
MASTERARBEIT / MASTER’S THESIS

Titel der Masterarbeit / Title of the Master’s Thesis

”
Predicting Enantiomeric Excess in a Cross-Coupling

Reaction with Machine Learning“

verfasst von / submitted by

Nadja Katharina Singer, B.Sc.

angestrebter akademischer Grad / in partial fulfilment of the requirements for the degree of

Master of Science (MSc)

Wien, 2019 / Vienna, 2019

Studienkennzahl lt. Studienblatt / UA 066 910
degree programme code as it appears on
the student record sheet:

Studienrichtung lt. Studienblatt / Masterstudium Computational Science
degree programme as it appears on
the student record sheet:

Betreut von / Supervisor: Dr. Philipp Marquetand, Privatdoz.





AC K N OW L E D G M E N T S

First, I want to thank my supervisor Priv.-Doz. Dr. Philipp Marquetand for
giving me the possibility to conduct my master studies as well as supporting
and encouraging me throughout the time.

Next, I want to thank my collaborators of the group of Prof. Nuno Maulide,
in particular Alexander Preinfalk, for the fundamental experimental data
and the pleasant cooperation. I would especially like to thank the double agent
Dr. Boris Maryasin for patiently enduring all my questions and teaching me
his methods.

Furthermore, I want to thank Univ.-Prof. Dr. Dr. h.c. Leticia González

and the whole group, including Dr. Markus Oppel and Simon Kropf, who
made things work, when they didn’t, Dr. Sebastian Mai for his ongoing feed-
back, the members of the girls room, Sandra Gómez and Julia Westermayr,
and everybody else that I had the honor and pleasure of working with.

Additionally, I want to thank my fellow student of the computational science
master program Charlotte Bode, Wolfgang Ost, Konrad von Kirchbach,
and Jakob Weber for interesting and weird discussions at lunch.

Finally, I want to thank my family and my significant other, Carsten Seyf-

ferth, for their everlasting support and encouragement.

iii





C O N T E N T S

1 introduction 1

2 background 4
2.1 Organic Chemistry Background . . . . . . . . . . . . . . . . . . 4

2.1.1 Negishi Cross-Coupling . . . . . . . . . . . . . . . . . . 4
2.1.2 Enantiomeric Excess . . . . . . . . . . . . . . . . . . . . 5

2.2 Theoretical Chemistry . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 GFNn-xTB . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Conformer Search . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Machine Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3.1 Model Selection . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 Hyperparameter Optimization . . . . . . . . . . . . . . 13
2.3.3 Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 methods 15
3.1 Idea and Scope of this Thesis . . . . . . . . . . . . . . . . . . . . 15
3.2 Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.3 Computational Details . . . . . . . . . . . . . . . . . . . . . . . 18

4 results 20
4.1 Descriptor Calculation . . . . . . . . . . . . . . . . . . . . . . . 20

4.1.1 Wigner Sampling versus crest Conformer Search . . . 20
4.1.2 Concatenated ASOs . . . . . . . . . . . . . . . . . . . . . 24

4.2 Enantiomeric Excess Prediction with Machine Learning . . . . 30
4.2.1 ML Model Evaluation and Comparison . . . . . . . . . . 30
4.2.2 Enantiomeric Excess Prediction for Unknown Reactions 34

4.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5 conclusion & outlook 37

bibliography 39

a appendix 44

abstract 56

curriculum vitae 58

v



AC R O N Y M S

AI Artificial Intelligence

ASO Average Steric Occupancy

BO Bayesian Optimization

BOA Born-Oppenheimer Approximation

CC Coupled Cluster

CI Configuration Interaction

DFT Density Functional Theory

DFTB Density Functional Tight Binding

ee Enantiomeric Excess

ELU Exponential Linear Unit

er Enantiomeric Ratio

FF Force Field

GC Genetic Z-Matrix Crossing

HB Hyperband

HF Hartree-Fock

HPLC High-Performance Liquid Chromatography

MAE Mean Absolute Error

MD Molecular Dynamics

ML Machine Learning

MM Molecular Mechanics

MSE Mean Squared Error

MTD Meta-Dynamics

PCA Principal Component Analysis

PES Potential Energy Surface

QC Quantum Chemistry

QM Quantum Mechanics

RBF Radial Basis Function

ReLU Rectifier Linear Unit

RFR Random Forest Regression

RMSD Root-Mean-Square Deviation

SELU Scaled Exponential Linear Unit

SQM Semiempirical Quantum Mechanics

vi



SVR Support Vector Regression

TISE Time-Independent Schrödinger Equation



L I S T O F S Y M B O L S

ee Enantiomeric Excess
F Mole Fraction
FR Mole Fraction of the (R)-Enantiomer
FS Mole Fraction of the (S)-Enantiomer
a Area

afavored Area under the Signal of the Favored Enantiomer
adisfavored Area under the Signal of the Disfavored Enantiomer

k Reaction Rate Constant
kfavored Reaction Rate Constant of the Favored Enantiomer

kdisfavored Reaction Rate Constant of the Disfavored Enantiomer
A(T ) Pre-Exponential Factor
∆G, Activation Gibbs Free Energy
R Gas Constant
T Temperature

δ∆G, Activation Gibbs Free Energy Difference
∆G,favored Activation Gibbs Free Energy of the Favored Enantiomer

∆G,disfavored Activation Gibbs Free Energy of the Disfavored Enantiomer
GTS

favored Transition State Free Energy of the Favored Enantiomer
GTS

disfavored Transition State Free Energy of the Disfavored Enantiomer
∆GTS Transition State Free Energy Difference
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I N T R O D U C T I O N 1
Stereochemistry is the study of molecules that only differ in the three-dimen-
sional orientation of their atoms in space, but not in their constitution. A
special focus in stereochemistry lies in chiral molecules, which are molecules
that are non-superposable on their mirror images, also called enantiomers.
An example found in nature are D- and L-amino acids, where the latter are the
prevailing form.1 The importance of stereochemistry became especially appar-
ent to the public with the tremendous Contergan scandal in the late 1950s and
early 1960s. While the (S)-enantiomer of Thalidomide, the active substance
of the drug Contergan, is bioactive, the (R)-form is teratogenic, which lead
to thousands of children born with deformities.2,3 This is just one example
of two enantiomers with critically different effects as drugs. Still today the
significance of pharmacodynamica and -kineticb differences4,5 between the
enantiomers of chiral drugs is a crucial part of research.6

Naturally, from this knowledge about the differences between enantiomers,
a need for efficient synthetic methods for stereoselective reactions building
complex organic molecules evolved.

An important method for preparing complex organic molecules, like drugs,
are cross-coupling reactions. Especially palladium-catalyzed reactions have
proven to be an irreplaceable tool in the C-C bond forming processes. The
pioneer work of Richard Heck,7–9 Ei-ichi Negishi,10,11 and Akira Suzuki12–14

was even rewarded with the Nobel Prize in Chemistry in 2010. Their work
in the early 1970s paved the way for many related reactions like Corriu-
Kumada,15,16 Stille,17–19 and Hiyama20,21 cross-couplings to just name a
few.22 Today cross-coupling reactions are still evolving and increasing their
synthetic potential. One reason is that they were found to be a useful tool
also in stereoselective C-C bond forming reactions and with that they are of
interest for pharmaceutical research. The preparation of chiral cross-coupling
products was already shown by Hayashi, Kumada, and co-workers in the
1970s and 80s.23–28 Recently Thaler and co-workers reported highly diastere-
oselective Negishi cross-couplings on cycloalkylzinc reagents with 1,2-, 1,3-,
and 1,4-stereocontrol.29

As state of today our collaborators, the Maulide group at the University of
Vienna, work on maximizing the enantiomeric excess (ee) of Negishi cross-
coupling products.30 The Negishi reaction couples organic halides or triflates
with organozinc compounds using palladium or nickel catalysts. The products
of the Negishi reactions executed by the Maulide group only have a single
center of chirality and therefore only have two possible enantiomers, the (R)-
or (S)-enantiomer. The ee describes the relation of these two enantiomers
relative to each other and can therefore be used as a measure of success. The ee
is one if the product is enantiopure and zero if the product is a racemate. Con-
sequently maximizing the ee is the target of many studies. The maximization

a Pharmacodynamics is the study of pharmacological actions of drugs on living systems, like
reactions with and binding to cell constituents.4,5

b Pharmacokinetics is the study of the fate of a drug inside the metabolism from uptake to
transformation to elimination.4,5
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introduction

of the ee is achieved by varying the ligands of the palladium catalyst, among
other reaction parameters.

Trying out different reactants and synthesizing hundreds of compounds
for reaction optimization is of course not the most effective way in the digital
age. Particularly, there are reams of modern quantum chemistry (QC) soft-
ware packages that can numerically determine properties of materials and
molecules. Unfortunately, when it comes to large-scale screening the compu-
tational costs are still the limiting factor for quantum calculations. However
in the time of big data and artificial intelligence (AI), machine learning (ML)
methods can provide accurate predictions of chemical properties at a signifi-
cantly reduced computational effort. That is why there are various examples
of successful integration of ML in chemistry.

The study of Gómez-Bombarelli et al.31 is an excellent example of how
a workflow can be established to combine high-throughput virtual screen-
ing with an experimental approach to find novel molecules. This virtual
screening uses modern ML methods and QC calculations to explore mole-
cules outside of the known molecular space. Further, an example for the
usage of AI in chemistry and additionally in combination with cross-coupling
reactions is provided by Doyle and Dreher.32 They showed how the data
of nanomole-scale high-throughput robot experiments can be used to train
an AI algorithm, in this case a random forest model, to accurately predict
the yields of Buchwald-Hartwig couplings. While they needed to complete
their experimental data with rather expensive QC calculations, the work of
Lilienfeld and Corminboeuf33 relates easily accessible descriptor variables
directly to catalytic performance. By developing Volcano plots they were able
to identify the most promising, thermodynamically attractive, and readily
available catalyst candidates. Finally, there is to mention the work of Den-
mark and co-workers34 who were able to predict higher-selectivity catalysts
by a computer-driven workflow and ML. They rank chiral phosphoric acid-
catalysts for thiol additions to N-acylimines by the ee value. Compared to
the yield of an experiment, which was used as the observable by Doyle and
Dreher,32 the ee can be reproduced synthetically more reliably, which makes
accurate predictions even more valuable. The group of Denmark was able to
predict the ee of coupling reactions for unknown reactants, unknown cata-
lyst, and even ee values beyond the range of observed values in the training
set. It should not go unmentioned here that the catalysts used by Denmark
and co-workers34 for the reaction are very similar, containing the same core
structure, and only differing in substituents.

All the mentioned works mark an important contribution to modern chem-
istry in conjunction with AI. Nevertheless, there is still room for improvement,
especially in regards to the choice of ML models and their hyperparameter
optimization as well as the used descriptors and the generalizability of the
workflow and model.

The aim of this thesis is to develop a ML workflow which can efficiently
predict the ee of palladium-catalyzed Negishi couplings. The underlying
reaction of organic bromine reactants with organozinc compounds using
palladium catalysts to form chiral products is pictured in Figure 1.1.

