation of the formalized optimizations in the form of a prototype.

Then we evaluated our approach on data sets containing in total over 900 real world integration
scenarios, and two case studies. We conclude that formalization and optimizations are relevant
even for experienced integration experts (conclusions 1–2), with interesting choices (conclusions
3–4, 6), implementation details (conclusions 5, 10) and trade-offs (conclusions 7–9).

While we developed the formal foundations of pattern compositions further to a correctness-
preserving transformation approach that is illustrated by but not limited to optimizations, we
subsequently summarize and discuss limitations and open research challenges.

Limitations and Open Research Challenges Limitations of the approach concern the litera-
ture review, for which the search was led by the selection of keywords and criteria due to the vast
amount of existing work and in order to not lose focus of this study. Nonetheless, conducting
further vertical searches and expert additions that were not found based on the keywords could
be included in the analysis. Consequently, the catalog of optimization strategies (cf. [RFRM19])
is not complete and will be subject to additions over time. However, more recent additions like
“Ignore failing endpoints” or “Reduce interactions” could be formally defined and their correctness
proven using our approach (cf. Appendix A).

The abstract cost model used for the evaluation is based on the abstract data flow. With the
translations down to timed db-nets, more sophisticated cost models can be developed that take
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the inherent complexities of the patterns into account. Moreover, more emphasis has to be put
on studies that incorporate dynamic aspects into the formalization of patterns, again for a more
precise cost semantics. In addition, purely data related techniques like message indexing, fork path
re-ordering and merging of conditions can be analyzed for their effects. Finally, multi-objective
optimizations and heuristics for graph rewriting on the process level like partitioning approaches
have to be further studied.

The optimization rules are stratified according to their effects for the application (i.e., “simpli-
fication before parallelization” and “structure before data”). More elaborate rule application and
execution schemes could be investigated to give better optimality guarantees.

So far, our approach targets scenario-level improvements only. Especially when considering
technology trends, EAI systems and solutions could be realized more efficiently leveraging new
technology suitable for message processing. Since this leaves a wide range of opportunities
to improve current solutions, we study the most promising technology trends with respect to
challenge C5 “Volocity” (i.e., Volume and Velocity) in Chapter 6.

Impact The impact of correctness-preserving optimizations of integration pattern compositions
lays the ground for trustworthy rewritings of integration scenarios beyond optimizations. This
could become a key principle for responsible programming in shared responsibility environments
like cloud or mobile computing. Moreover, together with the formalization of pattern compositions
in Chapter 3, it provides a comprehensive foundation for the pattern-based translation of
integration scenarios (e.g., [Rit15a]), and was already partially picked up by industry (e.g., SAP
Cloud Platform Integration [SAP19a]).
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Observation, reason, and experiment make up what we call the
scientific method. [..] philosophers have said before that one of
the fundamental requisites of science is that whenever you set up

the same conditions, the same thing must happen. This is
simply not true, it is not a fundamental condition of science.

Richard Feynman, 1963 [FLS63]

In Part I of this thesis (Chapters 2 to 4) we provided formalisms and prototypical im-
plementations with the goal to validate and verify the functional correctness of patterns and
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their compositions (addressing challenges C1–C4).
The developed prototypes focused on trustworthy
application integration through responsible pro-
gramming and not on efficient message processing.
In Chapters 1 and 2 we identified a strong need
for fast, high volume messaging (cf. challenges C5
“Volocity”) and new message formats (cf. challenge
C6 “Variety”). We partially addressed challenge
C5 in Chapter 4, where we developed optimization
strategies that improve the modeling and message
processing (e.g., through data reduction, paralleliza-
tion), while preserving the functional and compo-
sitional correctness of an improved scenario. While
these improvements were achieved on an abstract
integration scenario level, we also acknowledged
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that more efficient pattern realizations or solutions on the system level could be beneficial, which
we will study in Chapter 6. However, to record and compare improvements on a system level
for challenges C5 and C6, a well-defined method of assessment for pattern solutions is required,
which we identified as a challenge in Chapters 1 and 2 (cf. challenge C4 “Justification”) due to
the current absence of such a method (cf. Chapter 2 and Section 5.5).

In this chapter we define and develop concepts and a prototype for assessing the efficiency of
pattern realizations in the form of a runtime benchmark of pattern realizations, called EIPBench,
so that results can be reproduced under the same conditions (cf. [FLS63]). The notion of
justification is a part of our scientific design science research method as evaluation with the
deliverable performance measures, which we methodologically follow in this thesis (cf. Section 1.3).
The discourse on scientific methods in the natural sciences (e.g., [FLS63, p. 1]) can also be found
in information systems research. We recall that technology is embodied by implementations or
artifacts, instead of nature itself as in the natural sciences, however, can be conceptual as well.
In this way, information technology is the technology used to acquire and process information in
support of human purposes, and thus instantiated as complex organizations of hardware, software,
procedures and data in an information system [MS95]. While information systems research targets
questions like “does it work?” or “is it an improvement?”, natural science is concerned with
how and why things are [MS95]. However, in both design and natural sciences justification is
required that tests claims for validity [MS95]. In design science research [HC10] an artifact (e.g.,
design concept, prototype) has to be evaluated in what is called deduction as part of the cognitive
research process [VK15]. There, a tentative design is prototyped, which is studied and measured
during the evaluation phase (cf. Section 1.3).

One way to allow for a justification and comparison of integration pattern realization im-
provements is by a benchmark. Since the development of a benchmark is difficult and requires
careful design and implementation, we consider the basic design principles for benchmarking by
Gray [Gra93], who stresses the need for domain-specific benchmarks, like pattern realizations in
our case. The key benchmarking principles according to [Gra93] are:

Relevance Typical operations of the problem domain must be performed, when measuring the
peak performance of systems,

Portability The benchmark shall be implemented on different systems and architectures without
difficulty,

Scalability The benchmark should allow for scaling from smaller to larger as well as parallel
computer systems,

Simplicity The benchmark must be comprehensible.

To be relevant, an integration pattern benchmark has to target common, domain-specific
objectives of message throughput and processing latency (corresponding to challenge C5 “voloc-
ity” in Section 1.2.2 and according to [HW04]) and derive characteristic properties from the
respective domain challenges (e.g., message size). Complex routing patterns have to process
the messages of diverse and complex data formats (i.e., nested, multi-format), and constitute
a critical performance aspect of integration systems, which we showed in previous work on
data-aware message processing [Rit15b]. Aiming for reliable messaging guarantees, expressed
through configurable message delivery semantics, adds a non-functional complexity to the message
processing (cf. relevance). For example, the new trends discussed in Chapter 2 (e.g., mobile and
cloud computing) challenge classical integration systems because massive numbers of concurrent
users, devices (i.e., message endpoints) and messages — with message sizes up to several hundred
megabytes [SAP19a] — have to be processed (cf. scalability). Different challenges might need
different solutions, which requires the applicability of the benchmark in different technologies
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or systems (cf. portable). Finally, the comprehension of a pattern benchmark can be improved
by staying close to integration domain aspects, which is supported by knowing the patterns and
their characteristics (cf. simplicity).

Given the new challenges, researchers and practitioners in related areas have defined more
data-aware benchmarks that fostered novel solutions and allow for comparing them. For instance,
in the area of data integration TPC-DI [PRC14] was recently standardized. For analytical and
(business) application processing, e.g., BigBench [DGV+14, BBN+12] targets end-to-end analytics
processing, however, under-represents the integration aspect. Complementary, complex event-
and stream processing benchmarks have been defined (e.g., [ACG+04, MBM08]). They focus
on small portions of frequent data and analytical (stream) queries on actual and historic data.
Recently developed IoT and cyber-physical system benchmarks [JNB14] add new notions and can
be seen as variants of the existing benchmarks. They specifically target the analytical processing
of data within these applications (e.g., mostly event processing). On the application integration
side, some efforts were made as part of the SOA benchmark [SPE10], from which we take the
ideas for the macroscale factors concurrent client and flexible payload size.

Despite the importance of application integration, many functional- and non-functional,
performance-related questions cannot be answered today, due to the absence of a benchmark
(cf. Chapter 2 and Section 5.5). To close this gap, we address the measurability and comparability
sub-question RQ3-2 “How can the benefits and improvements of pattern implementations be
measured, validated and compared?” of the general research question RQ3 “Which related concepts
and technology trends can be used to improve integration processing and how can the resulting
integration solutions be practically realized and compared?”. To account for the benchmarking
principles, an answer to this question is driven by the following sub-questions:

(a) What is the impact of complex message routing and transformation?

(b) What is the impact of non-functional aspects such as message volume and concurrency?

(c) What is the potential of new message processing approaches, and how can they be compared?

Question RQ3-2(a) targets relevance by considering complex routing, route-branchings and
message delivery semantics, question RQ3-2(b) guides the design of the benchmark with respect
to scalability with configurable message sizes and concurrent users, and question RQ3-2(c) with
respect to portability, which includes the prototypical implementation of the benchmark. To
answer these questions and to measure enhancements of current pattern implementations, we
define a micro-benchmark for EIPs, including functional and non-functional aspects with a focus
on message throughput for data-aware integration scenarios. The evaluation is conducted based
on a prototypical instantiation of the benchmark, with which we assess one state-of-the-art
system (cf. questions RQ3-2(a),(b)) that we compare to a novel message processing approach (cf.
RQ3-2(c)). First, as system under test, we select Apache Camel [IA10] from our system overview
in Section 2.2.3, since it is open-source and implements all of the original EIPs from [HW04].
Moreover, to the best of our knowledge, Apache Camel is used in production as an EAI system
in SAP Cloud Integration (cf. Section 2.2.3) and MuleESB [Mul19], and thus denoting a state-of-
the-art application integration system. Alternatives would be the open source integration systems
Apache Flume and Nifi that we identified in Section 2.2.3. However, neither of these two systems
covers all EIPs nor are any current, productive usages known. Second, we select vectorization of
data (e.g., as described in [BHP+11]) as a message processing approach for the comparison with
the current Apache Camel runtime. Vectorization denotes the processing of multiple instead of
single records — or messages in our case — at the same time which is also called micro-batching
or horizontal parallelization [Gra90]. While we already studied the scenario-level optimization
strategies of data reduction and parallelization in Chapter 4, we argue that vectorization denotes
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a more system level, data-centric message processing style. Besides streaming, which we address
in Section 6.2, horizontal data parallelization is also found in related, contemporary data flow
systems like Apache Spark [ZCF+10] and Flink [CKE+15], and is thus a typical way to improve
data processing. Moreover, we provided an extension of Apache Camel [Rit15b] for horizontal
parallelization, which makes it a good fit for the comparison with the current Camel runtime.
Note that the portability of our benchmark is not shown by this, but addressed in Chapter 6.

For a better understanding, we briefly introduce Apache Camel as our benchmarked system
candidate as well as the Camel vectorization extension in Section 5.1. Furthermore, we set the
formal concepts of integration pattern type and contract graphs and timed db-nets from Chapter 3
into the context of the introduced, practical concepts. Then we further analyse and classify
the scenario categories from Chapter 2 in order to pay more attention to integration domain-
specificities like “what are the most practically used patterns?” in Section 5.2. This helps us to
focus on the practically most relevant patterns during the evaluation. Following some ideas from
the SPEC SOA initiative [SPE10], in Section 5.3 we base the design of the benchmark on flexible,
configurable scale-factors, such as a pattern or micro level and a general, macro benchmark
level. In Section 5.4 we describe our prototypical benchmark implementation, which we use to
evaluate the current and extended Camel runtimes. We discuss related work in Section 5.5, before
concluding in Section 5.6.

With this we define the first integration pattern benchmark that addresses the discussed
challenges C4–5. The extension to multimedia data according to challenge C6 is described
in Section 6.3. As such, a portable, scalable benchmark is instrumental for the pattern realizations
in the following chapter.

Parts of this chapter have previously been published in the proceedings of BICOD 2015 [Rit15b]
(Apache Camel vectorization extension) and DEBS 2016 [RMSRM16] (pattern benchmark).

5.1 Integration Pattern System Implementations

While the benchmark definition constitutes an artifact that is independent of concrete system
implementations, we briefly introduce two integration system realizations (i.e., Apache Camel,
and a vectorization extension) for the evaluation of a prototypical implementation of the bench-
mark. Notably, the system concepts denote practical representations of our formal pattern and
composition specifications, which we briefly discuss.

5.1.1 Apache Camel

We recall that Apache Camel [IA10] is a good fit as system-under-test for our integration pattern
benchmark because it implements all original EIPs, being openly available and in practical use in
large EAI system offerings.

Camel offers a runtime-near integration language in form of an internal domain specific
language with language bindings into Java, Scala and others that denote an abstraction of the
common application integration concepts. The integration language allows for the description
of integration programs, called Camel Routes, which can be executed in the built-in Java-based
integration pipeline and adapter runtimes. These routes denote executable runtime artifacts
similar to timed db-nets from Section 3.1.2 (without boundaries) translated from integration
scenarios that are represented by integration pattern type graphs from Section 3.2 (without
pattern contracts). The routes can be executed similar to the timed db-net definitions, which
can be simulated in our CPN Tools extension. In the same way the Integration Pattern Type
Graphs (IPTGs) from Section 3.2.2 allow for the composition of integration patterns that are
then translated to executable timed db-nets, routes in Camel compose Camel Processors and

170



Message filter
processor

Route 1

Route 2

Route N

from(file).filter()
.to(jms)

Camel Context

Integration
scenarios

Integration
scenario
runtime

Contentbased
router

processor

Camel
Processors

Integration
pattern

implementations

File JMS HTTPIntegration
adapters

Camel
Components

cf. IPTGs

cf. CPN Tool extension
of timed dbnets

cf. timed
dbnet

translate

Figure 5.1: Apache Camel system architecture (adapted from [IA10])

integration adapters, called Camel Components, which denote a subset of the integration patterns.
We argue that similar to the translation of IPCGs (i.e., IPTG with pattern contracts) to timed
db-nets with boundaries, Camel routes could be translated from IPTGs. For example, based on
our work in Chapter 3, something similar is done in SAP Cloud Platform Integration (i.e., on
Camel runtime), however, without pattern contracts. The same is true for Camel, which does not
have the concept of contracts or boundaries.

An overview of the architecture of Apache Camel is depicted in Figure 5.1, where Camel
Context denotes the integration process engine (i.e., similar to the simulation capabilities in
our CPN Tools extension) and Camel processors represent the filters that can either be Camel
components, or the pattern implementations. For example, the Message Filter maps to the filter
and the Splitter pattern to the split statement (latter not shown). The more than 150 integration
adapters are specified in from, to statements for the inbound, outbound adapters, respectively.

During runtime, several of the routes, consisting of these statements, run in one context. Apart
from the SAP CPI standard content [SAP18a], which we use for our analysis, there are no usable
in production, pre-defined Camel routes. A Service Registry allows for the binding to services
like persistence or security in the components and user-defined processors. A set of built-in and
user-defined Type Converters automatically convert a message from one type to another (e.g.,
InputStream to String). For the materialization of the different data formats, Marshallers can be
provided, if the built-in ones are not sufficient (not shown).

The data or message content is routed to Camel wrapped in an Exchange, shown in Figure 5.2,
which, besides a unique identifier, a fault flag, properties and a message exchange pattern (e.g.,
InOut for request-reply), essentially has an In and Out message. Each processor in the pipeline
processes the data in the In message and afterwards produces an Out message. If no Out message
is given, the In message is copied and forwarded. The message is given by a message body, a set of
message header entries, describing the data, and a set of attachments (e.g., binary data). During
the processing, the messages are (fully) materialized in each processor. This can be improved by
processing streams of single messages, if the integration adapters and message processors allow
for streaming.
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Example 5.1. The Camel exchange is created by a Consumer Component, which puts the data
into the In message in the received format. Subsequent unmarshallers and type converters can be
used to convert the data into a Canonical Data Model (CDM) pattern [HW04] (e.g., JSONObject),
which can be evaluated subsequently by the processors. Thereby, the CDM denotes a lingua
franca, which allows various message processor implementations (e.g., Splitter, Aggregator) to
not work on arbitrary message formats, but to focus on classes of formats like XML, JSON
or CSV, and thus solves the variety problem for integration systems. Once implemented for a
format, conditions and expressions can be implemented in the respective languages like XPath,
JSONPath. Figure 5.3 shows an example JSON message, accessible via user-defined functions
(UDFs) and JSONPath. The resulting message can again be in JSON format. �

Notably, since Apache Camel implements the original EIPs, a translation of IPTGs to Camel
routes (incl. configuration) similar to our construction method Definition 3.44 (on page 119)
should be possible. For compositional correctness checking using pattern contracts of IPCGs,
an extension of Camel is required. However, due to our focus on processing efficiency and
benchmarking, we leave such an extension as future work.

5.1.2 Vectorization: Micro-batching Integration Processing

We recall vectorization as a contemporary improvement of data processing. In particular,
Gräfe [Gra90] classifies possible solutions as vertical (pipelining between processes) or horizontal
parallelization (several CPUs process the same operation on subsets of the data like in MapRe-
duce [DG08]). Previous work on table-centric integration processing (short TIP) [Rit15b] considers
horizontal parallelization as a form of vertical parallelization. While it is implicitly assumed by
the integration patterns that each pattern processes one message after another, the general idea
behind the vectorization in TIP is that each message processor instance processes several messages
of the same type at the same time in a SIMD-style (single instruction, multiple data). Therefore,
the current approach to the Canonical Data Model (CDM) pattern is redefined as relational tables,
which are constructed from the message either in the integration adapters or before the first
message access (e.g., in the unmarshal or type conversion steps in Camel). Furthermore, several
incoming messages are mapped to the table, such that each table entry denotes a single message.
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Figure 5.3: Message processing in Apache Camel by abstract example

Therefore, the TIP implementation proposed in [Rit15b] uses Open-Next-Close (ONC)-style
TableIterator types as CDM and Datalog as a sufficiently expressive, recursive condition and
expression language for access from the different message processing patterns. This micro-batching
approach can be considered similar to the processing in Apache Spark [ZCF+10], which later
developed a distributed collection of data organized into named columns, called DataFrame that
is conceptually equivalent to a table in a relational database as well to the representation in
the TIP approach. This was further taken up by Apache Flink as Table API [CKE+15] or the
Apache Beam programming model for batching and streaming1 as PCollection. However, the
influence of TIP on these systems and languages remains unknown.

Example 5.2. The TIP implementation [Rit15b] leverages Apache Camel and only redefines the
unmarshalling and the type conversion that constructs ONC-TableIterators from the incoming
format. Figure 5.4 depicts an example of two incoming messages that are aggregated into one
exchange and converted into a table of messages, later referred to as Bulk-MSG in Section 5.3.
The message processors are configured with conditions and expressions in Datalog on these
relations. While each processor within the route accesses the message using Datalog, the resulting
output message can again be in JSON format (i.e., through type conversion and marshalling). �

The subsequent introduction of TIP is taken from [Rit15b], if not stated otherwise.

Message Vectorization using Datalog

While the example gives an intuition of the approach, we subsequently define TIP for message
routing and transformation patterns more formally. But before that, let us recall the encoding
of some relevant, basic database operations / operators in Datalog, as used in [Rit15b]: join,
projection, union, and selection. The join (e.g., inner or natural join) of two relations
r(x, y) and s(y, z) on parameter y is encoded as j(x, y, z) ← r(x, y), s(y, z), which projects all
three parameters to the resulting predicate j. More explicitly, a projection on parameter x of

1Apache Beam, visited 5/2019: https://beam.apache.org/.
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{"body":{
    "msgId":1,
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Figure 5.5: Message routing and transformation patterns mapped to Datalog. Most common
Datalog operations for a single pattern are marked “black”, less common ones “light grey”, and
possible but uncommon ones “white”.

relation r(x, y) is encoded as p(x)← r(x, y). The union of r(x, y) and s(x, y) is u(x, y)← r(x, y).
u(x, y)← s(x, y), which combines several relations to one. The selection from r(x, y) according
to a built-in predicate φ(x), where φ(x) can contain constants and free variables, is encoded as
s(x, y)← r(x, y), φ(x). Built-in predicates can be binary relations on numbers such as <,<=,=,
binary relations on strings such as equals, contains, startswith or predicates applied to expressions
based on binary operators like +,−, ∗, / (e.g., x = p(y) + 1), and operations on relations like
z = max(p(x, y), x), z = min(p(x, y), x), which would assign the maximal or the minimal value x
of a predicate p to a parameter z.

Although the TIP approach allows each single pattern definition to evaluate arbitrary, recursive
Datalog operations and built-in predicates, the Datalog to pattern mapping tries to identify and
focus on the most relevant table-centric operations for a specific pattern. An overview of the
mapping of all discussed message routing and transformation operations to Datalog constructs is
shown in Figure 5.5 and is subsequently discussed, by enumerating common integration patterns
and separating system- from content-related parts for the TIP definition by example of Datalog.
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Canonical Data Model

When connecting applications, various operations are executed on the transferred messages in a
uniform way. The arriving message instances are converted into an internal format understood
by the pattern implementation, called the CDM, before the messages are transformed to the
target format. Hence, if a new application is added to the integration solution, only conversions
between the CDM and the application format have to be created. Consequently, for a table-centric
re-definition of integration patterns, we define a CDM similar to relational database tables as
Datalog programs, which consists of a collection of facts / a table, optional (supporting) rules as
message body and an optional set of meta-facts that describes the actual data as header. For
instance, the data-part of an incoming message in JSON format is transformed to a collection of
ONC-style table iterators, each representing a table row or fact. These ONC-operators are part
of the evaluated execution plan for more efficient evaluation.

Message Routing Patterns

We first recall the routing patterns and then give their TIP re-definitions, which can be seen
as control and data flow definitions of an integration channel pipeline. For that, the patterns
access the message to route it within the integration system and eventually to its receiver(s).
They influence the channel and message cardinality as well as the content of the message.

Content-based Router / Message Filter The most common routing patterns that determine
the message’s route based on its body are the Content-based Router and the Message Filter.
The stateless router has a channel cardinality of 1:n, where n is the number of leaving channels,
while one channel enters the router, and a message cardinality of 1:1. The entering message
constitutes the leaving message according to the evaluation of a routing condition. This condition
is a function rc, with {bool1, bool2, ..., booln} := rc(msgin, conds), where msgin is the entering
message. The function rc evaluates to a list of Boolean output {bool1, bool2, ..., booln} based on a
list of conditions conds of the same arity for each of the n ∈ N leaving channels. In case several
conditions evaluate to true, only the first matching channel receives the message.

Example 5.3. Listing 5.1 denotes an example of a routing condition on the TPC-H [TPC19]
schema as a Datalog rule cbr-order. The rule matches all records with a certain OPRIORITY
and OTOTALPRICE and then projects the order ID and OTOTALPRICE to the resulting
set. For the Content-based Router this means that the corresponding message will be routed, if
the result set is not empty.

Listing 5.1: Example routing condition

1 cbr−order ( id ,− ,OTOTALPRICE,−) :−
2 order ( id , otype ,− ,OTOTALPRICE,−OPRIORITY,−) ,
3 =(OPRIORITY, ”1−URGENT” ) , >(OTOTALPRICE,100000 . 00 ) .

Note that multi-relational or multi-format messages can be processed in the same way. Listing 5.2
shows a corresponding example condition on TPC-H data, which defines a join over customer
and nation tables.

Listing 5.2: Example routing condition with join over “multi-format” message

1 cbr−cust (CUSTKEY,−) :−
2 customer ( cid , ctype ,CUSTKEY,− ,CNATIONKEY,− ,ACCTBAL,−) ,
3 nat ion ( nid , ntype ,NATIONKEY,− ,NREGIONKEY,−) ,
4 >(ACCTBAL, 3 0 0 0 . 0 ) ,=(CNATIONKEY,NATIONKEY) ,=(NREGIONKEY, 3 ) .

�
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Through the separation of concerns (i.e., system implementation and user configuration), a
system-level routing function provides the entering message msgin to the content-level imple-
mentation (i.e., in CDM representation), which is configured by conds. Since standard Datalog
rules are truth judgments, and hence do not directly produce Boolean values, we decided, for
performance and generality considerations, to add an additional function boolrc to the integration
system. The function boolrc converts the output list fact of the routing function from a truth
judgment to a Boolean by emitting true if fact 6= ∅, and false otherwise. Accordingly we define
the TIP routing condition as fact := rctip(msgin, conds), while being evaluated for each channel
condition (e.g., selection / built-in predicates). The integration system will then use the function
boolrc to convert this into a Boolean value. For the message filter, which is a special case of the
router that differs only from its channel cardinality of 1:1 and message cardinality of 1:[0|1], the
filter condition is equal to rctip.

Multicast / Recipient List / Join Router The stateless Multicast and Recipient List
patterns route multiple messages to several leaving channels, which gives them a message and
channel cardinality of 1:n. While the multicast statically routes messages to the leaving channels
(i.e., no re-definition required), the recipient list determines the channels dynamically. The
receiver determination function rd, with {out1, out2, ..., outn} := rd(msgin, [header.y|body.x]).,
computes n ∈ N receiver channel configurations {recv1, recv2, ..., recvn} by extracting their key
values either from an arbitrary message header field header.y or from a message body field body.x.
The integration system has to implement a receiver determination function that takes the list of
key-strings {recvId1, recvId2, ..., recvIdm} as input, for which it looks up receiver configurations
recv0, recv1, ..., recvn, where m,n ∈ N and m > n, and routes copies of the entering message
{msg′out,msg′′out, ...,msgn

′

out}.
In terms of TIP, rdtip is a projection of message body or header values to a unary, output

relation. For instance, the receiver configuration keys recvId1 and recvId2 have to be part of the
message body like body(x,′ recvId′1).body(x,′ recvId′2).. Then the rdtip would evaluate a Datalog
rule similar to config(y)← body(x, y), while the keys recvId1 and recvId2 correspond to receiver
configurations {recv1, recv2}.

Splitter / Aggregator The antipodal Splitter and Aggregator patterns both have a channel
cardinality of 1:1 and create new, leaving messages. The splitter breaks the entering message
into multiple (smaller) messages (i.e., message cardinality of 1:n) and the aggregator combines
multiple entering messages to one leaving message (i.e., message cardinality of n:1). Hereby,
the stateless splitter uses a split condition sc on the content-level, with {out1, out2, ..., outn} :=
sc(msgin, conds), which accesses the entering message’s body to determine a list of distinct body
parts {out1, out2, ..., outn}, based on a list of conditions conds, that are each inserted to a list
of individual, newly created, leaving messages {msgout1,msgout2, ...,msgoutn} with n ∈ N by a
splitter function. The header and attachments are copied from the entering message to each
leaving message.

The re-defined split condition sctip evaluates a set of Datalog rules as conds (i.e., mostly
selection, and sometimes built-in and join constructs. Each part of the body outi with i ∈ N is a
set of facts that is passed to a split function, which wraps each set into a single message.

The stateful aggregator defines a correlation condition, completion condition and an aggregation
strategy. The correlation condition crc, with colli := crc(msgin, conds), determines the aggregate
collection colli, to which the message is stored, based on a list of conditions conds. The completion
condition cpc, with cpout := cpc(msgin, [header.y|body.x]), evaluates to a Boolean output cpout
based on header or body field information (similar to a message filter). If cpout equals true,
then the aggregation strategy as, with aggout := as(msg1in,msg

2
in, ...,msg

n
in), is called by an
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implementation of the messaging system and executed, else the current message is added to the
collection colli. The aggregation strategy as evaluates the correlated entering messages colli and
emits a new message msgout. For that, the messaging system has to implement an aggregation
function that takes aggout (i.e., the output of as) as input.

These functions are re-defined as crctip and cpctip such that the conds are Datalog rules mainly
with selection and built-in constructs. The cpctip makes use of the defined boolrc function to map
its evaluation result (i.e., list of facts or empty) to the Boolean value cpout. The aggregation
strategy as is re-defined as astip, which mainly uses union to combine lists of facts from different
messages to one. The message format remains the same. To transform the aggregates’ formats,
a message translator is used to keep the patterns modular. However, the combination of the
aggregation strategy with translation capabilities could lead to runtime optimizations.

Message Transformation Patterns

The transformation patterns exclusively target the content of the messages in terms of format
conversations and content modifications.

The stateless Message Translator changes the structure or format of the entering message
without generating a new one (i.e., channel, message cardinality 1:1). For that, the translator
computes the transformed structure by evaluating a mapping program mt, with msgout.body :=
mt(msgin.body). Thereby the field content can be altered.

Example 5.4. Listing 5.3 denotes an example of a simple transformation program on the TPC-H
schema as a Datalog rule conv-order, which filters some of the order’s fields.

Listing 5.3: Example message translation program

1 conv−order ( id , otype ,ORDERKEY,CUSTKEY, SHIPPRIORITY) :−
2 order ( id , otype ,ORDERKEY, CUSTKEY,− ,SHIPPRIORITY,−) .

�

The related Content Filter and Content Enricher patterns can be subsumed by the general
Content Modifier pattern and share the same characteristics as the translator pattern. The filter
evaluates a filter function mt, which only filters out parts of the message structure (e.g., fields or
values) and the enricher adds new fields or values as data to the existing content structure using
an enricher program ep, with msgout.body := ep(msgin.body, data).

The re-definition of the transformation function mttip for the message translator uses join and
projection (plus built-in for numerical calculations and string operations, thus marked “light
grey” in Figure 5.5) and selection, projection and built-in (mainly numerical expressions
and character operations) for the content filter. While projections allow for static, structural
filtering, the built-in and selection operators can be used to filter more dynamically based on the
content. The resulting Datalog programs are passed as msgout.body. In addition, the re-defined
enricher program eptip uses union operations to add additional data to the message.

Pattern Composition

Since the TIP definitions target the content-level, all patterns can still be composed into more
complex integration programs (i.e., integration scenarios or pipelines). From the many combina-
tions of patterns, we briefly discuss two important structural patterns that are frequently used
in integration scenarios: (1) scatter-gather and (2) splitter-gather. The scatter-gather pattern
(with a 1:n:1 channel cardinality) is a multicast or recipient list that copies messages to several,
statically or dynamically determined pipeline configurations, which each evaluate a sequence of
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patterns on the messages in parallel. Through an Aggregator pattern, the messages are struc-
turally and content-wise joined. The splitter/gather pattern (with a 1:n:1 message cardinality)
splits one message into multiple parts, which can be processed in parallel. In contrast to the
scatter-gather the pattern sequence is the same for each instance. A subsequently configured
Aggregator combines the messages to one.

The vectorization extension will be used for comparison with Apache Camel in Section 5.4.
Notably, the vectorization extension does not require to change the general pattern composition
(cf. Figure 5.1), and thus a vectorization extension of IPCGs has no impact on their structure.
The actual difference lies in the definition of the cardinality and partitioning of the exchanged
data. This corresponds to changes in the data elements EL of the IPCGs and the correspondingly
constructed colorsets in the timed db-nets with boundaries. In summary, IPCGs have a realization
in timed db-nets and conceptually relate to current integration systems through their grounding
on the integration patterns. However, existing implementations like Apache Camel were not build
with IPCGs or timed db-net in mind (i.e., no concept of contracts or boundaries), and thus do
not implement IPCGs.

5.2 Integration Scenario Analysis

We recall that due to the large number of integration patterns, for the definition of our benchmark,
we focus on the most practically relevant patterns. This does not mean that implementations of
other patterns cannot be added and benchmarked later on. To identify the most frequently used
patterns, we conduct an analysis, in which we set the usage of integration patterns in real-world
cloud integration scenarios into context to generally known integration types and styles. The
analysis denotes a further sophistication of our analysis in Chapter 2, and thus it is based on several
cloud solutions, running in production on the SAP Cloud Platform Integration solution [SAP19a].
Moreover as a by-product, the analysis identifies pre-dominantely used message formats, which is
relevant for our practical evaluation in Section 5.4. More than 149 distinct integration scenarios
with 934 common EIP usages out of 1429 were analyzed (w/o adapters). To derive the most
relevant patterns of these scenarios, they are categorized according to their location in current
enterprise architectures, their integration style and scenario type. Figure 5.6 shows the scenario
types (ST ) which are relevant for the message exchange between applications, users and devices
to chain business processes of current enterprise integration architectures. Similar to [HW04], we
define an integration style according to its purpose of message exchange (e.g., invoking business
functions, synchronizing data), and we distinguish six scenario types, ST1 –ST6 ; each of which
denotes the type of endpoints that participate in the exchange (e.g., cloud application or device).
The scenario types can follow different integration styles. An integration scenario can be seen as
specific description of one type and style, composed of diverse integration patterns.

5.2.1 Integration Scenario Styles

According to [Lin00] the classical Application-to-Application (A2A) integration styles are: Process
Invocation (e.g., communicate creation or status updates of a business object) and Data Movement
(i.e., synchronization and replication of a business object record). In particular, scenario type
ST1 “OP2OP” uses the integration style Data Movement which is typically realized using EIPs
like Message Translator (MT). In Tables 5.1 and 5.2 we summarize our analysis, and we also
mention predominant message formats as well as example applications for each integration style.
As scenario types may use the same EIPs and message formats for different applications, we
discuss the EIPs and message formats below.

178



ST5:
Machine2Cloud

ST4:	User2OP

User-centric Business	Applications

Cloud	Applications

B2B

ST1:	OP2OP

B2BST2:	On-Premise2Cloud
Machine2OP

ST3:	Cloud2Cloud

Business	Networks

PartnerApplications
(Business	Logic,

Data)

Mobile,	Web,
Desktop	Applications
(Interaction	Logic)

Devices,	Machines,
Sensors,	Actuators	
(Device	Logic,	Data)

Cloud	Applications
(Business	Logic,

Data)

Partner

On-Premise
Cloud

Machine2Machine

User2User

Internet	of	Things

ST6:
Machine2Cloud

(ST3)

Figure 5.6: Overview of integration scenario types ST1 –ST6 ; dashed lines on arrows mark aspects
that are out of scope

We continue the analysis of integration scenario types with ST2 “OP2C”, another application-
to-application type. Unlike ST1 this integration scenario type focuses on the integration applica-
tions hosted in the cloud with on-premise applications. This type has become more prominent as
applications are moving into the cloud, but they still need to be integrated with legacy on-premise
applications. Furthermore, we identify ST3 “C2C” which deals with the integration of different
cloud applications. As indicated in Tables 5.1 and 5.2 all three scenario types share the same
integration styles: Process Invocation and Data Movement.

In addition, integration systems are often used in the area of User-centric Application Integra-
tion [Gme12] (e.g., display customer financial status) for the consumption of business data by
users. We call this integration style User-Centric Consumption, and it maps to scenario type
ST4 “User2OP”.

Furthermore, integrating physical devices with (business) applications becomes more important
(e.g., medical [Zal09] or connected car device integration). Since the term “Device Integration” is
still not consistently defined, we apply the classical styles process invocation and data movement
to the devices and call them Device Data Movement for ST5 “M2C” and Device Invocation for
ST6 “C2M”. Additonally, for scenario type ST6 we include a new scenario style, Data Processing,
which is a combination of message processing and exchange as it is motivated by the related field
of data analytics.

Figure 5.6 shows these six integration scenario types (ST1–ST6 ) that we consider in this
thesis. Although technically covered by other scenario types, the cases of cross-partner (B2B),
User-to-User and Machine-to-OP message exchange are out of scope of this thesis, and thus
depicted by “dashed-lines”.

5.2.2 Analysis of Real-World Applications

For every scenario type discussed above, we now analyze how real-world applications realize
integration scenarios using certain integration patterns and message formats (also see Tables 5.1
and 5.2).
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Table 5.1: Integration scenarios grouped by their integration styles and examples from SAP,
Ariba and Success Factors (SFSF) applications: from CBR to AGG

Integration
Style

Scenario
Type

Msg. For-
mat

Patterns
Example Applications

CBR MF MC SP AGG

Process Invo-
cation, Data

ST1:
OP2OP

XML √
- - - - SAP ERP / CRM

Movement ST2:
OP2C

XML,
JSON

√ √
-

√
- SAP C4C, SAP S/4

HANA
ST3: C2C JSON,

XML,
(image,
video)

√ √
-

√
- SFSF Employee Cen-

tral, Ariba Quadrum
Network, SAP S/4
HANA

User-centric
consump-
tion

ST4:
User2OP,
User2C

XML,
JSON

- -
√ √ √ Hybris Social Market-

ing

Device Data
Movement

ST5: M2C JSON,
CSV

√
- - - - Vehicle Logistics,

Connected Cars
Device Invo-
cation, Data
Processing

ST6: C2M JSON,
CSV

√
- -

√ √ Sports Management,
SAP Convergent In-
voicing

Usual pattern occurrences are marked by
√

. Pattern abbreviations: Content-based Router (CBR)
and Message Filter (MF) ( 7→ 11.35% of 934), Multicast (MC 7→ 0.75%), Splitter (SP 7→ 8.14%),
Aggregator (AGG 7→ 0.32%).

On-Premise Integration (OP2OP): The application-to-application message exchange
between business applications (ST1 ) within one corporate network, referred to as On-Premise
(OP), denotes the classical integration case (e.g., between SAP ERP and CRM solutions) with
moderate message throughput requirements per integration scenario up to several 10, 000 msgs/sec.
The message formats are still mostly XML-based. In Tables 5.1 and 5.2 we summarize the study of
real-world scenarios from different integration styles in SAP Cloud Platform Integration [SAP19a],
setting them into context to the used integration patterns. Accordingly, the classical OP2OP
scenarios mostly use Content-based Router (CBR) and Message Translator (MT) patterns.

