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Preface

One of the main goals of modern seismology is to predict ground
motion at the site during future earthquakes. It requires both an
accurate program for numerical simulation of propagation of seis-
mic waves as well as a precise Earth model in the area through
which the seismic waves are propagating. The former is met by
various methods which were developed over last decades, the later
is still a challenging task. It requires to solve an inverse problem.
Although a huge progress has been made in this field, further im-
provements are still necessary in the global and regional scales
but mainly in the local scale addressing strongly heterogeneous
structures.

Fundamental mathematical tools were developed relatively long
before recent increase of computational power. Therefore, for ex-
ample often only times of the first arrivals were used for inver-
sion. This was not sufficient especially for local structures. How-
ever, the recent improvements of computers have allowed to apply
full waveform inversion methods which use as much information
from seismic records as reasonable.

The adjoint tomography is a method which belongs to the fam-
ily of full waveform inversion methods and which utilises the ad-
joint approach. Kubina et al., 2018 applied this method for in-
version of 2D local surface sedimentary structures with promising
results. The application to local structures requires a special
treatment of kernel preconditioning due to ill-posedness of the
problem.

In this thesis, we build on the work of Kubina et al., 2018 and
focus on kernel preconditioning in 3D problem. We developed
generalised methods for kernel preconditioning. Numerical tests
confirmed their applicability. Consequently, they will be imple-
mented in FDAtom3D, a program for the adjoint tomography in 3D

local surface sedimentary structures created by Filip Michlik.
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Introduction

Earthquakes are the phenomenon which releases the biggest
amount of energy in a single event among all natural or artifi-
cial processes on the Earth. Therefore, there is a great poten-
tial for them to cause a harm. What is more, they often occur
in the most populated areas in the world. It is not a coincid-
ence, as those areas belong among places with the most propitious
natural conditions to which the earthquakes contributed signific-
antly. Therefore, we must pay them deserved attention.

Being able to forecast the earthquakes is a long-term goal of
seismology. It is the biggest challenge, mainly due to structural
complexity of the Earth’s lithosphere and the complexity of pro-
cesses of earthquakes preparation. Furthermore, it is impossible
to install instruments deep inside the Earth which could monitor
those processes directly, which makes earthquakes even more dif-
ficult to be predicted. Taken all together, it is not clear whether
it will be possible to forecast earthquakes at all.

Having said that, there is a branch of seismology that assesses
seismic hazard. It does not attempt to forecast earthquakes. It
just evaluates a probability of the area of interest to be affected
by an earthquake of a certain magnitude in a given time period.

It is not difficult to estimate a probability of an earthquake oc-
currence. It can be done simply by a research of historical earth-
quakes records. The noticeably more difficult task is to estimate
a damage caused by an earthquake if it happens to occur. One
must realise that not solely a magnitude of the earthquake and
its distance determine a seismic ground motion, but also so called
site effects must be taken into account, making it even more dif-
ficult to predict seismic intensity. It is a task for numerical mod-
elling.

Being able to satisfactorily model ground motion, two crucial

requirements must be met. First of all, we need an accurate soft-
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ware for numerical modelling of propagation of seismic motion in
a realistic medium. Many such programs have been created, so
one must only choose which one best addresses his specific prob-
lem. Secondly, we need to know physical properties of the medium
through which the propagation of seismic waves is to be modelled.
They can be obtained by methods of seismic tomography. How-
ever, it is a difficult task, especially in local surface sedimentary

structures.

Difficulty of determining of physical properties of medium ari-
ses from ill-posedness of the problem. Usually, inverse problems
suffer from either non-existence or non-uniqueness of a solution.
Non-uniqueness is often caused by a lack of data. To overcome

these problems, a proper preconditioning is required.

Application of many numerical methods for solving of inverse
problems had been limited by their high computational costs for
years. It usually resulted in a reduction of amount of data that
could have been used for an inversion. Often only high frequency
approximations were used and only arrival times were inverted.
We do not need to stress that such approximations were of no
use for local surface sedimentary structures, as those are charac-
terised by strong heterogeneity and typical wavelengths of these
heterogeneities are of order of seismic waves wavelengths or even
shorter. These difficulties were overcome only recently by en-
hancement of computers which allowed a direct application of so-

called full waveform inverse methods.

Full waveform inverse methods use as much information from
seismic records as reasonable. One of the first who utilised a full
waveform inverse method in seismology was Tarantola, 1984. He
developed an iterative algorithm for computation of bulk modu-
lus, density and source-time function from seismic records of mul-

tiply reflected and refracted waves in an acoustic approximation.
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Figure 0.1: Annual appearance of words “FWI” or “Full Waveform
Inversion” in articles (taken from Wellington, 2016)

This study was of a great importance not only because it ad-
dressed a particular inverse problem, but it also showed that it
was possible to apply full waveform inverse methods with a then
computational power. Nevertheless, a number of new studies deal-
ing with full waveform inverse methods had been increasing only
slightly until about a decade ago, as shown at Fig. 0.1. A sharp
increase in last years can be attributed to enhancement of com-
putational power, as well as to a development of an adjoint tomo-

graphy method.

One of the first applications of the adjoint method in seismo-
logy can be found in Bamberger et al., 1979. He addressed a com-
mon problem in reflection seismic — determination of density and
shear modulus distribution with depth by measurement of hori-
zontal displacement at a free surface. He determined the acous-
tical impedance of the layered Earth. Further examples can be
found in Tarantola, 1988 (incorporation of attenuation), Tromp
et al., 2005 (work on kernels), Fichtner; Bunge et al., 2006a (com-
prehensive review of the method), Fichtner; Bunge et al., 2006b
(discussion on sensitivity functionals and sensitivity kernels),
Sieminski et al., 2007a (incorporation of anisotropy to inversion
from body waves), Sieminski et al., 2007b (incorporation of aniso-

tropy to inversion from surface waves), Q. Liu et al., 2008 (com-
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putation of sensitivity kernels for global seismic wave propaga-
tion), etc. Probably the first applications of the adjoint method
in 3D date back to 2009 when Fichtner; Kennett et al., 2009 ap-
plied it for upper-mantle tomography in the Australasian region,
Tape et al., 2009 used it for developing of a 3D seismological
model of the southern California crust and Stich et al., 2009 made
use of it for localization of coda reflectors beneath northern Apen-
nines. Other studies followed immediately, e.g. Tape et al., 2010
(improvement of a 3D tomographic model of the southern Cali-
fornia crust), Fichtner; Kennett et al., 2010 (tomography for the
Australasian region with incorporated radial anisotropy), Zhu;
Bozdag; Peter et al., 2012 (structure of the European upper man-
tle), Fichtner; Trampert et al., 2013 (inversion for Eurasia with
focus on Anatolia using multiscale approach), P. Chen, 2013 (in-
version for the southern California using combined adjoint — scat-
tering-integral method), Rickers et al., 2013 (a high-resolution
S-velocity model down to 1300km depth revealing a presence of
two plumes beneath Iceland and Jan Mayen), Zhu; Bozdag; Duffy
et al.; 2013 (attenuation beneath Europe and the North Atlantic),
Lee; P. Chen et al., 2014 (refinement of a crustal structure of the
southern California using combined adjoint — scattering-integral
method obtained from almost 5.9 million measurements), M. Chen;
Niu; Q. Liu; Tromp, 2015 (shear wave speed model of Mongo-
lia with focus on Hangai Dome), M. Chen; Niu; Q. Liu; Tromp;
Zheng, 2015 (radially anisotropic seismic model of East Asia down
to 900 km depth), Zhu; Bozdag; Tromp, 2015 (detailed three-stage
inversion for the crust and upper mantle beneath Europe and North
Atlantic with attenuation and anisotropy), Lee; P. Chen, 2016
(improvement in determination of basin structures in the south-
ern California), M. Chen; Niu; Tromp et al., 2017 (image of litho-
spheric foundering and underthrusting beneath Tibet), Y. Liu et
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al.; 2017 (crustal and uppermost mantle structure beneath NE

China obtained by ambient noise adjoint tomography), etc.

Notice that the adjoint method has been used over a great range
of scales — from hundreds of kilometres (e.g. southern Califor-
nia) up to a continental scale. Even the first inversions on a
global scale were performed (e.g. Bozdag et al., 2016), despite
their high computational costs. However, their resolution does
not reach the one of continental-scale inversions yet, but it is

close to it in areas with dense coverage of data.

One could assume that it cannot be difficult to employ the ad-
joint method on a local scale. But it is a big blunder because of

several reasons.

First of all, one must realise how a typical local surface sedi-
mentary structure looks like. It is usually several kilometres wide
and hundreds of metres deep and it is characterised by strong het-
erogeneity. Material parameters often vary over a range of sev-
eral orders of magnitude and a typical length of variation is very

short.

That implies that waves used for an inversion in the local sur-
face sedimentary structures must be of short wavelengths, simply
because if they had longer wavelengths than the typical length of
variation, they would not “see” those short-length heterogeneit-
ies. This “invisibility” is exploited in a multiscale approach to
minimisation of misfit, however it has some serious drawbacks.
If short wavelengths are to be used for the inversion, the model
must be fine spatially sampled in order to simulate a propaga-
tion of such short-wavelength waves which leads to an increase of

computational time.

However, a more serious problem is that only local earthquakes
can be used for the inversion because short waves from distant
earthquakes may be strongly attenuated. Furthermore, the use of

distant sources would increase computational costs excessively.
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On the other hand, there is usually a lack of local sources, they
are often too weak and their distribution is uneven which results
in severe ill-posedness of the problem and a careful precondition-
ing needs to be employed.

Another serious problem of application of the adjoint method
for sedimentary structures is that an initial model is usually poor-
ly determined which causes difficulties to converge to a global
minimum of a misfit.

Considering all this together, it is not a surprise that the ad-
joint method has not been widely employed for the local surface
sedimentary structures so far. One of the first attempts (if not
the first at all) to change that can be found in PhD Thesis of
Kubina, 2017. He proposed an algorithm for application of the
adjoint method for the local surface sedimentary structures and
performed a blind numerical test for 2D artificial model.

We build on a work of Kubina et al., 2018. We focus on kernel
preconditioning, trying to generalise his ideas to 3D and invest-
igating properties and applicability of the generalised methods
for kernel preconditioning.

This thesis consists of two main parts. In the first one, we
provide a brief insight to inverse problems and a review of the
adjoint method. Then in the second part, we focus on kernel pre-
conditioning. We investigate smoothing and applying of a mask in
detail. We propose generalisation of Kubina’s method for smooth-
ing and of his design of mask to 3D and we perform a numerical

tests of them.

15



16



Part 1
A review of the adjoint

tomography method
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1 Inverse problems in geophysics

1.1 Forward and inverse problem

A typical problem in geophysics can be described as finding
of a relation between observations and physical parameters of a
geophysical system. Denote the observations (or data) as d and
the physical parameters (or model) as m. Providing we know the

physics of the system, we can formulate the relation as
G(m)=4d, (1.1)

where G is an operator/function which relates the data to the
model. We can look at it as a mapping from a model space to

a data space.

G may be of various forms, such as an ordinary differential
equation, a partial differential equation, a system of algebraic
equations or something else, m can be a vector of parameters or a
continuous function of space and/or time and d can be a vector of
discrete data or a continuous function. If m and d are continuous
functions, G is called an operator, whilst if they are vectors, G

itself is called a function.

If we refer to a problem, we have in mind determination of
either m, d or even G in eq. (1.1), whilst the other two are known.
Based on what is unknown, we distinguish three types of a prob-

lem.

If d is unknown, we talk about forward problem. It is usually
the simplest case and it commonly requires solving a differential
equation, evaluating an integral or performing some well-defined
operations. Forward problems are typically well-posed and have
a unique solution. It is a problem of predicting observations if

we know the physical properties of the system.
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A noticeably more difficult problem is determination of un-
known m if d is given. It is called an inverse problem. It is
problem of determination of physical parameters of the system,
providing we have a set of collected data. Such a problem is often
ill-posed, its solution may be non-unique and it does not have to
exist at all due to inaccurate data or not exact physics.

For the sake of completeness, the third problem is a problem of
determination of unknown G, providing we have a set of observa-
tions d and we know the model m. This kind of problem is called
a model identification problem. We will not address it here.

We focus on inverse problems. We may need to determine a set
of unknown parameters forming a vector m, providing we have
a set of measured data represented by vector d. Then we refer
to a discrete inverse problem (or parameter estimation problem)

which can be written as a system of algebraic equations

G (m) =d. (1.2)

And if those equations are linear, then it takes a form of

Gm = d, (1.3)

where G is a matrix of the system of linear equations.

The other type of the inverse problems are so called continuous
inverse problems when m and d are continuous functions of space
and/or time. They are usually discretised and addressed as the

discrete inverse problems with lots of unknown parameters m.

1.2 Difficulties with solving of inverse problems

The most straightforward approach to solving of an inverse
problem is the application of an inverse operator G~! to the op-

erator G. However, this approach can be used very rarely. Beside
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the fact that the inverse operator does not have to exist, it has
to cope with another serious problem.

Our measured data dopserveqa usually differ from expected data
dirue Which we would obtain if we applied the operator G to the
true model my,y. because our measured data are affected by noise.

That means we are trying to resolve a problem of finding mye

from
G (mtrue) +e = dobserved, (14)
N— —
dtrue

where ¢ stands for the noise and it is impossible by applying of
the inverse operator G~'. It is like that because the operator G
usually cannot explain noise, nor all phenomena due to some sim-
plifications in physics and therefore we cannot infer a true model
Mirue from noisy data dopserved Using the inverse operator G—1.
Instead of finding m from eq. (1.4), we rather address different

problem — a minimization of an objective function
F(m): HG(m>_dobservede- (15)

| f]l, denotes p-norm of f. Typically 2-norm is used which corres-
ponds to Euclidean length but sometimes other norms are used as
well.

A difficulty of addressing inverse problems arises from the fact
that the inverse problems are often ill-posed. Ill-posedness of
the inverse problems means that they do not match one or more
conditions which well-posed problems have to fulfil. A solution
of a well-posed problem has to exist, be unique and stable.

Existence of a solution of an inverse problem is closely related
to the fact that the observed data contain noise and/or physics of
the system is only approximate. That may cause that no model m
could fit the observed data exactly and therefore a solution would
not exist. In such a case only an approximate solution could be

found.
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On the other hand, if a solution to the inverse problem exists,
it might not be unique. There may be even an infinite number
of distinct models which explain observed data. A good example
from geophysics is a determination of mass distribution by meas-
uring of external gravitational field in a spherically-symmetric
situation.

Last but not least, a condition of stability requires that a small
change in input data results to a small change of a solution. This
is often not the case when dealing with an inverse problem. It
happens quite often that slightly different observed data lead to
a completely different inferred model.

Having said that, one can easily understand that instability
of the inverse problem in connection with a presence of noise in
measured data can result to an inverted model which is not re-
lated to a true model, as the inverted model may be dominated by
the noise which is completely random and different noise would
lead to a totally different inverted model.

In order to stabilise the process of inversion, we usually set
additional constraints on a solution or make other modifications,
so that we obtain a reasonable solution. We refer to it as regu-

larisation and preconditioning.

1.3 Seismic tomography

We hereby address one particular inverse problem — a problem
of imaging of the Earth’s interior using seismic waves records. A
technique addressing this problem is called seismic tomography.

Seismic tomography is based on a fact that seismic waves pro-
pagating through the Earth are affected by its physical proper-
ties. Therefore, seismic records reflect inner structure of the
Earth.

Tomography can be based on P-waves, S-waves, surface waves

or even on ambient noise.
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The aim of seismic tomography is to design an Earth’s model m
represented by spatial variations of physical parameters. Those
parameters are density and bulk and shear moduli (alternatively
P and S wave velocities). In more advanced tomographies also
anisotropy and anelasticity may be incorporated.

As data d, seismic records serve. For many years, only limited
information from seismic records could have been utilised due to
insufficient computational power of then computers. Mostly, only
travel times to many seismic stations of a certain wave phase were
used. Nowadays, almost complete records can be used.

A link between a model space and a data space is governed by
an elastic wave equation. That implies that dealing with tomo-
graphy involves solving of this equation.

