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Abstract
Precise measurement of the state of biological systems is a fundamental require-

ment in quantitative biology – the field dealing with the deduction and validation

of quantitative models of biological phenomena. Such measurement techniques,

for example of mRNA transcript or microbial species abundances, are often based

on next generation sequencing (NGS).

A major factor limiting the precision of such quantitative NGS applications

is amplification bias – the preferential amplification of some sequences by the

polymerase chain reaction (PCR) step required before sequencing. To overcome

this bias, unique molecular identifiers (UMIs) are added to each molecule prior

to amplification, and abundances are then estimated from the number of distinct

UMIs, not the number of sequencing reads. But while more faithful than read

counts, such UMI counts are still indirectly biased by preferential amplification;

stronger amplification of particular sequences translates into a lower risk of such

molecules being overlooked during sequencing entirely, and thus of their UMI not

being counted. This indirect bias is not amenable to improved in vitro techniques

and must thus be tackled in silico.

Towards this goal, this work introduces the computational method TRUmiCount,

based on a stochastic Galton-Watson branching process model of the PCR and a

model of sequencing as Poissonian sampling. TRUmiCount combines these models

to predict the number of unobserved from the number of observed molecules, and by

employing a statistical denoising technique called shrinkage estimation, can do so

on the level of individual mRNA transcripts or microbial species. These predictions

thus allow in silico corrections for indirect amplification bias, and for UMI-based

RNA-Seq experiments, TRUmiCount is demonstrated to produce unbiased mRNA

transcript counts from raw bias-afflicted data.

Insertion pool sequencing (iPool-Seq) is another example of an experimental

technique that benefits from TRUmiCount. iPool-Seq was developed to study host-
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pathogen systems such as maize infected by Ustilago maydis, the fungus that

causes corn smut. iPool-Seq compares the abundances of different mutants of the

pathogen before and after infection of the host plant, with the goal of identifying

mutants whose virulence – their ability to proliferate on the host – differs from the

wild-type. For iPool-Seq data, TRUmiCount is shown to improve the fidelity of the

abundance estimates, and thus ensures that amplification bias does not affect the

measured virulences.

The statistical analysis of TRUmiCount-corrected NGS data poses unique chal-

lenges. After correction, UMI counts are fractional instead of integral, and can

no longer be expected to obey the Poissonian mean-variance relationship often

assumed for count data. To show how statistical inference methods can take TRU-

miCount corrections into account while evading these issues, a statistical model of

iPool-Seq incorporating these corrections is derived, and shown to provide a means

of separating significant from insignificant differences between the virulences of

mutants and wild-type.

Finally, a user-friendly data analysis pipeline for iPool-Seq data is presented. It

includes all steps necessary to transform raw sequencing reads into TRUmiCount-

corrected mutant abundances, and assesses the virulence of mutants, and the

significance of their deviation from the wild-type. Detailed step-by-step description

of both the wet-lab and the data-analysis parts of iPool-Seq are meant to provide

easy access to the iPool-Seq method for as many potential users as possible.

Parts of this thesis have been published in the following articles:

Pflug F. G., & von Haeseler A. (2018). TRUmiCount: correctly counting absolute

numbers of molecules using unique molecular identifiers. Bioinformatics, 34(18),

3137–3144. DOI:10.1093/bioinformatics/bty283

Uhse S., Pflug F. G., Stirnberg A., Ehrlinger K., von Haeseler A., & Djamei A.

(2018). In vivo insertion pool sequencing identifies virulence factors in a complex

fungal-host interaction. PLoS Biology, 16(4), e2005129. DOI:10.1371/journal.

pbio.2005129

Uhse S.e, Pflug F. G.e, von Haeseler A., & Djamei A. (2019). Insertion pool

sequencing for insertional mutant analysis in complex host-microbe interactions.

Current Protocols in Plant Biology, 4, e20097. DOI:10.1002/cppb.20097

ethese authors contributed equally to this work
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Kurzfassung
Präzise Messungen des Zustandes eines biologischen Systems bilden eine Grund-

lage der quantitativen Biologie – also jenes wissenschaftlichen Gebietes welches

sich mit der Erstellung und Validierung quantitativer Modelle biologischer Sys-

teme beschäftigt. Solche Techniken, beispielsweise zur Messung der Abundanz

von Transkripten oder verschiedener mikrobieller Spezies, basieren oft auf Sequen-

zierungsmethoden hohen Durchsatzes (eng. next-generation sequencing; NGS).

Einer der hauptsächlichen die Genauigkeit limitierenden Faktoren in quantita-

tiven NGS-Anwendungen sind Verzerrungen der gemessenen Abundanzen wegen

der bevorzugten Amplifikation mancher Sequenzen durch die Polymeraseketten-

reaktion (eng. polymerase chain reaction; PCR). Um das zu vermeiden wird vor

der Amplifikation jedes Molekül mit einem eindeutigen molekularen Identifika-

tor (eng. unique molecular Identifier; UMI) versehen, und Abundanzen werden

dann aus der Anzahl an verschiedenen UMIs geschätzt, nicht aus der Anzahl an

sequenzierten Kopien. Aber auch die Anzahl an UMIs wird, wenngleich schwächer,

trotzdem indirekt durch bevorzugte Amplifikation verzerrt; stärkere Amplifikation

eines Moleküles reduziert das Risiko, dass keine seiner Kopien sequenziert und

das Molekül damit nicht gezählt wird. Dieser indirekte Effekt kann nur durch

Korrekturen in silico in Angriff genommen werden.

Dazu stellt diese Arbeit die Methode TRUmiCount vor, welche auf einem Modell

der PCR als stochastischer Galton-Watson Verzweigungsprozess und von Sequen-

zierung als Poisson’scher Stichprobennahme basiert. Damit schätzt TRUmiCount

die Anzahl an nicht beobachteten Molekülen aus jener der beobachteten, und ver-

wendete eine statistische Rauschunterdrückungstechnik um diese Schätzung auf

die Ebene einzelner Transkripte oder mikrobieller Spezies zu erweitern. Mit Hilfe

von TRUmiCount können damit indirekte PCR-bedingte Verzerrungen korrigiert

werden, und für UMI-basierte RNA-Sequenzierung wird gezeigt, dass TRUmiCount

aus verzerrten Rohdaten unverzerrte Transkriptabundanzen ermitteln kann.
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iPool-Seq (eng. insertion pool sequencing) ist eine experimentelle Methode zum

Studium von Wirt-Pathogen-Systemen, z.B. Mais und Ustilago maydis (Verursacher

des Maisbeulenbrandes), und profitiert ebenfalls von TRUmiCount. iPool-Seq ver-

gleicht die Abundanz von Mutanten des Pathogens vor und nach der Infektion des

Wirts, und identifiziert Mutanten mit veränderter Virulenz – ihrer Fähigkeit, sich

auf dem Wirt zu vermehren. Es wird gezeigt, dass TRUmiCount die Genauigkeit

dieser Messungen erhöht, und damit verhindert, dass PCR-bedingte Verzerrungen

die gemessenen Virulenzen beeinflussen.

Die statistische Analyse von TRUmiCount-korrigierten NGS-Daten muss berück-

sichtigen, dass korrigierte Abundanzen nicht mehr ganzzahlig sind, und typis-

chen Poisson’schen Annahmen über das Mittelwert-Varianz-Verhältnis nicht mehr

entsprechen. Um zu zeigen wie diese Probleme umgangen werden können, leiten

wir ein statistisches Modell für iPool-Seq her in welches Korrekturen für indirekte

PCR-Verzerrungen einfließen, und zeigen, dass damit signifikante von insignifikan-

ten Virulenzänderungen unterschieden werden können.

Abschließend wird ein benutzerfreundliches Programm zur Analyse von iPool-

Seq-Daten präsentiert. Es inkludiert alle Schritte um aus rohen Sequenzdaten

(korrigierte) Abundanzen zu ermitteln, und bestimmt für alle Mutanten Virulenz

sowie die Signifikanz ihrer Abweichung vom Wildtyp. Eine schrittweise Beschrei-

bung aller notwendigen Labor- und Datenauswertungsschritte, soll die Methode

einem möglichst großen Kreis an Benutzern zugänglich machen.

Teile dieser Arbeit wurden in folgenden Artikeln publiziert:

Pflug F. G., & von Haeseler A. (2018). TRUmiCount: correctly counting absolute

numbers of molecules using unique molecular identifiers. Bioinformatics, 34(18),

3137–3144. DOI:10.1093/bioinformatics/bty283

Uhse S., Pflug F. G., Stirnberg A., Ehrlinger K., von Haeseler A., & Djamei A.

(2018). In vivo insertion pool sequencing identifies virulence factors in a complex

fungal-host interaction. PLoS Biology, 16(4), e2005129. DOI:10.1371/journal.

pbio.2005129

Uhse S.e, Pflug F. G.e, von Haeseler A., & Djamei A. (2019). Insertion pool

sequencing for insertional mutant analysis in complex host-microbe interactions.

Current Protocols in Plant Biology, 4, e20097. DOI:10.1002/cppb.20097

ediese Autoren haben zu gleichen Teilen zu dieser Arbeit beigetragen
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Chapter 1

Introduction

Even a single living cell is a marvellously sophisticated system, sustained by a vast

number of concurrent chemical and physical processes. Yet the whole is even more

than the sum of its parts – it is not from these processes’ individual complexities,

but from their interactions that the almost infinite complexity of the living world

around us emerges. To understand such a system we must thus not only catalogue

all the individual parts, but also consider their effects on one another. Do, for

example, the effects of two opposing processes cancel, or does one prevail? How

do the effects of two processes working in conjunction add up? How sensitive is

one process to changes in another? In short, we must understand the processes

quantitatively.

Gaining such a quantitative understanding of the individual biological processes

in a complex system, and through that an understanding of their possible inter-

actions and thus of the system as a whole is the fundamental goal of quantitative

biology. Such a quantitative understanding is inseparably linked with the creation

of a mathematical model of the state of the system in question, of its temporal

evolution, and of its spatial pattern – or in the language of physics, to the creation

of a theory of the system (Howard, 2014).

As in physics, good theories are firmly rooted in and regularly challenged with

experimental data, making high-fidelity measurements of the state of a system

crucial to its understanding; as Howard (2014) puts it measurement focuses the

mind.
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Yet obtaining such high-fidelity measurements is notoriously difficult – in par-

ticular when we deal with complex systems, where we have to measure many

parameters in parallel to capture the system’s true state well, and where some of

the chemical and physical processes and properties that sustain the system may

interfere with measurements. Measurements of a complex system’s state are thus

always incomplete, and afflicted by errors1 consisting of both bias (systematic devi-

ations of measured from true values) and noise (random fluctuations of measured

around true values). As Hastings et al. (2005) put it,

“Quantitative biologists must come to grips with a complex, stochastic,

poorly observed system.”

When we form theories and challenge them with data, we must account for

our observations being poor, lest our theory confuse the properties of the system

with the deficits of our method of observation. But to account for such effects

when we form and challenge quantitative theories of a system with data we require

quantitative insight into how poor our observations really are – into how strongly

our observations are biased towards one value or another, how much they fluctuate

randomly, and which experimental conditions affect these measurement errors.

In other words, we require a theory of our chosen method of observation. Only

with such a quantitative theory of our methods as a basis can we then proceed as

Hastings et al. (2005) suggests, and couple that theory with possible theories of

the system to see whether they are consistent with observed data.

This thesis will present a theory for a particular class of methods based on

unique molecular identifiers (UMIs) and next-generation sequencing (NGS) for

observing the state of a single cell, a complex tissue, or a microbial community.

Before we describe these concepts and the class of methods considered in more

detail, we take a step back and consider why these methods offer a powerful way of

gaining insights into the state of many different types of complex biological systems.

1An insight succinctly rendered in german as: Wer misst, misst Mist
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DNA or RNA abundances as a proxy of system state

When we attempt to measure the state of a biological system, the first difficulty

to overcome is the staggering size of the full state space of even the smallest such

system. Already for a single cell, and ignoring spatial configuration completely,

measuring the full state seems intractable; it would require us to measure the

precise abundance of every type of chemical compound in a cell simultaneously.

To arrive at a tractable problem, we thus have to limit our attention further, to a

smaller class of molecules; yet whose combined abundance data is still informative

about the current full state of the cell and its future behaviour.

Cells contain four major types of small organic molecules, sugars, fatty acids,

amino acids and nucleotides, each of which form the building blocks of one of the

major classes of larger chemical compounds, namely polysaccharids, lipids, proteins

and the nucleic acids, consisting of deoxyribonucleic acid (DNA) and ribonucleic acid

(RNA) (Alberts et al., 2002). While the abundance of the different types of chemical

compounds in all of these classes could be argued to be relevant components of

the current cell state, simultaneous measurement of all of these abundances is

currently only tractable for DNA and RNA; this has been made possible through the

advent of next-generation sequencing (NGS; Mardis, 2008, 2013; Metzker, 2010).

And there are also plenty of biological reasons why DNA and RNA abundances

offer insight into the state of many different types of biological systems. By counting

DNA we count genomes, and thus the abundance of (single-celled) species or mutants

of a species; by counting mRNAs we can infer which genes are actively expressed;

by immuno-chemically selecting DNA or RNA bound to a particular protein prior to

counting, we can observe the intra-cellular machinery that controls DNA replication,

transcription and translation in action; just to name a few examples.

Measuring DNA or RNA abundances through NGS

In the last two decades, DNA sequencing throughput has improved by more than six

orders of magnitude, from being able to sequence about one hundred molecules in

parallel to being able to sequence hundreds of millions of molecules. The sequencing

methods that enable this are collectively referred to as next-generation sequencing
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(NGS; Mardis, 2008, 2013; Metzker, 2010), with the most widely used method being

the one offered commercially by Illumina, Inc.

The large number of molecules sequenced simultaneously allows these methods

to be used quantitatively. An early such application of NGS is RNA sequencing

(RNA-seq; Z. Wang et al., 2009), where all messenger RNAs (mRNAs) are extracted

from a biological sample (traditionally consisting of many similar cells), converted

back to complementary DNA (cDNA) by reverse transcription, and subjected to

next-generation sequencing (figure 1 in chapter 1 on page 21). Each of the millions

of sequencing reads is then aligned to the (presumably known) reference genome of

the organism in question, and by counting the number of reads overlapping each

gene, we obtain simultaneous estimates of the (relative) abundances of all mRNA

transcripts of the genes of the organism.

But quantitative applications of NGS are not limited to RNA-seq. The general

principle of sequencing all DNA or RNA molecules in a sample and then counting

the abundance of specific sequences can be used to measure a large range of

different types of state of a biological system; a few (quite random and certainly

non-exhaustive) examples are:

Metagenomic analyses to detect all present taxa and their abundances in a

microbial community by sequencing, assignment of reads to taxa, and counting the

number of reads per taxa (Escobar-Zepeda et al., 2015);

ChIP-Seq to study DNA-protein interactions by immuno-precipitation of the

chromatin using a specific antibody, sequencing, mapping of reads to the genome,

and looking for coverage peaks (Barski et al., 2007; Johnson et al., 2007);

Ribo-Seq to study the location of the ribosomes on the transcripts by digestion

of mRNAs except for the parts protected by a bound ribosome, sequencing, mapping

of reads to the genome, and looking for coverage peaks (Ingolia et al., 2009);

Bacteraemia diagnosis to enable faster personalised treatment of septic patients

by sequencing of the free DNA in the patient’s blood, assignment of reads to possible

causative bacteria, and statistical analysis to separate pathogen(s) from background

(Grumaz et al., 2016).
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Amplification biases DNA and RNA abundances

While new applications of NGS continue to be developed, and while the technology

itself has progressed far over the last decade, with both the number of reads

produced by a single sequencing run, as well as their length, having increased

greatly, one aspect has changed only little – the method is quite lossy. Typically,

to sequence a sample on a Illumina HiSeq lane, a volume of at least 10µl with a

DNA concentration of 10nM is required (Illumina Inc., 2012), which amounts to

≈ 10nM ·10µl= 100 femtomole or ≈ 60 billion DNA molecules2. As a single HiSeq

lane can be expected to yield ≈300 million reads (Illumina Inc., 2019), of of the

60 billion input molecules thus only about 0.5% eventually get sequenced and the

other 99.5% are lost. Others estimate the loss to be even higher, one estimate puts

the loss for RNA-seq experiments at 99.9% of molecules (McIntyre et al., 2011).

To compensate for this large loss of input molecules, and to reach the required

DNA concentration and purity, DNA libraries are therefore almost always am-

plified before sequencing. After ensuring that the original DNA fragments carry

appropriate adapters with fixed sequences at both ends, a polymerase chain reaction

(PCR; Mullis et al., 1986) is used to repeatedly duplicate each DNA molecule, which

(over multiple cycles) produces thousands of copies from a single original template

molecule.

But while the PCR can amplify (almost) any sequence of nucleotides, it does not

generally do so with uniform efficiency. The reaction tends to systematically prefer

some sequences over others, and over multiple cycles these preferences accumulate,

considerably biasing the final library (Kanagawa, 2003; Suzuki and Giovannoni,

1996). While some factors like GC content that influence efficiency are known, the

magnitude of their effect depends heavily experimental details such as the precise

PCR protocol and enzyme used (Aird et al., 2011; figure 2 in chapter 1 on page 23).

For quantitative NGS, these biases translate to miss-quantification of molecule

abundances (Aird et al., 2011; Dabney and Meyer, 2012; Kebschull and Zador, 2015;

Pawluczyk et al., 2015; Pinto and Raskin, 2012). While models exists to correct for

some types of bias in silico (Love, Huber, et al., 2014), a more general solution was

sought that applies equally well to all types of quantitative NGS applications.

2One mole of a substance is defined as exactly 6.02214076 ·1023 molecules.
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Unique molecular identifiers (UMIs)

Unique molecular identifiers (UMIs; Hug and Schuler, 2003; Kivioja et al., 2011)

were introduced to overcome these PCR-induced amplification biases. The idea is

to make molecules distinguishable before sequencing through some sort of unique

identifiers (the UMI) – typically by appending a short, random oligonucleotide

to each molecule before amplification. After PCR amplification and sequencing,

molecule abundances are determined by counting the number of distinct UMIs,

amongst all reads with a particular sequence (figure 3 in chapter 1 on page 23).

Compared to read counts, UMI counts show better concordance to true abundances

due to being less sensitive to PCR biases (Kivioja et al., 2011), and they provide

absolute quantification of molecules numbers instead of only relative abundances

as read counts do.

But while UMI counts reduce the effect of PCR bias and improve concordance,

an indirect form of PCR bias remains. Of molecules that are amplified less effi-

ciently, fewer copies will tend to exist post-amplification. This in turn increases

those molecules’ risk of all of their copies (and thus the original molecule) remain-

ing unobserved by the sequencing process entirely – sequencing is, after all, not

exhaustive but rather very lossy.

It may seem that this indirect form of PCR bias can be avoided by increasing

the sequencing depth to a point where essentially no molecules are overlooked. Yet

while doing so will indeed avoid indirect PCR bias, a thought experiment shows

that doing so may actually reduce the overall accuracy! Let us imagine we sequence

a given sample again and again to increase the total sequencing depth further

and further. We should then expect each UMI to be represented by an ever larger

number of reads; yet because some of those reads will inevitably contain errors, we

will also detect an ever growing number of distinct UMIs as the total sequencing

depth increases! In addition to sequencing errors, at higher sequencing depths

(due to the growing number of PCR cycles necessary to produce enough material

for sequencing) we must expect to also see a higher number of chimeric molecules

(Haas et al., 2011) and other amplification artefacts, which further increases the

number of phantom UMIs that do not represent a molecule in the original sample.

To summarise, increasing the sequencing depth to counter-act indirect PCR
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bias requires somehow filtering out phantom UMIs. Yet any such filter will in-

evitably remove some true UMIs (stemming from actual molecules) as well, in turn

increasing PCR bias.

To chose optimally in this Catch-22 (Heller, 1961) situation, we must under-

stand the consequence of particular choices of sequencing depth and filtering on

the accuracy of our measurements quantitatively. Or put in the language of the

introductory paragraphs, we required a (quantitative) theory.

Towards a theory of UMI-based quantitative NGS

Since the introduction of the UMI method, some progress has been made to under-

stand the method, and to provide tools to correct for its shortcomings in silico.

Algorithms have been developed to detect and merge erroneous versions of

UMIs produced by sequencing errors (Liu, 2019; Smith et al., 2017). Models of

different types of PCR-induced distortions such as stochastic behaviour, biases,

and template switching have been studied (Best et al., 2015; Kebschull and Zador,

2015). Different variations of the UMI method have been developed, in particular

some with UMIs designed to be more resilient to sequencing errors (Shiroguchi

et al., 2012).

Yet while these works offer some insight into the behaviour of UMI-based NGS

experiments, it remains to form a coherent mathematical theory. Such a theory

should enable us to predict the magnitude of indirect PCR biases under different

experimental conditions and phantom UMI filters, and be precise enough to yield

corrections which, when applied to observed UMI counts, increase the fidelity of

the results.

This thesis presents such a theory and studies the accuracy of its predictions for

different types of UMI-based NGS experiments and different conditions (Pflug &

von Haeseler, 2018; chapters 2 and 5 of this work). With our theory of UMI-based

NGS experiments as a basis, we then present a statistical model of a particular

such method called insertion pool sequencing (iPool-Seq; Uhse et al., 2018; chapters

3, 4 and 6 of this work).
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Chapter 2

TRUmiCount: Correctly counting

absolute numbers of molecules

using unique molecular identifiers

(Pflug & von Haeseler, 2018.

Bioinformatics, 34(18), 3137-3144.)

Preamble

In this publication we introduce a theory of unique molecular identifier (UMI) -

based next-generation sequencing (NGS) experiments. This theory provides the

basis for the computational TRUmiCount method which removes PCR artefacts

and (indirect) PCR bias from the abundances of particular DNA or DNA fragments

measured in such experiments.

For the sake of simplicity, we present our method in the typical terms of RNA-

Sequencing (RNA-Seq), i.e. we assume the quantities of interest are the copy

numbers of messenger RNA (mRNA) molecules transcribed from the different

genes of an organism. Despite this choice of presentation, the method itself is not

restricted to RNA-Seq settings. In fact, it applies equally well to any experimental

design where all individual DNA or RNA fragments are (made) distinguishable
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before being amplified by a polymerase chain reaction (PCR), and where each

sequencing read can thus be traced back to a single pre-amplification molecule.

This is in particular the case for insertion pool sequencing (iPool-Seq; Uhse et al.,

2018; chapter 3 of this work), developed to measure of the virulence of particular

mutants of the maize pathogen U. maydis. In fact, the need to analyse iPool-Seq

data provided the initial motivation for development of the TRUmiCount method;

the generalisation to RNA-Seq and other UMI-based NGS experiments happened

later. For iPool-Seq data, TRUmiCount is crucial in ensuring that the measured

virulences are not biased by referential PCR amplification of particular mutant

sequences; chapter 5 discusses the performance of the method for iPool-Seq data.

The author considers TRUmiCount to be the main contribution of this thesis to

the field of NGS data analysis.
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Abstract

Motivation: Counting molecules using next-generation sequencing (NGS) suffers from PCR amplifi-

cation bias, which reduces the accuracy of many quantitative NGS-based experimental methods such

as RNA-Seq. This is true even if molecules are made distinguishable using unique molecular identi-

fiers (UMIs) before PCR amplification, and distinct UMIs are counted instead of reads: Molecules that

are lost entirely during the sequencing process will still cause underestimation of the molecule count,

and amplification artifacts like PCR chimeras create phantomUMIs and thus cause over-estimation.

Results: We introduce the TRUmiCount algorithm to correct for both types of errors. The

TRUmiCount algorithm is based on a mechanistic model of PCR amplification and sequencing,

whose two parameters have an immediate physical interpretation as PCR efficiency and sequenc-

ing depth and can be estimated from experimental data without requiring calibration experiments

or spike-ins. We show that our model captures the main stochastic properties of amplification and

sequencing, and that it allows us to filter out phantom UMIs and to estimate the number of mole-

cules lost during the sequencing process. Finally, we demonstrate that the phantom-filtered and

loss-corrected molecule counts computed by TRUmiCount measure the true number of molecules

with considerably higher accuracy than the raw number of distinct UMIs, even if most UMIs are

sequenced only once as is typical for single-cell RNA-Seq.

Availability and implementation: TRUmiCount is available at http://www.cibiv.at/software/trumi

count and through Bioconda (http://bioconda.github.io).

Contact: florian.pflug@univie.ac.at

Supplementary information: Supplementary information is available at Bioinformatics online.

1 Introduction

Experimental methods like RNA-Seq, ChIP-Seq and many others de-

pend on next-generation sequencing (NGS) to measure the abun-

dance of DNA or RNA molecules in a sample. The PCR

amplification step necessary before sequencing often amplifies dif-

ferent molecules with different efficiencies, thereby biasing the

measured abundances (Aird et al., 2011). This problem can be alle-

viated by ensuring that all molecules are distinguishable before

amplification by some combination of factors comprising a unique

molecular identifier (UMI) (Hug and Schuler, 2003; Kivioja et al.,

2012), which usually includes a distinct molecular barcode ligated

to each molecule before amplification (Fig. 1A, colored dots; see

Smith et al. (2017) for a more extensive history of the UMI method).

After amplification and sequencing, instead of counting reads, reads

are grouped by UMI, and each distinct UMI is taken to reflect a dis-

tinct molecule in the original sample (Fig. 1A). But while the number

VC The Author(s) 2018. Published by Oxford University Press. 3137
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of distinct UMIs may be a better proxy for the molecule count, it is

still biased, for two reasons:

• Molecules that are amplified with low efficiency will have fewer

copies made, hence fewer reads per UMI, and thus a higher

chance of being left entirely unsequenced (Fig. 1A, green tran-

script, violet UMI).
• Sequencing errors, PCR chimeras, and index miss-assignment (Sinha

et al., http://www.biorxiv.org/content/early/2017/04/09/125724) in

multiplexed sequencing runs can produce phantom UMIs which do

not correspond to any molecule in the original sample (Fig. 1A,

orange/red phantom UMI).

Various methods have been proposed to counter-act these

effects: Smith et al. (2017) proposed an algorithm for merging highly

similar, erroneous versions of the same original UMI to correct for

sequencing errors and single-nucleotide PCR amplification errors.

To filter out more complex PCR artifacts, strand-specific UMI-label-

ing protocols were introducted (Shiroguchi et al., 2012; Schmitt

et al., 2012) that allow filtering out artifacts based on whether

UMIs for both strands of a template molecule were detected. A cor-

rection for molecules left entirely unsequenced is mentioned by

Kivioja et al. (2012), but being based on the Poission distribution, it

severely under-estimates the amount of affected molecules; for their

data by about an order of magnitude.

Instead of relying on sequence similary or complicated strand-

specific UMI-labeling protocols, we rely on the per-UMI read count to

separate true UMIs (i.e. UMIs of actual molecules in the original sam-

ple) from phantom UMIs. Chimeric PCR products are typically pro-

duced during later reaction cycles, and can therefore be expected to

have smaller copy numbers and hence a lower read-count than non-

chimeric PCR products. Index miss-assignment and sequencing errors

typically happen randomly, and are unlikely to produce a larger num-

ber of reads showing the same phantom UMI. For these reasons, phan-

tom UMIs can be expected to have a markedly lower read count than

most true UMIs, i.e. UMIs of actual molecules in the original sample.

Our bias-correction and phantom-removal algorithm TRUmiCount

exploits this difference in expected read counts between phantoms and

true UMIs. It removes UMIs likely to be phantoms based on a read-

count threshold, and then estimates and corrects the (gene-specific) loss,

i.e. the fraction of molecules that were not sequenced or whose UMIs

were mistaken for phantoms. For this correction TRUmiCount employs

a model of PCR amplification that accounts for the stochasticity inher-

ent to this amplification reaction.

2 Materials and methods

2.1 The TRUmiCount algorithm

The TRUmiCount algorithm consists of the following three steps:

1. We first filter out phantom UMIs by removing any UMI whose

read count lies below a suitably chosen error-correction thresh-

old (T).

2. We then estimate the loss (‘), i.e. the fraction of molecules that

were not sequenced at all, or whose UMIs were removed by the

error-correction threshold. This estimate is computed using a

stochastic model of the amplification and sequencing process

whose parameters are the PCR efficiency (E), and the sequencing

depth (D), expressed as the average number of reads per UMI in

the initial sample. From the observed distribution of reads per

UMI, we estimate both (raw) gene-specific as well as library-

wide values for these parameters, and compute corresponding

estimates of the loss (see Section 2.2 for details).

3. Finally, we add the estimated number of lost UMIs back to the

the observed number of true UMIs (those UMIs with � thresh-

old reads) to find the total number of molecules in the original

sample. Since the loss can vary between genes, to yield unbiased

counts, the correction must be based on gene-specific loss esti-

mates. Due to the noise inherent to raw gene-specific estimates

for genes with only few observed true UMIs, we employ a

James-Stein-type (James and Stein, 1961) shrinkage estimator,

adjusting the raw gene-specific parameter and loss estimates to-

wards the library-wide ones (thus shrinking their difference). We

choose the amount of shrinkage based on each estimate’s preci-

sion, in such a way that the expected overall error is minimized

(Carter and Rolph, 1974) (see Section 2.3).