On-Premise-to-Cloud Integration (OP2C): Through the trend of building cloud ap-
plications or moving existing applications to cloud environments, there is a growing need for
communication with on-premise applications (ST2 ). For instance, SAP ERP / CRM on Demand
and SAP S/4 HANA applications require status changes of on-premise applications as well as data
replication, while existing on-premise applications tend to delegate integration with governmental
organizations and institutions, e.g., for legal aspects, to cloud environments. In addition to
XML, JSON gains importance for those scenarios that reach peak throughput of up to several
100, 000 msgs/sec, depending on the integration style. The patterns used in these scenarios
(cf. Table 5.1) are again mostly MT, CBR, but also Message Filter (MF), Splitter (SP) and
User-defined Functions (UDFs).

Cloud-to-Cloud Integration (C2C): The fast-growing field of Cloud-to-Cloud (Cloud2Cloud)
integration (ST3 ; incl. micro-services [New15]), connects all kinds of business (e.g., Success
Factors, Salesforce), social media (e.g., Twitter, Facebook), and business network applications
(e.g., Ariba). Depending on the application domain, the message formats are mostly JSON-based,
and the scenarios reach an even higher throughput, e.g., LinkedIn generates 100’s of GB of new
data in the form of one billion messages per day, Facebook generated 6 TB of user activity data
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Table 5.2: Integration scenarios grouped by their integration styles and examples from SAP,
Ariba and Success Factors (SFSF) applications: from MT to UDF

Integration
Style

Scenario
Type

Msg. For-
mat

Patterns
Example Applications

MT CF CE CM UDF

Process Invo-
cation, Data

ST1:
OP2OP

XML √
- - - - SAP ERP / CRM

Movement ST2:
OP2C

XML,
JSON

√
- -

√
- SAP C4C, SAP S/4

HANA
ST3: C2C JSON,

XML,
(image,
video)

√
-

√ √ √ SFSF Employee Cen-
tral, Ariba Quadrum
Network, SAP S/4
HANA

User-centric
consump-
tion

ST4:
User2OP,
User2C

XML,
JSON

√
-

√
- - Hybris Social Market-

ing

Device Data
Movement

ST5: M2C JSON,
CSV

√
-

√ √
- Vehicle Logistics,

Connected Cars
Device Invo-
cation, Data
Processing

ST6: C2M JSON,
CSV

√ √ √ √ √ Sports Management,
SAP Convergent In-
voicing

Usual pattern occurrences are marked by
√

. Pattern abbreviations: Message Translator (MT 7→
32.86%), Content Filter (CF 7→ 2.99%), Content Enricher (CE) and Content Modifier (CM) (7→
42.93%), user defined functions (UDF 7→ 0.64%).

per day in 20122. Besides the previously discussed patterns, the most important integration
patterns are Content Modifier (CM), Multicast (MC), e.g., for parallel message processing, and
Content Enricher (CE), e.g., adding additional data to the message from a data store. Especially
in cloud scenarios there are several auxiliary patterns like encoders or decoders, signer, verifier,
decrypt or encrypt, which are mainly handled by integration adapters, e.g., WS-Security, thus
out of scope for this work.

User-to-On-Premise (User2OP) and Cloud (User2C) Integration: The user-centric
scenarios (ST4 ) are mostly about scheduled or ad-hoc, message-based queries that gather data
from different data sources according to a user context and report back to the user. The queries
are latency- and message throughput bound (e.g., usually less than two seconds). To meet these
requirements, a combination of MC and CE patterns are used to gather data in parallel and
enrich the response message. The message transformation pattern is required in case of different
source and target formats.

Machine-to-On-Premise and Cloud (M2C) Integration: Recently, the case of device
invocation, data processing (ST6 ), and data movement (ST5 ) has gained more importance.
Scenarios like the convergent invoicing and vehicle logistics produce large amounts of messages,
while requiring the Aggregator (AGG) pattern in addition to the previously discussed patterns to
form common, map-reduce-like patterns, such as Scatter-Gather (i.e., MC, AGG) and Composite
Message Processor (i.e., SP, AGG) [IA10].

General: The scenarios of all discussed integration styles potentially require reliable messaging
with service quality guarantees [RH15], called message delivery semantics. The most common
message delivery semantics are At-least-Once (i.e., ALO; Message Redelivery pattern [RH15]),
Exactly-Once (i.e., EO; ALO with Idempotent Receiver pattern), and EO-In-Order (i.e., EOIO;
EO with Resequencer pattern).

2Log processing metrics, relevant for message-based integration, visited 5/2019; last update 2012: http:

//www.solacesystems.com/techblog/deconstructing-kafka
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5.2.3 Summary

The study shows the relevance of integration patterns along classical and new application
integration styles and scenario types, and thus allows for the identification of the most relevant
patterns. From the currently known routing and transformation patterns, the studied cloud
integration scenarios mainly use the Content-based Router, Message Translator, Splitter, Content
Modifier, and Content Enricher. Consequently, these patterns are considered as relevant for
EIPBench. In addition to these patterns, new integration scenarios require even more data-aware
operations (e.g., CM, CE) and patterns for parallel, map-reduce-style processing (e.g., MC, SP,
AGG). Furthermore, we include other branching patterns (i.e., Multicast and Recipient List)
for variety and leave out the content modifier, due to its similarity to the message translator.
Finally, we include all patterns from the message delivery semantics discussion. In addition, many
scenarios use User-defined Functions (UDFs) which indicates that current patterns do not satisfy
all requirements.

Especially new domain-operations (e.g., arithmetic operations) and the flexibility required for
more diverse message formats and new scenarios introduce new challenges. Notably, less verbose
message formats like JSON are used, which influences our message format selection in EIPBench.

5.3 Integration Pattern Benchmark

We subsequently define an integration pattern benchmark based on the benchmark principles by
Gray [Gra93] and the integration scenario analysis, called EIPBench.

5.3.1 Benchmark Design

First we discuss general EIPBench design choices, for the message format and macroscale factor
criteria (incl. concurrent users). We use configurable scale factors for the EIP benchmark
definitions to allow the specification of a data-aware message processing benchmark. Subsequently,
the message generation and general, macroscale factors are discussed. The EIP microscale factors
are discussed in the next section.

Data Set and Message Creation

An important aspect of EAI systems is the message format (e.g., [Lin00, HW04]). The analysis of
scenario types in Tables 5.1 and 5.2 (on page 180) indicates that mostly textual message formats
are used (e.g., XML, JSON, CSV), while binary data (e.g., images, videos) is currently limited to
a few social media applications (cf. Cloud2Cloud). For the textual formats, there seems to be a
move from XML to JSON (and CSV) formats. Hence, we define the message body format as
textual, JSON and specify the integration pattern content accordingly.

Data Set The messages can have an arbitrary format, however, current business application
data and even social media data look similar to existing TPC data sets. Hence, we decided to
start with a standard, PDGF-generated [PRFD11] TPC-H data set that provides different scale
levels and — similar to BigBench [RDF+15, RJ13] — extend the generation for our purpose. The
TPC-H data describes business object formats, which can be found within exchanged messages
(i.e., resulting to less conversions). Although the generated data sets cannot be directly used as
messages for the benchmark, they provide basic business objects such as ORDERS, CUSTOMER and
do not require further explanation in the benchmark community. The TPC-H scale-level one
generates 1.5 million ORDERS, 150k CUSTOMER, 25 NATION and 5 REGION records as CSV files.
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Message Models The message models are generated from the data sets using the following
operations: join, union, append (⊕), and scale. Following the edges, Figure 5.7 shows from left to
right how the generated TPC-H source relations are combined to message formats. Subsequently
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Figure 5.7: Extended PDGF-based message creation

a message MSG is defined as MSG := (B,H,A), with an arbitrary message content or body
B, an optional list of name-value pairs denoting the message header H, describing the content,
and a list of name-binary value pairs for the attachments A (optional). Usually the format
of B is typed to one message model (e.g., TPC-H ORDERS). For our (source) message model
MM we focus on the TPC-H order to customer processing. We select the foreign key related
relations ORDERS, CUSTOMER, NATION and REGION in the CSV message protocol, transform the
single records to JSON and add two additional columns: a unique message identifier and type
information that specifies the name of the source relation. The single JSON objects are combined
to one JSON array and stored as a source model for the benchmark execution. To sufficiently
support data-aware scenarios, the focus of EIPBench lies on the message body and not the
header. The source order messages are defined as MSGOrd.B := {msgId, type}⊕OBJOrd.fields,
while MSGOrd.[H|A] := ∅, where OBJOrd.fields are the fields of the order object. Analogously,
customer MSGCust, nation MSGNat, and region MSGReg are defined.

While the first tranche of messages results in a message body B with a single message model,
some scenarios require Multi-format (MF) messages (e.g., convergent invoicing requires additional
information added to the message in a different format). A MF message (MSGMF ) is defined as
a list of potentially different message models MM . For EIPBench MSGCNRMF messages with one
CUSTOMER record and all NATION and REGION records are created. Hence, the source messages are
defined as MSGCNRMF := {msgId, type} ⊕ OBJCust.fields ⊕ OBJNat.fields ⊕ OBJReg.fields.
Multi-format messages transport additional, joinable information as message content, while cyclic
dependencies are allowed.

In addition, tree-like messages play a role, e.g., for OP2Cloud scenarios. Hereby the foreign
key relations between CUSTOMER and NATION relation are replaced within the customer record
beforehand, leading to nested message structures N . For instance, SAP Intermediate Document
(IDoc) Types allow the definition of segments, which are a parent-child-like structure3. The nested

3SAP IDoc structure, visited 5/2019: http://scn.sap.com/docs/DOC-34785
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source messages N of customer and nation objects are defined as MSGCNNest(n) := {msgId, type}
⊕n1 (OBJCust.fields \ C NATIONKEY ) ⊕ (OBJNat.fields \ N NATIONKEY ), where n
defines the number of nested customer entries as message content.

To support a message scaling over orders with a list of nested customer records MSGCNest(n),
we define MSGOCscale := MSGOCNest(m), with m > 1. Messages of several hundred MB, e.g., as
required for Financial Services Network Cloud-OP messaging, not only help to test the message
throughput but also the capability of an integration system to handle bigger data volumes (i.e.,
not only “fast”, but “big” data).

Each single message model can be stashed into a message collection Colλ(MSG), where
MSG := {MSGOrd, MSGMF , MSGN , MSGscale} with collection size λ, which specifies the
number of messages within the collection.

Macroscale Factors

The integration patterns need to scale along different dimensions. Consequently, we define the
following macroscale factors: (i) messages with different user contexts (i.e., number of concurrent
users), (ii) micro-batching, and (iii) message size (implicit and explicit).

The scale factor concurrent users (i) tests the ability of pattern implementations to handle
concurrent requests. The generic, concurrent user load pattern for a particular scale level can be
freely configured and is defined as:

scalecu(ω) = 2ω (5.1)

For example, when transferring the settings of the ESB Performance benchmark [Adr13], ω varies
between 0 and 11. In our experiments, we use 0 ≤ ω ≤ 6, which already sufficiently shows the
impact of this scale factor to answer question Q5.

Furthermore, we define the micro-batching factor (ii). With this parameter we intend to
show the benefit of batched processing for the message throughput in integrations systems (cf.
Q6 ). In this context, the data-aware processing approach is a newly developed mechanism that
allows to send collections of messages (Colλ(MSG)) instead of single messages [Rit15b], called
micro-batching. Currently only the patterns discussed in [Rit15b] such as message transformation
are micro-batch enabled. The batch scale levels β, with 0 ≤ β, denote the number of distinct
messages in one message collection Colλ(MSG):

λ := scalebatch(β) = 2β (5.2)

The ESB Performance benchmark [Adr13] does not specify such a test. In EIPBench β is
configurable, and we choose β with 0 ≤ β ≤ 10 to show the general impact of micro-batching.

Especially in cloud-to-cloud integration scenarios and also business network solutions we
observe that various message sizes (iii) are used. EIPBench addresses this challenge by constructing
larger message sizes (cf. Q5 ) of multi-format MSGMF and nested MSGNest(n) messages, as
they are used by various applications. For a given message of type θ we define a function
size([msg|obj]θ), which determines the message size in kB. For instance, the size of MSGOrd
is approximately 0, 354 kB and for the nested customer object size(OBJcust) ≈ 0, 293 kB.
For the size of nested messages, the type of the nested business object objτ can be specified.
The extended function size(msg, θ, τ) calculates the size inclusive the nested object. Since
the nesting is calculated by a foreign key fk relation between the business objects, a function
size([msg|obj]θ, fk) returns the size of a message or object without the foreign key field. The
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generic size calculation of objects and messages is defined as:

size(MSG′θ) = size(MSGθ, fk)

= size(MSGθ)− size(fk)

size(OBJ ′τ ) = size(OBJτ , fk)

= size(OBJτ )− size(fk)

(5.3)

Now, the size of these messages is scaled through parameter η, with 1 ≤ η ≤ 20. For example,
for η = 20 we generate messages of approximately 512 MB in size. In comparison, the ESB
Performance benchmark [Adr13] specifies messages up to 100 kB. In addition to the generic scale
factor η, there is another message size factor γ, which helps to increase the number of business
objects of a scale level: Equation (5.4) brings all previous pieces together and shows the generic
calculation of the message size of a scaled message MSGscale for a particular scale level η.

MSGηscale = size(MSG′θ) + η · γ · size(OBJ ′τ ) (5.4)

For instance, the concrete scale factor constant in EIPBench is γ = 6. For the nested messages
MSGNest(n), n is defined as n := γ · η. Concrete values for MSGηscale, e.g., for simple customer
messages in EIPBench with θ, τ := Cust range between approximately 256 B (for η = 0) up to
256 MB and 512 MB.

Summary

Based on the scenario analysis and classification, we identified appropriate message formats and
macroscale factors for EIPBench. Considering the focus on data-aware pattern processing the
definitions allow for the specification of a comprehensive benchmark. Subsequently the tested
patterns are introduced and defined by their microscale factors.

5.3.2 Pattern Design Choices

In this section, we define microscale factors for the patterns to be tested based on the categories
of message routing, transformation patterns, and message delivery semantics from the integration
scenario analysis. Each pattern represents an operation on one or multiple of the defined message
models and defines its own microscale factors. The microscale factors describe and test the
complete characteristics of the patterns. Subsequently, the scale levels and variations for the
different benchmarks are enumerated alphabetically, where A usually denotes the normal or
simple case and the cases B, C, . . . represent (scale) variants.

Message Routing Patterns

The message routing patterns decouple the message sender from its receiver(s). We focus on
content-based routing capabilities (i.e., no header), which are mainly used in practice and especially
relevant for the evaluation of data-aware processing. Table 5.3 lists the relevant routing patterns
(RT ), which are subsequently discussed.

Content-based Router, Message Filter (RT-1, RT-2) The Content-based Router (CBR)
routes one incoming message to exactly one of the n outgoing channels according to the ordered
evaluation of n-1 channel conditions that read the message’s content. The first condition that
evaluates to true decides on the outgoing channel, if no condition evaluates to true the message
is routed to the nth channel (the default channel). The Message Filter (MF) is a special case of
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Table 5.3: Message Routing (RT) patterns with microscale factors
Label Patterns Description Scale

RT-1 Content-based
Router (CBR),
Message Filter
(MF)

Channel cardinality 1:[1|n], n ∈ N outgoing
channels, m ∈ N (dis-) conjunctive conditions
w/ increasing complexity

A: normal, B : n > 1,
C : m > 2

RT-2 Multi-format CBR,
MF

same as RT-1 on multi-format message with
k ∈ N entries

D : k > 1

RT-3 Multicast (MC) Channel cardinality 1:n, n ∈ N outgoing chan-
nels, parallel processing, stop on exception

A: n = 1, B : n > 1,
and variations

RT-4 Recipient List (RL) same as RT-3 with n receiver determinations A: n = 1, B : n > 1,
and variations

RT-5 Splitter (SP) message cardinality 1:i, i ∈ N outgoing mes-
sages, parallel processing, stop on exception

i > 1, split cardinal-
ity, variations

RT-6 Aggregator (AGG) message cardinality i:1, i ∈ N incoming mes-
sages

completion sizes,
aggr. strategies

the CBR with a channel cardinality of 1:1, resulting in a “pass or no-pass” decision.
Example: Using different processing for an order with higher ORDERPRIORITY and higher price
TOTALPRICE with the CBR or filter out messages with ORDERSTATUS of “F”.
Scale / Variations: Scaling through number of complex conditions and number of branches.
Implementation: EIPBench evaluates the different micro- and macroscale factors, conditions
on MSGOrd for (A–C) and MSGCNNest for (D).

Multicast, Recipient List (RT-3, RT-4) The Multicast (MC) describes the statically con-
figured serial or parallel sending of n copies of the same message to n receivers, while the Recipient
List (RL) dynamically computes the receivers from the original message through a receiver
determination function. Technically, both patterns create message channels (i.e., threads) for
each outgoing message.
Example: Copying one order message to several (parallel) channels statically for further pro-
cessing with a MC, or selecting or calculating the message channel from the body of the message
with the RL (e.g., orders with different priorities).
Scale / Variations: Scaling through branches (tests branching), parallel branching vs. sequen-
tial processing; on exception.
Implementation: EIPBench scales multiple outbound message channels for the MC and con-
figures RL to use one outbound route per order priority on MSGOrd, which tests the channel
branching behavior (i.e., channel creation).

Splitter (RT-5) The Splitter (SP) splits an incoming message (with repeated elements) into i
outgoing messages to the same receiver using a split condition.
Example: The creation of new messages for each part of a multi-format message MSGMF (incl.
foreign key creation) or the separation of a message collection Coli(MSGOrd) into single messages
per entry.
Scale / Variations: Scaling through increasing split cardinalities i.
Implementation: EIPBench configures the splitter to (A) split collections of messages MSGOrd
into single messages (the reverse of an Aggregator for micro-batching), (B) split each entry or
section of a message into a single message, (C) take first four fields of a message (message id,
type, orderkey, custkey) as fixed parts, then split the next j elements into j messages and add
last one element (comment) to the message as a footer.
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Table 5.4: Message Transformation (MT) patterns with microscale factors
Label Patterns Description Scale

MT-1 MT program with n:m distinct field mappings,
each with a directed operator tree of size i

(A) n,m ≤ 10, i = 1

MT-2 CF filter o fields o ≥ 1

MT-3 CE enrich message with j new fields or complete
structures

j > 0; nesting and
multi-format variants.

Aggregator (RT-6) The Aggregator (AGG) combines j incoming message into one outgoing
message, sent to the same receiver using correlation and completion conditions (e.g., size, time)
and an aggregation strategy.
Example: Constructing the union of two relations as one multi-format message MSGMF or the
stashing of messages as a message collection.
Scale / Variations: Scaling through increasing completion size or time.
Implementation: EIPBench configures the aggregator to merge different numbers j of order
messages MSGOrd.

5.3.3 Message Transformation Patterns

The message transformation patterns cover an important aspect of integration systems that
contain the translation of one format into another one (Message Translator (MT) [HW04]), the
enrichment of additional information in a message (Content Enricher (CE)) and the filtering of
content (Content Filter (CF)). In more practical realizations, the Message Mapper is used to
convert from the message’s format to a Canonical Data Model. In addition, new patterns were
found for executing arbitrary scripts on the message (Script pattern) and for the more guided
modification of the content using expression editors in form of the Content Modifier (CM) pattern
in Chapter 2.

In this chapter, we focus on the standard MT, and (transient, internal) CE and CF patterns
(MT-1–3 ) as shown in Table 5.4. For all of these patterns the channel- and message cardinalities
are 1:1, i.e., they are non-message generating, and we consider the stateless cases here.

Message Translator (MT-1) Message translators (MT) transform the structure and values
of an incoming message. The mapping program has n:m distinct field mappings, where the
incoming message has n and the outgoing message m fields. Each field mapping can be expressed
with a directed operator tree of size i. For instance, i = 1 means that one operation is used to
transform one field into another one. The single operations intersect with some of the information
integration queries defined in [HST05] (e.g., Query-2 “Mathematical operations”, Query-3 “String
contains”). According to the study of [SAP19a], MT for integration programs is more complex
and can be summarized as arbitrary combinations of the following n-ary operations:

� value assignments / mappings: e.g., default values, constants, copy.

� type-specific operations: e.g., string concatenation, numeric subtraction, addition.

� conditions: e.g., equals, greater than, contains.

� external scripts/functions: e.g., value mapping lookups, user-defined functions, external
service calls.

Example: Transforming the mandatory ORDERKEY field to one or many fields of the target
structure. For instance, a mapping from source field A to target field B checks that the ORDERKEY
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is not null, has a certain length and only then assigns its value: checkNotNull(A)→ checkLength(A)
→ assign(A, B).
Scale / Variations: Variations of increasing numbers of n, m and the size of i, as well as the
complexity of the operations (e.g., iterative calculations).
Implementation: Since the operator-tree processing of the MT is similar to complex conditions
that are already checked in the benchmark, only a simple mapping program MT-1 (A) is
benchmarked in EIPBench.

Content Filter (MT-2) Content filters (CF) remove o fields and values from a message.
Example: The message receiver only requires ORDERKEY, CUSTKEY and ORDERPRICE, and all other
fields and values are removed.
Scale / Variations: Scaling through an increasing number of filtered fields o; and adding more
complex filter conditions.
Implementation: EIPBench filters ORDER message fields.

Content Enricher (MT-3) Content enrichers (CE) add j new fields and values to a simple
message, or build a nested or multi-format message structure.
Example: The message requires additional master data for the credit check of a customer, which
is added to the current message.
Scale / Variations: Scaling through an increasing number of added fields j; and building more
complex structures.
Implementation: EIPBEnch focuses on the “in-memory” enrichment of message content (i.e.,
leaves out external calls).

5.3.4 Message Delivery Semantics

For reliable messaging, integration scenarios require different levels of message delivery semantics:
Best Effort (BE), At-Least-Once (ALO), Exactly-Once (EO), and Exactly-Once-in-Order (EOIO)
[RH15], which can be composed through the standard Idempotent Receiver (IR) and Resequencer
(RS) patterns, and the Message Redelivery on Exception (MRoE) pattern from [RS14].

The discussed benchmarks in Section 5.5 assume no reliability, which either means message
redelivery on exception by the applications, devices in case of synchronous messaging, or message-
loss after an unforeseen event during asynchronous best effort delivery. If the message shall
be delivered at-least-once, a message redelivery on exception pattern is required, which might
lead to duplicate messages exchange. To avoid that exactly-once combines at-least-once with an
idempotent receiver pattern, which filters out duplicate messages. When a special sequence of
messages shall be preserved (e.g., create before update operation), then exactly-once is combined
with a resequencer pattern, or a commutative receiver is used. The microscale value domains are
configurable. However, for our experiments with EIPBench they are set to values, which show
the general impact on message processing. Table 5.5 lists the relevant message delivery semantics,
which are subsequently discussed.

Message Redelivery on Exception (MDS-1) Redeliver messages on exception (transient)
to receiver o times.
Example: The creation of an order fails due to a temporary network outage and will be
immediately re-delivered to make sure that the order will reach its destination as soon as the
issue is solved.
Scale / Variations: increase number of redeliveries o; send original or modified message.
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Table 5.5: Message Delivery Semantics (MDS) with microscale factors
Label Patterns Description Scale

MDS-1 MRoE redeliver message on failure o ∈ N times,
(non-) original message

A: o = 1, B–F: 32 ≥ o > 1;
variants

MDS-2 RS sequence of n ∈ N messages, sequence identi-
fier

n ≥ 1; A: n = 10

MDS-3 IP filter duplicate messages m ∈ N “in-memory” A: m = 0, B: 100, 000 ≥
m > 0

Implementation: EIPBench configures the MRoE pattern with (A) no redelivery, (B–F) with
o := {1, 2, 4, 8, 16, 32} on MSGOrd messages.

Resequencer (MDS-2) Receive sequence of messages (transitively), correlate using a sequence
identifier and re-order, when the sequence is complete.
Example: The creation of a customer has to happen before the update of the same customer
(i.e., an enforced sequence of operations) or before the creation of a referenced order (i.e., an
enforced sequence of business object creation).
Scale / Variations: Scaling through number of entries per sequence
Implementation: EIPBench varies the number of sequence entries n, with n ∈ {10, 100, .., 105};
implemented for (A) n = 10 and resequencing messages according to their TOTALPRICE on
MSGOrd messages.

Idempotent Receiver (MDS-3) Filter duplicate messages using (transient) memory.
Example: The message source sends the same order twice for creation in another application
(same ORDERKEY).
Scale / Variations: Scaling through increasing number of duplicates leads to more main memory
consumption due to transient and more frequent lookups or scans.
Implementation: EIPBench configures the IR for (A) no duplicates, (B) duplicates after 100, 000
checked for msgId on MSGOrd messages.

5.3.5 Benchmark Implementation

The EIPBench is executed close to the pattern implementations, potentially even within the same
process. Our reference implementation uses JMH4, a Java harness for running benchmarks on the
JVM, which factors out JVM side-effects (e.g., on stack replacement) through code generation
and allows to configure warmups, iterations and the number of isolated JVM instances. As
illustrated in Figure 5.8, the benchmark realization is divided into three phases: initialization
(pre), execution (work), and verification (post). We provide a tool suite that contains:

Initializer : generates the data and creates the messages in the preparation (pre) phase.

Client : selects the benchmarks in the preparation (pre) phase and uses JMH to schedule the
execution of message producers for the different integration scenarios in the work phase.

Monitor : collects the statistics, calculates performance metrics and plots the results in the
post-processing (post) phase (not shown).

4JMH, visited 5/2019: http://openjdk.java.net/projects/code-tools/jmh/.
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Figure 5.8: EIPBench execution phases

The time spent during the pre phase Tpre consists of the time required for the creation of a
fork Tfork, the loading time of all messages required by the current benchmark Tload, and the
preparation time for the start of the benchmark Tstart:

Tpre = Tfork + Tstart + Tload

= t1 − t0.
(5.5)

During the work phase, the client executes the defined pattern benchmarks on a specified number
ζ of isolated and freshly initialized JVM instances, called forks, for a configurable amount of
m warmup and n main iterations. The execution time of this phase twork mainly adds up the
warmup Twarmup and the actual evaluation time Teval:

Twork = Twarmup(ϕ) + Teval(ϕ)

= m · eval(ϕ) + n · eval(ϕ)

= t2 − t1.
(5.6)

During the evaluation, the selected benchmark is executed, and the discrete throughput values
ϕ are collected. Each fork accesses the created message files (Tload) and sends (collections of)
messages to the message channel with the tested patterns. Hence the overall runtime of the whole
benchmark is TBench = ζ · (Tpre + Twork + Tpost). To measure Twork, the message scenarios are
synchronous and have a VOID receiver adapter, which immediately returns to the sender. Then,
cleanup and verification are performed:

Tpost = Tclean + Tverify

= t3 − t2.
(5.7)

When a complete scale factor run is finished, the results are serialized to disk in a raw format,
containing all captured measurements. The monitor parses the data and creates plots for all
tested patterns and scale factors.

The relevant metrics for EIPBench is the discrete throughput measures ϕ of a tested pattern
(i.e., Teval). More precisely, Teval is the calculated mean of the individual evaluations eval(ϕi),
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with i ∈ I, for the number of iterations I within one fork:

Teval = Tmean/fork =

∑n
i=1 eval(ϕi)

n
. (5.8)

For reproducible results the whole test instance will be cleared after one fork and initialized. The
benchmark will be executed for the number of forks ζ. Equation (5.9) shows the calculation of
the mean for multiple forks. While higher number of forks (i.e., >> 10) leads to increasing overall
execution times, the results become more reproducible.

Tmean =

∑ζ
j=1 Tmean/fork(j)

ζ

Tσ =

√∑ζ
i=1(T ieval − Tmean)2

ζ
.

(5.9)

In addition to the mean, EIPBench measures a confidence value for the result with a confidence
level α of 99% (i.e., confidence interval ci). The confidence interval is calculated once for all
forks based on the observed mean throughput values and the standard deviation. Equation (5.10)
shows the upper and lower bound calculation of Tci.

Tci =

{
Tmean − α · Tσ√ζ , lower.

Tmean + α · Tσ√
ζ
, upper.

(5.10)

Subsequently, the Tci values will be shown as error bars for macroscale plots.

5.4 Evaluation

Now, we briefly describe the implementation and setup of the benchmark and share the results of
running the benchmark to answer our guiding questions and discuss lessons learned, e.g., including
“deficits” found in the pattern implementations.

5.4.1 Benchmark Setup

All measurements are conducted on a HP Z600 workstation, equipped with two Intel X5650
processors clocked at 2.67GHz with a 12 cores, 24GB of main memory, running a 64-bit Windows
7 SP1 and a JDK version 1.7.0 with 2GB heap space.

For our experiments we used the test harness described in Section 5.3.5. As first system under
test, we decided to use the open-source integration system Apache Camel v2.17 [IA10] implemented
in Java, referred to as Java/AC, since it provides implementations for all discussed patterns and is
used in SAP Cloud Platform Integration [SAP19a]. For comparison we have chosen a Java-based,
data-aware integration pattern implementation introduced in Section 5.1.2, which simulates table
operations on the message content, unmarshalled to ONC-iterators instead of JSON objects during
TLoad. For the table operations we use the Datalog reasoner from [RW12] implemented in Java.
Since the reasoner runs embedded in Apache Camel [Rit15b], we subsequently refer to it as
TIP/AC and in some cases simply Datalog.

5.4.2 Benchmark Results

For the discussion of the benchmark results, we follow the research questions RQ2-3(a)–(c). We
show representative results, instead of discussing each particular result. Subsequently all diagrams

191



Table 5.6: Message throughput (number of messages) of Content-based Routing (RT) and Message
Transformation (MT) pattern benchmarks compared to the Baseline (BL)

Benchmarks Scale Java/AC (early-out) Java/AC TIP/AC

BL – n/a 300, 837 +/-8, 252 n/a

RT-1 A (simple) 174, 795 +/-8, 100 176, 319 +/-4, 704 179, 528 +/-5, 485
B (branching) 158, 838 +/-3, 002 100, 070 +/-2, 635 163, 672 +/-4, 186
C (complex) 115, 599 +/-3, 901 98, 237 +/-2, 261 115, 859 +/-3, 417
D (join) 165, 644 +/-3, 132 – 176, 926 +/-6, 513

MT-1 A (medium) n/a 172, 545 +/-7, 612 193, 378 +/-4, 407

Throughput denoted by Tmean (cf. Equation (5.9)) and Tci (cf. Equation (5.10)).

show message throughput for different scale levels. Discrete points are calculated mean values
Tmean (cf. Equation (5.9)) according to the metrics, and the error bars denote the precision of
the values according to the 99.9% confidence interval Tci (cf. Equation (5.10); i.e., small intervals
indicate low variance, thus a higher confidence).

Before benchmarking the different patterns, we conducted a “baseline” benchmark using
Java/AC without any pattern configurations, which measures the pipeline processing without
operations on the message (cf. BL in Table 5.6).

Microscaling

To answer the “microscale” question RQ2− 3(a) about the impact of complex routing conditions
and multiple branchings, we benchmarked the routing test description RT-1 (i.e., content-
based routing) together with streams of MSGOrd messages for the Java/AC and TIP/AC
implementations. Conceptually the routing conditions are similar to the examples for the patterns
in Section 5.3.2.

On the impact of complex routing conditions and multiple route branchings (RQ3-
2(a)): Table 5.6 shows the results of RT-1 starting with the simple routing condition case RT-1
(A), followed by increased route branchings RT-1 (B), condition complexity RT-1 (C), and
complex conditions on multi-format messages. Not surprisingly, the materialization of messages
for processing by a pattern implementation results in a significant decrease in the throughput
compared to the baseline measurement (cf. BL). The number of route branchings in RT-1 (B)
correlates with the number of evaluated conditions (worst case). In our experiments, all conditions
are executed. The impact of an increasing branching factor on the throughput can be considerable.
An even stronger impact on the throughput comes from more complex routing conditions in
RT-1 (C). Hence, as answer to question RQ3-2(a), the results show a significant impact of
multiple branchings and complex routing conditions suggests that selectivity estimations on the
conditions and re-orderings similar to DB queries should be further investigated (cf. [DAF+03]).
Particularly, for the TIP/AC implementations, the parallel evaluation of routing conditions could
result in performance improvements, however, that would probably require a change of the pattern
semantics (cf. [Rit15b]).

Further message routing impact factors: During the implementation of the benchmark,
the “early-out” capability of implementations (i.e., filter can return halfway during the scanning (for
row filter) [Geo11]) turned out to be another important factor of routing throughput. The Java/AC
“early-out” implementations are comparable to the corresponding TIP/AC implementations.
However, the non-“early-out” Java/AC implementation performs even worse apart from RT-1
(A), which is conceptually equal to the “early-out” variant.

The microscale factor (D) for cross-relation operations requires a multi-format message
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Table 5.7: Throughput benchmarks for message delivery semantics
Benchmarks Scale Java/AC

MDS-1 A (1 redelivery) 70, 585 +/-2, 323
B (2 redeliveries) 31, 649 +/-1, 131
C (4 redeliveries) 14, 774 + /− 513
D (8 redeliveries) 9, 456 + /− 268
E (16 redeliveries) 4, 906 + /− 139
F (32 redeliveries) 1, 995 +/-85

MDS-2 A (sequence of 10 messages) 161, 918 +/-4, 883
MDS-3 A (duplicate after 100, 000) 172, 544 +/-6, 156

Throughput denoted by Tmean (cf. Equation (5.9)) and Tci (cf. Equation (5.10)).

MSGCNRMF . Therefore a cross-relation operation is used for TIP/AC, which is represented
by a join over the CUSTOMER and NATION relations with several conditions. For the TIP/AC
implementation these operations seem more natural than for the AC/Java implementations, thus
show slightly better results.

On the impact of complex message transformations: The results for the benchmark
of MT-1 message transformation of simple (A) mapping programs are shown in Table 5.6. In
both cases the TIP/AC implementation outperforms the Java/AC approach, which is designed for
data-aware operations on messages. Again, message transformation operations seem more natural
for a data-aware implementation. Hence, further investigations on an extension or refinement of
the EIP semantics for data-aware processing could be preferable.

On the impact of message delivery semantics (RQ2-3(a)): The study of the impact
of the message delivery semantics (cf. RQ2-3(a)) touches the inner workings of the integration
pipeline system, thus are only executed for Java/AC. Table 5.7 shows the microscaling of MDS-1
(A–F) for an increasing number of retries o starting with 1 ≤ o ≤ 32. The variant “use-original
message” (not shown) does not show a significantly different throughput behaviour. Since MDS-1
MRoE is a “loop” pattern, this test allows insight in the loop-processing capabilities of the
runtime system. The redelivery delay penalty (without exponential backoff) becomes notable in
the results for an increasing amount of redeliveries. This raises questions for future work like
“Could a more scalable implementation keep up the general message throughput of the system
during message redelivery?”.

For the resequencer pattern, Table 5.7 shows case MDS-2 (A), which measures the throughput
of a resequencer with a sequence size of n = 10. That means, after receiving 10 unordered
messages, the messages are ordered and resumed. The relatively low impact on the throughput is
a result of transient sequences in an operational data store.

Conceptually, the (transient) idempotent receiver and the message filter patterns are compa-
rable. This is supported by the similar message throughput as shown in Table 5.7 MDS-3 (A)
with a duplication factor of m = 100, 000 messages.

Conclusions.: (1) Considerable impact on processing for complex routing conditions and multiple
route branchings; (2) positive impact of (data-aware) evaluation strategies like early-out (for
routing only) and micro-batching; (3) trade-off: more efficient processing through differing pattern
semantics required; (4) the common case of error handling (e.g., message redelivery on exception)
requires more scalable runtime implementations.
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msg/s

(a) RT-1 (A): Simple Conds.

msg/s

(b) RT-1 (B): Complex Conds.

Figure 5.9: Content-based router (size scaling)

Macroscaling

To answer the “macroscale” questions RQ2-3(b) and RQ2-3(c) about the impact of message
sizes, concurrent users and micro-batching, we benchmarked the routing test description RT-1
(i.e., content-based routing) together with streams of MSGOrd messages for the Java/AC and
TIP/AC implementations. Conceptually the routing conditions are similar to the examples for
the patterns in Section 5.3.2.

On the impact of increasing message sizes (RQ2-3(b)): The data-aware messaging
question RQ2-3(b) about increasing message sizes for content-based routing leverages RT-1
together with messages of typeMSGOCscale. Figure 5.9 shows the immense impact of big messages for
RT-1 (A) and RT-1 (B) (with Java denoting Java/AC ). Notably, the data-aware implementation
performs only slightly better for messages bigger than 64 MB. Especially for the TIP/AC approach,
handling larger amounts of data-aware data similar to “in-memory” database table processing
should be further studied.

On the impact of concurrent users (RQ2-3(b)): Especially for Machine2Cloud (cf. ST6
in Section 5.2) integration scenarios, “concurrent user” cases are common, which we formulated
in question RQ2-3(b). Figure 5.10 shows the multi-threading scaling capabilities of Java/AC for
the routing cases RT-1 (A) and RT-1 (B) showing an early saturation after batch scalecu(ω)
with ω = 3. The results indicate a non-optimal usage of hardware resources through the
Camel threading model [IA10], used by the EIP implementations. For instance, a thread
pool can be configured for the Multicast [IA10], but not for the router pattern. However,
even with a sufficiently configured threading, the multicast implementation does not reach a
message throughput comparable to the router (cf. Section 5.4.2). This observation and further
measurements indicate an impact on composed patterns like scatter-gather implementation (i.e.,
multicast and aggregator).