We are interested in tomographic methods which utilise entire
or nearly entire seismic records. Like this, we can gain more in-
formation, thus data from a fewer earthquakes and seismic sta-
tions are necessary. In such a case we refer to full-waveform in-
verse methods. They are of a particular importance in case of
tomography of local structures where only a little data are avail-

able.

1.4 Full-waveform inversion
1.4.1 Principles of full-waveform inverse methods

Full-waveform inverse methods are based on a trial-and-error
approach. In fact, strictly speaking, full-waveform inversion in-
volves addressing rather a forward problem than an inverse prob-
lem. The idea behind full-waveform inversion is that we consider
a lot of trial models m¢;ia1 and for each of them we predict data
dmodelled = G (Myria1) which we should observe. These modelled
data are then compared with true observed data dgpservea and a
goodness of the trial model is quantified by a misfit x (myria1). We

are trying to determine a model with the lowest possible misfit.
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There are two fundamental categories of inverse problems. The
first one belongs to a probabilistic inverse theory. Each model
Mirial from a model space is assigned a probability p (myyia1) of
representing a true Earth’s model my,ye. The probability p (miriar)
takes into account a misfit related to my,ia1 and a consistency of
Mirial With our prior knowledge of the Earth’s structure. A solu-
tion of the inverse problem is then a probability density function
p(m).

The advantage of the probabilistic approach is that we have
the entire model space covered which allows us to identify really
the best model. However, it requires too many forward computa-
tions to sample the entire model space which is computationally

intractable and thus this approach is of no use.

The other category belongs to deterministic inverse theory. It
is based on an iterative minimisation of the misfit. A computa-
tional feasibility is reached for a cost that not the entire model
space is probed in detail which may results to a state that an it-
erative algorithm could converge only to a local minimum of mis-
fit, thus not the optimal model would be found. Additionally, we
cannot decide whether the obtained model is unique or whether
there exists a different model which can explain the observations

as well.

There are two distinct approaches to a deterministic solving
of inverse problems. The first one starts with a set of different
models. For each model, data are modelled and a corresponding
misfit is calculated. The models with the least misfit are selec-
ted and combined, so that one model is obtained. This resulting
model is then randomly perturbed multiple times by which a new
generation of models is obtained. Members of this new genera-
tion are closer to the true model than the ones of former genera-
tion. After many generations, the resulting model approximates

the true model well.
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The other approach begins with a single initial model. Data are
modelled for this model and corresponding misfit is calculated.
Then other models in vicinity are probed in order to find a model
with less misfit. It is usually done by calculating of the gradient
of misfit and a new model is chosen in an opposite direction to the
gradient of misfit. After several iterations, the algorithm should
converge to a local minimum. This approach is called an iterative
gradient method. An example of the iterative gradient method is
a scattering integral method (P. Chen; Zhao et al., 2007, P. Chen;
Jordan et al., 2007) or an adjoint method which is introduced in

the chapter 2.

1.4.2 Misfit

A misfit x (m) is a measure which accounts for discrepancy be-
tween modelled data dyodeliea and observed data dopservea- It quan-
tifies a goodness of the model.

We distinguish three levels of misfits:

e a waveform misfit is calculated from a single pair of recorded

and modelled seismograms;

e an event misfit is a sum of all waveform misfits calculated
from pairs of recorded and modelled seismograms of a single

event;

e an aggregate misfit is a sum of the event misfits for a set of

events.

It is recommended to minimise the aggregate misfit when search-
ing for the optimal model. Other option is to minimise several
waveform or event misfits in sequence. However, a minimisation
of one misfit can lead to an increase of another, therefore the

former is preferred.
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The most commonly used misfit is an L2-misfit

1
X (m) = /5 [dmodented (M3, 1) — dopservea (T, )] dt, (1.6)

where r is a position vector of the receiver. It is an integral of a
half of a square of the difference between modelled and observed
data over a certain time window. Presented formula is for a wave-
form misfit. Other levels of misfit can be easily obtained by sum-

mation of waveform misfits.

Another quite common misfit is a cross-correlation time-shift
misfit. It is based on a cross-correlation function of modelled and

recorded data

(e 9]

C (t) - / dmodelled (m7 r, 7-) : dobserved (I‘, t + 7—) dT' (17)

— o0
Maximum of the cross-correlation function corresponds to the dif-
ference of arrival times between modelled and observed seismo-

grams

At:argmtaXC(t). (1.8)

This time shift is then used to quantify the misfit. More pre-

cisely, a half of a square of the time shift serves as the misfit

X (m) = 2 (A1)* (1.9)

There is a variety of other misfits. Some of them are based on
time-frequency analysis of data, e.g. envelope and phase misfit
or instantaneous phase and envelope misfit. Others are based on

amplitude characteristics.
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Sometimes, it is useful to write misfit in a time-space integral

form
X(m> = //X[dmodelled(m;rat)7dobserved(r7t)7p] dgpdt7 (110)
T V

where x (m) is a misfit function. E.g. for L2-misfit, we have

1

X (m) = 3 [dmodettea (m; P, t) — dobservea (P, )26 (p—1), (1.11)

where § (p — r) is Dirac delta function. A misfit function for an

event L2-misfit can be written as

- 1
X (m) = Z_ [dmodelled (m; P, t) - dobserved (P> t)]Q J (P - ri) y

2
(1.12)

=1

where r; is a position vector of i-th receiver and a summation is

performed over all receivers.
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2 Adjoint tomography

2.1 Concept of adjoint method

The adjoint tomography is an iterative gradient full-waveform
inverse method. It is based on a minimisation of misfit x (m)
defined in the section 1.4.2. It is achieved by computation of a
misfit gradient with respect to model parameters Vyu,x (m). A

differential of misfit in the direction dm is defined as
1
5x(m):me(m)-Jm:lim;[x(m—i—sém)—x(m)]. (2.1)

However, a straightforward computation of the gradient is prac-
tically not possible due to the size of a model space. Here the ad-
joint method comes in handy. It allows us to compute the misfit

gradient for large model spaces.

The adjoint method requires a computation of two wavefields.
The first wavefield is a regular wavefield u(r,t). It is a wave-
field corresponding to an initial model m, which is generated by
a source which is similar to a true source the most. This wavefield
is compared with an observed wavefield ug (r,¢) and a correspond-

ing misfit is calculated.

The second wavefield is an adjoint wavefield uf (r,¢). Tt is
generated by adjoint sources located at the places of receivers.,
whose source-time functions reflect differences between modelled
and observed wavefields. The adjoint wavefield is propagated back
in time, so it can be viewed like a propagation of residuals from
place where they were recorded to the place of their origin. The
adjoint wavefield focuses at the place where the initial model m

differs from the true model.

Regular and adjoint wavefields are used to calculate the misfit
gradient. Consequently, the model is updated in an opposite dir-

ection of the misfit gradient. As the adjoint wavefield focuses at
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the location of discrepancy between initial and true model, the
gradient is biggest at those places, thus the model is updated the

most therein.

2.2 Regular and adjoint wavefield

Consider a volume V of continuum. A model m is given by some
initial spatial variations of physical parameters within V. We are
interested in a computation of a regular displacement wavefield
u(m;r,t) due to external forces f (r,¢) acting as a source. A link
between the model m and the regular wavefield u is provided by
an elastic wave equation together with a set of initial and bound-
ary conditions.

The wave equation can be written symbolically as
L m;u(r,t)]=1Ff(r,t), (2.2)

where £ (m;u) is an operator of wave equation. More precisely,
L (m; -)is the operator and the former is the operator applied on
a function u, but for simplicity, we will refer to the former as the
operator, whilst we will stress it if we mean the bare operator.

We require zero initial conditions

u(r,t)|t:t0 = 0; (2.3a)

u(r,t) = 0. (2.3Dh)

‘t:to

and a free-surface boundary condition
n-o(r,t)|,coy =0. (2.4)

Then the regular wavefield is completely determined.
A difference between the regular wavefield u(r,¢) and the ob-
served wavefield mg (r,t) is quantified by misfit x (m) as defined

by eq. (1.10). We adopt notation (-) for time space integral.
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Then misfit can be written in the form

x[u(m;r ), ue(r,?)] = (x[u(m;r, 1), uo(r,t)]). (2.5)

We are interested in the differential of misfit dx (m). It can be

written as

o (m) =Vpx(m) -dm =V, (x(m) -dm)=(Vyy(m): 6ém),
(2.6)
as order of differentiation and integration can be interchanged.
Notice that misfit depends on the model m only indirectly via the
regular wavefield u (m;r,¢). That means the differential of misfit

must be calculated by the chain rule

ox[u(m)] = Vux(m)-dm=Vyx(u) - Vyu(m)- dm =
= Vux(u) - du=(Vuyx(u)-du), (2.7)
where du = Vyu - dm is a small change of the regular wavefield

corresponding to a small change of the model dm.

It is obvious that the most problematic term is du, as it re-
quires to compute a gradient of displacement field with respect
to model parameters. Therefore, we try to express this term us-

ing something which is not so computationally demanding.

Let Vox' be an adjoint operator to V,x satisfying relation
(6u-Vux') =(V,x-du) (2.8)
for any du. Then eq. (2.7) can be rewritten as
Vmx(m) -dm = (du-V,x). (2.9)

Next we differentiate eq. (2.2) with respect to m, multiply it

with an arbitrary function u' (r,¢) and integrate it over time and
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space. We obtain
(ul - VoL (m;u) -dm)+ (u'-V,L(m;u) du) =0. (2.10)
Let VoL (m;u) be an adjoint operator to V,£ (m;u) satisfying
<(5u-Vu[,T~uT>:<uT-Vu£-6u>. (2.11)
Then summing of eq. (2.9) and eq. (2.10) using eq. (2.11) gives

Vax -0m = <(5u-Vu)~<T>+<uT-VmL-(5m>+<5u-Vu/.ZT-uT>:
= <5u-(Vu)}TqLVuLT-uT)>+<uT~Vm£-6m>.(2.12)

If
VoLl (m;u) -uf (m)=-V,x"(m), (2.13)

du is eliminated from eq. (2.12) and we obtain a formula for the

differential of misfit independent of du
Sx(m)=Vyux(m) -dm=(u'(m) - V,L(m;u)-6dm). (2.14)

It allows us to compute a change of misfit associated with a change
of model dm without explicit knowledge of du. eq. (2.13) is

called an adjoint equation and the right-hand-side term
ff(m) = -V,x'(m) (2.15)

is a so-called adjoint source. In fact, it is a sum of all adjoint
sources situated at the places of receivers. If £ (m; -) is a linear

operator, which is the case, it is applied on a function u like

L(m;u)=L(m; -)u. (2.16)
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The left-hand-side term of eq. (2.13) can be modified using defin-

ition of directional derivative

1
VoLl (miw) - ul = Vol (miu) - o flul =
T

.1 u
Ill_{%g [L',T (m;u—i—&?HuT“) —ET(m;u)} |t =

:hml{ﬁ(m;uwﬁ (m u' )_LT(m;u)}.HuTH:

e ]
~ lim et <m;5“_T) || =
€0 ¢ [at]l
i L (m ) et ut] =
e=0 € ’ [ut]]
=L'(m; ) -ul=L"(m;ul). (2.17)

Then the adjoint equation can be written in the form
Ct (m;uT):fT(m), (2.18)

which is formally the same equation as eq. (2.2) for calculation
of the regular wavefield.

To conclude, we have shown that the adjoint wavefield u' (r,t)
can be calculated using the adjoint equation eq. (2.18). The op-

erator of elastic wave equation is self-adjoint
Lt =L, (2.19)

provided some conditions are met, which means the adjoint wave-
field u' (r,t) can be computed by same methods as the regular
wavefield u (r,t).

The adjoint source is given by eq. (2.15). For L2-misfit defined
by eq. (1.12), it is calculated simply as residuals between the
regular wavefield u(r,¢) and the observed wavefield ug (r,t) re-

corded on seismograms

n

fi(r,t) =) [ug(r,t) —u(m;r, t)]d(r—r;). (2.20)

1=1
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The adjoint sources are located at the places of receivers rj.

In the process of derivation of the adjoint operator £, some
additional constraints are set on the adjoint wavefield u' (r,t)

(see Fichtner, 2011). Those are zero terminal conditions

u (v t)|,_, = 0; (2.21a)

ul (r,t)|,_, = 0, (2.21b)

t1

where t; is the end of the time window over which time integrals
are calculated, and a free-surface boundary condition

n-of(rt)] _,, =0 (2.22)

Hence, the adjoint wavefield is fully determined.

Calculation of the adjoint wavefield requires one modification
comparing to calculation of the regular wavefield. In order to
fulfil zero terminal conditions, we need to start a simulation at
time ¢t; and propagate waves backward in time. As the source-
time function is given by residuals of the regular wavefield and
the observed wavefield, it can be viewed as a back propagation of

the residuals in time.

The reverse time propagation of the adjoint wavefield yields a
serious complication. To calculate the differential of misfit ac-
cording to eq. (1.12), we need know both the regular and the
adjoint wavefield at the same time level. That means we must
store entire history of the regular wavefield, which is usually bey-
ond the bounds of possibility. This problem can be avoided for a
price of increased computational demands. For instance, if the
continuum is perfectly elastic, we can replace storing of the reg-
ular wavefield by a simulation of its reverse time propagation
along with the adjoint wavefield. Other methods applicable also
in cases when energy is not conserved are checkpointing or data

compression.
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2.3 Misfit sensitivity kernels

Recall eq. (2.14). We perform the integration over time, so

that we obtain

m(r)-dm(r) d’r, (2.23)

Km(r):/uT(m;r,t)-Vmﬁ[m;u(m;r,t)]dt (2.24)

is a so-called misfit sensitivity kernel. It can be viewed as a volu-
metric density of misfit gradient with respect to the model para-
meters. It expresses how much the misfit functional x (m) is af-

fected by the change of model parameters dm at position r.

Kernels can be calculated for each level of misfit defined on

page 24. The associated kernels are:

e a source-receiver kernel — the kernel between a source and a
receiver which is calculated using the regular wavefield and

the adjoint wavefield excited by one adjoint source;

e an event kernel — the kernel between a source and all re-
ceivers which is calculated as a sum of all source-receivers
kernels for single event, or alternatively, thanks to linearity
of the wave equation, it can be calculated using the regu-
lar wavefield and the adjoint wavefield excited by all adjoint

sources;
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e an aggregate (total) kernel — a sum of the event kernels for

all sources used in inversion.

It is recommended to use the aggregate kernels for updating the
model in order to ensure convergence. If we chose a different type
of kernels, we might have to face problems as discussed for differ-

ent levels of misfit.

The aggregate kernels can be calculated effectively from su-
perposition of the regular wavefields of all events and the adjoint
wavefield excited by all adjoint sources of all events. This is the
idea behind a so-called source-stacking technique (e.g. Capdev-
ille et al., 2005). Such an approach requires a calculation of only
one regular and one adjoint wavefield which makes it really effect-
ive. However, it leads to the appearance of additional artefacts

due to the interaction of non-related wavefields.

Exact expressions for kernel components depend on model para-

metrisation. One such parametrisation is

m (r) = [p(r),A(r),pn(r)], (2.25)

K, (r) = —/ﬁT(r,t)-u(r,t)dt; (2.26a)
Ka(r) = [ [V ul (0] [V u(r0) di -

= /TreT(r,t)~Tre(r,t)dt; (2.26D)
K, (r) = T/Vuf(r,t):Vu(r,t)+Vu‘f(r,t):VuT(r,t) dt =

= Z/ET(r,t) ce(r,t) dt. (2.26¢)



2.3.1 Kernel preconditioning

Kernels, as calculated according to eq. (2.26), cannot be used
directly to update model. Firstly, they have to be modified in
order to get rid of unpleasant features like singularities, high
frequency oscillations, additional artefacts, or to make correc-
tions for uneven source and receiver coverage, radiation patterns
or many others. A specific set of necessary modifications depends
on the particular problem and used method.

Everyone agrees that preconditioning is an important part of
inversion procedure, thus everyone uses it to some extent. How-
ever only a few describe what preconditioning they use and what
techniques they apply. Studies with detailed description of ap-
plied preconditioning like Zhu; Bozdag; Tromp, 2015 or Bozdag
et al., 2016 are rather exception.