In this thesis, a ML model is developed using experimental data. The
experimental data as a basis for the ML model was provided by the Maulide
group (see Figures A.1 to A.7 and Table A.1 in the Appendix).30 The goal of
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[Pd(cynnamyl)Cl]2 (0.25 mol%)

Ligand* (1.5 mol%)

ZnCl2 (1 equiv)

{LiCl (1.5 equiv)}

MTBE, 25 °C. 12 hrs

1 equiv 1.5 equiv

Br

ZnCl

R1
R2

R2

R1

racemate enantioenriched

ZnCl

R2

R2

R1

Figure 1.1: Basic reaction scheme for the Negishi cross-coupling of interest. The
reaction is a coupling of a bromine reactant and a racemic organozinc compound
with the goal to obtain an enantioenriched product. The catalyst used is based on
palladium with different ligands. Zinc chloride was used as additive, as well as
lithium chloride in some cases. The solvent is methyl tert-butyl ether (MTBE).

the model is to connect the structure and other properties of the reactants,
obtained from experiments and calculations, to the ee. Therefore, the collected
data is transformed to a machine readable format and used to train different
ML models with the ee as observable. The present work is a first step in
developing a high throughput screening workflow for novel reactants and
catalysts in the mentioned Negishi cross-coupling reaction yielding chiral
products (Fig. 1.1). It is meant to be used as an efficient prescreening tool to
provide promising reactants that will be validated first by QC computations
and finally by synthesis in the future.

This work is, to the author’s knowledge, the first to predict the ee of Negishi
coupling reactions. It tries to use the idea behind the work of Denmark and co-
workers34 for a different reaction with a wider structural variety of catalysts.
The variety of the catalyst ligands can be seen in Figures A.1 to A.5 in the
Appendix.

An overview over the theory of all relevant topics regarding organic and
theoretical chemistry as well as ML is given in Chapter 2. Chapter 3 explains
the developed workflow from experimental data to descriptor calculation and
finally to the prediction of the ee for unknown catalysts. It also includes the
computational details. In Chapter 4 the Average Steric Occupancy (ASO)
descriptor is closely inspected and different ML models are validated and
compared. Additionally, predictions for the ee of unknown reactions are made.
The work is summarized in Chapter 5 and an outlook is given.

3



BAC KG R O U N D2
The following chapter provides an overview over the theory relevant for
this thesis. At the beginning, a brief summary of the organic background
important for the work is given, including the Negishi cross-coupling reaction
and the ee. It is followed by a description of the methods used to optimize
molecular structures and to generate a large conformer-rotamer-ensemble
with the ultimate goal of calculating a suitable descriptor. Furthermore, this
descriptor as well as the ML methods used to predict the ee are explained.

2.1 Organic Chemistry Background

This section aims to summarize the general mechanism of the Negishi cross-
coupling reaction and explain the formulas underlying the ee.

2.1.1 Negishi Cross-Coupling

As mentioned before in Chapter 1, the Negishi cross-coupling reaction is
an important C-C bond forming process for complex organic molecules and
is additionally applicable to chiral synthesis. The basic reaction scheme
is shown in Figure 2.1. The C-C coupling process can be applied to every
possible combination of carbon atom types (sp, sp2, or sp3) and tolerates many
different functional groups at the reagents. The reaction is mostly performed
with palladium catalysts, but also nickel based catalysts are possible.35

LnM
R1

X R2 ZnY R1 R2 X ZnY

Y = R2 or halide

X = halide or triflate

M = Pd or Ni

+ +

Figure 2.1: General scheme of the Negishi reaction, where the two organic groups R1

and R2 are coupled together.

The general catalytic mechanism is shown in Figure 2.2. The first step of
the reaction is the oxidative addition, where the bond between the organic
group R1 and the heteroatom X breaks and two new bonds are formed with
the metal M, increasing its oxidation state by two units. The second step is the
transmetalation, which is the characteristic step of the reaction. The second
organic group R2 needs to be transferred from the zinc atom to the metal M.
The exact mechanism of this transmetalation is part of recent research in
experiment and theory with multiple possible proposed pathways.36–39 The
last step of the catalytic cycle is the reductive elimination, where the two
organic groups R1 and R2 leave the metal M to form a common bond. By
leaving the metal M its oxidation state is reduced by two units, coming back
to its initial state.35
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2.1 organic chemistry background

LnM

LnM
X

R1

R1 X

R2 ZnY

R1 R2

X ZnY

LnM
R2

R1

1) Oxidative Addition

2) Transmetalation

3) Reductive Elimination

Y = R2 or halide

X = halide or triflate

M = Pd or Ni

Figure 2.2: General catalytic cycle of the Negishi coupling, with R being sp, sp2, or
sp3 carbon type organic compounds.

2.1.2 Enantiomeric Excess

The importance of enantiomers and the ee was already discussed in Chapter 1,
while this section aims to define the underlying formulas and link the ee to
theoretical chemistry. The ee is generally defined by the absolute difference
between the mole fraction F of the (R)- and the (S)-enantiomer as

ee = |FR −FS| with FR +FS = 1 . (2.1)

In practice, it is often used as a percent ee and expressed by

%ee = (|FR −FS| × 100) . (2.2)

Therefore, a chiral substance with 100 % ee is called enantiopure and only
contains one of the two possible enantiomers. A chiral substance with 0 %
ee is called a racemate and contains a 50:50 mixture of both enantiomers.
Everything in between 0–100 % ee is called enantioenriched. In experiment,
the ee is mostly measured by chiral high-performance liquid chromatography
(HPLC), where the ee can be expressed using the area under the signals a.a

ee =
afavored − adisfavored

afavored + adisfavored
(2.3)

To link the ee to theoretical chemistry it can also be expressed in terms of
reaction rate constants k leading to the favored and disfavored enantiomer.40

ee =
kfavored − kdisfavored

kfavored + kdisfavored
(2.4)

a This is how the experimental ee was determined for this work.30
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background

Via transition state theory the rate constant k can be expressed as

k = A(T )e−∆G
,/RT (2.5)

with ∆G, being the activation Gibbs free energy, R the gas constant, T the
temperature, and A(T ) the pre-exponential factor, which is assumed to be
equivalent for both enantiomeric pathways. The substitution of Equation (2.5)
into Equation (2.4) leads to

ee =
e−δ∆G

,/RT − 1
e−δ∆G,/RT + 1

with δ∆G, = ∆G,favored −∆G
,
disfavored . (2.6)

This equation links the ee with ∆GT S , the difference in transition state free
energies of the enantiomers, by

δ∆G, = GTS
favored −G

TS
disfavored = ∆GTS , (2.7)

which can be done because the reactants that lead to the transition state
are identical and therefore have identical free energy. Rearrangement of
Equation (2.6) with (2.7) gives an expression to compute ∆GTS from the ee
and vice versa.

∆GTS = RT ln
(1 + ee

1− ee

)
(2.8)

This shows that from the transition state energies of a reaction the ee is
theoretically computable if the transition state is known.40

2.2 Theoretical Chemistry

Since the formulation of the Schrödinger equation in 1926, its exact solution
can only be calculated for two particle systems. Therefore, approximations
have to be proposed for larger systems. The most common one is the Born-
Oppenheimer approximation41 (BOA). It assumes that the motions of the
nuclei and the electrons can be separated due to the huge difference between
the masses and therefore also the velocities of both particles. This allows
to separate the Hamiltonian Ĥ and the total wave function Ψ (~R,~r) of the
time-independent Schrödinger equation (TISE) into nuclear and electronic
parts, leading to the definition of the electronic TISE as

ĤelΨel(R̄,~r) = Eel(R̄)Ψel(R̄,~r) . (2.9)

The remaining task is to solve this electronic TISE for Nel-electron systems,
which is a difficult problem as the corresponding wave function Ψel(R̄,~r) is a
high-dimensional object. There is a range of different methods tackling this
challenge and trying to balance accuracy versus computational cost. In the
Hartree-Fock (HF) approach the Nel-electron (many-body) wave function is
approximated by an antisymmetrized product of Nel one-electron wave func-
tions, usually referred to as a Slater determinant. However this approximation
leads to an energy EHF always larger than the energy of the exact solution
within the BOA. The difference between these energies is called correlation
energy. Post-HF methods like Møller-Plesset perturbation theory, coupled clus-
ter (CC), configuration interaction (CI), and quadratic CI try to approximate
the correlation energy. In principle the exact wave functions and energies

6



2.2 theoretical chemistry

of all states could be obtained by some of the mentioned techniques, but
approximations have to be made due to unfavorable computational scaling.42

Another approach tackling the many-body problem is the Quantum Monte
Carlo method, which uses statistical techniques to approximately solve the
problem.42 A different ab initio method is density functional theory (DFT).
This approach maps the many-body problem to a single-body problem, where
the electron density instead of a wave function is used to obtain information
about the chemical systems. The electron density is an observable, can be
measured experimentally, and is defined as the probability of finding any of
the Nel electrons within a defined volume element.43 Aside from the alluded
quantum mechanical (QM) methods there is also a range of very fast molecu-
lar mechanics (MM) methods to determine the energy and other properties
of especially large systems. One of the approaches is to use empirical force
fields (FFs), which are empirical potentials, consisting of a large number of
parameters and functions referring, e.g., to electrostatic interactions, to van
der Waals terms, and to stretching, bending, and torsional forces.42 However,
the fast purely classical MM treatment has its limits and the more accurate
QM methodology is not always applicable. A solution for the dilemma are var-
ious semiempirical methods, which approximate integrals of the ab initio QM
methods by experimental or MM data. One of these methods is GFNn-xTB.44

2.2.1 GFNn-xTB

GFNn-xTB44 (Geometry, Frequency, Noncovalent, Extended Tight Binding of
version n) is a semiempirical tight binding quantum chemical method primar-
ily designed to yield fast and reasonable geometries, vibrational frequencies
and noncovalent interactions especially for systems with a large number of
atoms, including elements up to radon (Z = 86). Semiemprical quantum me-
chanical (SQM) methods in general try to provide an alternative route between
costly ab initio QM methods like HF or DFT, and the effective FF methods,
which treat atoms in a classical mechanics way. These SQM methods are faster
by at least 2 orders of magnitude than QM methods due to drastic integral
approximations.45 The GFNn-xTB method is related to the self-consistent
density functional tight binding (DFTB) scheme, avoids element-pair-specific
parameters, and is parametrized using reference data at the hybrid DFT level.
Variant 2 of the algorithm, GFN2-xTB,46 additionally includes multiple elec-
trostatics and density-dependent dispersion contributions.

2.2.2 Conformer Search

The electronic TISE using the BOA (Eq. (2.9)) can be used to calculate the
energy of a specific electronic state with fixed nuclei. The potential energy
EPES(R̄) used to create potential energy surfaces (PESs) is the sum of the
nuclear repulsion Vnuc(R̄) and the electronic energy Eel(R̄).

EPES(R̄) = Vnuc(R̄) +Eel(R̄) (2.10)

By solving the electronic TISE pointwise for each nuclear configuration sep-
arately and adding nuclear repulsion, a PES is generated. Knowledge over
the PES enables the calculation of free energy barriers from which in turn

7
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the ee can be obtained (see Eq. 2.6). Pointwise evaluation of energy surfaces
is not a very elegant way to determine equilibrium geometries, vibrational
frequencies, and other data related to nuclear coordinates, but many of these
procedures have been automated by algorithms.42 Oftentimes only the global
minimum of the PES, and therefore the energetically most favorable struc-
ture, is of interest in QC. However, one goal in this workflow is to also find
conformers and rotamers, which are described by local minima on the PES.
Rotamers are structures with very similar total energies that only differ in the
orientation around a single bond, while conformers differ by more rotations
leading to different total energies. There are various different methods for
conformer search, which all have to make compromises in terms of accuracy
versus computational cost. The following describes two techniques that are
used in this work to create a library of geometries for each molecule.