On the impact of micro-batching (RQ2-3(c)): For integration scenarios that trade the
single message processing latency for message throughput and the overall latency (e.g., especially
data movement and data processing ST5, ST6 as well as process invocation scenarios ST1–3 ), the
processing of collectionsof messages RQ2-3(c), called vectorization or micro-batching, seems to be
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(a) RT-1 (A): Simple conditions

msg/s

(b) RT-1 (B): Complex conditions

Figure 5.10: Message throughput of the content-based router (concurrent users as threads)

beneficial. Figure 5.11 shows a good scaling behavior of the data-aware TIP/AC implementation,
which is able to process several messages in ONC-format with one operation. The scalability
outperforms event multi-threading by factors. To fully leverage micro-batching within integration
systems, the EIP semantics [HW04] have to be re-visited in future work.

Conclusions.: (5) Considerable negative impact of message size scaling; (6) non-optimal utilization
of resources of (Java-based) software solutions (at least in Apache Camel); (7) trade-off: micro-
batching beneficial for non-latency bound scenarios.

General Aspects and Deficits

The benchmark results show general integration system aspects, which are important for the
message throughput. Besides the routing and transformation, the system is responsible for
message and channel creation. For instance, the creation of messages is part of the RT-5 and
RT-6 benchmarks, while channel creation is covered by RT-3 and RT-4 (not shown). The
results indicate that the message creation involves time consuming operations (e.g., message
ID generation, message model creation, format transformations), thus lower the throughput of
those patterns. The creation of channels requires thread management (e.g., thread creation,
pooling), which has an even bigger effect on the message throughput, thus making patterns
like the “machine-local” load balancer [IA10] practically unusable in data-aware scenarios (cf.
conclusion (6)).

Conclusions.: (8) Considerable impact of message creation (incl. format conversion).

5.5 Related Work

We survey related benchmarking approaches and analyze to what extent they satisfy core
requirements for integration systems and thus help answering the questions RQ2-3(a)–(c). Based
on the comparison we identify gaps in current benchmarks Table 5.8, which also influenced our
define design criteria for EIPBench.
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(a) RT-1 (A): Simple conditions

msg/s

(b) RT-1 (B): Complex conditions

Figure 5.11: Message throughput of the content-based router (batch scaling)

For that, we categorize features of benchmarks in our field by their target system (e.g.,
Extract/Transform/Load (ETL), Messaging System (MS), Integration System (IS)) and scope
(i.e., End-to-End (E2E) or Micro-benchmark (Micro); cf. [BBN+12]). We analyze the following
benchmark dimensions along important IS tasks (cf. [Cha04, HW04]): (a) we conduct an
evaluation of the message format definitions, leading to a differentiation between multi-format
(MF), nested (NE) and simple messages. Then we check (b) how well the related work supports
EIP operations on these messages (e.g., content-based routing (CBR), message transformation
(MT)) and (c) message delivery semantics in general. Hereby, format conversions on a message
protocol level (i.e., usually done by integration adapters [RH15]) are distinguished from those on
the message content level. The scale factors for (d) concurrent user measurements (Concurrent
Users) are specified as either configurable or static (i.e., cannot be changed), and (e) additional
scale factors (SF) are shown separately. Since the EIPBench micro-benchmark, considers the
operations in the integration process, integration adapter and transport protocol related topics
are out of scope. These categories are discussed subsequently for each related field or target
system and compared in Table 5.8 for their major representatives. To rate the maturity of a
benchmark, the discussions contain hints on how recently the benchmarks were published and
whether they are still actively maintained.

Integration System The only known, public integration system benchmark is the ESB Perfor-
mance benchmark [Adr13], which was last executed in the year 2013. The benchmark defines E2E
integration scenario performance measurements. The number of concurrent users ranges between
20 and 2, 560 users, with a simple, flat XML-based payload embedded in a SOAP envelope. The
test cases contain content-based routing on the SOAP header and the body with one simple
string-equal routing condition using XPATH, and XSLT-based format conversions (e.g., XML
to CSV). Besides concurrent users, the benchmark defines a static scale level for message sizes
(i.e., from 512 B to 100 KB). In contrast, EIPBench exclusively focuses on the performance (i.e.,
throughput) of EIP implementations, which requires more complex message formats and more
elaborate EIP operation definitions that target only the message payload (currently defined by
example in JSON format). In addition EIPBench defines tests for message sizes up to 500 MB and
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Table 5.8: EIPBench in the context of related work
Benchmark Category Transport

protocol
Message
format /
conv.

EIPs
(cf. Q1,Q2 )

Message
delivery
seman-
tics (cf.
Q3 )

Scale
factors
(cf. Q4,Q6 )

Concurrent
users
(cf. Q5 )

ESB Perf.
[Adr13]

IS,
(EIP)
[E2E]

HTTP simple
(SOAP-
XML)

CBR, MT
(partially)

– msg
sizes, con-
current
users

static

SPECjms2007
[SKBB09],
jms2009-PS
[SAKB10]

MS,
JMS
[E2E]

JMS,
AMQP

n/a – reliable,
transac-
tional

#dest,
#msgs

user ses-
sions

TPC-DI
[PRC14]

DI,
ETL
[E2E]

FILE,
DB

simple
(CSV,
XML,
TXT)

– – data (incr.
load)

multiple
sources

DIPBench
[BHLW08a,
BHLW08b]

DI,
ETL,
IS
[E2E]

configu-
rable

simple
(XML)

– – data size,
time, dis-
tribution

parallel
streams

FINCoS
[MBM08,
MBM13]

CEP,
Stream
[E2E]

FILE,
JMS

simple
(CSV)

– – #msgs –

EIPBench IS,
EIP
[Mi-
cro]

n/a complex
MF,
NE
(JSON)

covered reliable
mes-
saging

concurrent
users,
micro-
batching,
message
sizes

configurable
scale fac-
tor

Category: Integration System (IS), Messaging System (MS), Java Message Service (JMS), Ex-
tract /Transform / Load (ETL), Data Integration (DI), Complex Event Processing (CEP); Enterprise
Integration Patterns (EIPs): Content-based Routing (CBR), Message Transform. (MT); Format:
Multi-Format (MF), NEsted (NE).

reliable messaging (message retry, idempotency repository, resequencing). As transport protocol,
the ESB benchmark [Adr13] uses HTTP only, while EIPBench measures the performance of EIPs
in an integration process without protocol adapters (cf. Table 5.8).

Messaging System The complementary field of Messaging System (MS) benchmarks targets
point-to-point message queuing and topic-based, publish-subscribe tests. The most prominent
and still active representative is the SPECjms2007 benchmark [SKBB09], on which the jms2009-
PS [SAKB10] publish-subscribe benchmark is based. Although it addresses JMS implementations
only, it defines an E2E benchmark for concurrent users (i.e., connections, sessions), scale-levels in
the numbers of destinations and messages, and reliable, durable and persistent message queuing
(cf. Table 5.8). The latter feature is similar to the reliable messaging in integration systems, which
uses messaging systems for that purpose. However, SPECjms2007 does not define an integration
pattern benchmark.

Data Integration / ETL The work on data integration and ETL benchmarks can be considered
conceptually related from a message transformation point of view. For instance, the recently
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released TPC-DI benchmark [PRC14] defines an E2E data acquisition from multiple source
systems with simple CSV, XML and TXT file data sets, and a data size scale factor for the import
into multiple target systems (e.g., data warehouse). Similar to TPC-DI, the EIPBench uses
the TPC-H data generator [RFSK10, PRFD11], however, EIPBench constructs more complex
message formats (e.g., multi-format, nesting). The TPC-DI message transformations are format
conversions as conducted by integration adapters [RH15] (e.g., XML or CSV to DB), which are
different from the message transformations defined by the EIPs. The quality of service patterns
in EIP are not in the focus of TPC-DI. On the other hand, the TPC-DI data quality checks are
not in the EIPs, thus out of scope of the EIPBench (cf. Table 5.8).

The E2E Data-Intensive Integration Processes (DIPBench) benchmark [BHLW08a] is posi-
tioned as a hybrid, conceptual framework for ETL and integration system performance measure-
ments. This discontinued benchmark targets the physical data integration within the context
of ETL processes. Compared to EIPBench it does not specify EIP operations on the messages,
works only with a simple XML-based message format, and neglects the message delivery semantics
aspects of integration systems. Similar to our benchmark, DIPBench specifies several scale factors
for data size, time and data distribution and allows to conduct concurrent user tests (i.e., parallel
streams). The provided DIPBench tool suite [BHLW08b] focuses on the flexible configuration
and pluggability of integration adapters (cf. Table 5.8).

Stream / Event Processing Benchmarks like FINCoS [MBM13, MBM08] target the identifica-
tion of performance bottlenecks in event processing systems, by measuring event throughput and
the scalability of engines when increasing the throughput of small event messages and continuous
streams. Similar to EIPBench different load conditions can be configured, however, messages sizes
and format complexities are static. Although the defined operators (e.g., join, select, project) are
similar to the operations in integration systems, the definition does not target the EIPs.

EIPBench Summarizing our analysis in Table 5.8, none of the benchmarks covers all relevant
aspects for the evaluation of integration processing in the context of data-aware scenarios.
EIPBench fills this void and addresses the following aspects:

� the analysis and classification of common and new integration scenarios and the required
patterns.

� representative message models used in these integration scenarios (cf. message format and
conversion).

� the definition of a message throughput, micro-benchmark for EIPs that covers all bench-
marking principles (e.g., relevance, scalability) and specifies microscale factors for each
pattern (incl. message delivery semantics; cf. RQ2-3(a)).

� the specification of macroscale factors that address the aspects of large messages (i.e.,
concurrent user and micro-batching for RQ2-3(b)).

5.6 Conclusions

With EIPBench we specify the first benchmark for integration patterns, which play a crucial
role for the message throughput and processing latency of integration scenarios (e.g., represented
by IPTGs from Section 3.2). The benchmark definitions put emphasis on the identified micro-
and macroscale factors, for which we provided a reference implementation. Based on that,
we experimentally evaluated the benchmark definitions along the discussed research questions
RQ2-3(a)–(c).

The experimental results bluntly show the deficits of current software-based solutions and
answer our sub research question RQ2-3(a) “What is the impact of complex message routing
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and transformation?” (relevance: cf. conclusions (1) and (4)) by notable performance drops,
when increasing the complexity, the route branching or redeliveries. Even more notable for
question RQ2-3(b) “What is the impact of non-functional aspects such as message volume and
concurrency?”, the negative impact on the scalability for increasing message sizes and user scaling
is significant (cf. conclusion (5)). When applying the benchmark the experimental table-centric
integration processing (vectorization), featuring micro-batching, the question RQ2-3(b) “What
is the potential of new message processing approaches, and how can they be compared?” can
be clearly answered by stressing on the shown potential of such a design (cf. conclusion (2)).
The evaluation also shows important deficits of current implementations for core integration
capabilities (cf. conclusions (6) and (8), as well as interesting trade-offs (cf. conclusions (3) and
(7)). In summary, these questions are answered by the EIPBench definition and a prototypical
implementation in this chapter and denote contributions in form of DSR artifacts:

� A data set for textual message protocols,

� A benchmark definition (simple, relevant, scalable, portable) which is also extensible, e.g.,
for multimedia data (→ RQ3-2(a,b)),

� An instantiation of the benchmark in form of a prototype (→ RQ3-2(c)).

The benchmark is defined in an understandable way per pattern and is based on a data set
consisting of textual message protocols matching the specification of the benchmark, similar to
TPC datasets. Benchmarks are defined for relevant operations in application integration (cf.
RQ3-2(a)) with built-in micro and macroscale levels according to the pattern characteristics (cf.
RQ3-2(b)). While the benchmarks are applicable to subsequent pattern solutions, the instantiation
for our two runtime systems showed the impact of the benchmarks on current solutions and on
improved runtime (cf. RQ3-2(c)).

Together with the specified contributions, the identified deficits can now be studied further
for contemporary technological trends such as improved pattern solutions.

Limitations Limitations of the approach concern the focus on benchmarking integration patterns
in the form of a micro-benchmark. While the current EIPBench design allows for the evaluation
of pattern compositions, it does not yet care for more sophisticated composition topics like
benchmarking scenario partitioning (e.g., as in a multi-cloud environment, e.g., [IPE14]). This
naturally leads to the question about the comprehensiveness of the benchmark. With a strong
focus on patterns the benchmark might need extensions at least in the following cases: (i) for new
patterns, (ii) for new scenarios with new message formats, (iii) and new processing techniques.
While we have already shown the suitability for vectorization (addressing (iii)) and will discuss a
benchmark extension for multimedia data in Section 6.3 (addressing (ii)), new patterns might be
mostly covered by the general micro- and macroscaling benchmark specifications.

We recall that EIPBench allows for the evaluation of IPTG and thus timed db-net-based
integration scenarios, e.g., as Camel routes (Section 5.1). However, besides our timed db-net with
boundary implementation in Section 3.2 there is currently no EAI system with corresponding
modeling language that supports pattern contracts. While this would allow for correctness
checking and not improve the efficiency of message processing, we leave an extension of current
implementations with contract graphs and a translation of IPCGs to their executable runtime
artifacts (e.g., Camel routes, processors) as future work.

Moreover, besides the benchmark results, the analysis brought up several areas for future
research in the area of the benchmark (e.g., extend the benchmark for pattern composition and
integration adapter processing) and more efficient message processing (e.g., routing selectivity
and re-ordering, more efficient in-memory TIP/AC processing). To fully leverage micro-batching
within integration systems, the integration pattern definitions should be extended. In this context,
the system aspects message and channel creation have to be re-visited.
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In general, an independent, online evaluation platform for benchmarking and comparing
pattern solutions similar to TPC would be preferable.

Impact The impact of the benchmark is manifold. It not only allows for an evaluation of
single pattern implementations and their compositions, but also for their comparison. With that,
different variants and increments of pattern implementations can be compared and performance
degradations identified immediately, and set into a broader context with alternative runtime
environments. In a similar way, EIPBench is employed by SAP Cloud Platform Integration for
its high frequent cloud deliveries.
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Pattern Solutions
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The human spirit must prevail over technology.

Albert Einstein

In this chapter we seek a more practical approach to integration patterns according to the
pattern application step in Section 2.1, which is about finding a suitable representation called
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pattern solution (cf. Section 2.1.4) of a pattern in
the context of a technological domain. We recall
that Chapters 2 to 4 (in Part I) feature several
instantiations of the presented concepts in the form
of prototypes (e.g., CPN Tools extension in Sec-
tion 3.1.3). The prototypes were constructed for
specific purposes such as the responsible develop-
ment of integration scenarios and their improve-
ments, but not for efficient message processing and
not with the latest technological trends in mind. As
discussed in Chapter 5, the work on improvements
of integration scenarios (cf. Chapter 4) is now com-
plemented by more efficient pattern instantiations
on the system level. We argue that the technology
trends identified in Chapters 1 and 2 are not only

drivers of (disruptive) change (e.g., digital transformation) accompanied by many new challenges
for applications and their integration [Rit17b], but they also offer new design possibilities for
existing and new pattern solutions. Hence, we explore new solutions in promising recent tech-
nological trends for a more efficient EAI processing (e.g., for message throughput, processing
latency). We assess the new solutions for a productive usage and compare them to Apache Camel
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Figure 6.1: CCT scenario with focus on the integration processing

using our benchmark from Chapter 5. For efficient message processing, the following running
example is considered.

Example 6.1. For scenarios like the Connected Car Telemetry (CCT) [SAP19c] device integration
from the vehicle insights domain, integration systems receive large amounts of telemetry data.
This is similar for scenarios like contract accounts receivable and payable (FI-CA: incl. convergent
charging, invoicing and billing) [SAP19b] from the ERP financial domain (not shown), which
require the systems to deal with large amounts of billable item information (e.g., such as call
record details for song billing in media library). Consequently, EAI systems face challenges that
are currently solved through special offline, “buffer-and-batch” solutions. Figure 6.1 shows a
simplified realization of the CCT scenario, which will be used as motivating example in the
two subsequent pattern solutions. CCT connects cars with (public or private cloud) business
applications where each car (e.g., 260.3 million in the US1) sends aggregated telemetry data and
error code messages of several kB every few seconds for further processing in a data warehouse or
analytic application. Briefly, the Vehicle Data messages represent telemetry data (e.g., vehicle
speed) and error codes that are received at high frequency and volume by a message Buffer and
stored during the data ingestion into the Vehicle Data table. We focus on the CCT processing that

1Number of vehicles in the US, visited 5/2019: http://www.statista.com/statistics/183505/

number-of-vehicles-in-the-united-states-since-1990/

202

http://www.statista.com/statistics/183505/number-of-vehicles-in-the-united-states-since-1990/
http://www.statista.com/statistics/183505/number-of-vehicles-in-the-united-states-since-1990/


EAI	system

Volume	(data	size) Velocity	(speed	of
change)

Variety	(data
formats)

Databases	(e.g.,	SQL,
NoSQL),	BDMS,	...

Established
Realizations

Challenge

Established
Solutions Transactions

Software	(on	von	Neumann
architecture),	hardware

(e.g.,	Dataflow
architecture)

Tables	/
Files

Batch
processing

Event
processing

Stream
processing

Classical	Data
Processing
Systems

Textual Multimedia

Multimedia
Data

Processing
Systems

Vectorization SpecializationProposed	Novel
Solution Domain	Evolution

Multimodal

-

Figure 6.2: Solution proposals for the three Vs in related domains

includes integration semantics like content-based routing (i.e., to distinguish between the telemetry
and error code data), content filtering (i.e., removing unnecessary data), content enrichment (i.e.,
adding master data), and translation into the format of the target application. Furthermore, the
message senders (Devices) and other application domains (i.e., Master Data, CCT Analytics) are
decoupled. Besides the de-coupling of a growing number of distinct CCT senders, they produce
varying workloads that are currently difficult to process by applications. Current solutions show
a tight coupling between senders and the CCT application and are implemented in a process-like
but “ad-hoc” manner, however, do not formalize, improve or optimize the processing according
to the integration semantics. The offline, batch-processing nature of these solutions prevents
them from (near) real-time analysis of the data, which requires novel solutions. We observe that
solutions for scenarios like CCT and FI-CA are currently built in the same way, and thus they
have the same problems. �

In the spirit of Einstein’s quote about technology becoming part of our everyday lives, we
argue for a productive application of the identified trends (i.e., volume, velocity and variety)
in favor of improved pattern solutions, according to our efficiency sub-question RQ3-1 “Which
related concepts and technology trends can be used to improve integration processing and how can
this be practically realized?” to derive novel solutions (e.g., for scenarios like CCT and FI-CA).
Together, RQ3-1 and RQ3-2 (cf. Chapter 5) target an answer to the general research question
RQ3 “Which related concepts and technology trends can be used to improve integration processing
and how can the resulting integration solutions be practically realized and compared?”. We explore
novel pattern solutions based on some of the research challenges that we identified in Chapters 1
and 2: data volume, velocity and variety. Figure 6.2 classifies the challenges in the context of their
characteristics and current implementations in related domains like databases or data integration
from Figure 1.1 (on page 3). The research challenges come with established solutions for these
challenges in related domains. These solutions have common established realizations in the form
of software systems or hardware.

The challenge of (big) data size or volume processing has existed for a long time and fostered the
conception of (relational) databases for structured data (e.g., [Cod70]), and later NoSQL databases
for unstructured data (e.g., [Cat11]). The pre-dominant data processing style is batch processing
or vectorization (e.g., to build aggregates) [SAP19c] as discussed in Section 5.1.2. More recently,
the ever growing amounts of data lead to the development of so called Big Data Management
Systems (BDMS) like Asterix DB [AAA+14] or SAP HANA [MLH+15, FML+12, FCP+12]. The
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BDMS allow for uniform access to structured and unstructured data across multiple heterogeneous
stores (e.g., row, column, graph, object) [RPBL13]. In the spirit of active databases [WC96, PD99],
BDMS emerged as data-centric (application) programming platforms with uniform processing
capabilities from algebraic [KKL15] and statistical data processing [GLW+11] up to user-defined
functions [BRFR12] and built-in machine learning capabilities [BBC+12]. We recall the promising
message throughput results for the Apache Camel vectorization extension benchmarked in
Chapter 5. However, we also noted a decline in performance for growing amounts of data, which is
targeted by big data management systems. Consequently, our first pattern solution in Section 6.1
targets an implementation of integration pattern compositions within a BDMS. This is not an
implementation of timed db-nets from Section 3.1, but we give practical hints on similarities and
differences in terms of the transition system. A formal translation from timed db-nets to BDMS
and proofs of their equivalence is considered as future work.

The speed of change, called velocity, is the second of the contemporary challenges in EAI.
While current solutions support batch processing (e.g., see Example 6.1), other forms of processing
gained more importance. For smaller, higher frequent data packets, the domain of (complex) event
processing emerged. Since events are one type of EAI messages among many others according
to [HW04], event processing denotes a subset of EAI as experimentally studied in [ES13] using
Apache Camel [IA10]. A processing style that was developed for arbitrary data sizes is stream
processing or streaming (e.g., [GÖ03, LG03]). Contemporary software systems include but are
not limited to those by the Apache Foundation: Spark [ZCF+10], Flink [CKE+15], Storm [IS15]
and Kafka [Gar13]. Most of them combine batch and stream processing similar to the table-
centric processing system based on Camel used for our benchmark Section 5.1.2. However,
they still denote software solutions based on the von Neumann hardware architecture, and thus
provide instruction streams and not data streams according to [Bac78, AI83]. A better suitable
alternative is denoted by a Dataflow architecture [Cul86], which is currently best implemented
in the form of hardware specializations (cf. [Har97, Rit17b]). Reprogrammable hardware like
Field Programmable Gate Arrays (FPGAs) represent the best balance in the trade-off between
efficiency represented by ASICs and flexibility such as software [Rit17b]. Consequently, our
second pattern solution targets an implementation on reprogrammable hardware in the form of a
Dataflow streaming EAI system in Section 6.2. Again, we do not claim equivalence between the
resulting solution and timed db-nets.

The emergence of new data formats during EAI processing concerns its variety (cf. Chapters 1
and 2). While EAI was built for textual message formats (e.g., tabular, hierarchical, graph) [Lin00,
HW04], social (media) trends require binary and multimedia data processing (e.g., image, video),
and eventually combined textual and multimedia (short multimodal) processing. The new message
formats are required for new integration scenarios as part of the digital transformation of more
and more aspects of our lives. Consequently, the final pattern solution addresses the new variety
challenges in Section 6.3 by specifying and studying EAI processing with multimedia data, which
leads over to more complex user interactions and configuration. After these solutions are set into
context in Section 6.4, we conclude in Section 6.5 with a discussion on several important lessons
learned (incl. the relationship between their execution semantics and timed db-net).

The three studies show the great potential of emerging technologies in the context of the
integration patterns and pave the way for industrial solutions. Thereby the solutions do not only
improve existing ones, but allow for new innovative business models (e.g., near real-time billing
or car analytics) and more sustainable solutions (e.g., with respect to energy consumption).

Parts of this chapter have appeared in the proceedings of BICOD 2017 [Rit17a] (vectorization),
DEBS 2017 [RDMRM17] and ACTIVE@Middleware 2017 [Rit17b] (specialization), and EDOC
2017 [RRM17] (variety, domain evolution).
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Figure 6.3: Timed db-net realizations

6.1 Vectorization: Database-centric Pattern Solutions

In this section we revisit the system design of our timed db-net from Section 3.1 in the context of
the vectorization processing style (cf. Section 5.1.2) and modern Big Data Management Systems
(BDMS). While the proposed solution is correct with respect to the execution semantics of
the realized integration patterns, we do not formally show an equivalence with timed db-nets,
nor do we compare the CPN Tools prototype message processing capabilities with our BDMS
pattern solution. However, we give an intuition on similarities between the two solutions. In
particular, the design of db-nets in Figure 3.4 (on page 69) denotes a control layer separate
from the data logic and persistence layers. Figure 6.3(a) sets this design into the context of the
EAI system architecture in Figure 2.4 (on page 26). The integration patterns (e.g., integration
adapter, composed patterns denoted by integration program) are defined on the pattern layer
(i.e., timed db-net control layer), requiring (mediated) access to the database layer (i.e., timed
db-net persistence layer). While the differentiation of these layers allows for a formal analysis as
discussed in Section 3.1.2, the design is not efficient from a system perspective: The data moves
on the control layer and requires frequent updates of the lower layers (incl. data shipment).

Example 6.2. We recall the CCT scenario in Figure 6.1, where the data is shipped several times
between the integration logic denoted by CCT Integration and the Application Domains (i.e.,
Master Data, CCT Analytics) with corresponding actions: read Vehicle Data, read Master Data,
and write CCT Analytics. �

For a more efficient interaction with the database layer, Vrhovnik et al. [VSS+07, VSES08]
propose a solution for the related business process systems. In terms of timed db-nets this
requires an adaptation of the data logic layer for more efficient mediation between the control and
persistence layers (e.g., token population to view places). Alternatively, there are ideas inspired
by the active database domain [WC96, PD99] to implement integration processing within a
(federated) database management system [Böh11, Rit14c], and thus leverage their functional (e.g.,
structured, batch data processing) and non-functional capabilities (e.g., scalability, transactional
guarantees). Essentially, this means to “push-down” the integration logic from the application
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tier (incl. sender / receiver decoupling) into the database, by representing the transition system
as well as the patterns with database means (e.g., PL/SQL, stores) as depicted in Figure 6.3(b).
We call such a solution a Database Transition System (DTS). However, this has been difficult so
far due to the limited expressiveness of the (active) database capabilities (e.g., no transactional
decoupling between sender and receiver possible with database triggers).

In the context of the shift of traditional relational database management systems towards
BDMS (i.e., essentially data-centric application programming platforms), we argue that not
only could applications having their data in the same database system benefit from integration
processing within the database system, but also that EAI systems could “push-down” their
semantics to the database in order to improve their processing. More precisely, we found that
there are three types of integration scenarios that would benefit from this [Rit14c]: (C1) two
applications with data in the same database system with built-in integration logic (7→ internal /
internal), (C2) one application with data on the database system (with integration logic) receives
or sends out data (7→ internal / external), (C3) two applications that have no data on the database
system with integration logic ( 7→ external / external). The table-centric integration processing
described in Section 5.1.2, investigates (C3) on the application tier by “moving up” database
processing techniques into an integration system. The results were especially promising for
message throughput and scalability. While (C2) is partially covered by JMS-like message queuing
extensions of database systems [GM03] (i.e., Buffer to Vehicle Data in Figure 6.1), integration
processes in the database (cf. (C1)) were only partially addressed by evaluating nested views for
engineering applications in [HMWMS87] so far, and thus proposed by [BLN86] as future research.
Consequently, we address the internal / internal (C1) case and investigate the integration pattern
semantics and the transition system in the context of relational database processing along the
following research sub-questions of RQ3-1 with respect to databases (DBx ):

� (DB1): “How can EAI semantics be represented in database systems?”

� (DB2): “How can EAI processing semantics be compatibly adapted to databases?”

� (DB3): “Can databases accelerate message processing?”

While question DB1 targets basic EIP semantics like the representation of messages and message
channels, as well as message processors that require extended semantics (cf. Chapter 5), DB2
is about a transactional process model that is compliant with the standard integration pattern
execution semantics. We measure the message throughput using the EIPBench benchmark for
selected EIPs for answering question DB3.

We briefly introduce the required database foundations Section 6.1.1, before discussing database
processes in Section 6.1.2 starting from basic integration principles (e.g., document message,
datatype channel, canonical data model) to the transition system (cf. DB1, DB2), and discuss
alternative pattern semantics, more efficiently represented on databases, and their representation
in timed db-net. Note that we do not formally map the timed db-net integration patterns and
their composition to database processes, however, briefly discuss similarities between the concepts.
The evaluation includes throughput and latency studies according to EIPBench (cf. Chapter 5)
and the motivating CCT example (cf. DB3).

Parts of this section have appeared in the proceedings of BICOD 2017 [Rit17a].

6.1.1 Transaction Processing and Big Data Management Systems

For a better understanding of our proposed database transition system solution, we briefly
introduce their underlying (big data) database management and transaction processing concepts.
We assume basic knowledge about relational databases and ACID transactions, referred to simply
as transactions. If unfamiliar with these terms or concepts, see [UGMW01, EN10, KE11].
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Figure 6.4: Database transaction states (adapted from [KE11])

Database Transaction Processing and Programming Model

The consistency of database system state changes (e.g., read, write) is preserved by transactions
that denote a sequence of read and write operations as well as computation steps. Transactions
might be executed concurrently, and failures might occur, which requires concurrency and failure
transparency. An active ACID transaction always terminates as shown in Figure 6.4 either by
a commit, after the last task or statement has been successfully executed, or abort, after the
rollback of a transaction (e.g., system failure, unsatisfied condition, deadlock, crash), or explicit
abort. In the latter case, the transaction performs a rollback, which means that the actions
are undone, and the database returns into the state before the execution. When a transaction
successfully commits, the results are permanently stored in the database (known as durability),
and the results are visible to other transactions (known as consistency, isolation). During the
execution of the last operation of a transaction it goes to a partially committed state, which gives
the possibility to abort or commit the transaction. Within a database system, transactions are
abstracted by a programming model. The subsequently introduced programming model concepts
for transaction processing (transaction bracketing, chained transactions and boundary operations,
and savepoints) are summarized from [GR92, BN09], if not stated otherwise.

Transaction Bracketing Database programming models implicitly or explicitly offer transac-
tion bracketing, which allows for the specification of the commands along the states in Figure 6.4
to start, commit and abort a transaction. The commands “bracket” a transaction by identifying
which operations execute in the scope of that transaction. The start command creates a new
transaction, which means that all subsequent operations are part of that transaction until commit
or abort are invoked. The application or program that invokes a transaction finds all its procedures
executed within that transaction. The bracketing of several procedures into one transaction might
lead to problems like the transaction composability problem, if one of these procedures start new
transactions. Similarly, the abortion of a transaction in one of the procedures requires further
specification of the semantics in the form of nested transactions. Since we make no use of nested
transactions and enable composability by allowing only one start and one commit or abort in
larger transactions, we refer the interested reader to [GR92, BN09].

Chained Transactions and Boundary Operations Usually, in a database system, tasks or
procedures are executed within a transaction. Consequently, the transactions can be created by
the system, and thus only require the specification of a “boundary” between the transactions. To
ensure that the programs are always executed within a transaction, these so called “boundary
operations” commit one transaction and immediately start another one (e.g., IBM’s syncpoint).

Since the sequence of transactions is executed in the form of a chain, this programming style
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is called chained transactions. Alternatively, a program controls the creation of transactions,
which does not need to happen right after the commit or abort of a previous one, and is thus
called unchained. While this seems to be more flexible, it mostly makes sense if transactions have
significant processing overhead, even if it does not access recoverable data.

Savepoints In the presence of (unsolicited) aborts and exceptions during the execution, trans-
actions can periodically save its state for recovery (e.g., by the database exception handler).
This abstraction that does not undo all of the transaction’s effects is called a savepoint. These
savepoints can be programmatically issued through a savepoint command, which tags certain
points during the execution of a transaction. Even if a transaction must be aborted and neglects
the possibility of a retry, the saved information allows for the generation of diagnostic information
about the exceptional situation. With savepoints, nested transactions can be realized.

Example 6.3. The transaction processing in database systems is shown by example in Figure 6.5
as a directed graph. The persistent tables or savepoints are depicted as black and transient
operations or data types as white nodes. The first transaction brackets one operation step1 that
reads from Table 1 (i.e., state1) and writes into an intermediate persistent node state2. If the
operation finished successfully, transaction t0 commits with commit, otherwise it aborts with
abort and performs a rollback to the previous state state1. The second transaction t1 of the
chained transactions brackets three operations {step2, step3, step4} and inserts the records into
Table 2 of App2 (i.e., state3). In case of an exception (e.g., in step3), the transaction aborts and
can be started from the intermediate persistent node state2, instead of Table 1 (i.e., state1).

Notably, during the execution of the first instance of t0, a concurrent, second instance t′0
would work on the same records until t0 removes the records from state1 and commits them in
state2. Moreover, the chained transactions are executed as part of what is called App1. �

Remark 6.4 (Batch Processing). In the context of transaction processing, batch processing
systems execute each batch as a sequence of transactions [GR92, BN09]. To avoid serializability
problems (e.g., through concurrent execution), the transactions are executed one transaction at a
time. Moreover, batch processing can be configured with respect to their time of execution and
the batch size (number of records). �

Big Data Management Systems

In recent years, relational database management systems evolved into data-centric programming
platforms, called Big Data Management Systems (BDMS) [AAA+14]. This trend started at
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Figure 6.6: Big data management system architecture sketch (adapted from [FML+12, MLH+15])

the latest in 2008 with the fusion of OLTP and OLAP engines, which essentially combined
the domains of transactional and analytical applications (e.g., SAP HANA database [FML+12,
MLH+15], HyPer [KN10, KN11]). To support richer analytical applications and application
services, more capabilities were added meanwhile, thus making the database a data-centric
programming platform for applications. Figure 6.6 depicts a sketch of such a BDMS with a
focus on relational processing that we compiled from the classical database architecture and the
extensions (cf. [FML+12, MLH+15, AAA+14]). Notably, the core database architecture remains
mostly the same. The data is stored in the Data Storage, the Engines access the data on behalf
of the applications, which use predefined Client Interfaces. Thereby, client Authorizations are
checked, the Transaction Manager ensures the consistency of the operations, Metadata is provided
and the Cluster is managed.

The emergence of hybrid OLTP and OLAP systems leads to new row / column engines and
stores [FML+12, MLH+15, KN10, KN11], which was extended by graph [RPBL13, GCKP13],
algebraic [KKL15, LGG+18] and statistical data processing [GLW+11] up to user-defined functions
(e.g., [KE11, BRFR12]) and built-in machine learning capabilities [BBC+12] as discussed before.
However, the most notable extensions came with Data Ingestion and Analytic Application,
which allowed for the development of data-centric applications within or at least close to the
database. Therefore, the already existing data channels like Data Replication and database
JMS broker [GM03], were complemented by general Data Integration and Web Server (e.g.,
[GC15]) as well as Data Stream Processing (e.g., [AAA+14]) capabilities. For the development
of applications, data-centric application Programming Models have been proposed (e.g., Microsoft
Azure Data Lake [RSD+17] with big data language [CJL+08]), and Content Management as well
as Security capabilities were added. Moreover, (cron-like) Job Scheduling2,3 allows for timed
application logic down to the database constructs.

Example 6.5. With the job scheduling capabilities, database client interface constructs (e.g.,
in SQL and PL/SQL) can be scheduled. Consequently, the transaction coupling (e.g., of active
database constructs like triggers) can be overcome. In other words, the two transactions t0 and

2Microsoft SQL Server — Schedule a Job, visisted 5/2019: https://docs.microsoft.com/en-us/sql/ssms/

agent/schedule-a-job?view=sql-server-2017
3SAP HANA database — XS Engine job scheduling, visited 5/2019: https://blogs.sap.com/2015/03/19/

step-by-step-procedure-to-schedule-job-in-sap-hana-to-execute-stored-procedure/
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Figure 6.7: Multi-relational message collection

t1 in Figure 6.5 could be scheduled in “system”-controlled transactions with read-privileges for
App1 tables and write-privileges for App2 tables, and move data between different application
domains within the database, without requiring App1 to access tables of App2 as well as having
no data movement in a transaction of an application. This essentially allows for the decoupling
of applications in the database. �

This new type of data-centric application programming system allows for building rich
applications (e.g., EAI system) close to the data that leverage the database transactions, scalability
and big data processing capabilities.

6.1.2 Database Transition System

As motivated in Figure 6.3(b), the complete EAI processing logic is represented within a relational
database close to the data of applications. Therefore, we map the integration semantics in the
form of integration patterns and their compositions to database concepts in a Database Transition
System (DTS), in which the complete pattern compositions are executed. In terms of timed
db-net, the control and data logic layers are represented by (procedural) database constructs,
and the persistence layer denotes different kinds of stores like row, column or graph stores.

Relational Pattern Definitions

First we introduce basic integration semantics and discuss the implications on the integration
patterns and give realizations for those of the motivating CCT example: Message, Message
Channel, Message Filter, Content-based Router, Message Translator.

Basic Principles: Multi-relational Message Collections Set-oriented processing changes
the structure of messages, however, does not require any change at the message channel level —
although the current document message or the datatype channel could be specialized to indicate
the nature of the relational messages exchanged. According to Section 5.3, a message m:=(b,Hb)
consists of a body b with arbitrary content and a set of name / value-pair meta-data entries
describing b, called the header Hb. An extension for multimedia data is a set of name / binary
value attachments A. For example, an e-Mail adapter is able to receive messages with a textual
body and attachments.
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For relational message processing, the body b has to be restricted to relational message
contents. For example, Figure 6.7 denotes the body br, header Hr,br and attachment Ar relations.
In addition, a control record for each message is inserted into an optional message relation,
which manages the mapping of messages to faults that happened during processing. As such,
mr denotes a multi-relational message, similar to a relational variant of a multi-format message
from Section 5.3, since it has to be represented using one relation for each of the distinct formats
of the message entries. A relational message mr := (br, Hr,br , Ar) consists of a relational message
body br in normalized form, and sets of headers Hr,br and attachments Ar represented by ternary
relations in the form of name / value character, and name / binary character-clob/blob fields.
When considering br to be in BCNF, a relational message mr consists of at least one and up
to n relations, allowing for different, possibly joining body relations. In conventional message
processing, the body table would have only one entry in each of the corresponding database
tables, representing the content of one message. For more efficient processing in databases, we
define a relational message collection MCr of mr. A (relational) message collection MCr :=
(Bf1r , B

f2
r , ...B

fk
r , Hr,br , Ar) consists of a collection of k message content sets Bf of the same

message format f , Hr,br (cf. data col with <type>) and Ar relations. While the header and
attachment relations can be shared between messages, the body might require additional relations,
if the message formats differ.