Standard preconditioning includes clipping and smoothing. Clip-
ping is a technique for removal of singularities. The singularities
appear around sources — both regular and adjoint — because en-
ergy is focussed in their vicinity which results to high amplitudes
of wavefields.

Clipping is based on a truncation of kernels. However, the
proper maximum value must be guessed. As a consequence of clip-
ping, areas of constant kernel value appear, which can introduce
sharp edges into model. Therefore, smoothing must be applied
afterwards. Another purpose of smoothing is suppressing high-
frequency content and removing additional artefacts.

There is a dissonance among authors concerning the termino-
logy. Kubina, 2017 uses term preconditioning for all modifica-
tions performed with kernel between its computation and apply-
ing for model update. Other authors are more specific.

Zhu; Bozdag; Tromp, 2015 use term pre-conditioning only for
spatially-dependent normalization by pseudo-Hessian, the aim of

which is to remove singularities. The pseudo-Hessian is calcu-
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lated using regular and adjoint accelerations and it has high val-
ues just around sources, thus the kernel is lowered the most there-
in. It also serves as a correction to an uneven source and receivers
coverage. Consequently, they apply smoothing by Gauss function,
however they classify it rather as regularisation technique than
pre-conditioning.

Bozdag et al., 2016 are even more specific. They distinguish
pre-processing and post-processing. The former includes oper-
ations preceding the kernel computation, which we are not in-
terested in, the later names operations with calculated kernels
— summation of event kernels, smoothing, pre-conditioning (nor-
malisation by pseudo-Hessian), optimisation (use of conjugate-
gradient method) and determining of step length.

So far, we adopted the terminology used by Kubina, 2017,
though it is not entirely correct. The term preconditioning is as-
sociated with a set of modifications whose purpose is to ensure
stability of the solution and fast convergence. However, he uses
it also for application of mask which is rather regularisation than
preconditioning, thus we prefer to stick with the term kernel pre-
processing. Contrary to Bozdag et al., 2016, we perceive it as a
set of modifications of kernels which are to be performed before
the kernel can be used for updating the model. Therefore from
here on, through the Part II, we will use the term kernel prepro-

cessing.

2.4 Model update

Once we have calculated the kernel, we can proceed to updating
of the model. We do it iteratively. Let’s assume that we operate
with a model m; on ¢-th iteration. A subsequent model m;4; will

be obtained based on linear approximation

mi+1:mi+%hi. (227)
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For that purpose we need to determine a search direction h; and

a step length ;.

The most intuitive choice of the search direction is to pick out
the steepest descent direction given by the negative misfit gradi-
ent. Recall that kernel was defined as a density of the misfit

gradient, thus it has its direction. Therefore, we can opt

Note, that the raw kernel had the direction of the steepest as-
cent. The direction of the kernel after preprocessing is slightly
deviated from that direction. However, this deviation is in our

favour.

Determination of the step length is more complicated. If we
chose a sufficiently short step length, we would obtain a new model
associated with lower misfit, so that a convergence to a local
minimum would be guaranteed. However, it might require too
many iterations to reach it and the convergence would be too
slow. Sometimes we can use a far longer step. Therefore, it is
advantageous to determine the step length for each iteration sep-
arately. It is done by a few trial computations. We choose a few
different step lengths and compute a model and a corresponding
misfit for each of them. Then we construct a function x (v,;) by in-
terpolating misfits obtained for trial computations. Finally, we
determine optimal step length as

opt

7" = argmin x (v;) . (2.29)

7

The new model is then calculated as

myq (r) =m;(r) - 7" K (r). (2.30)



This approach is used by Kubina, 2017. Some authors rather use
a conjugate gradient method for updating of the model, which de-
termines the search direction as a linear combination of a direc-
tion of the misfit gradient and the search direction from the pre-
vious iteration. The conjugate gradient method is suitable when
the problem is not strongly nonlinear, which is not often the case

in local surface sedimentary structures.

2.4.1 Multiscale approach

The algorithm described in this section converges always to the
closest local minimum. However, we are interested in finding of
the global minimum. It happens only if the initial model is suf-
ficiently close to the true model. However, it is rarely the case.
We usually have little information about the true model, which
means that the convergence to the global minimum is not guaran-
teed.

A multiscale approach to the minimisation process can over-
come this problem. It is based on the idea, that long waves are
not sensitive to short-length structures. Therefore, if we filter
data by a low-pass filter and use these filtered data, we obtain a
relatively simple misfit functional xy (m).

It is like that because long waves “see” only rough structures,
which leads to a simple wavefields and thus to the simple misfit.
In other words, the initial and the true model are very similar on
this scale, therefore the misfit is small and simple. Such a simple
misfit has a wider region, from which the algorithm converges to
the global minimum, therefore the initial model does not have to
be very similar to the true model.

Another advantage is that thanks to the misfit simplicity, we
do not have to do many trial computations when determining the
optimal step length for model update. Even a quadratic approx-

imation to the x (7;) may be sufficient which means that only two
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trial computation are necessary, as one value we already have (for
v =0).

The first iteration on the highest scale finishes with a rough
resulting model. This model is used as the initial model for the
second iteration which is performed for wider frequency range.
Although, the misfit is now more complex, the initial model is
close enough for the algorithm to converge to the global minimum.

A gradual widening of the frequency range covering also lower

wavelength leads to the well-determined resulting model.
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Part 11

Kernel preprocessing
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3 Smoothing

3.1 Overview of commonly used smoothing

techniques of 3D scalar fields
3.1.1 Smoothing as convolution with smoothing function

The most straightforward approach to smoothing is to calcu-
late value of K®meothed (p) a5 a weighted average of values K (p).
The values K (p) can be taken either from the entire volume of
continuum or from only a small space window centred on r.

The weights are given by a smoothing function w(r, p). The
smoothing function is sometimes called also a window function
or a kernel. However, we will not use the term “kernel” for the
smoothing function to avoid confusion with misfit sensitivity ker-
nels.

The weights, in fact, depend only on a relative position of r

and p, thus
w(r,p)=w(r—p). (3.1)

Therefore, the corresponding weighted average can be calculated

as

Ksmoothed (I‘) —

where
W(r):/w(r—p) d3p. (3.3)
1%

The eq. (3.2) is a convolution integral, thus we can write it as

K smoothed (4 — cw(r)* K (r). (3.4)

W (r)

A common choice of the smoothing function is a Gauss func-
tion. An example can be found for instance in Zhu; Bozdag; Tromp,
2015, though they do not specify what is an integration domain.
Although many authors do not state explicitly what smoothing
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technique they use, we assume this is the choice of majority of

studies.

3.1.1.1 Time complexity We will now estimate time complex-
ity of a numerical computation of the convolution integral (3.2).

In a discretised form, it translates to a triple sum

Ngc—l Ny_l Nz—l

K impothed _ Wiljk Y Y WK (3.5)

=0 ’yZO k=0

Let N be a geometric mean of numbers of grid points in re-
spective directions. The sum (3.5) has to be calculated for each
combination of (4,7, k), thus it is N3 calculations of the triple
sum. The sum itself requires addition of N summands. There-
fore, the overall time complexity of calculation of the sum (3.5)
is O (N°%).

Fortunately, some reductions of time complexity are possible.
First of all, we can realise that the weights of distant points are
negligible, thus we can leave them out. That effectively means
that we perform summation over smaller subdomain of size n, x
ny Xmn,. If we denote the geometric mean of the dimensions of this
spatial widow as n, the number of summands to be added together

when calculating the sum (3.5) is n?

, thus the overall time com-
plexity is reduced to n®*O (N3), where n is a constant independent
of the dimensions of the entire integration domain. However, the
integration domains for local surface structures are usually not
very large, thus the spatial window covers a significant portion of

the domain and the reduction of the computational time is only
slight.

Another cut of computational time can be reached by parallel-
isation of the computation. We divide the computational domain
into several smaller subdomains and calculate the sum separately

in each of them. At the end, the partial sums are shared among
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subdomains and the final sum is calculated. A reasonable number
of subdomains for local surface structures is about 4% = 64, thus
the computational time is further reduced to ’g—z(’) (N3).

For one special choice of the smoothing function, it is possible
to use an efficient algorithm for a computation of the sum (3.5).
It was developed by Kubina, 2017. We will discuss it in the sec-

tion 3.2.

3.1.2 Smoothing as low-pass filtering

The second approach to the calculation of the convolution in-
tegral (3.2) is to perform the calculation in a frequency domain.
First of all, we need express the kernel and the smoothing func-
tion in frequency domain. It is done by performing of Fourier

transform
K (r)e '*rd3pr; (3.6a)

/
@ (k) = 7 [w(r)] :/w(r)eik'rdB’T. (3.6D)

Next, we make use of a property of Fourier transform that a Four-
ier transform of a convolution is a product of Fourier transforms

of convolved functions
F[K(r)xw(r)] =7 [K(r)] % |[w(r)]. (3.7)

Using inverse Fourier transform, we can express the sought con-

volution as

K (r)*w(r)=2"K (k) w(k)|. (3.8)

Notice that we can look at it as on a filtering. In that case,
the function w (k) serves as a transfer function of the filter. The
transfer function completely determines properties of the filter.

It describes which frequencies are suppressed and which are al-
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lowed. In case of smoothing, only low frequencies are allowed,

thus w (k) effectively equals zero for high wave numbers | k|.

3.1.2.1 Time complexity Smoothingin frequency domain con-

sists of three steps:
1. computation of Fourier transform of the kernel;
2. application of the filter;

3. computation of inverse Fourier transform of the filtered ker-

nel.

The first step requires calculation of the integrals (3.6). In fact,
only the integral (3.6a) needs to be calculated. If a standard
smoothing function is used, a corresponding transfer function is
known, and even if it were not, the integral would have to be cal-
culated only once.

We have already shown that evaluation of a general integral in
3D is of complexity O (N%). However, eq. (3.6a) is a very special
integral — it is an integral of Fourier transform, thus it can be cal-
culated by the algorithm of Fast Fourier Transform (FFT) which
has time complexity 30 (N?log N) in a three-dimensional case.
The best choice is to use the algorithm of “the Fastest Fourier
Transform in the West” (FFTW3) developed by Frigo et al., 2005,
which is not limited by any conditions on numbers of grid points
in respective directions, contrary to standard implementations of
FFT.

The second step is the application of the filter which is, in fact,
only N3 multiplications of two numbers.

The last step is the computation of inverse Fourier transform
which can be performed again by FFTW, thus the time complexity
of this step is 30 (N3log N) too.

I[f we add all contributions together, the overall time complex-

ity will be O (N3 (6logN + 1)) ~60 (N3log N). For small compu-
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tational domains, it is more effective than a calculation of the
convolution integral in space domain. However, the FFTW3 al-

gorithm must be used.

It is questionable whether it is worth implementing smooth-
ing algorithm in frequency domain. We were unable to find out
whether there is someone who uses it, as no study provides such

details.

3.1.3 Bessel smoothing filters

A novel idea to the smoothing is presented independently by
Wellington, 2016 and Trinh et al., 2017. Although they used dif-
ferent approaches, they obtained same results. Instead of direct

calculation of eq. (3.4), they rather solve a linear system
w (r) x Koot () = w ™l (r) x [w (r) « K (r)] = K (r), (3.9)
where w™! (r) is an inverse operator to w (r) satisfying
w ' (r)*w(r)=20(r). (3.10)

A matrix associated with w™! (r) is sparse, thus a significant re-

duction of computational time is achieved.

3.1.3.1 Trinh’s approach Trinhetal., 2017 start with Bessel

filters

1
B = ——K ; 3.11
2D on L, L, o (72p) ( a)
1 _1/2
BgD = — T K. (7“3]3)7 (311b)
VariL,L,L, 0

2 2 2 2 2 . “ e
where rop = \/%—i—% and rs3p = \/%4—%—1—% K, is a modified
T Yy x y z

Bessel function of the second kind. The Bessel filters are solu-

46



tions of partial differential equations

{1 — (Liaa; + Ljaa;” Byp (r) = 6(r);(3.12a)

{1 — (L2 o + L? o + L? 0° ” Byp (r) = 6(r).(3.12b)

T0x? Yoy? 2022

The inverse Bessel filters must satisfy eq. (3.10), thus

Bat(r) = o(x) = [L20®) ()6 (y) + 26 (2) 5 (1)];  (3.13a)
Byp (r) = 6(r) = [L30P) (2)6(y)a(2) + Lo (x)6® (y)d(2) +
—|—Lz5(x)(5(y)6(2)(z)}. (3.13b)

If we apply them on eq. (3.9), we obtain

2 82 2 82 smoothed
1 - L‘”812+Ly8y2 K (r)=K(r); (3.14a)

2 82 2 82 2 62 smoothed
L= \Ligm tliga tLigs ) | K (r) = K (r). (3.14b)

A discretised version of these equations is represented by a sparse
operator, thus the corresponding system can be solved efficiently.

Let’s note that the Bessel filter decays more rapidly than a
Laplace filter. In order to mimic a decay of the Laplace filter,
we apply the Bessel filter twice, or equivalently, we apply a filter
B(r)* B(r). To do so, we use the same approach — we find an
inverse operator B™!(r) «x B~!(r) and solve eq. (3.9). It can be

shown that the Laplace filter
L(r)=Ae™ " (3.15)

is an approximate solution of
[B~'(r)* B ' (r)] «L(r)=~d(r), (3.16)

thus
L(r)~B(r)=*B(r). (3.17)
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3.1.3.2 Wellington’s approach Wellington, 2016 took it from
the other end. He started with an 1D Laplacian operator

1 le—¢|
T La 3.18
ST ( )

LlD ('va) =

and a well-known corresponding inverse Laplacian operator (see

Tarantola, 2005)
Lip (2,8) =6 (x—¢&) = L2 (z—¢), (3.19)

where 6(2) (2 — ¢) is the second derivative of the Dirac delta func-

tion defined as
[50 =) () dg= (1) £ (). (3.20)

A finite-difference approximation of the Dirac function and its

derivative is

/

f(z—¢) = o ToE (3.21)
0 T AL
(i, o—¢
0P (z—¢) = S/, w=¢+h - (3.22)
u lz — €| > h

That means we need only three adjacent points, thus the operator

is really sparse.

Wellington, 2016 compared results obtained by this technique
with results obtained by standard computation of spatial convo-
lution and he found out a great agreement. It encouraged him
to generalised this approach to higher dimensions. He guessed
a form of the inverse operators in 2D and 3D and verified their

correctness.
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In 2D, he proposed an operator

Lo (rp) = S[6(x—¢€)—L26P (x— )] +
1

2
+5 [0y =m) = L76™ (y—m)] . (3.23)
He named it as a 2D additive inverse Laplacian operator, because
he found out that it is not an inverse operator to the Laplacian
operator. It decays too rapidly. However, he found out that if he
applied the operator twice on the same data, the resulting scalar
field would look like it had been smoothed by the true 2D Lapla-

cian operator. The computation requires only five closest points,

so the corresponding matrix is sparse.

The 3D case is similar. He proposed an operator

Lid(r.p) = 5[5z -8~ L3 (z - 6)] +
+% [6(y—n) = L36® (y —n)] +
b3 (0O - LBD (-], (3.20)

which turned out not to be an inverse operator to the Laplacian
operator. However, if it was applied consequently three times,
the result was very similar to smoothing by the true 3D Laplacian
operator. He called it a 3D additive inverse Laplacian operator.
The computation requires only seven closest points comparing to
a relatively large 3D subdomain for direct calculation of spatial

convolution.

The method allows incorporation of a prior dip. That means if
we use anisotropic smoothing, the axes do not have to be aligned
with coordinate axes. It costs only a slight increase of computa-
tional time, as it is necessary to consider 9 neighbouring points

in 2D and 19 points in 3D, compared to 5 and 7 respectively.

Wellington, 2016 did not know the nature of his additive in-

verse Laplacian operators. Only Trinh et al., 2017 showed later
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that they were related to the Bessel filters in a finite-difference

representation.

3.1.3.3 Time complexity A presented smoothing technique
attributed to the significant time complexity reduction compared
to the direct computation of spatial convolution. The complex-
ity of the direct computation is O (N*) in 2D and O (N) in 3D. In
case the smoothing function can be tensorised (i.e. it is tensorial
product of one-dimensional operators), the time complexity is re-

duced to O (N?) in 2D and O (N?) in 3D.