Wigner Sampling

The Wigner quasiprobability distribution or Wigner-Ville distribution links
the Schrödinger wave function to a probability distribution in phase space.47

The basic idea is to derive an expression that gives a statistical description for
the atomistic coordinates and corresponding momenta of quantum systems.
The equation for the Wigner distribution W based on uncoupled harmonic
oscillators of the normal modes i is given by

W (x,p) =
1

(π~)3Nnu−6

3Nnu−6∏
i

wi with wi = e
−
(

2µiηi x
2
i

~

)
e
−
(

2p2
i

~µiηi

)
(2.11)

with xi being the coordinates corresponding to the normal mode i, pi the
momentum, µi the reduced mass, and ηi the angular frequency. The im-
plementation in SHARC48 generates geometries by sampling a simplified
quantum-harmonic Wigner distribution. For each normal mode i, two ran-
dom numbers Pi and Qi are chosen uniformly from the interval [-5,5] b c to
calculate the ground state quantum Wigner distribution wi with

wi = e−(P 2
i +Q2

i ) . (2.12)

If wi is larger than a uniform random number from [0,1], then Pi and Qi are
accepted and the coordinates are updated by

Ri = Ri−1 +
Qi√
2νi

mi , (2.13)

where mi are the normal mode vectors and νi the vibrational frequencies.49,50

The geometries generated by this algorithm are not conformers. The struc-
tures are not optimized, therefore aren’t local minima of the PES, and can
even be unphysical, because of the displacement simply along normal modes.
Nevertheless, they can be used as a very fast and easy initial guess for the
steric environment of a single conformer. The Wigner sampling could also be
used for an already obtained conformer-ensemble to sample geometries for
every conformer.

b Unit: Dimension-less mass and frequency weighted normal mode coordinates.
c In theory the interval [−∞,∞] of the Gaussian shaped Wigner distribution should be sampled,

but in practice interval [-5,5] is chosen to increase the probability of wi getting accepted and to
ensure the harmonic oscillator approximation holds.

8



2.3 machine learning

iMTD-GC - Iterative Meta-dynamics Sampling and Genetic Z-matrix Crossing

The iMTD-GC workflow is an iterative algorithm for generating conformer-
rotamer libraries by combining meta-dynamics (MTD) with molecular dynam-
ics (MD), and genetic Z-matrix crossing (GC) based on GFNn-xTB calcula-
tions.51–53

First, MTD is used as a powerful method for efficiently exploring the PES,
and therefore the conformer space, by adding a biasing potential Ebias to the
PES.

Etot = EPES +Ebias (2.14)

This biasing potential is the core of MTD. It is a history-dependent potential
that fills the minima of the PES over time. This enables the algorithm to over-
come even large reaction barriers by discouraging the system from revisiting
the same spots on the PES. The used biasing potential is a Gaussian potential
based on the standard root-mean-square deviation (RMSD) in Cartesian space
given by

ERMSD
bias =

n∑
i=1

κie
−α∆2

i with ∆i =

√√√√
1

Nnuc

Nnuc∑
j=1

(
rj − r

ref,i
j

)2
(2.15)

with ∆ being the collective variable RMSD, n the number of reference struc-
tures associated with the pushing strength κ, α the width of the biasing
potential, Nnuc the number of atoms, rj a component of the Cartesian space

vector of the actual molecule, and rref,i
j the corresponding element in the

reference structure i.
Second, MD is added to the algorithm to sample low lying conformers more

extensively to find conformers within small energy barriers that might have
been overshot by the MTD algorithm. MD is a technique to describe the
dynamical evolution of a molecular system by numerically solving Newton’s
equations of motion.

Finally, the GC algorithm is especially important for the generation of
rotamers. It creates new structures by projecting structural elements present
in already generated structures onto reference structures. Responsible for the
genetic character is the fact that frequent structural elements are inherited
more often than others.

This iMTD-GC workflow provides an extensive conformer-rotamer-ensemble
for every molecule, which will be important for the descriptor presented in
Section 2.3.3.

2.3 Machine Learning

ML models are algorithms that build a mathematical model based on sample
data (training data) to perform a task without being explicitly programmed
for it. Generally there are two types of ML: supervised and unsupervised.
Supervised models are trained with training data including the wanted output
(observable), while unsupervised models are able to recognize patterns in the
data without any prior knowledge and observable. The training process of
ML models utilizes some kind of loss function. Loss or cost functions, are
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functions that represent a ’cost’ associated with the problem, e.g., the error,
and are minimized during the optimization. The loss function used for the
neural network is the mean squared error (MSE)

MSE =
∑N
i=1(yi − ỹi)2

N
, (2.16)

but various other functions are common, like mean absolute error (MAE), L2,
L1, and mean absolute percentage or logarithmic error.

In chemistry, the aim is usually to transform the chemical knowledge about
atoms, molecules, or reactions into something machine readable using de-
scriptors and then predict certain characteristics from it. The research areas
include, e.g., prediction of the wave function, energies, energy surfaces, or
other chemical properties, like the ee.

2.3.1 Model Selection

This work focuses on supervised ML models that are suitable for regression
problems. In the following, neural networks, support vector regression, and
random forest regression are briefly discussed. The models are evaluated by
the MAE

MAE =
∑N
i=1(yi − ỹi)
N

(2.17)

and by the regression score function R2

R2 = 1−
∑N
i=1(yi − ỹi)2∑N
i (yi − ȳ)2

(2.18)

with yi being the observed value, ȳ being their mean, ỹ being the predicted
value, and N being the number of samples.

Neural Networks

The focus of the following explanation is on deep feed-forward neural net-
works (NNs), which are used in this work.54 Other architectures of NNs are,
for example, convolutional or recurrent NNs. Neural networks are in general
structured into layers l (see Fig. 2.3) consisting of neurons, or nodes, n(l) inter-
connected by weighted edges Θ(l)

αβ . In feed-forward NNs the initial signal y(0)

is only transmitted in one direction through the NN, from input to output, by
recursively applying the relation:

y
(l)
β = σ (l)

(
Σ
)

with Σ = Θ(l)
0β +

n(l−1)∑
α

Θ(l)
αβy

(l−1)
α . (2.19)

The first layer in these networks is the input layer l = 0, which collects all
the data provided by the user. In the case of chemistry, this can, e.g., be any
kind of information about atoms, molecules, or reactions. The kind of input
used in this work will be further explained in Section 2.3.3. The input layer
has a number of nodes suitable for the input data (e.g. Fig. 2.3: 3 nodes) and

10



2.3 machine learning

is followed by an arbitrary number of hidden layers (e.g. Fig. 2.3: 2 hidden
layers) with an arbitrary number of nodes per layer (e.g. Fig. 2.3: 3 and 4
nodes per hidden layer). Each node in the network is fully connected to the
nodes of the previous and following layer. Every one of these connections
between two nodes α and β, is performed by a weight Θ(l)

αβ . These weights
are initialized randomly and have to be adjusted during the NN training, e.g.,
with backpropagation. The backpropagation algorithm optimizes the weights
from output back to input by calculating the gradient of the loss function.
A node can just represent the weighted sum Σ of the previous layer or can
be enhanced by an activation function σ (e.g. Fig. 2.3: σ for hidden layer 2).
Activation functions can in general be any kind of function acting on the
weighted sum Σ, but the most widely used ones are rectifier, exponential and
scaled exponential linear units (ReLU, ELU, and SELU), softplus, and sigmoid,
to just name a few. Finally, the output layer is built to fit the number of nodes
suitable for the observable (e.g. Fig. 2.3: 2 nodes) and can also contain an
activation function. Additionally, there is the possibility to introduce bias
nodes y(l)

0 that provide an adjustable offset to the layers. The only parameters
of NNs that have to be known prior to training are called hyperparameters and
control the training process. They include for example the choice of activation
function σ , number of layers l, and number of nodes in each layer n(l).

y
(0)
0

y
(0)
1

y
(0)
2

y
(0)
3

Input
Layer

y
(1)
0

y
(1)
1

y
(1)
2

y
(1)
3

y
(1)
4

Hidden
Layer 1

Θ1

Σ

Σ

Σ

Activation
Function σ

Θ2

y
(2)
0

y
(2)
1

y
(2)
2

y
(2)
3

Hidden
Layer 2

σ (Σ)

σ (Σ)

σ (Σ)

y
(3)
1

y
(3)
2

Output
Layer

Θ3

Figure 2.3: Example of a feed-forward neural network containing:

1) an input layer y(0) with 3 nodes and 1 bias node y(0)
0

2) a hidden layer y(1) with 4 nodes and 1 bias node y(1)
0

3) another hidden layer y(2) with an activation function σ acting on the weighted sum

Σ, 3 nodes, and 1 bias node y(2)
0

4) an output layer y(3) with 2 nodes.
An activation function is exemplarily added to hidden layer 2, but could in theory
additionally be added to hidden layer 1 and the output layer.

Support Vector Regression

Support vector regression (SVR)55 originates from the support vector machine
(SVM)56 used for solving classification problems (see Fig. 2.4). The idea is to
separate two classes (filled and unfilled circles) by fitting a planed P between

d Plane or hyperplane, depending on the dimensionality of the problem.
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them. This plane is defined by the maximum distances between the plane
and the nearest member of each class, also called support vector (marked in
red). In other words, a plane that separates the classes with a maximal margin
δ = [−ε,+ε] is wanted. Even classes that are not linearly separable can be
separated using the kernel trick.57 The trick uses kernel functions K , which
can be expressed as inner product in another space V .

K(yi , yj ) = 〈ϕ(yi),ϕ(yj )〉V (2.20)

This simplifies the complexity of the problem, because only the computation-
ally cheaper inner product 〈., .〉V of the transformed data points ϕ(y) has to
be known, but not the actual higher dimensional coordinates of the data. It
enables the method to operate in a high-dimensional, implicit feature space,
where the classes are separable, without ever computing in this dimension.

To solve regression problems, instead of separating classes with a plane, the
SVR method tries to find a plane such that hopefully all (kernel transformed)
data points lie on the plane or at least within the margin δ. All data points
outside the margin increase the error depending on the distance to the margin
border and the penalty parameter of the error term C. C is the extent of
punishment and therefore a tradeoff between the algorithm complexity and
number of samples outside of the margin. When C is small the empirical error
of the original data is small and the complexity of the model is low, but with a
risk of underfitting. When the C value is large, the computational complexity
is high and the risk of overfitting increases. Therefore, it is very important to
choose the appropriate penalty parameter of the error term.58

y

x

+ε

P

−ε
δ

Figure 2.4: Two classes, the filled and unfilled circles, are separated by a plane P
determined by the support vectors, or nearest neighbors, marked in red. The margin
δ is defined by the interval [−ε,+ε].