In practice, the constructed MCr can be represented by a table instance for each relation.
With this representation tree- and graph like message formats (e.g., XML, JSON) can be expressed.
However, the header and attachment relations, which are added as input and output to each
message processor, are accessible using relational algebra (e.g., selection, join) in contrast to
standard XML processing (e.g., not considered in [BK11]).

Selected Relational Integration Patterns We recall that the pipeline model of integration
scenarios consists of message channels that connect message processors by passing the outgoing
message of the previous processor to the subsequent processor as input message (cf. Section 2.1).
These processors are generally categorized as routing and transformation patterns. We focus
on two of the patterns from the motivating example (cf. Figure 6.1), namely a Content-based
Router (incl. Message Filter) and a Message Translator. For a general expressiveness discussion
of relational integration patterns, we refer to Section 5.1.2 and [Rit14c, Rit15b].

Content-based Router. The semantics of the Content-based Router, given by the timed db-net
in Figure 3.10(a) (on page 81), are algorithmically described in Listing 6.1 to put some more
emphasis on the message generation aspects. With a message cardinality of 1:1 and channel
cardinality of 1:n (actually 1:1, since only one channel is selected) the router checks the message
content sequentially (cf. line 2). If a channel condition chi.cond() matches the original message
m, then m is routed to that channel, and no further condition is examined (cf. line 3). Otherwise,
the other channels are checked in sequence until one matches. The message is routed to a default
channel chdefault, if none of the conditions match (cf. line 6). Since the original message is
forwarded, the router is read-only and non-message generating. While this definition preserves
the semantics of the router according to Chapters 2 and 3, for a database system this essentially
means to process a single record in a table at a time, which is not efficient.

On Database. In the context of (set-oriented) database systems, these semantics can be changed
for a more efficient parallel message processing. The actual message and channel cardinalities are
adapted for sending collections of messages to multiple receivers. Listing 6.2 shows the modified
semantics with a focus on the message generation, in which all channel conditions are evaluated on
a set of messages MCr in parallel (cf. line 1). If a message content matches a channel condition,
the message is added to a new message collection (MCchir ; cf. line 7) that is created per channel
(cf. lines 4–6). Consequently, each channel condition results in a set of records (i.e., message
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collection). The default channel can either be added to the list of channels C beforehand or
executed for all messages mr ∈ MCr that are not in one of the message collections of one of the
channels (cf. lines 8–10). For each channel chi the message collections MCchir can be routed in
parallel (cf. line 11).

Listing 6.1: Original CBR semantics

1 s e q u e n t i a l f o r channel chi ∈ C, m
2 i f match (chi . cond ( ) , m) then
3 route (m, chi ) ; r e turn ;
4 end i f ;
5 end f o r ;
6 route (m, chdefault ) ;

Listing 6.2: Table CBR semantics

1 p a r a l l e l f o r channel chi ∈ C

2 c r e a t e (MCchi
r )

3 f o r message mr,j ∈ MCr

4 i f match (chi . cond ( ) , mr,j ) then

5 add (mr,j , MCchi
r )

6 end i f ;
7 end f o r ;

8 i f MCchi
r == ∅

9 add (MCr , MC
chdefault
r ) ;

10 end i f ;
11 route (MCr , chi ) ;
12 end f o r ;

The new semantics are formally defined by the timed db-net in Figure 6.8. The message cardinality
is n:m (depicted by input List(msg) and output {List(msg1), List(msg2), ...List(msgk)}) and
the channel cardinality changes to 1:k (depicted by output channels {ch1, ch2, ..., chk}), which
means that several messages can be processed in one transaction. Essentially, the resulting
semantics allow for the routing of one message to several endpoints, and thus changes the ordered,
only-one-receiver semantics, which can be validated and verified in timed db-net.

Content Enricher. The semantics of the Content Enricher pattern, given in Figure 3.10(b) (on page
81), mostly remains the same. The enricher adds content to an existing message, if the message
originator does not provide all the required data items. The enrichment can be done (a) statically
(i.e., constant), (b) from the message itself or (c) from an external source. We consider (c), while
the external data is queried from another database table within the same system.

On Database. During the enrichment in the database, queries for the totality of enrichments
for all messages in the input set have to be handled. Thereby, the message cardinality changes
from 1:1 to n:n, but the channel cardinality remains the same, and thus the timed db-net stays
structurally the same (not shown).

Message Translator. The semantics of the translator, given in the message processor example Fig-
ure 3.44 (on page 122), is to translate one message content to another to make it understandable
for its receiving processor or endpoint [HW04]. The translator has a channel and a message
cardinality of 1:1. It does not generate new messages, but modifies the current one.

On Database. A database Message Translator changes its message cardinality to n:n, allowing
for a more efficient translation of several messages in one MCr. Again, the translation could be
executed in parallel (e.g., by partitioning MCr), depending on the underlying database system.
Note that the timed db-net stays structurally the same (not shown).

Relational Message Processing

For the execution of pattern compositions we specify a suitable transactional processing model
based on the considerations from timed db-nets by defining an adapted, but compatible message
processing semantics.
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Figure 6.9: Transactional process model

Transactional Process Model For the processing semantics of the database transition system,
we recall the timed db-net based processing model of integration compositions from Chapter 3. In
timed db-nets the control and dataflow in the Net does not require database transactions, if only
control places and transitions without persistence layer operations are used. For the persistence
operations, the view places continuously read data in read transactions, and transitions execute
actions in one transaction. Although timed db-net transactions provide ACID guarantees, they
are atomic or “unchained” [GR92, BN09]. Through the unchained transactions, the data logic
needs to start, abort and commit the transaction bracket for each operation.

In contrast, with a database transition system as depicted in Figure 6.3(b) (on page 205),
the control, data logic and persistence layers are represented within the database, and thus
fully transactional (similar to “chained transactions” [GR92, BN09]). In other words, a pattern
composition is assumed to be always executing within a transaction, which can be realized by
chained transactions and boundary operations. That means, when a boundary operation commits
one transaction another transaction immediately starts. For exceptional cases persistent places
similar to IBM syncpoint (similar to the concept of savepoints within transactions [GR92, BN09])
are required.
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When assuming that a pattern composition is always executed within one or many database
transactions (e.g., by chained transactions and boundary operations [GR92, BN09]) and the
applications store their data in the same database without shared schema access (i.e., sender,
receiver decoupling), the resulting model for a database transition system is shown in Figure 6.9.
We have associated timed db-net concepts to the concepts of our transactional process model to
attempt a mapping for a better understanding of their relation. A formal relationship is left for
future work. Now, the pattern composition or processing instance similar to a timed db-net Net
is granted read-only access to the sender data and write access to the receiver data and consists
of at least one database transaction, where the control and data flow are mapped to database
constructs. Notably, we do not consider nested transactions [GR92, BN09]. Each transaction is
composed of database steps (similar to timed db-net transitions) and states (similar to timed
db-net places). The database steps behave similar to timed db-net transitions by moving the
data from a source to a target state, while executing Queries and Actions. Database states can
be persistent on disk through committing the transaction (similar to timed db-net view places) or
transient as data type definitions within one transaction (similar to timed db-net control places).
Since every database step is part of a transaction, a transaction requires at least a persistent
start and end state and arbitrarily many intermediate persistent (e.g., table) or transient (e.g.,
table type) states. A step processes the data from a preceding state and moves it to a successor.
The control flow and dataflow map to the database states that are bound to entity data models
as DB schema (i.e., message formats). Each state has a step “writing” to or “reading” from it.
Transient states are parameter types within PL/SQL procedure calls.

Example 6.6. Figures 6.10 and 6.11 illustrate the described processing model in terms of the
three most common structural pattern categories (cf. Section 3.2.1) as directed graph with steps
denoting white nodes and states denoting black nodes: message processor (cf. Figure 6.10), fork
(cf. Figure 6.11(a)) and join (cf. Figure 6.11(b)). The sending and receiving adapters or stateful
processors represent persistent states (savepoints marked by black nodes) and message processors
without state are denoted as steps with transient state (white nodes). In one transaction, messages
are read by step1 from the source (i.e., state state1 for message processor and fork, and states
state1, state2 for join) to the target state(s) (i.e., state state2 for message processor, states
state2, state3 for fork, and state state3 for join), while grouping sets of updates into a single
transaction (as mentioned in [GR92, BN09]). �

Database Message Processing For database message processing, let us assume an instantia-
tion of the transactional process model from Figure 6.9 on a database. There, the message is
processed in one transaction from one persistent state to another (i.e., store and forward [Lin00]).
This would become a challenge for integration scenarios represented by timed db-nets, since
it might result in several cross pattern sub-processes. Note that in future work, this could be
conceptually approached by considering the pattern boundaries to be persistent states, which
would give each pattern at least one dedicated transaction and avoid cross-pattern transactions.
However, additional transactions with persistent states might lead to performance degradations.

state1 state2step1

Figure 6.10: Structural pattern category: message processor
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Figure 6.11: Structural pattern categories: fork and join

Back to the database processing, in case of an error, the original message is redelivered from
the last persistent state. However, on current database systems the transaction processing does
not support setting a message or a collection MC of messages into “in-flight” (i.e., marked
as already taken up by another transaction), but they are still visible to other transactions.
Figure 6.12 illustrates the processing on a database denoting source tables and target tabler
tables as persistent states, and several transient message processors (i.e., no persistent state
in-between). At the start of the processing, the messages msg1 and msg2 in the current message
collection MCtx1 are read in transaction tx1, and subsequently processed by transient message
processors, before the messages are inserted in the target table. Since database triggers are
executed within the sender’s transaction context, we assume the transactions to be started by
a controller or scheduler component (cf. BDMS job scheduling capabilities in Section 6.1.1;
similar to the operator scheduling in streaming systems [CÇR+03]). The scheduler processes
a new transaction either when an event is triggered, clocked or like a window-operator (e.g.,
cf. [CKE+15]) on a certain message collection size, illustrated by scheduler instances s1, s2, .., sn
in Figure 6.12. Within one sub-process transaction, the data is read and deleted (i.e., marked for
deletion) from the source table, processed and inserted into the target table, and then committed.
The messages in the source table tables remain visible for other consumers and become visible
only in the receiver table tabler after commit. In case of an exception, the messages will be
redelivered in a new transaction (not shown). The difference compared to the conventional EAI
processing is that the messages in the source table remain visible, which can result in duplicate
messages. To avoid duplicates, a stateful filter can be added that removes already processed
messages (e.g., leveraging unique message identifiers or through logging the processed messages
for each step). Similarly, the BDMS scheduler could ensure the “in-flight” transaction behavior
by filtering the message collections. While both mechanisms require additional, complex state
management — possibly across distributed transactions — we decide on a third option. First,
we separate integration processes by namespaces, and second we limit one scheduler to one
transaction that starts only after a successful delivery (i.e., only one scheduler per process). While
this prevents parallel processing, it ensures that messages are processed consistently. Parallel
processing can still be achieved by increased collection sizes through partitioning. For example,
when new messages msgi,msgi+1 arrive in tables, they will be picked up by the next scheduled
transaction s2, .., sn. Within the database, the transactional processing is mandatory, making an
automatic identification of the transactional boundaries important for our design.

Remark 6.7. While a formal mapping from timed db-net to database message processing is
left for future work, we note that the time aspect of timed db-nets could be managed by the
scheduler, which periodically checks the ages of the messages currently processed and manages
the transactions accordingly.

215



tables

msg1msg2

msgi

msgi+1

MCtx1

msg'1msg'2
Message
Processor

transaction tx1

tables tabler

msg1msg2

MCtx1

msg'1msg'2
Message
Processor

transaction tx1

tables tabler

time t+1: new messages arrive

time t+1: commit tx1; new transaction tx2

msgi

MCtx2 msg'1msg'2
Message
Processor

transaction tx2

tabler

msgi+1 msgi

Scheduler s1

schedules
transaction

s2
sn

...

Figure 6.12: Message processing model

Database Process Compilation with Transaction Identification The message processing
on a database might require more transactions than the conventional queue-based approach.
For the evaluation of our approach, we built an integration to database process compiler that
automatically determines transactions from a given pattern composition, leveraging meta-data
about the persistent states (e.g., Aggregator, Resequencer). The corresponding persistent-set
(p-set) algorithm is shown in Listing 6.3.

Listing 6.3: pset Algorithm

1 t r a n s a c t i o n s = ∅
2 For a l l nodes node ∈ PG
3 i f pset−match ( node ) then
4 t r a n s a c t i o n s . add ( pset−execute ( node ) ) ;
5 end i f ;
6 end f o r ;
7 re turn t r a n s a c t i o n s ;

The algorithm takes the process graph PG from Section 6.1.2 with adapters and message processors
as nodes N and message channels as edges. We apply ECA rules [Act96] to all nodes in PG (cf.
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Listing 6.3). Thereby a rule r is defined as condition / action pair r : pset-match(IN : node ∈
N,OUT : Boolean), shown in Listing 6.4, and r : pset-execute(IN : node ∈ N,OUT : transactions)
in Listing 6.5.

Listing 6.4: pset match

1 pset−match ( node ) :
2 re turn node . s t a t e ==’ p e r s i s t e n t ’
3 && node . inDegree > 0 ;

Listing 6.5: pset execute

1 pset−execute ( node ) :
2 t = new Transact ion ( ) ;
3 t . IN = ∅
4 t .OUT = {node } ;
5 s = new Stack<Node>() ;
6 f o r a l l inNode ∈ node . inNodes
7 s . push ( inNode ) ;
8 end f o r ;
9 whi le ( ! s . empty )

10 currentNode = s . pop ( ) ;
11 i f currentNode . s t a t e ==’ p e r s i s t e n t ’
12 t . IN . add ( currentNode ) ;
13 e l s e
14 t . IN . add ( currentNode ) ;
15 f o r a l l inNode ’ ∈ currentNode . inNodes
16 s . push ( inNode ’ ) ;
17 end f o r ;
18 end i f ;
19 end whi l e ;
20 re turn t ;

The pset-match is applied to all nodes in PG, while pset-execute is only applied to nodes for
which pset-match evaluates to true. This is the case if the processor has a state — adapters are
assumed to be persistent by default, and receives data through a channel. A transaction t is
defined as structure with sets IN ⊆ N for inbound states and OUT ⊆ N for outbound states. The
pset-execute creates a transaction for each identified state and adds all states to its IN and OUT
sets, in a backward direction, to cover all structural pattern categories (cf. Figures 6.10 and 6.11).

Example 6.8. The structural pattern categories from Figures 6.10 and 6.11 result in one
transaction each. Furthermore, when applying the algorithm to a more complex process model in
Figure 6.13(a), three transactions are identified. The scheduler executes these transactions ordered
by their indices: t1:= (IN:se:1,s:1;OUT:s:2), t2:= (IN:s:2,s:3;OUT:ee:1, s:4), t3:= (IN:s:4,se:2,s:5;
OUT:ee:2).

The integration process in Figure 6.13(b) denotes a case that cannot be executed on a relational
database with parallel transaction scheduling, since it would result in overlapping transactions
identified by the pset algorithm. Consequently, this process would be rejected and the overlap
highlighted: transactions t1 and t3 overlap in adapter se:2, and t2 and t3 in the stateful message
processor s:2. In a subsequent manual or semi-automatic step, the situation could be resolved
by adding persistent states or converting transient states into persistent states such that the
transactions do not overlap any more (e.g., making s:4 and s:5 persistent). �

Similar to the conventional message queuing, in our approach — with ordered execution of
transactions by only one scheduler — the transactions can be executed in a consistent state.
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Figure 6.13: Automatic detection of transactions for more complex integration scenarios
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Figure 6.14: Database transition system design flow

The transactions are identified in the translator step in Figure 6.14, which shows the system
setup and design flow from an application to the database, as part of the database process
(according to the model in Figure 6.9). Then the generator translates the database process
into SQL, PL/SQL code, using a templating mechanism (i.e., for each pattern there exists a
SQL/procedural database template). The conditions and expressions for the specific benchmarks
are provided as user-defined functions (from a repository) that are part of the translation process.
If a pattern requires a conditions or an expression, its SQL template implements the respective
interface and gets bound to the user-defined function during the generation step. The user-defined
functions have to be specified in SQL or database procedures themselves.

6.1.3 Evaluation

We evaluate the message throughput of the defined database integration processes for distinct
routing and transformation patterns and their latency in the context of the motivating scenario.
The results implicitly illustrate the semantic correctness of the redefined message processing for
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Table 6.1: EIPBench pattern benchmarks
Benchmark Description

CBR-A simple cond.: OTOTALPRICE < 100.000
CBR-B multiple conds.: OTOTALPRICE < 100.000, ORDERPRIORITY = “3-MEDIUM”,

OORDERDATE < 1970, OORDERSTATUS = “P”
MT-A map names and filter entries according to a map. program

Content-based router (CBR), message translator (MT).

databases for the motivating scenario. The patterns are only parameterizable in terms of routing
conditions and a mapping program, while the execution semantics remain unchanged. Hence, we
argue that the evaluation sufficiently shows the general correctness of the Content-based Router
and Message Translator on the database.

Benchmark Setup

We compare the message throughput of our approach deployed on a relational, column-store
database system (referred to as SystemX ) with the open-source integration system Apache Camel
[IA10] (Camel) and our “table-centric” extensions of Camel with Datalog processing (Camel-D),
as introduced in Section 5.1.2. The integration systems are running on an HP Z600 workstation,
equipped with two Intel X5650 processors clocked at 2.67GHz with a 12 cores, 24GB of main
memory, running a 64-bit Windows 7 SP1 and a JDK version 1.7.0 with 2GB heap space.

The relational database system is running on the same machine. The benchmark definitions
are taken from EIPBench in Chapter 5, which specifies benchmark configurations derived from
“real-world” integration scenarios. The message data sets are generated from the TPC-H order to
customer processing, but we only generate messages based on orders. Table 6.1 summarizes the
benchmark configurations from Chapter 5 for the benchmark definitions that are relevant for our
evaluation (i.e., CBR-x and MT-x).

In the design flow in Figure 6.14, the benchmark data is provided by the runner and the
benchmarks, defined as tests, run after the successful deployment.

Pattern Throughput

For measuring the message throughput, we selected the CBR-A router and the MT-A trans-
formation benchmarks, due to their similarity to the operations required for the CCT scenario.
We added the CBR-B benchmark to further study the impact of more routing conditions. Fig-
ure 6.15(a) shows the benchmark results for our scheduled, store and forward processing (cf.
Section 6.1.2). The database integration process reads the data from a persistent state with MCr
size of 100, 000 (incl. all optional tables from Figure 6.7). After successful processing, stores it
into another persistent state in one transaction. We refer to Section 5.1.2 for the Camel and
Camel-D “micro-batching” extension, to which the SystemX results are compared. The baseline
throughput for Camel routes and database integration processes (i.e., no intermediate processors)
is added for comparison. For Camel and Camel-D, the baseline is the same, due to sharing the
same pipeline engine.

The results show a clear edge for the more data-centric, relational Camel-D processing for
more complex routing and transformation patterns over the conventional Camel processing, while
having similar results for the simpler CBR-A case. However, database processing outperforms
both in all benchmarks. This is mainly due to the more efficient set-oriented data processing and
the parallelization of read-only operations (e.g., used in the router). More routing conditions (cf.
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Figure 6.15: Pattern throughput benchmark and process latencies for CCT scenario

CBR-B) reduce the throughput for all three systems, however, have a lower impact on the more
data-centric approaches (i.e., database processes, Camel-D).

Conclusions. (1) The batched, parallel processing of the database transition system results in
high message throughput; (2) higher micro-batch sizes increase the message throughput, but
decrease the latency, and thus lead to a latency vs. throughput trade-off.

Pattern Composition: Connected Car Telemetry (CCT)

The data sent from the vehicles in the CCT example in Figure 6.1 consists of approximately
304B error code JSON messages (stored normalized in the column store) with fields like
"Trouble Codes":"MIL is OFF0" and approximately 762B car telemetry data with fields like
"Vehicle Speed":"0km/h" and "Engine Load":"18,8%". For the evaluation of the CCT sce-
nario, we assume that all the data is in one (federated) database transition system. Figure 6.15(b)
shows that the latency depends on the path the messages take through the integration process.
The routing of parking car data (CCT-P) shows the lowest latency, since parking cars are filtered
early in the process. However, the telemetry data of driving cars (CCT-D) pass the filter and
are then further processed in the same way as the error codes (CCT-ERR). Consequently, the
filter has no significant impact on the latency. Subsequently, the CCT-D and CCT-ERR data is
enriched by the car owner’s master data by lookup of the Vehicle ID Number and transformed
into the receiver’s format, showing a more significant reduction of the latency compared to the
filter. This is due to the increasing amount of data and the more data-intensive operations.

While the performance gains are notable and the realized patterns are correct, the current
systems are lacking expressiveness with respect to non-functional aspects like exception handling
and security, which would require extensions for integration scenarios in general. For example,
try-catch extensions4 allow for the representation of the Local Catch pattern (see Chapter 2),
however, do not allow to preserve the error context as well as already processed intermediate
results in case of an error. Moreover, dealing with security relevant content (e.g., encrypted
content, signed content) is currently only possible for encrypting data on transport and row
or column level (e.g., cf. SAP HANA database [FCP+12, FML+12]), but for example not for
verifying message signatures or signing data in messages.

4Microsoft SQL-Server – TRY...CATCH (Transact-SQL), visited 5/2019: https://docs.microsoft.com/en-us/
sql/t-sql/language-elements/try-catch-transact-sql?view=sql-server-2017
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Conclusions. (3) The processing latency of the procedural constructs is high, but sufficient for
our scenario; (4) the expressiveness is not sufficient for all non-functional EAI aspects.

6.1.4 Conclusions

To explore the potential of pattern composition vectorization, we follow the approach in Fig-
ure 6.3(b). We define a representation (cf. research question DB1 : “How can EAI semantics
be represented in database systems?”) and processing semantics for application integration on
relational databases (cf. DB2 : “How can EAI processing semantics be compatibly adapted to
databases?”). We redefine message processing patterns that are relevant for the motivational CCT
scenario (e.g., implicitly: Event Message; Point-to-Point Channel, Channel Adapter; explicitly:
Document Message, Datatype Channel, Content-based Router, Message Filter, Message Trans-
lator, Message Store, Canonical Data Model), discuss new pattern semantics for more efficient
high volume message processing and evaluate the approach for message throughput of distinct
patterns as well as composition on our connected car telemetry scenario. The integration pattern
compositions are compiled to the DTS by automatically identifying transactional contexts.

While the evaluation of the DTS showed promising results for acceleration of the message
throughput of more data-centric approaches (cf DB3 : “Can databases accelerate message process-
ing?”; cf. conclusions (1,3)), new patterns for non-functional aspects like exception handling and
message privacy are currently only partially supported by database systems (cf. conclusion (4)).
Our approach allows for the compilation of pattern compositions to other database systems, but
makes their configuration (e.g., through user-defined conditions or expressions) a task for database
experts (i.e., not suitable for an integration developer or even business user), due to differences in
SQL and procedural constructs. Open research questions target the optimal message collection
size for scenario workloads and parallel transaction processing that preserves the integration
semantics (cf. conclusion (2)). Moreover, the applicability to NoSQL databases is of interest.

We conclude that a DTS allows for scalable, high-throughput message processing for big
(data) volume scenarios. While there are still some conceptual gaps (e.g., see conclusion (4)), we
conjecture that data-centric applications can be implemented on (big) data processing platforms
like BDMS.

6.2 Specialization: Hardware-Accelerated Pattern Solutions

Today, challenges like the increasing gap between memory access time and processor speed (the
memory wall; it takes several hundred cycles to access off-chip memory) and the fact that the bus
between main memory and CPU is shared between program instructions and workload data (the
Von Neumann bottleneck) decrease the processing velocity. While this can be partially solved by
memory locality, caches as well as out of order execution, branch prediction, pipelining, and cache
hierarchies [Har97], the latter requires many of the available transistors to implement all sorts
of acceleration techniques to nonetheless improve performance. Furthermore, Hill et al. [HM08]
observed that Amdahl’s law applies to homogeneous multi-core systems and Esmaeilzadeh et
al. [EBA+11] showed that underutilization of transistors can be due to power consumption
constraints and/or inefficient parallel hardware architectures conflicting with Amdahl’s law, called
dark silicon, which can be up to 50-80% of the transistors.

A move towards heterogeneous architectures, e.g., where tasks are off-loaded to customized
hardware, can improve the velocity and save energy [BC11]. That means mapping customized
hardware (e.g., ASICs) to a given task instead of mapping the task at hand to a fixed general-
purpose hardware architecture. Since customized hardware has orders of magnitude lower power
consumption (compared to general purpose CPUs and GPUs) and avoids the von Neumann
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bottleneck, lower clock frequencies are sufficient to solve the task (fulfill performance requirements).
Between extremes general purpose processors and ASICs, reprogrammable hardware combines
performance and lower consumption of ASICs with the flexibility of general-purpose hardware.
Currently, the most advanced reprogrammable hardware are Field Programmable Gate Arrays
(FPGAs), whose designs can be implemented as ASICs. In the past years FPGAs are increasingly
used for data processing (e.g., databases [MT10], complex event processing [WTA10], stream
processing [MTA09b], and deep learning [ORK+15]). Whereas FPGAs are still considered exotic
today, cloud computing could make FPGAs a mainstream data processing technology [MS11]. A
major cost factor for cloud providers is the power consumption of their data centers. Thus, any
technology that can deliver the same performance and flexibility with a lower energy footprint is
very attractive for cloud computing. In addition, projects like Microsoft’s project catapult show
that the big cloud providers make progress on the challenges (e.g., FPGA virtualization [PCC+14,
CCP+16]) and provide new solutions (e.g., accelerated networking [FPM+18]).

In the presence of integration scenarios like the CCT scenario in Figure 6.1, the near real-
time processing of complex events or patterns is considered a challenging requirement [CDN11].
For such scenarios, FPGAs [SG08] promise lower latency, higher throughput and lower energy
consumption than comparable solutions in software and on general purpose CPUs. With multi-
chip processors delivered with FPGAs on the chip (e.g., by Intel), FPGAs might become far
more widely used than today, and thus allows them to be included in cloud-scale deployments
[CSZ+14]. However, when considering the message throughput results from Chapter 5, it becomes
obvious that a single integration system instance would not suffice to process the load of messages
generated in the connected car scenario using typical integration patterns. Common software
solutions include optimization strategies as discussed in Chapter 4, which however lead to an
even higher energy consumption and still suffer from the challenges on current von Neumann
architectures [Rit17b]. Moreover, the integration patterns are more complex than message queuing
for reliable queues and topics [EHI10, Sol16] or event and stream processing for continuous queries
and alerts [MTA09a, TW13], for which FPGAs were employed before. At the same time the
throughput demands are beyond the ones for query processing using FPGAs [MT10] which are
bound by disk access. Figure 6.16 shows how database query processing puts programmable
hardware in the form of FPGAs into the data path of the systems to evolve them toward
heterogeneous many-core systems.

We envision application integration processing logic on the FPGA, which we put on the network
path between applications, devices and databases (e.g., using TCP/IP stack on FPGAs [SAB+15]).
The extensive body of research and industrial work on FPGA-based hardware event stream and
data processing reports on competitive results (e.g., reconfigurable logic, low-latency) due to
parallel streaming [GNVV04] through hardware characteristics like parallel stream evaluation and
asynchronous circuits, as well as reduced power consumption compared to modern general-purpose
CPUs or GPUs.

Example 6.9. With dataflow processing capabilities, the CCT scenario could be significantly
changed as shown in Figure 6.17. Through fast processing, close to the network, devices could
directly send the Vehicle Data to the network attached CCT Integration, for which we assume all
required master data accessible on-chip for fast access. Instead of batch processing, the data is
streamed through the pattern composition synthesized to the hardware. Then the resulting data
is sent to the CCT Analytics application.

However, hardware is not the “silver bullet” [MT10], and the efficient usage of FPGAs involves
non-trivial aspects and difficult challenges such as making the right design decisions for the
computation model, dealing with low-frequency clocks, balancing the trade-off in usage between
synchronous and asynchronous circuits, and resource limitation (cf. [Rit17b]). In addition, it
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remains unclear, how the potential of FPGAs can be efficiently exploited for EAI. Important
questions about the EAI building blocks and semantics, represented by the EIP, and their usage
on FPGA hardware have to be answered. For instance, the integration patterns are defined for
asynchronous, non-streaming cases, while FPGA hardware supports streaming very well. Hence,
we answer the following research sub-questions of RQ3-1 (HWx ):

(HW1): “How can the EAI building blocks and semantics be (efficiently) represented on repro-
grammable hardware?”

(HW2): “How can textual message protocols and user conditions be represented on hardware (i.e.,
predicates and expressions)?”

(HW3): “How does the application of integration patterns on FPGA influence their semantics
and implementations?”

(HW4): “Could FPGAs accelerate the message routing even more than transformation?”

While question HW1 targets the feasibility and an efficient representation of the integration
patterns on hardware (i.e., including message, pipeline, routing, transformation), HW2 is about
the variety in message protocols, which requires support for non-trivial message formats and
operations (e.g., hierarchical formats like JSON with JSONPath predicates). We consider the
hypothesis that a hardware approach would favour message routing even more. Since the
integration patterns are not defined with a focus on stream processing, we consider question HW3.
The work on database and event processing (e.g., [MT10, MTA09b, WTA10]), where hardware
was successfully applied for velocity (cf. challenge C5 in Section 1.2), discusses some data aspects
relevant to application integration, which leads to question HW4.

To answer these questions we introduce FPGA fundamentals in Section 6.2.1 for a better
understanding of the subsequently defined dataflow integration system on reprogrammable
hardware. Therefore — taking the existing results and conceptual extensions from related
domains into account — we study the feasibility, advantages and limitations of (composed)
integration patterns on hardware. In particular, we define the streaming semantics of selected
integration patterns (i.e., including message, pipeline), because our work fully focuses on streaming
(i.e., no message off-loading into RAM), and analyze how they can be deployed on FPGAs in
Section 6.2.2 (cf. questions HW1, HW3). This is not trivial because of the illustrated trade-
offs between computation model, throughput, resource limitations, parallelization and diverse
integration semantics. We categorize the streaming semantics of the EIP into three template
classes based on their interaction with user-defined conditions and expressions: Expression
Template (ET), Predicate Template (PT) and No User Template (NUT). Consequently only
these classes have to be synthesized to hardware. For the message protocol variety and user
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Figure 6.17: CCT scenario with focus on the integration processing

conditions (i.e., predicate, expression), we define a state machine parsing and matching approach
for hierarchical message protocols in Section 6.2.3 (cf. question HW2), and we evaluate the
solution and discuss optimizations in Section 6.2.4 (cf. question HW4).

The resulting application integration system on a dataflow architecture does not only allow to
show the immense potential for velocity of message processing with reprogrammable hardware
close to the network, but a proposes a novel “responsible”, sustainable EAI system design with
an improved message per watt energy ratio.

Parts of this section have appeared in the proceedings of DEBS 2017 [RDMRM17] and
ACTIVE@Middleware 2017 [Rit17b].

6.2.1 Field-Programmable Gate Arrays

Following programmable logic devices (PLDs), developed by companies like Motorola, Texas
Instruments and IGM in the 1970s, Field Programmable Gate Arrays (FPGAs) were developed at
Xilinx in the 1980s. They implement a dataflow architecture [Cul86] that basically consists of
wires, gates and registers. The key concepts of (re)programmable hardware are briefly introduced
in a bottom-up approach based on Teubner and Woods [TW13] (if not stated otherwise) by
explaining the basic building blocks of FPGAs, and then we gradually zoom out and show how
the various components are combined and interconnected. For the programming of FPGAs we
refer to the literature (e.g., [Sha98, TW13]).
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Figure 6.18: Combinational and asynchronous sequential logic (e.g., similar to [TW13])

Combinational logic

Any hardware circuit consists of basic logic gates (e.g., AND, OR; binary states: low, high
depending on the voltage level), which can be combined as a form of combinational logic elements
by wiring their input and output ports.

Example 6.10. Figure 6.18(a) shows a half adder for the addition of two one-bit numbers, whose
output is written to port S. With A and B both set to one an overflow is produced that is
captured by the AND gate and reported to output port C (carry bit). �

The combination logic is purely driven by the input data (i.e., no clock). Due to physical
effects (e.g., signal propagation times), a logic gate has a fixed propagation delay (from input
to output). When composing the logic gates, the speed of a sequential circuit is the sum of the
single propagation delays along the longest path.

Synchronous Sequential Logic

While combinational logic can be extended to sequential logic by adding state (memory), it still
is entirely driven by the input, and no form of synchronization exists. Figure 6.18(b) denotes a
function in sequential logic, which depends on its present and past inputs. The resulting type of
circuitry is called asynchronous sequential logic, whose speed is only limited by the propagation
delays. However, the lack of synchronization results in effects like race conditions, which are
difficult to deal with.

Therefore, synchronous sequential logic adds synchronized clocks, which synchronizes all
memory elements by a clock signal (i.e., a clock clk that is an electronic oscillator: logic high,
low). The clock frequency determines the length of the clock period for all combinational logic
elements, which have to be finished at the end of the period. The result is a predictable and
reliable behavior, but the clock frequency is determined by the critical path in the circuit (the
longest combinational path between states).

Basic State An already more sophisticated memory element for representing the state is a
flip-flop (FF), which only stores the input from a dedicated port. The FF’s data and clock ports
can usually be bypassed for set or reset logic.
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Logic Gate Representation The logic gates in FPGAs are “simulated” using a generic
element called a look-up table (LUT). In contrast to ASICs, LUTs can be (re)programmed after
manufacturing, which ensures the (re)programmability property of FPGAs. An n-input LUT
implements an arbitrary Boolean-valued function with up to n Boolean arguments (e.g., two-input
AND or OR gate).

These functions are stored in SRAM, which means that programming a LUT can be facilitated
by updating the SRAM cells of a given LUT. An n-input LUT requires 2n bits of SRAM to
store the lookup table and a 2n : 1 multiplexer to read out a given configuration bit. The inputs
determine which SRAM bit is forwarded to the output of the LUT. While a LUT can be usually
read in one clock-cycle, the write requires 2n cycles. This is due to a design decision under the
trade-off between write performance and simpler design (chip space consumption). LUTs cannot
only be used to simulate gates, but also be used as distributed RAM (e.g., to implement a FIFO
queue), however, we will not use this in our design.

FPGA Architecture

The grouping and embedding of LUTs into a programmable logic component denotes an elementary
logic unit (vendor-specific, e.g., called slice in Xilinx and ALMs in Intel FPGAs). However, common
elementary logic units include LUTs, a (proportional) number of one-bit FF registers, arithmetic
/ carry logic and multiplexers. To store the result of the table look-up, the LUTs are paired with
FFs (classical for input LUTs and two FFs). The arithmetic / carry logic are fast wires between
LUTs and circuitry, e.g., carry chains (combining LUTs to implement logic). This facilitates
a pipelined circuit design, where signals propagate through large parts of the FPGA while the
high clock frequency is maintained. The multiplexers determine whether a flip-flop is used or
by-passed, which can be (re)programmed through SRAM.

Routing Architecture

The wiring of neighboring elementary logic units is facilitated through direct wires (e.g., carry
chains). In this way, modern FPGAs provide configurable resources that are sufficient to host an
entire system on a chip. The required flexible communication mechanism is known as interconnect.

Logic Islands (LIs) A number of grouped elementary logic units, called logic islands (LIs),
corresponds to often used term configurable logic blocks (CLBs). More generally, the communica-
tion between logic islands is facilitated by a switch matrix connected to the interconnect. The
arrangement of logic islands is shown as two-dimensional array on the FPGA in Figure 6.19(b).
The flexible interconnects allow for arbitrary communication between the logic islands as well
with the periphery through special I/O blocks (IOBs).

Interconnect For the communication via a switch matrix (arbitrary communication patterns)
between logic islands, the interconnect denotes a configurable routing architecture. This way
the LIs access special, peripheral I/O blocks to communicate with the outside world through
I/O standards like single-ended PCI and differential PCI-express, SATA, Ethernet. Since the
interconnections on a circuit can be complex, the “place and route” part of the FPGA’s flow
design (part of the development process [TW13]) is time-consuming. Furthermore, the circuit
performance is limited by connections between internal components rather then their speed, which
is known as the interconnect bottleneck (cf. Abadi [AFG+05]), which has to be considered during
the design.
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Figure 6.19: Logic islands and with I/O blocks (e.g., similar to [TW13])

System on a Chip For the design of a more complex logic towards a System on a Chip (SoC)
further components are required. This includes reusable logic either as so called soft intellectual
property (soft IP), which uses the existing resources to build composed building blocks (which we
will do on a pattern level), or even dedicated silicon on the chip, called hard IP. The soft IP is
usually provided by the FPGA vendor or contributors like partners and recently started to be
provided in market places mostly organized by the vendors.

Example 6.11. Serial-to-parallel converters and 8b / 10b encoders / decoders (i.e., conversion
of eight-bit data byte to a 10-bit transmission character and vice versa) are available, which are
specifically useful for the implementation of communication protocols (the physical layer) based
on available 10GBit ethernet soft IP. �

The hard IPs usually come from the FPGA vendors and comprise for example dedicated
on-chip block RAM (BRAM), larger than distributed LUT memory, or digital signal processing
(DSP) units, i.e., dedicated, customizable hardware multipliers and adders (e.g., for digital filtering,
Fourier analysis). Combined, these components denote a simple FPGA architecture, as shown
in Figure 6.20. The BRAM is distributed as stripes over the chip to allow the logic islands for a
fast access. A small number of DSP units is added in a similar way. With the growing number of
components, already provided in online market places organized by the vendors, FPGAs evolve
from a “bag of gates” to a “bag of computer parts” [HGV+08] or SoCs.