The inverse operator approach requires solving of very sparse
linear systems. It can be done very efficiently. A computational
time depends mainly on number of grid points, thus the time com-
plexity is O (N?) in 2D and O (N?) in 3D. However, we cannot
forget, that we have to repeat calculation twice in 2D and three
times in 3D.

Wellington, 2016 compared all three mentioned approaches. Nu-
merical tests revealed that the tensorial approach is the most ef-
ficient. However, it is not possible to incorporate a prior dip to
that approach, so it should be chosen only if dip is not necessary.

Otherwise, the inverse operator approach should be picked out.

3.1.4 Topology-based smoothing

A completely different approach to smoothing is presented by
Weinkauf et al.; 2010. It utilises a topological analysis and topo-
logical simplification of scalar fields.

The first step is an identification of critical points of a scalar
field — minima, maxima and saddle points. It is done based on
Morse theory (Forman, 1998). Its result is a so-called Morse-
Smale complex (Edelsbrunner; Harer et al., 2003) which provides

complete information on topology. A practical approach to a com-
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putation of the Morse-Smale complex is presented in Gyulassy;

Peer-Timo Bremer et al., 2008.

Consequently, the Morse-Smale complex is simplified. A sim-
plification is performed by removing of pairs of critical points
(minimum-saddle or maximum-saddle) based on their significance.
A measure of significance is a so-called persistence (Edelsbrun-
ner; Letscher et al., 2002). The pairs with little persistence are
iteratively removed and only those with the highest persistence

are preserved.

Finally, the scalar field is reconstructed from the simplified
Morse-Smale complex. As the simplified Morse-Smale complex
contains only a few critical points, the resulting field is smooth

and simple, whilst the most dominant features are preserved.

Weinkauf et al., 2010 build on the earlier work of Peer-Time
Bremer et al., 2004. They were able to smooth a mid-sized 2D
scalar field, however smoothing of 3D fields was yet too compu-
tationally demanding to be carried out. Nevertheless, they indic-

ated it would be technically possible.

A generalisation to 3D is based on the work of Gyulassy; Nata-
rajan et al., 2005. For the first time, it was accomplished by Giin-
ther et al., 2014. They developed an effective algorithm and par-
allelised the computation, so that they were able to smooth 3D
scalar mid-sized fields in reasonable computational times. Fur-
thermore, they introduced an option to manually pick out critical
points which are to be removed, which allowed to selectively re-
move undesirable features. An example of an application of the

method is given on Fig. 3.1.

Despite of the recent improvement of the method, it is still too
computationally demanding to be applied for tomographic pur-
poses. Furthermore, it is questionable whether it is suitable. Un-
doubtedly, it is a great method for denoising of data. However, it

perfectly preserves main structures. Paradoxically, this biggest
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(a) Original data, 14492 crit- (b) Persistence level P = 0.4,

ical points 279 critical points

4 Critical Points

2%

0* [T W w? ' 1w’ 10
Persistence

(c) Persistence level P = 1.5, (d) Number of critical points
12 critical points vs. persistence, vertical lines
indicate persistence values of

(3.1b) and (3.1c)

Figure 3.1: A slice through 3D data set of temperature in the
hurricane Isabel for different persistence thresholds (taken from

Ginther et al., 2014)

advantage of the method can be a huge problem in our case. We
often need blur undesirable structures like artefacts which might
have a high persistence, so the method would not remove them.
Theoretically, there is an option to select them manually, if we
knew where they are located. In any case, we assume it is worth
trying, although the application of the method is not feasible

with its current computational demands.
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3.2 Efficient smoothing algorithm

3.2.1 Theoretical analysis

3.2.1.1 Basic idea behind the algorithm We are interested

in calculation of integral (3.2). It can be done efficiently if we use

_ o ly—n| .
w(r_p) :ef||A 1'(I‘*p)||1 :e_IAgfle_ yAyn e_‘ zCl (325)
as a smoothing function. A vector

11
A= [ —, —
(2

provides information about smoothing intensities in respective

) (3.26)

directions. The smoothing intensities are expressed as charac-

teristic smoothing lengths.

Generally, smoothing lengths are different. In such a case we
refer to an anisotropic smoothing. Otherwise, the smoothing is
called isotropic. The anisotropic smoothing is important, as we
usually require less intense smoothing in a vertical direction. The
characteristic smoothing lengths are chosen such that a ratio of

characteristic lengths is equal to a ratio of model dimensions.

In a discrete case, we are to calculate a triple sum (3.5). It

takes a form

-1N.-1

Ksmoothed — Z C|Z*L‘C‘J*7‘C‘k7”|K P (327)

ijk
ljk‘

=0 ¥y=0 k=0

for our choice of the smoothing function. In order to keep expres-

h

sions simple, we denote C' =e~2, where h is spatial grid step.

If we want to remove an absolute value from the expression,
each sum splits into two, one for ¢+ < ¢ and the second for ¢ > 1,
and analogously other two sums, thus we need to evaluate 23 = 8

sums in total. Here, we show how to calculate one such sum.
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Consider the octant determined by inequalities ¢+ < i, v < j

and « < k. A contribution to the total sum from this octant can

be calculated as

k J )
oijkzZocf—“:)cg—vzocg—ﬁ&w (3.28)
K= y= L=

Let £k be an index in a vertical direction. Then terms with same
k lie in a single plane P*. Additionally, the terms with same j

within a single plane lie in a row RY.

Now, consider the octant determined by a point (7,5, %k + 1). We

can express a contribution to the sum from this octant as

k+1 J i
Ok = D CHITR Y C 3 O K =
k=0 v=0 =0
k J i j i
= C.Y CERYCITTY Ci'Koqw+ C2Y CJ7 Y Cl'Kyy e =
k=0 =0 t=0 v=0 =0
J i
= C. Ok + > CIT"Y Ci'K,yu =
v=0 t=0
= C. 04+ P, (3.29)

where Pfjl is a contribution to the sum from a quadrant ¢ < ¢
and v < 7 within the plane determined by an index k£ + 1. We see
that we can use a previously calculated sum O;;;, so that we do

not need to calculate another triple sum, but instead we calculate

k+1

only a double sum in order to obtain Pj;

Let’s see whether another reduction of time complexity is pos-

sible. Consider the octant determined by a point (i,j + 1,k +1).
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A contribution from this octant can be calculated as

_ k41
Oijriks1=0C.  Oijp1r + P =

j+1 i
— E j+1— E 1=t —
- Cz'oij+lk+ CZJ/ 7 Cx KL’YH_
v=0 t=0

J % %
= C. 0401k +Cy Y CI7Y CLl'Kyyw + C) > Ci'K, oy =

’y:O =0 =0

= C. 0,01, +Cy P 4+ Cl'Koyw =
t=0
= C, Oyjp1s+Cy P+ RITH (3.30)

We have successfully substituted a calculation of a double sum

Pf;ﬁ}l with a calculation of a single sum Rg“ by utilising previ-

ously calculated value Pfjl
Finally, let’s take a closer look at a calculation of contribution
from the octant determined by a point (i + 1,5+ 1,k+1). We de-

rive that

_ k41 1

Oit1j11k41=C5 - O4q1j1e + Cy - Pl + Ry, =
i1

- k+1 E i+1—1¢ _

— CZ : Oi+1j+1k + Cy * Pi+1j + C:E KL’yIQ -

=0

= C.-Oif1jrr+Cy P+ CY Cl'Ky o + CIK, 4y =
t=0
= C. Oipjne+Cy P+ C,RITTH K, . (3.31)

Now, it is clear that we can avoid a calculation of a triple sum and
substitute it with a summation of three previously calculated,

rescaled values with an actual value.

Let’s note that an application of this algorithm is limited only
for the exponential smoothing function (3.25), as it is the only
function that satisfy f(xz +1) = ¢f (z). Additionally, we stress
that there is a necessity to keep the order of summation as presen-
ted, because the algorithm supposes that previous values are known.

The indicated order is as follows:
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e We start with the first value in the first row of the first plane.

e Firstly, we calculate entire first row.

e Then we continue with the second row, the third row, etc.

within the first plane.

e Subsequently, we carry on with the second plane, the third

plane, etc.

e Once we have calculated the contributions for each point of

the octant, we continue with another.

3.2.1.2 Nwumerical implementation We have shown that a
calculation of the sum (3.27) decays into a calculation of eight
sums (3.28), one for each octant determined by a point (i,7,k).
An increased attention must be paid to interfaces between octants

in order not to include points from the interfaces twice.

In 2D case, it is not a big problem. We have four quadrants and
four interfaces between them, thus we can attach just one inter-
face to each quadrant, as it is depicted on Fig. 3.2. Consequently,
we can use exactly same algorithm for calculating the sum within
each quadrant. Only difference is that it has to be applied from
a different direction in each quadrant.

We will now present the algorithm for calculation of the contri-
bution from one quadrant. We have slightly modified the original
version proposed by Kubina, 2017. He attached an interface at
the bottom of the quadrant. We instead attach it on the right
side of the quadrant, which effectively means that we add a con-
tribution from the j-th column, instead of a contribution from the
i-th row, as Kubina, 2017 does. We prefer this version because it

allows more straightforward generalisation to 3D.
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Ny

Figure 3.2: Four quadrants with attached interfaces with indic-
ated directions of application of the algorithm within respective
quadrants. The point (i, k) does not belong to any quadrant

The modified algorithm is as follows:
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A contribution from the ¢-th row in the first quadrant is omitted,
as it will be added as a contribution from the last column in the

next quadrant. We cannot forget to add a contribution from the

point (i,j).

Dealing with interfaces is more difficult in 3D. In this case,
there are eight octants and twelve interfaces between them, thus
it is not possible to attach interfaces to the quadrants in such a
way that all octants are same. Therefore, we cannot use a same
algorithm for each octant but some adjustments of the algorithm

among different octants are needed.

There are many solutions for this problem. We present one
which requires application of only two different modifications of
the algorithm and which is the most straightforward generalisa-

tion of the 2D algorithm.

Vertical interfaces are attached in the same way as they are
in the 2D case. Horizontal interfaces are all attached to bottom
octants. Therefore, we do not add a contribution from the ac-
tual plane in upper octants, whilst we do in bottom octants. It is

depicted on Fig. 3.3.

A summation is performed plane-wise and rescaled contribu-
tions from planes are added together. A contribution from a single
plane is calculated in the same way, as it was in 2D. However, it
causes that points exactly above or below the point (i,j,k) are
not involved, thus a contribution from these points has to be cal-

culated additionally.
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(a) Overall view

@ -~

Top octants. Points (c) Bottom octants. Points
s1tuated exactly above the situated exactly below the
point(é,j, k) do not belong point(¢,j, k) do not belong
to any octant to any octant

Figure 3.3: Visualisation of octants. Gaps are inserted between
blocks for better clarity
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The algorithm for upper octants is:

It is applied from different directions in other upper octants, ana-

logously to the 2D case.
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The algorithm for bottom octants is:

Finally, a contribution from points exactly above/below the

point (i,j, k) is calculated as follows:
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3.2.1.3 Normalisation So far, we have found an algorithm
for efficient computation of convolution of an arbitrary function
with an exponential function. In fact, it is not a correct result
yet — it has to be multiplied by grid steps in respective directions.
We intentionally omitted this step, as we will perform it together

with normalisation.

A smoothing function has one important property. An integral
of the smoothing function is equal to one. It can be achieved in
two different ways. We can either normalise the smoothing func-
tion which means that we divide it by an integral of it what se-
cures that the integral of the function is equal to one, or we can
firstly calculate a convolution integral with non-normalised func-

tion and then divide it by a sum of weights.

The presented algorithm cannot be applied with a normalised
exponential smoothing function because a normalisation is space-
dependent, therefore a result has to be divided by a sum of weights
at the end. The sum of weights can be calculated in two different

ways.

Kubina, 2017 applied exactly the same algorithm also for a
computation of the sum of weights. He only replaced the term
K,,.ineq. (3.28) by 1 and computed it along with a convolution.
A drawback of this approach is that it requires an additional 3D

array for storing of the sums of weights.

The second option is to calculate the sum of weights analytic-

ally. We notice that the weights forms a geometric series

N,—1 Ny—1 N.-1
Wije= Y cCli= ¥y ¢l " clkrl, (3.32)
=0 v=0 k=0

thus it can be summed directly

Ng—1 % Ng—1 ; .
- . . i 1 —=CNemt 4 O, (1 = CY)
cli—d = C: "+ Cc: " = - = =, (3.33
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Therefore

1 —CNemiqp O, (1-Ci) 1—-Cy* 7 +C,(1-0Cj)

Wije = 1-C, ' 1-C, '
1 - CN-F 10, (1-CF)
: —c . (3.34)

Let’s note that the sum of weights is not equal to the integral of
the smoothing function. It can be easily demonstrated. Consider
cuboidal domain (0;L,) x (0;L,) x (0;L,). Then according to eq.
(3.3),

Lz Ly LZ
z— _ly—ml z—
W (r) = /e—'Af' dg/e Xy dn/e‘Af' dc¢. (3.35)
0 0 0

It can be easily calculated that

Ly

_lz—¢] _La T L,
/e e dE =24, [1—6 = cosh <A_I_2A$>]‘ (3.36)
0

Same results are obtained also in the other dimensions, thus

_ Ly €T LJ:
W (r) = 8A, A A, [1 e~ cosh (E B 2%)}

Ly z
1 — e 28y cosh (A_yy — 26\1)} [1 — e~ 21 cosh (Aiz - QL/\ZZ)} (3.37)

We can discretise the right-hand side of eq. (3.36) using x = ih
and L, = (N, —1)h. Furthermore C, = e AT o~ 1 — Alm, thus A, =

h .
oo We obtain

L,
/e—'ﬂf' de = A, (2-CL—CNei=1) &y

0

2 - Ci — CNemi-l
1 —-C, '

(3.38)

Comparing with eq. (3.33) which can be rewritten in the form

Rat 1+C,(1—-CL—CNai1
Y ool = ( — ), (3.39)
=0 z
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Figure 3.4: Residuals between a sum of weights and an integral
of the smoothing function. A red line represents a 1D case and a
green line corresponds to a cut through a 3D plot along ¢t =j =k

we conclude that it differs only by a factor C, which is anyway
close to 1 as CL < 1. (We remind that we omitted multiplication

by grid step h when we calculated the sum.)

Residuals between the sum of weights and the discretised integ-
ral of the smoothing function are depicted on Fig. 3.4. Although
they are small, we prefer a calculation of the sum of weights ac-
cording eq. (3.34). We prefer a direct calculation of the sum to
Kubina’s approach, so that we do not need to store an additional
3D array. We already use two 3D arrays — one for an original ker-
nel and one for a smoothed one - and the third 3D array would
increase memory requirements significantly. A number of grid
points is quite large in 3D. It can be of order N3 ~ 107 — 10%. A
required memory for storing of one number of type float is 4 MB,
therefore such a 3D array would require additional ~ 380 MB of

memory. The spared memory allows us to smooth larger kernels.

3.2.1.4 Time complexity Recall that a time complexity of a
direct computation of convolution in 3D is O (N%). If a smoothing

function is effectively non-zero only in a smaller spatial window,
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it can be reduced to n*0O (N?), where n?® is a multiplicative con-
stant. Further reduction of a computational time can be achieved
with a parallelisation of computation. However, the multiplicat-

ive constant remains large.

The presented efficient algorithm consists of three-level nested
loops. They appear ten times — once in each octant, once when
calculating a contribution from points above/below the actual
point and once when carrying out normalisation. Therefore, a
time complexity of the efficient smoothing algorithm is 100 (N3).
In fact the multiplicative constant is larger than 10, as a single

three-level nested loop consist of more than one operation.

One drawback of the algorithm is that it cannot be effectively
parallelised. It is because the algorithm has to be performed in a
special order, as described on page 55, which disallows any kind
of parallelisation. Despite of it, it is still significantly more effi-
cient than even a parallelised version of a direct computation of

convolution over a smaller spatial window.

Let’s note that a time complexity of O (N3) is optimal. It is not
possible to design a better algorithm in terms of time complexity.
We need to calculate a smoothed value at N3 grid points, thus the

time complexity has to be at least O (N?).