Fig. 1. (A) The relevant steps of library preparation when the UMI method is used. The sample initially contains three copies of molecule and two copies of

, which are made unique by labelling with UMIs ( , , , , ). Each of those molecules is expanded into a molecular family during amplification, and a ran-

dom selection of molecules from these families is sequenced. Counting unique UMIs then counts unique molecules, unless UMIs have read-count zero ( ) or

phantom UMIs are produced ( ). (B) PCR as a Galton-Watson branching process. Molecule failed to be copied during the first PCR cycle and the final family

size is thus reduced compared with . (C) Normalized family size distribution for efficiency 10, 50 and 90%. The arrows mark the most likely normalized family

sizes for the two molecules from (B), assuming a reaction efficiency of 90%, and taking their distinct fates during the first PCR cycle into account. (D) Distribution

of reads per UMI for efficiency 10, 50 and 90% assuming D ¼ 4 Reads per UMI on average
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2.2 Estimating the fraction of lost molecules

To estimate the loss, i.e. the fraction of molecules whose UMIs had

a read count below the error-correction threshold, we model the dis-

tribution of per-UMI read counts by combining a stochastic model

of PCR amplification with a model of NGS as random sampling.

2.2.1 A stochastic model of PCR amplification

To model PCR amplification, we use the single-stranded model of

Krawczak et al. (1989), meaning we view PCR as a stochastic process

that during each cycle duplicates each molecule independently with a

particular probability E, called the reaction’s efficiency. We further as-

sume that a molecule is copied perfectly or not at all, i.e. that neither

partial copies nor copies with a slightly different base-pair sequence

are produced, that no molecules are destroyed or lost, and that the effi-

ciency E stays constant throughout the reaction. Although this model

has been extended by Weiss and von Haeseler (1997) to include the

possibility of substitution errors during amplification, exhaustively

modeling all possible sources of phantom UMIs seems futile. We there-

fore pursue a different approach, and model only the error-free case,

trusting the error-correction threshold to remove phantoms. Over mul-

tiple cycles, each molecule is thus assumed to be expanded into a mo-

lecular family of identical copies. Since we use the single-stranded

model, molecule for us always means a single-stranded piece of DNA,

and we do not distinguish between a strand and its reverse comple-

ment. For our purposes, a piece of double-stranded DNA thus consists

of two indistinguishable molecules.

Before amplification, we assume all molecules in the sample to be

distinguishable by some UMI. During amplification, each of those

molecules gives rise to amolecular family of (indistinguishable) copies.

The initial size of such a family (i.e. the number of copies it is com-

prised of) is 1. During the first PCR cycle, the size increases to 2 if the

single initial molecule is copied successfully, i.e. with probability E.

Continuation of this process, always using all existing molecules as po-

tential templates that are copied with probability E, produces a ran-

dom sequence M0;M1;M2; . . . of molecular family sizes after the 0th,

1st, 2nd, . . . cycle. This sequence forms a Galton-Watson branching

process (Weiss and von Haeseler, 1995), and follows the recursion

M0 ¼ 1; Mi ¼ Mi�1 þ Di where

Di � Binom ðMi�1;EÞ:
(1)

Although we are not aware of a way to obtain an explicit formula

for the distribution of the family size Mi after i PCR cycles, the

expected value and variance of Mi can be computed explicitly.

According to Harris (1989, Ch. 1), Equation (5.3), VMi ¼ r
2miðmi�1Þ
m2�m

where m and r are the mean and SD of M1. In our case these are m

¼ 1þ E and r2 ¼ E � ð1� EÞ, thus we find

EMi ¼ ð1þ EÞi (2)

VMi ¼
1� E

1þ E
� ð1þ EÞiðð1þ EÞi � 1Þ (3)

Equation 2 shows the well-known exponential growth of

expected family sizes during PCR. But apart from recovering this

well-known property of PCR, the Galton-Watson model also pre-

dicts the likelihood of deviations from this expectation due to ran-

dom failures of copy operations, and by simulation allows us to find

the actual distribution ofMi.

2.2.2 The normalized family size F

Due to the exponential growth of the expectation ofMi, the distribu-

tion of Mi depends heavily on the PCR cycle count i. That

dependency, however, affects mostly the scale, not the shape of the

distribution ofMi. To see the effect on the shape more clearly, the ef-

fect on the scale is removed by replacing Mi with a re-scaled version

which has an expected value of one,

~M i ¼
Mi

EMi
¼ Mi

ð1þ EÞi
: (4)

These re-scaled family sizes can be sensibly compared across

PCR cycles. We observe that with growing cycle counts, the add-

itional stochasticity introduced by each additional cycle drops rapid-

ly. The re-scaled family size after the first cycle varies by a factor of

two depending on whether the (single) copy operation during the

first cycle succeeds or fails. Later on there are more templates to

copy from, and thus the success or failure to copy any particular

molecule averages out, making the behavior of the reaction more de-

terministic. Finally, ~M i � ~M iþ1, because the family size Mi increases

during each cycle almost exactly by a factor of 1þ E, which matches

the decrease of the re-scaling factor in ~M i. This informal argument

can be turned into a formal proof (see Harris (1989), Ch. 1, Th. 8.1)

of the convergence of the re-scaled family size as i tends towards 1,

which allows us to remove the cycle count as a parameter entirely

from what we call the normalized family size

F ¼ lim
i!1

~M i: (5)

Although there is again no explicit formula known for the distri-

bution of the normalized family size F, we find its variance from

Equations (3–5) to be

VF ¼ 1� E

1þ E
: (6)

To quickly evaluate the density fFðx; EÞ of the distribution of F

for a particular normalized family size x given reaction efficiency E,

we interpolate using 2D polynomial interpolation (Akima, 1996) be-

tween pre-computed densities for different reaction efficiencies be-

tween 0 and 100% at different family sizes between 0 and 50 (see

Supplementary Section S1.1 for details).

2.2.3 Modeling the sequencing process

The normalized family size distribution models the abundance of

molecules with a particular UMI. To model the read count of a

particular UMI after sequencing (i.e. the number of reads stem-

ming from a particular pre-amplification molecule), we model

NGS with a Poissonian sampling model (Marioni et al., 2008).

This amounts to assuming that (i) each individual copy has the

same probability of being sequenced, (ii) this probability is small

compared to the sequencing depth and (iii) there were many (dis-

tinguishable) original molecules. We further assume that a UMI is

on average represented by D reads. Then the read count C of a

UMI with known normalized molecular family size F is Poisson

distributed,

C jF � Poisson ðF �DÞ;

PðC ¼ k j FÞ ¼ e�F�D ðF �DÞk
k!

:
(7)

In general, however, the exact family size F of any particular

UMI is unknown—we only know the distribution of F. To com-

pute the probability of a UMI having k reads, we average over all

possible family sizes x 2 ½0;1Þ, weighting them with their respect-

ive density fFðx; EÞ in the distribution of the normalized family

size F,
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PðC ¼ kÞ ¼
ð1

0

PðC ¼ k j F ¼ xÞ � fFðx; EÞ dx: (8)

We note that while PðC ¼ kÞ depends on D and E, we omit these

dependencies for brevity of notation. To compute the probabilities

PðC ¼ kÞ, we integrate numerically using the midpoint rule on the

grid of family sizes x for which fFðx; EÞ was pre-computed. For the

mean and variance of C we find the explicit expressions

EðCÞ ¼ D; VðCÞ ¼ DþD2 1� E

1þ E
: (9)

Since we impose an error-correction threshold T and drop UMIs

with fewer than T reads, the read-count distribution we actually ob-

serve is a censored version of C where the possible outcomes C<T

are removed. For the mean and variance of this censored distribu-

tion with threshold T we write

EðC jC � TÞ ¼
P1

k¼T k � PðC ¼ kÞ
PðC � TÞ ; (10)

VðC jC � TÞ ¼
P1

k¼Tðk� EðC jC � TÞÞ2 � PðC ¼ kÞ
PðC � TÞ : (11)

To compute EðC jC � TÞ, we rewrite the infinite sum in

Equation (10) to EðCÞ �
P

k<T k � PðC ¼ kÞ, and similarly for

VðC jC � TÞ.

2.2.4 Computing the loss

The expected loss ‘ is the expected fraction of true UMIs that either

remain completely unsequenced, or that are removed by the error-

correction threshold. Since we treat each per-UMI read count, and

hence each UMI’s fate (to be filtered or not) as independent stochas-

tic quantities, this expected fraction is simply the probability that a

single UMI has a read-count below the threshold T, i.e.

‘ ¼ PðC < TÞ: (12)

2.3 Correcting for lost molecules

Given nobs experimentally observed UMIs (after applying the error-

correction threshold T to filter out phantoms) and their read count

vector c ¼ ðc1; . . . ; cnobs Þ, we estimate the reaction efficiency E and

the mean number of reads per UMI D. We use the method of

moments, i.e. we find E and D such that the predicted mean equals

the sample mean bm of c, and the predicted variance its sample vari-

ance bv. Since we only take observed UMIs with at least T reads

into account, we must compute the predictions using the censored

distribution, i.e. find E, D such that bm ¼ EðC jC � TÞ and

bv ¼ VðC jC � TÞ
If T ¼ 0, i.e. if bm and bv reflect the uncensored mean respectively

variance, these equations can be solved explicitly by inverting

Equation (9), which yields the method of moments estimates bD ¼ bm
and bE ¼ 1�v0

1þv0, where v0 ¼ bv�bm
bm2 limited to the interval ½0;1�.

If T > 0, we solve the system of equations numerically to find E

and D (see Supplementary Section S1.2). With these parameter esti-

mates, we then compute an estimate b‘ of the loss ‘ using Equation

(12), and use it to correct for the expected number of lost molecules.

Assuming that we observed nobs UMIs and given b‘, we estimate the

total number of molecules in the original sample to have been

bntot ¼ nobs

1�b‘
: (13)

2.3.1 Gene-specific estimates and corrections

Since the reaction efficiency E and depth D, and hence also the loss,

will usually vary between individual genes (or other genomic fea-

tures of interest), to correct the observed number of transcripts of

some gene g 2 1; . . . ;K for the loss, a gene-specific loss estimate b‘g
should be used. In principle, such estimates are found by applying

the described estimation procedure to only the UMIs found for tran-

scripts of gene g, i.e. by computing a gene-specific mean bmg and

variance bvg of the number of reads per UMI, and solving for param-

eters E and D to find a gene-specific bE
raw

g and bD
raw

g , and computing
b‘
raw

g using Equation (12). If the number nobsg of observed UMIs (i.e.

transcripts) stemming from gene g is large, a correction based on
b‘
raw

g yields an (approximately) unbiased and accurate estimate of the

total number of transcripts of that gene. But if nobsg is small, the error

of the estimator b‘
raw

g easily exceeds the variability of the true gene-

specific value ‘g between genes. In such cases, correcting using the li-

brary-wide estimate b‘
all

computed from all UMIs found in the li-

brary will yield a more accurate (although biased) estimate of the

total number transcripts of gene g.

Interestingly, by combining these two flawed estimators of the

true gene-specific loss ‘g, we obtain a shrinkage estimator b‘
shr

g that

improves upon both in terms of mean squared error (MSE), see

Carter and Rolph (1974) Equation (2.4),

b‘
shr

g ¼ kg �b‘
raw

g þ ð1� kgÞ �b‘
all
: (14)

The gene-specific coefficient kg determines how much the raw

gene-specific estimate is shrunk towards the global estimate, and its

optimal choice (with respect to the MSE) depends on the variances

the two constituent estimators. To determine the optimal kg we

make the following assumptions about these estimators:

i. the library-wide estimate b‘
all

is a good proxy for the true average

loss taken over all genes 1; . . . ;K. This seems reasonable given

the size of a typical library, comprising millions of UMIs.

ii. the estimator variance of the raw gene-specific estimator b‘
raw

g

depends only on the number nobsg of observed UMIs for gene g,

and does so in an inversely proportional manner. This is certain-

ly true asymptotically for large numbers of observations, for

small numbers Supplementary Figure S4 shows this approxima-

tion to be reasonable.

We write s for the variance of the true loss between genes (i.e.

for the mean squared difference of ‘g and b‘
all
), and u for the propor-

tionality constant between the estimator variance of b‘
raw

g and 1=nobsg .

According to Carter and Rolph (1974) Equation (2.4ff) the optimal

choice for kg is then

kg ¼
s

sþ u=nobsg

(15)

To compute the gene-specific shrinkage estimators b‘
shr

g , it

remains to find constants u and s. Towards that end, we observe

that the expected squared deviation of the raw gene-specific loss es-

timate b‘
raw

g from its average �‘ ¼ 1
n

PK
g¼1

b‘
raw

g is the total variance of
b‘
raw

g , which is comprised of the between-gene variance s and the esti-

mator variance u=nobsg , or in other words E ðb‘rawg � �‘Þ2 ¼ sþ u=nobsg .

This allows us to estimate s and u using least squares regression,

i.e. by minimizing

XK

g¼1
ððb‘rawg � �‘Þ2 � s� u=nobsg Þ2 �wðnobsg Þ: (16)

Without weighting (i.e. for w(n) ¼ 1), the considerable drop in mag-

nitude of ðb‘rawg � �‘Þ2 as nobsg increases would allow genes with small
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number of observations to yield an unduly large influence over the

estimates. Since it is the genes with a low to moderate number of

observations that benefit from shrinking, some modest bias of this

sort is actually desired—but not as strong a bias as w(n) ¼ 1 exhib-

its, and one not so purely focused on genes with very few observa-

tions. We therefore use the weights wðnÞ ¼ n
1þn=100, which initially

increase linearly with the number of observations, but eventually

converge to 100 instead of increasing further. This has the desired

effect of shifting the focus away from rarely observed genes, and

concentrating it on genes with a moderate number of observations.

3 Results

3.1 PCR stochasticity versus efficiency

During PCR amplification, each uniquely labeled molecule is ampli-

fied into a molecular family of indistinguishable copies. Random

successes or failures to copy molecules during early reaction cycles

lead to a variation in the final family sizes (Fig. 1B), even between

identical (expect for their molecular barcode) molecules. As the fam-

ily size of each initial molecule grows, the proportion of successful

copy operations approaches the efficiency E, therefore reducing the

amount of noise added by each additional cycle. The total number

of cycles thus has little influence on the final family size distribution,

and is therefore not a parameter of our model. For the same reason,

a plateau effect (i.e. diminishing reaction efficiency during later

cycles) has little effect on the final family size distribution, and is

thus not included in the model. The final distribution does, however,

depend strongly on the reaction efficiency, with fluctuations in fam-

ily size decreasing as the efficiency grows towards 100% (Fig. 1C).

For efficiencies close to 100%, most molecular families are thus

of about average size, except for those (�100� E percent) families

for which the first copy failed. These are about half the average size,

and form a distinct secondary peak in the family size distribution

(Fig. 1C, brown curve). We emphasize that due to this, even at effi-

ciencies close to 100%, the distribution still shows considerable dis-

persion, meaning that even at high efficiencies stochastic PCR

effects are not negligible. At lower efficiencies, the family sizes vary

even more wildly, as extreme family sizes (on both ends of the scale)

become more likely (Fig. 1C, blue and green curves).

If we add sequencing to the picture, i.e. combine the stochastic

PCR model outlined above with a model of sequencing as random

Poissonian sampling (Marioni et al., 2008), the variability of per-

UMI read counts (Fig. 1D) then has two sources—the variability of

molecular family sizes and the Poissonian sampling introduced by

sequencing. Although the latter is reduced by increasing the sequenc-

ing depth, the former is independent of the sequencing depth but is

reduced by increasing the reaction efficiency. For all reasonable

error-correction thresholds T the predicted fraction of true UMIs fil-

tered out by the error-correction step thus grows with diminishing

efficiency E.

3.2 Model validation and phantom UMI removal

To validate our model of amplification and sequencing, we com-

pared the predicted distribution of per-UMI read counts to the dis-

tribution observed in two published RNA-Seq datasets. Kivioja et al.

(2012) labeled and sequenced transcripts in Drosophila

melanogaster S2 cells using 10 bp random molecular barcodes from

the 50 end. Shiroguchi et al. (2012) labeled and sequenced transcript

fragments in E.coli cells on both ends, using (on each end) one of

145 molecular barcodes carefully selected to have large pairwise edit

distances. The Y-shaped sequencing adapters used in the E.coli

experiment were designed such that each strand of a labeled double-

stranded cDNA molecule produces a related but distinguishable mo-

lecular family.

To see whether our algorithm offers an advantage over existing

UMI error-correction strategies, we pre-filtered the observed UMIs in

each of the two replicates of these datasets using the following existing

algorithms: We first merged UMIs likely to be erroneously sequenced

versions of the same molecule, using the algorithm proposed by Smith

et al. (2017). For the E.coli experiment we also removed UMIs for

which the complementary UMI corresponding to the second strand of

the same initial template molecule was not detected, as proposed by

Shiroguchi et al. (2012). See Supplementary Section S1.4 for details on

the analysis pipeline we used.

To this pre-filtered set of UMIs we then applied our algorithm.

For each dataset, we manually chose an error-correction threshold

by visually comparing read-count distribution and model prediction

for different thresholds, and picking the lowest threshold that

yielded a reasonably good fit. Above the error-correction threshold

(Fig. 2a, black bars), the observed library-wide distribution of reads

per UMI closely follows the model prediction, and the E.coli data

even shows traces of the secondary peak that represents molecules

not duplicated in the first reaction PCR cycle. Choosing a different

threshold will change the number of UMIs surviving the error-

correction filter, but has little influence on the estimated reaction

efficiency and on the estimated total number of UMIs after loss cor-

rection (Supplementary Fig. S1). We thus conclude that our model

captures the main stochastic behavior of the amplification and

sequencing processes, and accurately models the read-count distri-

bution of true UMIs.

The UMIs removed by our filter, i.e. those with fewer reads than

the error-correction threshold demands, (Fig. 2A, gray bars) are

over-abundant compared to our prediction. This over-abundance

increases further as per-UMI read counts drop, indicating the exist-

ence of a group of UMIs with significantly reduced molecular family

sizes. While we may expect some systematic variation of family sizes

between true UMIs (on top of the stochastic variations that our PCR

model predicts), we would expect these to be gradual and not form

distinct groups. We conclude that the extra UMIs causing the

observed over-abundance are indeed phantoms that are rightly

removed by our algorithm. We note that none of these phantoms

were removed by either the UMI merging algorithm of Smith et al.

(2017), or (for the E.coli data) by filtering UMIs for which the com-

plementary UMI (representing the second strand of the template

molecule) was not detected.

For the D.melanogaster data, our loss estimates of 9% (R1) and

8.8% (R2) are about a magnitude higher than the 1% (R1) and 2%

(R2) estimated using the (truncated) Poisson distribution suggested

by Kivioja et al. (2012). Given that using a Poisson model amounts

to assuming a 100% efficient duplication of molecules during each

PCR cycle, this severe underestimation by the Poisson model shows

that the inherent stochasticity of the PCR cannot be neglected.

3.3 Gene-specific quantification bias

The gene-specific (shrunken) estimates for amplification efficiency,

average reads per UMI, and loss that our algorithm produces, vary

between genes to different degrees (Fig. 2B). We observe the smallest

amount of variation for the average number of reads per UMI

(Fig. 2B, left)—the estimates of this parameter are virtually identical

for a large majority of genes, and differs only for a few outliers.

The estimated amplification efficiencies on the other hand can

vary substantially between genes (Fig. 2B, middle). For the two

TRUmiCount: correctly counting absolute numbers of molecules 3141

Ch. 2. TRUmiCount: . . . (Pflug & von Haeseler, 2018. Bioinformatics) 35



D.melanogaster replicates the range is 22–81% (R1) and 1–83%

(R2). Considering that in this experiment only the 3’ ends of tran-

scripts were sequenced, and all fragments contributing to a gene

hence share a similar sequence composition, this is not unexpected.

These differences in efficiency cause the loss to vary heavily between

genes as well (Fig. 2B, right), between 4 and 35% for R1 and be-

tween 4 and 89% for R2 (which has a much lower overall sequenc-

ing depth). Without gene-specific loss corrections, abundance

comparisons between genes will thus suffer from systematic quanti-

fication bias against certain genes of up to � 35–4% ¼ 31% for R1

and up to � 85% for R2. The larger amount of systematic bias in

D.melanogaster R2 is caused by the two-fold reduction of the num-

ber of reads per molecules in R2 compared with R1—due to the

lower number of reads per molecule in R2, the same difference in

amplification efficiencies between two genes translates into a larger

difference of the number of lost molecules in R2 compared with R1.

In contrast, fragments from all parts of the transcript were

sequenced in the E.coli experiments, and together with the high

sequencing depth (�300 reads per UMI), we now expect little varia-

tions of efficiency, and small and highly uniform losses across genes.

Our efficiency and loss estimates reflects this (Fig. 2B, middle and

right), and as the lack of outliers shows, they do so even for genes

with only few UMIs. Yet for these genes, the raw (unshrunken)

gene-specific estimates are noisy (Supplementary Fig. S3), proving

that shrinking the raw estimates successfully reduces the noise to ac-

ceptable levels.

3.4 Bias-corrected transcript counts

To further verify the accuracy of the corrected transcript counts

computed by our algorithm, we conducted a simulation study. We

use the (loss-corrected) estimated total transcript abundances of

D.melanogaster replicate 1, rounded to 10, 30, 100, 300, 1000,

3000 or 10 000 molecules as the true transcript abundances.

We then simulated amplification and sequencing of these tran-

scripts, using for each gene the previously estimated gene-specific ef-

ficiency and average number of reads per UMI (Fig. 2B). To the

resulting list of UMIs and their read-counts for each gene we applied

our algorithm to recover the true transcript abundances (threshold T

¼ 5 as before), and determined for each gene the relative error of the

recovered abundances compared with the simulation input.

Figure 3 shows these relative errors (i) if no correction is done

(ii) if the correction is based soley on the raw gene-specific loss esti-

mates (i.e. no shrinkage) and (iii) for the full TRUmiCount algo-

rithm (i.e. using shrunken loss estimates). The uncorrected counts

systematically under-estimate the true transcript counts, in 50% of

the cases by at least �10%, independent of the true number of tran-

scripts per gene. And even at high transcript abundances, the relative

error still varies between genes, biasing not only absolute transcript

quantification, but also relative comparisons between different

genes. The counts corrected using raw gene-specific estimates are

unbiased and virtually error-free for strongly expressed genes, but

exhibit a large amount of additional noise for weakly expressed

genes. The full TRUmiCount algorithm successfully controls the

amount of added noise, and shows no additional noise for weakly

expressed genes, while still being unbiased and virtually error-free

for more strongly expressed genes.

3.5 Peformance for low sequencing depth

To assess the performance of the TRUmiCount algorithm at low

sequencing depths such as are common for single-cell RNA-Seq

experiments, we ran a second simulation with gene-specific depth

parameters scaled such that the average across all genes was D ¼ 1

read per molecule (Fig. 4). Under these conditions, the most likely

outcome for a single molecule in the initial sample is to remain unse-

quenced (39% of molecules), and only 27% of molecules are found

in more than one read. The library-wide efficiency estimate of 57%

Fig. 2. (A) Observed and predicted library-wide distribution of reads per UMI and parameter and loss estimates. Filtered UMIs (grey bars, left of threshold T) are over-

abundant and thus assumed to contain both phantom and true UMIs (red dots). UMIs surviving the filter (black bars) closely follow the predicted distribution (black

dots) and are assumed to be true UMIs. (B) Variability of the (shrunken) model parameters and resulting loss between genes. Includes parameter for 7481 detected

genes in D.melanogaster R1, 8001 genes in R2, 2380 genes in E.coli R1 and 2308 genes in R2. (Color version of this figure is available at Bioinformatics online.)
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(Fig. 4A) is nevertheless accurate, and identical to the one computed

for the full dataset (D.melanogaster R1) that the simulation was

based on (Fig. 2A).

For the relative error of the corrected transcript counts we

observed a roughly 2-fold increase at low-sequencing depth (Fig. 4B)

compared with the situation at original sequencing depth (Fig. 3,

right), but still no systematic over- or under-estimation. We estimate

that Poissonian sampling effects account for about affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:09

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 0:39

p
� 1:2-fold increase of the relative errors. The

rest is probably due to the parameter estimation problem becoming

harder at lower sequencing depths, particularly for weakly

expressed genes. For more strongly expressed genes, the relative

quantification error again drops towards zero, similar to the behav-

ior at original sequencing depth.

4 Discussion

The TRUmiCount algorithm we presented successfully removes

the biases inherent in raw UMI counts, and produces unbiased

and low-noise measurements of transcript abundance, allowing

for unbiased comparisons between different genes, exons and

other genomic features. It does so even in the presence of various

types of phantom UMIs and varying amplification efficiencies,

both between samples and along the genome. Compared to other

error-correction techniques, it is not restricted to particular types

of phantom UMIs, or to a special Y-shaped design of the sequenc-

ing adapters.

Our model of the amplification and sequencing process is mech-

anistic, and its two parameters have an immediate physical inter-

pretation. They can both be determined from the experimental data

without the need for either guesses or separate calibration experi-

ments. The TRUmiCount algorithm thus does not require any

changes to library preparation over the basic UMI method. By

inspecting the estimated parameters—in particular the amplification

efficiency, the amplification reaction itself can be studied. For ex-

ample, by estimating model parameters separately for sequenced

fragments of different lengths, the drop of reaction efficiency

with increasing fragment lengths can be quantified (Supplementary

Fig. S2).

Although TRUmiCount requires that libraries are sequenced suf-

ficiently deeply to detect at least some UMIs more than once, it can

also deal with cases where a molecule is on average detected only by

a single read, which is common e.g. for single-cell RNA-Seq. The

performance of TRUmiCount is reduced a bit in such situations, but

it still offers an improvement over uncorrected counts by removing

systematic biases. For even lower read counts, where gene-specific

bias correction becomes infeasible, we expect that TRUmiCount

could still be used to correct for cell-specific (instead of gene-

specific) biases, thus reducing the amount of technical noise when

comparing absolute transcript counts of the same gene between indi-

vidual cells.

The TRUmiCount algorithm can thus help to increase the ac-

curacy of many quantitative applications of NGS, and by remov-

ing biases from comparisons between genes can aid in the

quantitative unraveling of complex gene interaction networks. To

make our method as easily accessible as possible to a wide range

of researchers, we provide two readily usable implementations of

our algorithm. Our R package gwpcR enables a flexible integra-

tion into existing R-based data analysis workflows. In addition,

we offer the command-line tool TRUmiCount which is designed

to work in conjunction with the UMI-Tools of Smith et al. (2017).

Together they provide a complete analysis pipeline which produ-

ces unbiased transcript counts from the raw reads produced by a

UMI-based RNA-Seq experiment (http://www.cibiv.at/software/

trumicount).

Fig. 3. Relative error of estimated total number of transcripts depending on the true number of transcripts. Left panel uses the observed number of UMIs without

any correction. Middle panel uses the raw gene-specific loss estimates to correct for lost UMIs. Right panel uses the full TRUMmiCount algorithm employing

shrunken gene-specific loss estimates to correct for lost UMIs

Fig. 4. TRUmiCount performance for low sequencing depth. (A) Overall distri-

bution of observed and predicted reads per UMI for an average of D ¼ 1 read

per molecule. (B) Relative error of estimated total number of transcripts for

different true numbers of transcripts and D ¼ 1 read per molecules on aver-

age. (Color version of this figure is available at Bioinformatics online.)
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Supplementary Information

Florian G. Pflug and Arndt von Haeseler

S1 Supplementary Methods

S1.1 Computing the distribution of F

To find the actual distribution (in terms its density fF (· ; E) with the

reaction efficiency E as a parameter) of the normalized family size F for

a particular efficiency E we resorted to simulation. We simulated the PCR

process for efficiencies from 0.01 to 0.99 (steps of 0.01 up to 0.90, steps

of 0.005 up to 0.94, steps of 0.002 up to 0.99). Each time, we simulated

109 independent trajectories, and ran each simulation until the expected

family size was 107 molecules (i.e. for n = 7/ log10(1 + E) cycles).

At that point the stochasticity further cycles would introduce is negligible

and we may thus assume M̃n ≈ M̃n+1 ≈ F .

For each efficiency E, we normalized the simulated raw family sizes

using Equation (4) to obtain 109 independent samples of F . Using kernel

density estimation, we then estimated values of the density function

fF (λ ; E) of the normalized family size distribution on a grid of 318

values of λ between 0 and 50. The grid points are spaced non-uniformly,

being finest (distance 0.0025) around 0 and 1 and getting coarser

elsewhere.

This procedure resulted in a 123 × 318 matrix of densities, i.e.

fF (λ ; E) evaluated for each combination of one of the 123 simulated

efficiencies E, and one of the 318 normalized family sizes λ. Using this

(pre-computed and stored) matrix, the density function fF (λ ; E) can

be evaluated quickly for arbitrary values of E and λ by two-dimensional

polynomial interpolation (Akima, 1996).

S1.2 Numerical method of moments estimates

To obtain method of moments estimates for model parameters D (reads

per molecules) and E (reaction efficiency) in the general case T ≥ 0 from

the observed mean m̂ and observed variance v̂ of the number of reads per

UMI, we must find D and E such that

m̂ = E(C |C ≥ T ),

v̂ = V(C
∣

∣C ≥ T )

We solve this system of equations with an iterative method that starts

with initialization step I and then repeats update step U until the estimates

D̂, Ê and P(C ≥ T ) converge (absolute or relative change less than

10−4).