6.2.2 Dataflow Integration System on FPGAs: Patterns to Circuits

As motivated in Figure 6.16, the complete EAI processing logic shall be put onto the FPGA on
the network path between applications and devices. Therefore, we map the integration semantics
in the form of integration patterns to hardware concepts by re-defining them for synchronous
streaming with flow control (similar to [Cas05]) and classifying the patterns according to their
characteristics to three templates that are then synthesized to the hardware.
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Figure 6.20: FPGA layout with interspersed BRAM blocks and DSP units (e.g., similar to [TW13])

Basic Integration Semantics

The basic integration semantics are described by a message, a message channel, at least one
protocol adapter, and an ordered set of transformation or routing patterns that process the
message as summarized in Figure 6.21 and subsequently discussed.

Messages on Hardware A message consists of a unique identifier, for identifying the message
and enabling provenance along the different processing steps, a set of name / value pair header
entries containing meta-data about the message and the message body, i.e., denoting the actual
data transfered.

For the processing on an FPGA, a message is defined as a stream of bytes, which gets
meta-data assigned on entering the FPGA via the network interface. In particular, we assign a
unique message identifier and the length of the message.

Message Channels on Hardware The message channels decouple sending and receiving
endpoints or processors and denote the communication between them. Thereby, the sending
endpoint writes data to the channel, while the receiving endpoint reads the data for further
processing. Our message channel definition on hardware is depicted in Figure 6.21. We use
hardware signals and data lines to represent the control and data flow through a message channel.
The channels contain a unique identifier as id, the message length as length, and the body as
data of 8 bit chunks from the previously defined message over the data line (data(0..7)). To
indicate that a message is sent over the channel, we added a message signal as message, which is
set to one (i.e., high), when one message is sent — even if there is currently no valid data on the
data line. The message signal is zero (i.e., low) only between messages (i.e., when the channel is
ready to receive another message). For the transport of the data to the subsequent processor we
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Figure 6.21: Basic integration aspects on hardware

define an enable signal as enable, which is high, when valid data is on the data line and low,
when there is no valid data on the data line. The id and length are separate lines, which are
constant, when the message line is high.

The FPGA hardware is able to stream massively parallel using pipeline processing. However,
for efficient processing, the hardware is limited to the resources on-chip (e.g., BRAM) and
on-board (e.g., RAM). Our basic integration aspects are represented with on-chip resources to
avoid latency and throughput penalties for the on-board resource access. However, we expect
that in the future FPGAs can interact with less overhead with off-chip resources like DRAM or
general-purpose CPUs. This will offer more freedom to use these off-chip resources, e.g. to buffer
large messages.

Flow Control on Hardware Message Channels The basic capability of an integration
system to protect overload situations and data corruption is flow control. One technique used in
connection-oriented wire protocols like TCP is back-pressure. Back-pressure allows the message
processors (e.g., routing and transformation patterns) under high load to notify the sending
operation or remote endpoint (e.g., via TCP back-pressure) about its situation. For instance, for
TCP remote endpoints this could lead to the rejection of new connections.

On the FPGA, we define flow control similar to [Cas05], which is exclusively used there
for the synchronous communication between remote endpoints. For the back-pressure between
message processors (i.e., no TCP support), we cannot reject messages atomically, because the
stream might already be processed partially. Therefore, we decided on an approach with small
FIFO queues in each processor that are used to buffer message data that cannot be immediately
processed by the subsequent processor and thus ensure that no message data is lost. The receiving
processor signals this by setting its readReady to low (cf. Figure 6.21). The FIFO queues can be
represented on hardware using flip-flops (FF), Block RAM (BRAM) or built-in FIFOs. Since
FFs can only store one bit at a time and are very important for the logic of message processors,
we chose BRAM. Although BRAM is a limited resources as well, it can be more easily extended
by on-board DRAM to buffer larger messages. If the queue limit is exceeded, and the successor
processor is not ready yet (i.e., readReady low), the current message processor notifies its sender
by setting its readReady to low.

Streaming Integration Patterns

Since the EIPs are not defined for stream processing (cf. Chapter 2), we define streaming semantics
for the practically most relevant routing and transformation patterns and map them to circuits.
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(a) Content-based Router (b) Load Balancer

Figure 6.22: Router and load balancer patterns

Routing Patterns

The routing patterns are used to decouple individual processing steps so that messages can be
passed to different filters depending on a set of conditions [HW04]. We selected the most relevant
routing patterns from Chapter 5: Content-based Router, Message Filter and Splitter, and add the
Aggregator, Load Balancer and Join Router used in the example scenario and in our evaluation.

Content-based Router The Content-based Router and the Message Filter are semantically
similar. The filter is a special case of the router due to its channel cardinality of 1:1, while the
router has 1:n. Both have a message cardinality of 1:1, are read-only (i.e., non-altering message
access) and non-message generating (i.e., passing the original message).

Streaming Semantics. The router selects a message channel based on a condition that in worst
case might have to fully read the message (i.e., requires buffering). In our approach the message
corresponds to a data-based window similar to [GMM+16]. Alternatively, the message could be
passed further into all leaving channels in parallel and filtered out later at a synchronization point.
While the latter claims non-buffered streaming semantics the synchronization points cannot be
set arbitrarily, which could lead to the same semantics as the message-window semantics in worst
case. Hence, we use data-based windows as the basis for our work.

On Circuit. Since, the leaving channel is selected based on a condition evaluated on the stream,
it specifies a mapping from a message to a channel. Figure 6.22(a) illustrates the semantics
of our router design as a waveform diagram, which shows high and low circuit settings for the
different signals and data lines required for the pattern. The input denotes the message from the
previous pattern. The output is the response from the user code. The clock cycles are denoted
by clk. The channel is represented by an integer identifier. When a message enters the router
(i.e., message, data high) and the data is valid (i.e., enabled high), then the condition (i.e., user
code) is evaluated and the identifier of the selected channel is set together with the data valid
signal enabled. According to the channel identifier the message will be routed.

Load Balancer The Load Balancer pattern – not in the original EIPs – delegates a message to
exactly one of several message channels using a load balancing strategy (e.g., uniform distribution).
As the Content-based Router, it is read-only and non-message generating.

Streaming Semantics. For the purpose of this work, the Load Balancer is already suitable for
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(a) Splitter (b) Aggregator

Figure 6.23: Splitter and aggregator patterns

streaming since it does not define any conditions on the message.

On Circuit. Similar to the Content-based Router, the Load Balancer maps from a message to
a message channel. This time, the channel identifier is determined by a load balancing logic,
configured through user code. Instead of a load distribution, we use the readReady signal
used for back-pressure to determine which channel is currently available. The first channel
available is selected as receiving channel. This semantics is shown in Figure 6.22(b) as ch0 ready.
Consequently the output channel is written and the data valid signal is set. The message will be
routed accordingly.

Splitter The Splitter pattern allows processing messages containing multiple elements, each of
which may have to be processed in a different way. Therefore the inbound message is split into a
number of smaller messages according to a user-defined expression (i.e., message cardinality 1:n)
with a channel cardinality of 1:1. While the Splitter is message generating, it does not add new
data to the n outbound messages.

Streaming Semantics. The Splitter splits parts of a message into smaller parts similar to single
elements of an iterable. There are Splitter configurations with data structures of the form: head,
iterable, tail. For each entry in an iterable a new message is created by starting with the common
head entries, one entry from the iterable and the common tail entries. In these cases, the head
has to be remembered and added before each element from the iterable. However, in case there is
an element after the iterable, called tail, that has to be added, the streaming is limited. The tail
is unknown to the Splitter until the end of the message, which means that the first new message
would have to be buffered until the tail arrives. Similar to the router, a synchronization point
could be used to add the tail part to each of the smaller messages. For the same reason as for the
router, we use the buffered streaming option.

On Circuit. The Splitter maps one message to multiple messages. Figure 6.23(a) illustrates the
execution semantics for input and output. When the messages arrive and the data is valid, the
user-defined split expression is executed, which leads to several messages. Thereby the Splitter
inserts a clock cycle, where the message signal is set to low and no data is sent inbetween the
split messages.
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Aggregator The Aggregator pattern combines a number of messages to one based on a time
or number of messages based completion condition. Hence it has a message cardinality of n:1,
a channel cardinality of 1:1, and is message generating, however, only combines data from the
inbound messages to the one outbound message.

Streaming Semantics. By definition, an Aggregator has to wait until the last message arrives.
Only then can the new message be processed. Hence, the Aggregator shows buffered streaming
semantics on a streaming window, which is defined by the completion condition of the Aggregator.

On Circuit. The Aggregator maps from multiple messages to one message. Depending on the
messages, the Aggregator might only close the gaps between multiple messages or combine them
in a new way (e.g., forwarding the common header of the messages and then the body of each
one). In Figure 6.23(b) data arriving in separate messages (i.e., message high) are combined to
one message by setting the message signal to high as long as there are messages arriving that
shall be combined to the outbound message.

Join Router The Join Router is a new structural pattern that is needed to combine several
control flows to one. This leads to a channel cardinality of n:1 and a message cardinality of 1:1.
Note that data flows are combined using an Aggregator.

Streaming Semantics. The router is already suitable for streaming, since it does not define any
conditions or expressions on the message, but combines several streams to one.

On Circuit. The Join Router maps from channel to channel, however, without any additional
logic (e.g., as in the Load Balancer case). It simply checks, whether there are messages on the
inbound channels and whether the outbound channel is free (i.e., readReady high).

Message Transformation Patterns

The transformation patterns are used to translate the message content to make it understandable
for its receiving message processor or endpoint. We selected the most relevant transformation
patterns: Content Enricher and Message Translator, identified by a study on integration scenarios
in Chapter 5. All transformation patterns have a channel cardinality and a message cardinality
of 1:1. They do not generate new messages, but modify the current one.

Content Enricher The Content Enricher pattern adds content to an existing message, if the
message originator does not provide all the required data items. The enrichment can be done (a)
statically, (b) from the message itself or (c) from an external source. In this work, we consider (a)
and (b), however, the external data (c) could be provided on the on-board RAM.

Streaming Semantics. The current enricher semantics for (a) and (b) allow to fully stream this
operation.

On Circuit. The enricher maps one message to another, while inserting data into the inbound
message. Figure 6.24(a) shows the processing semantics for one message with data1, to which
additional data is added by a user-defined expression as data2. Thereby, the message and the
data valid signals are set to high.

Message Translator The Message Translator pattern converts the structure of the inbound
message into one understood by the receiver. This includes filtering content, which covers the
content filter pattern.

Streaming Semantics. The current Message Translator definition covers streaming for simple
cases (e.g., one to one assignments, data type operations). In addition, for many to one field
translations, parts of the data have to be buffered for later lookup and assignment.
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(a) Content Enricher (b) Message Translator

Figure 6.24: Translator and content enricher patterns

On Circuit. The translator maps one message to another one, while reorganizing the data in
the inbound message using user-defined expressions. Figure 6.24(b) shows the behavior for the
interaction with the user code, which returns the modified message content as data’. The message
and the data valid signals are set to high.

Pattern Templates

Related approaches show that the hardware design is crucial for the performance of the resulting
hardware scenarios [MT10]. To achieve good utilization of the FPGA hardware and high
throughput we exploit commonalities between the patterns discussed in Section 6.2.2. Therefore
we arrange them into three classes of behavior, which we call templates (similar to SQL-Query
constructs like project and join in [MTA09b]). Unlike the original routing and transformation
categories from [HW04], this classification is based on implementation criteria (i.e., when mapping
to FPGAs).

From Patterns to Hardware Templates We build the categories for the classification based
on the interaction with the user-defined conditions: predicates or expressions.

Expression Template (ET). The first template contains all patterns that conduct a “message to
message” mapping. They mostly execute more complex expressions, which are provided by the
user, while working directly with the data line. This applies to the Splitter, Aggregator, Content
Enricher and Message Translator patterns.

Predicate Template (PT). The patterns that conduct a “message to channel” mapping, mostly
execute simpler conditions like predicates. They set the message and channel signals. Candidates
are the Content-based Router, the Message Filter, and the Load Balancer patterns.

No User Template (NUT). There is only one pattern in our selection that does not fit into the
previous templates (and maybe not the only one). The Join Router conducts a “channel to
channel” mapping and does not evaluate any user-defined conditions.

Putting it all together With the basic integration semantics (incl. flow control) and the
patterns categorized into templates, we give a conceptual view on how an integration pipeline
and message processors can be synthesized to hardware. Figure 6.25 gives a conceptual overview
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Figure 6.25: Conceptual view on pattern templates and hierarchical format processing

for the three templates. The rectangles denote patterns or user code, the cylinders buffers and all
straight directed edges denote message channels. The dashed edge returns channel and enable

(cf. Figure 6.22). The type converter Figure 6.25(d) will be discussed in Section 6.2.3.
The ET patterns wire the data to the user code, where it is evaluated. The user code can be

in any Hardware Definition Language (HDL) or the compilation of higher level languages to HDL
like OpenCL. The result is buffered in a FIFO queue to support buffered streaming patterns and
deal with back-pressure.

The PT patterns require more system logic (cf. Figure 6.25(b)). Hence, the input data is
wired to the system code that executes the user code and also stores the messages in a FIFO
queue for buffered streaming patterns and back-pressure handling. In addition, the user code
does not return the modified message, but channel and message signals. Consequently, the data
has to be forwarded from the buffer. The buffers are reset after the message was sent. For n
outbound channels, the system code creates n buffers for wiring subsequent patterns.

The Join Router NUT receives messages from n message channels at the same time, which are
put into n FIFO buffers correspondingly. Figure 6.25(c) shows the NUT running a round robin
fetch from the FIFO queues. Then the messages are pushed further, and the buffers are emptied.
The back-pressure technique is used to avoid several messages arriving at the same channel, while
the buffer of this channel is not yet empty (cf. readReady signal).

6.2.3 Message Processing

The message processing is defined by predicates and expressions as user code. While we decided to
transfer data as sequences of bytes, the data can have arbitrary message types (e.g., a simple type
like integer, or a more complex type like JSON). For instance, JSON messages can be evaluted
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by a JSONPath predicate. This in return can be implemented as an automaton [FU80, WTA10].
For predicates, we define one automaton for parsing the message (i.e., similar to a type converter
[IA10]) and one for matching a set of conditions. In contrast, the data might be changed based on
complex expressions, for which one type converter might be used either together with EIP-typed
automata (e.g., a Message Translator state machine) or user-defined hardware code that constructs
the output message.

Message Protocol Handling

In this paper, we focus on hierarchical message formats like JSON, and thus implemented a
streaming type converter that parses the data stream (Figure 6.25(d)). To explore the general
question in integration systems on “where to do the type conversions?”, we placed the type parser
in every user code that accesses the message. For instance, we placed the type converters between
a pattern’s system code and user code in ET and PT (cf. Figure 6.25(a), Figure 6.25(b)). The
NUT has no user code, hence, no dependency on message types.

An alternative approach is having one type converter at the beginning of each flow, which
would require less instances of the type converter (i.e., less LUTs, FFs). However, this converter
requires that all message channels are of the same type, which reduces its flexibility in usage and
consumes more resources due to bigger amounts of fully materialized data in the FIFO buffers
and during processing. In our approach, we work with generic message channels that are not
bound to one data type.

When parsing JSON messages, we assume an automaton with a JSON-specific alphabet (i.e.,
for tokens and nodes). For handling hierarchical messages, we define a deterministic automaton
with start state, an inner node (i.e., object, array) with transitions to inner and leaf nodes,
denoting simple typed values or complex types like object for arrays and name/value pairs
for objects. Figure 6.25(d) depicts the outbound interface of the general type converter for
hierarchical data structures. The token signal indicates the current token (e.g., string, quote,
comma), which depends on the current state of the automaton. The parent signal gives the
type of the parent node (i.e., object or array). It is set when a new inner node is encountered
and the old value has to be pushed to a stack, which is popped when the new inner node ends.
The level denotes a pointer in the hierarchical data structure and the index signal denotes the
index of the node in the current level of the hierarchy. The level is increased and decreased as
values are pushed and popped from the stack and the index is increased when a new node is
encountered, and propagated to the stack together with parent. The invalid signal indicates a
malformed structure. Only the number signal is specific to the JSON parser and passes a value for
convenience, if the current token is a number. This design parses arbitrary hierarchical structures,
while consuming less resources, e.g., compared to [MLC08].

Predicates and Expressions

After the type conversion a predicate or expression can be executed. Although we mainly show
the user code directly in VHDL for our evaluations, a general purpose JSONPath to VHDL
translator — at least for predicates — is available. As illustration, Listing 6.6 shows how a
JSONPath predicate, matching OTPRICE lower than 100, 000, is generated to VHDL as a condition
for a Content-based Router. While the code generated from the JSONPath serves as illustration,
FPGA vendors provide alternative languages (e.g., Intels I++, former A++, to VHDL compiler)
that could be used for formulating more complex expressions.
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Table 6.2: Test hardware comparison
Characteristics Xilinx XC7A35T Z600

lookup tables (LUT) 20,800 -
flip-flops (FF) 41,600 -
block RAM (BRAM) / on-board RAM 1,800 kB / 256 MB - / 24 GB

clock rate (CR) 100 MHz 2.67GHz
cores - 12

On-chip BRAM (divided in 50*36 and 100*18 kB units) is accessible in one and on-board RAM
requires several cycles (depends on fabrics).

Listing 6.6: Match field

1 if en=’1’ and token=NAME

2 then

3 if data=otprice(index)

4 then

5 index <= index +1;

6 if index=otpriceLen -1

7 then

8 field <=’1’; index <=0;

9 end if;end if;end if;

Listing 6.7: Eval. Cond.

1 if field=’1’ and en=’1’

2 and data=COMMA then

3 channel <=0;

4 -- $[?(@.OTPRICE <100000)]

5 if number <100000 then

6 channel <=1;

7 end if; channelEn <=’1’;

8 end if;

We assume a converted JSON message, which means that the signals enable (in the code
shortened to en) and data are those of the message channel and the signals token (line 1) and
number come from the type converter. The code in Listing 6.6 is located inside a VHDL process,
triggered by the clock that also drives the data and enable signals. The incoming data is
compared to the string otprice (line 3) and if the whole string matched (line 6), the field signal
is set high (line 8). In the clock cycle after the whole total price amount was read (i.e., the data is
a comma that is the end of every line) the signal number is compared to 100, 000 (in Listing 6.7,
line 4). The default channel is 0 and if the number is smaller, the message is routed to channel 1.

6.2.4 Evaluation

We evaluate the FPGA stream processing for application integration — represented by the three
template variants (i.e., ET, PT and NUT) — assuming the FPGA can be used as a network-
attached integration system (cf. Figure 6.16), e.g., as part of a company network or a cloud setup
[CSZ+14]. We selected the Arty educational board shown in Table 6.2 with a Xilinx XC7A35T
FPGA for the hardware tests. We compare the results with the open-source, software integration
system Apache Camel [IA10] on CPU that was introduced in Chapter 5. For the CCT scenario
benchmark, Intel provided us with the more “product-ready” Arria 10 SoC FPGA with 500 MHz
clocks, 42,620 kB on-chip RAM, 1,006,720 registers and 251,680 adaptive logic modules, which
we used in some of the other experiments as well. With this more powerful FPGA, we expect
a linear increase of message throughput by the factor five higher clock speed. Camel runs on a
HP Z600 work station, specified in Table 6.2. Besides verifying the feasibility and correctness
of our approach, the main goal of the experiments is to perform throughput measurements, to
study instance parallelization and resource consumption. Therefore we use the EIPBench pattern
benchmark from Chapter 5, which specifies benchmark configurations derived from “real-world”
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Table 6.3: FPGA pattern benchmarks
Benchmark EIPBench (cf.

Chapter 5)
Description

CBR-A CBR-A simple cond.: OTOTALPRICE < 100.000
CBR-B CBR-B multiple conds.: OTOTALPRICE < 100.000, ORDERPRIORITY =

“3-MEDIUM”, OORDERDATE < 1970, OORDERSTATUS = “P”
CBR-C CBR-C conds. on same fields as CBR-B, but multiple branches with different

values
LB-x LB-A distributes messages over x routes.

SP-A SP-B split fields (iterable) into msgs.
SP-B SP-C split order fields (iterable) into separate msgs. while always adding head

and tail
AGG-A AGG-B aggregate fields into msg. (SP-B reverse)
AGG-B - aggregate order entries into msg. (SP-C reverse)

JR-x - Join Router which joins x routes.

MT-A MT-B map names and filter entries according to a mapping program
CE-A - copy each entry, concatenate with a constant

Content-based router (CBR), Load Balancer (LB), Splitter (SP), Aggregator (AGG), Join Router
(JR), Message Translator (MT), Content Enricher (CE).

integration scenarios.
To keep this section self-contained, Table 6.3 summarizes the benchmark configurations from

Chapter 5 for the benchmark definitions that are relevant for our evaluation and maps them to
our benchmark identifiers (e.g., the EIPBench SP-B 7→ SP-A). We used the existing EIPBench
definitions, however, added new benchmarks required for our analysis (cf. Table 6.3 without
EIPBench representation). The hardware throughput for all benchmarks is measured with a
simulator provided by Xilinx that uses post implementation simulation and element timing data of
the FPGA as in [MTA09a]. First we study the message throughput on a single data stream with
the same message size, and later we consider parallelism and message size, before we showcase
our motivating scenario.

Pattern Throughput in Perspective

In this section we study the message throughput of our FPGA-based integration patterns. This
will show better results than the software implementation. We use the configurations from
EIPBench for all considered patterns in this work and subsequently identify them by their
abbreviations (cf. Table 6.3).

We measure the empty pipeline as a baseline (i.e., without message processors) for all three
FPGA templates and for the Camel using EIPBench order messages. The results are collected in
Figure 6.26, which shows that some of the FPGA patterns perform close to the baseline (i.e.,
near optimal for most benchmarks).

Message and Content Generation Although the Splitter and Aggregator are classified as
routing patterns according to [HW04], they reside in the ET template with the Message Translator
and the Content Enricher. Figure 6.26(a) shows that the Splitter SP-A performs close to the
baseline, since it is emitting the same amount of data that it consumes. In the second, SP-B case,
the Splitter has to wait for the end of the message to be able to create the messages correctly
and then emits the head with one entry from the iterable and the tail multiple times. The results
for this data generating pattern are better than for Camel. However, the increasing amount of
data reduces the throughput.
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Figure 6.26: Template throughput for predicate and expression template patterns
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Figure 6.27: Template throughput for composed patterns

While the Aggregators AGG-A (reverse SP-A) and AGG-B (reverse SP-B; similar to AGG-A,
thus not shown) as well as the Message Translator MT-A on the FPGA perform close to the
baseline, the content-generating CE-A Content Enricher case shows a similar effect as for SP-B.
That is due to the CE-A enricher case essentially duplicating the amount of data processed. While
the Camel enricher is not limited by physical on-chip memory, the hardware enricher throughput
reduces to half of the possible capacity (cf. baseline). The hardware throughput would be higher
on bigger FPGAs. The high throughput of the Aggregators are measured on the order data set,
not the much smaller, split order messages, which are produced by SP-A (in average 11.73 B) and
SP-B (in average 197.67 B). When testing these cases AGG-A performs at 8, 396, 946 msgs/s and
AGG-B at 518, 134 msgs/s. This indicates that our approach saturates well up to the physical
capacity limits.

Conclusions: (1) The message throughput of transformations (i.e., MT-A) and routings
(i.e., SP, AGG) is much higher for all of the benchmarks, except for the CE-A case. (2) Content
generating patterns lead to degrading throughput on the FPGA due to the increasing messages
sizes and saturation up to the resource limits (e.g., BRAM). (3) The throughput scales linearly
with more hardware resources.

Multiple routing conditions and branchings Let us start with the question from EIPBench
about the “impact of multiple conditions and route branchings” for the Content-based Router.
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The software implementation shows a decrease in throughput, especially when increasing the
number of conditions and branchings in routing cases CBR-B and CBR-C (cf. Figure 6.26(b)).
On the hardware, all router implementations score close to the baseline due to the parallel
processing capabilities of our approach and the underlying hardware support. Hence, as long as
the conditions can be executed in parallel, neither multiple conditions nor branchings significantly
reduce the throughput.

The same results were observed for the Load Balancer, which is based on the same PT
hardware implementation. Independent of the number of branches, the Load Balancer shows
results close to the baseline. These observations indicate a major benefit of hardware over current
software designs for routing patterns (e.g., due to thread handling).

The third template, which is implemented by the Join Router pattern, again scores close to
the baseline (not shown). It is independent of the number of branches it accepts, too.

Conclusions: (4) The hardware throughput is invariant to the number of multiple, paral-
lelizable conditions and route branchings. (5) The Load Balancer and Join Router perform near
baseline (i.e., without message processors).

Pattern composition The previous results indicate that some variants of the Splitter, Aggre-
gator Load Balancer, and Join Router can be combined to a composite message processing pattern
without much throughput penalty (i.e., the composition would perform close to the baseline).
However, data generating patterns should be avoided. For example the Scatter-Gather pattern
uses a Multicast pattern (cf. Chapter 2), which copies the messages, thus increasing the amount
of data. However, fork and join patterns that introduce no performance penalty like the Load
Balancer and the Join Router are usually used to support optimizations such as “rewrite operator
to parallel operator” or “rewrite sequence to parallel” (cf. Chapter 4). Especially patterns
with less message throughput (e.g., Splitter, Content Enricher) might benefit from a parallel
instantiation. To shed some light into this hypothesis we conducted the following experiments
on the FPGA only: composite message processing for the simpler SP-A and AGG-A case (i.e.,
SpAgg A) and for the more complex B case (i.e., SpAgg B), as well as the “rewrite sequence
to parallel” optimization with three (i.e., LBSpAggJR 3) and four (i.e., LBSpAggJR 4) parallel
SP-AGG sub-sequences for case B.

Figure 6.27 denotes the results for these experiments, showing a near baseline throughput for
SpAgg A case. The SpAgg B is dominated by the Splitter, which reduces the throughput to the
individual SP-B result. When adding a Load Balancer that distributes the messages to three
instances of a Splitter, Aggregator pair, then afterwards joining their output messages using
a Join Router (cf. LBSpAggJR 3B), the throughput can be increased significantly. With four
Splitter, Aggregator pairs, the throughput is near baseline again.

Conclusions: (6) The patterns that duplicate data like the multicast reduce the throughput.
(7) The “sequence to parallel” optimization works well on sub-processes that only temporarily
work with more data.

Parallelism: Space Management

The inherent support for parallelism is an advantage of FPGAs. When instantiating multiple
integration scenarios in FPGA hardware, multiple message streams can be processed truly in
parallel. The number of deployable scenario instances is determined both by the size of the
FPGA, i.e., its resource capacity (incl. LUTs, FFs and BRAM), and by the capacity of the FPGA
interconnect fabric.

Table 6.4 shows the resource occupation of the system code building blocks we explained
earlier. One important limiting factor of these building blocks is the BRAM. Each FIFO queue
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Table 6.4: Resource occupation
Building Block LUTs % FFs % BRAM %

Translation 82 0.39% 187 0.45% 1 1%
Routing(17→2) 246 1.18% 523 1.26% 4 4%
Join Router(2 7→1) 193 0.93% 361 0.87% 2 2%
JSON Parser 752 3.62% 897 2.16% 0 0%
UDP Receiver 649 3.12% 437 1.05% 1 1%
UDP Sender 457 2.20% 234 0.56% 0 0%

This is the maximum space occupation of each building block with optimization turned off. This can
be much less, when only a few features of the building block are used. BRAM is in 18 kB units.

Table 6.5: Resource occupation CBR-A|SP-B
Building Block LUTs FFs BRAM

user code (w/o parser) 101|1907 67|2977 0|0
JSON parser 504|396 193|159 0|0
messageRouter 246|- 523|- 4|-
messageTranslator -|82 -|187 -|1
total 851|2385 783|3323 4|1
percentages 4.09%|11.47% 1.8%|7.99% 4%|1%

in the building block uses one 18 kB BRAM block. For example a maximum of 25 routers can be
placed on the Artix-7 chip we used for our hardware tests. Code that has a lot of state, like the
JSON Parser, has a high occupation on LUTs and FFs. The resource occupation numbers in the
table are obtained via the resource occupation analysis tool of the Vivado IDE, that can be run
on a synthesized and implemented design.

We placed one fully configured instance of the ET and PT templates on the Artix-7 chip, the
SP-B, and CBR-A. Table 6.5 shows the resource usage differentiating the JSON parser, the user
and template code. We also give the usage in percent of the total number of available resources.
Note that there is a significant difference in size between the space required by the user code
including the JSON parser (101+504, 1907+396 LUTs, respectively) and the space required by
the system template code (246, 396 LUTs). This overhead indicates that the space consumption
and the pattern performance hugely depends on the specific user code. Another interesting effect
is the implicit optimization during synthesis to the FPGA (e.g., the reduction of the JSON parser
to the features that are used).

The usage of parallelism brings forth another design trade-off characteristic of FPGAs. Due
to their space occupation, the CBR-A can be instantiated 24 times and the SP-B 8 times on the
Xilinx chip. To accommodate these instances, the VHDL compiler has to trade latency for space
by possibly placing unrelated logic together into the same slice, resulting in longer signal paths
and thus longer delays. This effect can also be seen in Figure 6.28, where we illustrate the space
occupied by three of the 24 CBR-A configurations (cf. instance 1, 2, 24). Occupied space regions
are not contiguous, which increases signal path lengths. This effect has also been identified for
predominantly asynchronous designs [Cas05, MT10], while our experiments did not show any
negative impact on the message throughput for our mostly synchronous designs. In summary,
with more on-chip resources (e.g., FFs, BRAM) a higher degree of scenario instance parallelism,
and thus more overall throughput could be reached.

Conclusions: (8) The message protocol handling and the complexity of user code impact
the space consumption on the hardware. (9) The parallel processing through multiple instances
is limited by the FPGA’s hardware resources. (10) The on-chip signal path length does not have
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(a) complete (b) instance 1 (c) instance 2 (d) instance 24

Figure 6.28: Resource usage on the FPGA chip (floorplan) for the predicate template (i.e.,
CBR-A) and the remaining system components

a significant impact on message throughput for our design.

Parallelism: Performance

One of the important questions to answer for pattern solutions is “what is the impact of concurrent
users?” (cf. Chapter 5). To answer this question we use the SP-B and CBR-A configurations
mentioned above to run up to 24 independent data streams in parallel. We call them processing
units to allow comparison with the results of the software system from Chapter 5, where multiple
threads were measured. Figure 6.29 shows the message throughput per second for an increasing
amount of parallel processing units compared to the corresponding software implementation.

An important observation is that running additional process instances has no impact on the
other instances, which let the processes be executed concurrently. Thereby the signal path length
does not decrease the measured message throughput. Consequently, the throughput of the two
hardware templates scales linearly with the number of process instances until the space limit
is reached (i.e., for 8, 24 units, respectively). The multi-threaded software implementations,
executed in a single JVM-process, cannot provide the same level of parallelism as an FPGA. This
could be achieved with more JVM-processes on more CPUs, however, at a considerable expense
(e.g., management of JVM or even VM instances, and increased power consumption).

Conclusion: (11) The throughput scales linearly with the number of instances until resource
saturation on the hardware.

Message Size

The EIPBench specifies a scale factor for data size benchmarks to target the question on “what
is the impact of message sizes?” (cf. Chapter 5). Therefore we used the TPC-H order-based
messages approximately up to 8 MB per messsage from EIPBench and evaluated them for all
defined templates. Figure 6.30 depicts only one result, because all baseline measurement of the
different templates performed identical.
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Figure 6.29: Concurrent user measurements

The immediate observation is that for increasing message sizes the memory bandwidth is
saturated. In contrast to designs that use higher level memory (e.g., DRAM) and in-memory
object materialization [MTA09a], which scales linearly with the input data size, our approach
uses byte-streams using the local BRAM only for flow control (e.g., back-pressure). This design
decision makes the approach directly limited by the practical upper boundary of resources on the
board, which allows a throughput of approximately 800 MBit/s. For illustration, we added a
secondary axis for MBit/s in Figure 6.30, which shows an almost stable data volume saturation.
We conjecture that for most of the IoT scenarios the high number of smaller messages should fit
into the on-chip memory.

As an evolution of our design, similar to [MTA09a], we could aim to load the messages in
RAM temporarily and only pass the message pointers and a message structure, e.g., containing a
map of names in a JSON to pointers to their data, from pattern to pattern (cf. Claim Check).
This would allow for bigger messages, if the patterns only perform operations on small parts of the
message (e.g., object lookup). For those cases pointers to larger messages could be transported,
while keeping the processing fast. In case of many write and/or read operations, data has to
be passed back and forth to the on-board RAM (compared to on-chip BRAM), which would
decrease message throughput.

Conclusions: (12) The throughput is physically limited by the capacity of the hardware.
(13) The throughput can be increased by using secondary memory, however, trading for more
selective data operations.

Patterns to Scenarios: Connected Cars Telemetry

Let us get back to the motivating connected car example from Figure 6.17. The data sent
from the vehicles separates into approximately 304 B error code JSON messages with fields
like "Diagnostic Trouble Codes":"MIL is OFF0 codes" and approximately 762 B telemetry
data with fields like "Vehicle Speed":"0km/h" and "Engine Load":"18,8%" from the car’s
OBD device. The error codes are enriched with master data of the owner by lookup of the
obd2 Vehicle Identification Number (VIN) and translated into the format understood by the
receiver. For the telemetry data processing, the latter two steps are performed as well, while
an additional Message Filter is added to consider driving cars only. The differentiation between
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Figure 6.30: Message size baseline measurements

error code and telemetry data is done by an initial Content-based Router and the two control
sequences are combined by a Join Router, before enriching and translating.

Figure 6.31 depicts the message throughput for the sketched simplified implementation of the
sample scenario divided into the paths taken through the scenario: error code, telemetry and
filtered telemetry. While the measured throughput for the unoptimized processing (i.e., normal) is
as expected, considering the single pattern results, some control- and data flow optimizations from
Chapter 4 can be considered. We exclusively focus on techniques that are especially beneficial
for our hardware-based approach and the particular scenario. For instance, on FPGAs the flows
are executed instantly and in parallel. Hence, optimizations like “Reschedule start of parallel
flows” [RFRM19] (i.e., “start the slowest flow first”) and “Merge parallel flows” (i.e., “avoid
forking costs”; no performance improvement, but space reduction possible on FPGAs), are not
applicable or desirable.

The first control-flow optimization that looked promising was “sub-process parallelization”
(i.e., sub-parallel), which aims to exploit the FPGAs parallel processing, of the sequence:
Content Enricher and Message Translator. This worked well for the error codes, however, not for
the telemetry, due to the size of the data.

Since the data and not the control-flow seems to be the limiting factor in this scenario,
message-flow optimizations are more promising. Merging the neighbor patterns (i.e., neighbor
merge) requires less resources due to the removal of one channel. However, the freed space is not
enough for another instance and the performance pentality of a channel is low, thus no significant
throughput increase is measured.

The throughput of the filtering can be increased in all cases, when stopping the evaluation
immediately, when the condition matches (i.e., early select early-out). This optimization
worked well because significantly less data has to be processed.

The optimizations that work well for query processing are early-selection and early-projection
(i.e., similar to [MFPR90]). The selection optimization (not shown) has no positive effect (i.e.,
throughput increase less than 30 msgs/s), because the Message Filter is not able to cancel a
message transmission when the condition does not match. The early-projection places a content
filter pattern (not discussed) to the beginning of the process that filters empty fields. The results
in Figure 6.31 for early project show an increase in throughput, since less data is moved
through the hardware pipeline.
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Figure 6.31: Connected cars scenario performance

Lastly, we combined several of the promising optimisations like sub-parallel, early-out and early
project into one scenario and measured the performance (i.e., combined). For the error codes and
the telemetry the sub-parallel and early project optimizations increase the throughput, because
the early project significantly reduced the amount of data and the sub-parallel parallelized the
slowest part of the flow. For the filtered messages the early-out optimization caps the throughput.
Seven parallel scenario instances with combined optimizations fit onto the FPGA.

Power Consumption. For this setup the FPGA can handle 153,061.22 msgs/watt, while the
CPU on the Z600 processes 11,052.32 msgs/watt (i.e., measured CPU consumption only). The
measurement follows the technique in [MTA09a], which measures the power consumption of CPU
and FPGA. The power consumption P of a logic circuit depends linearly on the frequency at
which it operates: P ∝ U2 × f , with voltage U , frequency f . For the consumption of the FPGA,
a power analyzer provided by Xilinx reports an estimated consumption of 1.0 W, and for the CPU
the consumption lies between the Extended HALT Power and the Thermal Design Power around
95 Watt. Hence, the scenario can be handled by an FPGA with much less energy consumption
compared to a CPU. If all US cars sent one message every second, this would be a saving of
approximately 92.78% of energy, which becomes a critical factor for most data centers5.

Product-ready Hardware. Despite the promising results on Xilinx, we studied the CCT scenario
on the Intel Arria 10 SoC FPGA. Figure 6.31 shows the message throughput for one scenario
instance (cf. Intel-large-normal) as for Xilinx. The results are as expected due to the factor
five higher clocking (i.e., 100 MHz Xilinx vs 500 MHz Intel), thus our design scales linearly and
could cover CCT for the car traffic in most countries with one FPGA.