3.2.1.5 Directional dependence of smoothing We will now
focus on a shape of the exponential smoothing function (3.43).

Isosurfaces of the smoothing function satisfy condition
HA_I-(r—r)Hl:const. (3.40)

It is the equation of an octahedron. If the smoothing is isotropic,

it is a regular octahedron, otherwise it is a stretched one.

Diagonals of the octahedrons are aligned with Cartesian axes.

It has a severe consequence — smoothing in the direction of Cartesian
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axes is more intense than in any other direction. In other words,
smoothing is strongly angle-dependent.

Wellington, 2016 considers it to be a severe problem and states
that such a smoothing function is not suitable because it intro-
duces characteristics that are not geologically justified. How-
ever, one must realise that it does not introduce any octahedral-
shaped structures into the smoothed kernel, as each point of the
kernel is smoothed in the same way. Furthermore, it is a com-
mon property of FD methods that just points in directions of
Cartesian axes are used to approximate derivatives, thus it com-
pletely makes a sense that those points have higher weight than
equally distant points in any other direction.

More severe limitation of the efficient smoothing algorithm is
that main axes of anisotropic smoothing have to be aligned with
Cartesian axes. It is not possible to adjust it to be able to per-
form the anisotropic smoothing with the main axes rotated with
respect to the Cartesian axes. It is a trade-off between a reduc-
tion of computational time and a complexity of the algorithm.

We usually do not have prior information on a direction of the
main axes and we usually require that the main smoothing axes
are aligned with edges of the domain and their ratio is equal to

the ratio of lengths of domain edges.

3.2.1.6 Spectrum of smoothing function — transfer
function More important characteristics of a smoothing func-
tion is its spectrum. A smoothing operator serves as a low-pass
filter. It suppresses high frequencies. That means it is effectively
zero for high wave numbers.

Let’s find a transfer function corresponding to an exponential

smoothing function

i () = # [ 1Al o [ AT ek sy (3 )

— 00
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It can be easily calculated that

el 2A
/1e_Axe_m”md17: =, (3.42)
1+ (Aky)

thus

1 _ S8ALA A,
e (14 (Aoka)?] [1+ (Ayky)®] [1+ (Ak2)?] (3.43)

It is a Lorentzian-like function. Its slice is a typical bell-shaped
function, thus it meets a requirement of effectively zero values for
high wave numbers. However, the smoothing function maintains

its strong directional dependence also in a wave-number domain.

Let’s note that (3.43) is not exactly a transfer function of the
applied filter. It is because we use a normalised filter and a nor-
malisation is not constant but it is a spatially dependent (see
(3.37)). Therefore, a spectrum of the normalised smoothing func-

tion is slightly different.

It is important to select smoothing intensities properly. In a
wave-number domain, it corresponds to choosing of cut-off wave
numbers. The cut-off wave numbers are usually selected such that
an amplitude at the cut-off wave number is a half of a maximum
amplitude (or equivalently lower by 3dB), thus it has to satisfy
a condition A -k =1. Therefore

1 1 1
jeut—off _ (A_’A_’ 0 ) = AL, (3.44)
xT Yy z

eq. (3.44) allows us to relate the smoothing intensities to the
cut-off wave number and hence to a cut-off frequency of input
data. Assume that the input data has been filtered with a cut-
off frequency w. Therefore the highest reasonable wave number is
k = %, where v is an estimation of velocity of the slowest wave,

and hence the lowest smoothing intensity is A = 2.
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(a) Horizontal slices through the centres of original and
smoothed array
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(b) An isosurface of smoothed array and a profile along
a vertical line through the centre

Figure 3.5: A spike test

3.2.2 Numerical tests

3.2.2.1 Spike test Westart with a verification of the algorithm.
To do so, we create a 3D array with all but one points set to
zero. Only a central point is equal to one. We expect to obtain a

smoothed array in shape of a smoothing function.

A visualisation of the smoothed array is depicted on Fig. 3.5.
Fig. 3.5a shows horizontal slices through the array before and
after smoothing. A slice through the original array contains single
non-zero point of the array. A same slice through the smoothed
array shows a typical square shape of a cross-section of the smooth-
ing function. Fig. 3.5b depicts an octahedral isosurface of the

smoothing function. A blue cube is an entire domain. The right-
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a transfer function

Figure 3.6: A spectrum of the smoothed array

hand-side plot of Fig. 3.5b is a cut through the smoothed array
along a z axis through the centre. It shows an exponential decay

of values.

Let’s look on a spectrum of the smoothed array. The spectrum
of the original array is constant as it contains only a Delta-like
peak, thus the spectrum of the smoothed array corresponds to
a spectrum of the smoothing function. Therefore, we can com-
pare it with a theoretical prediction based on eq. (3.43). Fig.
3.6 shows an agreement between the theoretical predictions (Fig.
3.6b) and a spectrum obtained by performing of discrete fast Four-
ier transform of the smoothed array (Fig. 3.6a). The spectrum

was calculated by fftn function in Matlab. The resulted array
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was transformed in such a way that k = 0 was mapped into the

centre of the domain.

3.2.2.2 Smoothing of white noise Now we verify the ability
of the algorithm to smooth out a random noise. We generated a
white noise by attributing a random value from the uniform dis-
tribution on interval (—1;1) to each point. Then we applied the
smoothing algorithm. The results are presented on Fig. 3.7.

First of all, we notice that smoothed values are 3 orders of mag-
nitude lower, thus we can conclude that the noise was successfully
removed. Only deficiency is that the effect of dominant smooth-
ing in the directions of the Cartesian axes can be observed in the
structure of the smoothed array.

We used isotropic smoothing with a characteristic length cor-
responding to 20 grid points. We can notice on the cut along diag-
onal through the smoothed array that it agrees with a character-
istic length of oscillations. Note that 20 grid points correspond
to the length of 20v/3 = 35 along diagonal.

Finally, let’s look at spectra of original and smoothed array
(Fig. 3.8). A spectrum of the original array contains all wave
numbers with approximately equal amplitudes. A spectrum of the
smoothed array has a characteristic radial shape. It may be a bit
counter-intuitive as the smoothing is stronger right in directions
of Cartesian axes. However, realise that the Cartesian axes in the
space domain and in the wave-number domain are not the same.
Whilst the Cartesian axes in the space domain are directions of
stronger smoothing, the Cartesian axes in the wave-number do-
main are places of long waves in respective directions which are

thus smoothed more weakly.

3.2.2.3 Signal overlaid by noise Next, we verify the ability
of the algorithm to smooth out a random noise whilst preserving

a signal. As a signal, we used a Gaussian peak of unitary height
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Figure 3.7: Smoothing of white noise
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Figure 3.8: Spectra of original and smoothed array
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(b) The signal overlaid by a noise

Figure 3.9: Input data

with o/n = 20 grid points, located in the middle of an octant (Fig.
3.9a). Then we overlaid it by a random noise of same amplitude.

The input array is illustrated on Fig. 3.9b.

Consequently, we performed an isotropic smoothing with three
distinct smoothing intensities. We started with a characteristic
smoothing length of A/n = 20 grid points, what is a standard devi-
ation of the signal (Fig. 3.10). We observe that the signal is quite
well-preserved, whilst the noise is removed. However, an amp-
litude of the signal decreased approximately to a third of the ori-
ginal amplitude. It is like that due to a fact that the signal con-
tained a considerable amount of energy also in frequencies higher

than a cut-off frequency of the filter.
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Figure 3.10: Smoothed data with A = 20 grid points

However, we rarely know a characteristic length of the sig-
nal, thus we cannot design the filter for a particular situation.
Instead, we use a multiscale approach presented in the section
2.4.1. That means we start at the highest scale, thus using a
very strong filter. Let’s test such a strong filter with A/n = 80
grid points. The obtained results are depicted on Fig. 3.11. We
see that the noise is completely removed, but the signal is signi-
ficantly suppressed. However, the data are smooth and simple,
which is important for updating the model on the highest scales

in the multiscale approach.

Finally, let’s test out a smoothing on the lowest scales. The

smoothing on the lowest scales has to be weak in order to pre-
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Figure 3.11: Smoothed data with A = 80 grid points

serve fine structures. The results of the smoothing with A/n =5
grid points are shown on Fig. 3.12. We see that the noise is quite
well suppressed, but it is still clearly visible. On the other hand,
the signal is only slightly affected by the smoothing. Therefore,
we can conclude that it is crucial to find a trade-off between sup-

pressing of the noise and preserving of the signal.

3.2.2.4 Test of time complexity At the end, we tested a
time complexity of the algorithm. We used a same input array
as for a spike test, in order to minimise a time necessary for cre-
ating/loading of the input array. We kept smoothing intensities
constant, as a number of computational operations is independ-

ent of them, and we were changing a size of the array.
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profile along diagonal

Figure 3.12: Smoothed data with A =5 grid points

We compare two versions of the smoothing algorithm which dif-
fers by a way of computation of sums of weights for normalisation.
In one version, the sums are calculated directly using eq. (3.34),
in the other, they are computed by the efficient smoothing al-

gorithm itself along with a computation of convolution.

The test was carried out on my laptop with 4 cores (Intel Core
i5 2.5 GHz) and 8 GB RAM. We carried it out for 6 sizes of the
array selected logarithmically in a range between N = 15 and
N =511 and we repeated it five times for each size. The reason for
repeating was that there were some other system processes run-

ning on the laptop which were varying over time and we needed
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Figure 3.13: Test of time complexity of the smoothing algorithm

to average their effect. A test for N = 1023 could not have been
carried out due to a lack of available memory in my laptop.

Results are illustrated on Fig. 3.13. A red sequence of points
represents averages of computational times of the algorithm with
a direct calculation of sums of weights. It is fitted by a func-
tion t (N) = ¢ - N3 The best fit is found for ¢ = 9.6657 - 10~ 7
with coefficient of determination R? = 0.9999. A green sequence
represents averages of computational times of the algorithm with
sums of weights computed by the same algorithm along with a
computation of convolution. It is fitted by the same function
with ¢ = 8.2289 - 1077 and with a coefficient of determination
R2?2 = 0.9995. In both cases, a good fit is obtained what confirms
that a time complexity of the algorithm is O (N3).

The ratio of constants is % =1.1746, thus there is only
a slight difference between two versions. If we consider an array
with N = 1000, a computational time is about 15 minutes and the
difference between versions is only 2 minutes which is negligible.
On the other hand, the version with a direct calculation of the
sums of weights requires significantly less memory, thus we prefer

that one.
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4 Mask

4.1 Purpose of mask

An application of a mask is both regularisation and precondi-
tioning technique. It prevents a model from being updated in its
certain parts by modifying a kernel. There are several reasons for

that.

As a regularisation technique, it ensures that a model is up-
dated only in its unknown parts. We assume that we know a bed-
rock properly, thus we want the kernel to be modified only in a
sedimentary basin. Therefore, the mask should null the kernel
everywhere outside the basin but keep it unchanged inside. It
means that in an ideal case, the mask should have a shape of the
basin. However, it is usually unknown, hence we need to design
the mask in a such way that the entire basin lies in a so-called

full-gain zone of the mask.

As a preconditioning technique, the mask is used to improve a
stability of an inversion. The inverse problem is often ill-condi-
tioned in the deep parts of the model due to little data, therefore
any attempts to update the deep parts of the model are unlikely
to be correct and can destabilise the inversion. Therefore, the

mask should null the kernel in the depth.

The application of the mask allows a computational time of the
inversion to be reduced significantly. If we restrict the model to
being updated only in its upper regions, we do not have to sim-
ulate propagation of seismic waves in the deep parts repeatedly,
but instead we can use an excitation box (see e.g. Oprsal et al.,
2002). Then the propagation has to be simulated outside the box
only once and we restrict ourselves to updating of the model only
inside the box which means that the mask should null everything

outside the box and preserve everything inside.
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4.2 Mask construction
4.2.1 Mask design

The excitation box divides the model into two parts. The outer
part should not be modified, thus the corresponding part of the
mask is a so-called no-gain zone. In the ideal case, the entire
inner part of the model would belong to a full-gain zone of the
mask. However, such a mask design would cause a sharp artificial
discontinuity in the model. Therefore, a transitional zone has
to be present in between, in which a nature of the mask changes
from no-gain to full-gain smoothly. The transitional zone should

lie inside the box in a vicinity of its walls.

We will consider a kernel component K (r). A mask can be eas-
ily implemented as a multiplication of the mask M (r) with the

kernel component
KmaSkEd(r):M(r)-K(r). (4.1)

In this case, the mask is formed by zeroes in the no-gain zone and
by ones in full-gain zone. Values in transitional zone gradually

increase from 0 to 1.

An important property of the mask is a change of a spectrum of
the kernel. The mask definitely affects the spectrum, but ideally
it should not introduce higher wave numbers into the spectrum of
the kernel. And that is the problem. We need to not only design
the mask, so that its spectrum does not contain higher wave num-
bers than a certain cut-off wave number, but also a spectrum of
the modified kernel is calculated as a convolution of a spectrum
of the original kernel with a spectrum of the mask and a convo-
lution in a wave-number domain always introduces higher wave
numbers. Moreover, we have not mentioned yet that we need a

different mask on each scale.
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The other option is to design the mask K (r) in such a way
that it is added to the kernel

Fmasked (p) = K (r) + 6K (1) (4.2)

In a no-gain zone, the mask satisfies K (r) = —K (r) and in a
full-gain zone 6 K (r) = 0. An advantage of this approach is that a
spectrum of the modified kernel is a sum of the original spectrum

and a spectrum of the mask, which can be easily controlled.

Realise that there are no specific requirements on a shape of
the transition zone. Only limitation is the spectrum. Therefore,

we can choose any reasonable shape of the transition zone.

Kubina, 2017 suggested an interested way how to construct the
mask. He proposed that it can be find as a solution of Laplace
equation

ASK = 0. (4.3)

He took inspiration from a potential of an electric field. He ar-
gues that kernel values decrease as 1/» which is the same depend-
ence on the distance as for the potential of an electric source.
Then he finds the mask as a potential of a source which is located
outside the box with such boundary conditions that it nulls the
kernel at walls of the excitation box. The satisfactory boundary

conditions are

K (r)=—K(r) (4.4a)

at all faces except the top one and
K (r)=0 (4.4Db)

on a free surface.

We stress that there is no relation between an electric poten-
tial and the kernel or the mask. We calculate the mask using

Laplace equation only because we can. We can choose any reas-
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onable shape of the mask, but it turns out that it is handy to find
the mask as a solution of the Laplace equation, because it allows
us to directly control the spectrum of the mask and to construct

similar masks at different scales easily.

4.2.2 Solution of Laplace equation

We are interested in solving of eq. (4.3) in a cuboid (0; L,) x
(0; L,) x (0; L,) with boundary conditions (4.4). We will seek a

solution in a form

Inserting (4.5) into eq. (4.3) and dividing it by 0 K gives

A(;K X// Y/I Z//
X ~x v Tz

=0. (4.6)

Notice that each summand is dependent on a different variable,
thus if it is to be equal to zero for each combination of variables,
cach summand has to be constant. Therefore eq. (4.6) is split

into a set of three ordinary differential equations

X/I YI/ ZI/
= A = B; —=C  (47)
tied by an algebraic equation
A+B+C=0. (4.8)
A solution of an equation
X"-A-X=0 (4.9)
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depends on a sign of the constant A. Depending on the sign, three

distinct solutions are possible:

A>0: X(x):cle¢xx+cge"/jx; (4.10a)
A<O0: X(x):clei\/mx—i—cze_i\/mx; (4.10Db)
A=0: X (x)=cix + cs. (4.10¢)

Analogous solutions can be find also for Y (y) and Z (z). Any com-
bination of solutions for X (z), Y (y) and Z (z) satisfying the con-
dition (4.8) is then a solution of eq. (4.3).

A solution of a particular problem is determined by boundary
conditions and it is usually a linear combination of several dis-
tinct solutions of this kind. We are going to find a solution satis-
fying the boundary conditions (4.4). It will be a linear combina-
tion of solutions of three types. Each type is a different combin-
ation of solutions (4.10) and is derived either from corners, edges

or faces. Therefore, the final solution can be written as

0K (r) =0Kc(r)+ Y 0K (r)+ Y 0Kf(r), (4.11a)

ec€ feT

where § K¢ (r) is a solution derived from corners, § K. (r) are solu-
tions derived from edges and  K; (r) solutions derived from faces.