I: We start by pretending that T = 0, and set

D̂ := m̂,

Ê :=
1− r

1 + r
where r =

v̂ − m̂

m̂2
limited to [0, 1],

U: Using the current model parameter estimates D̂ and Ê, we compute

P(C = k) for k = 0, . . . , T − 1,

P(C ≥ T ) = 1−

T−1
∑

k=0

P(C = k).

We then exploit that the uncensored mean (and similarly the variance)

can be partitioned into a sum of the (scaled) censored mean and the

mean (or variance) terms “missing” from the censored mean, i.e. we

compute updated estimates D̂′ of the uncensored mean and v̂′u of the

uncensored variance,

D̂′ := P(C ≥ T ) · m̂+
∑

k<T

k · P(C = k),

v̂′u := P(C ≥ T ) · (v̂ + m̂2)− D̂′2 +
∑

k<T

k2 · P(C = k).

Given the updated estimates of the uncensored moments, the updated

reaction efficiency estimate Ê′ is computed as in the case T = 0 as

Ê′ :=
1− r

1 + r
where r =

v̂′u − D̂′

D̂′2
limited to [0, 1].

S1.3 Multiple initial copies

If each distinct molecules the sample initially contains R > 1 identical

copies (e.g. R = 2 if the initial molecules are double-stranded), each of

these copies can be imagined to be amplified by a separate and independent

PCR processes. But since the molecules are indistinguishable, these

processes cannot be observed individually – we can observe only the (re-

normalized) sum of the resulting family sizes. These observed normalized

family size distribution is thus the average of R independent versions of

F , and its variance is thus one R-th of the variance in Equation (6), i.e.

VF =
1− E

1 + E
·
1

R
, VC = D +D2 ·

1− E

1 + E
·
1

R
. (S1)

The density of distribution of F for R > 1 is the R-fold self-convolution

of the density of F with itself (re-scaled to again have expected value

one), and can thus be computed from the pre-computed matrix for the

single-molecule case without performing additional simulations.

Parameter estimation proceeds just as for R = 1, except that when

computing estimate v′ of VF , we must now account for the reduction of

the observed variance of F by a factor of 1

R
, i.e. we set v′ = R · v̂−m̂

m̂2
.

S1.4 Data Analysis

The reads from each of the downloaded sequenced libraries, were mapped

(ignoring the barcode part) with NGM v0.5.2 (Sedlazeck et al., 2013) to the

© The Author(s) 2018.Published by Oxford University Press. 1
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reference transcriptome of D. melanogaster (R6.08) respectively E. coli

(strain K-12 MG1655). To avoid ambiguities during mapping for genes

with multiple isoforms, we filtered the D. melanogaster transcriptome to

contain only a single transcript per gene before mapping. For each gene,

we picked either the single transcript with a FlyBase score of at least

“moderately supported”, or the longest transcript (if multiple ones had

score “moderately supported” or higher). After mapping the reads, we

used the combination of mapping coordinates (both start and end for the

paired-end E. coli data, only start for the single-end D. melanogaster data)

and barcode (on both ends in the case of E. coli) as UMI. To account for

sequencing errors, we merged similar UMIs (barcodes differing at most

in one position, mapping coordinates by at most 30 bases for paired-end,

5 for sing-end libraries) using the graph-based algorithm of Smith et al.

(2017). For the E. coli data we additionally combined reciprocal UMIs

stemming from the two strands of a single template molecule, but stored

the read counts for plus- and minus-strand separately (see Shiroguchi et al.

(2012)).

This yielded, for each of the libraries, a table comprising the gene id,

start- end end position, barcode and read-count(s) of each detected UMI.

Based on this table, the error-correction thresholds (T = 5 for E. coli,

T = 5 for D. melanogaster R1, T = 2 for D. melanogaster R2), and the

initial number of molecules (actually, strands) for each UMI (R = 1 for

E. coli due to the Y-shaped adapters, R = 2 for D. melanogaster due to

secondary strand synthesis before amplification) our algorithm computed

library-wide and raw as well as shrunken gene-specific estimates of the

reaction efficiency, of the average number of reads per UMI, and of the

loss. For the E. coli data, the error-correction threshold was applied to

the plus- and minus-strand read counts separately, filtering out UMIs if

either count lay below the chosen threshold. This increased the loss of

true UMIs, and we modified the definition of the loss accordingly to ℓ =

1 − (1 − P(C < T ))2 (compare to Equation (12)). (Note that in the

histograms in Fig. 2A, for a lack of other options, we show plus- and

minus-strand counts separately, but omit UMIs where one of the strands

is not detected at all). In addition to the gene-specific parameter and loss

estimates, our algorithm output the observed number of UMIs nobs
g and

the estimated total number of UMIs (i.e. transcript molecules) ntot
g .

S1.5 Simulation

We determined the residual error of the corrected transcript counts using

a simulation approach. We started from the (loss-corrected) estimated

transcript counts ntot
g and (shrunken) gene-specific estimates for reaction

efficiency Êg and sequencing depth D̂g of gene g ∈ {1, . . . ,K} that

we computed for replicate 1 of the D. melanogaster dataset. First we

rounded ntot to the next number in the series 10, 30, 100, 300, . . . and

used the resulting number as the true number ntrue
g of transcripts of gene g.

For each gene g, we then used the amplification+sequencing model (with

parameters Eg , Dg and R = 2 meaning double-stranded molecules) to

simulate the sequencing of ntrue
g UMIs, which yielded for each gene ntrue

g

read counts, one for each UMI. To this list comprising gene id and (for

each gene) ntrue
g read counts, we applied our algorithm, using T = 5 and

R = 2 as before (but passing along no other information from the first run

of the algorithm). The algorithm thus dropped all UMIs with fewer than

T = 5 reads, treated the remaining UMIs for each gene g as the observed

number of UMIs nobs
g , re-estimated the (shrunken) gene-specific losses,

and used them to correct nobs
g for these losses to arrive at an estimated

total transcript count ntot
g . Finally, we computed for each gene the relative

quantification error as

∣

∣ntot
g − ntrue

g

∣

∣

ntrue
g

. (S2)
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Chapter 3

In vivo insertion pool sequencing

identifies virulence factors in a

complex fungal-host interaction

(Uhse et al., 2018. PLoS Biology,

16(4): e2005129)

Preamble

Here, we present a method to accurately measure the differences in virulence

of different mutant strains of the maize pathogen Ustilago maydis by accurately

measuring pre- and post infection abundances of the mutants using next-generation

sequencing (NGS) and unique molecular identifiers (UMIs). The hundred-fold size

difference between pathogen host genomes (20Mb vs. ≈ 2Gb), the small genetic

differences between mutants (200b of 20Mb) and limited mechanical separability

of host and pathogen make such measurements challenging.

To nevertheless successfully quantify mutant virulences using this approach,

theoretical insight into the properties of iPool-Seq is necessary. The foundation for

such insight is formed by the TRUmiCount algorithm and its underlying theory

of UMI-based NGS experiments (Pflug & von Haeseler, 2018; chapter 2 of this

43



work). This theory is applicable to iPool-Seq as well (see chapter 5), allowing

us to construct a statistical model of iPool-Seq experiments on top of it. This

model provides a quantitative definition of virulence and a framework for detecting

differences between mutants and wild-type; the model is described briefly in this

chapter and in more detail in chapter 6).
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METHODS ANDRESOURCES

In vivo insertion pool sequencing identifies
virulence factors in a complex fungal–host
interaction
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Haeseler2,3, Armin Djamei1*
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Abstract

Large-scale insertional mutagenesis screens can be powerful genome-wide tools if they are

streamlined with efficient downstream analysis, which is a serious bottleneck in complex

biological systems. A major impediment to the success of next-generation sequencing

(NGS)-based screens for virulence factors is that the genetic material of pathogens is often

underrepresented within the eukaryotic host, making detection extremely challenging. We

therefore established insertion Pool-Sequencing (iPool-Seq) on maize infected with the bio-

trophic fungus U.maydis. iPool-Seq features tagmentation, unique molecular barcodes,

and affinity purification of pathogen insertion mutant DNA from in vivo-infected tissues. In a

proof of concept using iPool-Seq, we identified 28 virulence factors, including 23 that were

previously uncharacterized, from an initial pool of 195 candidate effector mutants. Because

of its sensitivity and quantitative nature, iPool-Seq can be applied to any insertional muta-

genesis library and is especially suitable for genetically complex setups like pooled infec-

tions of eukaryotic hosts.

Author summary

Insertion mutant screens are widely used to identify genotype–phenotype relationships. In

negative selection screens, a major limitation is the efficient identification of mutants that

are lost or retained after selection. To identify these mutants, the two genomic sequences

flanking the insertion cassette must be found. However, pinpointing these insertion flanks

within a genome is like looking for a needle in a haystack; a problem that becomes even

worse when several organisms form a biotrophic interaction. To overcome this hurdle, we

developed insertion Pool-Sequencing (iPool-Seq). With iPool-Seq, we were able to effi-

ciently amplify and enrich insertion flanks from complex genomic DNA samples. This tech-

nique allows for the quantification of relative insertion mutant abundance before and after

selection by next-generation sequencing (NGS). We demonstrate the power of iPool-Seq

with a negative selection screen by infecting maize with 195 candidate effector mutants of
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the fungal pathogen Ustilago maydis. We identified 28 virulence factors, of which 23 have

not been previously described. iPool-Seq is extremely sensitive, cost- and time-efficient, and

promises to be a powerful tool for identifying target genes in large selection screens.

Introduction

Virulence factors are key for successful infections by pathogens. Their identification is of major

interest because of the necessity to develop effective counter strategies. For instance, fungal viru-

lence factors are typically identified by mutating single loci in fungi, followed by individual fungal

mutant infections of host tissue and subsequent assessment of pathogen fitness [1–4]. Individual

infection assays are not ideal for the genetic screening of a large number of pathogen mutants

because they are laborious, cost-intensive, and—most importantly—assessment of infections is

often subjective and qualitative rather than quantitative. An attractive alternative is infection with

a pool of pathogen mutants allowing direct assessment of individual pathogen fitness in the same

host tissue. However, using a pooled pathogen infection creates the challenge of identifying path-

ogens with reduced virulence within a complex mixture of genetic material extracted from

infected host tissue.

Mutant collections can be efficiently generated using insertional mutagenesis. Insertional

mutagenesis employs gene cassettes that commonly comprise a selectable marker under the con-

trol of a strong constitutive promoter. The detection of genome–cassette junctions can serve as

a molecular identifier for each insertion mutant. During screening, insertional mutants before

selection in the host are defined as the genetic input, whereas surviving insertional mutants after

selection comprise the genetic output. Insertional mutagenesis can be achieved randomly through

transposon insertion [5–8] or Agrobacterium tumefaciens-mediated transformation [3, 9], or spe-

cifically through site-specific insertion by homologous recombination [10, 11].

Over the last decade, several approaches were established that use massive parallel sequenc-

ing for the detection of inserted gene cassettes. These approaches were successfully used to

track mutants from the small genomes of prokaryotic pathogens and allowed the identification

of bacterial genes involved in virulence or host colonization after pooled infections [12–16].

However, only a few attempts were reported that identified virulence factors using pools of

eukaryotic pathogens [17]. The main factors limiting the successful insertional mutagenesis of

eukaryotic pathogens by pooled infections in complex host-pathogen systems are variable

infection rates of individually mutated pathogens, the size ratio of host/pathogen genomes, the

inability to sufficiently detect inserted gene cassettes from pathogenic material, and biases that

arise through PCR-based amplification steps.

To enable successful and quantitative insertion mutant screen-based identification of viru-

lence factors in complex biological systems, we developed insertion Pool-Sequencing (iPool-

Seq). We determined the sensitivity and efficiency of iPool-Seq using an insertion mutant col-

lection of 195 predicted virulence factors encoded by the maize pathogen U.maydis. The hap-

loidU.maydis genome consists of approximately 20.5 megabases [18, 19], whereas the diploid

genome of maize is 2.3 gigabases large [20]. This represents a 100-fold genome size difference,

which is beside the proportion between fungal and host plant genome abundance as a limiting

factor, making the robust detection of U.maydis sequence information in infected maize tissue

necessary. The iPool-Seq workflow consists of Tn5 Transposase-mediated tagmentation of

complex genomic DNA (gDNA) allowing efficient library preparation from low-input material

[21, 22]. This is followed by the efficient enrichment of extremely rare insertion cassettes from

fungal genomes using biotin-streptavidin affinity purification of PCR products. Amplification

In vivo insertion pool sequencing
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biases are monitored through incorporated unique molecular identifiers (UMIs). Insertional

mutant fitness within host tissues is directly measured through quantification of UMI counts

present in infected output material compared to UMI counts from the input library.

iPool-Seq onU.maydis infections of maize confirmed the identity of 5 known fungal virulence

factors that were included as positive controls in the screen. Importantly, 23 previously unrepor-

ted virulence factors encoded byU.maydis were uncovered. Three of these factors were confirmed

to be novel virulence factors ofU.maydis after testing by individual infection. The combination

of pooled insertion mutant infections and iPool-Seq technology represents a straightforward and

cost-effective approach to map insertion mutants in complex host–pathogen systems with the

potential to generate genome-wide virulence maps of relevant crop pathogens and beyond.

Results

iPool-sequencing design and library generation

We employed the smut fungus U.maydis as a model to establish iPool-Seq. We generated a

Golden Gate cloning-compatible plasmid, which allows for recombination of multiple frag-

ments in a single reaction [23]. To this end, we combined a hygromycin resistance cassette

that is flanked by unique primer binding sites (UPSs) with the chromosomal up- and down-

stream regions (1,000 bp) of 195 predicted U.maydis effector genes (Fig 1A; S1 Table). Plas-

mids were linearized and transformed into U.maydis SG200 protoplasts for deletion of the

putative virulence factors by homologous recombination (Fig 1B). For each of the insertion

mutant constructs, we isolated 3 independent transformants and analyzed deletion events

using PCR primers directed against the effector genes sequences. Absence of PCR products

Fig 1. Design of deletion constructs andU.maydis insertional mutants. (a) Plasmid backbones containing a Spec and an ARS were combined with
an hpt resistance cassette and specific borders (LB & RB) via Golden Gate Cloning [23]. The hpt resistance cassette is flanked by UPSs (magenta
arrows). (b) Plasmids were linearized with AscI and combined with haploid SG200 protoplasts. Transformants were selected on plates supplemented
with hygromycin. (c) Schematic overview of PCR verification of transformants. Three independent fungal transformants were verified for each
mutant locus via PCR. PCR products from primer-pair A targeting insertional mutant X was absent in positive transformants and detectable in SG200
control strains. A control primer-pair B gave a product in both insertional mutant X and SG200. ARS, autonomous replication sequence; hpt,
hygromycin phosphotransferase; LB, left border; RB, right border; Spec, Spectinomycin resistance cassette; UPS, unique primer binding site.

https://doi.org/10.1371/journal.pbio.2005129.g001
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indicated successful deletions (Fig 1C). For each successful deletion, 3 independent transfor-

mant replicates were verified and stored separately, allowing for individual propagation to

avoid growth competition prior to pooled infections. We performed 2 independent infections

with pools containing the entire collection of 195 insertional mutants and established the

iPool-Seq library preparation protocol (S2 Fig).

For later comparison of mutant material abundance within the collection, iPool-Seq libraries

were prepared from gDNA representing the mutant pool before infection (the input) and from

infected tissues containing both maize andU.maydis genomes (the output, Fig 2A). To minimize

the number of library preparation steps and conserve material, we replaced mechanical shearing

of gDNA (requiring DNA-end repair, tailing, and adapter ligation steps) with Tn5-mediated tag-

mentation (Fig 2B) [21]. Although this approach yields a wider size range of DNA fragments,

simultaneous DNA fragmentation and adapter ligation makes Tn5-mediated tagmentation pref-

erable to DNA shearing approaches. We produced recombinant Tn5 transposase and adapted

the published protocol to large gDNA inputs (S3 Fig) [21]. Furthermore, customized adapters

for Tn5-mediated tagmentation were designed containing 12 bp unique molecular identifiers

(UMIs) followed by a sequencing primer binding site (SBS; Fig 2B; S2 Table), which enables

sequencing of UMIs using a custom-made first strand sequencing primer. Fragmented gDNA

from pooled fungal infections of maize are not only highly diverse but fungal DNA content will

certainly be underrepresented, making it necessary to efficiently enrich for insertion cassette

junctions with genomic regions. To enrich for such junctions, the tagmentation-derived DNA

fragments were amplified using specific adapter primers and biotinylated primers that bind to

Fig 2. iPool-Seq library preparation workflow features tagmentation and UMIs. (a) Library preparation was carried out for the input mutant collection and for
the output after infection. For the output, we harvested infected areas of the second and third maize leaves and isolated gDNA. (b) Extracted gDNA was
fragmented with Tn5 Transposase loaded with custom adapters containing an SBS (green), 12-bp UMI, and Tn5 hyperactive MEs (blue). Genome–hpt resistance
cassette junctions were PCR-amplified with biotinylated primers directed against UPSs (magenta) and adapter-specific primers directed at the SBS. (c)
Biotinylated PCR products were streptavidin-affinity–purified and Illumina-compatible P5 (purple; NGS1) and P7 (purple; NGS2) ends were introduced by
nested PCR. Final products were subjected to Illumina PE sequencing on a MiSeq platform. gDNA, genomic DNA; hpt, hygromycin phosphotransferase; iPool-
Seq, insertion Pool-Sequencing ME, mosaic end; PE, paired-end; ROI, region of interest; SBS, sequencing primer binding site; UMI, unique molecular identifier;
UPS, unique primer binding site.

https://doi.org/10.1371/journal.pbio.2005129.g002
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unique sequences at the distal ends of deletion cassettes (Fig 2B; S2 Table). Consequently, both

genomic junctions of individual insertion cassettes were amplified, yielding biotinylated PCR

products from all insertional mutants. Biotinylated PCR products were isolated using streptavi-

din-based affinity purification (Fig 2C) and Illumina-compatible adapters were introduced via

nested PCR (S2 Table). Sequencing was performed on an Illumina MiSeq platform. In conclu-

sion, we designed iPool-Seq to benefit from tagmentation, specific amplification, and streptavi-

din purification for efficient enrichment of ultra-rare genome deletion cassette junctions out of a

highly diverse gDNAmixture.

iPool-Seq facilitates the identification of fungal virulence factors

We infected maize in two independent experiments with three biological replicates of a pool of

195 verified insertional U.maydismutants (S1 Table), resulting in six input and output librar-

ies. The libraries were prepared as described above and sequenced on an Illumina MiSeq plat-

form with paired-end (PE) sequencing. After read validation and read mapping, 87.7% ± 1.7%

and 85.3% ± 1.6% of the obtained sequencing reads (input versus output, respectively) were

mapped to U.maydis insertional mutation loci (Fig 3A; S1 Supporting methods).

Fig 3. Quality control of iPool-Seq library. (a) Bioinformatic workflow of iPool-Seq analysis. Input and output read percentage after validation, mapping, and
UMI analysis shows the mean ± SEM of 3 biological replicates and 2 independent infections. (b) Distribution of reads per individual UMI (bars) and model
prediction (dots) over all insertional mutants of 1 representative replicate for input and output. Here, the error-correction threshold was set to 1 for the input and 5
for the output. Predicted true and lost UMIs are indicated. (c) Correlation plot of UMI counts for 50- and 30- genomic junctions of the hpt resistance cassette. One
representative replicate of input and output is depicted. Each circle represents an insertional mutant. Missing up or downstream reads are marked with x. hpt,
hygromycin phosphotransferase; iPool-Seq, insertion Pool-Sequencing; M, mean number of reads per UMI in the predicted distribution; R, correlation value; T,
threshold; UMI, unique molecular identifier.

https://doi.org/10.1371/journal.pbio.2005129.g003
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To remove reads produced by PCR bias and which would affect quantitative evaluation of

input and output reads, we collapsed all reads with highly similar UMIs to a single UMI count

after sequencing. Based on the observed distribution of reads per UMI and comparison to a

model prediction, we then set a library-specific read count threshold, removed UMIs with

fewer reads than the threshold as likely PCR and sequencing artifacts, and corrected the num-

ber of remaining UMIs for the estimated loss of real UMIs (Fig 3B, S1 Supporting methods).

After this UMI analysis, we retained 79.9% ± 3.6% and 76.0% ± 2.2% of initial reads from

input and output for downstream analyses, respectively (Fig 3A).

The sequencing results indicated that three-fourths of all iPool-Seq reads were informa-

tional for insertion mutant abundance. Moreover, iPool-Seq generated similar amounts of

valid reads from input- and output-derived gDNAs, indicating that yield performance was not

diminished using gDNA derived from two organisms.

Since each inserted mutagenesis cassette has two junctions with neighbouring genomic

regions, an unbiased library preparation should produce similar read numbers for up- and

downstream junctions. We observed high correlation values (R) for all insertion mutants for

the input and output samples, indicating that iPool-Seq is not suffering from considerable

PCR biases during exponential amplification of DNA fragments containing mutagenesis cas-

sette–genome junctions (Fig 3C).

To identify U.maydis virulence factors, we analyzed input and output reads for significantly

depleted sequences from the pool of 195 insertion mutants. First, the read output of all inser-

tional mutants was normalized to the corresponding input reads. Second, we defined an inter-

nal reference set of U.maydismutant strains that do not have virulence phenotypes [18, 24]

and whose output and input reads showed a neutral and linear relationship (Fig 4A, neutral;

Fig 4B; S3 Table). Our collection contains additional mutants that were previously reported to

be neutral. In these communications, neutral mutants formed symptoms with the same sever-

ity as the progenitor strain SG200. However, these observations did not provide any distinct

information about quantitative growth defects of these mutants. Therefore, we constrained the

neutral reference set to five mutants that displayed a reproducible neutral behavior in the

iPool-Seq data (S1 Supporting methods).

We then calculated, for each mutant, the level of depletion from the output sample compared to

the input and determined significance through normalization to the internal reference set. This

resulted in the identification of a substantial proportion of sequences that were significantly depl-

eted from the output libraries (Fig 4B, red circles; S1 Data). We analyzed this depleted sequence set

for known virulence factors and identified Pep1, Pit2, and Stp1 (UMAG_01987, UMAG_01375,

and UMAG_02475) [25–27] as known essential virulence factors ofU.maydis (Fig 4A, lost viru-

lence). In addition, we found the previously described virulence factors ApB73 (UMAG_02011)

[28] and Fer1 (UMAG_00105) [29] among the less depleted and reduced candidate sequences (Fig

4A, reduced). Two other mutants (UMAG_06223 and UMAG_02239), for which minor defects in

disease symptom induction had been reported previously, were not significantly depleted in the

iPool-seq results and onemutant (UMAG_12313) previously reported to be unaffected in virulence

showed a weak but significant reduction in our iPool-seq approach (S4 Table) [24]. In summary,

iPool-Seq results largely overlap with previously reported symptom scoring data for characterized

virulence factors (S4 Table). It is also sensitive, as not only apathogenic but also reduced virulence

factor mutants were identified. Importantly, analysis of the depleted sequence set yielded 23 fungal

mutants that are potential novel virulence factors ofU.maydis (Fig 4C; S4 Table).

In contrast to the identification of depleted mutant sequences, we did not identify sequences

that were reproducibly enriched in all biological replicates, indicating that none of the fungal

mutants tested conferred enhanced virulence toU.maydis on the tested host accession Early

Golden Bantam (EGB; Fig 4C).
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We next modeled the performance of iPool-Seq on a high-throughput mutant library of

U.maydis (S9 Fig, S1 Supporting methods). To this end, we used the following parameters: 1)

20,000 insertion mutants were chosen cover the approximately 20-MB genome of U.maydis

with approximately 1,000 bp average distance of insertion sites. 2) During maize colonization,

approximately 1,500 of the approximately 6,900 U.maydis genes are transcriptionally up-regu-

lated—and we showed that about 14% of all mutants from our library contributed to virulence

(Fig 4C; S4 Table) [18, 30]. Based on these observations, we extrapolate that approximately 3%

of all U.maydis genes are likely to be involved in virulence. 3) We showed with iPool-Seq that

known reduced virulence factors of U.maydis had a mean logarithmic fold change of −1.53

and known essential virulence factors of −2.75 in comparison to the neutral reference set,

respectively (Fig 4A). Due to a lack of data, the model does not take into account the number

of unsuccessful infection events on the host plant but assumes 100% infection rate for each

individual of a neutral mutant strain.

The model resulted in 40 (for essential virulence factors) and, respectively, 100 (for weak vir-

ulence factors) detected individuals necessary for each mutant in the input samples to identify

virulence factors with 99% sensitivity. Based on observed average of approximately 10 reads per

UMI (Fig 3B) and due to the insertion flank sequencing efficiency of at least 75% (Fig 3A), the

required sequencing depth would be 26Mio reads (20,000�100�10�1,33 = 26,600,000) per library.

This suggests that the iPool-Seq technology can be used for large scale mutant screens in

U.maydis and similar systems.

Fig 4. iPool-Seq identifies significantly depleted mutants after pooled infection. (a) Log2-fold changes between normalized output abundances and internal
reference set for mutants with known phenotypes. p-Values were calculated with Mann–Whitney U tests. p = 5e−9 for neutral versus reduced and p = 3e−4 for
reduced versus lost virulence with ���p< 0.001; ���� p< 0.0001 (S3 Table). (b) Log2-fold change of output over input abundances for 1 representative
replicate. Each circle represents 1 insertion mutant. Internal references are marked in green, significantly depleted in red (tested against reference set using
negative binomial test; S1 Data; S1 Supporting methods), unaffected mutants in gray; Insig. area is also highlighted in gray. (c) Heatmap of log2-fold changes of
input normalized UMI counts of all insertional mutants sorted by mean level of abundance. Infection A and B are two independent experiments and 1, 2, and 3
are three biological replicates, which were clustered according to similarity. Mutants without detectable reads in output libraries are displayed in black (S1
Data; S1 Supporting methods). FDR, false discovery rate; Insig., insignificant; iPool-Seq, insertion Pool-Sequencing; Sig., significant; UMI, unique molecular
identifier.

https://doi.org/10.1371/journal.pbio.2005129.g004
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Validation of novel essential U.maydis virulence factors

To validate the 23 potential virulence factors identified by iPool-Seq, we chose three top candi-

dates and tested their effects on virulence using individual infection assays. We observed a

severe loss of U.maydis virulence upon infection of plants with fungi carrying these mutations.

Whereas the wild-type progenitor strain SG200 produced galls on infected maize, all three

mutant strains failed to form galls, indicating that they are essential for fungal virulence (Fig

5A). This effect was specifically due to virulence, as growth assays under stress-inducing condi-

tions showed no difference between these mutant strains and SG2000 (Fig 5B). Using confocal

microscopy on infected plants, we observed that mutant strains were severely impaired in col-

onizing maize leaf tissues (Fig 5C). Our combined results show that iPool-Seq facilitates the

identification of essential factors for U.maydis virulence. Furthermore, the streamlined library

preparation of iPool-Seq should make the method widely applicable for identifying unknown

virulence factors in complex biological systems, such as in vivo infected tissues.

Discussion

Pooled mutant screens have proven to be very powerful tools to uncover individual genes

affecting particular phenotypes in a time- and cost-effective fashion. Positive selection screens

usually lead to limited numbers of individual surviving cells that are easily identifiable by a

Fig 5. Virulence factor mutants identified by iPool-Seq cause reduced disease symptoms on maize. (a) Disease rating of insertional mutant strains 7 dpi.
Mean standard deviation of relative counts from 3 replicates are displayed. Only positive error bars are shown. p-Values were calculated by Fishers exact test.
Multiple testing correction was done by Benjamini-Hochberg algorithm. ���� p< 0.0001. (S2 Data) (b) Growth assay of insertion mutants on (A) Cm-
medium, or Cm-medium supplemented with (B) 75 μg/mL Calcofluor (cell wall stress), (C) 45 μg/mL Congo red (cell wall stress), and (D) Charcoal (b-
filament inducing). (c) Confocal microscopy of maize infected with indicated insertional mutant strains 7 dpi. Infected plant tissue was stained with
propidium iodide (red) and fungal hyphae with lectin bindingWGA-AF488 (green). One representative picture of 9 infected plants is shown. Cm-medium,
control Complete medium; dpi, days post infection; iPool-Seq, insertion Pool-Sequencing; ref, reference; wt, wild-type.

https://doi.org/10.1371/journal.pbio.2005129.g005

In vivo insertion pool sequencing

PLOS Biology | https://doi.org/10.1371/journal.pbio.2005129 April 23, 2018 8 / 17

52 Ch. 3. In vivo insertion pool sequencing . . .. (Uhse et al., 2018. PLoS Biology)



combination of restriction enzyme digests, inverse PCR, and sequencing. Negative selection

screens rely on the survival of most analyzed cells, making it necessary to devise methodology

that allows comparing the presence/absence of genetic information before and after selection.

To tackle the later challenge, several insertional mutagenesis approaches have been developed

[31]. Although successful in bacterial systems for the elucidation of virulence factors [5, 13,

32], such insertion mutant approaches were not widely used in eukaryotic systems, mainly

because of unresolved technical issues such as low sensitivity and system-intrinsic limitations

(for example, genome ploidy, lifestyle of the investigated model system).