Conclusions: (14) Especially data flow optimizations that reduce the message sizes increase
the throughput. (15) Besides the optimizations suitable for CCT, a more systematic study on
hardware process optimizations and their combination is required that collects all control and
data flow approaches, analyzes their applicability to hardware and their impact on the message
throughput and space reduction.

5NRDC, Anthensis. Data Center Efficiency Assessment, visited 5/2019: https://www.nrdc.org/sites/

default/files/data-center-efficiency-assessment-IP.pdf
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Discussion

From these observations we conclude that FPGAs allow for effective message processing based
on the EIP streaming semantics. Despite the slow clock rate of our Xilinx FPGA (100 MHz),
it achieves even higher throughput than powerful general-purpose CPUs, because FPGAs can
implement fully concurrent data streaming pipelines. At the same time it consumes less power
than a general-purpose CPU.

Additionally, we would like to discuss further non-functional topics including security aspects,
exception handling, and monitoring of the hardware processing as they are required in advanced
scenarios. While some security aspects can be handled on the transport protocol level, character-
istics like message privacy either require additional on-chip IP cores or an on-board CPU (e.g., for
decryption). The exception handling in integration scenarios can be implemented with a “stop
process” and “message retry” on exception processing (cf. Chapter 2). As part of future work,
additional logic for the cancellation of a message in the hardware pipeline and a timed resend have
to be investigated. Eventually, monitoring capabilities on message and channel level are required
for a more productive setting. Therefore, the statistics could be written to the on-board RAM
and asynchronously fetched and processed by an on-board CPU or re-routed using a Multicast or
Wire Tap pattern [HW04].

6.2.5 Conclusions

To address the velocity challenges of current software application integration solutions, we assessed
the potential of FPGAs as message processors for data-intensive operations in the context of
application integration. Therefore we specified an integration system on a chip (short ISoC,
cf. question HW1) and define compatible EIP message streaming semantics, along which we
categorized the patterns into three templates that can be efficiently synthesized to hardware (cf.
question HW3). In addition, we specify a lightweight component for hierarchical message format
processing (cf. question HW2).

Our experiments illustrate how FPGAs help to improve message routing and transformation
throughput on hardware compared to a comparable software setup (cf. question HW4), e.g.,
due to the invariance to the number of branches and conditions. Our analysis also revealed
some limitations for further research (e.g., dealing with data-generating patterns, message sizes).
Furthermore, pattern instance parallelism can be used to scale the throughput to cover whole
real-world integration scenarios on one chip by synthesizing multiple scenario instances. More
generally, the analysis showed the suitability and soundness of our ISoC design for efficient message
processing, e.g., for challenges like multiple, parallelizable conditions and route branchings and
threading (cf. conclusions (1), (3)–(5), (10), (11)), identified interesting throughput vs. state
trade-offs (conclusions (2), (6)) as well as limiting factors like UDF code quality and resource
constraints (cf. conclusions (8), (9), (12)–(13)), discussed the suitability of some optimizations
from Chapter 4 (cf. conclusions (7), (14)), and resulted in future work in the form of a more
systematic study of optimizations required (cf. conclusion (14)). For example, we analyzed and
discussed the applicability of existing optimization techniques from the application integration
domain to an integration process synthesized on hardware. But we leave a more systematic
analysis as future work.

We conclude that a dataflow ISoC on the network path allows for a competitive and sustainable
alternative to software-based solutions. While there are still many technological and operational
challenges to solve (e.g., throughput vs. state trade-off), we conjecture that solutions on re-
programmable hardware denote the future of fast, data-intensive processing on wires.
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Table 6.6: Multimedia data induced shift of core EAI characteristics
EAI Concept [Lin00, HW04] Foundations [Lin00, HW04] Emerging: Media [LSDJ06], Chapter 2

Message (definition) header, body header, body, attachments
Message Protocol (for-
mat)

structured / textual (e.g.,
XML, JSON)

multimodal: textual, binary / media
(e.g., image, video)

Message size small to medium (B, kB) medium to large (kB, MB)

Message Endpoint
(sender, receiver)

few, static (e.g., on-
premise applications)

many, dynamic / volatile (e.g., mobile
/ IoT devices, cloud applications)

Message channel (trans-
port, style)

asynchronous synchronous / streaming, asynchronous

Adapter, processor (inter-
action, processing)

relational relational, semantic, confidence / prob-
ability

6.3 Evolution: Multimedia Pattern Solutions

Through the interest of (business) applications in social media, multimedia, personal and affective
computing [RMRM17], socio-technical interactions and communications are introduced into ap-
plications. Thus, enterprise application integration (EAI) is now required to process unstructured
multimedia data, e.g., in agricultural [Til91, YPL+00, BH15, M+15] and medical applications
[AGWC14], and from social sentiment analysis [SAP19a, SSS07, TYRW14]. Following the idea
in [LSO+08], we argue that the sequence of operations of many multimedia applications actually
denote integration scenario, thus leading to new EAI characteristics with respect to the represen-
tation and variety of the exchanged messages (i.e., multimodal: textual and multimedia), the
growing number of communication partners (i.e., message endpoints), as well as the velocity (i.e.,
message processing styles), and volume (i.e., message sizes) of the data [WB97].

However, the EAI foundations from 2004 in the form of the original EIPs [HW04] and system
architectures [LÖON01, IA10] do not address the multimedia characteristics. Table 6.6 sets the
current characteristics of the basic EAI concepts from [Lin00, HW04] into context to those of
emerging applications [LSDJ06], see also Chapter 2. These characteristics lead to challenges
that were re-emphasized in a recent seminars on the research directions for principles on data
management (e.g., [AAB+17]). While their definition of multi-modal further includes temporal
and spatial data, which plays a lesser role in EAI so far, we summarize the research challenges
matching those of EAI. Subsequently, we introduce and discuss important EAI challenges (CHx )
that are not met by current EAI concepts or system implementations:

CH1 User interaction and interoperability (interaction with endpoints): The growing variety of
message protocols with combined textual and media messages (e.g., seamless integration
relational and media processing) [AAB+17] constitutes the first sub-challenge (a) on how to
represent or model multimodal messages (i.e., relational and multimedia), e.g., in the form
of message format extensions like attachments (cf. Table 6.6). The second sub-challenge
is about (b) a uniform message processing, user interaction and data access changes from
relational to multimodal (e.g., conditions, expressions) [AAB+17], which third (c) requires
to deal with semantics in multimedia data (i.e., understanding data [AAB+17]), while
over-coming the “semantic gap” [LSDJ06, TMM+16] as in the current MPEG-76 standard.
Although this was addressed by several initiatives, they targeted low-level media features
that are inadequate for representing the actual semantics for business applications like
emotions [SP15].

CH2 Architectural challenges: Current EAI architectures are challenged by the interaction

6ISO/IEC 15938-1:2002, visited 5/2019: https://www.iso.org/standard/34228.html
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Figure 6.32: Multimedia sub-process for social media emotion harvesting (excerpt)

with a growing number of dynamic endpoints and the co-existence of processing styles:
asynchronous and synchronous streaming (cf. Table 6.6; a solution was presented for textual
EIP processing in Section 6.2), including additionally required components compared to
the current EAI systems.

CH3 Multimodal processing : The challenges of combining processing styles (streaming, mul-
timodal), dealing with distributed processing units (device, EAI system), guaranteeing
efficient data processing [AAB+17] and optimizations [AAB+17] (e.g., data compression)
are further complicated by increasing message sizes of multimodal content.

CH4 Verification of multimodal EAI processes: The challenge of verifying processes and data
[AAB+17], addressed in this thesis for EAI in Chapter 3, is challenging for checking the
correctness and compliance of multimodal processes.

Note that CH4 could be achieved through an extension of timed db-net for multimedia data,
however, due to our focus on the evolution of the EAI domain, this is out of scope for this thesis
and will be considered as future work (cf. Section 6.5).

Example 6.12. We consider a social media analytics scenario that illustrates the multimedia
data variety challenge in EAI.The current implementations of social media sentiment analysis
scenarios (e.g., [SAP19a]) are either focused on textual information, or they process multimedia
data in an ad-hoc way (cf. CH1). As sketched in Figure 6.32, they usually collect and filter social
feeds from sources like Twitter and Facebook according to configurable keyword lists that are
organized as topics. The textual information within the resulting feeds is analyzed with respect
to sentiments toward the specified topic. However, many sentiments are expressed by images
in the form of facial expressions. Therefore, the received feeds would require an multimedia
Message Filter, e.g., removing all images not showing a human, an Enricher for marking the
feature, a Splitter for splitting images with multiple faces to one-face messages, and an Enricher,
which determines the emotional state of the human and adds the information to the image or
textual message, while preserving the image. The interaction with the multimodal messages by
formulating user conditions and the required multimedia processing (cf. CH3) are currently done
by a large variety of custom functions, thus denote ad-hoc solutions. Therefore, existing EAI
systems are extended by — as it seems — arbitrary multimedia processing components in custom
projects (cf. CH2) that destabilize these systems and make the validation of the multimodal EAI
processes difficult. �

These challenges are set into context of the current EIP processing in Figure 6.33, showing
the new problem areas of user interaction (incl. semantic message representation and custom
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conditions, expressions), new architecture components for learning and detecting the semantics in
the multimodal messages, and the multimodal message processing.

We seek answers to the following research questions (MMx ) as sub-questions to RQ3-1 “Which
related concepts and technology trends can be used to improve integration processing and how
can this be practically realized?”, derived from the introduced challenges.

(MM1) “Which industrial and mobile applications require multimedia application integration?”

(MM2) “Which integration patterns are relevant in the context of multimedia data?”

(MM3) “How could these patterns be realized and uniformly configured for multimedia data
integration?”

(MM4) “Do the current EAI architectures (e.g., [Lin00, IA10]) need extensions to support
multimedia data integration?”

(MM5) “Which additional EAI architecture components are required for multimedia message
processing?”

MM6 “How can the process-oriented multimedia integration processing be realized and improved?”

MM1–MM3 address the user interaction challenge CH1 by considering a broader view of the
requirements of current multimedia solutions (cf. MM1), identifying relevant integration semantics
in the form of patterns (cf. MM2), and the definition of a uniform, semantic multimedia data
access (cf. MM3). The challenge CH2 regarding the architecture evolution of current systems is
addressed in MM4 and MM5 that target an identification of missing architectural components
compared to the classic EAI architecture described in Section 2.1.3. Finally, the challenge CH3
about an efficient multimodal processing is covered by MM6. Note that we do not focus on
the areas of content-based media retrieval [LSDJ06, CDPV07], nor strive to improve existing
algorithmic or hardware multimedia processing aspects (e.g., on GPU [SSGH15]), but seek a
complementary mapping of the multimedia domain to EAI concepts.

To answer these questions, we introduce preliminaries on semantic knowledge representation
in Section 6.3.1, before we conduct a scenario analysis in the form of a literature and a system
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review of industrial and mobile applications in the context of the multimedia integration processes
in Section 6.3.2 (targeting MM1). The analysis results in a mapping of the integration requirements
to integration patterns for existing and new patterns, i.e., not in EIP [HW04] (for MM2). In
Section 6.3.3, these patterns are set into context of the integration operations required by the
scenarios, resulting in a logical representation toward a uniform user interaction (for MM3). We
discuss their realization for multimedia integration scenarios (for MM6) and discuss required
EAI system extensions in Section 6.3.3 (for MM4+5). The proposed approach is evaluated in
Section 6.3.4 for its comprehensiveness and message processing throughput for the motivating
social media example in a case study (for MM6).

The resulting multimedia integration system not only covers all aspects from multimedia
patterns, processing and optimizations to data access and user access, but shows sufficient
architectural extensions for an evolved EAI system architecture for multimedia data. The
benchmark extensions allow for comparability of future extensions and alternative solutions and
the grounding on a semantic knowledge representation can be used to show applicability to a
representation in timed db-net as well as a formal analysis of multimedia pattern compositions.

Parts of this section have appeared in the proceedings of EDOC 2017 [RRM17].

6.3.1 Image Processing and Semantic Knowledge Representation

For a better understanding of our proposed solution, we briefly introduce image processing
and semantic knowledge representation basics. Due to the large body of work for both topics,
this can only be a brief introduction of some terminology and key concepts used in our work.
For a more comprehensive introduction and further details, we refer to the literature (e.g.,
[Ros69, Jai89, Eas10]).

Digital Image Processing

The first techniques of digital image processing or digital picture processing, essentially a sub-
category of digital signal processing, stem from the 1960s [Ros69], already with applications like
medical image processing, Optical Character Recognition (OCR) and satellite imagery. Digital
image processing subsumes all tasks required to numerically represent and process digital images.
Subsequently, we briefly introduce the terms used in this work.

Digital Image A digital image a[m,n] is the projection of an analog image a(x, y) from a
continuous to a discrete area [Jai89, Eas10]. During the digitalization process, the analog image is
scanned, in which the continuous image a(x, y) is split into N rows and M columns, called pixels.
Each pixel of the digital image has coordinates [m,n] with 0 ≤ m ≤M − 1 and 0 ≤ n ≤ N − 1.
Besides coordinates, pixels have additional properties like depth, color, and time (for videos).

Example 6.13. The digitalization of a continuous image into eight rows and columns is depicted
in Figure 6.34. The original image is shown on the left followed by an image with 8× 8 grid in
the middle. For the calculation of the resulting image on the right, the average of all color values
measured by the sensor is calculated and rounded to the next integer with a minimal value 0
(black) and a maximal value 255 (white). �

Image Processing Operations The image processing on digital images describes the alteration
of an image as well as addition of new information in the image [Wal92]. The basic operations
are subsequently introduced.

Geometric Operations. The geometric operations are those operations, which assign the color
of a pixel at position [n,m] to that of position [k, l] with k, l functions on n,m [Jai89, Eas10].

249



Figure 6.34: Digitalization of an analog example image

Geometric operations can be used to create new images and common geometric operations are the
translation, mirroring (change content position), rotation (change content orientation), cutting
(remove content), and scaling (change content size).

Point Operations. The point operations usually require histograms of an image, which represents
the distribution of properties like colors or brightness [Jai89]. Properties of a pixel can be read
or changed (e.g., read or write pixel color), which denote a pixel’s base operations. Common
point operations are thresholding (select pixels with certain value to produce a binary image),
segmentation (image partitioning), and arithmetic operations (e.g., logarithm operation for
contrast reduction of brighter regions).

Neighborhood Operations. The neighborhood operators considers the pixel and its neighbor-
hood [Jai89, Eas10] for the operation (e.g., colors of pixels in the neighborhood). The neighbor-
hood is usually adapted to the filter applied (e.g., quadratic neighborhood for a convolution filter).
The operations are commonly used for pattern recognition and filters like edge smoothing, and
edge detection. Especially the recognition of patterns based on Haar-Wavelets by Papageorgiou
et al. [POP98] grounded the work on Haar-classifiers used in pattern and object detection using
cascading features [VJ01].

Global Operators. The global operators rely on point and neighborhood operators, but operate on
the complete image [Jai89, Eas10]. Most common use cases are read-only operations like edge
detection and object or feature detection. Write-operations denote, e.g., the marking of detected
objects in images with frames of different shapes and colors.

Semantic Knowledge Representation

While the term knowledge representation was coined in the field of artificial intelligence and
denotes the representation of real-world information in a computer-readable form for tasks like
reasoning, semantic knowledge representation has its roots in the semantic web domain [AVH04]
that is grounded on the concepts of hypertext and addressable resources via Uniform Resource
Identifiers (URIs) [BLFM05]. The development in this domain is mainly driven by the World
Wide Web Consortium (W3C), which coined several standards for the representation of data as
resources, a vocabulary for the semantic data representation, and query languages for semantic
reasoning that we subsequently introduce.

Resource Definition Framework The Resource Definition Framework (RDF) is a framework
for representing, sharing and processing information in a machine readable form [KCM04]. Its
abstract data model is based on triples, which consist of a subject, predicate, and an object. The
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predicate represents a property that is a relationship between two things (subject and object).
The object denote (literal) values, which can be empty (i.e., without global URI), although its
usage for linked data is discouraged, since they cannot be linked from external documents [HB11].
The triples can be referred to as statements or assertions of relationships. A set of RDF triples
is called a RDF graph, an example of which is shown in Figure 6.35, resulting from merging
common subjects or objects into one node.

To add meaning, the data is assigned explicit semantics based on agreed-upon terms. Therefore
RDF uses URIs as identifiers, since it has a clear authority (i.e., the URI belongs to a registered
owner [BLFM05]) and the identifier is unambiguous due to their specified format. With that,
RDF asserts that one resource identified by URI has a URI relationship (e.g., type, isA) to
another URI resource.

Example 6.14. The resource <http://dbpedia.org/resource/Vienna>, as defined by the
dbpedia.org organization, represents the Austrian capital city of Vienna, with namespace
<http://dbpedia.org/resource/>. These namespaces can be abbreviated in RDF, e.g., by
prefixes in the compact URI (CURIE) [BM10] scheme. To express that Vienna is a capital in
Europe, we write in CURIE notation:

dbp:Vienna rdf:type yago:CapitalsInEurope,

with the following prefix definitions: @prefix dbp:<http://dbpedia.org/resource/>,
@prefix rdf:<http://www.w3.org/1999/02/22-rdf-syntax-ns#>, and
@prefix yago:<http://dbpedia.org/class/yago/>. �

Ontologies The process of casting information about real-world entities into RDF triples
requires modeling these entities according to a meta-model. This model can be a basic data model
like the RDF triple format together with specific conceptualizations in the form of vocabularies (or
ontologies). An ontology formally defines the terms (called classes or concepts) and relationships
that can be used to model domain-specific vocabularies that are interpretable by machines.
For example, vocabularies to express conceptualizations in RDF are, e.g., RDF itself, RDF
Schema [Bri04] and the Web Ontology Language [MVH04], which are the result of a W3C
standardization process. All provide formal semantics. The terms defined according to their
semantics (in the form of triples) can be deduced using inference rules expressed as SPARQL
queries [HSP13].

Example 6.15 (Virtual Human Ontology). A well-known vocabulary is the virtual human
ontology that describes humans and their emotions through facial expressions. The depiction of
part of the ontology is shown in Figure 6.36 and denotes a formal specification of the animation
for a desired expression of emotion based on [RTKK02, GRVT+06]. The VirtualHuman class has
Face and Body subclasses. The “virtual” face has animations that can have facial animation
parameters (FAPs) like a spatial reference of facial shapes, and a facial expression FacialExpression,
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Figure 6.36: Excerpt of archetypal and intermediate face expression profiles and emotion repre-
sentation of a VirtualHuman based on [GRVT+06]

which describes an Emotion subclass. The emotion is modeled by an abstract ModelOfEmotion
subclass that can be one of many emotion models (e.g., Whissel’s Wheel of activation-evaluation
space [Whi09] or Eckman’s model of emotion [Ekm93]).

The information that a human subject s has a face o can be expressed as

vh:s vh:hasFace vh:o

with prefix vh in RDF’s CURIE notation. �

With that, knowledge can be represented and expressed understandable to humans and
computers [GRVT+06].

SPARQL Protocol and RDF Query Language Similar the Structured Query Language
(SQL) for queries on relational databases, the SPARQL Protocol and RDF Query Language
(SPARQL) [HSP13] is used to query RDF data (e.g., stored in triple stores or remote SPARQL-
endpoints), however, the difference lies in the structure of the data accessed. While the data in
relational databases is organized in relational tables with primary and foreign key constraints,
the RDF data denotes a graph. Hence, SPARQL allows for the specification of graph patterns to
select data matching the pattern.
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SPARQL version 1.1 [HSP13] denotes a rich query language over RDF by specifying several
artifacts like term constraints (e.g., restricting String values), aggregators (e.g., group by), graph
patterns (e.g., for empty nodes), expressions (e.g., String functions) and query forms (i.e., ASK,
CONSTRUCT, DESCRIBE, and SELECT). We subsequently introduce those artifacts that are explicitly
used in this work.

Query Forms. The query forms use pattern matching to form result sets or RDF graphs. The ASK

query returns a Boolean indicating whether a query pattern matches or not. Listing 6.8 depicts
its syntax with prefix definitions and conditions.

Listing 6.8: ASK query schematic

1PREFIX <PREFIX d e c l a r a t i o n s . . . >
2ASK {
3 <cond i t i ons>
4 }

Listing 6.9: SELECT query schematic (incom-
plete)

1PREFIX <PREFIX d e c l a r a t i o n s . . . >
2SELECT <v a r i a b l e s . . . >
3WHERE {
4 <graph pat t e rns with v a r i a b l e s

. . . >
5 }
6ORDER BY <c o n d i t i o n s . . . >
7 . . .

The SELECT query returns all or a subset of variables bound in a query pattern match.
Listing 6.9 shows an (excerpt) of its syntax with projection variables, graph patterns and order
by clause.

Filter Evaluation. SPARQL provides a subset of XQuery [W3C01] functions and operators
including logic operators, negation and existence filters. Again, we focus on filter expressions
that are used subsequently, which is the NOT EXISTS filter operator. It returns a Boolean value
depending on the bindings of the current graph pattern (i.e., true, if no binding exists):

xsd:boolean NOT EXISTS { pattern }

Example 6.16. A query on information represented in RDF corresponding to the virtual human
ontology that determines, whether there are subjects s with no face o translates to an ASK query
in Listing 6.10.

Listing 6.10: Virtual human ASK query example

1PREFIX vh : . . .
2ASK { FILTER NOT EXISTS { ? s vh : hasFace ?o } }

For a set of RDF triples with only humans, the query will return true. �

6.3.2 Literature and Application Analysis

We conduct a literature and application (short app) review targeting MM1 and MM2. The
first goal is to compile a list of industries. Based on their scenarios, multimedia operations are
discussed that are related to the integration patterns.

Methodology

The analysis is conducted along the methodology from Kitchenham [Kit04] that allows for
systematic reviews as subsequently conducted.
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Figure 6.37: Literature analysis: image processing in industries over time

Literature Review. The primary selection of industrial multimedia scenarios from the litera-
ture was conducted using google scholar (scholar.google.com) on 2017-04-03 without patents
and citations, for the keyword “image processing industry” and allintitle. The search results
in 54 articles, of which we selected 29 articles with selection criteria “image processing” (e.g.,
in abstract, theme) and added the 10 papers as expert knowledge (i.e., examples from the
introduction), resulting in 39 articles. We grouped the articles chronologically by the decades
they were published and by industry, shown in Figure 6.37. While the contributions per industry
vary, the amount of work found per decade increases. Due to brevity, we subsequently discuss the
top three industries from the current decade: agriculture / food, medical / pharmaceutical and
social media management.

Multimedia Applications. Similar to [TMM+16], we analyze current multimedia applications.
The leading app store in terms of the number of applications in 06/2016 is Google Play with
2.2 million applications7. Hence, for the application review, we searched in Android Apps with
tags “photo”, “collage” (e.g., similar to the Aggregator pattern), and “video” with “media”
as context by applying the rating “4 stars+” and “for free” filters (e.g., tags: collage, media).
We considered the first 100 entries and selected those applications with more than one million
downloads. As in the literature analysis, the keywords are taken from the problem domain.
This resulted in two selections for tags:+photo,+media, i.e., Retrica and Instagram, one for
tags:+collage,+media, i.e., Photo Grid, and one for tags:+video,+media, i.e., InShot Video-
Editor (only 707k downloads) without duplicates. Conducting a complementing search for a
similar “photography” category search adds four more applications, i.e., Google Photo, Snapchat
(both image processing), FotoRus (collage) and Textgram (Image+Text).

7Statista — Number of applications available in leading application stores as of 3rd quarter 2018, visited 5/2019:
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/.
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Table 6.7: Industry and application analysis results
Applications ADPT SP RT, MF AGG MT CE SEQ DET RES

Multimedia in Industries
(from Literature Analy-
sis)
Farming [BH15, JKB13,
Til91, YPL+00, N+12,
DSC+14]

√
(
√

)
√

- -
√

-
√ √

Medical [KKP12, GR16,
AGWC14, MSA14,
JnYzZ11]

√
(
√

)
√

-
√ √

-
√ √

Social [IC+15, SAP19a,
TYRW14]

√ √ √ √
-

√ √ √
-

Multimedia in Mobile
Apps (from App Analy-
sis)
photo+media: Insta-
gram, Snapchat, Google
Photo

√
- -

√ √ √ √ √
-

collage+media: Retrica,
FotoRus, Photo Grid

√
- -

√ √ √
- -

√

video+media: InShot
√

- -
√ √ √

- -
√

text+image: Textgram (
√

) - - -
√ √

- - -

Required
√

, Not required (-), partly required (
√

)
Abbreviations: Channel Adapter (ADPT), Splitter (SP), Message Filter (MF), Content-based Router
(RT), Message Translator (MT) including Content Filter, Content Enricher (CE), Message Sequence
(SEQ), Feature Detector (DET), Image Resizer (RES).

Multimedia Processing Analysis – Results

We consider the multimedia content — found in the literature and applications (e.g., image, text,
video) — to be transferred and processed within an integration solution as message body (or
attachment; not in EIP [HW04]) and their metadata as message header. The discussed integration
patterns denote message processors that base their routing decisions or transformations on the
image content (not the metadata).

Following the methodology defined in the previous section, the analysis of the selected literature
identified 15 (i.e., nine explicitly and six implicitly named) out of the 48 message processing
EIPs as relevant for multimedia processing. Existing patterns were selected, to which multimedia
operations could be semantically assigned. New patterns constitute recurring solutions in the form
of operations for a specific multimedia data problem (e.g., resize images). Table 6.7 shows those of
the explicitly named patterns, for which multiple industry or application specific cases were found.
The Idempotent Receiver was only named once, thus not shown. The implicitly named patterns
(i.e., Datatype Channel, Document Message, Scatter-Gather, Claim Check, Canonical Data Model,
Format Indicator) denote basic integration capabilities from [HW04] that are relevant for all
of the multimedia integration scenarios. During the analysis we identified nine new patterns
that could not be mapped to an existing EIP, of which two had multiple citations (i.e., Feature
Detector, Image Resizer), and thus are in Table 6.7. All patterns with only one citation were
also identified in Chapter 2 (i.e., Message Validator, Message Decay, Message Privacy, Signer,
Verifier, and the implicitly named Format Converter) and are not shown, however, the validator
is discussed further in subsequent sections due to its relevance for multimedia processing.
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Literature Review. The results of the literature analysis are summarized in Table 6.7. Note
that references are added for articles, for which integration patterns could be found. In all
of the domains (i.e., agriculture / food, medicine, and social media) the captured images are
optionally pre-processed (also mentioned in [LSO+08] as “Capture, Share”). The pre-processing
usually includes format conversions (e.g., media formats; not shown), resizing (e.g., [GR16]),
message translation (e.g., noise cancellation, consistent background [KKP12, GR16, AGWC14]),
and content filters (e.g., hair removal for skin cancer [GR16]). An Image Resizer is also used to
compress the data for agricultural monitoring (e.g., fruit monitoring [JKB13, BH15, MSA14]).
Alternatively, a Splitter pattern is used to reduce the size of the individual features processed
(e.g., [SAP19a]). The Feature Detector for semantic objects usually summarizes the low level
image processing steps of segmentation, feature extraction and object recognition and can be
found in all of the domains. The detected features are then either validated using a Validator
(e.g., cancer classification [KKP12, AGWC14]; not shown) from Chapter 2 or filtered using a
Content-based Router or a Message Filter, if they do not have the expected feature (i.e., found in
all domains). A Content Enricher is used to add contextual information to images (e.g., weather
conditions [Til91, YPL+00], emotions [SAP19a]). Alternatively the image itself is enriched (e.g.,
by marking faces [SAP19a] or suspicious skin moles [AGWC14]). The clustering of images using
Sequence and Aggregator patterns was found in social media [SSS07]. In [IC+15], the message
deduplication is mentioned as removal of “near-duplicates”, which is covered by the Idempotent
Receiver pattern (not shown).

Multimedia Applications. These results are backed by the review of the eight mobile multi-
media applications, shown in Table 6.7. The channel adapters — supported by all applications —
denote an important data access or collection facility to capture or load multimedia documents
in the form of images or videos and share them with the contacts on other social media platforms
(e.g., Twitter, Facebook). From the standard routing patterns, only the Aggregator was found –
especially in the image fusion “collage” applications (e.g., Retrica, FotoRus). Special types of
aggregators are the “photo to movie” function in Google Photo and “synchronize music and
video” in InShot. Most of the applications make use of special image or video filters, which map
to the Message Translator pattern. These filters allow to change all aspects within an image,
comparable to the well-known textual Message Translator. The enrichment of images or videos
with additional information like layouts, backgrounds, or texts can be seen as content enricher
pattern. Notably, Instagram allows to group images as a story that vanishes after some time (i.e.,
Message Decay from Chapter 2; not shown). While this denotes a Message Sequence (i.e., single
messages belonging together), the aspect of a timed decay of a message or sequence is not in
[HW04]. Similarly, Instagram allows to send self-deleting images, which adds message decay or
aging (cf. Chapter 2).

Further new functionality (i.e., not in EIPs) can be considered Message Privacy from Chapter 2
(not shown) as “private send” in Instagram, the detection of places or objects and the new
processing style of streaming (not shown) in Google Photos, the signing and verification of images
as “Retrica-Stamp” in Retrica (i.e., Message Authenticity from Chapter 2; not shown), and the
cut, crop or resize capabilities in PhotoGrid, FotoRus and InShot that transform the images
beyond the message translator pattern.

Summary: Multimodal Pattern Classification

The literature and application reviews identified several industrial domains and mobile applications
that require multimedia EAI.

We collected the required integration aspects by mapping them to the existing EIP [HW04]
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Figure 6.38: Multimodal operation classification

that are affected by multimedia processing as well as identified several new patterns (i.e., Feature
Detector, Image Resizer, Validator, Message Decay, Signer and Verifier), which the last four were
already found in Chapter 2, thus not further discussed here. In contrast, patterns like Wire Tap
or Recipient List were not required by the applications, thus do not show any significant relation
to media processing. For the subsequent definitions, we classify these patterns according to
the dimensions “complexity” and “modality”, separating simpler from more complex operations
as well as single modal (i.e., textual, multimedia) from multimodal processing (i.e., combined
textual and multimedia). Figure 6.38 depicts these categories that are currently not covered –
apart from “Capture, Share” (Adapter Channel) and “Text-to-Text”. While many multimedia
processing approaches focus on the metadata (e.g., [Gro97]), and thus are “Text-to-Text”, “Media-
to-Media” denotes an exclusive processing of the multimedia data. Similarly, all complex, but
single modal cases are either exclusively textual or multimedia processing (e.g., enrich image by
adding geometrical shapes). For some of the complex cases, additional resources are required like
a data store for the aggregator or a key store for the Signer pattern from Chapter 2. The simple
multimodal processing denotes transformations between textual and multimedia (e.g., text to
image or image semantics to text). The more complex, multimodal processing includes multimodal
operations like the “Media-to-Media,Text” case. We mainly focus on “Media-to-Media”, and
the routing and transformation patterns from the analysis (e.g., filter, split, aggregate, enrich),
required for the identified multimedia integration scenarios.

6.3.3 Multimedia EAI Concepts

We map the multimedia operations to the relevant integration patterns from Table 6.7 (for
MM3). Similar to [CDPV07], we then define a conceptual, logical representation toward a uniform
user interaction (i.e., pattern configuration incl. conditions and expressions) and a physical
representation for the evaluation during runtime execution, thus separating the runtime from the
user interaction.

Integration Patterns in the Context of Multimedia

Table 6.8 lists the relevant patterns from Table 6.7 (by Pattern Name) and sets them into context
to their multimedia operations. We focus on the explicitly mentioned patterns in Table 6.7
(without the Sequence) and include the Idempotent Receiver, Message Validator from the list
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Table 6.8: Integration pattern multimedia aspects (re-calculated as recal)
Pattern Name Multimedia Operation Arguments Physical Logical

explicit

Channel Adapter format conversion format indicator write create

Splitter fixed grid, object-based grid: horizontal, verti-
cal cuts; object

create recal/write

Router, Filter select object object - read
Aggregator fixed grid, object-based grid: rows, columns,

heights, width
create recal/write

Translator, Content Fil-
ter

coloring color (scheme) write recal/write

Content Enricher add shape, OCR text object, shape+color,
text

write recal/write

Feature Detector segmentation, matching object classifier read create
Image Resizer scale image size: height, width write write

extra

Idempotent Receiver detector, similarity object for comparison - read
Message Validator detector validation criteria - read

of the patterns that were mentioned only once. All other non-listed as well as the implicitly
required patterns are either covered implicitly (e.g., the Scatter-Gather pattern is a combination
of the splitter and aggregator patterns) or left out due to brevity. In addition, to the pattern
and the corresponding multimedia operation, the (semantic) configuration arguments relevant for
the user interaction are added, while assuming that all operations are executed on multimedia
messages that are part of the physical representation. For instance, all of the image collage
mobile applications in Table 6.7 require grid-based image fusion for rows and columns or specify
height and width parameters. The splitter, required in the social, but also partially in medical
and farming industries, either requires simple (fixed) grid-based horizontal or vertical cutting
or a more complex object based splitting. Subsequently, we introduce the physical and logical
representation, in which contexts the relevant multimedia EAI concepts and patterns are defined.

Logical Representation

The logical representation targets the user interaction, and thus defines a Canonical Data Model
based on the domain model / message schema of the messages and the access patterns. Note that
through the grounding on semantic knowledge representation, changes of the logical representation
implies rewriting the underlying RDF triples.

Canonical Data Model for User Interaction While there are standards for the represen-
tation of structured domain models (e.g., XSD, WSDL), in which business domain objects are
encoded (e.g., business partner, customer, employee), multimedia models require a semantic
representation with a confidence measure that denotes the probability of a detected feature. In
contrast to [CDPV07], who defines a relational multimedia model, we assume a graph structured
schema of the domain object (e.g., human expressing emotion) with properties on nodes and edges.
Figure 6.39 depicts the conceptual representation of a property graph starting from the message
root node (and its properties, e.g., the message identifier). For the domain object sub-graph
(i.e., type Type with sub-types SType), we add another property to the (semantic) Document
Message from Section 6.3.3, which is transient and removed from the message, before sent to
a receiving Message Endpoint. To express the confidence on the detected domain object, all
type and sub-type nodes get a Conf. field (e.g., type=human with conf.=0.85, stype=emotion,
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value=happy with conf.=0.95). With this compact definition, lists of arbitrary domain objects
can be represented. We have chosen this representation similar to type hierarchies in ontologies
introduced in Section 6.3.1, where the types and subtypes correspond to classes and subclasses in
ontologies. Hence, the RDF graph of a virtual human ontology can be inserted as a concrete type
beneath the Message type or class with their properties represented as Field elements. This
way, the message format is semantically represented, and through the ontology-based schema
information, these graphs can be formally evaluated. An instance of this model is created during
message processing by the Feature Detector pattern (cf Table 6.8).

From Multimedia Features to Domain Objects / Message Schema. In our case, the
term “Semantic Gap” [LSDJ06, SP15] denotes the difference between low-level image features
(usually represented by n-dimensional, numerical vectors representing an object, called a feature
vector) and the actual domain object that has a meaning to the user. According to the scenario
analysis, we consider the following image features relevant: color, position, time (interval) in
a video stream, during which the domain object was visible or the page number in an OCR
document. We assume the creation of the domain object from the underlying features as given
by the existing content-based media retrieval mechanisms (e.g., cf. Section 6.4), which is during
the message processing in the physical runtime representation. However, for a mapping between
the runtime and logical representation, we add the identified image features to our multimedia
message index (cf. Figure 6.39).

Physical Representation

The basic EAI concepts located in the physical or runtime representation, according to Figure 6.33,
are the (multimedia) Document Message, Message Channel, Channel Adapter, Message Endpoint
(all from [HW04]), and Format Converter (see Chapter 2). In addition, all identified routing and
transformation patterns have a physical representation, with which they interact. These patterns
are grouped by their logical and physical data access (cf. Table 6.8) as read/write and read-only.

Basic Concepts For multimedia processing, the physical message representation covers the
multimedia format, on which the multimedia operators are applied. Hence it is specific to the
underlying multimedia runtime system or library. The current message definition from [HW04] of
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Figure 6.40: Evolution of the logical representation of a splitter

textual content (i.e., body) and their metadata (i.e., headers) is therefore extended by binary
body entries and attachments. That allows to represent and query structured information in the
message body together with unstructured information as attachments at the same time.

As denoted in Table 6.8, there are patterns that create, read and change / write to these
messages. For instance, the Channel Adapter receives the multimodal messages from a Message
Endpoint (e.g., Twitter, Flickr) and transforms (write; similar to the Type Converter) the textual
and multimedia formats into a physical runtime representation (e.g., JPEG to TIFF for OCR
processing) as part of a Canonical Data Model and creates (create) the logical representation
that is based on the semantic features of the multimedia message content, for the user interaction.
However, not all of the current integration adapters are able to handle binary content in the
message body and / or attachments (e.g., SMTP separates both, while HTTP only sends one
multi-part body).

Read / Write Patterns Subsequently, we differentiate different types of operations on the
physical and logical representations for patterns with read / write access to the message.

Physical Write, Logical Create. The Channel Adapter transforms the incoming message into the
physical message representation of the integration system (e.g., multimedia format). From the
physical representation, it creates the logical object model (by schema) as conceptually shown in
Figure 6.39.