Random Forest Regression

Random forests or random decision forests operate by constructing a multi-
tude of decision trees and outputting the mean prediction over all trees.59 A
decision tree can build regression or classification models. For that it breaks
down the input data incrementally into smaller subsets, while at the same
time building the tree structure. The tree starts with the root node, which cor-
responds to the best predictor, because it contains the whole set of data. This
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root node is then split by taking the (categorical or numerical) feature with the
highest variance and splitting it into two (or multiple) sets of data. The split
decision is made such that the resulting subsets have minimal variance. These
nodes are called decision nodes. The decision nodes are then incrementally
split until the number of samples after a split is below a certain threshold.
These final nodes are called leaf nodes. To predict an observable from an
unknown sample, the sample is processed through the tree, according to the
defined splits, until it reaches a leaf node. The average value of the samples of
this leaf node is then the predicted value. In random forest regression (RFR)
models each individual tree, of the multitude of trees made, learns from a
random subset of the training data, which can also include multiple of the
same training data points. The other important concept of RFR is that not all
features are taken into account for a split, but only the variances of a random
subset of features is the decisive factor. The RFR model in this work uses the
MSE as the function to measure the quality of a split.

2.3.2 Hyperparameter Optimization

Every one of the prior mentioned ML models has some kind of hyperpa-
rameter controlling the training. These hyperparameters have to be chosen
carefully and have an important influence on the performance of a model.
The traditional way of performing hyperparameter optimization is called grid
search. It basically means trying out every possible given combination of
hyperparameters and comparing the performance. This is exhaustive and suf-
fers from the curse of dimensionality. Although the evaluated configurations
are typically independent of each other and can be computed in parallel, the
computation can still be too demanding, depending on the number of possi-
ble configurations. A way to reduce the computational effort is to randomly
select some configurations out of all possible configurations. This random
search performs well if only a small number of hyperparameters affect the
final performance. A third method is Bayesian optimization (BO). Since the
objective function that optimizes the hyperparameters is unknown, the BO
method builds a random model for the objective. The model is updated by
iteratively evaluating only promising hyperparameter configurations. The
promising configurations are determined by the first initial random model.
This advanced evaluation for the objective function generation can still be
too expensive in some cases. That’s why Hyperband60 (HB) was invented.
The method defines cheap-to-evaluate approximate versions of the objective
function. For the maximum budget (e.g. amount of computational time) the
approximation equals the best possible solution, while for smaller budget
the quality decreases. This makes it possible to evaluate randomly sampled
configurations first on a small budget and evaluate only the most promising
configurations on maximum budget.

BOHB algorithm

The BOHB61 algorithm combines Bayesian optimization with Hyperband. It
relies on HB to determine how many configurations to evaluate with which
budget, but replaces the initial random selection of configurations. It is re-
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placed by a model that uses BO to select, which new configurations to evaluate
next, based on the already evaluated configurations and their performance.

2.3.3 Descriptors

As already mentioned before, the input data for ML, of course, needs to be
machine readable. In case of chemistry this means one needs to find chemical
and physical properties, or a number representation of chemical structures
to describe the most important features of the system (atom, molecule, or
reaction). These representations are called descriptors and their choice is a
crucial part in a computational chemistry workflow. The descriptors need
to include all the information necessary to answer a given question. In the
case of chemistry data there are currently different molecular descriptors in
use, regarding structure, charge density, vibronic frequencies, or reactivity, to
just name a few. There is no perfect descriptor that solves every problem, but
different descriptors are suitable for different problems, and have to be chosen
and combined carefully. In this work only one descriptor, the ASO, is used.

Average Steric Occupancy

The ASO is a descriptor representing the steric environment, and accessible
conformers and rotamers of a molecule. It was developed and implemented
by Denmark and co-workers62 in 2018 and first used by Zahrt et al. in 2019.34

To compute the ASO, a complete set of aligned conformers (and rotamers)
of compounds is required. First, a spherical grid of points is computed to
enclose the entire conformer library of molecules. In a second step, for each
conformer it is determined if a grid point is within the van der Waals radius
of an atom, yielding the value of one for the grid point, or if it is outside the
van der Waals radius, yielding the value zero. The ASO of a molecule is then
computed as the average grid over all corresponding conformers. This gives a
descriptor value of 0 ≤ ASO ≤ 1 at each grid point. The ASO is therefore able
to characterize the shape of the molecule weighted by how often the molecule
occupies different regions of space. The ASO can also be used to describe
reactions by concatenating the ASOs of all reacting molecules.

14



M E T H O D S 3
This chapter outlines the basic idea behind the combined experimental and
theoretical chemistry approach with ML, explains the exact workflow that
was developed, and summarizes the computational details.

3.1 Idea and Scope of this Thesis

The idea behind the combination of experimental and theoretical chemistry
with ML is outlined in Figure 3.1. The main approach is to start with a set
of experimental data (Fig. 3.1: (1)), which in this work consists of structural
formulas of reactants of a Negishi coupling and the corresponding ee values.
This data is considered to be the most accurate data for the ee and will be
used to validate all further calculations. The amount of experimental data
is most likely not sufficient for a ML approach, as experiments are notably
time-consuming. Hence, a QC model (Fig. 3.1: (2)) has to be developed that is
able to generate a larger training set by providing the ee values for unknown re-
actions. The QC model in this work consists of the transmetalation transition
states for the (R)- and the (S)-enantiomer. Using Equation (2.8) (Section 2.1.2)
the ee can be calculated from the energy difference between both transition
states ∆GT S . Once the QC model is developed the generation of training data
is certainly faster than the execution of the same amount of experiments, but
still more costly than a ML approach. The next step is to use the obtained
training data from experiments and QC to train a suitable ML algorithm
(Fig. 3.1: (3)) that is then able to predict the wanted observable rapidly for a
large number of unknown reactions. The most promising reactions predicted
by ML can subsequently be tested by the QC model (Fig. 3.1: (4)) and only
the most excellent reactions are validated by experiment (Fig. 3.1: (5)). This
workflow makes it possible to perform a high throughput screening for count-
less reactions. For the screening, a large database of unknown reactions has to
be generated that is used on one hand to complete the training set with the
help of the QC model and on the other hand for predictions with ML. This
database can in theory contain any kind of reactant suitable for the reaction,
but should be limited to reactants and catalysts that can be synthesized in
practice.

The scope of this work is to handle the experimental data provided by our
collaborators, the Maulide group,30 and find suitable descriptors (Fig. 3.1: (1)).
The presented work exclusively uses the experimental data. A significant
improvement of the model requires a QC study of the reaction mechanism.
Kinetic and thermodynamic properties of the systems from the training set
should be thoroughly investigated computationally. The calculated energetic
and structural characteristics of the intermediates and transition states (this
data is hardly achievable experimentally) will significantly develop the model
and its potential to predict experimental observation. It is important to
mention that the studied systems are extremely demanding also for the com-
putational study. The thorough investigation of, e.g., conformational space
of all stationary points as well as additional benchmarking calculations to
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Figure 3.1: Workflow for a combined experimental and theoretical chemistry ap-
proach with machine learning.

determine the reasonable QC approach are necessary. This part of work is
currently in progress in our group.

The author is aware that the amount of data used in this work is in general
not sufficient for a ML problem as complex as this. In order to benefit from
statistics, not only one, but multiple ML algorithms are trained (Fig. 3.1: (3))
and compared in Section 4.2.1. The unknown reactions used for testing the ML
model are designed with the help of our collaborating experimentalists, which
will in the future also perform the experimental validation of the predictions
(Fig. 3.1: (5)).

3.2 Workflow

This section outlines the actual workflow from getting experimental data
to predicting the ee for unknown reactions. The computational details are
summarized in Section 3.3. The prerequisites for the proposed workflow are a
training data set consisting of (two-dimensional) structural formulas of the
three main reactants of the Negishi couplings (organic halide, organozinc
compound, and ligand of the Pd-catalyst), the corresponding ee value, and a
test data set consisting of unknown, but plausible reactions.

1) from 2d to 3d A common format that organic chemists use for their
2D structural formulas is the ChemDraw .cdx format. The two-dimensional
structures are converted into three-dimensional .xyz structures using the
Chem3D program from the ChemOffice package. Simultaneously a pre-
optimization of the geometry is performed using a FF energy minimization
method. The whole process was automated using AutoIt.63

2) conformer search In the next step, the conformer-rotamer-ensemble
for every molecule is calculated. The conformer search is performed for all
organic halide reactants, the organozinc enantiomers, and the catalyst ligands
of every reaction using the iMTD-GC (RMSD) algorithm implemented in
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crest.51–53 For the following, the conformers and rotamers of the organozinc
enantiomers are combined into one racemic conformer-rotamer-ensemble. In
this work also a different method for obtaining the set of initial structures
is performed based on Wigner sampling. The differences are discussed in
Section 4.1.1. For the Wigner approach, the molecule geometries are optimized
and the frequencies calculated using GFN2-xTB,44,46 while the wigner.py
script of SHARC48 uses the calculated frequencies to generate the ensemble
of geometries.a

3) align conformers In the next step, all conformers and rotamers
within the three compound groups have to be aligned with the same ori-
entation to assure a correct calculation of the ASO descriptor. The catalyst
ligands all have at least one three-bonding phosphor atom in their structures.
Hence, they are translated to have the common phosphor atom in the origin. If
there are two phosphor atoms, the one to be in the origin is picked randomly.
This is sufficiently exact as almost all ligands are symmetric. The ligands
are then aligned by the three bonds between the phosphor center and the
neighboring atoms (C, O, or N). The bromine reactants are translated to have
bromine in the origin and are aligned by the atoms marked in Figure 3.2-A.
The organozinc reactants are translated to have zinc in the origin and aligned
by the atoms marked in Figure 3.2-B. The algorithm used for the alignment is
the Kabsch algorithm that calculates the optimal rotation matrix by minimiz-
ing the RMSD.64,65 Finally, all structures are transformed from .xyz into .mol2
format using OpenBabel.66

Br

Zn

R1
R2

Cl

A B

Figure 3.2: The bromine reactants A and the organozinc reactants B are shown. The
molecules are each aligned by the three atoms marked in green.

4) calculate grid After the conformers for the three main reactants
(bromine reactant, organozinc compound, and catalyst ligand) are aligned, a
spherical grid is calculated for each reactant group. These homogeneous grids
enclose the conformers with an additional 3 Å buffer and are calculated using
the ccheminfolib package.34,62

5) calculate aso The next step is to calculate the ASO descriptor for
each one of the molecules. This is also done using the the ccheminfolib
package34,62 and the prior calculated associated grids. For each compound
group the same grid has to be used to ensure that the number of grid points
(features) is always the same.b In a last step, the ASOs of the three main
reactants of a reaction are concatenated. For these concatenated ASOs it

a The Wigner sampling approach does not produce real conformers as explained in Section 2.2.
b The input vector of a ML model has to have the same length for every sample.
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is specifically important to, while aligning, ensure the same orientation of
compounds within each of the three reactant groups.

6) feature reduction The concatenated ASOs are already in the correct
shape to operate as input for a ML algorithm, but due to the nature of the
ASO each reaction sample can have hundreds of thousands of features with a
large amount of them being zero. Therefore, a feature reduction, the principal
component analysis (PCA), is performed. The PCA is a linear dimensionality
reduction using singular value decomposition (SVD) of the data to project
it to a lower dimensional space and is implemented in scikit-learn.67 Before
the feature reduction can be performed, the data set is split into training and
validation set. The training set is used for training the ML models, while
the validation set is used for evaluating them. The feature reduction is fitted
only to the training set and then used to transform training and validation set
separately. This is important so that the validation set is not biased towards
the training data and the feature reduction can subsequently be applied to an
unknown set of data for screening purposes. In this work, the validation set
is used for testing purposes and no separate test set is used due to the small
amount of data available.