The set

¢ ={FL,FR,BL,BR,UL,UR,DL,DR,FU, FD, BU, BD}
(4.11b)

contains all edges and the set
§={F,B,R,L,U,D} (4.11¢)

contains all faces.
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4.2.2.1 Corners Westart with a partial solution 6 K¢(r) which
satisfies the boundary conditions at corners of the cuboid. Only
solution which can satisfy any conditions at the corners together

with the bond (4.8) has to have a trilinear form
Ko (z,y,z)=a+bx+cy+dz+exy+ frz+gyz+ hzyz. (4.12)
Coefficients are determined from eight boundary conditions:

§Kc(0,0,0)=a=—K(0,0,0); (4.13a)
§Kc(Ly,0,0)=a+bL,=—K(L,,0,0)

K¢ (0,L,,0)=a+cL,=—-K(0,L,,0)

== ¢ = K010 +a, (4.13¢)

Ly

§Kc(0,0,L,)=a-+dL.=—K(0,0,L,)

== d = - L00L)re, (4.13d)

§Ke(Ly,L,,0)=a+0bL,+cL,+elL,L,=~—K(L,,L,,0)

K(La,Ly,0)+a+bLo+cL,
To1, ; (4.13¢)

§Ke(Ly,0,L,)=a+bL,+dL,+ fL,L,=—K(L,,0,L.)

== e = —

e = _K(LZ,O,LZL):-LaZ+bLI+dLZ; (4.131)

§Kc(0,L,,L.)=a+cL,+dL,+gL,L,=—K(0,L,,L.)

K(0,Ly,L,)4a+cLy+dL, .

K¢ (Ly, Ly, L,)=a+bL,+cL,+dL,+eL,L,+ fL,L,+

+gL,L.+hL,L,L,=—K (L, L, L.)

_ K(Ls,Ly,L:)+a+blotcLy+dLotelaly+fLoLotglyL. (4.13h)

== h= LulLyL.

The trilinear component of the mask has a quite simple struc-
ture. Values of this component lie in a range between minimum
and maximum value among all values at corners and they grow

linearly between two neighbouring corners.
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The trilinear component fulfils the boundary conditions at the
corners, therefore all other components should be zero there. On
the other hand, it is non-zero at edges and faces, thus it changes
the boundary conditions for other mask components. The new

boundary conditions are
K (r)=—-K(r)—0K¢(r) (4.14a)
on walls of the excitation box and
K (r) = —-0K¢ (1) (4.14b)

on the free surface.

4.2.2.2 Edges Now we proceed to mask components derived
from edges. We are going to seek solutions which satisfy the bound-
ary conditions on a single edge and are zero on all other edges.
There are 12 edges, thus we will need to find 12 such solutions.

We will demonstrate how to find such a solution for one edge.

Consider non-zero boundary conditions on the rear-left edge of
the cuboid with coordinates (0,0, z2). We denote a corresponding
solution d Kpy (r). We are going to seek it again in form of the
product (4.5). It means that the solution will be composed of
functions (4.5).

First of all, we realise that all corners have to be zero, and it

can be fulfilled only by a solution of type (4.10b), thus
Z (z) :clei\/mz—che_i\/mz. (4.15a)

The zero condition at the upper corner Z (0) = 0 yields ¢; = —c¢a,

thus

Z(z):csin<\/mz>. (4.15Db)
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The zero condition at the other corner Z (L.) = 0 can be fulfilled

only if \/|A|L, is an integer multiple of 7:
VICIL., =1lx, 1l eZ. (4.15¢)

Therefore, the solution in 2z direction is

7z

. 4.15d
- (4.154)

Z;(z) = ¢;sin

The given solution is associated with a negative constant, thus

C:_<ZL7:>2' (4.15e)

In order to satisfy eq. (4.8), at least one of the constants A
and B must be positive. One option is a choice A =0 and B = —-C".

Let’s find the solution corresponding to this choice.

A solution associated with a null constant is (4.10c). The zero
boundary condition at the front-left edge (L,,0, z) provides a bound-

ary condition for function

X (x)=a1x + ay, (4.16a)
namely X (L,) =0. It yields ay = —a;L,, therefore we obtain
X(z)=a(x—L,). (4.16b)

A solution associated with a positive constant has form (4.10a).
The zero boundary condition at the rear-right edge (0, L,, z) pro-
vides a boundary condition for function

Y (y) = breVBY 4 bye VBV, (4.17a)
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The condition is Y (L,) = 0 and it yields by = —be2VBLyv. Consid-
ering eq. (4.15e) and that B = —C, we obtain

Ir(y—L
Y: (y) :blsinhw. (4.17h)

Putting it all together, we obtain one possible solution

Im(y— L l
5Ky (r) = Dy (¢ — L,)sinh ”(yL v) §in ZZ (4.18a)

However, we could have chosen constants A and B vice versa.

Such a choice would lead to the solution

— L
5K21(r):Dgl(y—Ly)sinth(:BL x)sinlzz. (4.18b)

Both solutions are appropriate, thus their arbitrary linear com-

bination

Ir(y— L
5K (r) = D) d“(x—Lz>sinhw+
ir(x— L
+d21(y—Ly)sinhw sinlzz (4.18¢)

is also a solution. There is usually no preferred orientation, thus

we choose di; = dqg; = % However, it is only one solution. In fact,

there is a solution for each [, therefore

= — L
5K, (r) =Y D {(;p - Lx)sinhm(yL—y)—i—
1=1 #
+(y—Ly)sinhl7T(xL—_L””) sinlzz. (4.19)

Theoretically, we could use the infinite series, in practice, how-
ever, we truncate it at some L,.,. There are two major reasons
for doing it. Firstly, we want to avoid introducing high wave num-
bers into the kernel. If we smoothed the kernel with a cut-off wave

number k;“t_"ff, we truncate the series at the highest integer L.«
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which satisfies % < k:;“t_"ff, thus
z

cut—offL L
Lmax = \‘MJ - \‘ z J . (420)

™

The other reason for truncating the series is that we have a
boundary condition only in some discrete points along the edge,
thus we are able to determine only a limited number of coeffi-
cients D;. It is impossible to properly determine coefficients cor-
responding to frequencies higher than a Nyquist frequency, which
is given by a sampling rate. Nevertheless, this is much weaker cri-
terion, thus L. is determined by a maximum permissible wave

number.

Speaking about the coefficients D;, they follow from the non-
zero boundary condition. Recall that we require (4.14a) at the

rear-left edge. Denote
kBL<Z):—K(0,0,Z>—5Kc(0,o,2). (421)

Then the boundary condition yields

Lnax IrL IrL
dKpr(0,0,2) = Z D, (Lxsinh 7 Y + L,sinh 7 m)

=1 z z

lmz |

- sin

If we take a closer look, we realise that eq. (4.22) is a Fourier

sine series with a coefficients

L.
D, (Lxsinh lz[;y + L, sinh ZWLI:E> = LQZ /kBL (z)sin l;j dz,
' (4.23a)
thus
L.
D, = 2 /kBL (+)sin 2 d. (4.23b)
L. (Losinh Zhe 4 1y sinh ks ) L.
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The found solution has one shortcoming. It has a linear com-
ponent which decreases much more slowly than hyperbolic term.
As aresult, the mask can have relatively high values also far from
edges which is undesirable. Therefore, we attempt to find another

solution for edges.

Recall that in order to satisfy condition (4.8), we had to choose
constants A, B such that their sum was equal to (4.8). We met
that by setting one constant to zero and the other was negative
of C. However, it is not a sole way how to fulfil the condition

(4.8). In general, we can set

2 2
A:a(l;) , B:B(ZLW> with o + 8 = 1. (4.24)

Using the same procedure as in the previous case, we find the cor-

responding solutions

X (x) = asinh \/alW(Lx Lx), (4.25a)
Y (y) = bsinh \/ﬁlﬂéy_Ly) (4.25Db)

1

There is usually no preferred direction, thus we choose a = 8 = 3.

Then we obtain the solution

Ir(z— L Ir(y— L z
(@ = L) oy W = Ly) G B2y o)
V2L, V2L, L.

K, (r) = D;sinh
Such a solution has an advantage comparing to (4.18c), as it
does not contain any linear component, thus it decays more rap-
idly and it is effectively equal to zero in smaller distance from
edges. Furthermore, a hyperbolic sine is only a difference of two
exponentials, what is also a shape of the applied smoothing func-
tion, thus the kernel remains smooth after application of the mask
and its frequency content does not change a lot in sense that it

does not acquire any frequency which it has not contained before.
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Once again, the final solution is in form of Fourier sine series

s o dr(x—L,) .  In(y—L,) . Irz
5KBL(F):ZDZSIHh%SIHh (\;%L y)sm 7 (4.27)
=1 z z z

and it has to be truncated at some L,,x due to the reasons dis-
cussed above. The L.y is again determined by (4.20). The Four-
ier coefficients D; follow from the same boundary condition, there-

fore

L,
2 l
D, = /kBL(z)sin Tz
L, (Slnh Inle giph L2l ) ) L

dz. (4.28)

z

V2L, \/2L

Finally, we present a summary of the mask components derived

from the respective edges:

Front-left edge (L,,0,2), z € (0;L,)

. Im(y —L,) . lnz
0K D;sinh ————sinh —— Y2 5in ; 4.29a
i ; : 2LZ V2L, L. ( )

L. l
1 2
D, = — - LT /kFL(z)sin zzdz; (4.29D)
sinh TR sinh NI z

kFL(Z):—K(LI,O,Z)—5K0(L1,O,Z). (429C)

Front-right edge (L,,L,,2), z € (0;L.)

0K D s1nh sinh —=—sin ; 4.30a
rr ; l V2L, V2L, L. ( )
2 l
1
D, = — FLT /kFR(z)sin gzdz; (4.30D)
sinh VoI sinh oI J z
krpr(z) = —-K (Ly,L,,2) —0K¢c(Ly, Ly, z). (4.30c¢)
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Rear-left edge (0,0,2), z € (0;L,)

( —L,) . ln(y—1L,) . Ilnz
0K D 81nh sinh —————~>sin ; (4.31a
L. l
1 2
Dy = — InLy . leyL_/kBL(z)Sin sz?«’; (4.31D)
sinh TR sinh NoTER z
kpr(z) = —-K(0,0,z) —dKc(0,0,2). (4.31¢)

Rear-right edge (0,L,,2), 2z € (0;L,)

Im(x — Ly) . lmy . lwz
0K D;sinh ———*sinh —=—sin ; 4.32a
ar ( lz_:l : V2L, V2L, L. ( )
1 2 f l
D, = — __ LT /kBR(z)sin 2Zdz; (4.32D)
sinh T si h\/QLZ J z
kBR(Z):—K<0,Lx,2)—(5Kc(O,Lx,2). (432C)

Top-left edge (2,0,0), x € (0; L,)

mm(y—L,) .  mw(z—L,) . mnx

K mSinh Y~ sinh — S :

vr ( Z: in /3L, in /L. in I
(4.33a)

1 2 f
mmx

D,, = k x)sin dz; 4.33b
sinh & fy sinh m”L L 0/ v (@) L, ( )
kyp(z)=—-—K (2,0,0) — K¢ (x,0,0). (4.33¢)

Top-right edge (z,L,,0), z € (0;L,)

mry .  mmn(z—L,) . mnx
0K D,, sinh sinh — sin ; 4.34a
ur Z V2L, V2L, L, )
1 2 f
Dy = —— — sz 7 | Fon (@) sin mL” dz;  (4.34b)
sinh & oL sinh T ) x
kuvp(z)=—-K (x,L,,0) —0K¢c(x,L,,0). (4.34c¢)
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Bottom-left edge (z,0,L,), z € (0; L,)

— L
Z msmhmﬂ(y v) . p mre L ommra

0K — sin ———sin
or — V2L, V2L, L,
1 2 'f
Dm:_ mm Ly mmlL, L kDL(iL‘)SiH m[jrxd )
Slnh,¢2LISIHh_¢2LZ / x
kpr(z)=—-K (2,0,L,) —6K¢(2,0,L,).
Bottom-right edge (z,L,,L.), x € (0;L,)
s ) mmwy . mmz . MTX
0K r) = D,, sinh ——sinh ———sin ;
o (r) mzzl V2L, V2L, L,
Ly
1 2
D,, = il T, kDR(x)sin7Zfajdx;
81nh,¢2L151nh.¢2Lx J x
kDR(.CE) = —K(Z’,Ly,LZ) — 5KC’ (x,Ly,LZ) .
Front-top edge (L,,y,0),y € (0;L,)
_ nt(z—L,) . nmy
0K D, sinh ————sinh — sin :
ro Z ¢ L, V2L, L,
Ly
1 2 nmwy
D, = — — ) sin dy;
sinh 7\1/’;%” sinh ”’T L 0/ L, Y
kFU(y):_K(anyyo)_(SKC’(anyao)
Front-bottom edge (L,,y,L.),y € (0;L,)
. nmTtz . nmwy
SKpp ( D, sinh sinh ——— sin ;
7;1 \/2L V2L, L,
Ly
1 2 . onm
Dn: : hnﬂ'Lz ; hnszL_/kFD (y)SIH ydy7
sinh JZ7= sinh 5702 Ly ) y

kFD(y):_K(L$>y7 )_6KC’( zayaLz)'
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Rear-top edge (0,y,0), y € (0;L,)

( —L,) . nm(z—L,) . nmy

0K Dns1nh sinh — sin :
(4.39a)

Ly
1 2
Dn - nw L : nmlL _/kBU (y) sin nry dy7 (439b)
sinh Vil sinh VIl L, / L,

kBU (y>:_K(0?y70)_5K0(0,y,0) (439(})

Rear-bottom edge (0,y,L.),y € (0;L,)

m(x —L,) . ntz . nmy
0K Dn51nh sinh ——sin ; 4.40a
or Z V2L, Voo, )
1
D, = —— P . /k’BD ) sin nﬁydy; (4.40b)
sinh \/iLz sinh eI ) L,
kpp(y) = -K(0,y,L.) —0Kc(0,y,L.). (4.40¢)

4.2.2.3 Faces Before we will find mask components derived
from the faces, we need to update boundary conditions, as those
has been affected by the mask components derived from the edges.

The new boundary conditions are
0K (r)=—-K(r)-0Kc(r)— > 6K.(r (4.41a)
ec€
at walls of the excitation box and
0K (r) = —0Kc(r) =Y 6K, (r (4.41D)
ec€
at the free surface.

Now we can proceed to looking for the mask components de-
rived from the faces. Let’s just remind that we have already sat-
isfied boundary conditions at corners and edges, thus the solution

for faces has to be zero there. We will use the same procedure as
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in case of edges. We will build the solution from 6 solutions — one
for each face. Those individual solutions have a non-zero bound-

ary condition at just one face and zero conditions at the others.

We are going to demonstrate the procedure of finding the solu-
tion for one face on example of the rear face (0,y,2). We seek the
solution 6 Kp (r) in form (4.5) again, which means it consists of

functions (4.10).

The solution for the face has to be zero at the adjacent edges.
It can by satisfied only by functions of the type (4.10b) in y and
z directions, therefore corresponding coefficients has to be neg-
ative. Hence we can write them in form B = —¢? and C = —r2.

Firstly, we are going to find the solution in y direction. We

know, it has to have the form
Y (y) = bie'? 4 bye 19V, (4.42a)

The zero boundary conditions at the left and right adjacent edges
yield Y (0) = 0 and Y (L,) = 0 respectively. The former implies
by = —by, thus

Y (y) =bsin(qy), (4.42b)

the later sets restriction on the coefficient
gL, =nm, n € Z. (4.42¢)

Therefore the sought solution in y direction is

Y, (y) = bsin ”gy (4.424)

and the corresponding constant is

nm

B:—(L—y)gz—qi. (4.42¢)
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Analogously, we can find a solution in z direction. It has the
same form and the upper and bottom adjacent edges provide sim-
ilar boundary conditions Z (0) = 0 and Z(L,) = 0, therefore we

obtain
L7z

L.