Physical Create, Logical Re-calculate / Write. The Splitter cuts one multimedia message (e.g.,
with one image of a group), into several multimedia messages either by fixed grid (e.g., equi-distant
slices) or by domain object (e.g., for each human). While the physical message representation
has to be created for each part, the logical representation could be re-calculated based on
the knowledge about the cuts. Thereby new physical messages are created, while the logical
representation has to be updated, if it cannot be recalculated. Then the features have to be
detected again and the logical model has to be updated (e.g., by exploiting the information on
how the image was cut). Figure 6.40 shows the logical representation, before and after the split.

The Aggregator pattern denotes the fusion of several multimedia messages into one. Therefore,
several images are combined using a correlation condition based on a multimedia object (e.g.,
happy customers), and aggregated, when a time-based or numerical completion condition is met
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Figure 6.41: Evolution of the logical representation of an aggregator
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(e.g., after one minute or four correlated multimedia messages). The aggregation function denotes
a fixed grid operation that combines the multimedia objects along the grid (e.g., 2x2 image frames
from a video stream). The logical and physical operations are the same as for the splitter. That
means, the logical representation shown in Figure 6.41 can either be re-calculated or has to be
re-detected and written.

Physical Write, Logical Re-calculate, Write. Similarly, the Translator and Content Filter change
the properties of a multimedia object. For example, in the identified scenarios and applications,
they were used to change the color of an image. Therefore the physical message has to be changed
and the logical representation can be re-calculated as shown in Figure 6.42. Since this operation
is less relevant for business application, it denotes a rather theoretical case, which might only
slightly change the logical representation, but changes the physical representation.

In contrast, the Content Enricher adds geometrical features like shapes to images, e.g., relevant
for marking or anonymization, or places OCR text, e.g., for explanation, or highlighting. Thereby,
the physical and logical representations are changed or recalculated as shown in Figure 6.43.

Physical and logical Write. The Image Resizer scales the physical image and their logical
representation, which cannot be recalculated in most cases. The resizer is used to scale down
images similar to message compression.
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Read-only Patterns Subsequently, we differentiate types of operations on the physical and
logical representations for patterns with read access to the message.

The Content-based Router and Message Filter patterns base their routing decision on a selected
feature or object (e.g., product, OCR text) through reading the logical representation, while
the physical multimedia data remains unchanged. Therefore, the features or objects within the
multimedia data have to be detected. In the analysis, a separate Feature Detector was required,
which reads the physical representation and returns a corresponding logical feature representation.
Based on this logical representation, the Idempotent receiver and Message Validator patterns
work in a read-only mode.

Access Patterns

The defined canonical data model is at the center of the user interaction. However, the user should
mainly require knowledge about the actual domain model, and thus formulate all integration
conditions and expressions accordingly. Subsequently, we identify and discuss common access
patterns based on pattern arguments and the logical data access in Table 6.8.

Feature Selector A feature selector specifies the interaction of a user with multimedia data
through the logical and physical layers as shown in Figure 6.44. The Content-based Router,
Message Filter, Idempotent Receiver and Message Validator patterns as well as the correlation
and completion conditions of the Aggregator (not shown), the object split condition of the Splitter,
and the Content Enricher “mark object” operation are similar in the way they access the data
and which multimedia artifacts they require. They require a Feature Detector to detect the
domain object (by schema) and create the logical representation. Based on this information the
object is selected and the corresponding operation is executed. For instance, the runtime system
detects a human and his or her facial expression within an image, using the detector and creates
the corresponding message model. Now, the user can configure the Splitter to select humans
and add conditions for facial expressions, to select them using the selector. Once selected, the
Splitter cuts the image according to the image coordinates of the selected feature and returns a
list of sub-types in the number of humans and the corresponding cut images. The underlying
integration runtime system takes the list of sub-types and images and creates new messages for
each sub-type / image pair.
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Detector Region The creation of the defined message model through feature detection is
computationally expensive, since it involves image processing. Each pattern in an integration
process requires such a detect operation, if there is no detector prior to the pattern. Consequently,
the detector can be built-in into each pattern or added as separate operation, before a sequence of
several read-only patterns or patterns, for which the message graph can be re-calculated (e.g., for
patterns like Aggregator, Splitter; cf. Table 6.8). For instance, for a fixed grid (with pre-defined
cuts) and object splitters, the cut regions are known, and thus the properties of the model
type can be computed (e.g., coordinates, color) and does not need to be detected. The Content
Enricher mark operation appends the shape, color, coordinates and a new mark node in the graph,
thus no detection is required. This way, all subsequent patterns after a detector share the same
message property index and do not require further image operations. We call such a pattern
sequence a Detector Region, as shown in Figure 6.45. Note that a new detection is required, if the
message is altered in a way that does not allow for a re-calculation of the logical representation.

Parameterized Access Additional information is required for some of the patterns that change
the physical representation like the Image Resizer, which requires scale parameters, or the shape
and color information for the enricher and the translator. Therefore these patterns modify the
feature vector directly (e.g., by changing the color or size). These changes are detected and
executed on the physical multimedia object.

Pattern Realization and EAI System Architecture Extensions

We describe realizations for the specified logical and physical representations as well as the
resulting architectural extensions to EAI systems. As EAI system, we chose the open-source
Apache Camel [IA10] due to its broad support of the existing integration patterns (see Chapter 2)
and its extensibility for new patterns and pattern realizations (e.g., multimedia).
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Pattern Realization For the pattern realization, we require the following decisions according
to the definitions in Section 6.3.3. Besides Apache Camel as EAI system as part of the physical
representation we chose JavaCV (i.e., based on the widely used OpenCV8 library) as open source
multimedia processing system including their type converters. For the feature detection with
JavaCV, we use Haar classifiers (e.g., for facial recognition [WF06]), which has to be trained with
positive examples of a features (e.g., faces) as well as negative examples (i.e., arbitrary images
without the feature). It is a cascading classifier, consisting of several simpler classifiers that are
subsequently applied to an image or region and retrieve the coordinates as well as the object type
that can be retrieved. All entering multimedia messages are processed by applying the classifiers.

The logical representation requires a semantic graph, for which we use the W3C Resource
Definition Framework (RDF) semantic web standard, similar to metadata representation of images
in Photo-RDF (cf. related work). For the schema representations, we chose ontologies similar to
[TMM+16] that exist, e.g., for humans emotions (cf. virtual human ontology from Section 6.3.1)
or real-world business products. For each ontology, a classifier is required for the physical runtime
system. The selectors on the semantic RDF graph model are realized by SPARQL queries.
The user interacts with the system (cf. Figure 6.33) by selecting a schema in the form of an
ontology and adds the SPARQL query according to the access patterns in Section 6.3.3. If the
system has built-in ontology / classifier combinations, only the query is added. Thereby only
the domain ontology has to be understood. For parametrized access, our extensions from the
physical representation have to be learned by the user.

EAI System Architecture Extensions The system aspects required for the pattern real-
ization can be summarized to the conceptual architecture building-blocks in Figure 6.46. The
physical system aspects include multimedia type converters and multimedia libraries. These
libraries require feature learning components that learn classifiers for the semantic objects in
multimedia data. The libraries evaluate the data according to the classifiers. For the mapping

8OpenCV, visited 5/2019: http://opencv.org/
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Figure 6.46: Conceptual EAI system architecture with multimedia extensions

between ontologies and classifiers, the Multimedia Cond., Expr. Evaluation contains the stored
domain object models (e.g., ontologies; not shown) as well as the repository for user conditions
and expressions (e.g., RDF statements).

For the evaluation of our approach, we extended the existing EIPs in Apache Camel by JavaCV
multimedia processing and type converters as well as Apache Jena9 ontology, RDF representation
and SPARQL queries.

6.3.4 Evaluation

In this section, we evaluate the pattern coverage and comprehensiveness of our multimedia
integration pattern realizations from Section 6.3.3, and apply them to the motivating social media
example in a realization and throughput study.

Pattern Coverage and Comprehensiveness

We aim for a compact model that is comprehensively usable with different image processing
systems. Through the separation of the physical runtime and logical representation for user
interaction, the comprehensiveness can be checked by its pattern coverage and by finding mappings
to different image processing systems, while keeping the integration conditions and expressions
stable. For this, we selected five multimedia processing systems / APIs from established artificial
intelligence vendors: Google Vision API, HPE Haven OnDemand, IBM Watson / Alchemy
Services (also used in [JBC+14] for textual analysis and semantic tagging), Microsoft Cognitive
Services, and ABBYY, which focuses exclusively on OCR / Text.

Pattern Coverage. Figure 6.47 depicts an overview of the integration patterns that could be
implemented by using the vendor systems. We added the open-source multimedia processing

9Apache Jena, visited 5/2019: https://jena.apache.org/
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Figure 6.47: Vendor libraries as part of an integration system

libraries OpenCV and Tesseract — used to realize our reference system — for comparison as 0.5
(meaning partially supported due to implementation effort). From our pattern list (cf. Table 6.8),
the Feature Detector (i.e., for object, emotion, geo, OCR) and the Content Enricher are explicitly
covered. While all of the vendors offer object detection and enrichment capabilities in image or
OCR texts (e.g., text, face and emotion detection) or geometrical shapes (e.g., Google, IBM), other
operations are not supported (e.g., general message translation, resizing, aggregation, security).
Therefore extensions in the form of custom media processing are usually required, which we
realized as integration patterns using OpenCV.

Conclusion. (1) not all multimedia integration patterns can be represented with the capabilities
of current vision APIs.

Comprehensiveness. The logical representation in our approach defines the following set of
entities, for which a mapping to concepts from the vision APIs has to be found. All multimedia
types have a domain object type that is derived from the domain model (ontology), the coordinates
of the detected domain object within the medium, object metadata, and the probability for the
correctness of the detection. For OCR, the actual text and a page number (for documents) is
added, as well as the time (interval) in video streams. Table 6.9 sets our model entities into context
to the vision APIs with respect to whether the concept exists and a mapping is possible. Since
there was no information for ABBYY, and OpenCV, Tesseract OCR require explicit programming
these systems are left out. Although the approaches are diverse in their terminology, provided
features and focus areas, the analysis shows a broad coverage for the general model elements.
Notably, the object type is represented as a list in HP, which we map to different feature vector
dimensions. The metadata is mostly provided as name/value (e.g., in Google, HP) pairs or tags
(e.g., in Microsoft). This information is only usable in integration conditions and expressions,
if it can be mapped to the model domain. While all vendors add a likelihood or score to their
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Table 6.9: Model coverage compared to vision API definitions
Vendor / Image/Any OCR Video
Entity Object type Coord. Info Prob. Page No. Text Time

Google + + +/- +/- - + -
HP + + +/- +/- + + +
IBM + + +/- +/- - + +
Microsoft + + +/- + - + +

(Exists and mappable +, Not supported -, partly exists or mappable +/-)

models, only Microsoft supports a fine-grain likelihood per feature vector dimension. In terms of
compactness of our model, the page number in OCR documents could be left out, since it is only
supported by HP. We decided to stick to it for convenience, in case it is available. In summary,
our proposed model can be mostly mapped to concepts from heterogeneous vendors and appears
compact in its representation.

Conclusion. (2) the multimedia model of our approach is sufficiently comprehensive to cover
features of current vision APIs.

Case Study: Social Media Scenario

Now, we apply the presented approach on the motivating social marketing scenario and show its
impact on the message throughput in terms of messages sizes and number of detected features
(similar to Chapter 5). Therefore, we extended the open-source integration system Apache Camel
introduced in Chapter 5 by the architecture components in Figure 6.46 to realize the multimedia
patterns from Section 6.3.3. We discuss the trade-off between message sizes and throughput and
compare the normal processing with the Detector Regions from Section 6.3.3. As indicated in
Figure 6.32, the selector region comprises the Content-based Router, Message Filter, translator,
splitter and the enricher, for which the logical representation can be re-calculated. For this case
study we assume image message workloads from the social media Open Images Project data
set based on Google Flickr [KRA+16], generated by the EIPBench benchmark from Chapter 5,
which we extended by multimedia data and and semantic query capabilities. For instance, for
filtering image messages without a human, we use the SPARQL ASK query ASK{FILTER NOT

EXISTS {?s prefix:hasFace ?o}}, evaluated using the Apache Jena library, which returns a
Boolean that is mapped to the filter runtime component. Similarly, the selector for splitting
image messages with multiple humans to single messages with only one is defined as SELECT ?o

WHERE {?s prefix:hasFace ?o}, returning a list of feature vectors and their coordinates that
are then cut and routed separately by our splitter extension. The measurements are conducted
on an HP Z600 workstation, equipped with two Intel X5650 processors clocked at 2.67GHz with
a 12 cores, 24GB of main memory, running a 64-bit Windows 7 SP1 and a JDK version 1.7.0
with 2GB heap space.

Figure 6.48 shows the message throughput of the implemented scenario for an increasing
number of features detected in the images and message sizes. Notably, the number of features has
less impact on the throughput than the message sizes (corresponding to the image’s resolution).
Hence, an image resizer or splitter pattern could be used to improve the message throughput,
as long as the features can still be detected. For the detector region measurement, a Feature
Detector pattern is inserted before the content router. All subsequent patterns are contained
in the detector region, and thus do not need to detect the features again. Figure 6.49 shows
the message throughput of the scenario for mixed workload messages size intervals of 1-50 kB,
50-100 kB and 850-900 kB messages with one, eleven, and seven features, respectively (numbers

267



 10
 100

 1000
 10000  0

 2
 4

 6
 8

 10
 12

 1

 10

 100

Message size in KB Number of Features

M
sg

s/
se

c

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20

Figure 6.48: Multimedia message throughput of the social marketing scenario

from the image dataset). When using the detector region the throughput increases by 2.5% and
10.3% for the smaller message sizes, however, only 0.2% for the bigger message size. While the
normal processing is limited by the pattern with the least throughput, the detector region is
limited by the throughput of the detector. For larger images the normal and detector region
throughput are similar, due to the increasing costs of the feature detection compared to the
other pattern processing. Therefore only improved image processing techniques (out of scope), or
parallel sub-process execution improve the throughput.

Conclusions. (3) EIPBench suitable foundation for benchmarking multimedia patterns, however,
requires extensions in the form of multimedia messages; (4) message size vs. throughput trade-off
depends on the size of the multimedia message (and not the number of features); (5) the Detector
Region improvement is limited by the used Feature Detector; (6) further message processing
techniques have to be evaluated.

6.3.5 Conclusions

In this section, we address the fundamental topics of multimedia application integration and
provide a solution toward a more standard user interaction and configuration of multimedia
scenarios as requested by [AAB+17]. We conducted literature and application studies to identify
industrial and mobile scenarios requiring multimedia integration, which resulted in a list of patterns
(mostly in [HW04, RMRM17]) relevant for multimedia processing (cf. questions MM1+2). For
the underlying integration semantics of these patterns we defined multimedia pattern realizations,
to which we mapped the operations from the analysis (cf. MM3). We outlined a compact logical
multimedia representation — toward a uniform user interaction that takes the image semantics
into account — and evaluated the compactness and comprehensiveness by comparison with a
selection of vision API vendors. For multimedia processing, the common architecture of EAI
has to be extended (cf. MM4). We discussed the fundamental components (cf. MM5) and
conducted a case study based on the motivating social marketing scenario (cf. MM6). The
evaluation showed the suitibility and comprehensiveness of our approach (cf. conclusion (2)),
applicability of our benchmark (cf. conclusion (3)), limitations and necessary improvements of
current image processing solutions and message processing (cf. conclusions (1), (5) and (6)), and
an interesting trade-off (cf. conclusion (4)). Thereby we identified further challenges targeting
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Figure 6.49: Message throughput of the social marketing scenario

more efficient message processing (e.g., read / write optimizations like message indexing, process
optimizations), interactions with non-standard message transformation operations (e.g., image
resizer), new processing types compared to the EIPs (e.g., streaming Section 6.2) and definition
of visual integration scenario editors (e.g., query by sketch / visual queries).

We conclude that multimodal message processing allows for covering current variety require-
ments as well as for the development of novel applications and scenarios that are not possible
today. While there are still many interesting challenges, when working with streams of multimedia
data integration (e.g., cf. Abiteboul et al. [AAB+17]), we conjecture that multimodal processing
and integration will become mandatory in the future.

6.4 Related Work

We set the data-centric, hardware and multimedia pattern solutions into context of related work.

6.4.1 Data-centric Pattern Solutions

The aspect of moving EIP semantics and processes to the database (i.e., case (C1) in Section 6.1)
has been mentioned as future work by [BLN86] in the context of process integration, however,
was not addressed so far. We picked up the topic in our position paper [Rit14c], which discusses
the expressiveness of database operations for integration processing on the content level. However,
there is some work (mostly) in related domains, which we discuss subsequently.

Message Queuing

In the domain of declarative XML message processing, [BK11] defines a network of queues and
XQuery data processors that are similar to our (persistent) states and transitions. This targets a
subset of our approach (i.e., persistent message queuing; case (C3)), however, it does not cover
(C1) integration semantics as relational database processes, which we target for analytic and
business applications. In [GM03], a Java Message Service (JMS) like message queuing engine is
designed into the database, which allows for enqueuing and dequeuing messages, thus addressing
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case (C2). This work is complementary to our approach, which uses the JMS endpoints as sources
for EIP processing.

Business Processes

The work on executing business processes on the database, using an external process engine,
evaluates nested views on the data and returns the results to the process engine (e.g., database
engineering applications) [HMWMS87]. More generally, [Her03] addresses the functional inte-
gration of data in federated database systems. Similar to our approach, data and control flow
have been considered in business process management systems [VSS+07], which run the process
engine optimally synchronized with the database. However, the work exclusively focuses on the
optimization of workflow execution and does not consider application integration semantics on the
database server level. In our work, we consider integration operations that are executed directly
on the database, while no data is passed to a remote process engine or integration system.

Data-Intensive and Scientific Workflows

Based on the data patterns in workflow systems described by Russel et al. [RTHEvdA05],
modeling and data access approaches have been studied (e.g., by Reimann et al. [RS+13]) in
simulation workflows. The basic data management patterns in simulation workflows are ETL
operations (e.g., format conversions, filters), a subset of the EIPs, which can be represented
among others by our approach. The (MapReduce-style) data iteration pattern can be represented
by scatter-gather or splitter-gather.

Data Integration

The data integration domain uses integration systems for querying remote data that is treated as
local or “virtual” relations (e.g., Garlic [HKWY97]) and evolved to relational logic programming,
summarized by [CHK09]. In contrast to remote queries, we extend the current EIP semantics in
the database for EAI.

6.4.2 Hardware Pattern Solutions

We are not aware of other work on implementing EIPs on FPGAs. However, there is a rich body
of work in related domains (i.e., query-, complex event and stream processing, message queuing),
relevant for our work. Especially, the lessons learned on system design (e.g., parallelism, automata
for format processing), the identified trade-offs between synchronous and asynchronous designs,
and system integration aspects (e.g., FPGA in the system’s data path) have influenced our work.
We summarize the related contributions in Table 6.10 and subsequently discuss the approaches.

Query Processing

Several lessons learned on query processing are also relevant in the context of EIP. The design of
the industrial solutions (e.g., “Netezza Performance Server”10), which consists of a number of
“snippet processing units”, each tightly coupled with network CPU and FPGA, and Kickfire’s
MySQL Analytic Appliance11 with a so-called “SQL Chip”) do only give limited insight into
their design decisions. However, both systems appear to use FPGAs primarily as customized
hardware, with circuits that are geared toward very specific (data warehousing) workloads, but

10Netezza Corp, visited 5/2019: http://www.netezza.com/
11Kickfire, visited 5/2019: http://www.kickfire.com/
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Table 6.10: Lessons learned from related work
Design Decision References our approach

parallelism: systolic vs. MISD [Cas05], [MT10] systolic for higher through-
put

automaton: (non-) deterministic [ADGI08], [EHI10],[FU80],
[GWC+07], [MVB+09], [NSJ15],
[SJL+10], [VLB+10], [WTA10]

deterministic format han-
dling

synch vs asynch circuits [MT10] synchronous with flow con-
trol

configurable clocks [MT10] - (for asynch. designs)
back-pressure [Cas05] for flow control
avoid long distance streams [Cas05], [MTA09a] system part
avoid deep logic [Cas05] system part
FIFO buffer [EHI10, MT10, MTA09a, MTA09b] BRAM for reliability

are immutable at runtime. In our approach, we aim at exploiting the configurability of FPGAs by
compiling integration operations from an arbitrary workload into a tailor-made hardware circuit.

The research on the Glacier query to hardware compiler provided valuable lessons with
respect to design decisions [MT10, MTA09b]. As in [Cas05] several types of parallelism are
discussed (cf. Table 6.10): e.g., systolic (i.e., pipeline-chain: good scalability even across chips)
and MISD (i.e., tree: long signal path), for which we follow their lead to higher throughput systolic
parallelism. In contrast to Glacier, we do not use an asynchronous stream design (i.e., with lower
latency, less flip-flop registers), but a modular synchronous stream design with re-usable logic.
Hence, our design also does not make use of configurable clock frequencies, which is crucial in an
asynchronous design. The frequencies only vary for integration adapters (e.g., TCP, UDP) and
the integration processing steps. We also use finite state machines, which naturally translate into
FPGAs (inspired by [FU80]), for message format conversions — in our case hierarchical data in
the form of JSON messages. The asynchronous design approaches in [MT10, MTA09a, MTA09b]
requires FIFO buffers for synchronization. We use FIFOs to implement flow control in the form
of back-pressure [Cas05].

Complex Event and Stream Processing

There is a lot of research on stream queries on hardware, hence we only summarize the directly
related work. Most influential work was conducted in [MTA09a, TW13], which analyzes the
potential of FPGAs in the domain of data processing using sliding window operators for a
median operator using a sorting network. The experimental analysis showed promising results
compared to a small on-board PowerPC 405 processor. Compared to our synchronous approach,
an asynchronous design fits well to the sorting network (cf. Table 6.10).

The work on event detection using regular expressions [WTA10], efficient pattern match-
ing [ADGI08] non-deterministic finite automaton design, complex event processing [GWC+07,
SJL+10], streaming system [NSJ15, VLB+10] and XML / XPath evaluation [MVB+09, MLC08]
influenced our work on the message format handling. The latter also sketches the idea of an
internet protocol router on the packet level, setting the addresses according to a routing table
[MLC08], similar to a recipient list. Since no packet performance measurements were published
(e.g., for throughput or latency), it remains a mere design sketch. All of these approaches use
deterministic or non-deterministic state machines to represent user-defined conditions on the
hardware. For the hierarchical format handling (e.g., JSON messages), we define a general, but
resource-reduced way to represent the data (e.g., compared to approaches like [MLC08]) to spare
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resources for the integration logic.

Publish/Subscribe and Queuing Systems

Message Brokers are used complementary to application integration systems. The most well-
known commercial solution is the “Solace Message Router” [Sol16], which implements a JMS-like
topic and queue processing as well as high-availability and disaster recovery on FPGA hardware.
The comparison to one of the most popular software brokers shows superior message throughput
rates on the hardware12.

While Publish/Subscribe systems mostly route data without looking into their content —
giving them an edge over application integration systems — there is some work on content-based
routing in the sense of [HW04] using FPGAs. [EHI10], for example, proposes an architecture,
which adds FPGAs to each message broker that implements XML / XPath message routing
using a complex memory based XML parser (using content-addressable memory, and FIFO
buffers) and a matcher leveraging the dual port memory for concurrent read / write. This work
is comparable to the content-based routing and JSON processing approaches presented in this
chapter. However, our approach manages to process JSON with much lower resource consumption.
We only optionally use FIFO buffers based on on-chip BRAM for back-pressure handling.

In general, back-pressure is used for flow control holding off senders to further transmit data
until the resource is available. We use back-pressure in our message processing pipeline to avoid
scrambled data and allow for TCP-based flow control via the integration adapters. This idea is
based on [Cas05], which defines a systolic message queuing system that uses back-pressure based
on a wire protocol for synchronous communication (cf. Table 6.10). Furthermore, we should try
to avoid long distance pipelines or streams and deep logic in processes [Cas05] in the system part
of our pipeline design (cf. Table 6.10). However, user-defined code might violate this rule.

Hardware-accelerated EAI Processing

The EIP authors admit that the current foundations are defined for an asynchronous processing
style, and a definition for synchronous streaming is missing [ZPHW16]. In this section, we fill
this void and enumerate some of the most relevant EIPs as identified in Chapter 5 and specify
semantically correct streaming semantics. Based on these semantics, we are able to define three
template classes that are sufficient to represent all of the patterns and also to synthesize them
to hardware. Overall, we are able to implement the complete integration system on hardware
as ISoC (cf. Figure 6.16). In the experiments we test different aspects special to integration
processing (cf. Chapter 5) that have not been tested on hardware before.

6.4.3 Multimedia Pattern Solutions

There is a large body of work produced by research conducted in multimedia processing in
venues like ACM Multimedia, ACM Multimedia Systems, IEEE Multimedia, IEEE Transactions
on Multimedia. While most of the work targets the image processing and feature extraction
foundations — complementary to our work — we subsequently set the relevant work into the
context of our solutions for the challenges in Section 6.3.

User Interaction and Interoperability

The work on queries on multimedia databases and streams targets multimedia data representation
and queries, similar to our approach. In this context, many user interaction approaches focus on

12Solace vs. Kafka, visited 5/2019: https://dev.solace.com/kafka/solace-kafka-comparison-summary/
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the media’s metadata (e.g., name, type, publisher) and not on the actual information within the
image (e.g., [Gro97]). Commonly, this metadata is accessible by standards like Photo-RDF13,
which represents the semantic information in images using RDF. While the metadata denotes
textual processing, we focus on the multimedia processing. In our realization (cf. Section 6.3.3)
RDF is used to represent multimedia semantics.

Further known related work targets the retrieval of multimedia information from (distributed)
databases [CDPV07]. The multimedia semantics are represented by semantic attributes based on
extended generalized icons with a logical and physical representation on a database. While our
approach separates these different representations as well, [CDPV07] targets extended normal
forms and functional dependencies between different attributes and does not define user interaction
with the multimedia semantics on a business application-relevant feature level that could be used
for message processing. More recently, Lin et al. developed a similarity query mechanism for
images [LÖON01] in the area of multimedia queries on multimedia databases. While no query
syntax is provided, the operator could be used to formulate decisions based on image similarity.

System Architecture

Our evaluations in Section 6.3.4 identified the need for a change in the common EAI system
architectures [Lin00]. While we collected the components required for EAI, we consider the
existing work on multimedia processing system architectures complementary to our approach. For
instance, there are several systems for parallel media processing. Processing large video streams
is handled using distributed resource management in [WB97]. Similarly [Ama07] introduces a
dataflow process network of actors, connected by FIFO queues, that process multimedia data and
fire events based on rules according to a domain-specific metamodel.

The OCAPI system [CT93] was developed for the semantic integration of programs using
a knowledge base approach including a query processor and reasoner over image data for syn-
tactic and semantic integration. The knowledge base is used similarly to the ontologies in our
approach, giving a semantic context, while the query language works on the image primitives,
thus rather technical. No standard query mechanism is provided, however, the R∗-based indexing
technique might be considered for optimizing the image message processing. The EADS WebLab
project denotes a service oriented architecture for developing multimedia processing applications
[GBB+08]. It neither targets integration processes, nor the EIPs, but defines an exchange format
based on a Media Unit to solve the problem of semantic interoperability between the information
processing components. Similar to our approach, the media types image, OCR text and video are
distinguished, coordinates are specified, and a temporal segment is defined for videos. The query
approach is based on a proprietary model.

In the related business workflow domain, [PCM+07] define the ARIA system with quality of
service (QoS) guaranteeing multimedia workflow processing. The defined media filter and fusion
multimedia operators in ARIA are similar to our message filter and aggregator patterns. However,
the processing is limited to simple 1:1 and fork 1:n workflows.

Multimedia Processing

The recent survey on event-based media processing and analysis addresses approaches and
challenges in the domain of multimedia event processing considering audio, video and social
events [TMM+16]. Events are human actions or spatial, temporal, relationship state changes
of objects, which are mostly represented in event or situational calculi as well as contextual
ontologies. Similarly, we use domain-specific ontologies to represent the message schema in our

13W3C - Photo-RDF, visited 5/2019: http://www.w3.org/TR/photo-rdf/
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realization (cf. Section 6.3.3). The application analysis is based on mobile apps like Flickr. The
challenges name the discussed “Semantic gap” as well as a “Model Gap”, which is the trade-off
between an event model’s complexity and its detection performance, which we discussed as part
of our evaluation (cf. Section 6.3.4).

Overlapping with the challenges of interoperability and system architecture, [CDG05] defines
an interoperable interface for distributed image processing using grid computing based on CORBA
object exchange. However, the interface and the operations target low-level image processing (e.g.,
for point and image arithmetic operations). [JDM+01] defines a system that segments and indexes
TV programs according to their audio, visual, and transcript information. However, the approach
uses a “Media-To-Text” preprocessing, while subsequent operations are then executed “Text-to-
Text”. More recent work on parallel processing of multimedia data mining for computer vision uses
map-reduce techniques [VC15] or cloud-based Hadoop systems [ZSSZ14]. The solutions provided
target the efficient multimedia program execution on a lower level (e.g., edge detection and
segmentation), which could be considered for more efficient message processor implementations.

6.5 Discussion

The pattern composition formalism, the optimization strategies and the EIPBench pattern
benchmark denote valuable foundations in the form of design science research (DSR) artifacts for
the practical impact study of new technological trends. The study targets an answer to the stated
research question on more efficient realization of integration patterns and their compositions that
we call pattern solutions (cf. RQ3-1: “Which related concepts and technology trends can be used
to improve integration processing and how can this be practically realized?”). The question and
its solution-specific sub-questions are answered by the pattern solutions and their evaluations in
this chapter that again denote contributions in the form of DSR artifacts:

� Pattern realization concepts for micro-batch, vectorization (volume), dataflow / stream,
specialization (velocity), and multimedia data (variety) processing styles (cf. pattern
templates), and their compositions;

� Novel integration system design concepts: a database transition system (DTS), an integration
system on a chip (ISoC), and a multimedia integration system (incl. evolving integration
system architecture components);

� Instantiations of the concepts and system designs in the form of prototypes: DTS on a
(relational) BDMS, ISoC on reprogrammable hardware, multimedia integration system as
extension of an existing system.

These answers thus provide conceptual foundations as well as prototypical implementations of
pattern compositions that will allow for the development of innovative and efficient integration
systems tailored for the needs of current and future application integration. In particular, we recall
that the “volocity” challenge C5 (i.e., volume, velocity in Section 1.2) on the integration scenario
level was partially addressed by optimization strategies in Chapter 4. The optimizations improve
the comprehension of integration scenarios through reducing the modeling complexity, and we
showed that it helps to reduce the data volume through data reduction and improve the processing
velocity (i.e., message throughput, latency). The improvements were achieved by rewritings on
an abstract integration scenario level, for which we proved correctness-preserving properties. In
this chapter, we studied improvements on the system level by applying new technology trends to
EAI processing. Notably, the big data management and processing platforms together with the
vectorization or micro-batch technique not only show promising results for high volume message
processing, but can also be seen as a natural implementation of timed db-nets close to the data
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Figure 6.50: Abstract pattern building block

in the form of a database transition system. Similarly, for fast message processing we found that
a specialization towards a network-attached, hardware ISoC denotes an unmatched contemporary
solution. When combined with the optimization strategies, even better message throughput
results could be achieved for some of the optimizations. For the variety challenge C6, we proposed
a solution that covers all aspects from the configuration of integration scenarios to the runtime
and showed some improvements.

While each system serves a special purpose by addressing one of the challenges, combining them
into one system or defining their interaction would be practically preferable. For a combination,
either the ISoCs need to be improved with respect to high data volume processing (e.g., for
multimedia data) or the throughput vs. latency trade-off in BDMS needs to be solved. However,
neither conventional reprogrammable hardware nor BDMS have expressive means to process
multimedia data. Consequently, it is more likely that each system is used for their dedicated
purpose and simply interacts with the others. For example, the DTS can store and forward
multimedia data that is routed and transformed by the multimedia integration system. Smaller
portions of the data could be exchanged via the fast ISoC interconnect.

Based on these more practical considerations, we subsequently reflect on pattern and composi-
tional, formal foundations (cf. Chapters 2 and 3) and optimization strategies (cf. Chapter 4) in the
context of the pattern solutions. More precisely, we elaborate on the patterns as building blocks
of an EAI system, discuss the findings of the realizations with respect to the execution semantics,
revisit the applicability of optimization strategies, and assess the architecture evolution of EAI
systems. Finally, we summarize and discuss further limitations and open research challenges.

Patterns as Basic Building Blocks The foundational work in Chapter 3 not only provides
formal building-blocks of patterns and their compositions (cf. Section 2.1.3) for a modeling language
as well as when implementing integration systems for the first time, but also underlines the value of
patterns as abstraction of integration domain concepts. Although there is a multitude of different
patterns and even “break-outs” like user defined functions, where additional functionality is needed,
the patterns adhere to a finite set of domain concepts (e.g., quality of service, security), fundamental
pattern characteristics and their structural properties (see Chapter 3) that immediately apply
to every new pattern. While other domains (e.g., artificial intelligence, machine learning) strive
to find suitable abstractions to structure and evaluate their research, the practical work on
the pattern solutions in this chapter show that the (potentially evolving) integration patterns
denote a suitable abstraction of EAI or even application programming interface (e.g., similar to
MapReduce [DG08] in the data processing domain).

This abstraction essentially designates a type system for the development of a sound and
comprehensive integration programming language, which we leave for future work. Thereby,
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the template-based representation already used in Chapter 3 for the translation of the single
types (i.e., integration patterns) and their compositions into a runtime system (e.g., CPNTools
models) turned out to be beneficial during the implementation of the pattern solutions in this
chapter. Figure 6.50 gives a conceptual view on a general pattern template, which combines
the abstract operator used for the cost model considerations in Figure 4.11 (on page 153) with
pattern configurations (e.g., [Sch10, Rit15a]). In addition, a separation of the part that is strictly
pattern-specific from the configurable, scenario or user-specific part was beneficial in all pattern
solutions. The pattern-specific part is based on the Pattern Characteristics, which allows for a
further combination of implementations by their category. In our pattern solutions, this part
could be tailored to the runtime (e.g., in SQL, PL/SQL for DTS or in HDL for reprogrammable
hardware), since the pattern semantics are not subject to (frequent) change. The Configuration
part is invoked through interfaces, which allow for the invocation of user-defined functions
(e.g., conditions, expressions, programs) and parameterization (e.g., endpoint configuration for
integration adapters and external resources, timings). This part is frequently changed, and thus
provides flexible parameterization for frequently changing use cases and scenarios.

Example 6.17. The Message Translator and Content Filter patterns are in the same category
with respect to their characteristics from Chapter 3 (i.e., data-only), and thus both are implemented
as the same solution templates in the evaluated pattern solutions: database pattern template in
DTS (not shown), expression template in ISoC (cf. Figure 6.25(a) on page 234) and multimedia
pattern template with the same physical and logical representation (cf. Table 6.8 on page 258) in
the multimedia integration system. �

Pattern Execution Semantics The execution semantics of the single patterns and their
compositions are well-defined through the formalism introduced in Chapter 3. However, the
integration patterns were originally described for single message processing (not batch processing)
and without the knowledge about more recent technological trends like stream or multimedia
data processing [ZPHW16]. Consequently, the work on the pattern solutions addressing these
trends can be understood as an experimental evaluation of the suitability of these trends with
respect to the original execution semantics of the patterns.

The execution semantics of database-centric integration processing is conceptually the closest
to timed db-nets. However, the design decision to represent the complete integration processing
(i.e., control, data logic and persistence layers) within the database as DTS led to changes in
the transactional processing (i.e., everything executed within a transaction) and performance
improvements, when moving from single to batched message processing. The latter raised
questions about changes of the pattern characteristics and semantics triggered by the specific
instantiation. As described in Figure 2.5 (on page 27), an instantiation might lead to additional
information that is useful for the pattern identification phase and helps to decide, whether the
variance is sufficient for a new or a variant of the existing pattern.

The defined dataflow and streaming pattern solutions developed in this thesis use a different
execution engine, however, ensure the actual pattern semantics. While the (reprogrammable)
hardware programming model with synchronized clocks fits well to the time aspects in timed
db-nets (i.e., requiring a clock for the token aging), the study mostly focused on transient message
processing, and thus would not consider the timed db-net persistent storage semantics.

The multimedia patterns are already part of the pattern catalog, and thus could be simulated
by timed db-nets, if it were not for the binary, multimedia data and the semantic knowledge
representation. However, the foundation of timed db-nets is partially motivated by Data-Centric
Dynamic Systems (DCDS) [BHCDG+13], which means that it partially inherits the logic, and
thus all DCDS extensions or variants can be naturally mapped to timed db-nets. Therefore, we
recall the timed db-net design, which uses a FOL-based data logic layer to mediate between the
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control and persistence layers. The representation and access of the multimedia data semantics
requires a knowledge and action base (KAB) [HCDG+12, HCM+13], which use description
logic, and thus support queries over semantic knowledge representation (e.g., semantic web
queries). The theoretical grounding comes from semantically-enhanced data-aware processes
(SEDAPs) [San16], which is reducible to DCDS, and allow for the verification of sophisticated
FOL temporal properties, and addresses the verification using existing techniques developed for
DCDS. SEDAPs subsumes DCDS by enhancing a relational layer constituted by a DCDS-based
system with an ontology, constituting a semantic layer. Essentially, in SEDAPs, the ontology
captures the domain of interest, in which a SEDAP is executed. Additionally, it allows for seeing
the data and their manipulation at a conceptual level through an Ontology-based Data Access
(OBDA) system [CDGL+09, RMC12], reflecting the relevant concepts. Consequently, as depicted
in Figure 6.51, the control or process layer remains the same, and thus only the queries and
actions on the data logic layer has to be adapted for all multimedia pattern realizations in timed
db-nets. The data logic layer needs to be adapted to mediate between the persistence layer, which
stores the initial data of the system that will be manipulated by the net defined in the control
layer and an OBDA, including (the intentional level of) an ontology, a relational database schema,
and a mapping between the ontology and the database.