Here, we introduce iPool-Seq as a versatile and highly sensitive method for the analysis of

insertion mutant pools before and after selection, enabling both negative and positive mutant

selection screens in complex eukaryotic systems including the analysis of host–pathogen inter-

actions. We used iPool-Seq to examine virulence factors from a defined set of mutants of the

crop fungus U.maydis, both confirming known factors and identifying novel ones. From the

predicted mutant collection we used, most mutants were not significantly depleted from the

output reads, indicating no function in virulence for the underlying genes. However, the role

of some factors could be difficult to decipher, for example, because their action could be cov-

ered by functional redundancy of other virulence factors. Although we infected insertion mu-

tants in dense pools, depleted insertional mutants appeared not to be affected by in trans

complementation, by using the secreted factors of neighbouring fungal cells for example. Nev-

ertheless, it cannot be excluded that, for certain gene products, in trans complementation

could occur and mask the virulence defect of the respective mutant in a pooled infection setup.

In conclusion, negative depletion screens have limitations to decipher redundancy and poten-

tial in trans complementation of virulence factors. In addition, we did not identify significantly

enriched mutants in the iPool-Seq analysis of the mutant collection. A significant enrichment

of output reads would indicate the loss of a negative regulator of virulence. A possible reason

that we did not find enrichment could be our choice of the maize accession, EGB, which is

highly susceptible to the U.maydis strain SG200.

Microscopy of U.maydis strain SG200 infecting maize tissue implies that many cells fail to

penetrate the host [28]. In very complex insertion mutant libraries, this large individual failure

rate could lead to the loss of mutants that lack any real defect in virulence. Therefore, for

genome-wide virulence maps of U.maydis and similar biotrophic pathogens, the size of the

insertion mutant pool must be individually adapted to the infection rate of the respective path-

ogen. To overcome this problem, genome-wide screens might need to be performed in sub-

pools, as it has been done in a previous study with the fungal pathogen Cryptococcus

neoformans [11].

iPool-Seq uses insertion cassette–specific primers to amplify the genomic insertion junc-

tions from a mutant pool [17]. Additionally, iPool-Seq enriches for PCR products by using

biotin/streptavidin interaction, an approach that has previously been used in bacterial transpo-

son integration site identification methods such as high-throughput insertion tracking by deep

sequencing (HITS) [5]. Importantly, UMIs in the adapter primer allow in silico elimination of

PCR biases. The unique barcode identifiers additionally overcome cluster position identifica-

tion problems during Illumina sequencing that would otherwise occur when the first bases

from the insertion flank would otherwise be identical for all mutant loci. Dark cycle sequenc-

ing, as used in Quantitative insertion-site sequencing (QIseq) for example, is therefore unnec-

essary [17].

iPool-Seq was established using a defined insertion mutant collection of U.maydis. How-

ever, the technology can be adapted to any insertion mutant collection, such as transposon or

A. tumefaciens-derived T-DNA libraries [33, 34]. The modeling of the iPool-Seq sensitivity

indicates that iPool-Seq meets all premises to work for high-throughput. Therefore, iPool-Seq
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promises to be a versatile technology for reanalysis of existing knock-in, activation-tagging, or

transposon-insertion libraries, dramatically reducing labor costs for selection screens when

compared to classical scoring approaches. Additionally, the relatively low costs of iPool-Seq

for broad screens could also foster research in less funded emerging model systems. Due to the

strong enrichment of insertion gene cassettes, the sequencing depth and costs of iPool-Seq are

low. Thus, this technology will enable researchers to test diverse new selection criteria to effi-

ciently build genotype–phenotype relationships. This will help to fill the knowledge gap that is

currently still hampering research as exemplified for the well annotated U.maydis genome

with 6,786 protein-encoding genes, of which 41.5% are in the category unknown [35]. More-

over, even if genes are annotated, their involvement in various biological processes might, sim-

ply, not yet be known.

From the candidate virulence factors that we identified with iPool-Seq, we chose 3 for verifi-

cation and confirmed their virulence defect by classical scoring of disease symptoms. However,

the assessment of disease symptoms is indirect, and discrepancies between the two methods

might occur for other novel virulence factors. We speculate that theU.maydis genome encodes

virulence factors whose mutants show reduced proliferation but still cause full disease symp-

toms based on qualitative measures. In line with this, the iPool-Seq data did not show significant

depletions for two mutants that were previously reported with mild defects in symptom induc-

tion [24]. In contrast to these disease ratings, iPool-Seq has the potential to identify virulence

factors that do not have an obvious effect on symptom formation on a genome-wide level.

In summary, we have demonstrated the functional genomic technology iPool-Seq by identi-

fying both known and novel virulence factors from pooled infection assays of a biotrophic fun-

gus within a complex host background. iPool-Seq is therefore a sensitive in vivo tool for

researchers to help fill the genotype–phenotype gap in the post-genomic era.

Methods

Vector construction and insertional mutant generation

For all DNAmanipulation we used Escherichia coliMach1 (Thermo Fisher Scientific). The vec-

tor backbone for the generation of the mutant collection is based on pGBKT7 (Clontech Labo-

ratories). We replaced kanamycin resistance with a spectinomycin resistance cassette and

removed internal SapI, BsaI, BsmBI, and BbsI restriction sites by direct mutagenesis from a

derivative of the original vector, respectively [36]. The hygromycin resistance marker originates

from vector pHwtFRT [37]; and SapI, BsaI, BsmBI, and BbsI restriction sites were removed by

site-directed mutagenesis. Moreover, we elongated the hygromycin cassette with a UPS on the

50- and 30-end (50-TCGCCACAGGATACCACAGGACATCTGGGATATC and 30-GCCACTCA
CGCCACAGGATACCACAGGACATCTGGGATATC;UPS is underlined). In detail, for each

mutant locus we amplified 1,000 bp up- and downstream borders from U.maydis gDNA with

standard molecular cloning procedures [38] and combined them with the modified hygromy-

cin-selectable marker cassette flanked with UPS (Fig 2; S2 Table) and the plasmid backbone.

Depending on the occurrence of internal restriction sites, we used either SapI, BsaI, BsmBI, or

BbsI restriction sites (ordered by priority of choice) for Golden Gate cloning [23]. Constructs

were verified by Sanger sequencing and subsequently transformed into the haploid solopatho-

genic strain SG200 of U.maydis as previously described [18, 39, 40]. Transformants were veri-

fied by direct PCR: single mutants were grown in YepsLight (0.4% yeast extract, 0.4% peptone

and 2% sucrose) liquid medium at 28˚C with shaking at 200 rpm in 48-well plates overnight.

The next day, 100 μL overnight culture was pelleted and resuspended in 20 μL 0.02 MNaOH.

1 μL was then utilized for a direct PCR reaction with a primer pair directed against the replaced

gene. As a positive control, a primer pair binding to another mutant locus was used.
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Subsequently, we isolated gDNA from at least 4 PCR positive strains and repeated the direct

PCR using 1 μL of 1:10 diluted gDNA as a template. All primer pairs used for the verification of

deletion strains produced PCR products from a gDNA template from the progenitor strain

SG200. Three independently verified U.maydis insertional mutants were preserved at −80˚C in

PD liquid supplemented with 50% glycerol.

Growth conditions and pooled infection

For each mutant collection pool replicate we infected at least 100 plants of maize variety EGB

(Olds Seeds, Madison, WI, USA). Seedlings were grown under a 14-hour/10-hour light/dark

cycle at 28˚C/20˚C in plant growth chambers and infected 7 days after potting. U.maydis

mutant strains were grown individually on selective PD plates supplemented with 200 μg/mL

hygromycin for 2–3 days at 28˚C. Subsequently, for each mutant strain, 1 mL YepsLight (0.4%

yeast extract, 0.4% peptone and 2% sucrose) liquid preculture was inoculated in 48-well plates

and grown at 28˚C overnight with shaking at 200 rpm. For main cultures, precultures were

diluted 1:2,000 in 3 mL YepsLight in test tubes and grown at 28˚C with shaking at 200 rpm

overnight. After 14–16 hours, the main cultures of all mutants were adjusted to an OD600 of 3

and mixed in equal amounts. The mutant pool was pelleted at 2,000 x g for 10 minutes and

resuspended in sterile water. 250 μL of the mutant pool was infected in each maize seedling

with a syringe. After 7 days, infected areas from the second and third leaves were harvested,

ground to a fine powder in liquid nitrogen, and preserved at −80˚C until iPool-Seq library

preparation.

iPool-Seq library preparation

For output gDNA extraction, 0.75–1 g of infected plant powder was supplemented with 2

mLLysis buffer (10 mM Tris, pH 8; 100 mMNaCl; 1 mM EDTA; 2% Triton X 100 [v/v]; 1%

SDS [w/v]), 2.5 mL TE-buffer equilibrated phenol, chloroform, and isoamyl alcohol (25:24:1,

pH 7.5–8, Carl Roth) and 100 μL sterile glass beads (450–600 μM, B.Braun) in a 7-mL Precellys

tube. The material was processed for 20 seconds at 4,500 rpm with a Precellys evolution bead

mill (Bertin). The debris was pelleted at 17,000 x g for 15 minutes, and 2 mL supernatant was

added to 2.2 mL Isopropanol. The precipitated gDNA was washed with 1 mL 80% EtOH and

eluted in 150 μL or 200 μL TE supplemented with RNAse A (20 μg/mL, Thermo Fisher Scien-

tific). For input gDNA extraction, gDNA was extracted from 2 mL of insertional mutant pool

as previously described [41]. gDNA concentrations were determined with PicoGreen (Thermo

Fisher Scientific). Tn5 fragmentation of a total of 10 μg gDNA for output and 1 μg gDNA for

the input was adapted from [20], and performed as follows [21]: We combined 1 μg gDNA per

20 μL reaction with Tn5 transposase (150 ng/μL f.c.) preloaded with 25-μM adapters in 1x

TAPS buffer (50 mM TAPS-NaOH, 25 mMMgCl2, 50% v/v DMF, pH 8.5 at 25˚C) and incu-

bated the reaction mix in a thermocycler at 55˚C for 10 minutes. We purified each reaction

mix with a 1:1 ratio of Agencourt AMPure XP beads (Beckman Coulter) according to the man-

ufacturer’s protocol and performed PCR with Phusion polymerase (New England Biolabs)

using an adapter specific forward primer and a biotinylated insertion specific primer from 250

ng fragmented gDNA (denaturation for 15 seconds at 95˚C, annealing for 15 seconds at 65˚C,

elongation for 30 seconds at 72˚C; repeated for 15 cycles; 1 minute final elongation). We

pooled all PCRs of the same sample and purified 1/5 with Agencourt AMPure XP beads (ratio

1:1; Beckman Coulter). The PCR amplicons eluted from each sample were split into 4 PCR

reactions and amplified with nested primers to add Illumina compatible P5 and P7 ends (15

cycles, with 65˚C annealing temperature and 30 seconds elongation at 72˚C). The final PCR

products were purified with Agencourt AMPure XP beads in a 1:1 ratio. The average fragment
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size was measured on a fragment analyzer (Advanced Analytical Technologies, Inc.) and

library quality was controlled with qPCR. Illumina Sequencing was performed on a MiSeq

platform with 75 PE conditions. We used a custom designed forward sequencing primer and

the standard Illumina primers for reverse and index sequencing (S2 Table).

Confirmation of iPool-Seq candidate virulence factors

We confirmed the results of iPool-Seq for 3 candidate genes with individual infection assays,

microscopy, and in vitro growth assays. The infection assay was performed as previously

described [18]. In summary, for each insertional mutant, 3 replicates of U.maydis were grown

overnight in YepsLight liquid medium (0.4% yeast extract, 0.4% peptone and 2% sucrose) with

200 rpm agitation to an OD600 of 0.6–1 and adjusted to an OD600 of 1 in sterile water. We

syringe-infected 7-day-old maize seedlings of the variety EGB with approximately 250 μL fun-

gal suspension per plant. Symptoms were scored 7 days post infection (dpi) according to the

published protocol [18]. Fungal leaf colonization was assessed 7 dpi via microscopy. Fungal

hyphae were stained with WGA-AF488 (Thermo Fisher Scientific) and plant cell walls with

propidium iodide (Sigma-Aldrich) as previously described [28]. Confocal microscopy was per-

formed with the following settings: We utilized an LSM780 Axio Observer confocal laser scan-

ning microscope with an LD LCI Plan-Apochromat 25x/0.8 Imm Corr DIC M27 objective

(Zeiss, Jena, Germany). WGA-AF488 was excited at 488 nm and detected at 500–540 nm; pro-

pidium iodide was excited at 561 nm and detected at 580–660 nm.

Bioinformatic analysis

For each sequenced library, adapter read-throughs were removed from the raw Illumina reads,

UMIs were extracted and stored separately, and the reads (lacking UMIs) were mapped to the

U.maydis reference genome [18] using NextGenMap [42]. The reads mapping to each flank (5’

and 3’) of each insertional mutant were grouped by UMI, and highly similar UMIs were merged

to correct for sequencing errors [43]. UMIs with fewer reads than the error-correction threshold

were removed as likely artifacts, and the number of surviving (and thus likely true) UMIs for

each gene and flank were counted. To correct for biases caused by different detection losses

(i.e., # undetected genomes/# total genomes) between mutants and flanks, the mutant- and

flank-specific losses were estimated from the observed mutant- and flank-specific distributions

of reads per UMI (S1 Supporting methods) using the TRUmiCount algorithm (see S1 Support-

ing methods for details) [44]. To discern stochastic fluctuations from knockout phenotypes, the

number of true UMIs detected in the output pool for neutral insertional mutants were assumed

to follow a negative binomial distribution with mean mm ¼ l � nin
m � 1� ‘outm

� �

= 1� ‘inm
� �

and

(inverse) overdispersion parameter rm ¼ nin
m= 1þ d � nin

m

� �

. Briefly, a neutral mutantm’s exp-

ected UMI count in the output pool thus depends on (1) the number nin
m of detected UMIs in

the input pool, (2) the estimated losses ‘outm and ‘inm for the output and input pool, and (3) a

mutant-independent normalization factor λ to account for differences in total genome count

between input and output samples. The sources of overdispersion of the output counts are (4)

the (Poissonian) sampling uncertainty of the input pool counts nin
m, and (5) random fluctuations

of fungus proliferation accounted for by the mutant-independent parameter d. For each output

pool, parameters λ and dwere estimated (see S1 Supporting methods for details) by fitting the

model to a reference set of presumed neutral mutants (S3 Table), 2 one-sided p-values for the

significance of depletion (respectively, enrichment) compared to the reference set were com-

puted for each insertional mutant and transformed to q-values to control for the false discovery

rate (FDR) [45]. Undetected insertional mutants (i.e., with zero UMIs) in input pools were
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excluded from the analysis of the corresponding output pools. Undetected insertional mutants

in output pools were not assigned p- or q-values.

To quantify the change in virulence of an insertional mutant, its abundance in the output

was first normalized to its abundance in the input (thus assuming independent fates of the

individuals in the input). Then, the log2-fold change between its normalized output abundance

and the normalized output abundance of the internal reference set was computed (see S1 Sup-

porting methods for details). Further details on the modeling can be found in S1 Supporting

methods.

Supporting information

S1 Data. q-Values of U.maydismutant strains.

(XLSX)

S2 Data. Symptom rating of mutant strains.

(XLSX)

S1 Fig. Workflow of pooled infection of maize. For each replicate of the U.maydismutant

collection, at least 100 maize plants of the accession EGB were potted. Mutants were grown on

selective plates for 2–3 days. From plates, precultures were inoculated and grown ON. The pre-

cultures were used for inoculation of the main cultures to avoid dead material in the infection

pool. All main cultures were pooled with equal amounts that were adjusted to the same optical

density and infected in 7-day old maize seedlings with a syringe. Infected areas of the second

and third leaf of each plant were harvested 7 days after the infection. All 3 biological replicates

of the mutant collection were processed in 14 days. EGB, Early Golden Bantam; ON, over-

night.

(TIF)

S2 Fig. Tn5 fragmentation of gDNA with modified adapters. Recombinantly produced

hyperactive Tn5 was tested with standard Tn5-ME-A and custom UMI-ME-A on 1 μg gDNA

of U.maydis-infected maize tissue with indicated concentrations. gDNA; genomic DNA; In,

Input; M, Marker 1 kb-ladder (Thermo Scientific); ME, mosaic end; Tn5-ME-A, Tn5-ME-A-

dapter; UMI-ME-A, UMI-ME-adapter.

(TIF)

S3 Fig. Sensitivity of iPool-Seq. Estimated sensitivity of iPool-Seq for a genome-wide library

of U.maydismutants. Model shows for different (1 up to 100) mutant copies detected in the

input sample for the sensitivity of virulence factor detection. Depicted model curves are given

assuming 3% of all mutants have a reduced virulence of log2(FC) −1.53 and log2(FC) of −2.75,

respectively, and the other 97% are neutral in respect to virulence. The sensitivity reaches 99%

at 40 detected mutants (lost virulence) and 100 detected mutants (reduced virulence), respec-

tively. FC, fold change; iPool-Seq, insertion Pool-Sequence.

(TIF)

S1 Software. iPool-Seq analysis pipeline. iPool-Seq, insertion Pool-Sequencing.

(TGZ)

S1 Supporting methods. iPool-Seq analysis pipeline description. iPool-Seq, insertion Pool-

Sequencing.

(PDF)

S1 Table. U.maydis genes targeted for insertional mutagenesis.

(XLSX)
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S2 Table. Key primers used in this study.

(XLSX)

S3 Table. U.maydismutants used for the internal reference set.

(XLSX)

S4 Table. Significantly depleted U.maydismutants identified by iPool-Seq. iPool-Seq,

insertion Pool-Sequencing.

(XLSX)
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Chapter 4

Insertion Pool Sequencing for

Insertional Mutant Analysis in

Complex Host-Microbe

Interactions (Uhse et al., 2019.

Current Protocols in Plant Biology,

4: e20097)

Preamble

The iPool-Seq protocol (Uhse et al., 2018; chapter 3 of this work) depends on the

TRUmiCount algorithm (Pflug & von Haeseler, 2018; chapter 2 of this work) to

ensure unbiased quantification of mutants abundances, and on a tailored statistical

model to distinguish significant differences between mutants’ virulences (chapter

6). By providing a polished and easy-to-use data analysis pipeline and step-by-step

instructions, the publication presented here aims to make both the iPool-Seq wet-

lab protocol and the computational analysis of iPool-Seq data as easily accessible

to potential users as possible.

The instructions also include guidance on how to select TRUmiCount’s error-
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correction threshold T; see figure 2 and section Adjusting the TRUmiCount phantom

rejection threshold (Uhse et al., 2019; chapter 4 of this work; pages 78 and 82).

Note: Basic Protocols 1 through 3 pertain to the wet-lab parts of iPool-Seq

and are neither the work of the author of this thesis, nor are they relevant to the

rest of the work (except maybe Basic Protocol 3, which describes the Streptavidin

purification step, and thus has some bearing on the applicability of TRUmiCount;

see the discussion in chapter 5). These parts are included only for completeness’

sake.

Author contributions

Design, development and testing of the iPool-Seq pipeline, writing of Basic Pro-

tocol 4. Bioinformatic analysis, and writing of the pipeline-related discussion in

the Commentary were done by the author of this thesis, under the guidance and

supervision of Arndt von Haeseler.
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Insertional mutant libraries of microorganisms can be applied in negative de-

pletion screens to decipher gene functions. Because of underrepresentation

in colonized tissue, one major bottleneck is analysis of species that colonize

hosts. To overcome this, we developed insertion pool sequencing (iPool-Seq).

iPool-Seq allows direct analysis of colonized tissue due to high specificity for

insertional mutant cassettes. Here, we describe detailed protocols for infection

as well as genomic DNA extraction to study the interaction between the corn

smut fungus Ustilago maydis and its host maize. In addition, we provide proto-

cols for library preparation and bioinformatic data analysis that are applicable

to any host-microbe interaction system. C© 2019 The Authors. This is an open

access article under the terms of the Creative Commons Attribution License,

which permits use, distribution and reproduction in any medium, provided the

original work is properly cited.
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under a certain condition, e.g., host infection (Jeon et al., 2007). Recent advances in

massive parallel sequencing allow for large-scale approaches in bacteria that permit

analysis of larger pools of insertional mutants (Gawronski, Wong, Giannoukos, Ward,

& Akerley, 2009; van Opijnen, Bodi, & Camilli, 2009). Here, we describe the insertion

pool sequencing (iPool-Seq) pipeline that we recently established with the Ustilago

maydis–Zea mays interaction (Uhse et al., 2018).

U. maydis is a smut fungus that colonizes and overcomes the immunity of the crop

plant maize (Kamper et al., 2006). Many molecular and genetic tools are available for

U. maydis, and therefore, the fungus is an important model organism in the field of

plant-microbe interactions (Lanver et al., 2017). Especially useful for generation of an

insertional mutagenesis library is the availability of a solopathogenic U. maydis strain

that is haploid and capable of infecting (Kamper et al., 2006). Many plant pathogens,

including U. maydis, rely on the versatile repertoire of effector genes that mediate and

shape the interaction with the host plant. The majority of predicted U. maydis effector

genes are unstudied, and it is unclear if and to what extent they contribute to virulence

(Kamper et al., 2006). To gain insights about the effector repertoire of U. maydis, we

generated an insertional mutagenesis library and employed it in a negative depletion

screen during infection of maize to elucidate novel virulence factors in the fungus.

Transformation of insertional cassettes via homologous recombination is well established

in U. maydis and has been used successfully to delete clusters of predicted effector

genes (Kamper et al., 2006). We created an insertional mutant library for U. maydis via

homologous recombination of a selectable marker conferring resistance to hygromycin.

Next, we established the iPool-Seq workflow based on this library, allowing for controlled

insertional mutagenesis at loci of predicted effectors that are likely to contribute to the

virulence of U. maydis (Uhse et al., 2018). All newly generated U. maydis mutants were

verified for deletion of the targeted effector genes via PCR on cultures and on extracted

genomic DNA (gDNA). Eventually, the library comprised three independent replicates

for each insertional mutant, with 195 putative virulence factor mutants for U. maydis in

total. We used this library to conduct a negative depletion screen by infection of the host

plant maize and subsequent analysis of the input and output compositions. The input, i.e.,

the gDNA of the mutant pool before the infection, and the output, i.e., the gDNA of the

infected host material, were prepared, deep-sequenced, and bioinformatically analyzed.

iPool-Seq was performed on the entire library of 195 insertional mutants. The method

was highly selective for reads from U. maydis insertional mutant loci, yielding >75%

informative reads for input and output samples. Moreover, we identified 28 reproducibly

and significantly depleted mutants from next-generation sequencing (NGS) reads after

infection in the maize Early Golden Bantam. Several of the mutants that we found with

iPool-Seq were previously shown to be virulence factors. For instance, mutants of the

U. maydis effectors Pep1, ApB73, and, more recently, Cce1 displayed severe virulence

defects based on classical disease ratings (Doehlemann et al., 2009; Seitner, Uhse, Gallei,

& Djamei, 2018; Stirnberg & Djamei, 2016). The confirmation of these known virulence

factors by iPool-Seq indicates that iPool-Seq yields reliable results for depleted mutants.

To further strengthen this finding, we tested three potential virulence factors identified

by iPool-Seq and were able to show a virulence phenotype for these mutants based

on classical disease ratings in comparison to the wildtype solopathogenic strain SG200

(Uhse et al., 2018).

The protocols described here aim to make the full potential of iPool-Seq accessible to

the larger scientific community. The iPool-Seq workflow, from infection to sequence

analysis, is divided into four parts (Fig. 1): Basic Protocol 1 describes the process of

infection of the host plant maize with insertional mutant pools. Basic Protocol 2 describes

the extraction of gDNA from input samples before infection and from output samples
Uhse et al.
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Figure 1 Overview of the iPool-Seq pipeline. The pipeline contains four parts, which can be

finished sequentially in �20 days. gDNA, genomic DNA; NGS, next-generation sequencing; UMI,

unique molecular identifier.

after infection. Both Basic Protocol 1 and Basic Protocol 2 were established for the U.

maydis–Z. mays pathosystem and might require adaptation when applied to other host-

microbial interaction systems. In contrast, Basic Protocols 3 and 4 are applicable to any

host-microbial interaction system: Basic Protocol 3 describes the NGS library preparation

in detail, and Basic Protocol 4 details bioinformatic analysis of the sequencing results

for the input and output libraries, with the goal of detecting changes in the virulence of

particular insertional mutants compared to a reference set of neutral controls.

BASIC

PROTOCOL 1

U. MAYDIS INSERTIONAL MUTANT POOL INFECTION IN MAIZE

For generation of a negatively depleted output, the insertional mutant library of U. maydis

must be raised, pooled, and infected into its host maize. The following protocol describes

the processes of infection and of harvest of the infected maize tissue.

NOTE: Repeat the procedure for a total of three biological replicates.

Materials

Soil [4:1 mixture of standard potting soil (Einheitserde Werkverband e.V.) with
perlite (Granuflor)]

Early Golden Bantam (EGB) maize seeds

Nematode (Biohelp) solution (1 g in 3 L water)

Cryopreserved U. maydis insertional mutant library (strain SG200 background
genotype; transformed via homologous recombination; Kamper et al., 2006;
Uhse et al., 2018)

Potato dextrose–agar plates containing 200 µg/ml hygromycin (see recipe)

YepsLight liquid medium (see recipe)

Double-distilled water

0.05% (v/v) Tween-20 (Sigma-Aldrich) in double-distilled water

Liquid nitrogen

12-cm-diameter round pots

Phytochamber

5-ml glass pipets

48-deep-well liquid culture plates (5-ml well volume, UCT)

28°C incubator-shaker

15- and 50-ml Falcon tubes

Rotator

Photometer/plate reader

500-ml centrifuge tube
Uhse et al.
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Standard tabletop centrifuge

1-ml syringe (B. Braun)

0.45-mm-diameter needle (25-mm long, B. Braun)

Scissors

1-L beaker (Duran)

Magnetic stirrer (IKA) and stir bar

Mortar and pestle

Metal spatula

Laboratory Mixer Mill MM 200 (Retsch) and compatible container

8-mm-diameter metal balls (Kugel-Pompel)

NOTE: All reagents, consumables, and equipment coming into contact with living U.

maydis axenic culture cells must be sterile. Working in a laminar flow hood is recom-

mended, if possible.

Potting of maize

1. Distribute soil in 12-cm-diameter round pots and water pots sufficiently. Seed five

EGB maize seeds per pot for a total of >100 seeds per insertional mutant pool

replicate. Treat each pot with 100 ml nematode solution for pest control.

2. Grow maize in a phytochamber under the following conditions: 14-hr/10-hr

light/dark cycle at 28°C/20°C with a total light intensity of 183.21 µmol m− s−1.

After 7 days, maize seedlings are ready for infection with the insertional mutant pool.

Growth of U. maydis insertional mutant library

3. Distribute cryopreserved U. maydis insertional mutant library strains on potato

dextrose–agar plates containing 200 µg/ml hygromycin using 5-ml glass pipets.

Keep individual mutant strains separate by streaking �8 strains on designated sectors

per plate. Grow at 28°C for 2 to 3 days in the dark.

4. Inoculate each strain in 2 ml YepsLight liquid medium per well in 48-deep-well

liquid culture plates. Grow infection pre-culture overnight in a 28°C incubator-

shaker with agitation at 180 rpm.

5. Inoculate 5 ml YepsLight per 15-ml Falcon tube with pre-culture at a 1:3000 ratio

to form infection main cultures. Grow overnight (for 15 hr) at 28°C in a rotator at

20 rpm.

6. Measure optical density at 600 nm in a photometer/plate reader for each individual

mutant strain infection main culture. Adjust the amount of culture to achieve an

optical density between 0.6 and 1 for each strain and pool equal volumes of cultures

of all mutant strains in a 500-ml centrifuge tube.

7. Centrifuge 10 min at 2000 × g and discard supernatant by decanting, ensuring

removal of all supernatant. Resuspend pellet in double-distilled water to an optical

density at 600 nm of 1 by pipetting up and down.

Infection of U. maydis insertional mutant library in maize seedlings

8. Using a 1-ml syringe and a 0.45-mm-diameter needle, inject �250 µl pooled in-

fection culture into 7-day-old EGB maize seedlings (see step 2) that display three

juvenile leaves. Make sure to infect maize seedlings in the center of the leaf whirl

by piercing the stem halfway. Infect a total of >100 maize plants with the pool.

9. For the input control, centrifuge 10 ml pooled infection culture in a 15-ml Falcon

tube for 1 min at 10,000 × g. Discard supernatant and store pellet at −70°C until

isolation of gDNA from the input sample (see Basic Protocol 2).Uhse et al.
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Harvest of infected maize tissue

10. Grow infected maize seedlings from step 8 for another 7 days in a phytochamber

with a 14-hr/10-hr light/dark cycle at 28°C/20°C with a total light intensity of

183.21 µmol m−2 s−1.

11. Harvest infected second and third maize leaves at a 1-cm distance from the infection

site with scissors, making sure to restrict the harvested material to infected tissue.