7) training and validation The reduced training set is then used to
train multiple ML algorithms. A feed forward NN with BOHB hyperparameter
optimization is trained as well as a SVR model with grid search hyperparame-
ter optimization and a RFR model. The validation set is used to compare the
performance of different models, which is further discussed in Section 4.2.1.

8) predictions To predict the ee for unknown reactions the steps 1) to
3) have to be repeated for unknown reactants. Step 5) is repeated using the
previously calculated grids from the training data, subsequently in step 6) the
already calculated PCA model is applied to the data. Finally the unknown
reactions can be tested using the trained ML models from step 7).

3.3 Computational Details

The 2D to 3D conversion and geometry optimization using Chem3D is au-
tomized using AutoIt v3.63 It is a freeware BASIC-like scripting language
designed for automating the Windows GUI and is used, because the in-house
scripting language ChemScript of the ChemOffice package does not support
the performed task. The geometry optimization is performed by minimizing
the energy with the Chem3D MMFF limited to 2000 iterations and otherwise
default parameters.

The conformer search was carried out with an 7 kcal/mol energy window
using crest51 version 2.6.3 with the iMTD-GC (RMSD) algorithm.52,53 The
Conformer-Rotamer Ensemble Sampling Tool, crest, is an utility program
for the xtb program.44,46,68 The xtb version 6.1.3 is used with crest and for
preliminary calculations for the Wigner sampling. The Wigner sampling for
10 initial geometries is performed using the wigner.py script implemented in
SHARC.48 The Kabsch algorithm for the conformer alignment is implemented
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in Python and the subsequent conversion from .xyz to .mol2 format is executed
using OpenBabel.66

For the ASO calulation the ccheminfolib34,62 package is used. First, the
grid is calculated with 0.5 Å and 1.0 Å grid spacing, which is compared in
Section 4.1.1. Then the ASO is calculated using the obtained grids. The cchem-
infolib34,62 package is modified for these calculations. The van der Waals
radii of zinc (2.12 Å69) and iron (1.98 Å69) are included in the cchemlib/atom-
types.py file. Additionally the cdesclib/calculator.py is changed to make the
ASO calculation of the fine 0.5 Å grid possible with a reasonable amount of
RAM access. The process of calculating the average over all conformers needs
to be changed to be more RAM efficient compromising for performance.

The feature reduction using PCA is applied using the implementation in
scikit-learn.67 The 451,477 features of one reaction mixture are reduced to
150 features with a variance of close to 100 %, depending on the splitting in
training and validation data set.

The NN is implemented using Keras70 with a Tensorflow71 backend. The
BOHB61 hyperparameter optimization is performed using HpBandSter61 with
a budget of 9 to 81 epochs,c a batch size of 5 samples, and 396 iterations. The
fixed architecture of the NN is an input layer with 150 nodes (determined
by the feature reduction) and an output layer with 1 node (for the ee) and
ReLU activation function. The learning rate is optimized with BOHB61 in the
range of 1× 10−6to 1× 10−2 and the optimizer is Adam or SGD (momentum:
0.0–0.99). The number of hidden layers is optimized from 2 to 5 with 1–
100 nodes each, a dropout of 0.0–0.6 between each layer, and the activation
function being ReLU, ELU, SELU, softmax, softplus, sigmoid, or softsign. The
hyperparameter search resulted in a NN architecture of 3 hidden layers, with
68 nodes and ReLU activation, 20 nodes and ReLU activation, and 25 nodes
and softsign activation, respectively. The dropout after each of these hidden
layers was 0.140, 0.486, and 0.388, respectively. The optimizer is chosen to be
Adam with a 1.583× 10−3 learning rate.

The SVR and the corresponding grid search hyperparameter optimization,
as well as the RFR model with 200 estimators, are implemented using scikit-
learn.67 The SVR grid search is performed with linear, radial basis function
(RBF), and polynomial kernels (second- and third-order polynomials) for
the penalty parameter of the error term C = [0.0001,0.001,0.01,0.1,1,10]
and for ε = [0.01,0.1,0.5,1,2]. The grid search for all kernels resulted in the
hyperparameter ε = 0.01 and furthermore in C = 0.001 for the linear, C = 1.0
for the RBF, and C = 0.01 for the two polynomial kernels. Ten replicate runs
are performed for each ML model.

c Epochs = Number of times the whole training set is used in the process of training the model.
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In this chapter, the workflow described in Section 3.2 is applied to a set
of 190 reactions with known ee and predictions are made for 20 reactions
with unknown ee. First, in Section 4.1, the ASO descriptor is compared
for two different types of geometry sampling methods and furthermore the
construction of concatenated ASOs for reaction mixtures is described. Second,
in Section 4.2, different ML algorithms used for predicting the ee are validated
and compared. Additionally, the ee predictions made for the set of 20 unknown
reactions are discussed. Finally, in Section 4.3, the limitations of the proposed
workflow are explained.

4.1 Descriptor Calculation

To calculate the ASO descriptor a set of geometries that represents the steric
environment is necessary for each molecule. To obtain this set of geometries,
there are a range of methods. These methods include mode-following methods,
like Wigner sampling, or conformer searches at different levels of theory. The
following compares the two different methods used and shows how the ASO
is utilized for reaction mixtures.

4.1.1 Wigner Sampling versus crest Conformer Search

The first method used to generate a set of geometries is Wigner sampling. It is
preceded by a geometry optimization and frequency calculation with xtb and
therefore promises fast results. The method is used to sample just the catalyst
ligands of the reaction and not the reactants. Using the Wigner sampling,
the ASO is tested for the first time to confirm that it is able to capture the
correct properties responsible for predicting the ee. Even though the Wigner
structures are not real conformers and only the ASO of the catalyst ligand
is used as input for the ML model, the algorithm already predicts ee values
better than random, which can be seen in Figure 4.1. The predictions for 27
test samples are calculated with a NN with ReLU activation, dropout rate
of 0.0522, Adam optimizer with a learning rate of 0.0006, 20 epochs, and
4 hidden layers with 3, 4, 63, and 16 nodes, respectively. In Figure 4.1 the
absolute errors of the test predictions are compared to the errors of random
predictions and of a uniform prediction, with the uniform value being the
average of the observed ee of the test samples. Clearly, the errors of the random
predictions have the highest values, followed by the uniform prediction, and
then the test prediction with the overall lowest errors. This shows that there
is a correlation between the ASO and the ee values.

With that in mind another method to sample real and optimized conformers
and rotamers is wanted. The typical compromise between accuracy and
computational cost leads to the use of the semiempirical iMTD-GC algorithm
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Figure 4.1: Plot of the absolute error of the enantiomeric excess from test predictions,
from randomly predicted values, and from a uniformly predicted value (equaling the
average of the observed ee) against 27 test samples.

implemented in crest. Using the example of the ligand PHOX2a the Wigner
sampling is compared to the crest conformer search.

The ligand can be seen in Figure 4.2 as structural formula and in 3D with
the surfaceb of the molecule pictured as a mesh.

P
N

O

(a) Structural Formula (b) Surface Plot

Figure 4.2: Structural formula and a three-dimensional plot with the surface picture
by a mesh of the ligand PHOX2.

a All molecules and their labels can be seen in Figures A.1 to A.7 in the Appendix.
b The surface pictured is the Connolly or solvent-excluded surface.
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Figure 4.3 shows the aligned geometries for both described methods. While
the 10 Wigner geometries (Fig. 4.3a) mainly show deviations for the hydrogen
atoms, the 154 crest conformers and rotamers (Fig. 4.3b) clearly occupy a
wider range of space. The number of crest conformers and rotamers is, de-
pending on the ligand, between 7 and 9,915. It is important to gain knowledge
about the occupied space as the steric hindrance of the ligand is proposed to
be (at least partially) responsible for the induction of the enantioselectivity in
the transmetalation transition state of the Negishi cross-coupling. Therefore,
the steric information of all molecules, including the reactants, involved in
the transmetalation complex are of interest for the ML algorithm and should
be represented in the descriptor (see Section 4.1.2).

(a) Wigner Sampling (b) crest Sampling

Figure 4.3: Geometries obtained from Wigner sampling (a) versus the conformer-
rotamer-ensemble obtained from crest (b) of the ligand PHOX2.

To investigate the ASO of PHOX2 further, it is plotted in three dimensions
in Figure 4.4. Figure 4.4 exemplarily shows the ASO for the crest sampling
with a 0.5 Å grid spacing, which is the method that is used throughout the
following work. For clarity, only the ASO values greater than 0.5 are plotted
in Figure 4.4a and only values greater than zero are plotted in Figure 4.4b.
The whole spherical grid, including the regions that are zero, can be seen in
Figure A.8 in the Appendix. In general, regions with a darker color express
a rigid part of the molecule, whereas lighter parts show the flexible regions
that are occupied less often by the conformers. Figure 4.4a is plotted to show
the regions that are occupied in more than half of the conformer structures.
This plot can be related to the surface plot in Figure 4.2b and also to the van
der Waals structure of PHOX2 in Figure 4.4c. The three six-ring structures
on the left, front, and bottom of the surface plot are reflected on the same
positions in the ASO in Figure 4.4a. While these rings are more rigid and
therefore darker in color, the right side seems incomplete. The missing part
is the five-ring of the structure, which can only be seen in Figure 4.4b on the
right side, where additionally lower ASO values are plotted. The plot shows
that the five-ring is rather flexible, as well as the six-ring in the front.

After the ASO calculation, the 3D grid (see Fig. 4.4) is unfolded to form a
vector (see Fig. 4.5), which can be used as ML input. The vector can then be
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(a) ASO ≥ 0.5

(b) ASO > 0

(c) Van der Waals plot

Figure 4.4: Van der Waals plot and three-dimensional plot of the non-zero parts of
the ASO of PHOX2. The total grid including ASO = 0 can be seen in Figure A.8 in the
Appendix.
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plotted against the (grid point) index, which is shown for PHOX2 in Figure 4.5
to compare the Wigner sampling to the crest conformer search. The figure
only shows the non-zero interval of the ASOs. The Wigner sampling ASO for
1.0 Å grid spacing (Fig. 4.5a) mainly has values of either one or zero, which
means the grid points are either always or never within the van der Waals
radius of the conformer atoms, corresponding to very similar geometries. The
similarity of the structures can be confirmed by Figure 4.3a. In comparison,
the ASO of the crest conformers (Fig. 4.5b and 4.5c) shows more variability in
the conformers with its frequent values within the interval 0 < ASO < 1. This
variability can also be seen in Figure 4.3b. The ASO of the crest conformers is
calculated for two different grid spacing sizes. Figure 4.5b is calculated with a
1.0 Å grid spacing, like Figure 4.5a, while Figure 4.5c uses a finer 0.5 Å grid
spacing. A finer grid spacing of 0.5 Å enables the ASO to capture even smaller
variations among the conformers. These small variations might induce the
enantioselectiviy of the catalyst and are therefore important for capturing the
reactivity. The grid point indices of Figure 4.5a and 4.5b are different, even
though the same grid spacing is used, because less ligands are used for the
Wigner test and the ligands are not all oriented in the same way as explained
in Section 3.2.c

Concluding, the ASO is able to capture the differences in steric information
of both sampling methods, Wigner and crest. To capture the steric environ-
ment of a molecule correctly and sufficiently the ASO needs to be supplied
with a rather extensive conformer-ensemble and should be calculated with a
suitable grid spacing. In the following work the crest conformer search with
a 0.5 Å grid spacing is used.