Z,(z) = ¢sin (4.43a)

with the corresponding constant

2
C:—(l;) = —r2, (4.43D)

Finally, we have to find the solution in = direction. The con-

dition (4.8) implies that the constant A has to be positive

2 2
B (7 lm o
A=-B-C= <—L ) + (Lz) = Dni>s (4.44a)

Y

therefore the sought solution is of form (4.10a)
Xni(z) = a1ePrt® + age Pri®, (4.44D)

The zero boundary condition at the opposite face yields X (L,) =

0, thus as = —a,e?P»tls hence the solution is

Xni (z) =asinh [p,, (x — L,)]. (4.44c¢)

Putting it all together, we obtain

l
K, (r) = Dyysinh [py (z — L,)]sin BTY gin 212
L, L,

(4.45)

Actually, we have found an infinite number of solutions and their

arbitrary linear combination

nmy lmz

(5KB(I'):ZZDnlsinh[pnl(m—Lm)]sin 7 sin 7 (4.46)

n=11=1 Y
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is also the solution. We obtained a two-dimensional Fourier sine
series. In practice, we need to truncate it at some Nya.x and L.y

because of the same reasons as for edges.

The coefficients D,; are determined by the sole non-zero bound-

ary condition. Denote

kg(y,z) = —-K (0,y,2) —0K¢c(0,vy, 2) ZéK (0,y,2z), (4.47)

ec¢

where € contains (4.11b). Then it yields

o [o.¢] l
YK (0,y,2) = —;Z D,;sinh (p,;L;)sin nL7Tyy sin 2; - kg (y,z).
(4.48)
Consequently, it follows that
Ly Lz
D 4 //k:( ),lﬂzd ,nwyd
nl = - ,2)sin z | sin .
"= IL,L.sinh (pmiLy) By L. L, 7
o Lo
(4.49)

Finally, we present a summary of the mask components derived

from respective faces:

Front face (L,,y,z),y € (0;L,), z€ (0;L,)

nty . Ilnz
0K D,;sinh (py2z) sin sin ; 4.50a
F( ;g;;g; ! (Pni) L, L. ( )
n\ > [ \?
= () (L) 500
Ly Lz
1 4 lmz nmy
D, = k , i d i dy;
: sinh (pnlL:L’)LyLz/ / F(y Z)Sln Lz : S Ly 4
0 0
(4.50c¢)
kF(y7Z):_K(L:C7y7z)_5KC(L1‘7y7z)_Z(SKe(L:C)y’Z)
ec¢
(4.50d)
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Rear face (0,y,2),y € (0;L,), z € (0;L.)

oo oo l
SKp(r) = ZZDnlSIHh [pni(x — L,)]sin BTY gin 212, (4.51a)

n=11=1 Ly L.
n \ > [ 2

m=n(£) +(2) (4:510)

Ly Lz
1 4 Iz nmy
D, = — k , 1 d i dy;
: Sinh (pnle) LyLz/ / B(y Z)Sln Lz © St Ly 4

0 0

(4.51¢)

kg (y,z)=—-K(0,y,2) —0K¢c (0,vy, 2) ZéK 0,y,2). (4.51d)

ece

Top face (z,y,0), 2z € (0;L,),ye (0;L,)

Ky ( mZ: ; Dpsinh [7,, (2 — L,)]sin mex sin ngyy; (4.52a)
m\ > n\’
= m A 4.52b
(1) + (2) (4320
Lz L’y
D 1 4 / /k ( ) si nTY 4 in V7T
- — in in ;
™ T Sinh (rpnl.) Lo Ly, R 7 I
o Lo
(4.52c¢)
ky(x,y) = —-0K¢(x,y,0) ZéK x,y,0). (4.524d)
ect
Left face (z,0,z), € (0;L,), z€ (0;L,)
[e.e] oo l
dKp (r) :nglgDmlsinh[qml(y—Ly)]sin msz sin 2;, (4.53a)
m\ > [ \?
L. [ L.
1 4 mmT
Dyt = — . . .
ml Sinh(qmlLy)LxLz/ /kL(:E,z)sm I dz| sin I dx;
o Lo
(4.53¢)

kp(z,z)=—-—K (x2,0,z) —0K¢ (x,0, 2) Z&K r,0,z). (4.53d)

ece
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Bottom face (z,y,L,), 2 € (0;L,),y € (0;L,)

dKp(r) = z:: Z:: D sinh (7, 2) sin msz sin ngy‘y; (4.54a)
m\ > n o\’
— _ — ) 4.54b
() e
Lz Ly
D 1 4//k( ),nﬁyd 'mﬂxd
mn — . x, sSin sSin X,
sinh (rmnl.) Lo L, DA%, Y , Y \
o Lo
(4.54¢)
kp(z,y)=—K (v,y,L.) —0Kc(x,y,L.) = > 6K.(x,y,L.).
ect
(4.54d)
Right face (z,L,,z), 2 € (0;L,), z€ (0;L,)
mnx . lrz
KR ( mz:llz_:lelanh gmi1y) sin I sin Lz; (4.55a)
m\ > [ \°
ml = - ; 4.55b
= (1) (1) (4350
Ly [ Lz l
1 4 Tz mmx
D, = k , i d i dz;
l sinh(qmleLxLz/ / nle,2)sinpmdz] s de
o Lo
(4.55¢)

kr(z,z)=—-K (x,L,,2) —6K¢c (x,Ly,2)— ZéKe (z,L,,z).

ec¢

(4.55d)
4.2.3 Problem with a free surface

We have found a solution of the Laplace equation (4.3) in the
form of a sum of Fourier sine series. However, we do not use the
entire series, instead we truncate them after several terms. It
means that the solution does not satisfy the boundary conditions

(4.4) exactly, but it has rather an oscillatory character.

If a function to be expanded does not contain any discontinu-

ities, the Fourier series converges relatively fast, thus usually a
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few first terms is enough. As we calculate the mask after the ker-

nel has been smoothed, this requirement is met.

However, one must be careful, because we use the Fourier sine
series, thus we expand an odd extension of the function. There-
fore, the discontinuities appear if the end values of the function

are non-zero. And it is often the case.

However, neither this causes a problem. Non-zero values at the
corners are nulled by an application of the trilinear component
of the mask, which naturally does not suffer from this problem.
The trilinear component is smooth, so it lowers the values also
in the vicinity of the corners. Consequently, the end points of
the edges are nulled and the odd extensions of the edges do not
contain discontinuities, thus the Fourier series for edges converge
relatively fast and hence do not exhibit the oscillatory behaviour.
Therefore, the boundary conditions on edges are satisfied quite
well, which means that the boundary conditions for faces are zero
at the adjacent edges, thus the series derived from the faces can

be truncated as well. So where is the problem?

We must realise that we have a discontinuous boundary condi-
tions at the upper edges. It comes from the fact that we require a
no-gain zone of the mask at the walls of the excitation box, but a
full-gain zone at the free surface. It would not be a problem if we
dealt with a continuous problem. There are methods how to ad-
dress it (e.g. Braverman et al., 1998). However, in the discrete
case, we must decide which condition prevails on the edge where

the discontinuity appears.

We prefer the no-gain condition at the edge. Therefore, the
zero boundary condition at the free surface means that the mask
component derived from the top face has to revert the changes in
the kernel at the free surface caused by other mask components.
However, it means that the values at the edges of the upper face

are non-zero, thus there are discontinuities in odd extensions of
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the function to be expanded and hence the Fourier series at the
free surface converges very slowly.

Consequently, the truncated series exhibits an oscillatory be-
haviour. The oscillations diminish when more terms of the series
are preserved which is the case at the lower scales. However, it is
impossible to get rid of them completely. When we add another
term to the truncated series, the oscillations lower slightly and
shift towards the discontinuity but they never disappear. It is
so-called Gibbs phenomenon. If we wanted to suppress the oscil-
lations, so that they were shifted to the edge where they were not
observable, we would need to go beyond Nyquist frequency.

We will be able to observe the oscillations at the numerical
examples. Fortunately their amplitude is relatively small and it
decreases with the depth rapidly. In any case, we should be very
careful when applying the mask and we should always check them

out.

4.2.4 Numerical implementation and time complexity

In this section, we briefly describe our numerical implementa-
tion of the algorithm for solving of the Laplace equation. It will
allow us to estimate a time complexity of the mask computation.

First of all, we determine the number of terms in truncated
Fourier series. Let’s consider dimensions of the computational
domain N, x N, x N, and smoothing intensities A,, A, and A..

Then according to eq. (4.20), the corresponding numbers of terms

(4.56)

Secondly, we calculate the coefficients of the trilinear part of

the mask. We use eq. (4.13) with one slight modification — in-
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stead of lengths L, we use numbers of grid points in respective
directions minus one L < (N —1). It will allow us to calculate
mask values based on grid indices rather than on coordinates. We

will use this interchange from now further on without notifying.

Beside that, we allocate an additional two-dimensional array,
where we will store the mask values at the free surface. It will
allow us to meet the zero boundary condition at the free surface

later.

Consequently, we update the kernel with the trilinear mask
components and we add values on the surface to that auxiliary
array. A calculation of the coefficients takes a negligible amount
of computational time, thus a time complexity of this step is de-
termined by updating of the kernel. We need to update N,-N, - N,
values, thus the time complexity of this step is O (N,N,N,). Stor-
ing the mask values at the surface requires only N,-N, steps, thus

it is only of O (N,N,).

Thirdly, we calculate the Fourier coefficients of the mask com-
ponents derived from edges. As the trilinear part of the mask has
been already added to the kernel, we can use the kernel values

along edges as the boundary condition directly.

We use the Simpson rule for computation of the coefficients if
a number of grid points along the respective edge is even, oth-
erwise we use the trapezoidal rule. We do not need to use the
Fast Fourier transform, as we are interested only in a few first
coefficients. The FFT could bring some computational time re-
duction only on the lowest scales, on which we need to calculate
more Fourier coefficients. However, the computational times are
not too large, thus the potential reduction would not be signific-
ant in absolute values. A time complexity of the calculation of
Fourier coefficients is hence O (N, My.x) for an edge oriented in

x direction and similar for other edges.
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Consequently, we update the kernel with the mask components
derived from edges and add values at the free surface to the aux-
iliary two-dimensional array. A time complexity of updating of
the kernel is 120 (N;NyN,M.x) for an edge oriented in z direc-
tion and 120 (N, N, M,.x) of adding the values at the free surface
to the auxiliary array. It is like that because there are N, - N, - N,
points and for each of them, we need to calculate M., Fourier

terms.

Finally, we calculate Fourier coefficients of the mask compon-
ents derived from faces. Once again, we can use the kernel values
at the faces as a boundary condition, as it has been already up-
dated by the mask components derived from corners and edges.
The boundary condition for the top face is stored in the auxiliary

array.

We use the two-dimensional Simpson rule if dimensions of the
face are even, otherwise we use the two-dimensional trapezoidal
rule. Neither here we use the Fast Fourier transform. For in-
stance, a time complexity of the computation of the coefficients
for the top face is O (Mpax NmaxNx Ny ). Comparing it to the FFT,
its time complexity is O (NxNylog(NxNy)). Considering Nx -
Ny ~ 10% a computational time of the FFT is 6¢ - 105 On the
other hand Muyax - Nmax ~ 10!, thus it is not much more computa-
tional demanding than the FFT, except for the case of the lowest
scales at which M.« Nnax can be of an order or two higher. Any-
way, it is still less computationally demanding than updating the

kernel.

Consequently, we update the kernel with the mask compon-
ents derived from faces which is of 60 (NyNyN,Mpax Nmax) for a
horizontally-oriented face. It is the most computationally de-
manding step of calculation and application of the mask. We do
not have to add values at the free surface to that auxiliary array,

as those values are per definition zero.
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Let’s note, that we have not calculated a spatial representa-
tion of the mask. Instead we represent it using the Fourier coef-
ficients and the coefficients of the trilinear part, hence we know
its (truncated) spectrum. Such a representation is very compact.
We can store it with very low memory demands and reconstruct

whenever we need it.

4.3 Numerical tests
4.3.1 Coefficients of mask components

First of all, we test out whether the Laplace equation solver
solves the eq. (4.3) correctly. We filled a three-dimensional cubic
array (N = 201) with a solution of the Laplace equation satisfy-
ing the boundary conditions (4.4). If the solver works correctly,
it should return exactly the prescribed solution, hence the mask
should effectively null the entire array.

Let’s note that we implemented the mask as a function that
has to be subtracted from the kernel, not added to it. It means
that we changed the sign in eq. (4.2). Consequently, we had to
change the sign in the boundary conditions (4.4a) from —K (r) to
+K (r). Therefore, the mask should be same as the input array. If
we implemented it the other way around, we should obtain exactly
opposite solution.

The prescribed solution is

KWk = 6KIF + SKF  + 6K, (4.57a)
SKiIk = tJ 4.57h
ST DN, — D (V.- 1) (4-570)
o | — N 1 k
SKiF =sinh T (‘7_ v+ 1) sinh —— sin — :
(4.57¢)
- 1 1 , ] mk
SKikF —ginh |7 + ¢| -sin ——— - sin ———
Fitd [ \/(Ny—1)2 (N, —1)° N, =1 N, -1
(4.57d)
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It consists of the component derived from corners with a coeffi-
cient h = /2002 = 1.25-107", a fundamental mode of the component
derived from the bottom-left edge with a coefficient D; =1 and a
fundamental mode of the component derived from the front face
with a coefficient Dy ; = 1. All other coefficients are zero. Thus

we expect to obtain exactly these coefficients.

The characteristic length was A = 20 with a unit grid step,
thus according to eq. (4.56), a number of terms in the Fourier
series was 3. The calculated coefficients are presented in Tab.
4.1. They follow theoretical predictions very well. Discrepancies

are caused by rounding within float precision.

4.3.2 Application of mask on smoothed Gaussian signal

As we have verified that our Laplace equation solver calculates
mask correctly, we can perform numerical tests. We will find the
mask for the smoothed array from the subsection 3.2.2.3 and will
apply it. We use an array smoothed by a smoothing function with
a smoothing intensity A/» = 20 grid points.

The results are presented on Fig. 4.1. The Fig. 4.1a shows the
array before an application of the mask. We can observe non-zero
values at the surface of domain. On the other hand, the Fig. 4.1b
shows the array after the application of the mask. The non-zero
values have been removed from the side faces, whilst they are still

present at the free surface.

However, notice that the non-zero values have not been re-
moved completely, but some lower-amplitude oscillations are still
present. It is a consequence of truncating of the Fourier series.
We discussed this phenomenon in the section 4.2.3. Another proofs
are the dark blue areas around the positive anomalies which indic-
ate negative values that were not present before the application

of the mask.
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(a) Coefficients of a mask component

derived from corners

harmonic 1st 2nd 3rd
FL edge | —3.710221-10°8 2.841876-101° —2.374120-101*2
FR edge | —1.789501-10"7 | —5.708514-10"*% | —1.872145-10~*%°
DL edge —2.049828 -107Y | —1.128682 - 1012
DR edge 6.059649 - 10~ | —5.484305-10"13 4.110159 -10-1
FD edge | —1.418135-10°° 2.830153-10-1Y 2.387933 .10 12
(b) Coefficients of mask components derived from edges
j K 1 2 3
1 —7.564761-107% | 1.194984-10""°
2 —1.473335-10°8 4.122872 1012 -5.112367-10- 14
3 —2.126567 - 107 | —7.795322 - 10713 | —8.293764 - 1013
(c) Coefficients of mask components derived from the front face
; K 1 2 3
1 3.238894-10°° —1.328186-107Y | 6.559744 101!
2 —2.505720 10719 | —7.385819-10"11 | 7.807869 - 1012
3 5.155900 - 1011 —8.543731-10712|7.195901-10~1%3
(d) Coefficients of mask components derived from the left face
; K 1 2 3
1 1.855614-10°8 8.013083 -10- 1.741980 - 1014
2 —4.677217-1071Y | —3.649220-10"'*| —2.238311-10"1%°
3 9.890108 - 1012 5.190340 - 10717 3.019191-10°16
(e) Coefficients of mask components derived from the right face
AN 1 2 3
1 —1.582902-1078 —1.465725-107° | —=7.367011 - 101!
2 | —2.631501-10""'° | —6.473791-10"'"" | —7.722384 - 10" '*
3 —4.161863 - 10" | —9.131705-10"? | —8.727038 - 1013
(f) Coefficients of mask components derived from the bottom face
Table 4.1: Calculated coefficients of the mask. Zero coeffi-

cients are omitted. Green colour highlights the coefficients which
should be non-zero
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value before application of mask
8 F 88 2§ F &5 5 2 8 BB § 2

o R

L ED o e’

o 2
length along diagonal

(a) A smoothed signal before an application of the mask

value after application of mask
g

L

o £ o 3
02 length along diagonal

(b) The signal after the application of the mask

4

o £
length along diagonal

(¢) Mask. Blue regions represent negative mask values, red regions rep-
resent mask values greater than 0.02

(d) A free surface and a horizontal slice before and after application of
the mask and the mask itself

Figure 4.1: Application of mask on a smoothed Gaussian signal
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Furthermore, the positive amplitude at the free surface has
been enhanced by the application of the mask. It is another proof
of this phenomenon. The reason for it is that an individual mask
components have non-zero values at the surface. The mask com-
ponent derived from the top face attempts to restore it, so that
the zero boundary condition at the free surface is fulfilled. How-
ever, the series derived from the free surface has been truncated,
thus it exhibits the oscillatory behaviour. What is more, the odd
extension of the boundary condition has a discontinuity, thus the
series converges slowly.