Wash harvested tissue in 0.05% Tween-20 in double-distilled water in a 1-L beaker

by stirring on a magnetic stirrer with a magnetic stir bar at 200 rpm for 5 min.

Subsequently, wash leaves twice in double-distilled water. Air-dry wet leaves at

room temperature before cryopreservation (see steps 12 to 14).

The wash steps facilitate removal of any remaining dead insertional mutants located on

the leaf epidermis.

12. Crush dry infected maize tissue in liquid nitrogen with a mortar and pestle.

From now on, cool down all consumables and equipment with liquid nitrogen and avoid

thawing of the maize tissue to ensure gDNA integrity.

13. Using a metal spatula, transfer crushed material into a container compatible with

the Laboratory Mixer Mill MM 200 and add three 8-mm-diameter metal balls. Mill

samples at 25 Hz for 90 sec. Cool mill container in liquid nitrogen for 60 sec and

repeat milling step.

14. Using a metal spatula, transfer milled maize powder into a 50-ml Falcon tube

and store at −70°C until gDNA extraction from the output sample (see Basic

Protocol 2).

BASIC

PROTOCOL 2

gDNA EXTRACTION FROM MUTANT POOL BEFORE AND AFTER
INFECTION OF MAIZE

The starting material for the iPool-Seq Illumina library preparation is gDNA (Basic

Protocol 1). Firstly, gDNA from the input library is required to analyze the composition

of the initial insertional mutants. Secondly, the gDNA of the infected material is required

to obtain insights about the insertional mutant pool composition after infection. U. maydis

gDNA extraction is based on a protocol established in yeast that was adapted for iPool-

Seq (Hoffman & Winston, 1987).

Materials

Glass beads (450 to 600 µM, B. Braun)

Input pellet (10-ml pellet of pooled mutants before infection, stored at −70°C; see
Basic Protocol 1, step 9)

TE-equilibrated phenol/chloroform/isoamyl alcohol [25:24:1 (v/v/v), pH 7.5 to 8,
Carl Roth; store at 4°C in the dark]

Ustilago lysis buffer (see recipe)

80% (v/v) and 100% ethanol (p.a.)

1× TE containing 20 µg/ml RNase A (Thermo Fisher Scientific, EN0531; store at
−20°C)

Homogenized infected maize tissue (output, stored at −70°C; see Basic Protocol 1,
step 14)

Isopropanol (p.a.)

VXR basic Vibrax (IKA) or equivalent

Refrigerated tabletop centrifuge, 4°C

ThermoMixer C (Eppendorf)

Scale Uhse et al.
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7-ml Precellys tube (Bertin)

Precellys Evolution bead mill (Bertin)

5-ml Eppendorf tubes

NOTE: Conduct all steps on ice and pre-cool consumables and equipment to 4°C.

CAUTION: Phenol/chloroform is highly toxic and volatile. Take protective measures

when working with phenol/chloroform, including working in a laminar flow hood. Handle

phenol-contaminated waste appropriately.

CAUTION: Store the ethanol and isopropanol at 5°C to 30°C in a safety cabinet for

flammable liquids.

gDNA extraction from input

1. Add �200 µl glass beads to the input pellet (see Basic Protocol 1, step 9). Add

500 µl TE-equilibrated phenol/chloroform/isoamyl alcohol and 400 µl Ustilago

lysis buffer.

2. Vortex mixture at 1500 rpm for 15 min at room temperature in a VXR basic Vibrax

or equivalent device.

3. Centrifuge 30 min at 13,000 × g, 4°C.

4. In the meantime, prepare a 1.5-ml Eppendorf tube containing 1 ml of 100% ethanol.

5. Add 400 µl of upper, aqueous layer from step 3 to the tube from step 4 and mix

vigorously by vortexing for 30 sec.

6. Incubate mixture for >1 hr at −20°C to improve gDNA precipitation.

Stopping point: Store the mixture overnight at −20°C.

7. Centrifuge 5 min at 13,000 × g, 4°C.

8. Wash gDNA pellet with 1 ml of 80% ethanol. Invert tube several times and centrifuge

5 min at 13,000 × g, 4°C.

9. Remove supernatant carefully by pipetting, briefly spin down tube, and remove

residual supernatant.

10. Add 30 µl of 1× TE containing 20 µg/ml RNase A.

11. Incubate for 15 min at 55°C on a ThermoMixer C with agitation at 800 rpm and

with an open lid.

This step allows for evaporation of residual ethanol.

12. Store extracted input gDNA at −20°C until library preparation (see Basic

Protocol 3).

gDNA extraction from output

13. Weigh 1 g homogenized infected maize tissue (output; see Basic Protocol 1,

step 14) and transfer into a 7-ml Precellys tube.

14. Add �1000 µl glass beads to output. Add 2.5 ml TE-equilibrated phe-

nol/chloroform/isoamyl alcohol and 2 ml Ustilago lysis buffer.

15. Vortex mixture at 5000 rpm for 30 sec at room temperature in a Precellys Evolution

bead mill. Transfer mixture into 5-ml Eppendorf tubes.

16. Centrifuge 30 min at 13,000 × g, 4°C.

Uhse et al.
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17. In the meantime, prepare a 5-ml Eppendorf tube containing 2.2 ml isopropanol.

18. Add 1.5 ml of upper, aqueous layer from step 16 to the tube from step 17 and mix

vigorously by vortexing for 30 sec.

19. Incubate mixture for >1 hr at −20°C to improve gDNA precipitation.

Stopping point: Store the mixture overnight at −20°C.

20. Centrifuge 5 min at 13,000 × g, 4°C.

21. Wash gDNA pellet with 1 ml of 80% ethanol. Invert tube several times and centrifuge

5 min at 13,000 × g, 4°C.

22. Remove supernatant carefully, briefly spin down tube, and remove residual super-

natant.

23. Add 150 µl of 1× TE containing 20 µg/ml RNase A.

24. Incubate for 15 min at 55°C on a ThermoMixer C with agitation at 800 rpm and

with an open lid.

As in step 11, this step allows for evaporation of residual ethanol.

25. Store extracted output gDNA at −20°C until library preparation (see Basic

Protocol 3).

BASIC

PROTOCOL 3

ILLUMINA SEQUENCING LIBRARY PREPARATION USING gDNA FROM
INSERTIONAL MUTANT POOLS

The purified gDNA from the insertional mutant library input and output (Basic Protocol 2)

is further processed via an iPool-Seq library preparation protocol to obtain Illumina

sequencing–compatible libraries. The protocol is optimized for specific enrichment of

insertion mutant flanks and high double-stranded DNA (dsDNA) yields, enabling library

preparation directly from infected host tissue.

NOTE: Check the dsDNA concentration after each step to ensure successful preparation.

We recommend quantification via a fluorescence assay, e.g., PicoGreen.

Materials

Oligonucleotides: 100 µM Adapters P1 and P2 and 5 µM PCR1-F, PCR1-R,
PCR2-F, and PCR2-R (see Table 1)

Reassociation buffer (see recipe)

Purified Tn5 transposase [1 µg/µl, prepared according to prior protocol (Picelli
et al., 2014); store at −70°C in aliquots for �12 months]

100% glycerol

Input and output gDNA (see Basic Protocol 2, steps 12 and 25, respectively)

5× TAPS buffer (see recipe)

Nuclease-free water

SPRI magnetic beads (e.g., Agencourt AMPure XP beads, Beckman Coulter; store
at 4°C)

Phusion High-Fidelity DNA Polymerase, with 5× Phusion HF Buffer (New
England Biolabs, M0530; store at −20°C)

10 mM dNTPs (New England Biolabs, N04472; store at −20°C)

Dynabeads M-270 Streptavidin

1× and 2× B&W buffers (see recipe)

PCR tubes

Thermocycler Uhse et al.
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Gel electrophoresis chamber or fragment analyzer

1.5-ml DNA LoBind tubes (Eppendorf)

Magnetic stand

Rotator

Additional reagents and equipment for gel electrophoresis (see Current Protocols
article; Gallagher, 2012)

Tn5 fragmentation of input and output gDNA

1. Combine the following in a PCR tube to 100 µl total volume and mix well by

pipetting up and down:

� 25 µl of 100 µM Adapter P1
� 25 µl of 100 µM Adapter P2
� 50 µl reassociation buffer.

Perform primer annealing in a thermocycler starting from 90°C, with a 1°C decre-

ment per minute.

2. Combine the following in a PCR tube to 100 µl total volume and mix well by

pipetting up and down:

� 25 µl purified Tn5 transposase
� 25 µl annealed adapters (see step 1)
� 50 µl of 100% glycerol.

3. Incubate for 30 min at 37°C in a thermocycler.

4. Combine the following in separate PCR tubes and mix well by pipetting up and

down:

� 250 ng input or output gDNA
� Tn5 transposase loaded with adapters (see step 3) to a final concentration of

150 ng/µl

Table 1 Oligonucleotides Used for Adapters, Specific PCR1 and PCR2, and Illumina Sequencing

in Basic Protocol 3

Oligonucleotide Sequencea

Adapter P1b 5′-CACGACGCTCTTCCGATCTNNNNNNNNNNNNAGATGTGTATA

AGAGACAG-3′

Adapter P2 5′-[phos]CTGTCTCTTATACACATC[3InvdT]-3′

PCR1-Rc,d 5′-[BioTEG]CCAGATGTCCTGTGGTATCCTGTG-3′

PCR1-F 5′-GAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATC-3′

PCR2-F 5′-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC-3′

PCR2-Rd 5′-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTT

CAGACGTGTGCTCTTCCGATCTCCTGTGGTATCCTGTGGCG-3′

Illumina Rd1e 5′-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-3′

Illumina Rd2e 5′-GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3′

aDepending on the library of insertional mutants that is screened, these sequences may potentially need to be adjusted.
bThe 12 Ns in Adapter P1 constitute the UMI and should be random.
cThe 6 Ns in PCR2-R constitute the (single-index) library multiplexing barcode.
dWith PCR1-R and PCR2-R as listed, enrichment of insertion mutant flanks is specific for the sequence 5′-

CCAGATGTCCTGTGGTATCCTGTGGCG-3′, and read2 will start with the underlined part of PCR2-R.
eIllumina Rd1 and Rd2 are the standard Illumina TruSeq sequencing primers.

Uhse et al.
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� 4 µl of 5× TAPS buffer and
� Nuclease-free water to 20 µl.

CAUTION: TAPS buffer contains dimethylformamide (DMF), which is toxic and

volatile. Take appropriate safety measures and work in a laminar flow hood.

Prepare separate reactions for the input and output and use 250 ng per PCR reaction.

For the Tn5 fragmentation, we recommend total amounts of 500 ng for the input gDNA

and 10 × 1 µg for the output gDNA for a first trial. Upscaling is recommended if final

read coverage of insertional mutants and unique molecular identifier (UMI) diversity

is low.

5. Incubate reaction for 10 min at 55°C in a thermocycler.

6. Clean fragmentations with SPRI magnetic beads, e.g., Agencourt AMPure XP beads,

according to the manufacturer’s protocol.

We recommend gDNA purification with SPRI beads to minimize DNA loss. A ratio of 1.5×

SPRI beads to DNA yields good results. Size selection is possible but not recommended.

Column-based purification systems can be used instead of SPRI magnetic beads but will

most likely provide lower DNA recovery yields and thus less diverse sequencing libraries.

7. Ensure fragmentation success via gel electrophoresis or using a fragment analyzer.

8. Determine dsDNA concentration for subsequent PCR.

We recommend quantification via a fluorescence assay, e.g., PicoGreen, and a minimal

final concentration of 20 ng/µl.

Stopping point: Store the fragmented DNA at −20°C until specific PCR.

Specific PCR of mutant cassette genome junctions

9. Combine the following in a PCR tube and mix well by pipetting up and down.

� 5 µl of 5× Phusion HF Buffer
� 1 µl of 10 mM dNTPs
� 1 µl of 5 µM PCR1-F
� 1 µl of 5 µM PCR1-R
� 0.5 µl Phusion High-Fidelity DNA Polymerase
� 250 ng fragmented and cleaned gDNA (see step 6)
� Nuclease-free water to 25 µl.

10. Run the following PCR program in a thermocycler:

Initial step: 1 min 95°C (initial denaturation)

15 cycles: 15 sec 95°C (denaturation)

15 sec 65°C (annealing)

30 sec 72°C (elongation)

Final step: 1 min 72°C (final elongation).

11. Clean PCR reactions with SPRI magnetic beads according to the manufacturer’s

protocol.

12. Pool clean eluates. Optional: Check dsDNA concentration prior to streptavidin

enrichment (see steps 13 to 19).

Stopping point: Store the cleaned specific PCR fragments at −20°C until streptavidin

enrichment.

Streptavidin enrichment

13. For each input and output sample, wash 30 µl Dynabeads M-270 Streptavidin in

200 µl of 1× B&W buffer in a 1.5-ml DNA LoBind tube on a magnetic stand.
Uhse et al.
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14. Repeat washing step three additional times.

15. Resuspend beads in 2× B&W buffer, matching the volume of the clean input and

output PCR1 eluates.

16. Pool eluates and beads and allow for enrichment of biotinylated PCR amplicons by

rotation at room temperature for 15 min.

17. Place tubes in a magnetic stand for 1 min and discard supernatant.

18. Wash beads with 200 µl of 1× B&W buffer while the tubes remain in the magnetic

stand.

19. Repeat washing step three additional times. Resuspend beads in 34 µl nuclease-free

water and proceed with nested PCR (see steps 20 and 21).

Stopping point: Store the enriched PCR fragments at −20°C until nested PCR.

Nested PCR of enriched fragments

20. Combine the following in PCR tubes to 50 µl total volume and mix well by pipetting

up and down:

� 34 µl nuclease-free water containing beads (see step 19)
� 10 µl of 5× Phusion HF Buffer
� 1 µl of 10 mM dNTPs
� 2 µl of 5 µM PCR2-F
� 2 µl of 5 µM PCR2-R
� 1 µl Phusion High-Fidelity DNA Polymerase.

21. Run the following PCR program in a thermocycler:

Initial step: 1 min 95°C (initial denaturation)

15 cycles: 15 sec 95°C (denaturation)

15 sec 65°C (annealing)

30 sec 72°C (elongation)

Final step: 1 min 72°C (final elongation).

22. Place tubes in a magnetic stand for 1 min and transfer supernatant containing PCR2

amplicons into fresh PCR tubes.

23. Clean PCR reactions with SPRI magnetic beads according to the manufacturer’s

protocol.

24. Check dsDNA concentration and proceed with Illumina sequencing (see Basic

Protocol 4).

We recommend a minimal final dsDNA concentration of 0.1 ng/µl to enable Illumina

sequencing. Moreover, we suggest quality control of iPool-Seq library preparation via

qPCR and fragment length analysis prior to Illumina sequencing. We sequence the iPool-

Seq libraries on a MiSeq Illumina platform with 75PE conditions.

IMPORTANT NOTE: The standard Illumina Nextera sequencing primers are not com-

patible with our Tn5 adapter and will interfere with sequencing if present. Instead,

Illumina TruSeq sequencing primers (Table 1, Illumina Rd1 and Rd2) must be used.

BASIC

PROTOCOL 4

BIOINFORMATIC ANALYSIS

This protocol describes how insertion pool data are analyzed, using the pipeline that

we developed (available at http://www.cibiv.at/software/ipoolseq-pipeline), to find inser-

tional mutants with significantly increased or decreased virulence. Virulence is measured

as the abundance of a deletional mutant in the post-infection output pool relative to the
Uhse et al.
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pre-infection input and is compared to the virulence of a reference set of known neutral

mutants to find significant deviations from neutral behavior.

NOTE: In the following, commands intended to be entered on a Unix-style terminal,

either directly on a Linux machine or via SSH, are printed in a monospaced font.

Outside of such commands, filenames are printedmonospaced and underlined.
Placeholders for names of experiments or libraries that have to be supplied by the user

are printed in italic.

NOTE: iPool-Seq pipeline is based on the workflow engine “snakemake” (Köster &

Rahmann, 2012). It is thus not strictly necessary to proceed step by step; in particular,

jumping to step 13 directly after adding all required data in step 6 will cause all in-

termediate steps to be executed automatically. However, given that it is good practice

to check the results of key intermediate steps (like mapping and KO assignment) for

validity before proceeding, we recommend following the steps outlined below and also

performing the checks and validations suggested in the Troubleshooting section for each

individual step.

Materials

Workstation running Linux or Windows 10 with Windows Subsystem for Linux
(WSL), with 64-bit CPU and 8 GB or more of RAM and with free disk space �5
times size of raw sequencing data

iPool-Seq analysis pipeline (http://www.cibiv.at/software/ipoolseq-pipeline)

Reference genome of U. maydis in FASTA format

FASTA file containing sequences at 5′ end (named “5p”) and 3′ end (named “3p”)
of knockout (KO) cassette

List of deletional mutants of U. maydis as GFF2 file listing KO cassette insertion
positions

Single BAM file containing unmapped sequencing reads or two separate
compressed FASTQ files (one for read1 and one for read2) for each sequenced
library (prepared according to Basic Protocol 3)

Web browser

PDF viewer

NOTE: For the FASTA file describing the KO cassette, the sequences must reflect the

part of read2 that overlaps with the cassette, i.e., start with the underlined part of PCR2-R

(Table 1) and extend up to the end of the cassette. See the (included) list of deletional

mutants used by Uhse et al. (2018) cfg/Uhse_et_al.2018/cassette.fa for an

example.

NOTE: For the list of deletional mutants, each entry must carry �2 two tags: a

unique “Name” and a flag “Neutral” with value 0 or 1 that decides whether a

particular deletion strain is included in the reference set of assumed neutral dele-

tions. See the (included) list of deletional mutants used by Uhse et al. (2018)

cfg/Uhse_et_al.2018/knockouts.gff for an example.

Installing the iPool-Seq pipeline

1. On a workstation running Linux or Windows 10 with WSL, download and install

iPool-Seq analysis pipeline by executing

VER=latest-release
URL=http://github.com/Cibiv/ipoolseq-pipeline
curl -L -O $URL/archive/$VER.tar.gz
tar xzf $VER.tar.gz
cd ipoolseq-pipeline-$VER Uhse et al.
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You can also use a web browser to download the latest release from http://github.com/

Cibiv/ipoolseq-pipeline/releases. Then, change into the directory containing the down-

loaded file in a terminal window and continue with the tar command to unpack the

archive.

2. Install and activate our Bioconda (http://bioconda.github.io; Grüning et al., 2018)

environment, containing all software packages required by pipeline, with

./install-environment.sh
source ./environment/bin/activate

Should environment.tar.gz fail to download, download that file from

http://github.com/Cibiv/ipoolseq-pipeline manually and place it in the folder contain-

ing the pipeline.

IMPORTANT NOTE: The environment must be re-activated (but not re-created) when-

ever you open a new terminal window.

3. Optional: Test for successful installation of library by re-analyzing one of

the replicates of Uhse et al. (2018). To download the raw sequencing

data for replicate A1 (data/Uhse_et_al.2018/expA.r1-in.bam and
expA.r1-out.bam) and to run the differential virulence analysis, do

snakemake data/Uhse_et_al.2018/expA.r1.dv.tab

Afterward, data/Uhse_et_al.2018/expA.r1.dv.tab contains a table list-

ing the differential virulence analysis results for all deletional mutants (see Ta-

ble 3 for a list of columns), and an accompanying HTML report is written to

data/Uhse_et_al.2018/expA.r1.dv.html. Note that although the pipeline

discussed here uses the same approach as the pipeline used by Uhse et al., it differs in

some details and does not cover combining data from multiple replicates. The re-analysis

thus cannot be expected to reproduce the published results exactly.

Adding the reference genome, cassette file, KO list, and libraries

4. Pick a name (e.g., your_design) for the experimental design (including the reference

genome and the list of KO cassette insertions) and create two folders with

mkdir -p data/your_design
mkdir -p cfg/your_design

5. Copy the reference genome of U. maydis in FASTA format to

cfg/your_design/reference.fa, the FASTA file containing the se-

quences at 5′ end (named “5p”) and 3′ end (named “3p”) of the KO cas-

sette to cfg/your_design/cassette.fa, and the list of deletional mu-

tants of U. maydis as a GFF2 file listing KO cassette insertion positions to

cfg/your_design/knockouts.gff.

6. For a single replicate (named your_replicate here, but it can have an arbitrary name),

which always consists of two libraries, name pre-infection input pool your_replicate-

in and post-infection output pool your_replicate-out. For each of those two libraries

(in the following, referred to as your_lib, which thus stands for either your_replicate-

in or your_replicate-out), place raw paired-end sequencing data either into

data/your_design/your_lib.bam as a single BAM file containing un-

mapped sequencing reads or into data/your_design/your_lib.1.fq.gz
(read1) and data/your_design/your_lib.2.fq.gz (read2) as two separate compressed

FASTQ files.

This naming scheme ensures that the pipeline knows which reference genome and KO list

belong to a particular library and (in step 13) which input and output libraries constitute

one replicate.
Uhse et al.
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Table 2 Columns in the Knockout Abundance Table Generated by TRUmiCount in Basic

Protocol 4, step 10

Column name Type Description

gene String Combination of knockout name and flank,

“knockout:flank”

n.umis Integer Observed UMI count (after filtering)

n.tot Numeric Est. number of total UMI count, n.umis/(1-loss)

efficiency Numeric Estimated PCR efficiency

depth Numeric Avg. number of reads per UMI (including lost

UMIs)

loss Numeric Est. fraction of lost (unobserved) UMIs

n.obs Integer Same as for n.umis

n.reads Integer Observed total read count (after filtering)

n.umis.prefilter Integer Observed UMI count before read-count filter

n.reads.prefilter Integer Observed total read count before read-count filter

Steps 7 to 12 must be executed for each library, i.e., twice per replicate, replacing your_lib

first with your_replicate-in and then with your_replicate-out.

Trimming and UMI extraction (per library)

7. To trim the technical sequences (Fig. 2A) from the raw sequencing reads for library

your_lib, do

snakemake data/your_design/your_lib.trim.1.fq.gz

Executing the trimming step for either read1 (in the command above) or read2 automat-

ically trims the other read as well. If you started from an unmapped BAM file, the file is

also automatically converted into two FASTQ files, with one for each read, during this

step.

8. Optional (but recommended): To verify the trimming, generate FastQC (Andrews,

2010) reports for trimmed first and second reads with

snakemake data/your_design/your_lib.fastqc.1.html
snakemake data/your_design/your_lib.fastqc.2.html

Mapping and assignment to insertional KOs (per library)

9. To map and assign trimmed reads to KOs (Fig. 2B) for the sequencing library

your_lib, do

snakemake data/your_design/your_lib.assign.bam

Determining KO abundances (per library)

10. To produce a table of genome abundance estimates for sequencing library your_lib,

do

snakemake data/your_design/your_lib.count.tab

For a description of the columns of data/your_design/your_lib.count.
tab, see Table 2. During this step, the TRUmiCount algorithm (Pflug

& von Haeseler, 2018) also produces the accompanying PDF report

data/your_design/your_lib.count.pdf.

Uhse et al.
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Figure 2 (A) Layout of sequenced fragments on both sides of knockout (KO) cassette insertions.

The gray parts of the reads are non-genomic and are trimmed before mapping. The unique

molecular identifier (UMI) consists of 12 random bases, ME=5′-AGATGTGTATAAGAGACAG-3′.

(B) Required mapping locations and directions for read pairs with either both mates or one mate

mapped to be assigned to a specific KO. (C) Data indicating that the chosen TRUmiCount threshold

is too low (left), optimal (middle), or too high (right).

Adjusting the TRUmiCount phantom rejection threshold (per library)

11. To see if adjustment of TRUmiCount’s read-count threshold is nec-

essary, check read-count distribution plot in the TRUmiCount report

data/your_design/your_lib.count.pdf.

12. Optional: If there is a clear overabundance of observed vs. predicted UMIs for read

counts slightly larger than the threshold, increase threshold. If the predicted and

observed numbers of UMIs agree well for read counts below the threshold, decrease

threshold (Fig. 2C). To set a library-specific threshold T for library your_lib, add

the following lines to the “trumicount” block in cfg/config.yaml (be sure to

match the indentation of the existing lines in that block):

- file: ’data/your_design/your_lib.*’
opts: ’--threshold T’

IMPORTANT NOTE: After changing the setting, remove data/your
_design/your_lib.count.tab and re-run step 10.

Finding differentially virulent KOs (per replicate)

13. To compute the log fold changes of KO virulence for your_replicate and p-values for

how significantly these log fold changes deviate from zero (i.e., no change compared

to the neutral reference set), do

snakemake data/your_design/your_replicate.dv.tab

The differential virulence analysis is based on the KO abundances and loss

correction factors from the tables your_replicate-in.count.tab
and your_replicate-out.count.tab, both created in the folder

data/your_design during step 10. Step 13 also produces an accompanying

HTML report in data/your_design/your_replicate.dv.html.

Downstream analysis

14. To produce plots and to combine data from multiple replicates, load output ta-

ble data/your_design/your_replicate.dv.tab from step 13 into a
Uhse et al.
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Table 3 Columns in the Differential Virulence Table Generated in Basic Protocol 4, step 13

Column name Type Description

knockout String Name of the knockout as in the knockout list GFF file

is.neutral Flag 1 if the knockout is part of the reference set, 0 otherwise

n.out Integer Sum of 5′ and 3′ UMI counts after filtering (output pool)

loss.out Numeric Average of 5′ and 3′ est. fraction of lost UMIs (output pool)

abundance.out Numeric Est. number of genomes, 0.5*n.out/(1-loss.out) (output pool)

n.in Integer Sum of 5′ and 3′ UMI counts after filtering (input pool)

loss.in Numeric Average of 5′ and 3′ est. fraction of lost UMIs (input pool)

abundance.in Numeric Est. number of genomes, 0.5*n.in/(1-loss.in) (input pool)

log2fc Numeric Virulence log fold change compared to the reference set (log2 �v)

low.pval Numeric p-value for log2fc being significantly low

high.pval Numeric p-value for log2fc being significantly high

low.qval Numeric FDR-corrected p-value for log2fc being significantly low

high.qval Numeric FDR-corrected p-value for log2fc being significantly high

table-oriented tool such as Microsoft Excel, GraphPad Prism, R, or SPSS. Then,

filter KOs based on fold change, p-value, q-value, number of genomes, etc. Combine

data from multiple replicates either by filtering based on criteria from multiple repli-

cates (e.g., significance) or by computing a combined p-value (e.g., with Fisher’s

method).

See Table 3 for a description of the columns of data/your_design/your_
replicate.dv.tab, which contains the results of the differential virulence analysis

step.

REAGENTS AND SOLUTIONS

B&W buffer, 1×

5 mM Tris, pH 7.5

1 M NaCl

0.5 mM EDTA

Store �6 months at room temperature

B&W buffer, 2×

10 mM Tris, pH 7.5

2 M NaCl

1 mM EDTA

Store �6 months at room temperature

Potato dextrose–agar plates containing 200 µg/ml hygromycin

2.4% (w/v) potato dextrose broth (Difco)

2.0% (w/v) agar (Difco)

Add sterile deionized water and autoclave at 121°C

Cool to 50°C, add 50 mg/ml hygromycin (Roche) to 200 µg/ml, and mix by stirring

Pour 20 ml per 9-cm petri dish

Store �2 weeks at 4°C in the dark

Reassociation buffer

10 mM Tris, pH 8.0

50 mM NaCl
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1 mM EDTA

Store �6 months at room temperature

TAPS buffer, 5×

250 mM TAPS-NaOH

125 mM MgCl2
50% (v/v) DMF

Adjust to pH 8.5 at 25°C

Store �4 weeks at room temperature in the dark in a cabinet for flammable liquids

CAUTION: DMF is toxic; work in a laminar flow hood with appropriate protective measures.

Ustilago lysis buffer

10 mM Tris, pH 8.0

100 mM NaCl

1 mM EDTA

2% (v/v) Triton X-100

1% (w/v) SDS

Store �6 months at room temperature

YepsLight liquid medium

1.0% (w/v) yeast extract (Difco)

0.4% (w/v) Bacto Peptone (Difco)

0.4% (w/v) sucrose

Add sterile deionized water and autoclave at 121°C

Store �4 weeks at room temperature

COMMENTARY

Background Information
The analysis of insertional mutant libraries

is well established for bacteria (Gawron-

ski et al., 2009; Goodman et al., 2009;

Langridge et al., 2009; van Opijnen et al.,

2009) but has not been applied extensively to

eukaryotic microorganisms. Genome-wide in-

sertional mutant libraries were generated suc-

cessfully for baker’s yeast (Saccharomyces

cerevisiae) by homologous recombination

(Winzeler et al., 1999) and, more recently,

by transposition (Michel et al., 2017) and

for the rice pathogenic fungus Magnaporthe

oryzae by the kinase ATM (Jeon et al., 2007).

However, tools that allow for efficient high-

throughput analysis of a negative depletion

screen in the context of a host, for instance

in the case of M. oryzae and rice (Jeon et al.,

2007), were not available until recently. There-

fore, we developed iPool-Seq, which, due to its

high selectivity and sensitivity, allows for anal-

ysis of pooled infections of insertional mutants

directly from the infected host tissue (Uhse

et al., 2018). iPool-Seq provides a powerful

tool for scientists who want to analyze mu-

tant pool composition after colonization of the

host, without any biases that could arise due to

separation of the output fraction.