Applicability of Optimization Strategies During the evaluation of the pattern solutions,
some of the optimization strategies from Chapter 4 were already studied in the context of
real-world scenarios, where applicable. The applicability of these strategies potentially depends
on the capabilities of the runtime system. For example, the Parallel Process Re-Scheduling
from [RFRM19] is not relevant on reprogrammable hardware, since the hardware configurations
do not need to be scheduled in a software-like way. Subsequently, we assess the fit of the found
optimization strategies OS-1 to OS-3 to the evaluated runtime systems.

The process simplifications (cf. OS-1) mainly target the modeling complexity reduction
of a pattern composition, and have a positive effect on the processing latency. Some of the
optimizations in this category additionally help to make the process more resilient, since less
unused resources are allocated. For example, the combine sibling patterns optimization helped to
reduce the amount of resources on the reprogrammable hardware. While this strategy makes all
pattern solutions more efficient, the reprogrammable hardware solution benefits the most from the
more concise compositions. Due to the limited hardware resources, the freed parts can be more
effectively used for a higher throughput (e.g., through parallelization), higher volume processing
per composition by more resource assignment, or cost-efficient partitioning by sharing more
compositions on one chip (even in the presence of virtualization techniques [PCC+14, CCP+16]).

The data reduction strategy (cf. OS-2) provides several optimizations that allows for the
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reduction or offloading of data. While the database systems naturally deal with high volume data,
the other two solutions greatly benefited from optimizations like early-filter, early-mapping and
early-split. In all cases, the resulting effect was an increased message throughput. For example,
the message throughput of the multimedia message processing highly depended on the data size.

The parallelization on a pattern (sub-) composition level (cf. OS-3) is very beneficial to reach
higher message throughput, however, extremely resource intensive. Due to the exceptionally
promising results on reprogrammable hardware, such an optimization might only be needed
in few scenarios. However, for the software-based solutions, parallelization seems to be one of
the only means for high throughput solutions (e.g., container-level scaling [VRMB11], serverless
computing [MB17] including function as a service14) — apart from minor improvements through
more efficient implementations. In current software solutions, the performance vs. cost or energy
trade-off (e.g., [FLP+07]) seems to be largely focused on performance in academic research.

Integration System Architecture Evolution The study of the pattern solutions showed that
EAI semantics can be transferred to concepts and systems from related domains, which already
solve many of the new challenges identified. For example, big data management systems handle
large data volumes and dataflow systems like Flink and Spark allow for efficient micro-batched as
well as stream processing. Hence, future EAI solutions will have to consider integration semantics
as part of these platforms and decide on the contribution of extensions or building a completely
new software runtime. In the related database domain low-level machine programming (e.g.,
[Neu11]) promise efficient processing and foster considerations on the suitability of JVM-based
runtimes with memory management seemingly not built for messaging.

The most promising results were those of the specialization on re-programmable hardware,
which not only excels in message throughput and latency, but also reduces the energy consumption.
We already discussed the difficulties in developing and productively using the pattern solution as
well as challenges like virtualization (cf. [Rit17b]). Despite these challenges, our ISoC solution sets
new standards in terms of performance and sustainability, which has to become part of the design
decision process soon. Especially the execution close to the network might become an imperative
for integration systems for more efficient processing. This could go hand in hand with promising
results on Publish/Subscribe systems on software-defined network (e.g., [TKBR14, BTK+17])
and multi-purpose network attached processing (e.g., [ZLM+16, EJ17]).

The efficient and multimodal processing will become even more important in the context
of emerging applications like Connected Car Telemetry and multimedia data that is processed
online on the vehicles (e.g., for object detection; requiring low energy, high throughput systems),
and moreover, requires new architectural components like for machine learning or event-driven,
reactive additions (e.g., on mobile platforms [RH18]). In this way, the new variety challenge of
multimodal processing bridges to machine learning and semantic web as well as mobile computing
(generating most of the multimedia data), and event-driven and microservice architectures. These
bridges will have to be built into the integration systems or interface with specialized systems or
service offerings.

Limitations Limitations of our pattern solutions concern the selection of the challenges and the
technological trends. The most relevant and promising challenges in the context of emerging
scenarios were selected. Out of the vast number of technologies available from related domains, the
most directly related were chosen: big data volume (big data management system), speed of change
velocity (dataflow streaming), and multimedia data variety (semantic knowledge representation).
Nonetheless conducting further studies and comparisons with other technologies and systems will
help to conceptually and experimentally explore the relatedness of the different domains and

14Serverless Architectures, visited 5/2019: https://martinfowler.com/articles/serverless.html#

unpacking-faas
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might lead to interesting conclusions about the necessity of their separate treatment. Moreover,
combining the three proposed solutions into one would be preferable, however, conceptually and
practically difficult due the different purposes they were built for (volume, velocity, variety).

Impact The early impact of the pattern solutions on research and industry is already remarkable.
The resemblance of the DCDS and database transition system could eventually bridge between the
process and database communities, especially due to the focus on responsible programming (e.g., as
recent work on SQL validation [GL17] indicates). Moreover, the new format of ACTIVE workshops
on modern hardware combined with the top middleware [SP17, Rit17b] and database [DBL17,
DBL18] conferences indicates a focus on more efficient data processing through specialization
with reconfigurable hardware.

In industry, more and more software business and technology companies like SAP or vendors
of the emerging applications discussed in this thesis like NASA or Daimler collaborate with
hardware technology vendors like Solace15 or Intel16. Furthermore, the multimedia pattern
solutions were picked up early by industry and incorporated in several showcases. For example,
the image processing integration capabilities17 were shown in drone logistics scenarios and a
keynote featuring “The Martian” at SAP TechEd and SAPPHIRE conferences that caught a lot
of attention and sparked customer interest.

15Solace, SAP and NASA, Daimler partner profiles, visited 5/2019: https://solace.com/customer-profile/sap,
https://solace.com/customer-profile/nasa

16Intel and SAP partnership, visited 5/2019: https://www.intel.com/content/www/us/en/big-data/partners/
sap/overview.html

17SAP CTO’s “The Martian” keynote incl. “Communicate with Earth”, visited 5/2019: https://news.sap.

com/2015/11/how-saps-bjorn-goerke-became-the-martian/.

279

https://solace.com/customer-profile/sap
https://solace.com/customer-profile/nasa
https://www.intel.com/content/www/us/en/big-data/partners/sap/overview.html
https://www.intel.com/content/www/us/en/big-data/partners/sap/overview.html
https://news.sap.com/2015/11/how-saps-bjorn-goerke-became-the-martian/
https://news.sap.com/2015/11/how-saps-bjorn-goerke-became-the-martian/




Chapter 7
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In this final chapter, we summarize the content and contributions of the thesis and give an
outlook on future work.

7.1 Summary

In the past decades we have seen an accelerated emergence of trends in business, technology
and society that became significant for our daily life (e.g., cloud and mobile computing, business
networks, social media). In particular, the trends led to an even more digitalized, modularized, and
multimedia world, in which the integration of applications and processes in the form of integration
scenarios is of fundamental importance. Moreover, the trends foster new operation models outside
of the scenario creator’s control and in many cases closer to potentially non-technical end users,
whose lives become tailored around correctly integrated applications and devices.

The resulting demand for trust in Enterprise Application Integration (EAI) solutions, con-
necting the different participants (e.g., businesses, applications, devices), as well as the required
efficiency, matching more demanding message processing requirements, goes beyond the capa-
bilities of current EAI systems and solutions. This is partially due to the informal description
of the EAI foundations in the form of integration patterns from 2004, which makes it difficult
to build trustworthy integration solutions or to responsibly improve these solutions for a more
efficient processing. Integration logic can only be trusted if it is possible in principle to prove
that it behaves correctly. In turn, this means that users must be enabled by the means to express
and specify what their integration solution should do. We call a methodology that takes this into
account a responsible development of integration solutions.

The main goals of this thesis were to develop trustworthy and more efficient EAI solutions.
The most important results of this work can be summarized as follows:

Revisiting the EAI Pattern Foundations For trustworthy integration solutions, an actual
and comprehensive EAI foundation in the form of integration patterns is required. We approach
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this by revisiting the actuality and comprehensiveness of the original patterns from 2004 in
the context of the discussed trends and their requirements (e.g., exception handling, security).
Thereby, the challenge is to consider the vast amount of existing literature as well as the numerous
system implementations to analyze the relevance of existing solutions and identify new practices
as patterns in a rigorous way. In particular, we follow a design science research approach by
combining a deductive approach for the literature with an inductive approach from the current
implementations as part of a systematic pattern engineering process. The rigor of this study
allows for a twofold result: (i) identifying trends and research gaps as well as (ii) analyzing
integration patterns and identifying new patterns. The trends and research gaps locate the thesis
in the integration domain and determines the new challenges and requirements in that domain.
These challenges influence the current integration solutions and lead to recurring practices, for
which we found common solutions, and thus adapted old or developed new patterns.

In summary, we address research question RQ1 “To which extent are the current conceptual
foundations of application integration in the form of the EIPs still sufficient for the new challenges
and how can they be updated?”. The analyses show that many of the original patterns are
still relevant and practically used (i.e., EIPs denote current conceptual foundations), however,
the trends (e.g., stateful conversations, exception handling) led to new practices (as recently
acknowledged by the pattern authors [ZPHW16]), which we again collect in the form of patterns.
This extended pattern catalog denotes an actual and comprehensive state of EAI, which is sufficient
in the context of the new challenges. We envision future updates again in the form of extensions
of the pattern catalog.

Allowing for Trustworthy EAI To develop trustworthy EAI it is necessary to ground in-
tegration solutions on comprehensive foundations that can be formally analyzed. A formal
foundation is required for deciding whether integration solutions are functionally correct and
whether improvements preserve correctness.

Starting from the pattern catalog, we categorize common characteristics and requirements
(e.g., data, time, transacted resources) from the single patterns and select a formalism based on
Petri nets, namely db-nets, already covering many of the requirements. Petri nets are a natural
choice for the formal treatment of concurrent, distributed systems (e.g., firing is non-deterministic,
multiple tokens can be present anywhere in the net). Moreover, during the gap analysis we identify
the so far only attempt to formalize integration patterns using Colored Petri nets (CPNs), whose
solution concepts could be leveraged for some of the original patterns. From that we develop
a temporal extension of db-nets that itself is based on CPN, which we call timed db-nets. The
challenge is to extend db-nets carefully with a sufficiently expressive, but tractable notion of time.
We construct an extension inspired by Timed-Arc Petri Nets. The goal is to inherit the formal
analysis results of db-nets (e.g., liveness) and re-assure the desirable property of reachability that
is sufficient for assessing the functional correctness of pattern realizations. We show that all
but one pattern out of the catalog can be formally defined as timed db-nets. The one missing
pattern requires dynamic structural changes of the net, which might require more elaborate PNs,
if at all possible. The realizations cover pattern candidates of the different categories, which we
prototypically evaluate with respect to their correctness in an extension of a state-of-the-art PN
tool that allows for simulation. Note that our prototype closes the conceptual vs. implementation
gap by simulation. For real-world integration scenarios, we ensured the correctness of composed
patterns by careful manual construction.

This leads over to the second aspect of trustworthy integration solutions, which requires the
correctness of pattern compositions (i.e., denoting integration scenarios). The challenge is to find
a suitable formal representation for compositions that is more comprehensible than timed db-nets,
however, provides built-in structural and semantic correctness. We select a graph-structure similar
to PNs and define Integration Pattern Type Graphs (IPTGs), in which patterns represent nodes

282



and edges denote data exchange between them. An IPTG subsumes the characteristics of the
underlying pattern (representing the internal data flow), however does not allow for expressing
the correctness of compositions. Hence, we define Integration Pattern Contract Graphs (IPCGs)
by adding input and output contracts (i.e., representing the external data flow) that have to
be fulfilled in a structurally correct composition. The semantic correctness can only be decided
on the timed db-net level, but plain timed db-nets do not have the notion of contracts. Hence,
we first extend timed db-nets by boundaries (e.g., as in Open Nets [BM18]) that take pattern
characteristics and the external data flow into account, and secondly we translate from IPCGs
to timed db-nets with boundaries. Consequently, IPCGs are not only more comprehensible than
timed db-nets (with boundaries) and more tractable (e.g., for deciding on improvements of
compositions), but give the same semantic correctness guarantees. In the evaluation we again
prototypically show that the previous real-world pattern compositions are correct with respect to
their composition and expected functionality.

In summary, we address RQ2 “How to formulate integration requirements and scenarios in a
usable, expressive and executable integration language?”. We formally defined integration scenarios
as IPCGs that together with the construction of timed db-nets with boundaries enable formal
specification and analysis of pattern compositions and their underlying execution semantics of
single patterns. The IPCGs are more usable compared to timed db-nets due to their higher level of
abstraction, but are still executable through a translation to timed db-nets. The resulting formally
defined EAI foundations are expressive enough to represent all studied real-world integration
scenarios from SAP CPI. With IPCGs and timed db-nets, integration scenarios can be responsibly
developed by using their formal semantics to prove that they satisfy their specifications, which
denotes a step towards trustworthy EAI solutions. However, the presented solution is still quite
technical, which makes a more usable and visually appealing integration language defined on top
of IPCGs desirable.

Making Improvements Preserve the Correctness Although IPCGs allow for a responsible
development of integration scenarios, this is not immediately guaranteed for the application of
improvements (targeting objectives like higher message throughput, lower processing latency
or reduced model complexity). The improvements discussed in this work denote optimizations
from related domains that we transferred and adapted for EAI and categorized according to
their impact: process simplification (cf. comprehensibility), data reduction (cf. volume), and
parallelization (cf. velocity). It is important that also the optimizations themselves can be proven
correct, in the sense that they do not change the functional behavior of the integration scenarios
(essentially the timed db-nets with boundaries corresponding to the compositions before and after
applying the improvement are bisimilar). This is challenging, since each improvement has to be
formally specified, preferably in a formalism close to IPCGs. For that, we select a graph rewriting
framework to formalize each improvement by a rewrite rule and show that the rewriting results
in functionally equivalent integration scenarios. We evaluate the impact of these improvements
on real-world integration scenarios, showing actual improvements (e.g., immense data volume
and modeling complexity reduction potentials).

In summary, we developed a formalism to specify correctness-preserving change operations
(i.e., improvements) on IPCGs. This extends the notion of trust in pattern compositions based
on IPCGs to specific optimizations, and thus contributes to RQ2 in terms of expressive formal
foundations that can be used for optimizations. We envision further optimizations to be again
formally represented as change operations on IPCGs.

Making Pattern Solutions Justifiable The improvements on the integration scenario level
showed promising results for improving the runtime. Some of the improvements like data reduction
even require actual runtime data to decide on the rewriting. However, it remains unclear how
improvements can be measured and compared for real-world systems. One way to do that is

283



by constructing a benchmark, a pattern benchmark in our case. Such a benchmark can serve
as a runtime data provider as required for graph rewritings like data reduction. Beyond the
improvements on the scenario level, some of the trends offer opportunities to improve the efficiency
of integration solutions on the system level. For both levels the challenge is to define a common
benchmark that is relevant, scalable, portable and simple to understand. In this work we define
EIPBench as the first pattern benchmark that addresses relevant integration aspects like message
routing, transformation, and delivery qualities. We argue that the focus on patterns, abstracting
from the complexity of the underlying domain, makes the benchmark comprehensible. The
benchmark defines micro- and macroscaling based on the pattern characteristics (e.g., route
branching, complex conditions) and cross pattern aspects (e.g., concurrent users, increasing
data volumes), respectively. Although the benchmark is portable and can be extended to other
technologies or systems, we evaluate EIPBench prototypically for Apache Camel, a contemporary
integration system that implements the original integration patterns, and compare the results to the
promising vectorization or micro-batching approach (cf. [Rit15b]). One interesting finding is that
vectorized processing requires semantic changes for some patterns (e.g., Content-based Router) to
leverage its full potential, which is picked up later in this thesis. For the existing implementations,
the results show the strengths (e.g., good baseline processing) and weaknesses (e.g., decreasing
throughput for increased data volume, route branching, threading) of contemporary systems and
areas, in which vectorization is promising (e.g., scenarios that require an overall higher message
throughput).

In summary, we lay the basis for answering RQ3 “Which related concepts and technology trends
can be used to improve integration processing and how can the resulting integration solutions be
practically realized and compared?” by comparing the efficiency of integration solutions. With
EIPBench, realizations of integration patterns and compositions can be measured and compared
to each other. The benchmark helps to justify one improvement or related concept over another.

Improving Pattern Solutions Besides the responsible development of EAI solutions the
correctness-preserving optimizations already target an improved processing on the scenario level.
On the system level, the vectorization benchmarks show promising results, which suggests an
exploration of new trends (e.g., software, hardware) for system level improvements. Since the
prototypical timed db-net implementation does not provide an artifact that would perform well in
benchmarks, more efficient pattern realizations are required. However, we recall that challenges in
EAI are diverse (i.e., volume, velocity, variety), and thus require different system considerations.

First, for high volume data processing big data management systems (BDMS) from the related
database domain is a natural choice. In these systems, vectorization is the predominant processing
style, which lets us revisit potential semantic integration pattern changes. For a prototypical
evaluation, some integration patterns are conceptually specified similar to timed db-nets, however,
completely within the contemporary BDMS (e.g., SAP HANA database). That means that the
design leverages the active database concepts within the BDMS. Although an equivalence of
timed db-net and our BDMS solution is not formally shown, the experimental results suggest
that the pattern implementations are correct. The evaluation is conducted using EIPBench and
shows that despite the fully transactional processing within the BDMS the high data volume
routing and transformation message throughput can be significantly improved.

Second, for high velocity data processing, we propose a combination of moving the processing
closer to the network and part with software implementations in favor of a specialization on
modern, reconfigurable hardware. Network attached data processing is naturally more efficient for
EAI, since it gets the integration logic closer to the communication wire. Moreover, reconfigurable
hardware is a technology trend that promises unmatched efficiency with respect to data processing
and energy consumption. Hardware dataflow architectures do not only have the advantage that
they can be put close to the network (i.e., they have no additional operating system interactions
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and are not control flow centric, compared to software), but they also allow for highly parallel
data pipelining. For a prototypical evaluation, some integration patterns are conceptually defined
directly in FPGA hardware, which denotes the most advanced reprogrammable hardware currently
available. The evaluation of this integration system on a chip benchmarked in EIPBench not only
shows so far unmatched message throughput for routing and transformation patterns, but also
that it is not vulnerable to the identified weaknesses of the software solutions. For example, an
increasing number of route branchings or complex conditions have no or only minimal impact on
the performance compared to the software systems. However, the major downside to reconfigurable
hardware that we discussed in this thesis is the trade-off: velocity vs. resource limits. For example,
the resources on the chip like on-chip memory are limited, while higher capacity external resource
access slows down the velocity. With respect to the discussed scenario level optimization, the
application of the optimization strategies show slight performance improvements, however, less
significant than those gained through the specialization. Moreover, given a hardware integration
scenario, the performance is predictable and guaranteed to remain stable.

Finally, the third system that we built deals with the variety aspect for multimedia data
integration. We argue that a multimedia application can be seen as an integration scenario.
Instead of textual message formats, messages are assumed to contain multimedia data (e.g., image,
video stream) that are directly considered for routing and transformation (e.g., allowing for query
by sketch style routing conditions). Although we extend EIPBench for multimedia data and
benchmark our solution, this system was not defined with efficient message processing in mind.
Instead it gives a conceptual design for dealing with multimedia data in an EAI system from
the integration scenarios down to the runtime. The actual information in the multimedia data is
addressed by semantic web concepts (e.g., ontologies as schema, SPARQL routing conditions).
The resulting approach could be formally represented by timed db-nets through an extension for
the semantic data processing.

In summary, we addressed the pattern solution part of RQ3 “Which related concepts and
technology trends can be used to improve integration processing and how can the resulting integration
solutions be practically realized and compared?”, and thus targeted crucial problems of current
EAI systems (volume, velocity, variety) by proposing three novel pattern solutions. The proposed
system implementations improve the integration processing for current scenarios with respect to
performance (volume and velocity) and emerging multimedia data (variety of message formats).
Each of the systems leverages emerging technological trends, which could influence the design of
future EAI systems. For practical considerations combining the three systems into one could be
preferable.

Overall Contribution Altogether, this thesis contributes an updated, comprehensive pattern
catalog as basis for formal EAI foundations. The formal foundation in the form of composed
pattern and their improvements denotes a necessary step towards trustworthy EAI. The novel
pattern solutions denote efficient implementations and pave the way for future EAI systems and
system architectures.

7.2 Outlook

While the formal results and novel system designs are already being incorporated into commercial
EAI solutions (e.g., SAP Cloud Platform Integration), we see various ways, in which the results of
this thesis can be extended. The four major extensions are set into the context of the conceptual
system overview from Chapter 1 in Figure 7.1. Besides the continuous task of pattern identification
and adaptation (not shown), for which we have given an extended pattern identification approach,
the four areas of extension are enclosed by dashed lines (i.e., modeling, leveraging the formal
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Figure 7.1: Conceptual EAI system overview — the big picture

foundations and novel pattern solutions, and involving endpoints) and discussed subsequently.

Modeling The modeling research gap identified in Chapters 1 and 2 was not addressed in this
thesis and still remains unsolved. While IPCGs and timed db-nets denote suitable formal EAI
foundations, a more comprehensible and visually appealing integration language is required to
further empower the user to efficiently develop and interact with integration solutions. We
propose to base this language on IPCGs to enjoy built-in formal analysis results and optimization
strategies. The semantic analysis should be supported by the development of a timed db-net
model checker for an analysis beyond validation through simulation. Although we used BPMN as
visual representation of integration scenarios in this thesis, BPMN can only be used for modeling
in this context, if extended for or adapted to EAI execution semantics. Alternatively, a new
notation is required.

An interactive development of integration solutions in such an integration language will
further require the development of new editors. These editors will not only need to support the
efficient interaction with different information layers (e.g., for formal analysis and optimization;
cf. Chapter 3) and new formats together with system supported configuration (e.g., for query by
sketch conditions on multimedia data; cf. Section 6.3), but also enable smarter ways of scenario
development like templating (cf. Chapter 2), composition modeling guidelines (cf. Chapter 3),
proposal of suitable subsequent patterns during modeling (e.g., [MLZN09, MN10]), and immediate
runtime feedback (e.g., based on simulation). We envision the usage of IPCGs and timed db-
nets for the conceptual foundations of such editors. While IPCGs provide formally defined
optimizations and timed db-nets help with the formal analysis on the pattern level, together
they could allow for feedback and analysis capabilities in the editors, covering all layers from the
scenario or process to the data level.

When considering the shift in usage from computers to mobile devices, special editors for
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the integration modeling on smaller and resource constraint devices could be (cf. [RH18]). This
would enable (non-technical) users to integrate context services, mobile and business applications
more flexibly, beyond simple task automation. With IPCGs as foundations for mobile integration
scenarios, the structural correctness can be checked and optimization strategies can be applied
without the need of the computationally more expensive verification of timed db-nets.

Leveraging the Formal Foundations The definition of IPCGs is independent of modeling
languages, however, to enjoy their benefits (e.g., structural and semantic correctness, formal
analysis), existing or new modeling languages have to be grounded on or integrated with IPCGs.
Such an integration can be facilitated by mappings from user facing models to IPCGs and
vice versa, which allows for the study of their (cross-layer) interactions (e.g., soundness checks,
feedback from model checking or simulation, static optimizations). To leverage the full potential
of the formal foundations developed in this thesis and make the results accessible in practice,
an automatic or tool assisted translation from IPCGs to timed db-nets is required (cf. model
vs. system gap in Chapter 3). We assume that new patterns might be formally developed using
such a tool as an interplay between IPCGs and timed db-nets, which should be connected to the
modeling language.

Moreover, with the translation of IPCGs to timed db-nets, more sophisticated cost models
can be developed (e.g., taking the inherent complexities of the patterns into account). With that
a more systematic analysis of optimizing dynamic workloads (e.g., cf. [Böh11]) can be analyzed
and studied in the context of timed db-nets (e.g., leading to more precise cost semantics) and
IPCGs (for model complexity). In addition, the propagation of the optimizations to all levels
(e.g., visual and formal models) could be studied considering varying requirements of users (e.g.,
integration or domain experts, analysts).

Currently, the optimization rules are stratified according to their effects for the application
(i.e., “simplification before parallelization” and “structure before data”). More elaborate rule
application and execution schemes could be investigated to give better optimality guarantees.

Leveraging Novel Pattern Solutions The new pattern solutions (i.e., BDMS and FPGA
pattern implementations) are functionally correct, however, not yet formally connected to timed
db-nets. A mapping from timed db-nets to the pattern solutions would allow for an automatic
translation, and thus for a practical use and a more systematic study of different realization in
different settings and platforms with varying demands and opportunities. This would also provide
an end-to-end perspective from the modeling language to the pattern solutions, and thus make
implementation-dependent studies of the complete system more tractable (i.e., without manual
steps). In the other direction, a mapping from pattern solutions to timed db-nets would allow
for soundness check of existing system implementations (e.g., Apache Camel) as well as formal
analysis during their evolution.

With the advent of general data processing systems (e.g., Apache Spark, Apache Flink), the
EAI domain should be further analyzed with respect to conceptual and implementation overlaps
with related domains. For example, our studies in Chapter 6 experimentally show that some
patterns can be implemented on BDMS and stream processing hardware. This is similar to the
experimental studies conducted for overlaps with workflow management [SRL10] and complex
event processing systems [ES13]. We argue that a more systematic and formal attempt to link
between the related domains would benefit research, but also practical system implementations
and their users.

Involving Endpoints As also observed by [Böh11] the current optimization approaches focus
on the (data) integration system itself. Having seen the emergence of patterns like Commutative
Receiver or Timed Redelivery until Acknowledge (both identified in Chapter 2), some of the
current integration logic within EAI systems should be better moved to the endpoints, where they
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belong. Moreover, the endpoints have relevant information that would improve the optimizations
in this thesis and lead to the development of new optimizations (e.g., required data elements for
the early-filter optimization and acceptable load as capacity for the configuration of throttling
patterns in the reduce requests optimization).

We argue that the involvement of endpoints should be further studied, for which IPCGs
provide a formal foundation (cf. example optimizations in Appendix A and [RFRM19]). While
this might be challenging for packaged, legacy applications, this would give each participant in
the communication more responsibility and information, which will not only make the message
exchange more efficient (e.g., only required data is exchanged, dynamic workloads can be detected
earlier and reacted to in a collaborative way), but also more robust (e.g., avoiding overloaded or
reacting to unavailable endpoints).

Altogether, the presented EAI foundations, formalizations and solutions provide relevant
contributions and solutions for the further work beyond this thesis.
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[BWHL08] Matthias Böhm, Uwe Wloka, Dirk Habich, and Wolfgang Lehner. Model-driven
generation and optimization of complex integration processes. In International
Conference on Enterprise Information Systems (ICEIS) (1), pages 131–136, 2008.
(cit. on pp. 136 and 139)

[BZ10] Ian Bayley and Hong Zhu. A formal language of pattern composition. In
International conference on pervasive patterns (PATTERNS 2010), XPS (Xpert
Publishing Services), Lisbon, Portugal, pages 1–6, 2010. (cit. on p. 131)

[CAO+07] Semih Cetin, N Ilker Altintas, Halit Oguztüzün, Ali H Dogru, Ozgur Tufekci,
and Selma Suloglu. A mashup-based strategy for migration to service-oriented
computing. In International Conference on Pervasive Service, pages 169–172,
2007. (cit. on pp. 31 and 33)

[Cas05] Eylon Caspi. Design Automation for Streaming Systems. PhD thesis, UC Berkeley,
Berkeley, CA, USA, 2005. (cit. on pp. 227, 229, 240, 271, and 272)

[Cat11] Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Record, 39(4):12–27,
2011. (cit. on p. 203)

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In Symposium on Principles of programming languages (POPL), pages 238–252.
ACM, 1977. (cit. on p. 161)

[CC02] Patrick Cousot and Radhia Cousot. Systematic design of program transfor-
mation frameworks by abstract interpretation. In Symposium on Principles of
Programming Languages (POPL), pages 178–190. ACM, 2002. (cit. on p. 161)

[CCP+16] Adrian M Caulfield, Eric S Chung, Andrew Putnam, Hari Angepat, Jeremy
Fowers, Michael Haselman, Stephen Heil, Matt Humphrey, Puneet Kaur, Joo-
Young Kim, et al. A cloud-scale acceleration architecture. In Annual International
Symposium on Microarchitecture, page 7. IEEE Press, 2016. (cit. on pp. 222
and 277)
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of messaging-based enterprise integration solutions using AI planning. In IFIP
Central and East European Conference on Software Engineering Techniques (CEE-
SET), pages 16–29, 2009. (cit. on pp. 31, 36, 38, 49, 160, and 286)

[MN10] Pavol Mederly and Pavol Návrat. Construction of messaging-based integration
solutions using constraint programming. In East-European Conference on Ad-
vances in Databases and Information Systems (ADBIS), pages 579–582, 2010.
(cit. on pp. 31, 36, 38, 49, and 286)

[Mob02] R Keith Mobley. An introduction to predictive maintenance. Elsevier, 2002. (cit.
on p. 1)

[MR16] Marco Montali and Andrey Rivkin. Model checking Petri nets with names using
data-centric dynamic systems. Formal Aspects of Computing, 28(4):615–641, 2016.
(cit. on p. 85)

[MR17] Marco Montali and Andrey Rivkin. Db-nets: On the marriage of colored Petri
nets and relational databases. T. Petri Nets and Other Models of Concurrency,
12:91–118, 2017. (cit. on pp. 67, 69, 71, 72, 73, 77, 78, 85, and 114)

[MRS05] Peter Massuthe, Wolfgang Reisig, and Karsten Schmidt. An operating guide-
line approach to the SOA. Technical report, Humboldt-Universität zu Berlin,
Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Informatik, 2005.
(cit. on p. 132)

[MS95] Salvatore T March and Gerald F Smith. Design and natural science research on
information technology. Decision support systems, 15(4):251–266, 1995. (cit. on
pp. 12 and 168)

[MS11] Anil Madhavapeddy and Satnam Singh. Reconfigurable data processing for clouds.
In Field-Programmable Custom Computing Machines (FCCM), 2011 IEEE 19th
Annual International Symposium on, pages 141–145. IEEE, 2011. (cit. on p. 222)

[MSA14] Huvaida Manzoor, Yogeshwar SinghRandhawa, and Ece Deptt Gimet Amritsar.
Comparative studies of algorithms using digital image processing in drug industry.
IJSRP, page 418, 2014. (cit. on pp. 255 and 256)

[MSHP15] Danny Merkel, Filippos Santas, Andreas Heberle, and Tarmo Ploom. Cloud
integration patterns. In European Conference on Service-Oriented and Cloud
Computing, pages 199–213, 2015. (cit. on pp. 31, 35, 37, 38, and 49)
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graph story of the SAP HANA database. In Datenbanksysteme für Business,
Technologie und Web (BTW), volume 13, pages 403–420. Citeseer, 2013. (cit. on
pp. 204 and 209)

[RR15] Daniel Ritter and Stefanie Rinderle-Ma. Toward a collection of cloud integration
patterns. CoRR, abs/1511.09250, 2015. (cit. on pp. 10, 13, 21, 31, 35, 46, 49, 52,
58, 59, and 65)

[RRM17] Daniel Ritter and Stefanie Rinderle-Ma. Toward application integration with
multimedia data. In IEEE International Enterprise Distributed Object Computing
Conference (EDOC), pages 103–112. IEEE, 2017. (cit. on pp. 14, 15, 204, and 249)

[RRM+18] Daniel Ritter, Stefanie Rinderle-Ma, Marco Montali, Andrey Rivkin, and
Aman Sinha. Catalog of formalized application integration patterns. CoRR,
abs/1807.03197, 2018. (cit. on pp. 13 and 62)

317



[RRMM+18] Daniel Ritter, Stefanie Rinderle-Ma, Marco Montali, Andrey Rivkin, and Aman
Sinha. Formalizing application integration patterns. In IEEE International
Enterprise Distributed Object Computing Conference (EDOC), pages 11–20. IEEE,
2018. (cit. on pp. 13 and 62)

[RS+13] Peter Reimann, Holger Schwarz, et al. Datenmanagementpatterns in Simula-
tionsworkflows. In Datenbanksysteme für Business, Technologie und Web (BTW),
pages 279–293, 2013. (cit. on p. 270)

[RS14] Daniel Ritter and Jan Sosulski. Modeling exception flows in integration systems. In
IEEE International Enterprise Distributed Object Computing Conference (EDOC),
pages 12–21. IEEE, 2014. (cit. on pp. 13, 15, 21, 24, 44, 46, and 188)

[RS16] Daniel Ritter and Jan Sosulski. Exception handling in message-based integration
systems and modeling using BPMN. International Journal of Cooperative Infor-
mation Systems, 25(2):1–38, 2016. (cit. on pp. 13, 15, 21, 24, 44, 46, 50, 53, 65,
95, and 97)

[RSD+17] Raghu Ramakrishnan, Baskar Sridharan, John R. Douceur, Pavan Kasturi, Balaji
Krishnamachari-Sampath, Karthick Krishnamoorthy, Peng Li, Mitica Manu,
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Appendix A

Correctness-Preserving Reduce
Interaction Optimizations

The catalog of optimization strategies and their optimizations in Chapter 4 evolves with new
optimizations added to existing or new strategy categories, collected in [RFRM19]. For example,
for a more efficient and resilient processing, pattern compositions strive to reduce interactions with
external participants (OS-4). Common optimizations of this strategy are ignore failing endpoints
and reduce requests. To illustrate that our formalism from Chapter 4 is suitable for the definition
of new optimizations, the two optimizations are subsequently specified accordingly and their
correctness is shown down to the execution semantics. Similarly, other correctness-preserving
optimizations on our pattern compositions can be defined.

A.1 Ignore Failing Endpoints

When endpoints fail, different exceptional situations have to be handled on the caller side. In
addition, this can come with long timeouts, which can block the caller and increase latency.
Knowing that an endpoint is unreliable can speed up processing, by immediately falling back to
an alternative.

Change primitives: The rule is given in Figure A.1(a), where SGext is a failing endpoint,
SG1 and SG2 subgraphs, and P1 is a service call or message send pattern with configuration
cf . This specifies the collected number of subsequently failed delivery attempts to the endpoint

cfP1 SG1

SGext

cfP1 SG1

SGext

(a) Ignore Failing Endpoint

cfP1 SG1

SGext

cfP1 SG1

SGext

(b) Try Failing Endpoint

Figure A.1: Rules for ignore failing endpoints
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SG1

P1 SG2

SGext

SG1

P1 SG'2

SGext

SGcs

Figure A.2: Rules for reduce requests

or a configurable time interval. If one of these thresholds is reached, the process stops calling
SGext and does not continue with the usual processing in SG1, however, invokes an alternative
processing or exception handling in SG2.

Effect: Besides an improved latency (i.e., average time to response from endpoint in case of
failure), the integration process behaves more stable due to immediate alternative processing. To
not exclude the remote endpoint forever, the rule in Figure A.1(b) is scheduled for execution after
a period of time to try whether the endpoint is still failing. If not, the configuration is updated to
cf ′ to avoid the execution of Figure A.1(a). The retry time is adjusted depending on experienced
values (e.g., endpoint is down every two hours for ten minutes).

A.2 Reduce Requests

A message limited endpoint, i.e., an endpoint that is not able to handle a high rate of requests,
can get unresponsive or fail. To avoid this, the caller can notice this (e.g., by TCP back-pressure)
and react by reducing the number or frequency of requests. This can be done be employing a
throttling or even sampling patterns from Chapter 2, which reduces the number of messages sent
per time or removes messages, respectively. An Aggregator can also help to combine messages to
multi-messages Section 6.1.

Change primitives: The rewriting is given by the rule in Figure A.2, where P1 is a service call
or message send pattern, SGext a message limited external endpoint, SG2 a subgraph with SG′2
a re-configured copy of SG2 (e.g., for vectorized message processing Sections 5.1.2 and 6.1), and
SGcs a subgraph that reduce the pace, or number of messages sent.

Effect: Latency and message throughput might improve, but this optimization mainly targets
stability of communication. This is improved by configuring the caller to a message rate or
number of requests that the receiver can handle.

A.3 Correctness Considerations

We recall the bisimilarity considerations from Section 4.2.4 for the subsequent optimization
correctness proofs.

Ignore, try failing endpoints Suppose the left hand side of Figure A.1(a) takes a finite amount
of steps to move a token to SG1, however, the transition to SGext does not produce a result due
to an exceptional situation (i.e., no change of the marking in cf). Correspondingly, the right
hand side moves the token, however, without the failing, and thus read-only transition to SGext,
which ensures the equality of the resulting tokens on either side.
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Under the same restriction that the no exception context is returned from SGext, the right
hand side can simulate the left hand side accordingly.

Reduce requests Since the only difference between the left hand side and the right hand side is
the slow-down due to the insertion of a throttler pattern SGCS , and simulation does not take the
age of messages into account, the left hand side can simulate the right hand side and vice versa.
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