The changes caused by mask are best-illustrated by the mask
itself (see Fig. 4.1c). The blue regions are the regions of negative
mask values, thus the changes are positive there. A red colour
indicates the regions where the negative change is greater than
0.02. The areas with mask values in between are transparent.

Fig. 4.1d shows a free surface and a horizontal slice through
the Gaussian peak. The first column depicts the array before the
application of the mask, the second column after the application
and the third one illustrates the mask. We can see already men-
tioned negative mask anomaly surrounded by positive one at the
free surface. We can also observe that the mask nulls the values

only near the surface and modifies the interior only slightly.

4.3.3 Demonstration of Gibbs phenomenon

In the the section 4.2.3, we indicated that there is a problem at
the free surface originated from a discontinuity in the boundary
conditions. In this section, we are going to demonstrate how it is
manifested in practice.

We expect the strongest Gibbs phenomenon if there is a signal
close to any upper edge. Therefore, we use same Gaussian signal
overlaid by noise as in the section 4.3.2, but centred at an upper

corner. We added another Gaussian peak centred at the opposite
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corner, so that we can compare the effect of the discontinuity in
the boundary conditions with boundary conditions without any
discontinuity.

First of all, we smoothed the signal with three different iso-
tropic smoothing intensities % — 40, 20 and 10. We used a cubic
computational domain of size N = 201. Therefore, according to

eq. (4.56), we truncated the Fourier series after 1st, 3rd and 6th

term respectively.

Fig. 4.2 illustrates the effect of the mask at the highest scale.

The Fourier series were truncated after the first term.

Fig. 4.2b shows the original smoothed signal before applic-
ation of the mask. In the left picture, only values higher than

0.003 are depicted. We see that the signal is very simple.

Fig. 4.2c shows the signal after application of the mask. It is
more complex. Red regions in the left picture have values higher
than 0.003 and a blue regions values lower than —0.003. The mask
influenced both upper and bottom face, but it was unable to com-
pletely remove signal from the bottom face and preserve it at the
top face. The reason for it is that a single sine term cannot ap-
proximate signal situated close to the corner. Simply, higher har-
monics are needed.

Fig. 4.2d shows the applied mask. We can observe that it
affects the values in the entire volume. The highest values are
at corners where the signal is located and along the diagonal in
between. [t comes from a mask component derived from the corners.
The positive change in the middle is suppressed by sine terms,
which are the source of the negative areas that have appeared.

Fig. 4.3 shows the same signal smoothed with % = 20. Fourier

series were truncated after the third term.

Fig. 4.3a shows upper and bottom face of the domain. The sig-
nal at the bottom face is quite well suppressed which confirms

that if there is no discontinuity a fewer Fourier terms is enough.
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(a) Upper and bottom plane before and after applic-
ation of a mask and the mask itself

(d) An applied mask

Figure 4.2: Application of mask to a pair of Gaussian peaks loc-

ated at opposite corners with % = 40.
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(a) Upper and bottom plane before and after applic-
ation of a mask and the mask itself

(c) A signal after application of the mask

(d) An applied mask

Figure 4.3: Application of mask to a pair of Gaussian peaks loc-

. . A
ated at opposite corners with 515920.



On the other hand, the signal at the upper face is still strongly
affected by the mask. It is a nice demonstration of Gibbs phe-

nomenon.

Fig. 4.3b and Fig. 4.3c depict the signal before and after the
application of the mask. Values above 0.005 are depicted on the
left pictures. The main features of the signal are preserved, but
some additional perturbations have appeared. However, it is far

better than in the previous case.

Finally, Fig. 4.4 shows the signal smoothed with % = 10. It
means, that Fourier series were truncated after the sixth term.
Therefore, the signal is affected by the mask only near the surface
and it is well-preserved inside. However, we can still observe os-
cillations due to the Gibbs phenomenon. It is well demonstrated
on a structure of the mask in the Fig. 4.4d, where we can clearly
see the oscillatory character of the mask. A threshold on all left
pictures is 0.01, which gives an insight to the amplitude of the

oscillations.

To conclude, we have demonstrated that the Gibbs phenomenon
is a problem at the lowest scales if there is a signal close to the up-
per edges. In that case, the mask affects the signal also in greater
depths. The Gibbs phenomenon can be observed also at the higher
scales, but it affects only values near the surface, thus it is not
a problem any more. However, we should be always careful when
applying the mask and visually check how a kernel is affected by

the mask.

4.3.4 Test of time complexity

Last but not least, we tested a time complexity of an applica-
tion of the mask. We were actuating the routine for the mask cal-
culation and its application repeatedly with different dimensions

of the computational domain and different smoothing intensities.
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(a) Upper and bottom plane before and after applic-
ation of a mask and the mask itself

(c) A signal after application of the mask

(d) An applied mask

Figure 4.4: Application of mask to a pair of Gaussian peaks loc-

. . A
ated at opposite corners with zll—llo.
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Figure 4.5: Computational times of mask application. Different
colours indicate different smoothing intensities A (red — 8k, green
— 16h, magenta — 32h, cyan — 64h). Individual symbols represents
same ratio L/A (circle — 4, square — 8, diamond — 16, triangle — 32)

We considered only cubic domains and isotropic intensities. The

results are illustrated on Fig. 4.5.

A same colour of symbols indicates same smoothing intensit-
ies. If we keep a constant smoothing intensity, a calculation of
Fourier terms derived from faces becomes the step of the compu-
tation with highest time complexity. The reason is that a number
of Fourier coefficients which has to be calculated increase with
L/x and if A is constant, the time complexity of this step be-
comes O (N®). A calculation of the Fourier coefficients is only of
O (N*). Therefore, we fitted the data with a functiont (N) = a-N?
(red and green lines). A coefficient of determination is 1, thus it
confirms that the designed function explains the computational

times really well.

Individual symbols represent different ratios L/a. If we assume
the ratio as constant, a time complexity of the computation of
Fourier coefficients is only O (N?). Therefore, the step with the
highest time complexity is then an application of the mask which
is of O (N3), hence we fitted the data with a function ¢t (N) =a-N3

(black lines) and we obtained a great fit.

The test revealed that the calculation and the consecutive ap-

plication of the mask can be very computationally demanding for
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large models at the lowest scales at which many terms of the Four-
ier series are needed to be calculated. Therefore, if we will work
with large models, the calculation of the Fourier coefficients will
have to be performed via a discrete fast Fourier sine transform
(Frigo et al., 2005) and the application of the mask will have to
be parallelised.
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Conclusion

In this thesis, we addressed a topic of the adjoint tomography
in local surface sedimentary structures in 3D. We built on the

work of Kubina et al., 2018. We focused on kernel preprocessing.

First of all, we gave a brief insight to inverse problems. We
explained the adjoint tomography method and the nature and ne-

cessity of kernel preprocessing.

Consequently, we made an overview of commonly used smooth-
ing techniques in 3D. Besides a calculation of convolution in a
space domain and filtering in a frequency domain, we briefly de-
scribed two interesting methods — an application of the so-called
Bessel filters and a topology-based smoothing. Especially, the
former could be interesting if one needed anisotropic smoothing

with main axes rotated with respect to Cartesian coordinate axes.

We developed and numerically tested:

e An efficient algorithm for smoothing of kernels in 3D. — We
generalised the smoothing algorithm proposed by Kubina. In
order to do that, we had to resolve a problem of interfaces
between octants. We managed to do it by two distinct ver-
sions of the algorithm — one for the upper octants and another
for the bottom ones. Furthermore, we managed to reduce
RAM requirements of the smoothing algorithm by analytic
calculation of the sums of weights and by expressing them in

a close form.

e An algorithm for computation of a mask and its application
to the kernel. - We adopted Kubina’s design of the mask
and generalised it to 3D. It required to resolve a problem of

nulling edges of the computational domain.

114



We performed numerous numerical tests:

e A spike test confirmed a directional dependence of the used
smoothing function. It also indicated how smoothing affects

a spectrum of the smoothed data.

e Smoothing of a signal overlaid by noise verified an ability of
the algorithm to separate the signal from the noise. We per-
formed smoothing with different smoothing intensities. The
stronger smoothing was applied, the better noise had been
suppressed. However, a strong smoothing affected also the
signal significantly. Numerical tests revealed that a smooth-

ing over five grid points is enough to suppress the noise.

e A test of time complexity of the smoothing algorithm con-
firmed that the time complexity is O (N?3) which is even faster
than Fast Fourier Transform (O (N?logN)). In addition, it
revealed that the version of the algorithm with an analytic
calculation of sums of weights for normalisation is slightly
slower comparing to the version which calculates the sums of
weights by explicit summation during a calculation of convo-
lution sums. However, the faster algorithm has higher RAM

requirements.

e Tests of a mask revealed a presence of the Gibbs phenomenon
in the mask due to a discontinuity in boundary conditions

along upper edges.

e A test of time complexity of the mask calculation and its ap-
plication revealed that it is quite computationally demand-
ing. Nevertheless, it can be done relatively quickly, except
for large models at the lowest scales. In that case, the ap-

plication of the mask has to be parallelised.
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To sum up, we created routines for smoothing of the kernels
and for application of the mask. We tested them on artificial
data. Real data are not available at the time of submission of the
thesis, as the computational program FDAtom3D for computation
of the adjoint tomography of local surface sedimentary structures
in 3D is not able to calculate kernels yet. It is a question of a
next couple of weeks. Nevertheless, we performed a quite extens-
ive numerical testing and we can conclude that the routines are

prepared to be implemented into the program.
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Abstract

Jaroslav Valovcéan: Kernel preprocessing in 3D adjoint tomography
of local surface sedimentary structures. [Master’s thesis|. Come-
nius University in Bratislava. Faculty of Mathematics, Physics
and Informatics, Department of Astronomy, Physics of the Earth
and Meteorology. Supervisor: prof. RNDr. Peter Moczo, DrSc.
Bratislava 2019. 127 pgs. Degree of qualification: Master.
Seismic ground motion can be strongly affected by local sur-
face structures. Therefore, if we are to model a propagation of
seismic motion in the local surface sedimentary structures, we
do not need only a precise program for a numerical modelling
of the propagation of seismic motion, but we need also a suffi-
ciently precise structural model. It can be obtained by seismic
tomographic methods. In the recent years, full-waveform inverse
methods have been widely used. One of the full-waveform meth-
ods is the adjoint tomography. The adjoint tomography improves
a structural model using a so-called kernel which is a volume dens-
ity of gradient of misfit between the observed and calculated seis-
mograms. The gradient is evaluated with respect to model para-
meters. The adjoint tomography has been applied over wide range
of scales — from regional to global. However, it has not been
employed at a local scale in 3D yet. The reason for that is an
ill-posedness of the problem. The inversion in the local surface
structures is specific by a relatively small amount of available
data, a high initial misfit and short length scale heterogeneities
in the model. Therefore, a proper kernel preconditioning is neces-
sary. We build on the pioneering work of Filip Kubina who was
the first to employ the adjoint method to a tomography of local
surface sedimentary structures in 2D. We focus on kernel precon-
ditioning. We generalised algorithms for smoothing of a kernel
and application of a mask to the kernel proposed by Kubina. We

created routines for efficient smoothing of kernels and for a cal-
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culation and an application of the mask in 3D. We performed an
extensive numerical testing of the routines on artificial data, in
order to determine their properties. The routines will be imple-
mented in the program FDAtom3D by Filip Michlik which performs

the adjoint tomography of local surface sedimentary structures.

Keywords: adjoint tomography, local surface sedimentary struc-

tures, kernel preprocessing, smoothing, mask
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Abstrakt

Jaroslav Valovcéan: Kernel-Vorverarbeitung in der 3D adjun-
gierten Tomographie lokaler Oberflichen-Sedimentstrukturen.
[Master-Arbeit|. Comenius-Universitdt in Bratislava. Fakultéat
fir Mathematik, Physik und Informatik, Abteilung fiir Astrono-
mie, Physik der Erde und Meteorologie. Betreuer: prof. RNDr.
Peter Moczo, DrSc. Bratislava 2019. 127 Stn. Qualifikationsgrad:
Master.

Seismische Bodenbewegungen koénnen durch lokale Oberflé-
chenstrukturen stark beeinflusst werden. Wenn wir deshalb
eine Ausbreitung der seismischen Bewegung in den lokalen
Oberflachen-Sedimentstrukturen modellieren sollen, brauchen
wir nicht nur ein genaues Programm fiir eine numerische Model-
lierung der Ausbreitung der seismischen Bewegung, sondern auch
ein ausreichend genaues Strukturmodell. Das kann durch seismi-
sche tomographische Methoden erhalten werden. In den letzten
Jahren sind Vollwellenform inverse Methoden in groffem Umfang
verwendet worden. Eine der Vollwellenformmethoden ist die ad-
jungierte Tomographie. Die adjungierte Tomographie verbessert
ein Strukturmodell unter Verwendung eines sogenannten Ker-
nels, bei dem es sich um eine Volumendichte des Gradienten der
Misfit-Funktion zwischen dem beobachteten und dem berechne-
ten Seismogramm handelt. Der Gradient wird in Bezug auf Mo-
dellparameter ausgewertet. Die adjungierte Tomographie ist iiber
ein breites Spektrum von Skalen angewendet worden - von re-
gional bis global. Es wurde jedoch noch nicht in 3D auf loka-
ler Skala eingesetzt. Der Grund dafiir ist eine Schlechtgestellt-
heit des Problems. Die Inversion in den lokalen Oberfldchenstruk-
turen ist spezifisch durch eine relativ kleine Menge verfiigharer
Daten, eine hohe anfdngliche Misfit-Funktion und Heterogenité-

ten im Modell mit kurzer Ladnge. Daher ist eine ordnungsgeméfe
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Kernel-Vorkonditionierung erforderlich. Wir bauen auf der Pio-
nierarbeit von Filip Kubina auf, der als erster die adjun-
gierte Methode fiir eine Tomographie lokaler Oberfldachen-
Sedimentstrukturen in 2D einsetzte. Wir fokussieren uns auf die
Vorkonditionierung des Kernels. Wir verallgemeinerten Algorith-
men zum Gldtten eines Kernels und Anwenden einer Maske auf
den Kernel, die von Kubina vorgeschlagen worden waren. Wir er-
stellten Routinen zum effizienten Gldtten von Kerneln sowie zur
Berechnung und Anwendung der Maske in 3D. Wir fiithrten eine
umfangreiche numerische Priifung der Routinen an kiinstlichen
Daten durch, um deren Eigenschaften zu bestimmen. Die Rou-
tinen werden im Programm FDAtom3D von Filip Michlik imple-
mentiert, das die adjungierte Tomographie lokaler Oberfldchen-

Sedimentstrukturen durchfihrt.

Schlagworter: adjungierte Tomographie, lokale Oberfldache-
-Sedimentstrukturen, Kernel-Vorverarbeitung, Glatten,

Maske
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