Outlook
We previously demonstrated (Uhse et al.,

2018) that iPool-Seq offers an elegant possi-

bility to analyze a U. maydis insertional mu-

tant pool after colonization of its host maize.

We further suggest that iPool-Seq could be ap-

plied to genome-wide insertional mutant pools

generated by high-throughput techniques, e.g.,

transposon-mediated mutagenesis. Due to its

high selectivity and sensitivity, iPool-Seq en-

ables analysis of large insertional mutant pools

directly from the colonized host tissue and ob-

viates the need for separation of the host tis-

sue and colonizing microbes. We propose that

iPool-Seq not only is suitable for analysis of

mutant pools of microorganisms in the con-

text of a plant host but also may be applied

to animal-microbe or microbe-microbe inter-

action systems.

Trimming and UMI extraction
During this step, all non-genomic se-

quences (with UMI and KO cassette overlap)

are removed from the raw sequencing read

pairs, as produced by (paired-end) sequencing

(Fig. 2A), so as to not interfere with the map-

ping process. The UMIs are instead stored as
Uhse et al.
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part of the pairs’ read names to ensure that the

UMIs are passed alongside the reads through

the following processing steps. Reads that do

not overlap with the KO cassette or that do not

contain a UMI are removed.

Mapping and assignment to insertional KOs
During this step, the trimmed reads are

mapped to the reference genome using

NextGenMap (Sedlazeck, Rescheneder, & von

Haeseler, 2013) and assigned to the individual

insertional KOs (Fig. 2B). In short, proper read

pairs (pairs with both mates mapped and cor-

rectly oriented) are assigned to a specific flank

(5′ or 3′) of a KO cassette insertion (i.e., a

KO strain) if one read starts close (±10 bp) to

the respective end of the cassette and extends

away from the cassette. Singleton reads (reads

whose mate could not be mapped) must map

�1000 bp away from the respective end of the

cassette and extend toward the cassette. Reads

that cannot be assigned unambiguously are not

assigned at all.

Determining KO abundances (counting

genomes)
This step consists of error correction, phan-

tom removal, and loss estimation for the UMIs

detected for a particular combination of flank

and KO strain. The UMIs are first corrected

for sequencing errors with UMI-Tools (Smith,

Heger, & Sudbery, 2017), which merges sim-

ilar UMIs found within the same flank of

a KO cassette insertion. The merged UMIs

are then processed further with TRUmiCount

(Pflug & von Haeseler, 2018), which filters

based on per-UMI read counts to remove ad-

ditional phantom UMIs (mostly amplification

artifacts) and then, for each flank of each KO

cassette insertion, estimates and corrects for

the percentage of lost (i.e., unobserved) true

UMIs. This ensures that the estimated KO

abundances are unaffected by PCR amplifi-

cation bias. The output comprises, per combi-

nation of KO and flank, the filtered UMI count

(number of observed genomes), the estimated

loss, and the loss-corrected genome count

(Table 2).

Critical Parameters

Generating insertion libraries suitable for

iPool-Seq
There are different techniques available for

generation of insertion libraries. We based the

generation of the U. maydis insertional mutant

library on homologous recombination. Inser-

tional mutagenesis via homologous recombi-

nation has the advantage of not being prone

to multiple insertions per individual, which

is more likely to happen with untargeted,

random insertional mutagenesis approaches,

like Agrobacterium-mediated transformation

(Michielse, Hooykaas, van den Hondel, &

Ram, 2005). However, homologous recombi-

nation is more laborious than high-throughput

methods. Moreover, the choice of the fun-

gal model system is critical, and advantages

and drawbacks of systems should be evaluated

prior to insertional mutant library generation.

Here, we use U. maydis, a fungal model that is

genetically accessible to homologous recom-

bination and well suited for the application of

iPool-Seq in the context of a host infection due

to the availability of a solo-pathogenic strain

(Bölker, Genin, Lehmler, & Kahmann, 1995).

For the final analysis (Basic Protocol 4),

an internal reference set of mutants with un-

affected virulence is essential to find mutants

that are comparatively depleted or enriched

mutants. The reference set can be defined ei-

ther by known unaffected mutants that have

been published before or by individual mu-

tants identified via infection tests.

Mutant pool infection
The iPool-Seq protocol provides a high

specificity for the inserted sequences and thus

can be applied directly to infected host mate-

rial (Basic Protocol 1). However, the number

of pathogens that infect an individual host can

constitute a bottleneck. We suggest overcom-

ing this bottleneck by increasing the number

of infected host plants or by reducing the com-

plexity of the insertion mutant library.

Sequencing
We recommend sequencing the finished li-

brary (Basic Protocol 3) on an Illumina MiSeq

platform and aiming for 2 to 3 million reads per

library. However, it is also possible to use a dif-

ferent platform and to sequence more deeply

to improve individual mutant UMI counts.

For complex libraries, it is possible to in-

crease the amount of gDNA for the infected

output sample and to proportionally increase

the sequencing depth, which will likely yield

a higher coverage of individual mutants. For a

given mutant library and amount of extracted

gDNA, the average number of reads per UMI

(found in the TRUmiCount report) is an in-

dicator of whether increasing the sequencing

depth would be beneficial. For libraries with

<1 read per UMI on average, deeper sequenc-

ing can be expected to improve the accuracy

of abundance measurements; after that, the

benefit drops gradually, and more than �10
Uhse et al.

17 of 21

Current Protocols in Plant Biology

Ch. 4. Insert. Pool Seq. . . (Uhse et al., 2019. Curr. Prot. Plant Bio., 4: e20097) 81



reads per UMI will not provide any additional

benefit.

Troubleshooting

Trimming and UMI extraction
The optional FastQC (Andrews, 2010)

reports created for the first and second reads

after trimming offer a first quality check of

library preparation and sequencing (Basic

Protocol 4). Aspects to check for are as

follows: (a) under “Basic Statistics,” that

most (>90%) reads survived the trimming

step; (b) under “Per base sequence quality”

and “Per base N content,” that the sequenced

bases are high quality and do not contain

many Ns; and (c) under “Adapter Content,”

that trimming indeed removed all sequencing

adapters from the reads. If many reads are

lost during the trimming step, they either

were contaminants or did not match the

sequence pattern that the library preparation

should produce. In this case, we recommend

blasting a few random reads to check for

contamination and to manually compare

their sequence composition to the expected

pattern (Fig. 2A) and to the sequences in

data/your_design/cassette.fa.

Should most reads survive but show either a

strong drop-off of base qualities toward the

end or many Ns, it may be necessary to include

an additional quality-based trimming step in

the Trimmomatic (Bolger, Lohse, & Usadel,

2014) command in cfg/config.yaml

(see the Trimmomatic manual for details).

If there are still adapter sequences detected

in the trimmed reads, add any custom

adapter sequences that differ from the

adapters mentioned in Basic Protocol 3 to

cfg/Uhse_et_al.2018.adapters.fa

(again, see the Trimmomatic manual for

details).

Mapping and assignment to insertional KOs
We recommend checking the results of the

mapping and KO assignment process visually

for a few libraries and KO cassette insertions

in a genomic viewer like the Integrated Ge-

nomics Viewer (IGV; Robinson et al., 2011).

You should find most of the reads mapped to

the two flanks (3′ and 5′) of KO cassette in-

sertions, carrying the name and flank of the

insertional KO in the form “name:flank” in the

XT tag, and not extending more than a few

base pairs into the regions replaced by the KO

cassette. You may find some spurious reads

mapped to arbitrary locations in the genome;

these will later be ignored by the pipeline and

thus are not a cause for concern (unless overly

abundant).

If reads are mapped correctly but not

assigned to the correct KO cassette inser-

tion, check that the genomic coordinates in

your GFF2 files listing the KO cassette in-

sertions are correct. If a substantial frac-

tion of the sequenced fragments are longer

than 1000 bp or if many reads extends

more than a few base pairs into the re-

gions replaced by the KO cassette due to

mapping imprecisions, adjust the “mapping

fuzzyness” or “max fragment length” param-

eter of the “knockout_assignment” step in

cfg/config.yaml.

Adjusting the TRUmiCount phantom

rejection threshold
For optimal separation of phantom UMIs

(i.e., amplification artifacts) from true UMIs

by the TRUmiCount algorithm (Pflug & von

Haeseler, 2018), it can be necessary to adjust

the automatically chosen read-count threshold

T (Fig. 2C). This is true in particular at higher

sequencing depths, where phantom UMIs can

make up a large proportion of UMIs (but not of

reads, due to the phantom’s lower read counts).

Setting the threshold too low (Fig. 2C, left) will

cause phantom UMIs to be mistaken for true

UMIs, which has the potential to distort the

results. It will also distort TRUmiCount’s pa-

rameter estimates (the PCR efficiency in par-

ticular), resulting in a bad fit of model and data.

Choosing a threshold that is too high (Fig. 2C,

right), in contrast, will cause more true UMIs

(i.e., UMIs that reflect actual genomes in the

sequenced pool) to be filtered out. However,

given that TRUmiCount estimates and corrects

for this loss, the net effect is only a reduced

precision of the measured abundances (due to

the lower absolute genome counts), and not

an introduction of systematic biases. When

choosing a threshold value, too high is thus

preferable over too low.

Understanding Results
The results contain several types of infor-

mation. Firstly, the KO abundance tables (pro-

duced in Basic Protocol 4, step 10) list the

number of genomes per mutant found in the

input and output libraries, i.e., they contain

information about the absolute abundances of

the individual KOs. These tables in particular

also provide information about which mutants

are not detected at all in either input or output

(i.e., that show zero detected genomes), which

is possibly due to very slow growth or not be-

ing viable at all. Gradual changes in a mutant’s
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virulence are detected by comparison of the

mutant’s input and output abundances to a ref-

erence set of neutral mutants and summarized

in the differential virulence report (produced

in Basic Protocol 4, step 13).

Finding differentially virulent KOs

(statistical analysis of abundances)
Given that KO abundances in the input can

be spread across multiple orders of magni-

tude, the dominant factor that determines the

abundance of a KO in the output pool is its

abundance in the input pool; the effects due

to different genotypes that we want to detect

is typically subordinate to that. The iPool-

Seq pipeline accounts for this by assuming

that a KO’s loss-corrected abundance Aout in

the output pool depends (linearly) on its loss-

corrected abundance Ain in the input pool, in

addition to depending on the virulence fac-

tor �v relative to neutral KOs (�v = 1 for

neutral KOs). To account for differences in

genome capture efficiency and total genome

count between the two libraries, the pipeline

also includes a scaling factor λ (which is

replicate-specific, but not KO-specific). The

loss-corrected input and output abundances

of a KO are computed from the (3′ and 5′

summed) filtered UMI counts Nin and Nout,

which are corrected for unobserved UMIs by

dividing by 1 − ℓin and 1 − ℓout, where ℓin and

ℓout are the (3′ and 5′ averaged) loss estimates

computed by TRUmiCount. The pipeline thus

computes the log2 fold change of a KO’s viru-

lence as

log2�v = log2

Aout

λ · Ain

= log2

Nout · (1 − ℓin)

λ · Nin · (1 − ℓout)

To test for significant deviations of �v from

neutrality (i.e., � v= 1), the pipeline assumes

a negative binomial model for Nout given Nin,

which accounts for the uncertainty in Aout and

Ain due to sampling noise, as well as for an ad-

ditional amount of dispersion d due to random

fluctuations of the virulence of neutral KOs:

Nout|Nin ∼ NegBin

(

μ = λ · Nin ·
1 − ℓout

1 − ℓin

,

r =
Nin

1 + d · Nin

)

The two parameters λ and d are estimated

by fitting the model to the set of neutral KOs.

Parameter λ measures the relative total size

(i.e., the loss-corrected number of UMIs) of the

output library relative to the input library, and

d the squared coefficient of variation of out-

put abundances due to biological noise (i.e.,

due to differences in the growth of neutral

mutants).

Interpretation of the differential virulence

report
The differential virulence report created in

Basic Protocol 4, step 13, contains diagnostic

statistics and plots that serve as quality checks

and as verification that the assumptions of the

statistical model are fulfilled to a reasonable

degree.

The “Quality Control / Read and UMI count

statistics” provide an overview of how many

usable reads and UMIs remain after each step

of the analysis pipeline. Discarding up to about

one third of reads during the course of the

analysis should be considered normal; if con-

siderably fewer reads than that remain after

the “TRUmiCount” step, the steps that re-

move the largest percentages of reads should

be checked carefully for problems. For the

number of UMIs, at high sequencing depths

(on average �10 reads per UMI or more), it

is normal for the removed percentage to be

considerably higher because of TRUmiCount

filtering of UMIs with a low read count.

The precision of the KO abundances de-

termined for the input and output pools is re-

flected by the correlation (found under “Qual-

ity Control / Correlation of 3′ and 5′ Flank

Abundances”) of the abundances computed for

each flank of the KO cassette insertions. After

loss correction by TRUmiCount, a correlation

of �0.9 or more can be expected.

For neutral KOs, our statistical model also

assumes a linear relationship between pre-

infection input abundance and post-infection

output abundance, which can be verified in the

input vs. output plots and correlations (found

under “Quality Control/Correlation of Input

and Output Abundances”). There exists no

generally applicable lower bound for the ex-

pected correlation of input and output because

the expected correlation depends on the per-

centage of non-neutral KOs among the KOs

in the experiment and on how much faster

or slower these KOs proliferate. More impor-

tant than the correlation is the qualitative be-

havior seen in the input vs. output plots: the

relationship should be linear across the full

range of observed input abundances, without

any plateau effect for highly abundant KOs. If

such a plateau effect is observed, it is likely

that the carrying capacity of the host plants
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has been reached, and either the number of

mutants that each plant is infected with should

be reduced or the statistical model should be

modified to account for the carrying capacity

of the host plant.

Time Considerations
The iPool-Seq protocol can be finished

in �3 weeks for the U. maydis–Zea mays

pathosystem (Fig. 1). For other pathosystems,

we recommend first determining critical pa-

rameters and generating an insertional mutant

library for infection. In comparison to U. may-

dis, variations in time considerations for other

pathogens will mainly depend on the infection

protocol.
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Chapter 5

The efficacy of TRUmiCount

Preamble

In our original publication describing the TRUmiCount method (Pflug & von Hae-

seler, 2018; chapter 2 of this work), we decided against including any data on the

performance of the method for iPool-Seq data; mostly due to space constraints.

This was despite the fact that iPool-Seq data is well-suited for assessing the per-

formance of the method for real-world data; since iPool-Seq provides independent

abundance estimates for the 5’-flank and 3’-flank of each knocked-out gene, the

variation between the two estimates may be used as a gauge of the fidelity of an

abundance estimate

This chapter explores this idea and assesses the efficacy of TRUmiCount by

comparing the 5’- and 3’-derived abundance estimates before and after application of

the algorithm. It thus complements the simulation studies of Pflug & von Haeseler

(2018; chapter 2 of this work) on the performance of TRUmiCount.

We then link the results we find for iPool-Seq back to RNA sequencing, the

context in which TRUmiCount was originally presented by testing it with a dataset

obtained by sequencing a defined mixture of synthetic mRNAs defined by the

external RNA control consortium (ERCC).

Finally, we cover another omission in the original paper, and discuss the rela-

tionship of the two model parameters that TRUmiCount estimates, PCR efficiency

and per-UMI sequencing depth.
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Introduction

Together with the initial presentation of the TRUmiCount algorithm (Pflug & von

Haeseler, 2018; chapter 2 of this work), we showed that TRUmiCount’s underly-

ing model of unique molecular identifier (UMI) - based next generations sequenc-

ing (NGS) experiments fits observed data well, and allows us to use the observed

per-UMI read count distribution to estimate the loss, i.e. the fraction of molecules

that remained unobserved.

The main purpose of TRUmiCount, however, is to correct for this loss; and

thus to remove indirect PCR bias from UMI-based quantitative NGS experiments.

While counting distinct UMIs instead of reads avoids direct PCR bias, preferential

amplification (i.e. higher PCR efficiency) of molecules with particular sequences

can decrease those molecule’s risk of remaining undetected, and thus indirectly

bias the results in favour of those molecules. While Pflug & von Haeseler (2018;

chapter 2 of this work) show the efficacy of TRUmiCount in removing indirect PCR

bias for simulated data, it remains to do so for experimental data. For this, two

general strategies are possible, internal validation where we asses the internal

concordance of the results, and external validation where we compare the results

to the known truth.

Internal validation

By internal validation we mean assessing the performance of a measurement tech-

nique by testing the concordance of different measurements of the same quantity.

Since the indirect PCR biases we hope to remove with TRUmiCount are sequence-

dependent and thus likely persist between replicates, simply repeating the same

experiment and comparing results is not sufficient. Instead, we need an experimen-

tal design where the same underlying abundance can be measured by counting

molecules with different sequences, and therefore different indirect PCR biases.

By lucky coincidence, iPool-Seq data allows for this type of internal validation.

Briefly, the iPool-Seq protocol (Uhse et al., 2018; chapter 3 of this work) measures

the abundances of particular mutant strains of a single-cellular organism, originally

the fungus Ustilago maydis. Each mutant strain has a single gene knocked out by
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replacement with a particular sequence called knockout cassette (KO cassette). To

measure the abundances of the strains in a pool of knockouts, iPool-Seq fragments

the genomic DNA, labels each fragment with an UMI, amplifies the fragments that

overlap either flank1 of the KO cassette (5’ or 3’; relative to a specific strand), and

sequences the resulting library. Under ideal conditions, the number of detected

UMIs for the 5’ and the 3’ flank of the KO cassette should therefore agree and

reflect the number of genomes of each mutant in the mutant pool.

The sequence content of the amplified 5’- and 3’-flank fragments mostly consists

of the (non-coding) genomic sequence that flank the knocked-out gene, and thus

differs both between mutants and between the two flanks of a single mutants. It

follows that PCR bias (both direct and indirect) can be expected to not only vary

between mutants, but also to affect the 5’- and 3’-flank-derived UMI counts of a

single mutant in different ways; this makes the two counts two independently

biased measurements of the same true mutant genome count.

By comparing the concordance of the 5’ and 3’-flank-derived genome counts

before and after applying the TRUmiCount algorithm, we can therefore assess the

algorithm’s performance.

External validation

External validation refers to an alternative strategy where the measurement

technique to be assessed is applied to a particular standard – an object or situation

in which the true value of the measured quantity is known with high accuracy

– and the resulting measurements are tested for concordance with the expected

results. For RNA abundances, a suitable standard was developed by the External

RNA Controls Consortium (ERCC), who defined different mixtures containing 92

synthetic mRNAs in known concentrations (External RNA Controls Consortium,

2005a,b).

However, the large difference of about 7 orders of magnitude between the con-

centration of the most and the least abundant mRNA in these ERCC mixtures

1With fragments that overlap either flank we mean fragments whose one end lies within the

KO cassette and whose other end lies within the original genome. See figure 2 of Uhse et al. (2018;

chapter 4 of this work on page 78) for a more detailed description on the sequence content of these

fragments
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makes applying TRUmiCount somewhat difficult2. For these large differences

in mRNA abundance (which exceed the abundance differences in living cells by

about 2 or 3 magnitudes), the typical number of a few hundred thousand different

UMIs used for labelling is too small to prevent identical molecules from sometimes

being labelled with identical UMIs. These UMI collisions break TRUmiCount’s

assumption of distinguishable molecules before PCR amplification, and thus alter

the expected per-UMI read count distribution. This technical difficulty prevented

us from include any such performance assessment in the original presentation

of the TRUmiCount algorithm; at that time all UMI-based datasets available to

us either failed to include any synthetic RNA mixtures, or were affected by UMI

collisions within most of the synthetic RNAs they included.

The single-cell RNA sequencing method developed by 10x Genomics provides a

way to overcome these difficulties. Their method encapsulates each individual cell

within a single droplet of a water-based buffer in an oil suspension, and uses that

droplet as a nanoliter reaction chamber to reverse transcribe the cell’s mRNA into

cDNA. During reverse transcription, each mRNA is labelled not only with an UMI,

but also with a droplet-specific unique cell identifier (CID).

To create the ERCC 1k (10x Genomics, 2016; Zheng et al., 2017) dataset, Zheng

et al. input a synthetic ERCC mRNA mixture instead of actual cells. This makes

the “transcriptome” of all “cells” identical, and lets the CIDs act simply as a second-

level identifier of molecules – the UMIs themselves only need to be long enough to

distinguish all identical mRNAs within a single droplet. The resulting sequencing

data shows no signs of UMI collisions, and thus allows us to apply TRUmiCount

and to assess its performance.

PCR efficiency vs. mean number of reads per molecule

TRUmiCount estimates two model parameters for each molecular species that is

being counted (e.g. transcripts of a particular gene in the case of RNA-sequencing;

genomics fragments overlapping one of the flanks of the KO cassette for iPool-Seq).

These parameters are the PCR efficiency E and the mean number of reads per

2For ERCC Spike-In Mix 2, the most abundance mRNA is ERCC-00002 with 3 ·104 attomole/µl

and the least abundant one ERCC-00083 with 7 ·10−3 attomole/µl.
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molecule D. Because TRUmiCount works with a normalised version of the (post-

amplification) family size distribution (Pflug & von Haeseler, 2018; chapter 2 of

this work, see section 2.2.2 The normalized family size F on page 33), TRUmiCount

treats these two parameters as independent, meaning that smaller values for the

PCR efficiency E will increase the variance of the predicted per-UMI read counts,

but not decrease their mean (which is equal to D per definition).

Yet while this normalisation and the ensuing independence of the parameters

is convenient mathematically, there does not seem to be a physical reasons for it

– clearly, under any model of the PCR, we would expect the differences in PCR

efficiencies to strongly affect post-amplification copy numbers.

From the presence or absence of the expected relationship between efficiency E

and sequencing depth D in experimental data, we can thus learn more about how

well TRUmiCount’s model captures PCR behaviour, and which types of effects it

might fail to consider.

Methods

Internal validation

The iPool-Seq data, more specifically the raw sequencing reads from the input and

output pools of replicates 1-3 of experiments A and B of Uhse et al. (2018; chapter

3 of this work) were processed (until step 10) of the data analysis pipeline of Uhse

et al. (2019) to produce 12 (knockout) mutant abundance tables (see table 2 of

Uhse et al., 2019; chapter 4 of this work on page 77), one for each sequenced pool.

The phantom UMI rejection threshold was set based on manual inspection of the

observed UMI count distributions to T = 1 for pools A1(in), A1(out), A2(in), A2(out),

A3(in), A3(out), B2(in), to T = 2 for pool B1(in), to T = 5 for pools B1(out), B2(out) and

to T = 9 for pool B3(out). Each of the 12 mutant abundance tables for the 12 pools

contain, for the each flank f (5’ or 3’) of each mutant m (encoded as “m: f ” in the

column gene), the number Nm, f of observed UMIs (after applying the phantom

UMI rejection threshold; column n.umis), the estimated loss ℓm, f (column loss) and

the loss-corrected abundance Am, f = Nm, f / (1−ℓm, f ) (column n.tot).

From these tables, we then asses the concordance of 5’- and 3’-derived abundance
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measures by computing (for each of the 12 pools) two correlation coefficients, Rraw

for the correlation of the (phantom-filtered but not loss-corrected) UMI counts

Nm,5’ and Nm,3’, and Rcorr for the correlation of the loss-corrected abundances Am,5’

and Am,3’. Both correlation coefficients are computed as the Pearson correlation

coefficient of the square root of the counts or abundances; under a Poissonian

sampling model, the square root reduces heteroscedasticity and avoids overdue

influence of highly abundant mutants.

External validation

We first filtered the raw sequencing read pairs of the ERCC 1k dataset (10x Ge-

nomics, 2016; Zheng et al., 2017) with UMI-Tools’ whitelist and extract tools (Smith

et al., 2017) to remove reads with bogus cell identifiers (CIDs), then mapped them

(their non-technical parts, i.e. read 2) against the 92 ERCC sequences, and grouped

reads with similar UMIs with UMI-Tools’ group tool. Finally, we ran TRUmiCount

with phantom UMI rejection threshold T = 10 (chosen again based on visual in-

spection) to produce an mRNA abundance table (similar to the mutant abundance

tables produced for iPool-Seq data; see table 2 of chapter 4 on page 77). The

mRNA abundance table lists for each mRNA g its UMI count (phantom-filtered by

thresholding) Ng (column n.umis), estimated PCR efficiency Eg (column efficiency),

estimated mean number of reads per molecule Dg (column depth), loss estimate

ℓg (column loss) and loss-corrected abundance Ag = Ng / (1−ℓg) (column n.tot). We

then repeated these steps with subsamples containing 50%, 20%, 10%, 5%, 2% and

1% of the raw sequencing read pairs; the phantom UMI rejection threshold was

adjusted accordingly to 5, 2 and 1 (for the 10% subsample and all smaller ones).

For each subsample (including the full sample), we then computed using these

mRNA abundance tables the Pearson correlation of the square root3 of measured

abundances and known concentrations (Thermo Fischer, n.d.) of the 92 synthetic

mRNAs to asses their concordance. We did this twice, once to compute the corre-

lation Rraw for the uncorrected UMI counts Ng, and once to compute Rcorr for the

loss-corrected abundances Ag instead.

3The square root again stabilises the variances of the observed abundances under a Poissonian

sampling model, and avoid an overdue influence of highly abundance mRNAs on the results
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Fraction of variance unexplained

Given a correlation coefficient R (either Rraw for uncorrected UMI counts or Rcorr

for loss-corrected abundances), we call R2 the fraction of variance explained and

1−R2 the fraction of variance unexplained4 (FVU).

To quantify the improvement in concordance due to TRUmiCount, either be-

tween 5’- and 3’-derived abundance estimates for internal validation or between

estimated and known abundances for external validation, we compute the relative

reduction of the FVU as

∆FVU=
FVUraw−FVUcorr

FVUraw

(1)

=
R2

corr−R2
raw

1−R2
raw

,

and express it in percent (%).

Any ∆FVU > 0 then reflects an improved concordance after applying TRU-

miCount, and ∆FVU = 50% for example means that the amount of unexplained

variance was halved.

Modelling the relationship of E and D

Under an exponential growth model of PCR, a reaction that runs for n cycles with

efficiency E amplifies molecule copy numbers by a factor of (1+E)n. We then

assume that we may treat copy numbers, concentration and average number of

reads per UMI as the same abundance-related quantity expressed in different

units5to arrive at the following model for the relationship between a molecular

species’ PCR efficiency E and average number of reads per UMI D,

D = B · (1+E)neff . (2)

4For external validation, this is the typical nomenclature in regression analysis – the known

concentrations take the role of a predictor variable, which then explains some fraction of the variance

of the response variable. For internal validation, either the 5’ or the 3’ measurement can arbitrarily

be chose as a predictor, and the other as a response.
5This is not true exactly, but the difference is negligible. We ignore that the concentration or

average number of reads per UMI does not only depend on a species’ own copy number, but also the

sum of all other species’ copy numbers.
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The number of “cycles” neff in this relationship does not have to correspond to

the actual number of PCR cycles, and it is not necessarily integral. Instead, it

reflects the effective number of cycles where the reaction runs with efficiency E –

after that, we assume the efficiencies to drop to a common value for all molecular

species. The baseline abundance B represents the expected number of reads per

UMI for molecules that are not amplified at all over those neff cycles.

For each subsample (including the full sample) of the ERCC 1k dataset, we fit

the log-transformed6 model from equation 2 using ordinary least squares (OLS) to

the observed pairs (Eg,Dg) for the 92 synthetic mRNAs g to estimate neff and B.

Results

Model fit

For the 10x Genomics ERCC data (figure 3 in chapter 5 on page 98), we observe

a good agreement between observed and predicted read count distributions, and

reasonable model parameters, in particular for the PCR efficiency.

For iPool-Seq data (figure 1 in chapter 5 on page 96), the situation is more

ambiguous. For experiment B, the input pools show a good agreement between

model and observation, and reasonable (yet low) efficiency estimates. For the

corresponding output pools, the efficiency estimate is zero, and obtaining a good

fit required relatively high phantom-rejection thresholds (T = 5 for B1(out) and

B2(out), T = 10 for B3(out)). These thresholds filter out 51% (B1(out)), 57% (B2(out))

respectively 72% (B3(out)) of the UMIS; with these UMIs making up for 9% (B1(out)),

13% (B2(out)) respectively 10% (B3(out)) of reads. For the 6 pools in experiment A,

the estimated efficiencies are zero as well; apart from that, the sequencing depth is

too low to make a reliable statement about the goodness of fit7.