4.1.2 Concatenated ASOs

To clarify, the input of a ML algorithm generally has to have the same di-
mensions for all samples used for training, validation and testing. For the
ASO, this requirement is ensured by generating a grid that is big enough
to fit even the largest molecule and using this grid for calculating the ASO
of all molecules. In the case of Negishi coupling reactions the three main
components important for the reaction are the organozinc compound, the
bromine reactant and the ligand of the palladium catalyst. The ASOs are
calculated for every reactant of a sample reaction separately. The obtained
ASOs are then simply concatenated to represent the reaction mixture. The
ASOs for concatenating should therefore always be in the same order and the
molecules should all be aligned as explained in Section 3.2. This ensures, that
the part of the molecule important for the reaction is always in the exact same
spot of the grid. In principal the spherical ASO is rotation invariant and the
orientation of the molecules should not matter, but it is definitely not rotation
invariant, when multiple ASOs are concatenated. In general, the same grid
can be used for calculating the ASOs for all reactants, but the bromine and
organozinc reactants are all smaller and less bulky, compared to the ligands.
Hence, the decision is made to use a separate grid for every reactant group to
save computational time. Thus, the bromine reactants have a grid of 41,472

c The phosphor atom is not translated to the origin and the three neighboring atoms are not
aligned for all structures. The conformers of a single molecule are nevertheless aligned.
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Figure 4.5: Plots of the ASO of the ligand PHOX2 (see Fig. 4.2) against the grid point
index. The plots are zoomed in to mainly show the non-zero parts of the descriptor.
The ASO is calculated from:
(a) Wigner sampling and 1.0 Å grid spacing,
(b) crest conformer search and 1.0 Å grid spacing, and
(c) crest conformer search and 0.5 Å grid spacing.
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points, the organozinc compounds have 37,260 grid points, and the ligands
have the biggest grid with 372,745 points.

In the following, the concatenated ASOs of three different reactions are
exemplarily investigated and compared. First, three different ligands MI16,
CAT2, and PPSF17d are chosen and the three-dimensional ASO of the ligands
is compared in Figure 4.6. Just by looking at the size of the plots, the size
difference of the ligands becomes apparent. Additionally, ligand MI16 is more
rigid as ligands CAT2 and PPSF17, which can be seen from the color difference.
The ASO of MI16 shown in Figure 4.6a is able to represent the structure of
the molecule with the two rather rigid methyl groups on the left side and
two more flexible ring structures on the right. Contrary to that, the ASOs
of the ligands CAT2 and PPSF17 (Fig. 4.6b and 4.6c) show almost spherical
structures with mostly light regions, representing very flexible molecules.e

This is due to the flexible tert-butyl groups, which can be seen in the Appendix
in Figure A.3 for PPSF17 and Figure A.5 for CAT2.

Three reactions using the three chosen catalyst ligands are shown in an
oversimplified manner in Figure 4.7. The first reaction (Fig. 4.7a) is chosen
to show the concatenated ASOs of one of the smallest ligands. The other two
reactions (Fig. 4.7b and 4.7c) involve rather big ligands that have quite similar
structures.

Finally, the ASOs of the three reaction mixtures are plotted against the grid
point index in Figure 4.8. Every of the plots in Figure 4.8 corresponds to one
of the reactions from Figure 4.7 with grid point indicies from 0 to 41,471 rep-
resenting the bromine reactant, indicies from 41,472 to 78,731 representing
the organozinc compound, and indicies 78,732 to 451,476 representing the
ligands. Comparing Figure 4.8a to Figures 4.8b and 4.8c, the ASO clearly
captures the already mentioned size difference of the ligands by spreading
over a larger part of the grid. Even though the ligands of Figures 4.8b and
4.8c are similar in structure, differences can also be seen in the ASO. Even
structural changes as little as the substitution of a proton to a CF3 group can
be seen, when comparing the organozinc compound of Figures 4.8a and 4.8c
to Figure 4.8b.

This shows, that the ASO is really able to capture small differences in the
steric environment of a molecule and can be used for a single molecule as
well as all reactants of a sample reaction. Nevertheless, the alignment of the
conformers is crucial for a reasonable ASO calculation.

d All molecules and their labels can be seen in Figures A.1 to A.7 in the Appendix.
e Flexible molecules at least on the outside, when the phosphor atom is in the center.
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(a) MI16

(b) CAT2

(c) PPSF17

Figure 4.6: Three-dimensional plot of the ASO of the three different ligands, MI16,
CAT2, and PPSF17. For clarity, the zero values are not plotted.
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(c) Reaction NAD102_NAD201_PPSF17

Figure 4.7: Three simplified examples of reactions used for training the ML models.
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Figure 4.8: The concatenated ASOs plotted against the grid point index [0,451476],
showing the reaction mixtures of Figure 4.7. The plot is colored according to the type
of reactant it represents (blue: bromine reactant, red: organozinc compound, black:
catalyst ligand).
(a) Reaction mixture NAD102_NAD201_MI16
(b) Reaction mixture BR3_NAD202_CAT2
(c) Reaction mixture NAD102_NAD201_PPSF17
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4.2 Enantiomeric Excess Prediction with Machine Learning

This section consists of two parts. In the first part, the different ML algorithms
that are used are compared, while in the second part predictions for 20
unknown reactions are discussed. It should be noted again that the training
data set used in this thesis is not large enough for the algorithms used, since
no data from QC is available yet. Nevertheless, the section is written as if
the training set was sufficient, which means that a functioning workflow is
implemented, but the results should be interpreted carefully.

4.2.1 ML Model Evaluation and Comparison

It is common practice in ML to set up multiple different models, train them,
evaluate them, and in the end only choose the best performing model, which
is then used for predictions. In this work six different models are trained and
evaluated on a set of 190 data points. Four of them are SVR models with
linear, 2nd and 3rd degree polynomial, and RBF kernel functions. The other
models are a RFR model and a NN. Each of the models is trained on a set of
152 training data points and evaluated using the remaining 38 validation data
points. The procedure is done several times for different splits of the data
in training and validation set. This k-fold cross-validation is used to detect
overfitting and selection bias caused by the split. Additionally, it gives an
insight in how the model will generalize on an unknown, independent data set.
The best performing model should then be tested again on an unknown testing
set and can finally be used for predicting novel data. In this work, the best
performing model is not tested again as for the lack of training data, but the
six mentioned models are compared and additionally all used for predictions
in Section 4.2.2. More than just one model is used in order to benefit from
statistics as the data set used is insufficient for providing a satisfactory ML
model.

For all models, a 10-fold cross-validation is performed and the averages
over the ten replicate runs of the MAE and the coefficient of determinationf

R2 are reported in Table 4.1. The R2 score equals one for the perfect model,
zero for a model predicting random numbers, and below-zero for arbitrarily
worse models. Additionally, the error of the R2 score is noted to show the
stability of the model in terms of generalizability. The model with the least
variability in performance and therefore the lowest error is the most stable
model.

The lowest and therefore best MAE of 0.124 is obtained for the SVR model
with RBF kernel. The worst model in terms of MAE is the RFR model with
0.146. The highest and therefore best R2 score of 0.593 is obtained also for
the SVR model with RBF kernel with an error of 0.036. The worst model in
terms of R2 score is the NN with 0.454 and an error of 0.049. The error as an
indicator for the stability of the model shows the RFR model to be the most
stable model with a value of 0.026 and the linear kernel SVR to be the most
unstable one with a value of 0.059.

For the SVR models, the hyperparameters of every fold of the 10-fold cross-
validation are reported to be ε = 0.01 and C = 0.001 for the linear, C = 1.0

f The coefficient of determination is also called regression score function.
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4.2 enantiomeric excess prediction with machine learning

Table 4.1: Average Mean Absolute Error (MAE) and average coefficient of determina-
tion R2 for 10 replicate runs of support vector regression (SVR) models with linear,
2nd and 3rd degree polynomial (POLY2, POLY3), and radial basis function (RBF)
kernel functions, of a random forest regression (RFR) model, and a neural network
(NN).

Model MAE R2

SVR_linear 0.135 0.532 ± 0.059
SVR_POLY2 0.136 0.517 ± 0.042
SVR_POLY3 0.127 0.573 ± 0.045

SVR_RBF 0.124 0.593 ± 0.036
RFR 0.146 0.526 ± 0.026
NN 0.135 0.454 ± 0.049

for the RBF, and C = 0.01 for the two polynomial (POLY2, POLY3) kernels,
respectively. The MAE is the lowest with 0.124 and therefore best for the SVR
model with RBF kernel, while the SVR model with 2nd degree polynomial
kernel performs the worst with an MAE of 0.136. The R2 score is the best for
the SVR model with RBF kernel with 0.593 and the worst for the SVR model
with 2nd degree polynomial kernel with 0.517. The most unstable SVR model
is the one with linear kernel.

Compared to the SVR models, the RFR model performs worse in terms of
MAE and also the R2 score is rather low with 0.526. The error nevertheless
indicates a more stable model.

For the NN various different hyperparameter searches for different splits of
training and validation data and different random numbers initializing the
weights of the NN are performed with a different resulting hyperparameters
each time. Finally, one of the architectures (reported in Section 3.3) is used for
the 10-fold cross-validation. The difference to the previous models is that the
NN is trained on 81 epochs, which means the training data set is used 81 times
in the process of training. The weights of the NN are initialized randomly and
using the available training set just once is not enough for training the weights
sufficiently. The learning curve for such a process can be seen in Figure 4.9
showing the MSE against the number of epochs. One can clearly see that the
MSE during the first 10 epochs decreases drastically. After 10 epochs, there is
on average hardly any change for the validation MSE. The plot of the learning
curve additionally enables to flag if a model is overfitting. If the validation
curve starts to increase, while the training curve is decreasing the model is
overfitting in favor of the training data. This cannot be seen here. The MAE
and the R2 score are reported in Table 4.1. The MAE with 0.135 is reported to
be mediocre, similar to the SVR model with linear and 2nd degree polynomial
kernel, while the R2 score with 0.454 is lower than all previously reported
values. This makes the NN one of the worst reported models just from looking
at the MAE and the R2 score. The model does perform the best for the data
split that is used in the hyperparameter search, but fails drastically for other
data splits. This phenomenon of overfitting can also be seen in the R2 error of
0.049.
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Figure 4.9: Plot of the learning curve of the neural network. The Mean Squared Error
(MSE) is plotted against the epochs for the training and the validation set.

On top of evaluating the MAE values and the R2 scores the models are
evaluated visually. In Figure 4.10 the observed ee of the training and validation
set is plotted against the predicted ee of the model for the best replicate
run. Figure 4.10 confirms again, that the 190 data samples are not sufficient
to satisfactorily solve the ML problem. The plots for the SVR model with
linear (Fig. 4.10a) and 3rd degree polynomial kernel (Fig. 4.10c) show an
unsatisfactory prediction of the training as well as the validation set, while
the other two SVR models (Fig. 4.10b and 4.10d) show an almost perfect
prediction of the training set with large errors for the validation set. Even
though the SVR model with RBF kernel is the best model from analyzing
the MAE and R2 score, it seems to overfit in favor of the training data and
struggles to predict the independent validation set. The RFR model (Fig. 4.10e)
has similar validation performance to the SVR models, but shows deviations
for the prediction of the training set. Contrary to the MAE and R2 score
evaluation the plot of the NN predictions looks the best. While the NN has
drastic problems predicting ee values from 0.0 to 0.6, it is sufficiently exact
for ee values above this threshold. However this is not a huge problem for the
used system. To recap, the goal is to find reactions with a high ee and therefore
products that are as enantioenriched as possible. Hence, the reactions with
low ee do not need to be as exact as they are not of interest anyway. The more
interesting data is the high selectivity data from values 0.6 and up, which is
eligible for validation by experiments.