6The log transform yields the linear model logD = logB+n · log(1+E)
7Essentially, only reads counts 1 and 2 are observed which any two-parameter model can likely

model well
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Figure 2: Estimated mutant- and flank-specific UMI losses for iPool-Seq

data. Histograms showing the distribution of the mutant- (m) and flank- ( f ; 5’ or

3’) specific TRUmiCount UMI loss estimates ℓm, f for the input and output pools of

replicates 1-3 of experiments A and B of Uhse et al. (2018; chapter 3 of this work).
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Figure 5: The relationship of PCR efficiency and mean number of reads per

molecule. Estimated mRNA-specific efficiencies Eg vs. mean number of reads per

molecule Dg across the 92 synthetic mRNAs g for 100%, 50%, . . ., 1% subsamples

of the ERCC 1k dataset (10x Genomics, 2016; Zheng et al., 2017).
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input output

Experiment Rraw Rcorr ∆FVU Rraw Rcorr ∆FVU

(% of raw) (% of raw)

A1 0.902 0.931 29% 0.882 0.931 40%

A2 0.936 0.949 21% 0.919 0.945 30%

A3 0.959 0.960 3% 0.935 0.950 22%

B1 0.911 0.938 29% 0.980 0.987 34%

B2 0.947 0.961 25% 0.950 0.952 3%

B3 0.927 0.941 19% 0.938 0.942 6%

Table 1: Reduction of unexplained variance between 5’ and 3’ mutant

abundances for iPool-Seq data. Columns Rraw (before correction) and Rcorr

(after loss correction by TRUmiCount) show the correlation of the UMI counts

(Pearson correlation of the count’s square roots to stabilise the variance) for the

5’ and 3’ flank of each knockout in the input respectively output pools of the 6

experiments of Uhse et al. (2018; 3 of this work). Column∆FVU shows the reduction

of the fraction of variance unexplained (FVU = 1−R2) due to the loss correction,

relative to the FVU before correction.

% Reads Rraw Rcorr ∆FVU

(% of raw)

100% 0.970 0.973 11%

50% 0.970 0.974 15%

20% 0.970 0.976 20%

10% 0.971 0.977 20%

% Reads Rraw Rcorr ∆FVU

(% of raw)

5% 0.966 0.977 31%

2% 0.961 0.976 39%

1% 0.959 0.975 38%

Table 2: Reduction of unexplained variance of observed mRNA abundances

for 10x ERCC data. Columns Rraw (before correction) and Rcorr (after loss correc-

tion by TRUmiCount) show the correlation of the UMI counts for the 92 artificial

mRNAs in ERCC Mix 2 with their known abundances (Pearson correlation of the

count’s and abundance’s square roots to stabilise the variances) for 1% to 100% sub-

samples of 10X Genomics’ ERCC 1k sample dataset (10x Genomics, 2016). Column

∆FVU shows the reduction of the fraction of variance unexplained (FVU= 1−R2)

due to the loss correction, relative to the FVU before correction.
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Model parameters & estimated losses

The estimated losses follow a similar pattern across the input and output pools of

replicates A1-A3, B1-B3 (figure 2 in chapter 5 on page 97), but are shifted towards

one for lower and towards zero for higher overall sequencing depths (i.e. average

number of reads per UMI), as expected. For the subsamples of the 10x ERCC data

(figure 4 in chapter 5 on page 98), the estimated losses also shift depending on the

sequencing depth, with their distribution mostly retainings its shape as it shifts.

For subsamples of the 10x ERCC data with low sequencing depth (10% of all

reads and lower), the relationship between the mRNA-specific parameter estimates

for PCR efficiency Eg and average number of reads per molecule Dg follows the

exponential growth model from equation 2, but with only between nerr = 0.64 and

neff = 0.92 effective PCR cycles (figure 5 in chapter 5 on page 99) At high sequencing

depths (100% down to 20% of all reads), the efficiency estimates never drop below

≈ 0.8, which “squashes” the points together and breaks the predicted relationship

of Eg and Dg.

Internal validation

Despite the ambiguity about the goodness of fit for iPool-seq data, we observed an

increased concordance between 5’- and 3’-derived abundances estimates across all

12 sequenced mutant pools; the reduction of the fraction of unexplained variance

(∆FVU; equation 1 on page 94) ranges from 3% to 40%, with most pools showing a

∆FVU of around 20%-30% (table 1 in chapter 5 on page 100).

External validation

For the 10x ERCC data, we observe a ∆FVU of 11% for the full dataset (table

2 in chapter 5 on page 100). The reason for this rather modest improvement

of concordance is the rather small overall UMI loss of 5% on average, with a

maximum of 19% for ERCC-00171 (figure 4 in chapter 5 on page 98). In contrast,

for subsamples of the 10x ERCC data, the ∆FVU increases to up to 39%. It is also

noteworthy that while the raw correlation decreases with decreasing sequencing

depth from 0.97 to 0.959, the correlation after applying TRUmiCount stays constant
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at ≈ 0.975. The loss-corrected abundances thus contain about 5% of unexplained

variance irrespective of sequencing depth which ranges from ≈10 reads/UMI down

to ≈0.25 reads/UMI.

Discussion

Model fit

10x Genomics’ single-cell RNA-seq method (Zheng et al., 2017) is considerably

more complex than the typical RNA-seq protocol. Yet, all of the added complexity

deals with labelling mRNAs (or rather the corresponding cDNA produced by reverse

transcription) with unique cell- and molecule identifiers before amplification. After

that, amplification and sequencing of the cDNA library proceeds normally, and in

particular without any interspersed purification steps. Since the model underlying

TRUmiCount focusses on the amplification and sequencing steps, it still closely

resembles experimental reality for droplet-based single-cell RNA-seq methods such

as the one offered by 10x Genomics.

This close resemblance is reflected by the good agreement between observed

and prediction per-UMI read count distributions (figure 3 in chapter 5 on page 98)

for the 10x ERCC dataset (10x Genomics, 2016); the model fits the data as well as

it fit for the two RNA-seq datasets that TRUmiCount was originally tested against

(Pflug & von Haeseler, 2018; chapter 2 of this work).

iPool-Seq (Uhse et al., 2018; chapter 3 of this work) initially labels all fragments

with UMIs, but only those that uniquely identify a single mutant strain are then

enriched by a combination of specific PCR and Streptavidin purification (figure 2

of Uhse et al., 2018; chapter 3 of this work on page 48). While the specific PCR

matches TRUmiCount’s model, the purification step interspersed between the two

PCRs violates it, for the following reason:

As discussed in more detail by Pflug & von Haeseler (2018; chapter 2 of this

work, see section 2.2.2 The normalized family size F on page 33), as each molecule’s

copy number grows, the amount of additional stochasticity introduced by every

additional PCR cycle drops, which allows TRUmiCount to disregard the exact
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number of cycles and use the limit distribution instead. Bead-based purification

steps such as the Streptavidin purification that iPool-Seq relies on, however, are

generally quite lossy, meaning their output contains considerably fewer molecules

than their input, even for molecules they actually select for. This random loss of

copies directly introduces additional stochasticity into the post-purification family

sizes, and it also indirectly introduces stochasticity by lowering the copy numbers

that the subsequent PCR starts from.

This makes the model used by TRUmiCount a coarser approximation of reality

for iPool-Seq than for RNA-seq. This miss-specification, however, appears to be

slight enough to not be observable in the comparison of observed and expected read

counts – unless possibly for pool B3(out) where it may be connected to the rather

large phantom-rejection threshold T = 10 that was required to obtain a good fit.

The miss-specification is, however, indirectly observable through the unrealistically

low PCR efficiency estimates (zero for most pools); with the PCR efficiency being

the only parameter of TRUmiCount’s model that affects the variance independently

of the mean, any non-modelled source of variance will generally skew the estimated

efficiency towards lower values.

Model parameters & estimated losses

Given the exponential growth behaviour of the PCR, we expected to see a strong

link between the estimated PCR efficiencies Eg and mean number of reads per

molecule Dg over all molecular species g. We, however, do not consistently observe

such a link – while it appears to be somewhat present for small subsamples of

the ERCC data (fewer than 20% of all reads), for larger subsamples all efficiency

estimates lie close together, but the average number of reads per molecule still

varies considerably (figure 5 in chapter 5 on page 99). Yet the range of loss estimates

seems reasonable in both cases (figure 4 in chapter 5 on page 98), and TRUmiCount

consistently reduces the fraction of variance unexplained (table 2 in chapter 5 on

page 100).

We cannot currently offer an explanation for this effect. We previously found

strong evidence that our efficiency parameter E actually measure the (early cycle)

efficiency of the PCR reaction; this was corroborated by the slightly secondary peak
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we observed for the E. coli dataset we previously tested TRUmiCount with, and

by the efficiency-length relationship we found (figures 2 and S2 of Pflug & von

Haeseler, 2018; chapter 2 of this work on pages 36 and 41). Yet for the 10x ERCC

data, the efficiency estimate seems to act more as nuisance parameter that we must

estimate to compute the loss, but which does not have an immediate connection to

experimental reality.

Disentangling the precise relationship between the PCR efficiency we estimate

and the physical behaviour of the reaction would require more data; in particular, it

would require data where reaction parameter are modified individually so that the

effect of these reaction parameters the estimated efficiency and the mean number

of reads per molecule can be studied.

Here, we can only conclude that in the light of the subtle relationship between

efficiency and mean number of read per molecule, treating these as independent

model parameters is sensible. Doing so allows TRUmiCount to adapt better to

different experimental conditions, and to still produces usable loss estimates even

if some modelling assumptions are violated.

Efficacy in correcting for indirect PCR bias

We see improved concordance, both internally between the 5’- and 3’-derived abun-

dance estimates for iPool-Seq data, and externally with the known input concentra-

tions of different synthetic mRNAs for 10x ERCC data (tables 1 and 2 in chapter 5

on page 100).

The improvement ranges from a very slight improvement in unexplained vari-

ance (3% reduction for pools A2(in) and B2(out) of Uhse et al.) to removing more

than a third of the residual variance (A1(out) and B1(out) of Uhse et al., 1% and 2%

subsample of the 10x ERCC data), and large improvements can be observed even

for samples where the fit of the model is not perfect and some parameter estimates

are unrealistic.

We conclude that, despite the fact that the model does not describe experimental

reality perfectly, TRUmiCount improves the fidelity of abundances measured via

quantitative NGS experiments, and in doing so is pretty robust against violations

of its modelling assumptions.
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Chapter 6

Statistically modelling iPool-Seq

Preamble

This chapter augments the Bioinformatic analysis section (Uhse et al., 2018; chapter

3 of this work; page 56 ff.) and the Finding differentially virulent KOs section (Uhse

et al., 2019; chapter 4 of this work; page 82 ff.). In these sections, space constraints

prevented a proper definitions of what virulence means in the context of iPool-

Seq, how it is computed, how the statistical model we employ to detect significant

difference between different mutants is derived, and how the model is applied to

experimental data.

Here, all of these points are addressed. This chapter thus does not introduce any

new model, but instead provides background information and a rigorous derivation

of the statistical model of iPool-Seq used by Uhse et al. (2018 and 2019; chapters 3

and 4 of this work).

The chapter is also intended to serve as a blueprint of how TRUmiCount is

can be combined with other statistical methods – the naive approach of using

loss-corrected counts in place of raw counts often fails. First because loss-corrected

counts are non-integral, and second because they no longer obey the Poissonian

“mean equal variance” relationship that many methods assume for count data.
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Introduction

The purpose of the iPool-Seq method (Uhse et al., 2018; chapter 3 of this work) is to

measure the virulence of particular mutants (strains) of a single-cellular pathogen

and to detect mutants with a virulence phenotype, meaning a virulence that is

significantly increased or decreased compared to wild-type strains. While in general

many definitions of virulence are possible, our measure will reflect a strain’s ability

to proliferate on the host, and will not, for example, take into account the magnitude

of any adverse effects on the host the pathogen might have.

The prerequisite for iPool-Seq is to have a pool (i.e. mixture) of mutants of

the pathogen, each of which had a single gene knocked out by replacement with a

particular sequence called the KO (knockout) cassette. The host is then infected

with this (pre-infection) input pool of mutants, and after giving the pathogens time

to proliferate on the host, the host (or its infected parts) are harvested, which yields

the (post-infection) output pool of mutants. The DNA in both pools is then extracted,

fragmented and labelled with unique molecular identifiers (UMIs; Hug and Schuler,

2003; Kivioja et al., 2011). After labelling, the fragments that overlap either the 5’

or the 3’ flank of the KO cassette (and thus uniquely identify a particular mutant)

are amplified and subjected to next-generation sequencing (NGS; Mardis, 2008,

2013; Metzker, 2010). Processing the resulting (many millions) sequencing reads

(steps 7 to 10 of Basic Protocol 4 of Uhse et al., 2019; chapter 4 of this work) then

produces the following basic read-outs for a particular mutant m:

N
(in)
m,5’

, N
(in)
m,3’

, N
(out)
m,5’

, N
(out)
m,3’

: The numbers of detected unique genomic fragments

(UMIs) in the input (in) respectively output (out) pool that overlap the 5’

respectively 3’ flank of the KO cassette in mutant m. We assume each copy of

mutant m contains a single copy of its genome with exactly one KO cassette

integration; consequently, exactly one 5’ and one 3’ fragment per mutant copy

should be detected in each pool. For every mutant m, iPool-Seq thus yields

two independent measurements, N
(in)
m,5’

and N
(in)
m,3’

, related to the mutant’s

abundance (i.e. copy number) in the input pool, and similarly N
(out)
m,5’

and

N
(out)
m,3’

, for the mutant’s abundance in the output pool.

ℓ(in)
m,5’

, ℓ(in)
m,3’

, ℓ(out)
m,5’

, ℓ(out)
m,3’

: The loss estimated by TRUmiCount (Pflug & von Haeseler,
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2018; chapter 2 of this work) for the corresponding unique fragment counts,

i.e. the estimated fraction of copies of mutant m in pool p (in or out) whose

genomic fragment overlapping the flank f (5’ or 3’) of the KO cassette didn’t

contribute to the count N
(p)

m, f
.

We also assume that we are given a particular reference set R of reference

mutants against which the virulence of all other mutants is to be measured. Usually,

this set will consist of mutants for which the knockout is known to have no effect

on it’s behaviour during host infections.

Our goal in this chapter is two-fold:

First, we will quantify the virulence of a particular mutant m by assigning it a

numerical virulence value vm ∈ [0,∞); for this virulence scale 0 will mean “cannot

proliferate on the host at all” and 1 will mean “proliferates as fast as the reference

mutants.

Second, we want to quantify the significance of a particular mutant’s reduction

or increase in virulence’s compared to the reference mutants. This will entail the

creation of a statistical model that captures the behaviour of reference mutants.

While RNA Sequencing (RNA-Seq; Z. Wang et al., 2009) is superficially similar to

iPool-Seq in that the abundance of individual of some particular type (genotypes for

iPool-Seq, transcripts of a particular gene for RNA-Seq) is measured by quantitative

next-generation sequencing (NGS), the models used by differential expression callers

for RNA-Seq data like edgeR (M. D. Robinson, McCarthy, et al., 2010), DESeq

(Anders and Huber, 2010) and DESeq2 (Love, Huber, et al., 2014) are not directly

applicable to iPool-Seq.

We will thus derive a statistical model tailored specifically to iPool-Seq exper-

iments. It will rely on the same, proven ingredients (for example the negative

binomial distribution as many existing models for RNA-Seq and other NGS-based

experiments, but takes the specific design of iPool-Seq experiments into account.
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From unique fragment counts to abundances

Given the iPool-seq read-out described above, i.e. unique fragment counts N
(p)

m, f

and loss estimates ℓ
(p)

m, f
for every combination of mutant m, flank f (5’ or 3’) and

pool p (in or out), we want to combine the flank-specific estimates to compute one

abundance A
(p)
m per mutant and pool. An obvious approach would be to correct each

flank-specific fragment count N
(p)

m, f
separately for it’s loss and average the resulting

abundances, i.e. set A
(p)
m to the average of N

(p)

m, f
/
(

1−ℓ
(p)

m, f

)

for f = 5′ and f = 3′.

This combined abundance estimate, however, isn’t well-suited given our goal of

statistically modelling iPool-Seq. It doesn’t seem to be associated with any simple

statistical model that connects A
(p)
m , N

(p)

m,5′ and N
(p)

m,3′ , and it does fail to take into

account the precision of the two averaged abundances. The more unique fragments

we detect for a particular flank, the lower the variance of N
(p)

m, f
/
(

1−ℓ
(p)

m, f

)

; and hence

the higher should we weight that estimate.

We thus combine the two flank-specific abundance estimates of a mutant in a

slightly different way. We start by assuming that there is a single true abundance

A
(p)
m of mutant m in pool p, and that the two losses ℓ

(p)

m,5′ and ℓ
(p)

m,3′ are fixed. We

further assume that N
(p)

m,5′ and N
(p)

m,3′ are (conditionally on A(p) and the losses ℓ
(p)

m,3′

and ℓ
(p)

m,5′) independent, and that flank-specific fragment counts are modelled by

N
(p)

m, f
∼ Poisson

(

A
(p)
m ·

(

1−ℓ
(p)

m, f

))

(1)

(any other discrete stable distribution would work as well). We then set

N
(p)
m = N

(p)

m,5′ +N
(p)

m,3′ , (2)

ℓ̄
(p)
m =

1
2
ℓ

(p)

m,5′ +
1
2
ℓ

(p)

m,3′

and find for the sum N
(p)
m of the flank-specific counts the model

N
(p)
m ∼ Poisson

(

2 · A
(p)
m ·

(

1− ℓ̄
(p)
m

))

, (3)
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Figure 1: Input pool vs. output pool abundances of each mutant. A cross

(×) on the x- or y-axis marks mutants undetected in the output or input pools. The

dotted line reflects the output abundance prediction for reference mutants (A(out)
m =

λ ·A(in)
m ; see equation 6 for vm = 1). Data from replicates 1 to 3 of experiments A and

B of Uhse et al. (2018; chapter 3 of this work). Loss-corrected genome number and

model predictions were computed with the pipeline of Uhse et al. (2019; chapter 4

of this work).

which yields the maximum-likelihood (ML) abundance estimate

A
(p)
m =

1

2
·

N
(p)
m

1− ℓ̄
(p)
m

. (4)

This model addresses the issues raised above for a simple average of flank-

specific abundances. In particular, it stems from an explicit statistical model of

the unique detected fragment counts; we will return to and extend this Poissonian

fragment sampling model when we construct the full statistical model of iPool-Seq.
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Quantifying virulence

We return now to the goal of defining a measure of a mutant m’s virulence vm

the reflects it’s ability to proliferate on the host. As long as the total pathogen

load is far from the hosts carrying capacity when the host is harvested, individual

pathogen cells can be expected to proliferate approximately independently, which

gives rise to a linear relationship between a mutant m’s input abundance A
(in)
m and

its output abundance A
(out)
m with a mutant-dependent proliferation factor λm, i.e.

A(out)
m =λm · A(in)

m . (5)

This linearity assumption is supported by the data as well, see figure 1 (chapter 6

on page 112).

For reference mutants r ∈R, we expect the proliferation factors λr to agree (at

least approximately; we leave stochastic effects aside for now, these are considered

when we construct the full stochastic model). We denote this common factor the

reference proliferation factor λ, and call the relative change between a mutant’s

proliferation factor and the reference the mutant’s virulence (vm). Then,

A(out)
m = vm ·λ · A(in)

m , (6)

and given λ a mutant’s virulence is computed as

vm =
A

(out)
m

λ · A
(in)
m

=
1

λ
·

1− ℓ̄(in)
m

1− ℓ̄(out)
m

·
N

(out)
m

N
(in)
m

. (7)

Given a suitable estimate for reference proliferation factor λ, this virulence

scales satisfies the requirements listed earlier – in particular, it assign a virulence

of (roughly) 1 to mutants in the reference set.

A suitable estimate for the reference proliferation factor λ could be found by

averaging A
(out)
m /A

(in)
m over all mutants m ∈R. However, in practice, λ is estimated

together with the other parameters of the complete statistical model of iPool-Seq,

see below.
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A statistical model of iPool-Seq

We begin the construction of a full statistical model of iPool-Seq by returning to

the idea of modelling the relationship between the abundance A
(p)
m of mutant m

in pool p (in or out), the average loss ℓ̄
(p)
m and the observed unique fragment count

N
(p)
m with the Poissonian sampling model from equation 3, and combine it with the

linear model for A
(out)
m given A

(in)
m from equation 6

N(in)
m ∼ Poisson

(

2 · A(in)
m ·

(

1− ℓ̄(in)
m

))

, (8)

N(out)
m ∼ Poisson

(

2 · A(out)
m ·

(

1− ℓ̄(out)
m

))

,

EA(out)
= vm ·λ · A(in)

m .

Here, vm is again a mutant m’s virulence and λ the proliferation factor of reference

mutants. By weakening the linear model for A
(out)
m given A

(in)
m to a statement about

the expectation, we leave room for the inclusion of biological noise; by this we

mean differences between mutant’s true output abundances A
(out)
m that are neither

caused by different input abundances, nor by their genetic background, by rather

by random variations of how well mutants are able to proliferate.

We introduce an additional model parameter d for the amount of biological

noise that afflicts A
(out)
m ; to make d easier to interpret, the parameter is defined

to be the squared biological coefficient of variation (biological CV2); it measures

the additional variance of A
(out)
m in units of squared expected value of A

(out)
m , which

means the total VA
(out)
m of A

(out)
m now has two components,

VA(out)
m = v2

m ·λ2
·VA(in)

m
︸ ︷︷ ︸

scaled variance of A
(in)
m

+ d ·
(

EA(out)
m

)2

︸ ︷︷ ︸

biological noise

(9)

To remove the unknown true input abundance A
(in)
m from our model, we view

the Poissonian sampling model for N
(in)
m from equation 8 from a Bayesian angle,

and exploit the well-known fact that the Gamma distribution is the conjugate

prior of the Poisson distribution. More specifically, if we assume a Gamma(α,β)

distribution1(where α,β are hyper-parameters) as the prior distribution on the

1We refer to the parametrisation with shape α, rate β and density fΓ(x)=
βα

Γ(α)
xα−1e−βx.
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true input abundance2, the posterior distribution of A
(in)
m after observing N

(in)
m is3,4

A(in)
m

∣
∣ N(in)

m ∼ Gamma
(

α′,β′
)

, (10)

where

α′
=α+N(in)

m ,

β′
= (β+1) ·

(

1− ℓ̄(in)
m

)

·2.

From the posterior distribution of the true input abundance A
(in)
m we find the

posterior of the true output abundance A
(out)
m by modifying the Gamma distribution

parameters to scale the mean by vm ·λ (equation 8) and increase the variance by d

times the squared mean (equation 9), which yields5

A(out)
m

∣
∣ N(in)

m ∼ Gamma
(

α′′,β′′
)

, (11)

where

α′′
=

α′

1+d ·α′
=

α+N
(in)
m

1+d ·
(

α+N
(in)
m

) ,

β′′
=

1

vm ·λ
·

β′

1+d ·α′
= 2 ·

1− ℓ̄(in)
m

vm ·λ
·

β+1

1+d ·
(

α+N
(in)
m

) .

Finally, we translate the conditional distribution of A
(out)
m given an observed

input fragment count N
(in)
m into the condition distribution of N

(out)
m . Under the

Poissonian sampling model from equation 8, the conditional distribution of N
(out)
m

is a mixture of Poisson distribution with a Gamma(α′′′,β′′′)-distributed rate,

N(out)
m

∣
∣ A(out)

m ∼ Poisson
(

2 ·
(

A(out)
m ·

(

1− ℓ̄(out)
m

))

, (12)

2 · A(out)
m ·

(

1− ℓ̄(out)
m

)

∼ Gamma
(

α′′′,β′′′
)

,

2for technical reasons, we put the prior on EN
(in)
m = 2 · A

(in)
m ·

(

1− ℓ̄(in)
m

)

, not on A
(in)
m (eq. 8).

3Update rule: If N | A ∼ Poisson(A) with prior distribution A ∼ Gamma(α,β) before observing

N, then the posterior distribution of A after having observed N is A | N ∼ Gamma(α+N,β+1).
4Scaling rule: If X ∼ Gamma

(

α,β
)

then sX ∼ Gamma
(

α,β/s
)

5We use that if Gamma(α,β) has mean µ =
α
β

, variance σ2 = α/β2 then Gamma(α/ν,β/ν) for

ν= (1+dα) has also mean (α/ν)/(β/ν)=µ but variance (α/ν)/(β2/ν2)=σ2(1+dα)=σ2 +dµ2.
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where

α′′′
=

α+N
(in)
m

1+d ·
(

α+N
(in)
m

) ,

β′′′
=

1

vm ·λ
·

1− ℓ̄(in)
m

1− ℓ̄(out)
m

·
β+1

1+d ·
(

α+N
(in)
m

) ,

which makes the conditional distribution of N
(out)
m negative binomial (NB)6,

N(out)
m

∣
∣N(in)

m ∼ NegBin(r, p), (13)

where

r =α′′′
=

α+N
(in)
m

1+d ·
(

α+N
(in)
m

) ,

p =
1

1+β′′′
.

In our application, the common parametrisation of the negative binomial dis-

tribution with success probability p and number of failures r (which can be non-

integral) is not particularly convenient, and it hides the connection between the

(conditional) mean of N
(out)
m and our definition of the virulence vm of a mutant from

equation 5. The latter connection is more clearly visible if the negative binomial

distribution is parametrised by its mean µ =
rp

1−p
and the number of failures r,

which for the conditional distribution N
(out)
m gives

N(out)
m

∣
∣N(in)

m ∼ NegBin(µ, r), (14)

where

µ=
r · p

1− p
=

r

β′′′
= vm ·λ ·

1− ℓ̄(out)
m

1− ℓ̄(in)
m

·
α+N

(in)
m

β+1
,

r =α′′′
=

α+N
(in)
m

1+d ·
(

α+N
(in)
m

) .

6We use that if X ∼Poisson(Λ) and Λ ∼Gamma(α,β), then X ∼NB(r, p), r =α, p = 1/(1+β).
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It remains to choose hyper-parameters α,β. Under a strictly Bayesian view of

the model, only choices α,β> 0 are possible – otherwise, our Gamma(α,β) prior

on A
(out)
m is improper (meaning not a proper probability distribution). But any

such choice introduces a bias towards a certain input abundances (no uniform

proper prior on the whole positive real line is possible!), and causes disagreement

between the negative binomial model in equation 14 and a natural re-interpretation

of the virulence definition from equation 5 as a statement about the conditional

expectation of N
(out)
m given N

(in)
m . Both issues are resolved if the requirement that

the prior is a proper probability distribution is dropped and α,β are set to zero. All

posterior distribution, and in particular N
(out)
m

∣
∣N

(in)
m , remain valid distributions

as long as N
(in)
m > 0, i.e. for all mutants that are detected as being present in the

input pool. This choice of hyper-parameters yields the simplified negative binomial

(NB) model for iPool-Seq

N(out)
m

∣
∣N(in)

m ∼ NegBin

(

µ := vm ·λ ·
1− ℓ̄(out)

m

1− ℓ̄(in)
m

·N(in)
m , r :=

N
(in)
m

1+d ·N
(in)
m

)

. (15)

which for vm = 1 models the behaviour of reference mutants.

Variance components of N(out)
m

In the (conditional) negative binomial model (equation 15) for N
(out)
m , the mean and

(total) variance of N
(out)
m given N

(in)
m are7

µm =E

(

N(out)
m

∣
∣ N(in)

m

)

= vm ·λ ·
1− ℓ̄(out)

m

1− ℓ̄(in)
m

·N(in)
m (16)

σ2
m =V

(

N(out)
m

∣
∣ N(in)

m

)

=µm +µ2
m ·

1+d ·N
(in)
m

N
(in)
m

.

7We use that if X ∼NB(µ, r), then V X =µ+µ2/r (for NB parametrised with µ, r, see eq. 14)
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and the squared coefficient of variation (CV) of N
(out)
m given N

(in)
m , which reflects the

variance but expressed in units of squared expectation, is thus

CV2
m =

σ2
m

µ2
m

=
1

N
(in)
m

+
1

µm

+ d. (17)

This partitioning of CV2
m shows that there are three (independent) source of

variance that together comprise the total variance of N(out):

Non-exhaustive sampling of the input pool
(

1/ N
(in)
m

)

. Under our Poissonian

sampling model, the fewer unique fragments from a particular mutant are

observed in the input pool, the larger the (relative) uncertainty about its true

input abundance A
(in)
m .

Non-exhaustive sampling of the output pool
(

1/µm

)

. Again due to our Pois-

sonian sampling model, the smaller the expected number of unique fragments

from a particular mutant is in the output pool, the larger are the expected

(relative) variations of the observed fragment count.

Biological CV2
(

d
)

. Added explicitly to the model to account for biological noise,

meaning random variations of mutant growth on the host.

Estimating parameters, computing virulences and

testing significance

We start from the basic read-out of an iPool-Seq experiment in the form of unique

fragment counts N
(p)

m, f
and TRUmiCount loss estimates ℓ

(p)

m, f
for every combination

of mutant m, pool p (in or out), and flank f (5’ or 3’). We compute per-mutant

virulences vm and false discovery rate (FDR; Benjamini and Hochberg, 1995) -

corrected p-values q
(low)
m and q

(high)
m , indicating the significance of vm < (lower

virulence than reference) and vm > 1 (higher virulence than reference), by executing

the following procedure:

1. Combine flank-specific (5’ and 3’) unique fragment counts and TRUmiCount

loss estimates into a single count N
(p)
m and a single loss estimate ℓ̄

(p)
m per
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mutant m and pool p (equation 2) and compute input (A(in)
m ) and output

(A(out)
m ) - pool abundances (equation 4).

2. Estimate maximum likelihood (ML) parameters for the reference proliferation

factor (λ) and biological CV2 (d) by optimising the combined likelihood of all

observed unique fragment counts N
(out)
m for reference mutants m ∈R under

the negative binomial model (equation 15; set vm = 1 since m ∈R).