Figure A.9 in the Appendix shows the plots containing the data of all 10
runs and the same trends as in Figure 4.10 can be seen: None of the models is
sufficiently exact in predicting the ee. The predictions for ee values below 0.6
are especially bad for all models, while an accumulation of correctly predicted
values above 0.6 can be observed. In particular, the predictions of 0.0 ee seem
to exceed the abilities of the ML models.
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Figure 4.10: Plots of the observed ee of the training and validation set against the
predicted ee for the the best run of each of six different models. All 10 replicate runs
can be seen in Figure A.9. The model are support vector regression (SVR) models with
linear, 2nd and 3rd degree polynomial (POLY2, POLY3), and radial basis function
(RBF) kernel functions, a random forest regression (RFR) model, and a neural network
(NN).
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The problem of predicting low ee values arises probably from the lack of
data and the use of only one descriptor. While the ASO descriptor is able to
capture steric information, it completely lacks any electrostatic background.
Taking electronic descriptors additionally into account is planned for the
future.

4.2.2 Enantiomeric Excess Prediction for Unknown Reactions

In this section, ee predictions are reported for a set of 20 unknown reactions.
The set of reactions was determined in collaboration with the experimentalists
and can be seen in Figure 4.11. The ligands of the reactions are shown in Fig-
ure A.10 in the Appendix. Ligands TEST13 to TEST20 are taken from the work
of Wang et al.72 The decision to use the same organozinc and bromine reactant
for all ligands is made, because the combination of NAD102 and NAD201 is
the most commonly used one in the experimental data and therefore the best
represented one during the training of the ML models. All predictions made
in the following are speculative.

NAD102 NAD201

Br
ZnCl

O

O

O

O

Ligand: TEST1-20

Figure 4.11: Basic reaction scheme of the unknown reactions used to predict the
enantiomeric excess. The ligands TEST1 to TEST20 are pictured in Figure A.10.

In the following, predictions are made with the six previously used models
of SVR with linear, 2nd and 3rd degree polynomial (POLY2, POLY3), and RBF
kernel functions, the RFR model, and the NN. The average of the predictions
over 10 replicate runs is given in Table 4.2 for every model. The average
predictions for the ee vary from 0.000 to 0.519 for all ligands and all models.
This is the region of predictions that is determined in Section 4.2.1 to be
insufficiently predictable by all used models. Nevertheless, the predictions
are discussed. The reactions mixtures in Table 4.2 are given in the order that is
predicted by all SVR models as well as the RFR model. Which means that the
reaction mixture with ligand TEST1 has the lowest ee and the reaction mixture
with ligand TEST12 the highest ee. Only the NN predicts a different order
of reaction mixtures with ligand TEST13 having the lowest ee and TEST16
having the highest ee.

To recap, non of the tested reactions seems to be in the desired range of ee
values that are of interest for further research. Additionally all of the ligands
are predicted in a range, where the models are insufficient, which makes the
predicted ee values imprecise. Nevertheless, it would be interesting to have
the reactions with ligands TEST1, TEST12, TEST13, and TEST16 validated by
experiments, as they are predicted to have the highest and lowest ee values
of the SVR, NN, and RFR models. Especially TEST13 is of interest as it is the
lowest predicted ee for the NN, but the second highest value for the SVR and
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Table 4.2: Average predictions for the enantiomeric excess of unknown reactions over
10 replicate runs. The names of the reaction mixtures are shortened by NAD102_-
NAD201_... to just be naming the corresponding ligand TEST{...}.

Reaction Mixture SVR RFR NN
linear POLY2 POLY3 RBF

TEST1 0.030 0.055 0.033 0.118 0.197 0.155
TEST3 0.051 0.081 0.109 0.131 0.209 0.224
TEST2 0.079 0.104 0.122 0.135 0.218 0.224
TEST5 0.107 0.118 0.129 0.139 0.225 0.225
TEST4 0.120 0.138 0.139 0.142 0.235 0.109
TEST7 0.138 0.152 0.144 0.145 0.238 0.216
TEST6 0.149 0.159 0.153 0.147 0.243 0.227
TEST9 0.160 0.169 0.162 0.151 0.247 0.258
TEST8 0.177 0.173 0.171 0.155 0.252 0.040

TEST20 0.199 0.182 0.178 0.161 0.255 0.134
TEST19 0.214 0.189 0.189 0.166 0.260 0.127
TEST18 0.227 0.195 0.199 0.173 0.264 0.080
TEST15 0.245 0.202 0.206 0.185 0.268 0.032
TEST14 0.260 0.205 0.210 0.199 0.273 0.016
TEST17 0.274 0.212 0.215 0.199 0.277 0.005
TEST16 0.306 0.225 0.223 0.200 0.283 0.519
TEST11 0.323 0.233 0.230 0.201 0.290 0.316
TEST10 0.338 0.249 0.239 0.203 0.298 0.020
TEST13 0.359 0.281 0.245 0.204 0.307 0.000
TEST12 0.386 0.359 0.280 0.314 0.317 0.298

RFR models. Also ligand TEST16 is very interesting as it is the only ligand,
where the ee is never predicted to be 0.0 for all 10 runs of the NN. All other
ligands are at least once predicted to have zero ee by the NN.

4.3 Limitations

The goal of this section is to discuss the limitations of the presented workflow,
which should be kept in mind for further development.

The first limitation of the workflow is the prediction of the ee itself. The ee
is not a distinct value. It can for example be 50 % for a 75:25 mixture of (R)-
to (S)-enantiomer, but it is also 50 % for a 25:75 mixture. In principle it would
make more sense to predict excatly this enantiomeric ratio (er) of the (R)- to
the (S)-enantiomer to be able to easily confirm which enantioenriched mixture
the reaction produces. This idea breaks down, because of the experimental
data provided. The experimentalists do in fact measure the er by HPLC, but
they cannot assign the signals to the corresponding enantiomers without
additional elaborate experiments. This is the reason why the ee is used instead
of the er. Nevertheless, there are some reference experiments in the literature
that can be used to assign the favorable enantiomer.
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Another limitation lies in the way the conformers are aligned for the cal-
culation of the ASO. In the current in-house implementation of the Kabsch
algorithm the catalyst ligands have to have at least one phosphor atom that has
three binding partners. Also the other two reactants of the reaction mixture
need to have the marked atoms pictured in Figure 3.2. These limitations of
the implementation can easily be changed if needed, which is not necessary
for the provided data set. Additionally, the integration of other ligands apart
from phosphor based ones is not foreseen for this work. A limitation that
cannot be changed so easily is that ligands with two or more phosphor atoms
are aligned randomly by one of the two phosphor atoms. It is not certain,
which of the phosphor atoms actually bonds to the palladium center forming
the catalyst complex. Therefore, the correct phosphor atom for the alignment
cannot be identified. The approximation of using a random phosphor atom
is sufficiently exact in this work as almost all of the affected molecules are
symmetric.

A third limitation is the ASO as a descriptor. On the one hand the ASO
is able to capture the steric environment of a molecule, on the other hand
it neglects the influence of the elements within the molecule (except for the
different van der Waals radii). Hence, one could possibly obtain the same ASO
and therefore the same prediction, by exchanging atoms with similar van der
Waals radii. It is the user’s responsibility to provide reasonable geometries for
the calculation and choose a suitable grid spacing. A real disadvantage of the
ASO is that the grid used for the calculation has to be the same for training
and validation. Consequently, the test molecules cannot be arbitrarily bigger
than the molecules used for training, as they have to fit into the same grid.
Of course a bigger grid can be used, if the test molecules are known prior to
training.
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C O N C LU S I O N & O U T LO O K 5
In this thesis, the first steps in developing a high throughput screening work-
flow for predicting the enantiomeric excess (ee) of Negishi cross-coupling
reactions are made. Negishi couplings are important C-C bond forming or-
ganic reactions that can be used as a tool for preparing stereoselective complex
organic molecules. The need for stereoselective reactions arises from the dif-
ferent pharmacodynamic and -kinetic properties of enantiomers, which can
be critical for the use of such enantiomers as drugs. To determine the optimal
setup for reactions maximizing the ee and to ideally obtain an enantiopure
product, a lot of experiments have to be carried out varying the reaction pa-
rameters. Machine learning (ML) can be a useful tool in automatizing this
process and enabling a high throughput screening method for determining
the optimal reaction parameters.

This work used experimental data of 190 Negishi coupling reactions to
implement a fundamental workflow also applicable to larger sets of data. The
workflow includes the generation of a conformer-rotamer-ensemble for every
reactant capturing the steric environment, which is then represented by the
Average Steric Occupancy (ASO) descriptor. Additionally it includes the setup
of different ML algorithms, such as a neural network, random forest regression,
and support vector regression models, to predict the ee. While the workflow in
general is functioning, the results of the predictions are still insufficient. For a
significant improvement of the model several further studies are required.

First, the generation of a larger training set enabled by a quantum chemical
study of the reaction mechanism is required, which is currently work in
progress in the group.

Second, another descriptor capturing the electrostatics might be necessary.
This is indicated by the models inability to predict zero ee, even though
reactions with zero ee are contained relatively often in the training set. For
example, Denmark and co-workers additionally to the ASO descriptor used
electronic descriptors derived from the perturbation that a catalyst substituent
exerts on the electrostatic potential map of a quaternary ammonium ion.34

This approach is not applicable in this work, as the ligands used do not differ
just by substituents on a core structure, but cover a larger volume of the
chemical space (see Figures A.1 to A.5 in the Appendix). Another grid-based
descriptor, similar to the ASO, capturing electronic properties is wanted. The
introduction of new descriptors will induce the need to adapt the feature
reduction.

Third, the conformer space of every molecule is excessively sampled by
the crest conformer search algorithm. This leads to a large database of over
260,000 ligand conformer structures for around 130 different ligands in total
that all need to be considered, when calculation the ASO descriptor. The
pure amount of structures is challenging in terms of RAM accessibility and
computational costs. Possibilities to reduce the computational effort could be
to only consider the conformers of the crest sampling (and not the rotamers)
or reduce the energy window for the generation of conformers. Benchmarking
regarding these two options is necessary.
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conclusion & outlook

Fourth, the generation of a large database of reactions is required. This
database is on the one hand required for the generation of more training data
via the quantum chemical study and on the other hand for the high through-
put screening, which is the ultimate goal. Currently the database of reactions
is composed of the 190 experiments as well as 20 hypothetical test reactions
that were designed in consultation with the experimentalists. The future goal
is to develop a tool that is able to generate an extensive database especially
for the catalyst ligands. This goal can be achieved in different ways. In the
work of Denmark and co-workers a general core structure for the catalyst is
complemented by synthetically feasible substituents obtained from a database
of readily available commercial sources or fragments that required no more
than four well-established synthetic steps. The substituents are chosen by
surveying catalogs of reagents that are compatible with the reaction conditions
necessary to install the substituents and are in silico added to the predefined
core structures using python scripts.34 Gómez-Bombarelli et al. generated a
database of 1.6 million candidates for OLED materials using in-house soft-
ware relying on the RDKit package73 by starting from a pool of fragments.
These fragments are combined following a defined recipe and the resulting
structures are pre-screened by a list of disallowed substructures, a synthetic
accessibility score, and after the ML process the most favorable materials are
rated by experimentalists on feasibility.31 Lilienfeld and Corminboeuf in their
work used a database with Simplified Molecular Input Line Entry System
(SMILES) formats of 91 ligands in combination with six transition metals
to form a database of catalysts (each with two ligands).33 Generally there is
a range of different formats and possibilities to generate a larger database,
but some kind of chemical knowledge is necessary to choose core structures
and substituents for ligands, the fragments composing the molecules, or the
ligands of the catalysts at all.

Finally, the ML models might need to be adapted depending on their per-
formance on more data and descriptors, but in general the implemented
hyerparameter search and proposed models should be able to process these
changes. Of course, there is a range of different ML algorithms that is not
tested in this work and might be able to perform better on the presented
training data.

Concluding, there is still a lot to be studied to reach the goal of predicting
the ee of Negishi cross-coupling reactions with palladium catalysts just by the
reactants and catalysts from a large database. Nevertheless, the first step in
developing a high throughput screening method is made.
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Figure A.1: Ligands CPPSF{1-19}.
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Figure A.2: Ligands CPPSF{20-27}, MI{3,6-10,12-17,20-22}, and PPSF{1-4}.
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Figure A.3: Ligands PPSF{5-22} and PA{1-10}.
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Figure A.4: Ligands PA{11-20,23}, PP{20-29,31-33}, and PHOX{1-11,13-15}.
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Figure A.5: Ligands PHOX{16-28,31-35} and CAT2.
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Table A.1: Reaction mixtures and corresponding experimental enantiomeric excess
values provided by the Maulide group.30 The molecule labels correspond to Fig-
ures A.1 to A.7.

Reaction Mixture Enantiomeric Excess

BR1_NAD201_CAT2 0.79
BR2_NAD201_CAT2 0.10
BR3_NAD201_CAT2 0.68
BR4_NAD201_CAT2 0.70
BR5_NAD201_CAT2 0.76
BR6_NAD201_CAT2 0.66
BR7_NAD201_CAT2 0.68
BR8_NAD201_CAT2 0.70
BR9_NAD201_CAT2 0.00
BR10_NAD201_CAT2 0.00
BR11_NAD201_CAT2 0.62
BR12_NAD201_CAT2 0.63
BR13_NAD201_CAT2 0.50
BR14_NAD201_CAT2 0.16
BR15_NAD201_CAT2 0.38
BR16_NAD201_CAT2 0.50
BR17_NAD201_CAT2 0.64
BR18_NAD201_CAT2 0.72
BR19_NAD201_CAT2 0.73
BR20_NAD201_CAT2 0.14
BR21_NAD201_CAT2 0.70
BR22_NAD201_CAT2 0.70
BR23_NAD201_CAT2 0.61
BR24_NAD201_CAT2 0.74
BR25_NAD201_CAT2 0.48
BR26_NAD201_CAT2 0.67
BR29_NAD201_CAT2 0.64
BR30_NAD201_CAT2 0.46
BR31_NAD201_CAT2 0.54
BR26_NAD201_CAT2 0.67
BR27_NAD201_CAT2 0.69
BR28_NAD201_CAT2 0.66
BR18_NAD202_CAT2 0.69
BR19_NAD202_CAT2 0.67
BR21_NAD202_CAT2 0.89
BR16_NAD202_CAT2 0.66
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BR11_NAD202_CAT2 0.75
BR35_NAD202_CAT2 0.23
BR26_NAD202_CAT2 0.80
BR5_NAD202_CAT2 0.50
BR4_NAD202_CAT2 0.68
BR8_NAD202_CAT2 0.66
BR6_NAD202_CAT2 0.67
NAD102_NAD202_CAT2 0.71
BR34_NAD202_CAT2 0.78
BR3_NAD202_CAT2 0.66
BR7_NAD202_CAT2 0.70
BR19_NAD203_CAT2 0.68
BR5_NAD203_CAT2 0.64
NAD102_NAD203_CAT2 0.66
BR1_NAD203_CAT2 0.78
BR20_NAD203_CAT2 0.23
BR21_NAD203_CAT2 0.67
BR16_NAD203_CAT2 0.54
BR34_NAD204_CAT2 0.69
NAD102_NAD204_CAT2 0.50
BR1_NAD204_CAT2 0.50
NAD102_NAD205_CAT2 0.62
NAD102_NAD206_CAT2 0.68
NAD102_NAD207_CAT2 0.70
NAD102_NAD201_PHOX1 0.76
NAD102_NAD201_PHOX2 0.64
NAD102_NAD201_PHOX3 0.12
NAD102_NAD201_PHOX4 0.50
NAD102_NAD201_PHOX5 0.51
NAD102_NAD201_PHOX6 0.00
NAD102_NAD201_PHOX7 0.11
NAD102_NAD201_PHOX8 0.56
NAD102_NAD201_PHOX9 0.07
NAD102_NAD201_PHOX10 0.20
NAD102_NAD201_PHOX11 0.20
NAD102_NAD201_PHOX13 0.72
NAD102_NAD201_PHOX14 0.57
NAD102_NAD201_PHOX15 0.40
NAD102_NAD201_PHOX16 0.62
NAD102_NAD201_PHOX17 0.58
NAD102_NAD201_PHOX18 0.61
NAD102_NAD201_PHOX19 0.49
NAD102_NAD201_PHOX20 0.08
NAD102_NAD201_PHOX21 0.32
NAD102_NAD201_PHOX22 0.39
NAD102_NAD201_PHOX23 0.42
NAD102_NAD201_PHOX24 0.00
NAD102_NAD201_PHOX25 0.34
NAD102_NAD201_PHOX26 0.00
NAD102_NAD201_PHOX27 0.15
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NAD102_NAD201_PHOX28 0.05
NAD102_NAD201_PHOX31 0.54
NAD102_NAD201_PHOX32 0.03
NAD102_NAD201_PHOX33 0.53
NAD102_NAD201_PHOX34 0.17
NAD102_NAD201_PHOX35 0.16
NAD102_NAD201_PA1 0.11
NAD102_NAD201_PA2 0.04
NAD102_NAD201_PA3 0.16
NAD102_NAD201_PA4 0.00
NAD102_NAD201_PA5 0.00
NAD102_NAD201_PA6 0.02
NAD102_NAD201_PA7 0.02
NAD102_NAD201_PA8 0.02
NAD102_NAD201_PA9 0.36
NAD102_NAD201_PA10 0.12
NAD102_NAD201_PA11 0.04
NAD102_NAD201_PA12 0.00
NAD102_NAD201_PA13 0.36
NAD102_NAD201_PA14 0.20
NAD102_NAD201_PA15 0.06
NAD102_NAD201_PA16 0.21
NAD102_NAD201_PA17 0.13
NAD102_NAD201_PA18 0.00
NAD102_NAD201_PA19 0.00
NAD102_NAD201_PA20 0.10
NAD102_NAD201_PA23 0.08
NAD102_NAD201_MI3 0.24
NAD102_NAD201_MI6 0.00
NAD102_NAD201_MI7 0.00
NAD102_NAD201_MI8 0.10
NAD102_NAD201_MI9 0.38
NAD102_NAD201_MI10 0.26
NAD102_NAD201_MI12 0.10
NAD102_NAD201_MI13 0.06
NAD102_NAD201_MI14 0.00
NAD102_NAD201_MI15 0.08
NAD102_NAD201_MI16 0.00
NAD102_NAD201_MI17 0.23
NAD102_NAD201_MI20 0.10
NAD102_NAD201_MI21 0.00
NAD102_NAD201_MI22 0.04
NAD102_NAD201_PP20 0.10
NAD102_NAD201_PP21 0.00
NAD102_NAD201_PP22 0.26
NAD102_NAD201_PP23 0.38
NAD102_NAD201_PP24 0.08
NAD102_NAD201_PP25 0.10
NAD102_NAD201_PP26 0.08
NAD102_NAD201_PP27 0.10
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Figure A.8: Three-dimensional plot of the ASO > 0 of PHOX2 with the outline of the
total grid in yellow in the background.
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Figure A.9: Plots of the observed enantiomeric excess of the training and validation
set against the predicted ee for six different models and 10 replicate runs.
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Figure A.10: Unknown ligands TEST1 to TEST20 of the reaction in Figure 4.11, which
are used for predicting the enantiomeric excess in Section 4.2.2.
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A B S T R AC T

The design of stereoselective reactions has traditionally been driven by trial
and error synthesis. The empirical nature of this approach can potentially be
accelerated by a high throughput screening workflow with machine learning.
This work proposes a workflow designed for the prediction of the enantio-
meric excess of Negishi cross-coupling reactions, which are important C-C
bond forming reactions with enantioselective potential. The workflow starts
with handling experimental data, generating a conformer-rotamer-ensemble,
transforming it with a descriptor to a machine readable format, and ends
with training and validating different machine learning algorithms. The used
descriptor is the Average Steric Occupancy (ASO), which represents the steric
environment of molecules. The ASO is further analyzed in the work and the
utilization of concatenated ASOs for reaction mixtures is discussed. Further-
more, different machine learning models, including neural networks, support
vector machines, and random forest regression models, are evaluated and
used for speculative predictions of the enantiomeric excess of novel reactions.
Finally the limitations of the workflow are investigated and plans for further
studies are proposed.
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Z U SA M M E N FA S S U N G

Stereoselektive Reaktionen werden traditionell durch Versuch und Irrtum
entwickelt. Der empirische Charakter dieser Methodik kann potenziell durch
einen Hochdurchsatz-Selektions-Arbeitsablauf mit maschinellem Lernen be-
schleunigt werden. Diese Arbeit schlägt einen Arbeitsablauf vor, der für die
Vorhersage des Enantiomerenüberschusses von Negishi-Kreuzkupplungsreak-
tionen entwickelt wurde. Negishi-Reaktionen sind wichtige C-C-Bindungsbil-
dungsreaktionen mit enantioselektivem Potenzial. Der Arbeitsablauf beginnt
mit der Handhabung experimenteller Daten, geht über die Generierung ei-
nes Konformer-Rotamer-Ensembles und dessen Transformation durch einen
Deskriptor in ein maschinenlesbares Format und endet mit dem Trainieren
und Validieren verschiedener Algorithmen des maschinellen Lernens. Der
verwendete Deskriptor heißt Average Steric Occupancy (ASO) und gibt die
sterische Umgebung von Molekülen wieder. Der ASO Deskriptor wird in der
Arbeit weiter analysiert und die Verwendung von zusammengesetzten ASOs
für Reaktionsgemische wird diskutiert. Darüber hinaus werden verschiedene
maschinelle Lernmodelle, einschließlich neuronaler Netzwerke, Unterstüt-
zungsvektormaschinen und Zufallswald-Regressionsmodelle, ausgewertet
und für spekulative Vorhersagen des Enantiomerenüberschusses unbekannter
Reaktionen verwendet. Schließlich werden die Grenzen des vorgeschlagenen
Arbeitsablaufs untersucht und ein Ausblick für weitere potentielle Studien
wird gegeben.
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