3. Compute each mutant’s virulence vm from its observed unique fragment

counts and estimated losses, using the ML estimate for the reference prolifer-

ation factor λ (equation 7).

4. For each mutant m that was detected as present in both the input and the

output pool, compute two p-values p
(low)
m and p

(high)
m for the significance (un-

der the negative binomial model, equation 15), of a decreased (low; vm < 1)

respectively an increased (high; vm > 1) virulence compared to the mutants

in the reference set R,

p(low)
m = FNB

(

N(out)
m ; µm, rm

)

, (18)

p
(high)
m = 1−FNB

(

N(out)
m −1; µm, rm

)

.

where

µm =λ ·
1− ℓ̄(out)

m

1− ℓ̄(in)
m

·N(in)
m , rm =

N
(in)
m

1+d ·N
(in)
m

and FNB(x ; µ, r) denotes the cumulative distribution function (CDF) of the neg-

ative binomial distribution, parametrised with mean µ and (not necessarily

integral) failure count r.

These p-values reflect the probability of detecting fewer or equally many

(p
(low)
m ) respectively more or equally many (p

(high)
m ) than N

(out)
m unique frag-

ments in the output pool for a mutant with vm = 1 (reference virulence)

assuming N
(in)
m detected fragment in the input pool, taking the estimates

fractions ℓ̄(in)
m , ℓ̄(out)

m of lost fragments into account. Note that for reasonably

large N
(out)
m , p

(high)
m ≈ 1− p

(low)
m because the subtraction of 1 from N

(out)
m in the

computation of p
(high)
m then has little effect.

Ch. 6. Statistically modelling iPool-Seq 119



5. Apply the Benjamini-Hochberg (BH; Benjamini and Hochberg, 1995) correc-

tion separately to the sets of p-values for reduced and increased virulence

to obtain FDR-corrected p-values q
(low)
m and q

(high)
m . Then filter the list of

mutants according to q
(low)
m ≤ FDR respectively q

(high)
m ≤ FDR to find a list

of genes whose removal impacts the pathogen’s virulence negatively respec-

tively positively, containing (on average) no more than a fraction of FDR false

positives.

The asymptotic power of iPool-Seq

We consider the case of large input fragment counts N
(in)
m , λ = 1, and negligible

losses ℓ̄(in)
m ≈ ℓ̄(out)

m ≈ 0. The output fragment counts N
(out)
m are thus also large

(which is the point of these assumptions; neither λ = 1 nor the negligible losses

themselves are material). For the Gamma(α′′,β′′)-distribution of A
(out)
m , equation

11 (where we again set α= β= 0 for the hyper-parameters) then yields α′′ ≈ d−1

and β′′ ≈
(

dvmN
(in)
m

)−1
, and thus the following approximation8

A(out)
m ≈Gamma

(
1

d
,

2

d ·vm ·N
(in)
m

)

. (19)

This approximate distribution of A
(out)
m has, as one should expect, mean value

µ′′
m =α′′/β′′ = vmN

(in)
m /2 and variance (σ′′

m)2 = d(µ′′
m)2. The distribution of N

(out)
m is

mixture of Poisson distributions whose mean is distributed according to 2 · A
(out)
m

(equation 12), and whose variance is, being Poisson, equal to the mean. For large

N
(in)
m (and fixed d), almost all of these Poisson distributions thus are, relative to the

variance d(µ′′
m)2 of A

(out)
m , essentially concentrated at a single point, making the

mixture moot and the distribution of N
(out)
m the same as that of of 2 ·A

(out)
m , meaning

N(out)
m ≈Gamma

(
1

d
,

1

d ·vm ·N
(in)
m

)

, (20)

with mean µm = vmN
(in)
m and σ2

m = dµ2
m.

8By approximation we here mean convergence in distribution for N
(in)
m → ∞; possibly after

shifting and re-scaling to ensure that the (distributional) limit exists.
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We can remove the dependency on N
(in)
m by considering the observed virulence

v̂m = N
(out)
m / N

(in)
m (eq. 7; remember λ= 1 and losses are negligible) instead,

v̂m =
N

(out)
m

N
(in)
m

≈Gamma

(
1

d
,

1

d ·vm

)

. (21)

Given a particular false-positive rate (or significance level)9 ϕ, a virulence

vm < 1 and biological CV2 parameter d, we can then proceed as follows to compute

the (approximate) power κ for recognising a mutant’s virulence to be reduced:

First, we compute the critical value tϕ, meaning the largest observed variance

v̂m that is still significantly smaller than 1 at significance level ϕ,

tϕ = F−1
Γ

(

ϕ ;
1

d
,

1

d

)

, (22)

where FΓ(· ; α,β) is the CDF of the Gamma distribution with shape α and rate β

and F−1
Γ

its inverse (i.e. the quantile function).

Then we compute the probability of a mutant with true vm producing an ob-

served virulence of at most tϕ,

κ=P(v̂m ≤ tϕ)= FΓ

(

tϕ ;
1

d
,

1

d ·vm

)

. (23)

Table 1 (chapter 6 on page 121) shows the power for a few combinations of virulence,

biological CV2 and significance level.

9Since α is already taken, we denote the significance level or false-positive rate ϕ

Sig. level 0.05 Sig. level 0.01

d vm= 0.75 0.5 0.25 0.125 vm= 0.75 0.5 0.25 0.125

0.001 1.00 1.00 1.00 1.00 1.000 1.00 1.00 1.00

0.01 0.89 1.00 1.00 1.00 0.680 1.00 1.00 1.00

0.1 0.19 0.64 1.00 1.00 0.054 0.32 0.97 1.00

Table 1: The power of iPool-Seq.. Power to detect significant reductions of

mutant m’s virulence to vm for different biological CV2 (d) and significance levels.
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Results

We ran the pipeline of Uhse et al. (2019; chapter 4 of this work) on the raw sequenc-

ing reads for the 6 replicates of an iPool-Seq experiment published by Uhse et al.

(2018; chapter 3 of this work). The pipeline transforms the raw sequencing reads

of each replicate into pool (p), mutant (m) and flank ( f ) - specific unique fragment

counts N
(p)

m, f
and corresponding TRUmiCount loss estimates ℓ

(p)

m, f
, and then applies

the procedure outlined in the section Estimating parameters, computing virulences

and testing significance (page 118). The results of that procedure are replicate-

specific estimates of the two model parameters λ (reference proliferation factor)

and d (biological CV2), as well as replicate- and mutant (m) - specific estimates

of input abundance A
(in)
m , output abundance A

(out)
m , and virulence vm, and finally

p-values p
(high)
m and p

(low)
m and false discovery rate (FDR) - corrected q-values q

(high)
m

and q
(low)
m that quantify the significance of vm > 1 respectively vm < 1. Virulence

vm = 1 reflects the behaviour of the mutants in the reference set; the reference set

used by Uhse et al. (2018) contains 5 single-gene knockout mutants of the genes

UMAG_01302, UMAG_02193, UMAG_03202, UMAG_10403, UMAG_10553. We

note that since the pipeline used by Uhse et al. (2018) relied on an older version

of the TRUmiCount algorithm, and also differed in some other details from the

version used to generate the data shown here, the data shown here differs slightly

from the results presented here.

As already briefly discussed when the linear model for the relationship of the

Replicate

Parameter A1 A2 A3 B1 B2 B3

λ 0.55 0.63 0.44 0.067 0.043 0.012

d 1.8 ·10−2 2.5 ·10−2 1.5 ·10−2 1.4 ·10−2 2.4 ·10−2 1.9 ·10−9

Table 2: Model parameter estimates for experimental data. Maximum-

likelihood (ML) estimates for reference proliferation factor (λ) and biological CV2

(d). Shown are the results from replicates 1 to 3 of experiments A and B of Uhse et

al. (2018; chapter 3 of this work). Results were computed with the pipeline of Uhse

et al. (2019; chapter 4 of this work).
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expected values of A
(in)
m and A

(out)
m was introduced (equations 5 and 6), the data

of Uhse et al. supports the assumption of linearity well (figure 1 in chapter 6 on

page 112). In particular, even for most abundant mutants in the input pool, the

output pool abundances show no trace of a plateau effect that could be point to the

carrying capacity of the host being reached. This is crucial – any plateau effect

would cause the model to either systematically under-estimate the virulence of

highly abundant mutants in the input pool, or over-estimate the virulence of rarer

mutants.

While the linear relationship of the expectations of A
(in)
m and A

(out)
m is defined

by the model parameter called reference proliferation factor (λ), the other model

parameter (d) called biological CV2 defines the relationship of their variances.

This parameter measures the additional variance of A
(out)
m over A

(in)
m due to random

growth differences between mutants; and does so in units of squared expectation.

With the exception of replicate B3 (which appears to be an outlier), the estimates

of d lie within a factor of 2 between the smallest (1.4 ·10−2, replicate A2) and

the largest (2.5 ·10−2, replicate A3), see table 2 (chapter 6 on page 122). This is

despite the fact that the range of output abundances varies by at least an order

of magnitude between these replicates – for replicates A1-3, the bulk of output

abundances range roughly from 103 to 105, for replicates B1-B3 they range from

102−104 and for replicate B3 they range from 101−103 (y-axis of figure 1 in chapter

6 on page 112).

The estimated virulences vm show for most of the 6 replicates a clearly asym-

Replicate

Direction A1 A2 A3 B1 B2 B3

Increase (q
(high)
m ≤α) 2 2 72 7 2 45

Decrease (q(low)
m ≤α) 90 70 32 56 36 45

Table 3: Number of mutants with significant virulence phenotype. Number

of mutants whose virulence deviation significantly from the reference set, meaning

q
(high)
m ≤α or q

(low)
m ≤α. Shown are the results for replicates 1 to 3 of experiments A

and B of Uhse et al. (2018; chapter 3 of this work). Results were computed with

the pipeline of Uhse et al. (2019; chapter 4 of this work).
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Figure 2: Virulence of mutants compared to the reference set. Virulence

(log2vm) vs. input input abundance (A(in)
m ). Grey area shows the (approximate; no

FDR-correction and actual area depends on ℓ(in)
m , ℓ(out)

m ) range of (log2) virulences for

a particular A
(in)
m that do not significantly deviate from vm = 1 (reference behaviour).

Mutants are coloured according to their classification (classified with FDR threshold

α= 0.1). Shown are the results from replicates 1 to 3 of experiments A and B of

Uhse et al. (2018; chapter 3 of this work). Results were computed with the pipeline

of Uhse et al. (2019; chapter 4 of this work).
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Figure 3: Distribution of p-values. First row shows the cumulative distribution

function (CDF) of p
(low)
m across the 6 replicates of Uhse et al. (2018; chapter 3

of this work), model model fitted separately to each replicate. The CDFs in the

left column include p-values for all ≈ 200 mutants, the CDFs on the right only

p-values for the 5 reference mutants. Second and third row show the CDF obtained

from 500 simulated iPool-Seq replicates with 5 (second row) respectively 20 (third

row) reference mutants per replicate. Simulations were based on the model in

equation 15; vm = 1 for all simulated mutants, input abundances A
(in)
m log-uniformly

distributed on [10,105], loss estimates beta-distributed with α = β = 10, input

fragment counts Poisson-distribution as in equation 3. Results for experimental

data where computed with the pipeline of Uhse et al. (2019; chapter 4 of this work).
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metric distribution; a decrease in virulence compared to the reference mutants

is more common than an increase (figure 2 in chapter 6 on page 124; table 3 in

chapter 6 on page 123). The exceptions are replicates A3 and B3, which classify

72 respectively 45 mutants as having an increased virulence, whereas the highest

number of mutants with that classification across the other replicates is 7.

For replicate B3, the likely reason for the inflated number of mutants classified

as having a significant increases in virulence is the atypically small biological CV2

estimate d = 1.9 ·10−9 (table 2 in chapter 6); and while the estimate d = 1.5 ·10−2

for replicate A3 is not as low, it still lies on the low end of the scale.

Other replicates also show signs of an inflated false-discovery rate, though,

both for detected virulence increases as well as decreases. Out of ≈ 200 mutants,

107 are classified as having an increased virulence, and 149 mutants as having a

decreased virulence in at least one replicate at an FDR threshold of α= 0.1; but if

we require three or more replicates to classify a mutant as significant, no mutants

remain whose virulence is classified as increased, and only 40 of the initial 149

remain classified as decreased (table 4 in chapter 6 on page 126).

The p-value distribution of p
(low)
m tells a similar tale – the observed CDF of p

(low)
m

across all mutants and replicates A1-B3 shows a clear over-abundance of both

p-values close to zero (about 20% ≈ 40 mutants) and close to one (about 10% ≈ 20

mutants) compared to a uniform distribution (left upper plot of figure 3 in chapter

No. of mutants with sig. (α= 0.1)

virulence phenotype in ≥ k replicates

Direction k = 1 2 3 4 5 6

Increase (q
(high)
m ≤α) 107 23 0 0 0 0

Decrease (q(low)
m ≤α) 149 95 40 21 16 8

Table 4: Reproducibility of significant virulence changes. The number of

mutates that showed a significant (α= 0.1) virulence increase (q
(high)
m ≤α) respec-

tively decrease (q(low)
m ≤α) in at least k = 1,2, . . . ,6 replicates. Shown are the results

from replicates 1 to 3 of experiments A and B of Uhse et al. (2018; chapter 3 of this

work). Results were computed with the pipeline of Uhse et al. (2019; chapter 4 of

this work).
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6 on page 125). Roughly half of the ≈ 40 mutants with exceptionally small p- are

likely mutants with an actual reduction in virulence – 21 mutants were classified

as reduced virulence in 4 out of 6 replicates (FDR threshold α= 0.1); requiring 5

replicates reduces the number to 16 (table 4 in chapter 6 on page 107). The ≈ 20

mutants with p-values p
(low)
m exceptionally close to one (which corresponds to p

(high)
m

being exceptionally close to zero; p
(high)
m ≈ 1− p

(low)
m , see equation 18) on the other

hand cannot be explained by their virulence being truly increased – no mutants

are reproducibly classified as having increased virulence in more than 2 out of 6

replicates (table 4 in chapter 6 on page 107).

A possible source of the unexplained over-abundances of p-values close to zero

and close to one is model over-fitting – in particular, because the reference set used

by Uhse et al. (2018; chapter 3 of this work) contains only 5 mutants, which are

used to estimate two model parameters (λ and d).

Simulations corroborate the small size of the reference set and the ensuing

over-fitting as the reason behind the inflated false-discovery rate. For simulated

iPool-Seq experiment with 5 reference mutants from which model parameters are

inferred, the over-abundance of p-values p
(low)
m close to one mimics the one observed

for experimental data, and like for experimental data no (strong) deviation form

a uniform distribution is observed within the p-values of the reference mutants.

P-values close to zero are less over-abundant that for experimental data; this is to

be expected since all simulated mutants have true virulence vm = 1 (middle row of

3 in chapter 6 on page 125).

Finally, if the number of reference mutants per experiment is increased to 20,

the p-value distribution of p
(low)
m becomes uniform – indicating that for about 20

mutants in the reference set, the false-discovery rate would no longer be inflated

compared to the chosen false discovery rate target.
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Discussion

We have presented a model for count data that models asymmetric designs where

the abundances of particular species (e.g. mutants of a pathogen, or transcripts of

a particular gene) in a population are sampled before and after some event (such

as infecting the host), and which allows classifying species by whether they cope

worse, equally well or better with that event than some reference group of species.

This is different from common count data models in next-generation sequencing

(NGS) applications like the models used by edgeR (M. D. Robinson, McCarthy,

et al., 2010), DESeq (Anders and Huber, 2010) and DESeq2(Love, Huber, et al.,

2014) to call differentially expressed genes in RNA Sequencing (RNA-seq) data.

These models usually are symmetric, and compare species- or gene-specific counts

between two samples for significant differences. These methods typically do not

use a specific reference group to define a baseline – instead, they often use either

the average, the majority response or a combination of both as a baseline (M. D.

Robinson and Oshlack, 2010). For differential expression analysis of RNA-Seq

experiments this usually works well because we often expect only a subset of genes

to be differentially expressed between e.g. two tissues. But in mutant screens

such as iPool-Seq experiments, we in many cases cannot now a priori whether

just a few or almost all of the mutants will show a phenotype, and the referenced-

based baseline setting of our model is thus advantageous (provided an appropriate

reference group is included in the screen).

When we applied our model to the 6 replicates of Uhse et al. (2018; chapter 3

of this work), the individual replicates showed strong signs of over-fitting. This is

not surprising given the small number of reference mutants (5) compared to the

number of model parameters (2). The over-fitting could be alleviated by taking the

variance of the estimates of d and λ into account and “broadening” the conditional

distribution of N
(out)
m further – similar in spirit to how a t-test uses Student’s t-

distribution in place of the normal distribution to account for the uncertainty of

sample variance as an estimate of the true variance.

However, given the reduction in power such a modification would entail, it is

not clear that it would be worth-while. Since a modest increase of the number

of reference mutants from 5 to 20 virtually removes the observed over-fitting,
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designing further experiments to include more reference mutants see preferential.

In fact, we must mention that the reference set used by Uhse et al. (2018; chapter

3 of this work) initially contained 13 mutants, selected based on their description

as showing wild-type behaviour in the literature. But initial analysis of the data

cast doubt on the neutral behaviour of many of them, and the set was reduced

after the fact to only those 5 mutants that clearly showed no phenotype. While this

clearly had an adverse effect on the false-positive rate, at the same time it ensured

that we would not inflate the false-negative rate by using non-neutral mutants

as a baseline. In the context of a screen, such trading of a higher false-positive

rate in favour of a lower false-negative rate was deemed preferential, as it avoids

erroneously removing mutants from the list of interesting candidates to be studied

further.

Except for the over-fitting, the model seems to work well for its intended purpose,

and managed to identify 21 mutants which, showing a significant deviation from

reference behaviour in 4 out of 6 replicates, can be considered to have a virulence

phenotype with high confidence. This was also independently confirmed by val-

idation experiments – 3 novel genes with a virulence phenotype were tested in

an independent virulence essay and found to cause much weaker symptoms of

infection on the host plant than the wild-type (Uhse et al., 2018; figure 5 in chapter

3 of this work on page 52).

Outlook

The most delicate modelling assumption we make is the linear relationship between

input and output abundances of mutants – while small violations of a model’s

assumptions often have little consequence on the fidelity of the results, linearity

violations here translate to strong systematic biases against particular mutants.

While the U. maydis-maize system seems to adhere quite strictly to the assumed

linearity, other host-pathogen systems might not. To analyse experimental data

from such host-pathogen systems, the model would then need to be extended to

handle non-linear input-output abundance relationships.

The structure of the model makes such a modification relatively straight-forward.

One would need to assume a transfer function ϑ parametrised by a mutant’s
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virulence vm and additional (not mutant-specific) parameters Θ that maps input to

output abundances,

A(out)
m =ϑ

(

A(in)
m ; Θ, vm

)

. (24)

To compute the virulence of a particular mutant, this equation would need to be

solved for vm, after having done the (straight-forward) translation of N
(in)
m into A

(in)
m

and N
(out)
m into A

(out)
m , and after having estimated parameters Θ. The estimation

of Θ would again rely on likelihood maximisation – but of course for a modified

stochastic model which also has the linear relationship between A
(in)
m and A

(out)
m

replaced with equation 24.

Doing so exactly would require drastic changes to the model, as A
(out)
m would no

longer follow a Gamma-distribution. But we can, as before, weaken equation 24 to

be a statement about expectations, and thus include it into the stochastic model 8

in the form

EA(out)
m =ϑ

(

EA(in)
m ; Θ, vm

)

. (25)

For the variance, we modify the relationship from equation 9 by linearising ϑ,

VA(out)
m =

(

ϑ′
(

EA(in)
m ; Θ, vm

))2
·VA(in)

m +d ·
(

EA(out)
m

)2
, (26)

where ϑ′ is the partial derivative of ϑ with respect to the input abundance, and d

is an additional model parameter that, as before, represents biological noise.

Since variations in the input abundances typically cause much larger variations

of output abundances than biological noise (i.e. random growth rate fluctuations),

the linearisation in equation 26 is should not hamper this extended model’s ability

to accurately model host-pathogen systems that show a plateau effect due to the

pathogen load of mutants highly abundance int he input reaching the hosts car-

rying capacity. We thus believe that the model presented here would be, with the

extensions outlined above, also be applicable to such systems.
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Chapter 7

Conclusions

Quantitative next-generation sequencing (NGS; Mardis, 2008, 2013; Metzker, 2010)

continues to be an important technique to gain insight into complex biological

systems by separately measuring the abundances of many different types of DNA

or RNA molecules; and by counting unique molecular identifiers (UMIs; Hug and

Schuler, 2003; Kivioja et al., 2011) instead of sequencing reads, the impact of

polymerase chain reaction (PCR) bias on the method’s accuracy can be reduced.

However, counting UMIs instead of reads does not remove all PCR-related bias from

the measured abundances – without in silico corrections, indirect PCR bias (see

Unique molecular identifies in chapter 1 on page 24) through non-uniform risks

of overlooking a molecule remains. To remove indirect PC bias in silico, we must

understand it quantitatively – meaning we require a mathematical theory of how

this bias arises, and on which experimental factors its magnitude depends.

A theory of UMI-based quantitative NGS

We presented such a theory, showed that it explains observed data reasonably

well, and used it to develop the TRUmiCount algorithm which corrects UMI counts

for indirect PCR bias (Pflug & von Haeseler, 2018; chapter 2 of this work). The

corrected abundances reported by TRUmiCount show better concordance with

known true abundances than raw UMI counts; both for simulations (Pflug & von

Haeseler, 2018; chapter 2 of this work) as well as for experimental data (chapter 5).
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The predictions of our theory remain valid even if its assumptions are (mildly)

violated; in particular if instead of a single PCR step, multiple PCR steps with

intermediate purification steps are used to enrich particular DNA fragments prior

to sequencing to reduce the required sequencing depth, as insertion pool sequencing

(iPool-Seq) does (Uhse et al., 2018; chapter 3 of this work). While this model miss-

specification affects the estimated model parameters, the corrections computed by

our theory remain accurate enough to be usable. In particular, the correction is

shown to still improve (internal) concordance over uncorrected abundance estimates

(chapter 5).

While TRUmiCount improves the accuracy of molecule abundance estimates

in both in a single-cell RNA-seq settings as well as for iPool-Seq data (chapter

5), some questions remain; in particular about the relationship between its two

model parameters, the PCR efficiency E and the average number of reads per

UMI D. Under TRUmiCount’s model of PCR as a stochastic exponential growth

process, we would except these two parameters to be highly correlated. Yet the

data is ambiguous – while observe some correlation under some circumstances,

under others we hardly observe any (figure 5 in chapter 5 on page 99 and related

discussion in section Model parameters & estimated losses on page 103 ff.). How

this fits the observation that the estimates efficiencies do anti-correlate with the

amplified fragment’s length (figure S2 in chapter 2 on page 41), and thus do seem

to seem to measure the true efficiency of the PCR is unclear.

Possible extensions of the theory

Understanding why we don’t consistently observe strong correlation of the estimated

PCR efficiency E and the average number of reads per UMI D, and finding a realistic

model of their relationship would benefit our theory of UMI-based quantitative

NGS experiments. First, such a model might provide further insight into the

reaction behaviour for different sequences. Second, it may reduce the number of

gene-specific (other specific to any other genomic feature whose abundance is to be

measured) parameters that have to be estimated; such a reduction would in turn

reduce overfitting and thus increase the accuracy of the estimated fractions of lost

molecules, in particular for genes where only little data is available.
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Other approachs to reduce the number of independent parameters to estimate

seem possible. Love et al. (2016), for example, in their Alpine method use a

generalised linear model (GLM) to predict sequence- and length-specific bias across

the whole genome. Through a similar model, the parameter estimates used by

TRUmiCount for different genomic regions could be linked, thus once more reducing

the number of independent parameters that require estimation.

A fragment bias model like the one used by Love et al. (2016) for Alpine,

modified for TRUmiCount to predict fragment-specific PCR efficiencies and average

number of reads per UMI from fragment parameters like length and sequence

composition would also allow us to extend TRUmiCount to experimental methods

like chromatin-immunoprecipitation sequencing (ChIP-Seq; Barski et al., 2007;

Johnson et al., 2007) whose output is a coverage graph and not a count table. In

such methods, reads respectively UMIs are not assigned to individual features like

genes or mutants, but rather contribute to the coverage of the bases they contain.

For TRUmiCount in its current form that poses a problem, because there are no

natural groups of UMIs (like those assigned to a single gene) for which model

parameters could be estimated individually; with an Alpine-inspired fragment bias

model we could instead compute a loss estimate for each individual UMI which

would indicate how many similar UMIs remained unobserved.

Any approach that avoids having to estimate independent PCR efficiencies

for each gene would also make it possible to model more complex experimental

situations without giving up identifiability of the parameters. For example, to

model a protocol like iPool-Seq that consists of two PCR steps with an intermediate

purification step we can proceed as follows:

To model each UMI’s copy number after the first PCR and subsequent purifi-

cation, we use the same mixture of Poisson distributions as does TRUmiCount;

the Poisson distribution now reflects the (lossy) purification process instead of

sequencing. Writing Mpur for the number of copies after purification, P =EMpur

for the average number of copies, and E1 for the (first) PCR’s efficiency, we thus

have

F1 ∼PCR (E1, 1), Mpur | F1 ∼Poisson(F1 ·P) (1)

where PCR(E, I) stands for the (normalized) family size distribution after a PCR
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with efficiency E starting from I initial copies. Mpur is then the initial copy number

for the second PCR; after the second PCR (with efficiency E2) and sequencing (with

D reads per UMI on average), the read count C should then obey (c.f. Pflug & von

Haeseler, 2018; chapter 2 of this work, see section 2.2.3 Modeling the sequencing

process on page 33)

F2 ∼PCR, (E2, Mpur), C | F2 ∼Poisson(F2 ·D). (2)

The difficulty of this model is not its mathematical treatment, but rather the

estimation of E1, E2 and P – all these three parameters together define the observed

variance of C, making robust independent estimation from limited data impossible.

Parameters of such multi-stage models might, however, become identifiable if they

are linked so that instead of having to estimate separate parameter for separate

loci, all UMIs in a sequencing library become informative for every locus.

Considering such mixtures also allows us to model UMI collisions, i.e. situations

where two identical molecules are sometimes labelled with identical UMIs, thus

breaking the assumption of molecules being distinguishable before amplification.

In place of Mpur in equation 2, a different distribution of initial copy numbers

would be used that reflects the probability of a particular combination of UMI and

molecule occurring once, twice, thrice, . . .. While non-ideal, such UMI collisions

sometimes do sometimes occur if some mRNAs are more highly abundant than

expected, or UMI length is restricted by experimental limitations; extending the

theory to cover this case would thus be useful.

Finally, considering UMI collisions is interesting from a theoretical point of

view, because it links the theory we developed for UMI-based NGS experiments

to the much older idea of PCR deduplication (Ebbert et al., 2016; Li, 2011; Li

et al., 2009). There, the sequence of a fragment itself (without artificially added

random nucleotides) serves as its UMI, and reads with identical sequences are

thus discarded as PCR duplicates. While these “UMIs” are prone to collisions and

the removal of “PCR duplicates” can thus be over-zealous, the process can still be

beneficial under some circumstances. By modifying our theoretical framework to

include it, it may be possible to offer better advice, or even automated decision

procedures, on whether reads with identical sequences should be collapsed or not.
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Applying our theory of UMI-based quantitative NGS

The raison d’être of a quantitative theory for an experimental method is to couple it

with a quantitative theory of the system being observed; by coupling two separate

quantitative theories, confusing the behaviour of the system with its method of

observation can be avoided.

We followed this approach when we developed a statistical model for the NGS

and UM-based method iPool-Seq (Uhse et al., 2018; chapter 3 of this work), which

measures a particular pathogen’s virulence by observing its abundance before and

after infection of a host. The model exhibits the typical features of such models that

are suitable for NGS-derived data (Anders and Huber, 2010; Love, Huber, et al.,

2014; M. D. Robinson, McCarthy, et al., 2010): By assuming a (conditional) Poisson

distribution, it takes the inherent statistical uncertainty of UMI counts obtained

through non-exhaustive sampling into account. And by additionally assuming some

uncertainty in the true abundances, additional variance is introduced that makes

the (unconditional) distributions of observed counts a Negative Binomial (chapter

6).

Our iPool-Seq model extend the typical models in two ways: First, it combines

counts observed before and after infection of the host, and second it takes the indirect

PCR bias corrections supplied by TRUmiCount into account. For the latter, we

consider our iPool-Seq model to be a blueprint of how to integrate these corrections

into typical count data models. Simply applying indirect PCR bias corrections

beforehand is not practical for such models, because doing so would yield non-

integral counts, and break assumptions about the mean-variance relationship

these models often rely on.

When used to find pathogen mutants with significantly different virulences,

the iPool-Seq model we developed performs reasonable well, given experimental

limitations such as the low number of reference mutants (chapter 6). Three of the

mutants our model identifies as showing reduced virulence where independently

tested in an infection assay, and showed a clear reduction of symptoms there as well

(Uhse et al., 2018; chapter 3 of this work, see figure 5 on page 52 and corresponding

discussion on page 54), thus confirming the methods specificity.
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